ESTIMATION OF ANCESTRY USING MESIODISTAL,

BUCCOLINGUAL AND DIAGONAL TOOTH MEASUREMENTS

A Research Project

Submitted to the

Forensic Science, Forensic Research Committee

George Mason University

in Partial Fulfilment of

The Requirements for the Degree

of

Master of Science

Forensic Science

By

Shraddha M Navale

Department of Forensic Science

George Mason University

<u>Fairfax - VA -22030</u>

<u>Fall'2019</u>

Page **1** of **116**

Primary Research Advisor

Dr Anthony B. Falsetti

Associate Professor

GMU Forensic Science Program

Secondary Research Advisor

Dr. M.S. Rani

Professor & Head of the Department of Orthodontics, V.S.Dental College & Hospital

Currently working as an Orthodontist, Dental Clinics of Jayanagar, Bangalore - INDIA

GMU Graduate Research Coordinator

Dr. Joseph A. DiZinno

Assistant Professor

GMU Forensic Science Program

Fall Semester 2019

George Mason University

Fairfax, VA

Page 2 of 116

Fall 2019

Primary Research Advisor

Dr Anthony B. Falsetti,

Associate Professor

GMU Forensic Science Program

GMU Graduate Research Coordinator

Dr. Joseph A. DiZinno

Assistant Professor

GMU Forensic Science Program

CERTIFICATE

Certified that this research project 'Estimation of Ancestry Using Mesiodistal, Buccolingual And Diagonal Tooth Measurements' is the product of bonafide investigation carried out by the student SHRADDHA M NAVALE, under our guidance and supervision and that it is worthy of consideration for the Partial Fulfilment of The Requirements for the Degree of Master of Science, Forensic Science.

Primary Research Advisor

Dr Anthony B. Falsetti,

Associate Professor

GMU Forensic Science Program

Graduate Research Coordinator

Dr. Joseph A. DiZinno

Assistant Professor

GMU Forensic Science Program

Page 3 of 116

ACKNOWLEDGEMENT

I hereby acknowledge my deep sense of gratitude to <u>Dr Anthony B. Falsetti</u>, Primary Research Advisor, Associate Professor, GMU Forensic Science Program, George Mason University, Fairfax – VA, for his inspiring and valuable guidance and encouragement in carrying out the study and preparing this paper.

I extend my thanks to Dr. Joseph A. DiZinno, Assistant Professor, GMU Forensic

Science Program, George Mason University, Fairfax- VA, for his intelligent suggestions which added to the worthiness of this study.

My sincere thanks to **<u>Dr. Raman Jassal</u>**, Virginia, and **<u>Dr. M.S Rani</u>**, Bangalore-India, who provided me with all the necessary cooperation in collecting the data required for the study.

Last but not the least, I would like to thank my parents and family for their extended support.

Shraddha M Navale

TABLE OF CONTENTS

			Page
1.	LIST OF	TABLES	6 - 8
2.	LIST OF	GRAPHS	9 – 13
Cl	HAPTER		
	I.	ABSTRACT	14
	II.	INTRODUCTION	14
	III.	BODY OF THE TEXT	15
	IV.	METHODS AND MATERIALS	15 – 16
	V.	DATA ANALYSIS AND INTERPRETATION	16 - 17
	VI.	RESULTS AND DISCUSSION	114
	VII.	CONCLUSION	114
	VIII.	REFERENCES	115 - 116

Page **5** of **116**

LIST OF TABLES

	TABLE			PAGE
1.	Class Information	Group 3=1	С	18
2.	Dependent Variable: Mesiodistal	Group 3=1	С	19
3.	Dependent Variable: Buccolingua	ll Group 3=1	С	21
4.	Dependent Variable: CrownHeigh	nt Group 3=1	С	23
5.	Dependent Variable: Occlusal	Group 3= 1	С	25
6.	Dependent Variable: Incisal	Group 3= 1	С	27
7.	Class Information	Group 3= 1	M1	29
8.	Dependent Variable: Mesiodistal	Group 3= 1	M1	30
9.	Dependent Variable: Buccolingua	ll Group 3= 1	M1	32
10.	Dependent Variable: CrownHeigh	nt Group 3= 1	M1	34
11.	Dependent Variable: Occlusal	Group 3= 1	M1	36
12.	Class Information	Group 3= 1	M2	38
13.	Dependent Variable: Mesiodistal	Group 3= 1	M2	39
14.	Dependent Variable: Buccolingua	l Group 3= 1	M2	41
15.	Dependent Variable: CrownHeigh	nt Group 3= 1	M2	43
16.	Dependent Variable: Occlusal	Group 3= 1	M2	45
17.	Class Information	Group 3= 1	PM1	47
18.	Dependent Variable: Mesiodistal	Group 3= 1	PM1	48
19.	Dependent Variable: Buccolingua	l Group 3= 1	PM 1	50
20.	Dependent Variable: CrownHeigh	nt Group 3= 1	PM 1	52
21.	Dependent Variable: Occlusal	Group 3= 1	PM 1	53

Page **6** of **116**

22. Dependent Variable:	Incisal	Group 3= 1	PM 1	55
23. Class Information		Group 3= 1	PM 2	57
24. Dependent Variable:	Mesiodistal	Group 3= 1	PM 2	58
25. Dependent Variable:	Buccolingual	Group 3= 1	PM 2	60
26. Dependent Variable:	CrownHeight	Group 3= 1	PM 2	62
27. Dependent Variable:	Occlusal	Group 3= 1	PM 2	64
28. Class Information		Group 3= 2	С	66
29. Dependent Variable:	Mesiodistal	Group 3= 2	С	67
30. Dependent Variable:	Buccolingual	Group 3= 2	С	69
31. Dependent Variable:	CrownHeight	Group 3= 2	С	71
32. Dependent Variable:	Incisal	Group 3= 2	С	73
33. Class Information		Group 3= 2	M 1	75
34. Dependent Variable:	Mesiodistal	Group 3= 2	M1	76
35. Dependent Variable:	Buccolingual	Group 3= 2	M1	78
36. Dependent Variable:	CrownHeight	Group 3= 2	M 1	80
37. Dependent Variable:	Occlusal	Group 3= 2	M 1	82
38. Class Information		Group 3= 2	M 2	84
39. Dependent Variable:	Mesiodistal	Group 3= 2	M 2	85
40. Dependent Variable:	Buccolingual	Group 3= 2	M 2	87
41. Dependent Variable:	CrownHeight	Group 3= 2	M 2	89
42. Dependent Variable:	Occlusal	Group 3= 2	M 2	91
43. Class Information		Group 3= 2	PM 1	93
44. Dependent Variable:	Mesiodistal	Group 3= 2	PM 1	94

