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Abstract

NEUROMORPHIC HARDWARE DESIGN FOR EXECUTING DEEP NEURAL NET-
WORKS ON LOW POWER AND LIMITED RESOURCE INFRASTRUCTURES

Ali Mirzaeian, PhD
George Mason University, 2021

Dissertation Director: Dr. Avesta Sasan

The applications of machine learning algorithms are innumerable and cover nearly ev-
ery domain of modern technology. During this rapid growth of this area, more and more
companies have expressed a desire to utilize machine learning techniques in smaller devices,
such as cell phones or smart Internet of Things (IoT) instruments. However, as machine
learning has so far required a power source with more capacity and higher efficiency than
a conventional battery. Therefore, introducing neural network accelerators with low en-
ergy demands and low latency for executing machine learning techniques has drawn lots of
attention in both the academia and industry.

In this work, we first propose the design of Temporal-Carry-deferring MAC (TCD-MAC)
and illustrate how our proposed solution can gain significant energy and performance benefit
when utilized to process a stream of input data. We then propose using the TCD-MAC
to build a reconfigurable, high speed, and low power Neural Processing Engine (TCD-
NPE). Furthermore, we expand the idea of TCD-MAC to present NESTA, which is a
specialized Neural engine that reformats Convolutions into 3 x 3 batches and uses a hierarchy

of Hamming Weight Compressors to process each batch.



Chapter 1: Introduction

In recent years, machine learning has provided a foundation for rapid technological advance-
ment and massive economic growth. The global value of the machine learning market is
estimated at over $7 billion, and this figure is predicted to become much larger in the coming
decade. Machine learning is one of the most exciting frontiers in computer engineering. By
training computer algorithms to conduct tasks that normally require human involvement,
engineers have saved countless industries both time and money.

Around the globe, machine learning is widely employed in industries like medicine and
finance. To take medicine as an example, machine learning is being employed to personalize
health care to suit specific patients and to diagnose illnesses. Machine learning has become
more ubiquitous as engineers refine the available technology. However, the progress of
machine learning and the expansion of its use in the medical industry, as well as many
other industries, depends in large part on the progress of efficient computing technologies.

Machine learning is becoming a more and more computationally expensive operation.
At the same time, more and more companies have expressed a desire to utilize machine
learning techniques in smaller devices, such as cell phones or smart Internet of Things
(IoT) instruments. The size restrictions of remote and wireless devices have presented a
barrier to this initiative, however, as machine learning has so far required a power source
with more capacity and higher efficiency than a conventional battery.

On the hardware platform side, the GPU solutions have rapidly evolved over the past
decade and are considered a prominent mean of training and executing DNN models. Al-
though GPU has been a real energizer for this research domain, its is not an ideal solu-
tion for efficient learning, and it is shown that development and deployment of hardware
solutions dedicated to processing the learning models can significantly outperform GPU

solutions. This has lead to the development of Tensor Processing Units (TPU) [5], Field
1



Programmable Gate Array (FPGA) accelerator solutions [6], and many variants of dedicated
ASIC solutions [7-10].

Today, there exist many different flavors of ASIC neural processing engines. The com-
mon theme between these architectures is the usage of a large number of simple Processing
Elements (PEs) to exploit the inherent parallelism in DNN models. Compare to a regular
CPU with a capable Arithmetical Logic Unit (ALU), the PE of these dedicated ASIC solu-
tions is stripped down to a simple Multiplication and Accumulation (MAC) unit. However,
many PEs are used to either form a specialized data flow [8], or tiled into a configurable
NoC for parallel processing DNNs [10,12,13]. The observable trend in the evolution of these
solutions starting from DianNao [7], to DaDianNao [8], to ShiDianNao [9], to Eyris [10] (to
name a few) is the optimization of data flow to increase the re-use of information read from
memory, and to reduce the data movement (in NOC and to/from memory).

Common between previously named ASIC solutions, is designing for data reuse at NOC
level but ignoring the possible optimization of the PE’s MAC unit. A conventional MAC
operates on two input values at a time, computes the multiplication result, adds it to
its previously accumulated sum, and output a new and correct accumulated sum. When
working with streams of input data, this process takes place for every input pair taken
from the stream. But in many applications, we are not interested in the correct value of
intermediate partial sums, and we are only interested in the correct final result.

The first design question that we answer is if we can design a faster and more efficient
MAC if we remove the requirement of generating a correct intermediate sum when working
on a stream of input data. This question led us to the design of a novel building block
to improve the speed of machine learning techniques. We called this basic block Temporal
Carry Deferring MAC (TCD-MAC). Later on, we introduced TCD-MAC++ as an extended
version of TCD-MAC. We employed these basic blocks for building a Multi-Layer Perceptron

(MLP) processing engine and also a Convolutional Neural Network (CNN) engine.



Chapter 2: TCD-NPE: A Re-configurable and Efficient
Neural Processing Engine, Powered by Novel

Temporal-Carry-Deferring M ACs

2.1 Introduction

Deep neural networks (DNNs) has attracted a lot of attention over the past few years, and
researchers have made tremendous progress in developing deeper and more accurate models
for a wide range of learning-related applications [3,4,14-21]. The desire to bring these
complex models to resource-constrained hardware platforms such as Embedded, Mobile
and IoT devices has motivated many researchers to investigate various means of improving
the DNN models’ complexity and computing platform’s efficiency [22,23]. In terms of
model efficiency, researchers have explored different techniques including quantization of
weights and features [24, 25], formulating compressed and compact model architectures
[25-31], increasing model sparsity and pruning [25, 32], binarization [24, 33], and other
model-centered alternatives.

In this chapter, we propose the design of Temporally-deferring-Carry MAC (TCD-
MAC), and use the TCD-MAC to build a reconfigurable, high speed, and low power
MLP Neural Processing Engine (NPE). We illustrated that TCD-MAC can produce an
approximate-yet-correctable result for intermediate operations, and could correct the out-
put in the last state of stream operation to generate the correct output. We then build a
Re-configurable and specialized MLP Processing Engine using a farm of TCD-MACs (used
as PEs) supported by a reconfigurable global buffer (memory) and illustrate its superior

performance and lower energy consumption when compared with the state of the art ASIC



NPU solutions. To remove the data flow dependency from the picture, we used our pro-
posed NPE to process various Fully Connected Multi-Layer Perceptrons (MLP) to simplify
and reduce the number of data flow possibilities and to focus our attention on the impact

of PE in the efficiency of the resulting accelerator.

2.2 Related Work

The work in [10], categorizes the possible data flows into four major categories: 1) No
Local Reuse (NLR) where neither the PE (MAC) output nor filter weight is stored in the
PE. Examples of accelerator solutions using NLR data flow include [7,8,35]. 2) Output
Stationary (OS) where the filter and weight values are input in each cycle, but the MAC
output is locally stored. Examples of accelerator solutions using OS data flow include
[9,36-38]. 3) Weight Stationery (WS) where the filter values are locally stored, but the
MAC result is passed on. Examples of accelerators using WS data flow include [39-41], and
4) Row Stationary (RS and its variant RS+) where some of the reusable MAC outputs and
filter weights remain within a local group of PE to reduce data movement for computing
the next round of computation. An example of accelerator using RS is [10].

The OS and NLR are generic data flow and could be applied to any DNN, while the
WS and RS only apply to Convolutional Neural Networks (CNN) to promote the reuse of
filter weights. Hence, the type of applicable data reuse (output and/or weight) depends
on the model being processed. The Multi-Layer Perceptrons (MLP) is a sub-class of NNs
that has extensively used for modeling complex and hard to develop functions [42]. An
MLP has a feed-forward structure, and is comprised of three types of layers: (1) An input
layer for feeding the information to the model, 2) one or more hidden layer(s) for extracting
features, and (3) an output layer that produces the desired output which could be regression,
classification, function estimation, etc. Unfortunately, when it comes to MLPs, or when
processing Fully Connected (FC) layers, unlike CNNS, no filter weight could be reused.

In these models the viable data flows are the OS and NLR. The only possible solution



for using the WS solution in processing MLPs is the case of multi-batch processing that
may benefit from weight reuse. Another related work is the NPE proposed in [2]. This
solution, denoted as RNA, is a special case of NLR, where data flow is controlled through
NoC connectivity between different PEs; RNA breaks the MLP model into multi-layer loops
that are successively mapped to the accelerator PEs, and uses the PEs as either a multiplier
or an adder, dynamically forming a systolic array.

In the result section of this paper, We demonstrate that the OS solutions are in general
more efficient than NLR solutions. We further illustrate that our proposed TCD-MAC,
when used in the context of our proposed NPE, outperform state of the art accelerators

that rely on (fastest and most efficient) conventional MAC solutions.

2.3 Our Proposed MLP Processing Engine

Before describing our proposed NPE solution, we first describe the concept of temporal
carry and illustrate how this concept can be utilized to build a Temporal Carry deferring
Multiplication and Accumulation (TCD-MAC) unit. Then, we describe, how an array of
TCD-MAC are used to design a re-configurable and high-speed MLP processing engine, and
how the sequence of operations in such NPE is scheduled to compute multiple batches of

MLP models.

2.3.1 Temporal Carry Deferring MAC (TCD-MAC)

Suppose two vectors A and B each have N M-bit values, and the goal is to compute their

dot product, Zf\; Bl(Ai * B;) (similar to what is done during the activation process of each
neuron in a NN). This could be achieved using a single Multiply-Accumulate (MAC) unit,
by working on 2 inputs at a time for N rounds. Fig. 2.1(A-top) shows the general view of a
typical MAC architecture that is comprised of a multiplier and an adder (with 4-bit input
width), while Fig. 2.1(A-bottom) provides a more detailed view of this architecture. The

partial products (M partial product for M-bits) are first generated in Data Reshape Unit



(DRU). Then the hamming weight compressors (HWC) in the Compression and Expansion
Layer (CEL) transform the addition of M partial products into a single addition of two

larger binaries, the addition of which in an adder generates the multiplication result.
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Figure 2.1: Comparing the architecture of A) a typical MAC, versus B) a simplified 2-input version of TCD-
MAC. In all variables in form of D?,, the subscript (m) captures the bit position values, and postscript ()
capture the cycle (iteration). For example, A, B® are the input data in the i*" iteration (corresponding to
the " cycle) of the multiply accumulate operation. The b%,, at,, and pi, are accordingly the m'" significant
bits of inputs A, B, and partial sum at the i*" cycle (iteration). The division of CPA into GEN and PCPA
is also shown in this figure. Note that the PC'PA is only executed at the last cycle.

The building block of the CEL unit are the HWC. A HWC, denoted by Cgy (m:n), is
a combinational logic that implements the Hamming Weight (HW) function for m input-
bits (of the same bit-significance value) and generates an n-bit binary output. The output
n of HWC is related to its input m by: n = [logy*|. For example “011010”, “111000”,
and “000111” could be the input to a Cgy (6:3), and all three inputs generate the same

Hamming weight value represented by ”011”. A Completed HWC function CC gy (m:n) is



defined as a Cpyy function, in which m is 2" — 1 (e.g., CC(3:2) or CC(7:3)). Each HWC
takes a column of m input bits (of the same significance value) and generates its n-bit
hamming weight. In the CEL unit, the output n-bits of each HWC is fed (according to
its bit significance values) as an input to the proper Chyw (s) in the next-layer CEL. This
process is repeated until each column contains no more than 2-bits, which is a proper input
size for a simple adder. In Fig. 2.1 it is assumed that a Carry Propagation Adder Unit
(CPAU) is used. The result is then added to the previously accumulated value in the output
register in the second adder to generate a new accumulated sum. Note that in conventional
MAC, the carry (propagation) bits in the CPAUs are spatially propagated through the carry
chain which constitutes the critical timing path for both adder and multiplier.

