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Abstract

ADAPTIVE CYBER DEFENSES TO MITIGATE BOTNET-BORNE THREATS

Sridhar Venkatesan, PhD

George Mason University, 2017

Dissertation Director: Dr. Massimiliano Albanese

A botnet is a network of compromised machines remotely controlled by an attacker.

Over the past two decades, the modus operandi of botnets has evolved to facilitate a wide

array of attacks ranging from stealthy exfiltration of sensitive data to large-scale Distributed

Denial-of-Service (DDoS) attacks. As a result, botnets have emerged as one of the biggest

threats to the Internet ecosystem.

Despite several successful efforts at shutting down botnet operations, attackers quickly

reconstruct them while switching to more stealthy and resilient architectures. To address

this ceaseless arms race between the defenders and the attackers, a new paradigm known

as Adaptive Cyber Defense (ACD) has emerged as a promising approach. ACD techniques

mitigate attack campaigns by increasing the cost and complexity for a malicious actor to

successfully execute an attack. In this thesis, I present ACD models and techniques to

address two significant threats: data exfiltration and DDoS.

Botnets that facilitate data exfiltration persist in the target network for an extended

period of time and operate in a stealthy manner. In the recent past, attackers that employ

botnets to exfiltrate data have implemented a new form of stealth – known as architectural

stealth – in which the attacker constructs a communication architecture that reduces the ex-

posure of malicious traffic to the detectors. To disrupt such botnets in a resource-constrained



environment,we first develop two dynamic monitoring strategies that significantly increases

the likelihood of intercepting bot traffic. Next, we design a detection mechanism, namely

DeBot, that processes the intercepted traffic and exploits known intrinsic behaviors of bots

to detect them. Finally, to minimize the persistence of such botnets within a network, we

develop a Reinforcement Learning (RL) model that combines the proactive capability of

honeypots to prevent lateral movement and the reactive nature of detection mechanisms to

detect persistent bots within the network. We provide a proof-of-concept of the proposed

techniques, and study their performance in a simulated environment. The results show that

the proposed approaches are promising in protecting a network against long-term exfiltration

campaigns by stealthy botnets.

On the other end of the attack spectrum, adversaries also employ botnets to launch

large-scale volumetric DDoS attacks. To mitigate the impact of DDoS attacks, organiza-

tions are increasingly adopting proxy-based architectures. These architectures introduce

a well-provisioned intermediate layer of secret proxies between end users and target ser-

vices and reduce the impact of a DDoS attack by migrating the clients to new proxies and

shuffling the clients across proxies so as to isolate malicious clients. However, the reactive

nature of these solutions presents a weakness that we leverage to develop a new attack –

the proxy harvesting attack – which enables malicious clients to collect information about a

large number of proxies before launching a DDoS attack. We show that current solutions are

vulnerable to this attack, and propose PROTAG – a moving target defense technique con-

sisting in periodically and proactively replacing one or more proxies and remapping clients

to proxies. Our primary goal is to disrupt the attacker’s reconnaissance effort. Additionally,

to mitigate ongoing attacks, we develop a new client-to-proxy assignment strategy to isolate

compromised clients, thereby reducing the impact of subsequent attacks. We validate our

approach both theoretically and through simulation, and show that the proposed solution

can effectively limit the number of proxies an attacker can discover and isolate malicious

clients.



Chapter 1: Introduction and Motivation

Confidentiality, Integrity and Availability (CIA triad) are at the core of information secu-

rity. In the past decade, botnets have emerged as an attractive toolkit for cyber-criminals

to plague an organization’s information security. A botnet is a network of compromised

machines which are remotely controlled by an attacker. Ever since its first appearance,

the modus operandi of botnets has evolved to enable attackers to engage in a plethora of

malicious activities. In the beginning, botnets were created and maintained for large-scale

overt activities such as DDoS attacks and spam. Such botnets required the coordination of

a large number of bots in order to be effective, i.e., the success of these attacks relied on

the size of the botnet. However, over the past decade, attackers have identified new uses

for botnets, such as data theft. These botnets need to persist in the target network for an

extended period of time in order to operate effectively.

Due to the risks posed by botnets to the Internet ecosystem, law enforcements continually

conduct botnet takedown operations by shutting down the Command and Control (C&C)

servers [4]. However, attackers restore botnet operations immediately and adopt resilient

(such a peer-to-peer (P2P) networks [5]) and stealthier communication architecture (such

as HTTP [6]) to withstand future takedown attempts. As a result, there is an arms race

between the attacker and defender. In order to address this arms race, in this dissertation,

I develop Adaptive Cyber Defense (ACD) models and techniques to tip the balance in favor

of the defender.

ACD techniques mitigate attack campaigns by increasing the cost and complexity for the

attacker to successfully execute the attack [7, 8]. Among different manifestations of ACD

techniques, Moving Target Defense (MTD) techniques have emerged as a game-changing

paradigm and advocates proactive re-configuration of a system so as to continually shift the

1



system’s attack surface [7, 8]. Continual re-configuration of a system reduces an attacker’s

certainty of the system’s attack surface and consequently, increases the effort to successfully

execute an attack. Inspired by this paradigm, my ultimate objective is to increase an

attacker’s effort and disincentivize them from performing botnet-assisted malicious activities.

In particular, in this dissertation, I address two major threats due to botnets: long-term

data exfiltration and DDoS attacks.

1.1 Data Exfiltration by Stealthy Botnets

Data exfiltration is an unauthorized transfer of sensitive information from a target’s network

to a remote location controlled by an attacker. Data exfiltration violates the confidentiality of

an organization’s digital assets by leaking sensitive data through an exfiltration channel such

as social engineering [9]. Reports by Kaspersky labs [10] and Mandiant [11] show that the

threat actors infiltrate an organization’s network and persist in the system for several years,

mapping out the network before exfiltrating sensitive and valuable intellectual property to

a remote drop-site. Due to the wealth of information that can be acquired through such an

attack vector, threat actors ranging from competitors of an organization to foreign nations

invest huge amount of time and money to design such Advanced Persistent Threats (APT).

With a rising trend in the use of botnets to facilitate attacks that are motivated by profit

such as harvesting information and bitcoin mining, it is anticipated that, in the future,

botnets will be employed to facilitate stealthy attack vectors such as APTs [12]. Botnets

that engage in long-term exfiltration campaigns need to persist in the target network for an

extended period of time to operate effectively. To persist in the network, botnets require

two properties: stealth and resilience.

Stealth is critical for a botnet’s survival and is achieved by implementing either one

or a combination of the following types of stealth: Anti-signature stealth and Architectural

stealth [13]. In a monitored environment, anti-signature stealth obfuscates a bot’s observable

behavior to evade detection. For instance, to evade a network-based detection mechanism,

attackers can manifest anti-signature stealth by randomizing the spatiotemporal properties

2



of the traffic generated by a bot or a group of bots. Several existing botnets such as Zeus

implement anti-signature stealth by encrypting the payload of the traffic while communicat-

ing with a peer or an external C&C server. Besides anti-signature stealth, advanced botnets

have adopted a new form of stealth known as architectural stealth. The communication

architecture of these botnets is constructed such that the volume of malicious traffic inter-

cepted by detectors is reduced. For instance, malwares such as Duqu [14], Regin [15] and

BlackPOS [16] – which were responsible for several exfiltration campaigns from corporate

and government networks – construct a communication architecture between the bots such

that one of the bots aggregates data from the remaining bots and acts as a proxy to relay

the data to an external C&C server. Such a communication architecture was designed to

limit the volume of suspicious traffic intercepted by the detectors at the network perimeter;

thereby, reducing the likelihood of detection [14,15].

In addition to stealth, a botnet’s communication architecture should be resilient to bot

takedown efforts by the defender. This property guarantees that the attacker can maintain

a foothold in the target network and continuously communicate with all the bots in the

botnet. Several advanced botnets such as Zeus GameOver, Waledac – which steal data –

switch to a fallback channel (such as DGA) when the bots are unable to contact the C&C

server using their main communication channel (e.g., when all the peers of a bot in a P2P

botnet is down) [17].

Defending a network against attack campaigns by such stealthy botnets calls for a

large-scale network-wide monitoring solution. However, monitoring a network in a resource-

constrained setting presents three challenges.

First, to detect architectural stealthy botnets that minimize the interception of suspi-

cious traffic, it is crucial to identify the locations within a network that can potentially

intercept large volumes of bot traffic. A straightforward approach to ensure that all bot

traffic is intercepted would be to simultaneously mirror traffic generated from all segments

of the network to a central location for analysis. However, due to the poor scalability of

existing detection mechanisms coupled with an ever-growing internal benign traffic volume,
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detecting bots in a reasonable amount of time becomes infeasible. Such a setting gives rise

to the following research problem – In a resource-constrained environment, what monitoring

strategy must be employed to guarantee a high likelihood of intercepting bot traffic?

Second, existing state-of-the-art network-based detection mechanisms [18–22] were de-

signed to detect bots that communicate with their peers or the C&C server located outside

the network. These mechanisms either drop internal traffic [18], ignore traffic in a predefined

whitelist [20–22] or use a biased traffic sampling algorithm [19] to significantly reduce the

false positive rate and the volume of traffic processed by the respective mechanisms. How-

ever, bots that operate under architectural stealth, generate traffic that is largely internal

to the network and also, blend with the benign traffic. Modifying the operations of existing

mechanisms result in a trade-off between the false positive rate and the detection accuracy.

On the one hand, considering packets from a subset of the network segments (the choice of

segments could be guided by a monitoring strategy) and processing all the traffic through

them (without dropping any internal traffic) would result in a high false positive rate. While

on the other hand, dropping internal traffic would reduce the detection rate. This trade-off

paves the way to the following research problem – What intrinsic characteristics of bots can

be leveraged to distinguish benign traffic from the traffic generated by bots that operate

under architectural stealth?

Finally, as detection mechanisms are imperfect, bots may remain undetected for an

extended period of time. Studies [23] show that the median time to detect a breach in an

organization is 205 days (≈ 7 months). Therefore, to reduce the lifetime of a botnet, we

consider a defense-in-depth approach that combines honeypots and network-based detection

mechanisms to detect and remove bots. In particular, honeypots detect bots during lateral

movement while the detection mechanism detects bots that persist in the network. However,

in a resource-constrained environment, the defender can deploy only a limited number of

honeypots and monitor only a subset of network segments at a given time. Such a setting

introduces the following research problem – In a resource-constrained environment, what

strategy must be employed to deploy honeypots and monitors within a network to reduce
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the lifetime of a botnet?

In this dissertation, I will address these three challenges and propose solutions that

incorporate the underlying principles of ACD.

1.2 Distributed Denial of Service Attack

On the other end of attack spectrum, botnets are commonly employed to enable massive-

scale attacks such as DDoS. Studies have shown that a single DDoS attack cost a victim more

than $400,000 [24]. Volumetric or bandwidth-based DDoS attacks disrupt the availability of

a service to its legitimate users by flooding the target with large volumes of traffic; thereby,

congesting the target’s network infrastructure. While attackers are constantly developing

new types of DDoS attacks (such as multi-vector attacks and application-layer attacks),

volumetric attacks continue to be amongst the most common type of attack [25]. These

attacks leverage the fact that the target’s location can be easily identified (e.g., through

DNS lookup), allowing the attackers to directly reach the target.

A possible approach for preventing an attacker from directly reaching a target is to in-

troduce indirection layers between users and target services [26,27]. In such an architecture,

in order to access a protected service, users need to authenticate with an intermediate layer

of systems which act as proxies between the clients and the services, and relay incoming

requests to the servers. Additionally, to protect against Internet-wide scans, the target ser-

vice accepts traffic only from the designated systems in the indirection layer. As a result,

the architecture shifts the attack surface from the target service to the proxy servers i.e.,

to launch a successful a DDoS attack, the attacker must overwhelm all the proxies with

illegitimate requests simultaneously.

One of the main benefits of this solution is that it can mitigate DDoS attacks against

an enterprise without requiring an Internet-wide adoption. However, the indirection layer

needs to be well-provisioned to effectively out-muscle the attacks. As we cannot indefinitely

add resources to the indirection layer and keep adding proxies, effective mitigation of DDoS

attacks in a proxy-based architecture raises the following research challenge – Can we develop
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a client-to-proxy assignment strategy that increases the complexity for the attacker to launch

an effective DDoS attack? Additionally, in order to reduce the impact of a wave of DDoS

attacks, can we develop a strategy that identifies insiders who outsource the location of

active proxies to botnets that, in turn, to launch the DDoS attack?

1.3 Contributions and Organization

As mentioned earlier, in this thesis, I present ACD models and techniques to address the

challenges posed in detecting and mitigating two major botnet-borne threats: long-term

data exfiltration and DDoS attacks. To this end, in Chapter 2, I will first discuss related

work and the current state-of-the-art approaches towards addressing these challenges.

To disrupt stealthy botnets that exfiltrate data from a network, I will first address the

challenge of developing a monitoring strategy to intercept bot traffic in Chapter 3. Here, I

model the defender’s resource-constrain by bounding the number of network segments that

can be monitored at any given time and adopt a graph-theoretic approach to develop two

dynamic monitor placement strategies which continuously change the monitored segments

of the network. Specifically, I developed several strategies based on centrality measures that

capture important properties of the network. The objective of these strategies is to increase

the likelihood of intercepting bot traffic by creating uncertainty about the location of the

monitors. Furthermore, the uncertainty introduced by the proposed strategies increases an

attacker’s effort and forces them to perform additional actions in an attempt to exfiltrate

data through a monitor-free path.

Next, I will leverage the monitoring strategies proposed in Chapter 3, to develop a scal-

able detection mechanism, namely DeBot, to detect botnets that operate under architectural

stealth in Chapter 4. DeBot processes traffic snapshots from different network segments and

leverages intrinsic characteristics of bots to detect them. In particular, DeBot leverages the

difference in the flow statistics of the traffic generated by bots and benign applications and,

the periodicity in the communication between a bot and its peers to identify suspicious host

pairs within the network. Finally, in Chapter 5, I will address the challenge of developing a
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strategy for placing a limited number of honeypots and monitors in a network. To this end,

I model the problem as a sequential decision-making problem and develop a Reinforcement

Learning (RL) model to learn and thus, control the evolution of a botnet that propagate

and persist in the target network.

