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ABSTRACT 

DEEP LEARNING FOR SPARSE AND LIMITED-VIEW PHOTOACOUSTIC 
TOMOGRAPHY IMAGE RECONSTRUCTION 

Steven Guan, PhD 

George Mason University, 2021 

Dissertation Director: Dr. Parag Chitnis 

 

 Photoacoustic tomography (PAT) is a non-ionizing imaging modality capable of 

acquiring high contrast and resolution images based on optical absorption at depths 

greater than traditional optical imaging techniques. PAT has matured as a technology to 

the stage of transitioning from a laboratory to a clinical setting is possible. This presents a 

wide variety of practical considerations and limitations with instrumentation and data 

acquisition. Common challenges include having a limited number of available acoustic 

detectors and a reduced “view” of the imaging target. Forming an image with classical 

reconstruction methods from insufficient data often result in images with artifacts that 

degrade image quality. Advanced methods such as iterative reconstruction can be 

effective in reducing or removing the artifacts. But these methods are also 

computationally expensive and might not be appropriate in settings requiring near real-

time imaging. In this work, we summarize our efforts in utilizing deep learning to address 
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the deficiencies of sparse spatial sampling and limited-view detection in PAT image 

reconstruction. We begin with an introduction to fundamental principles of photoacoustic 

imaging (Chapter 1). This is followed by a brief introduction to deep learning and 

summarize commonly used deep learning frameworks for PAT image reconstruction 

(Chapter 2). Next, we describe a novel convolutional neural network architecture termed 

Fully Dense UNet for sparse PAT image reconstruction (Chapter 3).  We then describe 

pixel-wise deep learning, a data pre-processing step that seeks to provide a more 

informative input to the neural network (Chapter 4). Next, we describe a modified 

network architecture termed Dense Dilated UNet that leverages the benefits of dense 

connectivity and dilated convolutions for 3D PAT image reconstruction (Chapter 5).  We 

then describe Fourier Neural Networks as a fast and general solver for the photoacoustic 

wave equation (Chapter 6). Finally, we conclude with a discussion of key challenges in 

using deep learning for PAT image reconstruction and future work (Chapter 7).
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CHAPTER ONE: PHOTOACOUSTIC IMAGING  

Section One: Introduction 

Photoacoustic imaging (PAI) is a non-invasive hybrid imaging modality that uses 

optical illumination and ultrasound detection to acquire images of chromophores (i.e., 

optically absorbing molecules) in biological tissue [1]. Given its unique use of light and 

sound, PAI has several distinct advantages over purely optical and acoustic imaging 

methods.  Optical imaging has a limited imaging depth (<1 mm) due to optical scattering, 

while PAI can maintain high resolution imaging up to several centimeters because 

ultrasound scatters several orders of magnitude less than light. PAI can also acquire 

images without speckling, a signal dependent noise commonly found in ultrasound 

images [2], [3]. PAI has been rapidly gaining popularity and have shown great potential 

for many preclinical and clinical imaging applications such as small animal whole-body 

imaging, breast and prostate cancer imaging, and image guided surgery [4]–[7]. 

Multispectral photoacoustic imaging can be used for functional imaging such as 

measuring blood oxygen saturation and metabolism in biological tissues [8]. With the 

ability to provide both structural and functional information, photoacoustic imaging can 

reveal novel insights into biological processes and disease pathologies [9]. 
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Section Two: Signal Generation 

 The photoacoustic effect is a physical phenomenon that describes the conversion 

from optical to acoustic energy and is the basis for generating a photoacoustic signal. PAI 

begins by using a nanosecond pulsed laser to illuminate the biological tissue (Fig. 1.) [10]. 

The light pulse incident on the biological tissue is scattered throughout the medium and 

will eventually either leave the tissue or is absorbed by optically absorbing molecules 

called chromophores. The excited chromophores convert the absorbed optical energy into 

heat through the process of thermoelastic expansion. This occurs on a timescale (~ns) much 

shorter than the timescale for a local movement of the tissue (~µs). Therefore, the heating 

is isochoric meaning the rapid local temperature increase is accompanied by a pressure 

increase, which ultimately results in the generation of acoustic waves. 

 
 
 

 

Fig. 1 Process diagram for generating a photoacoustic signal. A chromophore in the tissue absorbs the incident 
light emitted by the laser and subsequently undergoes thermoelastic expansion. This results in the generation of 
acoustic waves which then spherically propagates outward with the chromophore acting as a point source. 
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 Photoacoustic imaging readily capitalizes on the rich endogenous and exogeneous 

optical contrasts available. In biological tissue, chromophores (e.g., hemoglobin, melanin, 

lipid, and water) exhibit their own characteristic absorption spectra, and their relative 

quantification can be used to investigate physiological changes (Fig. 2.) [11]. Due to their 

label-free nature, photoacoustic imaging is well-suited for long term longitudinal 

monitoring. Various exogeneous contrast agents (e.g., fluorescent dyes and nanoparticles) 

can also be employed to further enhance imaging specificity, contrast, and depth [12], [13]. 

 
 
 

 

Fig. 2 Absorption coefficient spectra of endogenous tissue chromophores at their typical concentrations in the 
human body as a function of the incident light’s wavelength [11]. The laser wavelength is often tuned to 
maximize sensitivity for specific chromophores in the tissue. 

 

 
 

 Assuming negligible thermal diffusion and volume expansion during illumination, 

the initial acoustic pressure 𝑥 can be defined as 

𝑥(𝑟) = Γ(𝑟)𝐴(𝑟) 
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where 𝐴(𝑟) is the spatial optical absorption function and Γ(𝑟) is the Grüneisen coefficient 

describing the conversion efficiency from heat to pressure [10]. The photoacoustic pressure 

wave 𝑝(𝑟, 𝑡) at position 𝑟 and time 𝑡 can be modeled as an initial value problem for the 

wave equation, in which 𝑐 is the speed of sound [14]. 

(𝜕௧௧ − 𝑐଴
ଶΔ)𝑝(𝑟, 𝑡) = 0,     𝑝(𝑟, 𝑡 = 0) = 𝑥, 

𝜕௧𝑝(𝑟, 𝑡 = 0) = 0 

Acoustic propagation is sensitive to medium properties such as the speed of sound and 

mass density, and they generally vary throughout the medium. However, the medium is 

often assumed to be acoustically homogeneous since these variations are often small in 

soft tissue and is not known in advance. Acoustic absorption is not being considered in 

this work, but it can be important in some applications [15]. 

 The initial acoustic pressure distribution is related to the optical properties of the 

tissue and can be written as 

𝑝௢(𝑟) = Γ(𝑟)𝐴(𝑟) 
 

where 𝐴(𝑟) is the spatial absorption function and Γ(𝑟) is the Grüneisen coefficient 

describing the conversion efficiency from heat energy to pressure [10]. The spatial 

absorption is a nonlinear function that depends on the optical wavelength, absorption, and 

scattering through the medium. The initial pressure distribution is often assumed to be 

initially positive since the absorption of the light and Grüneisen coefficient is positive for 

most materials. 
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Section Three: Major Implementations of PAI 

PAI has a unique advantage as a multiscale imaging modality that can acquire 

images at variable spatial resolutions and imaging depths depending on the methods used 

for optical illumination and acoustic detection [16]. Most major implementations of PAI 

can be categorized as either photoacoustic microscopy (PAM) or photoacoustic 

tomography (PAT). PAM typically aims to have an imaging depth of a few millimeters 

with micron-scale resolution, whereas PAT can have an imaging depth of a few 

centimeters with either mesoscopic or macroscopic resolution. Choosing an 

implementation is largely determined by the biomedical application and imaging 

requirements such as resolution, depth, and speed. 

In PAM, the optical illumination and acoustic detection are focused and 

configured confocally to maximize the PA signal strength [17].  The laser excites tissue 

predominantly along a line at each scanning position, and the ultrasound transducers 

receives the PA signals and records the time-of-arrival. A 2D image is formed by raster 

scanning across one dimension, and depth information is then resolved based on the PA 

signal’s acoustic time-of-flight. PAM can be further categorized as acoustic resolution-

PAM (AR-PAM) or optical resolution-PAM (OR-PAM) depending on whether the 

optical or acoustic focus is finer [18]. AR-PAM utilizes weak optical and tight acoustic 

focusing with an acoustic lens and is capable of imaging depths up to 3 mm with a 

resolution of ~20-50 μm [19]. OR-PAM utilizes strong optical and tight acoustic 

focusing, which enables finer resolutions spanning from hundreds of nanometers to 
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micrometers [20]. However, the imaging depth in OR-PAM is limited to ~1 mm in 

biological tissues due to optical scattering. 

In PAT, an expanded laser is used to excite the entire tissue sample or a region of 

interest using wide-field illumination [9]. An array of ultrasound transducers is then used 

to simultaneously detect the emitted PA waves from multiple view-angles. PAT does not 

require raster scanning and therefore, is capable of faster cross-sectional and volumetric 

imaging compared to PAM  [21]. Moreover, PAT is capable of greater imaging depths 

which is essential for many clinical applications such as in human brain and breast 

imaging. However, PAT generally requires more complex instrumentation and higher 

computational costs for image reconstruction. Common transducer array geometries such 

as linear, planar, circular, and semi-circular have been demonstrated for both clinical and 

animal imaging applications. 

 

Section Four: PAT Signal Measurement 

 As the generated acoustic waves propagate through the medium, acoustic sensors 

located along a measurement surface 𝑆௢ are used to measure a time-series signal  [14]. The 

measurement operator ℳ acts on 𝑝(𝑟, 𝑡) restricted to the boundary of the computational 

domain Ω over a finite time 𝑇 and provides a linear mapping from the initial pressure 𝑥 to 

the measured time-series signal 𝑦. 

𝑦 = ℳ 𝑝|డஐ×(଴,்) = 𝐴𝑥 
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Fig. 3 Diagram illustrating a circular detection geometry of a PAT imaging system. Detector at position 𝒓𝒐 on 
the measurement boundary 𝑺𝒐 measures the acoustic pressure emitted from a source located at 𝒓′. While 
illustrated with a circular geometry, the boundary can take any arbitrary shape.  Adapted from [14]. 

 
 
 
The acoustic waves are broadband signals that often have frequencies greater than the 

range of frequencies detected by the ultrasound transducers used to measure the signal. 

Furthermore, transducers do have a finite size and are not idealized point detectors which 

results in the filtering of spatial wavenumbers. To account for these effects, the 

measurement operator can be written as  

ℳ = 𝒲𝒮 

where the filtering operator 𝒲 accounts for the frequency and wavenumber filtering and 

the spatial sampling operator 𝒮 selects the part of the acoustic field to be measured. 

 PAT image reconstruction is a well-studied inverse problem that can be solved 

using analytical solutions, numerical methods (e.g., time reversal), and model-based 

iterative methods [15], [22]–[25]. With sufficient measured data, the inverse problem is 

well-posed, and a high-quality PAT image can be reconstructed. To have sufficient data, 

the imaging system would need a closely spaced array of omnidirectional and broadband 

point detectors arranged in a geometry such that all rays passing through the imaged 
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object reach at least one of the detectors. For example, if ideal detectors are positioned on 

the measurement surface with a spacing of 𝜆௠௜௡/ 2 to satisfy the spatial Nyquist 

criterion, where 𝜆௠௜௡ is the shortest wavelength generated and the imaging object lies 

inside the detector array’s “visible” region then sufficient data can be measured [26]. 

Given these strict requirements, data measured in experimental settings often diverge 

from these ideal conditions leading to an ill-posed inversion problem. PAT images 

reconstructed from incomplete data often contain artifacts that blur and degrade image 

quality. A key challenge in PAT reconstruction is to properly account for the deficiencies 

in the incomplete data and minimize the impact of artifacts. 

 There are many reasons as to why the incomplete data may be acquired. Below 

are several reasons commonly found in an experimental setting [27]. 

1. Detector responses are never perfectly broadband or omnidirectional. These 

characteristics are often selected to achieve sufficient detection sensitivity. 

2. Limited-view detection meaning the imaging object lies outside of the visible 

region, and the transducer array has limited “view” or coverage. This can be due 

to hardware limitations such as using a 2D linear array to image a 3D object or 

physical limitations restricting the array’s coverage. 

3. Undersampling in space or time to achieve faster data acquisition or due to 

hardware constraints. 

 
Section Five: Classical Reconstruction Methods 

 PAT image reconstruction involves an initial acoustic inversion from the measured 

acoustic time-series data to the initial pressure distribution and an optical inversion to 
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recover the distribution of optical absorption coefficients [28]. This work is focused on 

solving the acoustic inversion and are not considering the optical inversion component. In 

this section, a summary of classical PAT image reconstruction method for the acoustic 

inversion problem is described. 

 Back projection was originally used in x-ray tomography image reconstruction, 

where the measured data is mapped to the image space by projecting the data along a set 

of lines and summing over all detectors [29]. This concept is also widely used in PAT 

image reconstruction except the situation in PAT is slightly different. Since the acoustic 

waves propagate in a spherical manner, the measured data is projected onto spherical shells 

centered around each detector with a radius based on the signal’s time-of-flight and 

summing over all detector points 𝑟ௗ on the measurement surface 𝑆. The back projection 

operator 𝒜ᇱ can be written as,  

𝒜ᇱ𝑦(𝑟) = න 𝑦(𝑟ௗ, 𝑡)௧ୀ|௥ି௥೏|/௖𝑑𝑆(𝑟ௗ) 
 

ௌ

 

where the measured time-series data 𝑦 is mapped into the image space to reconstruct the 

image 𝑥ො. Quality of the reconstructed images can be improved by processing the data 

before reconstruction and is often referred to as a filtered back projection. The “universal 

back projection” algorithm is a well-known reconstruction method for PAT, which gives 

exact reconstructions for common detection geometries such as spherical, cylindrical, and 

planar [22]. 

Time reversal is a robust reconstruction method that works well for homogenous 

and heterogeneous mediums and also for any arbitrary detection geometry [15], [25]. For 

a measurement surface 𝑆 surrounding the medium, the acoustic waves generated propagate 
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outward and are measured as they pass through the surface. After a long period of time 𝑇, 

the acoustic field within the medium will be zero, which is guaranteed by Huygens’ 

principle in 3D homogeneous mediums [30]. A PAT image is formed by running a 

numerical model of the forward problem backwards in time and transmitting the measured 

sensor data in a time-reversed order into the medium. Time reversal can be modeled as a 

time-varying boundary value problems, and the resulting acoustic field at 𝑡 = 0 is the 

initial acoustic pressure distribution to be recovered.   

 Iterative methods are commonly employed to remove artifacts and improve image 

quality. These methods use an explicit model of photoacoustic wave propagation to recover 

the PAT image 𝑥 from the measured signal 𝑦 by solving the following optimization 

problem using the isotropic total variation (TV) constraint 

𝑥 = argmin
௫ᇲ

|| 𝑦 − 𝐴𝑥ᇱ||ଶ + 𝜆|𝑥′|்௏ 

where the parameter 𝜆 > 0 is a regularization parameter [31]–[33]. The TV constraint is a 

widely employed regularization functional for reducing noise and preserving edges. 

Framing image reconstruction as a numerical optimization problem provides a flexible 

framework for tackling the deficiencies of incomplete data. If reconstructing from ideal 

data, then algorithm will converge to a unique solution. However, if the data is incomplete, 

then there is not necessarily a unique solution, and the algorithm might be overfitting to 

noise in the data. The problem of overfitting can be partially by early stopping or including 

additional terms into the constraint. Iterative reconstruction with a TV constraint works 

well in the case of simple numerical or experimental phantoms but often leads to sub-

optimal reconstructions for images with more complex structures [34]. The main drawback 
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of iterative methods is that they are computationally expensive due to the repeated 

evaluations of the forward and adjoint operators 
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CHAPTER TWO 
DEEP LEARNING FOR IMAGE RECONSTRUCTION 

 

Given the wide success of deep learning in classical computer vision tasks such as 

image segmentation and classification, there is a strong interest in applying similar 

methods for tomographic image reconstruction problems [35]–[37]. A key factor in the 

rising popularity of deep learning is that as a data-driven technique, it removes the need 

for careful feature engineering by an expert and instead directly learns the relevant 

features needed for the task from a large training dataset. However, these learned features 

are often highly abstract and incomprehensible to the human eye. Thus, neural networks 

are frequently treated as a “black box”. This is an undesirable trait for biomedical 

imaging and inverse problems, but recent work has revealed insights into why some 

network architectures are well-suited for certain tasks and provided justification for the 

use of deep learning in image reconstruction [38]–[40]. The rising interest in deep 

learning-based image reconstruction has led to a transition from classical methods to 

data-driven approaches. Much of this work was in established imaging modalities such as 

MRI and CT [41]–[44]. In recent years, there has been a growing trend in the literature 

for PAT image reconstruction for using deep learning to tackle the challenges of 

incomplete or limited data with the goal of obtaining more accurate and faster image 

reconstructions than classical methods [45], [46].  
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Section One: Introduction to Deep Learning 

Deep learning or a “deep neural network” is a nonlinear operator that maps an 

input vector to a target output vector [47], [48]. The network consists of multiple “layers” 

which is a composition of an affine linear function with learnable parameters and a 

nonlinearity often referred to as an activation function. A layer ℒ in the network is 

defined as  

ℒ(ℎ଴) = 𝜑(𝐶ℎ଴ + 𝑏) = ℎଵ 

for a given input vector ℎ଴ = ൛ℎ௝
଴ൟ

௝ୀଵ

௃
∈ ℝ௃, where 𝑗 ∈ 𝒿 = {1, … , 𝐽}, an output vector 

ℎଵ = {ℎ௜
ଵ}௜ୀଵ

ூ ∈ ℝூ, where 𝑖 ∈ 𝒾 = {1, … , 𝐼}, a linear map given as matrix 𝐶 ∈ ℝூ×௃, a 

vector 𝑏 ∈ ℝூ, and a nonlinear function 𝜑. The term layer typically refers to an operation 

and its corresponding output except for the “input layer” which refers to the input data 

without any operation (e.g., the image or measured data). 

 
 
 

 

Fig. 4 A single neuron of a layer in an artificial neural network that maps an input vector h0 to an output vector 
h1 using a learned set of coefficients and a non-linear activation function. Adapted from [27]. 
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Within a layer, an individual neuron maps the input vector to one element in the output 

vector by summing over all input elements of ℎ଴ with a common bias 𝑏௜ followed by a 

nonlinearity. Common activation functions used for the nonlinearity are summarized into 

Table I. The output for the ith neuron in a layer is defined as 

ℎ௜
ଵ = 𝜑 ቌ෍ 𝐶௜,௝ℎ௝

଴

 ௝∈𝒿

+ 𝑏௜ቍ  for each 𝑖 ∈ 𝒾 

 
 
 
Table 1 Common activation functions used as a nonlinearity in neural networks [49]. 

Activation Function 𝝋(𝒙) Values 

Hyperbolic tangent tanh(𝑥) =
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
 (-1, 1) 

Sigmoid 𝑆(𝑥) =
1

1 + 𝑒ି௫
 (0, 1) 

Rectified linear unit (ReLu) 𝑅(𝑥) = ቄ
0 for 𝑥 < 0
𝑥 for 𝑥 ≥ 0

 [0, ∞) 

Heaviside function 𝐻(𝑥) = ቄ
0 for 𝑥 < 0
1 for 𝑥 ≥ 0

 [0, 1] 

Signum function 𝑠𝑔𝑛(𝑥) = ൝
−1 for 𝑥 < 0
0 for 𝑥 = 0
1 for 𝑥 > 0

 [-1, 1] 
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Fully Connected Layers 

 The fully connected layer is a commonly used network structure that relates all 

the input elements to each output element [47], [48]. A network architecture consisting of 

multiple fully connected layers is the basis for many deep neural networks, especially in 

those designed for image classification and segmentation.  This network can be expressed 

as the composition of several layers ℒ௟ for 𝑙 = 1, … , 𝐿 

ℎ௅ = (ℒ௅ ∘ ℒ௅ିଵ ∘ … ∘ ℒଵ)(ℎ଴) 

The set of trainable parameters 𝜃 for such a network includes the matrices and bias 

vectors,  𝜃 = {𝐶௟ , 𝐶௟ିଵ, … , 𝐶ଵ, 𝑏௟, 𝑏௟ିଵ, … , 𝑏ଵ}. For imaging applications, the input image 

or measured signal needs to be reshaped into a vector before being provided as an input 

to a fully connected layer.  

 
 
 

 

Fig. 5 Diagram for a simple neural network that is comprised of fully connected layers. The network takes an 
input vector h0 and computes an output vector h4 using two hidden layers. 
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 Pixels or voxels in a biomedical image are often related to their nearby neighbors. 