Fig.2.1.B shows our proposed TCD-MAC. In this solution, only a single CPAU is used.
Furthermore, the CPAU is broken into two distinct segments 1) The GENeration (GEN)
and Partial CPA (PCPA). The Gen is the first layer of CPA logic that produces the Generate
(GS) and Propagate (Pf) signals for each bit position ¢ at cycle c. The TCD-MAC relies on

the assumption that we only need to correctly compute the final result of multiplication and

accumulation over an array of inputs (e.g. Ef\i Bl(Ai * B;)), while relaxing the requirement
for generating correct intermediate sums. This relaxed specification is applicable when a
MAC is used to compute a Neuron value in a DNN. Benefiting from this relaxed requirement,
the TCD-MAC skips the computation of PCPA, and injects (defers) the G§ and Pf generated
in cycle ¢, to the CEL unit in cycle ¢+ 1. Using this approach, the propagation of carry-bit
in the long carry chain (in PCPA) is skipped, and without loss of accuracy, the impact of
the carry bit is injected to the correct bit position in the next cycle of computation. We
refer to this process as temporal (in time) carry propagation. The Temporally carried G is
stored in a new set of registers denoted as Carry Buffer Unit (CBU), while the Pf in each
cycle is stored in the output register Unit (ORU). Note that CBU bits can be injected to
any of the Cgw (m : n) in any of the CEL layers in the same bit position. However, it is

desired to inject the CB bits to a Cyw (m : n) that is incomplete to avoid an increase in



the size and critical path delay of the CEL.

CBU o GEN
DRU | CEL |
0 t
Cyclel ’
reTM GEN PCPA
DRU | CEL . P
0
Cyclel t Cycle2 2to

Figure 2.2: TCD-MAC cycle time is computed by excluding the PCPA. In the last cycle of computation,
the TCD-MAC activates the PCPA to propagate the unconsumed carry bits.

Assuming that a TCD-MAC works on an array of N input pairs, the temporal carry
injection is done N-1 times. In the last round, however, the PCPA should be executed. As
illustrated in Fig. 2.2, in this approach, the cycle time of the TCD-MAC could be reduced
to that excluding the PCPA, allowing the computation over PCPA to take place in an extra
cycle. The one extra cycle allows the unconsumed carry bits to be propagated in PCPA
carry chain, forcing the TCD-MAC to generate the correct output. Using this technique we
shortened the cycle time of TCD-MAC for a large number of cycles. The saving obtained
from shorter cycles over a large number of cycles significantly outweighs the penalty of one
extra cycle.

To support signed inputs, in TCD-MAC we pre-process the input data. For a partial
product p = a x b, if one value (a or b) is negative, it is used as the multiplier. With this
arrangement, we treat the generated partial sums as positive values and later correct this
assumption by adding the two’s complement of the multiplicand during the last step of
generating the partial sum. Following example clarify this concept: let’s suppose that a is

a positive and b is a negative b-bit binary. The multiplication b x a can be reformulated as:

6 6
bxa=(-2"+ Zxﬂ’) xa=—2"a+ (Z z;2') X a (2.1)
i=0 1=0



The term —27a is the two’s complement of multiplicand which is lef-shifted by 7 bits,

and the term (Z?:o 7;2%) x a is only accumulating shifted version of the multiplicand.

2.3.2 TCD-NPE: Our Proposed MLP Neural Processing Engine

TCD-NPE is a configurable neural processing engine which is composed of a 2-D array of
TCD-MACs. The TCD-MAC array is connected to a global buffer using a configurable
Network on Chip (NOC) that supports various forms of data flow as described in section
4.1. However, for simplicity, we limit our discussion to supporting OS and NLR data flows
for executing MLPs. This choice is made to help us focus on the performance and energy
impact of utilizing TCD-MACs in designing an efficient NPE without complicating the
discussion with the support of many different data flows.

Figure 2.3 captures the overall TCD-NPE architecture. It is composed of 1) Processing
Element (PE) array which is a tiled array of TCD-MACs, 2) Local Distribution Networks
(LDN) that manages the PE-array connectivity to memories, 3) Two global buffers, one for
storing the filter weights and one for storing the feature maps, and 4) The Mapper-and-
controller unit which translates the MLP model into a supported data and control flow.

The functionality and design of each of these units are described next:
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Figure 2.3: TCD-NPE overall architecture. The Mapper algorithm is executed externally, and the sequence
of events is loaded into the controller for governing the OS data and control flow.

PE Array

The PE-array is the computational engine of our proposed TCD-NPE. Each PE in this tiled
array is a TCD-MAC. Each TCD-MAC could be operated in two modes: 1) Carry Deferring
Mode (CDM), or 2) Carry Propagation Mode (CPM). According to the discussion in section
2.3.1, when working with an input stream of size N, the TCD-MAC is operated in the CDM
model for N cycles (computing approximate sum), and in the CPM mode in the last cycle
to generate the correct output. This is in line with OS data flow as described in section
2.2. Note that the TCD-MAC in this PE-array could be operated in CPM mode in every
cycle allowing the same PE-array architecture to also support the NLR. After computing
the raw neuron value (prior to activation), the TCD-MAC writes the computed sum into
the NOC bus. The Neuron value is then passed to the quantization and activation unit
before being written back to the global buffer. Fig. 3.5 captures the logic implementation

for quantization (to 16 bits) and Relu[4] activation in this unit.
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Figure 2.4: The logic implementation of Quantization (Left) and Relu Activation (right) for signed fixed-
point 16bit values

Consider two layers of an MLP where the input layer contains M feature-values (neurons)
and the second layer contains N Neurons. To compute the value of N Neurons, we need
to utilize N TCD-MACs (each for M+1 cycles). If the number of available TCD-MACS is
smaller than N, the computation of the neurons in the second layer should be unrolled to
multiple rolls (rounds). If the number of available TCD-MACs is larger than neurons in
the second layer (for small models), we can simultaneously process multiple batches (of the
model) to increase the NPE utilization. Note that the size of the input layer (M) will not
affect the number of needed TCD-MACs, but dictates how many cycles (M+1) are needed
for the computation of each neuron.

When mapping a batch of MLP to the PE-array, we should decide how the computation
is unrolled and how many batches (K), and how many output neurons (N) should be mapped
to the PE-array in each roll. The optimal choice would result in the least number of rolls
and the maximum utilization of the NPE. To illustrate the trade-offs in choosing the value
of (K, N) let us consider a PE-array of size 18, which is arranged in 6 rows and 3 columns
of TCD-MACs (similar to that in Fig. 2.3). We refer to each row of TCD-MACs as a TCD-
MAC Group (TG). In our implementation, to reduce NOC complexity, the TG groups work
on computing neurons in the same batch, while different TG groups could be assigned to

work on the same or different batches. The architecture in Fig. 2.3 has 6 TG groups. Let
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us use NPE(K, N) to denote the choice of using the PE-array to compute N neuron values
in K batches where N x K = 18. In our example PE-array the following selections of K and
N are supported: (K,N) € (1,18),(2,9),(3,6),(6,3). The (9,2) and (18,1) configuration
are not supported as the value of N in this configurations is smaller than TG size = 3.
Fig. 2.5.left shows an abstract view of TCD-NPE and describe how the weights and
input features (from one or more batches) are fed to the TCD-NPE for different choices of K
and N. As an example 2.5.(left).A shows that input features from one batch are broadcasted
between all TGs, while the weights are unicasted to each TCD-MAC. Let us represent the
input scenario of processing B batches of U neurons in a hidden or output layer of an
MLP model with I input features using I'(B, I, U). Fig. 2.5.(right) shows the NPE status
when a I'(3, 1,9) model (3 batches of a hidden layer with 9 neurons in a hidden layer each
fed from I input neurons) is executed using each of 4 different NPE(K, N) choices. For
example Fig. 2.5.(right).top shows that using configuration NPE(1,18), we process one
batch with 18 neurons at a time. In this example, when using this configuration, the NPE
is underutilized (50%) as there exist only 9 neurons in each batch. Following a similar
argument, the NPE(6,3) arrangement also have 50% utilization. However the arrangement
NPE(2,9), and NPE(3,6) reach 75% utilization (100% for the roll, and 50% for the second
roll), hence either NPE(2,9) or NPE(3,6) arrangement is optimal for the I'(3, ,9) problem
as they produce the least number of rolls. Note that the value of I in I'(3, ,9) denotes the
number of input features which dictate the number of cycles that the NPE(K,N) should be

executed.



13

_ TCD-NPE(K,N) ' r(3,1,9)
_________ e e I S———
Bo—me—1 Wop B B Woa B W
i || I | [ Al | [ TR
TG M e R T
116G, - Wé_H : ——L5 Ws_B ——L5 Ws_8 rolls | 3xl
A TGy - oy L 1 T Il 1 1 s
k TGy - W“’“: HHEE- Gl 1 | ISkt | | (St
TG; - "+, \mEE- "> -EEE- "7 EE-
roll3
NPE(2,9)
util | 75%
rolls | 2x|
NPE(3,6)
util | 75%
rolls | 2xl
B, T e —— — A ——
5 MG 7, HEE T A EEE-CC EEE NPE(63)
Bl’ e - IB*---« Bl EEE B'ml' Util | 50%
3 TGy - 2 HHE 2 1 [ | b
By TG. B:
Bj‘ T’]‘G(;3 . — 2\:::\« Bi ==-4 rolls | 3xl
i (T e ) L L LIy - ;
% TGy p) = HEN- 5:&--.4 EEE I Activated TCD-MAC
(D), -
rolll roll2 roll3 Il Deactived TCD-MAC

Figure 2.5: Assuming a 6 x 3 PE-array of TCD-MACs, the NPE(K, N) could be configured such that (K,
N) € {(1,18), (2,9), (3,6), (6,3)}. This figure illustrate the number of rolls, and utilization when each of
NPE(K,N) configurations is used to run a I'(3,1,9). model. Each roll is executed I times.

Mapping Unit

An MLP has one or more hidden layers and could be presented using Model(I — Hy — Hy —
... — Hy — O), in which I is the number of input features, H; is the number of Neurons in
the hidden layer ¢, and O is the number of output layer neurons. The role of the mapping
unit is to find the best unrolling scenario for mapping the sequence of problems I'(B, I, Hy),
I'(B,H,Hs), ..., I'(B,Hn-1,HyN), and I'(B, Hy, O) into minimum number of NPE(K,N)
computational rounds.