To mitigate DDoS attacks, several MTD-based approaches have been proposed that con-

tinuously re-assign the clients to proxies during a wave of DDoS attacks [28–30]. In Chap-

ter 6, I will first present a new type of reconnaissance-based attack – the proxy harvesting

attack – which significantly diminishes the effectiveness of existing proxy-based architectures

that employ the principles of MTD. To counter such an attack, I developed a lightweight de-

fense technique, PROTAG, which proactively reconfigures the attack surface by periodically

replacing one or more proxies and reassigning clients to new proxies. The main objective

of the proposed technique is to disrupt the attacker’s reconnaissance efforts to launch a

significant DDoS attack. Finally, I will combine PROTAG with a simple attacker isolation

technique to minimize the impact of a wave of DDoS attacks. Finally, in Chapter 7, I will

present some possible directions for future work.
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Chapter 2: Related Work

2.1 Evolution of Botnet Communication Architecture

The communication architecture of a botnet plays a crucial role in accomplishing its ma-

licious attack campaign. Ever since the first appearance of a botnet, its communication

architecture has evolved in response to the increasing shutdown efforts by the network de-

fenders. A timeline of significant events in the evolution of botnet C&C infrastructure is

shown in Fig. 2.1. In the beginning, attackers developed centralized architectures in which

the bots setup a direct communication channel with the C&C server; thereby, minimize

the latency in the propagation of commands from the C&C server to the bots. However,

due to single-point failure of centralized architecture, attackers began adopting resilient and

stealthy communication architectures such as P2P, Domain and IP fluxing.

Figure 2.1: Evolution of Botnet C&C Infrastructure [2]
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In P2P botnets, the bots form a distributed C&C topology to remain resilient to take-

down attempts by law enforcements and security researchers. Such P2P-based C&C archi-

tectures have become a popular choice for attackers e.g., Sality for spamming [31], Zeroaccess

for Bitcoin mining [32].

The operations of existing P2P botnets differ in three aspects: the communication pro-

tocol, the message propagation method and the direction of communication [33]. There

are two types of communication protocols: structured and unstructured. Structured P2P

botnets such as Storm [34] are build on existing P2P networks (such as Gnutella, Overnet)

where the bots co-exist with benign users. Each bot maintains a Distributed Hash Table

(DHT) to store the IDs of its peer bots. To propagate a message, structured P2P botnets

first identify the peers and use a DHT lookup to route commands to the chosen peers. On

the other hand, messages in an unstructured P2P botnet is propagated from a bot to its

peers through a gossip protocol; a protocol in which the bot sends the commands to all

its peers simultaneously. Finally, a bot in a P2P botnet may either pull updates or push

commands to its peers. The choice of direction of communication depends on the location

of bots; pushing commands from a bot to its peers reduces communication latency, while

pulling updates from its peers enables non-routable bots (such the ones behind a NAT) to

join the botnet.

Besides P2P-based C&C infrastructure, domain and IP fluxing techniques enable an

attacker to circumvent large-scale takedown attempts by continuously changing the location

of the C&C server. In domain fluxing, the botnet operator uses a Domain Generation

Algorithm (DGA) to generate a large number of domain names in a pseudorandom fashion

[35]; a subset of these are registered to host the C&C servers. Bots in such botnets use the

DGA to generate the domain names (with the same seed) and query the DNS server until

one of the domain names resolve to the C&C server [36]. As the domain names are generated

in a pseudorandom manner, network defenders cannot accurately predict the location of the

C&C server. On the other hand, in IP fluxing, attackers register a domain name for the

C&C server while continuously change the set of IP addresses associated with the domain
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[36]. In order to implement this, the attackers exploit the time-to-live (TTL) value in the

DNS resource record; a record that associates the domain name with the IP address. To

evade takedown attempts, attackers set a small TTL value thereby, enabling them to change

the IP address of the C&C at a high frequency.

In addition to resilience, attackers have also begun adopting stealthier communication

channels to evade detection at network perimeter devices. Channels such as HTTP, DNS

are typically whitelisted by network perimeter devices. As a result, bots communicate with

the C&C server by encoding their messages in the protocol headers of these communication

channels. For instance HTTP-based botnets such as Zeus, SpyEye and Citadel communicate

with the C&C server through encrypted HTTP GET/POST message requests [6].

2.1.1 Centralized Botnet Detection

Over the past decade, several tools and techniques have been developed to detect different

classes of botnets. At the outset, researchers treated botnets as malwares and developed

signatures by reverse engineering bot malware samples and analyzing their behavior in a

sandboxed environment. Based on this analysis, researchers developed mechanisms that

exploit known IRC bot nicknames [37], known C&C domains to identify compromised ma-

chines within a network. While signature-based solutions captured known botnets, attackers

evaded them by altering the spatiotemporal characteristics of their bots and adopting re-

silient communication architectures. Such an evolution of botnets prompted the need to

develop behavior-based detection mechanisms. To this end, detection mechanisms such as

BotSniffer [38], BotGAD [39] were designed to detect centralized botnets by correlating net-

work activities of hosts and identifying synchronized behavior across different hosts while

BotHunter [40] exploited the ordered sequence of messages between a bot and a C&C server

to detect compromised machines.
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2.1.2 Graph-theoretic Approaches to Disrupt Botnets

With the emergence P2P-based botnets, several detection mechanisms have been developed

for different types of networks. For large-scale detection and removal of bots, research in

[41, 42] study the graph-theoretic properties of a P2P botnet to identify bots that need to

be removed to disrupt the botnet. These techniques implement a crawler that infiltrates

the botnet as a bot and requests a list of peer bots. Upon obtaining a list of neighboring

bots, the infiltrating bot iteratively requests every bot in its neighbor list for addition bots.

In order to enlist the bots that are behind a NAT, Kang et al. [43] introduced sensors that

act as superpeers – a responsive bot with a large uptime. These sensors wait for the bots in

non-routable regions of the Internet to connect to it. Once all bots have been enumerated,

the connectivity of the botnet can be obtained. By studying the graph-theoretic properties

such as degree, and clustering coefficient, they enable in identification of bots whose removal

would partition the network; thereby disrupt their operation. A formal treatment of existing

graph-based disruption methods is provided in [33].

At the ISP-level, BotGrep [44] was proposed as a scalable graph-theoretic approach

to detect P2P botnets. It exploited the highly structured communication between bots

to isolate P2P botnet’s communication subgraph from the ISP communication graph. To

improve its accuracy, BotGrep needs C&C traffic samples observed across several vantage

points in the network. These vantage points in the network are determined by considering

graph-theoretic properties of the communication graph.

2.1.3 P2P Botnet Detection in Enterprise Networks

For enterprise network, techniques in [18] (scalable version in [19]) and [20] are the state-of-

the-art mechanisms that were designed to detect P2P botnets.

In [18], Gu et al. proposed BotMiner to detect botnets independent of its protocol

(such as IRC) or communication architecture (such as centralized, P2P). BotMiner analyzes

network traffic traversing the network gateway and groups hosts that exhibit similar com-

munication patterns (based on features extracted from capture traffic) and similar activity
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(such as spamming, scanning etc). In order to scale BotMiner for high speed networks,

Zhang et al. in [19] developed a packet sampling technique known as BSampling which

reduces the volume of traffic that needs to be analyzed by BotMiner. The BSampling al-

gorithm leverages a bot’s intrinsic characteristic to persistently communicate with its peers

or C&C and that the corresponding communication pattern is similar across different bots.

Given an upper bound on the capacity of the monitoring device, the BSampling algorithm

periodically updates the sampling rate for each host so that the packets corresponding to

hosts that exhibit similar communication patterns are sampled at a higher rate than other

packets. As a result, hosts that persistently exhibit similarity in communication pattern

will be identified as suspicious hosts. Subsequently, only traffic from the suspicious hosts

are analyzed by BotMiner.

Zhang et al. in [20] developed a scalable technique to detect stealthy P2P bots within

a network. In this work, the authors consider P2P botnets that implement anti-signature

stealth by encrypting its traffic and co-existing with benign P2P applications (such as Bittor-

rent, Skype) to blend malicious traffic with the background traffic. Originally, the detector

was developed based on three properties exhibited by such stealthy P2P bots: (i) bots com-

municate with several distinct peers outside the network, (ii) the active time of a bot is close

to the active time of the underlying system on which they are running and (iii) the traffic

generated by the bots have flow characteristics that are different from benign P2P applica-

tions. The detection mechanism leverages these properties to derive statistical fingerprints

of different P2P communications to differentiate between hosts belonging to a legitimate

P2P network from those belonging to a P2P botnet.

2.1.4 Advanced Botnet Designs

With the evolution of botnet C&C architectures from simple static centralized C&C to

advanced P2P-based C&C, researchers have investigated the possibility of other resilient

botnet communication structures [45]. Such studies assist in proactively designing detec-

tion mechanisms against them. Recently, authors in [46] designed OnionBot, a resilient and
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stealthy P2P botnet whose communication infrastructure is build using the Tor’s hidden

services. In OnionBot, a bot’s IP address is hidden and can be reached through a .onion

address. A bot’s peer list only contains the .onion address of its peers and uses the Tor

network to communicate with its peers and C&C. Therefore, a defender cannot learn the

IP address from the peer list of a captured bot, resulting in a highly resilient botnet. Addi-

tionally, OnionBot minimizes the network footprint by maintaining a low degree and a low

diameter of the resulting botnet, thereby remaining stealthy. Along similar lines, Sweeney

and Cybenko in [12] emphasize the importance of physical location of bots in a network

(called cyber high ground) to perform stealthy missions such as data exfiltration. To this

end, they design a P2P botnet whose objective is to exfiltrate data traversing a mission-

critical communication channel in a stealthy manner. For a given network topology, they

design a P2P overlay communication structure which maximizes effectiveness (to exfiltrate

data) while maintaining stealth (by avoiding detectors and reducing network footprint).

2.1.5 Scalability Issues with Botnet Detection Mechanisms

One of the challenges of existing fine-grained detection mechanisms is that they scale poorly

with traffic volume. Existing techniques attempt to improve scalability by employing either

one or a combination of the following methods: (i) filtering traffic and reducing the volume

of analyzed traffic, or (ii) using a biased traffic sampling algorithm, or (iii) analyzing with a

low-dimensional feature space. For instance, BotMiner [18] filters any traffic between hosts

within the network and all traffic to/from whitelisted destinations. Similarly, P2P botnet

detection mechanism developed by Zhang et al. in [20] does not consider any network flow

that was previously resolved in DNS responses. Ramachandran et al. [47] and Zhang et al.

[19], on the other hand, propose traffic sampling algorithms to reduce the volume of traffic

analyzed at the network gateway. These algorithms bias the sampling rates such that low-

volume traffic with bot-like characteristics are sampled at a higher rate than other packets.

Besides reducing the traffic volume, techniques such as BAYWATCH [22] and PsyBoG [21]

detect bots by testing for periodicity in the connection patterns between internal hosts and
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external destinations. In the presence of periodic benign traffic, detecting stealthy botnets

would require a rich set of features to reduce false positive rates.

In the past, researchers have addressed the issue of scalability in Intrusion Detection

System (IDS) by modeling it as a zero-sum game between the defender and the attacker

[48–51] in which the defender’s objective is to optimally place a limited number of monitors

to protect a set of target servers. The game-theoretic models in [48, 50] develop optimal

placement strategies to detect intrusion attempts by considering all possible routes through

which the attack can reach the target server from a given set of entry points. While the

models in [49, 51] develop optimal placement strategies to minimize the attacker’s control

over the target server.

2.2 Existing Approaches to Mitigate DDoS Attack

Since the first appearance of DDoS attacks in 2000 [52], several defense mechanisms based

on filtering attack traffic or limiting a client’s share of bandwidth have been proposed to

mitigate attacks at the Internet scale [53]. An in-depth survey of DDoS flooding attacks and

existing approaches to mitigate them is provided in [54]. However, these solutions rely on

large-scale adoption and coordination among different network elements such as routers and

ISPs in order to be effective. These limitations have paved the way to overlay-based defense

approaches which hide the location of target servers behind a well-provisioned, distributed

overlay network [55].

MOVE [56] is one such overlay-based architectures which protects services against at-

tackers who control and disrupt only a subset of network elements. In MOVE, the target

service accepts traffic only from a subset of overlay nodes (called secret servlets) and when

a DoS attack is detected, the target service is migrated to a new hosting site to alleviate the

impact of the attack. Early overlay-based architectures – such as MOVE – did not account

for a threat model in which an attacker can persist in the system and repeatedly launch DoS

attacks, thereby nullifying the advantage of migrating the service to a new location. To this
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end, overlay-based architectures such as MOTAG [28,29], DoSE [30] leverage the principles

of MTD to modify the client-to-overlay node association after a DoS attack, in the hope that

insiders – who persist after the attack – will be eventually isolated from innocent clients.

Wang et al. [28] designed MOTAG to mitigate the persistence of DoS attacks against

online services. MOTAG protects applications by hiding the application server’s location

behind a large pool of proxy servers. The addresses of these proxy servers are not available

to unauthorized clients. After authentication, an authorized client is provided with the IP

address of a random proxy server which forwards incoming request to the application server.

This ensures that unauthorized clients (such as bots) who do not know the address of a proxy

will not be able to disrupt client-server communication. In addition, MOTAG provides a

mechanism to combat insiders who outsource the address of these proxies to external attack-

ers (e.g., botmasters). When proxy servers are discovered and attacked, MOTAG moves the

clients connected to attacked proxies to new proxies and shuffles client assignment to these

new proxies such that innocent clients are isolated from insiders. This architecture was ex-

tended in [29] to protect Internet services that support both authenticated and anonymous

users. The proposed architecture leverages the resource elasticity in a cloud environment

to instantiate new replica servers when existing servers are under attack. The load bal-

ancer identifies each client with its IP address and assigns new clients to an active replica

server. Similar to the original design, when a subset of replica servers are under attack, a

coordination server instantiates new replica servers followed by moving and shuffling clients

connected to the attacked servers to the new replica servers.