45. Dependent Variable: Bucc	olingual Group 3= 2	PM 1	96
46. Dependent Variable: Crow	nHeight Group 3=2	PM 1	98
47. Dependent Variable: Occlu	usal Group 3= 2	PM 1	100
48. Dependent Variable: Incis	al Group 3= 2	PM 1	102
49. Class Information	Group 3= 2	PM 2	104
50. Dependent Variable: Mesio	odistal Group 3=2	PM 2	105
51. Dependent Variable: Bucc	olingual Group 3= 2	PM 2	107
52. Dependent Variable: Crow	vnHeight Group 3= 2	PM 2	109
53. Dependent Variable: Occlu	usal Group 3= 2	PM 2	111

LIST OF GRAPHS

GRAPHS

PAGE

1.	1. Interaction Plot for Mesiodistal				
	Dependent Variable:	Mesiodistal	Group 3=1	С	20
2.	Interaction Plot for Buccolingu	al			
Ι	Dependent Variable:	Buccolingual	Group 3=1	С	22
3.	Interaction Plot for Crown Heig	ght			
	Dependent Variable:	Crown Height	Group 3= 1	С	24
4.	Interaction Plot for Occlusal				
	Dependent Variable:	Occlusal	Group 3= 1	С	26
5.	Interaction Plot for Incisal				
	Dependent Variable:	Incisal	Group 3= 1	С	28
6.	Interaction Plot for Mesiodistal	l			
	Dependent Variable:	Mesiodistal	Group 3= 1	M1	31
7.	Interaction Plot for Buccolingu	al			
	Dependent Variable:	Buccolingual	Group 3= 1	M1	33
8.	Interaction Plot for Crown Heig	ght			
	Dependent Variable:	Crown Height	Group 3= 1	M1	35
					Page 9 OT 116

9. Interaction Plot for Occlusal					
Dependent Variable:	Occlusal	Group 3= 1	M1	37	
10. Interaction Plot for Mesiodista	al				
Dependent Variable:	Mesiodistal	Group 3= 1	M2	40	
11. Interaction Plot for Buccoling	ual				
Dependent Variable:	Buccolingual	Group 3= 1	M2	42	
12. Interaction Plot for Crown He	ight				
Dependent Variable:	Crown Heigh	t Group 3= 1	M2	44	
13. Interaction Plot for Occlusal					
Dependent Variable:	Occlusal	Group 3= 1	M2	46	
14. Interaction Plot for Mesiodist	al				
Dependent Variable:	Mesiodistal	Group 3= 1	PM1	49	
15. Interaction Plot for Buccoling	ual				
Dependent Variable:	Buccolingual	Group 3= 1	PM 1	51	
16. Interaction Plot for Crown He	ight				
Dependent Variable:	Crown Heigh	t Group 3= 1	PM 1	53	
17. Interaction Plot for Occlusal					
Dependent Variable:	Occlusal	Group 3= 1	PM 1	55	
18. Interaction Plot for Incisal					

Page **10** of **116**

Dependent Variable:	Incisal	Group 3= 1	PM 1	57
19. Interaction Plot for Mesiodista	ıl			
Dependent Variable:	Mesiodistal	Group 3= 1	PM 2	59
20. Interaction Plot for Buccoling	ual			
Dependent Variable:	Buccolingual	Group 3= 1	PM 2	61
21. Interaction Plot for Crown He	ight			
Dependent Variable:	Crown Heigh	t Group 3= 1	PM 2	63
22. Interaction Plot for Occlusal				
Dependent Variable:	Occlusal	Group 3= 1	PM 2	65
23. Interaction Plot for Mesiodista	al			
Dependent Variable:	Mesiodistal	Group 3= 2	С	68
24. Interaction Plot for Buccoling	ual			
Dependent Variable:	Buccolingual	Group 3= 2	С	70
25. Interaction Plot for Crown He	ight			
Dependent Variable:	Crown Heigh	t Group 3= 2	С	72
26. Interaction Plot for Incisal				
Dependent Variable:	Incisal	Group 3= 2	С	74
27. Interaction Plot for Mesiodista	al			

Dependent Variable:	Mesiodistal	Group 3= 2	M1	77	
28. Interaction Plot for Buccolingual					
Dependent Variable:	Buccolingual	Group 3= 2	M1	79	
29. Interaction Plot for Crown Hei	ght				
Dependent Variable:	Crown Height	Group $3=2$	M 1	81	
30. Interaction Plot for Occlusal					
Dependent Variable:	Occlusal	Group 3= 2	M 1	83	
31. Interaction Plot for Mesiodista	l				
Dependent Variable:	Mesiodistal	Group 3= 2	M 2	86	
32. Interaction Plot for Buccolingu	al				
Dependent Variable:	Buccolingual	Group 3= 2	M 2	88	
33. Interaction Plot for Crown Hei	ght				
Dependent Variable:	Crown Height	Group $3=2$	M 2	90	
34. Interaction Plot for Occlusal					
Dependent Variable:	Occlusal	Group 3= 2	M 2	92	
35. Interaction Plot for Mesiodista	1				
Dependent Variable:	Mesiodistal	Group 3= 2	PM 1	95	
36. Interaction Plot for Buccolingu	al				

Dependent Variable:	Buccolingual	Group 3= 2	PM 1	97
37. Interaction Plot for Crown He	ight			
Dependent Variable:	Crown Heigh	t Group 3= 2	PM 1	99
38. Interaction Plot for Occlusal				
Dependent Variable:	Occlusal	Group 3= 2	PM 1	101
39. Interaction Plot for Incisal				
Dependent Variable:	Incisal	Group 3= 2	PM 1	103
40. Interaction Plot for Mesiodista	ıl			
Dependent Variable:	Mesiodistal	Group 3=2	PM 2	106
41. Interaction Plot for Buccoling	ual			
Dependent Variable:	Buccolingual	Group 3= 2	PM 2	108
42. Interaction Plot for Crown He	ight			
Dependent Variable:	Crown Heigh	t Group 3= 2	PM 2	110
43. Interaction Plot for Occlusal				
Dependent Variable:	Occlusal	Group 3= 2	PM 2	112

<u>I.</u> <u>ABSTRACT:</u>

In forensic science, when an individual is to be identified, in most of the cases, teeth are considered the precious and reliable tool for observation and analysis owing to the fact that they are the hardest tissue and the only last tissue to decompose in the body, they are multi-rooted ones akin the premolars and molars and also one single rooted tooth – the canine, attributable to the fact that it has the longest root and therefore better allow for better anchorage. Keeping this in mind, this project aims at being able to estimate ancestry from the dental data collected viz: the crown measurements mesiodistally, buccolingually, diagonally and vertically such as the crown height, namely. And in this research, it can be achieved by physically measuring dental diagnostic casts using digital calipers and then analyzing the data conclusion expected from this analysis is to be able to classify the dimensions of the teeth as per their ancestral line.