Algorithm 1 describes the mapper function for unrolling a multi-batch multi-layer MLP
problem. In this Algorithm, B is the batch size that could fit in the NPE’s feature-memory
(if larger, we can unroll the B into N x B* computation round, where B* is the number

of batches that fit in the memory). M[L] is the MLP layer size information, where M[i] is
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the number of nodes in layer i (with i = 0 being Input, and ¢« = N + 1 being Output, and

all others are hidden layers). The algorithm schedules a sequence of NPE(K, N) events to

compute each MLP layer across all batches.

Algorithm 1 Schedule NPE(K,N) rolls (events) to execute B batches of M (L)

MLP(I,Hy, ..., Hy,O).

procedure PRACTICALCFGFINDER(Model M[L], BatchSize B)
for (I =1;size(M);l+ +) do
Treepeqq = CreateTree(B, M[l])
Execrree < Shallowest binary tree (least rolls) from Treepeqq
Schedule < Schedule computational events by using BFS
on Ezecrree to report NPE(K,N) and r at each node.

return Schedule

procedure CREATETREE(B, O)
C[i] + find each (K;, N;)|K;,N; €N, & K; < B
& size(NPE) = K; x N;
for (i = 0;i < size(C);i+ +) do
Mp = min(B, C[i][1]).
Mg = min(0, C[i][2]).
772) = (MB) M@)
r = |B/Mp) x |©/Me]
if (B%Mp) ! =0 then
Nodep «+ CreateTree(B%Mp, ©)
if (K%Meg) ! =0 then
Nodeg «+ CreateTree(B — B%Mp, K%Meg)
Node < createNode(r,v, Nodeg, Nodeg)
return Node

> Cli][1] = K;

> C[i][2] = N;

> ¢: NPE’s (K,N) configuration

> 7: # of rolls with NPE(Mpg, Mg)

Complete Computational Tree from CreateTree Procedure [

NPE(1,18)
NPE(29) —

leolo.o]
eoleol

v: rolling Number

NPE(3,6) —
NPE(6,3) —

# : NPE configuration
Node: remaining batches

Nodeg: remaining Neurons,

(] Binary Execution Tree from BFS scheduling ”\

1 x NPE(1,18)

| ®)
Schedule (C)

$:1 x NPE(3,6) -1 X NPE(2,9) > 1 X NPE(1,18)
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Figure 2.6: An example execution of algorithm 1 when processing I'(5, I, 7) model using a TCD-MAC with
a 6 X 3 PE-array. (A): the complete computational Tree from CreateTree procedure, (B): binary execution
tree obtained from BFS scheduling, (C): the sequence of scheduled events to compute the model based on

binary execution tree.
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To schedule the sequence of events, the Alg. 1 first generates the expanded computa-
tional tree of the NPE using CreateTree procedure. This procedure first finds all possible
ways that NPE could be segmented for processing N neurons of K batches, where K < B
and stores them into configuration database C. Then for each of configurations of NPE(K,
N), it derives how many rounds (r) of NPE(K, N) computations could be executed. Then it
computes a) the number of remaining batches (with no computation) and b) the number of
missing neurons in partially computed batches. It, then, creates a tree-node, with 4 major
fields 1) the load-configuration W(K;, N) that is used to partially compute the model using
the selected NPE(K;, N;) such that (K} < K;)&(N; < N;), 2) the number of rounds (rolls)
r taken with computational configuration ¥ to reach that node, 3) a pointer to a new prob-
lem Nodep that specifies the number of remaining batches (with no computation), and 4)
a pointer to a new problem Nodeg for partially computed batches. Then the Createlree
procedure is recursively called on each of the Nodep and Nodeg until the batches left, and
partial computation left in a (leaf) node is zero. At this point, the procedure returns. After
computing the computational tree, the mapper extracts the best execution tree by finding a
binary tree with the least number of rolls (where all leaf nodes have zero computation left).
The number of rolls is computed by summing up the r field of all computational nodes.
Finally, the mapper uses a Breath First Search (BFS) on the Execution Tree (Execr,ee
and report the sequence of rxNPE(K, N) for processing the entire binary execution tree.
The reported sequence is the optimal execution schedule. Fig. 2.6 provides an example for
executing 5 batches of a hidden MLP layer with 7 neurons. As illustrated the computation-
tree (Fig. 2.6.A) is first generated, and then the optimal binary execution tree (Fig. 2.6.B)
resulting in the minimum number of rolls is extracted. Fig. 2.6.C captures the result of

scheduling step where BFS search schedule the sequence of rxNPE(K, N) events.

Controller

The controller is an FSM that receives the ”Schedule” from Mapper and generated the

appropriate control signals to control the proper OS data flow for executing the scheduled



16

sequence of events.
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Figure 2.7: The arrangement of data in W-mem and FM-mem when our proposed TCD-NPE is used in
NPE(K,N)=(2,64) configuration mode to process B = 2 batches of a hidden layer of an MLP model as
defined by T'(B, I, H) = (2,200, 100).

Memory Architecture

The NPE global memory is divided into feature-map memory (FM-Mem), and Filter Weight
memory (W-Mem). The FM-Mem consist of two memories with ping-pong style of access,
where the input features are read from one memory, and output neurons for the next NN
layer, are written to the other memory. When working with multiple batches (B), the
input features from the largest number of fitting batches (B*) is read into feature memory.
For simplicity, we have assumed that the feature map is large enough to hold the features
(neurons) in the largest layer of at least one MLP (usually the input) layer. Note that the
NPE still can be used if this assumption is violated, however, now some of the computed
neuron values have to be transferred back and forth between main memory (DRAM) and
the FM-Mem for lack of space. The filter memory is a single memory that is filled with the

filter weights for the layer of interest. The transfer of data from main memory (DRAM)
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to the W-Mem and FM-Mem is regulated using Run Length Coding (RLC) compression to
reduce data transfer size and energy.

The data arrangement of features and weights inside the FM-Mem and W-Mem is shown
in Fig. 2.7. The data storage philosophy is to sequentially store the data (weight and input
features) needed by NPE (according to its configuration) in consecutive cycles in a single
row. This data reshaping solution allows us to reduce the number of memory accesses by
reading one row at a time into a buffer, and then consuming the data in the buffer in the
next few cycles. We explain this data arrangement concept using the example shown in
Fig. 2.7.

Fig. 2.7 shows the arrangement of data when we use our proposed TCD-NPE in
NPE(K,N)=(2,64) configuration to process B = 2 batches of a hidden layer of an MLP
model as defined by I'(B, I, H) = (2,200, 100). Note that the PE array size, in this case is
16 x 8 which is divided into two 8 x 8 arrays for processing each of 2 batches. The W-Mem,
shown in left, is filled by storing the first N=64 weights of each outgoing edge from input
Neurons (features) to each of the neurons in the hidden layer. Considering that the width
of W-Mem is 256 bytes, and each weight is 2 bytes, the width of W-Mem (W _mem) is
128 words. Hence, we can store 64 weights of the outgoing edge from each 2 input neurons
in one row. The memory-write process is repeated for [(I/(Ww_mem/N))] = 100 rows,
and then the next N = 64 weights of outgoing edges from each input neuron are written
(in this case we only have 36 weights left, as there exist a total of 100 outgoing edges from
each input neuron, 64 of which is previously stored) in the next [(I/(Ww_mem/N))] = 100
rows. At processing time, by using the NPE(2,64) configuration, the TCD-NPE consumes
N = 64 weights in each cycle. Hence, with one read from W-Mem, it receives the weights
needed for Wiy _mem/N = 128/64 = 2 cycles, reducing the number of memory accesses by
half.

The FM memory, on the other hand, is divided into B = 2 segments. Assuming that the
width of FM memory is Wrgas—mem = 64 words, each segment can store Wrnr—mem/B =

64/2 = 32 input features. The memory, as shown in Fig. 2.7, is filled by writing the input
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features of each batch into subsequent rows of each virtually segmented memory. Note that
both FM-Mem and W-Mem should be word writable to support writing to a section of a
row without changing the value of other memory bits in the same row. The input features
from each batch is written to the [(I/(Wrp—mem/B))] = [(200/(64/2)) = 7] rows. At
processing time, using the NPE(2,64) configuration, the TCD-NPE in one access (Reading
one row) will receive Wr/B input features from B different batches and store them in
a buffer. In each subsequent cycle, it consumes one input from each batch, hence, the
arrangement of data and sequential read of data into a buffer will reduce the number of

memory accesses by a factor of Wear—mem/B = 64/2 = 32.

Local Distribution Network (LDN)

The Local Distribution Networks (LDN) interface the read/write buffers and the Network
on Chip (NOC). They manage the desired multi- or uni-casting scenarios required for dis-
tributing the filter values and feature values across TGs. Figure 2.8 illustrate an example
of LDNs in an NPE constructed using 6 x 3 array of TCD-MACs. As illustrated in this
example, the LDNs are used for 1) reading/writing from/to buffers of FM-mem while sup-
porting the desired multi-/uni-casting configuration (generated by controller) to support
the selected NPE(K, N) configuration (Fig.2.8.A) and 2) reading from W-mem buffer and
multi-/uni-casting the result into TGs (Fig.2.8.B). Note that the LDN in Fig, 2.8 is specific

to NPE of size 6 x 3. For other array sizes, a similar LDN should be constructed.
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Figure 2.8: An example of LDN for managing the connection between a (6 x 3)-PE-array’s NoC and memory.
(A).left: LDN for writing from NoC data bus to FM-mem. (A).right: LDN for reading from FM-mem to
NoC bus. (B): LDN for reading from W-mem into NoC filter bus. The FM-mem in this case, is divided into
6 partitions, supporting the simultaneous process of 6 batches at a time.

2.4 Results

In this section, we first evaluate the Power, Performance, and Area (PPA) gain of using
TCD-MAC, and then evaluate the impact of using the TCD-MAC in our proposed TCD-
NPE. The TCD-MAC and all MACs evaluated in this section operate on signed 16-bit

fixed-point inputs.

2.4.1 Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simulation of each design. Each MAC
is designed in VHDL, synthesized using Synopsis Design Compiler [43] using 32nm standard
cell libraries, and is subjected to physical design (targeting max frequency) by using the
Synopsys reference flow in IC Compiler [44]. The area and delay metrics are reported using
Synopsys Primetime [45]. The reported power is the averaged power across 20K cycles
of simulation with random input data that is fed to Prime timePX [45] in FSDB format.

The general structure of MACs used for comparison is captured in Fig. 2.1. We have
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Table 2.1: PPA comparison between various MACs and TCD-MAC.

MAC Type|Area(um? ) [Power(uw)|Delay(ns) [PDP(pJ)
(BRx2, KS) 8357 467 2.85 13.31
(BRx2, BK) 8122 394 3.3 13
(BRx8, BK) 7281 383 3.14 12.03
(BRx4, BK) 6437 347 3.35 11.62
(WAL, KS) 7171 346 3.04 10.52
(WAL, BK) 6520 334 3.13 10.45
(BRx4, KS) 6551 393 2.47 9.71
(BRx8, KS) 7342 354 2.63 9.31
TCD-MAC 5004 320 1.57 5.02

compared our solution to a wide array of MACs. In these MACs, for multiplication, we
used Booth-Radix-N (BRx2, BRx4, BRx8) and Wallace implementations. For addition we
have used Brent-Kung (BK) and Kogge-Stone (KS) adders. Each MAC is identified by the

tuple (Multiplier choice, Adder choice).