For example, a neighborhood of pixels with similar values might be part of the same 

anatomical structure. The spatial relationships between those pixels also represent higher 

level information such as the size and shape of the structure. These hierarchical features 

provide critical context for interpreting and analyzing an image. While a fully connected 

layer can learn to use the spatial information in an image, it is not formulated to do so 

explicitly nor efficiently.  

 

Convolutional Layers 

 The convolutional neural network (CNNs) is a type of deep learning architecture 

that is commonly employed for computer vision tasks. It was inspired by the structure 

and pattern of neurons in the visual cortex of human and animal brains [50]. Neurons in 

the visual cortex form a complex sequence to find and focus on small regions in the 

image like applying local filters over the input. CNNs in a similar manner were designed 

to efficiently learn local spatial patterns using the convolution operation with a small 

filter size to identify local features and better exploit the spatial information in an image 

[51], [52]. The convolution operation is an equivariant operator that can identify similar 

local features that have been translated or shifted in the image. Convolutional layers are 

typically more memory and computationally efficient compared to fully connected layers 

because there are fewer connections between the neurons and only the filter coefficients 

need to be learned. Thus, CNNs require a smaller number of learnable parameters which 

greatly simplifies the training process and speeds up the network.  
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 Multiple filters are often used in a single convolutional layer to enable the 

network to learn many local features. Each filter in the convolutional layer is commonly 

referred to as a channel. A convolutional layer is defined for each channel as 

ℎ௜
ଵ = 𝜑 ቌ෍ 𝑤௜,௝ ∗ ℎ௝

଴

 ௝∈𝒿

+ 𝑏௜ቍ  for each 𝑖 ∈ 𝒾 

where ∗ denotes the discrete convolution. The input ℎ଴ = ൛ℎ௝
଴ ∈ ℝ௠×௠ൟ

௝ୀଵ

௃
∈ ℝ௠×௠×௃ and the 

output ℎ଴ = {ℎ௜
଴ ∈ ℝ௠×௠}௜ୀଵ

ூ ∈ ℝ௠×௠×ூ are either single or multichannel images, where  𝑗 ∈

𝒿 = {1, … , 𝐽}  represent the input channels and  𝑖 ∈ 𝒾 = {1, … , 𝐼} represent the output channels. 

The set of trainable parameters for a CNN includes the coefficients of the filters 𝑤௜ and 

biases 𝑏௜.  

 For many imaging tasks, it is often beneficial to down sample the multichannel 

inputs as the CNN continues to learn different features. For example, this could be useful 

in addressing memory constraints by operating on an input with smaller dimensions or 

increasing the convolutional layer’s effective receptive field without requiring additional 

learnable parameters. The inputs are often down sampled using the mean, median, or 

maximum filters with a 2x2 kernel, and are termed pooling layers in the CNN. Pooling 

layers are effective if most of the dominant features or information is retained after the 

down sampling operation. However, potentially useful information can be lost and reduce 

the CNN’s overall performance. 
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Section Two: Learning Task Formulation 

After defining the neural network architecture, the network is trained to perform a 

specific task such as image classification, segmentation, or reconstruction. Training the 

network is an optimization problem with the goal of finding a set of parameters such that 

the network accurately maps the input to the desired output. In this work, the learning 

task is defined as an image reconstruction problem, where the network learns to find a 

mapping from the measured time-series signal to the initial pressure distribution. 

The training process is typically formulated as a supervised learning task, where 

knowledge of the desired output (e.g., ground truth) is known. The neural network learns 

from paired training examples and updates its parameters via backpropagation based on 

the error between the network output and corresponding ground truth. Absolute error and 

mean squared error are commonly used loss functions for training the network. Optimal 

parameters are learned by minimizing the loss function using optimization strategies such 

as stochastic gradient descent, RMSprop, and Adam [53], [54]. 

Supervised learning is the most widely used approach for training a network in 

PAT image reconstruction literature. However, there are alternative approaches such as 

semi-supervised and unsupervised learning methods that can train a network using 

weakly-labeled or unlabeled data [55]. These approaches incorporate an auxiliary 

measure on the goodness of the reconstructed images to guide the optimization process 

[56]. They might be useful in scenarios where the training data has only a small number 

of paired training examples of the input and ground truth. The work presented in this 

dissertation does not use these alternative approaches for training. Nevertheless, they are 
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interesting avenues to explore in the future that might provide potential benefits for 

addressing limitations faced in supervised training such as the network overfitting to the 

data.  

 

Section Three: Deep Learning Frameworks for PAT Image Reconstruction 

Given the numerous applications and measurement configurations for PAT, there 

has been a wide range of strategies developed for applying deep learning to PAT image 

reconstruction [27], [57], [58]. These methods are often inspired by key insights in 

classical methods and can be tailored for a specific imaging task (e.g., denoising). While 

not intended to be exhaustive, the major frameworks for deep learning in PAT image 

reconstruction can be roughly grouped depending on how operators for acoustic wave 

propagation are incorporated into the reconstruction process (Fig. 6). 
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Fig. 6 Summary of frameworks for using deep learning (DL) in the PAT image reconstruction pipeline. The 
main difference between the frameworks is how the physical model of acoustic wave propagation is used if at all 
and the input(s) given to the neural network. 

 
 
 
 

Fully Learned Reconstruction 

 In the fully learned approach or “Direct-DL”, the forward and backward operators 

are not explicitly used in the reconstruction process [59], [60]. The image is formed by 

directly using a deep neural network to learn the physics required to map the measured 

time-series data to the image space. This is the most straightforward approach, in which 

the potentially expensive photoacoustic operators are approximated with a neural 

network. Depending on the network architecture, the trained network can quickly 

reconstruct an image with low latency since no explicit model evaluation is required. 

 In general, this approach relies on fully connected layers to address the issue of 

nonlocality in the data-to-image transform, where all input elements are related to each 
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output element. One major limitation is that the fully connected network needs to learn a 

dense matrix of size 𝑀 × 𝑇 parameters, where 𝑀 is the total number of pixels and 𝑇 is 

the product of the number of detectors and the number of sampling points in time. Due to 

memory limitations, this approach is typically restricted in application for modestly sized 

two-dimensions problems. Moreover, the trained network requires consistent dimensions 

in the data space and image space. Changes in the imaging system configuration such as 

the number of detectors or the number of time-sampling points would require a new 

instance of the network to be trained. 

 

Reconstruction and Learned Post-processing 

Since the operator for photoacoustic wave propagation is well understood, it 

would be beneficial to leverage this knowledge rather than having the network start by 

learning from scratch. In the reconstruction and learned post-processing approach or 

“Post-DL”, this is achieved by using a classical method to provide an initial image 

reconstruction from the measured time-series data followed by a post-processing step 

with a neural network to improve image quality [61]. The initial reconstruction is often 

completed using a fast reconstruction method such as back projection if the goal is to 

achieve a low latency reconstruction method [22].  

Using an initial reconstruction overcomes the inflexibility regarding the 

acquisition geometry in the fully learned reconstruction since the neural network no 

longer needs to learn the data-to-image mapping but only an image-to-image mapping. 

This also allows the post-processing framework to be applied to higher resolution images 
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and 3D applications since the memory burden of the fully connected layer is removed. 

Convolutional neural networks are commonly used to learn a restoration operator for an 

image-to-image mapping. Highly expressive networks with many layers and learnable 

parameters such as the UNet are typically used to learn the restoration operator [62]. In 

these networks, the image size is reduced via pooling layers to extract larger spatial 

features. The extracted coarse features are then subsequently upsampled and combined 

with previously learned finer features to construct the final image. The main drawback of 

using highly expressive networks is their tendency to overfit to the training data and 

failure to generalize to image and artifact types not observed in the training data [63]. 

 

Learned Iterative Reconstruction 

In the learned post-processing approach, the forward operator is only used once to 

provide an initial reconstruction. But the forward and its related operators can be used 

multiple times throughout the reconstruction process to improve the data consistency in 

the reconstructed images [41], [45]. These approaches are termed learned iterative 

reconstruction or “model-based” since the neural networks are interlaced with evaluations 

of the forward, adjoint, and other hand-crafted operators. Repeated use of the forward and 

adjoint operators enables for more informative inputs to be given to the network to 

reconstruct a higher quality image. Learned iterative schemes typically outperform other 

reconstruction approaches but at the cost of a higher computational complexity due to 

repeated evaluations of the forward and adjoint operators. For each iteration, a neural 

network with its own set of learnable parameters is trained to update the image with the 
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goal of minimizing the data consistency term 𝒟(𝑥; 𝑦) =
ଵ

ଶ
‖𝑦 − 𝐴𝑥‖ଶ

ଶ. Using a gradient 

descent scheme for updating the image with a CNN for N steps, this process can be 

formulated as  

𝑥௡ାଵ = Λఏ೙
ቀ𝑥(௡), 𝐴ᇱ൫𝐴𝑥(௡) − 𝑦൯ቁ ,    𝑛 = 0, … , 𝑁 − 1 

where 𝐴 is the forward operator, 𝐴ᇱ is the adjoint or a similar hand-crafted operator, and 

Λఏ೙
is a neural network termed the learned updating operator for the nth step. There is an 

initialization step to map the measured time-series data to the image space. The CNN at 

the nth step receive the current image to be updated and a gradient image measuring data 

consistency as inputs. 

 
 
 

 

Fig. 7 Process diagram to illustrate the learned iterative approach for the first two iterations and onwards. The 
measured time-series data 𝒚 is initially reconstructed into the image 𝒙𝟎. A convolutional neural network 𝚲𝜽 
iteratively updates the image using the current image and a gradient image as inputs. The colors red and blue 
refer to the data and image spaces, respectively. Adapted from [27]. 
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CHAPTER THREE 
FULLY DENSE UNET FOR 2D PAT 

To the best of our knowledge, the first work describing the application of deep 

learning for photoacoustic tomography image reconstruction was published by Antholzer 

et al. in 2017 on the pre-print server ArXiv [64]. This preliminary work provided an 

initial demonstration of the learned post-processing approach and evidence that deep 

learning is a powerful and effective tool for artifact removal. It also served as a key 

inspiration for exploring different deep learning methodologies and frameworks. Key 

challenges identified in their work were the issues of overfitting and data mismatch 

between the training and testing data. Deep learning networks often perform well on 

images like the training data and fail to generalize to other images not in the training data. 

These problems are ubiquitous to all applications of deep learning and machine learning. 

In this work, the Fully Dense UNet addressed these challenges by incorporating dense 

connectivity into the well-known UNet architecture [65], [66]. In Silico experiments 

comparing multiple reconstruction methods were performed on a variety of simulated 

phantoms. Results were published in the Journal of Biomedical Health and Informatics 

[63]. 

 

Section One: Introduction and Motivation 

A common challenge faced in PAT is that the acoustic waves can only be sparsely 

sampled in the spatial dimension. Each discrete spatial measurement requires its own 

detector, and it may be infeasible to build an imaging system with a sufficiently large 
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number of detectors due to practical and physical limitations [32], [67], [68]. 

Reconstructing sparsely sampled data using standard methods result in low quality 

images with severe artifacts. Iterative reconstruction methods can be used to reduce 

artifacts and improve image quality by incorporating prior knowledge such as 

smoothness, sparsity, and total variation constraints into the reconstruction process [31], 

[32], [69], [70]. However, selecting appropriate constraints can be a challenging task, 

especially for images with complex spatial structures. Furthermore, iterative methods can 

be time consuming because they require repeated evaluations of the forward and adjoint 

operators. 

Many applications of deep learning for sparse tomographic image reconstruction 

follows a post-processing approach, where an initial corrupted image is first 

reconstructed from the sensor data using a simple inversion step and then a CNN is 

applied as a post-processing step for removing artifacts and improving image quality. 

This approach has been successfully applied to CT, MRI, and PAT and shown to achieve 

comparable image quality to iterative methods [44], [46], [64], [71]. 

In this work, we follow the post-processing approach and propose a modified 

CNN architecture termed Fully Dense UNet (FD-UNet) for removing artifacts in 2D PAT 

images reconstructed from sparse data. The FD-UNet incorporates dense connectivity 

into the contracting and expanding paths of the UNet CNN architecture. Dense 

connectivity mitigates learning redundant features and enhances information flow 

allowing for a more compact and superior CNN [65], [72], [73]. 
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The UNet is the most widely used CNN architecture for applying deep learning 

with the post-processing approach in sparse tomographic image reconstruction [64], [71], 

[74]. It has many properties well-suited for artifact removal such as its use of multilevel 

decomposition and multichannel filtering [44].  Moreover, it has been demonstrated to 

perform comparatively well to iterative methods for sparse PAT image artifact removal 

on synthetic and experimental data [64], [74].  We build upon previous work and improve 

the post-processing approach by incorporating a recent advancement in CNN architecture 

design, namely dense connectivity, to achieve a CNN with superior performance. 

Compared to previous UNet implementations, we also apply batch normalization to 

accelerate the training process [75], [76].  

A UNet with dense connectivity termed “DD-Net” has been previously used for 

sparse-view CT reconstruction and was shown to outperform iterative methods [77]. 

While the FD-UNet also uses dense connectivity, there are several differences in 

implementation. 1) The DD-Net includes dense connectivity only in the contracting path 

of the UNet. Whereas the FD-UNet includes dense connectivity in both the contracting 

and expanding paths. This strategy enables the benefits of dense connectivity to be 

leveraged throughout the entire network. 2) In the DD-Net, the dense block “growth rate” 

hyperparameter remains constant throughout the network. In the FD-UNet, this 

hyperparameter is updated throughout the CNN to improve computational efficiency. To 

the best of our knowledge, this is the first work applying the UNet with dense 

connectivity for removing artifacts in sparse PAT image reconstruction. 
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Section Two: Methods 

As shown in Fig. 8., the sparsely sampled acoustic pressure is initially 

reconstructed using TR into an image  𝑿 containing artifacts. The CNN is then applied to 

correct the undersampling artifacts in image 𝑿 to obtain an approximately artifact-free 

image 𝒀. This task can be formulated as a supervised learning problem, in which the goal 

is to learn a restoration function that maps an input image 𝑿 to the desired output image 𝒀  

[64]. Other reconstruction methods can be used in place of TR to reconstruct the initial 

artifact image X from sensor data. TR was chosen for this work because it can be easily 

adapted for any sensor configuration, provides a good initial reconstruction, and is 

computationally inexpensive relative to iterative methods. 

 
 

 

 

Fig. 8 Deep learning framework for 2D PAT image reconstruction. The sparsely sampled acoustic pressure is 
reconstructed into an image containing artifacts using time reversal. A CNN is applied to the artifact image 𝑿 to 
obtain an approximately artifact free image 𝒀.  
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Proposed FD-UNet Architecture 

As seen in Fig. 9., the input image 𝑿 undergoes a multilevel decomposition in the 

contracting path of the FD-UNet, where the spatial dimensions of the feature maps are 

repeatedly reduced via a max-pooling operator [44], [62], [78]. This strategy enables the 

CNN to efficiently learn local and global features relevant for artifact removal at various 

spatial scales [79]. In the following expanding path, the learned feature-maps are spatially 

upsampled via a deconvolution operator and combined to produce an output image 𝒀 

with the same dimensions as the input image 𝑿.  Deconvolution can be thought as the 

reverse of convolution and is essentially a transposed convolution. 

For each spatial level, 𝑠, in the FD-UNet, a dense block with a growth rate, 𝑘௦, is 

used to learn several feature-maps, 𝑓௦. Initial values for  𝑘ଵ and 𝑓ଵ are hyperparameters 

defined by the user. 𝑘௦ is updated at each spatial level so that all dense blocks in the FD-

UNet have the same number of convolutional layers to maintain computational 

efficiency. In our implementation, 𝑘௦ = 2௦ିଵ × 𝑘ଵ and 𝑓௦ = 2௦ିଵ × 𝑓ଵ. Where the FD-

UNet use dense blocks, the UNet have instead a sequence of two 3x3 convolution 

operations to learn feature-maps [64]. 
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Fig. 9 Proposed FD-UNet architecture that incorporates dense connectivity [26] into the expanding and 
contracting path of the U-Net [19]. Hyperparameters for the illustrated architecture are 𝒌𝟏 = 𝟖 and 𝒇𝟏 = 𝟔𝟒 for 
an input image X of size 128x128 pixels. 

 
 
 

After each deconvolution operation, the upsampled feature-maps are concatenated 

channel-wise with feature-maps of similar size from the contracting path. These 

concatenation connections allow higher resolution features learned earlier in the network 

to be used in the upsampling process. However, this results in 2𝑓௦ feature-maps and 

cannot be reduced to the desired 𝑓௦ feature-maps using a dense block. To address this 

issue, the concatenated feature-maps are first reduced to 𝑓௦/2 feature-maps using a 1x1 

convolution prior to each dense block in the expanding path. 

In a dense block, earlier convolutional layers are connected to all subsequent 

layers via channel-wise concatenation [65], [72]. This means that the input to each layer 

in a dense block is the outputs from all previous layers concatenated together.  

Essentially, each layer learns additional feature-maps based on the “collective 
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knowledge” gained by previous layers. This strategy increases the network’s 

representational power through feature reuse. Features learned in earlier layers are passed 

forward and removes the need to learn redundant features and promotes learning a 

diverse set of features.  

 
 
 

 
Fig. 10 Four layered dense block with 𝒌𝟏 = 𝟖 and 𝑭 = 𝟑𝟐. Feature-maps from previous layers are concatenated 
together as the input to following layers. 

 
 
 

Furthermore, dense connectivity allows for deeper networks. For example, the 

FD-UNet has 82 convolution and deconvolution layers while the UNet has 23 layers. As 

the depth of the network increases, gradient information passes through many layers and 

can be lost before it reaches the earlier layers in a network leading to the vanishing 

gradient problem. Previous networks (e.g. ResNets and Highway Networks) addresses 

this problem by introducing short paths from earlier to later layers [80], [81]. Dense 

connectivity follows a similar principle but introduces many more connections to allow 

for gradient information to be efficiently backpropagated. This mitigates the vanishing 

gradient problem and allows for the network to be more easily trained. 

As seen in Fig. 10., the ℓ௧௛ layer in the dense block has an output with 𝑘௦ feature-

maps and an input with 𝐹 + 𝑘௦ × (ℓ − 1) feature-maps, where 𝐹 is the number of 
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feature-maps of the initial input to the dense block. Features are learned through a 

sequence of a 1x1 and 3x3 convolution with batch normalization and rectified linear unit 

(ReLU) activation function [75], [76]. The 1x1 convolution is included to improve 

computational efficiency by reducing the input size to 𝐹 feature-maps prior to the more 

computationally expensive 3x3 convolution. Then 𝑘௦ features maps are learned from the 

reduced input using a 3x3 convolution. The final output of the dense block is the 

concatenation between the input and outputs from all dense block layers.  

The proposed CNN architecture utilizes residual learning by adding a skip 

connection between the input and output [80], [82]. In residual learning, the CNN learns 

to map the input image 𝑿 to a residual image 𝑹 = 𝒀 − 𝑿 and then recovers the target 

artifact-free image 𝒀 by adding the residual 𝑹 to the input 𝑿. Residual learning is shown 

to mitigate the vanishing gradient problem. The residual 𝑹 often has a simpler structure 

than the original image and is easier for the CNN to learn [71]. 

 

Synthetic Data for Training and Testing 

Synthetic training and testing data is created using k-Wave, a MATLAB toolbox 

for simulating photoacoustic wave fields [83]. For each dataset generated, an initial 

photoacoustic source with a grid size of 128x128 pixels is defined. The medium is 

assumed to be non-absorbing and homogenous with a speed of sound of 1500 m/s. The 

sensor array has N detectors equally spaced on a circle with a radius of 60 pixels.  Built-

in functions of k-Wave are used to simulate sparse sampling of photoacoustic pressures. 
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The TR method is then used to reconstruct an initial image containing artifacts from the 

sparsely sampled data.  

Datasets are generated from three different synthetic phantoms (circles, Shepp-

Logan, and vasculature) and an anatomically realistic vasculature phantom created from 

experimentally acquired micro-CT images of mouse brain vasculature. The phantoms are 

used to define an initial photoacoustic pressure source in k-Wave for creating simulated 

PAT images.  

The circles dataset is comprised of simple phantoms that contain up to five circles 

with equal magnitude. The center location and radius for each circle are chosen randomly 

from a uniform distribution. This protocol is used to initially create a total of 1200 circles 

phantom images. We employed four-fold cross validation by dividing the images into 

four sets of a 1000 training images and 200 testing images. The images are used to 

initialize the photoacoustic pressure distribution to created simulated PAT image datasets 

for three levels of sampling sparsity (10, 15, and 30 detectors).  