II. INTRODUCTION;

Can teeth tell us the ancestry of a deceased individual? If so, can we classify them in ranges for each ancestral line? As a tooth is the last piece of evidence to decompose in a body, resistant to taphonomical degradation and postmortem insults (P.Sharma, Singh, Kumar, Chandra & R.Sharma, 2013), it is beneficial to assimilate as much data as possible from it. The purpose and aim of this study is to be able to estimate ancestry from the dental data collected viz: the crown measurements mesiodistally, buccolingually, diagonally and vertically such as the crown height, in millimeters. In this research, it can be achieved by physically measuring 100 dental diagnostic casts using digital calipers calibrated at 0.00mm and then analyzing the data generated from it using Discriminant Function Analysis. Out of the 100 casts measured, 50 were female and 50 were male.

III. BODY OF TEXT :

As followed by Pilloud et al (2014), this study too has excluded the measurements of the third molars as they are highly variable and are often congenitally missing. In the current project being carried out, the teeth that are mostly found in the forensic cases which are not lost easily, are being taken into consideration for mensuration, which are 5 in each quadrant and a total of 20 in each permanent dentition, unlike the literature which measured all the teeth which are 28 excluding the third molars (Pilloud et al, 2014). When the sex of the individual is known, either by the dental morphology or the cranial and pelvic dimorphism, the success rates are ranged between 76% and 92.5% (Nadendla, Paramkusam, Pokala & Devulapalli, 2016), 53.8% and 63.6% (Peckmann et al, 2015) and 71.9% to 88.1% (Pilloud et al, 2014).

IV. METHODS AND MATERIALS :

Diagnostic dental casts, of anonymous individuals, which are considered as existing data for measurements were obtained from a local dentist's office and measured using digital calipers with a calibration of 0.00mm. Since the dental casts are replicas of the individuals dentition, it is expected to give the similar results as and when, if the dentition of human subjects were to be examined in person. The measurements include mesiodistal, buccolingual, diagonal/occlusal and crown height, namely. Few variables considered for this project are the sex of the individual, type of teeth being adult permanent dentition and the ancestral lineage self – reported by the individual that they want to be identified as. The data is expected to be generated from a sample size of 100 casts which include casts from individuals before orthodontic treatment and after orthodontic treatment, enabling the use of another variant in this process, time of the replica fabricated.

V. DATA ANALYSIS AND INTERPRETATION;

The data, in this instance being the measurements, were generated from diagnostic dental casts and measured using digital calipers with a calibration of 0.00mm. The measurements include mesiodistal, buccolingual, diagonal/occlusal and crown height, namely. The data is expected to be then analyzed using the

discriminant function analysis and ANOVA(Analysis of Variance) statistical analysis for group classification and dental variation (Pilloud, Hefner, Hanihara & Hayashi, 2014). The significance and importance of this study is to be able to provide different ancestral group classifications along with possible different tooth dimension ranges for each of those groups respectively.

Two independent variables were considered namely sex and ancestry, 2 types and 11 types respectively. Five dependent variables were then considered namely, buccolingual, mesiodistal, incisal, occlusal and crown height measurements. Buccolingual measurement refers to the aspect measured from the surface in contact with the lip or cheek to the surface in contact with the tongue. Mesiodistal measurement refers to the measurement from the surface of the tooth towards the midline of the dentition to the surface of the tooth farther away from the midline. Incisal measurement refers to the measurement of the cutting edges of the anterior tooth such as the canines in this research project. Occlusal measurement refers to the measurement of the chewing surface of the posterior teeth such as the premolars and molars. Crown height is measured from the incisal or occlusal surface to the neck of the tooth precisely the clinical crown of the tooth. The ancestries include 26 Whites, 28 Blacks, 14 Indians, 1 Indian Sikh, 1 Iranian, 10 Latino, 5 Pakistanis, 3 Italians, 9 Admixed and 3 Srilankans.

	Class Level Information					
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr y	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Srilankan White				

Data for Analysis of Mesiodistal Buccolingual CrownHeight			
Number of Observations Read	196		
Number of Observations Used	196		

Data for Analysis of Occlusal			
Number of Observations Read	196		
Number of Observations Used	1		

Data for Analysis of Incisal				
Number of Observations Read	196			
Number of Observations Used	195			

Note : Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=1 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	19.6843536	1.4060253	3.11	0.000
Error	18 1	81.7582464	0.4517030		
Corrected Total	19 5	101.4426000			

R-Square	Coeff	Root	Mesiodistal Mea
	Var	MSE	n
0.194044	9.329010	0.672089	7.204286

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.4078355 0	1.40783550	3.12	0.079 2
Ancestry	10	16.008099 88	1.60080999	3.54	0.000
Sex*Ancestr y	3	1.8975165 7	0.63250552	1.40	0.244

Dependent Variable: Mesiodistal

Group3=1 C

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is prominently not significant as the probability values do not lie within .05.

Dependent Variable: Buccolingual

Group3=1 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	30.9400972	2.2100069	4.55	<.000 1
Error	18 1	87.8693559	0.4854661		
Corrected Total	19 5	118.8094531			

R-Square	Coeff	Root	Buccolingual Mea
	Var	MSE	n
0.260418	8.705205	0.696754	8.003878

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.7836701 6	0.78367016	1.61	0.205 5
Ancestry	10	22.618861 94	2.26188619	4.66	<.000 1
Sex*Ancestr y	3	3.7380160 3	1.24600534	2.57	0.056 0

Dependent Variable: Buccolingual

Group3=1 C

According to the model of the analysis procedure as is, there is much significance in the

buccolingual measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry may be slightly significant as the probability values are close to .05.

Dependent Variable: CrownHeight

Group3=1 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	53.7194791	3.8371056	4.57	<.000 1
Error	18 1	152.0361021	0.8399785		
Corrected Total	19 5	205.7555811			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.261084	10.14535	0.916503	9.033724

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.0506755 2	1.05067552	1.25	0.264 9
Ancestry	10	37.555916 27	3.75559163	4.47	<.000 1
Sex*Ancestr y	3	8.3764742 4	2.79215808	3.32	0.021

Dependent Variable: CrownHeight

Group3=1 C

According to the model of the analysis procedure as is, there is much significance in the crown height measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry may be slightly significant as the probability values lie within .05.

Dependent Variable: Occlusal

Group3=1 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	0	0			
Error	0	0			
Corrected Total	0	0			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.000000	•	•	2.870000

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	0	0			
Ancestry	0	0			
Sex*Ancestr	0	0			
У					

Dependent Variable: Occlusal

Group3=1 C

Since the cutting and chewing surface of anterior teeth such as the canines, are known as incisal edges and occlusal surfaces are solely meant for those of the posterior teeth, the canine does not have an occlusal measurement.

Page **26** of **116**

Dependent Variable: Incisal

Group3=1 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	17.94120321	1.28151452	9.04	<.000 1
Error	18 0	25.51726140	0.14176256		
Corrected Total	19 4	43.45846462			

R-Square	Coeff	Root	Incisal Mea
	Var	MSE	n
0.412836	13.24246	0.376514	2.843231

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.0141702 5	0.01417025	0.10	0.752 2
Ancestry	10	11.689449 13	1.16894491	8.25	<.000 1
Sex*Ancestr y	3	4.3965604 4	1.46552015	10.34	<.000 1

Dependent Variable: Incisal

According to the model of the analysis procedure as is, there is much significance in the incisal measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values lie well within .05 .