2.4.2 TCD-MAC PPA Assessment

Table 2.1 captures the PPA comparison of the TCD-MAC against a popular set of conven-
tional MAC configurations. As reported, the TCD-MAC has a smaller overall area, power
and delay compare to all reported MACs. Using TCD-MAC provide 23% to 40% reduction
in area, 4% to 31% improvement in power, and an impressive 46% to 62% improvement in
PDP when compared to other reported conventional MACs.

Note that this improvement comes with the limitation that the TCD-MAC takes one
extra cycle to generate the correct output when working on a stream of data. However,
the power and delay saving of TCD-MAC significantly outweigh the delay and power for
one extra computational cycle. To illustrate this, the throughput and energy improvement
of using a TCD-MAC for processing different sizes of input streams (1, 10, 100, 1000) is
compared against selected conventional MACs and is reported in Table 4.6. As illustrated,

when using the TCD-MAC for processing an array of inputs, the power and delay savings
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quickly outweigh the delay and power of the added cycle as input stream size increases.

Table 2.2: Percentage improvement in throughput and energy when using a TCD-MAC (as opposed to a
conventional MAC) to process an stream of 1, 10, 100 and 1000 multiplication and addition operations.

Throughput improvement(%) | Energy Improvement (%
Mac Type =136 100 1000 ) 1 [ 10 100 100(() )
(BRX2, KS) | 25 | 59 | 62 63 10 | 40 | 45 45
(BRX2, BK) | 23 | 58 | 62 62 5 | 48| 52 53
(BRXS, BK) | 17 | 55 | 58 59 0 | 45| 50 50
(BRX4, BK) | 14 | 53 | 57 57 7 | 49| 53 54
(WAL, KS) | 5 | 48 | 52 53 3| 44| 48 49
(WAL, BK) | 4 | 48 | 52 52 0 | 45| 50 50
(BRX4, KS) | -3 | 44 | 48 49 27| 31| 36 37
(BRXS, KS) | -7 | 41 | 46 A7 19 | 35 | 40 41

2.4.3 TCD-NPE Evaluation

In this section, we describe the result of our TCD-NPE implementation as described in
section 2.3.2. Table 2.3-top summarizes the characteristics of TCD-NPE implemented, the
result of which is reported and discussed in this section. For physical implementation, we
have divided the TCD-NPE into two voltage domains, one for memories, and one for the
PE array. This allows us to scale down the voltage of memories as they had considerably
shorter cycle time compared to that of PE elements. This choice also reduced the energy
consumption of memories and highlighted the saving resulted from the choice of MAC in
the PE-array. Note that the scaling of the memory voltage could be even more aggressive
than what implemented in our solution; In several prior work [46-50], it was shown that it
is possible to significantly reduce the read/write/retention power consumption of a memory
unit by aggressively scaling it supplied voltage while deploying architectural fault tolerance

techniques and solutions to mitigate the increase in the memory write/read/retention failure
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rate. On top of that, learning solutions are also approximate in nature, and inherently less
sensitive to small disturbance to their input features. This inherent resiliency could be used
to deploy fault tolerant techniques to only protect against bit errors in most significant bits
of input feature map, resulting in reduced complexity of deployed fault tolerance scheme.
Table 2.3-bottom captures the overall PPA of the implemented TCD-NPE extracted
from our post layout simulation results which are reported for a Typical Process, at 85C°
temperature, when the PE-array and memory elements voltages are set according to Table

2.3.

Table 2.3: TCD-NPE implementation details and PPA results. In this table, we have only reported the
leakage power. The dynamic power is activity dependent. The breakdown of energy consumption for
processing different benchmarks is reported in Fig. 2.10

Feature Detail Feature Detail
PE-array 16 x 8 Processing Element |TCD-MAC
Input Data Format Signed 16-bit fixed-point|Data Flow OS
W-mem size 512 KByte Activation Units Relu
FM-mem Size 2 x 64 KByte PE-array voltage 0.95V
Mapper Off-chip using Alg. 1 Mem voltage 0.70V
Area 3.54 mm? Max Frequency 636 MHz
PE-array Area 0.724 mm? Memory Area 2.5 mm?
Overall Leak. Power |75.5 mW Memory Leak. Power|51.7 mW
PE-array Leak. Power|6.4 mW Others Leak. Power |17 mW

To compare the effectiveness of TCD-NPE, we compared its performance with a similar
NPE which is composed of conventional MACS. According to the discussion in section 2.2,
we limit our evaluation to the processing of MLP models. Hence, the only viable data flows
are OS and NLR. The TCD-MAC only supports OS, however, by replacing a TCD-MAC
with a conventional MAC, we can also compare our solution against OS and NLR. We
compare 4 possible data flows that are illustrated in Fig. 2.9. In this Fig. The case (A)

is NLR data flow (supported only by conventional MAC) for computing the Neuron values
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by forming a systolic array withing the PE-array. The case (B) An NLR data flow variant
according to [2] when the computation tree is unrolled and mapped to the PEs, forcing the
PE to either act as an adder or multiplier. The case (C) is the OS data flow realized by

using conventional MAC. And, finally, the case (D) is the OS data flow implemented using
TCD-NPE.
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Figure 2.9: Four possible data flow for processing an MLP model. (A): NLR data flow using conventional
MACs to form a systolic array. (B): RNA data flow resulted from unrolling the MLP model and mapping
the computation tree to conventional MACs (each used as either multiplier or adder) as described in [2].
(C) The OS data flow using conventional MAC. (D): The OS dataflow using TCD-MAC.

For OS dataflows, we have used the algorithm 1 to schedule the sequence of computa-
tional rounds. We have compared the efficiency of each of four data flows (described in

Fig. 2.9) on a selection of popular MLP benchmarks characteristic of which is described in

Table. 2.4.
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Table 2.4: MLP benchmarks used in this work [1].

Applications Dataset Topology

Digit Recognition MNIST 784:700:10

Census Data Analysis | Adult 14:48:2

FFT Mibench data 8:140:2

Data Analysis Wine 13:10:3

object Classification Iris 4:10:5:3
Classification poker Hands 10:85:50:10
Classification Fashion MNIST | 728:256:128:100:10

As illustrated in Fig. 2.10.left, the execution time of the TCD-NPE is almost half of
an NPE that uses a conventional MAC in either OS or NLR data flow, and significantly
smaller than the RNA data flow (an NLR variant) that was proposed in [2]. Fig. 2.4.right
captures the energy consumption of the TCD-NPE and compares that with a similar NPE
constructed using conventional MACs. For each benchmark, the energy consumption is
broken into 1) computation energy of PE-array, 2) the leakage of the PE-array, 3) the leakage
of the memory, and 4) the dynamic energy of memory (and buffer combined). Note that
the voltage of the memory is scaled to a lower voltage, as described in table 2.3. This choice
was made as the cycle time of the PE’s was significantly shorter than the memory cycle
times. The scaling of the memory voltage increased its associated cycle time to one cycle,
however, significantly reduced its dynamic and leakage power, making the PE-array energy
consumption the largest energy consumer. In addition, note that by sequentially shaping the
data in the memories, and usage of buffers, we significantly reduced the number of required
memory accesses, resulting in a significant reduction in the dynamic power consumption of
the memories. As illustrated, the TCD-NPE not only produces the fastest solution but also
produces the least energy-consuming solutions across all NPE configurations, all data flows

and all simulated benchmarks.
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Figure 2.10: Comparison of TCD-NPE with an NPE constructed using conventional MACs that uses the OS,
NLR, or RNA data flow. top): Execution time for various MLP benchmarks. Bottom): Energy consumption
for various MLP benchmarks.

2.5 Conclusion

In this chapter, we introduced the concept of temporal carry bits and used the concept to
design a novel MAC for efficient stream processing (TCD-MAC). We further proposed the
design of a Neural Processing Engine (TCD-NPE) that is architected using an array of TCD-
MAC:s as its processing element. We, further, proposed a novel scheduler that schedules the
sequence of events to process an MLP model in the least number of computational rounds in
the proposed TCD-NPE. We reported that the TCD-NPE significantly outperform similar
neural processing solutions that are constructed using conventional MACs in terms of both

energy consumption and execution time (performance).



Chapter 3: NESTA: Hamming Weight Compression-Based

Neural Processing Engine

3.1 Introduction and Background

Deep learning models that deploy Convolutional Neural Networks (CNN) for feature extrac-
tion have become increasingly popular in recent years [51]. The popularity of these learning
solutions stems from their ability to achieve unprecedented accuracy, surpassing that of
human’s ability, for various tasks such as object and scene recognition [3,4,27,28,31,52-55],
object detection, and object localization[56,57]. This, as illustrated in Table 3.1, is made
possible by using deep and complex neural networks expressed using specialized frameworks
such as Caffe [58], PyTorch [59] and Tensorflow [5], and trained and executed in acceptable
time by Graphical Processing Units (GPU).

Although innovation in parallel computing has enabled us to train and execute such
complex models, the applicability of such models remains limited due to their computational
and storage requirements. These state of the art CNNs require up to hundreds of megabytes
for a model and partial result storage and 30k-600k operations per input pixel [10]. The high
computational complexity of these models, in turn, poses energy (power) and throughput
(delay) challenges to the underlying hardware. Typically, in such learning solutions the
majority (over 90%) of computational complexity is for processing the convolution (CONV)
layers [60].

The generality of a processing engine significantly affects the throughput and energy
efficiency of neural processing hardware[39][9]. The more general the hardware, the less
efficient (in terms of delay and power) the computation becomes. The least attractive solu-

tions are generated by running CNNs on general-purpose CPUs. Utilizing more specialized
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hardware such as GPUs and FPGAs provide a significant improvement in the efficiency of
computation, while most efficient computing, with an order(s) of magnitude improvement
in performance and power consumption, is reported when specialized ASIC accelerators
such as Eyeriss[10], Diannao[7], Dadiannao[8], or Shidiannao[37] are deployed. The ma-
jor difference in the performance of ASIC accelerator solutions, previously proposed in
[7-10, 37, 39, 63-66], is on the type of data flow implemented for maximizing data reuse
(weight, partial sum, and activation value) and minimizing memory access. This is when
the neural Processing Elements (PE), that implement the multiply-accumulate (MAC) func-

tion, remain non-optimized in these accelerator solutions.

Table 3.1: Depth and complexity of some of the existing and modern CNN solutions for object detection.