The Shepp-Logan and synthetic vasculature datasets are created using a data 

augmentation strategy. Training and testing images are procedurally generated from an 

original image with a size of 340x340 pixels for each phantom. Downsampled versions of 

these initial phantom images are shown as ground truth in Fig. 8. New images are created 

using the following steps. First, scaling and rotation is applied to the original image with 

a randomly chosen scaling factor (0.5 to 2) and rotation angle (0-359 degrees). Then a 

128x128 pixels sub-image is randomly sampled from the transformed image. Finally, the 

sub-image is translated with a randomly selected vertical and horizontal shift (0-10 
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pixels) via zero-padding. Data augmentation allows for  large sets of images with similar 

but different features to be easily created [84]. This strategy is used to generate a testing 

and fine-tuning dataset with 200 and 100 images, respectively, for each synthetic 

phantom. PAT images are then simulated using k-Wave with a sensor array of 30 

detectors. 

The anatomically realistic vasculature phantom is derived from a 3D volume of 

mouse brain vasculature that was experimentally acquired using micro-CT [85]. The 

original volume had a size of 260x336x438 pixels. The Frangi vesselness filter is applied 

to suppress background noise and enhance vessel-like features in the volume [86]. New 

images are created from the filtered volume following a similar data augmentation 

procedure as described for the synthetic phantoms. However, a 128x128x128 pixels sub-

volume is instead randomly sampled from the transformed volume and is used to create a 

maximum intensity projection image by applying the max operator along the third 

dimension. Only a testing dataset with 200 images is generated from the mouse brain 

vasculature phantom. The corresponding training dataset with 1000 images is instead 

generated from the synthetic vasculature phantom. To create more complex synthetic 

images for training, the outputs from multiple iterations (up to five) of the data 

augmentation process are summed together. This enables the synthetic training images to 

have more a complex network structure with varying vessel sizes and orientation. PAT 

images of the synthetic and realistic vasculature phantoms are simulated at various levels 

of sampling sparsity (15, 30, and 45 detectors). 
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Deep Learning Implementation 

The CNNs are implemented in Python 3.6 with TensorFlow v1.7, an open source 

library for deep learning [87]. Training and evaluation of the network is performed on a 

GTX 1080Ti NVIDIA GPU. The CNNs are trained for 10,000 iterations using a mean 

squared error loss function, learning rate of 1e-4, and a mini-batch size of three images. 

 

Section Three: Results 

The UNet and FD-UNet are compared over several experiments to determine if 

dense connectivity enables for more artifacts to be removed and hence an image with 

higher quality to be recovered. Image reconstruction quality is quantified using the peak 

signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [88]. PSNR provides 

a global measurement of image quality whereas SSIM measures the similarity between 

local patterns of pixel intensities. 

Circles Dataset 

In this initial experiment, the CNNs are both trained and tested using the circles 

dataset. This represents an ideal data scenario where the training and testing data are 

well-matched meaning the CNN had an opportunity to learn almost all the features 

needed from the training data to perform well on the testing data. This ideal scenario 

provides a starting point for comparing the performance of the CNNs without limitations 

from data-related issues. Since the training and testing are derived from the same 

phantom in this experiment, four-fold cross validation is employed to increase confidence 

in the results observed.  
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Table 2 Average PSNR and SSIM for 2D circles dataset (30 Sensors) 

 
𝑓ଵ = 8 
𝑘ଵ = 1 

𝑓ଵ = 16 
 𝑘ଵ = 2 

𝑓ଵ = 32 
𝑘ଵ = 4 

𝑓ଵ = 64  
𝑘ଵ = 8 

TR 
32.48 ± 3.52 
0.75 ± 0.07 

UNet 

33.77 ± 4.18 
0.78 ± 0.12 

487K 
(0.94) 

34.48 ± 4.19 
0.79 ± 0.12 

1.9M 
(1.05) 

34.70 ± 4.54 
0.79 ± 0.12 

7.8M 
(1.55) 

34.84 ± 4.48 
0.79 ± 0.12 

31M 
(2.94) 

FD-UNet 

39.35 ± 3.19 
0.84 ± 0.08 

151K 
(0.80) 

41.45 ± 3.28 
0.85 ± 0.07 

600K 
(0.91) 

43.05 ± 3.27 
0.86 ± 0.07 

2.4M 
(1.4) 

44.84 ± 3.42 
0.87 ± 0.07 

9.4M 
(2.78) 

𝒇𝟏 and 𝒌𝟏 are CNN hyperparameters. 𝒌𝟏 is only applicable to the FD-UNet. For each row, the following metrics 
are reported: PSNR, SSIM in italics, number of trainable parameters, and evaluation time in milliseconds for a 
single image in parenthesis. 

 
 
 

The CNNs’ potential in learning to remove artifacts are evaluated by varying the 

hyperparameters 𝑓ଵ (initial feature-maps learned) and 𝑘ଵ (initial dense block growth rate). 

Increasing 𝑓ଵ results in a wider CNN with more representational power and typically 

better performance. Results for the FD-UNet and UNet with varying model complexities 

for the circles dataset are shown in Table 2 and Fig. 11a. As expected, the initial TR 

reconstruction has severe artifacts and the lowest average PSNR and SSIM. Applying 

either CNN generally results in an improved and near artifact-free image. However, the 

FD-UNet outperforms and is more consistent in removing artifacts than the UNet. As 

seen in Fig. 11b., the FD-UNet removes majority of the artifacts but the UNet fails to 

remove artifacts on the boundary of the top-left circle and in the background. For all 

images in the testing dataset, there are no instances of the UNet outperforming the FD-

UNet.  
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Fig. 11 Reconstructed circles images using TR, UNet, and FD-UNet with varying hyperparameters. (a) both 
CNNs recover a near artifact-free image. (b) example of the UNet reconstruction with residual background 
artifacts and the top-left circle has a distorted boundary. 

 
 
 

Dense connectivity improves model parameter efficiency and allows for a more 

compact CCN with better performance.  As seen in Table 2, the FD-UNet requires fewer 

parameters (about a third) and has a higher average PSNR and SSIM compared to the 

UNet for each set of hyperparameters tested. The CNNs have similar average evaluation 

times with the FD-UNet being only slightly faster by a fraction of a millisecond. In the 

FD-UNet, a dense block is used in place of the two 3x3 convolutions in the UNet. While 

the dense block has eight different convolutional layers (four 1x1 and four 3x3), the input 

and output of each convolutional layer are relatively smaller. Thus, the convolutional 

layers in the dense block are computationally cheaper than those in the UNet resulting in 

the two CNNs having similar evaluation times.  
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Interestingly, the most compact FD-UNet (𝑓ଵ = 8, 𝑘ଵ = 1)  with fewer parameters 

and features learned outperforms the more complex UNet (𝑓ଵ = 64). This demonstrates 

that the FD-UNet, despite learning fewer features, is learning more relevant ones for 

artifact removal. In general, both CNNs have improved performance as 𝑓ଵ and model 

complexity is increased. However, these improvements are diminishing because larger 

CNNs are more difficult to train and prone to overfitting. As seen in Fig. 12., the CNNs 

are trained for a total of 10,000 iterations but converge to a maximum by 8,000 iterations. 

The UNet loss appears to be more volatile compared to the FD-UNet loss. 
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Fig. 12 Training loss in PSNR during the training phase for the FD-UNet (𝒇𝟏 = 𝟔𝟒, 𝒌𝟏 = 𝟖) and UNet (𝒇𝟏 = 𝟔𝟒) 
on the circles training dataset (N=30 sensors). 

 
 
 

The CNNs’ ability to remove artifacts under varying levels of sampling sparsity 

are also evaluated. The goal of this experiment is to determine the extent of artifact 

severity that can be removed by each CNN. For each level of sampling sparsity, the 

CNNs are trained and tested on the corresponding datasets. 

 
 
 

Table 3 Average PSNR and SSIM under varying sampling sparsity levels 

# of Detectors 10 15 30 

TR 
24.86 ± 3.18 
0.70 ± 0.05 

27.30 ± 3.15 
0.72 ± 0.06 

32.48 ± 3.52 
0.75 ± 0.07 

UNet 
24.69 ± 3.79 
0.72 ± 0.11 

27.26 ± 3.94 
0.76 ± 0.11 

34.84 ± 4.48 
0.79 ± 0.12 

FD-UNet 
32.59 ± 4.36 
0.83 ± 0.07 

38.10 ± 4.20 
0.86 ± 0.07 

44.84 ± 3.42 
0.87 ± 0.07 

For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom. The 
CNN hyperparameters used are FD-UNet (𝒇𝟏 = 𝟔𝟒, 𝒌𝟏 = 𝟖) and UNet (𝒇𝟏 = 𝟔𝟒) 
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Results for the FD-UNet and UNet for different levels of sampling sparsity are 

shown in Table 3. As expected, decreasing the number of detectors used to sample the 

acoustic pressure results in more severe artifacts and a lower average PSNR and SSIM. 

The FD-UNet has a higher average PSNR and SSIM compared to the UNet for all levels 

of sampling sparsity tested. Reconstructed phantom images under different levels of 

sampling sparsity are shown in Fig. 13. When using 30 detectors, both CNNs perform 

well in removing artifacts from images reconstructed. At a sparser sampling level using 

15 detectors, the FD-UNet recovers higher quality images than the UNet. For example, 

the boundaries of the circles as indicated by the red arrows in Fig. 13b. are blurred 

together in the UNet reconstruction but can be clearly distinguished in the FD-UNet 

reconstruction. Both CNNs are unable to reliably reconstruct the circles’ boundaries at 

sparsity level using 10 detectors. Interestingly, the FD-UNet is able recover a 

reconstruction with a higher SSIM from a more corrupted initial image (10 detectors) 

than the UNet can from an initial image with less artifacts (30 detectors). 
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Fig. 13 Reconstructed circles images under different levels of sampling sparsity using (a) 10, (b) 15, and (c) 30 
detectors. The red arrows point to a boundary that is blurred at more sparse sampling levels. 

 
 
 
Shepp-Logan and Vasculature Phantom Dataset 

 In the second experiment, the CNNs are initially trained on the circles dataset and 

tested on the Shepp-Logan and synthetic vasculature data. This represents a scenario in 

which the training and testing data are not necessarily well-matched. The circles and 

Shepp-Logan phantoms have many similar circular-like features and are well-matched. 

However, the circles and synthetic vasculature phantom have significantly different 

features and are not well-matched. After initially training on the circles dataset, the CNNs 

are further trained for 5,000 iterations on either the Shepp-Logan or synthetic vasculature 

fine-tuning dataset. The purpose of this experiment is to evaluate the CNN’s performance 

and ability to generalize when the training and testing datasets are not well-matched. 
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Furthermore, the feasibility of training on a large poorly matched dataset and a smaller 

well-matched dataset is explored. 

 
 
 
Table 4 Average PSNR and SSIM for Shepp-logan and Vasculature phantom dataset (30 Detectors) 

 Shepp-Logan Vasculature 
 Initial Fine-tuned Initial Fine-tuned 

TR 
32.50 ± 1.53 
0.87 ± 0.03 

24.79 ± 2.86 
0.66 ± 0.06 

UNet 
31.69 ± 1.19 
0.93 ± 0.03 

36.23 ± 2.46 
0.95 ± 0.04 

24.40 ± 2.93 
0.66 ± 0.06 

25.96 ± 2.85 
0.70 ± 0.11 

FD-UNet 
30.81 ± 0.97 
0.94 ± 0.01 

38.24 ± 1.69 
0.97 ± 0.01 

25.27 ± 2.16 
0.70 ± 0.05 

31.30 ± 2.24 
0.82 ± 0.07 

For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom. The 
CNN hyperparameters used are FD-UNet (𝒇𝟏 = 𝟔𝟒, 𝒌𝟏 = 𝟖) and UNet (𝒇𝟏 = 𝟔𝟒) 
 
 
 
 Results for the FD-UNet and UNet with and without fine-tuning for the Shepp-

Logan and synthetic vasculature datasets are shown in Table 4 and Fig. 14. Both CNNs 

without fine-tuning have comparable performance and recover a high-quality albeit 

blurred reconstruction of the Shepp-Logan phantom as seen in Fig. 14a. However, they 

are not able to perform as well in the case of the of the synthetic vasculature phantom as 

seen in Fig. 14b. The general structure of the vessels can be clearly seen but appear to 

have circular-like features like the circles phantom training dataset. The FD-UNet does 

perform slightly better and removes more of the background artifacts. 
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Fig. 14 Reconstructed images (30 sensors) of the (a) Shepp-Logan phantom and (b) vasculature phantom with 
and without fine-tuning (FT). 

 
 
 
Mouse Brain Vasculature Phantom Dataset 

 As expected, fine-tuning with well-matched training data improves the CNNs’ 

performance, especially in the case of the synthetic vasculature phantom. Both CNNs 

with fine-tuning recover a sharp and high-quality reconstruction of the Shepp-Logan 

phantom. Reconstructions of the synthetic vasculature no longer have the circle-like 

appearance. While both CNNs improve the initial TR reconstruction, the FD-UNet can 

remove more artifacts and outperform the UNet as evidenced by its higher average PSNR 

and SSIM for both synthetic phantoms.  

 In the third experiment, the CNNs are trained on the more complex synthetic 

vasculature phantom dataset and tested on the mouse brain vasculature dataset. In this 

scenario, the datasets are well-matched, but there are likely features in the anatomically 

realistic brain vasculature dataset that are not present in the synthetic vasculature dataset. 

The purpose of this experiment is to evaluate the feasibility of training the CNNs on 
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synthetic phantom images for removing artifacts from anatomically realistic vasculature 

images under multiple levels of sampling sparsity. 

 
 
 
Table 5 Average PSNR and SSIM under varying sampling sparsity levels for mouse brain vasculature dataset 

# Of Detectors 15 30 45 

TR 
19.77 ± 0.96 
0.58 ± 0.05 

22.89 ± 1.13 
0.70 ± 0.05 

25.56 ± 1.28 
0.78 ± 0.05 

UNet 
20.21 ± 1.19 
0.60 ± 0.07 

22.15 ± 2.35 
0.68 ± 0.11 

25.07 ± 2.09 
0.76 ± 0.11 

FD-UNet 
21.12 ± 1.18 
0.65 ± 0.04 

25.13 ± 1.36 
0.82 ± 0.03 

28.47 ± 1.39 
0.89 ± 0.03 

For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom. The 
CNN hyperparameters used are FD-UNet (𝒇𝟏 = 𝟔𝟒, 𝒌𝟏 = 𝟖) and UNet (𝒇𝟏 = 𝟔𝟒). 

 
 
 

 As seen in Table 5, there are no significant quantitative changes in PSNR and 

SSIM between the UNet and TR reconstructions for all levels of sampling sparsity tested. 

However, the UNet does remove majority of the background artifacts and qualitatively 

appears better than the TR reconstruction as shown in Fig. 15. No quantitative 

improvement is observed because the UNet only recovers larger vessels and is missing 

many of the smaller features. The FD-UNet outperforms the UNet and improves the 

average PSNR and SSIM. It recovers many of the smaller details that are missing in the 

UNet reconstruction as shown by the green arrows in Fig. 15b. The performance of the 

CNNs is heavily dependent on the image quality of the TR reconstruction. Features that 

are missing in the initial reconstruction are also typically missing or incorrectly 

reconstructed by the CCNs as shown by the red arrows in Fig. 15a. 
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Fig. 15 Examples of reconstructed mouse brain vasculature images for sampling sparsity levels with (a) 15, (b) 
30, and (c) 45 detectors. Red and green arrows point to features present in the FD-UNet but missing in the UNet 
reconstruction. 

 
 

 

Section Four: Discussion and Conclusion 

 In this work, we propose a modified CNN architecture for removing artifacts from 

2D PAT images reconstructed from sparse data. Results from the experiments performed 

consistently show that the FD-UNet is superior to the standard UNet for artifact removal 

and image enhancement. Dense connectivity strongly encourages feature reuse and 

improves information flow throughout the network. The benefits in using this 

connectivity pattern can be observed in Fig. 11. The most compact FD-UNet (𝑓ଵ = 8) 

outperforms the more complex UNet (𝑓ଵ = 64) despite learning fewer features and 
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requiring only a fraction of the parameters. This demonstrates that the FD-UNet is 

learning more relevant features for artifact removal, and the ability to reuse those features 

throughout the network greatly improves the CNN’s performance. Furthermore, dense 

connectivity has a regularizing effect that reduces the likelihood of overfitting to the 

training data. As seen in Fig. 12., both CNNs converge to a similar PSNR during training 

yet the FD-UNet outperforms the UNet in testing data. This is likely due to the UNet 

overfitting to the training data and failing to lean features that generalize well. 

Furthermore, the UNet training loss is more volatile relative to that of the FD-UNet 

indicating that the UNet is overfitting to previously observed training examples.  

 A limitation in using deep learning for artifact removal is that the CNN requires a 

large training dataset to learn the appropriate weights and features needed to perform 

well. This limitation can be addressed using computational models (e.g., k-Wave) and 

synthetic phantoms to generate arbitrarily large datasets for training. However, there 

remains a challenge in generating a training dataset with all the image features likely to 

be observed in the testing dataset. This requirement for well-matched training and testing 

data is demonstrated in the second experiment. As seen in Fig. 14, the CNNs having 

trained only on images of circles can recover good reconstructions of the Shepp-Logan 

phantom but not of the synthetic vasculature phantom. Their performance is improved 

after fine-tuning with a small dataset of synthetic vasculature images. These results 

provide evidence that it is feasible to initially train the CNN using a poorly matched 

dataset and then fine-tuned using a small well-matched dataset. This strategy may be 

useful when only a few relevant experimental training images are available. 
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 In the third experiment, the FD-UNet is trained on the synthetic vasculature 

dataset and tested on the mouse brain vasculature dataset. While both CNNs remove 

majority of the background artifacts and reliably recover the larger vessels, the FD-UNet 

typically recovers more of the smaller vessels than the UNet as seen in Fig. 15. As fewer 

detectors are used for sampling, the artifacts become increasingly severe in the TR 

reconstruction and image quality is degraded. A limitation in the post-processing 

approach is that the CNN’s performance strongly depends on the quality of the TR 

reconstruction. Image features severely obscured by artifacts or missing in the TR 

reconstruction are likely to be reconstructed incorrectly or missing in the CNN 

reconstruction. Information is lost as a result of sparse sampling, but the initial step of 

reconstructing an image from sensor data also discards potentially useful information and 

introduces artifacts. It may be possible to recover some of the smaller vessels if the CNN 

is used to directly reconstruct the sensor data into an image. 

 In this paper, we propose a modified CNN architecture termed FD-UNet for 

removing artifacts from 2D PAT images reconstructed from sparse data. We compare the 

FD-UNet and the UNet using datasets generated from synthetic phantoms (circles, 

Shepp-Logan, and vasculature) and an anatomically realistic mouse brain vasculature 

dataset. The FD-UNet is demonstrated to be superior and more compact CNN for 

removing artifacts and improving image quality.  
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CHAPTER FOUR 
PIXEL-WISE DEEP LEARNING 

A key limitation in the learned post-processing approach is that the ability of the 

neural network to remove artifacts is strongly dependent on the quality of the input 

image. Fine features in the initially reconstructed image are often lost due to artifacts 

arising from sparse spatial sampling and limited-view detection and are not recoverable 

by the neural network. We hypothesized that there is potentially useful information in the 

measured time-series data being lost in the initial image reconstruction step, and this 

additional information can be leveraged by the neural network to reconstruct a higher 

quality image. To explore this hypothesis, we developed pixel-wise interpolation as a 

data pre-processing step that maps the time-series data from the sensor to image space 

based on the physics of acoustic wave propagation. Pixel-wise interpolation removes the 

need for an initial image reconstruction and seeks to retain the full information of the 

time-series data for the neural network to use. By providing a more informative input, the 

neural network can recover some of the finer features and reconstruct higher quality 

images. In Silico experiments comparing pixel-wise interpolation with other 

reconstruction methods were performed on several phantoms, and the results were 

published in Nature Scientific Reports. 

 

Section One: Introduction and Motivation 

PAT involves irradiating the biological tissue with a short-pulsed laser. Optical 

absorbers within the tissue are excited by the laser and undergo thermoelastic expansion 
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which results in the generation of acoustic waves [11]. A sensor array surrounding the 

tissue is then used to detect the acoustic waves, and an image is formed from the 

measured sensor data. PAT image reconstruction is a well-studied inverse problem that 

can be solved using analytical solutions, numerical methods (e.g. time reversal), and 

model-based iterative methods [15], [22]–[25]. In general, a high-quality image can be 

reconstructed if the sensor array has a sufficiently large number of sensor elements and 

completely encloses the tissue. However, building an imaging system with these 

specifications is often prohibitively expensive, and in many in vivo applications such as 

neuroimaging, the sensor array typically can only partially enclose the tissue [89], [90]. 