Group3=1 M1

Class Level Information						
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan				
У		Srilankan White				

Data for Analysis of Incisal			
Number of Observations Read	196		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal				
Number of Observations Read	196			
Number of Observations Used	196			

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=1 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	20.9446684	1.4960477	1.98	0.021 9
Error	18 1	137.1019454	0.7574693		
Corrected Total	19 5	158.0466138			

R-Square	Coeff	Root	Mesiodistal Mea
	Var	MSE	n
0.132522	8.565653	0.870327	10.16066

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	3.1968540 3	3.19685403	4.22	0.041 4
Ancestry	10	10.100342 02	1.01003420	1.33	0.215
Sex*Ancestr y	3	8.5545252 0	2.85150840	3.76	0.011 8

Dependent Variable: Mesiodistal

Group3=1 M1

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – ancestry does not show much significance with respect to this particular measurement, whereas the variable – sex shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values lie well within .05.

Dependent Variable: Buccolingual

Group3=1 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	42.9200871	3.0657205	7.05	<.000 1
Error	18 1	78.7082108	0.4348520		
Corrected Total	19 5	121.6282980			

R-Square	Coeff	Root	Buccolingual Mea
	Var	MSE	n
0.352879	5.986627	0.659433	11.01510

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	5.8616569 3	5.86165693	13.48	0.000
Ancestry	10	37.840892 00	3.78408920	8.70	<.000 1
Sex*Ancestr y	3	0.7962468 7	0.26541562	0.61	0.609 1

Dependent Variable: Buccolingual

Group3=1 M1

According to the model of the analysis procedure as is, there is much significance in the

buccolingual measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable– sex and ancestry shows prominent significance and interactions with respect to this particular measurement as the values are less than .05.The interaction between sex and ancestry is not significant as the probability values do not lie within .05 .

Dependent Variable: CrownHeight

Group3=1 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	55.4969569	3.9640684	8.87	<.000 1
Error	18 1	80.8532839	0.4467032		
Corrected Total	19 5	136.3502408			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.407018	10.48657	0.668359	6.373469

Source	D F	Type III SS	Mean Square	F Value	Pr> F
Sex	1	6.0566117 3	6.05661173	13.56	0.000 3
Ancestry	10	30.389767 60	3.03897676	6.80	<.000 1
Sex*Ancestr y	3	11.743201 41	3.91440047	8.76	<.000 1

Dependent Variable: CrownHeight

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable– sex and ancestry show prominent significance and interactions with respect to this particular measurement as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values

do lie well within .05.

Dependent Variable: Occlusal

Group3=1 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	25.9528730	1.8537766	3.17	0.000
Error	18 1	106.0050372	0.5856632		
Corrected Total	19 5	131.9579102			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.196675	9.546110	0.765286	8.016735

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.6820075 4	0.68200754	1.16	0.282 0
Ancestry	10	15.225198 61	1.52251986	2.60	0.005 7
Sex*Ancestr y	3	7.6187284 3	2.53957614	4.34	0.005
Dependent Variable: Occlusal

Group3=1 M1

According to the model of the analysis procedure as is, there is much significance in the occlusal measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values lie well within .05 .

Group3=1 M2

Class Level Information						
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr y	12	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Paksitan Srilankan White				

Data for Analysis of Incisa			
Number of Observations Read	196		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal			
Number of Observations Read	196		
Number of Observations Used	195		

Note: Variable in each group are consistent with respect to the presence or absence of missing values.

Dependent Variable: Mesiodistal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	26.0226770	1.7348451	2.76	0.000 7
Error	17 9	112.5511692	0.6287775		
Corrected Total	19 4	138.5738462			

R-Square	Coeff	Root	Mesiodistal Mea
	Var	MSE	n
0.187789	7.854628	0.792955	10.09538

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.3792461 9	1.37924619	2.19	0.140
Ancestry	11	19.830265 79	1.80275144	2.87	0.001 7
Sex*Ancestr y	3	3.7812610 4	1.26042035	2.00	0.115

Dependent Variable: Mesiodistal

Group3=1 M2

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Buccolingual

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	36.9903973	2.4660265	3.24	<.000 1
Error	17 9	136.3367545	0.7616578		
Corrected Total	19 4	173.3271518			

R-Square	Coeff	Root	Buccolingual Mea
	Var	MSE	n
0.213414	8.027167	0.872730	10.87221

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	10.695681 34	10.69568134	14.04	0.000 2
Ancestry	11	20.987941 81	1.90799471	2.51	0.005 9
Sex*Ancestr y	3	3.4976295 2	1.16587651	1.53	0.208

Dependent Variable: Buccolingual

Group3=1 M2

According to the model of the analysis procedure as is, there is much significance in the buccolingual measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05, especially the sex variable shows the influence in sexual dimorphism of the tooth. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: CrownHeight

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	61.4674997	4.0978333	6.06	<.000 1
Error	17 9	120.9711187	0.6758163		
Corrected Total	19 4	182.4386185			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.336922	13.74151	0.822080	5.982462

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	11.845239 39	11.84523939	17.53	<.000 1
Ancestry	11	29.649857 77	2.69544162	3.99	<.000 1
Sex*Ancestr y	3	17.742764 30	5.91425477	8.75	<.000 1

Dependent Variable: CrownHeight

Group3=1 M2

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable– sex and ancestry show prominent significance and interactions with respect to this particular measurement as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values do lie well within .05 .

Dependent Variable: Occlusal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	28.3708966	1.8913931	3.10	0.000
Error	17 9	109.1020829	0.6095088		
Corrected Total	19 4	137.4729795			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.206374	9.732989	0.780710	8.021282

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.4734056 8	0.47340568	0.78	0.379 3
Ancestry	11	13.590903 97	1.23553672	2.03	0.028
Sex*Ancestr y	3	7.9859480 3	2.66198268	4.37	0.005 4

Dependent Variable: Occlusal

Group3=1 M2

According to the model of the analysis procedure as is, there is much significance in the occlusal measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is significant as the probability values lie well within .05 .

Group3=1 PM1

Class Level Information						
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr y	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Srilankan White				

Data for Analysis of Mesiodistal Buccolingual CrownHeight

Number of Observations Read	196
Number of Observations Used	195

Data for Analysis of Occlusal				
Number of Observations Read	196			
Number of Observations Used	193			

Data for Analysis of Incisal				
Number of Observations Read	196			
Number of Observations Used	2			

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	23.31552272	1.66539448	7.87	<.000 1
Error	18 0	38.10194907	0.21167749		
Corrected Total	19 4	61.41747179			

R-Square	Coeff	Root	Mesiodistal Mea
	Var	MSE	n
0.379624	6.596068	0.460084	6.975128

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.9329587 9	1.93295879	9.13	0.002 9
Ancestry	10	18.726138 58	1.87261386	8.85	<.000 1
Sex*Ancestr y	3	2.5082421 3	0.83608071	3.95	0.009

Dependent Variable: Mesiodistal

Group3=1 PM1

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable– sex and ancestry show prominent significance and interactions with respect to this particular measurement as the values are less than .05. The interaction between sex and ancestry is also prominently significant as the probability values do lie well within .05.

