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Sign language is the primary form of communication among Deaf and Hard of Hearing

(DHH) individuals. Due to the absence of speaking capability, voice-controlled assistants

such as Apple Siri or Amazon Alexa are not readily available to a DHH individual. An

automated sign language recognizer can work as an interface between a DHH individual

and the voice-controlled digital devices. Recognizing world-level sign gestures is the first

step of an automated sign language recognition system. These gestures are characterized by

fast, highly articulate motion of the upper body, including arm movements with complex

hand shapes. The primary challenge of a world-level sign language recognizer (WLSLR) is

to capture the hand shapes and their motion components. Additional challenges arise due

to the resolution of the available video, differences in the gesture speed, and large variations

in the gesture performing style across individual subjects. In this dissertation, we study

different methods with the goal of improving video-based WLSLR systems.

Towards this goal, we introduced a multi-modal American Sign Language (ASL) dataset,

GMU-ASL51. This publicly available dataset features multiple modalities and 13, 107 word-

level ASL sign videos. We implemented machine learning methods using only video input



and a fusion of videos and body pose data. Usually, word-level sign videos have a vary-

ing number of frames, roughly ranging from 10 to 200, based on the source and type of

the sign videos. To utilize the frame-wise representation of hand shapes, we implemented

Recurrent Neural Network (RNN) models using per-frame hand-shape features extracted

from a pre-trained Convolutional Neural Network (CNN). To further improve hand-shape

representation, we proposed a hand-shape annotation method. This method can quickly

annotate hand-shape images and simultaneously train a CNN model. We later used this

model as a hand-shape feature extractor for the downstream sign recognition task.

Most of the information in sign language is conveyed using hand-arm movements. To pri-

oritize the hand-arm related features, we proposed a pose guided feature localizing method

from 3D feature maps of a 3D CNN model. This method can track the location of hands in

a feature map space and extract representative features for hands in a sign video. To further

leverage the idea of hand representation, we developed a graph-based hand modeling. This

formulation sees the hands as graphs and attempts to model the finger structures using

Graph Convolutional Network (GCN). When added with existing models, in an ensemble

manner, the graph modeling yielded extra recognition performances.

In an attempt to build an interface between DHH individuals and voice assistants, this

dissertation presents different building blocks of a video-based WLSLR. These range from

developing a multi-modal dataset to improving state-of-the-art video classification models.

We demonstrate the roles of hand shapes and pose data in several contexts of sign video

modeling. We anticipate that the data and the insights emerged from this work will help

to advance the research towards an automated sign language interpreter.



Chapter 1: Introduction

1.1 Motivation

According to the World Federation of the Deaf, 70 million deaf and speech-impaired people

use sign languages in their day to day communication [2]. This vast community is collectively

referred to as Deaf and Hard-of-Hearing (DHH). There are at least 300 sign languages in

use around the world today [3]. Thoughts in sign languages are primarily conveyed using

hand gestures, with occasional head and facial expressions. Due to the hearing and speech

impairment, the DHH community faces many hardships in daily life. One such problem is

the incapacity of using voice controlled personal digital assistants (PDA) such as Apple Siri,

Amazon Alexa and Google Home. While the use of these devices is gradually becoming

ubiquitous [4], due to the hearing and speaking disability, the DHH population can’t benefit

from it. Our goal is to alleviate this limitation by developing different components of a sign

language recognition system. Such a system can work as an interface between a DHH

individual and a digital system by translating sign gestures to text and vice versa. In

this regard, we aim to improve different aspects of video based automated sign language

recognition (SLR).

1.2 Sign Language Recognition (SLR)

The SLR task can be categorized into word-level sign language recognition (WLSLR) and

sentence-level or continuous sign language recognition (CSLR). Figure 1.1 shows examples

of these tasks. In the top image, we see three examples of the sign word TIME and in the

bottom image, we observe a sentence-level sign video. The sentence-level video is composed
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Figure 1.1: Three examples of word level sign class TIME (on top) taken from WLASL
dataset [1]; and a sentence level sign video sample translating HOW LONG HAVE YOU
LEARNED ASL (on the bottom) taken from www.handspeak.com.

of word-level signs and finger-spelling segments in a sequence. A finger-spelling segment

spells a sequence of letters using hand shapes representing letters in the alphabet.

From the recognition perspective, an automated WLSLR system aims to recognize iso-

lated sign words corresponding to particular upper body gestures, using hand and arm

movement. Since a video is a sequence of image frames, this is analogous to a sequence

classification problem. The top example in Figure 1.1 shows three samples for an exam-

ple sign word TIME. These show a progression of various hand shapes with arm motion.

These also demonstrate the appearance challenges such as different backgrounds and at-

tires; variation in the execution of a sign class; lighting condition; and camera distances.

The underlying machine learning (ML) system has to learn the hand-shape patterns and the

arm motion for videos from a given sign class; it must also learn to differentiate among pat-

terns from different classes. The objective in a CSLR system is to translate a sign video into

an English sentence. The video usually contains sequences of sign words and finger-spelled

segments. The goal of a finger-spelling task is to parse a continuous stream of hand shapes

2



corresponding to letters. The bottom example in Figure 1.1 shows a sample sentence-level

sign video, which shows a sequence of word-level signs and a finger-spelling segment. Solv-

ing the WLSLR problem is a vital prerequisite to solve the CSLR problem. Considering the

importance of a word-level sign recognizer, this dissertation focuses on improving different

aspects of a WLSLR system.

1.3 Problem Statement

The goal of a WLSLR system is to identify the sign class when a video is given as input.

Each of the classes represents a word. Formally, we assume access to a set of N pairs

{Vi,Wi}N1 where Vi is a video and Wi is the corresponding class, and our goal is to learn a

function φ such that Wi = φ(Vi). As an input to a WLSLR system, a video Vi can be seen as

a sequence of features {f1, f2, ..., fT } where T is the number of frames in the video; and fis

are frame features such as RGB or pose based features. Learning the function φ is typically

addressed as a sequence classification problem. We also followed a similar approach. In

details, input to all our proposed methods is a sign video or a sequence representation

extracted from the video; and the output is the corresponding class, which represents a

word. Once the φ is learned, the function can predict the class label of an unseen sign video

with reasonable accuracy. Improving this prediction accuracy is the ultimate goal of the

learning process.

1.4 Thesis Organization

This thesis includes seven chapters excluding the current chapter. Chapter 2 presents the

background methods that we used in our works and also discusses the prior works on sign

language recognition. Chapters 3 through 7 describe our contributions for improving word-

level sign video recognition. Chapter 8 presents conclusion and future research directions.
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Figure 1.2: Multi-modal data collection system.

1.5 Contribution Summary

In Figure 1.1, the top image shows three examples of the word level sign for the English word

TIME. Although taken from the same sign class, we observe noticeable execution variations:

the orientation of the left arm, the bending motion of the right index finger, background

variation such as clean background versus cluttered background, and different lighting con-

ditions. A successful machine learning (ML) based recognizer has to deal with thousands

of such word classes, possibly coming from hundreds of different sources [1, 5]. This gives

us a hint about the required scale and modeling capacity of the underlying ML model. In

addition to that, the model has to be trained on as much data as possible for a better

generalization ability. To tackle these challenges, our contribution focuses on building sign

language dataset and developing ML methods for word level sign recognition (WLSLR).

Here we provide a summary of our contributions presented in this dissertation.

1.5.1 Multi Modal Benchmark Dataset

Chapter 3 details the construction of an American Sign Language (ASL) dataset. The pre-

vious datasets were neither public nor suitable for data driven deep learning (DL) based
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methods [6–9]. In this work, our objectives were to build a multi-modal ASL dataset,

demonstrate feasibility of DL methods and release the benchmark publicly.1 We consid-

ered the modalities of the RGB video, depth, skeletal body key-points (3D body pose),

and 60 GHz millimeter-wave wireless signals. Figure 1.2 shows the setup we used for the

data collection system. Upon the completion of the dataset, we implemented baseline ML

approaches to assess the modeling challenges in our dataset. We also proposed Recurrent

Neural Network (RNN) models using pose data and fusion model using both RGB and pose

data. Our experimental results showed, using only the pose data, a reasonable recognition

accuracy of 81% can be obtained. This established the viability of the RNN based approach

using the pose data.

1.5.2 Deep Hand Feature Based SLR

Most of the existing WLSLR datasets have only sign video-level annotation [1,5,10,11]. To

be more specific, for a given sign video we know the class label of the video but not the class

label of the video frames. The underlying ML models are trained to capture both the per

frame hand-shape features and the temporal context using this video-level ground truth or

class label. This limits the extent to which an ML model can learn from individual frames in

a sign video. We implemented a method that takes a sequence of per-frame features as input

to learn the temporal dynamics in a sign video. We extracted these feature representation

from a Convolutional Neural Network (CNN) that is pre-trained on 1 million hand-shape

images [12]. We evaluated multiple RNN models using extracted hand representation along

with pose information. Chapter 4 details this method.2

1.5.3 Learning Hand Shapes for SLR

To learn better hand-shape representation than a pre-trained source, we proposed a semi-

automatic approach for annotating all of the frames in a dataset.3 With a little manual

1https://github.com/amin07/GMU-ASL51
2https://github.com/amin07/DeepFt-Based-ASL-Rec
3https://github.com/amin07/FineHand
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effort, this method can learn robust hand-shape features, which significantly improves the

downstream SLR task. We started with a small set of manually annotated frames, and

iteratively expanded the number of annotated frames using CNN prediction and re-training.

Upon the availability of adequate hand-shape annotations, we developed Long Short Term

Memory (LSTM) based fusion networks that outperformed the baseline methods mentioned

in Chapter 3 and 4. This method is detailed in Chapter 5.

1.5.4 Enhancing SLR using Pose Guided Pooling

While a 2D CNN learns form an image input, a 3D CNN can directly learn from a video

input. This allows 3D CNN models to learn in an end to end manner from large scale sign

video datasets [5, 13]. Although modeling at large scales, these approaches disregard the

importance of hand-shapes in a sign video. To better represent the hand shapes in sign

video modeling, we proposed an enhanced 3D CNN model that can look more closely at

the hand region. We utilized body-pose information to localize feature maps associated

with important hand locations such as elbows and palms. Our experimental results show

that these localized features are more robust than the basic 3D CNN features in sign video

modeling. We found also these better transferable to related domains. We describe this

work in Chapter 6.4

1.5.5 Improving SLR using Representative Frames

The 3D CNN learns the spatial and the temporal features in videos simultaneously [1,5,13–

15]. Hence, two sign classes with similar hand-arm motion and subtle hand-shape differences

are difficult to distinguish. This is due to the fact that, 3D CNN takes input and processes

the video as 3D tensors of different 3D resolutions through the layers of the network. This

way, it learns spatial-temporal correlation of different video classes. We included a separate

per-frame spatial modeling on the top of existing spatial-temporal features. We based

this extra spatial source on a 2D CNN and a Graph Convolutional Networks (GCN). Our

4https://github.com/amin07/Pose-Pooling-3dConvNet
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experiments showed better performance with this added feature stream. In addition to that,

this graph based hand feature can disambiguate very similar looking sign video classes. We

describe this work in Chapter 7.
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Chapter 2: Background

The WLSLR task can be formulated as a supervised machine learning (ML) problem where

a sign gesture video and the corresponding word label form a pair of training examples. The

goal is to train an ML model such that it can identify the word class label of unseen gesture

videos. Primarily, an ML algorithm must tackle two challenges regarding a gesture video:

modeling the per-frame spatial appearances and capturing the temporal component across

the sequence of frames. Together, these are known as spatial-temporal modeling. A com-

monly used approach before the deep-learning (DL) era was to first extract some engineered

features and then utilize the Hidden Markov Models (HMM) to capture the temporal com-

ponent [8, 9, 16]. Deep-learning based methods have replaced this approach using different

combinations of Artificial Neural Networks (ANN). For example, in case of an RGB video

input, the frame-level spatial modeling can be efficiently tackled using Convolutional Neural

Networks (CNN) and the temporal part can be modeled with Recurrent Neural Networks

(RNN). Another approach is to use 3D convolution directly on video inputs [6, 13–15, 17].

The 3D CNN models learn the spatial and the temporal features simultaneously.

To train an ML model in a supervised setting, a collection of training data is required. A

video-based WLSLR system primarily depends on raw RGB input. However, some derived

representations from RGB such as optical flow and body pose location also provide com-

plementary input representation. Traditionally, 3D body pose, otherwise known as skeletal

data, has been collected using motion capture systems [18–20]. Another approach, com-

monly referred as pose estimation, trains CNN models to extract body poses directly from

RGB video input [21–24].

The aforementioned ML techniques and input representation serve as the building blocks

of the implemented methods in this thesis. In the following section, we provide more detailed
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background in the context of video-based sign gesture modeling.

2.1 Spatial Modeling

In the context of video modeling, the spatial feature refers to per-frame feature. Specifically

for a sign video, we are interested in hand shape and arm orientation at each frame. Feature

engineering refers to the idea of extracting useful representation from raw input data using

various processing methods. For example, in the case of an RGB video frame, one could

extract features like edges and corners that are useful for a specific downstream task. In

gesture recognition, some examples of robust features from RGB video frames are Histogram

of Oriented Gradient (HOG) features and SIFT features [9,16,25,26]. Similarly, hand key-

point based spatial features such as unit-vectors, angle between joints or motion features are

useful in gesture recognition [10, 27]. As opposed to engineered features, Neural Networks

take raw data as input and learn useful features from the data. In this way, Neural Networks

can skip the feature engineering part.

2.1.1 Artificial Neural Networks

The most basic Artificial Neural Network (ANN) consists of an input layer, an output

layer and possibly multiple hidden layers. Layers are composed of nodes, also referred as

neurons. Usually a neuron at a layer is connected to another neuron at a subsequent layer

using a weight parameter. Training the network refers to learning these parameters, using

class labels of input data, in an iterative fashion. This process is known as back-propagation

algorithm [28]. The training process stops when the error reduces to a considerable amount.

2.1.2 Convolutional Neural Networks

A popular variant of neural networks is the Convolutional Neural Network (CNN) that works

on image-like input. As shown in the top-left diagram of Figure 2.1, the CNN expects an

image or a matrix. The CNN looks at the image input using smaller patches, in a sliding

9
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Figure 2.1: Schematic diagrams of different types of CNNs. Top-left schematic shows a
basic CNN while top right shows a 3D CNN. Bottom-left image shows the convolution
operation and the bottom-right shows an example of maximum pooling. Different colored
square patches symbolize kernels.

window manner. These patches, also known as kernels, calculate a dot product with the

input windows they slide over. The dot product values for one kernel at a layer yield one

feature map for the next layer to process. This is known as the convolutional operation. The

ultimate goal is to learn the optimal kernel values using the back-propagation algorithm.

The convolution operation is usually followed by a non-linear activation function, which

enables the CNN to learn highly nonlinear relationships in the data. Some of the popular

choices for the activation function are Sigmoid function, Rectified Linear Unit (ReLU),

Leaky ReLU, and Hyperbolic Tangent (tanh) function. There can be a sampling or pooling

operation followed by the activation function. The purpose is to aggregate highly active

regions in a 2D feature map. The pooling operation does not have any parameters to learn

and reduces the resolution of the feature map from one layer to another. The bottom-left

and bottom-right diagrams in Figure 2.1 depict a convolution and a maximum pooling

operation respectively.
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The aforementioned operations – convolution, activation and pooling – form an ar-

rangement of operations. Usually a standard CNN has several layers of such arrangement.

Finally, for a given input image, the network outputs a representation vector that can be

used in subsequent tasks. The most common use is to send it to a fully connected (FC)

layer for a classification purpose. The FC layer is a linear ANN where the input is the

representation vector and the output is a score vector. The size of the score vector is the

number of classes in the dataset. The raw scores in this vector are converted into prediction

scores using the Softmax function.

σ(xi) =
exi∑N
j=1 e

xj
(2.1)

This function, as shown in Equation 2.1, takes the raw scores, xi, as input and outputs a

probability distribution over all the classes in the dataset.

3D Convolution In a standard CNN layer, each kernel convolves over the stack of 2D

feature maps from the previous layer and produces a feature map for the next layer to

process. The operation is given by Equation 2.2 where F l
i,j denotes the value of a feature

map at lth layer at location (i, j). The symbol � represents the dot product between a kernel

W and the associated feature map patch in the previous layer. An index (p, q) refers to a

neighboring location centered at (i, j); N(i, j) refers to the set of all neighboring indices.

The size of N(i, j) depends on the kernel size. For example, in case of a 3× 3 kernel, there

are 9 location elements in N(i, j) uniformly centered at (i, j).

F l
i,j =

∑
(p,q)∈N(i,j)

Wp,q � F l−1
p,q (2.2)

F l
i,j,k =

∑
(p,q,r)∈N(i,j,k)

Wp,q,r � F l−1
p,q,r (2.3)
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Imagine that we have a sequence of images or a video, as input. While a standard CNN

learns useful features from a 2D image-like input, it faces difficulty when the input is a

sequence of images, or a video. To solve this problem, 3D convolution was introduced in

[14]. The key difference is that kernels are 3D and sub-sampling (pooling) layers work across

three dimensions. The extra dimension, compared to the 2D convolution, represents the

temporal axis. Equation 2.3 shows a 3D convolution operation. In this case, from each filter

we get a 3D feature map and Fi,j,k denotes a value at (i, j, k) location after the convolution

operation. The dot product is between two 3D matrices (also referred to as tensors). The

top-right depiction in Figure 2.1 shows an example schematic of a 3D CNN.

2.1.3 Graph Neural Networks

Image input can be seen as a graph where each pixel location is a node and the adjacent

pixels are the neighbors. In this case, the neighborhood relationship is uniform, meaning

that, given a distance, each pixel has same number of neighbors. However, if the uni-

form neighborhood is not guaranteed, the uniform kernel-based convolution operation is

not straightforward. In other words, each node in the graph can have varying number of

neighbors. Let’s refer to this type of graph as irregular graph for this work.

Irregular graphs often arise in different domains such as the user-product graph in e-

commerce, an user interaction graph in social media, a molecule graph in chemistry, and the

body key-point graph in activity gesture modeling. To tackle such irregular graph modeling,

Graph Convolutional Network (GCN) was invented [29–31]. GCN treats the input data as

a graph and allows node-level feature representation while taking the graph structure into

account. It keeps track of the neighboring nodes using an adjacency matrix input along

with the node-level inputs. Figure 2.2 shows the fundamental operations in a GCN layer.