The shuffling process to isolate insiders in MOTAG-based architectures does not consider

the cost-overhead to instantiate and maintain new proxies. To address this issue, Wood et

al. [30] proposed DoSE, a cloud-based architecture that provides a cost-effective mechanism

to isolate insiders and confine the attack to a few proxies. For each client, DoSE assigns

a risk value which captures the likelihood that the client will indulge in an attack. DoSE

also assigns an upper bound on the risk that any proxy node can tolerate. Based on these

risk parameters, DoSE assigns clients to proxies and in the face of an attack, the risk
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value of clients associated with attacked proxies are updated. To absorb the impact of the

DDoS attack, new proxies are spawned and clients associated with the attacked proxies are

reassigned to new proxy based on their updated risk values. By maintaining a state for each

client (through risk), DoSE limits the number of proxies needed to identify insiders, thereby

reducing the cost to maintain such an architecture.

Current moving-target based DDoS defense mechanisms are reactive in nature. To this

end, Duan et al. [57] proposed a proactive DoS mitigation technique for wired networks to

tolerate attacks on a small portion of the network. Given a source and destination on a

wired network, they derive several optimal routing paths which minimize overlap with the

recently used routing path and, simultaneously, meet given QoS constraints. One of these

routing paths is chosen at random for forwarding packets from the source to the destination.

Inspired by the frequency hopping in wireless networks, Mittal et al. [58] proposed Mirage, a

moving target defense architecture in which the victim server hops to an IP address chosen

at random from a pre-defined set of IP addresses. When the victim server is under attack, it

signals the new IP address to a puzzle server and the upstream routers. Clients connected to

the victim server are challenged with cryptographic puzzles; the solution of which contains

the new IP address at which the victim server is hosted. As the attacker spends extra

computational resources to solve the puzzle, the proposed approach is expected to delay the

attack. In addition to be being reactive to an attack, Mirage requires a large pool of IP

addresses and hence, it is effective only in IPv6 networks.
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Chapter 3: A Moving Target Defense Approach to Intercept

Stealthy Botnet Traffic

3.1 Introduction

Consider a network that is hosting sensitive data. An attacker’s objective is to exfiltrate

the sensitive data from the network. To this end, the attacker constructs a architectural

stealthy botnet within the target network to steal the data and subsequently, relay it to

a remote C&C location. The defender, on the other hand, analyzes traffic from different

segments of a network to detect exfiltration activity by such botnets. However, due to

the poor scalability of existing detection tools, traffic from all network segments cannot be

simultaneously analyzed for the presence of botnet activity. To this end, in this chapter, we

develop a strategy that dynamically monitors different segments of a network to increase

the likelihood of intercepting bot traffic.

3.1.1 Preliminaries

Let G = (V,E) be a graph representing the physical topology of the network, where V is a

set of network elements – such as routers and end hosts – and E captures the connectivity

between them. Let N = {h1, h2, ..., hn} be a set of mission-critical hosts.

Typically, traffic between any two nodes is routed using a routing algorithm/policy. Let

ΠG denote the set of all simple paths π(vi, vj) between any pair of nodes (vi, vj) ∈ V × V .

Then, a routing algorithm can be formally defined as a mapping RA from the set V × V of

all pairs of nodes in the connectivity graph to ΠG, such that

RA(u, v) = 〈u, z1, z2, . . . , zr, v〉,∀(u, v) ∈ V × V
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Figure 3.1: Example of network graph

where 〈u, z1, z2, . . . , zr, v〉 ∈ ΠG is the path followed by traffic from u to v, as determined

by the routing protocol/policy. Note that we slightly abuse notation and, for the sake

of presentation, we may treat a path π ∈ ΠG as a set of nodes. Although most routing

algorithms attempt to route traffic along the shortest path from source to destination, our

approach does not rely on the assumption that traffic is routed along the shortest path, but

rather on the more general assumption that we can predict what paths the algorithm/policy

will select for routing traffic. However, for the sake of presentation, and without limiting

the generality of our approach, we do assume that the networks being studied implement a

shortest path routing algorithm.

Example 3.1.1. In the example of Figure 3.1, the set of mission-critical channels is C =
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{(v0, v1)} and the set of mission-critical nodes is N = {v0, v1, v2}.

To exfiltrate traffic from a set N of mission-critical nodes, the attacker compromises a

set B ⊂ V of network nodes and creates an overlay network – consisting of bots installed

on nodes in B – to forward eavesdropped traffic to the remote C&C server. Although the

defender may not know the exact location of the remote C&C, we assume that the defender

is aware of potential C&C locations. In theory, any destination that is located outside

the monitored network could be a potential C&C. However, research by César [59] and

Collins et al. [60] shows that certain IP address ranges are known to participate in malicious

campaigns. This information can be leveraged to identify potential C&C locations.

Definition 1 (Exfiltration Path). Given the set N of mission-critical nodes for a network

G = (V,E) and a set B ⊂ V of nodes controlled by the attacker, an overlay path is a sequence

πo(b0, C&C) = 〈b0, b1, b2, . . . , br, C&C〉 of bots – with bi ∈ B for each i ∈ [1, r] chosen by the

attacker to forward traffic exfiltrated from mission-critical node b0 ∈ N to a remote C&C site.

The exfiltration path corresponding to an overlay path πo(b0, C&C) is the actual sequence of

nodes traversed by traffic exfiltrated through πo(b0, C&C), and it is defined as:

πe(b0, C&C) = 〈b0, v0
1 , v

0
2 , . . . , v

0
l0
, b1, v

1
1 , v

1
2 , . . . , v

1
l1
, b2, . . . , br, v

r
1, v

r
2, . . . , v

r
lr , C&C〉 (3.1)

where RA(bi, bi+1) = 〈vi1, vi2, . . . , vili〉,∀i ∈ [1, r−1] and RA(br, C&C) = 〈br, vr1, vr2, . . . , vrlr , C&C〉.

Example 3.1.2. In the running example given in Figure 3.1, if {v15, v9} ∈ B are bots and the

attacker chooses to exfiltrate traffic through the overlay path πo(v1, C&C) = 〈v1, v15, v9, C&C〉,

then the corresponding exfiltration path is πE(v1, C&C) = 〈v1, v14, v15, v16, v9, C&C〉.

For a given set of mission-critical nodes N , the defender’s objective is to intercept and

detect exfiltration traffic. In our work, we model the resource-constrains of the defender

by bounding the number of monitors, k, that can be deployed in the network. In order to

monitor the network for botnet activity, the defender chooses a subset of nodes D ⊂ V where

|D| = k and inspects traffic flowing through them.
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Definition 2 (Interception). Given the set N of mission-critical nodes for a network G =

(V,E), let B ⊂ V be a set of bots controlled by the attacker. An exfiltration attempt over

a exfiltration path πE = 〈v0, v1, v2, . . . , vr, C&C〉, vo ∈ N is the said to be intercepted iff the

exfiltrated traffic traverses a monitor node, that is, ∃vd ∈ VD s.t. vd ∈ πE. A botnet is said

to be stealthy with respect to N , iff no exfiltration path between nodes in N ∩B and a C&C

site can be intercepted.

Several detection mechanisms have been proposed to detect botnets within a network [18,

20,40,61]. These detection mechanisms leverage the fact that the bots need to communicate

with their peers or the C&C server to relay the captured data. Unfortunately, existing

detection mechanisms suffer from false positives and false negatives, therefore exfiltration

attempts may go undetected even when a monitor is placed on a node along the exfiltration

path. However, for the purpose of our analysis, the accuracy of detection mechanism is not

as critical as their placement. Furthermore, to operate under architectural stealth, a prudent

attacker – who does not want any portion of the exfiltration traffic to be intercepted and

eventually detected before reaching a C&C site – will opt for creating more bots in order

to establish a monitor-free path, rather than having the traffic routed through monitors,

irrespective of their false positive and false negative rate. Based on these considerations, we

ignore the accuracy of detectors and assume that any exfiltration attempt going through a

monitor node is detected.

In order to exfiltrate data from a mission-critical node h ∈ N to a C&C site in a stealthy

manner, the attacker must identify a monitor-free path π∗E(h,C&C) ∈ ΠG, and forward

data through it. The set of all monitor-free paths represents the exfiltration surface of the

network. More formally, the exfiltration surface can be defined as follows.

Definition 3 (Exfiltration Surface). Given a set N of mission-critical nodes for a network

G = (V,E), let VD ⊂ V be a set of monitor nodes. The exfiltration surface of G with

respect to VD is the set of monitor-free paths ψVD = {πe(h,C&C) | h ∈ N ∧ πe(h,C&C) ∈

ΠG ∧ πe(h,C&C) ∩ VD = ∅}. We use Ψ to denote the set of all possible exfiltration surfaces

from mission-critical nodes N to C&C.
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In [62], we proposed an approach to deploy monitors on selected network nodes, so as to

reduce the exfiltration surface by either completely disrupting communication between the

bots and C&C nodes, or at least forcing the attacker to create more bots, thereby increasing

the footprint of the botnet. As the monitor placement problem is intractable, we proposed

heuristics based on several centrality measures. Specifically, it was shown that the iterative

mission-betweenness centrality strategy yields the best results. In this strategy, after a node

has been selected as a monitor, the mission-betweenness centrality of all non-detector nodes

that belong to the exfiltration surface is recomputed, and the node with the highest centrality

is chosen for placing an additional monitor. In practice, this approach prevents two or more

monitors from being placed on the same high-centrality path.

Although the above strategy significantly increases an attacker’s effort, the resulting ex-

filtration surface is static. Therefore, a persistent attacker can gather enough information

to precompute the exfiltration surface of the target system and identify a monitor-free path

to exfiltrate data. In this work, we overcome this limitation by designing detector place-

ment strategies that dynamically change the exfiltration surface by continually altering the

placement of monitors.

3.1.2 Threat Model

In our threat model, the attacker’s ultimate goal is to exfiltrate data from mission-critical

nodes, while remaining stealthy and persisting in the system for an extend period of time.

To this end, we make the following assumptions.

• The attacker can discover the topology of the network, and is aware of what nodes are

mission-critical. Reports by Kaspersky labs [10] and Mandiant [11] show that threat

actors can infiltrate an organization’s network and persist in the system for several

years, mapping out the organization and exfiltrating sensitive and valuable intellectual

property.

• Exfiltrating large volumes of data generates abnormally large network flows which in
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turn may trigger alerts. To avoid detection, the attacker partitions the data to be ex-

filtrated into m segments d1, d2, . . . , dm, and transmits these segments over a temporal

span T = 〈t1, t2, . . . , tm〉 ⊆ Nm, i.e., at each time point ti, the attacker transmits data

segment di over the network to C&C. The attacker is said to have successfully exfil-

trated a communication session between any two mission-critical hosts iff the attacker

exfiltrates all the m data segments by time tm.

• The attacker is aware of the monitor placement strategy employed by the defender.

3.2 Defender’s Model

To detect exfiltration over a network, the defender deploys monitors on selected network

nodes. Placing monitors on different vantage points in the network reduces single-point fail-

ures of monitoring traffic through network perimeter devices and increases the opportunities

to intercept and detect botnet activity. In our defender’s model, we consider a resource-

constrained setting where the defender can only deploy k monitors. The upper bound on the

number of monitors can be determined as follows: For the purposes of modeling, given the

computation resources available for detection, let Q denote an upper bound on the number of

packets that can be processed by a detection mechanism. Assuming that the volume of traf-

fic across different portions of the network is uniform, say P packets/hour, then the number

of segments monitored at any given time period can be approximated as Mmax = b Q
P ·tobs

c,

where tobs is the length of the monitoring period in hours. Here, if there are K potential

monitoring locations, then allMmax-sized combinations of locations are admissible solutions.

It should be noted that in reality the traffic volume across different portions of the network

may not be uniform; however, the average traffic volume at different locations may be known

through historical data. In such situations, the problem of finding the feasible solutions for

monitor placement is NP-Hard as it can be shown that the 0/1 Knapsack problem can be

reduced to this problem in polynomial time. Although the problem is NP-Hard for large

networks, the set of feasible solutions can be obtained in polynomial time for small-medium
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scale networks that have fewer monitoring locations. In the following, we provide a formal

definition of the notion of monitor placement.

We assume that the defender is aware of the location of potential C&C sites. For

an enterprise network, C&C locations could include any destination on the Internet, i.e.,

outside the network perimeter. Similarly, for an ISP network, potential C&C sites could be

located outside the administered domain. Furthermore, research by Moreira Moura [59] and

Collins et al. [60] shows that certain IP address ranges are known to participate in malicious

campaigns. This information can be leveraged to identify potential C&C locations. Due to

the conservative estimate on the location of potential C&C sites, blacklisting traffic destined

to these locations will adversely impact the utility of the network.

Definition 4 (k-placement). Given a network G = (V,E), a k-placement over G is a mapping

pl : V → {0, 1} such that
∑
v∈V pl(v) = k. Vertices v such that pl(v) = 1 are called monitor

nodes. We will use Pk to denote the set of all possible k-placements.

As mentioned earlier, static placement of detectors suffers from the drawback that a per-

sistent attacker – who is aware of the network topology – can discover the location of monitors

and identify monitor-free paths from mission-critical nodes to C&C sites. The resulting exfil-

tration surface remains static during exfiltration and, therefore, cannot intercept bot traffic.

Hence, to increase the probability of interception and subsequent detection, we propose to

continually shift the exfiltration surface by dynamically changing the location of detectors.

In our model, we discretize time as a finite sequence of integers T = 〈t1, t2, . . . , tm〉 ⊆ Nm, for

some m ∈ N, such that for all 1 ≤ i < m, ti < ti+1. In the following, we slightly abuse notation

and, for the sake of presentation, we treat the sequence T as a set when appropriate. We

can now define how placements can evolve over time.

