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Abstract

OPTIMAL SAMPLING OF RANDOM FIELDS FOR TOPOLOGICAL ANALYSIS

Gregory Scott Cochran, PhD

George Mason University, 2011

Dissertation Director: Dr. Thomas Wanner

Algebraic topology is becoming an increasing important tool in applied mathematics.

In particular, homology theory allows one to distinguish different topologies while being

tractable to compute. An important application is the study of nodal domains for solutions

to stochastic partial differential equations. These are the sets where the function value is

greater than zero and less than zero.

In order to compute the homology of the nodal sets computationally, we must discretize the

domains. However, in this discretization process, we can make mistakes in the topology.

Can we develop a method that will allow us to determine a proper discretization size a

priori?

One approach is to use an algorithm that is guaranteed to return the correct homology.

The original algorithm has a few shortcomings. We will present these shortcomings and

develop methods to overcome these issues.

The other approach is to establish explicit probability bounds for the making the correct

homology. This is an a priori approach that will returns the probability for a fixed dis-

cretization size and also determines the optimal location of the sampled points.



Chapter 1: Introduction

1.1 Motivation

Physical systems have a natural tendency to vary in time. Many can be described by evo-

lution equations. These systems can also form interesting patterns that evolve with time.

How can we analyze the patterns formed? On one hand, there are natural questions about

existence and uniqueness of solutions to partial differential equations and any stochastic

extensions. On the other hand, we can analyze the solutions using numerics. Although

both are useful, can we somehow use techniques that look only at the patterns formed and

make a quantitative asessment of the patterns?

Algebraic topology gives a useful tool for studying these complex patterns. It gives us

the ability to extract simple topological information from the data set. It can give us the

number of connected components of our solution set, the number of holes, and the number

of cavities as well as other information. In order to use algebraic topology, we associate a

group to the object in question. If we restrict ourselves to abelian groups, then we can use

homology. Homology allows us to associate coarse information about the geometry of the

object with the ability to easily compute this information. This ability comes at the price

of losing more detailed information about the geometry.

Even though computing the homology of the sets is possible, to study time varying systems

we cannot expect to be able to compute these objects for all time. We instead make use

of numerics and use computational homology. This will allow us to get a time series of the

homology of the patterns produced from each model.

The natural question is if we discretize our domain into small subsections, is the topology

of our discretization the same as the true topology? The more general question asked is if

we want to sample a random manifold with n points, can we create a mesh of the manifold

1



such that the homology of the mesh and the manifold agree? The first attempt to answer

this question is from [62]. Although they provide an answer, it is of limited applicability

for the topics we have in mind. The approach they have in mind is a stochastic algorithm

which samples the manifold with N points and then finds bounds on the probability of the

convergence of the algorithm. This probability depends on M and τ which is a condition

number related to the manifold itself.

As previously stated, we are interested in the patterns produced by nonlinear evolution

equations. If we perturb our equation with a small random disturbance, what happens to

the patterns? To solve such equations, we will discretize our domain and solve the problem

numerically. If we discretize our domain into M sub-regions, how can we be guaranteed

the homology of the discretized domain matches that of the true domain? As the patterns

evolve in time, what happens to the homology of the patterns?

While the answers to the above questions are yes, there is another equally important ques-

tion to ask. The algorithms for computing the homology of the sets in question are contained

in [46]. Since we must replace the true geometries with something that is computationally

feasible, will these algorithms produce the desired results?

Suppose we want to do multiple simulations of a physical model and collect statistics about

the homologies produced. If we then add noise to the model, how will the homologies

change? Can we still ensure the homologies are correct? Since we are adding random noise

to the models, we cannot give a simple answer. However, we can give probabilities of cor-

rectly computing the homologies.

To begin, we need to give specific details about the collection of functions we will work with.

In particular, we will work with Gaussian Random fields. We then give previously known

bounds on computing the correct homology for particular examples of Gaussian Random

fields. Since we want to somehow validate the bounds, we then give a recursive algorithm

to compute the homology.

Most of the remainder of this chapter can be found in various references. The next sections

on cubical homology and computational homology can be found in [46], and the homology
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software can be obtained through [25]. Since one of our ultimate goals is to compute the

homology associated with random fields, we then present relevant topics in probability and

random field theory. There are numerous references to these topics but a few relevant to

our study are [3], [12], and [13].

Chapter two discusses an algorithm that creates a grid on which we can correctly compute

the homology of nodal domains. The original form of this algorithm can be found in [30].

Once the original algorithm has been presented, we will discuss a few shortcomings of this

algorithm and discuss improvements we have made to this algorithm.

Chapter three presents the previous probability bounds for making the correct homology

computation of random fields. These results can be found in [53], [54], [29], and the refer-

ences therein. This chapter contains no new material but is essential for the results that

we will establish in Chapter four. As such, Chapter four contains new results on the prob-

ability for making the correct homology computation of non-homogenous random fields.

Chapter five also contains new results on how to maximize this probability. This method

is based on the barrier method in optimization. The barrier method can be found in [41]

and [7]. Lastly, in Chapter six, we discuss numerical experiments to confirm our new results.

1.2 Cubical Homology

Since we are interested in using homology to analyze patterns, we must first understand

what homology really is. In this section, we present an overview of homology alongside

computational considerations. Much of the following is from [46]. To begin, we need the

following definitions.

Definition 1.1. An elementary cube is a set

Q = I1 × I2 × . . .× Id ⊂ Rd,

where Ij = [l, l + 1] or Ij = [l, l], and l, k ∈ Z. Note, we allow degenerate intervals. The

3



set of all elementary cubes in Rd is denoted Kd. The set of all elementary cubes is denoted

K =
⋃
d

Kd.

Definition 1.2. For an elementary cube Q, the embedding number of Q ⊂ Rd is defined to

be d. It is denoted emb Q. The dimension of Q is defined to be the number of non-degenerate

intervals in Q. Let

Kk :=
{
Q ∈ K

∣∣dim Q = k
}

and

Kd
k = Kd ∩Kk.

With these definitions, we can now build more complex sets from elementary cubes.

Definition 1.3. A set X ⊂ Rd is a cubical set if X =
⋃n
i=1Qi, where Qi is an elementary

cube. A cubical set is a finite union of elementary cubes. For a cubical set X, we denote

K(X) :=
{
Q ∈ K

∣∣Q ⊂ X}
and

Kk(X) :=
{
Q ∈ K(X)

∣∣dim Q = k
}
.

Since the goal of algebraic topology is to assign algebraic objects to geometric objects,

we now turn to the algebraic side of homology. With the previous definitions, we now assign

algebraic objects and operations to these sets.

Definition 1.4. For each elementary k-cube Q ∈ Kd
k, we associate an abstract algebraic

object Q̂ called an elementary k-chain. The set of all elementary k-chains of Rn is denoted

K̂d
k :=

{
Q̂
∣∣Q ∈ Kd

k

}
.

This is analogous to a basis in Rn. For a finite collection of k-chains, we define finite sums
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by

c = α1Q̂1 + . . .+ αmQ̂m,

where αi ∈ Z. The set of all k-chains is denoted Cdk . For chains c1 =
∑m

j=1 αjQ̂j and

c2 =
∑m

j=1 βjQ̂j, define the addition of c1 + c2 as

c1 + c2 =
m∑
j=1

αiQ̂j +
m∑
j=1

βiQ̂j :=
m∑
j=1

(αj + βj)Q̂j .

For any k-chain c, define the inverse chain −c by c+ (−c) = 0. We thus have Cdk is a free

abelian group with basis K̂d
k.

While this definition is straightforward, there is an equivalent definition that is more

algebraic.

Definition 1.5. For each Q ∈ Kd
k, define Q̂ : Kd

k → Z by

Q̂(P ) :=

 1 if P = Q

0 if P 6= Q

The group Cdk is the free abelian group generated by the elementary chains. The elements

of Cdk are functions c : Kd
k → Z such that c(Q) = 0 for all but a finite number of Q ∈ Kd

k.

We thus have the basis K̂d
k for Cdk .

We have a bijection between Kd
k and K̂d

k. To continue with associating algebraic objects

to cubical sets we need to move from elementary cubes to cubical sets.

Definition 1.6. For c1, c2 ∈ Cdk , for c1 =
m∑
j=1

αjQ̂j and c2 =
m∑
j=1

βjQ̂j, the scalar product

5



is then

〈c1, c2〉 :=
m∑
j=1

αjβj .

Note that the scalar product is bilinear. Given elementary cubes P ∈ Kd
k and Q ∈ Kd′

k′, set

P̂ � Q̂ := P̂ ×Q.

For c1 ∈ Cdk and c2 ∈ Cd
′
k′ define the cubical product of c1 and c2 by

c1 � c2 :=
∑

P∈Kk,Q∈Kk′

〈
c1, P̂

〉〈
c2, Q̂

〉
P̂ ×Q.

One of the most important consequences of all the above is that we can decompose

cubical sets in way that is computationally feasible. In particular, we have the following

theorem.

Theorem 1.1. [46] Let Q̂ be an elementary cubical chain in Rd with d > 1. Then there

exist unique elementary cubical chains Î and P̂ with emb Î = 1 and emb P̂ = d − 1 such

that

Q̂ = Î � P̂ .

As an example, let Q = [0, 1] × [1, 2]. Then Q is an elementary cube with elementary

chain Q̂. We have Q̂ = ̂[0, 1]× [1, 2] = ̂[0, 1] � ̂[1, 2].

We now move from elementary cubes to sets built from many elementary cubes.

Definition 1.7. For X ⊂ Rd a cubical set, define

K̂k(X) :=
{
Q̂
∣∣Q ∈ K(X)

}
.

Then we have Ck(X) is the subgroup of Cdk generated by the elements of K̂k(X) and is the

6



set of k-chains of X.

Proposition 1.1. [46] For any chain c, we have

c =
∑

Q∈Kk(X)

〈
c, Q̂

〉
Q̂.

One of the most important tool in homology is the concept of the boundary operator.

This is a mapping from the cubical set X to the boundary of X and will be a homomorphism

between Cdk and Cdk−1. Because this map will be a homomorphism, we can investigate the

kernel and images of such maps. This will be crucial to our study of homology.

Definition 1.8. For k ∈ Z, the cubical boundary operator

∂k : Cdk → Cdk−1

is the homomorphism of free abelian groups which is defined recursively by induction on the

embedding number d as follows. First, consider d = 1. Then Q is an elementary interval

so we have Q = [l, l] ∈ K1
0 or Q = [l, l + 1] ∈ K1

1. Then define

∂kQ̂ :=

 0 if Q = [l, l]

[̂l + 1]− [l̂] if Q = [l, l + 1].

We now extend this definition for d > 1. Suppose I = I1(Q) and P = I2(Q)× . . .× Id(Q).

Then by the above proposition, we have Q̂ = Î � P̂ . Then define

∂kQ̂ := (∂k1 Î) � P̂ + (−1)dim I Î � ∂k2P̂ ,

7



where k1 = dim I and k2 = dim P . Lastly, extend this definition to all chains linearly via

∂kc = α1∂kQ̂1 + α2∂kQ̂2 + . . .+ αm∂kQ̂m.

As an example, let Q = [0, 1] × [1, 2]. Then from the previous example we have Q̂ =

̂[0, 1] � ̂[1, 2]. This gives

∂2Q̂ = ∂1
̂[0, 1] � ̂[1, 2] + (−1) ̂[0, 1] � ∂1

̂[1, 2]

=
(

[̂1]− [̂0]
)
� ̂[1, 2]− ̂[0, 1] �

(
[̂2]− [̂1]

)
= [̂1] � ̂[1, 2]− [̂0] � ̂[1, 2]− ̂[0, 1] � [̂2] + ̂[0, 1] � [̂1]

= ̂[1]× [1, 2]− ̂[0]× [1, 2] + ̂[0, 1]× [1]− ̂[0, 1]× [2]

= B̂1 − Â1 + Â2 − B̂2,

where

A1 = [0]× [1, 2]

B1 = [1]× [1, 2]

A2 = [0, 1]× [1]

B2 = [0, 1]× [2].

Notice that this is a sum of the chains for the boundary of Q. This is shown in Figure 1.1.

The first image in the figure is Q and the second image is the boundary of Q. Notice that we

have specified a direction for A1, A2, B1, and B2. This direction is important for 1-chains

and thus the boundary operator.

We now simplify the notation of the boundary operator ∂k to ∂ when it is clear from the

8



Figure 1.1: Effect of applying the boundary operator to the elementary cube Q

context what the dimension is. While this definition can be applied to arbitrary k-chains,

we will often need to take the boundary operator of cubical products. The next proposition

gives a method for doing this operation.

Proposition 1.2. [46] Let c1 and c2 be cubical chains. Then we have

∂(c1 � c2) = ∂c1 � c2 + (−1)dim c1c1 � ∂c2.

Since the boundary operator maps the cubical set X onto its boundary, what happens

if we then take the boundary operator again. Since we have mapped X onto the boundary,

we need to remain on the boundary.

Proposition 1.3. [46] For the boundary operator, we have

∂ ◦ ∂ = 0.

Proposition 1.4. [46] Let X ⊂ Rd be a cubical set. Then we have

∂k(Ck(X)) ⊂ Ck−1(X).
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Definition 1.9. The boundary operator for the cubical set X is defined to be

∂Xk : Ck(X)→ Ck−1(X),

by restricting ∂k : Cdk → Cdk−1 to Ck(X). The cubical chain complex for a cubical set

X ⊂ Rd is

C(X) :=
{
Ck(X), ∂Xk

}
k∈Z,

where Ck(X) are the groups of cubical k-chains generated by Kk(X) and ∂Xk is the cubical

boundary operator restricted to X.

We are finally ready to give a formal definition of the homology of a cubical set.

Definition 1.10. For a cubical set X ⊂ Rd, a k-chain z ∈ Ck(X) is called a cycle in X if

∂z = 0. Thus the set of all k-cycles in X, denoted Zk(X) is ker∂Xk and forms a subgroup

of Ck(X). Thus we have

Zk(X) := ker ∂Xk = Ck(X) ∩ ker ∂k ⊂ Ck(X).

A k-chain z ∈ Ck(X) is called a boundary in X if there exists c ∈ Ck+1(X) such that ∂c = z.

The set of all boundaries in Ck(X), denoted Bk(X) is the image of ∂Xk+1. Note Bk(X) is a

subgroup of Ck(X). We thus have

Bk(X) := im ∂Xk+1 = ∂k+1(Ck+1(X)) ⊂ Ck(X).

Since we know that for a boundary z, ∂c = z, we have ∂z = ∂2c = ∂∂c = 0. We will be

interested in cycles that are not boundaries. We thus treat cycles that are boundaries as

trivial. We say that two cycles z1, z2 ∈ Zk(X) are homologous if z1 − z2 is a boundary in

X, so z1 − z2 ∈ Bk(X). We write this as z1 ∼ z2. This is an equivalence relation and we

can form the quotient group. Finally, we define the cubical homology group Hk(X) as the

10



quotient group

Hk(X) := Zk(X)/Bk(X).

The collection of all homology groups of X is the homology of X and is denoted

H∗(X) :=
{
Hk(X)

}
.

For a cubical set X ⊂ Rd, it can be shown that all the homology groups Hi(X) must be

of the form

Hi (X) = Zβi × Zbi,1 × Zbi,2 × · · · × Zbi,pi ,

for i = 1, . . . , d. The number βi is the i-th Betti number for X and bk are the torsion

coefficients. This follows from the Fundamental Theorem for Abelian Groups. This partic-

ular form of Hi(X) is also given in such a way that Zbk is the integers modulo bk with the

constraint bk divides bk+1.

It can be shown that for d < 3, there do not exist any torsion coefficients. Also it can be

shown that Hi(X) = 0 for i > d. The Betti numbers can be interpreted as follows:

a.) β0(X) is the number of connected components of X

b.) β1(X) is the number of loops or holes in X

c.) βk, k > 1 is the number of k dimensional holes in X.

Formalizing this gives us the following.

Theorem 1.2. For a cubical set X, H0(X) is a free abelian group. Also, if

{
Pi
∣∣i = 1, . . . , n

}
is a collection of vertices in X with one vertex for each connected component of X, then

{
|P̂i| ∈ H0(X)

∣∣i = 1, · · · , n
}

11



Figure 1.2: Geometries With Only One Connected Component and No Voids

Figure 1.3: Geometries With One Connected Component and One Void

forms a basis of H0(X).

The important consequence of this theorem is that if the rank of H0(X) is r, then there

are r connected components in X. For example, let Q = [0, 1]× [1, 2]. Then there are four

vertices in this cube. Take any of these vertices, in particular, take P1 = [0]× [1]. Then the

̂[0]× [1] forms a basis for H0(Q). Notice that this basis only has one element and that the

number of connected components is also one for Q.

If we look at Figure 1.2, each geometry has one connected component. By the preceding

theorem, a basis for H0(X) has only one element for each geometry. If on the other hand,

we regard the image as a single geometry, then there are three separate components that are

not connected. Then a basis for H0(X) must have three elements. If we examine Figure 1.3,

then each geometry has one connected component but now each also has a hole for a void

in the interior of the geometry. This suggests that the basis for H0(X) has one element

and the basis for H1(X) has one element. However, if we regard the entire image as a

single geometry, then there are two connected components and two holes in the interior.

Lastly examine Figure 1.4. In this case, there is one connected component but there are

two holes in the interior. It should be noted that the previous examples are not cubical

sets. However, we can represent each geometry by cubical sets. The process of moving

12



Figure 1.4: Geometry With One Connected Component and Two Voids

from these geometries to cubical sets must be done with care. We need to enforce that the

homologies of the cubical sets to be homotopic to the images shown in the figures. This

will ensure that the homology of the cubical sets is the same as the homology of the images

shown in the figures. This process will be made clear in later chapters.

For the previous examples, it was clear how many components and holes there were for each

geometry. In many of the applications we have in mind, this is not the case. As an example,

we now examine the nodal domains for a realization of the Cahn-Hilliard equation. If we

look at figure Figure 1.5, we can see there are two different regions of interest. One region

is the light blue region B1 and the other region is the dark blue region B2. It should be

clear that B1∩B2 = ∅. If we count the number of regions of each we see there are nine dark

blue regions and five light blue regions so we have H0(B1) = Z5 and H0(B2) = Z9. For

the dark blue region, there are no holes in any of the components. However, for the light

blue region, there are two holes in the components. Note that in this case, the two holes

in the light blue region correspond to connected components in the dark blue region. Thus

we have H1(B1) = Z2 and H1(B2) = 0. In terms of Betti numbers, we have β0(B1) = 5,

β0(B2) = 9, β1(B1) = 2, and β1(B2) = 0. This example is one of our primary motivations

and will be formalized in later sections.

For a more complex geometry, it should be apparent that computing the homology can

become quite tedious. Luckily, there is a method that reduces the overall complexity.

Definition 1.11. For a cubical set X, let P,Q ∈ K(X). If Q ⊂ P , then Q is a face of P

13



Figure 1.5: Geometry of Nodal Domains for Cahn-Hilliard Simulation

and is denoted Q � P . If Q � P and Q 6= P , then Q is a proper face of P , denoted Q ≺ P .

Q is a primary face of P , if Q is a face of P and dim Q = dim P − 1. If Q is not a proper

face for some P ∈ K(X), then Q is a maximal face. Denote the set of all maximal faces by

Kmax(X). A face that is a proper face of only one elementary cube in X is a free face of

X.

Let Q be a free face of X and let P be the unique cube in K(X) such that Q is a proper

face of P . Let

K′(X) := K(X)− {Q,P}.

Define

X ′ :=
⋃

R∈K′(X)

R.

Then X ′ is a cubical space from X by means of an elementary collapse of P by Q.

We can use elementary collapses to simplify the geometry of our cubical set X. This

must be done in such a way that the resulting homology is the same as the homology of X.

Proposition 1.5. [46] If X ′ is a cubical space obtained from X by an elementary collapse

of P by Q, then

K(X ′) = K′(X).
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Theorem 1.3. Let X be a cubical set and assume X ′ is obtained from X by an elementary

collapse of P0 ∈ Kk(X) by Q0 ∈ Kk−1(X). Then

H∗(X ′) ∼= H∗(X).

We can repeat elementary collapses to greatly reduce the complexity of the geometry

to something easier to compute. For example, in R2, a cube has the homology as a single

point. Again, take the cube Q = [0, 1]× [1, 2]. For this cube we have

K2 = {[0, 1]× [1, 2]}

K1 = {[0]× [1, 2], [1]× [1, 2], [0, 1]× [1], [0, 1]× [2]}

K0 = {[0]× [1], [0]× [2], [1]× [1], [1]× [2]} .

Using these, there are four free faces for Q, namely the elements in K1. If we let R1 =

[0, 1] × [2], then R1 ≺ Q. We can then collapse Q into the space Q1 = [0] × [1, 2] ∪ [1] ×

[1, 2] ∪ [0, 1]× [1]. This was done by the elementary collapse by using R1 and Q.

We now have

K2 = ∅

K1 = {[0]× [1, 2], [1]× [1, 2], [0, 1]× [1]}

K0 = {[0]× [1], [0]× [2], [1]× [1], [1]× [2]} .

We can now do another elementary collapse. This time take the free face [0] × [1, 2]. We

can keep repeating this process until we are left with a space that has no free faces. This is

shown in Figure 1.6.

This shows that we are able to collapse our original space Q = [0, 1] × [1, 2] down to the

point [0]× [1]. We have already seen that this point was a basis for Q. Spaces that are able

to collapse to a single point are known as acyclic spaces.
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Figure 1.6: Series of Elementary Collapses on the Space [0, 1]× [1, 2]

Definition 1.12. A cubical set X is acyclic if

H∗(X) ∼=

 Z if k = 0

0 if k 6= 0

Theorem 1.4. All elementary cubes are acyclic.

This theorem shows that the example Q = [0, 1] × [1, 2] is acyclic. Even though it is a

two dimensional set that is embedded in R2 it has the same homology as a single point. In

higher dimensions, the same result still holds: if Q is an n-dimensional connected set, then

Q has the same homology as a single point in Rn.

If we are given more than one acyclic set, what happens to the intersection of the sets?

Does it remain acyclic? This is the content of the next proposition.

Proposition 1.6. [46] Let K,L ∈ Rd be cubical sets. Then

Ck(K ∪ L) = Ck(K) + Ck(L).

Theorem 1.5. Let X and Y be cubical sets in Rd. If X,Y, and X ∩ Y are acyclic, then

X ∪ Y is acyclic.
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1.3 Computational Homology

We have given an overview of cubical homology. For large data sets, it is infeasible to

compute the homology by hand. We now turn our attention to algorithms which are well

suited for computational purposes. The key to such computations is linear algebra. The

computation of homology groups is equivalent to matrix algebra over the integers. We

require basic algorithms for computing addition and multiplication of integer matrices and

also a row reduction algorithm. However, the key to computing such groups is computing

the Smith Normal Form.

Since we know that the homology groups will be free abelian groups of the form

Hi (X) = Zβi × Zb1 × Zb2 × · · · × Zbp ,

we have a basis for the group. Since we have a basis, we can find a matrix representa-

tion for the boundary operator, call this matrix A. This represents a homomorphism of

abelian groups A : Zd2 → Zd2 . Note this matrix will be defined over the integers Z. We

are interested in computing both the kernel of this matrix and the image of this matrix

transformation. This means we need a method for calculating x ∈ Zd2 such that

Ax = 0

and finding z ∈ Zd2 such that

Ax = z,

for some x ∈ Zd1 .

Using normal techniques such as row reduction and Gaussian Elimination are insufficient.

We must then resort to computing the Smith Normal Form.

Suppose we have a matrix A ∈ Zd×d. Then there are integer matrices P and Q such that

detP = ±1, detQ = ±1 and

D = PAQ
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is a diagonal matrix with entries p1, p2, · · · , ps such that p1 divides p2, p2 divides p3 and so

forth. In particular, we have p1

∣∣p2

∣∣ · · · ∣∣ps. The matrix D is the Smith Normal Form of A.

Once we have computed the Smith Normal Form D of the matrix representation, we can

then use D to compute the image and kernel of A. This will then give us the generators for

the homology groups.

Although it has now been demonstrated how to compute the homology for a cubical set,

it should be noted that these algorithms are computationally expensive in their current

form. More sophisticated algorithms exist which can greatly reduce the number of overall

computations required thus greatly improving running time.

1.4 Random Fields and Analysis

Much of our interest lies in the study of the homology of random fields. In particular, we

are interested in the topology of solutions to either stochastic partial differential equations

or partial differential equations with a random ensemble of initial conditions. The main

interest is in obtaining averaged topological information. Before we can accomplish our

goal, we need a thorough foundation of probability and random fields.