We observe the adjacency matrix input along with the node-level feature inputs (as a visual

diagram). Then a linear transformation of the node feature occurs. The coefficients in this

transformation are the trainable parameters of the network. This is followed by an ag-

gregation operation where each node receives responses from the neighboring nodes, using

12
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the four graphs means each node’s operation. In the aggregation step, each node uses
information from the neighboring nodes using the input adjacency matrix. The whitish
cells in the adjacency matrix represent neighboring connections.

neighborhood relationship in the input adjacency matrix. Finally, if a graph-level represen-

tation is required by the task at hand, a readout operation is applied on the learned nodes’

representations. A readout is basically an aggregation of all the nodes’ representations.

Finally a non-linear activation function is applied.

F l
i = σ(W1F

l−1
i +W2

∑
j∈N(i)

F l−1
j ) (2.4)

Equation 2.4 outlines the basic graph convolution operation. Here F l
i represents feature

representation of ith node at lth layer; N(i) represents all neighboring nodes of ith node; σ

is the sigmoid non-linearity; and W1 and W2 are learnable parameters.

2.2 Temporal Modeling

The goal of the sign video modeling is to learn a feature representation for the whole

input video. The spatial feature modeling only captures per-frame patterns in a sign video.

Hence, the sequence of spatial features from the video frames needs to be further modeled
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temporally. In this section, we outline ML models that are popularly used for temporal

learning.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) have shown success in modeling sequential patterns in

data [32]. Such temporal patterns are often visible in sequential modeling problems such as

text modeling, time-series modeling, event forecasting and video understanding. The RNN

captures the sequential pattern in data by maintaining an internal state. Starting with an

initial state, the RNN takes the sequence as input, at different time steps. At each time

step, the state is improved using the current input. At the end, the RNN state represents

an encoded summary of the input sequence and can be used in downstream tasks. The

basic RNN has problems dealing with long term dependencies in data due to the vanishing

gradient problem [33]. Some solutions to the vanishing gradient problem involve careful
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initialization of network parameters or early stopping [34]. But the most effective solution

is to modify the RNN architecture in such a way that there exists a memory state (cell

state) at every time step; and to let the network decide what to remember and what to

forget based on training data. This architecture is referred to as long short term memory

(LSTM) network [35].

Long Short Term Memory While the basic RNN is a direct transformation of the

previous state and the current input, the LSTM maintains an additional memory state

and has mechanisms to update and use that memory. This is achieved by deploying four

separate neural networks, also called gates. The bottom right diagram in Figure 2.3 depicts

a cell of an LSTM network which shows input at the current time step xt and the previous

state ht−1 enter into the cell, and get concatenated. The forget gate processes it to remove

unnecessary information, and outputs ft which gets multiplied with the previously stored

memory Ct−1 and produces a refined memory for the current time. Meanwhile, the input

and update gate process the concatenated input and convert it into a candidate memory for

the current time step by element–wise multiplication. The refined memory and the proposed

candidate memory of the current step are added to produce the final memory for the current

step. This addition could render the output to be out of scale. To avoid that, a squashing

function (hyperbolic tan) is used, which scales the elements of the output vector into a fixed

range. Finally ot, the output from output gate gets multiplied with the squashing function

and produces the current time step output. The forget, input, update and output gates are

represented by four circles and symbolized as ft, it, C̃t and ot, respectively.

ft = σ(Wf × concat(ht−1, xt)), it = σ(Wi × concat(ht−1, xt))

C̃t = tanh(WC̃ × concat(ht−1, xt)), Ct = (ft ⊗ Ct−1)⊕ (it ⊗ C̃t)

ot = σ(Wo × concat(ht−1, xt)), ht = ot ⊗ tanh(Ct)

(2.5)
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Equation 2.5 shows LSTM functions; where ⊕ and ⊗ represent element wise addition and

multiplication respectively; × represents matrix multiplication, concat process means a

concatenation of its input. σ and tanh represents sigmoid and hyperbolic tan non-linearity

respectively. The bottom-left diagram in Figure 2.3 shows how an RNN cell is processed

through a network.

Gated Recurrent Units The Gated Recurrent Unit (GRU), another variant of RNN,

was also proposed to tackle the vanishing gradient problem [36]. Instead of having an

internal memory state and an output state like LSTM, the GRU has a single state and

merges the input and the forget gate into one gate. This simpler version performs equally

with the LSTM [37]. The authors in [37–39] attempted to identify the best variation with

extensive experimental studies. It was found that, in general, the LSTM performs better

than any variants and the GRU is compatible to it.

Attention Mechanism In general, the attention in machine learning (ML) refers to the

idea of giving importance to some portion of the input. In a sequence modeling task, the

input at each time step is not equally important. For example, all the frames in a sign video

are not equally important to understand the sign. Hence it is ideal to treat the important

parts with higher priority. When this prioritization is learned from the data, using back-

propagation, the whole idea is referred as attention. The ultimate goal is to learn a set

of scores that represents the weights between an input step and an output step [40, 41].

Another type of attention, know as the self-attention, attempts to enrich the representation

of an input sequence by picking the most relevant parts from the same sequence [42].

2.3 Body Pose Data

The body-pose data refers to the coordinate location of vital body joints such as the wrist,

elbow, the head, neck, of a human body in an image. This is also known as the joint

key-point or the skeletal data. In the context of a sign video, the frame sequence of body

16



Figure 2.4: Pose data example. Left image shows an example frame from an ASL sign
video. Middle image shows estimated poses from RGB using pose estimation methods.
Right image shows pose collected with Kinect V2 sensor.

key-points forms a multi-dimensional time-series. This data provides high-level control over

the human subjects in a video and suitable for modeling the human motion pattern. Pose

data can be 2D or 3D based on the process of obtaining the data. While commercial depth

sensors can provide 3D body poses using depth perception mechanisms [43], the 2D poses

can also be obtained using ML based pose estimation methods [23]. Given an input image, a

pose estimation method attempts to infer the information about some pre-selected locations

of an entity in the image. The entity is task specific and some examples can be human,

animals or objects. For example in case of human pose estimation, these locations are vital

body joints. For object poses, one might be interested about the corners. For this thesis,

we are only interested in human poses. Figure 2.4 shows examples of human body poses.

Sensor Based Pose Commercial depth sensors such as Microsoft Kinect, Intel RealSense,

and LeapMotion provide RGB-D imaging of a scene [43, 44]. These devices use various

depth perception techniques such as depth from stereo and depth from focus to estimate

the distance of different objects in the scene respect to the camera. Along with these
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techniques, machine learning is used to infer 3D coordinates of different body locations.

One of the most widely used depth sensors is Microsoft Kinect. Along with the RGB and

depth images, it provides 3D coordinate locations for 25 vital body joints [43].

Pose From RGB Image This approach formulates the pose estimation problem as a

supervised machine learning tasks. With the availability of enough training data, deep

learning based methods can be trained to infer the pose from unseen images of human

[23,45,46]. The traditional methods follow either the top-down or the bottom-up approach.

The top-down approach first detects any human subject in an image frame and then parses

different body joint locations [47–49]. On the other hand, the bottom-up approach detects

the body parts directly and associate the body parts to form a human skeleton [21–23,50].

Figure 2.4 shows an example sign video and two types of poses: pose from RGB (middle)

and pose from sensors (right).

2.4 Input Representation Fusion

In machine learning, the fusion strategy refers to the idea of using multiple input sources

instead of a single source. The underlying assumption is to learn complementary information

from different representation sources. For example, in the case of sign video understanding

task, some input representations are the RGB, the depth, optical flows and body poses. The

raw RGB data can provide the color, texture and shape information of arms and hands. On

the other hand, the pose key-points and optical flow are great source of understanding the

motion in a sign video. When using multiple input sources, the obvious question is how to

aggregate responses from different sources. Two main approaches are the early fusion and

the late fusion [51]. The early fusion feeds the aggregated input to the learning methods,

while the late fusion concatenates the output representations of learning models for different

input representations. In addition to that, there can be other variations of fusion developed

for specific modeling task. For example, one might want to prioritize one input source over

another or learn the prioritization from data.
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2.5 Related Work on Activity Recognition

Activity recognition refers to the problem of understanding human motion in a scene. The

specific formulation of an activity recognition problem depends on many factors: types of

the scene such as indoor, outdoor or semi-outdoor; types of sensor such as camera, IMU

or wireless signals; types of activities such as cooking activity, sports activity; and types

of movements such as hand-only gestures or whole-body movements. Here we review the

approaches related to video based activity recognition in indoor and outdoor scenes.

2.5.1 Video Based Approaches

Popular video-based action recognition approaches utilize modeled features from either or

both the RGB and the body-pose (skeletal) data. For certain actions, the appearance in-

formation in single frame unambigously determines the actions, for others the motion is the

discriminant cues. While the history of the modelling approaches is rich, we focus the review

on more recent methods. To capture both the spatial and temporal signals in the video,

Simonyan et al. [51] explored different ways of fusing the spatial and temporal informa-

tion from a two stream approach, using an appearance and a flow convolutional networks.

Similar multi-stream architecture was introduced in [52] for hand gesture recognition. This

architecture is based on 2D convolution and sparse fusion of scores, from different chan-

nels of input streams where some of the channels are focused on hands. Later approaches

explored the idea of 3D convolution for joint learning of spatial-temporal features [13, 17].

Authors in Inflated 3D ConvNet (I3D) [13] network expanded pre-trained convolutional ker-

nels from 2D to 3D. The expanded 3D kernels allowed the I3D network to have better weight

initialization and to bootstrap the video modeling. Some approaches focused on temporal

modeling by either learning sparse frame sampling [53] or learning hierarchical features [54];

some focused on generating temporal candidate proposals [55]. Using unsupervised tech-

niques is also a well studied area in gesture or activity recognition. These methods typically

try to capture the temporal order similarities of full or sub-activities of similar kinds [56,57],
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bypassing the need for more detailed labelling or ground truth annotation.

2.5.2 Pose Based Approaches

Activity Recognition using body pose (or skeletal) data is also a well studied problem [18,

58, 59]. Shahroudy et al. released a large-scale dataset for human activity recognition [18]

and proposed an extension of long short term memory (LSTM) model which leverages group

motion of several body joints to recognize human activity from skeletal data. A different

adaptation of the LSTM model was proposed by Liu et al. where spatial interactions among

joints was considered in addition to the temporal dynamics [58]. Veeriah et al. [60] proposed

an LSTM network to capture the salient motion pattern of body joints. This method takes

into account the derivative of motion states associated with different body joints. Some

researchers treated the whole body as a hierarchical configuration of different body parts

and proposed a hierarchical RNN to recognize human activities [59]. Several attention

based models were proposed for human activity analysis [61, 62]. For example, Song et al.

[61] used a spatial attention among joints’ representation, and a temporal attention on time

steps to model activity recognition problem. Liu et al. [62] used a global context memory to

improve the recognition accuracy. Some approaches used skeletal sequences of body joints

to develop new representations which capture spatio-temporal cues in videos [63, 64]. The

goal of these methods is to generate an image-like representation using the pose data so that

a pre-trained CNN model can be used in a sign modeling task. Some researchers attempted

to use pose to extract features from ConvNet [65, 66]. These approaches deviate from the

traditional use of poses of modeling sign videos. Instead, these methods use pose to localize

a position in a feature map to extract features from. The feature map is usually generated

from an RGB input video using a CNN network.

The graph convolutional network (GCN) was proposed to use the robustness of neural

networks on graph structured data [29–31,67,68]. In other words, GCN allows convolutional

modeling while taking the graph structure – node feature representation and neighbor rela-

tionship – in the input data into account. The body key-point or pose data, a representation
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of human body parts using explicit graph structures, naturally fits the requirements of GCN

modeling in human activity understanding. Most of the works towards this direction repre-

sented the whole body as a skeletal graph and implemented temporally aware GCN models

[1, 69, 70]. These methods are primarily on body joints such as arm, wrist, torso and such

more or less 25 joints. For example, authors in [70] proposed ST-GCN model – a spatial-

temporal graph formulation across video frames – to model action videos from skeletal pose

inputs. This formulation attempts to capture the spatial-temporal dynamics simultaneously

using pose inputs. Li et al. proposed another pose-based baseline using temporal graph

convolution to model ASL word-level signs [1]. Motivated by these applications, we aspire

to apply the GCN modeling on hand shape patterns. Our idea is to use GCN on finger

poses to complement existing RGB based spatial-temporal models’ performance. Hence, we

add this new feature stream with the existing features, in an ensemble manner, and improve

the overall recognition performance.

2.6 Related Work on Sign Language Recognition

In this section, we describe some prior works on two types of sign language recognition

task: word-level sign recognition (WLSLR) and sentence-level or continuous sign language

recognition (CSLR).

2.6.1 Word Level Approaches

Most sign language recognition systems use RGB video data as input. These approaches

model sequential interactions among video frames using Hidden Markov Models (HMM).

Zafrullah et al. [8] used colored gloves (worn on hands) during data collection and developed

an HMM based framework for ASL phrase verification. They also used hand crafted features

from Kinect skeletal data and hand worn Accelerometer data [27]. Huang et al. [6] demon-

strated the effectiveness of using Convolutional neural network (CNN) with RGB video data
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for sign language recognition. The 3D CNN has been used to extract spatio-temporal fea-

tures from videos [14]. Similar architecture was implemented for Italian gestures [71]. Sun

et al. [72] hypothesized that all the RGB frames in a video are not equally important and as-

signed a binary latent variable to each frame in training videos for indicating the importance

of a frame within a latent Support Vector Machine (SVM) model. Zaki et al. [16] proposed

two new features with existing hand crafted features and developed the system using HMM

based approach. Some researchers have used appearance-based features and divided the

approach into sub units of RGB and tracking data, with a HMM model for recognition

[9]. Most of the aforementioned approaches worked on smaller scale datasets collected in

the laboratory settings. Besides, these datasets were not publicly available. Compared to

these, in one of our contributions in this thesis, we developed a multi-modal American Sign

Language (ASL) dataset and publicly released the dataset for research purpose.

Hand segmentation or recognition is also a well studied problem related to sign video

recognition [12,73,74]. Some of these methods concentrated on hand detection rather than

modeling hand shapes [74], some had different viewpoints such as egocentric views [73].

Koller et al. [12] trained a CNN for hand-shape modeling in an semi supervised manner.

In general, these approaches attempt to learn per-frame hand representation. Since sign

language is hugely depended on hands, this representation can be useful in the context of sign

video modeling. Motivated by the potential of per-frame hand-shape learning, we envision

to utilize this in sign video learning. However, traditional sign video datasets contain only

video-level class labels, and the underlying ML model is dependent on this labels for learning

frame features. To directly learn per-frame hand features in a supervised manner, we need

frame-level class labels. In one of our contribution, we tackled this problem by implementing

a per-frame hand-shape learning method that produced better representation than the other

comparative methods.
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2.6.2 Sentence Level Approaches

For sentence level parsing or CSLR task, most of the state-of-the-art methods are built

upon the RWTH-PHOENIX-Weather corpus [75]. The corpus contains weather forecasts

simultaneously interpreted into sign language. Videos in the corpus were recorded from

German public TV and manually annotated using glosses on the sentence level. Koller

et al. [12] trained a 22 layer deep convolutional neural network (CNN) with more than

1 million images from this corpus dataset. The data is weakly labeled with only video

level annotation. The CNN model, which estimates the likelihood of hand-shape classes, is

trained using the Expectation Maximization (EM) algorithm, jointly with Hidden Markov

Model (HMM) for parsing sign gestures. Several later approaches focused on temporal

modeling of sign sentences with the help of Connectionist Temporal Classification (CTC)

loss [76–79]. For example, Cui et al. [76] proposed a method of staged optimization,

where first an alignment proposal is learned for sign sequences and then those proposals

were used as a stronger supervision in the final task. Pu et al. [77] proposed dilated

convolutional kernels, also followed a pseudo-label based training, for capturing temporal

dynamics. Guo et al. [79] also followed a similar paradigm with 2D convolutional pyramid

features. Recently, Pu et al. [80] proposed a combination of 3D ConvNet and RNN encoder-

decoder, with an alternative iterative training technique, to model continuous sign sentences.

2.7 Related Work on American Sign Language Recognition

There are several works in the literature that are directly related to the world-level recogni-

tion problem or WLSLR for American Sign Language (ASL). Early proposed works in this

direction were linguistic property driven [11,81–83]. In other words, these works focused on

the inherent part of the language and did not exploit much of the machine learning (ML)

techniques. Later approaches featured small datasets or restricted laboratory environment

settings [6, 8, 27, 84]. More recently, two large scale word-level datasets were introduced to

the community [1, 5]. Both of these datasets feature adequate sign variation to train large
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scale deep-learning based models for sign language recognition. For example MS-ASL [5]

contains more than 20, 000 sign samples of 1, 000 sign classes, while WLASL [1] features

almost same number of sign samples with 2, 00 sign classes in total. Both works proposed

several pose-based and RGB-based ML baselines for demonstrating the challenges and use-

fulness of the models. In both cases, 3D ConvNet based model was the best performing

model. In one of our contributions, we show that the recognition accuracy can be improved

using arm-hand related features for the sign video modeling task.
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Chapter 3: Sign Language Recognition Analysis using

Multimodal Data

Learning spatio-temporal dynamics, for a video dataset with large number of sign classes,

requires enough training samples. This observation led us to build a dataset large enough

to validate deep-learning based ideas for world level sign language recognition (WLSLR). In

this chapter, we describe the proposed dataset GMU-ASL51 and related machine learning

(ML) approaches along with experimental results. The work presented in this chapter has

been published in the 2019 IEEE International Conference on Data Science and Advanced

Analytics (DSAA), Washington D.C., USA.

Most of the existing systems use RGB video data for American Sign Language (ASL)

recognition task[6, 14, 72]. An ASL sign is performed by a combination of hand gestures,

facial expressions and postures of the body. Sequential motion of specific body locations

such as hand-tip, neck and arm provide informative cues about a sign. These location data

can be obtained using commercial depth sensors like Microsoft Kinect and Intel Realsense.

Kinect can use the depth information of a person to capture 3D coordinates of his/her body

location across a video. This sequence of 3D body location is referred to as the skeletal

data [43]. To the best of our knowledge, during this work, there was no publicly available

skeletal dataset in literature for ASL recognition.