These practical limitations result in sparse spatial sampling and limited-view of the 

photoacoustic waves emanating from the medium. Reconstructing from sub-optimally 

acquired data causes streaking artifacts in the reconstructed PAT image that inhibits 

image interpretation and quantification [26]. 

Given the wide success of deep learning in computer vision, there is a strong 

interest in applying similar methods for tomographic image reconstruction problems 

[35]–[37]. Deep learning has the potential to be an effective and computationally efficient 

alternative to state-of-the-art iterative methods. Having such a method would enable 

improved image quality, real-time PAT image rendering, and more accurate image 

interpretation and quantification. 

Among the many deep learning approaches for image reconstruction, post-

processing reconstruction (Post-DL) is the most widely used and has been demonstrated 

for improving image reconstruction quality in CT [44], [71], MRI [91], and PAT [34], 
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[46], [61], [63], [74], [92].  It was shown capable of achieving comparable or better 

performance than iterative methods for limited-view and sparse PAT image 

reconstruction [45], [61], [93], [94]. In Post-DL, an initial inversion is used to reconstruct 

an image with artifacts from the sensor data. A convolutional neural network (CNN) is 

then applied as a post-processing step to remove artifacts and improve image quality. The 

main drawback of Post-DL is that the initial inversion does not properly address the 

issues of limited-view and sparse sampling, which results in an initial image with 

artifacts. Image features (e.g., small vessels) that are missing or obscured by artifacts are 

unlikely to be recovered by the CNN.  

Previous works attempted to improve upon Post-DL by removing the need for an 

initial inversion step [45], [59]. One approach termed direct reconstruction (Direct-DL) 

used a CNN to reconstruct an image directly from the sensor data [59]. The main 

challenge in using Direct-DL is the need to carefully select parameters (e.g., stride and 

kernel size) for each convolutional layer in order to transform the sensor data into the 

desired image dimensions. Changing either the dimensions of the input (e.g., using a 

different number of sensors) or output would require a new set of convolution parameters 

and the CNN architecture to be modified. Direct-DL was shown capable of 

reconstructing an image but underperformed compared to Post-DL. Interestingly, a 

hybrid approach using a combination of Post-DL and Direct-DL, where an initial 

inversion and the sensor data are given as inputs to the CNN, was shown to provide an 

improvement over using Post-DL alone [95], [96]. 
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Another approach termed “model-based learning” similarly does not require an 

initial inversion step and achieves state-of-the-art image reconstruction quality [45], 

[97]–[99]. This approach is like iterative reconstruction and uses an explicit model of 

photoacoustic wave propagation for image reconstruction. However, the prior constraints 

are not handcrafted and instead are learned by a CNN from training data. The improved 

performance does come at the cost of requiring more time to train the CNN and 

reconstruct an image [45]. Thus, the choice between model-based learning and direct 

learned approaches (e.g., Post-DL and Direct-DL) depends on whether the application 

prioritizes image reconstruction speed or quality. 

In this work, we propose a novel approach termed pixel-wise deep learning 

(Pixel-DL) for limited-view and sparse PAT image reconstruction. Pixel-DL is a direct 

learned approach that employs pixel-wise interpolation to window relevant information, 

based on the physics of photoacoustic wave propagation, from the sensor data on a pixel-

basis. The pixel-interpolated data is provided as an input to the CNN for image 

reconstruction. This strategy removes the need for an initial inversion and enables the 

CNN to utilize more information from the sensor data to reconstruct a higher quality 

image. The pixel-interpolated data has similar dimensions to the desired output image 

which simplifies CNN implementation. We compare Pixel-DL to conventional PAT 

image reconstruction methods (time reversal and iterative reconstruction) and direct 

learned approaches (Post-DL and a modified implementation of Direct-DL) with in silico 

experiments using several vasculature phantoms for training and testing. 
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Section Two: Methods 

In this work, three different CNN-based deep learning approaches were used for 

limited-view and sparse PAT image reconstruction (Fig. 16). These direct learned 

approaches all began with applying an initial processing step to the PAT sensor data and 

then recovering the final PAT image using a CNN. The primary difference among these 

approaches was the processing step used to initially transform the PAT sensor data. In 

Post-DL, the sensor data was initially reconstructed into an image containing artifacts 

using time reversal, and the CNN was applied as a post-processing step for artifact 

removal and image enhancement. In Pixel-DL, pixel-wise interpolation was applied to 

window relevant information in the sensor data and to map that information into the 

image space. In the modified Direct-DL implementation (mDirect-DL), a combination of 

linear interpolation and down sampling was applied so that the interpolated sensor data 

had the same dimensions as the final PAT image. 
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Fig. 16 Summary of CNN-based deep learning approaches for PAT image reconstruction. The primary task is to 
reconstruct an essentially artifact-free PAT image from the acquired PAT sensor data. a) PAT sensor data 
acquired using a sensor array with 32 sensors and semi-circle limited-view.  b) Initial image reconstruction with 
sparse and limited-view artifacts using time reversal for Post-DL. c) 3D data array acquired after applying 
pixel-wise interpolation for Pixel-DL. d) Sensor data interpolated to have matching dimensions as the final PAT 
image for mDirect-DL. e, Desired artifact-free PAT image reconstruction from the CNN-based deep learning 
approaches. 

 
 
 

After the sensor data was transformed, the final PAT image was recovered using 

the Fully Dense UNet (FD-UNet) CNN architecture (Fig. 17). The FD-UNet builds upon 

the UNet, a widely used CNN for biomedical imaging tasks. by incorporating dense 

connectivity into the contracting and expanding paths of the network [66].  This 

connectivity pattern enhances information flow between convolutional layers to mitigate 

learning redundant features and reduce overfitting [65]. The FD-UNet was demonstrated 

to be superior to the UNet for artifact removal and image enhancement in 2D sparse PAT 

[63]. 
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Fig. 17 FD-UNet CNN Architecture. The FD-UNet CNN with hyperparameters of initial growth rate, 𝒌𝟏 = 𝟏𝟔 
and initial feature-maps learned, 𝒇𝟏 = 𝟏𝟐𝟖 is used for PAT image reconstruction. Essentially the same CNN 
architecture was used for each deep learning approach except for minor modifications. a) Inputs into the CNN 
for each deep learning approach. The Post-DL CNN implementation used residual learning which included a 
skip connection between the input and final addition operation. The initial Pixel-DL input contains “N” feature-
maps corresponding to the number of sensors in the imaging system. b) The FD-UNet is comprised of a 
contracting and expanding path with concatenation connections. c) The output of the CNN is the desired PAT 
image. In Post-DL, residual learning is used to acquire the final PAT image. 

 
 

 
Pixel-wise Interpolation 

Pixel-wise interpolation uses a model of photoacoustic wave propagation to map 

the measured time series pressure in the sensor data to a pixel position within the image 

reconstruction grid that the signal likely originated from. In this work, we choose to apply 

pixel-wise interpolation using a linear model of photoacoustic wave propagation since the 

in silico experiments were performed using a homogenous medium (e.g. uniform density 

and speed of sound). The linear model assumes the acoustic waves are propagating 

spherically and traveling at a constant speed of sound. Based on these assumptions, the 

time-of-flight can be easily calculated for a pressure source originating at some position 

in the medium and traveling to a sensor located on the medium boundary. 
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Reconstructing an image begins by defining an image reconstruction grid that 

spans the region of interest in the imaging system (Fig. 18a). The goal of pixel-wise 

interpolation is to map the time series pressure measurements of each sensor to the 

defined reconstruction grid on a pixel-basis, which results in a 3D data array with 

dimensions corresponding to the 2D image space and sensor number (Fig. 18b-c). This is 

achieved by repeating the following interpolation process for each sensor in the sensor 

array (Fig. 18d-f). The time-of-flight for a signal originating from each pixel position and 

traveling to the selected sensor is calculated based on a model of photoacoustic wave 

propagation. In the case of a linear model, the time-of-flight is proportional to the 

distance between the selected pixel and sensor (Fig. 18e). Pressure measurements in the 

sensor data are interpolated onto the reconstruction grid using the calculated time-of-

flight for each pixel (Fig. 18f). 
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Fig. 18 Pixel-Wise Interpolation Process. a) Schematic of the PAT system for imaging the vasculature phantom. 
The red semi-circle represents the sensor array, and the gray grid represents the defined reconstruction grid. 
The first sensor (S1) is circled and used as an example for applying pixel-wise interpolation to a single sensor. b) 
The PAT time series pressure sensor data measured by the sensor array. c) Resulting pixel-interpolated data 
after applying pixel-wise interpolation to each sensor based on the reconstruction grid. d) Sensor data for S1. 
Color represents the time at which a pressure measurement was taken and is included to highlight the use of 
time-of-flight to map the sensor data to the reconstruction grid. e) Calculated time-of-flight for a signal 
originating at each pixel position and traveling to S1. f) Pressure measurements are mapped from the S1 sensor 
data to the reconstruction grid based on the calculate time-of-flight for each pixel. 

 
 
 
Deep Learning Implementation 

The CNNs were implemented in Python 3.6 with TensorFlow v1.7, an open 

source library for deep learning [87]. Training and evaluation of the network is performed 

on a GTX 1080Ti NVIDIA GPU. The CNNs were trained using the Adam optimizer to 

minimize the mean squared error loss with an initial learning rate of 1e-4 and a batch size 

of three images for 40 epochs. Training each CNN required approximately one hour to 

complete. Pairs of training datasets {𝑥௜ , 𝑦௜} were provided to the CNN during training, 

where 𝑥௜ represents the input data (e.g., initial time reversal reconstruction, pixel-
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interpolated sensor data, and interpolated sensor data) and 𝑦௜ represents the 

corresponding artifact-free ground truth image. A separate CNN was trained for each 

CNN-based approached, imaging system configuration, and training dataset. 

 

Photoacoustic Data for Training and Testing 

Training data were procedurally generated using data augmentation, where new 

images were created based on a 340x340 pixel-size image of a synthetic vasculature 

phantom generated in MATLAB (Fig. 18a). First, scaling and rotation was applied to the 

initial phantom image with a randomly chosen scaling factor (0.5 to 2) and rotation angle 

(0-359 degrees). Then a 128x128 pixels sub-image was randomly chosen from the 

transformed image and translated by a random vertical and horizontal shift (0-10 pixels) 

via zero-padding. Outputs from multiple iterations (up to five) of the data augmentation 

process are summed together to create a training image. The synthetic vasculature 

phantom dataset was comprised of 500 training images. Testing data were generated from 

a 3D micro-CT mouse brain vasculature volume [85] with a size of 260x336x438 pixels. 

The Frangi vesselness filter was applied to suppress background noise and enhance 

vessel-like features [86]. A new image was created from the filtered volume by 

generating a maximum-intensity projection of a randomly chosen 128x128x128 pixel 

sub-volume. The mouse brain vasculature dataset was comprised of 50 testing images. 

The “High-Resolution Fundus Image Database” is a public database that contains 

45 fundus images from human subjects that were either healthy, had glaucoma, or had 

diabetic retinopathy. The images had corresponding vessel segmentation maps created by 
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a group of experts and clinicians within the field of retinal image analysis [100]. The 45 

fundus images were split into a separate training set (N=15) and testing set (N=30). The 

training dataset was procedurally generated using data augmentation based on the images 

within the training set and was comprised of 500 training images. The testing dataset was 

comprised of the original 30 images and 20 additional images, generated using data 

augmentation based on images from the testing set, for a total of 50 testing images. 

The “ELCAP Public Lung Image Database” is a public database that contains 50 

low-dose whole-lung CT scans obtained within a single breath hold [101]. The whole-

lung volumes were split into a training (N=15) and testing set (N=35). Vessel-like 

structures were segmented from the whole-lung CT volumes using the Frangi vesselness 

filter [63]. The training dataset was then generated by taking maximum intensity 

projection images (MIP) of randomly sampled sub-volumes from the filtered volumes in 

the training set. Data augmentation was also applied to the MIPs to generate a training 

dataset comprised of 500 training images. With the same procedures, MIPs were taken 

from the filtered volumes in the testing set to create a testing dataset comprised of 50 

images. 

In all three cases (mouse-brain vasculature, fundus image database, and ELCAP 

Lung database), training and testing data were completely segregated. In the latter two 

experiments, significant variations were present between the training and testing datasets 

due to patient-to-patient variability and innate differences in vascular morphology 

between healthy subjects and patients with varying degrees of disease.  
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A MATLAB toolbox, k-WAVE, was used to simulate photoacoustic data 

acquisition using an array of acoustic sensors [83]. Photoacoustic simulations in the k-

WAVE toolbox are implemented using a pseudospectral approach [102]. Each training 

and testing image were normalized (values between 0 and 1) and treated as a 

photoacoustic source distribution on a computation grid of 128x128 pixels. The medium 

was assumed to be non-absorbing and homogenous with a speed of sound of 1500 m/s 

and density of 1000 Kg/m3. The sensor array had 16, 32, or 64 sensor elements equally 

spaced on a semi-circle with a diameter of 120 pixels.  The time reversal method in the k-

WAVE toolbox was also used for reconstructing an image from the simulated 

photoacoustic time series data.  

Reconstructed images were compared against the ground truth using the peak-

signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as metrics for image 

quality. PSNR provides a global measurement of image quality, while SSIM provides a 

local measurement that takes into account for similarities in contrast, luminance, and 

structure [88]. 

 

Section Three: Methods 

Conventional PAT image reconstruction techniques (e.g., time reversal and 

iterative reconstruction) and CNN-based approaches (Post-DL, Pixel-DL, and mDirect-

DL) were compared over several in silico experiments for reconstruction image quality 

and reconstruction time. CNN-based approaches were all implemented using the FD-
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UNet CNN architecture. Reconstructed images were compared to the ground truth image 

using PSNR and SSIM as quantitative metrics for image reconstruction quality. 

 

Mouse Brain Vasculature Experiment 

In the first experiment, the CNNs were trained on the synthetic vasculature 

phantom dataset and tested on the mouse brain vasculature dataset. Although both 

datasets contained images of vasculature, they were non-matched meaning there were 

likely image features (e.g., vessel connectivity patterns) in the testing dataset but not in 

the training dataset. In addition to evaluating the CNNs’ performance, this experiment 

sought to determine if the CNNs were generalizable when trained on the synthetic 

vasculature phantom and tested on the mouse brain datasets.  
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Fig. 19 Limited-view and sparse PAT image reconstruction of mouse brain vasculature. PAT sensor data 
acquired with a semi-circle limited-view sensor array at varying sparsity levels. a) Ground truth image used to 
simulate PAT sensor data.  b) PAT reconstructions with 16 sensors. Vessels are difficult to identify in time 
reversal reconstruction as a result of artifacts.  c) PAT reconstructions with 32 sensors. Vessels can be clearly 
seen in CNN-based and iterative reconstructions.  d) PAT reconstructions with 64 sensors. Larger vessels are 
identifiable in all reconstructed images. 

 
 
 
 The time reversal reconstructed images had severe artifacts blurring the image 

and the lowest average PSNR and SSIM for all sparsity levels (Fig. 19 and Table 6). 

Images reconstructed with iterative or a CNN-based method had fewer artifacts and a 

higher average PSNR and SSIM. Vessels obscured by artifacts in the time reversal 

reconstructed images were more visible in the other reconstructed images. As expected, 

increasing the number of sensors resulted in fewer artifacts and improved image quality 

for all PAT image reconstruction methods. Pixel-DL consistently had a higher average 
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PSNR and SSIM than Post-DL for all sparsity levels and similar scores to iterative 

reconstruction.  

 
 
 

 
 
 
 
 In the case of sparse sampling (especially with 16 sensors), Post-DL often 

introduced additional vessels that were not originally in the ground truth image (Fig. 19a-

b). This was likely due to the CNN misinterpreting strong artifacts in the input image as 

real vessels. Pixel-DL exhibited a similar behavior but typically had fewer false 

additional vessels. This issue was not as prevalent in images reconstructed using the 

iterative method. However, images reconstructed using iterative reconstruction had an 

overly smoothed appearance compared to the deep learning-based reconstructed images. 

This is a pattern commonly observed when using the total variation constraint. 

 Pixel-DL consistently outperformed time reversal in reconstructing images of the 

synthetic vasculature and mouse brain vasculature (Fig. 20). Interestingly, mDirect-DL 

only outperformed time reversal in reconstructing the synthetic vasculature images, 

which were used to train the CNN. The mDirect-DL reconstructed image of mouse brain 

Table 6 Average PSNR and SSIM for Micro-CT Mouse Brain Vasculature Testing Dataset (N = 50) 
Number of 

Sensors 
Time Reversal Post-DL Pixel-DL 

Iterative 
Reconstruction 

16 
13.91±1.12 
0.34±0.04 

17.4±1.24 
0.52±0.04 

21.52±1.36 
0.64±0.04 

22.64±1.4 
0.66±0.05 

32 
17.29±1.20 
0.48±0.04 

21.31±1.10 
0.71±0.04 

25.67±1.29 
0.81±0.04 

26.98±2.11 
0.82±0.06 

64 
22.7±1.06 
0.73±0.03 

24.37±1.25 
0.85±0.03 

29.59±1.42 
0.91±0.02 

30.16±2.70 
0.89±0.05 

For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom.  
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vasculature resembled the ground truth image but was substantially worse than the time 

reversal reconstruction. This indicated that the CNN learned a mapping from the PAT-

sensor data to the image space but severely overfitted to the training data. During 

training, the CNNs for Pixel-DL and mDirect-DL converged to a minimum mean squared 

error, but the Pixel-DL CNN converged to a lower error. 

 
 
 

 
 

Fig. 20 Limited-view and sparse Pixel-DL and mDirect-DL PAT image reconstructions. PAT sensor data 
acquired with 32 sensors and a semi-circle view. a) CNNs were trained and tested on images of the synthetic 
vasculature phantom. Both CNN-based approaches successfully reconstructed the example synthetic vasculature 
phantom image b) CNNs were trained on images of the synthetic vasculature phantom but tested on mouse 
brain vasculature images. mDirect-DL failed to reconstruct the example mouse brain vasculature image and 
performed worse than time reversal.  

 
 

 

Lung and Fundus Vasculature Experiment 

In the second experiment, the CNNs were trained and tested on the lung 

vasculature and fundus vasculature datasets. This experiment represented a scenario in 



63 
 

which the training and testing datasets are derived from segregated anatomical image 

data. There were natural differences between the training and testing datasets since the 

original images were acquired from healthy patients and those with varying disease 

severity. 

 
 
 

 
 

Fig. 21 Limited-view and sparse PAT image reconstructions of fundus and lung vasculature. PAT sensor data 
acquired with 32 sensors and a semi-circle view. a) CNNs were trained and tested on images of lung vasculature 
b) CNNs were trained and tested on images of fundus vasculature. Testing images were derived from a separate 
set of patients’ lung and fundus images than the training images. 

 
 
 
 As expected, the time reversal reconstructed images of lung and fundus 

vasculature had the most artifacts and the lowest average PSNR and SSIM for all sparsity 

levels (Fig. 21 and Table 7). Images reconstructed with a CNN-based method or iterative 

reconstruction resulted in fewer artifacts and a higher average PSNR and SSIM. Pixel-DL 

consistently outperformed Post-DL for both vasculature phantoms for all sparsity levels. 

Comparable to iterative reconstruction, Pixel-DL had similar performance for the fundus 
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vasculature and outperformed it for the lung vasculature dataset. For images 

reconstructed from PAT sensor data acquired using 16 sensors, Pixel-DL reconstructed 

images appeared sharper and were qualitatively superior compared to iteratively 

reconstructed images despite having similar SSIM and PSNR values. 

