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Abstract

CONTRIBUTIONS TO ROC CURVE AND LIKELIHOOD RATIO ESTIMATION FOR
FORENSIC EVIDENCE INTERPRETATION

Xiaochen Zhu, PhD

George Mason University, 2020

Dissertation Co-Directors: Dr. Martin P. Slawski & Dr. Liansheng L. Tang

Biometric traits such as faces and fingerprints are critical in forensic evidence interpre-

tation. There has been a growing interest to study the repeatability, reproducibility, and

accuracy of modalities for forensic evidence interpretation since the 2009 National Research

Council report and the more recent report from the 2016 President’s Council of Advisors

on Science and Technology. In this dissertation, we investigate two statistical methods for

forensic evidence interpretation, which are score-based likelihood ratio (SLR) and receiver

operating characteristic (ROC) curve.

In the first part of this dissertation, we investigate the repeatability and reproducibility

of three existing statistical methods for estimating the SLR including parametric estima-

tion, kernel density estimation, and recently adopted logistic regression estimation. We

perform extensive simulations and used different face and fingerprint biometric datasets to

investigate the repeatability and reproducibility of the existing SLR estimation methods.

We also provide a parametric way to estimate the variance of the SLR based on the ROC

curves. Simulation studies and real studies are provided to indicate the usefulness of the

variance estimation method.



In the second part, we consider modeling of ROC curves using both the order con-

straint and covariates associated with each score given that the latter (e.g., demographic

characteristics of the underlying subjects) often have a substantial impact on discriminative

accuracy. The proposed method is based on the indirect ROC regression approach using

a location-scale model, and quadratic optimization is used to implement the order con-

straint. The statistical properties of the proposed order-constrained least squares estimator

are studied. Several situations are discussed in the simulation studies, including multiple

covariates, non-Gaussian random samples, and heteroscedastic modeling. The results of

the simulation studies corroborate the superior performance of the proposed approach. Its

practical usefulness is demonstrated applying face recognition data from the “Good, Bad,

and Ugly” face challenge, a domain in which accounting for covariates has hardly been

studied.



Notation Table

X ∼ P random variable F follows the distribution M
N(µ, σ2) normal distribution with mean µ and variance σ2

U(a, b) uniform distribution with the lower and upper bound-
aries a and b, respectively

Beta(a, b) Beta distribution with two shape parameters a and b
Bernoulli(p) Bernoulli distribution with probability p
t(d) t distribution with degree of freedom d
Φ(·) the cumulative density function of a standard normal

distribution
φ(·) the probability density function of a standard normal

distribution
φ′(·) first derivative of the probability density function of a

standard normal distribution
N total sample size
m sample size for the genuine group
n sample size for the imposter group
T test scores
X set of covariates
x observation of X
p number of covariates
q number of constraints in the order-constrained

weighted least square regression, q = 2p

A q by d constraint matrix, where d = 2(p+ 1)
y dependent variable in the regression, y = {Ti}Ni=1 in

our study
H0 defense hypothesis; a pair of samples are from different

sources
H1 prosecutor hypothesis a pair of samples are from the

same source
D binary status with D = 1 indicating H1 is true and

D = 0 indicating H0 is true
X N by d design matrix, X = (1,x>, D, (x ∗D)>)>

W weight matrix in the weighted least square regression
β vector of regression coefficients
b0,b1 coefficient parameters for the location function of the

imposter and genuine group, respectively
a0,a1 coefficient parameters for the scale function of the im-

poster and genuine group, respectively
∆ mean difference of two random variables

||a||2 l2−norm of a, i.e. ||a||2 =
√∑N

i=1 a
2
i



Chapter 1: Introduction

In this chapter, we start by introducing the background knowledge about forensic inves-

tigations and identifications. We will discuss the log-likelihood ratio method, which is an

important biometric technique for measuring the strength of the forensic evidence. Fur-

thermore, we will introduce the receiver operating characteristic curve which is a graphical

tool to evaluate the discriminative accuracy of classification methodologies.

1.1 Forensic Evidence Interpretation

Forensic problems aim to determine the link between the known evidence (e.g., suspect) and

an unknown evidence (e.g., evidence from the crime scene). The common-source problem

relates to whether two evidences are from the same source. A decision will be provided on

the following two propositions for how the evidence has arisen:

H0: The unknown and known evidence are from different sources;

H1: The unknown and known evidence are both from a common source.

Biometrics, such as DNA, fingerprint, facial features, and voice are characteristics that

are different from person to person, and have been used for automatic human identification

and recognition. Since the 19th century, law enforcement gradually adopted biometrics

to determine the identity of criminals [2]. Studies in fingerprint and face recognition have

been conducted to systematically quantify the accuracy of forensic examiners and computer

algorithms. Ulery et al. [3, 4] generated binary decisions of individualization or exclusion

on genuine print pairs (a pair of biometric measurements from the same source, e.g., a pair

of fingerprints of the same individual) and imposter pairs (a pair of biometric measure-

ments from different sources). Phillips et al. [1] compared the accuracy of facial recognition

algorithms with forensic examiners, students, as well as untrained residents.

1



Typically, a biometric score is generated from the biometric recognition algorithm to

help forensic scientists drop their decision. The score indicates the degree of similarity

between measurements from a crime scene evidence and measurements from a person of

interest. The higher the comparison score is, the higher the probability that two samples

are from the same source. Take the recent black box1 study by Phillips et al. [1] as an

example. In this facial recognition study, image pairs (see Figure 1.1) from males and

females were selected and a biometric algorithm was adopted to grade each image pair with

a similar score based on the likelihood of whether the pairs belong to the same person.

Figure 1.1: Left pair: same identity; right pair: different identities [1].

The most common way to make the decision when using the biometric score is to find

a threshold to biometric score values: scores greater than the cut point imply that the

prosecution hypothesis, H1, is likely to be true and false otherwise (see Figure 1.2) [5].

However, selecting the score threshold is not a trivial matter and it depends on the scale and

distribution of the genuine and imposter scores. Alternatively, the log-likelihood ratio has

been proposed as a way of normalizing comparison scores and quantifying the relationship

between two samples being compared, which are evidence or unknown samples from a crime

scene and known samples from a person of interest.

1The term “black box” here refers to the fact that the way in which biometric measurements are converted
into scores by computer-based algorithms or a human examiner is not always fully transparent.
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Figure 1.2: Continuous test scores and a threshold to separate the genuine and imposter
scores.

1.2 Log-Likelihood Ratio Method

Log-likelihood ratio (LLR) is the log of the ratio of two joint probabilities if the mea-

surements are available [6]. Throughout this thesis, the log-transformation is the natural

logarithm. When the measurements are continuous comparison scores (e.g., Figure 1.2), the

LLR is the ratio of the probability density function of the genuine comparison scores against

the imposter comparison scores [7, 8]. LLR methods have been proposed as a measure of

the strength of evidence [9] in several forensic disciplines, such as DNA, fingerprint, facial

recognition, and voice identification [10–13].

The increased visibility of likelihood ratio (LR) methods grows the need to further study

the accuracy as well as repeatability and reproducibility of LLR methods. Both the 2009

National Research Council report [14] and the more recent report from the 2016 President’s

Council of Advisors on Science and Technology [15] emphasized these required properties

for a valid forensic method. The repeatability and reproducibility of examiners from papers
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[3, 4] are defined as follows.

• Repeatability: intra-method agreement; that is, a statistical forensic method provides

consistent likelihood ratio values for the same distributions of mated and non-mated

scores with various sample size ratios from mated and non-mated groups;

• Reproducibility: inter-method agreement; that is, two statistical forensic methods

provide consistent likelihood ratio values on the same set of data.

Since we want to minimize the number of defendants who had been wrongfully convicted

based on evidence, recent papers put their focus on how to improve the results in different

biometric identification systems. Mandasari et al. [16] developed an improvement method

for voice identification to deal with background noise. They also pointed out that adopting

this voice filtering software to clean the single performs better than using a set of noisy

background training data. Neumann et al. [17] worked on the feasibility and accuracy of

the latent print comparison and the effect of sample sizes, but this study has not discussed

the effect of varied sample size ratios between mated and non-mated groups in the training

data set. Poh et al. [18] defined a trustworthy LLR which considered the probability of

the trustworthiness term, but further discussion about how to improve the LLR calculation

methods based on the trustworthiness term is not included in his study.

Whereas these studies developed new methodologies to improve the accuracy of the

identification procedures, they talk little about the assessment of the discriminative ability.

This is crucial since the evaluation report gives a chance for people to glance at the relia-

bility of the biometric techniques. The accuracy of biometric systems or humans in source

matching problems can be assessed with the receiver operating characteristic (ROC) curve

when the decision scores are ordinal or continuous.

1.3 Receiver Operating Characteristic Curves

The receiver operating characteristic (ROC, see Figure 1.3) curve plays an important role in

characterizing errors for binary decisions. While ROC analysis originated in signal detection
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in radar, the analysis has been adopted and extended in the fields of psychology, diagnostic

medicine, biometrics, and forensic sciences. In the context of medical diagnostics, the false

positive rate (FPR) denotes the probability of a positive test result given the individual is

healthy, and the true positive rate (TPR) denotes the probability of a positive test result

given the individual is diseased. The ROC curve graphs the trade-off between the FPRs

and TPRs resulting from binarization of a continuous test result in dependence of different

thresholds. Discussions of applications in diagnostic medicine, medical imaging and signal

detection can be found in various textbooks [19,20] and research papers [21–26].
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Figure 1.3: Relationship between densities (left panel) and ROC curves (right panel).

The error rates and the ROC curves can be applied to the latent print, facial recognition,

or other biometric studies. The FPR and TPR in the medical studies are analogous to the

false accept rate (FAR) and true accept rate (TAR), respectively. Hendricks et al. [27]

derived the likelihood ratio from the ROC curve to handle some common issues in the
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fingerprint data such as the curse of dimensionality. Srihari et al. [28] used the ROC curve

to determine the optimal threshold of the comparison scores in the fingerprint verification

study.

The discriminative accuracy of diagnostic tests is potentially influenced by characteris-

tics of individual patients or by specific properties of the process in which the test result was

obtained. For example, (i) the severity of a patient’s disease might affect the accuracy of a

medical test, (ii) the reader’s performance is known to be a key factor in medical imaging

studies. In light of this, the “raw” ROC curve without incorporating such factors can be of

limited use.

1.3.1 Covariate-Specific ROC Curves

The covariate-specific receiver operation characteristic curve is a ROC curve that depends

on the value of covariate. In the real world, covariates can affect the result of tests, which

makes the ROC hard to evaluate without being given the covariates. To address this

shortcoming, Pepe [29] introduced the notion of covariate-specific ROC curves. Currently,

there are various strategies for modeling covariate-specific ROC curves. Those methods

include nonparametric or semiparametric [30, 31] Bayesian methods and induced or direct-

regression methods [32, 33], etc. González-Manteiga et al. [34] used the kernel method

along with empirical distribution function to estimate the conditional ROC curves. Duan

& Zhou [35] provided a induced-regression method with the location function estimated by

the composite quantile regression. Tang & Zhou [36] introduced a semiparametric method

to estimate the covariate-specific ROC curves.

One particularly convenient as well as popular approach is the location-scale model

[34, 35]. In a nutshell, the distribution of the score is modeled via location-scale transfor-

mation of base distributions associated with the two populations, where potentially both

the location and scale transformation depend on covariates. A common way to estimate

the latter is via regression techniques with least squares (LS) regression as the simplest

approach. However, a well-known shortcoming of LS is sensitivity to heavy-tailed error
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distributions, and composite quantile regression (CQR) [37] is proposed as an alternative

by Duan & Zhou [35].

A recent study on an operational fingerprint database [38] found that fingerprint deci-

sion scores vary with subjects’ demographic information such as age and gender. In face

recognition, demographic variables also affect the discrimination accuracy of face recogni-

tion algorithms. Phillips et al. [1] studied face identification accuracy of examiners from

ordinal decision scores on genuine and imposter face image pairs, and another facial recogni-

tion study [39,40] on the “Good, Bad, and Ugly” (GBU) Face challenge presented by NIST

investigated the accuracy of continuous decision scores generated by the Vision Geometry

Group (VGG)-face algorithm [41] under various imaging conditions. It is thus of interest

to account for source subjects’ covariate information including their demographics when

estimating the ROC curve. Figure 1.4 provides the ROC curves with pooled data and the

covariate-specific empirical ROC curves. This figure illustrates that the ROC curves can be

noticeably influenced by the covariate.
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Figure 1.4: ROC curves for the GBU data. Left: Gender-specific ROC; Middle: quality-
specific ROC; Right: age-specific ROC.

Additionally, using pooled error rates to estimate the ROC curve instead of considering

the covariate might elevate the error and underestimate the accuracy of the modality. Figure

1.5 provides an example of using the covariate-specific ROC and the pooled ROC to evaluate
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a classification algorithm. In this study, two important covariates are incorporated as factors

that influence the discriminate accuracy of the algorithms. In Figure 1.5, we note that the

pooled ROC curve is lower than both of the covariate-specific ROC curves. This implies

that the covariates lead to a different evaluation and interpretation of the algorithms.
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Figure 1.5: Covariate-specific ROC curves and pooled ROC curve. Left panel: distribution
of pooled scores and unpooled scores; right panel: corresponding ROC curves.

1.3.2 Stochastic Ordering

In addition to the need to account for covariate information, another important property

of biometric data is that genuine scores are usually larger than imposter scores in the

sense of a stochastic ordering [42, 43]. Research on ordering constraints has mainly been

done for testing equality in distribution against the alternative hypothesis in which these

distributions are stochastically ordered [44–48]. Davidov & Herman [49] focused on the

estimation for the area under the ordinal dominance curve (ODC) by imposing stochastic
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ordering to improve estimation efficiency. Chen et al. [50], Yu et al. [51], and Westling et

al. [52] studied estimation under likelihood ratio ordering, a stronger notion than stochastic

ordering. The stochastic ordering assumption is reasonable in biometric evaluation since

the computer algorithms used in the GBU study and other biometric matching studies

have been developed to ensure larger genuine scores than imposter scores. In the case of

human examiners, the ordering assumption is also reasonable since examiners are trained to

match biometrics. However, to the best of our knowledge, the discussion of ROC regression

methods with order restriction has been scarce. The method developed in this thesis will fill

this methodology gap concerning order-restricted inference for ROC curves while accounting

for covariate information.

The rest of this thesis is structured as three chapters as follows:

Chapter 2 compares existing statistical methods for estimating the log-likelihood ra-

tio from biometric scores including parametric estimation, kernel density estimation, and

recently adopted logistic regression estimation. We discuss the repeatability and repro-

ducibility of these methods on biometric datasets. We perform extensive simulations and

use different face and fingerprint biometric datasets to investigate the repeatability and

reproducibility of the existing log-likelihood ratio estimation methods.

Chapter 3 considers modeling of ROC curves using both the order constraint and co-

variates associated with each score given that the latter (e.g., demographic characteristics

of the underlying subjects) often have a substantial impact on discriminative accuracy. The

proposed method in this chapter is based on the indirect ROC regression approach using

a location-scale model, and quadratic optimization is used to implement the order con-

straint. The statistical properties of the proposed order-constrained least squares estimator

are studied. Simulation studies are provided to show the superior performance of the pro-

posed approach. The practical usefulness of the order-constrained method is demonstrated

in an application of face recognition data from the “Good, Bad, and Ugly” face challenge,

a domain in which accounting for covariates has hardly been studied.

Chapter 4 provides an approach of covariate-specific ROC curve estimation with a
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stochastic ordering constraint. This method uses the location-scale model with an or-

dered restriction on the location function, and the location parameter is estimated based

on the composite quantile regression. The proposed method is not only insensitive to the

heavy-tailed non-Gaussian distribution data, but also has improved statistical efficiency in

terms of the mean squared error. We also discuss the covariate-specific ROC estimation in

the existence of the heteroscedastic model and provide a comparison of several methods.

Simulation studies demonstrate the advantage of our methods and we apply all the methods

to the data from a facial recognition study.
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Chapter 2: Repeatability and Reproducibility of Forensic

Likelihood Ratio Methods when Sample Size Ratio Varies

2.1 Introduction

Biometrics techniques are widely implemented in forensic investigations including face recog-

nition, gait analysis, iris identification, and fingerprint recognition, etc.. The biometric fea-

tures are different from person to person and have been used for forensic identifications and

verifications. A biometric recognition algorithm compares a pair of samples and generates

a comparison score that indicates the similarity between the two samples [53]. When a pair

of images are from the same source, for example, the same finger, we call the comparison

score either a genuine or mated score. When a pair of images are from different sources, we

call the comparison score either an impostor or non-mated score. These comparison scores

are separated into either a genuine group or an imposter group.

Biometric comparison scores play an important role in forensic determination on whether

and how a crime scene evidence is related to a suspect. Two types of hypotheses are con-

sidered in forensic determination: prosecutor hypothesis (H1) that the crime scene evidence

is from the person of interest, and defense hypothesis (H0) that the crime scene evidence is

not from the person of interest. D denotes a binary status with D = 1 indicating H1 is true

and D = 0 indicating H0 is true A comparison score t = s(I1, I2) generated by a biometric

recognition algorithm s(·) indicates the degree of similarity between measurements from a

crime scene evidence, I1, and measurements from a person of interest, I2. The higher the

comparison score is, the higher the probability of the two samples are from the same source.

Generally, forensic scientists implement the log-likelihood ratio to calibrate test scores

and describe the similarity between the samples from a crime scene and the samples from

the suspect. Log-likelihood ratio (LLR) is the natural logarithm of the ratio of two joint
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probabilities LLR(I1, I2) = log(P (I1, I2|D = 1)/P (I1, I2|D = 0)), if the measurements

I1 and I2 are available [6]. If the only available measurements from I1 and I2 are their

continuous comparison scores, then LLR is the ratio of probability density function of

genuine comparison scores and that of imposter comparison scores: LLR(t) = log(P (t|D =

1)/P (t|D = 0)) [7, 8].

Note that in this Chapter, we adopt the score-based likelihood ratios [54]. This method

is to avoid considering the unknown nuisance parameters by using the marginal likelihood

ratio. An alternative approach is called Bayesian integrated likelihood ratios which replaces

the unknown parameters by using the prior probability of the parameters. We should

note that the score-based likelihood ratios, likelihood ratios, and the Bayesian integrated

likelihood ratios are three distinct likelihood methods, with the score based methods not

necessarily having a direct correspondence to formal Bayesian definition of evidential value.

The prior distribution in the Bayes factor comes from an assumption of the nuisance pa-

rameter before the observation of the evidence to be interpreted. The score-based likelihood

ratio method treats the comparison score as an ad-hoc approach to dealing with the nui-

sance parameters in the style of Likelihoodist paradigm of statistics. (See Davis et al.for a

discussion of these issues with respect to forensic evidence [55].) In general, the score-based

likelihood ratio is estimated only based on a subset of the observed data instead of the

entire evidence.

After the 2009 National Research Council report [14] and the 2016 President’s Council

of Advisors on Science and Technology [15] emphasized the requirement of the accuracy,

repeatability, and reproducibility for a forensic procedure, there is a noticeable growth of

studies about those properties of LLR methods. This work aims to address that need.

Repeatability and reproducibility are defined as follows. Repeatability is intra-method

agreement; that is, a given statistical forensic evaluation method provides consistent like-

lihood ratio values for the same distributions of genuine and imposter groups but various

sample size ratios from the two groups. Reproducibility is inter-method agreement; that is,

two statistical forensic evaluation methods provide consistent likelihood ratio values on the

12



same set of data. We use the same definition of reproducibility and repeatability as Suki et

al. [56] to consider the sample size ratio between genuine and imposter groups.

Our contributions include several aspects. First, we discuss the repeatability and re-

producibility of parametric estimation, kernel density estimation, and logistic regression

estimation in extensive simulation studies. We compare the log-likelihood ratio values gen-

erated by those methods with various sample size ratios, various total sample sizes, and

various probability distributions. Second, we discuss and provide statistical reasoning for

the inconsistencies between existing methods base on the results of our simulation studies.

In addition, we compare the performance of the parametric estimation, kernel density es-

timation, and logistic regression estimation methods in two biometric examples, including

facial recognition and fingerprint matching.

The rest of this chapter is structured as follows. Section 2.2 introduces existing meth-

ods for log-likelihood ratio estimation. Section 2.2.4 compares the repeatability and re-

producibility of kernel density estimation and logistic regression estimation methods using

simulation studies, and provides reasons for inconsistencies among different methods, espe-

cially for the logistic regression estimation method. Further studies on the repeatability and

reproducibility of the log-likelihood ratio methods using real biometric datasets are given

in Section 2.4. The discussion is provided in Chapter 5.

2.2 Existing Likelihood Ratio Methods

Recall that a log-likelihood ratio (LLR) is the ratio of two probability density functions of

continuous genuine and imposter comparison scores: LLR(t) = log(f(t|D = 1)/f(t|D = 0)),

where f(t|D = 1) and f(t|D = 0) are probability density functions (PDF) of genuine and

imposter groups, respectively. The current methods for estimating LLRs from comparison

scores mainly focus on the estimation of these density functions, and include parametric

estimation [57], kernel density estimation (KDE) [11], and logistic regression estimation

(LRE) methods [13]. Some recent papers have studied repeatability and reproducibility of
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these methods through simulated studies [53] and biometric datasets [56]. Ali et al. [53]

suggested that the LRE method is the least sensitive to the sampling variability in large

sample sizes, and is more accurate in small sample sizes than the other two methods.

However, the sensitivity of LRE to the sampling variability increases when the sample size

decreases. Also, the paper shows that the bias of LLR only depends on the shapes of

the distributions and not on sample sizes – changing the sample size did not affected the

LLR values. The limitation of their study is that it only focuses on a constant sample

size ratio, but the ratio may be a crucial factor affecting the resulting LLR values. Suki

et al. [56] focused on repeatability and reproducibility of LLR methods using KDE and

LRE in biometric systems.Their result shows that the estimated LLRs from KDE and LRE

are similar when the biometric score is close to zero, and are quite different otherwise.

Furthermore, confidence intervals for the result of the two methods are narrower when the

biometric score is close to zero, and become wider otherwise. The authors conclude that

LLR methods using KDE and LRE are repeatable and reproducible only when the biometric

scores are within a certain range. They also did not consider varying sample size ratios.