With skeletal data, an ASL sign can be seen as a sequence of 3D coordinates or a 3D

time series [59]. Recurrent neural networks (RNN) are commonly used for modeling such

sequential time series like data [32]. In this work, we investigated the impact of RGB video

data in sign video recognition performance, especially when combined with the skeletal

data. We also proposed a combined RNN network with a simple spatial data augmentation

technique.
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In summary, the contributions of this work are:

1. We proposed an RNN architecture with a novel spatial data augmentation technique;

2. We proposed an architecture that uses both the RGB and the skeletal data to improve

recognition accuracy;

3. We introduced and publicly released a multi-modal dataset, titled as GMU-ASL51,

for ASL word recognition.

3.1 The Proposed Dataset

ASL recognition with skeletal data has received little attention, resulting in a scarcity

of public datasets. In the literature, there exists one public dataset for ASL recognition

[7]. This dataset has 9,800 sign video samples from 6 subjects and more than 3,300 sign

classes. The number of samples per class was small to train deep-learning based models.

On the top of that, the samples were collected in a restricted setting, consisting of black

attires and backgrounds. In contrast, our proposed GMU-ASL51 dataset has 13,107 samples

from 51 word-level sign classes and 12 distinct subjects. These subjects are of different

heights, builds and signing (using sign language) experiences. Figure 3.1 shows a T-SNE

representation of a subset of samples from GMU-ASL51. The T-SNE was performed on the

output vectors from a trained RNN model for each sign example in the subset. The used

RNN model, AI-LSTM, is described in Section 3.2.2.

3.1.1 Collection Protocol

Figure 1.2 shows different components of our multi-modal data collection system. The RGB

video data and the skeletal data were collected using a Microsoft Kinect depth camera,

marked as Kinect in Figure 1.2. The camera was positioned in front of a human subject

while performing a certain sign gesture. We trained each subject for a specific sign class,

following online ASL tutoring websites, before collecting sign video samples for it. For each

of the 51 sign classes, we collected 24 samples continuously. To gather individual samples
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Figure 3.1: T-SNE representation of 11824 data samples from 51 different sign classes.
Best viewed in color.

from the continuous data, segmentation marks were interleaved through a user interface.

This was later used to segment individual samples. These samples were further segmented

using motion measure of wrist joint co-ordinates for a video. For some subjects, we could

not collect the samples for all the classes because of availability constraints. Consequently,

we were able to collect 13,107 sign samples in total. We kept the camera distance between

the subject and the camera in the range of 10 to 15 feet. We also assumed the subject is

standing and front-facing towards the camera. For the lightning condition, we assumed an

indoor lighting with occasional sunlight entering into the room. All of the above choices

were made to imitate a house-like setup where a deaf individual can control a digital device

with sign commands. Figure 3.2 illustrates, at the top, the distribution of the duration

(frame counts) of videos in our dataset. At the bottom, the figure shows the distribution

of the number of samples per gesture class in the GMU-ASL51 dataset.

3.1.2 Data Modality

All of our experiments on ASL recognition were done with the RGB video data and/or the

skeletal data. Skeletal data is a multivariate time series input where each body key-point

acts as a variable. Each of these key-points has 3D coordinate data at each time step or
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Figure 3.2: Top: Distribution of duration (frame count) of sign videos in the GMU-ASL51
dataset; Bottom: Count of sign videos from each of the sign classes (class label are best
viewed zoomed in).

video frame. The skeletal data is also known as pose data and we use these two terms

interchangeably. The skeletal data provides motion trajectory of different body parts such

as wrist, elbow and shoulder (total 25 such body parts) over the video frames. This process is

known as skeletal tracking. Skeletal data provides high-level motion of different body parts.

These are useful for capturing motion features associated with different types of gestures.

However, for better modeling of sign language, hand shapes are crucial, as different signs

may have similar motion but different hand shapes and orientations. Figure 3.3 presents

one such example where the sign pair Alarm and Doorbell have exact same motion pattern

according to skeletal data but have different hand shapes. We observe similar situation for

sign pairs such as Kitchen/Room, Time/Movie, Quote/Camera, Lock/Stop and many more.

We hypothesize that the hand shape is useful in situations where skeletal data has similar

dynamic motion patterns for different sign classes. Due to this fact, we extracted and used

hand-shape features from RGB video data.
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Figure 3.3: Visualization of hand shapes and skeletal joints of three sign classes. Top
panel shows the sign Alarm and middle panel shows the sign Doorbell. For each sign,
first two rows are the left and right hand image patches and third row is the skeletal
configuration. We can see for Alarm and Doorbell, the skeletal motion is almost similar
but each has different hand shapes. Bottom panel shows another sign Weather which has
quite distinguishable skeletal motion from top two.

3.2 Our Approach

Inspired by the success of deep-learning (DL) based approaches in computer vision [85], we

applied different DL architectures to model sign languages from the RGB and the skeletal

input. In traditional image classification or object detection models, neural networks learn

hierarchical spatial features from data. However, sign video recognition requires temporal

context learning on the top of spatial feature learning from each video frame. To model the

temporal context, we based our implementation on Recurrent Neural Network (RNN).

3.2.1 RNN Based Modeling

As described in section 2.2.1, the RNNs are commonly used for capturing temporal dynamics

in data. The skeletal or body pose data, obtained from Kinect sensor, represents a sign

video using a sequence of 3D coordinates. Each item in this sequence refers to the pose
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representation of a human body in the corresponding video frame. As seen from the skeletal

representation in Figure 3.3, these pose sequences are readily available as input to the RNN

networks. Based on this observation, we propose two LSTM networks for modeling the

sign videos using body pose data. The LSTM network is an upgraded version of the RNN

network. The working principle of the LSTM netowrks is described in Section 2.2.1 in

details.

3.2.2 Axis Independent LSTM

Given a sample skeletal data of RT×J×3, where T denotes time axis, J is the number of

body joints and the last dimension is the 3D coordinates of each joint. We flatten all the

dimension except the time and at each time step we can feed a vector of size R3×J as input.

However, we have empirically verified that learning a sequential pattern for each coordinate

axis independently and combining them later shows stronger classification performance.

One possible reason is noisy skeletal data. Often, the noise exists in a particular axis and

the trajectories along other axes are good. Hence, decoupling the modeling across coordi-

nate axes helps to represent the sign video using available noise free axes. Based on this,

we train three different 2-layer LSTMs for data from x, y, and z coordinates separately; and

concatenate their final embedding to produce a softmax output. In this setting, each sepa-

rate LSTM receives data as RT×J and final embedding size is R3×S where S is the state size

of LSTM cell. Figure 3.4 (a) shows the architecture where as a sample arrives, just before

entering into the main network, data along each separate axis is split and enters into three

different LSTM networks. The model concatenates the final state from each of the separate

LSTM networks. The concatenated state is fed into the softmax layer for generating clas-

sification scores. This approach is referred by Axis Independent Architecture (AI-LSTM).

Implementation details such as values of T and J are provided in the ‘Experiments’ section.
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Figure 3.4: Proposed architectures. Fig (a): Axis independent LSTM network where data
from each axis enters into different LSTM networks and at the end we take the concate-
nation of individual states. Fig (b): Combined architecture. Here 3D CNN symbolizes
the architecture we presented in Figure 3.6. Here both CNN and LSTM network model
data separately. At the end we take the maximum of probability scores produced by both
network.

3.2.3 Spatial AI-LSTM

The AI-LSTM works by modeling temporal dynamics of body keypoint data over time.

However, spatial interaction among the joints, at a specific time step, might exist. For

example, for some sign classes, there might be a diagonal movement of right wrist with

respect to the neck joints, while for some other classes, there is vertical or horizontal wrist

movements. The AI-LSTM fails to capture any such interaction among joints in a given

time. To incorporate the spatial relationship among the body joints, we propose a simple

novel data augmentation technique for skeletal data. We do this by transferring the origin

of the body skeleton. For each frame in a sign video, we use each wrist joints as origin and

transform all other joints’ data by subtracting that origin from them. In this way, the input

to the LSTM become spatially aware. We refer to this model as Spatial AI-LSTM. This

augmentation technique is depicted in Figure 3.5. A sample data of form RT×6×3 results

in a representation of RT×5×3 after transferring the origin to the left wrist joint. After this
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Figure 3.5: Spatial data augmentation.

augmentation process, each sample is a RT×16×3 sized tensor. Hence, each separate LSTM

networks in our Spatial AI-LSTM network receives an input of RT×16.

3.2.4 3D Convolution Based Modeling

Recalling from Section 2.1.2, the 3D convolution can tie the temporal context in a sign

video. It achieve this by sliding 3D convolutional kernels in the spatial-temporal 3D space

of a video. Each of these kernels learns rich spatial-temporal features. These features are

purified layer by layer and in the end, a vector representation of the input video is generated.

To utilize the modeling capacity of 3D CNN, we proposed to use it for sign video recognition.

For our specific task, we proposed to use 3D CNN on the sequence of cropped hand patches.

An example implementation is shown in Figure 3.6. This architecture has two parts: one

for left hand patches and other for right hand patches. Each part has four 3D convolutional

layers (second and fourth layers have following maximum pooling layers) followed by 2

fully connected layers. Final embedding from these two parts were concatenated and a

classification score was produced using a softmax layer.

3.2.5 Combined Network

We hypothesize that some signs that have mostly similar skeletal motion pattern could be

distinguishable using hand shape information. We proposed a combination of LSTM and 3D

CNN networks. We call this Max CNN-LSTM network. Figure 3.4 (b) shows the Max CNN-

LSTM. The details of the 3D CNN module is shown in Figure 3.6. This module produces
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Figure 3.6: Used 3D CNN architecture for this work. It consists of four 3D convolutional
layers and two fully connected layers at the end. There are two separate networks for
left and right hands. Final embedding of these two networks are concatenated before
producing softmax score. Feature map dimensions after each layer are shown in the
middle.

one set of classification scores. The other AI-LSTM network, shown in Figure 4.3 (a), is fed

with skeletal time series data. At the final time step, the LSTM state vector is taken and

using a softmax layer another set of classification score is produced. The final classification

score, as shown in Figure 4.3 (b), is calculated by taking element wise maximum of the

output scores from the two networks. During the model parameter learning, using back–

propagation, both networks are trained on their own score. The combined network acts

like a model ensemble and some sign classes which are confused by the RNN network alone

might have an improved recognition accuracy with this approach.
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3.3 Experiments

A video sign differs in the execution speed and style in the same way as a spoken sentence

differs across different individuals. Hence, each video sample from our dataset can have dif-

ferent frame lengths because of the style and speed variation among participating subjects.

A frame length distribution is shown in Figure 3.2. Even a subject may execute the same

sign at different speeds at different times. This makes the sign recognition problem more

challenging. Further, neighboring frames in a video contain redundant information; and all

joints will not have the equal amount of motion pattern in case of skeletal data. Hence, a

pre-processing is necessary before using data for training the models. In this section, we

describe the pre-processing mechanisms that were used in out experiments.

Figure 3.7: Seven sampled frames from a sign of class Air Condition. Top two panels
show cropped hand patches while bottom panel shows body skeletal configuration of
corresponding frames.

3.3.1 Skeletal Data Preparation

A sign video does not involve all the 25 joints’ information provided by Kinect sensor.

Mostly upper body joints are useful, especially joints involved with the two hands convey

most information. Based on this, we consider only 6 joints – wrist, elbow and shoulder of

both hands – as input to the LSTM network. Figure 3.7 shows an example where 7 frames

were sampled from a sign video of class Air Condition and the bottom panel shows the
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skeletal configuration across those 7 frames. From each sign video we sampled 20 number of

frames uniformly and took joints’ data associated with those frames. We took the sample

frame rate as a hyper-parameter of the model and verified experimentally that picking 20

frames uniformly works best for skeletal data. For samples with less than 20 samples we

converted them to 20 frame signs by interleaving existing frames uniformly. Thus skeletal

data for each sample is of the form R20×6×3.

3.3.2 Video Data Preparation

Since ASL involves specific hand shape patterns, we cropped both hand regions in each

image frame. Using 2D coordinates of hand joints on a video frame as center, we did a

100 × 100 crop to generate hand crops. To reduce motion blur, we calculated velocity of

joints at each video frame using skeletal coordinates and then sampled from frames which

have less motion. We sampled 15 frames from each sign video resulting in a vector of

R15×100×100×3 for each hand patch.

3.3.3 Training Details

To deal with the over-fitting problem, dropout was used for all networks, except convolu-

tional layers with probability of 0.5. In addition to the dropout, L2 regularization was used

for LSTM networks and for dense layers; β was set to 0.008 which controls the impact of

regularization on the network. State size and number of layers of LSTM networks were 50

and 2, respectively. Learning rate for Max CNN-LSTM and LSTM networks were set to

0.00001 and 0.00005, respectively. We used Adam Optimizer for training our networks [86].

All networks were run for 300 epochs with a batch size of 64. We developed all of our models

with Tensorflow 1.10 (python). Average time taken to train an AI-LSTM and an Spatial

AI-LSTM were 25 and 30 minutes on an Intel(R) Core(TM) i5-7600 (3.50GHz) processor

respectively. We trained 3D CNN and Max 3D CNN models on GPU (Tesla K80) and each

model took around 20 hours to train.
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3.3.4 Baseline Methods

To compare our proposed method with baseline approaches we implemented two algorithms:

Support Vector Machine (SVM) and Random Forest (RF). To prepare the features from the

skeletal data, we utilized following measures: Mean, Area, Skew, Kurtosis, Motion Energy,

Range and Variance across the video frames. We have 6 upper body joints, 3 axes per joint

and 7 aforementioned features for each sign video. This yielded a total of 126 (7 × 6 × 3)

features per input sign video.

Table 3.1: Average cross-subject (CS) accuracy across all test subjects for different pro-
posed architectures and baselines. Standard deviation across test subjects’ accuracy is
also shown.

Methods Accuracy (CS) Std. Deviation

SVM 62% 10%
Random Forest 66% 8%
3D CNN 52% 12%
AI-LSTM 73% 6%
Max CNN-LSTM 75% 7%
Spatial AI-LSTM 81% 6%

3.3.5 Experimental Results

Table 3.1 shows the comparative results among our proposed architectures and baselines.

Overall, we used data from 12 subjects for our experiments which sum up to 13,107 sign

gesture samples in total. To evaluate model performance on a specific subject, we adopted

cross-subject evaluation criteria. Suppose, X is the test subject. We trained our networks

with all sign samples except those are from subject X. We used subject X’s data as test

split to evaluate the performance of the networks. Table 3.1 shows the average test accuracy

for all 12 subjects. We can see that 3D CNN network alone performs worse than simpler

skeleton based baselines. But when coupled with AI-LSTM as Max CNN-LSTM, it shows

an increase in recognition accuracy by 2% from AI-LSTM alone. This is because some of the
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Figure 3.8: Confusion matrix for a subset of sign classes from a subject for AI-LSTM, Max
CNN-LSTM and Spatial AI-LSTM from top to bottom respectively. Mentioned signs are
a subset of 51 sign classes.

signs were confused by the AI-LSTM network because of similar skeletal motion pattern.

Incorporating spatial relationship among joints led to a 2% improvement. The Spatial

AI-LSTM was trained only on skeletal data but outperformed the combined network by

6%. Figure 3.8 shows three confusion matrices for a subset of 12 sign classes for a subject.

The top matrix is for AI-LSTM network, middle is for Max CNN-LSTM and bottom one

is for Spatial AI-LSTM. As seen from the Figure 3.3, the sign pairs Alarm/Doorbell are

similar in skeletal motion but have different hand shapes. Since Max CNN-LSTM includes

hand shapes, it can successfully recognize it while other two models struggles. Same is true

for some other signs like Email, Event, List, Order and Weather . Some other signs are

37



0% 10% 20% 30% 40% 50%
Percentage of test subject's data added to training

0.70

0.75

0.80

0.85

0.90

0.95

1.00

subject 1
subject 2
subject 3
subject 4
subject 5
subject 6

Figure 3.9: Effect of adding data to the training from test subject in Spatial AI-LSTM
model. X axis is the fraction of test subject’s data used in training. Y axis is the test
accuracy.

better recognized by Spatial AI-LSTM network. It should be mentioned here that accuracy

listed in Table 3.1 shows average accuracy across all test subjects, while Figure 3.8 presents

confusion matrix for a single test subject. For this particular subject, overall test accuracies

were 58%, 70% and 69% for AI-LSTM, Max CNN-LSTM and Spatial AI-LSTM network

respectively.

3.3.6 Effect of Same Subject Data in Training

Cross-subject evaluation criteria, mentioned in Section 3.3.5, assumes absent of training

data from the test subject. We want to know the impact of adding videos, to the training

process, from a test subject. Usually, if a model sees video samples from the test subject

during the training process, the test recognition accuracy should be improved. However,

we want to know how much or what fraction of data is necessary for achieving a higher

recognition accuracy, say greater or equal to 90%. This is important for assessing the

practical usability of a recognition system. In other words, we want to know how quickly

or with what amount of data, the current system can be adapted for a previously unseen
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subject. To do that, we first pick a test subject and train a model for that subject using the

data from all other subjects in our dataset. Then we retrain the model with some fraction

of data from the test subject. We keep increasing the fraction of data being used from

the test subject in the retraining process up to 50%. The other half of the test subject’s

data is used for testing the model. Figure 3.9 shows the effect of added training data from

the test subject in the retraining process, started with 0% training data. We observe that

adding data from a test subject increases recognition accuracy and similar improvement is

observed for all the 6 subjects. It is interesting to observe that, adding even 10% of data

from a test subject yields more than 90% recognition accuracy for all the 6 subjects shown

in the Figure 3.9.

3.4 Key Takeaway

We presented deep-learning based approaches for ASL word sign recognition that use skeletal

and video data as input. The best performing model captures the underlying temporal

dynamics and identifies specific hand-shape patterns from video data to improve recognition

performance. A new data augmentation technique was introduced that allowed the LSTM

networks to capture the spatial dynamics among joints. Finally, a large public dataset for

ASL recognition has been developed and released for public research. We anticipate the

dataset will be helpful for advancing ASL recognition research.
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Chapter 4: Body Pose and Deep Hand Shape Feature Based

American Sign Language Recognition

In this chapter we investigate the effectiveness of frame-level hand shapes in the context

of sign gesture modeling. A traditional word-level sign language recognition (WLSLR)

system uses only video-level sign annotation to learn spatial-temporal dynamics in a video.

We hypothesize that, using frame-level shape representation can help boosting recognition

accuracy. To validate our initial thoughts, we proposed to utilize hand-shape features from

a pre-trained CNN model. This pre-trained CNN model was trained on 1 million hand-

shape images from a related domain. Our experimental results showed 8% improvement

in the recognition accuracy using such hand-shape features. The work presented in this

chapter has been published in the 2020 IEEE International Conference on Data Science

and Advanced Analytics (DSAA), Sydney, Australia.