 
 
 
Table 7 Average PSNR and SSIM for Lung and Fundus Vasculature Testing Dataset (N = 50 testing images) 

 Number of 
Sensors 

Time Reversal Post-DL Pixel-DL 
Iterative 

Reconstruction 

L
u

ng
 

 

16 
13.30±1.01 
0.09±0.02 

23.21±1.45 
0.35±0.04 

24.14±1.53 
0.43±0.06 

22.74±1.36 
0.29±0.08 

32 
15.19±1.13 
0.13±0.02 

25.09±1.67 
0.50±0.04 

26.76±1.83 
0.53±0.07 

27.50±1.98 
0.46±0.06 

64 
18.82±1.11 
0.23±0.05 

27.14±1.67 
0.65±0.04 

29.98±2.00 
0.69±0.11 

33.67±1.92 
0.62±0.07 

F
un

du
s 

 

16 
12.26±1.10 
0.19±0.02 

20.00±1.52 
0.42±0.06 

20.78±1.61 
0.52±0.08 

20.77±1.07 
0.50±0.04 

32 
14.07±1.38 
0.26±0.03 

21.57±1.60 
0.59±0.04 

23.40±1.40 
0.67±0.05 

23.37±1.06 
0.68±0.04 

64 
18.08±1.40 
0.45±0.05 

24.16±1.56 
0.75±0.03 

26.23±1.35 
0.81±0.05 

28.07±1.10 
0.85±0.06 

For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom.  
 
 
 
Image Reconstruction Times 

The average reconstruction time reported for each method are for reconstructing a 

single image from the PAT sensor data. Time reversal is a robust and computationally 

inexpensive reconstruction method (~2.57 seconds per image). Iterative reconstruction 

removed most artifacts and improved image quality but had a much longer average 

reconstruction time (~491.21 seconds per image). Pixel-DL reconstructed images with 

similar quality to iterative reconstruction and was faster by over a factor of 1000 (~7.9 

milliseconds per image). Average reconstruction time for Post-DL is dependent on the 
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initial inversion used since the computational cost of a forward pass through a CNN is 

essentially negligible. Since time reversal was used as the initial inversion, Post-DL had a 

longer average reconstruct time than Pixel-DL (~2.58 seconds per image). 

 

Section Four: Discussion and Conclusion 

In this work, we propose a novel deep learning approach termed Pixel-DL for 

limited-view and sparse PAT image reconstruction. We performed in silico experiments 

using training and testing data derived from multiple vasculature phantoms to compare 

Pixel-DL with conventional PAT image reconstruction methods (time reversal and 

iterative reconstruction) and direct learned approaches (Post-DL and mDirect-DL). 

Results showed that Pixel-DL consistently outperformed time reversal, Post-DL, and 

mDirect-DL for all experiments. Pixel-DL was able to generalize well evidenced by its 

comparable performance to iterative reconstruction for the mouse brain vasculature 

phantom despite having only trained on images generated from a synthetic vasculature 

phantom with data augmentation. Having a more varied training dataset may further 

improve CNN generalization and performance. When the training and testing data were 

derived from segregated anatomical data, Pixel-DL had similar performance to iterative 

reconstruction for the fundus vasculature phantom and outperformed it for the lung 

vasculature phantom. The total variation constraint used for iterative reconstruction was 

likely suboptimal for reconstructing lung vasculature images since the lung vessels were 

small and closely grouped. 
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Comparison between Deep Learning Frameworks 

The CNN architecture and hyperparameters used for all deep learning approaches 

implemented were essentially the same. Thus, discrepancies in performance between the 

approaches were primarily due to their respective inputs into the CNN. In Post-DL, the 

input was an image initially reconstructed from the sensor data using time reversal. The 

input and output to the CNN are both conveniently images of the same dimensions. This 

removed the need for the CNN to learn the physics required to map the sensor data into 

the image space. However, the initial inversion did not properly address the issues of 

limited-view and sparse sampling which resulted in an initial image with artifacts. 

Moreover, the CNN no longer had access to the sensor data and was only able to use 

information contained in the image to remove artifacts. There was likely useful 

information in the sensor data for more accurately reconstructing the PAT image, which 

was ignored in this approach. 

In Pixel-DL, the initial inversion is replaced with pixel-wise interpolation, which 

similarly provides a mapping from the sensor data to image space. Relevant sensor data is 

windowed on a pixel-basis using a linear model of acoustic wave propagation. This 

enables the CNN to have a richer information source to reconstruct higher quality images. 

Furthermore, there is no initial inversion introducing artifacts; thus, the CNN does not 

have an additional task of learning to remove those artifacts.  

mDirect-DL similarly did not require an initial inversion and instead used the full 

sensor data as an input to the CNN to reconstruct an image. The potential advantage of 

mDirect-DL is that the CNN had full access to the information available in the sensor 
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data to reconstruct a high-quality image. However, reconstructing directly from the 

sensor data was also a more difficult task because the CNN needed to additionally learn a 

mapping from the sensor data into the image space. Results showed that the CNN had 

difficulty in learning a generalizable mapping and overfitted to the training data. The FD-

UNet was likely not an optimal architecture for this task since it was designed assuming 

the input was an image. A different neural network architecture for a multidimensional 

time-series input would be better suited.  

A limitation of Post-DL and Pixel-DL for sparse and limited-view PAT is that the 

reconstructed image could have additional vessels that are not in the ground truth image. 

This can be problematic depending on the requirements of the application. Large vessels 

and structures are often reliably reconstructed in the image, but some small vessels could 

be false additions. This limitation primarily occurred at the sparsest sampling level and 

could be addressed by increasing the number of sensors used for imaging. The loss 

function could also be modified to penalize the CNN for reconstructing false additional 

vessels, but this could lead to the CNN to preferentially not reconstruct small vessels. 

Alternatively, a model-based learning approach could be used for better image quality if 

computational cost is not a limitation. 

 

Deep Learning for In Vivo Imaging 

A key challenge in applying deep learning for in vivo PAT image reconstruction 

is that a large training dataset is required for the CNN to learn and be able to remove 

artifacts and improve image quality. The training data can be acquired experimentally 
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using a PAT imaging system that has a sufficient number of sensors and full view of the 

imaging target. However, this process is often infeasible because it is prohibitively 

expensive, time-consuming, and needs to be repeated when the imaging system 

configuration or imaging target is changed. Alternatively, synthetic training data can be 

generated using numerical phantoms or images from other modalities. In combination 

with data augmentation techniques, this approach enables for arbitrarily large synthetic 

training datasets to be created. However, CNN image reconstruction quality is largely 

dependent on the degree to which the simulations used to generate the training data 

matches actual experimental conditions. Properly matching the simulation is a non-trivial 

task that necessitates the PAT imaging system to be well-characterized and understood. 

Some factors to be considered when creating the simulations include sensor properties 

(e.g., aperture size, sensitivity, and directivity), sensor configuration, laser illumination, 

and medium heterogeneities. Generally, it is preferable to closely match the simulation to 

the experimental conditions, but post-processing (e.g., filtering and denoising) can also 

be applied to the experimental data. It is beyond the scope of this work to discuss the 

impact of each factor in detail, but the issue of medium heterogeneities, specifically for 

speed of sound, is examined.  

In this work, Pixel-DL was applied using a linear model of acoustic wave 

propagation that assumes the acoustic waves propagate spherically and travel at a 

constant speed of sound throughout the medium. Although this model was sufficient for 

the case of a homogenous medium, a different model would be needed if the medium was 

heterogeneous (e.g., speed of sound and density) such as for in vivo imaging.  Naively 
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reconstructing with these assumptions for heterogeneous mediums would result in 

additional artifacts that degrade image quality and potentially impact CNN performance. 

The severity of the artifacts would depend on the degree of mismatch between the 

heterogeneity and assumed value. If the distribution of the heterogeneities or acoustically 

reflective surfaces is known, then they can be accounted for during the time-of-flight 

calculations when applying pixel-interpolation. However, if it is not known then the CNN 

should be trained with training data containing examples of heterogeneous mediums like 

what would be anticipated during image reconstruction. This would enable the CNN to 

learn to compensate for potential artifacts due to applying pixel interpolation with a linear 

model of acoustic wave propagation when the medium is not homogeneous. 

 

Deep Learning for Fast Image Reconstruction 

The proposed Pixel-DL approach can be used as a computationally efficient 

method for improving PAT image quality under limited-view and sparse sampling 

conditions. It can be readily applied to a wide variety of PAT imaging applications and 

configurations. Pixel-DL enables for the development of more efficient data acquisition 

approaches. For example, PAT imaging systems can be built with fewer sensors without 

sacrificing image quality, which would allow for the technology to be more affordable. 

Pixel-DL achieved similar or better performance and was faster than iterative 

reconstruction by over a factor of a 1000. It would allow for real-time PAT image 

rendering which would provide valuable feedback during image acquisition. 
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In this work we have demonstrated in silico the feasibility of Pixel-DL for PAT 

imaging of vasculature-like targets. This approach can also be readily applied to 

ultrasound imaging. Image reconstruction for PAT and ultrasound imaging both largely 

rely on time-of-flight calculations to determine where the signal originated. Therefore, a 

similar linear model of acoustic wave propagation can be used to readily apply Pixel-DL 

for ultrasound image reconstruction problems. Pixel-DL can also be adapted to other 

imaging modalities if a model mapping the sensor data to the image space is available. 
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CHAPTER FIVE 
DENSE DIALTED UNET FOR 3D PAT 

A key challenge in 3D PAT image reconstruction is the large memory 

requirement and computational cost in manipulating a multi-channel 4D array. These 

limitations prevent the use of more complex CNN architectures with many layers and 

learnable parameters. While simpler CNNs can be used for 3D PAT image 

reconstruction, the CNN may not perform well due to its limited complexity and not 

learning the necessary features for its defined task. In this work, we sought to improve 

upon the widely used UNet CNN architecture by incorporating dense connectivity and 

dilated convolutions into the network structure. These modifications would allow the 

CNN to learn more meaningful and useful features for reconstructing a high-quality 

image without increasing CNN model complexity.  

 

Section One: Introduction and Motivation 

Many deep learning approaches have been developed for PAT image 

reconstruction [58], [103], [104]. Post-processing reconstruction (Post-DL) is the most 

widely used and has been previously demonstrated for removing artifacts and improving 

image quality in PAT and other imaging modalities such as CT and MRI [61], [105], 

[106]. In Post-DL, an initial image with artifacts is reconstructed from the time-series 

data, and a convolutional neural network (CNN) is applied as a post-processing step to 

remove artifacts [61], [63]. The main drawback of Post-DL is that potentially useful 

information in the time-series data is lost during the initial inversion. Other approaches 
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(e.g. Pixel-DL and the upgUNET) improve upon Post-DL by replacing the initial 

inversion with a data pre-processing step to provide a more informative input for the 

CNN [107], [108]. Direct-learned reconstructions seeks to reconstruct an image directly 

from the time-series data with a CNN but often underperform compared to Post-DL 

[103]. Among the different approaches, model-based reconstruction was shown to 

outperform other deep learning approaches [45]. Like iterative reconstruction, this 

approach uses an explicit model of photoacoustic wave propagation, but the prior 

constraints are instead learned from data. The improved performance comes at the cost of 

increased computational complexity and slower image reconstruction. 

In this work, the Post-DL approach is followed for 3D PAT reconstruction of 

sparse imaging targets in applications requiring fast image reconstruction. Although 

Pixel-DL has been shown to outperform Post-DL in 2D PAT, it is not suitable for 3D 

PAT imaging due to the large memory requirement and computational cost for 

manipulating the 4D pre-processed data array. We propose a modified CNN architecture 

termed Dense Dilated UNet (DD-Net) for 3D PAT imaging of sparse targets in a 

heterogeneous medium. This work builds upon the well-known UNet CNN architecture 

for biomedical imaging by incorporating dense connectivity and dilated convolutions 

throughout the network. Dense connectivity enables the CNN to learn more diverse 

feature sets by mitigating the need to relearn redundant features and enhancing 

information flow [65]. Dilated convolutions expand the CNN’s effective receptive field 

without loss of resolution or coverage for learning multi-scale context [109]. 
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Section Two: Methods 

An image containing streaking artifacts is initially reconstructed from the 

incomplete time-series data using time reversal (Fig. 22c). A CNN is then applied as a 

post-processing step to remove artifacts and improve image quality (Fig. 22d). This task 

can be formulated as a supervised learning problem, in which the CNN learns a function 

that maps the input, an image with artifacts, to the desired output, an artifact-free image  

[64]. The CNN is trained on paired examples of the initial time reversal reconstruction 

and the ground truth image. 

 
 
 

 

Fig. 22 Process diagram demonstrating the generation of sparse spatial sampling and limited-view 3D PAT data 
and Post-DL image reconstruction. (a) Simulation was initialized using a cylindrical sensor configuration (red 
elements) with a half-circle view and sparse spatial sampling to image spherical objects (black elements) in the 
center. (b) Example time-series data for a single sensor element with added Gaussian noise (25 dB PSNR). (c) 
Maximum intensity projection through the z-axis of the 3D image with artifacts when reconstructed using the 
time reversal method. (d) Maximum intensity projection through the z-axis of the 3D image without artifacts 
after post-processing using a CNN. 

 
 
 

Dilated Convolutions 

The dilated convolution, also known as the atrous convolution, is an extension of 

the standard convolution, in which the convolutional filter is upsampled by inserting 
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zeros between the weights [110]. In the 1-D case of a dilated convolution, the output 𝒐 at 

location 𝒊 with a filter 𝒘 of size 𝑺 and dilation rate 𝒓 for an input 𝒇, can be represented as 

 

   𝑜[𝑖] = ∑ 𝑓[𝑖 + 𝑟 ∙ 𝑠]𝑤[𝑖]ௌ
௦ୀଵ                          (1) 

When the dilation rate is one, the dilated convolution is equivalent to a standard 

convolution. A key advantage in using dilated convolutions is that the receptive field of 

the convolution operation can be enlarged without requiring additional training 

parameters (Fig. 23). The receptive field describes the area of an image that can be 

viewed by an artificial neuron to extract information. A larger receptive field is needed to 

learn multi-scale features which is conventionally achieved by connecting successive 

convolutional layers in a cascade and using max pooling layers to spatially down sample 

the image [110]. Dilated convolutions allow the CNN to more efficiently learn multi-

scale features without a rescaled image and loss of resolution. Cascaded dilated 

convolutions also expand the receptive field exponentially, whereas, cascaded standard 

convolutions expands it linearly [111]. 
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Fig. 23.  In a dilated convolution, the effective receptive field of the convolution operation is enlarged by 
inserting gaps between the kernel weights of a 3x3 filter based on the dilation rate. 

 
 
 

 However, it has been observed that the use of dilated convolutions results in 

“gridding artifacts” [110], [112]. Because of the zero-padded gaps in the convolutional 

filter, adjacent units in the output are calculated from completely separate inputs. 

Therefore, gridding artifacts occur when the image or feature map has higher-frequency 

content than the sampling rate of the dilated convolution [109].  Artifacts tend to be more 

severe for larger dilation rates and with cascaded dilated convolutions. 

 

Dense Dilation Blocks 

For increasingly complex tasks, a deeper CNN with more convolutional layers is 

often needed to improve model performance. However, deeper networks suffer from the 

vanishing gradient problem, where the gradient is diminished as it is backpropagated 

through multiple layers [80], [81]. Trainable parameters in the earlier layers may fail to 

converge to optimal values resulting in suboptimal model performance. Dense 

connectivity addresses this problem by introducing numerous concatenation connections 
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between convolutional layers which enable gradient information to directly flow into 

earlier layers [65].  

In a dense block, the goal is to learn a total of 𝒇 features from the input features. 

This is achieved by iterating through several steps, where 𝒌 additional features are 

learned at each step. The key feature of dense connectivity is that earlier convolutional 

layers are connected to all subsequent layers by channel-wise concatenation [65], [72]. 

Each successive step learns additional features based on the original input provided and 

other features learned in previous layers. This removes the need to learn redundant 

features and promotes learning a more diverse set of features. 

 
 
 

 

Fig. 24 Four layered dense dilation block with 𝒌 = 𝟖 and 𝒇 = 𝟔𝟒. In a dense dilation block, features learned 
from each convolutional layer are concatenated together with the input. Features are learned using both the 
standard and dilated convolution. 

 
 
 
In this work, the dense block was modified to use both the standard and dilated 

convolutions (Fig. 24). At each step, 𝑘/2 features are learned with a standard convolution 

and the remaining features are learned using dilated convolutions with a dilation rate, 𝒓. 

This combination was used to mitigate potential gridding artifacts that may arise from 
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using solely dilated convolutions. Furthermore, dilated convolutions, having a larger 

receptive field, can efficiently learn global context. Whereas, standard convolutions, 

having a denser receptive field, can efficiently learn local context. 

 

Dense Dilation Blocks 

The DD-Net is an enhanced version of our previous work, the Fully Dense U-Net 

(FD-UNet), which was shown to be superior to the standard UNet. The DD-Net follows 

an “encoder-decoder-refinement” structure [66]. The key innovation in the DD-Net is the 

unique use of dense dilation blocks to leverage the benefits of dense connectivity and 

dilated convolutions (Fig. 25). Max pooling layers were removed in the DD-Net because 

they often result in high frequency content that may cause gridding artifacts [109]. They 

were replaced by 2x2 convolutional layers with a stride of two which allow the CNN to 

learn a more useful transformation for spatial down sampling. A shallow “refinement” 

network comprised of a dense dilation block and two 3x3 convolutional layers was also 

added to the end of the original network. These additional layers allow the CNN to 

further refine the image and remove artifacts at the highest spatial resolution. In the 

original FD-UNet, only a 1x1 convolutional layer was applied at the end of the decoding 

stage to form the final image. Addition of a “refinement” stage has been shown to 

improve model performance [113].  
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Fig. 25 Proposed DD-UNet architecture that incorporates dense connectivity and dilated convolutions 
throughout the UNet. In addition to the encoder and decoder structure of the standard UNet, several 
convolutional layers collectively termed the “refinement stage” were included following the decoder stage. 
Hyperparameters for the illustrated architecture are 𝒌𝟏 = 𝟖 and 𝒇𝟏 = 𝟏𝟔 for an input image of size 
128x128x128 pixels. 

 
 
 
 

Generating Training and Testing Data 

 Synthetic sphere phantoms were generated by placing 25-50 spheres with 

randomly selected center coordinates, radius (range 5 to 10 pixels), and magnitude (range 

1 to 5) in a 128x128x128 pixels image. Resulting images were smoothed with a 5x5 

moving average filter. This process was repeated to create a training dataset with 1000 

images and a testing dataset with 500 images. 

 The “ELCAP Public Lung Image Database” is comprised of  50 whole-lung CT 

scans that were obtained within a single breath hold [101]. These scans were split into 

training (N=40) and testing groups (N=10) and were used to generate additional training 

and testing data via data augmentation. Each 3D scan had dimensions of 512x512x288 

pixels. First, the lungs were segmented from the CT scan using active contours with the 

Chan-Vese algorithm [114]. Next, the Frangi vesselness filter was applied to suppress 

background noise and segment vessel-like structures in the lungs [86]. 3D vasculature 
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phantoms were then procedurally generated by randomly rotating the filtered 3D images 

along each axis and then sampling a 128x128x128 pixels image. This data augmentation 

process was repeated to create a training dataset with 1000 images and a testing dataset 

with 500 images. 

 Synthetic breast vasculature phantoms were created using an analytic approach to 

generate random but realistic anatomical structures within a predefined breast volume 

[115]. This method was originally developed for the “Simulated Virtual Imaging Clinical 

Trial for Regulatory Evaluation” project which sought to demonstrate in silico imaging 

trials and imaging computer simulation tools as a viable source of evidence for the 

regulatory evaluation of imaging devices. From this approach, 400 different breast 

phantoms with dimensions of 718x796x506 were generated. These phantoms were split 

into training (N=300) and testing groups (N=100) and were used to generate additional 

training and testing data via a similar data augmentation strategy as described earlier. A 

training dataset with 1000 images and a testing dataset with 500 images of breast 

vasculature were created. 

 The MATLAB toolbox k-WAVE was used to simulate photoacoustic data 

acquisition using an array of acoustic sensors arranged in a cylindrical geometry [83]. 

The sensor array is essentially a linear array with 128 elements along the z-axis that is 

repeated at equally spaced intervals along a half-circle in the x-y plane (Fig. 21a). In 

order to have experiments with varying levels of sparsity, three different sensor arrays 

with sampling at 10, 20, 30 angles in the x-y plane were used for simulations. Having 

fewer angles sampled results in more severe sparse spatial sampling artifacts. 
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 Training and testing phantoms were normalized (values between 0 and 1) and 

treated as a photoacoustic source distribution on a computation grid of 128x128x128 

pixels. The medium was assumed to be non-absorbing and heterogeneous, in which the 

background had a speed of sound of 1480 m/s and density of 1000 kg/m3 while the 

vasculature had a speed of sound of 1570 m/s and density of 1060 kg/m3. The time 

reversal method in the k-WAVE toolbox was used for reconstructing an initial image 

from the simulated photoacoustic time series data. In the scenario of in vivo imaging, the 

spatial distribution of the speed of sound and density is unknown. Thus, the 

reconstruction was completed assuming a homogeneous medium with a speed of sound 

of 1480 m/s and density of 1000 kg/m3. 