Suppose we have two groups of scores, T1 and T0, as scores under prosecutor hypothesis

and defense hypothesis, respectively. m is the sample size for the genuine group or under

the prosecutor hypothesis, and t1,i is the i-th score from the genuine group. Similarly, n

is the sample size for the imposter group or under the defense hypothesis, and t0,j is the

j-th score from the imposter group. A detailed discussion of log-likelihood ratio (LLR)

estimation methods base on parametric estimation, kernel density estimation and logistic

regression estimation follows.

2.2.1 Parametric Estimation

Parametric estimation (PE) is based on the distribution assumptions. The distribution

parameters are estimated from the training samples [57]. If we can assume that the data

follows specific distributions such as normal distributions, mixture normal distributions, or

other types of distributions, the parameters can be estimated for the specific distributions
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using standard statistical methods. For example, assuming the data are from normal distri-

butions, that is, T1 ∼ N(µ1, σ
2
1) and T0 ∼ N(µ0, σ

2
0), then we can estimate means (µ1, µ0)

and variances (σ2
1, σ

2
0) with sample means and sample variances for T1 and T0, respectively.

f(t|D = 1) and f(t|D = 0) can then be estimated and the log likelihood ratio (LLR) is

written as

LLR(t) = log

(
σ̂0

σ̂1

)
+ log φ

(
µ̂1 − t
σ̂1

)
− log φ

(
µ̂0 − t
σ̂0

)
,

where φ is the standard normal PDF. Since parameter estimates are obtained separately

from genuine and imposter groups, the sample size ratio, m/n, does not affect the consis-

tency of LLR calculation.

2.2.2 Kernel Density Estimation

A kernel density estimation (KDE) method first estimates kernel density functions f(t|D =

1) and f(t|D = 0), for genuine and imposter groups, and then calculates the LLR by

simply using the ratio of f(t|D = 1) and f(t|D = 0) [58, 59]. The density at a score t is

estimated using the the frequency counts at t and the neighboring region. The contribution

of scores in the neighboring region to the density depends on the kernel function. The KDE

for f(t|D = 1) under H1 can be written as: f̂(t|D = 1) = 1/(hn1)
∑m

i=1K((t− t1,i)/h).

Here K(·) is a kernel function with the kernel bandwidth h. A Gaussian kernel function is

written as K(a) = exp(−1
2a

2)/
√

2π, and K((t − t1,i)/h)) gives more weights to the scores

t1,i in the neighboring region of t. The KDE under H0 can be written as: f̂(t|D = 0) =

1/(hn0)
∑n

j=1K((t − t0,j)/h). Then the estimated LLR is given by LLR(t) = log(f̂(t|D =

1)/f̂(t|D = 0)). Similar to parametric estimation methods, these kernel density functions

are estimated separately from genuine and imposter groups, and sample size ratio has little

impact on consistency of LLR calculation.
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2.2.3 Logistic Regression Estimation

Logistic regression estimation (LRE) is a recently adopted method in speaker recognition

for calculation of LLR from comparison scores [13,60–62]. The expression for the LRE is

LLR(t) = log

(
f(t|D = 1)

f(t|D = 0)

)
= β0 + β1s, (2.1)

where β0 and β1 are the intercept and the slope [56,61].

In statistics it is well known that if the observations are from a case-control study in

which the sample size ratio between cases and controls is fixed by the study design, then

the intercept β0 becomes a function of the sample size ratio [63]. Relating to biometric

studies, the sample size ratio between cases and controls is analogous to the sample size

ratio between genuine and imposter groups. Thus, the estimate for β0 is likely to change

when the sample size ratio varies, and so does the LLR values from LRE methods. It

is also known that estimates for the slope parameter, β1, remain consistent and valid for

different sample size ratios. Prentice & Pyke [64] is one of the first papers to study the

properties of parameter estimation in LRE methods in case-control studies. The discussion

from that article can help us further understand appropriateness of the LRE method for

calculating LLR. Their paper pointed out that in the case-control studies, only P (t|D = 1)

and P (t|D = 0) are valid since we can no longer estimate P (D = 1|t) and P (D = 0|t).

Then P (t|D = 1) = c1 exp(γ(t) + tβ1), and P (t|D = 0) = c2 exp(γ(t)), where c1 and c2

are functions of the sample size ratio m/n and β1. The LLR is thus given by LLR(t) =

log(P (t|D = 1)/P (t|D = 0)) = log(c1/c2) + log β1s. Prentice & Pyke show that the slope

β1 can be estimated consistently regardless of if or how sample size ratio varies, but β0 =

log(c1/c2) depends on the sample size ratio between the genuine and imposter groups.

Prentice & Pyke has similar conclusion that the estimated β0 is not accurate from the LRE

method since it relates to the sample size ratio. As a result, the LLR calculated from a

LRE method is likely to differ when the sample size ratio from the genuine and imposter

groups changes, and therefore LRE methods may not be repeatable.
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Table 2.1: Distributions and their parameters in the three simulation studies

Study F (t|D = 1) F (t|D = 0)

1 N(20, 3) N(10, 5)
2 U(0, 1) Beta(0.8, 17)
3 N(2, 2) t(2)

2.2.4 Repeatability and Reproducibility Based on Simulated Datasets

This section describes the simulation studies for repeatability and reproducibility of PE,

KDE, and LRE. Since the PE based on correct distribution assumptions should give similar

LLR results as KDE, we only compare the results between LRE and KDE to show the

impact of sample size ratio on the LLR values. We use several distributions to generate

scores aiming to mimic real biometric comparison scores in reality, and use different sample

size ratios to evaluate the repeatability and reproducibility of existing statistical methods.

We first describe how the simulation data are generated, and then present the comparison

results.

2.2.5 Simulated Datasets

The datasets are generated using functions in R [65]. We compare LRE and KDE in three

simulation studies with different distributions for genuine and imposter groups. Table 2.1

summarizes the different distributions we simulated. The distributions and parameters in

each study are obtained from real data sets [66].

Without loss of generality, we investigate the impact of the sample size ratio on LLR

values for a particular comparison score. Similar to Ali et al. [53], we chose the score t0,

as the score at which the true genuine and impostor probability density functions cross.

The true value of LLR at t0 is zero (the ratio of the two probabilities is 1 and so the log

likelihood ratio is zero). We then estimate the LLR values at t0 as the sample size ratio
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varies.

Let m and n represent the sample sizes of genuine group and imposter group, respec-

tively. Similar to Ali et al. [53], we used five different pairs of sample sizes for plotting the

histograms of the LLRs. To examine the effect of sample size ratio on LLR results, unlike

Ali et al. [53], our sample size ratios vary over the five pairs. We use (m,n) pairs of (400,

2000), (2000, 10000), (2000, 2000), (2000, 400), and (10000, 2000), varying the sample size

ratio m/n from 1/5, to 5/1. A random sample is generated 5000 times for each pair, and

for each set the estimated LLR at t0 is calculated for method evaluation.

We investigate the reproducibility of the LRE and KDE methods using different sample

size ratios when genuine and imposter groups follow distributions outlined in Table 2.1.

The bias between the true LLR value and estimated LLR values from these two methods

are provided. This is a more extensive simulation studies than Ali et al. [53].

We consider two settings for varying sample size ratios. First, we fixed the sample size of

the imposter group and varied the size of the genuine group from 100 to 10000 in thirty-five

steps, and we calculate the biases of LRE and KDE for each sample size ratio. In a second

setting, we consider a fixed total (genuine and impostor) sample size of 10000 with seven

different sample size ratios.

2.2.6 Results

For each set of simulated genuine and imposter comparison scores, KDE and LRE methods

are applied to calculate LLRs at t0. The histograms of LLR values from 5000 sets of

simulated scores are plotted side by side in Figures 2.1 – 2.3 according to Studies 1 – 3 in

Table 2.1. For all three studies and 5 pairs of sample sizes, we notice that KDE and LRE

have a large discrepancy in terms of frequency distributions of the resulting LLR values.

When the impostor group has a larger sample size than the genuine group (m/n < 1), LRE

method tends to generate smaller LLRs than KDE method. When the genuine group has

a larger sample size (m/n > 1), LRE method tends to generate larger LLRs than KDE

method. In terms of the variability of LLR values, the three studies show a larger variation
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for the KDE method than the LRE method. For equal sample sizes (m/n = 1), we observe

that the overlap of the LLR histograms is larger than when m/n 6= 1, and that the pattern

of the histograms are different for the three distributions studied as illustrated in Figures

2.1, 2.2, and 2.3. In Study 1 which assumes normal distribution of genuine and impostor

comparison scores, LRE gives smaller LLRs than KDE, but there is some overlap in the

histograms. In Study 2, which assumes uniform distribution for genuine comparison scores

and beta distribution for imposter comparison scores, both methods give similar estimated

LLR values, but unlike the KDE method, the estimated LLRs from the LRE method does

not center around the true LLR value. In Study 3, with normal genuine comparison scores

and T-distributed imposter comparison scores, the center of the histogram for KDE method

tends to be shifted to the left of the histogram by the LRE method, indicating that the

LLR values tend to be smaller for KDE method.

In addition, for all three different studies, we note that the estimated LLRs from LRE

method follow symmetric distributions, even when the genuine or imposter group follows a

non-normal distribution. But the LLR histograms generated from KDE method may have

strong skewness when the scores are not normally distributed. Particularly, as shown in

Figure 2.3, increasing the total sample size, increases the degree of the skewness.

The large discrepancy in the center and variation of the LLR histograms in the three

studies, suggest that reproducibility of LLR estimation is not guaranteed for LRE nor for

KDE methods.

The repeatability of the PE, KDE and LRE methods is examined by calculating the

biases of the estimated LLR values at t0. Specifically, we compute the difference between

the calculated LLR values and the true LLR value (which is zero) for different sample size

ratios using the simulated comparison scores. The biases as a function of the sample size

ratio are plotted in Figures 2.4 and 2.5 for Studies 1 and 3, respectively. A method has

good repeatability if the bias is shown to stay close to zero when sample size ratio varies,

and does not have good repeatability if the bias tends to deviate from zero with different
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Figure 2.1: Histograms of LLRs at t0 estimated by LRE and KDE for Study 1. The solid
vertical line is at score value t0.
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Figure 2.2: Histograms of LLRs at t0 estimated by LRE and KDE for Study 2. The solid
vertical line is at score value t0.
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Figure 2.3: Histograms of LLRs at t0 estimated by LRE and KDE for Study 3. The solid
vertical line is at score value t0.
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sample size ratios.

In Study 1, PE method assumes normal distributions for both the genuine and impostor

comparison scores, and LLR values are estimated as outlined in Section 2.2. Figure 2.4 shows

that the biases for PE and KDE methods tend to stay close to zero for normal-distributed

data in Study 1. This indicates the repeatability of KDE method and PE method with

appropriate distribution assumption. More importantly, the consistent biases from KDE

and PE methods with various sample size ratios show good repeatability of each of these

two methods when the distributions for genuine and imposter scores remain unchanged.

The biases for the LRE method show a linear trend as log of the sample size ratio changes

from -2 to 2. Thus, the repeatability of LLR values cannot be guaranteed for the LRE

method when the sample size ratio varies. The main reason is that the intercept estimate

in the LRE method is a function of the sample size ratio, and the resulting LLR is also a

function of the sample size ratio.

In Study 3 with a non-normal distribution for imposter comparison scores, the PE

method incorrectly assumes a normal distribution for the imposter scores. We see from

Figure 2.5 that the PE method tends to give larger biases than the KDE method. The

biases by the PE method show departure from zero, indicating that the LLR values are not

accurately estimated. However, the biases by the PE method are consistent with different

sample size ratios, which indicates repeatability of the PE method even though the method

may not yield accurate LLR values. The KDE method gives biases close to zero, indicat-

ing accurate LLR estimates no matter how the sample size ratio varies. This shows the

repeatability of the KDE method. Biases by the LRE method tend to follow a linear trend

as the log of sample ratio changes. The repeatability of LRE method may be unsatisfactory

for various sample size ratios even when the distributions for the scores remain unchanged

because LLR itself is a function of the sample size ratio.
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Figure 2.4: Bias of PE, KDE, and LRE methods versus log sample size ratio using different
(Left) and same (Right) total sample sizes in Study 1.

Figure 2.5: Bias of PE, KDE, and LRE methods versus log sample size ratio using different
(Left) and same (Right) total sample sizes in Study 3.
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2.2.7 Unsatisfactory Repeatability of LRE Method

We now discuss the reason that the repeatability of LRE is unsatisfactory when the sample

size ratio varied in our studies. Figure 2.6 is the visualization of the variation of the

coefficients of the LRE model in Study 1. As the log sample size ratio varies from -2 to

2, the slope β1 has little change, while the intercept β0 increases in a linear pattern. This

is consistent with the equations in Section 2.2.3. Thus, the change of the estimated LLR

is mainly due to the difference between estimated β0 and the true value of β0. Figure 2.6

shows that as the sample size ratio changes, the slope estimate stays close to the true value,

but the difference between true value and estimated value of intercept estimate increases.

Such a difference is much larger when the log of the sample size ratio takes on values further

away from 0.

Figure 2.6: The value of coefficients of LRE versus log sample size ratio using different
(Left) and same (Right) total sample sizes in Study 1.
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2.3 Variance of Log-likelihood Ratio Estimation Using Para-

metric Method Based on Receiver Operating Character-

istic Curve

The receiver operating characteristic (ROC) curve is a graphical tool that plots the sensi-

tivity (i.e. probability of identifying a case when the subject is truly diseased) versus one

minus specificity (i.e. probability of identifying a case when the subject is not diseased) at

different possible thresholds. The ROC curve has been wildly applied in many fields such as

radiology and medical imaging research to evaluate the performance of the imaging devices,

examiners, and artificial intelligent algorithms. In this section, we will introduce the vari-

ance estimation for the log-likelihood ratio based on the receiver operating characteristic

(ROC) curve analysis.

2.3.1 Estimating the Score-Based Likelihood Ratio Based on ROC Curve

Denote continuous similarity scores for the i-th pair of fingerprints as Ti, where i = 1, . . . , N .

We assume that the first n observations are from imposter group and the remaining m =

N −n observations are from genuine group. The test scores Ti in the imposter and genuine

group follow distributions F0 and F1, respectively. The ROC curve plots the true positive

rate (TPR) against the false positive rate (FPR) for various thresholds. Let u be the FPR

at a given threshold c, then the ROC curve is given by

ROC(u) = 1− F1(F−1
0 (1− u)),

where u is the false positive rate, and Fj(t) := P (T ≤ t|D = j), F−1
j (u) := inf{t ∈ R :

Fj(t) ≥ u}, for j ∈ {0, 1}.

Choi [67] showed that the first derivative of the ROC curve is closely related to the

likelihood ratio (LR). Specifically, the tangent of the ROC curve at point u can be written
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as

ROC′(u) =
F ′1(F−1

0 (1− u))

F ′0(F−1
0 (1− u))

= LR(F−1
0 (1− u)),

Let t be a realized matching score. If we write t = F−1
0 (1−u), it follows that u = 1−F0(t),

and we then have the mathematical relationship between the LR and the tangent at a point

u of the ROC curve that LR(t) = ROC′(1− F0(t)). This applies to companion scores on a

continuous scale, which is commonly the case in fingerprint matching and face recognition.

The LR can be interpreted as the instantaneous change in the true positive rate in a unit

change of 1− F0(t).

2.3.2 Variance Estimation Using Parametric Methods

In a simple setting, after some monotone transformation such as the Box-Cox power trans-

formation [68], the genuine and imposter scores follow the normal distributions F1 ∼

N(µ1, σ
2
1) and F0 ∼ N(µ0, σ

2
0), respectively. The ROC curve thus is referred to as the

binormal ROC method [22]. It is worth noting that the monotone transformation should

be the same for the two groups so that the underlying ROC curve remains unchanged.

Without loss of generality, we can write the ROC curve as

ROC(u) = Φ(a+ bΦ−1(u)),

where a = (µ1 − µ0)/σ1 and b = σ0/σ1, Φ is the CDF of the standard normal distribution.

Therefore, the first derivative of the ROC curve is given by

ROC′(u) =
bφ(a+ bΦ−1(u))

φ(Φ−1(u))
,

where φ denote the PDF of the standard normal distribution. Note that this gives a function

of u instead of t. By substituting u with a placement value 1−Φ((t−µ0)/σ0), we have the
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LR under the binormal model such that

LR(t) =
bφ(a+ bΦ−1(1− Φ((t− µ0)/σ0)))

φ(Φ−1(1− Φ((t− µ0)/σ0)))
. (2.2)

It follows from the symmetry of the standards normal density that the numerator of (2.2) can

be simplified to be bφ(a+bΦ−1(Φ((−t+µ0)/σ0))), or bφ(µ1/σ1−t/µ1), and the denominator

can be simplified to φ((µ0− t)/σ0). The log-likelihood ratio (LLR) at a score t is then given

by

LLR(t) = log σ0/σ1 + log φ((µ1 − t)/σ1)− log φ((µ0 − t)/σ0).

The estimators for a and b are obtained by substituting the sample means, µ̂0 and µ̂1,

and sample standard deviations, σ̂0 and σ̂1, for the true means and standard deviations:

â = (µ̂1 − µ̂0)/σ̂1 and b = σ̂0/σ̂1. Therefore the LLR is estimated by plugging in the

corresponding estimates of mean and standard deviation.

The estimated LLR needs the estimators for the mean and variances separately for the

genuine and imposter groups. Denote the parameter vector θ = (µ1, σ1, µ0, σ0)> and its

estimator θ̂ = (µ̂1, σ̂1, µ̂0, σ̂0)>. The first order Taylor expansion on the LLR is written as

L̂LR(t) ≈ LLR(t) +∇>LLR(t)(θ̂ − θ),

where ∇>LLR = (∂LLR/∂µ1, ∂LLR/∂σ1, ∂LLR/∂µ0, ∂LLR/∂σ0)>. The variance of the

estimated LLR can be derived using the first order Taylor expansion on the parameter

vector or the multivariate Delta method,

var(L̂LR(t)) ≈ ∇>LLR(t)cov(θ̂)∇LLR(t), (2.3)

where the variance and covariance elements in cov(θ̂) follow standard expressions. We can

28



explicit expression of the derivative of LLR which is given by

∇LLR(t) =



φ′((µ1 − t)/σ1/(σ1φ((µ1 − t)/σ1))

−1/σ1 − (µ1 − t)φ′((µ1 − t)/σ1/(σ
2
1φ((µ1 − t)/σ1))

−φ′((µ0 − t)/σ0/(σ1φ((µ0 − t)/σ0))

1/σ0 − (µ0 − t)φ′((µ0 − t)/σ0/(σ
2
1φ((µ0 − t)/σ0))



>

.

The covariance matrix of θ̂ under the normal assumption is a diagonal matrix with diagonal

elements (σ2
1/m, σ

2
1/(2m − 2), σ2

0/n, σ
2
0/(2n − 2)). Furthermore, the pointwise (1 − α)%

confidence interval at score t is given by

(
L̂LR(t) + Φ−1(α/2)

√
var(L̂LR(t)), L̂LR(t)− Φ−1(α/2)

√
var(L̂LR(t))

)
.

2.3.3 Simulation Study

We generate the test scores for the genuine and imposter groups follow the normal distri-

butions F1 ∼ N(20, 9) and F0 ∼ N(10, 25), respectively. Denote m and n be the sample

sizes of the genuine group and the imposter group, respectively. We fix the total sample

size N = 10000 and variate the log sample size ratio log(m/n) from -2 to 2. For each

sample size ratio, we generate the test scores 1000 times. Let t0 be the score value such

that LLR(t0) = 0, which implies that the distributions F1 and F0 across at score t0. For

each iteration of the test score generation, we calculate the estimated LLR at t0 using the

aforementioned PE method.

We investigate the variance and the coverage of the 95% confidence interval as the log

sample size ratio changes. Denote varpe as the true variance that directly calculated using

the values of the LLR for the 1000 iterations, and let varroc be the estimated variance using

the parametric method based on the ROC curve. The coverage is defined as the ratio of the

count of the estimated LLRs that located in the estimated confidence interval to the total
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number of iterations. The results are given in Table 2.2.

From Table 2.2, we note that the result using our proposed method based on the ROC

curve is close to the true variance of the LLRs. The coverage is close to 95%, which is

the expected coverage of our confidence interval, throughout all log sampling ratios in our

study. This implies that our proposed method can accurately estimate the variance along

with the pointwise confidence interval for the LLR.

Table 2.2: Variance and confidence interval coverage for different values of log sampling
ratio.

log(m/n) varpe varroc coverage (%) log(m/n) varpe varroc coverage (%)
(×10−3) (×10−3) (×10−3) (×10−3)

-1.9 2.45 2.55 94.3 0.1 0.83 0.83 95.1
-1.8 2.26 2.29 94.6 0.2 0.82 0.81 95.2
-1.7 2.09 2.06 94.4 0.3 0.81 0.82 94.9
-1.6 1.94 1.93 95.0 0.4 0.81 0.81 95.1
-1.5 1.80 1.73 95.3 0.5 0.81 0.81 95.2
-1.4 1.67 1.59 95.3 0.6 0.81 0.82 95.4
-1.3 1.55 1.48 95.4 0.7 0.82 0.83 94.8
-1.2 1.46 1.37 95.6 0.8 0.83 0.84 94.6
-1.1 1.37 1.32 95.9 0.9 0.85 0.86 95.0
-1.0 1.29 1.26 95.9 1.0 0.87 0.88 94.9
-0.9 1.21 1.19 95.1 1.1 0.90 0.91 95.0
-0.8 1.15 1.14 95.0 1.2 0.93 0.94 94.7
-0.7 1.09 1.10 94.9 1.3 0.96 0.98 95.0
-0.6 1.04 1.04 94.9 1.4 1.00 1.00 95.2
-0.5 0.99 0.98 95.5 1.5 1.05 1.06 95.7
-0.4 0.96 0.94 95.6 1.6 1.10 1.11 95.3
-0.3 0.92 0.91 95.8 1.7 1.10 1.20 95.1
-0.2 0.89 0.88 95.3 1.8 1.22 1.27 95.0
-0.1 0.87 0.86 95.1 1.9 1.30 1.34 94.2
0.0 0.85 0.84 95.3 2.0 1.38 1.43 95.1

2.4 Repeatability and Reproducibility Based on Real Bio-

metric Data

In this section, we investigate the impact of sample size ratios on the LLR calculation

from the existing methods. The genuine and imposter scores from facial recognition and
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fingerprint matching are used to calculate the LLRs with different sample size ratios.