American Sign Language (ASL) uses approximately 6,000 gestures for common words

and finger-spelling for more obscure words and proper nouns [87]. An ASL gestures is

performed by a combination of hand gestures, facial expressions and postures of the body.

Motion of specific body locations (such as hand-tip, neck and arm) provide informative

cues about a sign. Early ASL recognition methods considered video [88] and sentence level

parsing with carefully engineered environments to simplify the hand detection and tracking

using traditional image features. The followup advancements included creation of larger

datasets [7] with uniform background and multiple views. More recent advances include

use of RGB-D sensors as well as robust feature learning methods, based on Deep Convo-

lutional Neural Networks (CNNs) [6, 27, 72]. These approaches consider smaller datasets

(e.g. spelling gestures), uniform backgrounds and with the exceptions of few consider only
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subject-specific models and evaluations. In order to overcome these challenges, we pro-

posed to use the skeletal data to aid the ASL gesture recognition. Skeletal data provides

multi-variate time series 2D of 3D coordinates of body joints, factors out the appearance

of the speaker and naturally enables speaker-independent model for ASL recognition. The

basic skeletal model will be augmented by hand-shape representation obtained from another

hand-shape image recognition CNN model, trained on hand-shape patterns from a different

source [12]. We leveraged this pre-trained CNN model to overcome the problem of learning

frame-wise hand representation. In addition to that, for obtaining reliable human body

pose estimates, we used recent advances in deep-learning based pose estimation from video

[23,24,50], and compared performances with depth sensor based poses.

Given skeletal trajectories of body joints and extracted hand-shape features for all the

frames in a sign video, we trained recurrent neural network (RNN) [32] to model sign

dynamics and predict the sign gesture label. In summary, the contributions of this work

are:

1. We proposed a novel RNN architecture for modelling sign videos, using the pose data

and the hand-shape features extracted from pre-trained models;

2. We proposed a fusion method with two jointly trained RNNs that can learn prioritizing

among different input sources;

3. We evaluated similar network architectures for the pose data obtained from a depth

sensor and the pose extracted from RGB videos, to verify that competitive results can

be achieved without the depth sensor.

We performed all of our experiments using the GMU-ASL51 benchmark dataset [10]. We

also performed an experiment to identify the subjects using two types of input data: the

RGB and the skeletal pose data. Our experiments showed that the RGB input, for some

subjects, yields 15% better performance than the skeletal pose input for the user identifi-

cation problem.
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4.1 Our Approach

In this section, we describe the methods for estimating pose of the upper body and hand-

shape features from RGB videos. The time series of skeletal data and the hand-shape

features will then be used to train a model for sign video recognition.

4.1.1 Pose Estimation

Pose estimation is the process of estimating 2D or 3D body joint locations (e.g. wrist,

elbow) in single image [21–23,47–50]. We discussed the pose estimation process in Section

2.3. For this work, we used the state-of-the-art 2D human body pose estimation approach:

the OpenPose [23]. We used this model because, in addition to the body joints, it provides

joint locations of the palm and the fingers. Figure 4.1 (a) shows an image frame from an

(a)

Deep Hand                  
pre-trained CNN

1
0

2
4

OpenPose Pose 
Estimation Model

(b)

Figure 4.1: Pose estimation examples (a) and hand-patch generation (b).

ASL sign gesture (left), corresponding estimated poses using OpenPose (middle) and pose

generated by Kinect depth sensor [43] (right). In the rightmost frame of Figure 4.1 (a),

we see that Kinect API tracks left hand joints instead of right hand by mistake while the

OpenPose estimation, shown in the middle frame, is better. Hence, we observe that, the

OpenPose not only gives fine grained finger joint locations but its estimation is also less
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Figure 4.2: Illustration of motion blur. Leftmost two figures show sign ‘sunny’ and
‘weather’ performed by one subject. Rightmost two column show sign ‘camera’ and ‘snow’
performed by another subject. Each column represents hand patches of both hands from
five sampled frames of the sign video.

noisy than the Kinect. This makes the OpenPose an excellent choice for pose estimation

for sign language modeling.

4.1.2 Hand Feature Extraction

We cropped a rectangular patch around hands centered at the mean (x, y) location of

the finger and palm joints obtained from pose estimation. These image crops often contain

severe motion-blur because of the hand motion associated with the sign execution, as shown

in Figure 4.2. In order to learn effective representations of hand shapes while accounting for

these complex variations in hand appearances, large amount of training data is necessary.

In addition to the data, frame-level hand annotation is also required to train supervised

machine learning methods. Obtaining such amount of labeled training data is a cumbersome

process. An alternative is to use models that are already trained on data from a related

distribution. Recently, several deep learning models for hand segmentation, recognition and

detection were proposed [12,73,74]. Most are however not suitable for our problem because

of different factors such as nature of viewpoint and hand pose variation in these datasets.

For example, [73] has egocentric – first person vision – viewpoint while [74] considers data
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from online sources such as movie clips. We observe that ‘Deep Hand’ model is the most

suitable model for our problem [12].

Deep Hand Model Koller et al. [12] trained a 22 layer deep convolutional neural

network (CNN) with more than 1 million images, using videos from Danish and New Zealand

sign language. The data is weakly labeled with only video level annotation. The CNN model

for estimating the likelihood of hand shapes, was trained using Expectation Maximization

(EM) algorithm, jointly with Hidden Markov Model (HMM) for parsing sign gestures. The

network was trained to recognize 60 hand shape classes plus one additional class which

determines the start or end of a video. We omitted the softmax classification layer of this

network and used the embeddings computed by this pre-trained model as hand-crop patch

representations. Figure 4.1 (b) shows a schematic diagram of the process of hand-shape

representation generation. The representations obtained from the DeepHand model were

used as input to our proposed RNN based sign language methods.

4.1.3 Recurrent Neural Network

For modeling sequential data, recurrent neural network (RNN) have yielded impressive

results on a variety of sequence prediction tasks [32]. Vanilla RNN suffers from vanishing

gradient problem which was solved by introducing Long Short Term Memory (LSTM) [35].

While the basic RNN is a direct transformation of the previous hidden state and the current

input, the LSTM maintains an additional internal memory and has a mechanism to update

and use that memory. This is achieved by deploying four separate neural networks also

called gates. Section 2.2.1 details on this topic.

4.1.4 Proposed Architectures

Assume that we have an ASL sign video data RF×H×W where F,H,W are number of

frames, height and width respectively. Using 2D locations of hand joints for each frame, we

crop a rectangular window for each of the hands. Suppose, the dimension of our cropped
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hand patches is 100×100. Hence, by cropping hand regions from all the frames, we convert

our video data to RF×2×100×100 where second dimension represents the two hands. As

discussed in the Section 4.1.2, the pre-trained Deep Hand model produces an R1024 for each

hand patch image. Thus, by feeding our cropped data for each frame in the video into this

model we produce two embeddings e1 and e2, which are RF×2×1024, which is RF×2048 after

flattening last two dimensions.

For body joint locations (skeletal data), a video can be seen as RF×J×D where F, J,D

are frame counts, joint counts and coordinate dimension respectively. In this setting, D

can be 2 or 3 dimensional. In our case, skeletal data directly obtained from Kinect depth

sensor [43] are 3D, while joint locations estimated from pose estimation algorithm are 2D.

The extra dimension in case of depth sensor data is the depth information of the body

joints. This depth refers to the distance between a joint and the camera origin. After

flattening the last two dimensions, the joint location data becomes RF×(J×D). Hence, for

each sign video we have hand-shape feature data of form RF×2048 and skeletal data of form

RF×(J×D). Here, frame numbers F varies across videos. Also, consecutive frames in a video

contain similar information for a standard sample rate like 32 frame per seconds. Thus,

it is usual to sample a fixed number of frames from each video. We first pick a sample

rate say T and then divide the whole video into T consecutive windows. Then from each

window we pick one frame randomly. Thus, a video data like RF×2048 becomes RT×2048

after sampling. Similarly, skeletal data RF×(J×D) becomes RT×(J×D). Appropriate T can

be set as a hyper-parameter. We will provide details in the experiments section.

Fusion LSTM Figure 4.3 shows our proposed fusion architecture. We see the top LSTM

network takes hand shape feature input. We call this RgbLSTM since its input is generated

from RGB hand patches. Bottom LSTM takes body joint pose locations as inputs and we

call this PoseLSTM. Final embedding from both layers are fused using concatenation and

passed through a softmax layer for final prediction score. We call the whole network as

FusionLSTM.
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Figure 4.3: Overall architecture. Top is the LSTM network on RGB hand-shape feature
while bottom is the LSTM on skeletal joint data. Final embedding vector from these
networks are fused by concatenation. There is also a Focus Layer which learns to prioritize
between the two feature representations depending on the data and annotation.

Plain concatenation during fusion works well for our proposed architecture. However,

we found in the experiment that for some subjects RgbLSTM gives better performance

while for other subjects PoseLSTM yields superior results. To get maximum benefit from

both the networks, we proposed an attention mechanism that assigns priority to either one

of the networks. The idea is to first feed the plain concatenated output from both networks

to a neural network layer which we call ‘Focus Layer’ in Figure 4.3. Focus layer produced

two scalar values s1 and s2. These scalars were used for scaling the final embedding vector

from both networks e1 and e2. Embedding vector e1 was multiplied with scalar s1 and

vector e2 was multiplied with s2. Then those multiplied embeddings were concatenated and

a prediction score was produced as shown in Figure 4.3. We will show in experiment that,

this mechanism improved overall recognition accuracy by 2% to 3%. Interestingly, for some

subjects it yielded significant improvement, specifically when one of the sources was noisy.
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4.2 Experiments

In this section first we briefly present GMU-ASL51 [10], the dataset we have used for all of

the experiments shown in this work. We then present experiment details of our proposed

architectures and all baseline methods.

4.2.1 Dataset

We used GMU-ASL51 for all of our proposed and baseline experiments. GMU-ASL51 has 51

word-level ASL signs performed by 12 subjects of different ages, gender and builds. Among

the participating subjects 8 were male and 4 were female. Ages of the subjects range from

20 to 35 years. The dataset was collected using depth sensor and has two modalities: RGB

videos and 3D skeletal body parts. Figure 3.2 shows the histogram of number of gesture

samples per class and the histogram of the duration of videos in the GMU-ASL51 dataset.

Details can be found in Section 3.1.

4.2.2 Baseline Methods

Convolutional Neural Network (CNN) with 3D convolutional kernel (3D CNN) has shown

promising performance in classifying human activities in video [14]. That’s why we chose 3D

CNN on RGB hand patch videos for one of our baselines. It consists of four 3D convolutional

layers and two fully connected layers at the end. There are two separate networks for left

and right hands’ patches. Final embedding of these two networks are concatenated before

producing softmax score. We have also implemented other feature based baselines such

as random forest and support vector machine using only 3D skeletal data. These baseline

models utilize skeletal data in each axis for every joint to create following features per

sample: Mean, Area, Skew, Kurtosis, Motion Energy, Range and Variance over the frames.

We have 6 joints and 3 axes per joint and 7 features for each one of them giving us a total

of 126 (7× 6× 3) features per sample [89].
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4.2.3 Experiment Using Kinect Pose

For this experiment we used RGB video and 3D skeletal pose data as computed by Kinect

sensor. We performed four types of experiments using these two types of data. Two of

those experiments used each modality separately. The other two used simple concatenated

fusion or designated Focus Layer as described in the section 4.1.4.

Most of the ASL signs do not involve all the 25 joints’ information provided by Kinect

sensor. The joints belong to the hands carry most of the information regarding sign lan-

guage. Given that, we consider only 6 joints (wrist, elbow, shoulder) from both hands and

use them as input to the LSTM network. In this way, for each video, our skeletal data of

form RT×(J×D) becomes R20×(6×3) with (J = 6 and D = 3). We use T = 20 for sampling

rate for skeletal data. To crop hand patches from RGB video frames we use hand joint’s

2D location and select a window size of 100 × 100. After cropping we feed this into Deep

Hand model and prepare hand feature data as R15×2048 as described in the section 4.1.4.

Sampling rate used for hand data is T = 15 for each video.

4.2.4 Experiment Using RGB Estimated Pose

Data preparation using estimated pose is similar to what we have already discussed in the

previous section. However, there are some differences. First, our pose data is of form

R20×(48×2) because we are using 48 joints and our pose is 2D in this case. Among 48 joints

6 are wrist, elbow and shoulder from both hands; the remaining 42 joints are finger and

palm level joint location from both hands.

4.2.5 Comparative Methods

Finding a similar work for comparison with our method was difficult due to the scarcity of

public ASL datasets. A closely related and well studied setup is generic isolated gesture

recognition [52, 90–92]. In [52] authors propose FOANet gesture recognition architecture,

that uses fusion of different channels on cropped hand patches and full body. Using different

modalities (RGB, depth and flow) with those channels, this work sparsely fuses 12 channels
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of inputs to model gestures. We tried to reproduce this work on our dataset as closely as

possible. However, we only used 2 channels (RGB left/right hand patch) instead of full 12

channels to make a fair comparison with our experiments. In addition to that, there were

some changes in terms of input data such as the crop size and the location feature. The

FOANet uses a hand detection network to generate cropped hand patches which gives hand

crops of different sizes. On the top of the RGB hand patch input, they use sizes of patches

as location features. But our hand patches, cropped using 2D pose information of hand,

are of the same size. Hence, we could not use location features from the sizes of the hand

patches. However, we used corner coordinates of hand windows as location features.

4.2.6 Training Details

In this section, we describe implementation and hyperparameter details of presented models.

We observe from experimental results that different T (sample rate) values for RGB features

and pose data works well in terms of test accuracy. We used T = 15 for RGB hand feature

data and T = 20 for pose data as described in section 4.2.4 and 4.2.3. We used Adam

Optimizer for training our networks [86]. Initial learning rate was set to 0.00005. 2-Layer

LSTM networks were used for all implementations. State sizes used for PoseLSTM and

RgbLSTM were 100 and 1000 respectively. Size of the hidden layer in focus layer was 512.

To deal with the over-fitting, dropout was used for all LSTM networks with probability

0.5. In addition to dropout, L2 regularization was used for dense layers; β was set to 0.008

which controls the effect of regularization on the network. Average cross entropy loss was

used to update the network parameters for a batch. Given a true one hot encoded class

label of yi,j and corresponding predicted score of ŷi,j this loss is calculated as Equation 4.1.

L = − 1

N

N∑
i=1

C∑
j=1

yi,j log (ŷi,j) (4.1)
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Table 4.1: Test accuracies across 12 subjects. In header row each subject is represented
by S appended with subject number. Top three rows show results of our baselines. Next
four rows show experiments with 3D pose and extracted hand shape features. Bottom
four rows show results of using estimated pose and hand shape features.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 Avg.
3D CNN 0.62 0.63 0.60 0.60 0.56 0.56 0.62 0.45 0.39 0.51 0.46 0.17 0.51

Random Forest 0.60 0.67 0.43 0.68 0.66 0.64 0.62 0.59 0.58 0.76 0.78 0.49 0.62
SVM 0.61 0.75 0.46 0.73 0.68 0.73 0.69 0.59 0.66 0.76 0.67 0.61 0.66

FoaNet[52] Style 0.18 0.22 0.094 0.19 0.11 0.28 0.15 0.17 0.09 0.12 0.11 0.05 0.15

3D
P

os
e

PoseLSTM 0.81 0.88 0.68 0.84 0.88 0.85 0.85 0.78 0.81 0.83 0.76 0.83 0.82
RgbLSTM 0.81 0.82 0.85 0.89 0.81 0.89 0.93 0.69 0.83 0.72 0.81 0.37 0.78

FusionLSTM 0.90 0.93 0.88 0.93 0.90 0.95 0.96 0.84 0.91 0.89 0.89 0.67 0.88
FusionLSTM (Focus) 0.92 0.93 0.88 0.94 0.90 0.94 0.95 0.85 0.90 0.84 0.89 0.77 0.89

2D
P

os
e

PoseLSTM 0.83 0.90 0.89 0.92 0.90 0.92 0.95 0.88 0.94 0.93 0.94 0.63 0.89
RgbLSTM 0.80 0.82 0.88 0.93 0.82 0.92 0.95 0.79 0.90 0.75 0.92 0.27 0.81

FusionLSTM 0.85 0.85 0.93 0.95 0.87 0.92 0.98 0.83 0.93 0.85 0.96 0.40 0.86
FusionLSTM (Focus) 0.87 0.92 0.93 0.93 0.88 0.95 0.98 0.84 0.93 0.91 0.95 0.56 0.89

Here, N is the size of the minibatch and C is the number of classes. For our experiments,

these values are 64 and 51 respectively.

4.2.7 Results

Table 4.1 shows our experimental results. We evaluated each method in a cross-subject

manner. For a particular test subject, we trained our model using data from all other

subjects in the dataset. This cross-subject evaluation criteria mimics the practical scenario

where the trained system is expected to be working on previously unseen subjects. Each

column in Table 4.1 shows test accuracy of one subject in our dataset. First four rows shows

the baseline results: 3D CNN, Random Forest, SVM and FoaNet style results respectively.

Next four rows presents experiments with 3D Kinect pose and bottom four show experiments

with estimated 2D pose. Hand shape features are common to both type of experiments

(2D/3D pose).