In order to discuss probability, we require an underlying probability space which consists

of the triple (Ω,F,P). The first quantity Ω is the sample space that consists of all possible

outcomes. The second quantity F is a family of subsets of possible events. Formally, F is a

σ-algebra. In particular, this definition requires the following

1. We have ∅ ∈ F,

2. If F ∈ F, then F c ∈ F (the complement of F ),

3. If F1, F2, . . . ∈ F, then F =
⋃∞
j=1 Fj ∈ F.

Lastly, we have the measure P prescribing the probability for each event. The probability

triple (Ω,F,P) is then a measure space with measure P.

The family F and the probability measure P satisfy the following properties:
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1. The events Ω and ∅ are both in F.

2. If E and F are events, then Ec, E ∩ F , and E ∪ F are all events in F.

3. For all events E, we have 0 ≤ P (E) ≤ 1.

4. If E is an event, then P(Ec) = 1− P(E).

5. P(Ω) = 1.

6. P(∅) = 0.

7. If E1, . . . , are events, then
⋃∞
j=1Ej and

⋂∞
j=1Ej are also events.

8. If E1, . . . , are all pairwise disjoint events, then P(
⋃∞
j=1) =

∑∞
j=1 P(Ej).

Given a family of subsets U of Ω, we can always find a smallest σ-algebra containing U.

One can show that this smallest σ-algebra has the form

FU =
⋂
{F : U ⊂ F, F is a σ-algbera} .

If X : Ω→ R is a function, then the σ-algebra FX generated by X is the smallest σ-algebra

that contains all the sets X−1(U), where U ⊂ R open. This generated σ-algebra has the

form

FX =
{
X−1(B) : B ∈ B

}
,

where B is the Borel σ-algebra on R and the Borel σ-algebra is the smallest σ-algebra

containing all open sets.

Given two measure spaces (Ω1,F1) and (Ω2,F2) a function f : Ω1 → Ω2 is measurable if

f−1(F2) = {ω1 ∈ Ω1 : f(ω1) ∈ F2} ∈ F1

for all F2 ∈ F2. A random variable X(ω) or g(ω) is a measurable function from our

probability space to the the real numbers. All random variables X(ω) induce a probability

19



measure µX on R defined by

µX(E) = P(X−1(E)).

The expected value of a random variable is

E [X] =
∫

Ω
XdP,

provided
∫

Ω |X(ω)|dP <∞. The variance of a random variable X(ω) is defined as

var(X) = E
[
(X − E [X])2

]
.

An equivalent form is

var(X) = E
[
X2
]
− E [X]2 .

An important concept that we will use often is independence of random variables. Two

subsets E, F ∈ F are independent if

P(E ∩ F ) = P(E)P(F ).

This states that the probability of one event occurring does not affect the probability of

the other event to occur. We can extend this definition to arbitrary collections of events.

A collection of random variables {Xi}i∈I is independent if the collection of the σ-algebras

generated are independent. If this is the case, then we have

E [XY ] = E [X] E [Y ] .

A random variable X(ω) has the probability density function φ if

P [a ≤ X ≤ b] =
∫ b

a
φ(x)dx,
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for all a, b ∈ R
⋃
{±∞}. The probability density function we will be working with is the

Gaussian distribution. If X(ω) is a Gaussian random variable, then the probability density

function has the form

φ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

Using this density function, the mean of X is µ and the variance is σ2. We write this as

X ∼ N(µ, σ2). If the mean is zero and the variance is one, we call this distribution the

Standard Normal distribution.

With the above properties of probability and expected value, we can now start defining

random fields. Much of the following is from [3].

Definition 1.13. Let (Ω,F,P) be a probability space and X a topological space. Then a

mapping f : Ω→ RX is called a real-valued random field. If f is measurable, we say f is a

measurable random field.

The simplest way to interpret a random field is as an object which randomly chooses a

function according to some probability distribution. So we have that f(·, ω) is a function

f(·, ω) : X → R and f(x, ω) is the realization at x ∈ X.

Given a random field f(x, ω), the mean or expected value of f is

m(x) = mx := E[f(x, ω)] =
∫

Ω
f(x, ω)dP.

This is an integration with respect to the probability measure over Ω. We can interpret the

variable x as stationary. The covariance function between two points x1, x2 ∈ X is

R(x1, x2) = E [(f (x1, ω)−mx1) (f (x2, ω)−mx2)] .

This is a measure of how much the function values of x1 and x2 change together. With

these definitions, the variance at a point x ∈ X is the covariance of a point with itself.
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Namely, we have

var(x) = σ2
x = R(x, x) = E

[(
f(x, ω)−mx

)(
f(x, ω)−mx

)]
.

The variance is a measure of how much x can deviate from the mean value.

It should be noted that the covariance function is positive definite. A matrix Cn ∈ Rn×n

is positive definite if zTCnz ≥ 0 for z ∈ Rn. A function R : X × X → R is positive

definite if the matrices formed from (R(xi, xj)) are positive definite for (x1, · · · , xn) ∈ Rn

and 1 ≤ n < ∞. To see this, let z ∈ Rn and xj ∈ D, j = 1, . . . , n, where D is the domain

of the random field u(·, ω). Then we have

ztR(x, x)z =
n∑
j=1

n∑
k=1

zjR(xj , xk)zk

=
n∑
j=1

n∑
k=1

zjE [(u(xj , ·)− E [u(xj , ·)]) (u(xk, ·)− E [u(xk, ·)])] zk

= E

 n∑
j=1

n∑
k=1

(u(xj , ·)− E [u(xj , ·)]) (u(xk, ·)− E [u(xk, ·)]) zjzk



= E

 n∑
j=1

n∑
k=1

yjykzjzk


= E[(ytz)2] ≥ 0,

where we have defined yj = u(xj , ·) − E[u(xj , ·)]. This shows that the covariance matrix

formed from all finite dimensional distributions is positive definite.

As an example, let X = [−1, 1] and let g1(ω), g2(ω) be two independent, random vari-

ables from a Standard Normal distribution. Define

f(x, ω) = g2(ω)x2 + g1(ω).
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Then the expected value is

m(x) = E

[
f(x, ω)

]

=
∫

Ω

(
g2(ω)x2 + g1(ω)

)
dP

= x2

∫
Ω
g2(ω)dP+

∫
Ω
g1(ω)dP

= 0,

since the expected values of g1(ω) and g2(ω) are zero. Since we know the expected value of

this random field is zero, we can calculate the covariance as

R(x1, x2) = E

[
f(x1, ω)f(x2, ω)

]

= E

[(
g2(ω)x2

1 + g1(ω)
)(
g2(ω)x2

2 + g1(ω)
)]

= E

[
x2

1x
2
2g

2
2(ω) + g1(ω)g2(ω)x2

1 + g1(ω)g2(ω)x2
2 + g1(ω)2

]

= x2
1x

2
2 + 1,

where we have used E[g2
i (ω)] = 1 since g1(ω) and g2(ω) are drawn from a Standard Normal

distribution and the g1(ω) and g2(ω) are independent. Lastly, we know that the variance

at each point is simply the covariance between the point and itself we have

σ2
x = R(x, x) = x4 + 1.

We plot a few realizations of this random field, the mean and the variance in Figure 1.7.

A random field is called homogenous if for any two points x1, x2 ∈ X, the covariance
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Figure 1.7: Five Realizations of g2(ω)x2 + g1(ω) over [−1, 1], Mean, and Variance

depends only on the distance between them. We can then write

R(x, y) = r(x− y),

or

R(x, y) = r(y − x),

for an appropriate function r. As a quintessential example, let g1(ω) and g2(ω) be indepen-

dent random variables from a Standard Normal distribution. Let X = [0, 1] and x ∈ X.

Define

f(x, ω) = g1(ω) cos 2πx+ g2(ω) sin 2πx,

where g1(ω) and g2(ω) are independent Gaussian random variables with mean zero and

variance one. Then we have the mean is zero since

E [f(x, ω)] = E [g1(ω) cos (2πx) + g2(ω) sin (2πx)]

= cos (2πx)E [g1(ω)] + sin (2πx)E [g2(ω)]

= 0.
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We can write the covariance between x1, x2 ∈ X as

R(x1, x2) = E

[
f(x1, ω)f(x2, ω)

]

= E

[(
g1(ω) cos 2πx1 + g2(ω) sin 2πx1

)(
g1(ω) cos 2πx2 + g2(ω) sin 2πx2

)]

= E

[
g2

1(ω) cos 2πx1 cos 2πx2 + g1(ω)g2(ω) cos 2πx1 sin 2πx2

+ g1(ω)g2(ω) sin 2πx1 cos 2πx2 + g2
2(ω) sin 2πx1 sin 2πx2

]

= cos 2πx1 cos 2πx2 + sin 2πx1 sin 2πx2

= cos (2π(x2 − x1))

= r(x2 − x1).

This shows that the covariance does not depend on where we sample our points, but on the

distance between the points. If we calculate the covariance between two points separated

by a distance δ > 0, then we can shift the sampled points within the domain and the

covariance remains the same as long as the points are still separated by a distance δ > 0.

We can extend this same idea to the random field

f(x, ω) =
N∑
j=1

aj
(
g2j(ω) cos (2πjx) + g2j−1(ω) sin (2πjx)

)
,

for coefficients aj if the gj(ω) are pairwise independent. Then the expected value is also

zero, and the covariance is then

R(x1, x2) =
N∑
j=1

a2
j cos (2πj(x2 − x1)),
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for gk(ω) independent, identically normally distributed random variables. This covariance

also only depends on the distance between the points. For a homogenous random field f ,

we want to be able to write f as the series

f(x, ω) =
∞∑
j=1

aj
(
g2j(ω) cos 2πjx+ g2j−1(ω) sin 2πjx

)
.

Also, we hope to write a general random field as

f(x, ω) =
∞∑
j=0

gj(ω)φj(x),

for gj(ω) a random variable, and φj an appropriate basis function defined over the do-

main. In order to justify these random series, we must determine appropriate convergence

properties of such series.

1.4.1 Orthogonal Expansions of Random Fields

Up to now, we have been given a class of random fields and calculated the covariance

function. However, in order to justify the convergence of these infinite series we need

a proper space of functions. The main theorem from this section will state that every

Gaussian random field with a continuous covariance function can be represented as

f(x, ω) =
∞∑
j=1

ξjφj(x),

where ξj are independent, Gaussian random variables and φj(x) are functions defined on

the domain X determined by the covariance function R. First, we require an appropriate

space of functions. To start, suppose we have a positive definite function R : X ×X → R.

26



Define the space S to be

S =
{
u : X → R : u(·) =

n∑
i=1

aiR(xi, ·), ai ∈ R, xi ∈ X
}

Equip S with the inner product

〈u, v〉H =

〈
n∑
i=1

aiR(xi, ·),
m∑
j=1

bjR(yj , ·)

〉

=
n∑
i=1

m∑
j=1

aibjR(xi, yj).

This space has the following interesting property. Let u ∈ S, then

〈u,R(y, ·)〉H =

〈
n∑
i=1

aiR(xi, ·), R(y, ·)

〉
H

=
n∑
aiR(xi, y)

= u(y)

Define H(R) to be closure of S under the norm ||u||2H = 〈u, u〉 . Then H(R) is called the

Reproducing Kernel Hilbert Space of R. Using the above inner product, we can then give

theorems about convergence of sequences within the space.

Now define H = span {f(x, ω) : x ∈ X} ⊂ L2(P), where H inherits the inner product from

L2(P). It is important to note that H is the span of our random field associated to the

covariance function R. Next define the mapping Θ : S → H by

Θ(u) = Θ

(
n∑
i=1

aiR(xi, ·)

)
=

n∑
i=1

aif(xi, ω).
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Note that

∣∣∣∣∣
∣∣∣∣∣Θ
(

n∑
i=1

aiR(xi, ·)

)∣∣∣∣∣
∣∣∣∣∣
2

H

=
n∑

i,j=1

aiR(xi, xj)aj =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

aif(xi, ω)

∣∣∣∣∣
∣∣∣∣∣
2

2

,

and also Θ(U) is Gaussian for all u ∈ S. This shows that Θ extends to H(R) with the

range being the same as H. We now build an orthonormal basis for H. Suppose {φn} is an

orthonormal basis for H(R). Then set

ηn = Θ(φn).

Then {ηn} is an orthonormal basis for H. Also ηn ∼ N(0, 1) and

f(x, ω) =
∞∑
j=1

ηjE {f(x, ω)ηj} ,

where this series converges in L2(P). The next few theorems from [3] give convergence

results for this space.

Theorem 1.6. [3] If {φn} is an orthonormal basis for H(R), then f ∈ H(R) has the

representation

f(x, ω) =
∞∑
k=1

ξkφk(x),

where {ξn} is an orthonormal sequence of centered Gaussian variables and convergence is

in L2.

Theorem 1.7. [3] If f is almost-surely continuous, then the above sum convergences uni-

formly on X with probability 1.

Theorem 1.8. [3] Let {φn}n be an orthonormal basis for H(R). If the covariance function
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R is continuous, each φn is continuous and

∞∑
n=1

φ2
n(x)

converges uniformly to R(x, x) for x ∈ X.

In order to state the next theorem, define the operator C : L2(X)→ L2(X) by

R(φ)(x) =
∫
X
R(x, y)φ(x)dx.

Next, let φn and λn be eigenfunctions and eigenvalues respectively to the problem

∫
X
R(x, y)φ(x)dx = λφ(y).

Theorem 1.9 (Mercer’s Theorem). [3] Let R be a covariance function. Let φn and λn be

the eigenfunctions and eigenvalues for the above eigenvalue problem. Then

R(x, y) =
∞∑
i=1

λiφi(x)φi(y),

and the series convergences uniformly.

1.5 Cahn-Hilliard Simulations

We have now given sections on computational homology and random fields. In this section,

we apply this topics to a specific application. The application we have in mind is phase

separation of binary alloys. The Cahn-Hilliard-Cook equation is

ut = −∆
(
ε2∆u+ f(u)

)
+ σ · ηt.
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The parameter ε can be interpreted as the interaction length and ηt is a white noise process.

In this equation, values of u close to 1 correspond to a high concentrate of one alloy and

values of u close to −1 correspond to the other alloy. This model is mass preserving.

Another model of phase separation is the Allen-Cahn equation

ut = ε2∆u+ f(u) +
1

m(D)

∫
D
udx+ σ · ηt.

Lastly, the Viscous Cahn-Hilliard equation is

αut − (1− α)ε2∆ut = −∆(ε2∆u+ f(u)) + σ · ηt.

This is an interpolation between the Cahn-Hilliard-Cook equation and the Allen-Cahn equa-

tion. For α = 0, we recover the Allen-Cahn equation and for α = 1 we recover the Cahn-

Hilliard equation. All of these models are defined on a domain D with suitable boundary

conditions.

For the simulations we present, we take the domain D = [0, 1] × [0, 1] with the boundary

conditions

∂u

∂ν
=
∂∆u
∂ν

= 0,

when α 6= 0, and the boundary conditions

∂u

∂ν
= 0,

when α = 0. Also, we take the nonlinear term to be f(u) = u3−u. This is the derivative of

the double well potential F (u) = 1/4(u2 − 1)2. Qualitatively, the models are similar. Our

main goal is to use homology to investigate the dynamics of the patterns produced. For our

simulations, we will assume equal mass in each component.
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Figure 1.8: Betti Numbers for a Simulation of the Cahn-Hilliard-Cook model.

We are interested in the topology of the nodal domains

N±(t) = {(x, y) ∈ [0, 1]× [0, 1] : ±u(x, y, t) ≥ 0} .

Computationally, we will instead work with the sets

Q±M (tk) = {Ql,n : ±u(xl, yn, tk) ≥ 0} ,

where tk is the time step of the numerical scheme. For the simulations we present, we will

use a spectral method to find the solution u. We do 10, 000 time steps and every 100 time

steps, we compute the homology of the nodal domains.

In Figure 1.8, we see a sample of the Betti numbers produced for a simulation. The

parameters were a small interaction length, equal mass, and a small noise intensity. Notice

that initially the Betti numbers are fairly large but quickly decay. Also notice that there is
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Figure 1.9: Averaged Zero Betti Number for a Simulation of the Cahn-Hilliard-Cook model.

a period where the Betti numbers level off before they decay again. This was for a single

simulation with σ = .0001.

Is this behavior typical? If we repeat the simulations with the same parameters and only

vary the initial conditions, we can see that this behavior should be observed on each sim-

ulation. The results of 1, 000 simulations are shown in Figure 1.9. This image shows the

zero’th Betti number for the positive nodal domain. The solid black line is the averaged

Betti number at each time step, and the dashed lines are the zero’th Betti number for

different simulations. Notice that this period where the Betti numbers level off is observed

on average.

The previous simulations were only for the Cahn-Hilliard-Cook model. We also per-

formed simulations for the Viscous Cahn-Hilliard-Cook equation for the parameters α =

0.0, .25, .5, .75, and 1.0. The results of these simulations are shown in Figure 1.10. This

figure shows the averaged zero’th and first Betti number for the positive nodal domains.

Observe that the period where the Betti numbers level off is present in almost all the pa-

rameter values.

The period where the Betti numbers level off is present in all the above simulations.

However, we note that the noise intensity was the same small parameter for all of these

simulations. The effect of increasing the noise intensity is shown in Figure 1.11. This figure

shows the zero’th Betti numbers of the Positive nodal domain for the Cahn-Hilliard-Cook
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Figure 1.10: Betti Numbers for a Simulation of the Viscous Cahn-Hilliard-Cook model.

Figure 1.11: Effect of noise intensity of the Betti numbers for Cahn-Hilliard-Cook.

equation. The left image is for a small noise intensity, σ = .0005, and the right image is for

a large noise intensity, σ = .05. This figure shows that noise has a pronounced influence on

pattern formation.

1.6 Previous Work

In this chapter, we have presented an overview of homology and computation of homology,

probability and random fields, and given examples of used homology to study the nodal

domains of the viscous Cahn-Hilliard equation. The main goal of this dissertation is to

provide explicit measures for the correctness of homology computations for nodal domains
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of random fields. This final section presents a recap of previous work for this goal.

The first major work in this area was in [62]. The authors propose a stochastic algorithm

to randomly sample a topological manifold X ⊂ Rn to compute the homology. A random

sample of M points is taken and the authors derive explicit probability bounds for the cor-

rect homology. The probability bounds depend on M and a parameter called the condition

number 1/τ . The parameter τ depends on the local curvature of X and other properties

related to the separation of X. The quantity 1/τ is the largest number such that the open

bundle of radius r is embedded in Rn.

The quantity 1/τ is particularly difficult to compute for the applications we have in mind.

Also, since we are interested in the time evolution of patterns, it is conceivable that the

topology of the nodal domains will change. As the topology changes, 1/τ becomes un-

bounded.

In [53], the authors present a different approach to this problem. Instead of randomly

sampling a manifold, the authors deterministically sample random manifolds. The ran-

dom manifolds are the sets we are interested in, nodal domains. In this work, the authors

consider one and two dimensional nodal domains. An equi-distance partition of M or M2

intervals or squares is formed. The authors then derive explicit probability bounds on the

correctness of the homology of the nodal domains.

In this work, there are a few restrictions. The nodal domains must be the zero level sets

for homogenous random fields. Further, the random fields must be Gaussian.

A generalization of this work is found in [54]. In this work, the authors have the same goal

in mind: to derive explicit probability bounds for the correctness of homology computations

of random fields. The authors loosen the assumption that the nodal domains must be zero

level sets. In particular, the authors are able to derive bounds for generalized nodal domains

of the form N±µ = {± (u− µ) ≥ 0}, where µ is a threshold function.

The authors also weaken the assumption that the random fields must be homogenous. As

a consequence, the sampled points must be chosen carefully. Explicit characterizations for

the sampling of these points is given. This work was restricted to generalized nodal domains
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in one dimension.

While the above references give probability bounds for the correctness, another approach is

possible. In [30], the authors devise an algorithm that gives the correct homology for nodal

domains. This algorithm uses interval arithmetic and provides a computer assisted proof of

the correctness. However, the original algorithm presented has a number of shortcomings.

Issues related to the use of interval arithmetic restricted the applications that could be

considered. A few issues are long computational times and sampling of points that are too

close to a zero.

In this dissertation, I will make extensions to the above. The next chapter gives modifi-

cations to the validated homology algorithm. This results in short computational times,

smaller complexes for computing the homology, and alleviates grid alignment issues for

patterns that evolve as a function of time. Chapter Three rigorously presents the existing

probability bounds for the correctness. This recaps work done in [53], [54], and the refer-

ences therein. Chapter Four then extends these results to non-homogenous random fields

in two spatial dimensions. We derive explicit probability bounds for making an incorrect

homology computation on each box in a non-uniform decomposition of the domain. Chap-

ter Five then presents an algorithm to minimize the probability for making an incorrect

homology computation by determining the optimal location of where to sample. Chapter

Six then presents results of all this work.
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Chapter 2: Guaranteed Homology Computations

2.1 Overview

We now present an algorithm that correctly computes the homology of the nodal domains

N±. This will provide a computer assisted proof for the correctness of H∗(N±) which

uses interval arithmetic. It tests what happens on the vertices and grid lines to determine

the topology. If we cannot determine what happens in the interior and the grid lines,

we subdivide the grid and determine what happens on each new grid line. The precise

algorithm will be presented in the next few sections. The material from the first section

can be found in [30]. The authors devise the original algorithm. However, this algorithm

has a few shortcomings that can lead to frequent failures. Once the original algorithm is

formulated, we will present the shortcomings and address methods to improve the algorithm

in subsequent sections in this chapter.

2.2 Previous Algorithm

In this section, we present an overview of the previous algorithm. This was given in [30].

In the next section, we will present new modifications to this algorithm which provide

decreased computational time and smaller grids on which we can compute the homology.

In order to design a computer assisted proof for the correct homology, we rely on interval

arithmetic. This is a generalization of ordinary arithmetic of numbers that allows us to

perform arithmetic on intervals and Cartesian products of intervals. For the intervals [a, b]

and [c, d], define

[a, b]⊕ [c, d] := [a+ c, b+ d].

[a, b]	 [c, d] := [a− c, b− d],
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Figure 2.1: Possible Sign Structures for Vertices.

[a, b]⊗ [c, d] := [min{ac, ad, bc, db},max{ac, ad, bc, bd}],

[a, b]� [c, d] := [min{a/c, a/d, b/c, d/b},max{a/c, a/d, b/c, b/d}],

where 0 /∈ [c, d] for �. Using these definitions, we now define interval evaluations for

functions by

f ([a, b]) := {f(x) : x ∈ [a, b]} .

Computationally, we will use outward rounding to obtain an interval [c̄, d̄], from which we

know f([a, b]) = [c, d] ⊂ [c̄, d̄]. This gives us an interval which contains the range of the

function.

We will use interval arithmetic for the computations in our validation scheme. Given a

domain D = [a1, b1] × [a2, b2], and a function f : D → R, we want to determine the

topology of N± = {x ∈ D : ±f(x) > 0}. Without loss of generality, we use the algorithm

to determine N+. If we can obtain a grid that accurately represents N+, then we are

guaranteed the grid also can resolve the topology of N−. The first step is to make an initial

subdivision of D into a uniform grid of any size. For each box in the grid, compute the sign

of the function at each vertex of the box. Thus at each vertex v, a small interval f̃(v) is

computed in which the actual function value lies. If f̃(v) does not contain zero, we have

correctly computed the sign of the vertex. The algorithm automatically fails if we cannot

determine the sign of a vertex.

For each box B in the grid, a verification step is performed to determine the topology of
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Figure 2.2: Possible Nodal Lines with Given Sign Structures.

N+ ∩ B. This step depends on the sign configuration of the box vertices. Up to rotation

and negation, we have the 4 possible sign configurations in Figure 2.1. For each sign

configuration, we want to ensure the nodal lines are simple. In particular, we want to

ensure that the nodal lines stretch to the boundary of the box. If the verification step fails,

we then subdivide B into smaller boxes and recursively perform the verification step on

each smaller box. We continue this process until all boxes in this grid pass the verification

step or the grid is refined below a certain specified threshold.

We handle each of the four sign configurations separately.

For the first case a.), we have all the same sign on the vertices on a box B. We must verify

that N+ ∩ B = B. This step uses the first lemma below. Given this sign configuration,

we test whether or not B has any region of opposite sign. Thus we know the topology is

represented by the vertices alone.

For the next two cases, the sign structure indicates that a sign change must occur in the

box B. We need to ensure this sign change is simple and does not occur more than once.