 

Evaluating Image Quality for Sparse Images 

 To evaluate image reconstruction quality, the multi-scale structural similarity 

index metric (MS-SSIM) was used to compare the reconstructed image to the ground 

truth image [116]. MS-SSIM is a composite metric that measures similarities between 

two images in terms of contrast, luminance, and structure at multiple spatial scales. 

Similarities are calculated based on a local neighborhood of pixels, and a global value is 

reported by averaging the neighborhood values. MS-SSIM is superior to other metrics 

such as the standard SSIM and peak-signal-to-noise-ratio (PSNR) for evaluating image 

quality in 3D images with sparse imaging targets that occupy a small fraction of the space 

in the medium. The main drawback of the SSIM and PSNR metrics is that image quality 

is only evaluated at a single spatial scale. Therefore, these metrics are heavily biased by 
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how well artifacts were removed from the background and only weakly associated with 

how well sparse structures were reconstructed. 

 

Deep Learning Implementation 

 The CNNs are implemented in Python 3.7 with TensorFlow v2.1, an open source 

library for deep learning [87]. Training and evaluation of the network is performed on an 

NVIDIA V100 GPU. The CNNs were trained using the Adam optimizer to minimize the 

mean squared error loss with an initial learning rate of 1e-4 and a batch size of two 

images for 500 epochs. The same hyperparameters (i.e., f=16, k=4, and L=3) were used 

for both CNNs, and the DD-UNet had a dilation rate of two. Training each CNN required 

approximately one day to complete. A separate CNN was trained for each CNN 

architecture, PAT imaging system configuration, and dataset. The FD-UNet (120,000) 

and DD-UNet (150,000) had a similar number of parameters. 

 

Section Three: Results 

 In silico experiments were performed using three different sparse imaging 

phantoms (i.e., spheres, lung vasculature, and breast vasculature) to evaluate the FD-

UNet and DD-UNet for Post-DL image reconstruction. Given an initial time reversal 

reconstructed image, the CNNs were tasked with removing artifacts arising from sparse 

spatial sampling, limited-view detection, and an unknown heterogeneous medium. The 

MS-SSIM metric was used to evaluate image quality by comparing the reconstructed 

images to the ground truth image for N=500 testing image pairs in each dataset. Using 
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Otsu’s method for automated thresholding and binarization, the imaging targets were 

estimated to on average occupy 3-5% of the space in the imaging phantoms. 

 

Visual Comparison of CNN Images 

 In this initial experiment, the imaging system used a half-view cylindrical sensor 

array to sample the acoustic waves at 30 equally spaced angles. In general, it is difficult 

to visually identify differences between the FD-UNet and DD-UNet image 

reconstructions because the differences are subtle. Maximum intensity projections are 

convenient for visualizing 3D features in a 2D image, but only differences between the 

most prominent features can be seen in the projections. In the representative examples, 

both CNNs produce images that are of higher quality than the time reversal reconstructed 

images (Fig. 26). Spheres and vessels not visible in the time reversal reconstructions can 

be clearly seen in the CNN reconstructions. While both CNNs remove most artifacts and 

accurately reconstruct the larger and more prominent image features. The DD-UNet was 

observed to be better in reconstructing the smaller image features. These features are 

typically either missing or inaccurately reconstructed in the FD-UNet images. 

Furthermore, the FD-UNet occasionally mistakenly interpreted artifacts observed in the 

time reversal reconstruction as a true imaging target. 
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Fig. 26 Example ground truth and reconstructed images using the time reversal, FD-UNet, and the DD-UNet 
(dilation rate = 2) methods for three different imaging phantoms reconstructed with a sampling sparsity of 30 
angles. The smaller image with a solid red border is an enlarged sub-image from the region designated by the 
dashed red line. The blue arrows highlight key differences between the reconstructed images (Top) Spheres 
phantom. The FD-UNet image incorrectly had spheres in the background that were not in the ground truth or 
DD-UNet images. (Middle) Lung vasculature phantom. The small vessels were more visible and clearer in the 
DD-UNet image than the FD-UNet image. (Bottom) Breast vasculature phantom. A small vessel that was not in 
the time reversal image was recovered in the CNN images but appeared to be sharper in the DD-UNet image.  

 
 
 
Quantitative Comparison of CNN Performance 

 Images reconstructed with the CNNs had MS-SSIM scores ranging from 0.85 to 

0.97 (spheres), 0.59 to 0.88 (lung), and 0.57 to 0.88 (breast). More complex imaging 

phantoms (e.g., containing more spheres or vessels) or those with imaging targets further 

away from the imaging sensor array typically resulted in reconstructions with lower 

scores. For all experiments performed, the DD-UNet consistently outperformed the FD-

UNet when comparing the MS-SSIM for the same image reconstructed (Fig. 26). There 
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were only a few instances in which the FD-UNet reconstructed the test image with a 

higher MS-SSIM than DD-UNet. Interestingly, the degree of improvement in MS-SSIM 

by the DD-UNet appeared to have a stochastic nature. When examining the distribution 

of differences in MS-SSIM between the CNNs, the DD-UNet outperformed the FD-UNet 

with a mean and standard deviation of 0.033 ± 0.016 (spheres), 0.017 ± 0.009 (lung), and 

0.027 ± 0.015 (breast) (Fig. 27). 

 
 
 

 

Fig. 27 (Top) Scatter plots for comparing the MS-SSIM of the FD-UNet and DD-UNet (dilation rate = 2) image 
reconstructions for each imaging phantom. For improved visualization, the image index was defined based on 
the sorted order of the MS-SSIM scores for the FD-UNet. (Bottom) Histogram showing the difference in MS-
SSIM for the same test image between the DD-UNet and FD-UNet for each imaging phantom. A positive 
difference indicates that the DD-UNet reconstructed a higher quality image. Results shown are for a sparsity 
level of 30 angles sampled. 

 

 

 



85 
 

CNN Performance at Different Levels of Sparsity 

 By decreasing the number of angles sampled, the acoustic waves were more 

sparsely sampled. This resulted in increasingly severe streaking artifacts and thus in a 

more difficult problem for the CNNs to overcome. As expected, the average MS-SSIM 

scores decreased as the number of angles sampled decreased for all reconstruction 

methods (Table I). Both CNNs consistently improved the time reversal reconstruction for 

all imaging phantoms and levels of sparsity tested. The large difference in MS-SSIM 

between the CNNs and time reversal reconstructions can be mostly explained by the fact 

that both CNNs were highly proficient at removing background artifacts and properly 

reconstructing the larger image features (Fig. 24). The DD-UNet was shown to 

significantly outperform the FD-UNet for all imaging phantoms and levels of sparsity 

tested (Wilcoxon matched-pairs signed rank test, p<0.01). 

 

Section Four: Discussion and Conclusion 

 In this work, we propose a modified CNN architecture termed DD-Net for 3D 

sparse and limited-view PAT image reconstruction that leverages the benefits of both 

dense connectivity and dilated convolutions through the unique use of dense dilation 

blocks. In silico experiments were performed with three different sparse phantoms (i.e., 

spheres, lung vasculature, and breast vasculature), and the DD-Net was demonstrated to 

be a superior CNN architecture compared to the FD-UNet. For all experiments 

performed, the DD-Net consistently reconstructed the image with a higher MS-SSIM by 

0.01 to 0.03 depending on the phantom and level of sampling sparsity. Images 
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reconstructed by the DD-UNet and FD-UNet did not have many large and obvious visual 

differences. However, the DD-UNet was observed to be able to reconstruct the smaller 

structures and finer details more accurately.  For example, small vessels in the breast and 

lung vasculature phantoms that were missing or inaccurately reconstructed in the FD-

UNet image could be seen more clearly in the DD-Net image (Fig. 24). These 

improvements were likely due to the expanded receptive field enabling the CNN to use 

more context in the image to reconstruct these finer features and the addition of a shallow 

network termed the refinement stage to further correct artifacts at the highest image 

resolution. 

 Choice of dilation rate for the DD-UNet depends on the imaging targets to be 

reconstructed and size of the imaging volume. For example, larger volumes with 

predominantly bigger image features may benefit from a larger dilation rate since more 

global context is available to the CNN. However, increasing the dilation rate does not 

necessarily lead to improved performance since gridding artifacts can become more 

severe. Some image features might also be smaller than the zero-filled gaps in a large 

receptive field leading to a loss of local context, but this issue is mitigated to a degree in 

the DD-UNet by using a combination of standard and dilated convolutions. 

 A limitation in applying deep learning for 3D PAT image reconstruction is the 

limited GPU memory. This forces the use of shallower CNNs with fewer convolutional 

layers, which constrains the representational power or complexity of the CNN and results 

in suboptimal model performance.  For example, the CNNs in this work for 3D PAT have 

about ~105 parameters due to memory limitations, while an equivalent CNN for 2D PAT 
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had ~106 or more parameters. Reconstructing larger volumes requires more memory and 

further limit the complexity of the CNN. Further work in developing more memory 

efficient CNN architecture or strategies for 3D PAT image reconstruction is needed to 

address this issue. 

 A key challenge in applying deep learning for in vivo PAT image reconstruction 

is the need for a large training dataset. Arbitrarily large synthetic training data can be 

generated using numerical phantoms and anatomical templates with data augmentation as 

demonstrated in this work. The synthetic data does need to properly capture the expected 

variations in artifacts observed in the experimental data. Therefore, the PAT simulation 

parameters need to be well-matched with the experimental conditions. Depending on the 

PAT imaging system, this can be a non-trivial task since it requires the system to be well-

characterized.  

 The proposed Post-DL approach using the DD-Net can be used as a 

computationally efficient method for improving PAT image quality under limited-view 

and sparse sampling conditions. It can be applied to a wide variety of PAT imaging 

applications and allows for the development of more efficient data acquisition using 

fewer sensors without sacrificing image quality. This approach enables real-time PAT 

image rendering which would provide valuable feedback while imaging. The DD-Net can 

also be readily applied to image reconstruction problems in other imaging modalities 

(e.g., ultrasound and CT) and other biomedical imaging applications such as 

segmentation. 
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CHAPTER SIX 
FOURIER NEURAL OPERATORS 

Model-based learning has been demonstrated to outperform other deep learning 

frameworks. By incorporating an explicit model of photoacoustic wave propagation into 

the image reconstruction process, data consistency between the measured time-series data 

and the reconstructed image is greatly improved. However, this comes at the cost of 

increased computational cost and complexity since the forward and adjoint operators 

need to be repeatedly evaluated. A natural next step in the development of model-based 

learning is to improve its computational efficiency, which led to the idea of using neural 

networks as computational efficient approximations of the forward and adjoint operators. 

In other words, the neural network is used to solve the underlying partial differential 

equations that govern photoacoustic wave propagation. In this work, we employed 

Fourier Neural Operator (FNO) networks to approximate the forward operator and 

demonstrated as a proof-of-concept that is capable of accurately solving the underlying 

partial differential equations. At the time of completing this dissertation, the results of the 

FNO network are being considered for publication and are under review. 

 

Section One: Introduction and Motivation 

PAT simulation is a highly useful tool that provides quantitative and qualitative 

insights into these parameters affecting image quality [83]. It is commonly used prior to 

experimentation and imaging to optimize the system configuration. It also plays an 

integral role in image reconstruction and provides numerical phantom data for the 
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development of advanced algorithms such as iterative methods and deep learning 

methods [45], [61], [63], [107], [117], [118]. Simulating the PAT image acquisition is 

comprised of two components, the optical illumination and photoacoustic propagation. 

For this work, we are primarily focused on the photoacoustic component. The equation 

for photoacoustic wave propagation can be solved numerically using classical methods 

such as the time domain finite element method [119], [120]. However, these methods can 

become computationally expensive, especially for large three-dimensional (3D) 

simulations. 

Recently, deep learning has been explored as a computationally efficient partial 

differential equation (PDE) solver [121], [122]. It has the potential to revolutionize 

scientific disciplines and research by providing fast PDE solvers that approximate or 

enhance conventional ones. Applications requiring repeated evaluations of the forward 

model can greatly benefit from having reduced computation times. Here, we provide a 

brief overview of three deep learning methods for solving PDEs – finite dimensional 

operators, neural finite element models, and Fourier neural operators (FNO). 

Finite dimensional operators use a deep convolutional neural network (CNN) to 

solve the PDE on a finite Euclidean Space [98], [123]. By definition, this approach is 

mesh-dependent, and the CNN needs to be retrained for solving the PDE at different 

resolutions and discretization. Neural finite element models are mesh-independent and 

closely resembles traditional finite element methods [121], [124]. It replaces the set of 

local basis functions in the finite element models with a fully connected neural network. 

It requires prior knowledge of the underlying PDE and is designed to solve for one 
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specific instance of the PDE. The neural network needs to be retrained for new instances 

where the underlying PDE is parameterized with a different set of functional coefficients. 

FNO is a mesh-free approach that approximates the mapping between two infinite 

dimensional spaces from a finite collection of input-output paired observations [125], 

[126]. The neural operator is learned directly in the Fourier Space using a CNN. The 

same learned operator can be used without retraining to solve PDEs with different 

discretization and parameterization. Fourier Neural Operators have been demonstrated to 

achieve state-of-the-art results for a variety of PDEs (e.g., Burger’s equation, Darcy 

Flow, and Navier-Stokes) and outperformed other existing deep learning methods [126]. 

To the best of our knowledge, this is the first paper that seeks to apply deep 

learning for solving the photoacoustic wave equation for simulating PAT. FNOs were 

chosen for this task given its flexibility in discretization and superior performance 

compared to other deep learning methods. Our contributions include adapting the FNO 

neural network and applying it as a fast PDE solver for simulating 2D photoacoustic 

wave propagation. Simulations from the FNO network and the widely used k-Wave 

toolbox for time domain acoustic wave propagation were compared in terms of accuracy 

and computation times. Further experiments were also conducted to evaluate the 

generalizability of the FNO network beyond the training data and the impact of key 

hyperparameters on network performance and complexity. 
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Section Two: Methods 

Numerical approaches such as the finite-difference and finite-element methods 

are commonly used to solve PDEs by discretizing the space into a grid [127]. However, 

these methods are often slow for time domain modeling of broadband or high-frequency 

waves due to the need for a fine grid with small time-steps [83]. Computational 

efficiency can be improved using pseudo-spectral and k-space methods. The pseudo-

spectral method fits a Fourier series to the data and reduces the number of grid points per 

wavelength required for an accurate solution [128]. The k-space method incorporates a 

priori information regarding the governing wave equation into the solution [129]. This 

allows for larger time steps and improves numerical stability in the case of acoustically 

heterogeneous mediums. The k-Wave toolbox, a widely used MATLAB tool for 

photoacoustic simulations, uses the pseudo-spectral k-space approach for solving time-

domain photoacoustic wave simulations [130]. 

 

Fourier Neural Operator Network 

The FNO network was adapted for solving the 2D photoacoustic wave equation 

[126]. In our version, the FNO network does not apply Gaussian normalization to either 

the input or output of the training example. The network begins by mapping the input into 

a higher dimensional representation using a fully connected layer (Fig. 28). The 

transformed features are then iteratively updated by passing them through four successive 

Fourier layers. Finally, the updated features are projected to the desired dimensions using 

a fully connected layer. Through a combination of linear, Fourier, and non-linear 



92 
 

transformations, the Fourier neural operators can approximate complex operators in 

PDEs that are highly non-linear with high frequency modes. 

 
 
 

 
Fig. 28 (a) Neural network architecture for the FNO network. The input a is mapped to a higher dimensional 
space using a fully connected layer (FC1). The transformed feature is passed through four Fourier Layers (FL). 
Finally, a fully connected layer (FC2) is used to obtain the final output u with the desired dimensions. (b) 
Architecture of a Fourier layer. The input goes through two paths in the Fourier layer. In the top path, the input 
undergoes a Fourier Transform 𝓕, linear transform R, and inverse Fourier Transform 𝓕-1. In the bottom path, 
the input undergoes a linear transform W. Outputs from each path are summed together and undergo ReLU 
activation 𝝈. 

 
 
 
 The photoacoustic wave equation can be solved with the FNO network using 

either a 2D or 3D implementation. In 2D, the FNO network performs 2D convolutions in 

space and finds a solution for some fixed interval length ∆𝑡. The solution is then 

recurrently propagated in time and used to solve for the next interval length. In 3D, the 

FNO network performs 3D convolutions in space-time and can directly output the full 

time series solution with any time discretization. While both implementations were 

demonstrated to have similar performance, the 3D FNO network was used in this work 

because it was found to be more expressive and easier to train [126]. The FNO network 
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was implemented in Python v3.8 using the deep learning library PyTorch v1.7.1.  The 

Adam optimizer with a mean squared error loss function was used to train the FNO 

network for 2,000 epochs over approximately two days on a NVIDIA Tesla K80 graphics 

processing unit (GPU).  

 Channels and modes are the two main hyperparameters that impact the accuracy 

of the FNO network. The channels parameter defines the width of the FNO network 

meaning the number of features learned in each layer. The modes parameter defines the 

number of lower Fourier modes retained when truncating the Fourier series. The 

allowable maximum number of modes is related to the size of the simulation 

computational grid. In this work, the FNO network is assumed to have 64 modes and 5 

channels unless otherwise specified. 

 

Photoacoustic Data for Training and Testing 

 The MATLAB toolbox k-Wave was used for photoacoustic wave simulation and 

to generate data for training and testing the FNO network [83]. The simulation medium 

was defined as a 64x64 computational grid, non-absorbing, and homogenous with a speed 

of sound of 1480 m/s and density of 1000 kg/m3. Simulations were performed with a 

timestep of 20 ns for T=151 steps. The initial photoacoustic pressure was initialized using 

anatomically realistic breast vasculature phantoms that were numerically generated [115]. 

The training dataset (N=500) and testing dataset (N=100) were comprised of images 

representing the initial photoacoustic pressure (the input to the FNO network), and the 

corresponding simulation of the photoacoustic wave propagation (output of the FNO 
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network). The FNO output was compared against the photoacoustic simulation performed 

using k-Wave, which served as the ground truth. While the training and testing data 

shared similar features, each example was unique. Simulations for the Shepp-Logan, 

synthetic vasculature, tumor, and Mason-M phantoms were also generated to evaluate the 

generalizability of the FNO network [32], [83]. 

 

Section Three: Results 

Comparison of FNO Network and k-Wave Simulations 

 When tested on breast-vascular images like those used for training, the 

photoacoustic-wave simulations produced by the FNO network and k-Wave were 

remarkably similar and almost visually identical (Fig. 29). This demonstrated that the 

FNO network can model both broadband and high-frequency waves required for 

photoacoustic simulations. The FNO network and k-Wave simulations were 

quantitatively compared using the mean squared error (MSE). For the testing dataset, the 

MSE of the FNO network was 3.1e-5 which indicates that the FNO network was able to 

accurately simulate photoacoustic wave propagation. 

The time required to solve the photoacoustic wave equation largely depends on 

the discretization of the computational grid. In k-Wave, a simulation using a 64x64 grid 

required ~1.17 seconds to complete on a GPU. For a comparable simulation, the FNO 

network only required ~0.029 seconds to complete on a GPU which is approximately a 

40x reduction in computation time. 
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Fig. 29 Visual comparison of the ground truth (Top Row) using k-Wave and the FNO network (Bottom Row) 
simulated photoacoustic wave propagation for an example vasculature image in a homogeneous medium at T = 
1, 20, 40, 60, and 80 timesteps. The MSE for this example was 2.5e-5. 

 
 
 

PAT Images Reconstructed from Simulations 

 For further validation, an in-silico experiment of PAT imaging with a 64-sensor 

linear array was conducted using the k-Wave and the FNO network simulations. Other 

sensor arrays and geometries can be used, but the linear array was chosen since it is 

widely available and used in laboratories. The sensor data for image reconstruction was 

created by sampling the photoacoustic pressures along the top row of the computational 

grid in each simulation. Images were then reconstructed from the time-series sensor data 

using the time reversal method in k-Wave [83]. The reconstructed images were highly 

similar with only minor differences (Fig. 30). The vasculature structures and limited-view 

artifact patterns seen in the FNO network image clearly matched those in the 

reconstructed image obtained using the k-Wave simulation data. The reconstructed 

images were quantitatively compared using MSE and the structural similarity index 

metric (SSIM), a metric ranging from 0 to 1 that measures the similarity between two 

images based on factors relevant to human visual perception (e.g., structure, contrast, and 



96 
 

luminance) [88]. For the testing dataset (N=100), the FNO network images had a MSE of 

3.1e-5 and SSIM of 0.99. This demonstrated that the time-series sensor data produced 

using the FNO network and k-Wave simulations were effectively identical. 