Result shows that methods using 2D poses achieve similar performance to Kinect poses

which is interesting because 2D pose methods depend only on RGB data. Also we observe
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Figure 4.4: Illustration of different RGB distribution for subject 12. Top hand patches
show four signs from S12 (‘rain’,‘stop’,‘sunny’,‘kitchen’ in order). Bottom patches are ex-
amples of same corresponding signs from four other subjects from our dataset. This clearly
shows that S12 has different bluish RGB color than all other subjects which explains bad
results with RGB modality for S12 (difference in RGB is best viewed in color).

that, using fusion of both modalities increases the model performance to some extent (7%

in case of 3D pose). The proposed focus layer improves the accuracy by 1% in 3D pose

and by 3% in 2D pose. However, if we take a close look at the result of subject 12 (S12),

we observe the actual benefits of the focus layer. Video data for S12 is different from

other subjects due to a compression related color changes during data acquisition which is

apparent by the poor recognition accuracy (RGB modality). Figure 4.4 shows how RGB

data from S12 has different distribution than other subjects in the dataset. However, Kinect

pose (3D Pose) data does not depend on RGB and we can see we have 83% test accuracy

in PoseLSTM for S12 just as like other subjects. With focus layer which was proposed to

learn priority among modalities, we can see that there is a 10% gain in accuracy for S12. In

case of 2D pose, PoseLSTM has 20% lower performance than 3D pose version. This large
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Figure 4.5: Test accuracy bar charts of different subjects(X-axis) in our dataset. Top figure
shows the results using Kinect 3D poses while bottom shows results using estimated 2D
poses.

decrease in accuracy is uncommon in other subjects because in all other cases PoseLSTM

for 2D pose gives better accuracy than 3D pose (because of finger joints). Since 2D pose is

estimated from RGB data which has different distribution for S12, we speculate that, this

bad performance is expected. We have verified this by observing hand poses estimated by

OpenPose model for S12. These poses are noisy and the model outputs very low confidence

for S12’s finger joints. However, we see a 14% increase in the accuracy in case of focus

layer version using 2D pose for S12. This result supports that our proposed attention

mechanism can significantly improve recognition performance in case of a noisy (or bad)

source. Figure 4.5 shows the relative test accuracy of three implementations for using each

of two types of pose data: 3D pose from depth sensor (top) and estimated 2D pose from

RGB (bottom). We can see from the plots that, FusionLSTM with focus layer (dark gray)

achieves best accuracy for each test subject. However, in some cases test accuracy is close

for focus FusionLSTM and either one of single modal methods. For example S03 and S07

have similar test accuracy for fusion method and RGB only method in case of 3D pose
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version (top plot in Figure 4.5). If we take a closer look we can see that accuracy from pose

only method (PoseLSTM) is relatively low for these subjects and proposed focus fusion

mechanism tries to obtain optimal performance out of it. It works as a decision maker

deciding which modality should be used and which should be ignored. Similar phenomenon

is observed for S05 where focus fusion method improves low performance of RgbLSTM.

Hence, we observe that in general, proposed fusion method with focus mechanism can learn

prioritizing among sources to produce best possible recognition results.

Also we observe that, FoaNet like implementation has really low recognition accuracy of

15%. This was surprising to us because, the FoaNet yielded high recognition accuracy for

generic gesture recognition task. We can think of several reasons for this low performance.

Original work uses 12 channels of different modalities (flow, depth, rgb) while we reproduce

using only 2 channels (rgb). Other reasons are the dataset size and the evaluation criteria.

We conclude that when available training dataset has small number of training samples,

it is very difficult to train video models with millions of parameters. On the other, fine

grained hand-shape representation with a simpler sequential modeling works far better in

this case. Hence, frame-wise RGB hand-shape information is vital for ASL recognition.

4.2.8 User Identification

Here we investigate the ability of our representation for user identification. This is important

for security reason. If we can identify an user using a video input, we can impose a security

filtering on a system. Without this filtering, the system is exposed to the world and can be

exploited by an intruder.

To set up the experiment, we modify the dataset so that for each gesture example, the

subject becomes the label for all videos. We have 12 classes (12 subjects in GMU-ASL51)

in this setting. First, we keep aside 5 gestures from each subject for each class for training

purpose; the remaining gestures are summed up to 10,431 samples and used for evaluating

user identification models. Then we trained models using increasing fraction of training

data. We trained a first model using 1 video sample of each class from each subject. Then
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Figure 4.6: User identification results. X axis represents number of gesture video examples
used for training from each sign class for each subject. Y axis denotes recognition accuracy
on the rest of the gesture samples.

we used 2 videos of each class from each subject and so forth. One video per subject per

class gives a total number of 535 videos for training. Figure 4.6 shows this process and

the associated recognition results for models trained on different fraction of data. X axis

represents the number of sign video examples per subject per class used as training. We

observe that, using only 2 videos as training, our proposed architectures yields 98% user

recognition accuracy. We also see that, PoseLSTMs did not perform as well in comparison

with other methods. This is because, body joint data captures motion of different body

parts which is not helpful for distinguishing specific person. On the contrary, hand data

carries user specific shapes, colors and orientation. Hence, we observe more than 15%

performance gain, in case of 1 training video for each class from each subject, in RgbLSTM

which uses RGB hand crops. It is also interesting that, hand data used with joints’ pose

data, in FusionLSTM, yielded slight performance gain over other methods.
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4.3 Key Takeaway

We demonstrated the effectiveness of skeletal 2D pose trajectories for ASL gesture recogni-

tion. The baseline model was further enhanced by incorporating hand-shape features along

with a novel fusion mechanism. In both cases we used models pre-trained on large amounts

of labeled human pose and hand-shape data. This enabled proposed networks to handle

large variations in hands and upper body appearances. An extensive comparison of the

proposed approach with 4 baseline approaches has been carried out. With the advances in

human pose estimation from single image, the 2D skeletal gesture recognition was found to

be competitive with the models using 3D joint trajectories. This is encouraging because,

2D skeletal data can be obtained without employing depth sensors in the system.
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Chapter 5: FineHand: Learning Hand Shapes For American

Sign Language Recognition

To recap from Chapter 4, we extracted hand-shape features from each frame using a pre-

trained CNN model and used them to learn sign videos in the GMU-ASL51 dataset. Al-

though, the CNN model was trained on hand-shape images from a different source, it im-

proved sign modeling task by 8%. This motivated us to cultivate hand-shape representation

for the GMU-ASL51 dataset. However, training a CNN for producing hand-shape repre-

sentation requires annotated frame-wise hand-shape images. To solve this, we proposed

a semi-automatic approach for cultivating annotated hand-shapes from the GMU-ASL51

dataset. This annotated data source is used to train a CNN based hand-shape recognizer.

Our experimental results showed that the learned hand-shape representation improved the

downstream sign video modeling task by a margin of 11%. Even using only RGB modality,

our proposed method outperformed multi-modal fusion based approaches. This chapter

describes the proposed methods with experimental results. The work presented in this

chapter has been published in the 2020 IEEE International Conference on Automatic Face

& Gesture Recognition (FG), Buenos Aires, Argentina.

An ASL sign is performed by a combination of hand gestures, facial expressions and

postures of the body. Further, the sequential motion of specific body locations (such as

hand-tip, neck and arm) provides informative cues about a sign. In this work, we con-

sider the problem of classifying word-level ASL signs captured by short video snippets in

unrestricted settings by multiple signers. We focus on learning effective hand shape repre-

sentations, robust to changes of style, motion blur and illumination (see Figure 5.1). To

localize the hands, we use recent advances in human pose estimation methods from video,

which are effective in estimating 2D hand joint locations [23, 24, 50]. In order to train a
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Figure 5.1: Subjects performing different ASL signs and corresponding hand shape pat-
tern. Faces are masked for privacy concern (Note: Faces are masked in this dissertation
for the same reason).

robust hand shape model, frame level annotation of hand shapes classes is required. Such

annotation labelling is a tedious and time consuming process. For this reason, we first

manually annotate hand-shape images from a small set of videos or, to be specific, 612

sign videos. Later, we train a CNN model on these annotated images and generate more

annotated hand-shape images using the trained CNN. By iterating this process, we obtain a

robust hand-shape recognizer CNN model. Finally, given a hand-shape image as input, we

can extract the hand-shape features as the penultimate layer of the CNN network. These

are subsequently used to learn sequential dynamics of sign video using recursive neural

network (RNN) [32]. In summary, the contributions of this chapter are:

1. We proposed an iterative learning mechanism to train a deep CNN to model hand-

shape representation;

2. We implemented sequential RNN models for video gesture recognition using the

learned hand shape representation;

3. We evaluated our method by varying different factors such as fraction of hand-shape

supervision and single hand vs both hands, and compared it with other multi-modal
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methods for ASL gesture recognition;

4. We created and released hand-shape annotations for each frame of the GMU-ASL51

dataset. This will allow future research in the direction of frame-wise modeling for

sign videos.

We will demonstrate superior performance of the proposed model on the GMU-ASL51

dataset [10] and compare it quantitatively with several baseline approaches which use dif-

ferent representations and different sensing modalities.

5.1 Our Approach

In this section, we first outline the dataset we use to experiment with our proposed sign

learning approach. Then, we describe the hand-shape learning process of a CNN model.

Hereafter, we refer to this model as the hand-shape model. Finally, we present the sign video

classification model. This model utilizes frame-wise hand-shape representation generated

by the CNN based hand-shape model.

5.1.1 The GMU-ASL51 Dataset

All of our hand-shape learning as well as ASL classification tasks were evaluated using

GMU-ASL51 benchmark [10]. This dataset has 51 word level ASL signs performed by 12

subjects of different ages, gender and builds. The dataset was collected using depth sensor

and has two modalities: RGB videos and 3D skeletal body parts. More detail can be found

in the paper [10]. In this dataset, only video-level class label is available. One of our main

contributions of this work is to systematically annotate per frame hand shape from each

video. The dataset is also described in details in Section 3.1.

5.1.2 Hand Shape Learning

The goal of this part of our pipeline is to learn high-dimensional feature embeddings of

hand-shape images which are representative for ASL gesture recognition. In this section
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Figure 5.2: Pose estimation and hand cropping process.

we are first going to present how to crop hand patches using off-the-shelf pose estimation

method, followed by an iterative hand-shape learning mechanism. Finally, we demonstrate

qualitative results from our learned hand-shape model.

Hand Crops from Pose

The pose estimation from RGB is described in Section 2.3. For this work we have chosen

the state-of-the-art 2D human body pose estimation approach OpenPose [23]. It is to be

noted that we only use hand poses to crop a hand patch from each image. Figure 5.2 shows

the whole process of estimating body poses from an RGB frame and cropping hand patches.

Iterative Hand Shape Learning

The GMU-ASL51 dataset has 13, 107 sign videos. These videos are from 12 subjects and

51 word-level sign classes. The 51 classes are video-level, meaning that, each video has an

associated class label with it. However, we want to learn frame-level representation of hand

shapes appearing in each frame of a sign video. Since no frame-wise hand-shape annotation

is available, training a model in a fully supervised manner is not possible. Hence, we im-

plemented a method that automatically learns frame-wise hand-shape representation. Our

approach depends on some early manual hand-shape annotation. To be more specific, we

took one sign video from each combination of a subject and a sign class, which yielded a

total of 612 (12 × 51) sign videos. We extracted hand-shape crops using pose data and
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Table 5.1: Iterative hand-shape learning process. In the header row P, C and T symbolizes
prediction, correct and total count respectively. Iter 1 is the manual annotation, hence
all labels are correct. T column of final pass denotes the cumulative count of hand-shape
samples for the class represented by rows. Iteration is abbreviated as Iter.

Class Iter 1
Iter 2 Iter 3

P C T P C T
C1 402 598 534 936 524 511 1447
C2 217 277 277 494 281 277 771
C3 69 88 73 142 102 96 238
C4 328 554 408 735 435 396 1131
C5 163 236 196 359 219 198 557

manually group them based on visual similarity into 41 classes. These examples were used

to fine-tune a pre-trained ResNet-50 CNN architecture [93]. In the second iteration, we

used the high-confidence predictions of our initial model to predict hand-shape crops from

another 612 sign videos (different from the 612 set of first iteration). At this point we may

have some incorrect predictions from initially trained model. We manually corrected the

incorrect predictions. Although this fix is manual, it requires less time and labor than man-

ually annotating each hand-shape image. After this phase, we had more annotated hand

shape patches and we retrain our model. With additional iterations, the model becoame

stronger in predicting hand-shape images. Similarly we can start a third iteration and so on.

We performed 3 such iterations and ended up with 41 classes of hand shapes which are dis-

tributed among 51 sign gesture classes of GMU-ASL51 dataset. Table 5.1 shows the count

of annotated hand shape samples for five classes and three iterations. It should be noted

here, in three iterations the fraction of sign gesture data we used to train the model were

4.16%, 8.32% and 12.5% respectively. It should be also mentioned that, we used per frame

hand shape annotation on this fraction of data which means that a video gesture sample

could possibly generate several hand shape training examples. Effects of this incremental

learning on sign classification is discussed in more detail in the result section. Among 41

hand shapes two are unusual: the garbage and the rest-position. Keeping those two classes
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Figure 5.3: Sample hand shapes. Each row shows 12 randomly picked samples from the
created dataset in the iterative hand shape learning phase.

is vital because, in a sign video, sometimes hands appear either blurry or are at the rest po-

sition. As shown in the bottom two rows in Figure 5.3, these hand shapes are uninformative

for the sign video modeling task. Hence, if we have a way to learn these unnecessary hand

shapes, then we can exclude them during sign language modeling and hence have robust

feature representation. Figure 5.3 shows examples of several hand-shape classes picked from

our cultivated 41-class hand-shape dataset. Each row represents one class. Twelve samples

in a row are picked randomly from our created hand-shape dataset. In each row, we observe

noticeable intra-class variations such as flipped hand shapes, backgrounds, hand-arm orien-

tations, and blurs. Bottom two rows show the sample hand shapes from the class garbage

and rest-position respectively. The ResNet CNN model we trained here is a module of

the proposed FineHand sign video classification pipeline. After being trained on hand-shape

data, parameters of this model can be freezed during temporal sign video learning.

Qualitative Results

The hand-shape CNN model is trained in an incremental fashion. Manual annotation in

the first iteration and all the other predicted hand-shape images can be from either left or
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Figure 5.4: Predicted hand shape classes from a trained ResNet-50. For each of three
sign classes two samples are shown where Qy means query hand shape sequence and Ref
means a reference sample of predicted label for each corresponding query hand patch from
the training samples.

right hand. This means if we look at all the samples from a class, we will find examples

from both hands. Of course, a shape will be horizontally flipped or rotated as we look at

the left versus right hand. First, second and fourth rows in Figure 5.3 show such examples.

Figure 5.4 presents predicted and reference examples patches using a trained hand shape

model, four top rows show two samples (divided by thin black line) from the sign play. For

each samples the second row shows the query (Qy) hand crops and the corresponding crops

in the row above (Ref) represent a reference training sample from predicted class. This

classification model is trained on a cross-subject manner, which means none of the hand

crops from the test subject (query) is used during the training procedure. We observe, in

most of the cases, hand-shape model learns useful feature representation which is invariant

to rotations, scales and backgrounds. We will then keep the penultimate layer of the model

as the high-dimensional representation of each hand crop.
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Figure 5.5: T-SNE visualization of hand-shape embeddings from different model sources
for 4,033 samples. Top figures show representation obtained from ResNet-50 (ImageNet
pre-trained) and DeepHand. Bottom figure shows embedding obtained from a trained
(cross subject) ResNet model using hand-shape labels created using our proposed method.

Figure 5.5 shows the comparison among T-SNE representation of embeddings obtained

by our model. It shows that hand-shape representation learned by our CNN embedder clus-

ter better than embeddings produced by ResNet (ImageNet trained) [93] or DeepHand [12]

models. This gives us the motivation behind using this effective representation in sign video

classification task.

5.1.3 Temporal Sign Gesture Learning

As pointed out and shown in the previous section, learned hand-shape representation could

be useful in classifying ASL gesture videos. However, the sequential dynamic in video

data still needs to be modeled carefully for better classification accuracy. With a trained

hand-shape CNN embedder, each video can be converted into a sequence of hand-shape

representation vectors. We base our sequential modeling using these vectors as inputs to

LSTM networks. Section 2.2.1 details the LSTM network.
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Figure 5.6: FineHand RNN model. The ResNet-50 model is trained separately first on 41
hand shape classes. After training, it provides representation for each hand-patch video
which is then used in sequential LSTM classifier for 51 sign classes in the dataset.

FineHand Architecture

We proposed an LSTM based method for the sign classification task. For a sign video, input

to this model is a sequence of vectors obtained from our hand-shape CNN. Assume that we

have a sequence of cropped hand images RF×H×W where F,H,W are number of frames,

height and width of hand crops respectively. Feeding the images to the hand-shape model

gives 2048 dimensional embedding for each frame’s crop and the sequence becomes RF×D,

where D = 2048 for ResNet-50 CNN. We used this data to train an LSTM model where

F is the number of temporal steps. To deal with varying video lengths in the dataset, we

sampled T predetermined number of frames uniformly. Hence, for a given video, input to

the LSTM network is RT×D. Finally we picked the hidden state at the end of last layer

of LSTM network and took that as an encoded representation for each sequence. This

final representation captures rich temporal as well as spatial hand-shape features and is

fed to a fully connected neural network layer to produce prediction probability distribution
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for sign gesture video classification. We trained two different networks for left and right

hands. We fused the output of two networks at the end to produce final classification scores.

Figure 6.2 shows the details of our proposed architecture. It shows that the left-hand and

right-hand patches are input to the trained hand-shape embedder model and the generated

representation is being used as input for the recurrent LSTM networks.

Training Details

Average cross entropy loss is used to update the network parameters for a batch. Given a

true one hot encoded class label of yi,j and corresponding predicted score of ŷi,j this loss is

calculated as Equation 5.1.

L = − 1

N

N∑
i=1

C∑
j=1

yi,j log (ŷi,j) (5.1)

Here, N is the size of the minibatch and C is the number of classes. For our experiments,

these values are 64 and 51 respectively. We performed grid searching for selecting the

hyper-parameters of our model. These hyper-parameters are the number of layers in our

network, state size and time steps of the input sequence. We found best validation accuracy

is obtained with 2 layer networks, 512 as hidden state size and 20 (T) as the input sequence

length. Size of the input dimension at each time step is the size of the representation

produced by hand shape embedder, or 2048 to be specific in case of the ResNet-50 CNN.

We used the Adam Optimizer for training our networks [86] with learning rate set to 0.0001.

5.2 Experiments

In this section, we are going to describe different methods we used in comparison with our

proposed architecture.
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5.2.1 Comparative Methods

3D Convolution Convolutional Neural Network (CNN) with 3D convolutional kernel

(3D CNN) has shown promising performance in classifying human activities in video [14].

That’s why we chose 3D CNN on RGB hand patch videos for one of our baselines. It

consists of four 3D convolutional layers and two fully connected layers at the end. There

are two separate networks for left and right hands’ patches. Final embedding of these two

networks are concatenated before producing softmax score.

Deep Hand Model The authors in [12] trained a 22 layer deep convolutional neural

network (CNN) with more than 1 million images, from videos of Danish and New Zealand

sign language. The data is weakly labeled with only video level annotation. The CNN

model for estimating the likelihood of hand shapes, is trained using EM algorithm, jointly

with Hidden Markov Model (HMM) for parsing sign gestures. The network is trained to

recognize 60 hand shape classes plus one garbage class which determines the start or end of

a video. We forgo the softmax classification layer of this network and use the embeddings

computed by this pre-trained model as representations of hand-patch crops from our ASL

videos. Given a hand-crop image as input, the final layer representation produces a 1024

sized vector as hand features. We compare the hand features obtained from this source

with our proposed hand-shape learning method in the context of sign video recognition.