If this happened, we could not guarantee the topology. This indicates we want to ensure

the topology of ∂N+ ∩ B looks like one of the pictures in Figure 2.2. In Case b.), we try

to ensure that f is monotone in the x-direction and y-direction on B. For Case c.), we try

to ensure that f is bounded away from 0 on the top and bottom edges of B and then test

to see if f is monotone in the y-direction. These tests are designed to exclude regions of

opposite sign. If the function is monotone in the appropriate directions, there cannot be
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Figure 2.3: Problem with Nodal Lines for Last Sign Configuration

any regions of opposite sign that are strictly enclosed in B. While testing for monotonicity

can be too much, it is the only way to ensure a region of opposite sign is strictly enclosed

in the box B.

For Case d.), the sign structure cannot resolve the topology. If we examine Figure 2.3, it

should be clear that this sign structure cannot give us information about which region is

connected in the box. The positive nodal domain may be connected or the negative nodal

domain may be connected. This sign structure alone cannot tell this information. For this

case, the verification step fails and the box must be subdivided.

To perform the verification step, we need to check conditions that ensure the topology is

captured by the sign structure of the vertices. We check that the function is either bounded

away from zero or is monotonic along appropriate rays. To perform these checks, we employ

the following lemmas and definitions from [30].

Lemma 2.1. [30] Suppose the function f : [a, b] → R is continuous on [a, b] and differen-

tiable on (a, b). Then

f([a, b]) ⊂ f
(a+ b

2
)
⊕ b− a

2
⊗ f ′(

[
a, b]

)
⊗ [−1, 1]. (2.1)

Corollary 2.1. [30] Let D = [a1, b1]× [a2, b2] and f : D → R be a C1 function. If

0 /∈ f
(
a1 + b1

2
,
a2 + b2

2

)
⊕ b1 − a1

2
⊗ fx(D)⊗ [−1, 1]⊕ b2 − a2

2
⊗ fy(D)⊗ [−1, 1] (2.2)
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then f is bounded away from 0 on D.

Definition 2.1. Let D = [a1, b1] × [a2, b2]. We say f : D → R is monotone in the x-

direction if 0 /∈ fx
(
[a1, b1], y

)
for each y ∈ [a2, b2]. Also, f : D → R is monotone in the

y-direction if 0 /∈ fy
(
x, [a2, b2]

)
for each x ∈ [a1, b1].

Corollary 2.2. [30] Let D = [a1, b1]× [a2, b2] and f : D → R be a C2 function. If

0 /∈ fx
(
a1 + b1

2
, [a2, b2]

)
⊕ b1 − a1

2
⊗ fxx(D)⊗ [−1, 1], (2.3)

then f is monotone in the x-direction. Also, if

0 /∈ fy
(

[a1, b1],
a2 + b2

2

)
⊕ b2 − a2

2
⊗ fyy(D)⊗ [−1, 1], (2.4)

then f is monotone in the y-direction.

We use these lemmas and corollaries in the algorithm in order to obtain bounds on the

function and derivatives. The first corollary is used for the sign structure that has all the

same sign. The next corollary is used for the remaining two cases. This tests whether

the function is monotone in either the x or y direction and that the nodal lines are simple

enough to resolve the topology.

If this process terminates successfully, we obtain a nonuniform grid decomposition of the

topology. We choose the smallest size box in the grid, namely we choose a box of size

1
M . We then decompose D into a uniform grid of boxes of size 1

M , where M becomes the

discretization number. We can then use standard computational homology techniques to

determine the topology.
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2.3 A Randomized Subdivision Process

If the original algorithm terminates successfully, we have a grid on which we can compute

the homology and are guaranteed it is the correct homology. However, the original algorithm

has a few shortcomings.

The first shortcoming comes from the use of interval arithmetic. Since we use interval

arithmetic to find interval bounds on the function and its derivatives, we want the actual

range of these bounds. However, since interval arithmetic uses outward rounding for each

computation, the ranges are often over extended. This results in both lengthy computation

times and also frequent failure of the algorithm. The second shortcoming is more subtle. For

time varying patterns, the nodal lines will of course evolve with time. As these lines evolve,

they can come arbitrarily close to the dyadic subdivision lines in the grid decomposition

which unfortunately can lead to failure of the algorithm. As a result, more subdivisions

must be performed to resolve the topology. The other alternative is to use different initial

decompositions of the domain.

2.3.1 Range Enclosure

The first problem we address is enclosing the range. In many of the applications we have

in mind, we are interested in the homology of the nodal domains for random sums of the

form

f(x, y, ω) =
N∑
j=1

N∑
k=1

aj,kgj,k (ω)φj(x)ψk(y),

for an integer N , specified coefficients aj,k, gj,k(ω) independent, identically distributed nor-

mal random variables, and φj and ψk basis functions. Since we are dealing with sums,

interval arithmetic uses outward rounding arithmetic for each addition. The repeated out-

ward rounding produces ranges that are often extended far beyond their true range. This

results in using far more subdivisions than are actually needed and thus a much finer grid.

41



In this section, we present an algorithm that will test for upper and lower bounds by en-

closing the range.

The original algorithm is known as the Skelboe-Moore algorithm. It was first presented

in [67]. This algorithm uses a range tolerance with branch and bound techniques to elim-

inate regions of the domain where the lower bound cannot occur. Before proceeding, we

need to understand interval arithmetic better. For an interval X = [x, x], the width of

X is w(X) = x − x, the center of X is c(X) = (x+ x) /2. If f(x1, . . . , xn) is a function

with real valued variables x1, . . . , xn, then the interval function F (X1, . . . , Xn) associated

to f is formed by replacing the real valued variables x1, . . . , xn by the intervals X1, . . . , Xn

and replacing the ordinary arithmetic operations with their corresponding interval valued

arithmetic operations. The interval valued function F is known as the interval extension of

f . However, the quantity we are interested in is not F , but the function

F (X1, . . . , Xn) := {f (x1, . . . , xn) : xi ∈ Xi, i = 1, . . . , n} .

The result of this computation will give us the actual range of our function f . It should be

noted that

F (X1, . . . , Xn) ⊂ F (X1, . . . , Xn) .

With these definitions, Skelboe in [67] showed the following theorems are true.

Theorem 2.1. [67] Let F (X1, . . . , Xn) be an interval extension of f(x1, . . . , xn). Suppose

X ′1 ⊂ X1, X
′
2 ⊂ X2, · · · , X ′n ⊂ Xn

Then

f(X ′1, X
′
2, . . . , X

′
n) ⊂ f(X1, X2, . . . , Xn).
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Theorem 2.2. [67] Let F (X1, . . . , Xn) be an interval extension of f(x1, . . . , xn). If Xj =⋃N
i=1X

(i)
j , then

f(X1, X2, . . . , Xj , . . . , Xn) =
N⋃
i=1

f(X1, X2, . . . , X
(i)
j , . . . , Xn).

Theorem 2.3. [67] Let F (X1, . . . , Xn) be an interval extension of f(x1, . . . , xn). Subdivide

the intervals X1, . . . , Xn such that

Xj =
N⋃
i=1

X
(i)
j with w(X(i)

j ) =
1
N
w(Xj).

Then there is a positive number k such that

N⋃
i1=1

. . .

N⋃
in=1

f(X(i1)
1 , . . . , X(in)

n ) = f̄(X1, . . . , Xn) + En,

where

w(En) ≤ k

N2
max

j=1,...,n

(
w(Xj)2

)
.

Theorem 2.3 will be important for the algorithm. Without loss of generality, suppose

we are interested in finding a lower bound for F . Perform an initial subdivision X →

X
(1)
2 , X

(2)
2 by dividing X in half. Thus we have w(X(1)

2 ) = w(X(2)) = 1/2w(X). Because of

Theorem 2.2, we have

2⋃
i=1

F (X(i)
2 ) ⊂ F (X).
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More importantly, we know that

F (X) ⊂
2⋃
i=1

F (X(i)
2 ).

We can subdivide each of X(1)
2 and X

(2)
2 to get four intervals of equal length, then form

the union of the interval functions and we know that the true range is contained in this

new set. However, instead of taking repeated subdivisions, we can expedite this process

significantly. Since we are interested in finding the true range [z1, z2] of our function f , we

will find a lower bound z̄1 and an upper bound z̄2. We will then drive the lower bound

upward and drive the upper bound down. This will enclose the true range and will allow

us to get arbitrarily close to the actual range. We will accomplish this goal by isolating out

possible regions where the lower bounds and upper bounds can occur. We will first work

on finding a tight lower bound and then a tight upper bound.

On the subdivision of X → X
(1)
1 , X

(2)
2 , we take the lower bounds of each new interval. Next

form a list L of the new intervals and arrange them in increasing order according to the

lowest bound.

We now subdivide again. However, instead of subdividing both intervals, we simply remove

the first element in L and subdivide the interval in half, thus obtaining two new intervals.

From this subdivision, we obtain two new intervals. We evaluate the interval function on

each interval and once again add these intervals to the list L according to the lowest bound.

Now take the first element in the list L, remove it from L, subdivide it in half and evaluate

the interval function on each new interval. Put both intervals in L according to the lowest

bound. We keep doing this process until some tolerance is met.

Why does this method work? By Theorem 2.2, we know the true range will be contained in

the union of these interval functions. By removing the first element in the list L, subdividing

it in half, and arranging the elements in L, we are effectively discarding regions of the domain

that are unlikely to contain the lower bound of our function F . To find an upper bound,
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we repeat the same procedure but arrange the list with the largest upper bound.

This was for an interval function of only one variable. We can do almost the same process

with one modification. The first initial subdivision is done along the edge with longer side

length. We then arrange the boxes in the list according to the lowest bound. Remove the

first element from the list. To subdivide this new box, we subdivide along the longest side

length and then add these boxes to the list. We keep doing this procedure until a lower

bound is found within some specified tolerance.

While the above algorithm finds a lower bound for the interval function, it is too exhaustive

for our purposes. This form of the algorithm has no increase in performance or decrease

in computational times. In fact, it often has a longer computational time than the original

validated homology algorithm. This can be attributed to establishing both an upper and

a lower bound to a pre-specified tolerance. However, in our validated homology algorithm,

we do not need precise upper and lower bounds. For example, suppose we are working with

a box that is to be validated. Also, suppose the vertices all have a positive sign. Then we

do not need an upper bound; we only need a lower bound for this case. In addition, we do

not even need a sharp lower bound. We only need to ensure that the lower bound is itself

positive. We can handle the other sign configurations with similar considerations. If we

have a box with only one opposite sign, then we only need to ensure it is monotone in the

appropriate directions. However, this is the same as testing for an upper or lower bound on

the partial derivatives.

We now present the formal algorithm we have used. Again, without loss of generality assume

we are trying to find a lower bound on the box B that is positive. If we need to find an

upper bound that is negative, we can simply replace f with −f .

Set fl equal to an upper bound of min f(c(B)). This should be a rigorous upper bound on

the lower bounds. Our goal will be to drive this upper bound on lower bound downward.

Create 2 empty lists L and C and assume ε > 0 is a specified tolerance. The list L will

contain an ordered list of the possible lower bounds of f . The list is ordered so that the first

element is the smallest lower bound. The list C will contain boxes that contain the lower
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bound which are within a specified tolerance. We will think of this list as the confirmed list

of lower bounds.

Bisect B along the direction of longer length to get 2 new boxes B1 and B2. Set fl =

min
{
fl, f(B1), f(B2)

}
, where we define f(B) to the right endpoint of f(B) using outward

rounding interval arithmetic and also f(B) to be the left endpoint of f(B) using outward

rounding arithmetic. The value fl will be an upper bound on the true lower bound that we

seek. If

max
{
f(B1), f(B2)

}
−min

{
f(B1), f(B2)

}
< ε,

then put B1 and B2 into the list C in order. This condition specifies that the width of the

lower bounds for boxes in C are within ε. If L 6= ∅, then remove the first item from L and

set this as the new B. If f(B) > fl, then return the lower bound to be fl. If L = ∅, then

return with the lower bound from the first box in C.

If on the other hand, we have max
{
f(B1), f(B2)

}
− min

{
f(B1), f(B2)

}
≥ ε, then put

(B1, f(B1)) and (B2, f(B2)) in order into the list L. Set B equal to the box from the first

element in L and remove from the list. If L is not empty, then go back to the bisection step

and repeat.

For each bisection, we are driving the upper bound fl for the lower bound downwards and

then comparing this with the computed lower bound. If at any step in the bisection, we

compute the lower bound and it is positive then we have correctly computed the the sign of

the box. This check results in a tremendous computational speedup in comparison to the

original Skelboe-Moore algorithm. It also results in a speedup with regards to the original

validation algorithm.

2.3.2 Randomized Subdivisions

For time varying patterns, the nodal lines will evolve. As these lines move, they can come

arbitrarily close to the grid lines in the subdivision grid. As a result, the algorithm must
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then subdivide again in order to resolve the topology. This creates a tremendous bottle-neck

in the computation. In order to alleviate this problem, the authors in [30], took different

initial subdivisions. If the nodal line comes close to a grid line with one initial subdivision,

then for a different initial subdivision the nodal line may be far enough away to resolve

the topology. The authors took initial subdivisions of M0 = 2, 3, 5, 7, and 9. This repeated

process creates a tremendous computational effort in order to capture the topology.

We have proposed an alternative to taking different initial subdivisions. Without loss of

generality, assume our domain is D. For the new algorithm, we do not take an initial

decomposition of our domain. We then proceed as before and run the verification steps on

the original domain and keep subdividing as needed. For each box in the grid, we run the

verification steps with our new range enclosure algorithm. If the box cannot be verified, we

must subdivide it into new boxes that must be verified. However, in the subdivision step,

we now only subdivide in the coordinate direction which has longer edge length. If the side

lengths are equal, we randomly choose which direction to subdivide.

Let α1 < α2 be two fixed ratios with α1, α2 ∈ (0, 1). If a box B = [a, b] × [c, d] cannot be

verified, we then randomly choose a ratio and subdivide the box along the edge with longer

side length into two boxes according to which ratio was chosen. For a rectangle, define the

eccentricity to be the ratio of the longer edge length to the smaller edge length. Denote

this as χ. One of the benefits of choosing between fixed ratios is that the eccentricities

of all the boxes in the grid will remain bounded. For our simulations, we choose to use

the Golden ratio. That is, we may randomly subdivide with the ratios α =
√

5−1
2 and also

1− α = 3−
√

5
2 . Looking at Figure 2.4, shows that the boxes indeed remain bounded but it

also appears that the boxes only can have a few possible eccentricities. Using the Golden

Ratio, we may state the following lemma.

Lemma 2.2. Suppose the algorithm is started on a box of equal side lengths. If the two

ratios possible are the Golden Ratio α and 1−α, then the only possible eccentricities are 1,

1/α and 1/(1− α).
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Figure 2.4: Example boxes of validated homology routine using the Golden Ratio.

Proof. To begin, we use α > 0, such that α solves α2 = 1 − α, which is α =
√

5−1
2 . From

this, the two ratios we have are 0 < 1 − α < α < 1. Without loss of generality, assume

we have the domain is D = [0, 1] × [0, 1]. The initial eccentricity is χ0 = 1. After the first

subdivision we have two eccentricities:

χ1 =
1
α

χ1 =
1

1− α
.

For the next subdivision, we must work with each eccentricity separately.

For χ1 = 1
α , the eccentricities for the next subdivision are

χ2 = 1

χ2 =
α

1− α
=

1
α
,

where we have used α2 = 1 − α. For χ1 = 1
1−α , the eccentricities for the next subdivision
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Table 2.1: Eccentricities of boxes for validated homology using the Golden Ratio
Eccentricity Numeric Value

1 1
1
α

2√
5− 1

1
1− α

2
3−
√

5

are

χ2 = 1

χ2 =
α

1− α
=

1
α
.

This finishes the proof since we have found what happens to all possible eccentricities. In

particular, for the eccentricity χk = 1, the only eccentricities for the next subdivision are

χk+1 = 1
α or χk+1 = 1

1−α . If χk = 1
α , the only possible eccentricities for the next subdivision

are χk+1 = 1 or χk+1 = 1
α . For χk = 1

1−α , the eccentricities for the next subdivision must

be χk+1 = 1 or χk+1 = 1
α . This furnishes a bounded sequence of eccentricities.

Using the Golden Ratio on a domain with eccentricity one, the only possible eccentricities

of the subdivided boxes are shown in Table 2.1.

2.4 Numerical Experiments

In this section, we will test the performance of the new algorithm by applying it to specific

situations. These situations were considered in [30].

2.4.1 Double Well Function

The first test case we consider is a double well function. We will concentrate on rotations

of the function

HC(x, y) =
1
2
x2 − 1

4
x4 − 1

2
y2 + C. (2.5)
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For C ≤ −1/4, the positive nodal domain is empty. For −1/4 ≤ C ≤ 0, the positive

nodal domain consists of two disks which merge as C → 0− and contract to two points as

C → −1/4. When C ≥ 0, the positive nodal domain is connected. As mentioned in [30], at

the values C = −1/4 and C = 0, the algorithm cannot resolve the topology and thus fails.

In order to determine the performance of the algorithm in this setting, we will not work

with HC directly. Instead, we consider the nodal domains of HC rotated through a random

angle θ ∈ [0, 2π) about the point

rc =

(
3
√

3
10

,
2
√

2
5

)
.

Namely, we consider the function

HC,θ(x, y) = HC

(
5R−1

θ ((x, y)− rc)t
)
, Rθ =

 cos θ − sin θ

sin θ cos θ

 .

A few images of the nodal domains are shown in Figure 2.5. The top images are for

C ≈ −1/4 + 10−8 and the bottom images are for C ≈ −1/4 + 10−3. The left images show

the nodal domains, the middle images show the grids resulting from the original validation

algorithm, and the right images show the grids result from our new modified algorithm.

Since the algorithm will fail for C = 0,−1/4, we test our algorithm for perturbations

around these critical values, i.e., we consider

C = c0 + csγ, γ = 2−k, k = 1, . . . , 49, c0 = 0,−1/4, cs = ±1

For each of these values, we choose 5000 random angles θ from a uniform distribution and

apply the algorithm to the unit square [0, 1]2. We record the number of boxes, the number

of calls to the verification function, the number of interval evaluations, and the logarithm
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Figure 2.5: Sample Grids From Validation Algorithm

of the discretization size M . The discretization size is now defined to be the smallest edge

length of the boxes in the final decomposition. After the runs are complete, we then average

each value. We have plotted the key parameters in Figure 2.6, where the dependence is on

the absolute value γ = |C − c0|. The solid blue, dashed green, and and solid red curves

correspond to the values C = −1/4, C = 0−, and C = 0+, respectively.

Comparing these key parameters to the original algorithm in [30], we see the most dramatic

effect in the number of boxes in the final grid. The key parameters for the original algorithm

are shown in Figure 2.7. The original algorithm required around 350 boxes in the final grid

for C ≈ 0, while the new algorithm only requires 200 boxes. By enclosing the range on

each box, we are able to capture the topology with far fewer boxes. The remaining two key

parameters are the number of calls to the validated rectangle function in our code and also

the logarithm of the discretization size M . We note here that the discretization size M in

our new algorithm is taken to be the smallest side length of all the boxes in our algorithm.
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Figure 2.6: Key Parameters for Double Well Function Using New Algorithm.
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Figure 2.7: [30] Key Parameters for Double Well Function Using Original Algorithm.
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Chapter 3: Previous Probabilistic Bounds

3.1 Introduction

The previous chapter gave an algorithm that correctly computes the homology of N±. While

the new modifications decrease the computational time, alleviate grid alignment issues, and

reduce the number of boxes to be validated, it still suffers one bottleneck. Since our interest

lies in computing the nodal domains for finite sums, the interval ranges expand far beyond

their true range. With the range enclosure we can get precise ranges or determine bounds

for the range, small computational errors in floating point arithmetic quickly propagate.

These small errors are magnified by interval arithmetic. For random sums of the form

f(x, y, ω) =
N∑
j=0

N∑
k=0

aj,kgj,k(ω)φj(x)ψk(y)

the algorithm is infeasible for large N . In fact, for multiple simulations it is still not prac-

tical to do values larger than N = 20.

In this chapter and the next, we present a different approach. Instead of guaranteeing

the homology is correct, we try and give tight probability bounds for finding the correct

homology with a fixed discretization size M . In the process, we will also devise an algo-

rithm that determines the optimal placement of the points to be sampled. The remainder

of this chapter is devoted to giving previous bounds. Most of the following can be found

in [53], [54], [29], and [30]. In [53], the authors present probabilistic bounds for the correct-

ness of such homology computations in one and two spatial dimensions. However, their work

is limited to homogenous random fields. In [54], the authors extend their results to non-

homogenous random fields in one dimension. In this chapter, we present results from both
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Figure 3.1: Correct and Incorrect Cubical Approximation of the Nodal Domain

of these and the next chapter will extend these results to two-dimensional, non-homogenous

random fields.

Suppose we have a realization of a random field f(·, ω) : D −→ R. We are interested in

the nodal domains of f(·, ω). We are particularly interested in computing the homology

of these sets. Since we must discretize our domains, what can go wrong? In particular, if

we discretize our domain into M pieces in one dimension or M2 pieces in two dimensions,

are we computing the correct homology? Does this approximation accurately represent the

homology of N±? For example, suppose we have a square domain and use equi-spaced

points to decompose the domain. Using this decomposition, we test the sign of the lower

left vertex in each box and depending on the sign, add the box to either N+ or N−. If we

look at Figure 3.1, we can see that we have not sampled enough points to determine the

homology accurately. If we examine the images, we see that there are regions in the true

nodal regions that are connected. When we discretize the nodal domains, some of these

regions become disconnected. Also upon inspection, there is an island of one component of

N± that is entirely lost with this approximation. This will of course give a different topol-

ogy. First, we formalize the sets we shall be working with. Given a domain D = [a, b]d, let

u : D → R.
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Definition 3.1. The generalized nodal domains of u are given by the two sets

N±µ :=
{
x ∈ D

∣∣± (u(x)− µ(x)) ≥ 0
}
,

for a continuous function µ : D → R.

In any computational scheme, these nodal domains must be discretized in some appro-

priate manner. For all the following probability bounds, we use cubical approximations and

cubical homology.

Definition 3.2. Let u : [a, b]d ⊂ Rd → R be continuous and M a positive integer. Define

the equidistance partition of [a, b] to be the collection of points

xk = a+ k
b− a
M

for k = 0, . . . ,M . Then we define the cubical approximations

Q±M :=
⋃{ d∏

[kl, kl+1]
∣∣∣∣± u(x1,k1 , . . . , xd,kd) ≥ 0

}
,

where xj,0, . . . , xj,M are the equidistant M-discretizations of the j’th component of D.

Note that while the original domain is [a, b]d, the homology domain will be a subset

of Zd. This is a requirement of the code for using cubical homology. Chapter 2 and [46]

provide a thorough overview of this homology theory and the computational considerations.

If we look at Figure 3.2, we see possible differences between the nodal domains and a cubical

approximation. In the first figure, the nodal domain for the positive region is shown in the

first graph and the negative region just below this plot. In the second image, we randomly

select 8 points in our domain to sample, and form the cubical approximations from these

points. It is clear that the homologies of these particular Q± do not coincide.

Our ultimate goal is to either ensure the homologies of N± and Q±M agree or establish a
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Figure 3.2: Nodal Domains for Sample Random Field

measure of how much they disagree. It is clear that for small M , the homologies can be

quite different as can be seen in Figure 3.2. Throughout the remainder, we will make the

following assumptions:

(A1) for every x ∈ D, we have P
{

(u(x, ω)− µ(x)) = 0
}

= 0

(A2) we have that P
{

0 is a critical value of u− µ
}

= 0.

In addition to these assumptions, we also assume the threshold function µ is at least of class

C1. These assumptions exclude situations with probability one in which the sampled point

is equal to zero. If this happens, then we cannot add the box to either of Q±M . However,

with these assumptions, we can make the following statement from [53].

Theorem 3.1. [53] Consider a probability space (Ω,F,P), a domain D := [a, b]d ⊂ Rd

and a random field u : D × Ω → R over (Ω,F,P) such that for P-almost all ω ∈ Ω, the

function u(·, ω) : D → R is twice continuously differentiable. For each ω ∈ Ω, denote the

nodal domains by N±(ω) and the cubical approximations by Q±M (ω).

If (A1) and (A2) are satisfied, then for P-almost all ω ∈ Ω, the following holds. For all

sufficiently large M , the homology of the cubical approximations Q±M matches that of N±.

In other words, there exists a random variable M̄ : Ω→ N such that

P
{

for all M ≥ M̄, one has H∗(N±) ∼= H∗(Q±M )
}

= 1.
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Note that the random variable M̄ is neither constant nor bounded.