Dependent Variable: Buccolingual

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	32.5761940	2.3268710	2.77	0.000 9
Error	18 0	151.1205875	0.8395588		
Corrected Total	19 4	183.6967815			

R-Square	Coeff	Root	Buccolingual Mea
	Var	MSE	n
0.177337	10.18727	0.916274	8.994308

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.5498855 2	2.54988552	3.04	0.083 1
Ancestry	10	26.371621 33	2.63716213	3.14	0.001
Sex*Ancestr y	3	1.5224102 5	0.50747008	0.60	0.612 9

Dependent Variable: Buccolingual

Group3=1 PM1

According to the model of the analysis procedure as is, there is much significance in the buccolingual measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie well within .05.

51

Dependent Variable: CrownHeight

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	47.6949367	3.4067812	5.54	<.000 1
Error	18 0	110.7749013	0.6154161		
Corrected Total	19 4	158.4698379			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.300972	9.895242	0.784485	7.927897

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.6671117 8	1.66711178	2.71	0.101 5
Ancestry	10	30.690611 74	3.06906117	4.99	<.000 1
Sex*Ancestr y	3	12.545151 10	4.18171703	6.79	0.000

Dependent Variable: CrownHeight

Group3=1 PM1

According to the model of the analysis procedure as is, there is significance in the crown height measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is prominently significant as the probability values lie well within .05.

Dependent Variable: Occlusal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	19.8053915	1.4146708	1.93	0.025 6
Error	17 8	130.2267649	0.7316110		
Corrected Total	19 2	150.0321565			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.132008	13.31149	0.855343	6.425596

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	3.5469682 9	3.54696829	4.85	0.029 0
Ancestry	10	13.678168 28	1.36781683	1.87	0.052 1
Sex*Ancestr y	3	3.0224542 4	1.00748475	1.38	0.251

Dependent Variable: Occlusal

Group3=1 PM1

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie well within .05.

Dependent Variable: Incisal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	0.08405000	0.08405000		•
Error	0	0.00000000			
Corrected Total	1	0.08405000			

R-Square	Coeff	Root	Incisal Mea
	Var	MSE	n
1.000000	•	•	2.805000

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.0840500 0	0.08405000	•	•
Ancestry	0	0.0000000 0	•	•	
Sex*Ancestr y	0	0.0000000 0	•	•	•

Since the cutting and chewing surface of anterior teeth such as the canines, are known as incisal edges and occlusal surfaces are solely meant for those of the posterior teeth such as the premolars and molars, the first premolar does not have an incisal measurement.

Group3=1 PM2

Class Level Information				
	Level			
Class	S	Values		
Sex	2	FM		
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan		
У		Silialikali wille		

Data for Analysis of Incisal			
Number of Observations Read	196		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal			
Number of Observations Read	196		
Number of Observations Used	196		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	17.50813722	1.25058123	3.96	<.000 1
Error	18 1	57.15392146	0.31576752		
Corrected Total	19 5	74.66205867			

R-Square	Coeff	Root	Mesiodistal Mea
	Var	MSE	n
0.234498	8.842999	0.561932	6.354541

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.3153606 9	1.31536069	4.17	0.042 7
Ancestry	10	14.633156 75	1.46331567	4.63	<.000 1
Sex*Ancestr y	3	2.3735065 8	0.79116886	2.51	0.060 6

Dependent Variable: Mesiodistal

Group3=1 PM2

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie well within .05.

Dependent Variable: Buccolingual

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	25.31324257	1.80808875	5.81	<.000 1
Error	18 1	56.35507784	0.31135402		
Corrected Total	19 5	81.66832041			

R-Square	Coeff	Root	Buccolingual Mea
	Var	MSE	n
0.309952	6.011314	0.557991	9.282347

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.1595539 3	2.15955393	6.94	0.009
Ancestry	10	19.917486 03	1.99174860	6.40	<.000 1
Sex*Ancestr y	3	0.9098423 1	0.30328077	0.97	0.406

Dependent Variable: Buccolingual

Group3=1 PM2

According to the model of the analysis procedure as is, there is much significance in the buccolingual measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie well within .05.

Dependent Variable: CrownHeight

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	51.1270805	3.6519343	7.69	<.000 1
Error	18 1	85.9919292	0.4750935		
Corrected Total	19 5	137.1190097			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.372866	10.10426	0.689270	6.821582

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.1508370 8	2.15083708	4.53	0.034 7
Ancestry	10	31.098606 83	3.10986068	6.55	<.000 1
Sex*Ancestr y	3	23.095503 21	7.69850107	16.20	<.000 1

Dependent Variable: CrownHeight

Group3=1 PM2

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is prominently significant as the probability values lie well within .05.

Dependent Variable: Occlusal

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	23.9068134	1.7076295	3.30	0.000 1
Error	18 1	93.6022616	0.5171396		
Corrected Total	19 5	117.5090750			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.203447	10.64637	0.719124	6.754643

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.8123013 7	1.81230137	3.50	0.062 8
Ancestry	10	11.389128 11	1.13891281	2.20	0.019 5
Sex*Ancestr y	3	7.3960387 9	2.46534626	4.77	0.003

Dependent Variable: Occlusal

Group3=1 PM2

According to the model of the analysis procedure as is, there is significance in the occlusal measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are < .05. The interaction between sex and ancestry is prominently significant as the probability values lie well within .05.

Group3=2 C

	Class Level Information					
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Srilankan White				
y		Sriiankan white				

Data for Analysis of Occlusal			
Number of Observations Read	202		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Incisal			
Number of Observations Read	202		
Number of Observations Used	74		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=2 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	13.28574572	1.47619397	2.09	0.043 4
Error	64	45.22270833	0.70660482		
Corrected Total	73	58.50845405			

	Coeff	Root	Mesiodistal Mea
R-Square	Var	MSE	n
0.227074	11.34079	0.840598	7.412162

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.8987061 3	2.89870613	4.10	0.047 0
Ancestry	7	10.988113 71	1.56973053	2.22	0.043 8
Sex*Ancestr y	1	0.0548355 4	0.05483554	0.08	0.781 5

Dependent Variable: Mesiodistal

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Buccolingual

Group3=2 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	16.14986010	1.79442890	2.62	0.012 1
Error	64	43.85845476	0.68528836		
Corrected Total	73	60.00831486			

	Coeff	Root	Buccolingual Mea
R-Square	Var	MSE	n
0.269127	10.15277	0.827821	8.153649

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.2298039 2	1.22980392	1.79	0.185 1
Ancestry	7	13.587365 82	1.94105226	2.83	0.012 3
Sex*Ancestr y	1	0.7696039	0.76960392	1.12	0.293 2

Dependent Variable: Buccolingual

Group3=2 C

According to the model of the analysis procedure as is, there is much significance in the buccolingual measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squaresare of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent

significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05 .