2.4.1 Facial Recognition Data and Results

We use a facial recognition data set, and apply PE, LRE and KDE to investigate the

repeatability and reproducibility of these methods. For the PE method, we use the sample

means and sample variances of each training data to estimate the means and variances

for genuine and imposter groups. We generate two normal distribution density functions

base on the estimated parameters. Base on the estimated density functions, we calculate

LLR values for each data in the test group. We then observe the number of miscounts as

an evaluation of this method. The biometric images were frontal face images taken with

a digital single-lense reflex camera. The similarity scores were extracted from the picture

comparison, and used in our study as the score. The data set has three categories, which

are “good”, “bad”, and “ugly”, based on the quality of the images [69]. We only consider

the category “good” in our study. The comparison scores represent measurement of the

characteristic difference, and a smaller distance indicates higher similarity. So a low score

represent a pair of pictures with high similarity. Then a genuine comparison score in genuine

group, measured by comparing two pictures of the same individual, is generally a smaller

value than an imposter score, which is measured by comparing pictures of different people.

Scores in both groups have extremely large outliers, so we remove all the outlier samples

before applying the methods. We use normal distributions for the genuine and imposter

comparison scores and obtain the sample mean of 15.2 and the sample standard deviation of

4.6 for the genuine group, and the sample mean of 38.9 and the sample standard deviation

of 4.9 for the imposter group. We randomly select 2000 samples from the genuine group,

and various numbers of samples from imposter group

Figure 2.7 shows the LLR values for PE, KDE, and LRE methods when the sample size

ratio varies. We see that both PE and KDE have good repeatability since they are not sensi-

tive to varying sample size ratios. This is similar to our simulation findings which also show

the repeatability of PE and KDE. The repeatability of the LRE method is unsatisfactory
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since the LLR from the method takes on a wide range of values. For the reproducibility,

the PE method generates much larger LLR values than KDE and LRE methods. For the

variance and confidence band, we note that the variance and the width of the confidence

interval for the three methods are close. The LLR from PE and KDE methods takes on all

positive values, while the LLR from the LRE method takes on both positive and negative

values. If one uses zero as a decision threshold to decide whether the score 25 comes from

H1 or H0, both PE and KDE can arrive at the same conclusion that the score of 25 likely

supports H1 with all positive LLR values. With LLR value ranging from negative values to

positive values, the decision by LRE depends on the sample size ratio. When the ratio is

as small as -2, the LRE concludes that the score of 25 supports H0, and with the ratio is

as large as 2, the LRE supports H1 instead.
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Figure 2.7: Estimated LLR with confidence interval in facial recognize data using PE, LRE,
and KDE.
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2.4.2 Fingerprint Matching Data and Results

We also apply PE, LRE, and KDE to a set of fingerprint comparison scores to study their

reproducibility and repeatability for fingerprint recognition. The genuine and impostor com-

parison scores were generated by applying a fingerprint comparison algorithm in NIST Bio-

metric Image Software (https://www.nist.gov/services-resources/software/nist-

biometric-image-software-nbis) to National Institute of Standards and Technology Spe-

cial Database 4. Genuine scores were obtained by comparing the two rolled fingerprints of

the same finger, and imposter scores were obtained by comparing rolled fingerprints from

two different fingers. The scores in the genuine group are generally greater than the score

in the imposter group. The sample means and sample standard deviations are 350.9 and

293.6 for the genuine group, and 7.5 and 2.5 for the imposter group. In our computation of

the LLR values using all three methods, we randomly select 4000 genuine scores and various

numbers of imposter scores, so that the log sample size ratio ranges from -3 to 3 by the

increment of 0.1. When the sample size ratio changes, we repeat the sampling procedure to

select genuine and imposter scores before the LLR methods are applied. We calculate the

LLR at the score of 10 with all the three methods.

Figure 2.8 shows the LLR values for PE, KDE, and LRE methods when the size ratio

varies. In terms of the repeatability, LLR values from PE and KDE methods has small

fluctuation when the sample size ratio varies although LLR values from these two methods

differ by around 1. The confidence interval also reveals that these two methods have a close

result. All the LLR values from these methods are negative. If one uses zero as a decision

threshold to decide whether the score 10 comes from H1 or H0, all three methods should

arrive at the same conclusion that the score of 10 likely supports H0 with all negative LLR

values. Again, the LLR values from LRE have a linear relationship with the log sample

size ratio, and thus, the repeatability of the LRE is unsatisfactory. As the log sample size

is close to -2, the LLR values from KDE and LRE are similar, indicating reproducibility

between the two methods only at this point. The LLR values vary in other sample size

ratios, and thus the reproducibility among all three methods are poor.
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Figure 2.8: Estimated LLR with confidence interval in fingerprint matching data using PE,
LRE, and KDE

Although the normal distribution assumption in the PE method for face and finger com-

parison scores may not be valid, it was useful for demonstrating the issues of repeatability

and reproducibility of PE, KDE and LRE methods for estimating LLR, or at a minimum,

for illustrating how to evaluate the repeatability and reproducibility of a method.
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Chapter 3: Order-Constrained ROC Regression with

Application to Facial Recognition

3.1 Introduction

The receiver operating characteristic (ROC) curve is widely used to assess discriminative

accuracy of two groups based on a continuous score. The ROC curve graphs the trade-off

between sensitivity and specificity in dependence of the decision threshold associated with

the score. However, the classification accuracy of diagnostic tests might be impacted by

covariates of subjects. The diagnostic accuracy of medical tests is analogous to identification

accuracy in biometric traits such as faces and fingerprints. The latter are critical in forensic

evidence interpretation. Studies in fingerprint and face recognition have been conducted to

systematically quantify the accuracy of forensic examiners and computer algorithms.

The error rates associated with binary decisions are given by the false accept rate (FAR),

i.e., the probability of incorrect individualization on imposter pairs, and the false rejection

rate (FRR), i.e., the probability of incorrect exclusion from the same source. The FAR

and the true accept rate (TAR) are used in analogy to the FPR and TPR, respectively, in

medical studies. The error rates and the ROC curves from the aforementioned latent print

and face recognition studies are commonly based on a population of subjects with varying

demographics. The latter as well the quality of biometric measurements play an important

role in identification accuracy.

Another important property of biometric data is that genuine scores are usually larger

than imposter scores in the sense of a stochastic ordering [42, 43]. In biometric evaluation,

the stochastic ordering assumption makes sense because the genuine scores is always larger

than the imposter scores.
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The rest of this chapter is organized as follows: Section 3.2 introduces the covariate-

specific ROC curve and order-constrained modeling. Section 3.3 discusses estimation of

covariate-specific ROC curves under the location-scale model with linear location functions

subject to order constraints. We then derive statistical properties of the proposed order-

constrained least squares estimator in Section 3.4. In Section 3.5 we present the results of

simulation studies under different settings. We also present a real data analysis in Section 3.6

in which the proposed method is applied. The conclusion of this chapter and the discussion

about potential directions of future research are provided in Chapter 5. All proofs and

additional simulation results are contained in the Appendix.

3.2 Order-Constrained Modeling for the Covariate-Specific

ROC Curve

In this section, we first provide background on the covariate-specific ROC curve, specifi-

cally the location-scale model [34], before introducing and motivating an order-constrained

modification of this model to be studied in greater depth in Section 3.3. Along the way, we

introduce essential notation used throughout this chapter.

3.2.1 Covariate-Specific ROC for Source Matching

The accuracy of biometric systems or humans in source matching problems can be assessed

with the ROC curve when the decision scores are ordinal or continuous. Source identification

problems aim to determine the link between the known evidence (e.g., suspect) and an

unknown evidence (e.g., evidence from the crime scene). Let T denote the real-valued

random variable associated with a continuous biometric measurement (score) for assessing

the above two propositions, and let further D be a {0, 1}-valued status variable, with

D = 1 indicating a genuine pair (H1 is true), and D = 0 indicating an imposter pair (H0

is true). Let F0(t) = P (T ≤ t|D = 0) and F1(t) = P (T ≤ t|D = 1), t ∈ R, denote

the cumulative distribution functions of T conditional on D = 0 and D = 1, respectively,
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and let further Sj(t) = 1 − Fj(t), j ∈ {0, 1}, and F−1
j (u) := inf{t ∈ R : Fj(t) ≥ u}, j ∈

{0, 1}, denote the corresponding survivor and quantile functions, respectively. The receiver

operator characteristic (ROC) curve associated with T and D is then defined by

ROC(u) = 1− F1(F−1
0 (1− u)), u ∈ (0, 1),

where the argument u represents a false accept rate (FAR), so that ROC(u) returns the

true accept rate (TAR) at u.

Next, we consider the situation when each measurement of T is accompanied by a set

of covariates X = (X1, . . . , Xp)
> that may represent subject demographics, information on

quality of the measurement on the process, etc. In this case it is often of interest to examine

how the ROC curve varies conditional on observed covariates X = x. Accordingly, we define

the covariate-specific ROC curve by

ROCx(u) = 1− F1,x(F−1
0,x(1− u)), u ∈ (0, 1), (3.1)

where Fj,x(t) := P (T ≤ t|D = j,X = x), F−1
j,x (u) := inf{t ∈ R : Fj,x(t) ≥ u}, for j ∈ {0, 1}.

In the sequel, we discuss modeling and estimation of the covariate-specific ROC curve (3.1).

3.2.2 Location-Scale Model

Various modeling strategies have been proposed for the covariate-specific ROC curve (3.1)

[30,32–34]. In this chapter, we follow the location-scale model proposed in Duan & Zhou’s

paper [35] that is particularly convenient in view of its modular structure and connection to

conventional regression modeling. In this model, the score T is modeled as a location-scale

transformation of a base distribution that only depends on the status variable D. The

location-scale transformation is a function of both the covariates X and the status variable
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D. Specifically, in its most general form, the model is given by

T = µ(X,D;β∗) +Dσ1(X;α∗1)e1 + (1−D)σ0(X;α∗0)e0. (3.2)

The constituents of the above model equation are as follows:

• e0 and e1 are zero-mean and unit variance random variables representing the base

distributions for D = 0 and D = 1, respectively.

• µ(X,D;β∗)is a location function depending on X,D, and an unknown parameter β∗.

• σ0(X;α∗0) and σ1(X;α∗1) are non-negative scale functions depending on X and an

unknown parameter α∗0 and α∗1, respectively.

It is easy to derive that model (3.2) implies the following for the covariate-specific ROC

curve conditional on {X = x} [20]:

ROCx(u) = 1−G1

(
σ0(x;α∗0)

σ1(x;α∗1)

(
G−1

0 (1− u)− µ(x, 1;β∗)− µ(x, 0;β∗)

σ0(x;α∗0)

))
, u ∈ (0, 1),

(3.3)

where G0 and G1 denote the CDFs of e0 and e1, respectively.

Since µ(X,D;β∗) specifies the conditional mean of T given X and D, model (3.2)

is directly linked to regression modeling. In the simplest setting, X represents a single

continuous covariate and µ is the following linear function in β∗ = (β∗0 , β
∗
D, β

∗
X , β

∗
XD)>:

µ(X,D;β∗) = β∗0 + β∗DD + β∗XX + β∗XDXD. (3.4)

Equivalently, the location is modeled via separate straight lines for the two groups defined

by the status variable D whose intercept-slope pairs are given by (β∗0 , β
∗
X) and (β∗0 +β∗D, β

∗
X+

β∗XD), respectively. If the errors of those two regressions are additionally assumed to follow

two normal distributions N(0, σ2) and N(0, τ2) for D = 0 and D = 1, respectively, i.e.,
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σ0(X;α∗0) ≡ σ and σ1(X;α∗1) ≡ τ and e0 ∼ e1 ∼ N(0, 1) in terms of (3.2), the covariate-

specific ROC curve (3.1) results as

ROCx(u) = 1− Φ

(
σ

τ

(
Φ−1(1− u)− ∆∗(x)

σ

))
, ∆∗(x) := β∗D + β∗XDx. (3.5)

which is a specific bi-normal ROC curve [22]. In (3.5), Φ denotes the CDF of the N(0, 1)-

distribution.

The above example highlights the modular structure of (3.2) and the fact that the

location-scale model integrates popular parametric models for the ROC curve like the bi-

normal model. Within model (3.2), it is also straightforward to avoid explicit parametric

assumptions regarding the distribution of T even though approximate normality of the lat-

ter can often be ensured in practice by suitable data transformations such as the Box-Cox

power transformation [70]. In fact, the location-scale model offers a convenient compromise

between fully non-parametric and parametric models. It uses parametric models for the

location and scale functions which can be estimated by estimating equations [19], while

leaving the base distributions, or equivalently, the distributions for the errors of the regres-

sion of T on X and D unspecified. Given estimators for the location and scale functions,

the covariate-specific ROC can be estimated from the residuals of that regression, which

yields empirical CDFs Ĝ0 and Ĝ1 to be plugged into (3.3).

3.2.3 Order-Constrained Modeling

It is often reasonable to assume that the score T is stochastically larger in the population

D = 1 than in the population D = 0, irrespective of covariates. A necessary condition

for stochastic ordering conditional on {X = x} is ordering in mean (existence provided),

i.e., E[T |D = 1, X = x] ≥ E[T |D = 0, X = x], or referred to as the stochastic precedence

ordering when comparing normal distributions [45–47,71]. As mentioned above, we consider

stochastic ordering uniformly in x ∈ X , where X ⊆ Rp is the range of the vector of
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covariates X. In the context of the location-scale model (3.2), this translates to µ(x, 1;β∗) ≥

µ(x, 0;β∗) for all x ∈ X .

Linear location functions. In this, we consider the basic case in which β∗ = (θ∗0, η
∗
0,

θ∗>, η∗>)>, µ(x, 0;β∗) = θ∗0 + x>θ∗, and µ(x, 1;β∗) = η∗0 + x>η∗, i.e., the location func-

tions are linear functions in unknown regression parameters θ∗0, η
∗
0 ⊂ R and θ∗,η∗ ⊆ Rp.

This corresponds to separate linear regressions of T on X according to the status vari-

able D, or equivalently, a single regression model with regressors X, D, and X ∗ D :=

(X1 ·D, . . . ,Xp ·D)>, i.e., the full set of interaction terms between X and D; the example

(3.4) in the previous subsection corresponds to p = 1. Accordingly, with a slight abuse of

notation, β∗ can be re-parameterized as β∗ = (β∗0 , β
∗>
X , β∗D, β

∗>
XD)> with

β∗0 = θ∗0, β∗X = θ∗, β∗D = η∗0 − θ∗0, β∗XD = η∗ − θ∗.

In this setting, the ordering constraint µ(x, 1;β∗) ≥ µ(x, 0;β∗) for all x ∈ X becomes

β∗D + β∗>XDx ≥ 0 for all x ∈ X .

To ensure that estimation subject to the above constraint remains computationally tractable,

it is appropriate to replace X by a hyperrectangle X ⊆ B = [l1, u1] × . . . × [lp, up], where

lj and uj are lower and upper bounds on the range of the j-th covariate, j = 1, . . . , p. By

convexity, the constraint β∗D + β∗>XDx ≥ 0 for all x ∈ B is then equivalent to

β∗D + β∗>XDv` ≥ 0, ` = 1, . . . , q = 2p, (3.6)

where the {v`}q`=1 denote the q = 2p vertices of B. Eq. (3.6) can in turn be expressed
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equivalently as

Aβ∗ ≥ 0, A :=


0p+1 1 v>1

...
...

...

0p+1 1 v>q

 , (3.7)

where A has d = 2(p + 1) columns, and for a vector u = (uj), the relation u ≥ 0 is

understood component-wise, i.e., u ≥ 0⇔ uj ≥ 0 for all j.

Example 1. Consider a single covariate (p = 1) with range X = [0, 1]. In this case, B has

two vertices given by v1 = 0 and v2 = 1. The matrix A in (3.7) thus becomes

A =

0 0 1 0

0 0 1 1



which corresponds to the constraints β∗D ≥ 0 and β∗D + β∗XD ≥ 0.

Example 2. Consider a categorical covariate having L levels. Using an encoding by L − 1

dummy variables, we note that

X = {(0, . . . , 0)>︸ ︷︷ ︸
(L−1) times

, e1, . . . , eL−1}, e` := (0, . . . , 0, 1︸︷︷︸
position `

, 0, . . . , 0)>, ` = 1, . . . , L− 1.

Accordingly, the matrix A is given by

A =



0L 1 0 . . . 0

0L 1 e>1
...

...
...

0L 1 e>L−1


,
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which corresponds to the constraints

β∗D ≥ 0, β∗D + βD∗` ≥ 0, ` = 1, . . . , L− 1, (3.8)

where βD∗` denotes the regression coefficient of the interaction between D and the `-th

dummy variable, ` = 1, . . . , L− 1.

Example 3. Consider the combination of the two previous examples, i.e., one continuous

covariate with range [0, 1] and one categorical covariate having L levels. Compared with

Example 2, the number of constraints simply doubles according to the two vertices of [0, 1]:

in addition to (3.8), we obtain the constraints

β∗D + β∗XD ≥ 0, β∗D + β∗XD + βD∗` ≥ 0, ` = 1, . . . , L− 1.

The matrix A is obtained analogously, and hence omitted for the sake of brevity.

The above three basic examples illustrate how the order constraint translates into simple

linear inequality constraints. Considerably more complex configurations of covariates can

be treated using the same underlying principles, even though it has to be pointed out that

the number of covariates p is assumed to be moderate, since the resulting number of linear

inequality constraints generally grows exponentially in p. As suggested by a reviewer, an

alternative for larger values of p is to impose the constraints in (3.6) for a given set of

points V ⊂ X rather than for all 2p vertices of B. A natural candidate for V is the set

of x’s observed in a given sample, or a suitable subset thereof. Note, however, that this

alternative approach only ensures that the constraint holds for the convex hull of V which

does not necessarily contain X .
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3.3 Inference

Building on the previous subsection, we next discuss estimation of covariate-specific ROC

curves under the location-scale model with linear location functions subject to the order

constraint discussed in §3.2.3.

3.3.1 Estimation of Linear Location Functions Subject to Ordering Con-

straints

Let us recall the regression perspective on the location-scale model (3.2) discussed previ-

ously. Assuming linear location functions as in the previous subsection §3.2.3 and constant

variances within the two groups defined by D, i.e., σ0(X;α∗0) ≡ σ and σ1(X;α∗1) ≡ τ , the

most straightforward approach of estimating the parameter β∗ given a sample of (score, sta-

tus, covariate)-triples (Ti, Di,xi)
N
i=1 is weighted least squares estimation as stated in (3.9)

below. Without loss of generality, it is assumed that the first n observations have status

D = 0, while the remaining m = N − n observations have status D = 1. We thus consider

min
β∈Rd

1

2
‖W1/2(y −Xβ)‖22, W = diag

(
1/σ2, . . . , 1/σ2︸ ︷︷ ︸

n times

, 1/τ2, . . . , 1/τ2︸ ︷︷ ︸
m times

)
. (3.9)

Here, we have y = (Ti)
N
i=1 for the response, Xi• = (1, x>i , Di, (xi ∗ Di)

>) denotes the

i-th row of the N × d design matrix X, i = 1, . . . , N , and β = (β0, β
>
X , βD, β

>
XD)> has

d = 2(p + 1) components. Throughout the remainder of the , we assume that X is non-

singular. The order constraint in §3.2.3 can be incorporated by imposing suitable linear

inequality constraints, i.e.,

min
β∈Rd

1

2
‖W1/2(y −Xβ)‖22 subject to Aβ ≥ 0, (3.10)
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which is a quadratic program. Using Lagrangian duality in §5 of Boyd’s book [72], the dual

of (3.10) is given by Liew [73]

min
λ∈Rq+

1

2
λ>Hλ+ λ>Aβ̂WLS, (3.11)

where H = A(X>WX)−1A> and β̂WLS = (X>WX)−1X>Wy denotes the weighted least

squares estimator, i.e., the minimizer of (3.9). Denote by β̂ the minimizer of the primal

optimization problem (3.10), and by λ̂ the minimizer of the dual optimization problem

(3.11). The Karush-Kuhn-Tucker (KKT) optimality conditions [72] for (3.10) imply that β̂

can be obtained from λ̂ via the following relation:

β̂ = β̂WLS + (X>WX)−1A>λ̂. (3.12)

This suggests the following scheme for computing β̂:

1. Compute the weighted least squares estimator β̂WLS.

2. If Aβ̂WLS ≥ 0, return β̂ = β̂WLS. Otherwise, compute the minimizer λ̂ of the dual

problem (3.11) via a non-negative least squares solver [74,75].

3. Given λ̂, compute β̂ from (3.12).

Given the availability of numerous highly scalable solvers for non-negative least squares

problem that can easily handle thousands of variables, computation becomes straightfor-

ward. In the case of a single continuous covariate (cf. Example 1 in §3.2.3), λ̂ even has a

closed form solution.

Remark. In practice, σ2 and τ2 in W are not known, and thus need to be estimated

based on the residuals of an ordinary least squares fit , cf. Eq. (3.14) below. As shown

in the Appendix, given the specific properties of X and W under consideration here, the

minimizer of the unconstrained weighted least squares criterion (3.9) equals the ordinary σ2
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and τ2 are estimated. However, a corresponding property does not hold for the constrained

counterpart (3.10), i.e., the constrained least squares solution and the constrained, weighted

least squares solution differ in general.

3.3.2 Estimation of Covariate-Specific ROC Curves

In this subsection, we discuss estimation of the covariate-specific ROC curve based on the

location-scale model (3.2) given the estimator β̂ in (3.12). We present both a non-parametric

and parametric approach. As above, we suppose that the scale functions are constant within

the groups defined by D, i.e., σ0(X;α∗0) ≡ σ and σ1(X;α∗1) ≡ τ .

Non-parametric approach. Define ε0 = σe0 and ε1 = τe1, and denote the corresponding

CDFs by H0(·) = G0(·/σ) and H1 = G1(·/τ), respectively. Accordingly, model (3.2) can be

written as

T = µ(X,D;β∗) +Dε1 + (1−D)ε0.