This shows that if we take M large enough, then we can be assured that the homologies

agree. However, what happens when M is not large enough? What is a large enough value

of M? The value of M is not known a priori, it is a random variable that is associated to a

specific realization of the nodal domains. This suggests the following problem. For a given

M , find sharp lower bounds on

P
{
H∗(N±) ∼= H∗(Q±M )

}
,

and where to sample our points to maximize this probability.

3.2 Homogenous Bounds in One Dimension

To answer the above question, we first restrict ourselves to specific cases. We first investigate

one-dimensional, homogenous random fields with zero threshold µ(x) := 0. In this case, it

is straightforward to determine when the homologies of N± and Q±M agree. The sets we

wish to investigate are

N± =
{
x ∈ [a, b]

∣∣∣∣± u(x) ≥ 0
}
.

However computationally, we work with the sets

Q±M =
⋃{

[k, k + 1]
∣∣∣∣± u(xk) ≥ 0

}
.

In this setting, we can easily characterize when the homologies agree. They will coincide if

for each [xk, xk+1] either of the following are true:

a.) the function u does not have a zero on [xk, xk+1]

b.) it has one zero and different signs on the endpoints on [xk, xk+1].
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Figure 3.3: Example of a random field with no crossover on [α, β].

x

y

Figure 3.4: Example of a random field that has a single crossover over [α, β].

If we look at Figures 3.3 and 3.4, we see intervals which will computationally give us the

correct homologies.

The above conditions must hold for every sampled subinterval of D. Suppose a sampled

interval is positive on the endpoints and negative at some point in between. Since the

function is continuous, we know there is a region that is negative. However, our sampled

points are simply the endpoints, so the enclosed negative region is ignored and thus gives

the incorrect homology.

Since we are working with random fields, we cannot state whether the function will have a

zero in the interior of [xk, xk+1]. To overcome this, we work within the context of a double

crossover.

Definition 3.3. Let u : [a, b]→ R be a continuous function and [α, β] ⊂ [a, b]. Then u has
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Figure 3.5: Example of Double Crossover

a double crossover on [α, β] if

σ · u(α) ≥ 0, σ · u(
α+ β

2
) ≤ 0, σ · u(β) ≥ 0

for σ ∈ {±1}.

If we have a double crossover on any [xk, xk+1], then the cubical approximation will

ignore a section of the nodal domains. We wish to minimize the probability of having a

double crossover on any of the subintervals. To do this, we introduce the following.

Definition 3.4. Let u : [a, b]→ R be continuous and J = [α, β] ⊂ [a, b].

• The dyadic points of J are

dn,k = α+ (β − α)
k

2n

• The dyadic subintervals of J are then [dn,k, dn,k+1]

• We say that that the interval J is admissible for the function u if it does not have a

double crossover on any of the dyadic subintervals of J .

The existence of a double crossover implies there exist at least two zeros. Thus we can

write

P [ double crossover on [α, β]] = 1− P [less than two zeros on [α, β]] .
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The term on the right may also be written

P [less than two zeros on [α, β]] = P [one zero on [α, β]] + P [no zero on [α, β]] .

By the Intermediate Value Theorem, we can find an upper bound on the probability that

each of these terms occur. Thus, we have

P [no double crossover on [α, β]] ≤ C,

for some number C. However, using this will thus furnish

P [ double crossover on [α, β]] ≥ 1− C.

However, this is the incorrect bound. Since our ultimate goal is to rule out double crossovers,

we want to be able to find an upper bound on the probability for the existence of a double

crossover. This method only gives us a lower bound. By working with dyadic subdivisions,

we will be able to find an upper bound on the probability of a double crossover on an

interval.

With these two notions, we can then formulate the following validation criterion from [53].

Proposition 3.1. Let u : [a, b]→ R be a continuous function and let M ∈ N be arbitrary.

Let N± be the nodal domains and Q±M be the cubical approximation. Assume the following

hold:

a.) the function u is nonzero at all xk

b.) the function u has no double zero in (a, b)

c.) each interval [xk, xk+1] between consecutive discretization points is admissible.

Then we have

H∗(N±) ∼= H∗(Q±M ).
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In practice, the first two conditions are automatically true for Gaussian random fields.

Since we are dealing with random functions, we cannot state whether the last condition will

always be met. We can however, give upper bounds to the probability of the interval not

being admissible. This gives rise to the following theorem.

Theorem 3.2. [53] Consider a probability space (Ω,F,P), a compact interval G = [a, b]

and a random field u : G× Ω → R over (Ω,F,P) for which the original assumptions (A1)

and (A2) hold. Assume u is twice continuously differentiable P- almost always. In addition,

for x ∈ G and δ > 0 with x+ δ ∈ G, define

pσ(x, δ) = P

{
σ · u(x, ω) ≥ 0, σ · u(x+

δ

2
) ≤ 0, σ · u(x+ δ) ≥ 0

}
,

and assume that there is a constant C0 > 0 such that

pσ(x, δ) ≤ C0δ
3 for all σ ∈ {±1} and x ∈ G with x+ δ ∈ G.

Then for every discretization size M , the probability that the homologies of N±(ω) and

Q±M (ω) coincide satisfies

P
{
H∗(N±) ∼= H∗(Q±M )

}
≥ 1− 8C0(b− a)3

3M2
.

This is the first result that gives an explicit lower bound on the probability that the ho-

mologies of the discretized nodal domains coincide with the true nodal domains. This bound

is also supported by numerical evidence which shows the same 1
M2 asymptotic behavior. In

practice, we must be able to find the constant C0 or approximate it.
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Random Periodic Functions

As a particular application of the above bounds, we will work with random periodic func-

tions. Let (Ω,F,P) be a probability space, G = [0, L] and consider the following random

Fourier series u : G× Ω→ R of the form

u(x, ω) =
∞∑
k=0

ak

(
g2k(ω) cos

2πkx
L

+ g2k−1(ω) sin
2πkx
L

)
.

Assume the following are true

• the Gaussian random variables gl(ω) are independent and normally distributed with

mean zero and variance 1

• the constants ak are arbitrary such that at least 2 of them do not vanish and

∞∑
k=0

a2
kk

6 <∞

The above constants ak are directly related to the smoothness of the random field. Define

Al =
∞∑
k=0

a2
kk

2l.

Then we have that

E||Dl
xu||2L2(0,L) = (2π)2lL1−2lAl.

This amounts to Al containing the averaged information in the L2 norm about the l-th

derivative over (0, L) of u.

Random Fourier series of this type are convenient to study since they are homogenous

random fields. This can be seen through
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R(x, y) = E (u(x)u(y))

= E

{( ∞∑
k=0

ak

(
g2k(ω) cos

2πkx
L

+ g2k−1(ω) sin
2πkx
L

))

·

( ∞∑
l=0

al

(
g2l(ω) cos

2πlx
L

+ g2l−1(ω) sin
2πlx
L

))}

=
∞∑
k=0

a2
k cos

2πk(x− y)
L

We now wish to find an explicit lower bound on the probability that the homologies

coincide for this particular class of random fields. The following theorem from [53] gives us

a lower bound.

Theorem 3.3. [53] Consider the random Fourier series defined over G = [0, L] Let M be

an arbitrary natural number. Then the probability that the homologies coincide satisfies

P
{
H∗
(
Q±M

) ∼= H∗
(
N±
)}
≥ 1− π2

6M2

A0A2 −A2
1

A
3/2
0 A

1/2
1

+O

(
1
M3

)
,

where Al was defined above.

This theorem transforms the abstract estimate into an estimate that is directly related

to smoothness properties of the underlying random field.

3.3 Homogenous Random Fields in Two-Dimensions

For functions of a single variable, the above bounds are fairly straightforward to characterize.

The homologies of N± and Q±M will differ when we have a double crossover on an interval.
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Figure 3.6: Forbidden Sign Configurations for B admissibility.

We then said that an interval was admissible if it does not contain a double crossover on

any of its dyadic subintervals. How does this translate to higher dimensions? How can we

characterize what an admissible square [xk, xk+1]× [yl, yl+1] will be? To begin, we start by

defining a dyadic subsquare.

Definition 3.5. Let J = [α, α + δ]× [β, β + δ] ⊂ R2 and let dn,k denote the dyadic points

in the interval [0, δ]. Then the dyadic points in the square J are the points

dn,k,l = (α+ dn,k, β + dn,l) ⊂ R2,

for all k, l = 0, . . . , 2n, and n ∈ N. The dyadic subsquares of J are the squares dn,k,l +

[0, δ/2n]2 for all k, l = 0, . . . 2n − 1 and n ∈ N ∪ {0}.

We can now begin talking about admissibility for squares.

Definition 3.6. Let u : G → R be an arbitrary function and J ⊂ G be a square. Then

J is B-admissible for u if none of the dyadic subsquares contain any horizontal or vertical

translations of the first sign configuration shown in Figure 3.6 and the dyadic subsquares

do not contain the given four point configuration.

This definition is enough to validate the homology computations. Upon examining

the sign configurations for the next dyadic subdivision, shown in Figure 3.7, we group

the allowed sign configurations by examining what happens on the outer vertices. Two

observations can be made by examining these:
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Figure 3.7: Allowed sign configurations at next dyadic subdivision for B-admissibility.

a.) if all function values of u at the corners of the box have the same sign, then all function

values at the nine dyadic points must have the same sign,

b.) if both signs can be observed at the corners of the box, then there are two sides of

the box with both positive and negative function values.

This demonstrates that if a box J is B−admissible and the function u is positive at the

corners, then u cannot take on negative function values in J . This suggests that it is possible

to pin down the nodal lines with these two observations. In fact, one can show that the

following proposition is true.

Proposition 3.2. [53] Let G ⊂ R2 denote a square, let u : G→ R be C2 such that 0 is not

a critical value of u and let J ⊂ G be a B−admissible square. Then the following hold:

a.) If u is strictly positive at the corners of J , then u is strictly positive on J . Also, If u

is strictly negative at the corners of J , then u is strictly negative on J .

b.) If u takes both positive and negative function values at the corners of J , then the nodal

line of u inside J is a simple smooth curve which connects one side of J with another

side of J .

While B-admissibility will generate the correct homology, it will not give the correct

asymptotics for the convergence rate. It can be shown that these configurations will generate
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Figure 3.8: Forbidden Sign Configurations for I4 admissiblity.

Figure 3.9: Forbidden Sign Configurations for I5 admissiblity.

a bound of the form P[J ] = CBδ
3, for the square J that has side lengths δ. However, in the

two dimensional case, we have M2 squares, and summing the probability for each square

being B-admissible will give us a O(1/M) probability bound. This is sub-optimal and we

want to be able to find tighter bounds. In particular, we want to obtain a O(1/M2) bound.

We must also use another notion of admissibility of squares to achieve this bound.

Definition 3.7. Let u : G→ R and J = [α, α+δ]× [β, β+δ] ⊂ G. Then J is I4-admissible

if it does not contain any of the sign configurations in Figure 3.8. The square J is I5

admissible if it does not contain the sign configuration in Figure 3.9.

Definition 3.8. Let u : G → R and J = [α, α + δ] × [β, β + δ] ⊂ R2. Assume u and J
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Figure 3.10: Sign Configurations Required for I-Admissibility.

are such that the δ/2 translations up and down and left and right are contained in G. Then

J is I-admissible if every dyadic subsquare J∗ the following 5 squares are both I4 and I5

admissible:

• the dyadic subsquare J∗

• the four shifted squares obtained by translating J∗ horizontally and vertically δ/2n in

either direction.

These are shown in Figure 3.10. We can now give a criterion for when we have made

the correct global homology computations.

Proposition 3.3. [53] Let G ⊂ R2 be a square domain and u : G→ R be twice continuously

differentiable. Let N± denote the nodal domains and Q±M be the cubical approximations for

fixed M . Assume u is nonzero at each sampled point and that either of the following hold:

• if the square J lies on the boundary of G, then J is B-admissible

• if the square lies in the interior of G, then J is I-admissible.

Then we have

H∗(N±) ∼= H∗(Q±M ),

so the homologies of the nodal domains match that of the cubical approximations.
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Figure 3.11: Possible Sign Structures for Squares Using I4 Admissibility

Why is this true? The ultimate goal is simply to be able to test the function value sign

at the vertices and compute the correct homology. We need to ensure that the signs give the

correct geometry of the nodal lines within the region. Suppose a square contains all the same

sign on the vertices. Then using I4 admissibility, the only sign configurations that are still

allowed at the next refinement are shown in Figure 3.11. Note that the last configuration in

the first row is problematic. It suggests that there may be region of opposite sign enclosed

in the box. It is this possible configuration that makes I4-admissibility insufficient and thus

we require I5 admissibility as well.

Suppose we have the sign configuration in Figure 3.11. Then we can see the only possible

sign configurations for the remaining vertices that are still allowed using I4-admissibility.

However, I4 and I5 admissibility are still not sufficient to capture the topology. If we look

at Figure 3.12, we can see problems. The middle image has the same sign on all the vertices

of two adjacent boxes. However, on the edge connecting the boxes, we have an opposite sign

that is not ruled out by I4 or I5 admissibility. The bottom image shows a similar problem

where the edge connecting two adjacent boxes is of the opposite sign at the vertices, but

at the next refinement we can still have a problem. For these reasons, we need to also rule

out the I4 and I5 sign configurations on the shifted squares as well.

With this proposition, we can finally furnish precise asymptotic bounds for the probability.

This is the subject of the following theorem.
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Figure 3.12: Necessity of I-admissibility.

Theorem 3.4. [53] Consider a probability space (Ω,F,P) and a square domain G = [0, L]×

[0, L]. Let u : G→ R denote a random field satisfying assumptions A1 and A2:

(A1) for every x ∈ D, we have P
{
u(x, ω)− µ(x) = 0

}
= 0

(A2) we have that P
{

0 is a critical value of u− µ
}

= 0.

Assume u(·, ω) is twice continuously differentiable for P-almost all ω ∈ Ω. For each ω ∈ Ω

denote by N±(ω) the nodal domains and let Q±M (ω) be the corresponding cubical approxi-

mations for a fixed M . For x = (x1, x2), δ > 0, and J = [x1, x1 + δ]× [x2, x2 + δ] consider

the following:

i.) let EB(x, δ) denote the set of all ω ∈ Ω for which u(·, ω) exhibits at least one of the

seven sign patterns in Figure 3.6 that are not B-admissible.

ii.) let EI(x, δ) denote the set of all ω ∈ Ω for which u(·, ω) exhibits at least one of the

seventeen sign patterns in Figures 3.8 and 3.9 that are not I-admissible.

Assume there are positive constants C1 and C2 such that

P
(
EB(x, δ)

)
≤ C1δ

3
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and

P
(
EI(x, δ)

)
≤ C2δ

4,

for all x ∈ G and δ > 0 for which J lies in G. Then for a fixed discretization size M , the

probability that the homologies of N±(ω) and Q±M (ω) coincide satisfies

P
{
H∗(N±) ∼= H∗(Q±M )

}
≥ 1− 24C1L

3 + 20C2L
4

3M2
.

Random Periodic Functions

We now apply the previous theorem to obtain bounds for random periodic functions. As-

sume we have a function over the domain [0, L]× [0, L] of the form:

u(x1, x2, ω) =
∞∑

k,l=0

ak,l

(
gk,l,1(ω) cos

2πkx1

L
cos

2πlx2

L

+ gk,l,2(ω) cos
2πkx1

L
sin

2πlx2

L

+ gk,l,3(ω) sin
2πkx1

L
cos

2πlx2

L

+ gk,l,4(ω) sin
2πkx1

L
sin

2πlx2

L

)
,

where we assume each gk,l,i(ω) are independent, normally distrubuted random variables

defined over a probability space (Ω,F,P) and at least two ak,l are nonzero. Also assume

that the random field u is such that

∞∑
k,l=0

(k6 + l6)a2
k,l <∞,
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which is directly related to the smoothness of the random field u. Define

Ap,q =
∞∑

k,l=0

k2pl2qa2
k,l.

Then it can be shown that

E||Dp
x1
Dq
x2
u||2L2(G) = (2π)2p+2qL2−2p−2qAp,q.

Again, these particular functions are convenient to study since we can write the covariance

as

R(x1, x2, y1, y2) =
∞∑

k,l=0

a2
k,l cos

2πk(y1 − x1)
L

cos
2πl(y2 − x2)

L
.

Then from [53], the probability that the homologies N±(ω) and Q±M (ω) agree satisfies

P

[
H∗
(
Q±
) ∼= H∗

(
N±
)]
≥ 1− 1067π2

18M2

(A2,0 +A1,1 +A0,2)2

A
1/2
0,0 A

1/2
0,1 A

1/2
1,0 A

1/2
1,1

+O

(
1
M3

)
.

3.4 Non-Homogenous Bounds

The above sections provide explicit lower bounds on the correctness of homology computa-

tions in one and two spatial dimensions. In each case, an abstract bound was first found.

This bound was then applied to a concrete class of random fields, namely random periodic

functions. These random fields are nice to study because of their homogeneity property.

This permitted us to sample the points at equispaced distances. However, this is a severe

restriction since we expect to encounter non-homogenous random fields. If we do encounter

them, we cannot expect to obtain optimal bounds on the correctness probability for our
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Figure 3.13: Example of Homogenous Random Field and Non-Homogenous Random Field

homology computations with equispaced points. Intuitively this results from a nonuniform

clustering of the zeros of the random field.

As an illustration, we show three realizations of the random periodic function

u(x, ω) =
N∑
i=0

(g2i(ω) cos 2πix+ g2i−1(ω) sin 2πix) ,

with domain D = [0, 1] and three realizations of the non-homogenous random field

u(x, ω) =
N∑
i=0

gi(ω) cos (i arccosx),

with domain D = [−1, 1] in Figure 3.13, where gi(ω) is independent identically distributed

normal distributions. If we compare the plots for the random periodic functions, we observe

that the zeros are fairly equispaced. If we then compare the non-homogenous case, we see

that the zeros tend to be spaced near the boundary. This is evidence that equispaced

sampling of our random field will give suboptimal correctness bounds for non-homogenous

random fields.

We now update the definitions to account for non-homogenous random fields.

Definition 3.9. Let G = [a, b] ⊂ R be a compact interval, µ : G → R be a threshold
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function, and u : G→ R be continuous function. An M -discretization of [a, b] is a collection

of M + 1 points

a = x0 < x1 < · · · < xM = b.

The generalized nodal domains about the threshold function µ are the sets

N±µ :=
{
x ∈ [a, b] : ±

(
u(x)− µ(x)

)
≥ 0
}
.

These are again the sub and super-level sets about µ. The cubical approximations Q±µ,M of

the generalized nodal domains are the sets

Q±µ,M :=
⋃{

[xk, xk+1] : ±
(
u(x)− µ(x)

)
≥ 0
}
.

Again our goal is to find lower bounds for which

P
{
H∗(N±µ ) ∼= H∗(Q±µ,M )

}
.

In order to proceed, assume µ is a continuous threshold function. We make the following

assumptions:

(A1) For every x ∈ D, we have P
{
u(x, ω)− µ = 0

}
= 0

(A2) We have that P
{
u− µ has double zero in [a, b]

}
= 0.

(A3) For σ ∈ {±1}, x ∈ G and δ > 0 with x+ δ ∈ G define

pσ(x, δ) = P

{
σ ·u(x) ≥ µ(x), σ ·u

(
x+

δ

2

)
≤ σ ·µ

(
x+

δ

2

)
, σ ·u(x+δ) ≥ σ ·µ(x+δ)

}
,

Then there is a continuously differentiable function C0 : G→ R and a positive constant
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C1 such that

p+1(x, δ) + p−1(x, δ) ≤ C0(x)δ3 + C1δ
4.

These assumptions are quite similar to the previous ones except now they depend on the

sampled points. They also depend on a threshold function µ. It is also clear that the

function C0 will vary over [a, b] and give different probabilities for different x but constant

δ. The next theorem furnishes where we need to sample our points to get optimal bounds

for our homology computations.

Theorem 3.5. [54] Consider a probability space (Ω,F,P), a continuous threshold function

µ : [a, b] → R. Let u : [a, b] × Ω → R be a random field over (Ω,F,P) such that for P-

almost all ω ∈ Ω the function u(·, ω) : [a, b] → R is continuous. Choose the sample points

a = x0 < x1 < · · · < xM = b such that

∫ xk

xk−1

3
√

C0(x)dx =
1
M

∫ b

a

3
√

C0(x)dx.

Consider the generalized nodal domains N±µ (ω) and the cubical approximations Q±µ,M (ω).

If the assumptions (A1), (A2), and (A3) hold, then

P{H∗(N±µ ) ∼= H∗(Q±µ,M )} ≥ 1− 4
3M2

(∫ b

a

3
√

C0(x)dx
)3

.

How do we calculate C0(x) for an arbitrary random field and threshold function µ?

Recalling that the covariance function is

R(x, y) = E
(
(u(x)− Eu(x))(u(y)− Eu(y))

)
,
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we can then write

Rk,l(x) =
∂k+lR

∂xk∂yl
(x, x)

= E
(
(u(k)(x)− Eu(k)(x))(u(l)(y)− Eu(l)(y))

)
.

To write an explicit formula for C0, assume the following matrix is positive definite:

R(x) :=


R0,0(x) R1,0(x) R2,0(x)

R1,0(x) R1,1(x) R2,1(x)

R2,0(x) R2,1(x) R2,2(x)

 .

Now, define the following relations.

Rm
33 := R0,0R1,1 −R2

1,0

Rm
32 := R0,0R2,1 −R1,0R2,0

Rm
31 := R1,0R2,1 −R1,1R2,0

These relations are simply the determinants of the minors of R. We can now state the

following theorem which gives the optimal probability bound in terms of an explicit repre-

sentation of C0

Theorem 3.6. [54] Consider a probability space (Ω,F,P), a continuous threshold function

µ : [a, b] → R and a random field u : [a, b] × Ω → R over (Ω,F,P) such that for P-almost

all ω ∈ Ω the function u(·, ω) : [a, b] → R is of class C3. Also assume µ is of class C3.

Choose the sample points a = x0 < x1 < · · · < xM = b such that

∫ xk

xk−1

3
√

C0(x)dx =
1
M

∫ b

a

3
√

C0(x)dx.
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We then have

P{H∗(N±) ∼= H∗(Q±M )} ≥ 1− 1
M2

(∫ b

a

3
√

C0(x)dx
)3

,

where

C0 =
det R(x)

48πRm
3,3(x)3/2

(
1 + A(x)

)
e−B(x),

for

A(x) =

(
Rm

3,1(x)µ(x)− Rm
3,2(x)µ′(x) + Rm

3,3(x)µ
′′
(x)
)2

Rm
3,3(x) det R(x)

and

B(x) =

(
R1,0(x)µ(x)−R0,0(x)µ

′
(x)
)2 + Rm

3,3µ(x)2

2R0,0(x)Rm
3,3(x)

.

Asymptotic Sign-Change Probabilities

All of the above probabilities rely on being able to identify problematic sign change config-

urations. In the one dimensional case, the problematic configuration occurs when we have a

double crossover. In the two dimensional situation, we had to identify many more problem-

atic configurations. Since we are dealing with random functions, we cannot state whether

a problematic sign configuration will occur. We can however give precise probabilities as to

when we can expect a particular sign configuration.

To begin, let T (δ) = (T1(δ), T2(δ), · · · , Tn(δ)) denote a one parameter family of Rn-

valued random Gaussian variables indexed by δ > 0. Choose a particular sign configuration

from (s1, s2, · · · , sn) ∈ {±1}n. Let τ(δ) be an arbitrary threshold vector. Using this, we
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are interested in the asymptotic behavior as δ → 0 of

P (δ) = P
{
si(Ti(δ)− τi(δ)) ≥ 0, for all i = 1, · · · , n

}
Theorem 3.7. [54] Let (s1, . . . , sn) ∈ {±1}n denote a fixed sign sequence and consider the

one parameter families of a threshold vector τ(δ) ∈ Rn and an Rn-values random Gaussian

variable T (δ) over (Ω,F,P) for δ > 0. Assume the holding conditions hold:

a.) For each δ > 0, assume that the Gaussian random variable T (δ) has mean 0 ∈ Rn

and a positive definite covariance matrix C(δ) ∈ Rn×n, whose positive eigenvalues

are given by 0 < λ1(δ) < · · · < λn(δ) with corresponding normalized eigenvectors

ν1(δ), · · · , νn(δ).

b.) There exists a vector ν̄1 = (ν̄1,1, . . . , ν̄1,n) ∈ Rn such that ν1(δ) → ν̄1 as δ → 0 and

siν̄1,i > 0 for all i = 1, . . . , n.

c.) The quotient λ1(δ)/λk(δ) converges to 0 as δ → 0, for all k = 2, . . . , n.

d.) There exists a vector α = (α1, . . . , αn)t ∈ Rn such that

lim
δ→0

τ(δ) · νk(δ)√
λk(δ)

= αk, for all k = 1, . . . , n.