AlexNet[4] VGG[3] GoogLeNet[52] Resnet[53]
Top5 Accuracy 80.2% 89.6% 89.9% 96.3%
layers 8 19 22 152
FLOPS 729M 19.6G 1.5G 11.3G
FLOPS in 3 x 3 CONV 118M 19.5G 1.18G 6.7G

We claim that the architecture of PEs in an ASIC DNN accelerator could significantly
improve when the computational model, data locality, and data reuse concepts are used to
architect a DNN/CNN specific PE. We propose NESTA as a PE that is designed based on
these principles. To reduce data movement, and minimize the generation of partial sums,
NESTA consumes 9 values of the convolution at a time (equal to the size of a 3 x 3 con-
volution) until all filter-image pairs of a convolution across all channels are consumed. To
significantly speed up the computation and reduce energy consumption, NESTA does not
use adders or multipliers. Instead, it converts the convolution into a sequence of N compres-

sion and one final addition. The add operation transforms the compressed and accumulated
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result into a correct partial sum.
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Figure 3.1: Computing one CONYV layer using input Ifmap/image and filters to produce the output
(Ofmaps)
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Figure 3.2: comparing the architecture of A) a typical MAC, versus B) a simplified 2-input version of NESTA.
In all variables in the form of D}, the subscript (m) captures the bit position values, and postscript (i)

capture the cycle (iteration). For example, A, B® are the input data in the i*" iteration (corresponding to
the " cycle) of the multiply accumulate operation. The b%,, af,, and ph, are accordingly the m'* significant

bits of inputs A, B, and partial sum at the i*" cycle (iteration). The division of CPA into GEN and PCPA
is also shown in this figure. Note that the PCPA is only executed at the last cycle.

3.2 NESTA: Proposed Processing Engine

Before describing our proposed solution, we first explain the concept of temporal carry in
a miniaturized solution in section 3.2.1, then we explain the concept of compression and
expansion in section 3.2.2. Finally, in section 3.2.3, we use these concepts to construct and

describe our proposed solution.

3.2.1 Motivation 1: Temporal Carry

Suppose two vectors A and B each have N 8-bit values, and the goal is to compute their dot
product, Zf\; _01 (A;*B;) (similar to what is done during the activation process of each neuron
in a NN). This could be accomplished using a single Multiply-Accumulate (MAC) unit and
working on 2 inputs at a time for N rounds. Fig. 3.2(A-right) shows the General view of
a typical MAC architecture that comprised of two parts multiplication and addition. We
have assumed that a Carry Propagation Adder (CPA) is used as adder unit for reducing the

MAC delay. More detailed view of this architecture, 3.2(A-left), reveals that for generating
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the final result, the CPA will be executed 2N times, N times for producing the results of N
multiplications and N times for accumulating the result of multiplications. These CPAs are
located at the critical path of this architecture so eliminating them lead to a performance
gain. Fig. 3.2(A-right) captures how CPA has been broken into GEN (which is highlighted
in red), and PCPA (Partial CPA).

Fig.3.2(B-right) shows a simplified version of our proposed solution, NESTA-V1. As
illustrated NESTA-V1, 1) intertwines the multiplication and addition, and 2) reduces the
delay of CPA by only using the GEN section of the CPA. The GEN section only produces
the first level generate G*, and propagate P signals, after which NESTA-V1 feedback each
P? and G' to its compressor network for inclusion in the cycle computation. We can consider
this as the process of generating a temporal carry signal, as opposed to a spatial carry signal
which is used in typical MACs. This is made possible, considering that we do not need the
output of individual multiplications, and our target is to compute the correct Zl]i _01 (A;*By).
Hence, in NESTA-V1 for N-1 times, only the GEN section of CPA is executed, while for the
last iteration the complete CPA is executed (including PCPA) to avoid generating further

temporal carry bits.

3.2.2 DMotivation 2: Compression and Expansion

Lets consider an application that requires hardware acceleration for computing the following
expression: p = Z?:l a;i, in which a;(s) are 16-bit unsigned numbers. One natural solution,
as illustrated in Fig. 3.3.(left), is using an adder-tree, while each add operator could be im-
plemented using a fast adder such as carry-look-ahead [69] (CLA), Brent-Kung [70] (BK) or
Kogge-Stone [71] (KS) adder. Regardless of the choice of the adder, the resulting adder tree
is not the most efficient. The adder power delay product (PDP) could significantly improve
if a multi-input adder is reconstructed using Hamming Weight (HW) compressors. For this
purpose, we reformulate the computation of p as shown in Equation 3.1, by rearranging the

values into 16 arrays, where each array is composed of 9 bits with equal significance value.
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With this formulation, we can use a hierarchy of Hamming Weight compressor to perform

the addition.

p= ZZ(zi & aj) (3.1)

Fig. 3.3-(right) captures the structure of the proposed HW compression Adder (HWC-
Adder), which is composed of 4 stages. In each of the first 3 stages, the HW compressors
C(m:n) take a stack of m bit values of the same significance (shown vertically) and computes
its HW value (of size n) which is expanded vertically. Aligning the bit values of the same
significance generates a smaller stack of bit values at each bit position as input to the next
level of compressors. We refer to each of these stages (stages 1 to 3) as Compression and
Expansion Layer (CEL). In the last stage, every bit-column contains no more than 2 bits.

In this stage, a 2-input addition generates the final results.
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Figure 3.3: An Adder tree for 9 16-bit-width entries (left), Hamming Weight Adder (HW-Adder) of 9 16-bit-
wide entries (right). In the HWC-Adder compressor hierarchy (CEL) the complete compressors are colored
blue, while compressors with available capacity are white. For building the improved version of HWC-Adder
(HWC-Adder*), 2 bits from each compressor in CEL-1 are differed to a compressor in the same bit position
in CEL-2, increasing the number of complete compressors and reducing the critical path delay in CEL-1 as
reported in table 3.2
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Table 3.2 compares the PPA and PDP of an adder tree constructed using Brent-Kung
and Kogge-Stone adders, and that of HWC-Adder. As illustrated the energy consumption
of the HWC-Adder is 50.2% and 39.8% lower than that of the BK and KS adder-trees
respectively. At the same time, the delay of HWC-Adder is 8.3% and 9.8% lower than that
of the KS and BK adder-trees respectively. The delay of HWC-Adder architecture could be
further improved, if instead of incomplete C(9:4) HW compressors in the first CEL, we use
complete CC(7:3) compressors, passing the unconsumed bits (2 bits) to the next hierarchy
layer, in which the C(4:3) incomplete compressors are converted to C(6:3). This transfor-
mation shortens the critical path (reduces the number of logic levels) in stage CEL-1 and
reduces the area, without increasing the number of logic levels in CEL-2, hence, producing
a faster implementation. The PDP of the resulting HWC-Adder* is captured in the table
3.2. The resulting improvements in the HWC-Adder(s) are the result of 1) using larger
HW compressors (as opposed to C(2:2) and C(3:2) in Brent-Kung), and 2) maximizing the

number of complete compressors, thus reducing the hardware deficiency.

Table 3.2: Comparing the efficiency of HWC-Adder(s) vs Adder tree constructed using Brent-Kung (BK)
and Kogge-Stone (KS).

Adder Type Area(um?) | Delay(ns) | Power(ulW) | PDP(f5)
Adder tree (BK) 4723 2.66 0.555 1.48
Adder tree (KS) 5135 2.60 0.686 1.78
HWC-Adder 4738 2.40 0.369 0.88
HWC-Adder* 4428 2.35 0.368 0.86

3.2.3 NESTA: Our Proposed Solution

Our proposed solution, NESTA, is a specialized neural processing engine designed for exe-

cuting learning models in which filter-weights, input-data, and applied biases are expressed



33

in fixed-point format. NESTA combines 9 multiplications and 9 additions into one batch-
operation for gaining energy and performance benefits. Let’s assume NEST Aacc is the
current accumulated value, while I and W represent the input values and filter weights

h

respectively. In its n®” round of execution, NESTA performs the following operation:

NESTAacc(n) = NESTAaco(n —1) + 3049 I, x Wi(3.2)
To improve efficiency, NESTA does not use adders and multipliers. Instead, it uses a

sequence of hamming weight compressions followed by a single add operation. Furthermore,

in each cycle ¢, after consuming 9 input-pairs (weight and input), instead of computing the
correct accumulated sum, NESTA quickly computes an approximate partial sum S'[¢] and

a carry C|c] such that S[c] = S'[¢] + C¢]. The S'[¢] is the collection of generated bits (Gi)

and C|[c] is the collection of propagated (Pi) bits produced by GEN unit of CPA. Note that

the division of CPA into GEN and PCPA was described in section 3.2.1. The S'[c] is saved

in the output registers, while the C|c| are stored in Carry Buffer Unit (CBU) registers. In

the next cycle, both S'[¢] and C[c] are used as additional inputs (along with 9 new inputs
and weights) to the CEL unit. Saving the carry (propagate) values (Ps) in CBU and using
them in the next iteration reflects the temporal carry concept that was described in section
3.2.1, while the reuse of S in the next round implements the accumulation function of
NESTA.

In the last cycle, when working on the last batch of inputs, NESTA computes the correct

Slc] by using the PCPA to consume the remaining carry bits and by performing the com-

plete addition S[c] = S'[¢] + C|c]. Note that the add operation generates a correct partial
sum whenever executed. But, to avoid the delay of the add operation, NESTA postpones it
until the last cycle. For example, when processing a 11 x 11 convolution across 10 channels,
to compute each value in Ofmap, 1210 (11 x 11 x 10) MAC operations are needed. To

compute this convolution, NESTA is used 135 times [1210/9], followed by one single add
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operation at the end to generate the correct output.
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Figure 3.4: In NESTA carry bits that are generated in GEN section of the CPA do not propagate into the
carry chain. Instead, they are captured by CB registers. In the next cycle, the carry bits (of the previous
cycle that are stored in CB registers) are fed to the hamming weight compressors at that bit position,
temporally deferring their impact to the next cycle. The compression unit, in each cycle consumes the bit
values from 9 new input (W, I) pairs, the Carry bits of the previous cycle (stored in CB registers) and the
partial sum stored in S registers. The consumption of bit values in S registers implement the accumulation
function. In the last round of computation, instead of capturing the carry bits in CB registers, they are
fed to the PCPA (Partial CPA) to propagate through the carry chain and generate the correct convolution
results.

Fig. 3.4 captures the NESTA architecture. It is comprised of 6 units: 1) Data Reshaping
Unit (DRU), 2) Sign Expansion Unit (SEU), 3) Compression and Expansion Layers (CEL),
4) Adder Unit (AU), 5) Carry Buffer Unit(CBU), and 6) Output Register Unit(ORU). Each

of these units is described next:
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Data Reshape Unit (DRU)

The DRU, as illustrated in Fig. 3.4-(DRU), receives 9 pair of multiplicands and multipliers
(W and I), converts each multiplication to a sequence of additions by ANDing each bit value
of multiplier with the multiplicand and shifting the resulting binary by the appropriate

amount, and returns bit-aligned version of the resulted partial products.

Sign Extension Unit:(SEU)

The SEU is responsible for producing the sign bits SEy to SE4. The inputs to SEU is
sign bit (X14). The result of a multiplying and adding 9, 8-bit values is at most 20-bits.
Hence, we need to sign-extend each one of the 15-bit partial sums (for supporting larger
the architecture is accordingly modified). To support singed inputs, we also need to slightly
change the input data representation. For a partial product p = a x b, if one values a
or b is negative, we need to make sure that the negative number is used as the multiplier
and the positive one as the multiplicand. With this arrangement, we treat the generated
partial sums as positive values and make a correction for this assumption by adding the
two’s complement of the multiplicand during the last step of generating the partial sum.
This feature is built into the architecture using a simple 1-bit sign detection unit, and by
adding multiplexers to the output of input registers to capture the sign bits. Note that
multiplexers are only needed for the last 5-bits as shown in figure 3.4-(SEU). Following
example clarify this concept: let’s suppose that a is a positive and b is a negative b-bit

binary. The multiplication b x a can be reformulated as:

6 6
bxa=(-2"+ Zxﬂi) xa=—2"a+ (Z 7;2') X a (3:3)
i=0 1=0

The term —27a is the two’s complement of multiplicand which is shifted to the left by 7

bits, and the term (Z?:o 7;2%) x a is only accumulating shifted version of the multiplicand.