Substituting µ(·, ·;β∗) by µ(·, ·; β̂), we set

ε̂i = (1−Di)(Ti − µ(xi, 0; β̂)) +Di(Ti − µ(xi, 1; β̂)), i = 1, . . . , N, (3.13)

and estimate H0 and H1 by their empirical counterparts

Ĥ0(e) =
1

n

n∑
i=1

I(ε̂i ≤ e), Ĥ1(e) =
1

N − n

N∑
i=n+1

I(ε̂i ≤ e), e ∈ R,

where we recall that Di = 0, 1 ≤ i ≤ n, and Di = 1 for n+ 1 ≤ i ≤ N . Plug-in of Ĥ0, Ĥ1

and µ(·, 1; β̂)− µ(·, 0; β̂) into (3.3) yields

R̂OCx(u) = 1− Ĥ1(Ĥ−1
0 (1− u) + µ(x, 0; β̂)− µ(x, 1; β̂)),
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where Ĥ−1
0 (u) := inf{e ∈ R : Ĥ0(e) ≥ u}.

Parametric approach. Alternatively, G0 and G1 may be specified in terms of an explicit

parametric model with G0(·) = G(·/σ) and G1(·) = G(·/τ), where the choice G(·) = Φ(·)

would correspond to a binormal model. In this case, σ and τ can be estimated by the

empirical standard deviations of the residuals (3.13):

σ̂2 =
1

n

n∑
i=1

ε̂2i , τ̂2 =
1

N − n

N∑
i=n+1

ε̂2i . (3.14)

The latter can be plugged into (3.3) along with µ(·, 1; β̂)−µ(·, 0; β̂) to obain an estimator of

the covariate-specific ROC curve. Specifically, in the binormal case (cf. (3.5)) one obtains

R̂OCx(u) = 1− Φ

(
σ̂

τ̂

(
Φ−1(1− u)− ∆̂(x)

σ̂

))
, ∆̂(x) := β̂D + β̂>XDx. (3.15)

3.4 Statistical Properties

In this section, we present basic statistical properties of the order-constrained least squares

estimator introduced in §3.3.1 for fixed (non-random) covariates under a bi-normal model

with linear location functions, i.e.,

T |D = 0, X = x ∼ N(β∗0 +β∗>X x, σ2), T |D = 1, X = x ∼ N(β∗0 +β∗D+(β∗X+β∗XD)>x, τ2).

(3.16)

Note that for any β = (β0, β
>
X , βD, β

>
XD)>, we have

Xβ = ZLβ, where Z =

1n Z0 0 0

0 0 1m Z1

 , L =

Ip+1 0

Ip+1 Ip+1

 . (3.17)

46



In the above equation Z0 ∈ Rn×p has rows Xi•, i = 1, . . . , n, corresponding to the covariates

of subjects with status D = 0, and Z1 ∈ Rm×p has rows Xi•, i = (n + 1), . . . , N , corre-

sponding to the covariates of subjects with status D = 1. The relations (3.12), (3.16), and

(3.17) imply the following result for the distribution of the order-constrained least squares

estimator β̂.

Proposition 3.1. Suppose that (3.16) holds. Consider the minimizer β̂ of the order-

constrained weighted least squares problem (3.10) with constraint matrix A. We have that

β̂
D
= β∗ + σ

(
ζ√
N

+ ΩA> argmin
λ∈Rq+

{
λ>
(

∆∗

σ
+

ξ√
N

)
+

1

2
λ>AΩA>λ

})
, (3.18)

where
D
= denotes equality in distribution, ∆∗ = Aβ∗ and

ζ ∼ Nd (0,Ω) , ξ = Aζ ∼ Nq(0,AΩA>), Ω =

 N
n C−1

0 −N
n C−1

0

−N
n C−1

0
N
n C−1

0 + N
m ·

τ2

σ2 C−1
1

 .

According to (3.17), the matrices C0 and C1 are given by

C0 =
1

n
[1n Z0]>[1n Z0], C1 =

1

m
[1m Z1]>[1m Z1].

Proposition 3.1 asserts that the distribution of the order-constrained least squares estimator

β̂ differs from that of the unconstrained estimator β̂WLS = β̂LS (cf. remark at the end of

§3.3.1) by one extra term, whose distribution resembles that of truncated Gaussian random

variables. To establish that connection, substitute AΩA> inside the “argmin” in (3.18) by

the identity matrix. With that substitution, it easy to see that the minimizer λ̂ results as

λ̂k = max{N−1/2ξk −∆∗k/σ, 0}, ξk ∼ N(0, 1), k = 1, . . . , q.
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Assuming that ∆∗ ≥ 0 (i.e., the order constraint holds true), Proposition 3.1 thus also

immediately implies that the bias of β̂ is at most of the order N−1/2. Depending on

the magnitude of the entries of ∆∗/σ, the bias can be considerably smaller, which is an

implication of the corollary below.

Corollary 3.1. Under the conditions of Proposition 3.1, we have

P (β̂ = β̂LS) ≥ 1−
q∑

k=1

exp

(
−N ·

∆∗2k
2σ2 · a>k Ωak

)
,

where ak = [1 v>k ]> with vk as in (3.7), k = 1, . . . , q, and Ω as defined in Proposition 3.1.

The corollary confirms the intuition that in certain regimes the order-constrained estimator

β̂ coincides with the ordinary least squares estimator β̂LS with overwhelming probability.

• Large number of samples. As the number of samples in both populations defined by

the status variable D increases, the least squares estimator the distribution of β̂LS

concentrates more and more tightly around the true parameter β∗. Since the latter

satisfies the order constraint by assumption, it is intuitive that this carries over to

β̂LS to an increasing extent as the sample size grows.

• Large signal. The ratio mink ∆∗2k /σ
2 can be interpreted as strength of evidence for the

order constraint. As this ratio increases, the probability that the sampling variation

of β̂LS leads to a violation of the order constraint becomes negligible.

Corollary 3.1 indicates that the order constraint only has an impact in case of small to

moderate sample sizes and small to moderate differences in the conditional means E[T |D =

1, X = x] and E[T |D = 0, X = x]. Otherwise, the order constraint is satisfied with

overwhelming probability even if it is not imposed in estimation.

The second corollary of Proposition 3.1 yields a more explicit expression for the order-

constrained estimator in the case of a single covariate (p = 1) with range X = [0, 1].
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Corollary 3.2. Under the conditions of Proposition 3.1, suppose additionally that p = 1

and X = [0, 1], i.e., X is a single continuous covariate with range [0, 1]. We then have

β̂
D
= β∗ + σζ + σΩA>

{
G−1ν · I

(
G−1ν ≥ 0

)

+

 ν1
G11

0

 I

(
ν1 > 0,

G12ν1

G11
− ν2 > 0

)

+

 0

ν2
G22

 I

(
ν2 > 0,

G12ν2

G22
− ν1 > 0

)}
,

with ζ,Ω as in Proposition 1, ν = −
(

∆∗

σ + 1√
N
ξ
)

, and ξ = (ζ3, ζ3 + ζ4)> ∼ N2(0,G),

where the entries of the 2-by-2 matrix G are given by

G11 =
N

n

(
x̄2

s2
x

+ 1

)
+
N

m
· τ

2

σ2

(
z̄2

s2
z

+ 1

)
, G12 = G11 −

N

n

x̄

s2
x

− N

m
· τ

2

σ2

z̄

s2
z

,

G22 = 2G12 −G11 +
N

n

1

s2
x

+
N

m
· τ

2

σ2

1

s2
z

.

The quantities x̄, s2
x and z̄, s2

z are in turn given by

x̄ =
1

n

n∑
i=1

xi, s2
x =

1

n

n∑
i=1

(xi − x̄)2, z̄ =
1

m

N∑
i=n+1

xi, s2
z =

1

m

N∑
i=n+1

(xi − z̄)2.

This expression enables extremely rapid sampling from the distribution of β̂ (106 samples

in less than 0.1 seconds on a 2016 MacBook Pro) and in turn highly accurate numerical

evaluation of important statistical properties including subsequent use in parametric ROC

curve estimation (cf. §3.3.2) over grids of quantities of interest. The plots in Figure 3.1 were

generated in this fashion. Specifically, we set n = m = N/2 for varying N and σ2 = τ2 = 1,
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where the choice 1 can be made without loss of generality if the interest concerns the ROC

curve since the latter only depends on the ratio

∆∗

σ
=

1

σ

µ(x = 0, D = 1;β∗)− µ(x = 0, D = 0;β∗)

µ(x = 1, D = 1;β∗)− µ(x = 1, D = 0;β∗)

.

The matrix Ω is chosen as the population version corresponding to a uniform distribution

of X on [0, 1] for both groups D = 0 and D = 1, in which case it is easy to compute that

AΩA> =

16 −8

−8 16

.

With the above choices, the distribution of ∆̂ = Aβ̂ only varies with ∆∗ ∈ R2
+ and the

total sample size N . For simplicity, we let ∆∗ = δ · (1 1)>, for δ > 0.

Figure 3.1 confirms that order-constrained estimation differs visibly from unconstrained

estimation if N or the “signal” (i.e., the magnitude of the entries of ∆∗/σ, here quantified by

δ) is small. In that case, order-constrained estimation yields noticeable benefits by trading

a slight bias for significant reductions in variance – by a factor up to 5. The order constraint

can thus be a valuable addition in the small sample size/small signal regimes.

It is natural to expect that the order-constrained estimator is guaranteed to yield lower

mean squared estimation error than the unconstrained estimator whenever the constraint

holds, i.e., Aβ∗ ≥ 0. A theoretical result of this flavor is presented in the Appendix.

3.5 Simulation Studies

In this section, we outline the design of our simulation studies and their evaluation in terms

of bias and mean square error. We discuss how the results vary with the chosen error

distributions, sample sizes, location and scale differences across the two populations, and

50



0 50 100 150 200 250

sample size

0.2

0.4

0.6

0.8

1

E
[δ̂
]

δ : 0.2

δ : 0.5

δ : 1

0 50 100 150 200 250

sample size

0.2

0.4

0.6

0.8

1

E
[δ̂
]

δ : 0.2

δ : 0.5

δ : 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

δ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v
a

ri
a

n
c
e

 r
a

ti
o

Sample Size = 50

0 50 100 150 200 250

sample size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v
a
ri
a
n
c
e
 r

a
ti
o

δ : 0.2

δ : 0.5

δ : 1

Figure 3.1: (T,L): Expectation of δ̂ = ∆̂2 as a function of δ for fixed sample size N = 50;

straight line corresponds to zero bias. (T,M): Expectation of δ̂ as a function of N for fixed

δ ∈ {0.2, 0.5, 1}; horizontal line corresponds to zero bias. (T,R): Expectation of R̂OC(u)

based on (3.15), u ∈ [0, 1] for δ = 0.2, N = 30. (B,L): Variance ratio var(δ̂)/var(δ̂LS) as a

function of δ for fixed N , where δ̂LS denotes the estimator based on (weighted) least squares
without constraint. (B,M): Variance ratio as a function of N for fixed δ ∈ {0.2, 0.5, 1}.
(B,R): Pointwise variance ratios for the ROC curve for δ = 0.2, N = 30.
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assess the performance of the method proposed in this .

Let Xi, Di, and Ti be the covariate, binary status, and score of the i-th subject, re-

spectively, where i = 1, 2, . . . , N . Let further eij be zero mean random error, 1 ≤ i ≤ N ,

j ∈ {0, 1}. Data are generated according to

Ti = 1 +Xi +Di × ψ +Xi ·Di + ei1Di ×
√
φ+ ei0(1−Di), (3.19)

where Xi ∼ U(0, 1), Di ∼ Bernoulli(0.5). The parameter ψ is the location parameter and

φ is the scale parameter, where ψ ∈ (0,∞], φ ∈ (0,∞].

The following four settings are considered for the error terms {eij}:

• Study 1: {ei0} and {ei1} are i.i.d. from the N(0, 1)-distribution.

• Study 2: {ei0} and {ei1} are i.i.d. from a contaminated normal distribution 0.95N(0, 1)

+ 0.05N(0, 100).

• Study 3: {ei0} and {ei1} are i.i.d. from the t-distribution with four degrees of freedom

t(4).

• Study 4: {ei0} and {ei1} are from centered log-normal distribution with variance

[exp(0.52)− 1] exp(0.52) ≈ 0.365.

Note that the underlying mean difference ∆∗(x) given {X = x} is equal to

∆∗(x) = E[T |D = 1, X = x]−E[T |D = 0, X = x] = ψ + x.

The underlying covariate-specific ROC at u ∈ (0, 1) and X = x is given by

ROC∗x(u) = 1−G
(

1√
φ

(
G−1(1− u)−∆∗(x)

))
,

where G denotes the CDF of the {ei0} and the {ei1}. Let MSE1 and MSE2 denote the

mean squared estimation error without and with constraint, respectively, and let further

RE represent the relative efficiency, which is given by RE = MSE1/MSE2; an RE exceeding
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one indicates better performance with the order constraint. Our results are based on 1000

iterations. The results for the mean difference are for x = 0.5, and the results for the

covariate-specific ROC are for x = 0.5 and FAR u = 0.5. A more comprehensive account

including graphical representations, results on other combinations of x and u, as well as the

case of multiple (p > 1) correlated covariates is contained the Appendix.

3.5.1 Bias and MSE of the Mean Difference and Covariate-Specific ROC

Curves

In this subsection, we investigate the bias and the MSE in estimating ∆∗(x) and ROC∗x(u).

Specifically, we fix x = 0.5 for the mean difference, and we fix u = 0.5 and x = 0.5 for the

covariate-specific ROC curves. Figure 3.2 depicts the results in studies 1 and 3; the complete

simulation results can be found in §A.5.2 of the Appendix. In Figure 3.2, the bias of the

constrained method exceeds slightly that without constraint. On the other hand, the MSE

of the constrained method is smaller, which offsets the slight increase in bias. Consequently,

the relative efficiency (RE) is larger than one throughout. As the sample size increases, the

RE get closer to one, which is anticipated in light of Corollary 3.1. Furthermore, it can be

seen that gains in efficiency persist for a wide range of values for φ.

3.6 Real Data Example

The proposed method is illustrated through its application to the Face Recognition Vendor

Test (FRVT) 2006 by [76]. The data from FRVT have been used on the accuracy of

existing facial recognition algorithms by integrating demographic factors [77,78], and on the

relationship between image quality and classification accuracy [39]. Although those papers

are among the very few in the literature discussing the impact of categorical covariates such

as gender, race, and image quality on the accuracy of facial recognition tests, the potential

influence of continuous covariates such as age could not be taken into account with the

methods in those papers.
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Figure 3.2: Selected results of the simulation study. Left column: bias, middle: mean
squared error, right: relative efficiency (values larger than 1 correspond to better perfor-
mance). w/o: linear regression without order constraint; w/: linear regression with order
constraint.

54



We start by laying out the notations formally. We are given scores Sij = s(Ii, Ij)

quantifying the similarity of a pair of facial images (Ii, Ij), where i and j are the IDs of two

specific subjects. A score is called genuine if two images are from the same source, i.e., i = j;

otherwise, it is called imposter. To appropriately apply the proposed method, the given

similarity scores were reduced to a set of independent scores for which {i, j} ∩ {k, l} = ∅ as

follows. The set of subject IDs were first randomly divided into two subsets I1 and I2 of

equal size. Genuine scores {Sii|Dii = 1, i ∈ I1} were selected from I1, and imposter scores

{Sij |Dij = 0, i, j ∈ I2} were selected from I2. The selected set of genuine scores does not

contain more than one score from each subject. Subset I2 was further randomly split into

halves, and imposter scores were obtained by pairing IDs in the resulting two subsets based

on lexicographical ordering. In this way, independence among the selected imposter scores

is ensured. We only consider scores whose image quality category equal “good” since the

assumed order constraint turns out to be most adequate for this subset of images.

Figure 3.3: Histogram and kernel density estimate of the covariate “age”.

The sample mean and sample standard deviation (SD) for the genuine group are -22.02
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and 3.47, respectively, and -25.23 and 3.97 for the imposter group; the sample sizes in both

groups are the same, i.e., n = m = 228. The scores Sij are transformed by the Box-Cox

transformation. The parameter λ = 0.5 of the transformation is determined based on the

scores in the entire data set; note that while the population ROC curve is invariant under

monotone transformations, the use of the Box-Cox transformation can improve the fit of

the regression model (cf. Eq. (3.20) below), in which the transformed scores Tij = S0.5
ij are

used as responses.

The age of each subject was considered as a covariate in our study. A histogram and a

kernel density estimate are shown in Figure 3.3. It can be seen that the density is right-

skewed. The range of ages in this study is between 17 to 57, with a mode close to 20 and

relatively little mass in the range of 30 to 60. The variable age is considered as a continuous

random variable throughout our study.

The transformed scores are modeled according to the linear regression model

Tij = β0 + β1Dij + β2 · Ai + β3 · Aj + β4(Ai ·Dij) +Dijεij1 + (1−Dij)εij0, (3.20)

where the binary status variable Dij equals one if the score Tij is from the genuine group and

zero else, and Ai and Aj represent the ages of the subjects in images Ii and Ij , respectively. In

the regression model, we only consider the interaction term Ai ·Dij because if Dij = 1, then

the underlying score Tij is from the same person, and therefore Ai = Aj ; when Dij = 0, then

the interaction term is also equal to 0. It is hence not meaningful to include both interaction

terms in the model. In the same vein, we only consider the condition {Ai = Aj = x} for the

covariate-specific ROC curves.

After fitting the regression model and obtaining the age-specific ROC curve as in (3.15),

we compare the variabilities of the traditional unconstrained and proposed constrained

regression methods. We are particularly interested in the estimated ROC curve at three

specific ages (17, 23, and 30) as suggested by [79] since these three age groups represent

younger through older subjects, respectively.
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The unconstrained and constrained regression methods are run for 1000 bootstrap sam-

ples drawn from the original data set obtained after pre-processing. The means and SDs are

calculated over all bootstrap replications. The summary measure for comparing efficiency

of two methods is calculated using variance ratios (VR) over all bootstrap replications as

VR = var1/var2, where var1 is the variance of traditional linear regression method and

var2 is the variance of the linear regression with ordering constraint. In each bootstrap

replication, we calculate the estimated mean difference given by

∆̂(x) = µ(Ai = x, Aj = x,Dij = 1; β̂)− µ(Ai = x, Aj = x,Dij = 0; β̂) = β̂1 + β̂4x (3.21)

Note that β̂ here denotes the estimates of the regression coefficients obtained from either

the unconstrained or constrained approach. Accordingly, we estimate ROCx(u) based on

(3.15) for selected values of FAR, using the parametric approach in §3.3.2.

Figure 3.5 (a) shows the averages and the SDs of the mean difference over the 1000

bootstrap replications when using the traditional regression ROC method and the proposed

constrained method. Our method produces smaller variances than the traditional method

for all ages. For the age of 23, the mean and SD of our method are similar to the results

produced when using linear regression without ordering constraint, but the VR is still

slightly larger than 1. Based on the histogram of our data in Figure 3.3, we note that the

majority of the population is aged between 18 and 26. This means that the sample size is

relatively large when x = 23, and the large sample size leads to similar variability for our

method and the method without ordering constraint.

Figure 3.4 compares pointwise averages for the covariate-specific ROC curves of both

approaches for different ages. The pointwise confidence intervals of the ROC curves from

the proposed method mostly overlap with those from the traditional method without con-

straints. The confidence intervals show the variabilities at every point on the estimated

ROC curves. For ages of 17 and 30, the proposed method has narrower confidence intervals

than the traditional method, while for age 23, the difference in the confidence intervals is
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not noticeable.
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(c) x = 30

Figure 3.4: Covariate-specific ROC curves for different ages. (w/o: linear regression without
order constraint; w/: linear regression with order constraint. The shaded area represents
pointwise 95% confidence intervals; best seen in color)

Figure 3.5 (b,c) displays the bootstrap variance of the ROC curves in dependence of

different values of FAR when x = 30 and the covariate age when FAR u = 0.5, respectively.

We can see that the order-constrained method consistently reduces the variance. For Figure

3.5b, the largest difference occurs for FAR near 0.5. As FAR tends to 0 or 1, the ROC curve

will tend to 0 or 1 by definition. Figure 3.5c shows that the difference in the variances across

the two methods increases with the value for the covariate age. Note that when the value

of the age is about 20, the variances of the covariate-specific ROC for two methods are

roughly the same.
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Mean and SD of ∆̂(x)

x method mean SD VR
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Figure 3.5: Bootstrap mean and SD of ∆̂(x) (a), bootstrap variance of the estimated
covariate-specific ROC in dependence of FAR when the covariate age is 30 (b), and different
values of the covariate age when FAR is 0.5 (c). (w/o: linear regression without order
constraint; w/: linear regression with order constraint.)
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Chapter 4: Order-Restricted ROC Curve and

Heteroscedastic Modeling Using Quantile Regressions

4.1 Introduction

The receiver operating characteristic (ROC) curve is an important tool for assessing how well

two populations can be discriminated based on a continuous score like the measured level of

a specific biomarker. The ROC curve graphs the trade-off between sensitivity and specificity

in dependence of the decision threshold associated with the score. In practice, it is common

that the accuracy of a score in discriminating between two populations depends noticeably

on additional covariates. For example, the discriminative accuracy of a medical imaging

diagnostic devices is potentially influenced by the evaluators’s performance; the performance

of a biomarker measurement is frequently impacted by the severity of a patient’s disease. An

approach to account for covariates is the so-called covariate-specific ROC curve introduced

by Pepe [29].

There are various strategies for modeling covariate-specific ROC curves such as non-

parametric or semiparametric Bayesian methods and induced or direct-regression methods

[30–33]. One particularly convenient as well as popular approach is the location-scale model

[34, 35]. In a nutshell, the distribution of the score is modeled via location-scale transfor-

mation of base distributions associated with the two populations, where potentially both

the location and scale transformation depend on covariates. A common way to estimate

the latter is via regression techniques with least squares (LS) regression as the simplest

approach. However, a well-known shortcoming of LS is sensitivity to heavy-tailed error

distributions, and composite quantile regression (CQR) [37] is proposed as an alternative

in the paper by Duan & Zhou [35].
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In the present chapter, we discuss two innovations of the method by Duan & Zhou

(henceforth DZ) [35], motivated by an application from the field of biometric recognition

as illustrated in Figure 4.1a. First, we propose an extension of DZ to incorporate order

constraints for the (covariate-specific) location parameters associated with each population.