Dependent Variable: CrownHeight

Group3=2 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	28.5313798	3.1701533	2.52	0.015 6
Error	64	80.6364256	1.2599441		
Corrected Total	73	109.1678054			

	Coeff	Root	CrownHeight Mea
R-Square	Var	MSE	n
0.261353	12.52533	1.122472	8.961622

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.4972705 9	2.49727059	1.98	0.164 0
Ancestry	7	25.408312 17	3.62975888	2.88	0.011
Sex*Ancestr y	1	0.0001411 8	0.00014118	0.00	0.991 6
Dependent Variable: CrownHeight

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Incisal

Group3=2 C

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	5.98895428	0.66543936	4.15	0.000 3
Error	64	10.27404167	0.16053190		
Corrected Total	73	16.26299595			

D G	Coeff	Root	Incisal Mea
R-Square	Var	MSE	n
0.368257	13.73091	0.400664	2.917973

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.2610352 9	0.26103529	1.63	0.206 9
Ancestry	7	4.1513285 6	0.59304694	3.69	0.002
Sex*Ancestr y	1	1.1562705 9	1.15627059	7.20	0.009 3

Dependent Variable: Incisal

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the canine as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is significant as the probability values lie within .05.

Group3=2 M1

	Class Level Information						
	Level						
Class	S	Values					
Sex	2	FM					
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan					
y							

Data for Analysis of Incisa			
Number of Observations Read	202		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal			
Number of Observations Read	202		
Number of Observations Used	74		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=2 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	30.0700297	3.3411144	2.57	0.013 8
Error	64	83.3069649	1.3016713		
Corrected Total	73	113.3769946			

	Coeff	Root	Mesiodistal Mea
R-Square	Var	MSE	n
0.265222	11.37526	1.140908	10.02973

G	D	Type III	Mean	F	Pr >
Source	F	55	Square	Value	F
Sex	1	6.7400823 5	6.74008235	5.18	0.026 2
Ancestry	7	29.485090 84	4.21215583	3.24	0.005 3
Sex*Ancestr y	1	1.1057294 1	1.10572941	0.85	0.360 2

Dependent Variable: Mesiodistal

Group3=2 M1

mesiodistal measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Buccolingual

Group3=2 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	27.04015763	3.00446196	5.91	<.000 1
Error	64	32.52814643	0.50825229		
Corrected Total	73	59.56830405			

R-Square	Coeff Var	Root MSE	Buccolingual Mea
0.453935	6.467646	0.712918	11.02284

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	3.4632551 5	3.46325515	6.81	0.011 3
Ancestry	7	26.907429 43	3.84391849	7.56	<.000 1
Sex*Ancestr y	1	0.0838786 8	0.08387868	0.17	0.685 9

Dependent Variable: Buccolingual

Group3=2 M1

According to the model of the analysis procedure as is, there is much significance in the

buccolingual measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05, especially ancestry. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: CrownHeight

Group3=2 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	21.05501971	2.33944663	4.44	0.000 2
Error	64	33.75837083	0.52747454		
Corrected Total	73	54.81339054			

	Coeff	Root	CrownHeight Mea
R-Square	Var	MSE	n
0.384122	11.40366	0.726274	6.368784

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.3501002 5	1.35010025	2.56	0.114 6
Ancestry	7	10.877034 99	1.55386214	2.95	0.009 7
Sex*Ancestr y	1	5.4073061 3	5.40730613	10.25	0.002

Dependent Variable: CrownHeight

Group3=2 M1

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is significant as the probability values lie within .05 .

Dependent Variable: Occlusal

Group3=2 M1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	8.99347564	0.99927507	1.66	0.117 2
Error	64	38.50152976	0.60158640		
Corrected Total	73	47.49500541			

DC	Coeff	Root	Occlusal Mea
K-Square	var	MSE	n
0.189356	9.636973	0.775620	8.048378

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.0725333 3	0.07253333	0.12	0.729 6
Ancestry	7	3.8110509 4	0.54443585	0.91	0.508 4
Sex*Ancestr y	1	4.5402980 4	4.54029804	7.55	0.007 8

Dependent Variable: Occlusal

Group3=2 M1

According to the model of the analysis procedure as is, there is not much of significance in the occlusal measurements of the first molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry do not show prominent significance and interactions as the values are not less than .05. The interaction between sex and ancestry is significant as the probability values lie within .05.

Group3=2 M2

Class Level Information						
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr y	12	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Paksitan Srilankan White				

Data for Analysis of Incisal			
Number of Observations Read	202		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal			
Number of Observations Read	202		
Number of Observations Used	74		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=2 M2

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	10	16.64997883	1.66499788	2.25	0.025 8
Error	63	46.67103333	0.74081005		
Corrected Total	73	63.32101216			

	Coeff	Root	Mesiodistal Mea
R-Square	Var	MSE	n
0.262946	8.366551	0.860703	10.28743

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	3.7012245 1	3.70122451	5.00	0.029 0
Ancestry	8	8.0531778 3	1.00664723	1.36	0.232 1
Sex*Ancestr y	1	3.1800009 8	3.18000098	4.29	0.042 4

Dependent Variable: Mesiodistal

Group3=2 M2

According to the model of the analysis procedure as is, there is significance in the mesiodistal measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of less values. When the type 3 sum of squares is calculated and considered, the variable – ancestry does not show much significance with respect to this particular measurement, whereas the variable – sex shows prominent significance and interactions as the values are < .05. The interaction between sex and ancestry is significant as the probability values lie within .05.

Dependent Variable: Buccolingual

Group3=2 M2

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	10	12.33675695	1.23367569	1.28	0.262 7
Error	63	60.86347143	0.96608685		
Corrected Total	73	73.20022838			

DC	Coeff	Root	Buccolingual Mea
K-Square	var	MSE	n
0.168534	8.988987	0.982897	10.93446

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	2.0076088 2	2.00760882	2.08	0.154 4
Ancestry	8	8.9516028 1	1.11895035	1.16	0.338 4
Sex*Ancestr y	1	0.6672794 1	0.66727941	0.69	0.409 1

Dependent Variable: Buccolingual

Group3=2 M2

According to the model of the analysis procedure as is, there is not much significance in the buccolingual measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are not of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry do not show prominent significance and interactions as the values are more than .05.The interaction etween sex and ancestry is not significant as the probability values do not lie within .05 .