Note that some of the output bits generated by SEU compressor extend beyond 20 required
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bits. These sign bits are safely ignored. Finally, the multiplexers switch at the output of

SEU is used to allow NESTA to switch between signed and unsigned modes of operation.

Compression and Expansion Layers (CEL)

The input to ith bit of CEL unit in cycle n is the 1) bit-aligned partial sums (at the output
of DRU) in position i 2) the temporary sum generated by GEN unit of NESTA at time ¢— 1
at bit position i, and 3) the Propagate (carry) value generated by GEN unit of NESTA at
time ¢ — 1 at bit position ¢ — 1. Following the concept of HWC-Adder, described in section
3.2.2, the CEL is constructed using a network of Hamming Weight Compressors (HWC).
A HWC function Cyw (m:m) is defined as the Hamming Weight (HW) of m input-bits (of
the same bit-significance value) which is represented by an n-bit binary number, where
n is related to m by: n = [logd'] + 1. For example ”011010”, ”111000”, and ”000111”
could be the input to a Cyyy(6:3), and all three inputs generate the same Hamming weight
value represented by 7011”. A Completed HWC function CCgyy (m:n) is defined as a Cyyy
function, in which m is 2" — 1 (e.g., CC(3:2) or CC(15:4)). As illustrated in Fig.3.4, each
HWC takes a column of m input bits (of the same significance value) and generate its n-bit
hamming weight. The resulting n bits is then horizontally distributed as input to Cryw (s)

in the next-layer CEL. This process is repeated until each column contains no more than

2-bits.

Carry Propagation Adder Unit(CPAU)

Similar to HWC-Adder, described in section 3.2.2, the CPA is divided into GEN and PCPA.
If NESTA is executed n times, the PCPA is skipped n — 1 times and is only executed in
the last iteration. GEN is the first logic level of CPA executing the generate and propagate
functions to produce temporary sum/generate G and carry /propagate P which are used as

input in the next cycle.
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Carry Buffer Unit (CBU)

The CBU is a set of registers that store the propagate/carry bits generated by GEN at
each cycle, and provide this value to CEL unit in the next cycle. Note that CB bits can be
injected to any of the Cry(m : n) in any of the CEL layers in that bit position. Hence, it
is desired to inject the CB bits to an incomplete Crw (m : n) to avoid an increase in the

critical path delay of CEL.

Output Register Unit (ORU)

The ORU capture the output of GEN in the first n-1 cycles or PCPA in the last cycle of
operation. Hence, in the first n — 1 cycle, NESTA stores the Generate (G) output of GEN
unit and feeds this value back to the CEL unit in the next cycle. In the last cycle, it stores

the sum generated by PCPA.

3.2.4 NESTA: Putting it all together

NESTA receives 9 pair of Ws and Is. The DRU generate the partial products and bit-align
them as input to the CEL unit. The CEL unit at each round of computation consumes
1) bit values generated by DRU, 2) generate (temporary sum) values stored at S registers,
and 3) propagate (carry) bits in CB registers. This is when the SEU assures that the sign
bits are properly generated. For the first n cycles, only the GEN unit of CPA is executed.
This allows NESTA to skip the delay of the carry chain of the PCPA. To be efficient, the
clock period of NESTA is reduced to exclude the time needed for the execution of PCPA.
The timing paths in PCPA are defined as multi-cycle paths (2 cycle paths). Hence, the
execution of the last cycle of NESTA takes 2 cycles, see Fig. 3.5. In the last round of
execution, the PCPA unit is activated, allowing the addition of stored values in S registers
and CB registers to take place for producing the correct and final SUM. Considering that
the number of channels in each layer of modern CNNs is fairly large (128 to 512) the savings
in the result of shortening NESTA cycle time (by excluding PCPA) accumulated over large

number of cycles (of NESTA execution) is far larger than one additional cycle needed at
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the end to execute the PCPA for producing the correct final sum.

N . GEN
RMU| DRU | CEL T
0 ¢
Cyclel °
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0 ¢
Cyclel 0 Cycle2 2o

Figure 3.5: NESTA cycle time is computed by excluding the execution time of PCPA. In the last cycle of
computation of convolution, the NESTA activates the PCPA and captured the correct sum after 2 cycles of
execution.
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Figure 3.6: NESTA Row Stationary (RS) data flow for executing 3 x 3 convolution across multiple channels
(right) and 5 x 5 convolution across multiple channels (left). A similar concept can be used to support all
other convolutions sizes.

3.2.5 Supported Data Flows

A considerable portion of the power consumed in a neural processing engine is related to
storage, read and write from its memory subsystem. The extent of power consumed in
the memory subsystem is a function of 1) the read/write/retention power of each memory
element, and 2) the frequency of access to each memory. In several prior work [46-50], it
was shown that it is possible to significantly reduce the read/write/retention power con-
sumption of a memory unit by aggressively scaling it supplied voltage while deploying ar-
chitectural fault tolerance techniques and solutions to mitigate the increase in the memory
write/read/retention failure rate. The frequency of access to the memories, on the other
hand, can not be controlled from an architectural perspective as it is a dataflow optimization
problem.

Memory access pattern of a model which is being executed on a neural engine signif-
icantly impacts its energy efficiency and performance. Accessing data in off-chip DRAM
consumes around 200X more energy and takes around 20X longer compared to accessing

data in on-chip SRAM memories [10][72][73]. Hence, for a modern Deep Neural Network
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with a large number of operations and parameters, designing a dataflow that minimizes the
access to off-chip DRAM and maximizes the data reuse (while data is on-chip) can go a
long way in improving its energy efficiency and performance. Related to neural process-
ing engines, several dataflows has been studied in the literature. The work in [10] divides
the DNN dataflows into 5 major categories: 1) No Local Reuse(NLR), 2) Weight Station-
ary(WS), 3) Input Stationary(IS), 4) Output Stationary(OS), and 5) Row Stationary(RS,
RS+). These data flows differ on the way they reuse input frame maps (Ifmaps), partial
sums (Psums), and filter weights. The NLR does not have any reuse at the PE level and
requires the largest number of transaction with a global buffer. Diannao is an example of
NLR based accelerator described in [7]. The WS dataflow stores the filter weights within
the PEs. The goal is to minimize the re-fetching of filter weights by limit their movement.
Examples of WS implementation include [74][75]. IS and OS dataflows try to minimize the
movement of Ifmaps and Psums respectively, examples of which include [9][36][37]. The RS
dataflow combines the WS and the OS dataflows to achieve greater efficiency. Eyeriss is an
example of RS implementation described in [10][76].

Another way to understand the differences between these dataflows is through the study
of the algorithm governing the computation of the convolution in each data flow. Let us
consider the convolution in Fig. 3.1 with M filters (each with size C' x R x R), repeated in
a batch of B images with each image being of size C' x H x H. To process this CONV, as
shown in Alg. 2, seven nested loops are required. Because each one of the loops is inde-
pendent of the others, changing the order of each these loops can produce a new dataflow.
Each dataflow promotes a different form of data reuse. It should be noted that it is possible
that one permutation of these nested loops to be applicable to more that one dataflow.
For example in the Alg. 2, execution line order 1-2-3-4-5-6-7-8, NLR, WS, and RS have
the same representation, however, depending on the underlying NOC different data access
patterns can be designed. Os and IS dataflows also can be obtained if the execution’s line

of the seven loops changes to 1-2-4-5-3-6-7.
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Algorithm 2 seven nested loops for calculating an Ofmap. B, M, C, H, R are Batch-size,
Number of Filters, Channel size, Height/weight of an ifmap, and filter size respectively.

1: for (b=0;b< B;b+ +) do
2: for (u=0;u < M;u++) do
for (c=0;c < C;c+ +) do
for (h=0;h < H;h+ = S) do
for (w =0;w < H;w+ = S) do
for (i =0;i < R;i1++) do
for (j=0;7 < R;j++) do
ofmap[b][u][n][w] += ifmap[bfc][h-H]fw-+i]*
filter [u] c] [i] j]

NESTA could be used to implement any of these dataflows. However, in this work (for
lack of space), we only describe how NESTA dataflow could be designed to model the RS
dataflow and will address the implementation of other dataflows for our future work. Fig.
3.6 capture the RS dataflow used to compute 3 x 3 (right) and 5 x 5 (left) convolution
across many channels. To capture the data reuse and communications between NESTA
cores (assuming that many NESTA cores are packed into a SOC to build a many-core
accelerator), we have used three NESTAs to construct each of scenarios illustrated in Fig.
3.6. Since NESTA accept 9 inputs at a time, it can perform a 3 x 3 convolution in one cycle,
or a 5 x b convolution in 3 cycles. The data is reshaped in the accelerator’s global buffer
and is streamed to the NESTA cores. Depending on the number of available NESTA cores
we can compute the value of different neurons in parallel to promote higher data reuse. In
this case we can either 1) compute the neurons in different OFmaps by loading different
weights to each group of NESTA and share the ifmap weights (not shown in this figure),
or 2) compute the neuron values in the same Ofmap by sharing the weights across different
NESTA cores and stream different (partially overlapping) ifmap values to each group as
shown in Fig. 3.6.

As described in section 3.2.4, in its last round computations( when working on con-
volution across multiple channels), NESTA switches to its two-cycle operation mode and
activates the PCPA that would take 2 cycles to generate the correct final sum. Note that in
deep channels, or for large convolutions, the cost of one extra cycle is negligible compared

to the gain of removing the PCPA from the critical path in all computational cycles.
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3.3 Results

In this section, we evaluate the NESTA in terms of Power, Performance, and Area (PPA).

NESTA and all MACs cited in this section support 16-bit signed fixed-point inputs.

3.3.1 Evaluation and Comparison Framework

The PPA metrics are extracted from the post-layout simulation of each design. Each MAC
or MAC9 is designed in VHDL, synthesized using Synopsis Design Compiler [43] using
32nm standard cell libraries, and is subjected to physical design (targeting max frequency)
by using the reference flow provided by Synopsys and by using IC Compiler [44]. The
area and delay metrics are reported using Synopsys Primetime [45]. The reported power is
then averaged across 20K cycles of simulation with random input data fed to PrimetimePX
[45] in FSDB format. To build a fair comparison, in addition to simple 2-input MACs,
we constructed multiple flavors of 9-input MACs (MAC9s) using various high-speed adders
and multipliers to compute the convolution in one shot. The general structure of MACs
and MAC9s used for comparison is captured in Fig. 3.7. Each MAC9 is constructed
using 9 multipliers, the output of which is fed to a 10-input adder tree (9 inputs from
multiplier and 1 from output register) to compute a 3 x 3 convolution in one shot. For
multiplication, we used Booth-Radix-N (BRx2, BRx4, BRx8), and Wallace multipliers.
For addition, we used Brent-Kung (BK) and Kogge-Stone (KS) adders. In addition, we
considered a hybrid approach, where the multipliers are fed to an HWC-Adder which was
discussed in section 3.2.2. Each 2-input MAC is identified by (Multiplier choice, Adder
choice) and each 9-input MAC9 is identified by (Multiplier Choice, ( Adder Arrangement,
Adder Choice)). For example ( BRx2, (tree, Brent-Kung)) is a MAC9 constructed by
using 9 BRx2 multipliers followed by an adder tree constructed from Brent-Kung Adders.
Similarly, a (BRx2, (HWC-Adder, Brent-Kung)) uses the same multiplier, but replace the

adder tree with an HWC-Adder that uses a single Brent-Kung adder.
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Figure 3.7: A 9-input MAC, which is identified as (Multiplier Choice, Adder Choice). MACs constructed
with similar structure are used for PPA and PDP comparison with our proposed NESTA PE solution.