If the scale parameters and base distributions are the same across the two populations, such

constraints are equivalent to a stochastic ordering constraint. Their use is often appropriate

for biometric recognition systems since those are typically calibrated to deliver larger scores

for matching (so-called genuine) scores than for non-matching (i.e., imposter) scores [3, 4].

In addition to that specific application domain that is focused on herein, the proposed

methodology is likely to be useful in other fields such as medical diagnostics or biomarker

studies.

Second, the use of the CQR method for covariate-specific ROC curve modeling adopted

in DZ assumes a regression model with heteroscedastic errors, i.e., that the errors do not

depend on covariates. This assumption can be limiting in applications. As a remedy,

we suggest the use of He’s method [80] that consists of a two-fold application of median

regression to estimate both location and scale transformation. The result enables ROC

curve estimation in a robust (i.e., insensitive to heavy-tailed distributions) fashion in the

situation that both location and scale function are dependent on covariates. In fact, this

scenario is not uncommon in biometrics: in the facial recognition study displayed in Figure

1, the variance of the scores varies considerably with the variable “image quality” (see

Figure 4.1b and Figure 4.1c).

The rest of this chapter is organized as follows. Section 4.2 introduces key concepts

such as the covariate-specific ROC curve and the location-scale model. In Section 4.3,

we lay out the details of our technical contributions with regard to order-constrained and

heteroscedastic modeling. We present the results of simulation studies including a detailed

comparison to existing methods in Section 4.4. In Section 4.5, we discuss the application

of our method to biometric data. A conclusion and discussion are provided in Chapter 5.
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Figure 4.1: Density of the facial recognition data and box-plots of the residuals in the
location-scale model conditional on status and quality

4.2 Modeling Covariate-Specific ROC Curves via the Location-

Scale Model

In this section, we introduce the notion of covariate-specific ROC curves and their modeling

based on the location-scale model [34] and regression techniques, in particular composite

quantile regression (CQR) [35].

4.2.1 Covariate-Specific ROC Curve

The receiver operator characteristic (ROC) curve is a tool to evaluate the accuracy of

a continuous score T in discriminating between two different populations. The score is

dichotomized depending on a threshold t0, i.e., an assignment to one of the two populations

is made depending on whether T ≥ t0, and the ROC curve graphs the trade-off between

sensitivity (true positive rate, TPR) and 1−specificity (false positive rate, FPR) as t0 is

varied. A common example is medical diagnosis based on the level of a biomarker known

to be indicative of a certain disease; here, the two populations refer to diseased and healthy

patients, respectively. Many techniques in forensic science are based on the biometric scores.

For example, the fingerprint identification is developed according to the comparison scores

[81] and the gait analysis is constructed associate with the likelihood scores [82].

Let D denote the {0, 1}-valued variable that indicates the population a corresponding
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score T stems from, for example D = 1 may refer to a diseased subject and accordingly

D = 0 to a healthy subject. The TPR and FPR for threshold t0 are hence given by P (T ≥

t0|D = 1) and P (T ≥ t0|D = 0). Denote the conditional cumulative distribution functions

of T given D = 0 and D = 1 by F0 and F1, respectively, i.e, F0(t) = P (T ≤ t|D = 0) and

F1(t) = P (T ≤ t|D = 1), t ∈ R. The ROC curve then results as

ROC(u) = 1− F1(F−1
0 (1− u)), u ∈ (0, 1),

where F−1
0 := inf{t ∈ R : F0(t) ≥ u} . The argument u corresponds to a given value of the

FPR, and ROC(u) returns the value of the TPR at u.

As pointed out in the introduction, the discriminate accuracy of T might strongly depend

on covariates X = (X1, . . . , Xp)
> observed with T and D. Let X = range(X). Loosely

speaking, the covariate-specific ROC curve [29] is obtained from the previous definition of

the ROC by working conditional on the event {X = x} for x ∈ X :

ROCx(u) = 1− F1,x(F−1
0,x(1− u)), u ∈ (0, 1), (4.1)

where Fj,x(t) := P (T ≤ t|D = j,X = x) and F−1
j,x (u) := inf{t ∈ R : Fj,x(t) ≥ u} are the

conditional CDFs of Fj and its generalized inverse, respectively, j ∈ {0, 1}.

4.2.2 Location-Scale Model

A basic modeling strategy for the covariate-specific ROC curve inducing additional structure

that is amenable to estimation in the presence of multiple covariates based on regression

techniques is the location-scale model [34]. In essence, the location-scale model assumes that

in each of the two populations indicated by the binary status variable D, the score T can

be expressed as a location-scale transformation that depends on the covariates. Specifically,
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the location-scale model postulates that

T = D
(
µ1(X; b∗1) + σ1(X;a∗1)e1

)
+ (1−D)

(
µ0(X; b∗0) + σ0(X;a∗0)e0

)
. (4.2)

In the following, let us comment on the quantities appearing in Eq. (4.2).

• e0 and e1 are random variables with “location” zero and unit “scale”, where as mea-

sure of location one may take the expectation or the median (which coincide if e0 and

e1 are symmetric), and as measure of scale one may take the variance or the median

of the absolute values. Note that the second alternatives for location and scale extend

(4.2) to a broader class of distributions.

• µj and σj , j ∈ {0, 1}, are referred to as location and scale functions, respectively. The

latter are assumed to be known functions of the covariates X and unknown parameters

b∗j and a∗j , j ∈ {0, 1}. In this chapter, we confine ourselves to functions having

identical form for both values of D and that are affine in the unknown parameters,

i.e.,

µj(x; b∗j ) = φ(x)> b̃∗j + b∗0j , σj(x;a∗j ) = ψ(x)>ã∗j + a∗0j , j ∈ {0, 1}, (4.3)

where b∗j = (b∗0j , [b̃
∗
j ]
>)> and a∗j = (a∗0j , [ã

∗
j ]
>)>. To avoid notational clutter, we may

assume without loss of generality that φ(x) = ψ(x) = x since this can simply be

accomplished by augmenting x as needed to include additional transformations of the

original set of covariates.

In the sequel, homoscedasticity will refer to the case in which σ1 and σ0 are both

independent of X; otherwise, we shall speak of heteroscedasticity.
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Direct calculations show that under the location-scale model (4.2), the covariate-specific

ROC curve defined in (4.1) at any x ∈ range(X) results as

ROCx(u) = 1−G1

(
σ0(x;a∗0)

σ1(x;a∗1)

(
G−1

0 (1− u)− µ1(x; b∗1)− µ0(x; b∗0)

σ0(x;a∗0)

))
, u ∈ (0, 1), (4.4)

where G0 and G1 denote the CDFs of e0 and e1, respectively.

4.2.3 Order Constraints

As mentioned in the introduction, in some applications it is common that the distribution of

the score T in the population D = 1 is associated with a larger location than the distribution

of T in the population D = 0 regardless of the specific values x observed for the covariates.

For example, the level of a biomarker indicating the presence of a disease is supposed to be

larger among diseased than healthy patients. In the analysis of biometric traits, computer

algorithms providing scores that assess agreement between pairs of measurements (e.g.,

fingerprints or facial images) are typically calibrated to deliver large scores for matching

(genuine) pairs than for non-matching (imposter) pairs. This yields the constraint

µ1(x; b∗1) ≥ µ0(x; b∗0) ⇔ x>(b̃∗1 − b̃∗0) + (b∗01 − b∗00) ≥ 0 for all x ∈ X , (4.5)

where the equivalence is according to (4.3) and the subsequent comment. In the context

of ROC estimation, this constraint is discussed in Chapter 3. It amounts to an ordering of

T |D = 1 and T |D = 0 in mean if the latter exists and if e0 and e1 in (4.2) are symmetric.

Moreover, in the case of identical scale functions, i.e., a∗0 = a∗1, the constraint (4.5) is

equivalent of a stochastic ordering of T |D = 1 and T |D = 0.

Order constraints have received considerable attention in recent literature including

papers discussing such constraints in the context of ROC curve modeling [83, 84]. Their

incorporation can be beneficial for at least two reasons: first, as explained above, they

yield more interpretable results in applications in which those constraints are known to be
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satisfied; second, they can yield improve statistical efficiency in low sample size or weak

signal (in the sense of weak separation of the score distribution in the two poplations)

contexts (see Chapter 3).

4.3 Inference

Building on methodology developed in DZ’s paper [35], Chapter 3 discussed least squares-

based estimation of the ROC based on the location-scale model and subject to the order

constraint (4.5) in the homoscedastic setting, i.e., σ0(x;a0) ≡ σ, σ1(x;a1) ≡ τ . In the

sequel, we briefly review the approach taken in Chapter 3 and identify some of its limitations.

We then present two extensions intended to address those limitations and to widen the scope

of the method considerably.

4.3.1 Least Squares Regression

Let us review the method in Chapter 3. There is an obvious connection between the

location-scale model (4.2) and a regression model that suggests estimation via a two-stage

procedure [20,35].Given a sample of sizeN of the form {(Ti, Di,xi)}Ni=1 in which the Ti|Di,xi

are independent and distributed according to (4.2), the first stage amounts to (weighted)

least squares regression of the y = {Ti}Ni=1 on {Di,xi,xi ∗Di}Ni=1, where xi ∗Di = xi ·Di,

1 ≤ i ≤ N , refers to the interaction terms between covariates and the status variable D.

The second stage amounts to estimation of the CDFs G0 and G1 from the residuals of the

preceding regression. As shown in Chapter 3, a close proxy of the constraint (4.5) can be

incorporated in the first stage by means of linear inequality constraints on the regression

parameter. Details are given below; without loss of generality, it is assumed that Di = 0,

1 ≤ i ≤ n, and Di = 1, i = n+ 1, . . . , n+m = N .

Stage I : Solve the optimization problem

min
β∈Rd

1

2
‖W1/2(y −Xβ)‖22 subject to Aβ ≥ 0, (4.6)
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where

• W = diag
(

1/σ2, . . . , 1/σ2︸ ︷︷ ︸
n times

, 1/τ2, . . . , 1/τ2︸ ︷︷ ︸
m times

)
is a diagonal weight matrix, where the

weights are inversely proportional to the status-specific variances σ2 for D = 0 and

τ2 for D = 1, respectively. While in (4.6) the latter are assumed to be known, they

are straightforward to estimate based on an ordinary least squares of y on X.

• X is an N × d design matrix, d = 2(p + 1), whose i-th row is given by Xi• =

(1, x>i , Di, (xi ∗Di)
>), 1 ≤ i ≤ N . We assume that X is non-singular throughout

this chapter.

• β = (β0, β
>
X , βD, β

>
XD)> represents a vector of regression coefficients. The estimator

β̂ is defined as the minimizer of (4.6), and is partitioned accordingly. Given β̂, we

use b̂0 = (β̂0, β̂
>
X)> and b̂1 = (β̂0 + β̂D, (β̂X + β̂XD)>)> as estimators of b∗0 and b∗1,

respectively. Please refer to Figure 4.2 for a diagram visualizing the relationships

between the different parameters.

• A is a q × d constraint matrix, where each row of A represents one linear constraint

imposed on β in order to integrate (a proxy of) the order constraint (4.5) into esti-

mation. While the constraint is linear in the parameters for each fixed x, the set X

could be complex and as a result would render the constraint difficult to implement.

There are two possible proxies that yield reductions to linear inequality constraints:

(1) Outer approximation: suppose that [lj , uj ] are known upper and lower bounds for

the j-th covariate, 1 ≤ j ≤ p. Then, the hyperrectangle X := [l1, u1] × . . . × [lp, up]

includes X , and by convexity the constraint (4.5) holds if it holds for the vertices

{v`}q`=1 = {l1, u1}× . . .×{lp, up} of X , where q = 2p. Accordingly, the `-th row of A

is given by [0p+1 1 v>` ], ` = 1, . . . , q.

(2) Inner approximation: the constraint is imposed with respect to a given sample

{(Ti, Di,xi)}Ni=1 or a suitable subset thereof. Accordingly, each row of A is of the form

[0p+1 1 x>i ]. For a more detailed explanation, specific examples, and a discussion of
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the merits of the two approximation schemes, we refer to Chapter 3.

Optimization problem (4.6) is a quadratic program, and can be handled by a host of algo-

rithms available for problems of this form.

Stage II : Estimation of the ROC curve

Let êi0 = (Ti − β̂0 − x>i β̂X)/σ, i = 1, . . . , n, and êi1 = (Ti − β̂0 − β̂D − x>i (β̂X + β̂XD))/τ ,

i = n+ 1, . . . , N , denote the (standardized) residuals associated with the solution of (4.6).

Their empirical CDFs Ĝ0 and Ĝ1 and their generalized inverses naturally serve as estimators

of G0 and G1 and their inverses, respectively, and can be plugged into the expression (4.4)

for the covariate-specific ROC curve. In summary, this yields the following estimator:

R̂OCx(u) = 1− Ĝ1

(
σ

τ

(
Ĝ−1

0 (1− u)− β̂D + x>β̂XD
σ

))
, u ∈ (0, 1). (4.7)

Remark. As pointed out in DZ, estimation of the ROC curve in the flavor of (4.7) can be

done without knowledge of σ and/or τ or separate estimation of these quantities. Specif-

ically, observe that the re-scaled error σe0 and τe1 have CDFs H0(·) = 1
σG0(·/σ) and

H1(·) = 1
τG1(·/τ) and accordingly ROC∗x = 1−H1(H−1

0 (1− u)− x>(b∗1 − b∗0)). The CDFs

H0 and H1 can be estimated as the empirical CDFs Ĥ0 and Ĥ1 of the “raw” residuals (i.e.,

without scaling by the inverse standard deviations as above). In summary, this yields

R̂OCx(u) = 1− Ĥ1

((
Ĥ−1

0 (1− u)− β̂D − x>β̂XD

))
, u ∈ (0, 1). (4.8)

4.3.2 Composite Quantile Regression

An apparent shortcoming of the previous approach is its sensitivity to heavy tails in the

distribution of the error terms e0 and/or e1. Composite quantile regression (CQR) [37] was

shown to outperform least squares regression for a variety of error distributions including
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Location Function

β∗ =


β∗0
β∗X
β∗D

β∗XD


b∗0 =

(
β∗0
β∗X

)

b∗1 =

(
β∗0 + β∗D

(β∗X + β∗XD)>

)

µ0(x;b
∗
0)

= β∗0 + x>β∗X

µ1(x;b
∗
1)

= β∗0 + β∗D+

x>(β∗X + β∗XD)

Scale Function

γ∗ =


γ∗0
γ∗X
γ∗D

γ∗XD


a∗0 =

(
γ∗0
γ∗X

)

a∗1 =

(
γ∗0 + γ∗D

(γ∗X + γ∗XD)>

)

σ0(x; a
∗
0)

= γ∗0 + x>γ∗X

σ1(x; a
∗
1)

= γ∗0 + γ∗D+

x>(γ∗X + γ∗XD)

Figure 4.2: Diagrams summarizing the relationship between regression parameters and the
corresponding parameters of the location-scale model.

contaminated normal distribution, Cauchy distribution, log-normal distribution, etc., while

significantly boosting statistical efficiency in the case of normal errors in comparison to

median regression. Given these appealing properties, CQR has been adopted as regression

method to be applied in the first stage of estimation in the location-scale model [35]. The

results therein confirm the superiority of CQR over least squares regression for a wide

variety of distributions for the error terms. The use of the constraint (4.5) in conjunction

with the approach in DZ has not been discussed in the previous chapter, and we consider

this extension in the following. Building on Chapter 3 as outlined in the previous subsection,

the least squares objective is replaced by the loss function employed in CQR while the linear

constraints on the coefficients are modified appropriately. The use of CQR enables a more

faithful representation of stochastic ordering constraints as opposed to a mere ordering of the

location parameters as in (4.5) since two distributions are stochastically ordered if and only

their corresponding quantiles are. Details are presented in the sequel. Let {τk}Kk=1 ⊂ (0, 1)

be a grid of quantiles; a reasonable default is τk = k
K+1 , 1 ≤ k ≤ K, and odd K ≥ 3,

with larger values of K yielding a more fine-grained modeling at the expense of additional

computational effort required. Accordingly, we define the so-called check loss functions

ρτk : R→ R+ by u 7→ ρτk(u) = u{τk − I(u ≤ 0)}, 1 ≤ k ≤ K [85]. We are thus in position
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to present a counterpart of the least squares-based formulation (4.6).

min
{β0k}Kk=1,βX∈R

p

{βDk}Kk=1,βXD∈R
p

K∑
k=1

N∑
i=1

ρτk(Ti − β0k − x>i βX −Di · βDk −Di · x>i βXD) (4.9)

subject to Aβk ≥ 0, βk := (β0k β
>
X βDk β

>
XD)>, 1 ≤ k ≤ K, (4.10)

where the matrix A takes the same form as for the least squares-based approach (4.6).

Note, however, that the total number of constraints multiplies by a factor of K since each

of the chosen quantiles τk is associated with its individual set of constraints. Formulation

(4.9) arises from the model

Q(τk|D = 0, X = x) = β0k + x>βX ,

Q(τk|D = 1, X = x) = β0k + βDk + x>(βX + βXD),

(4.11)

where for τ ∈ (0, 1), Q(τ |D = 0, X = x) and Q(τ |D = 1, X = x) denote the τ -quantile

of T conditional on the value of the status D and covariates equal to x. Accordingly, the

constraint Aβk ≥ 0 reflects the constraint Q(τk|D = 1, X = x) ≥ Q(τk|D = 0, X = x) for

all x ∈ X , 1 ≤ k ≤ K, with the understanding that X gets replaced by a suitable proxy

as discussed in the previous subsection. The above optimization problem thus reduces to

a linear program given the well-known reformulation of the check loss function via linear

constraints [85].

Remarks.

(i) The parameters of the location-scale model and the ROC curve are estimated analo-

gously to the least squares-based approach, cf. Eq. (4.7).

(ii) The order constraints (4.10) can be relaxed to ordering of the medians in alignment

with the earlier constraint (4.5) by imposing only one set of constraint for k = (K + 1)/2

which corresponds to τ = 0.5.
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(iii) Note that appears natural to impose the constraints that the intercepts {β0k} corre-

sponding to {τk} are ordered accordingly. However, it can be shown that for any minimizer

of (4.9), such ordering will be satisfied, thus it is not necessary to add this constraint to

the optimization problem.

4.3.3 Heteroscedastic Modeling

Even though the CQR approach in the previous section yields improvements over the least

squares-based methods with regard to increased robustness and additional flexibility re-

garding order-constrained modeling as pointed out in the preceding remark (ii), the CQR

approach exhibits a major limitation. Namely, CQR assumes homoscedasticity, i.e., the

scale functions σ0 and σ1 are required to be independent of X. This is also implicit in the

specific form of the quantile functions (4.11) in which only the intercepts in the two groups

defined by D depend on the individual quantiles {τk}.

An alternative to CQR is the use of a three-stage method consisting of estimation of the

location functions based on median regression in stage (I), estimation of the scale functions

σ0 and σ1 in stage (II), and estimation of the ROC curve in stage (III) based on the

standardized results obtained from applying the results of the previous two stages. Stage

(II) follows a strategy developed in the literature on quantile regression [80]. The details

of the three stages are presented in the following. For the sake of clarity, the use of order

constraints is addressed separately in a subsequent discussion.

Stage I : Solve the median regression problem

min
β∈Rd

‖y −Xβ‖1, (4.12)

and estimate the location parameters b∗0 and b∗1 from the minimizer β̂M of (4.12) in analogy

to the least-squared based method.

Stage II : Given β̂M, compute the corresponding “raw” residuals r = y −Xβ̂M, and define
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by |r| = (|ri|)Ni=1 their absolute values. Solve the median regression problem

min
γ∈Rd

‖|r| −Xγ‖1 subject to Cγ ≥ 0. (4.13)

Let γ̂M = (γ̂M
0 , (γ̂M

X )>, γ̂M
D , (γ̂M

XD)>) denote the minimizer of (4.13). The parameters a∗0

and a∗1 of the scale functions σ0(x;a∗0) and σ1(x;a∗1) are estimated as â0 = (γ̂M
0 , (γ̂M

X )>)>

and â1 = (γ̂M
0 + γ̂M

D , (γ̂M
X + γ̂M

XD)>)>, respectively (cf. Figure 4.2). The linear constraint

Cγ is added to enforce the non-negativity of the two-scale functions, i.e., σ0(x;a∗0) ≥ 0 and

σ1(x;a∗1) ≥ 0 for all x ∈ X . In order to ensure computational tractability, the constraint is

formulated in terms of an enclosing hyperrectangle X or the {xi}Ni=1 as elaborated above.

In the former case, C has 2q rows, two per vertex of X : [1 v>` 0p+1] and [0p+1 1 v>` ], ` =

1, . . . , q; in the latter case, the {xi}Ni=1 are assume the roles of the vertices, and accordingly

C has 2N rows.

Let us comment on the rationale behind the formulation (4.13) that can be found in

He’s paper [80]. First, note that without loss of generality, we may assume that the error

terms e0 and e1 in (4.2) are scaled such that the median of |e0| and |e1| equal one. Observe

further that according to (4.2)

|T − µj(X;β∗0)|
∣∣D = j

D
= |ej |σj(X;a∗j ), j ∈ {0, 1}, (4.14)

where
D
= denotes equality in distribution. In particular, the medians of those distributions

are given by σj(X;a∗j ), j ∈ {0, 1}. With the absolute values of the residuals |r| obtained

from the median regression (4.12) in Stage I serving as counterpart to (4.14), the use of the

subsequent median regression (4.13) in Stage II becomes clear.
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Stage III : Given the results from (4.12) and (4.13), we compute the standardized residuals

êi0 =
Ti − β̂M

0 − x>i β̂
M
X

γ̂M
0 + x>i γ̂

M
X

, i = 1, . . . , n,

êi1 =
Ti − β̂M

0 − β̂M
D − x>i (β̂M

X + β̂M
XD)

γ̂M
0 + γ̂M

D + x>i (γ̂M
X + γ̂M

XD)
, i = (n+ 1), . . . , N,

and obtain Ĝ0 and Ĝ1 as the empirical CDFs of the {êi0} and {êi1}, respectively. Finally,

in alignment with (4.4), the covariate-specific ROC is estimated as

R̂OCx(u) = 1− Ĝ1

(
γ̂M

0 + x>γ̂M
X

γ̂M
0 + γ̂M

D + x>(γ̂M
X + γ̂M

XD)

(
Ĝ−1

0 (1− u)−
β̂M
D + x>β̂M

XD

γ̂M
0 + x>γ̂M

X

))
.