Kinect 3D Pose For this experiment we used RGB video and 3D skeletal pose data as

computed by Kinect sensor [43]. We performed three types of experiments using these two

types of data. Two of those experiments use each modality separately. The other one uses

fusion strategy to get maximum out of both modalities. These models are referred as 3D

version of PoseLSTM, RgbLSTM and FusionLSTM in the result section.

OpenPose This experiment is similar to the process described in last paragraph except

only uses estimated poses from RGB videos instead of using 3D skeletal poses generated by

Kinect sensor. Process of estimating poses from video is described in Section 2.3. Rationale
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behind doing this experiment is to exclude the dependency on a depth sensor. Since, this

poses are estimated from RGB video, this experiment depends solely on RGB modality.

These models are referred as 2D version of PoseLSTM, RgbLSTM and FusionLSTM in the

result section.

Comparison with Similar Work It was difficult to find a similar work which can be

directly compared to our method. This is due to the nature of our set up which is isolated

ASL word level sign recognition. We could not find any standard public dataset other

than recently released GMU-ASL51 for this purpose. However, there is a public dataset on

generic gestures [94]. Various deep learning based methods have been proposed to model

generic isolated gestures [52, 90–92]. Narayana et al. proposed FOANet which uses fusion

of different channels on cropped hand patches and full body [52]. Using different modalities

(RGB, depth and flow) with those channels this work sparsely fuses 12 channels of inputs to

model gestures. Details can be found in the paper [52]. We tried to reproduce this work on

GMU-ASL51 as closely as possible. However, the exact re-implementation was not possible

due to several factors such as number of data channels used, number of location features of

hand patches and mechanism of cropping hand patches.

5.2.2 Results

Table 5.2 shows our experimental results. All of the mentioned models are evaluated in

cross-subject manner. For a particular test subject, we trained our models using data from

all other subjects in the dataset. This cross-subject evaluation criteria attempts to mimic

a practical scenario, where we want to measure how a trained system responds to unknown

subjects. Each column in Table 3.1 shows test accuracy of one subject in GMU-ASL51.

First two rows shows the baseline results: 3D CNN and FoaNet style implementation. Next

two blocks of three rows show experiments with 3D and 2D poses respectively. Finally,

bottom row shows results of our proposed method (FineHand). Result shows that methods

using 2D poses achieve almost similar performance to 3D Kinect poses (88% vs 86%) which
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Table 5.2: Cross-subject test accuracies for 12 subjects. In header row each subject is
represented by S appended with subject number. The bottom row shows the result of
our proposed FineHand architecture. Other rows are different comparative methods. 3D
labeled three rows show the results using DeepHand embedding with Kinect 3D pose. 2D
labeled rows show the similar experiments with OpenPose poses.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 Average
3D CNN 0.62 0.63 0.60 0.60 0.56 0.56 0.62 0.45 0.39 0.51 0.46 0.17 0.51

FoaNet[52] Style 0.18 0.22 0.10 0.19 0.11 0.28 0.15 0.17 0.09 0.12 0.11 0.05 0.15

3
D

PoseLSTM 0.81 0.88 0.68 0.84 0.88 0.85 0.85 0.78 0.81 0.83 0.76 0.83 0.82
RgbLSTM 0.81 0.82 0.85 0.89 0.81 0.89 0.93 0.69 0.83 0.72 0.81 0.37 0.78

FusionLSTM 0.90 0.93 0.88 0.93 0.90 0.95 0.96 0.84 0.91 0.89 0.89 0.67 0.88

2D

PoseLSTM 0.83 0.90 0.89 0.92 0.90 0.92 0.95 0.88 0.94 0.93 0.94 0.63 0.89
RgbLSTM 0.80 0.82 0.88 0.93 0.82 0.92 0.95 0.79 0.90 0.75 0.92 0.27 0.81

FusionLSTM 0.85 0.85 0.93 0.95 0.87 0.92 0.98 0.83 0.93 0.85 0.96 0.40 0.86

FineHand (ours) 0.93 0.98 0.97 0.91 0.91 0.93 0.99 0.88 0.91 0.94 0.96 0.83 0.93

is interesting because 2D pose methods depend only on RGB data. It should be noted that,

unlike Kinect sensor, OpenPose provides finger joints. We presume, even though these

poses lack depth information, finger joints help to achieve comparable performance with 3D

Kinect poses.

From Table 3.1 we observe, our proposed method, FineHand outperforms top models

using 3D and 2D poses by 5% and 7% respectively. It should be mentioned that, pose

based models use pose data while FineHand model only uses RGB hand patches. Taking

this into consideration, it is fair to compare FineHand with RGB only versions (RgbLSTM)

of 3D and 2D implementation. In that case, FineHand outperforms those implementations

by 15% and 11% respectively. This boost in the classification accuracy can be justified by

the way FineHand learns hand shapes. Representation used for RgbLSTMs is taken from

DeepHand, a pre-trained model on large amount of hand shapes data from a different class

distribution as described in Section 5.2.1. On the other hand, FineHand embedder learns

representation from annotated hand shapes which has proven to be crucial for this kind of

15% performance gain in classification. Our best method outperforms the work came with

the dataset [10] by 12%.

68



Table 5.3: Average cross-subject sign recognition accuracy on different iterations of hand-
shape learning

Iterations (% Train Data) Accuracy

Iteration 0 (0.00%) 0.65
Iteration 1 (4.17%) 0.89
Iteration 2 (8.32%) 0.91
Iteration 3 (12.5%) 0.93

The FOANet style implementation on GMU-ASL51 has low performance (second row

in Table 5.2) even though it is one of the top performing models for generic gestures. One

possible reason is the number of data channels used. While original work uses 12 channels,

in our implementation we use only 2 channels to make it comparable with our proposed

work. Another reason is the training procedure. FOANet architecture proposed to capture

sequential dynamics in a video gesture by using sliding window based approach where

classification scores for a video gesture was computed by taking averages over all sliding

window scores. Our method however, pre samples a fixed number of frames from a video

and produces one set of prediction score per video gesture.

Effect of hand shape Learning Iterations In section 5.1.2, we briefly described how

hand-shape learning CNN was trained in successive iterations. We hypothesize that in-

creasing these iterations will boost up the sign classification accuracy. Table 5.3 shows the

average recognition accuracy on using different fractions of data for training the embedder

CNN. Here, ‘Iteration 0’ represents no hand-shape learning, meaning that, we use embed-

ding representation from ImangeNet pre-trained CNN model as input to LSTM network for

sign classification.

Both Hands vs Single Hand We are also interested to compare results obtaining from

either using left or right hand and using them together. Usually some signs are dominated

by single hand while others are double handed. It is obvious that, using both hands’

information will increase the accuracy. However, we want to see how much improvement
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Table 5.4: Average cross subject sign recognition accuracy for different scenarios of hand
usage.

Input Types Accuracy

Left Hand 0.65
Right Hand 0.90
Both Hands (Max) 0.86
Both Hands (Catenation) 0.92
Both Hands (Mean) 0.93

is possible using both hands. In case of using both hands, we also show if there is any

best fusion mechanism. Table 5.4 outlines this results. We observe that, good accuracy is

achieved using only right hand input. This is not surprising, because all of the subjects use

right hand as the dominant hand in GMU-ASL51 dataset. However, using both hands we

have 3% improved accuracy which suggests that, in some cases left hand is also important.

Among the fusion strategies we found, averaging scores works best.

Table 5.5: Average cross-subject sign recognition accuracy for different learning mecha-
nisms (joint vs separate).

Train Type Accuracy

Separate Learning 0.93
Joint Learning 0.89

Effect of Joint Learning This section shows comparison between learning the whole

network jointly and learning separately. Our default set up is separate learning where

first we train the hand shape CNN model using annotated hand patch data, then freeze it

during sequential learning of embedding produced by it on training video hand patches. In

case of joint learning, we don’t freeze the hand shape CNN network during sequential sign

learning. We notice that joint learning worsen the performance of the whole network. We
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anticipate, since the CNN is first trained on hand shape supervision, it might get confused

when sign video-level gradient updates are done on its parameters. Also, during back

propagation gradient has to travel backwards through the LSTM network before hitting

hand shape CNN model. This causes derogatory updates on CNN parameters. Hence,

produced embedding representation differs in each iteration, which could impact the LSTM

learning negatively. Table 5.5 depicts this result.

5.3 Key Takeaway

We have demonstrated the effectiveness of learning hand-shape representation in the context

of ASL sign video modeling. We showed qualitative results for the representation produced

by our proposed hand-shape learning mechanism and compared with previous methods. We

also verified, this representation can achieve superior sign classification accuracy than other

sources of representation. Our proposed method is RGB-only but outperforms multi-modal

(RGB and pose) approaches for sign language recognition. In addition to that, different

factors of training such as single hand vs both hands, separate training vs joint training,

and fractions of hand-shape data in training, were compared and explained.
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Chapter 6: Hand Pose Guided 3D Pooling for Word-level

Sign Language Recognition

This chapter focuses on body-pose guided feature extraction from Convolutional Neural

Network (CNN). In a traditional word-level sign language recognition (WLSLR) setting,

the pose data is used as input to a machine learning (ML) model such as CNN, and goes

through linear transformations before producing the output scores associated with target

classes. However, in this work, we proposed to use pose data to localize some specific body

location in the feature-map space. It is to be noted that, the CNN produces feature maps by

transforming the input RGB video while the pose inputs are used only to localize several pre-

specified locations in the feature map. Our experiments showed 10% to 12% improvement,

in some cases, in sign video recognition accuracy in a state of the art WLSLR benchmark

dataset. The work presented in this chapter has been published in the 2021 IEEE Winter

Conference on Applications of Computer Vision (WACV).

The basic components of a sign gesture are complex arm movements with articulated

hand shapes and facial expression. Both the motion and the shape of the hands are the

most discriminative components of individual gestures. From computer vision perspective,

the word-level gesture recognition requires learning strong spatio-temporal representations

from videos, capturing both the appearance of the hand as determined by its shape and

pose, as well as motion of arms and hands. Several deep-learning based approaches were

found to be effective in capturing spatio-temporal representations of action videos on com-

monly used action recognition benchmarks [13, 95]. The common building blocks of these

models use combination of Deep Convolutional Neural Networks (ConvNet) for extracting

spatial features and Recurrent Neural Networks (RNN) [96, 97] for temporal features, or

used combination of 2D and 3D CNNs for fusing spatial and temporal cues [14, 97–99].
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These methods take action videos as input and compute class prediction probabilities over

the available classes or occasionally action localization depending on the labels available

in the training set. Complementary approaches for action recognition exploit the existing

techniques for human pose estimation [23] in individual frames and learn models on the

top of these representations [64, 100]. Motion blur and limited resolution make the body

pose estimation very brittle. The same factors affect most of the estimation of hand and

finger joints, making these methods ineffective for capturing hand shape and pose. For both

action recognition and word-level sign language recognition 3D ConvNets are currently one

of the best performing models [1, 5, 13] enabling an end-to-end joint training of spatial-

temporal component. These approaches treat a sign video as any other videos, disregarding

the importance of hand shapes in sign videos. For the word-level gesture recognition, pre-

vious methods that shown the effectiveness of hand shapes for gesture recognition required

training separate models for hand-shape classification, in supervised or weakly-supervised

way [12,101].

Motivated by the effectiveness of hand shapes for gesture recognition, we proposed to

improve 3D ConvNet model by additional predictions obtained by pose-guided pooling of 3D

convolutional features maps at different layers and levels of resolution. We used the spatial

locations of hands in the feature map space to guide the pooling. Location of hands can be

reliably estimated by the state-of-the-art of pose estimation methods [23]. We learned to

predict the word-level gestures by training additional classifiers using pose-guided pooling

of 3D ConvNet feature-maps with different spatial supports. During the test time, we fused

the class probability scores from classifiers that were trained using these pooled multi-scale

features. Figure 6.1 shows an example of body poses mapped to corresponding locations in

different feature layers of a 3D ConvNet. In summary, our contributions can be listed as

follow,

1. We proposed a novel pose guided pooling mechanism for word-level ASL recognition;

2. We demonstrated the effectiveness of the idea of pooling localized features from mul-

tiple feature-map levels of a 3D convolutional network;
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Figure 6.1: Top images show the variation in hand position in three different samples from
a sign gesture of city class. Bottom images shows how the hand poses are mapped (for
the middle sample) to corresponding activation maps for four randomly selected channels
from a certain layer of a 3D ConvNet.

3. We evaluated the proposed architectures improving the state of the art results on

word-level action recognition;

4. We demonstrated that our feature pooling mechanism produces features that are

better transferable to datasets obtained from different sources.

6.1 Our Approach

In the word-level sign language recognition problem, we have a dataset on N training

examples {Vi,Wi} where Vi is a RGB video ∈ <T×H×W×3 and Wi is a word level label,

where H,W, 3 is the dimension of single frame of video and T is its length. Example

gestures for the sign city, performed by three different signers is in Figure 6.1.

We first describe the baseline 3D convolutional neural network model, followed by our

proposed pose guided pooling and fusion approach.
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6.1.1 Inflated 3D ConvNet

Deep convolutional neural networks (ConvNet) for image classification proceed by learning

layers of shared filter parameters that are used obtain spatial features maps by means

of convolution. To model sequential nature of video data, convolution can be extended

to 3D where weights of 3D filters can learned directly from spatio-temporal data [14].

However, training these models from scratch is quite challenging, due to the large number

parameters added by the temporal dimension of convolutional filters. To mitigate this issue,

I3D network [13] proposed to use already trained 2D convolutional filters and inflate them

into 3D to initialize the training of 3D convolutional network. Inflating pre-trained 2D filters

into 3D allowed the network to learn seamless spatio-temporal features and has become the

state-of-the-art method in action recognition and world-level sign gesture recognition [1,13].

GoogleNet was proposed to find the optimal sparse local structure in data using readily

available dense convolutional fiters [102]. The idea was motivated by the fact that, not

every neuron, at each layer is equally responsible for the learning process of a ConvNet and

optimal network structure can be approximated using the correlation statistics of highly

activated neurons layer by layer [103]. The authors of I3D [13] inflated – or extended the

2D convolutional kernels to 3D – a version of GoogleNet and initialized 3D filters using 2D

versions trained on image recognition task. This architecture is titled as Inflated Inception-

V1 and we use this as one of our baselines as well as a starting point in our proposed model.

Figure 6.2 shows the inception module as Inc. Details can be found in the original paper

[13].

6.1.2 Proposed Method

In our approach, we proposed to augment a 3D ConvNet (CNN) model with body-pose

guided pooling. We assume that the body pose estimates are available for each frame using

an off-the-shelve pose estimation approach [23]. The video is passed through the layers

of the 3D ConvNet generating spatio-temporal features maps with multiple channels at

different levels of resolution. We then use the estimates of body joint locations to guide the
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pooling of spatio-temporal feature maps to generate additional predictions. Details of our

architecture is presented in this section.

We denote a sign gesture video input by V T×H×W where T is the video length in number

of frames and H, W are the spatial dimensions. For a person performing a sign gesture in

the video, the estimated body pose tensor of the person can be represented as P T×J×2

where T is the number of frames, J is the count of body locations and 2 for the (x, y)

location coordinate of a body location on image space. The input layer and the subsequent

layers of a 3D CNN reduces the spatial and temporal dimension of the input cubic video

space. This reduction happens due to the presence of striding and pooling operations in a

CNN architecture. Suppose we have a feature map at level k with dimensions F T ′×H′×W ′
.

The spatial joint coordinates can be scaled down based on the ratios of heights and widths

between the input video and the feature map. For the temporal dimension we uniformly

sample T ′ frames from initial T , to match the temporal dimension of the feature maps. More

specifically, we convert an input tensor index (tv, xv, yv) to feature map index (tf , xf , yf )

using following equation,

sx =
H ′

H
sy =

W ′

W
st =

T ′

T

xf = sx × xv, yf = sy × yv, tf = TemporalSample(T, T ′)[st × tv]

(6.1)

Here, sx and sy denotes the scaling factor due to the spatial change of resolution for height

and width dimension respectively. The function TemporalSample divides the T temporal

dimension into T ′ equal length windows and then picks the middle index from each window

and finally returns a list of temporal indices. To get the corresponding temporal index of

pose data to the feature map, (st×tv)th number from the sampled indices is selected. Given

the computed joint locations in the feature-map space, we use these to guide the feature

pooling to generate the new feature vector at a layer.
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Figure 6.2: I3D Inception-v1 based sign video recognition pipeline. All inception blocks
(Inc) are numbered for the convenience of description. Volume of output is labeled as
“temporal,height,width” after any layer where it is being changed by the previous layer’s
sampling and convolution filters. Number of feature maps are not shown for simplicity
in any output volume. Pose pooled classifier is shown for three output locations (PPC-5,
PPC-7 & PPC-8), while it can be done from any output points in the network.

Pose Guided Pooling Classifier (PPC)

We pool features around each joint location and stack all joints’ feature. Pooling from a

feature map of [f × t×h×w] using j joint locations leads to a feature representation of size

[f×t×j]. Using these features we train a separate linear softmax classifier described in more

detail in the experiments section. The architecture learns multiple classifiers separately

and during test time we fuse their prediction scores. Since these classifiers use features

from different scales of 3D convolutional feature maps, they should carry complementary

information. This fact is reflected in overall performance improvement using our pose

pooling and score fusion mechanism. Figure 6.2 shows the overall architecture, comprised of

an I3D backbone network with labelled inception modules. This figure shows, PP Classifer

7 (PPC-7) gets pose pooled features from the inception layer labeled 7, and PPC-8 & PPC-5

from levels 8 and 5 respectively. We can extract features from any 3D feature map level

77



Table 6.1: Summary of the different subsets of WLASL dataset where mean is the average
number of video samples per gloss. More details can be found in the paper [1].

Datasets #Gloss #Videos #Mean #Signers

WLASL100 100 2,038 20.4 97
WLASL300 300 5,117 17.1 109
WLASL1000 1,000 13,168 13.2 116
WLASL2000 2,000 21,083 10.5 119

and train a separate classifier. For the rest of the discussion, We refer to classifier from nth

inception module as PPC-n. We also consider the final prediction of baseline I3D network

termed I3DLogits and experiment with different fusion strategies described in experiments

section.