Furthermore, for α define

Sα =
2

2n/2 · Γ(n/2)
e−

Pn
k=2 α

2
k/2 ·

∫ ∞
α1

(s− α1)n−1e−s
2/2ds.

Then the probability P (δ) satisfies

lim
δ→0

P (δ)

√
detC(δ)
λ1(δ)n

=
Γ(n/2) · Sα

2 · πn/2 · (n− 1)!
·
∣∣∣∣ n∏
j=1

ν̄1,j

∣∣∣∣−1

.
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This theorem gives us a method to determine the probability of the sign configurations

shown. The above theorem takes the threshold into consideration. For a zero threshold

µ = 0, we can greatly simplify the above theorem as follows.

Theorem 3.8. [53] Let (s1, . . . , sn) ∈ {±1}n be a fixed sign sequence and consider the one

parameter family of Rn-values random Gaussian variable T (δ) over (Ω,F,P) for δ > 0.

Assume the holding conditions hold:

a.) For each δ > 0, assume that the Gaussian random variable T (δ) has mean 0 ∈ Rn

and a positive definite covariance matrix C(δ) ∈ Rn×n, whose positive eigenvalues

are given by 0 < λ1(δ) < · · · < λn(δ) with corresponding normalized eigenvectors

ν1(δ), · · · , νn(δ).

b.) There exists a vector ν̄1 = (ν̄1,1, . . . , ν̄1,n) ∈ Rn such that ν1(δ) → ν̄1 as δ → 0 and

siν̄1,i > 0 for all i = 1, . . . , n.

c.) The quotient λ1(δ)/λk(δ) converges to 0 as δ → 0, for all k = 2, . . . , n.

Then the probability P (δ) satisfies

lim
δ→0

P (δ)

√
detC(δ)
λ1(δ)n

=
Γ(n/2)

2 · πn/2 · (n− 1)!
·
∣∣∣∣ n∏
j=1

ν̄1,j

∣∣∣∣−1

.

This theorem gives the precise asymptotic behavior of most the sign configurations as

the side lengths decrease to zero. However, it does not hold for the five point configuration.

One can provide another theorem that has weaker hypothesis that holds for the five point

configuration.

Theorem 3.9. [53] Let (s1, . . . , sn) ∈ {±1}n be a fixed sign sequence and consider the one

parameter family of Rn-valued random Gaussian variable T (δ) over (Ω,F,P) for δ > 0.

Assume the holding conditions hold:
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a.) For each δ > 0, assume that the Gaussian random variable T (δ) has mean 0 ∈ Rn

and a positive definite covariance matrix C(δ) ∈ Rn×n, whose positive eigenvalues

are given by 0 < λ1(δ) < · · · < λn(δ) with corresponding normalized eigenvectors

ν1(δ), · · · , νn(δ).

b.) There exists a vector ν̄1 = (ν̄1,1, . . . , ν̄1,n) ∈ Rn such that ν1(δ) → ν̄1 as δ → 0 and

siν̄1,i > 0 for all i = 1, . . . , n.

Then the probability P (δ) satisfies

lim
δ→0

P (δ)

√
detC(δ)
λ1(δ)n

≤ Γ(n/2)
2 · πn/2 · (n− 1)!

·
∣∣∣∣ n∏
j=1

ν̄1,j

∣∣∣∣−1

.
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Chapter 4: Non-Homogenous Bounds

4.1 Introduction

Assume we are given a random field u(x, y, ω) defined over [a, b] × [c, d] such that we can

write

u(x, y, ω) =
∞∑
j=0

∞∑
k=0

aj,kgj,k(ω)φj(x)ψk(y),

where gj,k(ω) are independent, identically distrubuted Gaussian random variables with

mean zero and variance one, and φj(x) and ψk(y) are complete orthogonal basis functions.

Our main objective is to correctly identify the homology of the nodal domains

N±(ω) := {(x, y) : ±u(x, y, ω) ≥ 0}

We again have two main obstacles to overcome in order to address the correctness of the

homology. First, we will be working with discretized versions of the nodal domains. In

particular, we will work with the sets

Q±M (ω) :=
M−1⋃
i,j=0

{[i, i+ 1]× [j, j + 1] : ±u(xi, yj , ω) ≥ 0}

The second difficulty is the probabilistic nature of our random fields. Since we are dealing

with random variables, we will have different nodal domains for each realization. Thus we

do not know a priori what the nodal domains will look like and where to sample. Our main
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goal is thus to find sharp lower bounds for

P
{
H∗
(
N±
) ∼= H∗

(
Q±M

)}
.

As such our approach will be as follows. We will make heavy use of Theorems 3.7, 3.8,

and 3.9 to find the local probability for each forbidden sign configuration in Q±M . Once the

local probabilities have been calculated, we can then sum over all elements in Q±M to obtain

the total probability of making mistakes. Lastly, we minimize the total failure probability

by changing our sampled points (xi, yj).

Due to the structure of the random fields under consideration, we can write the covariance

between the coordinate points (x1, y1) and (x2, y2) as

R(x1, x2, y1, y2) = E [(u(x1, y1)− E(u(x1, y1))) (u(x2, y2)− E(u(x2, y2)))]

= E [u(x1, y1)u(x2, y2)]

= E

 ∞∑
j=0

∞∑
k=0

aj,kgj,k(ω)φj(x1)ψk(y1)

( ∞∑
l=0

∞∑
m=0

al,mgl,m(ω)φl(x2)ψm(y2)

)

= E

 ∞∑
j=0

∞∑
k=0

∞∑
l=0

∞∑
m=0

aj,kal,mgj,kgl,mφj(x1)φl(x2)ψj(y1)ψm(y2)



=
∞∑
j=0

∞∑
k=0

∞∑
l=0

∞∑
m=0

aj,kal,mE [gj,kgl,m]φj(x1)φl(x2)ψj(y1)ψm(y2)

=
∞∑
j=0

∞∑
k=0

a2
j,kφj(x1)φj(x2)ψk(y1)ψk(y2),

where we have used the fact that gj,k(ω) are independent Gaussian random variables with

mean zero and variance one. The above makes sense by Mercer’s theorem assuming the

basis functions are continuous and complete over the domain.
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Since we are mainly interested in the asymptotic behavior of the forbidden sign configura-

tions, we begin by performing a Taylor expansion of R about the point (x1, x2, y1, y2) to

the point (x1 + a, x2 + b, y1 + c, y2 + d). This yields

R = r0 +
(
r1a+ r2b+ r3c+ r4d

)
+

1
2!

(
r11a

2 + 2r12ab+ 2r13ac+ 2r14ad+ r22b
2

+ 2r23bc+ 2r24bd+ r33c
2 + 2r34cd+ r44d

2

)

+
1
3!

(
r111a

3 + 3r112aab+ 3r113aac+ 3r114aad+ 3r122abb+ 6r123abc+ 6r124abd

+ 3r133acc+ 6r134acd+ 3r144add+ r222b
3 + 3r223bcb+ 3r233bcc

+ 6r234bcd+ r333c
3 + 3r334ccd+ 3r344cdd+ r444d

3 + 3r244bdd+ 3r224bbd

)

+
1
4!

(
r1111aaaa+ 4r1112aaab+ 4r1113aaac+ 4r1114aaad+ 6r1122aabb+ 12r1123aabc

+ 12r1124aabd+ 6r1133aacc+ 12r1134aacd+ 6r1144aadd+ 24r1234abcd

+ 12r1233abcc+ 12r1244abdd+ 4r1222abbb+ 12r1223abbc+ 12r1224abbd+ 4r1333accc

+ 12r1334accd+ 12r1443addc+ 4r1444addd+ r2222bbbb+ 4r2223bbbc+ 4r2224bbbd

+ 6r2233bbcc+ 12r2234bbcd+ 6r2244bbdd+ 4r2333bccc+ 12r2334bccd+ 12r2344bcdd

+ 4r2444bddd+ r3333cccc+ 4r3334cccd+ 6r3344ccdd+ 4r3444cddd+ r4444dddd

)

+O(|(a, b, c, d)|5),

where rD := rD(x1, x2, y1, y2) is the D = (d1, d2, d3, d4) derivative of R evaluated at the

sampled points (x1, x2, y1, y2) and also r0 = r(x1, x2, y1, y2).

We now derive all the local probabilities for the forbidden sign configurations. We will show
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explicitly how to do this for four situations. The remaining sign configurations are similar

in procedure to the ones explicitly derived in the next sections. In particular, we show the

derivations for the three point configuration, the four point square, the four point skewed

square, and the five point configuration.

We employ one technique in our calculations that is non-standard. Known as the Newton

polygon method, this tool determines small solutions to polynomial equations. It has prac-

tical applications in bifurcation theory, differential equations, and dynamical systems. A

few good references are [47],[66], and [69].

Assuming we wish to find small solutions to the equation

F (ν, w) = 0 where F (0, 0) = 0,

around (0, 0). Assume the following:

• Let O be open with (0, 0) ∈ O and F : O→ R analytic. Then we can write

F (ν, w) =
∞∑

j,k=0

cj,kw
kνj .

• The functions F (·, w) and F (ν, ·) are not identically zero. This implies there exists

j̄, k̄ ∈ N such that

cj̄,0 6= 0 and c0,k̄ 6= 0.

Our desire is to find small solutions of the form

w = aνα + o(να)

as ν → 0. Notice that when we put this expression into the term cj,kw
kνj we get

cj,kw
kνj = akcj,kν

kα+j .
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This gives that kα+ j = k̂α+ ĵ if and only if the points (j, k) and (ĵ, k̂) lie on a line with

slope −α so that

−α =
ĵ − j
k̂ − k

.

Also notice that kα + j < k̂α + ĵ if and only if (ĵ, k̂) lies above the line through (j, k)

with slope −α. These two observations are the crux of the Newton Polygon. The following

provides a rigorous definition of the Newton polygon.

Definition 4.1. Let K be the convex hull of all points (j, k) such that cj,k 6= 0. The Newton

Polygon is the polygon along the lower left boundary of K between the points (0, k) and (j, 0).

This provides a sequence of segments whose slopes are −α1 < −α2 < · · · < −αr.

This definition gives us a simple method to determine small solutions for the equation

F (ν, w). We first form the Newton polygon given by F . Then the slopes −αs determine the

exponents for the equation w = aνα. Then we plug this expression into F , collection the

terms which contribute to that slope and solve for a. An example is shown in Figure 4.1.

The outer lines form the Newton Polygon and the lower line determines the exponents for

the small solutions. The exact formulation is given in Theorem 4.1.

Theorem 4.1. [47] Let F be an analytic function satisfying:

a.) Let O be open with (0, 0) ∈ O and F : O→ R analytic. Then we can write

F (ν, w) =
∞∑

j,k=0

cj,kw
kνj .

b.) The functions F (·, w) and F (ν, ·) are not identically zero. This implies there exists

j̄, k̄ ∈ N such that

cj̄,0 6= 0 and c0,k̄ 6= 0.
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Figure 4.1: Sample Newton Polygon

Let L1, . . . , Lr denote the line segments of the Newton Polygon with slopes −α1 < · · · < −αr.

Then

F (ν, w) = 0

has a solution

ν = awα + o(wα)

close to (0, 0) if and only if

1. α = αi, for i = 1, . . . , r,

2. a 6= 0 is a solution of ∑
(k,l)∈Lγ ,ck,l 6=0

ck,la
k = 0.

For example, suppose we wish to find small solutions to the equation

F (x, y) = y5 − 14xy2 + 5x2y + x3,

in terms of x = ays + o(ys). The Newton Polygon is shown in Figure 4.2. The first image

shows the entire Newton Polygon, the second image shows the line with greatest slope in

red, and the last image shows the remaining line in red. Examining the diagram gives us
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Figure 4.2: Newton polygon for equation F (x, y) = y5 − 14xy2 + 5x2y + x3.

the slopes −α1 = 3 and −α2 = 1. The small solutions are then of the form

x = a1y
3 + o(y3)

x = a2y + o(y).

Now we find the coefficients a1 and a2. To find a1, the substitute the expression x = a1y
3

into the terms that contributed to the line with slope −α1 = 3. This gives

0 = y5 − 14xy2

= y5 − 14(a1y
3)y2

= y5(1− 14a1).
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This gives a1 = 1/14. We do a similar procedure to find a2. We substitute x = a2y into the

terms of F that contributed the line with slope −α2 = 1. This gives

0 = −14xy2 + 5x2y + x3

= −14(a2y)y2 + 5(a2y)2y + (a2y)3

= y3(a2
2 + 5a2 − 14),

which solving for a2 gives a2 = 2 and a2 = −7. Then for the equation F (x, y) = y5 −

14xy2 + 5x2y + x3, the small solutions are

x =
1
14
y3 + o(y3)

x = 2y + o(y)

x = −7y + o(y).

4.2 Three Point Sign Configurations

We start with the three point sign configuration in the x direction. In this case, we ob-

viously have n = 3 and the sign vector (s1, s2, s3) = (+1,−1,+1). We are interested in

the asymptotics of the random vector T (δ1, δ2) = (T1(δ1, δ2), T2(δ1, δ2), T3(δ1, δ2) : Ω→ R3,

defined by

T1(δ1, δ2) = u(x1, y1), T2(δ1, δ2) = u(x1 + δ1/2, y1), T3(δ1, δ2) = u(x1 + δ1, y1).
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Then T (δ1, δ2) is a Gaussian random variable with mean (0, 0, 0) ∈ R3. The covariance

matrix of T (δ1, δ2) about the point (x1, y1) is then C1(δ1, δ2) =


R(x1, x1, y1, y1) R(x1, x1 + δ1/2, y1, y1) R(x1, x1 + δ1, y1, y1)

R(x1 + δ1/2, x1, y1, y1) R(x1 + δ1/2, x1 + δ1/2, y1, y1) R(x1 + δ1/2, x1 + δ1, y1, y1)

R(x1 + δ1, x1, y1, y1) R(x1 + δ1, x1 + δ1/2, y1, y1) R(x1 + δ1, x1 + δ1, y1, y1)

 .

Using the Taylor expansion for R, the determinant of C1 is then

det C1 =
1
64

A1(x1, y1)δ6
1 +O(δ7

1),

where we have defined

A1(x1, y1) := (r0r1122r12 − r0r112r122 − r1r1122r2 + r11r122r2 + r1r112r22 − r11r12r22) .

We note here that we used Mathematica for the symbolic calculations. We first expanded

the covariance function in a symbolic Taylor series. Then based upon the sign configuration

we are using, we formed the covariance matrix. The determinant was then calculated using

Mathematica’s determinant command. This gives the full determinant, so to find the leading

order terms, we then collected all the leading order terms.

Since the covariance matrix is positive definite for δ1, δ2 sufficiently small, this immediately

implies that the determinant is positive. The next step is to obtain the leading order terms

for the eigenvalues of C1. To do this, we will use the Newton Polygon. In particular, we will

use this method for the characteristic polynomial det (C1(δ1, δ2)− λI). To leading order in

each term, we obtain the characteristic polynomial

1
64

A1 · δ6
1 · λ0 + B1 · δ2

1 · λ1 + D1 · δ0
1 · λ2 − λ3,
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Figure 4.3: Newton polygon for three point sign configuration

where we have

B1 := B1(x1, y1) = −3
2

(r0r12 − r1r2)

D1 := D1(x1, y1) = 3r0.

Using the Newton Polygon shown in Figure 4.3, we find the slopes l1 = −4, l2 = −2, and

l3 = 0. To leading order, the eigenvalues are

λ1 = − 1
96

A1

B1
δ4

1 +O(δ5
1)

λ2 = −1
2

B1

D1
δ2

1 +O(δ3
1)

λ3 = 3r00 +O(δ1
1),
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which is

λ1 = − 1
96
r0r1122r12 − r0r112r122 − r1r1122r2 + r11r122r2 + r1r112r22 − r11r12r22

r0r12 − r1r2
δ4

1 +O(δ5
1)

λ2 =
1
2
r0r12 − r1r2

r0
δ2

1 +O(δ3
1)

λ3 = 3r0 +O(δ1
1).

Lastly, we must find the asymptotic behavior of the eigenvectors. To do this, we consider

the adjoint matrix, which can be calculated as

adj C1(δ1, δ2) =
3
2

(r0r12 − r1r2)


1 −2 1

−2 4 −2

1 −2 1

 δ2
1 +O(δ3

1).

This was again found symbolically using Mathematica. This matrix has eigenvalues 0, 0,

and 6. The eigenvalue 6 has the associated eigenvector (1,−2, 1)t/
√

6. The eigenspace of

the largest eigenvalue of the adjoint corresponds to the eigenspace of the smallest eigenvalue

λ1(δ1, δ2) of the covariance matrix C1. Hence, we can conclude that in the limit (δ1, δ2)→

(0, 0) we have ν1(δ1, δ2)→ (1,−2, 1)t/
√

6.

We have now established the validity of all the assumptions for Theorem 3.8. We can

therefore conclude that

P1(x1,y1, δ1, δ2) =
1

128π2

√
λ3

1

det C1
δ3

1 +O(δ3
1)

=
r0r1122r12 − r0r112r122 − r1r1122r2 + r11r122r2 + r1r112r22 − r11r12r22

128π2(r0r12 − r1r2)3/2
δ3

1 +O(δ4
1),
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Figure 4.4: Four Point Sign Configuration

where each of the coefficients rd depends on the sampled coordinates (x1, y1).

4.3 Four Point Square

We turn our attention to the four point square shown in Figure 4.4. The same process

will be followed as in the three point configuration. In this case, we are investigating

the behavior of the sign vector s = (+1,−1,+1,−1) for the random vector T3(δ1, δ2) =

(u(x1, y1), u(x1 + δ1, y1), u(x1 + δ1, y1 + δ2), u(x1, y1 + δ2)). The covariance matrix of T3 is

then

C3 =



S1,1 S1,2 S1,3 S1,4

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2 S3,3 S3,4

S4,1 S4,2 S4,3 S4,4


,
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where

S1,1 = R(x1, x1, y1, y1)

S1,2 = R(x1, x1 + δ1, y1, y1)

S1,3 = R(x1, x1 + δ1, y1, y1 + δ2)

S1,4 = R(x1, x1, y1, y1 + δ2)

S2,1 = R(x1 + δ1, x1, y1, y1)

S2,2 = R(x1 + δ1, x1 + δ1, y1, y1)

S2,3 = R(x1 + δ1, x1 + δ1, y1, y1 + δ2)

S2,4 = R(x1 + δ1, x1, y1, y1 + δ2)

S3,1 = R(x1 + δ1, x1, y1 + δ2, y1)

S3,2 = R(x1 + δ1, x1 + δ1, y1 + δ2, y1)

S3,3 = R(x1 + δ1, x1 + δ1, y1 + δ2, y1 + δ2)

S3,4 = R(x1 + δ1, x1, y1 + δ2, y1 + δ2)

S4,1 = R(x1, x1, y1 + δ2, y1)

S4,2 = R(x1, x1 + δ1, y1 + δ2, y1)

S4,3 = R(x1, x1 + δ1, y1 + δ2, y1 + δ2)

S4,4 = R(x1, x1, y1 + δ2, y1 + δ2)
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Figure 4.5: Newton polygon for four point sign configuration

Using the Taylor series expansion, we can calculate the determinant of C3 to obtain

det C3 = A3 (x1, y1) δ4
1δ

4
2 +O

(
|δ1, δ2|9

)

where the term A3 (x1, y1) is given by

A3(x1, y1) = r00r124r134r23 − r00r1234r14r23 − r00r12r134r234 + r00r123r14r234

+ r1r134r2r234 − r13r14r2r234 − r1r134r23r24 + r13r14r23r24

− r124r134r2r3 + r1234r14r2r3 + r12r134r24r3− − r123r14r24r3

+ r00r12r1234r34 − r00r123r124r34 − r1r1234r2r34 + r124r13r2r34

+ r1r123r24r34 − r12r13r24r34 + r1r1234r23r4 − r124r13r23r4

− r1r123r234r4 + r12r13r234r4 − r12r1234r3r4+ + r123r124r3r4.

We now turn our attention to the eigenvalues of C3. The Newton Polygon is shown in

Figure 4.5. To leading order terms of (δ1, δ2), the characteristic polynomial det (C3 − λI) =
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0 may be written as

A3 · δ4
1δ

4
2 · λ0 + B3 · δ2

1δ
2
2 · λ1 + (D3,1δ

2
1 + D3,2δ

2
2) · λ2 + E3δ

0
1δ

0
2 · λ3 + λ4 = 0.

We want to find small solutions such that λ = λ(δ1, δ2). However, we cannot use the Newton

Polygon for the characteristic polynomial in the above form. Here we make the assumption

that as (δ1, δ2) → (0, 0), this limit occurs linearly. In particular, we assume we can write

δ1 = κ1 · t and δ2 = κ2 · t, where t is a small parameter. This is justified since we cannot

decrease one side length of the box at a much faster rate than the other side length. Using

this assumption, we may then write the characteristic polynomial as

A3κ
4
1κ

4
2t

8λ0 + B3κ
2
1κ

2
2t

4λ1 + (D3,1κ
2
1 + D3,2κ

2
2)t2λ2 + E3κ

0
1κ

0
2t

0λ3 + λ4 = 0.

We can now write the small solutions of λ in terms of t using the Newton Polygon. Doing

this gives the smallest eigenvalue

λ1 = −κ
2
1κ

2
2

4
A3

B3
t4 +O(t5),

which upon substituting κ1 and κ2, we obtain

λ1 = −δ
2
1δ

2
2

4
A3

B3
+O

(
|(δ1, δ2)|5

)
.

We note here that the coefficient B3 is given by the formula

B3 = r00r14r23 − r14r2r3 − r00r12r34 + r1r2r34 − r1r23r4 + r12r3r4.

In order to determine the behavior of the eigenvectors of C3, we again use the classical
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adjoint matrix. Computing this yields

adjC3 = −4B3



1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1


δ2

1δ
2
2 +O(|δ1, δ2|5)

The constant matrix has the eigenvalue 0 with multiplicity three and the eigenvalue 4

with multiplicity 1. The nonzero eigenvalue has the corresponding normalized eigenvector

(−1/2, 1/2,−1/2, 1/2)t. By the same reasoning as before we conclude

ν3(δ1, δ2)→
(
−1

2
,
1
2
,−1

2
,
1
2

)t
.

Using all this information, we can conclude from Theorem 3.8 that the probability of having

this forbidden sign configuration satisfies the equation

P3 =
1

12π2

A
3/2
3

B2
3

δ2
1δ

2
2 +O

(
|(δ1, δ2)|5

)
.

4.4 Four Point Skewed Square

In this section, we investigate the behavior of the skewed four point sign configuration in

Figure 4.6. We are again using the sign vector s = (+1,−1,+1,−1) with the random vector

T5(δ1, δ2) = (u(x1, y1), u(x1 + δ1/2, y1), u(x1 + δ1, y1 + δ2/2), u(x1 + δ1/2, y1 + δ2/2)). The

95



Figure 4.6: Skewed Four Point Sign Configuration

covariance matrix of T5 is then

C5 (δ1, δ2) =



S1,1 S1,2 S1,3 S1,4

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2 S3,3 S3,4

S4,1 S4,2 S4,3 S4,4


,
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where

S1,1 = R(x1, x1, y1, y1)

S1,2 = R(x1, x1 + δ1/2, y1, y1)

S1,3 = R(x1, x1 + δ1, y1, y1 + δ2/2)

S1,4 = R(x1, x1 + δ1/2, y1, y1 + δ2/2)

S2,1 = R(x1 + δ1/2, x1, y1, y1)

S2,2 = R(x1 + δ1/2, x1 + δ1/2, y1, y1)

S2,3 = R(x1 + δ1/2, x1 + δ1, y1, y1 + δ2/2)

S2,4 = R(x1 + δ1/2, x1 + δ1/2, y1, y1 + δ2/2)

S3,1 = R(x1 + δ1, x1, y1 + δ2/2, y1)

S3,2 = R(x1 + δ1, x1 + δ1, y1 + δ2/2, y1)

S3,3 = R(x1 + δ1, x1 + δ1, y1 + δ2/2, y1 + δ2/2)

S3,4 = R(x1 + δ1, x1, y1 + δ2/2, y1 + δ2/2)

S4,1 = R(x1 + δ1/2, x1, y1 + δ2/2, y1)

S4,2 = R(x1 + δ1/2, x1 + δ1/2, y1 + δ2/2, y1)

S4,3 = R(x1 + δ1/2, x1 + δ1, y1 + δ2/2, y1 + δ2/2)

S4,4 = R(x1 + δ1/2, x1 + δ1/2, y1 + δ2/2, y1 + δ2/2)
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The determinant may be computed to leading order as

det C5 =
1

256
(
A5,1δ

6
1δ

2
2 + A5,2δ

5
1δ

3
2 + A5,3δ

4
1δ

4
2

)
+O

(
|(δ1, δ2)|9

)
.