Order constraints. The order constraint (4.5) can be incorporated into Stage I by adding

the linear constraint Aβ ≥ 0 to the median regression problem (4.12), where A has the

same form as for weighted least squares regression (cf. (3.9) and the subsequent discussion).

We note that a constraint similar to ordering of the locations (4.5) can be formulated for

the scale functions, i.e.,

σ1(x;a∗1) ≥ σ0(x;a∗0) ⇔ x>(ã∗1 − ã∗0) + (a∗01 − a∗00) ≥ 0 for all x ∈ X . (4.15)

The latter constraint can be implemented analogously as the constraint for the locations

by means of a linear constraint on γ in the median regression problem (4.13) for the scale

function. While such constraint and its implementation are not investigated further in the

present paper, it is worth noting that it can be treated within a common framework. In

addition, the combination of both (4.5) and (4.15) can be a practically convenient way of

achieving a stochastic ordering of T |D = 1, X = x and T |D = 0, X = x for all x ∈ X .
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4.4 Simulation Studies

In this section, we compare the value of bias, standard error (SE), and mean squared error

(MSE) of the covariate-specific ROC curve using different approaches with different sample

sizes. Let Ti be the score of the i-th subject, where i = 1, 2, . . . , N . Let Xi ∼ U(0, 1) be

the covariate, and Di ∼ Bernoulli(0.5) be the binary status. Let eij be zero mean random

error, 1 ≤ i ≤ N , j = {0, 1}. The simulation data is generated with the model

Ti = 1 +Xi +Di +Xi ·Di + ei1Di × φ(Xi) + ei0(1−Di),

where φ(Xi) = a+ b ·Xi is a function of Xi and controls the variance of the diseased group.

Four settings are considered for the error terms {eij} as following:

• Study N : {ei0} and {ei1} are i.i.d. from the N(0, 1)-distribution.

• Study CN: {ei0} and {ei1} are i.i.d. from a contaminated normal distribution 0.95N(0, 1)+

0.05N(0, 100).

• Study T: {ei0} and {ei1} are i.i.d. from the t distribution with degree of freedom 2.

• Study Cauchy: {ei0} and {ei1} are i.i.d. from the Cauchy distribution with location

parameter 1 and scale parameter 0.

The methods that are applied in this study are:

WLS: weighted least square method

cWLS: order-constrained weighted least square method

HM: He’s regression method

CQR: composite quantile regression method

ORCQR: order-restricted composite quantile regression method

The cWLS method is the coder-constrained method discussed in Chapter 3. The CQR

follows the composite quantile regression discussed in §4.3.2 with K = 5. The HM method

is the abovementioned three-stage approach which can be found in §4.3.3, and the ORCQR

method is our proposed method. Sample sizes 20 and 100 are considered in the study, and
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bias, SE, and MSE are derived base on the average of 1000 iterations.

Several values of φ(X) are considered in the study to explore the performance of our pro-

posed method. The values of the parameters (a, b) of the function φ(X) are {(1, 0), (4, 0), (0, 5)}

in the simulation study, and thus the corresponding values of φ(X) are {1, 4, 5X}. Note

that when φ(X) = 1, the CDFs of e0 and e1 are equivalent.

Table 4.1 provides the results of bias, standard error (SE), and mean squared error

(MSE) with different values of φ(X) and different sample sizes. We note that as the sample

size increases, the values of SE and MSE decrease, but the bias does not change much. We

emphasized the smallest MSE within each N and φ(X) in boldface. It can be seen from

the table that the MSE of our proposed method is the smallest except when G0 and G1 are

from normal distributions (Study N).

Table 4.1: Bias, standard error (SE), and mean squared error (MSE) of R̂OCx(u) using
different methods with x = 0.5 and u = 0.5. All values of bias and SE have been multiplied
by 100.

Study N CN T Cauchy
N φ(X) Method Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

50

1

WLS 0.04 6.1 0.37 -17.91 22.5 8.26 -1.34 9.5 0.92 -9.38 18.3 4.24
cWLS 0.04 6.1 0.37 -10.67 16.5 3.85 -0.72 8.4 0.72 -5.16 13.5 2.09
HM -0.74 6.1 0.37 -0.80 6.7 0.46 -0.51 8.1 0.66 -0.76 9.5 0.90

CQR -0.06 6.2 0.38 -0.13 6.8 0.46 -0.12 8.1 0.66 -0.47 9.6 0.93
ORCQR -0.03 6.2 0.38 -0.07 6.7 0.45 -0.03 7.9 0.63 -0.12 9.1 0.82

4

WLS 0.51 10.3 1.06 -5.59 14.4 2.40 -2.04 18.3 4.39 -4.02 13.4 1.95
cWLS 0.53 10.2 1.05 -2.21 12.1 1.52 0.06 10.4 1.07 -1.49 11.4 1.33
HM 0.77 10.6 1.18 0.78 10.5 1.12 0.30 10.6 1.12 -0.16 10.6 1.13

CQR 0.60 10.5 1.11 0.56 10.6 1.12 0.18 10.7 1.14 -0.29 10.9 1.19
ORCQR 0.54 10.3 1.06 0.64 10.2 1.05 0.46 10.2 1.05 0.37 10.3 1.06

100

1

WLS -0.01 4.3 0.18 -17.44 17.3 6.03 -0.78 6.4 0.41 -9.17 15.6 3.27
cWLS -0.01 4.3 0.18 -12.10 13.6 3.32 -0.46 5.8 0.34 -5.37 11.3 1.56
HM -0.40 4.2 0.18 -0.57 4.7 0.22 -0.22 5.5 0.30 -0.24 6.2 0.39

CQR -0.04 4.3 0.18 -0.17 4.8 0.23 0.01 5.5 0.30 -0.08 6.2 0.38
ORCQR -0.03 4.3 0.18 -0.16 4.7 0.22 0.03 5.5 0.30 -0.01 6.1 0.37

4

WLS 0.20 7.1 0.50 -6.46 9.7 1.36 -0.64 7.4 0.55 -4.00 10.2 1.21
cWLS 0.22 7.0 0.50 -3.24 8.6 0.85 -0.18 7.2 0.51 -1.83 8.5 0.75
HM 0.42 7.0 0.50 0.25 7.0 0.49 0.15 7.2 0.51 0.02 7.2 0.52

CQR 0.25 7.1 0.51 0.13 7.1 0.51 0.07 7.3 0.53 -0.17 7.4 0.55
ORCQR 0.18 7.1 0.50 0.10 7.0 0.49 0.17 7.2 0.51 0.13 7.2 0.52

Table 4.2 shows the results when the value of φ depends on the covariate X. In the

exception of Study N, our proposed method has the smallest MSE which emphasized in
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boldface when the sample size is 50. However, when the sample size increases to 100, the

MSE of He’s method becomes the smallest in most of the studies. Moreover, the smallest

bias is highlighted using italicize and boldface text. We recommend He’s method when the

data with heteroscedastic errors since He’s method leads to a small bias and even a small

MSE when the sample size is large.

Table 4.2: Bias, standard error (SE), and mean squared error (MSE) of R̂OCx(u) using
different methods with x = 0.5 and u = 0.5 in the heteroscedastic model. All values of bias
and SE have been multiplied by 100.

Study N CN T Cauchy

N φ(X) Method Bias SE MSE Bias SE MSE Bias SE MSE Bias SE MSE

50
5X

WLS 3.50 10.4 1.20 -7.65 18.2 3.91 1.19 12.7 1.62 -5.64 16.6 3.06
cWLS 4.17 9.3 1.03 -2.72 14.3 2.13 2.54 10.4 1.17 -1.47 13.5 1.83
HM 0.87 10.8 1.18 0.59 11.0 1.21 0.34 11.1 1.24 -0.07 11.4 1.30

CQR 3.74 10.8 1.30 3.15 11.2 1.36 2.89 11.7 1.46 1.69 12.6 1.62
ORCQR 4.58 9.4 1.09 4.20 9.6 1.09 3.97 10.1 1.17 3.07 10.8 1.27

100
5X

WLS 4.08 6.8 0.63 -8.77 13.5 2.60 1.31 9.5 0.92 -5.34 13.6 2.13
cWLS 4.26 6.4 0.60 -4.46 11.5 1.52 2.99 7.4 0.64 -1.46 10.7 1.16
HM 0.33 7.7 0.59 -0.25 7.9 0.63 -0.20 7.7 0.60 0.25 7.6 0.58

CQR 4.29 6.9 0.66 3.86 7.2 0.66 3.74 7.8 0.75 3.10 8.2 0.77
ORCQR 4.57 6.4 0.62 4.22 6.6 0.61 4.19 7.0 0.62 3.73 7.2 0.66

Figure 4.3 displays the bias and MSE of the ROC curves with different sample sizes N

when x = 5 and u = 0.5 by using 10000 replicates. In Figure 4.3, we investigate the bias

and MSE using different methods when the scale function φ(X) are 1 and 5X. Note that

when φ(X) = 5X, the data is heteroscedastic. We see that the bias and MSE of WLS and

cWLS methods are larger than other methods in Study CN, Study T, and Study Cauchy,

but close to others in Study N. When φ(X) = 5X, we find that the bias of HM is constantly

close to 0, while other methods are highly biased. The MSE of HM is slightly smaller than

ORCQR when the sample size is large.
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Figure 4.3: Bias and mean squared error (MSE) of R̂OCx(u) in dependence of sample size
N using different methods with x = 0.5 and u = 0.5.
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4.5 Real Examples

In this section, we report the results of the real study in the application of our proposed

method. We compare the mean, SD, and variance ration (VR) of the estimated mean

difference and covariate-specific ROC curves using weighted least square (WLS) method,

He’s regression (HM) method, composite quantile regression (CQR), and order-restricted

composite quantile regression (ORCQR) using biometric data.

The Face Recognition Vendor Test (FRVT) 2006 by [76] includes biometric scores for

face-pairs and the features of each image. Features, for example, are including race, gender,

and image quality, etc. This face recognition data has been used for many studies such

as facial recognition algorithm studies [77, 78] and the study about the influence of image

quality on the classification accuracy [39]. However, the discussion about the impact of

covariates has been scarce. In this section, we first apply the order-restricted composite

quantile regression ROC curve on the data, and then discuss the heteroscedastic model using

the data. We first define the notations used in the rest of this section. Let Tij = s(Ii, Ij)

be the biometric score which reflects the similarity of the facial image pair (Ii, Ij), where

i and j are the IDs of two subjects. Tij belongs to the genuine group if two images are

from the same source, i.e., i = j; otherwise, it belongs to the imposter group. The error

rates associated with binary decisions in forensic analysis are given by the false accept rate

(FAR) and the true accept rate (TAR) in analogy to the FPR and TPR, respectively, in

medical studies.

4.5.1 Facial Recognition Data with Order-Restricted Regression

In this section, we demonstrate the application of ORCQR method and compare it with the

traditional CQR method. To apply the ORCQR method, we need to remove the correlation

of the scores. We divided the subject IDs into two subgroups, I1 and I2, randomly. We then

selected the genuine scores with the ID from I1, i.e. {Tii|Dii = 1, i ∈ I1}, and selected the

imposter score with the ID from I2, i.e. {Tij |Dij = 0, i, j ∈ I2}. This approach removed
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scores with duplicate IDs across the genuine and imposter groups. After the first step, we

further filtered the data by separating I2 in two equal size subgroups. Then we obtained the

imposter score IDs by pairing the two subgroups. In this way, all the IDs in the imposter

group only appears once. Furthermore, We removed the scores belongs to the image quality

categories “bad” and “ugly” since scores in this two categories perform poor discriminative

ability. The observed data are modeled using the linear model as

Tij = β0 + β1Dij + β2 · Ai + β3 · Aj + β4(Ai ·Dij) +Dijεij1 + (1−Dij)εij0. (4.16)

The status variable Dij = 1 when the subject belongs to the genuine group and 0 other

wise. The two covariates Ai and Aj are ages of the two subjects in each image pair. Note

that there is only one interaction term Ai ·Dij being considered because the interaction term

dose not exist when Dij = 0, and this leads to Ai ·Dij = Aj ·Dij . We follow the suggestion

of Givens et al. [79] and specific the ages covariates to be (17, 23, and 30) since these three

age groups represent younger through older subjects, respectively.

The results including mean and SD are generated using 1000 bootstraps. The variance

ratios (VR), which defended as VR = var1/var2, is calculated over all bootstrap replica-

tions. In the equation of VR, var1 is the variance of CQR method and var2 is the variance

of the proposed method. Therefore, a VR larger than 1 implies that the performance of the

proposed method is better than the conventional method. In each bootstrap replication,

the value of ROCx(u) is estimated using the empirical method.

Table 4.3 shows the mean and SD of the covariate-specific ROC over 1000 iterations

for different values x of the covariate age and different values of p when using different

methods. The VR is larger than one throughout. Although these two methods generate a

similar mean result, the performance of ORCQR is better than CQR in terms of SD. At

the ages of 23, all the VRs are close to 1.0.
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Table 4.3: Mean and SD of ROCx(u) for different values of x and different values of u for
the facial recognition data. (CQR: composite quantile regression; ORCQR: order-restricted
composite quantile regression.)

x 17 23 30

u Method mean SD VR mean SD VR mean SD VR

0.1
CQR 0.537 0.103

1.45
0.609 0.071

1.02
0.680 0.091

1.57
ORCQR 0.543 0.085 0.607 0.070 0.688 0.077

0.3
CQR 0.897 0.046

1.12
0.925 0.031

1.13
0.936 0.049

2.87
ORCQR 0.896 0.044 0.927 0.030 0.945 0.029

0.5
CQR 0.948 0.022

1.14
0.963 0.015

1.01
0.967 0.022

2.03
ORCQR 0.948 0.021 0.964 0.015 0.970 0.015

0.7
CQR 0.969 0.016

1.06
0.977 0.013

1.02
0.979 0.014

1.29
ORCQR 0.969 0.015 0.977 0.012 0.980 0.012

0.9
CQR 0.980 0.012

1.04
0.984 0.011

1.11
0.988 0.010

1.17
ORCQR 0.980 0.012 0.984 0.010 0.989 0.009

Figure 4.4 compares the estimated covariate-specific ROC curves using CQR and OR-

CQR methods for different ages. The SD of the ROC was calculated using the bootstrap

method, and we generate the pointwise confidence intervals based on the SD for these two

approaches. The estimated values are similar to each other but the error bands are variate.

When x = 23, the covariate specific ROC curves using the method with order constraint has

a similar confidence interval to the method without order constraint. However, when x = 17

and x = 30, the confidence intervals using our ORCQR are narrower than the conventional

method, especially when x = 30.

Figure 4.5 graphs the variance results of the ROC curves against FAR with x = 30

and the covariate age with FAR u = 0.5 using CQR and ORCQR methods. The variance

generates using the bootstrap over 1000 iterations. The variance of ORCQR is smaller

than CQR thoroughly Figure 4.5a shows that the order-constraint noticeable reduces the

variance when FAR less than 0.5, and then the ORCQR method converges to CQR method

as FAR increases. In Figure 4.5b, we note that the variances of the conditional ROC for

the two methods are similar to each other when the value of age is small. The variance of

the CQR method increases fast as age increases but the variance of the ORCQR method is

insensitive to the age increases.
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Figure 4.4: Covariate-specific ROC curves for different ages. (w/o: composite quantile
regression without order constraint; w/: composite quantile regression with order constraint.
The shaded area represents pointwise 95% confidence intervals; best seen in color)
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Figure 4.5: Bootstrap variance of the estimated covariate-specific ROC in dependence of
u when the covariate age is 30 (a), and different values of the covariate age when u is 0.5
(b). (w/o: composite quantile regression without order constraint; w/: composite quantile
regression with order constraint.)

4.5.2 Facial Recognition Data with Heteroscedastic Modeling

In this section, we compare the performance of He’s method (HM) with the CQR and the

weighted least square using grouped data (WLSx). We use the facial recognition data but

consider all three image quality categories “good”, “bad”, and “ugly”. As we introduced

in §4.1, the imaging quality influences the variance and thus estimating the scale function

81



with traditional methods will bring extra bias. Let Bij and Uij denote two dummy variables

for quality “bad” and “ugly”, respectively. Therefore the quality can be expressed using

the duplet (Bij , Uij). The linear model in this study is given by

Tij =β0 + β1Dij + β2 · Bij + β3 · Uij + β4(Bij ·Dij) + β4(Uij ·Dij)

+ α1(Bij , Uij)Dijεij1 + α0(Bij , Uij)(1−Dij)εij0. (4.17)

We consider the covariate duplet (Bij , Uij) to be (0, 0), (1, 0), and (0, 1) which stand for

“good”, “bad”, and “ugly” quality. We use grouped composite quantile regression (CQRx)

as a reference. The CQRx method estimates the location-scale model based on the CQR

within each subgroup which depends on the covariate quality. Similarly, the WLSx method

estimates the scale function and the weight for each subgroup depending on the quality

of image, but estimates the location function with WLS regression. The CQR method is

the method that we introduced in §4.3.2 with K = 5. We here compare the performance

of the WLSx, He’s method (HM), and CQR methods. We apply the bootstrap with 1000

iterations and provide the SD and VR of the bootstrap results. The VR is the ratio of the

variance of a given method with respect to the variance of WLSx.

Table 4.4 shows the bias and SD of the covariate-specific ROC over 1000 bootstrap

iterations for different qualities and different FPR. We do not recommend using the CQR

method in a heteroscedastic model since it is highly bias. On the contrary, the bias using

HM is relatively small, and the loss in statistical efficiency relative to WLSx is moderate.
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Table 4.4: Bias and SD of the covariate-specific ROC for different qualities and different
values of u for the facial recognition data. (WLSx: grouped weighted least square; HM:
He’s method; CQR: composite quantile regression)

quality good bad ugly

u Method bias SD VR bias SD VR bias SD VR

0.1
WLSx -0.034 0.119 1.00 -0.033 0.089 1.00 0.037 0.088 1.00
HM 0.102 0.080 2.17 -0.114 0.103 0.74 0.048 0.104 0.72

CQR -0.300 0.089 1.77 -0.262 0.081 1.20 -0.108 0.035 6.36

0.3
WLSx -0.010 0.050 1.00 0.051 0.121 1.00 0.026 0.098 1.00
HM 0.010 0.036 1.91 -0.007 0.134 0.81 0.078 0.138 0.51

CQR -0.182 0.095 0.28 -0.251 0.085 1.99 -0.197 0.096 1.04

0.5
WLSx 0.009 0.024 1.00 0.011 0.066 1.00 -0.084 0.119 1.00
HM 0.009 0.024 1.03 -0.010 0.076 0.76 0.015 0.118 1.02

CQR -0.101 0.059 0.17 -0.291 0.103 0.41 -0.315 0.084 2.03

0.7
WLSx 0.021 0.019 1.00 0.003 0.058 1.00 -0.022 0.115 1.00
HM 0.018 0.021 0.78 0.001 0.063 0.86 0.068 0.092 1.56

CQR -0.015 0.042 0.20 -0.137 0.101 0.33 -0.203 0.099 1.35

0.9
WLSx -0.003 0.008 1.00 -0.033 0.035 1.00 0.024 0.064 1.00
HM -0.010 0.015 0.28 -0.030 0.032 1.24 0.094 0.060 1.15

CQR -0.019 0.019 0.74 -0.112 0.065 0.30 0.075 0.109 0.35
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Chapter 5: Concluding Remarks and Future Research

In this thesis, we have presented several applications of the ROC curve and the likelihood

ratio to data from forensic evidence analysis. First, we discussed and compared three

popular approaches for the log-likelihood ratio (LLR) estimation, which are parametric

estimation (PE), kernel density estimation (KDE), and logistic regression estimation (LRE).

Furthermore, we proposed a parametric method to estimate the variance of the LLR based

on the ROC curve. We discussed the application of the ROC curve when the discriminative

power of the considered test depends on covariates. We provided a location-scale model

procedure using linear regression or composite quantile regression (CQR) to incorporate

the influence of the covariates. As a consequence, this approach addresses the problem

when the accuracy of the identification test is potentially influenced by some covariates.

Ultimately, we proposed the order-constrained method to consider the stochastic ordering

information and introduced the restricted regression quantiles (RRQ) method to delta with

the heteroscedasticity issue in a biometric example. Both the order-constrained ROC and

the RRQ method help us improve the statistical efficiency of the covariate-specific ROC

curves.

We compared the performances of these methods, PE, KDE, and LRE, using simulation

studies and two biometric studies in Chapter 2. In the simulation studies, the KDE out-

performs LRE when the sample sizes of the two groups are not equal. The LLR generated

by LRE has a smaller variance than the one generated by KDE. Each study justifies the

repeatability of the PE and KDE as the LLR values have little fluctuation for various sam-

ple size ratios. The LRE shows unsatisfactory repeatability as the LLR values tend to have

linear relationship with the log sample size ratios. If the distribution assumption is valid

for PE, then the PE and KDE methods have similar LLR values, indicating reproducibility

between PE and KDE. Our results showed the reproducibility among the three methods
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is poor when the distribution assumption is invalid for PE, since the LLR values from PE

and KDE are quite different. Also, since LLR values from the LRE method depend on

the sample size ratio, the LLR values are inconsistent of this three methods. Based on

the assessment from simulation datasets and the real datasets, the PE method is recom-

mended for estimating the LLR if appropriate distribution assumptions can be made for

the datasets. Otherwise, the KDE method would be a better alternative for estimating the

LLR. The inconsistency of the LRE method with varying sample size ratios leads to our

recommendation against the usage of the method unless the true ratio between genuine and

imposter groups is justified.