Definition 5 (Temporal k-placement). A temporal k-placement is a function tp : T → Pk.

We will use T Pk to denote the set of all possible temporal k-placements.

Intuitively, for each time point in T , a temporal k-placement deploys monitors on k

network nodes. In order to create uncertainty for the attacker with respect to the location of
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monitors, we choose k-placement functions by using a probability distribution over temporal

placements.

Definition 6 (Temporal probabilistic k-placement). A temporal probabilistic k-placement

(tp-k-placement) is a function τ : T Pk → [0, 1] such that
∑

tp∈T Pk
τ(tp) = 1.

Example 3.2.1. Figure 3.2 shows an example of temporal probabilistic k-placement τ for

the graph of Figure 3.1 and for k = 2. Each table in the figure represents a different temporal

k-placement tp (for the sake of presentation, we assume those shown are the only possible

temporal k-placements in T Pk). Note that
∑
tp∈T Pk

τ(tp) = 1. For any given temporal k-

placement tp, the i-th column – with i ∈ {1, 2, . . . ,m} – in the corresponding table represents

the k-placement pl that tp associates with time point ti. Note that, for each k-placement pl,∑
v∈V pl(v) = k. This example assumes that only certain nodes, namely v3, v4, v5, and v6,

can host monitors.

Let the indicator random variable Ivti be associated with the event that node v is chosen

as a monitor at time ti. Given a temporal probabilistic k-placement τ , the probability with

which a node v ∈ V will be chosen as a monitor at time ti can be derived as

prvti = Pr(Ivti = 1 | τ)

=
∑
tp∈T Pk s.t. (∃pl∈Pk)(tp(ti)=pl∧pl(v)=1) τ(tp)

(3.2)

Therefore, at time ti, a defender chooses k nodes for monitor placement by sampling

from the distribution given in Eq. 3.2. We denote such a strategy by Dti ∼ {pr
v
ti
}v∈V .

3.3 Metrics

To evaluate the performance of a defender strategy, we present two metrics: the minimum

interception probability and the attacker’s uncertainty. The minimum interception prob-

ability provides a theoretical lower bound on the probability that an exfiltration activity
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τ


t1 t2 t3 . . . tm

v3 1 1 0 . . . 1
v4 1 0 1 . . . 1
v5 0 0 1 . . . 0
v6 0 1 0 . . . 0

 = 0.3

τ


t1 t2 t3 . . . tm

v3 0 1 1 . . . 1
v4 1 0 0 . . . 0
v5 0 1 0 . . . 0
v6 1 0 1 . . . 1

 = 0.2

τ


t1 t2 t3 . . . tm

v3 0 0 0 . . . 1
v4 0 1 1 . . . 1
v5 1 1 0 . . . 0
v6 1 0 1 . . . 0

 = 0.5

Figure 3.2: Example of temporal probabilistic k-placement

is intercepted due to the detector placement strategy. On the other hand, the attacker’s

uncertainty is measured as the entropy in the location of the monitors from the attacker’s

point of view: the higher the entropy, the higher the attacker’s effort required to discover

the location of monitors.

3.3.1 Minimum Interception Probability

As mentioned earlier, the attacker’s objective is to exfiltrate the data segments d1, d2, . . . , dm

over a temporal span T = 〈t1, t2, . . . , tm〉 ⊆ Nm, while remaining undetected. At each time

point ti, the defender chooses a strategy, Dti ∼ {pr
v
ti
}v∈V and samples k nodes without

replacement. Let Dti
denote the set of monitors at time ti. Following the defender’s place-

ment of monitors, the attacker begins exfiltrating data segment di. For a chosen overlay

path πo(h,C&C) to transmit di, the traffic will traverse the corresponding exfiltration path
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πe(h,C&C) = 〈h, vi1 , vi2 , . . . , vil , C&C〉, with h ∈ N . Therefore, the probability that the at-

tacker’s exfiltration of data segment di is intercepted is given by:

interceptPr(Dti , di, πe(h,C&C))=1−
∏

v∈πe(h,C&C)\{h,C&C}

(
1− prvti

)
(3.3)

A rational attacker – who is aware of the defender’s strategy – will choose a path which

minimizes the probability of interception. Therefore, the path chosen by the attacker to

exfiltrate di is:

πi
∗
e (h,C&C)= argmin

πe(h,C&C)

(
interceptPr

(
Dti , di, πe (h,C&C)

))
(3.4)

In other words, Eq. 3.4 can be used to compute the minimum interception probability

that a defender strategy Dti can guarantee at time ti. Finally, an exfiltration activity is

said to be intercepted when any of the m data flows is intercepted. Therefore, the minimum

probability with which a strategy Dti intercepts an exfiltration activity is given by

exfInterceptPr
(
{Dti}i∈[1,m]

)
= 1−

∏
di

(
1−min

πe

(
interceptPr

(
Dti , di, πe

)))

Given a graph G(V,E), the minimum interception probability of a strategy Dti at time ti

– that is min
πe

(
interceptPr

(
Dti , di, πe

))
– can be computed using Alg. 1. At a high-level, the

algorithm transforms the graph G(V,E) into a weighted dual graph H(V ′, E′) in which the

edge weights are a function of the probability that the corresponding vertex in G(V,E) does

not host a detector. Specifically, at time ti, the path interception probability over any path

πe(u, v) (given by Eq. 3.3) can be re-written as 1 − bS, where S =

( ∑
x∈πe(u,v)

logb

(
1− prxti

))

and b is an arbitrarily small value. Here, bS is the upper bound on the probability that the

path πe(u, v) will be free of monitors. Therefore, each edge in E′ corresponding to a node
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Algorithm 1: minimumInterceptionProb(G,Dti , N,C&C)

Require: a connectivity graph G(V,E), a defender strategy, Dti ∼ {pr
v
ti
}, a set N ⊆ V of

mission-critical nodes, a potential C&C location
Ensure: the minimum interception probability of strategy Dti at time ti for graph G(V,E)

with respect to mission-critical nodes N and the potential C&C location
1: H(V ′, E′)← dual graph of G(V,E), where V ′ = E and (e, f) ∈ E′ iff e and f share a

common vertex v ∈ V
2: b← ε {an arbitrarily small value}
3: for all (e, f) ∈ E′ do
4: v ← the common vertex of e and f in V
5: if prvti < 1 then
6: W ′(e, f)← logb(1− prvti)
7: else
8: W ′(e, f)←∞
9: end if
10: end for
11: {∀v ∈ V , let E(v) denote the set {e | e ∈ E ∧ e is incident on v ∈ V }}
12: for all h in N do
13: for all e in E(h) do
14: for all c in E(C&C) do
15: S ← length of the shortest path from e to c in H

16: interceptPr(h, e, c)← 1− bS
17: end for
18: end for
19: interceptPr(h)← min

(e,c)∈E(h)×E(C&C)
(interceptPr(h, e, c))

20: end for
21: return min

h∈N
(interceptPr(h))

v ∈ V is assigned a weight logb(1−prvti). Following this assignment, the algorithm determines

the shortest path length between the vertices in V ′ that correspond to the edges incident

on the mission-critical and C&C vertices in V . The shortest path length represents the

maximum probability that the exfiltration traffic is not intercepted and the vertices in V

corresponding to edges on this shortest path form the path πi
∗
e (h,C&C).

In particular, after generating the dual graph H(V ′, E′) on Line 1, Algorithm 1 assigns

weights to all the edges (e, f) ∈ E′ based on the probability prvti that the corresponding

vertex v ∈ V is chosen for monitor placement (Lines 3− 10). If a monitor is placed on vertex

v ∈ V with probability 1, then any exfiltration over a path that contains v will be detected.

A rational attacker will avoid such paths and hence, the algorithm sets the weight of the

corresponding edges in E′ as ∞ (Line 8). On the other hand, if the probability is less than
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1, then the corresponding edge is assigned a weight logb(1 − prvti) (Line 6). Next, Line 15

computes the length of the shortest path between vertices e and c in V ′, which correspond

to the edges in E that are incident on mission-critical nodes and C&C, respectively. Finally,

Line 16 computes the minimum interception probability over all the paths from a mission-

critical node h ∈ N to C&C that traverse edges e and c. Line 19 computes the minimum

interception probability for each mission-critical node h by considering all the paths to C&C.

Finally, the minimum interception probability with respect to all mission-critical nodes in

N for graph G(V,E) is computed on Line 21.

Analysis

In the worst case, Alg. 1 takes O(|E|2) time to generate the edge-dual graph H(V ′, E′) as

all pairs of edges in E are checked for a common vertex. As a result, in the worst case

|E′| = O(|E|2). Lines 3− 10 run in time O(|E′|) and Line 11 can be computed in time O(|V |2)

by traversing the adjacency matrix of G. To compute the shortest paths between vertices

in H (Line 15) that correspond to mission-critical node h and C&C in G, we can leverage

the Fibonacci heap implementation of Dijkstra’s single-source shortest path algorithm [63].

The complexity of computing the shortest path lengths for a node h ∈ N (Lines 13 − 19) is

given by O (E(h) · (|E′|+ |V ′| log |V ′|)). Therefore, in the worst case, the time complexity for

computing the shortest path lengths for all mission-critical nodes is O(|E|·(|E|2+|E|·log |E|)).

As the time complexity of the algorithm is dominated by the shortest paths computation,

the time complexity is O(|E|· (|E|2 + |E| · log |E|)). The worst-case time complexity for

computing the minimum interception probability is O(|V |6). However, for practical network

topologies, our simulation results indicate that the running time does not exceed O(|V |3).

3.3.2 Attacker’s Uncertainty

Probabilistic deployment of monitors introduces uncertainty for the attacker with respect to

the location of the monitors. Depending upon the nature of the deployed monitors (either

active or passive), the attacker may progressively learn the location of these monitors through
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probing. For instance, if an enterprise network deploys an active IDS, a simple probing

strategy could be to send malicious packets to a node suspected of hosting a monitor and

depending on whether the node accepts or rejects the packets, the attacker can determine

the node’s monitoring state. In an ISP network, an attacker can leverage probing strategies

described by Shinoda et al. [64], and by Shmatikov and Wang [65] to identify the presence

of monitors in a network. Here, the attacker probes the nodes of interest with attacks whose

characteristics are recognizable from the resulting alert.

The uncertainty introduced by a dynamic placement strategy can be quantified by mea-

suring the entropy in locating the monitors at any time ti. Let X−ti be the random variable

that maps the set V of potential locations to the corresponding probability of being chosen

for monitor placement. Therefore, the entropy due to a strategy Dti ∼ {pr
v
ti
}v∈V is given by:

H(X−ti | Dti) = −
∑
x∈V

P (X−ti = x) log(P (X−ti = x)) (3.5)

where log(P (X−ti = x)) = 0, when P (X−ti = x) = 0. Note that, by the above definition of

entropy, the higher the entropy, the higher the advantage for the defender over the attacker.

3.4 Defender’s Strategies

To illustrate the effectiveness of different defender strategies, consider the network shown in

Figure 3.1, which includes mission-critical nodes N = {v0, v1, v2}. The attacker’s objective is

to relay data from any node in N to the C&C node. To protect mission-critical nodes from

data exfiltration, we consider the following strategies for placing k monitors.

• Static Iterative Centrality Placement : In this strategy, the defender chooses nodes

based on the iterative mission-betweenness centrality algorithm proposed in [62]. The

defender first computes the mission-betweenness centrality of a node v as CM (v) =∑
(s,t)∈N×C&C s.t. v 6=t

σst(v)
σst

, where σst is the number of shortest paths between s and t

and σst(v) is the number of those paths that go through v. Upon computing the
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(a) Centrality-Weighted Strategy
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(b) Expanded Centrality-Weighted Strategy

Figure 3.3: Candidate detector locations for the network of Figure 3.1, based on the
(a) centrality-weighted strategy, and (b) expanded centrality-weighted strategy
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mission-betweenness centrality for all the nodes, the defender chooses the node with

the highest centrality for monitor placement. For each subsequent monitor placement,

the centrality CM (v) of all non-monitor nodes is re-computed and the node with the

highest centrality among the non-detector nodes is picked for placing the next monitor.

In the example of Figure 3.1, assume that the defender can place k = 2 monitors. Then,

node v9 (or v8) will be chosen to the place the first monitor followed by v8 (or v9) to

place the second monitor.

• Uniform Random Placement : The static nature of the above strategy enables an at-

tacker to pre-compute the location of monitors and compromise nodes along a monitor-

free path to exfiltrate data. Therefore, in order to create uncertainty about the exact

location of monitors, in this strategy, the defender chooses k nodes to place monitors

uniformly at random.

• Centrality-Weighted Placement : Although the uniform random strategy introduces

uncertainty for an attacker, it may consider nodes that do not lie on any simple path

between mission-critical nodes and C&C. As a result, the uniform strategy may provide

a low minimum interception probability. In this strategy, to improve interception

guarantees, the defender places k-monitors by randomly choosing nodes according

to a probability distribution that weights nodes based on their mission-betweenness

centrality, i.e., nodes with higher values of CM (v) have more chances of being chosen

for monitor placement. For the example shown in Figure 3.1, the nodes shaded in

brown in Figure 3.3a are the only nodes considered for monitor placement by this

strategy (the color intensity is proportional to the relative weight of the corresponding

node).

• Expanded Centrality-Weighted Placement : One of the major drawbacks of the centrality-

weighted strategy is that coverage of the exfiltration surface is limited. In fact, the

strategy considers only the nodes on the set of all shortest paths between the mission-

critical nodes and C&C. Therefore, in this strategy, the coverage of the exfiltration
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surface is expanded by considering all the nodes in the paths that are δ-times longer

than the shortest paths. Let Πe be the set of all such paths. The revised centrality

of a node v is computed as CE(v) =
∑

(s,t)∈N×C&C s.t. v 6=t

σ′st(v)

σ′st
, where σ′st is the number

of simple paths in Πe between s and t and σ′st(v) is the number of those paths that

go through v. In the example of Figure 3.1, when δ = 0.25, the nodes shaded with

different intensities of brown in Figure 3.3b will be considered for randomizing the

placement.