The eigenvalues of C5 are again found symbolically by computing det (C5 − λI) = 0. Again,

we make the assumption that δ1 = κ · t and δ2 = κ2 · t, where t is the small parameter.

Using the Newton Polygon which is the same as the four point square case, we compute the

smallest eigenvalue as

λ1 =
1
64

(
A5,1κ

4
1 + A5,2κ

3
1κ2 + A5,3κ

2
1κ

2
2

)
B5

· t4 +O(t5)

=
1
64

(
A5,1δ

4
1 + A5,2δ

3
1δ2 + A5,3δ

2
1δ

2
2

)
B5

+O(|(δ1, δ2)|5)

For this situation, the constant matrix in adjoint matrix is the same as the four point square.

This gives the same eigenvalues and eigenvectors for the adjoint. So we again have

ν5(δ1, δ2)→
(
−1

2
,
1
2
,−1

2
,
1
2

)t
.

Combining all this information with Theorem 3.8, we have the probability of this sign

configuration is

P5 =
1

192π2

(
A5,1δ

4
1 + A5,2δ

3
1δ2 + A5,3δ

2
1δ

2
2

)3/2
B2

5δ1δ2
+O(|(δ1, δ2)|5)
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4.5 Five Point Sign Configuration

In this section, we show the calculations for the five point configuration. We are interested

in the quantities

s =



+1

+1

−1

+1

+1


, T10(δ1, δ2) =



u(x1, y1)

u(x1 + δ1, y1)

u(x1 + δ1/2, y1 + δ2/2)

u(x1, y1 + δ2)

u(x1 + δ1, y1 + δ2)



and,

C10 =



S1,1 S1,2 S1,3 S1,4 S1,5

S2,1 S2,2 S2,3 S2,4 S2,5

S3,1 S3,2 S3,3 S3,4 S3,5

S4,1 S4,2 S4,3 S4,4 S4,5

S5,1 S5,2 S5,3 S5,4 S5,5


,

where

S1,1 = R(x1, x1, y1, y1)

S1,2 = R(x1, x1 + δ1, y1, y1)

S1,3 = R(x1, x1 + δ1/2, y1, y1 + δ2/2)

S1,4 = R(x1, x1, y1, y1 + δ2)

S1,5 = R(x1, x1 + δ1, y1, y1 + δ2)
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S2,1 = R(x1 + δ1, x1, y1, y1)

S2,2 = R(x1 + δ1, x1 + δ1, y1, y1)

S2,3 = R(x1 + δ1, x1 + δ1/2, y1, y1 + δ2/2)

S2,4 = R(x1 + δ1, x1, y1, y1 + δ2)

S2,5 = R(x1 + δ1, x1 + δ1, y1, y1 + δ2)

S3,1 = R(x1 + δ1/2, x1, y1 + δ2/2, y1)

S3,2 = R(x1 + δ1/2, x1 + δ1, y1 + δ2/2, y1)

S3,3 = R(x1 + δ1/2, x1 + δ1/2, y1 + δ2/2, y1 + δ2/2)

S3,4 = R(x1 + δ1/2, x1, y1 + δ2/2, y1 + δ2)

S3,5 = R(x1 + δ1/2, x1 + δ1, y1 + δ2/2, y1 + δ2)

S4,1 = R(x1, x1, y1 + δ2, y1)

S4,2 = R(x1, x1 + δ1, y1 + δ2, y1)

S4,3 = R(x1, x1 + δ1/2, y1 + δ2, y1 + δ2/2)

S4,4 = R(x1, x1, y1 + δ2, y1 + δ2)

S4,5 = R(x1, x1 + δ1, y1 + δ2, y1 + δ2)
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S5,1 = R(x1 + δ1, x1, y1 + δ2, y1)

S5,2 = R(x1 + δ1, x1 + δ1, y1 + δ2, y1)

S5,3 = R(x1 + δ1, x1 + δ1/2, y1 + δ2, y1 + δ2/2)

S5,4 = R(x1 + δ1, x1, y1 + δ2, y1 + δ2)

S5,5 = R(x1 + δ1, x1 + δ1, y1 + δ2, y1 + δ2).

To leading order, we can calculate the determinant as

det C10 =
1
64
(
A10,1δ

8
1δ

4
2 + A10,2δ

6
1δ

6
2 + A10,3δ

4
1δ

8
2

)
+O(|(δ1, δ2)|13),

where A10,i are coefficients specified in the appendix. Computing the characteristic equation

det C10 − λI gives equation

1
64

(
A10,1δ

8
1δ

4
2 + A10,2δ

6
1δ

6
2 + A10,3δ

4
1δ

8
2

)
· λ0 +

(
B10,1δ

6
1δ

2
2 + B10,2δ

4
1δ

4
2

+ B10,3δ
2
1δ

6
2

)
· λ1 +

(
C10,1δ

4
1 + C10,2δ

2
1δ

2
2 + C10,3δ

4
2

)
· λ2

+
(

D10,1δ
2
1 + D10,2δ

2
2

)
· λ3 + E10 · λ4 + F10 · λ5 = 0,
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Figure 4.7: Newton polygon for five point sign configuration

where we have only shown the leading order terms for each λr,r = 0, · · · , 5. Using the

assumption δ1 = κ1t and δ2 = κ2t, we get the equation

1
64

(
A10,1κ

8
1κ

4
2 + A10,2κ

6
1κ

6
2 + A10,3κ

4
1κ

8
2

)
· t12 · λ0 +

(
B10,1κ

6
1κ

2
2 + B10,2κ

4
1κ

4
2

+ B10,3κ
2
1κ

6
2

)
· t8 · λ1 +

(
C10,1κ

4
1 + C10,2κ

2
1κ

2
2 + C10,3κ

4
2

)
· t4 · λ2

+
(

D10,1κ
2
1 + D10,2κ

2
2

)
· t2 · λ3 + E10 · λ4 + F10 · λ5 = 0,

which we simplify as

A10 · t12 · λ0 + B10 · t8 · λ1 + C10 · t4 · λ2 + D10 · t2 · λ3 + E10 · λ4 + F10 · λ5 = 0.

The Newton Polygon in terms of t and λ is shown in Figure 4.7. When we solve for the

small solutions, we arrive at two solutions that have the same asymptotic behavior as t→ 0.
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These are

λ10,− =
−B10 −

√
B2

10 − 4A10C10

2C
t4

λ10,+ =
−B10 +

√
B2

10 − 4A10C10

2C
t4.

We use λ10 = λ10,− as the smallest eigenvalue.

The next item we need to calculate is the asymptotic behavior of the eigenvector corre-

sponding to λ10. Using Mathematica, we find

ν10(δ1, δ2)→ 1
2
√

5
(1, 1,−4, 1, 1)t.

We can then use Theorem 3.9 to combine all this information to calculate the probability

this sign configuration occurs for this domain.

4.6 Admissibility of Rectangles

The last sections gave derivations for the probability that each sign configuration occurs on

a rectangle. These local sign probabilities will be used to discuss the admissibility of such

a rectangle. Let Dm,n = [xm, xm+1]× [yn, yn+1] with xm+1 − xm = δ1 and yn+1 − yn = δ2.

Recall:

a.) the rectangle Dm,n is B-admissible if it does not contain any of the forbidden sign

configurations in Figure 4.8 on any of the dyadic subdivisions on Dm,n.

b.) the rectangle Dm,n is I4-admissible if it does not contain any of the forbidden sign

configurations in Figure 4.9 on any of the dyadic subdivisions on Dm,n.

c.) the rectangle Dm,n is I5-admissible if it does not contain the five point sign configu-

ration in Figure 4.10 on any of the dyadic subdivisions.
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Figure 4.8: Forbidden sign configurations for B-admissibility.

Figure 4.9: Forbidden Sign Configurations for I4 admissiblity.

Figure 4.10: Forbidden Sign Configuration for I5 admissiblity.
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Figure 4.11: Sign Configurations Required for I-Admissibility.

d.) It is I-admissible if it is I4 and I5 admissible on Dm,n and the shifted squares shown

in Figure 4.11.

The last few sections derived explicit probabilities for each sign configuration on the actual

rectangle itself. However, for a square to be admissible we need exclude the forbidden sign

configurations on all the dyadic subdivisions of the rectangle. The following lemma gives

bounds on the probability of a rectangle being either B or I admissible.

Lemma 4.1. Given the rectangle D, for each of the forbidden sign configurations, let Esign

be the event that a particular sign configuration occurs on any of the dyadic subdivisions of

D and the shifts of D. Then we have

P {Esign} ≤ C · P { sign configuration on D} ,

where C is a constant depending on whether the rectangle D touches the boundary or is an

interior rectangle. In particular, if D touches the boundary, C = 2 and if D is an interior

rectangle we have C = 20/3.

Proof. We will only show the results for a boundary term and a skewed four point configu-

ration. The remaining sign configurations can be handled similarly.
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To begin, we will we work withA5, the skewed four point configuration. LetD = [xm, xm+1]×

[yn, yn+1] denote the rectangle with xm+1−xm = δ1 and yn+1− yn = δ2. We first note that

we can bound the probability of this sign configuration evaluated at any dyadic point by

the probability at the corner plus higher order terms of δ1 and δ2. To see this, denote the

dyadic points as xj,k and yj,k. We can then write the probability of the A5 sign configuration

occurring at (xj,k, yj,k) with side lengths δ1,j,k and δ2,j,k as

P5 =

(
A5,1(xj,k, yj,k)δ4

1 + A5,2(xj,k, yj,k)δ3
1δ2 + A5,3(xj,k, yj,k)δ2

1δ
2
2

)3/2
192π2B2

5(xj,k, yj,k)δ1δ2
+O(|(δ1, δ2)|5)

=

(
G5,1(xj,k, yj,k)δ4

1 + G5,2(xj,k, yj,k)δ3
1δ2 + G5,3(xj,k, yj,k)δ2

1δ
2
2

)3/2
192π2δ1δ2

+O(|(δ1, δ2)|5),

where have defined G5,i(x, y) =
A5,i(x, y)

B5(x, y)4/3
. Then by the mean value theorem, there is a

constant c such that

G5,1(xj,k, yj,k)− G5,1(x, y) = ∇G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y)) · ((xj,k, yj,k)− (x, y)) ,

and similarly for G5,2 and G5,3. This result immediately implies

G5,1(xj,k, yj,k) = G5,1(x, y) +∇G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y)) · ((xj,k, yj,k)− (x, y)) .

The last term on the right is the sum of the following two expressions

(
∂

∂x
G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y))

)
(xj,k − x)

(
∂

∂y
G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y))

)
(yj,k − y).

Denote M5,1,x = max
∣∣ ∂
∂xG5,1

∣∣ and M5,1,y = max
∣∣∣ ∂∂yG5,1

∣∣∣, where the maximum is taken

over the entire rectangle [x, x + δ1] × [y, y + δ2]. Using the fact that |xj,k − x| ≤ δ1 and
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|yj,k − y| ≤ δ2, we can bound the above expressions by

(
∂

∂x
G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y))

)
(xj,k − x) ≤M5,1,xδ1

(
∂

∂y
G5,1 ((1− c) · (xj,k, yj,k) + c · (x, y))

)
(yj,k − y) ≤M5,1,yδ2.

This furnishes the bound

G5,1(xj,k, yj,k) ≤ G5,1(x, y) +M5,1,xδ1 +M5,1,yδ2.

By similar reasoning, we can conclude

G5,2(xj,k, yj,k) ≤ G5,2(x, y) +M5,2,xδ1 +M5,2,yδ2

G5,3(xj,k, yj,k) ≤ G5,3(x, y) +M5,3,xδ1 +M5,3,yδ2.

When we substitute these expressions into the first expression, we get

(
G5,1(xj,k, yj,k)δ4

1 + G5,2(xj,k, yj,k)δ3
1δ2 + G5,3(xj,k, yj,k)δ2

1δ
2
2

)3/2
192π2δ1δ2

≤ 1
192π2δ1δ2

((
G5,1(x, y) +M5,1,xδ1 +M5,1,yδ2

)
δ4

1 +
(
G5,2(x, y) +M5,2,xδ1 +M5,2,yδ2

)
δ3

1δ2

+
(
G5,3(x, y) +M5,3,xδ1 +M5,3,yδ2

)
δ2

1δ
2
2

)3/2

.

We collect in terms of powers of δ1 and δ2. Keeping only leading order terms we arrive at

(
G5,1(xj,k, yj,k)δ4

1 + G5,2(xj,k, yj,k)δ3
1δ2 + G5,3(xj,k, yj,k)δ2

1δ
2
2

)3/2
192π2δ1δ2

≤
(
G5,1(x, y)δ4

1 + G5,2(x, y)δ3
1δ2 + G5,3(x, y)δ2

1δ
2
2

)3/2
192π2δ1δ2

+O(|(δ1, δ2)|5).
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This shows that

P (xj,k, yj,k) ≤ P (x, y) +O(|(δ1, δ2)|5).

Thus we are able to bound the probability at all the dyadic points by the probability of

the sign configuration on the original box. In order to calculate the probability of the event

Esign, we need to sum the probability at each of the dyadic points. This may be written

∞∑
n=0

2n−1∑
j=0

2n−1∑
k=0

1
192π2

(
A5,1( δ12n )4 + A5,2( δ12n )3( δ22n )1 + A5,3( δ12n )2( δ22n )2

)3/2

B2
5( δ12n )( δ22n )

=
∞∑
n=0

2n−1∑
j=0

2n−1∑
k=0

1
192π2

(
A5,1δ

4
1 + A5,2δ

3
1δ

1
2 + A5,3δ

2
1δ

2
2

)3/2
B2

5δ1δ2
·
(

1
2n

)4

=
4
3

1
192π2

(
A5,1δ

4
1 + A5,2δ

3
1δ

1
2 + A5,3δ

2
1δ

2
2

)3/2
B2

5δ1δ2
,

where we have used the above bound on the probability evaluated at the dyadic points. This

establishes the probability this sign configuration occurs on any of the dyadic subdivisions of

the original box. For I-admissibility, we also need the probability that this sign configuration

occurs on the four shifted boxes as well. By a similar analysis, we can find the same bound

for all shifted squares. This furnishes the constant C = 54
3 = 20

3 . The remaining sign

configurations can be handled in similar ways.

The above result furnishes a bound on the probability that a particular sign configuration

occurs on any of the dyadic subdivisions of a rectangle. The probability that a rectangle is

I-admissible is obtained by summing over all possible excluded sign configurations. Once

we have excluded all problematic sign configurations on the dyadic subdivisions for a box,

we then sum the probability of each box being admissible.

Definition 4.2. Let u(·, ω) : D → R be a Gaussian random field. Let J be a rectangle
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[x1, y1]× [x2, y2] ⊂ D. Then define

Plo(x1, x2, y1, y2)

to be the local probability that the rectangle J is admissible. If J touches the boundary, then

we are referring to B-admissibility, otherwise we are referring to I-admissibility.

The next result establishes the desired result.

Theorem 4.2. Consider the probability space (Ω,F,P), and the domain G = [a, b]× [c, d].

Let u : G × Ω → R denote a random field satisfying the two assumptions A1 and A2.

Additionally, assume u(·, ω) is sufficiently smooth. Denote N±(ω) as the nodal domains of

u. Let ~xM = (a, x1, x2, . . . , xm−1, b)t and ~yM = (c, y1, y2, . . . , ym−1, d)t denote a collection

of x and y sampling points, and denote Q±M (ω) denote the decomposition of G into M2

rectangles. Let z = (x, y), δ1 > 0, δ2 > 0 such that J = [x, x+ δ1]× [y, y+ δ2] ⊂ G. Denote

δ = (δ1, δ2). Assume the following:

i.) Let EB(z, δ) denote the set of ω ∈ Ω such that for which u has one of the sign

configurations for the boundary on any of the dyadic subdivisions of J

ii.) Let EI(z, δ) denote the set of ω ∈ Ω such that for which u has one of the sign config-

urations for the interior on any of the dyadic subdivisions of J .

Assume we can bound P [EB(z, δ)] by a term in the appendix and also we can bound P [EI(z, δ)]

by an appropriate term in the appendix as well.

Then the probability that the homologies N±(ω) and Q±M (ω) agree satisfies

P
{
N±(ω) ∼= Q±M (ω)

}
≥ 1−

M−1∑
j=0

M−1∑
k=0

Plo (xj , yk, xj+1, yk+1) ,

where Plo (xj , yk, xj+1, yk+1) is the sum of the local probabilities for the rectangle [xj , xj+1]×

[yk, yk+1].
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Proof. To begin, fix a discretization of G into M2 rectangles. Then the homologies of N±(ω)

and Q±M (ω) can be different if and only if at least one of the following occur:

• The function u is zero at one of the dyadic points xj,k and yj,k,

• The function u has a double zero,

• One of the rectangles on the boundary is not B admissible,

• One of the rectangles in the interior is not I admissible.

By assumption, the probability that the first two events occur is zero. For the remaining

two, we have already established explicit probabilities that they occur. Thus if we can

exclude these events from occuring on all the appropriate rectangles, we have the correct

homology of Q±M (ω). This furnishes

1− P
{
N±(ω) ∼= Q±M (ω)

}
≤

M−1∑
j=0

M−1∑
k=0

Plo (xj , yk, xj+1, yk+1) ,

which is the desired result.

The above theorem establishes an explicit probability for the correct homology. However,

due to the complex nature of the local probabilities, it is difficult to establish a convergence

rate in this form. The next theorem provides a means of determining the convergence rate.

Theorem 4.3. Let the above theorem hold. Additionally assume G = [a, a+L]×[c, c+L], for

a fixed length L. Then for an equi-partitioned discretization of G, we have the convergence

P
{
H∗(N±(ω)) ∼= H∗(Q±M (ω))

}
≥ 1− 24C1L

3 + 20C2L
4

3M2
,

where C1 = max PB and C2 = max PI and PB is the local probability for B admissibility of

a unit square and PI is the local probability for I admissibility with of a unit square.
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Proof. The main ingredients are to establish explicit probabilities for B and I admissibility

for all squares. If we are able to do this, then the result follows from Theorem 3.8, [53]. To

begin, we start with B admissibility. Assume we have partitioned G into an equi-partition.

Then we only have sub-squares, each with side length δ = L
M . Then the B admissible

probability may be written

P = 2 (P1 + P2 + P3)

= 2

(
1

128π2

A1

B
3/2
2

δ3
1 +

1
128π2

A2

B
3/2
2

δ3
2 +

1
12π2

(A3)3/2

B3
3

δ2
1δ

2
2

)

= 2

(
1

128π2

A1

B
3/2
2

δ3 +
1

128π2

A2

B
3/2
2

δ3 +
1

12π2

(A3)3/2

B3
3

δ4

)

≤ C1δ
3.

We take C1 = maxC1, where the maximum is taken over all G. This implies that for all

squares where B admissibility is required, we have

P [EB] ≤ C1δ
3.

By a similar argument, we can find

P [EI ] ≤ C2δ
4,

for all squares that require I-admissibility. The result follows from Theorem 3.8, [53].

The above theorem establishes a 1/M2 convergence rate. However, in establishing this

result we took the constants C1 and C2 to be the maximum admissible probabilities. While

this does give the correct asymptotic convergence rate, the constants C1 and C2 are often

very large and for a specified random field cannot be decreased. However, this theorem only

holds for equi-spaced points. This suggests to increase the likelihood of making the correct
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homology computations, we cannot sample with equi-distant points. In the next chapter,

we will propose an algorithm to find the optimal location of our discretization points to

maximize the correctness probability.
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Chapter 5: Minimization Algorithm

5.1 Introduction

Due to the complex and implicit nature of the local probabilities, it seems unlikely to find

an explicit formula that can show us where to sample our points. Instead, we now present

an algorithmic approach that seeks to minimize the probability of making an incorrect

homology computation. Instead of maximizing the probability of correctness, we instead

minimize the probability of failure. This method uses a barrier method to transform a

constrained minimization problem into an unconstrained problem. We then use a Newton

type iteration scheme to update the sampling points. To illustrate the ideas, we separate

the one dimensional and two dimensional cases.

5.2 Algorithm in One Dimension

To begin, we present the algorithm in one spatial dimension. This will make the main points

of the algorithm clear. It is based on a barrier method in constrained optimization with a

quasi-Newton method.

We can consider the problem as follows. Suppose we are given the domain D = [a, b] and

for each sub-interval [xk, xk+1] we have the local probability of failure Plo (xk, xk+1). Then

for the decomposition of D into M subintervals with a = x0 < x1 < · · · < xn−1 < xn = b,

the total probability of failure can be written

PT (~x) =
n−1∑
j=0

Plo (xj , xj+1) ,
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where ~x = (x1, x2, . . . , xn−1)t. In particular, we view the total probability of failure as a

function of the interior points of D since for the endpoints it must hold that x0 = a and

xn = b. The goal is to find min PT . The constraints are then

c1(~x) = x1 − a > 0

c2(~x) = x2 − x1 > 0

...

cn−1(~x) = xn−1 − xn−2 > 0

cn(~x) = b− xn−1 > 0,

which we write compactly as ~C (~x) > 0. Using the Barrier method, we transform this

problem to the unconstrained problem

min

n−1∑
j=0

Plo (xj , xj+1)− µ
n∑
k=1

log (ck(~x))


= min [f (~x)− µg (~x)]

= minβµ(~x).

We can now use Newton’s method to iteratively find the minimum. This suggests we use

the scheme

~xk+1 = ~xk −H−1
k (~xk) · ∇βµ (~xk) ,

where ∇βµ is the gradient of βµ with respect to ~x and Hk is an approximation of the Hessian

of βµ with respect to ~x. We can write ∇βµ as ∇βµ = ∇f − µ∇g. We will work with each
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quantity separately. First we have

∇f(~x) =


∂

∂x1
f (~x)
...

∂

∂xn−1
f (~x)

 =


∂

∂x1
(Plo(x0, x1) + Plo(x1, x2))

...
∂

∂xn−1
(Plo(xn−2, xn−1) + Plo(xn−1, xn))

 .

We can break this into two terms (∇f)i = (∇ (Plo(xi−1, xi) + Plo(xi, xi+1)))i. Now we

use a centered finite difference scheme with h sufficiently small. For this one-dimensional

algorithm, we choose h ≈ 10−8. For each term, we have

∂

∂xi
Plo(xi−1, xi) ≈

Plo(xi−1, xi + h)− Plo(xi−1, xi − h)
2h

,

and

∂

∂xi
Plo(xi, xi+1) ≈ Plo(xi + h, xi+1)− Plo(xi − h, xi+1)

2h
.

Note that we must use x0 = a and xn = b in these expressions. For ∇βµ, we also need to

calculate ∇g. This can be written

∇g(~x) =


∂

∂x1
g (~x)
...

∂

∂xn−1
g (~x)

 =


∂

∂x1
(log (x1 − a) + log (x2 − x1))

...
∂

∂xn−1
(log (xn−1 − xn−2) + log (b− xn−1))



=


1

x1 − a
− 1
x2 − x1

...
1

xn−1 − xn−2
− 1
xn − xn−1

 .
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We can now combine these to write ∇βµ.

The next item we need to calculate is Hk, the Hessian approximation of βµ. We will not

compute the Hessian at each step. We will use a Quasi-Newton update scheme instead. We

choose a Broyden update method. For a fixed µ value, the process is as follows. Beginning

with an initial approximation to the Hessian H, for our case we choose H = I, the identity

matrix, we will update H as Hk on each iteration of the Newton scheme.

For the k-th iterate of ~xk, solve the linear system

Hk~pk = −∇βµ(~xk)

for the direction of descent ~pk. Once we have ~pk, we perform a simple line search and find

αk such that βµ(~xk + αk~pk) is minimized and set

~xk+1 = ~xk + αk~pk.

In particular, by finding αk, we find the minimum of f in the direction of ~pk starting at ~xk.

Next, we set ~sk = αk~pk and ~yk = ∇βµ(~xk+1) − ∇βµ(~xk). Lastly, we update the Hessian

approximation as

Hk+1 = Hk +
~yk~y

t
k

~ytk~sk
− (Hk~sk)(Hk ~sk)t

~stkHk~sk
.

We perform this on each iteration in the Newton scheme. The primary reason for the above

updating scheme is that it retains the positive definiteness of the Hessian approximation.

The above scheme was for a fixed µ value. The next part is to steadily decrease µ as this

will allow the points to approach the boundary if needed. It should be noted that in our

case, the minimized solution cannot lie on the boundary since we must have xi < xi+1 with

strict inequality.