 
 
 

 
Fig. 30 Images reconstructed using sampled sensor data from the k-Wave and FNO network photoacoustic 
simulations. The images were normalized to have intensities between 0 and 1. For this example, the MSE and 
SSIM were respectively 6.1e-5 and 0.99. 

 
 
 
FNO Network Generalizability 

 The FNO network was used to simulate photoacoustic wave propagation from 

Shepp-Logan, synthetic vasculature, tumor, and Mason-M phantoms. These phantoms 

contain many features not observed in the training dataset (breast vasculature). The FNO 

network and k-Wave simulations were visually similar for each phantom tested (Fig. 31). 

The MSE of the FNO network simulations were 2.1e-4 (Shepp-Logan), 3.7e-4 (synthetic 

vasculature), 1.9e-4 (tumor), and 6.4e-4 (Mason-M). These results provide evidence that 

the FNO network was generalizable to initial photoacoustic sources not in the training 

data. 
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Fig. 31 Comparison between FNO Network and k-Wave simulations for initial pressure sources using the (a) 
Shepp-Logan, (b) synthetic vasculature, (c) tumor, and (d) Mason-M phantoms at T=1,10, and 20 timesteps. 

 
 
 
Hyperparameter Optimization 

 A study was conducted to investigate the impact of hyperparameter selection on 

the FNO network’s accuracy. The number of modes had the largest impact since it is 

directly related to the truncation error in a Fourier layer. Networks with a lower mode 

produced simulations with a blurred appearance due to the loss of high frequency 

information (Fig. 32). Increasing the number of channels generally improved the FNO 

network’s performance but also required more GPU memory (Table 8). There was no 

benefit in having an FNO network with more than five channels. Interestingly, the 

computation time to complete a simulation was approximately the same for FNO 

networks with a lower number of modes or channels. There was a moderate increase in 
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computation time for the larger FNO networks with 64 modes and higher number of 

channels. 

 
 
 

 
Fig. 32 Visual comparison of photoacoustic wave simulations at T = 1, 5, 10, 15, and 20 timesteps. The FNO 
networks were parametrized with channels=5 and modes=16, 32, and 64. 

 
 
 
 
Table 8 Comparison of FNO networks for different hyperparameters 

Modes Channels MSE Time (s) GPU Memory (GB) 
16 5 1.0e-3 0.022 1.3 
32 5 1.1e-4 0.019 1.7 
64 5 3.1e-5 0.022 4.8 
64 2 2.7e-4 0.022 1.8 
64 3 1.3e-4 0.021 2.5 
64 4 4.4e-5 0.021 3.5 
64 5 3.1e-5 0.022 4.8 
64 6 3.5e-5 0.023 6.3 
64 7 2.8e-5 0.026 8.2 
64 8 3.6e-5 0.028 10.2 
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Section Five: Discussion and Conclusion 

 Solving the 2D photoacoustic wave equation with traditional methods typically 

require a fine discretization of the computational grid and can be time-consuming to 

complete. Deep learning methods directly learn from data to solve PDEs and can be 

orders of magnitude faster with a minimal loss in accuracy. In this work, we applied the 

FNO network as a fast PDE solver for the 2D photoacoustic wave equation in a 

homogeneous medium. The FNO network and k-Wave solutions were qualitatively and 

quantitatively comparable. PAT images reconstructed from the FNO network and k-

Wave simulations were effectively identical. This demonstrates that the sampled sensor 

data contained essentially the same information, and errors in the FNO network 

simulations did not impact the quality of images reconstructed. The FNO network was 

about 40x faster than k-Wave in completing a simulation with a 64x64 computational 

grid. Applications requiring repeated evaluations of the photoacoustic wave equation 

such as iterative image reconstruction can be accelerated using the FNO network.  

 Model generalizability is a highly desirable property because it removes the need 

to retrain the model when it is used on examples not observed in the training data. This is 

important since the goal of the FNO network is to be like traditional methods as a general 

PDE solver for any arbitrary initial pressure source. The FNO network’s generalizability 

was evaluated by having it perform photoacoustic simulations for four phantoms not in 

the training data (e.g., Shepp-Logan, synthetic vasculature, tumor, and Mason-M). The 

FNO network and k-Wave simulations were highly similar indicating that a trained FNO 

network can be used for simulations with any arbitrary initial pressure source. 
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Furthermore, this provided evidence that the FNO network was learning the operator for 

photoacoustic wave propagation and not mainly specific solutions related to the training 

data. 

 Hyperparameter optimization is important to achieve the required level of 

accuracy and to minimize the memory required for training and inferring. The FNO 

network is parameterized by the number of modes and channels and increasing either 

parameter typically improves model performance. In general, a higher number of modes 

is preferred but can be reduced if only a lower-resolution approximation of the solution is 

needed. Hyperparameter optimization is likely more important for simulations with large 

computational grids when limited GPU memory can be a problem. Alternative network 

architectures that are more memory efficient such as the recurrent 2D FNO network can 

be explored [126]. 

 In this work, the FNO network was trained for solving the 2D acoustic wave 

equation in a homogeneous medium. Simulations with homogeneous mediums are widely 

used in many applications such as image reconstruction where the spatial distribution of 

heterogeneities is often unknown. Nevertheless, the FNO network can be used for 

simulations with heterogeneous mediums. The spatial distribution of heterogeneous 

medium properties can be provided as an input to the FNO network. By providing 

training examples of simulations with varying heterogeneous mediums, the FNO network 

likely can learn to solve the 2D wave equation and account for effects due to the 

heterogeneous medium. 
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 A practical limitation in data driven PDE solvers such as the FNO network is the 

need for high quality training data. Traditional solvers are often used to create arbitrarily 

large datasets to train the network. Depending on the size of the computational grid, this 

can be computationally formidable such as the case of 3D photoacoustic simulations. To 

create a large dataset in these scenarios, a high-performance computing environment 

would be needed to generate the training data in a reasonable timeframe.  
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CHAPTER SEVEN 
FUTURE WORK AND DISCUSSION 

 In recent years, there has been a diverse body of work in literature demonstrating 

a wide variety of approaches in using deep learning for photoacoustic tomography image 

reconstruction problems. Fully learned reconstruction methods implicitly learn from data 

the physics of acoustic wave propagation to reconstruct an image from the measured 

time-series data. These methods have a low latency and are ideal for real-time imaging 

applications because it does not require a numerical model to solve the underlying 

physics. Other approaches like the learned iterative reconstruction uses an explicit 

physical model in combination with a neural network to provide state-of-the-art 

performance. Incorporating the physical model into the reconstruction process is highly 

useful in obtaining a more accurate and stable reconstruction but at the cost of increased 

computational complexity. There remains an open question of how and where to best use 

the physical model in relation with the neural network to obtain a fast, accurate, and 

robust reconstruction method. As demonstrated by the FNO networks, the physical model 

can be approximated using a neural network that is accurate and much faster than 

numerical methods. However, more work is needed to explore how well the FNO 

generalizes to heterogeneous mediums and 3D PAT simulations. 

 Data mismatch is an important challenge for data-driven methods like deep 

learning. Trained networks often do not perform well on data it has not previously 

observed in the training process. In many biomedical applications, it is challenging and 

often impossible to create a training dataset that contains examples for every possible 
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normal and abnormal image feature. Therefore, it is questionable if a relatively rare 

occurrence such as a small tumor in the image is real or an artifact of the neural network. 

Addressing this challenge is critical for the transition and building of trust in deep 

learning for clinical applications. Furthermore, many deep learning models rely on 

simulation tools such as k-Wave to generate large training datasets. Models trained on 

simulated data does not necessarily work well with in vivo and experimental data. It is 

difficult to ensure that the distribution of image features in the simulated data matches 

those of the in vivo data. While in vivo data can be acquired to supplement the training 

data, this is not a practical solution since the acquired data is instrumentation specific. 

 Deep learning has been successfully applied for many medical applications 

especially in the field of radiology [131]. However, there is still a critical question of how 

to integrate deep learning with PAT into clinical workflows. This likely depends on the 

specific target clinical application, but in general, it should be intuitive, easy-to-use, and 

provides value to the patient and clinicians [132]. While there is a multitude of promising 

clinical applications, a unique advantage of PAT over other conventional imaging 

modalities is its ability to measure blood perfusion and oxygenation [21]. This requires 

both the acoustic and optical inversions to be solved. Majority of the work in literature 

related to deep learning and PAT is focused on the acoustic inversion, but there has been 

some promising initial work for solving the optical inversion [133]. To fully realize the 

potential of deep learning and PAT for clinical applications, additional work solving the 

optical inversion is needed. 

 



104 
 

REFERENCES 

[1] L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” 
Nature Photon, vol. 3, no. 9, pp. 503–509, Sep. 2009, doi: 
10.1038/nphoton.2009.157. 

[2] J. W. Goodman, “Some fundamental properties of speckle*,” J. Opt. Soc. Am., JOSA, 
vol. 66, no. 11, pp. 1145–1150, Nov. 1976, doi: 10.1364/JOSA.66.001145. 

[3] Z. Guo, L. Li, and L. V. Wang, “On the speckle-free nature of photoacoustic 
tomography,” Med Phys, vol. 36, no. 9, pp. 4084–4088, Sep. 2009, doi: 
10.1118/1.3187231. 

[4] J. Xia and L. V. Wang, “Small-animal whole-body photoacoustic tomography: a 
review,” IEEE Trans Biomed Eng, vol. 61, no. 5, pp. 1380–1389, May 2014, doi: 
10.1109/TBME.2013.2283507. 

[5] N. Nyayapathi and J. Xia, “Photoacoustic imaging of breast cancer: a mini review of 
system design and image features,” J Biomed Opt, vol. 24, no. 12, Dec. 2019, doi: 
10.1117/1.JBO.24.12.121911. 

[6] B. L. Bungart et al., “Photoacoustic tomography of intact human prostates and 
vascular texture analysis identify prostate cancer biopsy targets,” Photoacoustics, vol. 
11, pp. 46–55, Aug. 2018, doi: 10.1016/j.pacs.2018.07.006. 

[7] C. Moore and J. V. Jokerst, “Strategies for Image-Guided Therapy, Surgery, and 
Drug Delivery Using Photoacoustic Imaging,” Theranostics, vol. 9, no. 6, pp. 1550–
1571, Feb. 2019, doi: 10.7150/thno.32362. 

[8] M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A 
mini review,” Photoacoustics, vol. 10, pp. 65–73, Jun. 2018, doi: 
10.1016/j.pacs.2018.05.001. 

[9] L. V. Wang, “Prospects of photoacoustic tomography,” Med Phys, vol. 35, no. 12, 
pp. 5758–5767, Dec. 2008, doi: 10.1118/1.3013698. 

[10] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 
602–631, Aug. 2011, doi: 10.1098/rsfs.2011.0028. 

[11] J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and 
advances,” Electromagn Waves (Camb), vol. 147, pp. 1–22, 2014. 

[12] W. Li and X. Chen, “Gold nanoparticles for photoacoustic imaging,” 
Nanomedicine (Lond), vol. 10, no. 2, pp. 299–320, Jan. 2015, doi: 
10.2217/nnm.14.169. 

[13] D. Wu, L. Huang, M. S. Jiang, and H. Jiang, “Contrast Agents for Photoacoustic 
and Thermoacoustic Imaging: A Review,” Int J Mol Sci, vol. 15, no. 12, pp. 23616–
23639, Dec. 2014, doi: 10.3390/ijms151223616. 

[14] M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic 
computed tomography,” Apr. 2005, vol. 5697, pp. 251–255. doi: 10.1117/12.589146. 

[15] B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in 
absorbing acoustic media using time reversal,” Inverse Problems, vol. 26, no. 11, p. 
115003, 2010, doi: 10.1088/0266-5611/26/11/115003. 



105 
 

[16] L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from 
Organelles to Organs,” Science, vol. 335, no. 6075, pp. 1458–1462, Mar. 2012, doi: 
10.1126/science.1216210. 

[17] S. Hu and L. V. Wang, “Optical-resolution photoacoustic microscopy: 
auscultation of biological systems at the cellular level,” Biophys J, vol. 105, no. 4, pp. 
841–847, Aug. 2013, doi: 10.1016/j.bpj.2013.07.017. 

[18] S. Jeon, J. Kim, D. Lee, J. W. Baik, and C. Kim, “Review on practical 
photoacoustic microscopy,” Photoacoustics, vol. 15, p. 100141, Sep. 2019, doi: 
10.1016/j.pacs.2019.100141. 

[19] S. Park, C. Lee, J. Kim, and C. Kim, “Acoustic resolution photoacoustic 
microscopy,” Biomed. Eng. Lett., vol. 4, no. 3, pp. 213–222, Sep. 2014, doi: 
10.1007/s13534-014-0153-z. 

[20] S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution 
photoacoustic microscopy with improved sensitivity and speed,” Opt Lett, vol. 36, 
no. 7, pp. 1134–1136, Apr. 2011. 

[21] A. B. E. Attia et al., “A review of clinical photoacoustic imaging: Current and 
future trends,” Photoacoustics, vol. 16, p. 100144, Dec. 2019, doi: 
10.1016/j.pacs.2019.100144. 

[22] M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic 
computed tomography,” Physical Review E, vol. 71, no. 1, Jan. 2005, doi: 
10.1103/PhysRevE.71.016706. 

[23] S. Li, B. Montcel, W. Liu, and D. Vray, “Analytical model of optical fluence 
inside multiple cylindrical inhomogeneities embedded in an otherwise homogeneous 
turbid medium for quantitative photoacoustic imaging,” Opt Express, vol. 22, no. 17, 
pp. 20500–20514, Aug. 2014, doi: 10.1364/OE.22.020500. 

[24] Y. Hristova, P. Kuchment, and L. Nguyen, “Reconstruction and time reversal in 
thermoacoustic tomography in acoustically homogeneous and inhomogeneous 
media,” Inverse Problems, vol. 24, no. 5, p. 055006, 2008, doi: 10.1088/0266-
5611/24/5/055006. 

[25] B. T. Cox and B. E. Treeby, “Artifact Trapping During Time Reversal 
Photoacoustic Imaging for Acoustically Heterogeneous Media,” IEEE Transactions 
on Medical Imaging, vol. 29, no. 2, pp. 387–396, Feb. 2010, doi: 
10.1109/TMI.2009.2032358. 

[26] Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in 
limited-view thermoacoustic tomography,” Medical Physics, vol. 31, no. 4, pp. 724–
733, Apr. 2004, doi: 10.1118/1.1644531. 

[27] A. Hauptmann and B. T. Cox, “Deep learning in photoacoustic tomography: 
current approaches and future directions,” JBO, vol. 25, no. 11, p. 112903, Oct. 2020, 
doi: 10.1117/1.JBO.25.11.112903. 

[28] B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative 
spectroscopic photoacoustic imaging: a review,” JBO, vol. 17, no. 6, p. 061202, Jun. 
2012, doi: 10.1117/1.JBO.17.6.061202. 



106 
 

[29] M. J. Willemink and P. B. Noël, “The evolution of image reconstruction for CT—
from filtered back projection to artificial intelligence,” Eur Radiol, vol. 29, no. 5, pp. 
2185–2195, 2019, doi: 10.1007/s00330-018-5810-7. 

[30] H. T. H. Piaggio, “The Mathematical Theory of Huygens’ Principle,” Nature, vol. 
145, no. 3675, pp. 531–532, Apr. 1940, doi: 10.1038/145531a0. 

[31] C. Huang, K. Wang, L. Nie, L. V. Wang, and M. A. Anastasio, “Full-Wave 
Iterative Image Reconstruction in Photoacoustic Tomography with Acoustically 
Inhomogeneous Media,” arXiv:1303.5680 [physics], Mar. 2013, Accessed: Aug. 30, 
2018. [Online]. Available: http://arxiv.org/abs/1303.5680 

[32] S. Arridge et al., “Accelerated high-resolution photoacoustic tomography via 
compressed sensing,” Phys. Med. Biol., vol. 61, no. 24, p. 8908, 2016, doi: 
10.1088/1361-6560/61/24/8908. 

[33] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm 
for Linear Inverse Problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 
183–202, Jan. 2009, doi: 10.1137/080716542. 

[34] A. Hauptmann et al., “Model based learning for accelerated, limited-view 3D 
photoacoustic tomography,” arXiv:1708.09832 [cs, math], Aug. 2017, Accessed: Jul. 
19, 2018. [Online]. Available: http://arxiv.org/abs/1708.09832 

[35] J. Gu et al., “Recent advances in convolutional neural networks,” Pattern 
Recognition, vol. 77, pp. 354–377, May 2018, doi: 10.1016/j.patcog.2017.10.013. 

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep 
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, May 2017, doi: 10.1145/3065386. 

[37] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, “Image Reconstruction is a New 
Frontier of Machine Learning,” IEEE Transactions on Medical Imaging, vol. 37, no. 
6, pp. 1289–1296, Jun. 2018, doi: 10.1109/TMI.2018.2833635. 

[38] J. Ye, Y. Han, and E. Cha, “Deep Convolutional Framelets: A General Deep 
Learning Framework for Inverse Problems,” SIAM J. Imaging Sci., pp. 991–1048, 
Jan. 2018, doi: 10.1137/17M1141771. 

[39] E. Haber and L. Ruthotto, “Stable Architectures for Deep Neural Networks,” 
Inverse Problems, vol. 34, no. 1, p. 014004, Jan. 2018, doi: 10.1088/1361-
6420/aa9a90. 

[40] L. Ruthotto and E. Haber, “Deep Neural Networks Motivated by Partial 
Differential Equations,” Journal of Mathematical Imaging and Vision, vol. 62, Apr. 
2018, doi: 10.1007/s10851-019-00903-1. 

[41] K. Hammernik et al., “Learning a variational network for reconstruction of 
accelerated MRI data,” Magnetic Resonance in Medicine, vol. 79, no. 6, pp. 3055–
3071, 2018, doi: 10.1002/mrm.26977. 

[42] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A Deep 
Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction,” 
IEEE Transactions on Medical Imaging, vol. 37, no. 2, pp. 491–503, Feb. 2018, doi: 
10.1109/TMI.2017.2760978. 



107 
 

[43] E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using 
directional wavelets for low-dose X-ray CT reconstruction,” Medical Physics, vol. 
44, no. 10, pp. e360–e375, Oct. 2017, doi: 10.1002/mp.12344. 

[44] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep Convolutional 
Neural Network for Inverse Problems in Imaging,” IEEE Transactions on Image 
Processing, vol. 26, no. 9, pp. 4509–4522, Sep. 2017, doi: 
10.1109/TIP.2017.2713099. 

[45] A. Hauptmann et al., “Model-Based Learning for Accelerated, Limited-View 3-D 
Photoacoustic Tomography,” IEEE Transactions on Medical Imaging, vol. 37, pp. 
1382–1393, 2018, doi: 10.1109/TMI.2018.2820382. 

[46] S. Antholzer, M. Haltmeier, R. Nuster, and J. Schwab, “Photoacoustic image 
reconstruction via deep learning,” in Photons Plus Ultrasound: Imaging and Sensing 
2018, Feb. 2018, vol. 10494, p. 104944U. doi: 10.1117/12.2290676. 

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 
7553, pp. 436–444, May 2015, doi: 10.1038/nature14539. 

[48] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural 
Networks, vol. 61, pp. 85–117, Jan. 2015, doi: 10.1016/j.neunet.2014.09.003. 

[49] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An 
Introductory Review of Deep Learning for Prediction Models With Big Data,” Front. 
Artif. Intell., vol. 0, 2020, doi: 10.3389/frai.2020.00004. 

[50] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, 
challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1, p. 53, 
Mar. 2021, doi: 10.1186/s40537-021-00444-8. 

[51] S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual 
Understanding of Convolutional Neural Network- A Deep Learning Approach,” 
Procedia Computer Science, vol. 132, pp. 679–688, Jan. 2018, doi: 
10.1016/j.procs.2018.05.069. 

[52] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural 
networks: an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, 
Art. no. 4, Aug. 2018, doi: 10.1007/s13244-018-0639-9. 

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by 
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986, doi: 
10.1038/323533a0. 

[54] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 
2014, Accessed: Jul. 29, 2021. [Online]. Available: https://arxiv.org/abs/1412.6980v9 

[55] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A 
Systematic Review on Supervised and Unsupervised Machine Learning Algorithms 
for Data Science,” in Supervised and Unsupervised Learning for Data Science, M. 
W. Berry, A. Mohamed, and B. W. Yap, Eds. Cham: Springer International 
Publishing, 2020, pp. 3–21. doi: 10.1007/978-3-030-22475-2_1. 