3.5 Simulation Results

We evaluated the proposed strategies using real ISP network topologies obtained from the

Rocketfuel dataset [1] and synthetic topologies generated using graph-theoretic properties

of typical ISP networks.

The Rockfuel dataset provides router-level topologies for 10 ISP networks. For each

network, Table 3.1 provides a summary of the total number of routers within the network

and the number of external routers (located outside the ISP) to which the ISP routers are

connected. As connections to external routers are outside the monitored domain, in our

simulations, we considered a worst-case scenario and assumed that all the external routers

are potentially routing traffic to C&C servers.

To study the influence of network topology on the performance of a strategy, we evalu-

ated these strategies using simulated medium-scaled ISP networks comprising 3,000 nodes.

At the router-level, such networks are known to exhibit scale-free network properties wherein

the degree distribution follows a power-law distribution [1]. In order to accurately capture

the connectivity of an ISP network at the router level, the BRITE network topology gen-

erator [66] was used to generate these networks. Ten such networks were considered, with

mission-critical nodes varying between 10%-30% of the network size and 500 C&C locations

chosen at random for each network.

For the ISP networks from the Rocketfuel dataset, we varied the size of the monitor set
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Table 3.1: Summary of ISP networks from [1]

ASN Name No. of routers No. of ext. routers
1221 Telstra 2998 329
1239 Sprintlink 8341 1004
1755 Ebone 605 310
2914 Verio 7102 2432
3257 Tiscali 855 444
3356 Level3 3447 1827
3967 Exodus 895 520
4755 VSNL 121 80
6461 Abovenet 2720 2066
7018 AT&T 10152 722

as a fraction of the number of mission-critical nodes while, for synthetic topologies, we varied

the size of the monitor set as a fraction of the network size. These simulations were intended

to study the impact on the amount of resources that a network administrator might be willing

to invest (either proportional to the number of nodes that need to be protected or size of

the network) to detect exfiltration. In all our simulations, we set δ = 0.5 for the expanded

centrality-weighted strategy and tested the statistical significance of the presented results

using paired t-test at 95% confidence interval. Finally, to illustrate the performance of the

proposed strategies, we show the results for a subset of the topologies from the Rocketfuel

dataset. We observed a similar trend in the performance in the remaining networks.

3.5.1 Minimum Interception Probability

As illustrated in Figure 3.4 and Figure 3.5, the probability of intercepting exfiltration traffic

increases linearly with the number of monitors. We observed that variations in the inter-

ception probability for different synthetic networks were less than 1% and hence, for sake of

presentation, we only show mean values.
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It can be observed that, independently of the number of mission-critical nodes and

monitors, the centrality-weighted strategy outperforms the expanded centrality-weighted

strategy. This trend can be attributed to the scale-free nature of the topology in which

most of the paths traverse a small portion of the nodes. As the expanded strategy considers

a larger sample space of paths and distributes the placement probability across the nodes on

these paths, the nodes with high centrality will be chosen with a lower probability than in

the case of the centrality-weighted strategy. In these simulations, we observed that the static

iterative centrality strategy could not intercept the exfiltration of the data segments in any of

the networks as there was at least one monitor-free path between one of the mission-critical

nodes and a C&C location.

3.5.2 Attacker’s Uncertainty

As mentioned earlier, among the monitor placement strategies, the static iterative centrality

strategy does not introduce any uncertainty whilst the uniform random strategy introduces

the highest uncertainty in the location of monitors to an attacker. To study the attacker’s

uncertainty in the location of monitors due to the proposed strategies, we computed the rel-

ative entropy introduced by the centrality-weighted and the expanded centrality-weighted

strategy w.r.t. the uniform random strategy. As shown in Figure 3.6, the centrality-weighted

strategy and its expanded version create an uncertainty that lies in-between the two ends of

the entropy spectrum. In particular, as expanded strategy potentially considers more nodes,

the number of combinations of monitor locations, and hence the uncertainty introduced by

it is higher than the centrality-weighted strategy. Therefore, for ISP networks, the choice of

different centrality-weighted strategies potentially trades-off entropy for interception proba-

bility guarantees.

3.5.3 Running Time

In this section, we evaluate the performance of Algorithm 1 in computing the minimum

interception probability and the performance of various monitor placement strategies as a
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Figure 3.4: Minimum interception probability for different networks using centrality-
weighted (CWS) and expanded centrality-weighted (ECWS) strategies
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Figure 3.5: Minimum interception probability for different strategies using synthetic topolo-
gies

function of the network size. For each network size, we generated 10 ISP-type topologies,

with 10% of network size as mission-critical nodes and 500 C&C locations chosen at random.

We varied the number of monitors from 3% to 7% of network size and observed similar trend

in the running time. For the sake of presentation, we present the results with 3% of network

size for the total number of available monitors. The runtime was averaged over the 10

graph settings for each network size. All experiments were conducted on an AMD Opteron

processor with 4GB memory running Ubuntu 12.04.

Although, in theory, the worst-case running time of Algorithm 1 is O(|V |6), for practical

network settings, it can be seen (line marked in orange in Figure 3.7) that the execution

time grows as O(|V |3) with an R2 value of 0.99. Finally, as shown in Figure 3.8, the dynamic

strategy computes the monitor locations faster than its static alternative. This is because,

the static iterative centrality strategy has to re-compute the shortest paths multiple times

to determine the location of the monitors.
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Figure 3.6: Relative increase in entropy for the attacker introduced by different strategies
for (a) Sprintlink network and (b) synthetic network
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Figure 3.7: Running time for computing the minimum interception probability using Algo-
rithm 1.

3.6 Conclusions

In this chapter, we addressed the challenge of developing a monitoring strategy to detect

stealthy botnets that exfiltrate data from a network. To this end, we have proposed a moving

target defense approach to dynamically and continuously changing the location of monitors

over time. Specifically, we have proposed several strategies based on centrality measures that

capture important properties of the network. Our objective is to increase the likelihood of

detection by creating uncertainty about the location of monitors and also, increase attacker’s

effort by forcing the botmaster to perform additional actions in an attempt to create monitor-

free paths through the network. To evaluate the proposed strategies,we have presented two

metrics – namely the minimum interception probability and the attacker’s uncertainty – and

an algorithm to compute the minimum interception probability. We validated our approach
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through simulations, and the results confirmed that the proposed solution can effectively

reduce the likelihood of successful exfiltration campaigns.
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Chapter 4: DeBot: A Mechanism to Detect Stealthy Botnets

4.1 Introduction

In this chapter, we propose a mechanism, namely DeBot, to detect architectural stealthy

botnets by analyzing the traffic generated by different hosts within the network and sub-

sequently, identify suspicious flows. To this end, we first leverage the monitoring strategy

proposed in Chapter 3 to monitor and intercept traffic from different network segments.

Additionally, we also leverage two intrinsic characteristics of botnets: (i) the difference in

the traffic flow statistics between bots and benign applications and (ii) the periodicity in

the connection patterns between a bot and its peers to identify potential bot flows.

4.2 Overview and Architecture

In our work, we assume that the attacker is aware of the network topology and can com-

promise hosts and servers within the network and setup a communication architecture to

exfiltrate data to an attacker-controlled server outside the network.

The proposed approach to detect exfiltration by architectural-stealthy botnets can be

divided into four phases: preprocessing, observation, refinement, and analysis. Fig. 4.1

provides an overview of the detection mechanism. First, in the preprocessing phase, DeBot

computes the rate at which traffic snapshots should be captured at different monitoring

points in order to enable subsequent analysis. Through the chapter, we refer to this rate as

the snapshot rate.

In DeBot, the monitoring period T (say, 24 hours) is divided into smaller epochs, ∆t (say,

30 mins). At each epoch in the observation phase, DeBot randomly chooses a monitoring

point based on the snapshot rates and inspects traffic traversing it during that period.
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Throughout the monitoring period, DeBot maintains a score for each host in the network

and updates it based on the similarity of the host’s traffic pattern with other hosts within its

neighborhood. At the end of the observation phase, DeBot aggregates the similarity score

for each host based on T
∆t snapshots of traffic observed from different vantage points in the

network. The aggregated score is then used to identify suspicious hosts HB by comparing the

similarity score of each host with the similarity score of other hosts within its neighborhood.

In the refinement phase, DeBot identifies the set of flows that correspond to bot traffic by

exploiting the periodic communication pattern between bots. For each host in HB, DeBot

uses periodogram analysis to identify flows that are relatively more periodic than other flows

generated by it and marks them as suspicious for further inspection.

Finally, to confirm the existence of malicious activity, in the analysis phase, the suspicious

flows can be further analyzed using a fine-grained analysis techniques such as Deep Packet

Inspection.

4.3 Preprocessing Phase

As mentioned above, DeBot analyzes flow records from different monitoring points in order

to identify malicious flows. The performance of the proposed detection mechanism is influ-

enced by the volume of malicious flows intercepted in the analyzed traffic. To increase the

likelihood of intercepting malicious flows, two challenges emerge: (i) identifying potential

traffic monitoring locations in the network (Section 4.3.1); and (ii) developing a sampling

technique to collect malicious flows over time and tackle scalability issues (Section 4.3.2).

4.3.1 Information Flow

The objective of an exfiltration campaign is to continually transfer sensitive data to a remote

server controlled by the attacker. Typically, in an enterprise network, sensitive data is

confined to a few servers which we refer to as mission-critical servers. The exfiltrated data

traverses several intermediate forwarding devices such as switches, routers and gateways

within the network before reaching the remote server. Any of these intermediate devices
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Figure 4.1: Overview of DeBot

can be used as a monitoring point. In the proposed detection scheme, traffic is mirrored

from these intermediate devices to a central location for analysis. In large enterprises, such

an infrastructure is already usually in place and used to remotely monitor the performance

of the devices.

Given the sparseness of malicious flows, it is critical to identify monitoring points that

are well-positioned to capture malicious flows. For instance, consider the enterprise network

in Fig. 4.2 with the sensitive data hosted in the file servers located in Subnet-1 and Subnet-

2. The file servers host redundant copies of the data. To exfiltrate this sensitive data, an

attacker could choose from one of several botnet communication architectures with varying
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degrees of exposure of malicious flows to the monitoring points. For example, an attacker

could compromise one of the client systems in Subnet-1, say h1 with IP 192.168.1.2, mount

the share drive and directly transfer the sensitive data to a remote location. Due to internal

routing policies, the traffic traverses two intermediate devices – router M6 and firewall M1

– before exiting the network. For the purpose of exposition, we denote this communication

architecture as a path: h1 →M6 →M1 → C&C, where C&C denotes the attacker-controlled

external server. Other possible exfiltration paths include, but not limited to: gx → M7 →

M6 → M1 → C&C where gx is a compromised host in Subnet-2, hx → M6 → M7 → M5 →

M4 → Db→M4 →M2 → C&C, in which a database server (Db) was compromised and used

as an intermediate relay bot to forward data outside the network. It can be observed that

the percentage of malicious flows intercepted by different monitoring points depend on the

internal routing policy and the attacker’s choice of communication architecture.

4.3.2 Intercepting Malicious Flows

Analyzing traffic traversing all monitoring points calls for a detection mechanism that can

scale with large volumes of traffic. Although capturing traffic from all monitoring points

would ensure that all the exfiltration flows are intercepted, the resulting traffic volume that

need to processed at the central location would be too large. Therefore, it is crucial to

identify the most effective monitoring points to limit the amount of data centrally processed

by the detection mechanism, whilst ensuring that a sufficient number of malicious flows are

intercepted for analysis. When not enough malicious flows are intercepted, the detection

mechanism may not have enough information to distinguish malicious flows from benign

flows.

To understand the impact of different monitoring points on processing time and accuracy

of a detection mechanism, we simulated the example enterprise network scenario of Fig. 4.2

in the CyberVAN testbed [67] – a testbed which has the capability to generate benign user

traffic1. In the network of Fig. 4.2, we consider a stealthy botnet whose communication
1More details about CyberVAN are provided in Section 4.6.
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Figure 4.2: Enterprise Network

architecture is composed of a server in the DMZ and two compromised hosts, one in Subnet-

1 and one in Subnet-2. The bots exfiltrate data from the file server and forward it to the

server in the DMZ, which aggregates data and relays it to an external server on the Internet.

Table 4.1 shows the number of flows intercepted at different monitoring points in the

example enterprise network during a 12 hour monitoring period. From the table, it can

be seen that, if the monitoring point M4 is chosen, then the detection mechanism would

process 6 times more records than M7 while intercepting only twice as many bot flows as

M7. This example shows that the relationship between the volume of traffic monitored and

the number of malicious flows intercepted is not linear.
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Table 4.1: Percentage of bot flows intercepted at different monitoring points during a 12
hour observation period

Monitoring Point No. of Unique Flows % of Bot Flows
M1 5, 248 0

M2 149, 392 2.31

M3 106, 448 1.62

M4 913, 680 0.85

M5 690, 748 0.63

M6 126, 156 1.37

M7 149, 580 2.31

Total 1, 146, 784 0.97

To improve the chances of intercepting malicious flows in a resource-constrained en-

vironment, we leverage our work on dynamic monitoring strategies. To recall, we model

the network as graph G(V,E) – with a subset of nodes Mc identified as mission-critical

and another subset of nodes representing C&C sites. For each potential monitoring point

m ∈ M ⊂ V in the network, we compute a new centrality measure known as the mission-

betweenness centrality, CM (m), which is a function of the fraction of shortest paths between

mission-critical nodes and C&C locations that traverse m. The entire time horizon is di-

vided into smaller observation epochs and in each epoch a monitoring point m is chosen

with probability CM (m)∑
m′∈M

CM (m′) . The proposed strategy only considered monitoring points on

the shortest path. Therefore, to improve coverage, we proposed an alternative strategy –

the expanded centrality-weighted strategy – which, in addition to considering monitoring

points on shortest paths, also considers monitoring points on paths that are δ times longer

than the shortest paths.