Dependent Variable: CrownHeight

Group3=2 M2

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	10	20.16266435	2.01626644	2.45	0.015 5
Error	63	51.92832619	0.82425915		
Corrected Total	73	72.09099054			

	Coeff	Root	CrownHeight Mea
R-Square	Var	MSE	n
0.279684	15.05921	0.907887	6.028784

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.9505002 5	1.95050025	2.37	0.129 0
Ancestry	8	9.4996933 7	1.18746167	1.44	0.197 5
Sex*Ancestr y	1	6.6453061 3	6.64530613	8.06	0.006 1

Dependent Variable: CrownHeight

Group3=2 M2

According to the model of the analysis procedure as is, there is much significance in the crown height measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry do not show prominent significance and interactions as the values are more than .05.The interaction between sex and ancestry is significant as the probability values lie within .05.

Dependent Variable: Occlusal

```
Group3=2 M2
```

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	10	7.02023710	0.70202371	1.03	0.430 4
Error	63	42.99763452	0.68250214		
Corrected Total	73	50.01787162			

	Coeff	Root	Occlusal Mea
R-Square	Var	MSE	n
0.140355	10.23936	0.826137	8.068243

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.3529411 8	0.35294118	0.52	0.474 7
Ancestry	8	5.3530545 0	0.66913181	0.98	0.459 6
Sex*Ancestr y	1	1.0932705 9	1.09327059	1.60	0.210

Dependent Variable: Occlusal

Group3=2 M2

According to the model of the analysis procedure as is, there is not much significance in the occlusal measurements of the second molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are not of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry do not show prominent significance and interactions as the values are more than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05

Group3=2 PM1

	Class Level Information					
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan				
У		Srilankan White				

Data for Analysis of Mesiodistal Buccolingual CrownHeight

Number of Observations Read	202
Number of Observations	74
Used	

Data for Analysis of Occlusal		
Number of Observations Read	202	
Number of Observations Used	73	

Data for Analysis of Incisal			
Number of Observations Read	202		
Number of Observations Used	1		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=2 PM1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	11.10853829	1.23428203	5.20	<.000 1
Error	64	15.19873333	0.23748021		
Corrected Total	73	26.30727162			

	Coeff	Root	Mesiodistal Mea
R-Square	Var	MSE	n
0.422261	6.933730	0.487319	7.028243

Source	D F	Type III SS	Mean Square	F Value	Pr> F
Sex	1	2.7440480 4	2.74404804	11.55	0.001
Ancestry	7	9.6887798 1	1.38411140	5.83	<.000 1
Sex*Ancestr y	1	0.0049421 6	0.00494216	0.02	0.885 7

Dependent Variable: Mesiodistal

Group3=2 PM1

According to the model of the analysis procedure as is, there is not much significance in the mesiodistal measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are not of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show

prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05

Dependent Variable: Buccolingual

Group3=2 PM1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	21.78897970	2.42099774	2.48	0.017 2
Error	64	62.58472976	0.97788640		
Corrected Total	73	84.37370946			

	Coeff	Root	Buccolingual Mea
R-Square	Var	MSE	n
0.258244	11.05179	0.988881	8.947703

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.4628061 3	1.46280613	1.50	0.225 8
Ancestry	7	21.111620 41	3.01594577	3.08	0.007 3
Sex*Ancestr y	1	0.4865884 8	0.48658848	0.50	0.483 1

Dependent Variable: Buccolingual

Group3=2 PM1

According to the model of the analysis procedure as is, there is significance in the buccolingual measurements of the first premolar molar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are <.05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: CrownHeight

Group3=2 PM1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	20.45696649	2.27299628	3.54	0.001 3
Error	64	41.09494702	0.64210855		
Corrected Total	73	61.55191351			

	Coeff	Root	CrownHeight Mea
R-Square	Var	MSE	n
0.332353	10.07809	0.801317	7.951081

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.8928531 9	1.89285319	2.95	0.090 8
Ancestry	7	10.490474 14	1.49863916	2.33	0.034 7
Sex*Ancestr y	1	6.5689531 9	6.56895319	10.23	0.002 1

Dependent Variable: CrownHeight

Group3=2 PM1

According to the model of the analysis procedure as is, there is much significance in the

crown height measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is significant as the probability values lie within .05 .

Dependent Variable: Occlusal

Group3=2 PM1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	17.60839785	1.95648865	1.90	0.068 6
Error	63	64.96778571	1.03123469		
Corrected Total	72	82.57618356			

	Coeff	Root	Occlusal Mea
R-Square	Var	MSE	n
0.213238	15.95251	1.015497	6.365753

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	0.4518402 8	0.45184028	0.44	0.510 4
Ancestry	7	17.109405 85	2.44420084	2.37	0.032 4
Sex*Ancestr y	1	0.7571688 5	0.75716885	0.73	0.394 8

Dependent Variable: Occlusal

Group3=2 PM1

According to the model of the analysis procedure as is, there is not much significance in the occlusal measurements of the first premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are not of less values. When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are <.05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Incisal

Group3=2 PM1

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	0	0			•
Error	0	0			
Corrected Total	0	0			

R-Square	Coeff	Root	Incisal Mea
	Var	MSE	n
0.000000	•	•	2.600000

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	0	0			
Ancestry	0	0			
Sex*Ancestr	0	0			
У					

Since the cutting and chewing surface of anterior teeth such as the canines, are known as incisal edges and occlusal surfaces are solely meant for those of the posterior teeth such as the premolars and molars, the first premolar does not have an incisal measurement.

Group3=2 PM2

	Class Level Information					
	Level					
Class	S	Values				
Sex	2	FM				
Ancestr	11	Admixed Black Indian Indian/I Indian/S Italian Italian/ Latino Pakistan Srilankan White				
У		Sriiankan white				

Data for Analysis of Incisal			
Number of Observations Read	202		
Number of Observations Used	0		

Data for Analysis of Mesiodistal Buccolingual CrownHeight Occlusal			
Number of Observations Read	202		
Number of Observations Used	74		

Note: Variable in each group are consistent with respect to presence or absence of missing values.

Dependent Variable: Mesiodistal

Group3=2 PM2

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	10.97772268	1.21974696	3.26	0.002 5
Error	64	23.94401786	0.37412528		
Corrected Total	73	34.92174054			

	Coeff	Root	Mesiodistal Mea
R-Square	Var	MSE	n
0.314352	9.562807	0.611658	6.396216

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.9699080 9	1.96990809	5.27	0.025 0
Ancestry	7	10.123121 17	1.44616017	3.87	0.001 4
Sex*Ancestr y	1	1.0777963 2	1.07779632	2.88	0.094 5

Dependent Variable: Mesiodistal

Group3=2 PM2

According to the model of the analysis procedure as is, there is much significance in the mesiodistal measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Dependent Variable: Buccolingual

Group3=2 PM2

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	12.61513557	1.40168173	4.48	0.000 1
Error	64	20.03209821	0.31300153		
Corrected Total	73	32.64723378			

R-Square	Coeff Var	Root MSF	Buccolingual Mea
K-Square	v ai		11
0.386407	6.008685	0.559465	9.310946

Source	D F	Type III SS	Mean Square	F Value	Pr > F
Sex	1	1.5343147 1	1.53431471	4.90	0.030 4
Ancestry	7	11.538390 31	1.64834147	5.27	<.000 1
Sex*Ancestr y	1	0.0307147	0.03071471	0.10	0.755 1
The GLM Procedure

Dependent Variable: Buccolingual

Group3=2 PM2

According to the model of the analysis procedure as is, there is much significance in the buccolingual measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values. When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry show prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is not significant as the probability values do not lie within .05.