3.3.2 PPA efficiency: NESTA v.s. MAC9s

Power: The power consumption of NESTA is considerably less than other MAC9 flavors.
When comparing NESTA with various flavors of MAC9, the power consumption is reduced
by 17.4% to 58.9% when compared to (BRX4, (HWA, BK)) and (BRX2, (Tree, KS)) rep-

resenting the MAC9s with lowest and highest power consumption, respectively.

Performance: In terms of delay, the delay of NESTA is better than all other MAC9
flavors. For example, the delay of NESTA is 23.7% and 11.3% better than (BRX2, (Tree,
BK)) and (BRX4, (HWA, KS)) as the slowest and fastest MAC9s in Fig. 3.11. However, the
reduction in the delay comes with a catch; When NESTA process the last batch of inputs of
the last channel, it has to take one extra cycle to perform the final addition. Hence, energy
efficiency becomes a function of the number of processed input batches. This tradeoff is
illustrated in Fig.3.8. The larger the number of input channels, the smaller the overhead
of one extra cycle for the final addition. As illustrated in Fig. 3.8, NESTA becomes more
efficient if the number of processed input batches is greater than 64, 8, 2, 1 for kernel size

1x1, 3x3, 5x5, 11x11 respectively.
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Figure 3.8: Comparing the processing time of a NESTA and a MAC9 for convolutions with (A) 1x1, (B)
3x3, (C) 5x5, and (D) 11x11 kernel size when the convolution expands over multiple channels. As illustrated
NESTA for larger convolutions or deeper channels becomes very more efficient.

Area: Figure 3.11 captures the PPA comparison of NESTA with various flavors of
MAC9s. As illustrated, NESTA is implemented in a smaller area. The area saving is
between 6% to 9% when NESTA is compared with (BRX4, (HWA, BK)) and (BRX2,

(Tree, KS)), which are the smallest and largest MAC9s, respectively.
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adders and multipliers. The star identifies the best MAC9 in each category.

PDP: Considering that NESTA has lower delay and power consumption compared to
other MAC9s, the PDP savings for NESTA is even more significant. According to Fig.
3.11, NESTA reduces the PDP by 30% to 67% when compared to (BRX4, (HWA, BK))

and (BRX2, (Tree, KS)) that have the lowest and highest PDP respectively.

3.3.3 PPA efficiency: NESTA v.s. MACs

Table 3.3 captures the PPA metrics of various 2-input MACs and 9-input NESTA. Each
single MAC has a smaller area, power, and delay compared to NESTA, however, in terms
of functionally, one NESTA is equivalent to 9 MACs. Hence, For a fair comparison between
NESTA and selected MACs, we compare their energy efficiency and throughput when fixing
the area. For this comparison, we assume a NN accelerator assigns a fixed silicon area for
instantiating 9-input NESTAs or 2-input MACs and report the improvement in throughput
and energy with this constraint. Table 4.6 captures our comparison results. As illustrated,
NESTA in terms of throughput (delay of processing normalized to the unit area) and energy
efficiency (processing a large number of convolutions) is substantially more efficient than
all MAC solutions studied. By using NESTA as the PE solution in an accelerator, the
throughput improves between 1% to 37%, correspond to (Brx4, BK) and (BRx2, KS)
respectively, and energy efficiency improves 33% to 78% when compared with NESTA-V1

and (BRx2, BK) which represent the best and worst MACs in terms of energy efficiency.
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Table 3.3: PPA comparison between various MAC flavors and NESTA-V1 and NESTA.

MAC Type|Area(um? )|Power(uw)|Delay(ns)|[PDP(fJ)
(BRx2, KS) | 9394 0.612 3.57 2.24
(BRx2, BK) 9227 0.577 3.59 2.13
(BRx8, KS) 8123 0.523 3.5 1.88
(BRx8, BK) 7929 0.509 3.55 1.86
(WAL, KS) 7024 0.533 3.46 1.84
(WAL, BK) | 7876 0.566 3.21 1.81
(BRx4, KS) 6899 0.480 3.10 1.48
(BRx4, BK) | 6775 0.452 3.172 1.43
NESTA-V1 6825 0.442 2.914 1.287
NESTA 49200 1.817 3.875 7.04

Table 3.4: Percentage improvement in Throughput(left) & energy consumption(right) when using NESTA
to process 1K of different convolution size.

MAC Type|3X3|5X5|7X7(11X11||3X3|5X5|7X7|11X11
(BRx2, KS) | 37 | 37 | 37 37 65 | 62 | 62 64
(BRx2, BK) | 36 | 36 | 36 36 78 | 76 | 76 7
(BRx8, KS) | 26 | 26 | 26 26 o8 | 55 | 54 o7
(BRx8, BK) | 25 | 25 | 25 25 58 | 55 | 54 56
(WAL, KS) | 13 | 13 | 13 13 o7 | 54 | 53 56

(WAL, BK) | 16 | 16 | 16 | 16 || 57 | 53 | 52 | 55
(BRx4,KS)| 1 | 1 | 1 1 A7 | 43 | 42 | 45
(BRx4,BK)| 1 | 1 | 1 1 45 | 41 | 40 | 43

NETSA-V1 | 30 | 30 | 30 30 39 | 34 | 33 37
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3.3.4 NESTA for Efficient CNN Processing

In this section, we study the performance and energy consumption of a Neural Processing
solution that uses 9-input NESTA, MACYs, or 2-input MACs to process Alexnet[4] and
VGGI3]. We only investigate the energy consumed for the processing the information and
would address the saving (due to data reuse in NESTA) dataflow related power saving in the
future work. Fig. 3.9 and Fig. 3.10 capture the delay and energy consumed for processing
each layer (including CONVs and FCs layers) of Alexnet [4] and VGG [3] respectively. This
is when the choice of processing engine is varied between MACs, MAC9s and NESTA cores.
In each figure, NESTA is compared with the best choice of MAC or MAC9 for energy or
delay according to the results of section 4.2.1 and 3.3.2. As illustrated, MAC9 solutions are
faster than MAC’s but consume more power. However, NESTA outperforms both MAC9
and MAC solutions in terms of both power and delay (and PDP) when processing each
layer of AlexNet or VGG.

3.4 Conclusion

In this chapter, we introduced NESTA, a novel processing engine for efficient processing of
Convolutional Neural Networks. NESTA benefits from 1) its ability to generate temporal
carry bits that could be passed to be included in the next round of computation without
affecting the overall results, and 2) the utilization of a hierarchy of compressors to efficiently
compute 9 multiplication and additions at the same time. When computing the convolu-
tion across multiple channels and/or larger convolution window sizes, NESTA generates
an approximate sum (S’) and a temporal carry (P) in each cycle. In the last cycle, when
processing the last convolution, NESTA takes an additional cycle and add the remaining
carriers to the approximate sum to generate the correct output. Our post-layout simula-
tion results report 30% to 67% reduction in power delay product (PDP) when NESTA is
compared with various flavors of 9-input MAC units, and 33% to 78% reduction in PDP

when compared with Neural processing engines constructed from various MAC flavors.



Chapter 4: TCD-MAC++: An Enhanced Version of
Temporal Carry Deferring MAC

4.1 Introduction

In the previous chapters, we illustrated a detailed description of the components of a con-
ventional MAC, Fused MAC, and also TCD-MAC. Fig. 4.1 briefs the data flow of the
studied MAC in previous chapters. Fig. 4.1(A-top) shows the general view of a typical
MAC architecture that is comprised of a multiplier and an adder (with 4-bit input width),
while Fig. 4.1(A-bottom) provides a more detailed view of this architecture. Fig. 4.1(B)
illustrates the architecture of a Fused MAC in which one of the CPAU is eliminated and
its task is offloaded to the first Compression and Expansion Layer. Finally, Fig. 4.1(C)

illustrates the proposed TCD-MAC architecture.
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Figure 4.1: Comparing of three available architecture for processing a stream of MAC operations with
operands A%, B in the " iteration (corresponding to the ith cycle) of the multiply-accumulate operation.
A-1) an abstract view of a typical MAC, B-1) an abstract view of a Fused MAC, C-1) an abstract view of

a TCD-MAC. A-2, B-2, C-2 are the activated components at each cycle of the mac architecture, and A-3,
B-3, C-3 are the dataflows of each one of the MAC architecture for processing operands A*, B®.

TCD-MAC has two modes of operations 1) Carry Deferring Mode (CDM), in which
the partial macs are calculated and the temporal carries are stored in CBU for use in
the next round of operations. 2) Carry Propagation Mode (CPM), in which no temporal
carry is generated and the carry bits in CBU are consumed to generate the result using
a carry propagation adder (generating spatial carries). In the architecture of TCD-MAC,
GEN which was the first layer of CPAU was the interface that specifies the boundary of
components that are activated in CDM or CPM.

In this chapter, our previous work is extended, introducing TCD-MAC++, by adding

the following functionalities and added features to our proposed solution:

e Building faster variants of TCD-MAC, by folding (unrolling) the first hamming weight
layer, instead of propogating the data through a hierarchal tree of hamming weight

COMmMpressors.

¢ Adding an additional mode of operation to the TCD-MAC, allowing the TCD-MAC
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to be implemented in smaller area and power.

e Adding Early Free-Run Stopping (EFRS) indicator for showing the end of operation
based on the desired precision i.e., EFRS allows the TCD-NPE to run in approximate

mode through early termination.

4.1.1 Temporal Carry Deferring MAC++ (TCD-MAC++)

Fig 4.2 shows an abstract view of TCD-MAC and TCD-MAC++ architectures for perform-
ing MAC operation on a stream of operands A* and B?. Unlike the similarities between the
data flow of TCD-MAC and TCD-MAC++, TCD-MAC++ has a larger number of registers
in CBU, and also uses a larger set of Hamming Weight Compressors (HWC). The reason
behind these differences is that at architectures of TCD-MAC++ some of the components
in TCD-MAC have been truncated and their tasks have been offloaded to the other remain-
ing components. Consequently, a larger set of HWC and CBU registers needed to be used
to address the imposed extra calculations. Shortening the critical path of a TCD-MAC and
introducing the concept of Early Free-Run Stopping (EFRS) are two major enhancements

that have been included in TCD-MAC-++.
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Figure 4.2: An abstract view of the architectures TCD-MAC and TCD-MAC++ for performing MAC
operation on a stream of operands A* and B°.