In this work, we adopt the principle behind the dynamic monitoring strategy mentioned

above – i.e., choosing monitoring points with high centrality – and modify it by in order
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to take into account internal routing policies of the network. In Chapter 3, we assumed

that traffic between systems is routed through the shortest path. However, in an enterprise,

the network is segmented into subnets and the route between any two systems depends on

the routing policies at different monitoring points. Such policies are influenced by several

factors such as network load, network security policies etc. In our work, we use the tracert

tool to identify the routes traversed by traffic between two systems s and t, and in turn a

set of monitoring points that can intercept that traffic. We use R to denote the set of all

routes between all systems within a network.

As mentioned earlier, stealthy botnets reduce exposure to detectors by compromising

additional systems and use them as proxy servers to relay messages to a destination outside

the network. In order to model this, we first determine the set of all systems that could act

as proxies. In an enterprise network, most communication patterns follow a client-server

model in which an end user requests a service from a server. Hence, to avoid suspicious

communication patterns, compromised servers (such as Email, DNS etc.) could take the role

of a proxy servers for bots within the network. However, in our work, we make a conservative

assumption that all systems (both client machines and servers) can act as proxy servers for

the botnet. To collect large traffic samples of such botnets, we first compute the centrality

of all the monitoring points, similarly to the expanded centrality-weighted strategy.

We use algorithm computeSnapshotRates (Algorithm 2) to compute the snapshot rates

for each monitoring point. For each mission-critical node mc and potential proxy server s,

the algorithm first determines all the paths through s by concatenating routes from m to s,

i.e., Rm,s, with routes from s to C&C. Here, we conservatively assume that any destination

outside the network is a potential C&C server. The resulting set of routes R′m is used

for computing the mission-betweenness centrality for the monitoring points (lines 7-16).

Finally, the snapshot rate for each monitoring point is computed on line 17. Assuming that

the topology of the network remains static during the entire monitoring time horizon, this

is a one-time computation.

The snapshot rate of a monitoring point, m ∈M, is the probability that m is chosen by
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Algorithm 2: computeSnapshotRates(M,Mc, S,R)

Require: a set M of potential monitoring points, a set Mc of mission-critical nodes, a set
S of potential proxy servers, and a set R of routes between pairs of nodes in M

Ensure: the snapshot rate P (m) for each monitoring point m ∈M
1: for all mc ∈Mc do
2: R′mc ← ∅
3: for all s ∈ S do
4: R′mc ← R

′
mc ∪ {R1||R2 | (R1, R2) ∈ Rm,s ×Rs,C&C}

5: end for
6: end for
7: CB(m)← 0,∀m ∈M {Initialize mission-betweenness centrality}
8: for all mc in Mc do
9: σ(m)← 0,∀m ∈M

10: for all R ∈ R′mc do
11: for all m ∈M ∩R do
12: σ(m)← σ(m) + 1
13: end for
14: end for
15: CB(m)← CB(m) + σ(m)

|R′mc |
,∀m ∈M

16: end for
17: P (m)← CB(m)∑

m′∈M
CB(m′) ,∀m ∈M

18: return P

the detection mechanism for analyzing the traffic traversing it during an observation epoch.

Choosing monitoring points randomly introduces uncertainty to the attacker and increases

the cost and complexity of establishing a stealthy botnet communication architecture.

4.4 Observation Phase

DeBot identifies suspicious hosts by examining the network characteristics of hosts and

comparing them with other hosts within their neighborhood. The neighborhood of a host is

the set of hosts that are expected to exhibit similar network characteristics in the absence

of a malicious activity. Hosts whose characteristics deviate from their neighboring hosts are

classified as suspicious. In this paper, without loss of generality, we assume the neighborhood

of a host to be the set of hosts that exist in the same subnet.

Prior to the start of this phase, DeBot initializes the similarity scores of host pairs

within the network. The similarity score quantifies the similarity in the network behavior

of two hosts. At the beginning of each observation epoch ∆ti, i ∈
[
1, T∆t

]
, the detection
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mechanism determines the monitoring point mi based on the snapshot rates determined in

the preprocessing phase. Traffic traversing mi during ∆ti is intercepted and statistics of

each flow are recorded. In this work, a flow is uniquely identified by the tuple (src, dst,

sport, dport, protocol). The collected flow statistics are used as features to cluster flows,

and subsequently update the similarity scores of host pairs based on the number of common

clusters between them. Finally, at the end of the time horizon, DeBot identifies suspicious

hosts by comparing the aggregate behavior of each host with other hosts within its subnet.

4.4.1 Extracting Flow Statistics and Clustering Flows

For each flow f , DeBot records the median number of packets sent (pktssent(f)), packets

received (pktsrecv(f)), bytes sent (bytessent(f)) and bytes received (bytesrecv(f)) during the

epoch ∆ti. We refer to the tuple 〈pktssent(f), pktsrecv(f), bytessent(f), bytesrecv(f)〉 as the

statistics of flow f . A TCP session is considered a flow when a SYN packet is acknowledged

by a SYN-ACK packet. However, the traffic snapshot may include incomplete sessions

(SYN/SYN-ACK packets and/or FIN/FIN-ACK packets might not have been intercepted

during the observation window). In such cases, a TCP session is included into the flow record

table Fi if at least one of the packets and its corresponding acknowledgment is intercepted

during the same epoch. For UDP packets, flows in which a request is followed by a response

are only considered.

To identify flows that exhibit similar network behavior, the flow records in Fi are clus-

tered using the OPTICS clustering algorithm. OPTICS [69] is a density-based clustering

algorithm that can identify arbitrary shaped clusters (unlike K-means) by grouping closely-

spaced records. OPTICS uses a priority queue to linearly order the input records so that

records that are closely-spaced are placed together. In OPTICS, a group of records is iden-

tified as a cluster if two conditions hold: (i) there are at least minPts records in it and (ii)

for any two records in the cluster, there is a sequence of records within the cluster such that

every pair of consecutive records is within ε-distance. Records that do not belong to any of

the clusters are labeled as noise.
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As DeBot operates on traffic snapshots, selecting an appropriate value for the parameter

minPts is crucial to ensure that the intercepted bot flows form a cluster and not ignored as

noise. If minPts is set very high, the traffic snapshot might not have intercepted sufficient

number of bot flows to form a cluster. However, a low minPts will lead to creation of

several clusters. Therefore, the choice of minPts is influenced of both the frequency of

bot communication (ν) and the length of the observation window (∆t). The relationship

between the three variables can be approximated as minPts = κ · ∆t
ν where 0 < κ < 1 is a

constant. In order to limit the number of meaningful clusters, minPts is fixed and the length

of an observation epoch is expressed as a function of ν i.e., ∆t = minPts
κ · ν. In order words,

the choice of ∆t bounds the frequency with which bots can send/receive update messages

without losing stealth.

4.4.2 Update Similarity Score

As mentioned earlier, DeBot tracks the similarity in the network characteristics between

hosts and is modeled as follows: Let N (h) denote the set of hosts in the neighborhood of

host, h and let, a scoring function sim_score(hi, hj) quantify the similarity between the

hosts hi and hj. Before the commencement of the observation phase, the scoring function

is initialized as: sim_score(hi, hj) = 1,∀hj ∈ N (hi). As noted earlier, in our work all hosts

that are in the same subnet as host h is considered as its neighborhood.

Let Ck denote the set of flow clusters at the end of an observation epoch, ∆tk and let

Chi ⊆ Ck be the subset of clusters containing flows from/to host hi. The scoring function is

updated as follows:

sim_score(hi, hj) = λ(mk, hi) ·

(
|Chi ∩ Chj |
|Chi ∪ Chj |

)
+ (1− λ(mk, hi)) · sim_score(hi, hj) (4.1)

where λ(mk, hi) is a scalar-valued function that models the rate at which the similarity
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score is updated. To define this function, we first define the visibility of a monitoring point

m as the set of hosts whose incoming and outgoing traffic always traverses the monitoring

point m. For instance, in the enterprise shown in Fig. 4.2, the visibility of monitoring point

M3 is the set of hosts in the subnet 192.168.5.0/24. In DeBot, if a host is not visible to the

current monitoring point, then the score is updated at a slower rate. In particular, the λ(., .)

function is defined as:

λ(mk, hi) =

{
0.5 hi ∈ visibility(mk)

0.25 otherwise

4.4.3 Suspicious Host Identification

At the end of the observation phase, the aggregate network characteristic of a host is com-

puted as the sum of the similarity scores of the host with hosts in its neighborhood i.e.,

agg_score(hi) =
∑

hj∈N (hi)

sim_score(hi, hj). A high aggregate score implies that the host ex-

hibited network characteristics similar to the hosts in its neighborhood while a low aggregate

score would imply that the host’s network characteristics deviated from the other hosts in its

neighborhood. Based on this rationale, a host hi is identified as suspicious if the aggregate

score of the host is less than µagg(N (hi)) − σagg(N (hi)), where µagg(N (hi)) and σagg(N (hi))

are, respectively, the mean and standard deviation of the aggregate scores of hosts in the

neighborhood of hi.

4.5 Refinement Phase

A bot that participates in an exfiltration campaign regularly communicates with its peer

bots or C&C to send (or receive) updates. Such periodic exchange of messages eases the

management of the C&C architecture for the bot master. For instance, Table 4.2 provides

the communication frequency of different POS malwares. From the table, it can be seen

that the periodicity with which bots communicate can vary depending on the malware.
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Table 4.2: Communication frequency of different POS malwares

POS Malware Victim Institute Period
BlackPOS, [16] Target 10 mins

FrameworkPOS, [16] Home Depot 60 mins + random mins
Backoff, [16] UPS 45 secs
Punkey, [70] Suspected for CiCi’s Pizza 20 mins or 45 mins

Such periodic behavior has been observed in existing botnets that are known for stealing

credentials such as Storm, Waldec and Zeus [33].

In DeBot, we leverage the periodic communication nature of bots to identify host pairs

that are malicious. To determine whether a host hi is periodically communicating with

another host hj, the connection pattern between hi and hj is treated as a signal in the

time domain and transformed to the frequency domain using Discrete Fourier Transform

(DFT). After the transformation, the power spectrum density (PSD) of different frequencies

is analyzed and compared with PSD of remaining connections generated by host hi to identify

periodic communication pairs. The following sections provide more details for each step in

this procedure

4.5.1 Detecting Periods using Periodogram Analysis

Let TSi,j = {ts1, ts2, ...} be the set of timestamps at which a connection was initiated from

host, hi to hj. The monitoring time horizon [0, T ] is divided into equally-spaced times,

Ti,j = {t1, t2, ..., tN}, where tk+1 − tk = ∆s and N = T
∆s . When traffic between two hosts

hi and hj is continuously monitored, the corresponding connection pattern is treated as a

signal that has been sampled at evenly-spaced time intervals, Xhi,hj
(tk),∀tk ∈ Ti,j, defined

as:
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Xhi,hj
(tk) =

{
1, ∃tsl ∈ TSi,j , tsl ∈ (tk−1, tk+1)

0, otherwise

A Discrete Fourier Transform (DFT) converts a signal in the time domain to a frequency

domain data by expressing the signal as a sum of sinusoidal components using the equation:

Fhi,hj (ω) =

N∑
k=1

Xhi,hj
(tk)e−iωtk (4.2)

where ω = 1, ..., N and eiθ = cos(θ)+i·sin(θ). Essentially, the DFT coefficient, Fhi,hj (ω), at

frequency ω correlates the signal Xhi,hj
with a sequence of sine and cosine waves at frequency

ω – higher the coefficient value, greater the similarity. The strength of each frequency in

the signal is computed by the power spectrum density. Several methods exists to estimate

the power spectral density [71]. In this work, we use the periodogram method as it is

computationally less expensive compared to other methods. The periodogram of the time

series Xhi,hj
is given by:

Phi,hj (ω) =
1

N
|Fhi,hj (ω)|2 =

1

N

[(
N∑
k=1

Xhi,hj
(tk)cos ωtk

)2

+

(
N∑
k=1

Xhi,hj
(tk)sin ωtk

)2 ]
(4.3)

Fig. 4.3 depicts the periodogram of a sample of Zeus traffic obtained from a public

repository [72]. In this network trace, the bot connected with its peer bot every 60 seconds

– which, in the periodogram, is characterized by the frequency corresponding to highest

power.

Employing the above approach directly in the proposed mechanism, however, suffers

from several limitations:

• Unevenly-spaced observations: Analyzing the periodogram of a connection pattern
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Time Series 

Periodogram 

Figure 4.3: Communication pattern and corresponding periodogram of a Zeus bot

between two hosts using Eq. 4.3 assumes that the traffic was sampled at equally-spaced

time intervals. However, DeBot employs a dynamic monitoring strategy which provides

only snapshots of traffic from different monitoring points. Thus, there could be long

periods of unobserved connection patterns between a pair of hosts. In such cases,

the above periodogram analysis will not accurately estimate the power of different

frequencies in the signal.

• Detecting Periodicity : DFT treats every discrete time series as periodic. Thus, labeling

a connection pattern as periodic based on high peaks in the periodogram will lead

to large number of false positives. Furthermore, random fluctuations due to noisy

data and spectral leakage due to finite-length sampling may also produce peaks at

frequencies that do not correspond to the true frequency of the signal.
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In addition to addressing the limitations presented by the classical periodogram ap-

proach, the detection mechanism should be robust to the following:

• Random perturbations: As malicious flows are detected based on the periodic exchange

of messages, bots can evade detection by adding random perturbations to the connec-

tion pattern.

• Legitimate applications: Legitimate applications such as software updates and email

clients also connect to servers on a regular basis. Misclassifying the corresponding

flows as malicious will lead to high false positive rates.

The above challenges are addressed in the following subsections.

4.5.2 Lomb-Scargle Periodogoram

The dynamic monitoring strategy samples the traffic between two hosts hi, hj irregularly.