116



5.3 Two Dimensional Algorithm

In this section, we extend the numerical method to minimize the total probability of failure

to two dimensions. While many of the ideas are the same, there are a few differences that

must be addressed.

To begin, suppose we are working with the fixed domain D = [a, b]× [c, d] and decompose D

into M2 sub-rectangles. In particular, we have a = x0 < x1 < · · · < xn−1 < xn = b and c =

y0 < y1 < · · · < yn−1 < yn = d. Denote ~x = (x1, x2, · · · , xn−1)t and ~y = (y1, y2, · · · , yn−1)t.

We can then write the total probability of failure as

PT (~x, ~y) =
n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1),

where Plo(xj , xj+1, yk, yk+1) is the local probability of failure for the rectangle with bottom

left point (xj , yk) and side lengths δ1,j = xj+1 − xj and δ2,k = yk+1 − yk.

The minimization problem can then be stated as

min PT (~x, ~y),
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subject to the constraints

c1(~x) = x1 − a > 0

c2(~x) = x2 − x1 > 0

...

cn−1(~x) = xn−1 − xn−2 > 0

cn(~x) = b− xn−1 > 0

d1(~y) = y1 − c > 0

d2(~y) = y2 − y1 > 0

...

dn−1(~y) = yn−1 − yn−2 > 0

dn(~y) = d− yn−1 > 0.

Denote ~z =

 ~x

~y

 and G(~z) =

 ~c(~x)

~d(~y)

 > 0, component wise. Using the Barrier Method

again, we can transform the unconstrained problem into the unconstrained problem via

min

n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1)− µ

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
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where µ is the barrier parameter that will steadily be decreased. Compactly, this will be

written min (f(~z)− µg(~z)) = minβµ(~z), where βµ : Rn−1 ×Rn−1 → R.

We now provide details for the minimization scheme which is again accomplished using a

Quasi-Newton method. To begin, fix the parameter µ. Initially specify an initial guess ~z0

and an approximation for the Hessian matrix H0, usually taken to be the identity matrix.

The iterate over all i and do the following for each i solve Hi~pi = −∇~x,~yβµ (~zi). Then

perform a line search to determine αi such that βµ(~zi + αi~pi) is a local minimum. Update

~zi+1 = ~zi +αi~pi. Next compute si = ~zi+1− ~zi and wi = ∇~x,~yβµ (~zi+1)−∇~x,~yβµ (~zi). Lastly,

update Bi+1 as

Hi+1 = Hi −
(Hisi)(Hisi)t

stiHisi
+
wis

t
i

wtisi
.

There are two items to address. The first is the Hessian approximation Hi. It should be

noted that as the iterations continue Hi becomes a better approximation for the Hessian. By

construction, Hi retains the crucial aspect of being positive definite since we are performing

a search for a minimum.

The second issue to address is the gradient ∇~x,~yβµ(~z). Since we have two separate notions

of admissibility, namely B and I-admissibility. Hence, we have different notions of local

probability, which we must take into consideration in this construction. It should be clear

that

∇~x,~y (βµ(~z)) = ∇~x,~y (PT (~z)− µg(~z))

= ∇~x,~y (PT (~z))− µ∇~x,~y (g(~z)) ,
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so we can split the gradient into two terms which we will handle separately. The first term

is

∇~x,~yPT (~z) =



∂

∂x1
PT (~z)
...

∂

∂xn−1
PT (~z)

∂

∂y1
PT (~z)

...
∂

∂yn−1
PT (~z)


,

which is the same as

∇~x,~yPT (~z) =



∂

∂x1

n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1)


...

∂

∂xn−1

n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1)


∂

∂y1

n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1)


...

∂

∂yn−1

n−1∑
j=0

n−1∑
k=0

Plo(xj , xj+1, yk, yk+1)





.
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We can now do a few simplifications. Since each local probability depends on at most two

points, we can simplify this to

∇~x,~yPT (~z) =



∂

∂x1

(
n−1∑
k=0

Plo(x0, x1, yk, yk+1) + Plo(x1, x2, yk, yk+1)

)
...

∂

∂xn−1

(
n−1∑
k=0

Plo(xn−2, xn−1, yk, yk+1) + Plo(xn−1, xn, yk, yk+1)

)
∂

∂y1

n−1∑
j=0

Plo(xj , xj+1, y0, y1) + Plo(xj , xj+1, y1, y2)


...

∂

∂yn−1

n−1∑
j=0

Plo(xj , xj+1, yn−2, yn−1) + Plo(xj , xj+1, yn−1, yn)





.

The crucial difference here now comes from the boundary terms. Recall x0 = a, xn = b, y0 =

c, and yn = d. So these points are fixed and cannot move. Also, in each of the above partial

derivatives, we must deal with local probability for the boundary.

Lastly, due to the complex nature of the terms involved, we perform a centered finite

difference approximation for each partial derivative. It is this step that requires a careful

analysis. For simplicity, we will only calculate
∂

∂xi
for all i = 1, . . . , n − 1, as the same

analysis can be performed on the yi’s. To begin, assume i = 2, . . . , n − 2. We will handle

the cases i = 1 and i = n− 1 separately. We may explicitly write a term in the gradient as

∂

∂xi
PT =

∂

∂xi

(
n−1∑
k=0

Plo(xi−1, xi, yk, yk+1) +
n−1∑
k=0

Plo(xi, xi+1, yk, yk+1)

)

=
∂

∂xi

(
PBlo(xi−1, xi, y0, y1) +

n−2∑
k=1

PIlo(xi−1, xi, yk, yk+1) + PBlo(xi−1, xi, yn−1, yn)

+ PBlo(xi, xi+1, y0, y1) +
n−2∑
k=1

Plo(xi, xi+1, yk, yk+1) + PBlo(xi, xi+1, yn−1, yn)
)
,
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where we have separated terms that touch the boundary out as PBlo from the terms that are

contained in the interior PIlo. On each of these terms we can do a standard centered finite

difference scheme as

∂

∂xi
PB/Ilo (xi−1, xi, yk, yk+1) ≈

PB/Ilo (xi−1, xi + h, yk, yk+1)− PB/Ilo (xi−1, xi − h, yk, yk+1)
2h

,

and

∂

∂xi
PB/Ilo (xi, xi+1, yk, yk+1) ≈

PB/Ilo (xi + h, xi+1, yk, yk+1)− PB/Ilo (xi + h, xi+1 − h, yk, yk+1)
2h

,

for h sufficiently small. We chose to use values of h ranging from h = 10−6 to h = 10−8.

For values smaller than h = 10−8, roundoff errors begin to cause the points to violate the

constraints ci and di.

Note that for the cases i = 1 and i = n − 1, the situation will be similar. However, we

should note that one side will consist entirely of boundary terms.

The next item we must compute is the gradient of the log-constraints. In particular, we

must calculate
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∇~x,~yg(~z) =



∂

∂x1
g(~z)

∂

∂x2
g(~z)
...

∂

∂xn−1
g(~z)

∂

∂y1
g(~z)

∂

∂y2
g(~z)

...
∂

∂yn−1
g(~z)



=



∂

∂x1

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
∂

∂x2

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
...

∂

∂xn−1

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
∂

∂y1

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
∂

∂y2

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)
...

∂

∂yn−1

(
n∑
l=1

log cl(~x) +
n∑

m=1

log dm(~y)

)



.

However, this is straightforward since cl depends only on the xi values and dm only depends

on the yi values. In this case, no finite difference approximations are needed and we can

calculate the gradient explicitly as

∇~x,~yg(~z) =



1
x1 − a

− 1
x2 − x1

1
x2 − x1

− 1
x3 − x2

...
1

xn−1 − xn−2
− 1
b− xn−1

1
y1 − c

− 1
y2 − y1

1
y2 − y1

− 1
y3 − y2

...
1

yn−1 − yn−2
− 1
d− yn−1



.
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Chapter 6: Computational Results

6.1 Introduction

In this chapter, we discuss computational results of our methods. We will discuss results

of three particular random fields. First, we will work with random Chebyshev series of the

form

f1(x, y, ω) =
N∑
j=0

N∑
k=0

aj,kgj,k(ω) cos (j arccosx) cos (k arccos y),

where aj,k are coefficients to be specified and gj,k(ω) are independent Gaussian random

variables with mean zero and variance one. The domain for f1 will be [−1, 1]× [−1, 1]. We

will also be discussing random Cosine series of the form

f2(x, y, ω) =
N∑
j=0

N∑
k=0

aj,kgj,k(ω) cos jπx cos kπy,

with aj,k specified coefficients, gj,k(ω) independent Gaussian random variables with mean

zero and variance one, and domain [0, 1]× [0, 1].

6.2 Random Chebyshev Series

We begin our discussion of the computational results with the random Chebyshev Series of

the form

f1(x, y, ω) =
N∑
j=0

N∑
k=0

aj,kgj,k(ω) cos (j arccosx) cos (k arccos y),
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Figure 6.1: Correctness Probability of Random Chebyshev Series for Different Orders.

where aj,k are coefficients to be specified, gj,k(ω) are independent Gaussian random vari-

ables with mean zero and variance one, with domain D = [−1, 1] × [−1, 1]. For simplicity,

we will assume the coefficients aj,k will be 1 for all j, k.

The simulations we performed were for orders N = 3, . . . , 10. For each order, we performed

500 simulations. For each simulation, we used the new validation routine to compute the

homology of N+. Next we performed homology calculations for a variety of M values. For

each M value, we computed the homology using equi-spaced points and also the points from

our minimization routine.

The images in Figure 6.1 shows the results of these simulations. Each curve shows the

probability of the correct homology as a function of the discretization size M for increasing

orders N . The red curves are for equi-spaced points and the blue curves are the non-uniform

sampling. Notice for small orders N , the uniform sampling gives a better probability but the

minimization routine quickly becomes much better. For a specified probability threshold,

we are interested in the asymptotic behavior of the discretization size M . We fit a curve of

the form M = CNN
αp for different probability thresholds. Figure 6.2 shows the exponents

αp for p = .7, . . . , .95. The uniform discretization is shown in red and the optimal sampling

is shown in blue. Notice that the non-uniform sampling decreases the exponent by .5. Also

in Figure 6.2, we show the curves M = CNN
αp for the threshold probabilities p = .9 and

p = .95. The red curves is the uniform sampling, the blue curves are the optimal sampling,
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Figure 6.2: Exponent for Probability Threshold for Chebyshev Polynomials

the solid lines are for p = .9, and the dashed lines are for the probability threshold p = .95.

The minimization routine for these series moves points closer to the boundary. This

results from the Chebyshev basis functions having more sign changes closer to the boundary.

Notice that the validation refines closer to the boundary, while the interior has relatively

large squares that were validated. We give two realizations for dimensions 3, 5, 9, and 14.

In order to understand why the sampling needs to closer to the boundary, we will examine

what happens in one dimension. In one dimension, the random field is

u(x, ω) =
N∑
j=1

gj(ω) cos (j (arccos (x))),

where gj(ω) is an independent Gaussian random variable with mean zero and variance one

defined over the domain D = [−1, 1]. The density of zeros for this random field is shown

in Figure 6.3 along with the function C0(x) in one dimension. Notice that the density of

zeros is much higher close to the boundary than the interior. This suggests that in one

dimension we need to sample more points closer to the boundary. While there is not an

analog to density of zeros in two dimensions, it does suggest that the nodal lines will be

closer to the boundary. This suggests that we must again sample closer to the boundary in
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Figure 6.3: Density of zeros function (top) and the function C0(x) (bottom).
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Figure 6.4: Betti Numbers for Chebyshev Series

two dimensions.

Lastly, we show figures for the Betti numbers as a function of the dimension. These are

shown in Figure 6.4. The first image is the average zero’th Betti number and the second

image is the average first Betti number.
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Figure 6.5: Correctness Probability of Random Cosine Series for Different Dimensions.

6.3 Random Cosine Series

In this section, we give results pertaining to the cosine random field of the form

f2(x, y, ω) =
N∑
j=0

N∑
k=0

aj,kgj,k(ω) cos jπx cos kπy,

where aj,k are coefficients and gj,k(ω) are independent Gaussian random variables with mean

zero and variance one. The domain for this random field will be [0, 1]× [0, 1]. For simplicity,

we will assume aj,k = 1 for all 1 ≤ j, k ≤ N . This process is similar to that of the random

Chebyshev series. We do 500 simulations for N = 3, . . . , 10. For each simulation, we use the

validation routine to correctly identify the homology of the positive nodal domain. Then we

partition the domain into M2 rectangles and compute the homology of each discretization.

We use equi-partitioned squares and the points obtained from the minimization algorithm.

The images in Figure 6.5 shows the results of these simulations. Each curve shows the

probability of the correct homology as a function of the discretization size M for increasing

dimensions N . The red curves are for equi-spaced points and the blue curves are the non-

uniform sampling. Notice that the uniform sampling appears to give better probabilities.

However, this is only true for small dimensions N . As N increases, the minimization routine
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Figure 6.6: Exponent for Probability Threshold for Cosine Series

begins to give better results. To understand this point better, we investigate the best fit

curve for specified probabilities. Figure 6.6 shows the exponents αp for p = .7, . . . , .95. The

uniform discretization is shown in red and the optimal sampling is shown in blue. Notice

that the non-uniform sampling decreases the exponent by .1. Also in Figure 6.6, we show

the curves M = CNN
αp for the threshold probabilities p = .9 and p = .95. The red curves

are the uniform sampling, the blue curves are the optimal sampling, the solid lines are for

p = .9, and the dashed lines are for the probability threshold p = .95.

The exponent for the uniform sampling is higher than the non-uniform counterpart. This

shows that for higher dimensions, the minimization routine gives one of two points depend-

ing on the viewpoint. We can interpret this as giving a smaller discretization value M for a

specified probability tolerance, or we can interpret this as giving a higher probability for a

fixed discretization size. Another interesting fact can be observed from Figures 6.6 and 6.2.

The decrease in the exponent for the cosine series is much smaller than the decrease for the

Chebyshev series.

This difference can be explained by again examining the density of zeros for the random

Cosine fields. In one dimension, the random field is

u(x, ω) =
N∑
j=1

gj(ω) cos (2πjx)
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Figure 6.7: Density of zeros function (top) and the function C0(x) (bottom).
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Figure 6.8: Betti Numbers for Cosine Series

where gj(ω) is an independent Gaussian random variable with mean zero and variance one

defined over the domain D = [0, 1]. The density of zeros for this random field is shown in

Figure 6.7 along with the function C0(x) in one dimension. Notice that the density of zeros

is fairly constant in the interior. This shows that a uniform sampling process can almost

capture the topology. We should expect the same type of behavior in two dimensions.

Lastly, we show the asymptotic behavior of the expected Betti numbers for the random

cosine series. These are shown in Figure 6.8.
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Chapter 7: Conclusion

7.1 Conclusion

In this final chapter, we recap the major contributions of this dissertation. Our main goal is

to compute the homology of nodal domains N± for a function f : D → R, for an appropri-

ate function f and domain D. The homology groups are denoted H∗(N±). However, from

a computational point of view, we must instead work with cubical approximations to the

nodal domains, denoted Q±M , for a discretization size M . This discretization can of course

lead to incorrect homology computations.

One approach to computing the homology of the nodal domains is to use validated homol-

ogy. This algorithm was first presented in [30]. First an initial decomposition of the domain

is made. The authors explicitly laid out verification steps that are performed on each box in

the domain. These verification steps use interval arithmetic to obtain appropriate bounds

on the function and its derivatives. If the verification step is passed, the box is then added

to either Q+
M or Q−M as indicated by the verification step.

The authors proved that the if the algorithm terminates successfully, the homology com-

putation on the grid produced will be correct. However, there are a few shortcomings to

this original algorithm. The primary shortcoming came from the use of interval arithmetic

and outward rounding. Interval arithmetic was used to obtain bounds on the function and

its derivatives. However, these bounds are often overextended far beyond the true range of

the function. This results in frequent failure of the verification steps and as a result, more

subdivisions are required.

In this dissertation, we proposed a new method to test for interval bounds. Since we only

need a lower bound or upper bound as required from the verification step, we found a

method to push the lower bounds upward. This is done by subdividing the current box and
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putting the boxes into a list order by the smallest lower bound. We then drove this smallest

lower bound upward until we reached a specified tolerance or the lower bound was strictly

positive. This process results in a grid that is usually as coarse as possible.

The other main problem with the original algorithm was the subdivision lines can line up

with the nodal lines. This phenomena thus results in the verification steps failing close to

the nodal lines. As a result, many subdivisions must be performed to resolve the topology.

We have proposed a modification to the original algorithm by randomly subdividing. We

fix two ratios, in our case we chose the Golden Ratio, and if the verification step fails, we

then randomly choose amongst these two ratios and subdivide the box into two boxes by

the ratio chosen. This procedure seems to eliminate any grid alignment issues.

The next major contribution of this dissertation is an extension of probabilistic bounds for

homology computations of random fields. In [53] and [54], the authors present a probabilis-

tic formula for the correctness of random field homology computations. The authors showed

bounds for homogenous random fields in [53] in one and two spatial dimensions. In [54],

the authors gave bounds for non-homogenous random fields. In this work, the authors also

state the optimal location of the sampled points.

In this dissertation, we have extended the results of these two previous works to include

non-homogenous random fields in two spatial dimensions. These bounds first find the local

probability of certain sign configurations occurring. We then found bounds that these sign

configurations occur on any of the dyadic subdivisions of the box in question. The total

probability of failure is then the sum of these local failure probabilities.

This total probability gives little indication as to the optimal location of the points to be

sampled. We then proposed an algorithm to determine the best sampling for random fields.

This is a quasi-Newton method that transforms the constrained optimization problem into

an unconstrained optimization problem.
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7.2 Further Directions

This line of research has many interesting directions one can take.

Since we have probability bounds for both homogenous and non-homogenous random fields

in one and two spatial dimensions, the first direction would be to extend these to higher

dimensions. This will require establishing the notion of admissibility in higher dimensions

and then finding the local probability that each forbidden sign configuration occurs.

Another possible direction to take this line of research is a three dimensional validation

routine. The first step in this direction is to determine new verification steps based on what

happens on the vertices.
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Appendix A : Local Probabilities

In this first section, we present tables showing the probabilities that each sign configuration

occurs. For each figure and table, we assume the random field is u : D × Ω → R and u is

a Gaussian random field with mean zero. In addition, we assume that each box is sampled

at the point (x, y) and the edge length along the x-axis is δ1 and the edge length along the

y-axis is δ2.

134



det C1 = A1δ
6
1

λ1 =
A2

B2
δ4

1

ν1 = (

√
1
6
,−
√

2
3
,

√
1
6

)

P1 =
1

128π2

A1

B
3/2
1

δ3
1

det C2 = A2δ
6
2

λ1 =
A2

B2
δ4

2

ν2 = (

√
1
6
,−
√

2
3
,

√
1
6

)

P2 =
1

128π2

A2

B
3/2
2

δ3
2

det C3 = A3δ
4
1δ

4
2

λ1 = −1
4

A3

B3
δ2

1δ
2
2

ν3 = (−1
2
,
1
2
,−1

2
,
1
2

)

P3 =
1

12π2

(A3)3/2

B2
3

δ2
1δ

2
2

135



det C4 =
1

256
A3δ

4
1δ

4
2

λ1 = − 1
64

A3

B3
δ2

1δ
2
2

ν4 = (−1
2
,
1
2
,−1

2
,
1
2

)

P4 =
1

192π2

(A3)3/2

B3
3

δ2
1δ

2
2

det C5 =
1

256
(A4,1δ

6
1δ

2
2 + A4,2δ

5
1δ

3
2 + A4,3δ

4
1δ

4
2)

λ1 = − 1
64

(A4,1δ
4
1 + A4,2δ

3
1δ

1
2 + A4,3δ

2
1δ

2
2)

B4

ν5 =
(
−1

2
,
1
2
,−1

2
,
1
2

)

P5 =
1

192π2

(
A4,1δ

4
1 + A4,2δ

3
1δ

1
2 + A4,3δ

2
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2
2

)3/2
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4δ1δ2

det C6 =
1
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5
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4
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4
2)
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det C7 =
1
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2
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3
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2
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2
2

)3/2
B2

3δ1δ2

det C8 =
(

1
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2
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6
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1
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1
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4
1δ

4
2

)

λ1 = − 1
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1
1δ
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2
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2
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,
1
2
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A5,1δ

4
2 + 2A5,2δ

1
1δ

3
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2
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2
2
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B2
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det C9 =
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1
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1
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1
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4
2

)
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2
2
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−1
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1
2
,−1

2
,
1
2
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1
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2
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2
2
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B2

3δ1δ2
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det C11 =
(

1
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A5,1δ
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1δ
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1
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1
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4
1δ

4
2

)
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2
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1
2
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2
2
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det C12 =
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1
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det C10 =
1
64

A10

λ1 =
−B10 −

√
B2

10 − 4A10C10

2C10

ν10 = 1
2
√

5
(1, 1,−4, 1, 1)

P10 =
1
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√

5π2

√
λ5

10

A10
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Appendix B : Coefficients

A1 = r00r1122r12 − r00r112r122 − r1r1122r2 + r11r122r2 + r1r112r22 − r11r12r22

A2 = r00r3344r34 − r00r334r344 − r3r3344r4 + r33r344r4 + r3r334r44 − r33r34r44

A3 = −r13r14r2r234 + r13r14r23r24 − r124r134r2r3 + r1234r14r2r3 + r12r134r24r3

− r123r14r24r3 + r124r13r2r34 − r12r13r24r34 + r00(r124r134r23 − r1234r14r23

− r12r134r234 + r123r14r234 + r12r1234r34 − r123r124r34) − r124r13r23r4

+ r12r13r234r4 − r12r1234r3r4 + r123r124r3r4 + r1(r134r2r234 − r134r23r24

− r1234r2r34 + r123r24r34 + r1234r23r4 − r123r234r4).