6.2 Experiments

6.2.1 Dataset

We performed all of our experiments using recently introduced WLASL dataset [1]. The

dataset was curated from online ASL videos, primarily created for tutorial purposes. Being

collected from different sources, the dataset contains unrestricted varieties in signing styles

and background. The authors performed several manual and automated processing steps

to create four subsets of data: WLASL100, WLASL300, WLASL1000 and WLASL2000.

Table 6.1 shows the statistics of the dataset.

6.2.2 Preprocessing

We downloaded the data following the instructions provided with the dataset release. We

run all the videos through OpenPose [23] and stored the estimated poses. Using the pose

information on the image frame, we calculated a bounding box for each video. We ensured

that both hands and the whole body are visible over all the frames of a video. Then

we cropped each video using that bounding box. After cropping the videos, we adjusted
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the poses according to the cropped region. Finally, each cropped video and corresponding

adjusted pose formed a sample input to our network.

6.2.3 Implementation Details

For our pose pooling methods, we used only 2 joints to extract features from the intermediate

feature maps of I3D network. These 2 joints are calculated using the mean joint location

of all 21 finger and palm poses for each hand. Hence, a feature map of [f × t × h × w] is

converted to [f × t × 2]. We empirically verified that, adding more joints, such as elbow

or shoulder, in pooling does not improve results significantly. This can be understood

by the fact that most of the variances explaining the data come from the hand regions.

We used maximum pooling using 3 × 3 × 3 kernel around each hand pose location. We

also noticed, adding fully connected layer afterwards does not improve or deteriorate the

performance. Hence, we decided not to use it. Once we extract pose localized features,

training mechanism follows the original I3D [13]. We initialize the I3D network using pre-

trained weights on Charades [95] activity dataset. Each video is resized into 256× 256 and

the poses are adjusted accordingly. We used two video level data augmentation techniques:

random cropping using 224 × 224 spatial support and random horizontal flipping. Input

video length is set to 64, with possible temporal augmentation in case of longer videos. We

padded the videos less than 64 frames either in the beginning or end. Poses are adjusted

appropriately in case of any augmentation of video data. We used the Adam optimizer

with an initial learning rate of 0.001 and with 4 or 6 (for different subsets of data) mini-

batch sizes. After fixing the hyper-parameters of a model, we trained the model using the

training and the validation split and reported the results on the test split for each subset of

the dataset. Average instance-level accuracy was used as the performance metric following

the dataset release paper [1].
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Table 6.2: Top-1, Top-5, Top-10 accuracy (%) achieved by each model (by row) on the
four WLASL subsets. First row shows the results reported in [1]. Next two rows (PPC
7 & PPC 8) shows performance from two classifiers of our pose localized pooling. The
I3D Logits result is the basic I3D classifier without any pose pooling mechanism. Here,
Fusion-1 = PPC-7 + PPC-8, Fusion-2 = PPC-7 + PPC-8 + I3DLogits and Fusion-3 =
PPC-5 + PPC-7 + PPC-8 + I3DLogits.

Method WLASL100 WLASL300 WLASL1000 WLASL2000
Top-1 Top-5Top-10Top-1 Top-5Top-10Top-1 Top-5Top-10Top-1 Top-5Top-10

I3D[1] 65.89 84.11 89.92 56.14 79.94 86.98 47.33 76.44 84.33 32.48 57.31 66.31

PPC-7 67.79 76.91 80.75 57.12 70.80 74.44 44.17 63.33 69.76 29.46 52.95 60.25
PPC-8 67.79 78.16 82.50 59.91 75.78 78.39 44.57 61.11 66.20 29.26 50.35 56.57

I3DLogits 68.70 86.66 89.58 57.62 78.63 82.46 48.29 68.25 73.17 33.18 60.04 68.87
Fusion-1 71.74 81.75 84.66 64.41 78.67 82.39 51.01 70.95 75.80 34.68 60.39 67.27
Fusion-2 74.16 86.83 90.91 67.79 84.19 87.06 55.71 77.90 83.77 38.57 68.17 75.71
Fusion-3 75.6786.00 90.16 68.30 83.19 86.22 56.6879.85 84.71 38.84 67.58 75.71

6.2.4 Evaluation Results

Table 6.2 shows the experimental results. The best accuracy is achieved by combining

four sets of prediction scores from PPC-5, PPC-7, PPC-8 and I3D Logits. This version,

titled as Fusion-3, outperforms the I3D implementation in [1] by approximately 10%, 12%,

9% and 6% in case of four subsets respectively. For the single layer classifiers, the result

indicates that our pose localized classifiers (PPCs) perform competitively with the base I3D

network. It should be mentioned that, we have a performance gain (68.70% vs 65.89%) using

base I3D, shown as I3DLogits, over the same baseline’s results reported in [1]. Although

both of these are same implementation, we believe, the performance increase is due to the

cropping pre-processing step. The results indicate that any single PPC classifier such as

PPC-7 outperforms the I3D baseline. This is interesting because, single PPC-7 classifier

uses less number of model parameters than the whole I3D. Hence, our pose guided pooled

features achieves better performance using less memory and computation.
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Figure 6.3: Examples of gesture samples from four classes. Each pair of sample shows
one example from WLASL dataset (bottom in a pair) and other different dataset (top in
a pair)

Complementary Feature Learning We wanted to verify that, improvement from fus-

ing the prediction scores is not just an effect of model ensemble. In this regard, we also

calculated the accuracy fusing scores from same branch but from separately trained model.

For example if we fuse the scores from PPC-7 of two separately trained models, the top-1

accuracy the fusion achieves is 68.05% on WLASL100 subset. Fusing three models from

PPC-7 gets 68.17%. Although, these are a bit better than result from a single PPC-7

(67.79%), but far worse than the fusion of PPC-7 & PPC-8 (Fusion-1, 71.74%). Similarly,

fusing scores from two PPC-8 layers from two separately trained models gives 68.15%. This

suggests that performance improvement is not merely coming from using multiple models at

test time. Rather, different pose localized branches pick on different class specific features

and complement each other to obtain better performance.
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Figure 6.4: Hand motion of top performing classes from PPC-7 branch and I3D logits.

6.2.5 Qualitative Findings

Our approach is built on the hypothesis that pooling features from different layers can be

complementary for overall performance. We also found this in our experiment. Exper-

imental findings revealed that the classes having less hand-arm motion get best feature

from intermediate layers, while, the sign gestures with relatively heavy hand-arm motion

get benefits from final layer of the I3D network. To run this experiment, first we picked

top performing classes, the classes having higher fraction of samples correctly classified,

from PPC-7 branch. We calculated the hand motion using pose location of both hands for

those picked classes. We repeated the same for top performing classes from the final logits

(I3DLogits in Table 6.2) of the network. Figure 6.4 (a) shows the plot of hand motion

where horizontal axis is the number of top classes we pick. We observe that the calculated

average motion of best performing classes for PPC-7 is always lower. This suggests that the

classes having less hand-arm motion get useful features from PPC-7 than I3DLogits. We

believe, due to less motion, hand shapes of these classes are more visible to the network and

the pose localized pooling helps to extract those informative shapes. Figure 6.4 (b) shows

similar phenomenon, except we calculate average motion of a certain sized window. We

calculate distance of the first and the last frame of each window and the window slides over

the video with a stride of 1 frame. This is proportional to the average velocity of hands in
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a sign sample and we observe the similar results as the motion case.

6.2.6 Representation Transfer

We conducted this experiment to validate the strength of pose-pooled features on unseen

data samples from a different distribution than the WLASL dataset. We selected 12 com-

Method
Accuracy

Top-1 Top-5 Top-10
I3DLogits 55.63 75.67 82.25

PPC-8 59.21 89.48 88.63
Fusion-3 66.70 91.80 98.11

Table 6.3: Fine tuned results using only 0.4% of data in training. Method names have
same meaning as in Table 6.2.

mon classes from the WLASL300 subset and the GMU-ASL51 dataset. We curated approx-

imately 2900 samples from GMU-ASL51 dataset for those overlapping 12 classes. Figure

6.3 shows some examples from the both datasets. It is obvious from the examples that huge

amount of difference in the distribution exists between two datasets. We tested our fusion

scheme on these 2900 target samples from GMU-ASL51 dataset using a trained model on

source WLASL300 dataset. Our fusion scheme (Fusion-3) achieved 21% recognition ac-

curacy, while I3D only achieved 15.6%. This result is without any fine-tuning, meaning

that, the network is not re-trained on any sign videos from the target GMU-ASL51 dataset.

However, if we fine-tune the model using 12 sign videos, taking 1 sign video per class,

the Top-1 accuracy increased up to 66% in case our fusion approach. This result is 11%

higher compared to I3D features without our proposed pose guided pooling. The Top-5 and

Top-10 accuracy improvement are approximately 16%. Table 6.3 demonstrates this results.

This verifies that the learned complementary representation using pose pooling are more

resilient against unseen different distribution. Since the features are being pooled using
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Table 6.4: Ablation studies of using pose as indexes while pooling activation from feature
maps. Fusion methods bear similar meaning as Table 6.2, i.e. Fusion-1 = PPC-7 + PPC-
8, Fusion-2 = PPC-7 + PPC-8 + I3DLogits and Fusion-3 = PPC-5 + PPC-7 + PPC-8
+ I3DLogits.

Method
WLASL300

Without Pose Pooling With Pose Pooling
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

PPC-7 57.37 76.33 82.05 57.12 70.80 74.44
PPC-8 55.59 73.08 77.55 59.91 75.78 78.39

I3DLogits 57.62 78.63 82.46 57.62 78.63 82.46

Fusion-1 60.12 80.05 85.25 64.41 78.67 82.39
Fusion-2 63.83 83.39 87.69 67.79 84.19 87.06
Fusion-3 64.45 83.86 87.58 68.30 83.19 86.22

pose localized indexes, our approach can extract better representation even from different

distribution.

6.2.7 Ablation Studies

To validate the effectiveness of pose localized features, we implemented similar fusion ex-

periments as we described in the result section, but without pose localized pooling. Instead

we use traditional maximum pooling sub-sampling. In details, after extracting a feature

map from any point of the network in Figure 6.2, we used maximum pooling over that

feature map to produce a representation of the video. Table 6.4 outlines the results from

this experiment. The result indicates, when feature is used from a single layer, pose pool-

ing features perform equally. However, when scores from several layers are combined (any

fusion case in Table 6.4), the pose pooling features provide around 4% performance gain

in top-1 accuracy. This suggests that, feature representation learned from pose pooling

mechanism provides better complementary information across different layers.
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6.3 Key Takeaway

In this work, we proposed a novel pose-guided pooling strategy for hand related feature

extraction from a 3D ConvNet in the context of world level sign language recognition. We

leveraged the body-pose information as guides to 3D feature maps. Using the body pose, we

guided the 3D ConvNet to extract localized hand features. Our experiments showed that

combining such features from different layers of the network can improve overall recognition

accuracy. We also found these features to be better transferable than basic CNN features

in modeling sign videos from a different source. In addition to that, qualitative findings

revealed the effectiveness of multi-scale representation of sign videos in modeling varieties

of sign classes.
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Chapter 7: Improving Isolated Sign Recognition Using

Representative Frames

A word-level sign video is a sequence of one or multiple articulate hand shapes performed

with distinguishable arm-wrist motion. From the feature modeling perspective, isolated

sign words can be categorized into two general types. One type of sign has large hand-

motion while the other type mostly depends on the hand-shape patterns. The former

type requires robust temporal motion modeling and the later requires the spatial pattern

modeling. Often, most of the signs require both type of modeling. We observed in our

previous works, the success of a sign video recognition system depends on the modeling of

this joint spatial-temporal features. In this chapter, we investigate this fact more closely

and we will show that adding a separate spatial modeling can disambiguate almost similar

looking sign video classes.

Isolated sign word recognition from video is a gesture modeling problem where the

gesture is performed using complex upper body motion, facial expression and occasional

head movements. As discussed earlier, a combination of temporal and spatial modeling is

necessary for a robust sign recognition model. We hypothesize that most of the time only

one of these two modeling is enough for capturing the underlying pattern of a sign. For

example, Figure 7.1 shows two such sign examples where the top sign has a distinguishing

motion pattern of both hands and the bottom sign has a distinctive hand shape. It can be

also noticed from the bottom example, only a single distinctive hand shape is necessary for

modeling the whole sign class. In other words, we can represent the whole sign video with

few similar looking hand shape frames. This observation motivated us to leverage a few

sparse representative video frames to model the whole sign video.

On the other hand, the motion modeling requires dense temporal or high frame-rate
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Figure 7.1: The top example shows a sign with heavy hand-motion pattern; while the
bottom example shows where hand shape gives more information than hand motion. In
the bottom sign, we observe, across the bottom red line, a single hand shape represents
the sign.

inputs to learn hand-motion representation in a sign video. Highly complex 3D convolu-

tional model such as I3D learns this spatial-temporal features simultaneously with dense

RGB inputs. We hypothesize that adding another stream of representation using sparsely

chosen representative frames can improve the recognition accuracy. In this regard, we pro-

posed to add Graph Convolutional Network (GCN) and 2D CNN based sparse modeling

with existing dense I3D model, in an ensemble manner. We based all of our experiments on

the AUTSL dataset, a recently released word-level Turkish sign dataset [104]. Our results

showed that, adding sparse feature streams to the sign recognition method adds comple-

mentary information, and improves the overall accuracy. In summary, our contribution can

be listed as follows,

1. We proposed a sparse modeling method using few representative frames to disam-

biguate similar looking sign video classes;

2. We implemented GCN and 2D CNN based models using sparsely chosen representative

frames from a sign video;

3. We demonstrated the effects of adding sparse modeling and showed comparisons with

competitive approaches.
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7.1 Our Approach

For the word-level sign language recognition problem, we have a dataset of N training

examples {Vi,Wi}, where Vi is a RGB video ∈ <T×H×W×3 and Wi is a word-level sign

label; H,W, 3 are the height, width and number of channels of a single RGB video frame;

and T is the video length. Two sample examples of Vi are shown in figure 7.1. In addition

to RGB video inputs, our method also takes pose inputs. Body and hand poses can be seen

as a time series representation of different joint location on the body and hands. For each

video represented as a Vi ∈ <T×H×W×3, we can represent the pose data as a Pi ∈ <T×J×2

where J is the number of key location in a person’s body and 2 is for representing the (x, y)

location of corresponding key-point on image frame space, considering the top-left corner

as the origin.

To model the temporal motion representation, we use dense input frames. In other

words, to model a sign video, we pick a contiguous window of video frames and form input

to our models. Using this type of dense input, we train RGB based and pose based models

to capture the motion component in the sign videos. On the other hand, to capture the

spatial representation in a sign video, we leverage the idea of representative frames. In this

case, we use a small number of selected representative frames in a sign video to model the

spatial component. We train different models using dense and sparse input frames. During

the test time, we use score fusion to utilize representation from both dense and sparse

modeling.

7.1.1 Dense Frame Modeling

The purpose of the dense modeling is to capture the motion dynamics in a sign video.

The underlying machine learning (ML) model must learn the motion representation of

both hands. Since the hand motion can change abruptly, a contiguous window of input

frames is necessary to better model the motion dynamics. Hence, we can pick a window

of T ′ contiguous frames from a video Vi ∈ <T×H×W×3. Here we assume, T ′ <= T and
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Figure 7.2: Overall fusion architecture. On the left side, two dense networks - one on raw
RGB input and other on pose inputs - are shown. From the top, sparsely chosen cropped
hand patches are input to image classification CNN (ResNet-34) and in the bottom hand
graph are fed into the GNN based network. Scores from all of the four models are fused
during test time to achieve final prediction scores over all the classes.

T − T ′ < δ. If the δ is large, there is a chance of missing some informative part in the

input video. We pick T ′ such that δ value only allows skipping frames from the beginning

or ending region of an input video. These frames are similar for all the videos in an isolated

sign recognition task and can be safely ignored. Such a δ value can be set by examining the

mean and standard deviation of video lengths in the dataset.

To model the motion from such dense input streams, we utilized two types of machine

learning models. The first type of model is based on 3D convolution [13]. Titled as Pose

Localized I3D or PL-I3D in short, it is an enhanced version of I3D network for sign language

recognition purpose [15]. Observing the better modeling and feature transfer results than

basic I3D, we use pose localized PL-I3D version for modeling motion from raw RGB inputs.

The PL-I3D method is described in details in Chapter 6. The second type of model works
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on body pose inputs. To recap, the pose input provides joint coordinates of specific body

and hand joints across the image frames in a sign video. Such pose data can be obtained

from raw RGB input using off-the-self pose estimation methods [23, 50]. Since the body

poses from arms and wrists are accurate high level coordinate representation of those joints,

these can be an useful source for the motion modeling. We use a long short term memory

(LSTM) network for modeling motion from pose data. Figure 7.2 shows our proposed

ensemble architecture. We see the dense modeling input form the left side - I3D network on

raw RGB and LSTM networks on body poses. These two streams, which titled as Scores 1

and Scores 2, are part of the fusion architecture.

7.1.2 Sparse Frame Modeling

The purpose of sparse frame modeling is to model a sign video using a few representative

frames as input. This is particularly useful because most of the isolated signs can be

explained by a single representative hand-shape pattern. In some cases, there are two or

more hand-shape patterns appearing in a particular order. However, even in those cases,

there is always a primary hand-shape and the others work as auxiliary shapes. The bottom

example in Figure 7.1 shows a sign video example that depends on only one type of hand

shape across the whole video. Hence, it is natural to take that shape as a vital representation

of the whole sign video.

Finding the representative frames from a sign video requires selecting the frames with

clear distinguishable hand-shape patterns with less motion blurs. Since lesser blur means

clearer hand-shape images, we can pick image frames based on the arm-hand motion mea-

sures in video frames. This requires a frame wise arm-hand motion estimation. However,

there is a negative correlation between pose confidence and hand motion. Pose confidence is

readily available from any pose estimation method described in Section 2.3. It is a measure

of algorithm’s confidence in estimating a pose location. High confidence pose is generated

when the algorithm sees clear hand shapes in a RGB frame. On the contrary, when there is

a higher motion in the hand region, the pose estimation algorithm sees blur and generates
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Figure 7.3: Hand graph structures and examples. On the right side, the template hand
graph from OpenPose is shown. On the left, some representative frames from random
sign videos, with high pose confidence are shown.

low confidence poses. This phenomenon is described in more details in the Data Prepara-

tion section and depicted in Figure 7.4. A straightforward way to estimate motion in each

frame is to calculate the overall confidence of hand poses. The higher the aggregated pose

confidence the lower the motion in that frame. We followed this procedure and picked top

5 confident frames from a sign video. The experiment section details this.