This results in a signal Xhi,hj
(tk) that is defined only for times when a monitoring point

could intercept traffic from hi to hj. In other words, the times tk, k = 1, 2, ..N are arbitrarily

spaced. To study the periodicity of an unevenly-spaced discrete time series, we propose

the use of Lomb-Scargle periodogram to estimate the power spectrum [73]. The Lomb-

Scargle periodogram modifies the classical periodogram given in Eq. 4.3 by introducing a

time translation parameter τ :

Phi,hj (ω) =
1

2

[( N∑
k=1

Xhi,hj
(tk)cos ω(tk − τ)

)2

N∑
k=1

cos2ω(tk − τ)

+

(
N∑
k=1

Xhi,hj
(tk)sin ω(tk − τ)

)2

N∑
k=1

sin2ω(tk − τ)

]
(4.4)

where

τ = (1/2ω)tan−1

[(
N∑
k=1

sin(2ωtk)

)/( N∑
k=1

cos(2ωtk)

)]
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The power spectrum from obtained from Eq. 4.4 is shown to be statistically equivalent

to the least squares fit of a sinusoidal wave applied to the discrete time series [73].

High peaks in the resulting periodogram is not sufficient to conclude that the signal is

periodic. Noise in a signal can also produce large spurious peaks in the periodogram. To

extract the candidate periods that are due to harmonic components in the signal (and not a

result of noise artifact), a threshold power-level is determined using significance tests. For a

given level of confidence, a significance test models the pure noise as a Gaussian distribution

N (µ, σ) and determines a threshold power-level z0 below which a power is considered to be

generated due to pure noise [74]. Thus, if there are no frequencies whose power is greater

than the threshold power-level z0, then the signal is considered to be non-periodic. One

of the limitations of the significance tests is that the power threshold determined by the

significance test is sensitive to the choice of parameters µ, σ for the Gaussian distribution

[74]. Furthermore, existing non-parametric methods [75] is applicable for evenly-spaced time

series and thus, cannot be directly adopted for our setting.

4.5.3 Relative-Periodicity

In this work, instead of checking whether the connection pattern from host hi to host hj is

periodic using significance test, we determine if the connection pattern is relatively-periodic

by comparing the corresponding periodogram with that of the connection patterns generated

by the host hi during the monitoring period. Such a modification will use the system’s typical

network behavior (instead of white noise) as the baseline to check for periodicity.

Let Phi = {Phi,hj (ω)} be the set of periodograms of connection pattern originating from

host hi (obtained using Eq. 4.4). To determine which periodogram exhibits an anomalously

higher periodicity, the periodograms in the set Phi is clustered using agglomerative clustering

method. While clustering, the difference in periodic structures between two periodograms

is obtained using the power distance metric [75]. The power distance between Phi,hj and

Phi,hk is computed by first identifying the set of frequencies ωi,j with the K-highest powers

in the periodogram Phi,hj . The power distance is then defined as:
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pDist = ||Phi,hj (ωi,j)− Phi,hk (ωi,j)||

In our evaluation, we set K = 1000. Before computing the pDist, to ensure that the total

energy is constant, the powers are normalized as follows:

X(t) =

X(t)− 1
N

N∑
i=1

X(i)√
N∑
i=1

(
X(t)− 1

N

N∑
i=1

X(i)

) , t = 1, 2, ...N

In the proposed hierarchical cluster analysis of periodgorams, the linkage criteria between

sets of periodograms was computed using the Ward’s method. After building a hierarchical

structure of the periodograms, clusters were formed by the set of periodograms whose pair-

wise distance is less than a threshold distance, γ. The value of γ was set to 0.95 ·maxd where

maxd is the maximum distance between any two sets of periodograms as determined by the

Ward’s method. Finally, if a cluster contains only one periodogram, then the connection

pattern of the corresponding host pair is considered to relatively-periodic. The rationale

behind this approach is that connection patterns corresponding to the bot flows are anoma-

lously more periodic than other connection patterns from the same hosts and hence, the

corresponding periodogram will form an individual cluster. The host pairs (hi, hj) that are

identified as relatively-periodic are marked as suspicious for further analysis.

Finally, in the analysis phase, the flows generated by the host pairs that were marked as

suspiciously periodic can be analyzed using fine-grained tools such as Deep Packet Inspection

or can be submitted for manual inspection to the security operations center.

4.6 Evaluation

We evaluated the performance of DeBot in a testbed environment against several stealthy

botnet communication architectures.
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4.6.1 Environment

Testbed. All the experiments were conducted in the Cyber Virtual Assured Network (Cy-

berVAN) testbed [67]. CyberVAN is a state-of-the-art testbed designed to provide a realistic

network environment to test and evaluate cyber security models. In CyberVAN, applica-

tions run on virtual machines and the network traffic generated by the host machines is

forwarded to the destination through a simulated network. CyberVAN employs the ns-2

network simulator to simulate the underlying network topology and maps host machines

to nodes in the simulated network. To simulate the behavior of packets traversing the real

network, CyberVAN intercepts packets from the source machine and injects them into the

corresponding node of the simulated network. The injected packets traverse the simulated

network and are forwarded to the destination machine after they arrive at the corresponding

destination node. The use of simulated networks enables a high-fidelity reproduction of net-

work effects such as propagation delays and packet loss. Furthermore, the virtual machines

are time synchronized with a discrete event simulator to ensure that the virtual machine’s

real time does not advance faster than the simulator time.

Network Topology and Traffic In this work, we considered the enterprise network

shown in Fig. 4.2 to study the performance of the proposed detection mechanism. The net-

work is composed of 114 machines with 98 client machines and 16 servers that include a range

of services that are present in typical enterprise networks, such as DNS, database, email,

web, FTP and printer services. Traffic generated by this network is intercepted at 7 mon-

itoring points (M1, ...,M7) that include routers and firewalls. Here, routers M3,M4,M6,M7

intercept traffic between machines within the subnets they are interfaced with, as well as

traffic entering or exiting those subnetworks and traversing one of those routers. In this

network scenario, we assumed the file servers in Subnet-1 and Subnet-2 to be mission-critical

hosts and the C&C server to be located on the Internet. For this setting, the snapshot

rates for different monitoring points were computed using Algorithm 2 and their values are

reported in Table 4.3.

In this network, the benign user traffic is generated using ConsoleUser – a commercial tool
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Table 4.3: Centrality-based snapshot rates for all the monitoring points

Monitoring point Snapshot Rate
M1 0.311

M2 0.025

M3 0.098

M4 0.025

M5 0.025

M6 0.319

M7 0.197

developed by Skaion to mimic a human user’s interaction with network-based applications.

The tool models a user’s behavior as a Markov model in which states correspond to the state

of the network application and the application transitions from one state to another when

the user generates an event. For example, in the case of an email application, the state

space includes reading an email (R), downloading an attachment (D), or forwarding an

email (F). The application in a state (say, R) transitions to another state (say, D) when the

user performs an action (click download button). The ConsoleUser is scripted by assigning

probabilistic values to the state transitions, which are determined based on existing studies.

Botnet Traffic. Existing botnet detection systems are evaluated by observing their

performance against botnet traces that were obtained either from public repositories or

captured by executing the binary in a honeypot [18–20]. Typically, a botnet detection

mechanism is evaluated by first capturing background user traffic from a network (either

academia or enterprise) and then combining it with a botnet trace such that the IP addresses

of the hosts in the trace are mapped to either an address from the IP space of the target

network or to an host that is not present in the network [76]. However, this method – known

as the overlay method – does not provide us with the flexibility of evaluating a detection

mechanism against stealthy communication architectures. For instance, in these botnet
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traces, bots communicate with several peers outside the network. In such a case, developing

a stealthy communication architecture using the overlay method would require dropping

packets to a subset of peers and thus may reduce the realism of the trace. Furthermore,

accounting for bot behaviors that may adapt to the proposed detection mechanism would

require introducing modifications to the network characteristics such as frequency of update

message exchanges.

Ideally, DeBot should be evaluated by modifying the source code of existing bots to con-

trol the number of peers within the network (thereby, maintaining stealth) and augmenting

additional capabilities such as aggregating data before forwarding it to a destination outside

the network. Due to the lack of publicly available source code for different bots, we used a

botnet that was developed by Applied Communication Sciences (ACS). In this botnet, two

types of bots were designed: data stealing bots and aggregation bots. Data stealing bots

were deployed on client machines in the subnets hosting mission-critical nodes (Subnet-1,

Subnet-2). These bots first check if the network share drive was mounted and if so, exfiltrate

files from that folder to their peer aggregation bot. The aggregation bots collected data and

update messages from their peer bots and forwarded it the C&C located on the Internet.

The flow characteristics of the bots were chosen to be similar to that of the Zeus bot [77]

and each bot communicated with its peers at times randomly chosen between 30 and 60

seconds.

4.6.2 Scenarios

In this section, we describe the different botnet scenarios that were considered for the syn-

thetic enterprise network. Each botnet scenario differs in the amount of malicious traffic

exposed to the different monitoring points.

1. Aggregation Point I (BlackPOS Malware). In this scenario, we considered two

hosts in Subnet-3 and Subnet-2 respectively as data stealing bots and an aggregation

bot as a server located in the DMZ. This scenario was inspired by the BlackPOS

malware variant [16]. The aggregation bot accumulated the data from all the data
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stealing bots and relayed the data to an attacker-controlled server located outside the

network.

2. Botnet Without Stealth. This scenario captures the communication architecture

of several existing botnets such as Zeus and Storm. In this scenario, the compromised

hosts directly communicate with their peers outside the network. For this scenario,

we considered two hosts in Subnet-1 and Subnet-2 as data stealing bots for generating

the malicious traffic.

3. Aggregation Point - II. This scenario is similar to the Aggregation Point I scenario,

with the exception of the location of the data stealing bots and the aggregation bot.

Here, two bots are located in Subnet-1 and Subnet-2 respectively, while the aggregation

server is a host in Subnet-3.

4. Local Aggregation Point. In this scenario, the data stealing bots forward data to

an aggregation bot which is located within the respective subnet and the aggregation

bots exfiltrate the data to an external server. Such a communication architecture can

potentially evade detection using the mechanism proposed in [20]. For this scenario,

we considered subnets Subnet-1,Subnet-2 and for each subnet a compromised host

aggregated data from two bots within the subnet before relaying it to the external

server.

4.6.3 Existing state-of-the-art techniques

In addition to studying the performance of the proposed detection mechanism against dif-

ferent botnet scenarios, we compared its performance against two state-of-the-art detection

techniques developed in [20] (referred to as Stealthy P2P Detector) and [19]. Details regard-

ing these detection mechanisms are provided in Chapter 2.

In our experiments, we set the threshold values for different parameters of the existing

mechanisms in a conservative manner to improve the chances of detecting architectural

stealthy botnets. For instance, in the above botnet scenarios, the number of peers for any
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data stealing bot was one and hence, we set the corresponding threshold (θbgp in [20]) to one

thereby, reducing false negatives. Furthermore, existing detectors were proposed to monitor

traffic between internal and external network at the network gateway. However, as argued

earlier, in the case of architectural stealthy botnets, the volume of bot traffic intercepted

at the network gateway is significantly smaller than the volume of traffic intercepted at

internal monitoring points. Therefore, to handle such botnets, we mirrored traffic from all

monitoring points to the detector for analysis and considered the internal traffic for analysis.

Finally, for [19], we considered only the BSampling portion of the detection technique and

used its output (i.e., the set of suspicious hosts) for comparison.

4.6.4 Evaluation Overview

In this work, we evaluated the performance of DeBot against the four scenarios across three

dimensions: percentage of traffic intercepted, detection rate and processing time. For each

performance dimension, we considered two observation epochs of 30 and 60 minutes and set

ε = 100,minPts = 10 to initialize the OPTICS clustering algorithm. Furthermore, to study

the performance of the centrality-based snapshot rate method, we compared its performance

against uniform strategy in which, at each epoch, a monitoring point is chosen uniformly

at random. All experiments were repeated 30 times with different sequences of monitoring

points and the performance of DeBot was compared by averaging the results over different

sequences.

4.6.5 Traffic Interception

Fig. 4.4 shows the average number of flows intercepted over different scenarios. In each

scenario, we observed that, independent of the observation epoch, the uniform-based strategy

intercepted and processed more flows than the centrality-based strategy. Such an observation

is expected as centrality strategy sampled traffic more often from monitoring points (M1,M6

and M7) which carried far less traffic than the monitoring points near the DMZ region

(M2,M4,M5). However, as shown in Fig. 4.5, the centrality-based strategy intercepted a
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Figure 4.4: Average number of flows intercepted by different monitoring strategies

higher proportion of the bot flows than the uniform strategy. From Fig. 4.5, it can be

seen that the increase in the percentage of intercepted bot flows depends on the number of

monitoring points traversed by the bot traffic. For instance, In Scenario 1, the bot traffic

traversed all the monitoring points (with varying volumes) while in Scenario 2 and Scenario

4, the bot traffic traversed only three monitoring points namely, M6,M7,M1. Thus, as the

number of opportunities to intercept bot traffic in Scenario 1 is higher, the proportion of bot

flows intercepted by both uniform and centrality strategy were not significantly different.

4.6.6 Detection Rate

Detection rate is defined as the percentage of bot communication pairs that were identified

as suspicious at the end of the refinement phase while false positive rate is the percentage of

benign host communication pairs that were identified as suspicious. As shown in Fig. 4.6,

the proposed mechanism detects more than 90% of the bot communication pairs in Scenario
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Figure 4.5: Increase in percentage of bot flows intercepted

2 and Scenario 4 and, on an average, 70% of the bot communication pairs in Scenario 1 and

Scenario 3. In other words, the botnet communication architectures in Scenario 1 and Scenario

3 are more stealthy than the other two architectures against our detection mechanism. While

there is no statistical difference in the detection rates of centrality-based and uniform-based

strategies, the false positive rates of centrality-based strategy (< 1%) is much lesser than

the uniform-based strategy. This significantly reduces the time and effort needed to perform

fine-grained analysis on the captured flows using tools such as DPI.