A4,1 = (r11r14r22r23 − r11r14r2r232 − r114r122r2r3 + r1122r14r2r3 + r114r12r22r3

− r112r14r22r3 + r11r122r2r34 − r11r12r22r34 + r00(r114r122r23 − r1122r14r23

− r114r12r232 + r112r14r232 + r1122r12r34 − r112r122r34) − r11r122r23r4

+ r11r12r232r4 − r1122r12r3r4 + r112r122r3r4 + r1(−r114r22r23 + r114r2r232,

− r1122r2r34 + r112r22r34 + r1122r23r4 − r112r232r4))
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A4,2 = (r13r14r22r23 − r13r14r2r232 − r11r14r2r234 + r11r14r23r24 − r114r124r2r3

− r122r134r2r3 + r1124r14r2r3 + r1223r14r2r3 + r12r134r22r3 − r123r14r22r3

+ r114r12r24r3 − r112r14r24r3 + r11r124r2r34 + r122r13r2r34 − r12r13r22r34

− r11r12r24r34 + r00(r114r124r23 + r122r134r23 − r1124r14r23 − r1223r14r23

− r12r134r232 + r123r14r232 − r114r12r234 + r112r14r234 + r1124r12r34

+ r12r1223r34 − r122r123r34 − r112r124r34) − r11r124r23r4 − r122r13r23r4

+ r12r13r232r4 + r11r12r234r4 − r1124r12r3r4 − r12r1223r3r4 + r122r123r3r4

+ r112r124r3r4 + r1(−r134r22r23 + r134r2r232 + r114r2r234 − r114r23r24

− r1124r2r34 − r1223r2r34 + r123r22r34 + r112r24r34 + r1124r23r4

+ r1223r23r4 − r123r232r4 − r112r234r4)),

A4,3 = (−r13r14r2r234 + r13r14r23r24 − r124r134r2r3 + r1234r14r2r3 + r12r134r24r3

− r123r14r24r3 + r124r13r2r34 − r12r13r24r34 + r00(r124r134r23 − r1234r14r23

− r12r134r234 + r123r14r234 + r12r1234r34 − r123r124r34) − r124r13r23r4

+ r12r13r234r4 − r12r1234r3r4 + r123r124r3r4 + r1(r134r2r234 − r134r23r24

− r1234r2r34 + r123r24r34 + r1234r23r4 − r123r234r4))
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A5,1 = (r14r2r3r3344 − r1r2r3344r34 − r14r2r33r344 + r1r2r334r344 + r00(r144r23r334

− r14r23r3344 − r144r233r34 + r12r3344r34 + r14r233r344 − r12r334r344)

+ r1r23r3344r4 − r12r3r3344r4 − r1r233r344r4 + r12r33r344r4 + r144(−r2r3r334

+ r2r33r34 + r233r3r4 − r23r33r4) − r14r233r3r44 + r14r23r33r44

− r1r23r334r44 + r12r3r334r44 + r1r233r34r44 − r12r33r34r44),

A5,2 = (−r14r1443r2r3 − r14r2r2334r3 + r14r233r24r3 + r14r2r234r33 − r14r23r24r33

− r1r2r234r334 + r1r23r24r334 + r124r2r3r334 − r12r24r3r334 − r13r144r2r34

+ r1r1443r2r34 + r1r2r2334r34 − r1r233r24r34 − r124r2r33r34 + r12r24r33r34

+ r13r14r2r344 + r00(−r134r144r23 + r14r1443r23 + r14r23r2334 − r14r233r234

− r124r23r334 + r12r234r334 + r123r144r34 − r12r1443r34 + r124r233r34

− r12r2334r34 + r12r134r344 − r123r14r344) + r13r144r23r4 − r1r1443r23r4

− r1r23r2334r4 + r1r233r234r4 − r123r144r3r4 + r12r1443r3r4 − r124r233r3r4

+ r12r2334r3r4 + r124r23r33r4 − r12r234r33r4 + r1r123r344r4 − r12r13r344r4

− r13r14r23r44 + r123r14r3r44 − r1r123r34r44 + r12r13r34r44 + r134(r144r2r3

− r1r2r344 + r1r23r44 − r12r3r44)),
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A5,3 = (−r13r14r2r234 + r13r14r23r24 − r124r134r2r3 + r1234r14r2r3 + r12r134r24r3

− r123r14r24r3 + r124r13r2r34 − r12r13r24r34 + r00(r124r134r23 − r1234r14r23

− r12r134r234 + r123r14r234 + r12r1234r34 − r123r124r34) − r124r13r23r4

+ r12r13r234r4 − r12r1234r3r4 + r123r124r3r4 + r1(r134r2r234 − r134r23r24

− r1234r2r34 + r123r24r34 + r1234r23r4 − r123r234r4))

B1 = r00r12 − r1r2

B2 = r00r34 − r3r4

B3 = r00r14r23 − r14r2r3 − r00r12r34 + r1r2r34 − r1r23r4 + r12r3r4
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A10,1 = r00r114r122r1234r23 − r00r114r1223r124r23 − r00r1124r122r134r23 + r00r1122r124r134r23

+ r00r1124r1223r14r23 − r00r1122r1234r14r23 − r1r114r1234r22r23 + r114r124r13r22r23

+ r1r1124r134r22r23 − r11r124r134r22r23 + r11r1234r14r22r23 − r1124r13r14r22r23

− r00r114r12r1234r232 + r00r114r123r124r232 + r00r1124r12r134r232 − r00r112r124r134r232

− r00r1124r123r14r232 + r00r112r1234r14r232 + r1r114r1234r2r232 − r114r124r13r2r232

− r1r1124r134r2r232 + r11r124r134r2r232 − r11r1234r14r2r232 + r1124r13r14r2r232

+ r00r114r12r1223r234 − r00r114r122r123r234 − r00r1122r12r134r234 + r00r112r122r134r234

− r00r112r1223r14r234 + r00r1122r123r14r234 − r1r114r1223r2r234 + r114r122r13r2r234

+ r1r1122r134r2r234 − r11r122r134r2r234 + r11r1223r14r2r234 − r1122r13r14r2r234

+ r1r114r123r22r234 − r114r12r13r22r234 − r1r112r134r22r234 + r11r12r134r22r234

− r11r123r14r22r234 + r112r13r14r22r234 + r1r114r1223r23r24 − r114r122r13r23r24

− r1r1122r134r23r24 + r11r122r134r23r24 − r11r1223r14r23r24 + r1122r13r14r23r24

− r1r114r123r232r24 + r114r12r13r232r24 + r1r112r134r232r24 − r11r12r134r232r24

+ r11r123r14r232r24 − r112r13r14r232r24 − r114r122r1234r2r3 + r114r1223r124r2r3

+ r1124r122r134r2r3 − r1122r124r134r2r3 − r1124r1223r14r2r3 + r1122r1234r14r2r3

+ r114r12r1234r22r3 − r114r123r124r22r3 − r1124r12r134r22r3 + r112r124r134r22r3
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+ r1124r123r14r22r3 − r112r1234r14r22r3 − r114r12r1223r24r3 + r114r122r123r24r3

+ r1122r12r134r24r3 − r112r122r134r24r3 + r112r1223r14r24r3 − r1122r123r14r24r3

− r00r1124r12r1223r34 + r00r1124r122r123r34 + r00r1122r12r1234r34 − r00r112r122r1234r34

+ r00r112r1223r124r34 − r00r1122r123r124r34 + r1r1124r1223r2r34 − r1r1122r1234r2r34

+ r11r122r1234r2r34 − r11r1223r124r2r34 − r1124r122r13r2r34 + r1122r124r13r2r34

− r1r1124r123r22r34 + r1r112r1234r22r34 − r11r12r1234r22r34 + r11r123r124r22r34

+ r1124r12r13r22r34 − r112r124r13r22r34 − r1r112r1223r24r34 + r11r12r1223r24r34

+ r1r1122r123r24r34 − r11r122r123r24r34 − r1122r12r13r24r34 + r112r122r13r24r34

− r1r1124r1223r23r4 + r1r1122r1234r23r4 − r11r122r1234r23r4 + r11r1223r124r23r4

+ r1124r122r13r23r4 − r1122r124r13r23r4 + r1r1124r123r232r4 − r1r112r1234r232r4

+ r11r12r1234r232r4 − r11r123r124r232r4 − r1124r12r13r232r4 + r112r124r13r232r4

+ r1r112r1223r234r4 − r11r12r1223r234r4 − r1r1122r123r234r4 + r11r122r123r234r4

+ r1122r12r13r234r4 − r112r122r13r234r4 + r1124r12r1223r3r4 − r1124r122r123r3r4

− r1122r12r1234r3r4 + r112r122r1234r3r4 − r112r1223r124r3r4 + r1122r123r124r3r4

145



A10,2 = r00r1144r124r134r23 − r00r1144r1234r14r23 + r00r114r1234r144r23 − r00r1124r134r144r23

− r00r114r124r1443r23 + r00r1124r14r1443r23 + r00r124r134r2233r23 − r00r1234r14r2233r23

− r00r124r134r232r233 + r00r1234r14r232r233 − r00r122r134r23r2334 + r00r1223r14r23r2334

+ r1r134r22r23r2334 − r13r14r22r23r2334 + r00r12r134r232r2334 − r00r123r14r232r2334

− r1r134r2r232r2334 + r13r14r2r232r2334 − r00r1144r12r134r234 + r00r1144r123r14r234

− r00r114r123r144r234 + r00r112r134r144r234 + r00r114r12r1443r234 − r00r112r14r1443r234

+ r1r1144r134r2r234 − r1144r13r14r2r234 + r114r13r144r2r234 − r11r134r144r2r234

− r1r114r1443r2r234 + r11r14r1443r2r234 − r00r12r134r2233r234 + r00r123r14r2233r234

+ r1r134r2r2233r234 − r13r14r2r2233r234 + r00r122r134r233r234 − r00r1223r14r233r234

− r1r134r22r233r234 + r13r14r22r233r234 − r1r1144r134r23r24 + r1144r13r14r23r24

− r114r13r144r23r24 + r11r134r144r23r24 + r1r114r1443r23r24 − r11r14r1443r23r24

− r1r134r2233r23r24 + r13r14r2233r23r24 + r1r134r232r233r24 − r13r14r232r233r24

− r1144r124r134r2r3 + r1144r1234r14r2r3 − r114r1234r144r2r3 + r1124r134r144r2r3

+ r114r124r1443r2r3 − r1124r14r1443r2r3 − r124r134r2r2233r3 + r1234r14r2r2233r3

+ r124r134r22r233r3 − r1234r14r22r233r3 + r122r134r2r2334r3 − r1223r14r2r2334r3
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− r12r134r22r2334r3 + r123r14r22r2334r3 + r1144r12r134r24r3 − r1144r123r14r24r3

+ r114r123r144r24r3 − r112r134r144r24r3 − r114r12r1443r24r3 + r112r14r1443r24r3

+ r12r134r2233r24r3 − r123r14r2233r24r3 − r122r134r233r24r3 + r1223r14r233r24r3

− r124r134r22r23r33 + r1234r14r22r23r33 + r124r134r2r232r33 − r1234r14r2r232r33

− r122r134r2r234r33 + r1223r14r2r234r33 + r12r134r22r234r33 − r123r14r22r234r33

+ r122r134r23r24r33 − r1223r14r23r24r33 − r12r134r232r24r33 + r123r14r232r24r33

+ r00r122r1234r23r334 − r00r1223r124r23r334 − r1r1234r22r23r334 + r124r13r22r23r334

− r00r12r1234r232r334 + r00r123r124r232r334 + r1r1234r2r232r334 − r124r13r2r232r334

+ r00r12r1223r234r334 − r00r122r123r234r334 − r1r1223r2r234r334 + r122r13r2r234r334

+ r1r123r22r234r334 − r12r13r22r234r334 + r1r1223r23r24r334 − r122r13r23r24r334

− r1r123r232r24r334 + r12r13r232r24r334 − r122r1234r2r3r334 + r1223r124r2r3r334

+ r12r1234r22r3r334 − r123r124r22r3r334 − r12r1223r24r3r334 + r122r123r24r3r334

+ r00r1144r12r1234r34 − r00r1144r123r124r34 + r00r1124r123r144r34 − r00r112r1234r144r34

− r00r1124r12r1443r34 + r00r112r124r1443r34 − r1r1144r1234r2r34 + r1144r124r13r2r34

+ r11r1234r144r2r34 − r1124r13r144r2r34 + r1r1124r1443r2r34 − r11r124r1443r2r34

+ r00r12r1234r2233r34 − r00r123r124r2233r34 − r1r1234r2r2233r34 + r124r13r2r2233r34

− r00r122r1234r233r34 + r00r1223r124r233r34 + r1r1234r22r233r34 − r124r13r22r233r34
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− r00r12r1223r2334r34 + r00r122r123r2334r34 + r1r1223r2r2334r34 − r122r13r2r2334r34

− r1r123r22r2334r34 + r12r13r22r2334r34 + r1r1144r123r24r34 − r1144r12r13r24r34

− r11r123r144r24r34 + r112r13r144r24r34 − r1r112r1443r24r34 + r11r12r1443r24r34

+ r1r123r2233r24r34 − r12r13r2233r24r34 − r1r1223r233r24r34 + r122r13r233r24r34

+ r122r1234r2r33r34 − r1223r124r2r33r34 − r12r1234r22r33r34 + r123r124r22r33r34

+ r12r1223r24r33r34 − r122r123r24r33r34 − r00r114r12r1234r344 + r00r114r123r124r344

+ r00r1124r12r134r344 − r00r112r124r134r344 − r00r1124r123r14r344 + r00r112r1234r14r344

+ r1r114r1234r2r344 − r114r124r13r2r344 − r1r1124r134r2r344 + r11r124r134r2r344

− r11r1234r14r2r344 + r1124r13r14r2r344 − r1r114r123r24r344 + r114r12r13r24r344

+ r1r112r134r24r344 − r11r12r134r24r344 + r11r123r14r24r344 − r112r13r14r24r344

+ r1r1144r1234r23r4 − r1144r124r13r23r4 − r11r1234r144r23r4 + r1124r13r144r23r4

− r1r1124r1443r23r4 + r11r124r1443r23r4 + r1r1234r2233r23r4 − r124r13r2233r23r4

− r1r1234r232r233r4 + r124r13r232r233r4 − r1r1223r23r2334r4 + r122r13r23r2334r4

+ r1r123r232r2334r4 − r12r13r232r2334r4 − r1r1144r123r234r4 + r1144r12r13r234r4

+ r11r123r144r234r4 − r112r13r144r234r4 + r1r112r1443r234r4 − r11r12r1443r234r4

− r1r123r2233r234r4 + r12r13r2233r234r4 + r1r1223r233r234r4 − r122r13r233r234r4

148



− r1144r12r1234r3r4 + r1144r123r124r3r4 − r1124r123r144r3r4 + r112r1234r144r3r4

+ r1124r12r1443r3r4 − r112r124r1443r3r4 − r12r1234r2233r3r4 + r123r124r2233r3r4

+ r122r1234r233r3r4 − r1223r124r233r3r4 + r12r1223r2334r3r4 − r122r123r2334r3r4

− r122r1234r23r33r4 + r1223r124r23r33r4 + r12r1234r232r33r4 − r123r124r232r33r4

− r12r1223r234r33r4 + r122r123r234r33r4 + r1r1124r123r344r4 − r1r112r1234r344r4

+ r11r12r1234r344r4 − r11r123r124r344r4 − r1124r12r13r344r4 + r112r124r13r344r4

− r1r114r1234r23r44 + r114r124r13r23r44 + r1r1124r134r23r44 − r11r124r134r23r44

+ r11r1234r14r23r44 − r1124r13r14r23r44 + r1r114r123r234r44 − r114r12r13r234r44

− r1r112r134r234r44 + r11r12r134r234r44 − r11r123r14r234r44 + r112r13r14r234r44

+ r114r12r1234r3r44 − r114r123r124r3r44 − r1124r12r134r3r44 + r112r124r134r3r44

+ r1124r123r14r3r44 − r112r1234r14r3r44 − r1r1124r123r34r44 + r1r112r1234r34r44

− r11r12r1234r34r44 + r11r123r124r34r44 + r1124r12r13r34r44 − r112r124r13r34r44
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A10,3 = −r00r134r144r23r2334 + r00r14r1443r23r2334 + r00r134r144r233r234 − r00r14r1443r233r234

+ r134r144r2r2334r3 − r14r1443r2r2334r3 − r134r144r233r24r3 + r14r1443r233r24r3

− r134r144r2r234r33 + r14r1443r2r234r33 + r134r144r23r24r33 − r14r1443r23r24r33

+ r00r1234r144r23r334 − r00r124r1443r23r334 − r00r123r144r234r334 + r00r12r1443r234r334

+ r13r144r2r234r334 − r1r1443r2r234r334 − r13r144r23r24r334 + r1r1443r23r24r334

− r1234r144r2r3r334 + r124r1443r2r3r334 + r123r144r24r3r334 − r12r1443r24r3r334

+ r00r124r134r23r3344 − r00r1234r14r23r3344 − r00r12r134r234r3344 + r00r123r14r234r3344

+ r1r134r2r234r3344 − r13r14r2r234r3344 − r1r134r23r24r3344 + r13r14r23r24r3344

− r124r134r2r3r3344 + r1234r14r2r3r3344 + r12r134r24r3r3344 − r123r14r24r3r3344

− r00r1234r144r233r34 + r00r124r1443r233r34 + r00r123r144r2334r34 − r00r12r1443r2334r34

− r13r144r2r2334r34 + r1r1443r2r2334r34 + r13r144r233r24r34 − r1r1443r233r24r34

+ r1234r144r2r33r34 − r124r1443r2r33r34 − r123r144r24r33r34 + r12r1443r24r33r34

+ r00r12r1234r3344r34 − r00r123r124r3344r34 − r1r1234r2r3344r34 + r124r13r2r3344r34

+ r1r123r24r3344r34 − r12r13r24r3344r34 − r00r124r134r233r344 + r00r1234r14r233r344

+ r00r12r134r2334r344 − r00r123r14r2334r344 − r1r134r2r2334r344 + r13r14r2r2334r344
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+ r1r134r233r24r344 − r13r14r233r24r344 + r124r134r2r33r344 − r1234r14r2r33r344

− r12r134r24r33r344 + r123r14r24r33r344 − r00r12r1234r334r344 + r00r123r124r334r344

+ r1r1234r2r334r344 − r124r13r2r334r344 − r1r123r24r334r344 + r12r13r24r334r344

+ r13r144r23r2334r4 − r1r1443r23r2334r4 − r13r144r233r234r4 + r1r1443r233r234r4

+ r1234r144r233r3r4 − r124r1443r233r3r4 − r123r144r2334r3r4 + r12r1443r2334r3r4

− r1234r144r23r33r4 + r124r1443r23r33r4 + r123r144r234r33r4 − r12r1443r234r33r4

+ r1r1234r23r3344r4 − r124r13r23r3344r4 − r1r123r234r3344r4 + r12r13r234r3344r4

− r12r1234r3r3344r4 + r123r124r3r3344r4 − r1r1234r233r344r4 + r124r13r233r344r4

+ r1r123r2334r344r4 − r12r13r2334r344r4 + r12r1234r33r344r4 − r123r124r33r344r4

+ r1r134r23r2334r44 − r13r14r23r2334r44 − r1r134r233r234r44 + r13r14r233r234r44

+ r124r134r233r3r44 − r1234r14r233r3r44 − r12r134r2334r3r44 + r123r14r2334r3r44

− r124r134r23r33r44 + r1234r14r23r33r44 + r12r134r234r33r44 − r123r14r234r33r44

− r1r1234r23r334r44 + r124r13r23r334r44 + r1r123r234r334r44 − r12r13r234r334r44

+ r12r1234r3r334r44 − r123r124r3r334r44 + r1r1234r233r34r44 − r124r13r233r34r44

− r1r123r2334r34r44 + r12r13r2334r34r44 − r12r1234r33r34r44 + r123r124r33r34r44
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B10,1 = −r00r114r122r23 + r00r1122r14r23 + r1r114r22r23 − r11r14r22r23

+ r00r114r12r232 − r00r112r14r232 − r1r114r2r232 + r11r14r2r232

+ r114r122r2r3 − r1122r14r2r3 − r114r12r22r3 + r112r14r22r3

− r00r1122r12r34 + r00r112r122r34 + r1r1122r2r34 − r11r122r2r34

− r1r112r22r34 + r11r12r22r34 − r1r1122r23r4 + r11r122r23r4

+ r1r112r232r4 − r11r12r232r4 + r1122r12r3r4 − r112r122r3r4
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B10,2 = −r00r114r133r23 − 20r00r124r134r23 + r00r1144r14r23 + 20r00r1234r14r23

− r00r114r144r23 + r00r14r2233r23 − r00r14r232r233 + 20r00r12r134r234

− 20r00r123r14r234 − 20r1r134r2r234 + 20r13r14r2r234 + 20r1r134r23r24

− 20r13r14r23r24 + r114r133r2r3 + 20r124r134r2r3 − r1144r14r2r3

− 20r1234r14r2r3 + r114r144r2r3 − r14r2r2233r3 + r14r22r233r3

− 20r12r134r24r3 + 20r123r14r24r3 − r14r22r23r33 + r14r2r232r33

− r00r122r23r334 + r1r22r23r334 + r00r12r232r334 − r1r2r232r334

+ r122r2r3r334 − r12r22r3r334 − r00r1144r12r34 − 20r00r12r1234r34

+ 20r00r123r124r34 + r00r112r133r34 + r00r112r144r34 + r1r1144r2r34

+ 20r1r1234r2r34 − 20r124r13r2r34 − r11r133r2r34 − r11r144r2r34

− r00r12r2233r34 + r1r2r2233r34 + r00r122r233r34 − r1r22r233r34

− 20r1r123r24r34 + 20r12r13r24r34 − r122r2r33r34 + r12r22r33r34

+ r00r114r12r344 − r00r112r14r344 − r1r114r2r344 + r11r14r2r344

− r1r1144r23r4 − 20r1r1234r23r4 + 20r124r13r23r4 + r11r133r23r4

+ r11r144r23r4 − r1r2233r23r4 + r1r232r233r4+20r1r123r234r4

− 20r12r13r234r4 + r1144r12r3r4 + 20r12r1234r3r4 − 20r123r124r3r4
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− r112r133r3r4 − r112r144r3r4 + r12r2233r3r4 − r122r233r3r4

+ r122r23r33r4 − r12r232r33r4 + r1r112r344r4 − r11r12r344r4

+ r1r114r23r44 − r11r14r23r44 − r114r12r3r44 + r112r14r3r44

− r1r112r34r44 + r11r12r34r44

B10,3 = −r00r133r23r334 − r00r144r23r334 + r133r2r3r334 + r144r2r3r334

+ r00r14r23r3344 − r14r2r3r3344 + r00r133r233r34 + r00r144r233r34

− r133r2r33r34 − r144r2r33r34 − r00r12r3344r34 + r1r2r3344r34

− r00r14r233r344 + r14r2r33r344 + r00r12r334r344 − r1r2r334r344

− r133r233r3r4 − r144r233r3r4 + r133r23r33r4 + r144r23r33r4

− r1r23r3344r4 + r12r3r3344r4 + r1r233r344r4 − r12r33r344r4

+ r14r233r3r44 − r14r23r33r44 + r1r23r334r44 − r12r3r334r44

− r1r233r34r44 + r12r33r34r44

Lastly, we set

A10 = δ8
1δ

4
2A10,1 + δ6

1δ
6
2A10,2 + δ4

1δ
8
2A10,3

B10 = δ6
1δ

2
2B10,1 + δ4

1δ
4
2B10,2 + δ2

1δ
6
2B10,3

C10 = r00r14r23 − r14r2r3 − r00r12r34 + r1r2r34 − r1r23r4 + r12r3r4
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1993.

[18] John W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, 30
(1959), 1121–1124.

[19] , Phase separation by spinodal decomposition in isotropic systems, 42 (1965),
93–99.

[20] , The later stages of spinodal decomposition and the beginnings of particle coars-
ening, 14 (1966), 1685–1692.

[21] , Spinodal decomposition, 242 (1968), 166–180.

[22] John W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial
free energy, 28 (1958), 258–267.

[23] , Free energy of a nonuniform system III. Nucleation in a two-component in-
compressible fluid, 31 (1959), 688–699.

[24] Gunnar Carlsson and Vin de Silva, Topological approximation by small simplicial com-
plexes, Preprint (2003).

[25] CHomP, Computational Homology Project, Software available at
http://chomp.rutgers.edu (2002–2011).

[26] H. Cook, Brownian motion in spinodal decomposition, 18 (1970), 297–306.

[27] Richard Courant and David Hilbert, Methods of mathematical physics, Intersciences,
New York, 1953.

[28] A. C. Davison and D. V. Hinkley, Bootstrap methods and their application, Cambridge
University Press, Cambridge, 1997.

[29] Sarah Day, William Kalies, Konstantin Mischaikow, and Thomas Wanner, Probabilis-
tic and numerical validation of homology computations for nodal domains, Electronic
Research Announcements of the American Mathematical Society 13 (2007), 60–73.

[30] Sarah Day, William Kalies, and Thomas Wanner, Verified homology computations for
nodal domains, SIAM Journal on Multiscale Modeling and Simulation 7 (2009), no. 4,
1695–1726.

[31] Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow, Validated continuation
for equilibria of PDEs, SIAM Journal on Numerical Analysis 45 (2007), no. 4.

157



[32] Pawe l D lotko, Tomasz Kaczynski, Marian Mrozek, and Thomas Wanner, Coreduction
homology algorithm for regular CW-complexes, Discrete & Computational Geometry
(to appear).

[33] Herbert Edelsbrunner and John L. Harer, Computational topology, American Mathe-
matical Society, Providence, 2010.

[34] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian, Topological persistence
and simplification, Discrete Computational Geometry 28 (2002), no. 1-3, 511–533.

[35] David J. Eyre, Coarsening dynamics for solutions of the Cahn-Hilliard equation in one
dimension, (1995), In press.

[36] Kambiz Farahmand, Topics in random polynomials, Pitman Research Notes in Math-
ematics, vol. 393, Longman, Harlow, 1998.

[37] Paul C. Fife, Pattern dynamics for parabolic PDE’s, Preprint (1989).

[38] Marcio Gameiro, William Kalies, and Konstantin Mischaikow, Topological characteri-
zation of spatial-temporal chaos, Physical Review E 70 (2004), no. 3, 1–4.

[39] Marcio Gameiro, Konstantin Mischaikow, and Thomas Wanner, Evolution of pattern
complexity in the cahn-hilliard theory of phase separation, Acta Materialia 53 (2005),
no. 3, 693–704.

[40] Marcio Gameiro and Pawel Pilarczyk, Automatic homology computation with applica-
tion to pattern classification, RIMS Kkyroku Bessatsu B3 (2007), 1–10.

[41] Igor Griva, Stephen Nash, and Ariela Sofer, Linear and nonlinear optimization, SIAM,
Philadelphia, 2009.

[42] E. Hairer and G. Wanner, Solving ordinary differential equations II, Springer-Verlag,
Berlin, 1991.

[43] Tina Hartley and Thomas Wanner, A semi-implicit spectral method for stochastic non-
local phase-field models, Discrete and Continuous Dynamical Systems, Series A 25
(2009), no. 2, 399–429.

[44] Dan Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math-
ematics, vol. 840, Springer-Verlag, Berlin – Heidelberg – New York, 1981.

[45] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter, Applied interval analysis,
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