[56] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image 
Translation using Cycle-Consistent Adversarial Networks,” Mar. 2017, Accessed: 
Jul. 29, 2021. [Online]. Available: https://arxiv.org/abs/1703.10593v7 



108 
 

[57] H. Deng, H. Qiao, Q. Dai, and C. Ma, “Deep learning in photoacoustic imaging: a 
review,” JBO, vol. 26, no. 4, p. 040901, Apr. 2021, doi: 10.1117/1.JBO.26.4.040901. 

[58] J. Gröhl, M. Schellenberg, K. Dreher, and L. Maier-Hein, “Deep learning for 
biomedical photoacoustic imaging: A review,” arXiv:2011.02744 [physics], Nov. 
2020, Accessed: Nov. 18, 2020. [Online]. Available: http://arxiv.org/abs/2011.02744 

[59] Waibel, Dominik, Grohl, Janek, Isensee, Fabian, Kirchner, Thomas, Maier-Hein, 
Klaus, and Maier-Hein Lena, “Reconstruction of initial pressure from limited view 
photoacoustic images using deep learning,” in Photons Plus Ultrasound: Imaging 
and Sensing 2018, San Francisco, CA, vol. 10494. Accessed: Oct. 28, 2018. [Online]. 
Available: https://www-spiedigitallibrary-org.mutex.gmu.edu/conference-
proceedings-of-spie/10494/104942S/Reconstruction-of-initial-pressure-from-limited-
view-photoacoustic-images-using/10.1117/12.2288353.full?SSO=1 

[60] E. M. A. Anas, H. K. Zhang, C. Audigier, and E. M. Boctor, “Robust 
Photoacoustic Beamforming Using Dense Convolutional Neural Networks,” in 
Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and 
Navigation, Cham, 2018, pp. 3–11. doi: 10.1007/978-3-030-01045-4_1. 

[61] S. Antholzer, M. Haltmeier, and J. Schwab, “Deep learning for photoacoustic 
tomography from sparse data,” Inverse Problems in Science and Engineering, vol. 
27, no. 7, pp. 987–1005, Jul. 2019, doi: 10.1080/17415977.2018.1518444. 

[62] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for 
Biomedical Image Segmentation,” arXiv:1505.04597 [cs], May 2015, Accessed: Feb. 
08, 2018. [Online]. Available: http://arxiv.org/abs/1505.04597 

[63] S. Guan, A. Khan, S. Sikdar, and P. Chitnis, “Fully Dense UNet for 2D Sparse 
Photoacoustic Tomography Artifact Removal,” IEEE J Biomed Health Inform, Apr. 
2019, doi: 10.1109/JBHI.2019.2912935. 

[64] S. Antholzer, M. Haltmeier, and J. Schwab, “Deep Learning for Photoacoustic 
Tomography from Sparse Data,” arXiv:1704.04587 [cs], Apr. 2017, Accessed: Sep. 
24, 2017. [Online]. Available: http://arxiv.org/abs/1704.04587 

[65] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected 
Convolutional Networks,” arXiv:1608.06993 [cs], Aug. 2016, Accessed: Apr. 11, 
2018. [Online]. Available: http://arxiv.org/abs/1608.06993 

[66] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for 
Biomedical Image Segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, 2015, pp. 234–241. 

[67] M. Haltmeier, “Sampling Conditions for the Circular Radon Transform,” IEEE 
Transactions on Image Processing, vol. 25, no. 6, pp. 2910–2919, Jun. 2016, doi: 
10.1109/TIP.2016.2551364. 

[68] A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in 
Optoacoustic Tomography: A Review,” Curr Med Imaging Rev, vol. 9, no. 4, pp. 
318–336, Nov. 2013, doi: 10.2174/15734056113096660006. 

[69] J. Frikel and M. Haltmeier, “Efficient regularization with wavelet sparsity 
constraints in PAT,” arXiv:1703.08240 [math], Mar. 2017, Accessed: Mar. 08, 2018. 
[Online]. Available: http://arxiv.org/abs/1703.08240 



109 
 

[70] K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative 
image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. 
Biol., vol. 57, no. 17, p. 5399, 2012, doi: 10.1088/0031-9155/57/17/5399. 

[71] Y. Han, J. Yoo, and J. C. Ye, “Deep Residual Learning for Compressed Sensing 
CT Reconstruction via Persistent Homology Analysis,” Nov. 2016. 

[72] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P. A. Heng, “H-DenseUNet: 
Hybrid Densely Connected UNet for Liver and Liver Tumor Segmentation from CT 
Volumes,” arXiv:1709.07330 [cs], Sep. 2017, Accessed: Apr. 11, 2018. [Online]. 
Available: http://arxiv.org/abs/1709.07330 

[73] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-
Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” 
arXiv:1606.06650 [cs], Jun. 2016, Accessed: Sep. 24, 2017. [Online]. Available: 
http://arxiv.org/abs/1606.06650 

[74] J. Schwab, S. Antholzer, R. Nuster, and M. Haltmeier, “DALnet: High-resolution 
photoacoustic projection imaging using deep learning,” arXiv:1801.06693 [physics], 
Jan. 2018, Accessed: Aug. 22, 2018. [Online]. Available: 
http://arxiv.org/abs/1801.06693 

[75] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Feb. 2015, 
Accessed: Mar. 31, 2018. [Online]. Available: http://arxiv.org/abs/1502.03167 

[76] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How Does Batch 
Normalization Help Optimization? (No, It Is Not About Internal Covariate Shift),” 
arXiv:1805.11604 [cs, stat], May 2018, Accessed: Aug. 27, 2018. [Online]. 
Available: http://arxiv.org/abs/1805.11604 

[77] Z. Zhang, X. Liang, X. Dong, Y. Xie, and G. Cao, “A Sparse-View CT 
Reconstruction Method Based on Combination of DenseNet and Deconvolution,” 
IEEE Transactions on Medical Imaging, vol. 37, pp. 1–1, Apr. 2018, doi: 
10.1109/TMI.2018.2823338. 

[78] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for 
Semantic Segmentation,” p. 10. 

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with 
Deep Convolutional Neural Networks,” in Advances in Neural Information 
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, 
Eds. Curran Associates, Inc., 2012, pp. 1097–1105. Accessed: Mar. 08, 2018. 
[Online]. Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf 

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” arXiv:1512.03385 [cs], Dec. 2015, Accessed: Apr. 03, 2018. [Online]. 
Available: http://arxiv.org/abs/1512.03385 

[81] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training Very Deep Networks,” 
in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. 
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 
2015, pp. 2377–2385. Accessed: Dec. 05, 2018. [Online]. Available: 
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf 



110 
 

[82] J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using Very 
Deep Convolutional Networks,” arXiv:1511.04587 [cs], Nov. 2015, Accessed: Apr. 
03, 2018. [Online]. Available: http://arxiv.org/abs/1511.04587 

[83] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and 
reconstruction of photoacoustic wave fields,” J Biomed Opt, vol. 15, no. 2, p. 
021314, Apr. 2010, doi: 10.1117/1.3360308. 

[84] “- k-Wave MATLAB Toolbox.” http://www.k-
wave.org/documentation/example_pr_2D_tr_circular_sensor.php (accessed Jun. 25, 
2018). 

[85] A. Dorr, J. G. Sled, and N. Kabani, “Three-dimensional cerebral vasculature of 
the CBA mouse brain: a magnetic resonance imaging and micro computed 
tomography study,” Neuroimage, vol. 35, no. 4, pp. 1409–1423, May 2007, doi: 
10.1016/j.neuroimage.2006.12.040. 

[86] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Multiscale 
vessel enhancement filtering,” in Medical Image Computing and Computer-Assisted 
Intervention — MICCAI’98, vol. 1496, W. M. Wells, A. Colchester, and S. Delp, 
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 130–137. doi: 
10.1007/BFb0056195. 

[87] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous 
Distributed Systems,” arXiv:1603.04467 [cs], Mar. 2016, Accessed: May 04, 2019. 
[Online]. Available: http://arxiv.org/abs/1603.04467 

[88] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality 
assessment: from error visibility to structural similarity,” IEEE Transactions on 
Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 
10.1109/TIP.2003.819861. 

[89] B. Huang, J. Xia, K. Maslov, and L. V. Wang, “Improving limited-view 
photoacoustic tomography with an acoustic reflector,” J Biomed Opt, vol. 18, no. 11, 
Nov. 2013, doi: 10.1117/1.JBO.18.11.110505. 

[90] D. Wu, X. Wang, C. Tao, and X. J. Liu, “Limited-view photoacoustic tomography 
utilizing backscatterers as virtual transducers,” Appl. Phys. Lett., vol. 99, no. 24, p. 
244102, Dec. 2011, doi: 10.1063/1.3669512. 

[91] C. M. Sandino, N. Dixit, J. Y. Cheng, and S. S. Vasanawala, “Deep convolutional 
neural networks for accelerated dynamic magnetic resonance imaging,” 2017. 
/paper/Deep-convolutional-neural-networks-for-accelerated-Sandino-
Dixit/de12d079e3821ee22586682594d399cbc59d3ff0 (accessed Aug. 03, 2018). 

[92] D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and 
Reflection Artifact Removal Enabled by Deep Learning,” IEEE Transactions on 
Medical Imaging, vol. 37, no. 6, pp. 1464–1477, Jun. 2018, doi: 
10.1109/TMI.2018.2829662. 

[93] N. Davoudi, X. L. Deán-Ben, and D. Razansky, “Deep learning optoacoustic 
tomography with sparse data,” Nature Machine Intelligence, pp. 1–8, Sep. 2019, doi: 
10.1038/s42256-019-0095-3. 

[94] S. Antholzer, J. Schwab, and M. Haltmeier, “Deep Learning Versus 1$ -
Minimization for Compressed Sensing Photoacoustic Tomography,” in 2018 IEEE 



111 
 

International Ultrasonics Symposium (IUS), Oct. 2018, pp. 206–212. doi: 
10.1109/ULTSYM.2018.8579737. 

[95] H. Lan, K. Zhou, C. Yang, J. Liu, S. Gao, and F. Gao, “Hybrid Neural Network 
for Photoacoustic Imaging Reconstruction,” in 2019 41st Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 
2019, pp. 6367–6370. doi: 10.1109/EMBC.2019.8857019. 

[96] H. Lan et al., “Ki-GAN: Knowledge Infusion Generative Adversarial Network for 
Photoacoustic Image Reconstruction In Vivo,” in Medical Image Computing and 
Computer Assisted Intervention – MICCAI 2019, Cham, 2019, pp. 273–281. doi: 
10.1007/978-3-030-32239-7_31. 

[97] A. Hauptmann et al., “Approximate k-Space Models and Deep Learning for Fast 
Photoacoustic Reconstruction,” in Machine Learning for Medical Image 
Reconstruction, Cham, 2018, pp. 103–111. doi: 10.1007/978-3-030-00129-2_12. 

[98] J. Adler and O. Öktem, “Solving ill-posed inverse problems using iterative deep 
neural networks,” Inverse Problems, vol. 33, no. 12, p. 124007, 2017, doi: 
10.1088/1361-6420/aa9581. 

[99] J. Schwab, S. Antholzer, and M. Haltmeier, “Learned backprojection for sparse 
and limited view photoacoustic tomography,” in Photons Plus Ultrasound: Imaging 
and Sensing 2019, Feb. 2019, vol. 10878, p. 1087837. doi: 10.1117/12.2508438. 

[100] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, “Robust Vessel 
Segmentation in Fundus Images,” International Journal of Biomedical Imaging, 
2013. https://www.hindawi.com/journals/ijbi/2013/154860/ (accessed Dec. 16, 2019). 

[101] “Public Lung Image Database.” http://www.via.cornell.edu/lungdb.html (accessed 
Dec. 16, 2019). 

[102] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and 
reconstruction of photoacoustic wave fields,” J Biomed Opt, vol. 15, no. 2, p. 
021314, Apr. 2010, doi: 10.1117/1.3360308. 

[103] A. Hauptmann and B. Cox, “Deep Learning in Photoacoustic Tomography: 
Current approaches and future directions,” arXiv:2009.07608 [cs, eess], Sep. 2020, 
Accessed: Nov. 18, 2020. [Online]. Available: http://arxiv.org/abs/2009.07608 

[104] C. Yang, H. Lan, F. Gao, and F. Gao, “Deep learning for photoacoustic imaging: 
a survey,” arXiv:2008.04221 [cs, eess], Nov. 2020, Accessed: Nov. 18, 2020. 
[Online]. Available: http://arxiv.org/abs/2008.04221 

[105] H. Shan et al., “Competitive performance of a modularized deep neural network 
compared to commercial algorithms for low-dose CT image reconstruction,” Nature 
Machine Intelligence, vol. 1, no. 6, p. 269, Jun. 2019, doi: 10.1038/s42256-019-0057-
9. 

[106] C. M. Hyun, H. P. Kim, S. M. Lee, S. Lee, and J. K. Seo, “Deep learning for 
undersampled MRI reconstruction,” Phys. Med. Biol., vol. 63, no. 13, p. 135007, Jun. 
2018, doi: 10.1088/1361-6560/aac71a. 

[107] S. Guan, A. A. Khan, S. Sikdar, and P. V. Chitnis, “Limited-View and Sparse 
Photoacoustic Tomography for Neuroimaging with Deep Learning,” Scientific 
Reports, vol. 10, no. 1, Art. no. 1, May 2020, doi: 10.1038/s41598-020-65235-2. 



112 
 

[108] M. Kim, G.-S. Jeng, I. Pelivanov, and M. O’Donnell, “Deep-Learning Image 
Reconstruction for Real-Time Photoacoustic System,” IEEE Transactions on 
Medical Imaging, vol. 39, no. 11, pp. 3379–3390, Nov. 2020, doi: 
10.1109/TMI.2020.2993835. 

[109] F. Yu, V. Koltun, and T. Funkhouser, “Dilated Residual Networks,” 
arXiv:1705.09914 [cs], May 2017, Accessed: Dec. 09, 2020. [Online]. Available: 
http://arxiv.org/abs/1705.09914 

[110] Z. Wang and S. Ji, “Smoothed Dilated Convolutions for Improved Dense 
Prediction,” Proceedings of the 24th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining, pp. 2486–2495, Jul. 2018, doi: 
10.1145/3219819.3219944. 

[111] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated 
Convolutions,” arXiv:1511.07122 [cs], Apr. 2016, Accessed: Nov. 18, 2020. 
[Online]. Available: http://arxiv.org/abs/1511.07122 

[112] P. Wang et al., “Understanding Convolution for Semantic Segmentation,” 
arXiv:1702.08502 [cs], May 2018, Accessed: Dec. 09, 2020. [Online]. Available: 
http://arxiv.org/abs/1702.08502 

[113] H. Zhou et al., “Multi-Scale Dilated Convolution Neural Network for Image 
Artifact Correction of Limited-Angle Tomography,” IEEE Access, vol. 8, pp. 1567–
1576, 2020, doi: 10.1109/ACCESS.2019.2962071. 

[114] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions 
on Image Processing, vol. 10, no. 2, pp. 266–277, Feb. 2001, doi: 
10.1109/83.902291. 

[115] A. Badano et al., “Evaluation of Digital Breast Tomosynthesis as Replacement of 
Full-Field Digital Mammography Using an In Silico Imaging Trial,” JAMA Netw 
Open, vol. 1, no. 7, p. e185474, Nov. 2018, doi: 
10.1001/jamanetworkopen.2018.5474. 

[116] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for 
image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, 
Systems Computers, 2003, Nov. 2003, vol. 2, pp. 1398-1402 Vol.2. doi: 
10.1109/ACSSC.2003.1292216. 

[117] M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and 
numerical simulations for thermoacoustic tomography in various geometries,” IEEE 
Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 1086–1099, Sep. 2003, 
doi: 10.1109/TBME.2003.816081. 

[118] G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction 
algorithm for optoacoustic imaging,” The Journal of the Acoustical Society of 
America, vol. 112, no. 4, pp. 1536–1544, Sep. 2002, doi: 10.1121/1.1501898. 

[119] B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Finite element calculation of 
photoacoustic signals,” Appl. Opt., AO, vol. 46, no. 7, pp. 1120–1125, Mar. 2007, 
doi: 10.1364/AO.46.001120. 

[120] W. Xia et al., “An optimized ultrasound detector for photoacoustic breast 
tomography,” Med Phys, vol. 40, no. 3, p. 032901, Mar. 2013, doi: 
10.1118/1.4792462. 



113 
 

[121] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural 
networks: A deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations,” Journal of Computational Physics, 
vol. 378, pp. 686–707, Feb. 2019, doi: 10.1016/j.jcp.2018.10.045. 

[122] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel, “Learning to 
Optimize Multigrid PDE Solvers,” in International Conference on Machine 
Learning, May 2019, pp. 2415–2423. Accessed: May 22, 2021. [Online]. Available: 
http://proceedings.mlr.press/v97/greenfeld19a.html 

[123] Y. Khoo, J. Lu, and L. Ying, “Solving parametric PDE problems with artificial 
neural networks,” Eur. J. Appl. Math, vol. 32, no. 3, pp. 421–435, Jun. 2021, doi: 
10.1017/S0956792520000182. 

[124] W. E and B. Yu, “The Deep Ritz method: A deep learning-based numerical 
algorithm for solving variational problems,” arXiv:1710.00211 [cs, stat], Sep. 2017, 
Accessed: May 22, 2021. [Online]. Available: http://arxiv.org/abs/1710.00211 

[125] L. Lu, P. Jin, and G. E. Karniadakis, “DeepONet: Learning nonlinear operators 
for identifying differential equations based on the universal approximation theorem 
of operators,” arXiv:1910.03193 [cs, stat], Apr. 2020, Accessed: May 22, 2021. 
[Online]. Available: http://arxiv.org/abs/1910.03193 

[126] Z. Li et al., “Fourier Neural Operator for Parametric Partial Differential 
Equations,” arXiv:2010.08895 [cs, math], Oct. 2020, Accessed: Dec. 29, 2020. 
[Online]. Available: http://arxiv.org/abs/2010.08895 

[127] E. Tadmor, “A review of numerical methods for nonlinear partial differential 
equations,” Bull. Amer. Math. Soc., vol. 49, no. 4, pp. 507–554, 2012, doi: 
10.1090/S0273-0979-2012-01379-4. 

[128] B. E. Treeby and J. Pan, “A practical examination of the errors arising in the 
direct collocation boundary element method for acoustic scattering,” Engineering 
Analysis with Boundary Elements, vol. 33, no. 11, pp. 1302–1315, Nov. 2009, doi: 
10.1016/j.enganabound.2009.06.005. 

[129] T. D. Mast, L. P. Souriau, D.-L. D. Liu, M. Tabei, A. I. Nachman, and R. C. 
Waag, “A k-space method for large-scale models of wave propagation in tissue,” 
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, 
no. 2, pp. 341–354, Mar. 2001, doi: 10.1109/58.911717. 

[130] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear 
ultrasound propagation in heterogeneous media with power law absorption using a k-
space pseudospectral method,” J Acoust Soc Am, vol. 131, no. 6, pp. 4324–4336, Jun. 
2012, doi: 10.1121/1.4712021. 

[131] Z. Akkus et al., “A Survey of Deep-Learning Applications in Ultrasound: 
Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow,” 
Journal of the American College of Radiology, vol. 16, no. 9, Part B, pp. 1318–1328, 
Sep. 2019, doi: 10.1016/j.jacr.2019.06.004. 

[132] S. Tonekaboni, S. Joshi, M. D. McCradden, and A. Goldenberg, “What Clinicians 
Want: Contextualizing Explainable Machine Learning for Clinical End Use,” in 
Machine Learning for Healthcare Conference, Oct. 2019, pp. 359–380. Accessed: 



114 
 

Aug. 04, 2021. [Online]. Available: 
http://proceedings.mlr.press/v106/tonekaboni19a.html 

[133] C. Cai, K. Deng, C. Ma, and J. Luo, “End-to-end deep neural network for optical 
inversion in quantitative photoacoustic imaging,” Opt. Lett., OL, vol. 43, no. 12, pp. 
2752–2755, Jun. 2018, doi: 10.1364/OL.43.002752. 

 



115 
 

BIOGRAPHY 

Steven Guan graduated from Fairfax High School, Fairfax, Virginia, in 1983. She 
received her Bachelor of Arts from George Mason University in 1987. She was employed 
as a teacher in Fairfax County for two years and received her Master of Arts in English 
from George Mason University in 1987. 