In Chapter 3, we studied the proposed order-constrained linear regression for estimating

covariate-specific ROC curves based on the location-scale model by González-Manteiga et

al. [34], with a focus on application to data from biometric recognition systems. In the

context of diagnostic medicine, Pepe [20] points out the importance of the covariate-specific

ROC curves when covariates impact the performance of a diagnostic test. Many works have

been done afterwards in various aspects of covariate-specific ROC curves [33, 34, 86]. The

main technical innovation in the present dissertation is the use of an ordering constraint

that potentially plays an important role in fields such as medical diagnostics, toxicology

[87], and biometrics, in order to yield more precise estimators of distribution functions

[71]. In this thesis, we developed an order-constrained ROC regression method and apply

the method to estimate age-specific ROC curves for a facial recognition study. While the

covariates in the example section are demographic variables of the source subjects, the

proposed framework also allows for the integration of information about forensic examiners

if the accuracy of examiners is of primary interest. Theoretical analysis, simulation studies,

and the case study unanimously show that the presence of the order constraint yields a

more favorable bias-variance trade-off as a consequence of variance reductions that can be

rather substantial.

Chapter 4 incorporates the stochastic ordering condition into the covariate-specific ROC

estimation using the composite quantile regression (CQR). The proposed method acquires
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the advantages of CQR and obtains a reduction of the mean squared error concerning

the unconstrained version. We compared the proposed method with other methods in

estimating the ROC curves depending on the age variable using facial recognition study.

The results show that the proposed method has a smaller variance than other approaches.

This advantage has also been proved in the simulation study.

We also adopted He’s [80] method (HM) to estimate the scale function in the het-

eroscedastic data. In the simulation study, HM performs its advantage in terms of bias

when the variance is a function of the covariates. We also compared the HM with grouped

weighted least square (WLSx) and CQR methods in the facial recognition data whose vari-

ance is influenced by the image quality. The results demonstrate that the bias of HM is

lower than WLSx and CQR. As a conclusion, we recommend the HM when the variance of

the data depends on the covariates.

There are several research directions for us to work on in the future. The first can be

made from Chapter 2 where the LLR values were calculated based on the datasets in facial

recognition and fingerprint matching. Since the LLR values may change if multiple face and

fingerprint datasets are used in the study, it is interesting to assess the reproducibility using

multiple face and fingerprint datasets. The issue of choice of dataset has been highlighted

by Jain et al. [88, 89]. If the LLR values are not consistent across multiple datasets for a

single biometric modality, careful consideration on selecting an appropriate dataset for LLR

estimation is necessary to ensure that the characteristics of the selected dataset represent

the background information of forensic cases.

Another important direction for these covariate-specific ROC curve studies concerns the

development of approaches that can systematically deal with dependencies among biometric

scores arising from pairwise comparisons of individuals, a scenario that we have encountered

in the case study presented herein. Furthermore, In the real study, more information can

be acquired from the picture as the quality of the image improves, and thus the variability

in the scores is getting smaller. Therefore, an alternative topic is to encounter the order

constraint of the variance additional to the mean in the future to improve the statistical
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efficiency.
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Appendix A: Appendix to Chapter 3

This supplement is organized as follows. Sections A.1 and A.2 contain proofs of the two

statements presented in the body of the paper. Some supplementary statements and their

proofs are contained in Sections A.3 and A.4. Section A.5 is dedicated to additional simu-

lation results.

A.1 Proof of Proposition 3.1

We start by showing that

β̂WLS D= β∗ +
σ√
N
ζ, ζ ∼ Nd(0,Ω), Ω =

 N
n C−1

0 −N
n C−1

0

−N
n C−1

0
N
n C−1

0 + N
m ·

τ2

σ2 C−1
1

 ,
C0 = 1

n [1n Z0]>[1n Z0], Z0 = [X1•; . . . ; Xn•], C1 = 1
m [1m Z1]>[1m Z1], Z1 = [Xn+1•; . . . ; XN•],

where “;” here denotes row-wise concatenation. Under model (3.16), β̂WLS ∼ Nd(β
∗,Σ)

with Σ = (X>WX)−1, and it remains to show that N
σ2 Σ = Ω. Invoking relation (3.17), we

obtain

Σ = L−1

σ2 1
nC−1

0 0

0 τ2 1
mC−1

1

 (L>)−1, L−1 =

 Ip+1 0

−Ip+1 Ip+1

 , (L>)−1 = (L−1)>.

Performing the above matrix multiplication confirms that N
σ2 · Σ = Ω. To conclude the

proof of the proposition, we make use of the primal-dual relation (3.12). According to the

previous display, we use that N
σ2 (X>WX)−1 = Ω, and then re-write the minimizer of the
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dual problem:

λ̂ = argmin
λ∈Rq+

{
1

2
λ>A(X>WX)−1A>λ+ λ>Aβ̂WLS

}

= argmin
λ∈Rq+

{
1

2
λ>

A(N−1σ2X>WX)−1A>

N/σ
λ+ λ>

(
∆∗

σ
+

ξ√
N

)}
, ξ ∼ N(0,AΩA>)

= argmin
λ∈Rq+

{
1

2

λ>AΩA>

N/σ
λ+ λ>

(
∆∗

σ
+

ξ√
N

)}
.

Using Lemma A.3 below yields that the “argmin” in (3.18) results as

argmin
λ∈Rq+

{
1

2
λ>AΩA>λ+ λ>

(
∆∗

σ
+

ξ√
N

)}
=

λ̂

N/σ
.

Putting together the pieces and simplifying terms yields the assertion.

A.2 Proof of Corollary 3.1

In view of (3.11) and (3.12), it is clear that {Aβ̂LS ≥ 0} = {β̂ = β̂LS}. We have {Aβ̂LS ≥

0} =
⋂q
k=1{a

>
k β̂

LS ≥ 0}. Using the Gaussian tail bound P (Z < µ− t) ≤ exp
(
− t2

2σ2

)
, t > 0

for Z ∼ N(µ, σ2), the fact that N1/2a>k β̂
LS ∼ N(∆∗k, σ

2a>k Ωak), k = 1, . . . , q, and a union

bound, we obtain that

P

(
q⋃

k=1

{
a>k β̂

LS < 0
})
≤

q∑
k=1

exp

(
−N ·

∆∗2k
2σ2 · a>k Ωak

)
.

This concludes the proof of the corollary.
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A.3 Proof of Corollary 3.2

Proof. The above corollary follows from Proposition 3.1 by evaluating the “argmin” in

(3.18), which reduces to a simple expression. Let G = AΩA> and ν = −
(

∆∗

σ + 1√
N
ξ
)

with ξ ∼ N2(0,G). The optimization problem inside the curly brackets in (3.18) then

becomes

min
λ∈R2

+

1

2
λ>Gλ− ν>λ (A.1)

Note that we can have (i) {λ̂1 > 0, λ̂2 > 0}, (ii) {λ̂1 > 0, λ̂2 = 0}, (iii) {λ̂1 = 0, λ̂2 > 0} and

(iv) {λ̂1 = 0, λ̂2 = 0}. If case (iv) occurs, the result immediately follows. The optimality

conditions of (A.1) imply that case (i) requires that G−1ν ≥ 0 in which case λ̂ = G−1ν.

Similarly, case (ii) requires G11λ̂1 = ν1 and G12λ̂1 ≥ ν2 ⇔ (G12/G11)ν1− ν2 ≥ 0. Case (iii)

is analogous to case (ii). It remains to calculate the entries of the matrix G = AΩA> with

Ω as in Corollary 3.2 and

A =

0 0 1 0

0 0 1 1

 .

It suffices to compute the bottom 2-by-2 diagonal block of Ω. Direct calculations show that

C−1
0 =

 x̄2

s2x
+ 1 − x̄

s2x

− x̄
s2x

1
s2x

 , C−1
1 =

 z̄2

s2z
+ 1 − z̄

s2z

− z̄
s2z

1
s2z

 ,

and the given expressions for G11, G12, and G22 are then obtained by straightforward

computations.
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A.4 Additional Lemmas

The following lemma states that in the case of constant variances within the two groups

defined by D, i.e., σ0(X;α∗0) ≡ σ and σ1(X;α∗1) ≡ τ , least squares and weighted least

squares (3.9) yield identical solutions.

Lemma A.1. Consider the weighted least squares criterion

min
β∈Rd

1

2
‖W1/2(y −Xβ)‖22

with X as defined below (3.9) and weight matrix

W = diag

 1

σ2
, . . . ,

1

σ2︸ ︷︷ ︸
n times

,
1

τ2
, . . . ,

1

τ2︸ ︷︷ ︸
m times

 .

We then have β̂WLS = β̂LS, where β̂WLS denotes the minimizer of the above weighted least

squares problem, and β̂LS denotes the ordinary least squares solution.
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Proof. We have

β̂WLS = (X>WX)−1X>Wy

= (L>Z>WZL)−1L>Z>Wy (cf. (3.17))

= L−1
(
Z>WZ

)−1
Z>Wy

= L−1

 1
σ2 [1n Z0]>[1n Z0] 0

0 1
τ2

[1m Z1]>[1m Z1]


−1 1

σ2 [1n Z0]> 0

0 1
τ2

[1m Z1]>

y

= L−1

 ([1n Z0]>[1n Z0])−1[1n Z0]>

([1m Z1]>[1m Z1])−1[1m Z1]>

y

= L−1(Z>Z)−1Z>y

= (Z>ZL)−1Z>y

= (L>Z>ZL)−1L>Z>y

= (X>X)−1X>y = β̂LS.

The second lemma shows that the constrained estimator of the mean difference ∆̂ = Aβ̂ is

closer to ∆∗ = Aβ∗ than the unconstrained solution ∆̂WLS = Aβ̂WLS with respect to the

norm ‖·‖H−1/2 := ‖H−1/2 ·‖2, with H = A(X>WX)−1A> as defined below (3.11).

Lemma A.2. With probability one, we have ‖∆̂ −∆∗‖2
H−1/2 ≤ ‖∆̂WLS −∆∗‖2

H−1/2, with

equality holding if and only if ∆̂ = ∆̂WLS.

Proof. We have

β̂ = β̂WLS + (X>WX)−1A>λ̂.
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This and the fact that β̂WLS ∼ Nd(β
∗, (X>WX)−1) implies that

Aβ̂ = Aβ̂WLS + A(X>WX)−1A>λ̂ ⇒ ∆̂ = ∆̂WLS + Hλ̂

⇒ ∆̂ = ∆∗ + ς + Hλ̂, ς ∼ Nq(0,H). (A.2)

It follows that

∆̂−∆∗ = ς + Hλ̂

⇒ H−1/2(∆̂−∆∗) = g + H1/2λ̂, g ∼ Nq(0, I). (A.3)

Now note that the dual optimization problem (3.11) can be rewritten as

min
λ∈Rq+

1

2
λ>Hλ+ λ>∆̂WLS.

Using the variable transformation γ = H1/2λ ⇔ λ = H−1/2γ, we obtain the equivalent

optimization problem

min
H−1/2γ∈Rq+

1

2
‖γ‖22 + γ>H−1/2∆̂ WLS.

Using (A.2) and (A.3), we obtain another equivalent optimization problem

min
H−1/2γ∈Rq+

{
1

2
‖γ‖22 + γ>H−1/2∆∗ + γ>g +

1

2
‖g‖22

}

= min
H−1/2γ∈Rq+

{
γ>H−1/2∆∗ +

1

2
‖g + γ‖22

}
.

Let γ̂ denote the corresponding minimizer. Note that γ̂>g < 0 unless γ̂ = 0 (otherwise,

γ̂ = 0 would be the optimal solution, since ∆∗ > 0 and hence for any feasible non-zero γ,

we must have γ>H−1/2∆∗ > 0). The latter observation implies that ‖γ̂ + g‖22 ≤ ‖g‖22. At
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the same time, we note that in view of (A.2) and (A.3)

H−1/2(∆̂−∆∗) = g + γ̂, H−1/2(∆̂WLS −∆∗) = g.

Since ‖g + γ̂‖22 ≤ ‖g‖22 as shown above, with equality holding (with probability one) if and

only if γ̂ = 0 ⇔ λ̂ = 0 (and thus ∆̂ = ∆̂WLS), we conclude that

‖H−1/2(∆̂−∆∗)‖22 ≤ ‖H−1/2(∆̂WLS −∆∗)‖22,

with equality holding if and only if ∆̂ = ∆̂WLS.

The third lemma is used in the Proof of Proposition 3.1.

Lemma A.3. For s > 0, consider the quadratic program

min
λ∈Rd+

1

2
λ>Qλ− s · h>λ, (A.4)

for a symmetric positive definite matrix Q, and let λ̂(s) be its minimizer. We then have

λ̂(s) = sλ̂(1).

Proof. Let A(1) = {1 ≤ j ≤ d : λ̂j(1) > 0} be the active set of λ̂(1). In particular,

λ̂A(1)(1) = (QA(1)A(1))
−1hA(1), where the subscripts A(1)A(1) and A(1) refer to the prin-

cipal submatrix and subvector, respectively, corresponding to A(1). We shall demonstrate

that for any s > 0, it holds that A(s) = A(1). For this purpose, observe that

QA(1)A(1)(λ̂A(1)(1) · s) = shA(1) ⇔ QA(1)A(1)λ̂A(1)(1) = hA(1),

QA(1)cA(1)(λ̂A(1)(1) · s) ≥ shA(1)c ⇔ QA(1)cA(1)λ̂A(1)(1) ≥ hA(1)c ,

Noting that the left hand sides in the above display constitute the necessary and sufficient
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optimality conditions for optimization problem (A.4) (cf. p. 5[75]) we conclude that A(s) =

A(1) and λ̂(s) = sλ̂(1).

A.5 Additional Simulation Studies

In this section, we complement the results presented in §3.5 in the following ways.

A.5.1 We examine the relative efficiency (RE) concerning estimation of the mean differ-

ence ∆∗(x) and the covariate-specific ROC curve ROC∗x(u) in dependence of various

combinations of (i) the specific value taken by the covariate x and (ii) the FAR u.

A.5.2 We complete the result of our simulation for the mean difference and the covariate-

specific ROC curves in §3.5 using Table.

A.5.3 We visualize the results of the simulation study in §3.5 using multiple figures as an

alternative to the Tables A.1 and A.2.

A.5.4 We shed light on the performance of our method in the presence of multiple, possibly

highly correlated covariates.

We recall that values of RE larger than one are equivalent to a smaller MSE of the proposed

order-constrained method relative to the unconstrained method.

A.5.1 Relative Efficiency of the Mean Differences and the Covariate-

Specific ROC Curves

RE of mean differences. In Figure A.1, the RE attains its minimum when x = 0.5 for both

choices of the sample size (N = 20 and N = 100) under consideration. For all four studies,

the RE for N = 100 is always smaller than for N = 20; in all cases, the RE exceeds the

baseline of one except for study 4 in which the RE is close to one.

RE of covariate-specific ROC curves. Figures A.2 to A.5 display the RE for the estimated

covariate-specific ROC curves. Figures A.2 and A.3 graph RE versus x for a set of fixed

values of the FAR u, different sample sizes, and different error distributions. The RE attains

its minimum when x = 0.5. Moreover, the RE increases with u. In Figures A.4 and A.5, the
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roles of x and u are swapped compared to the two previous figures. It should be emphasized

that the RE is above one in all figures except for two cases in study 4 in which the RE is

slightly below one.
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Figure A.1: Relative efficiency (RE) of the estimated mean difference in dependence of x.
The red horizontal line corresponds to an RE of one.
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Figure A.2: Relative efficiency (RE) of the estimated ROC in dependence of x for different
values of FAR when N = 20. The red horizontal line corresponds to an RE of one.
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Figure A.3: Relative efficiency (RE) of the estimated ROC in dependence of x for different
values of FAR when N = 100. The red horizontal line corresponds to an RE of one.
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Figure A.4: Relative efficiency (RE) of the estimated ROC in dependence of FAR for
different values of x when N = 20. The red horizontal line corresponds to an RE of one.

99



Fixed x, N = 100
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Figure A.5: Relative efficiency (RE) of the estimated ROC in dependence of FAR for
different values of x when N = 100. The red horizontal line corresponds to an RE of one.
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A.5.2 Bias and MSE of the Mean Differences and the Covariate-Specific

ROC Curves

Table A.1 shows the bias and MSE in estimating the mean difference ∆∗(x) for x = 0.5

for all four studies, in dependence of the sample size and different values for ψ and φ. As

expected, the bias of the constrained method exceeds that without constraint. On the other

hand, the MSE of the former is smaller, i.e., the relative efficiency (RE) is larger than one

throughout. As the sample size increases, the RE gets closer to one, which is anticipated in

light of Corollary 3.1. Furthermore, it can be seen that small values of ψ and large values

of φ lead to an increase of the RE. The largest REs tend to be attained in Study 1 (normal

errors), which is not surprising given the optimality of least squares regression in this case.

Study 1 Study 2 Study 3 Study 4
N ψ

√
φ Method B MSE RE(SE) B MSE RE(SE) B MSE RE(SE) B MSE RE(SE)

20

0.5

8
w/o 0.13 13.70

2.52(0.79)
-1.48 4759.14

2.07(0.49)
-0.33 14.61

1.83(0.18)
0.08 4.44

1.79(0.42)
w/ 1.14 5.43 18.43 2299.81 1.35 8.00 0.54 2.49

16
w/o 0.26 52.25

2.56(0.81)
-2.75 18878.61

2.07(0.49)
-0.67 57.93

1.85(0.18)
0.16 17.58

1.85(0.44)
w/ 2.59 20.20 36.06 9106.17 3.06 31.38 1.39 9.52

32
w/o 0.51 216.32

2.55(0.80)
-5.30 75390.17

2.08(0.50)
-1.34 231.48

1.84(0.18)
0.33 70.11

1.85(0.44)
w/ 5.55 84.88 71.46 36257.42 6.78 125.88 3.17 37.95

1

8
w/o 0.13 13.70

2.45(0.76)
-1.48 4759.14

2.07(0.49)
-0.33 14.61

1.80(0.17)
0.08 4.44

1.69(0.39)
w/ 0.99 5.59 18.22 2297.45 1.16 8.12 0.41 2.63

16
w/o 0.26 54.25

2.55(0.80)
-2.75 18878.61

2.07(0.49)
-0.67 57.93

1.85(0.18)
0.16 17.58

1.82(0.43)
w/ 2.41 21.25 35.83 9101.16 2.85 31.32 1.21 9.67

32
w/o 0.51 216.32

2.56(0.81)
-5.30 75390.17

2.08(0.50)
-1.34 231.48

1.85(0.18)
0.33 70.11

1.85(0.44)
w/ 5.35 84.65 71.23 36246.83 6.32 125.31 2.96 37.94

100

0.5

8
w/o -0.05 1.33

1.43(0.10)
1.01 682.21

1.43(0.13)
-0.06 2.60

1.54(0.11)
-0.02 0.48

1.16(0.08)
w/ 0.26 0.93 12.44 476.73 0.48 1.69 0.09 0.42

16
w/o -0.08 5.22

1.56(0.11)
2.09 2687.60

1.42(0.13)
-0.13 10.23

1.60(0.12)
-0.04 1.89

1.33(0.10)
w/ 0.79 3.34 25.00 1887.30 1.27 6.38 0.35 1.42

32
w/o -0.16 20.77

1.59(0.12)
4.24 10698.28

1.42(0.13)
-0.24 40.69

1.60(0.12)
-0.08 7.54

1.43(0.11)
w/ 1.94 13.08 50.26 7526.15 2.92 25.45 1.02 5.28

1

8
w/o -0.05 1.33

1.29(0.08)
1.01 682.21

1.44(0.13)
-0.06 2.60

1.45(0.10)
-0.02 0.48

1.07(0.07)
w/ 0.16 1.03 12.21 475.33 0.36 1.79 0.03 0.45

16
w/o -0.08 5.22

1.50(0.11)
2.09 2687.60

1.43(0.13)
-0.12 10.23

1.58(0.11)
-0.04 1.89

1.23(0.09)
w/ 0.64 3.48 24.77 1884.01 1.10 6.47 0.23 1.54

32
w/o -0.16 20.77

1.58(0.12)
4.24 10698.28

1.42(0.13)
-0.24 40.69

1.61(0.12)
-0.08 7.54

1.39(0.11)
w/ 1.75 13.13 50.03 7519.18 2.72 25.35 0.84 5.42

Table A.1: Bias (B) and MSE of the mean difference ∆∗(x) for x = 0.5. (w/o: linear
regression without order constraint; w/: linear regression with order constraint.)

We further investigate the bias and the MSE in estimating ROC∗x(u). Specifically, we

fix u = 0.5 and x = 0.5. Table A.2 depicts the results in studies 1 to 4, respectively. Small

sample sizes yield large values for the RE in alignment with the results in Table A.1. The

RE noticeably exceeds one, showing advantages of the proposed use of order constraints.
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In Study 4, unconstrained estimation performs on par with constrained estimation.