4.1.2 Shorter Critical Path

In the architecture of TCD-MAC, GEN which was the first layer of CPAU was the interface
that specifies the boundary of components that are activated in CDM or CPM. In TCD-
MAC++ architecture, three other candidates for the interface GEN has been investigated.
These three candidates have been shown in Fig. 4.3 under the names TCD-MACH++,,
TCD-MACH+3, TCD-MAC++,.

In TCD-MAC++, the GEN interface is located right after the first CEL and similarity
in TCD-MAC++43 and TCD-MAC+H+, the GEN interface is located after the second and
third CEL, respectively. Between these three architectures, TCD-MAC++,, has the lowest
critical path at each round of operation and at the same time has the larger number of
needed registers in the CBU. Similarly, TCD-MAC++, has the largest critical path and

the lowest number of registers in CBU. The critical path and number of CBU’s registers in
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the TCD-MAC++3 is in between two other architectures.

4.1.3 Early Free-Run Stopping (EFRS)

Unlike the TCD-MAC that the last mode of operation was needed to be CPM, in TCD-
MACH+ the result can be generated by running only in CDM. This enhancement makes
the architectures of TCD-MAC++ much faster than the TCD-MAC. This performance
is at the expense of having more free running at the final rounds of operations. When
TCD-MAC++ operates in free-running, the input operands are zero, and only the values
in the CBU and ORU are involved in calculations. This free-running continues to a point
that the final result is generated. For each version of TCD-MAC++ the maximum number
of free-running can be obtained. The maximum number of free runs for TCD-MAC+-+,,
TCD-MAC++3, and TCD-MAC++, are 36, 35, and 34 iteration, respectively. However,
the results show that the calculations can be terminated much sooner than reaching the

maximum number of free-running.

Figure 4.4 illustrates the used architecture for detecting the end of operations. This
feature is embedded inside TCD-MAC++ and is called Early Free-Run Stopping (EFRS). In
EFRS the values Prg to Prss are precision indicators. Each of these indicators corresponding
to a different range of bit significance from one another. For example, In Fig. 4.4 the green
paths depict a scenario that the value of Pr; is '1’, which indicates the current ORU and
the previous one have the same value in their bit significance positions higher than j. Noted

that Prj—o and Pr;—35 have the highest and lowest precision, respectively.
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Figure 4.4: The architecture of EFRS for terminating the operation based on the desired precision Prg to
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of TCD-MAC++.

4.2 Results

In this section, we evaluate the Power, Performance, and Area (PPA) gain of using three
versions of TCD-MAC++, and compare it with the conventional MACs and also our pre-

viously offered TCD-MAC architecture.



56

Delay Area
4.00 9000 9305‘7 £123
335 ‘-
3.50 330 314 -~ 3.13 8000 *. 7w 7171 7382
285 .~ mH 30 7000 W G437 _ . 6520 6551 O
3.00 -85 .9---0\' 263 e Yl - §19% e
4 ~2a7 0 6000 - 5 0 e
5250 .-t = - S185
< N E 5000 >
22.00 475 2
K] . 15 13 § 4000
2150 e, L 200
o . 09
1.00 s 2000
050 1000
0.00 0
'v@ o £ ® $ > @ »@ & o-@ q,@ v S o ,‘,‘g’\ o > q,‘b*} u‘b'g \@ S & & & &
' ' " ' NS SO A > P S & ¢
& e T W & TS § & & & LN S R ) N
& & & & N & & & & & N & &
¢ & ¢ ¢ & 3 ¢ ¢ & & ¥ ¢ ¢ ¢ T 9 NI & &S
Power PDP
500.00 468.00 14 1i3 13
* e 12 446
450.00 394.00 353 09 393.00 402 12 105105
400.00 ® e 347.00 386,00 53409 ¥~ 35400 S~ 361 LA 2 0w g
350.00 R e * .. }Eiao 308 1 <e- %3
T - _ N
3 s00.00 308 o7
g 25000 5. ~. s
8 200.00 e &, 042
150.00 04 . _ozs
100.00 K3
0.2
50.00
0.00 0
(9
1}9 w‘& 3 » ué.\ & & u:@ g?t,\ é‘vb c“" c‘& C‘XG m\*ﬁ\ '\fsg %Q*) ué) »@ & v@ q,@ 3 > g &
SO AP R A G P ARSI MR\ S\ S\ PO S S SN S S A - DA\ SR R\
F & &FFFFE &y STy & &F&FEEE Y SS
POV & Q&S

Figure 4.5: PPA comparison between various MACs and TCD-MAC, and different versions of TCD-MAC-++.

4.2.1 TCD-MAC++ PPA Assessment

Figure 4.5 captures the PPA comparison of the variation of TCD-MAC++ against a popular
set, of conventional MAC configurations. As reported, all the versions of TCD-MAC++ have
lower latency and consumption energy compare to all reported MACs. More Precisely, TCD-
MACH+,, is 48.5% faster than a TCD-MAC and 63.5% faster than the fastest conventional
MAC i.e., (BRx4, KS). TCD-MAC++, consumes 60% less energy than a TCD-MAC and
69.3% less energy than the conventional MAC with the lowest energy i.e., (BRx8, KS).
This improvement comes with the limitation that the variations of the TCD-MAC++ take
extra cycles (free-run) to generate the correct output when working on a stream of data.
However, the power and delay saving of TCD-MACH+ significantly outweigh the delay and
power for extra computational cycles.

To illustrate this, the throughput and energy improvement of using a TCD-MAC++,

for processing different sizes of input streams is compared against selected conventional
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MACs and is reported in Figure 4.6. In this experiment, we used different input stream
sizes ranging from 1 to 1000. The results show a poor performance from both aspects of
latency and energy when the input stream size is small. More specifically, when the stream
size is less than 10, TCD-MAC++4, performs worse than the TCD-MAC and the other
conventional MAC. But when the stream size is more than 10 TCD-MAC++4« outperforms
all the variations of TCD-MAC and also conventional MACs. Similarly, TCD-MAC++,
outperforms other MAC units when the stream size is larger than 7. It worth mentioning
that TCD-MAC and also TCD-MAC++ have been designed for Neural Networks algorithm
and more specifically Deep Neural Networks and these models dealing with input streams

of large size.
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Figure 4.6: Percentage improvement in throughput and energy when using a TCD-MAC++ (as opposed to
a conventional MAC) to process an input stream size ranging from 1 to 1000.
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4.2.2 EFRS Evaluation

In this section, we show the role of EFRS to decrease the number of extra free runs to
generate the accurate results of MAC operation on a stream of operands. The maximum
number of EFRS for each of the three versions of the TCD-MAC++ shown in Fig. 4.7.
For example, the maximum EFRS for TCD-MAC++,, is 36, which means if TCD-MAC++
operates in the CDM, it needs at most 36 extra runs with zero inputs to generate the final
results. However, in most cases, there is no need to wait for that many iterations to have
accurate results. Fig. 4.7 shows an experiment of 1k MAC operations of batches of size 1k
operands and the histogram of needed EFRS for each design has been shown. This exper-

iment shows that TCD-MAC++,, TCD-MAC++4, and TCD-MAC++ need at most 15,

7, 5 EFRS to generate accurate results, respectively.

TCD-MAC++, TCD-MAC++, TCD-MAC++,

(4= 0.66, o = 0.68) 400 (x=1.83, ¢ =088) 250 (4 =519, ¢ =175)
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Figure 4.7: The number of needed EFRS of a stream of 1k mac operations of a batch of 1k operands which
is performed by three versions of TCD-MAC++. Red dash-line shows the maximum number of needed free
run in order to generate the accurate results.
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4.3 Conclusion

In this chapter, we introduced an enhanced version of Temporal Carry Deferring MAC
(TCD-MAC++) which is well-suited for calculating the dot product of a stream of data. We
also introduced the concept of Early Free Running Stop (EFRS), in which, TCD-MAC++
terminates its execution when all of the residual bits in the CBU have been consumed i.e.,
the accurate result has been generated there is no further input data. We reported that
the TCD-MAC++ significantly outperforms similar neural processing solutions that are
constructed using conventional MACs in terms of both energy consumption and execution

time (performance).



Chapter 5: Future Works

5.1 Introduction

In the previous chapters, we introduced TCD-MAC and different variations of TCD-MAC
so-called TCD-MAC++,, TCD-MAC++3, and TCD-MAC++,. We also evaluated these
variations and showed that they outperform a single MAC when the number of needed
computations in a stream of data is large enough. Specifically, we showed TCD-MAC
requires one extra free run to generate an accurate result. And also, TCD-MAC++,,
TCD-MACH+3, and TCD-MACH+-,, theoretically require 36, 35, 34 free run at most,
respectively.

We showed that for different variations of TCD-MAC-++, the accurate result is generated
with a fewer number of free runs than the maximum free run. In this regard, we introduced
Early Free Run Stop (EFRS) that terminates the operation when an accurate result is
generated. For different lengths of an input stream, we showed that TCD-MAC++,, TCD-
MAC++3, and TCD-MAC++-, in practice require 15, 7, 5 EFRS, respectively. Following
this chapter, we introduce some of the research directions based on TCD-MAC and TCD-

MACH++ variations.

5.2 Future Work

TCD-MAC and variations of TCD-MAC++ can produce the accurate result of a MAC
operation over a stream of data after a different number of free runs from one another.
for example, for calculating the dot product of two streams with a size of N, TCD-MAC
takes N+1 cycle time, T, and TCD-MAC++, requires N+15 cycle time, T2. And also the
energy-per-cycle in the TCD-MAC is higher than TCD-MAC++,. Accordingly, when N is
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a small number, N<9, TCD-MAC can generate the results faster than TCD-MAC++,. As
N grows, TCD-MAC++,, can produce the result faster than the TCD-MAC.

Considering structures like Fig. 5.1, we can propose MAC units that support both the
TCD-MAC and TCD-MAC++,. Subsequently, based on the size of the input stream of

data, either of these MAC structures can be used.

| Output Register Unit |—

CDM: Carry Deferring Mode @ EFRS: Early Free-Run Stopping
CPM: Carry Propagation Mode FR: Free Run

\. J

Figure 5.1: An abstract view of the architecture TCD-MAC/TCD-MAC++ for performing MAC operation
on a stream of operands A* and B°.

In this report, TCD-MAC and TCD-MAC++ are only used for generating accurate
results, however, the same structure can also be used for generating approximate results.
Which in turn, the delay and energy of computation can be reduced. To generate an
approximate result, we can stop the computation before the accurate result is generated.
This is simply doable by the architecture we offered in Fig. 4.4. For example, in this figure,
the j*" bit of precision, pr;, triggers only based on the bits that their bit significance are

higher than j i.e., the j least significant bits are ignored. Subsequently, the EFRS signal
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is generated based on only the most significant bits. It should be noted that in neural
network accelerators we usually have an array of TCD-MAC/TCD-MAC++. So by adding
an approximate-computing feature, each one of mac units can terminate in a different cycle.
Accordingly, there is a need to manage when each mac unit starts and finishes. In this
report, we only evaluate the accurate version of TCD-MAC/TCD-MAC++ in which all the
mac units are synchronized to each other i.e., all the TCD-MAC/TCD-MAC++ start and

finish their operation at the same time.
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