Once we have 5 representative frames from a sign video, the next part is to utilize

appropriate ML models for the learning task. Similar to the dense modeling case, we have

two types of inputs: the raw RGB frames and the hand poses. For the RGB source, we

can formulate this as an image classification problem and utilize any off-the-self 2D CNN

architecture [93]. For the pose data, the hand can be seen as a graph with a certain number

of nodes and links between them. Figure 7.3 shows examples of such formulation of the hand

poses, following the hand-graph structure used in OpenPose [23]. This formulation uses 21

nodes and 20 links among the nodes to represent a hand. Graph Convolutional Networks

(GCN) are excellent choice for modeling such graph-structured data [29]. It allows node-

level feature learning on the graph while taking the graph neighborhood structure into

account. The working principle of GCN is described in details in Section 2.1.3. Figure 7.2

shows the two types of sparse streams as Scores 3 and Scores 4.
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GCN on Hand Pose The pose key-points on whole body and hands can be seen as a

graph structure. Edges of this graph are the bone connections between two neighboring

joints. Figure 7.3 shows this graph for finger joints. Most of the body joints such as arms

and wrist joints capture high-level motion information related to the body movements.

On the contrary, the finger joints, as shown in Figure 7.3, capture the structural shape

pattern of the hands. These patterns feature distinguishable finger orientation and bends

using the finger pose locations. These hand-graph patterns motivate us to incorporate the

structures into sign video modeling. Such graph-structured input data naturally requires

a modeling where the structure is preserved. To facilitate this type of modeling, Graph

Convolutional Network (GCN) was introduced [29]. Figure 7.3 shows 21 joints for a hand-

graph representation and we can denote the node indices by a set V = {vi | 0 <= vi <= 20}.

The graph adjacency matrix can be represented Aij where Aij = 1 if there nodes vi and vj

are neighbors, otherwise Aij = 0.

xli = σ(W1x
l−1
i +W2

∑
∀j|Aij=1

xl−1j ) (7.1)

Having this graph formulation, we can represent the graph convolutional operation using

Equation 7.1 where W1 and W2 are the learnable model parameters. The σ represents a

non-linearity operation. The xli represents feature representation of ith node at lth layer

of the GCN network. The details can be found in GraphConv method implementation in

PyTorch-geometric [105].

7.2 Experiments

In this section, we provide a snapshot of the dataset we base our experiments on. Then we

discuss the data preparation and training details. Finally, we demonstrate the results and

the comparisons with several state-of-the-art methods. We also outline the effect of adding

sparse modeling to the previous ensemble.
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Table 7.1: AUTSL dataset summary.

Property Count

Number of signs 226
Number of signers 43
Total samples 36,302
Train samples 28,142
Validation samples 4,418
Test samples 3,742
Average samples per sign 169.6
Number of different backgrounds 20
Modalities RGB, depth, skeleton

7.2.1 Dataset

We performed all of our experiments in this chapter using AUTSL dataset: Ankara Uni-

versity Turkish Sign Language dataset [104]. This is an isolated word level Turkish sign

gesture dataset. The dataset features various challenging background with 226 sign classes.

A short summary is shown in the Table 7.1. We used only RGB modality from the dataset;

we also used pose data, extracted from the RGB modality.

7.2.2 Dense Data Preparation

The median length of videos in the training set of AUTSL dataset is 61 frames [106]. We

picked 64 contiguous raw RGB frames for an input to our PL-I3D network. From a T frame

video, we picked a starting frame randomly from first T minus 64 (T − 64) frames and then

selected a contiguous window of 64 frames for the input. Since the initial frame is being

selected randomly, this allows some temporal data augmentation. When T is less than 64,

we randomly prepend the starting frame or append the ending frame to make the video a

64 frame input. Other types of data augmentation, such as random cropping and horizontal

flips are also utilized while training the network.

For the motion LSTM part, we prepared input pose sequences in similar fashion except

we used 32 frame inputs instead of 64. In this case, after picking a 64 contiguous window
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Frame No. 8 Frame No. 12 Frame No. 16 Frame No. 20 Frame No. 32 Frame No. 36 Frame No. 40 Frame No. 44…

Figure 7.4: Data preparation for the sparse modeling. In the top row, 8 frames from a
sample sign video is shown with pose depicted on hands. It can be seen that frame no 8,
12, 40 and 44 have blurry hand shapes that generates low confidence brittle pose. Thus,
we should ignore them when selecting representative frames. The middle row displays four
good frames (zoomed) based on hand pose confidence. These good pose representation
(nodes’ XY position) are input to the graph neural network. Bottom row shows the
cropped hand patches from original frames. These are the input to ResNet-34 CNN
model.

as described above, we uniformly sampled some frame inputs. We experimented with 16,

32 and 64 frame inputs. We found 32 frame input works similarly as 64 frame and used 32

during final model training.

7.2.3 Sparse Data Preparation

The purpose of the sparse modeling is to use a few representative frames from an input

video. We utilized the estimated pose confidence as a measure of motion blur in the video

frames and picked 5 frames with highest aggregated hand pose confidence. We did this for

left and right hand separately and prepared the input for our 2D CNN classifier and Graph

Convolutional Network (GCN). Figure 7.4 shows how the pose confidence relates to blurry

image frames and how good frames can be chosen based on the pose confidence. To be

more specific, we sorted the frames using aggregate pose confidences and picked the top 5

frames for input to the sparse modeling. However, due to less motion, beginning and ending

frames of a sign video tend to have very high confidence. These frames are similar for all
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sign videos in isolated signs. To prevent these frames from being selected as high confidence

frames, we skipped 40% of the total frames from both ends before sorting. We assume here,

informative part of a sign lies in the middle part of a video. This assumption makes sense

in case of isolated sign videos, because there is an arm lifting and resting motion in the

beginning and end of any isolated sign. Also, our motivation of sparse modeling was to use

few frames to capture spatial pattern. Hence, skipping some frames from both ends should

not interfere with the learning process.

7.2.4 Training Details

For the PL-I3D model, we followed similar data preparation and batch sizes mentioned in

Section 6.2.3. For the dense pose-input LSTM models, we used a 2 layer bi-directional

network and used the concatenated forward and backward final states as a sign sample rep-

resentation. The state size and input embedding layer were of size 256 and 128 respectively.

We also noticed, with 3 or 4 layer networks there is no significant performance gain. For

the GCN model, we used a 2 layer network with initial embedding layer of 128 and with

channel size of 256 in both layer. For input at each node, we used (x, y) position coordinates

information on the image frame and the unit vector representation of each node. In total,

this gives each node a 4 sized vector input. We pool 128 sized feature vector from each

of the node to represent the graph input of hands. For a total of 21 hand joints at each

hand, this yields a 2688 sized representation. For image CNN model, we take 100 × 100

hand crops and resize them to 224× 224 with occasional horizontal-flip data augmentation.

All models were trained using cross entropy loss described in the Equation 4.1. We used

Adam optimizer for optimizing our models using an initial learning rate of 0.001 [86]. Due

to 64 frame RGB input, we could not use batch size of more than 6 for the PL-I3D model

due to GPU memory. For other models, we used batch sizes of 8 and 16. We developed

our model using PyTorch and PyTorch-geometric and trained our model on Nvidia GeForce

RTX 2080Ti GPU.
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Table 7.2: Sign recognition accuracy on the AUTSL test split for different models in
separation and fusion. First four rows shows performance on four models - two densely
input and two sparse input models. The following rows shows different combination of
these separate methods.

Model ID Model Name Model Description Accuracy

M1 PL-I3D Pose localized I3D 92.03%
M2 Motion-LSTM LSTM network on body poses 86.45%
M3 Patch-CNN ResNet34 on cropped hand patches 63.65%
M4 Hand-GNN Graph Neural Network on hand poses 54.50%
Fusion1 M1 + M2 Dense input fusion 93.14%
Fusion2 M3 + M4 Sparse input fusion 69.26%
Fusion3 M2 + M4 Pose based fusion 89.17%
Fusion4 M1 + M3 RGB based fusion 92.94%
Fusion5 M1 + M2 + M3 + M4 All fusion 95.83%

7.2.5 Evaluation Results

Table 7.2 shows the results on test split of AUTSL dataset. First four rows show the recog-

nition accuracy from each of our implemented models. The following rows show results on

different fusion combination. The result indicates that PL-I3D works best as a single source

classifier. This is expected because of powerful modeling capacity and the hand related fea-

ture extraction mechanism of PL-I3D network. However, we can observe that adding other

sources improves the accuracy. For example, fusion of motion LSTM and PL-I3D, identified

as Fusion1, improves accuracy by 1.11%. This can be seen as the overall performance from

dense input models. On the other hand, the sparse input fusion, using only 5 representative

frames, identified as Fusion2, yields 69.26%. Although this performance is far behind the

dense fusion, it contributes to the overall performance when we use all the representation

sources. It improves the overall performance by 2.70%, which converts to 102 test videos.

In other words, adding 5 frame sparse modeling can disambiguate 102 test videos that were

incorrectly predicted without sparse modeling. Another interesting result is Fusion3 or pose

based fusion which is a combination of pose based motion LSTM and sparse input GCN.
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Table 7.3: Comparison with different methods.

Method Representation Used Accuracy

SAM-SLR Joint keypoints, bone, bone-motion,
joint-motion, RGB, optical flow

98.42%

USTC-SLR Not available 97.62%
wenbinwuee Not available 96.55%

Baseline [104] RGB 49.22%
VTN-PF [106] Joint keypoints, RGB 92.92%
Gruber et al. [107] Joint keypoints, RGB 95.46%
Enriquez et al. [108] Joint keypoints, bone, bone-motion,

joint-motion, RGB
96.15%

Ours Joint keypoints, RGB 95.83%

This fusion has quite a less number of model parameters, 1.3M vs 12.06M, compared to PL-

I3D version and yet it performs with comparable accuracy. This type of faster and lighter

model could be useful for collecting isolated signs from long continuous sign repositories.

This also indicates the potential of pose based sign video modeling with lighter networks.

7.2.6 Comparisons

In this section, we compare our results with several state-of-the-art methods. Although

the AUTSL [104] dataset was released in the year of 2020, most of the recent works were

introduced in a competition featured in CVPR’21 workshop [109]. Table 7.3 details the

comparison among different methods and our proposed method. First three rows show

the results, taken from the competition leaderboard, obtained by top 3 teams. The top

performing team proposed an ensemble based method using whole body pose keypoints,

pose features and 3d CNN on RGB and optical flow streams [110]. For joint keypoint data,

the authors used four input streams: joint location, bone, joint motion and bone motion.

Compared to this process, our motion LSTM used only the location information. As shown

in table 7.3, the details of the second and third places in the competition are not available.

The authors in [106], as shown in the 5th row, proposed a multi-modal approach, based

on Video Transformer Network (VTN) [111], using joint keypoint and RGB inputs. Our
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Figure 7.5: Similar looking sign video examples without sparse modeling. The top two
rows shows examples from two most confused classes without sparse modeling: class10
and class110. The bottom rows shows some similarly confused class pairs and for each
case, the distinguishing hand crops between the members of each pair.

proposed ensemble method outperforms this work by 3%. The authors in [107], as shown

in the 6th row, used multiple I3D networks on RGB and mask data, and transformer [42]

based approach on joint keypoints data. Input representation wise, this is the most similar

ensemble to our proposed approach. They used an ensemble score of 17 networks: 13 I3D

networks on RGB and 4 transformers on key-points. In comparison, our ensemble method

is composed of 3 I3D networks, one 2 layer LSTM and one 2 layer graph neural network.

This shows that even with less modeling resources, our method still outperforms this by

a margin of 0.5%. The authors in [108] used four input representation: joint keypoints,

bone, joint-motion and bone-motion input on MS-G3D network [112]. On raw RGB, due to

reduced parameter count, they preferred the S3D network [113] over the I3D. However, our

PL-I3D version outperforms this S3D by 1.75%, i.e our only PL-I3D achieves 92.03% while

only S3D, as reported in [108], achieves 90.27%. Overall ensemble in [108] outperforms

our method by 0.28%. However, in motion capturing LSTM we used only joint key-points

stream while this comparing method used joint key-points, bone, bone motion, and joint

motion.
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7.2.7 Effect of Sparse Modeling

Our initial motivation for adding sparse modeling, i.e model a sign video using 5 repre-

sentative frames, was to disambiguate classes where signs have similar hand motion with

minute hand-shape differences. In the result section, we observed that 102 more test videos

were correctly classified in the presence of sparse modeling. A few example cases like this

are shown in Figure 7.5. The top two rows show sign samples from two classes: class10

and class110. Without sparse modeling, 6 of the samples of class10 were confused with

class110 during inference. However, when sparse modeling is added, 5 of the samples from

class10 were correctly predicted. This disambiguation can be explained by looking at the

two classes more closely. We can see from the cropped hand patches in the middle of Figure

7.5 that, the two sign classes only differs by a single frame. In addition to that, the differ-

ence in hand shape is very subtle. Similar hand motion can be seen when looking at both

of the signs from left to right at the same time. Even though PL-I3D is based on a powerful

video recognition CNN architecture, it faces problem to model such tiny static variation in

a frame. This is due to the fact that, I3D is designed to model spatial-temporal dynamics

simultaneously. However, when a separate sparse modeling is added, the final ensemble

finds it easier to distinguish such cases. Some similar cases are also shown in the bottom

of Figure 7.5, where only the distinguishable hand crops are shown. For each of these class

pairs, adding sparse modeling removed misclassification to some extent.

7.3 Key Takeaway

We proposed an ensemble based methods for isolated sign word recognition from videos.

Our ensemble consists of dense input 3D convolution models and sparse input 2D CNN

and graph convolution models. Dense modeling uses 64 frame input windows while sparse

modeling uses 5 representative input frames from a sign video. In both cases, models are

trained on two types of input representation: the raw RGB frames and the pose data. Added

sparse feature streams improves the sign classification capacity of the ensemble model. We
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verified the usefulness of sparse modeling in clearing the confusions of dense modeling. Our

experiments showed that adding a 5 frame sparse modeling for each video can disambiguate

sign videos, which are misclassified otherwise.
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Chapter 8: Conclusions and Future Directions

In this dissertation, we have tackled different challenges in video-based word level sign lan-

guage recognition. More specifically, we have worked towards building an ASL dataset,

modeling hand-shape features, and utilizing pose data in various ways. In Chapter 3, we

described the GMU-ASL51 dataset and proposed sign classification methods. We demon-

strated comparisons among these methods and showed the effectiveness of adding RGB to

the modeling. Top performing method utilized spatial data augmentation and achieved

better accuracy than the baselines. The useful effect of RGB modeling on sign classes

motivated us to explore this direction in more detail.

In Chapter 4 and 5, we demonstrated our contributions on generating RGB based hand-

shape representation for sign video recognition. We started with using the representation

capacity of a CNN, pre-trained on a related dataset from a different source. Although

trained on a different source, this representation yielded 8% improvement on the downstream

sign recognition task. To further utilize the hand-shape representation, we proposed a hand-

shape learning technique. As opposed to outside sources, this approach learns the shape

representation particularly for the sign videos we want to model. Being modeled for the

specific dataset, this representation obtained 11% better results than the previous best.

We also presented qualitative comparisons among methods based on different hand-shape

representations. We detailed this method in Chapter 5.

Chapter 6 described our contribution in localizing essential hand features in the context

of sign gesture videos. We utilized the pose information to guide feature lookup in 3D

feature maps. Extracted multi-scale localized features improved sign modeling task by a

margin of 12%. These features were also better transferable to related data domains. In

Chapter 7, we illustrated the usefulness of sparse frame modeling. We proposed the idea

of using a few representative frames to learn a spatial representation of a sign video. In
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addition to the RGB source, we also used a graph based modeling on the pose data, to

account for the different finger orientation. When added with existing spatial-temporal

representations, the added sparse source improved the recognition performance. We also

outlined the effectiveness of the added source in modeling subtle differences among similar-

looking sign classes.

8.1 Future Works

Supervised learning methods are heavily dependent on the quality of the training data.

Existing state-of-the-art benchmark sign-language datasets are collected either in restricted

environments or from different online sources. Online videos are often purposed for different

tasks such as tutoring or describing an event. Hence, using these in a machine learning task

is sometimes not optimal. There is simply not enough modeling information, either in

RGB or poses, to learn from. Hence, producing good training data is always intriguing.

We believe that the sign recognition problem can be solved solely using fine-grained 3D

representation of finger poses. To achieve such quality pose information, high-end data

collection system is required. Also the data from online sources contain temporal noise,

i.e., actual sign video is a small segment of the whole input video. This puts additional

difficulties on modeling techniques, because traditional methods consider the whole video

as a sample of the corresponding ground truth class. If extra temporal boundary-level

annotation can be obtained, the models could be trained in a more informed way.

To solve the complete sign language recognition task, the next step from world level

videos is to tackle continuous sentence-level videos. These videos are longer and in addition

to word level signs, they contain finger-spelling segments. The sentence-level sign problem

itself should tackle several challenging sub-problems. First, detecting the boundaries of

a segment, either isolated word or finger-spelling segments, is an interesting problem. A

machine learning method must identify the boundary frames by looking at a context window.

Hand motion data (i.e. the motion coherence of hands) can be used to detect such frames.

Because, transition from a segment to another sometimes breaks the motion consistency.
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Once such boundary problem is solved, one could focus on modeling the individual segments.

The isolated word sign modeling, the problem we explored in this dissertation, is a well-

studied area than finger-spelling transcription. Translating finger-spelling sequence itself is

a sequence to sequence modeling task. In addition to the challenges described in this thesis,

the finger-spelling task requires proper alignment learning between the input video frames

and the output letter sequence.

The continuous modeling in American Sign Language is in a very early stage. In my

opinion, a major limitation is the lacking of a large scale continuous ASL dataset. Nowadays,

it’s very common to watch a television report with an ASL interpreter. These videos are

boundless sources for obtaining continuous data. However, the voice or the subtitles only

provide weak supervision to the data. Since there is no sequence correspondence between

continuous sign video and textual English sentence, one must work towards the alignment

annotation. Upon the availability of a large-scale continuous sign-language dataset, with

proper ground truth annotation, deep-learning based models can be trained to achieve

better performance and generalization capacity in Sign Language Recognition.
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