Study 1 Study 2 Study 3 Study 4
N ψ

√
φ Method B MSE RE(SE) B MSE RE(SE) B MSE RE(SE) B MSE RE(SE)

20

0.5

8
w/o 0.78 2.82

1.73(0.13)
-1.89 4.88

2.21(0.17)
-1.44 2.43

1.91(0.15)
-43.01 21.15

1.39(0.04)
w/ 6.48 1.63 6.89 2.21 4.96 1.27 -37.69 15.22

16
w/o 0.63 2.81

1.76(0.14)
-0.87 3.64

1.96(0.15)
-1.23 2.40

1.91(0.15)
-47.88 25.77

1.47(0.04)
w/ 7.18 1.60 7.54 1.86 5.97 1.25 -40.77 17.48

32
w/o 0.55 2.81

1.76(0.14)
-0.37 2.89

1.85(0.14)
-1.33 2.39

1.89(0.15)
-50.29 28.24

1.53(0.04)
w/ 7.59 1.60 7.59 1.57 6.52 1.27 -42.09 18.49

1

8
w/o 0.91 2.77

1.68(0.12)
-2.81 4.98

2.36(0.18)
-1.64 2.42

1.89(0.14)
-38.21 16.97

1.31(0.04)
w/ 5.75 1.65 5.44 2.11 3.96 1.28 -34.40 12.94

16
w/o 0.71 2.80

1.74(0.13)
-1.26 3.67

2.03(0.16)
-1.34 2.40

1.93(0.15)
-45.44 23.38

1.42(0.04)
w/ 6.76 1.61 6.82 1.80 5.41 1.25 -39.37 16.38

32
w/o 0.59 2.81

1.67(0.14)
-0.54 2.90

1.89(0.14)
-1.19 2.39

1.90(0.15)
-49.09 26.99

1.50(0.04)
w/ 7.36 1.60 7.23 1.54 6.22 1.25 -41.47 18.01

100

0.5

8
w/o -0.16 0.34

1.42(0.10)
-3.84 0.71

2.66(0.32)
-1.16 0.36

1.80(0.11)
-42.27 18.13

1.05(0.01)
w/ 1.38 0.24 -0.49 0.27 0.77 0.20 -41.29 17.25

16
w/o -0.16 0.34

1.55(0.12)
-1.84 0.44

2.37(0.20)
-0.69 0.34

1.82(0.13)
-46.54 21.97

1.09(0.01)
w/ 2.03 0.22 1.37 0.19 1.82 0.19 -44.70 20.15

32
w/o -0.17 0.34

1.58(0.12)
-0.85 0.37

1.95(0.12)
-0.46 0.33

1.73(0.12)
-48.69 24.04

1.12(0.01)
w/ 2.47 0.21 2.31 0.19 2.41 0.19 -46.11 21.40

1

8
w/o -0.12 0.34

1.28(0.09)
-5.80 0.92

2.55(0.22)
-1.61 0.37

1.68(0.10)
-38.05 14.70

1.03(0.01)
w/ 0.90 0.27 -2.60 0.36 -0.13 0.22 -37.60 14.33

16
w/o -0.15 0.34

1.49(0.11)
-2.83 0.50

2.77(0.23)
-0.92 0.34

1.84(0.12)
-44.39 19.98

1.06(0.01)
w/ 1.65 0.23 0.30 0.18 1.26 0.19 -43.13 18.78

32
w/o -0.16 0.34

1.58(0.12)
-1.38 0.38

2.24(0.14)
-0.57 0.34

1.79(0.13)
-47.61 22.98

1.10(0.01)
w/ 2.24 0.21 1.77 0.17 2.10 0.19 -45.45 20.81

Table A.2: Bias (B) and MSE of ROC∗x(u) for x = 0.5 and FAR = 0.5. (w/o: linear
regression without order constraint; w/: linear regression with order constraint). All values
of B and MSE have been multiplied by 100.

A.5.3 Visualizations of the Results

Figure A.6 and Figure A.7 provide an alternative representation of the results reported in

Table A.1 and A.2, respectively. Recall that according to the data-generating model (3.19)

underlying the simulations, we denote by ψ the location parameter and by φ the scale

parameter. It can be seen from Figure A.6 that the RE decreases and approaches one as

the sample size increases. The REs for the mean difference also increase with small values

of ψ and large values of φ. The RE exceeds one in each figure, which shows that our method

reduces the MSE.
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Figure A.6: Relative efficiency (RE) of the estimated mean difference in dependence of ψ
for different values of φ when x = 0.5.
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Figure A.7: Relative efficiency (RE) of the estimated ROC in dependence of ψ for different
values of φ when x = 0.5 and FAR = 0.5.
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A.5.4 Bias and MSE of the Mean Difference and the Covariate-Specific

ROC Curves with Multiple Predictors

We here consider the case of multiple (p > 1), possibly highly correlated covariates. Ex-

tending the simulation model (3.19), we generate data as follows:

Ti = 1 + x>i θ +Di × ψ +Di × x>i θ + e1iDi ×
√
φ+ e0i(1−Di),

• xi = (xi1, . . . , xip)
> is such that xij = Φ(gij) follows a uniform distribution, j =

1, . . . , p, where

gi = (gi1, . . . , gip)
>, gi ∼ Nd(0,Σρ), 1 ≤ i ≤ N.

The covariance matrix Σρ has entries one on its diagonal, and 0 ≤ ρ < 1 otherwise.

• The entries of θ = (θ1, . . . , θp)
> are all set to 1/p.

• All other quantities remain unchanged compared to the simulations for p = 1.

The results of the bias and MSE with regard to estimation of the mean difference and

the covariate-specific ROC curve for (i) x = (0.5, . . . , 0.5)> and (ii) x = (1, 0, . . . , 0)> in

dependence of different values of the sample size N , the number of covariates p, and the

correlation coefficient ρ.

Table A.3 shows the bias and MSE in estimating the mean difference for x = (0.5, . . . ,

0.5)>. The RE increases with the number of predictors and ρ but decreases with the sample

size. All REs are larger than the baseline 1, which implies that the proposed method

outperforms the traditional method. Table A.4 shows the bias and MSE in estimating the

conditional ROC for x = (0.5, . . . , 0.5)>. In Table A.4, with the exception of the two cases

in study 1 when the sample size is 50, most of the REs are larger than 1.

Table A.5 and Table A.6 demonstrate the bias and MSE in estimating the mean differ-

ence and ROC for x = (1, 0, . . . , 0)>. Comparing with Table A.3 and A.4, it can be seen

that the values of both bias and MSE of the proposed method change slightly as x changes,
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where the MSE of the conventional method is changes dramatically when x changes. All

values of RE are larger than 1 in these two tables.

Study 1 Study 2 Study 3 Study 4
N p ρ Method B MSE RE(SE) B MSE RE (SE) B MSE RE(SE) B MSE RE(SE)

50

1 -
w/o -0.03 2.73

1.41(0.10)
0.87 1441.26

1.40(0.19)
0.13 6.09

1.48(0.12)
-0.01 1.04

1.15(0.08)
w/ 0.39 1.93 15.37 1026.54 0.82 4.11 0.13 0.90

2
0.5

w/o 0.01 3.20
1.36(0.09)

-2.05 1422.08
1.66(0.19)

-0.09 6.15
1.47(0.11)

0.02 1.20
1.15(0.10)

w/ 0.51 2.36 13.93 854.38 0.75 4.20 0.22 1.05

0.9
w/o 0.01 3.19

1.39(0.09)
-2.03 1427.52

1.78(0.20)
-0.09 6.14

1.53(0.11)
0.02 1.19

1.18(0.10)
w/ 0.46 2.29 13.37 802.42 0.68 4.02 0.19 1.01

5
0.5

w/o -0.03 3.17
1.41(0.09)

-1.50 1560.73
1.57(0.17)

0.10 7.03
1.55(0.12)

-0.02 1.16
1.18(0.09)

w/ 0.60 2.25 16.11 996.03 0.96 4.52 0.27 1.00

0.9
w/o -0.03 3.17

1.53(0.10)
-1.24 1550.42

1.79(0.20)
0.10 6.99

1.72(0.13)
-0.02 1.16

1.26(0.09)
w/ 0.46 2.07 14.59 864.54 0.76 4.07 0.18 0.92

10
0.5

w/o 0.06 5.34
2.04(0.14)

-0.01 2263.82
1.77(0.20)

-0.02 9.30
1.87(0.16)

0.04 1.92
1.82(0.14)

w/ 0.75 2.62 19.15 1279.04 1.07 4.97 0.35 1.06

0.9
w/o 0.04 5.30

2.31(0.15)
-0.41 2335.25

2.37(0.27)
0.02 9.30

2.19(0.20)
0.03 1.91

2.01(0.14)
w/ 0.54 2.29 16.37 985.06 0.77 4.26 0.23 0.95

100

1 -
w/o -0.05 1.33

1.29(0.08)
1.01 682.21

1.44(0.13)
-0.06 2.60

1.45(0.10)
-0.02 0.48

1.07(0.07)
w/ 0.16 1.03 12.21 475.33 0.36 1.79 0.03 0.45

2
0.5

w/o -0.02 1.42
1.23(0.08)

1.08 762.43
1.46(0.13)

0.07 2.70
1.23(0.09)

-0.01 0.52
1.06(0.07)

w/ 0.27 1.16 12.99 520.79 0.53 2.21 0.10 0.49

0.9
w/o -0.02 1.43

1.24(0.08)
1.10 759.93

1.54(0.14)
0.07 2.70

1.28(0.10)
-0.01 0.52

1.07(0.07)
w/ 0.23 1.15 12.43 493.24 0.47 2.12 0.09 0.48

5
0.5

w/o 0.07 1.43
1.19(0.08)

0.19 736.11
1.36(0.13)

0.02 2.92
1.31(0.09)

0.03 0.51
1.06(0.07)

w/ 0.40 1.20 13.28 540.22 0.59 2.22 0.17 0.48

0.9
w/o 0.07 1.44

1.24(0.08)
0.09 743.19

1.62(0.16)
0.02 2.91

1.43(0.10)
0.03 0.51

1.09(0.08)
w/ 0.32 1.16 11.77 459.01 0.46 2.04 0.13 0.47

10
0.5

w/o -0.01 1.64
1.37(0.09)

-0.02 815.33
1.46(0.14)

0.10 3.48
1.42(0.10)

-0.01 0.59
1.26(0.09)

w/ 0.42 1.20 13.74 559.49 0.73 2.46 0.18 0.47

0.9
w/o -0.02 1.62

1.50(0.10)
-0.15 819.44

1.88(0.19)
0.09 3.42

1.57(0.11)
-0.01 0.59

1.34(0.09)
w/ 0.27 1.08 11.40 436.93 0.52 2.17 0.10 0.44

Table A.3: Bias (B) and MSE of the mean difference ∆∗(x) for x = (0.5, . . . , 0.5)>, where
x ∈ Rp. (w/o: linear regression without order constraint; w/: linear regression with order
constraint.)
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Study 1 Study 2 Study 3 Study 4
N p ρ Method B MSE RE(SE) B MSE RE(SE) B MSE RE(SE) B MSE RE(SE)

50

1 -
w/o -0.01 0.71

1.43(0.09)
-4.50 2.25

2.40(0.23)
-0.78 0.77

1.67(0.11)
-38.12 15.05

1.08(0.02)
w/ 2.10 0.50 0.89 0.94 1.69 0.46 -36.85 13.95

2
0.5

w/o -1.00 0.62
1.18(0.08)

-5.35 1.72
2.83(0.27)

-2.40 0.64
1.41(0.09)

-39.82 16.32
1.18(0.02)

w/ 2.27 0.52 -0.54 0.61 1.15 0.45 -36.72 13.84

0.9
w/o -2.56 0.47

0.96(0.06)
-5.75 1.32

2.83(0.25)
-3.46 0.51

1.18(0.08)
-42.23 18.20

1.28(0.02)
w/ 1.86 0.49 -1.46 0.47 0.75 0.43 -37.19 14.18

5
0.5

w/o -4.40 0.35
0.96(0.06)

-6.20 0.82
2.70(0.19)

-4.46 0.37
1.09(0.06)

-45.19 20.57
1.40(0.01)

w/ 1.65 0.36 -2.11 0.31 0.95 0.34 -37.99 14.70

0.9
w/o -5.95 0.40

1.37(0.07)
-6.59 0.57

1.92(0.08)
-5.76 0.38

1.38(0.06)
-47.63 22.73

1.41(0.01)
w/ 0.09 0.29 -3.37 0.30 -0.60 0.27 -39.76 16.07

10
0.5

w/o -6.13 0.41
1.88(0.09)

-6.73 0.55
2.05(0.10)

-6.03 0.40
1.87(0.11)

-48.00 23.08
1.40(0.01)

w/ 0.01 0.22 -3.07 0.27 -0.64 0.21 -40.32 16.45

0.9
w/o -6.89 0.48

2.36(0.08)
-6.94 0.50

1.63(0.05)
-6.58 0.44

2.02(0.06)
-49.15 24.16

1.26(0.01)
w/ -2.79 0.20 -4.48 0.31 -3.15 0.22 -43.56 19.12

100

1 -
w/o -0.12 0.34

1.28(0.09)
-5.80 0.92

2.55(0.22)
-1.61 0.37

1.68(0.10)
-38.05 14.70

1.03(0.01)
w/ 0.90 0.27 -2.60 0.36 -0.13 0.22 -37.60 14.33

2
0.5

w/o -0.74 0.31
1.16(0.07)

-5.98 0.81
2.91(0.17)

-1.80 0.31
1.38(0.08)

-39.17 15.55
1.10(0.01)

w/ 1.18 0.26 -2.83 0.28 0.26 0.22 -37.43 14.18

0.9
w/o -1.95 0.28

1.08(0.06)
-6.16 0.70

2.61(0.13)
-2.77 0.28

1.29(0.08)
-41.13 17.12

1.19(0.01)
w/ 0.91 0.25 -3.23 0.27 0.01 0.22 -37.72 14.40

5
0.5

w/o -3.15 0.23
1.04(0.07)

-6.31 0.60
2.40(0.11)

-3.85 0.28
1.42(0.08)

-43.19 18.77
1.29(0.01)

w/ 1.22 0.22 -3.34 0.25 0.11 0.20 -37.88 14.49

0.9
w/o -5.17 0.31

1.57(0.09)
-6.64 0.51

1.85(0.06)
-5.29 0.33

1.75(0.08)
-46.38 21.55

1.41(0.01)
w/ 0.32 0.20 -4.18 0.27 -0.75 0.19 -38.94 15.32

10
0.5

w/o -5.47 0.33
2.45(0.12)

-6.77 0.51
2.04(0.06)

-5.38 0.32
2.25(0.10)

-46.78 21.91
1.38(0.01)

w/ 0.02 0.14 -3.94 0.25 -0.54 0.14 -39.72 15.88

0.9
w/o -6.57 0.44

3.11(0.12)
-6.92 0.49

1.59(0.03)
-6.26 0.40

2.55(0.09)
-48.57 23.59

1.33(0.01)
w/ -1.93 0.14 -4.95 0.31 -2.34 0.16 -41.97 17.71

Table A.4: Bias (B) and MSE of ROC∗x(u) for x = (0.5, . . . , 0.5)> where x ∈ Rp, and
FAR = 0.5. (w/o: linear regression without order constraint; w/: linear regression with
order constraint. All values of B and MSE have been multiplied by 100.)

Study 1 Study 2 Study 3 Study 4
N p ρ Method B MSE RE(SE) B MSE RE (SE) B MSE RE(SE) B MSE RE(SE)

50

1 -
w/o -0.08 11.5

2.22(0.16)
-0.53 5848.5

3.19(0.63)
0.09 23.1

2.45(0.22)
-0.06 4.4

1.49(0.12)
w/ 0.09 5.2 14.99 1026.5 0.53 9.5 -0.09 2.9

2
0.5

w/o 0.66 39.8
7.55(0.65)

1.05 17610.0
12.36(1.75)

-0.51 77.7
10.07(0.99)

0.42 14.8
5.24(0.52)

w/ 0.57 5.3 15.04 1425.0 0.67 7.7 0.29 2.8

0.9
w/o 1.42 186.1

35.77(3.12)
3.87 80450.9

61.87(8.99)
-1.00 363.3

47.74(4.82)
0.90 67.5

23.49(2.09)
w/ 0.50 5.2 14.13 1300.4 0.60 7.6 0.24 2.9

5
0.5

w/o -0.63 75.4
25.19(2.29)

-7.62 40461.7
47.37(8.82)

0.85 160.1
34.32(3.42)

-0.32 26.3
15.18(1.41)

w/ 0.01 3.0 8.96 854.2 0.29 4.7 -0.16 1.7

0.9
w/o -1.29 344.1

117.32(10.76)
-11.03 174154.7

210.68(37.12)
1.84 746.5

157.16(16.50)
-0.66 120.4

73.30(6.52)
w/ 0.13 2.9 9.39 826.6 0.43 3.4 -0.06 1.6

10
0.5

w/o 0.22 132.6
55.88(5.39)

-10.25 74462.3
188.71(39.49)

-0.13 265.7
77.58(10.24)

0.15 47.6
31.85(2.83)

w/ -0.27 2.4 5.01 394.6 -0.20 3.4 -0.40 1.5

0.9
w/o 0.28 613.0

236.57(22.26)
-15.03 343743.7

721.07(137.15)
0.11 1297.9

330.54(47.27)
0.21 219.3

152.08(13.42)
w/ -0.01 2.6 7.04 476.7 0.11 3.9 -0.18 1.4

100

1 -
w/o 0.05 5.2

1.75(0.11)
-0.59 2500.4

3.25(0.41)
-0.08 11.1

2.25(0.16)
0.05 1.9

1.24(0.09)
w/ 0.03 2.96 11.04 768.61 0.09 4.93 -0.01 1.54

2
0.5

w/o -0.15 18.2
6.39(0.48)

-5.16 8271.2
9.68(1.16)

-0.15 37.1
7.70(0.67)

-0.07 6.5
4.02(0.29)

w/ 0.24 2.9 13.56 854.8 0.51 4.8 0.10 1.6

0.9
w/o -0.30 82.1

27.77(2.12)
9.20 36276.9

45.27(5.63)
-0.38 167.7

35.25(3.15)
-0.13 29.6

16.64(1.18)
w/ 0.19 3.0 12.84 801.3 0.46 4.8 0.08 1.8

5
0.5

w/o 0.11 31.9
14.59(1.12)

-0.01 16781.2
39.30(5.57)

0.10 65.5
21.43(1.80)

0.11 12.0
9.30(0.71)

w/ 0.60 2.2 7.16 427.0 0.11 3.1 -0.09 1.3

0.9
w/o 0.08 141.3

65.04(4.90)
-0.87 74247.6

192.56(27.69)
0.08 293.6

99.50(8.64)
0.14 53.5

42.12(3.16)
w/ 0.15 2.2 7.29 385.6 0.20 3.0 0.03 1.3

10
0.5

w/o -0.24 41.5
24.86(2.03)

-6.04 25492.4
149.22(26.39)

0.36 84.7
35.79(3.99)

-0.12 15.4
13.99(0.98)

w/ -0.40 1.7 3.22 170.8 -0.32 2.4 -0.45 1.1

0.9
w/o -0.25 179.8

117.23(8.48)
-10.55 107392.8

502.03(79.35)
0.74 363.8

145.88(15.32)
-0.13 66.6

66.82(4.81)
w/ -0.19 1.5 4.90 213.9 -0.02 2.5 -0.21 1.0

Table A.5: Bias (B) and MSE of the mean difference ∆∗(x) for x = (1, 0, . . . , 0)>, where
x ∈ Rp. (w/o: linear regression without order constraint; w/: linear regression with order
constraint.)
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Study 1 Study 2 Study 3 Study 4
N p ρ Method B MSE RE(SE) B MSE RE(SE) B MSE RE(SE) B MSE RE(SE)

50

1 -
w/o -0.92 2.52

2.30(0.14)
-6.57 5.00

3.50(0.25)
-1.86 2.62

2.52(0.16)
-35.44 14.74

1.07(0.03)
w/ 0.20 1.10 -1.78 1.43 -0.14 1.04 -35.37 13.80

2
0.5

w/o 0.28 3.69
3.61(0.22)

-5.71 6.09
6.50(0.50)

-3.51 3.84
4.96(0.31)

-38.86 18.61
1.28(0.04)

w/ 2.30 1.02 -0.60 0.94 0.68 0.77 -36.70 14.54

0.9
w/o -1.15 5.83

5.94(0.35)
-6.14 8.34

10.84(0.79)
-4.95 6.11

8.12(0.50)
-41.15 22.65

1.51(0.05)
w/ 1.81 0.98 -1.40 0.77 0.30 0.75 -37.31 15.01

5
0.5

w/o -4.66 2.21
4.21(0.26)

-5.41 3.75
10.30(0.68)

-2.73 2.19
4.70(0.28)

-47.55 24.61
1.30(0.03)

w/ -0.65 0.52 -2.84 0.36 -0.63 0.47 -42.82 18.98

0.9
w/o -5.82 2.20

5.19(0.31)
-5.55 3.58

11.68(0.65)
-3.70 2.12

5.71(0.35)
-49.24 26.13

1.38(0.03)
w/ -0.80 0.42 -3.25 0.31 -0.92 0.37 -42.90 18.95

10
0.5

w/o -4.38 0.86
2.64(0.15)

-5.49 1.72
6.45(0.47)

-4.64 0.89
3.29(0.19)

-48.45 24.15
1.12(0.01)

w/ -2.55 0.33 -3.82 0.27 -2.89 0.27 -46.15 21.64

0.9
w/o -5.01 0.76

3.12(0.17)
-5.52 1.53

6.71(0.48)
-5.09 0.81

3.95(0.19)
-49.31 24.84

1.14(0.01)
w/ -2.87 0.24 -3.87 0.23 -3.08 0.20 -46.44 21.78

100

1 -
w/o 0.04 1.20

1.74(0.10)
-7.86 2.46

2.99(0.20)
-2.30 1.39

2.15(0.12)
-33.96 12.49

1.00(0.02)
w/ 0.09 0.69 -4.92 0.82 -1.66 0.65 -34.34 12.54

2
0.5

w/o -1.65 2.46
4.13(0.24)

-5.41 3.61
8.20(0.48)

-2.58 2.51
4.88(0.29)

-40.18 18.47
1.23(0.03)

w/ 0.88 0.59 -2.78 0.44 0.13 0.51 -37.81 15.02

0.9
w/o -3.26 4.71

7.83(0.43)
-5.51 6.00

14.63(0.66)
-3.89 4.79

9.29(0.51)
-42.59 22.69

1.48(0.04)
w/ 0.59 0.60 -3.21 0.41 -0.12 0.52 -38.12 15.33

5
0.5

w/o -2.61 1.80
4.24(0.24)

-5.90 2.60
9.35(0.52)

-2.98 1.84
5.39(0.29)

-44.68 21.70
1.19(0.02)

w/ -0.38 0.42 -3.66 0.28 -1.14 0.34 -41.98 18.17

0.9
w/o -4.17 2.03

5.44(0.31)
-6.26 2.75

10.89(0.51)
-4.08 1.96

6.66(0.35)
-47.07 24.03

1.35(0.03)
w/ -0.17 0.37 -3.85 0.25 -1.15 0.29 -41.68 17.86

10
0.5

w/o -4.39 0.79
2.74(0.14)

-5.04 1.52
6.50(0.41)

-3.83 0.76
3.02(0.16)

-48.04 23.69
1.11(0.01)

w/ -2.69 0.29 -4.26 0.23 -2.82 0.25 -45.88 21.36

0.9
w/o -5.06 0.75

3.38(0.17)
-5.19 1.33

6.05(0.40)
-4.42 0.70

3.54(0.18)
-49.17 24.68

1.18(0.01)
w/ -2.50 0.22 -4.17 0.22 -2.63 0.20 -45.38 20.84

Table A.6: Bias (B) and MSE of ROC∗x(u) for x = (1, 0, . . . , 0)> where x ∈ Rp, and
FAR = 0.5. (w/o: linear regression without order constraint; w/: linear regression with
order constraint. All values of B and MSE have been multiplied by 100.)
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