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	19.37256779	2.15250753	4.11	0.000 3
Error	64	33.50794167	0.52356159		
Corrected Total	73	52.88050946			

R-Square	Coeff	Root	CrownHeight Mea
	Var	MSE	n
0.366346	10.65288	0.723576	6.792297

Source	D F	Type III SS	Mean Square	F Value	Pr> F
Sex	1	1.0190002 5	1.01900025	1.95	0.167 8
Ancestry	7	8.8946140 6	1.27065915	2.43	0.028 6
Sex*Ancestr y	1	9.0395414 2	9.03954142	17.27	<.000 1

According to the model of the analysis procedure as is, there is much significance in the crown height measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are of very less values.

When the type 3 sum of squares is calculated and considered, the variable – sex does not show much significance with respect to this particular measurement, whereas the variable – ancestry shows prominent significance and interactions as the values are less than .05. The interaction between sex and ancestry is significant as the probability values lie within .05.

Source	D F	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	7.65238129	0.85026459	1.60	0.135 5
Error	64	34.09350655	0.53271104		
Corrected Total	73	41.74588784			

R-Square	Coeff	Root	Occlusal Mea
	Var	MSE	n
0.183309	10.67125	0.729871	6.839595

Source	D F	Type III SS	Mean Square	F Value	Pr> F
Sex	1	0.0100009 8	0.01000098	0.02	0.891 4
Ancestry	7	6.1341135 9	0.87630194	1.64	0.139 0
Sex*Ancestr y	1	0.9243539 2	0.92435392	1.74	0.192 4

According to the model of the analysis procedure as is, there is not much significance in the occlusal measurements of the second premolar as the values of the probability for the given F ratio, Pr > F, after sum of squares, are not of very less values.

When the type 3 sum of squares is calculated and considered, the variables – sex and ancestry do not show much significance with respect to this particular measurement, as the values are more than .05.

The interaction between sex and ancestry is not significant as the probability values do not lie within .05 .

VI. RESULTS AND DISCUSSION :

The results expected from this project are to be able to aid the forensic scientists to identify the individuals based on their ancestry when all the other methods of identification are not fruitful. From the data generated, both sex differences and ancestral differences are expected to be interpreted after analyzing and differentiating/classifying into groups based on male and female ancestral lines individually (Pilloud et al, 2014; Peckmann, Meek, Dilkie & Mussett, 2015). From the results of this analysis, it could be inferred that there are ancestral differences as well, the ancestral variations are more predominantly pronounced. The significance is to be able to provide a template to refer to for the measurements and dimensions in future real life scenarios by putting it to use practically.

VII. CONCLUSION:

The conclusion, in this study, is to provide a suitable range for each ancestral line according to the dimensions of the tooth. A literature mentions about a statistical data package that could be formed if more and more researchers are able to find data about correlation between teeth dimensions and ancestry using FORDISC (Pilloud et al, 2014). When a bigger sample size is collected, FORDISC may be used, as it would be able to discriminate and be able to provide results for individuals who are yet to be identified. The future researchers could use the data by amplifying their sample size in order to make a substantial template for the ancestral groups that the forensic investigation agencies could use reliably. It may be concluded that the teeth are a promising tool for the estimation of ancestry and sex of unknown individuals as they provide significant reliability and interactions as observed from the data collected.

VIII . REFERENCES

Abrantes, C., Santos, R., Pestana, D., & Pereira, C. (2015, 27 July). Application of Dental Morphological Characteristics for Medical-Legal Identification: Sexual Diagnosis in a Portuguese Population. HSOA Journal of Forensic, Legal & Investigative Sciences, Vol 1 (Issue 1). DOI: 10.24966/FLIS-733X/100001

- Capitaneanu, C., Willems, G., Jacobs, R., Fieuws, S. & Thevissen, P. (May 2017). Sex estimation based on tooth measurements using panoramic radiographs. International Journal of Legal Medicine, Vol 131 (Issue 3) 813 – 821. DOI: 10.1007/s00414-016-1434-0
- Harris, E. F. & Guatelli-Steinberg, D.(Eds.) (2003). Dental Anthropology. Memphis, TN,
 Craniofacial Biology Laboratory, Department of Orthodontics, Dental Anthropology
 Association, Vol 16 (Issue 3). ISSN 1096-9411
- Hossain, M. Z., Munawar, K. M. M., Rahim, Z. H. A. & Bakri, M. M. (2015, 2 December). Can stature be estimated from tooth crown dimensions? A study in a sample of South-East Asians. Archives of Oral Biology, Vol 64, 85 91. Retrieved from https://doi.org/10.1016/j.archoralbio.2016.01.001
- Jani, Y., Parikh, S., Dudhia, B., Bhatia, P., Patel, P. & Patel, R. (2018, September). Body height from tooth size: A novel study on stature estimation by odontometric parameters. Journal of Indian Academy of Oral medicine and Radiology, Vol 30 (Issue 3) 275 – 280. DOI: 10.4103/jiaomr.jiaomr_105_18
- Nadendla, L. K., Paramkusam, G., Pokala, A. & Devulapalli, R. V. (2016, 24 February).
 Identification of gender using radiomorphometric measurements of canine by discriminant function analysis. Indian Journal of Dental Research, Vol 27, 27 – 31. DOI : 10.4103/0970-9290.179810

- Peckmann, T. R., Meek, S., Dilkie, N. & Mussett, M. (2015, 4 September). Sex estimation using diagonal diameter measurements of molar teeth in African American populations.
 Journal of Forensic and Legal Medicine, Vol 36, 70 80. Retrieved from https://doi.org/10.1016/j.jflm.2015.09.001
- Pilloud, M. A., Hefner, J. T., Hanihara, T. & Hayashi, A. (2014, November). The Use of Tooth Crown Measurements in the Assessment of Ancestry. Journal of Forensic Sciences, Vol 59(Issue 6), 1493 – 1501. Retrieved from <u>https://doi.org/10.1111/1556-4029.12540</u>
- Sharma, P., Singh, T., Kumar, P., Chandra, P. K. & Sharma, R. (2013, June). Sex determination potential of permanent maxillary molar widths and cusp diameters in a North Indian population. Journal of Orthodontic Science, Vol 2 (Issue 2). DOI : 10.4103/2278-0203.115090