4.6.7 Comparison with existing techniques

The output of the refinement phase in DeBot is pairs of hosts that belong to a botnet while,

on the other hand, existing techniques – Stealthy P2P Detector (in [20]) and BSampling (in

[19]) – output a set of hosts that are potentially bots. Therefore, to provide a normalized
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(b) False Positive Rate for Scenario 1
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(c) Detection Rate for Scenario 2
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(d) False Positive Rate for Scenario 2
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(e) Detection Rate for Scenario 3
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(f) False Positive Rate for Scenario 3
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(g) Detection Rate for Scenario 4
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Figure 4.6: Detection rate and false positive rate for different scenarios
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Figure 4.7: Detection rate and false positive rate comparison with existing work

comparison, for DeBot, we considered a host hi as a potential bot if the following conditions

were satisfied: (i) it was identified as suspicious during the observation phase and (ii) at

least one connection pattern (to any host hj) was identified to be relatively more periodic

than other connection patterns generated by it during the refinement phase.

Fig. 4.7a presents the comparison in performance of DeBot against existing state-of-the-

art techniques. It can be observed that DeBot (with observation epoch of 30 mins) has a
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detection rate that is comparable with that of existing techniques in Scenario 1, Scenario 2

and Scenario 4. Although existing techniques have a higher detection rate in Scenario 3, the

false positive rates (shown in Fig. 4.7b) are significantly higher than DeBot.

4.6.8 Processing Time

DeBot was implemented in Python and its processing time was recorded by running it on a

Intel Xeon processor machine with 16 GB memory running Ubuntu 14.04. To compare the

performance of DeBot with existing techniques, we implemented the Stealthy P2P detector

(in [20]) and BSampling (in [19]) in Python. For the the purposes of normalized comparison,

all techniques were run on the same environment.

Fig. 4.8 provides a comparison of processing times of DeBot (for different observation

epochs) against existing state-of-the-art techniques. It can be observed that the Stealthy

P2P detector performs worse than both DeBot and BSampling. This is because, Stealthy

P2P Detector extracts several fine-grained features from the captured traffic and clusters

flows based on these features. However, BSampling algorithm, samples only traffic that

exhibit characteristics of a persistent bot. Therefore, the BSampling technique scales well

with traffic.

As shown in Fig. 4.8, DeBot also executes in a time comparable with that of BSampling.

To further understand the operation that contributes to its processing time, we segmented

the total processing time into (i) data processing time – average time taken to extract the

flow records from the captured packets for clustering and recording the connection initiation

time for periodogram analysis, (ii) clustering time – average time taken for the OPTICS

clustering algorithm to process the flow records to identify clusters and update the similarity

score, and (iii) periodogram time – average time taken to identify suspicious host pairs in

the refinement phase. Here, we considered the total data processing times and the total

clustering times over the entire monitoring period of 12 hours and the observed times were

averaged over different sequences of monitoring points.

From Fig. 4.9, it can be observed that the time taken to process the packets and extract
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Figure 4.8: Processing time comparison of DeBot with existing state-of-the-art mechanisms

the flow statistics consumed most of the processing time. As for clustering, most of the time

is taken to order the input flow records using a priority queue by the OPTICS algorithm.

Finally, the time taken to determine the suspicious host pairs in the refinement phase was

observed to be negligible.

4.7 Discussion

4.7.1 DNS-based botnets

In addition to centralized and P2P-based architectures, existing botnets also exploit DNS

infrastructure to communicate with the external C&C server. In such botnets, the bots

generate a series of domain names using an Domain Generation Algorithm (DGA) in a

pseudo-random manner. A subset of these domains are registered by the attacker and act

as rendezvous points between the bots and the C&C server. As the location of the C&C

server changes in an unpredictable manner, the effort to takedown the botnet increases

substantially.
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Although the proposed detection mechanism is designed for detecting architectural stealth

botnet, we argue that it is capable of detecting DGA-based botnets as well. Existing studies

have shown that the length of the domain names (generated by a DGA) is longer than the

benign domain names and can be leveraged to detect these bots [78]. Thus, the number of

bytes sent per DNS request (one of the features that is used for clustering in the observation

phase) by a bot will be different from that of benign systems. Hence, the system hosting

the bot will potentially have a similarity score lesser than that of the other systems within

its neighborhood. As a result, the system hosting the bot will be added to the suspicious

hosts list. In addition to above feature, it is known that existing DGA-based bots generate

domain names and resolve them periodically. The periodic querying behavior was exploited

by Kwon et al. [21] to develop a technique that detected DGA-based botnets. Typically,

enterprise networks employ a local DNS server to resolve domain name requests initiated by

hosts within the network before recursively forwarding them to an upstream DNS server. If

sufficient number of requests are intercepted, then the proposed detection mechanism will
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be able to detect periodic querying pattern and hence, identify the corresponding bots. We

intend to investigate such botnets as part of our future work.

4.7.2 Host identification and neighborhood

In this work, each host is uniquely identified by its IP address. In an enterprise network, IP

addresses are dynamically allocated by the DHCP server. To effectively detect bot flows, the

DHCP server must be configured such that the leasing period of an IP address is equal to

the monitoring period T . This would ensure that the IP address of the hosts do not change

during the observation phase.

In this work, for the sake of simplicity, the neighborhood of a host was considered to be

the set of hosts that were physically co-located in its subnet. Besides grouping hosts based

on their physical location, hosts can also be grouped based on logical partitions within the

network. For instance, network administrators use virtual LAN (VLAN) to improve security

and ease network management by grouping hosts across different network segments. In such

environments, each VLAN is mapped to an IP subnet with each host receiving a local-link

address or an IP address from the DHCP server.

4.7.3 Evasion

One of the techniques with which attackers can evade detection is by reducing the frequency

with which bots exchange update messages with its peers or the external server. The result-

ing connection patterns may not be detected as suspicious in the refinement phase. It should

be noted that while such a communication architecture increases the complexity of managing

the botnet, such an advanced botnet design might appear in the future. To understand the

impact of infrequent communication between the bots, we modified the botnet to exchange

messages at times randomly chosen between 0 and 600 seconds and studied the performance

of the different snapshot rate methods (centrality and uniform) with an observation epoch

of 30 mins. As shown in Fig. 4.10a, the detection rates for the centrality-based snapshot

rate method decreases significantly (by approx. 50%).
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Figure 4.10: Detection rate and false positive rate for infrequent bot communication
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One way to prevent evasion through infrequent communication is by lowering the thresh-

old distance, γ, which is used to identify connection patterns corresponding to a suspicious

host that are exhibit anomalous high periodicity. Lowering the value of γ would potentially

identify more host pairs (hi, hj) whose connection patterns are relatively more periodic than

the underlying host hi or hj. Fig. 4.10a shows the improvement in the detection rate for

different thresholds, γ. From the figure, it can be observed that low threshold values increase

the detection rate as expected. Although, the improvement in detection rate increases the

false positive rate (shown in Fig. 4.10b), the increase in false positive rate is less than 1%.

4.8 Conclusions

In this chapter, we addressed the problem of detecting botnets that operate under architec-

tural stealth. To this end, we proposed DeBot, a network-based botnet detection mechanism

that leverages two intrinsic behaviors of bots: (i) difference in traffic flow statistics between

bots and benign applications and (ii) the periodicity in the connection patterns between a

bot and its peers. DeBot was evaluated using a testbed environment against different botnet

scenarios and the results indicate that while the detection rate of DeBot is similar to that

of existing techniques, its false positive rate and the processing times are significantly lower

making it an attractive candidate tool for detecting botnets.
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Chapter 5: A Reinforcement Learning Approach to Detect

Stealthy Botnets

5.1 Introduction

Defending a network against attack campaigns by stealthy botnets calls for a large-scale

network monitoring solution. Due to the sophisticated nature of the attack campaigns, no

single defense mechanism can prevent or detect it. Thus, motivated by the principle behind

defense-in-depth that advocates the use of multiple security countermeasures to minimize

an attacker’s success, we consider two classes of countermeasures: Honeypots and Network-

based botnet detection mechanisms. While honeypots are used to detect intrusion attempts

[79], network-based botnet detection mechanisms identify bots that co-exists with benign

machines through behavioral analysis [80].

Effective implementation of multiple countermeasures requires substantial monetary (to

operate and maintain honeypots), storage and computation resources (to analyze large traffic

volume). Furthermore, with the emergence of advanced botnets, an enterprise-scale network

protection requires a mechanism that is both proactive in impeding the propagation of a

botnet and reactive in its ability to detect bots residing within the network. To this end, in

the chapter, we develop a reinforcement-learning model that deploys the defense mechanisms

(here, honeypots and botnet detection mechanism) in an adaptive and a dynamic manner

to reduce the lifetime of stealthy botnets in a resource-constrained environment.

Reinforcement learning (RL) is an algorithmic method for solving sequential decision-

making problems wherein an agent (or decision-maker) interacts with the given environment

to learn how to respond under different conditions. Formally, the agent seeks to discover a

policy that maps the system state to an optimal action. In this work, through RL, the agent
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learns a policy that maximizes the total number of bots detected over a long-run. As the

location of bots are unknown prior to the deployment of defense mechanisms, in this work,

the agent estimates the system state and the immediate reward of an action by monitoring

network activity at different network segments. In particular, the agent tracks the scanning

and the outgoing sessions behavior of hosts at different subnets to guide the placement of

defense mechanism within the network.

Our reinforcement learning model differs from the existing game-theoretic approaches in

several ways. First, the RL model does not consider a mission-centric approach to guide

placement decision. Rather, the objective of the RL model is to maximize the number

of compromised machines detected within the network; thereby, recommending placement

strategies that secure the overall network. Next, although the RL model learns over a well-

defined action space of the attacker, unlike existing stochastic game-theoretic models, it is

oblivious to attacker’s incentives in terms of the attacker’s reward function for controlling

machines within the network. Although, similar to the models in [49, 51], the RL model

attempts to reduce an attacker’s persistence in the network, the RL model considers a rich

set of countermeasures (honeypots and botnet detection mechanism) to detect and remove

bots during different phases of a cyber kill chain.

5.2 Threat Model

The objective of the attacker is to persist in the target network for an extended period of

time and continuously exfiltrate data from the target network to an external server controlled

by the attacker. In order to accomplish his/her mission, the attacker should compromise

machines within the target network and establish a communication architecture between

the compromised machines. The resulting network of compromised machines, or the botnet,

continuously exchange messages with one another and relay stolen data to an external C&C

server.

In this work, we model the lifecycle of a bot as shown in Fig. 5.1. The lifecycle of a

bot begins when a benign system within the the target network is compromised by either
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Figure 5.1: Lifecycle of a bot

an external attacker through a client-side attack or by an existing bot within the network.

To construct a resilient botnet, a new bot scans the network to discover benign systems to

attack. Here, we assume that all the machines within the network are vulnerable and the

corresponding exploits are available to the attacker. A new bot can perform two types of

scans: worm-like scan or stealthy scan. In the worm-like scanning strategy, the bot sends

random discovery probes to systems within its subnet similar to the strategy employed by

worms to propagate through a network [81].

These discovery probes include ICMP ping packets, incomplete TCP handshake etc. to

determine whether a system is hosted at the chosen IP address and also to learn the running

configuration of the system such as OS version, services etc. Due to the randomness in

these scans, the bots may send discovery probes to machines that may raise suspicion. For

example, if a bot on a client machine sends discover probes to another client machine,

then the scanning activity may be detected as anomalous in an enterprise network. In the

stealthy scanning strategy, on the other hand, the bots first enumerate the active connections

of the underlying host and send discovery probes only to these machines. Several existing

malwares employ this mechanism to move laterally through the network [82]. Independent
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of the scanning strategy, we set an upper bound on the number of discovery probes, dmax,

that can be sent by a bot over a period of time (described later) to further improve stealth.

After enumerating the victim machines, the bot compromises these machines and adds

them to its list of peers. As mentioned above, the botnet model assumes that all machines

are vulnerable and can be successfully exploited. In order to build a resilient botnet, we

parameterize the minimum number of machines, pmin, that the bot must compromise. Upon

recruiting new machines, the bot begins transmitting update messages with its peers. These

messages inform the attacker the status of each bot within the network and also include

data stolen from the corresponding host machine. When an infected host is detected by

the defender, it is restored to pristine/benign state. In the considered bot lifecycle, if the

number of active peers of a bot drops below the pre-defined minimum number of peers,

pmin, then corresponding bot returns to the scanning state to recruit additional machines.

Finally, to facilitate remote control by an attacker, the bots periodically check if they can

reach the C&C server through their peers; if not, they establish a direct channel with the

C&C server.

5.3 Defense Mechanisms - Overview

In this work, we consider two countermeasures: Honeypots and Network-based detection

mechanism. A brief overview of these mechanisms is provided below.

Honeypots: Honeypots are systems that co-exist with other machines within the net-

work and are deliberately configured with vulnerabilities to lure an attacker to scan and

compromise them. As the only functionality of honeypots is to observe intrusion attempts,

they have a low false positive rate since any interaction with a honeypot can be directly

attributed to an intrusion attempt [79]. Honeypots log all intrusion attempts and are used

to study the nature of the attacks against a target organization. Depending on the level

of maintenance and realism, honeypots are broadly classified as either low-interaction or

high-interaction.

Low-interaction honeypots emulate vulnerable services without exposing a full operating
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system functionality [79]. They limit the number of operations that an attacker can execute

and hence, are easy to maintain and monitor. However, due to their limited capability, low-

interaction honeypots can only capture initial intrusion attempts such as login attempts and

are unable to analyze an attacker’s subsequent objectives. Moreover, the presence of low-

interaction honeypots can be detected through side channel timing analysis [83]; thereby,

further reducing their utility in preventing sophisticated attacks. High-interaction honey-

pots, on the other hand, are dedicated machines that run a fully-functional operating system

with vulnerable services and hence, can provide additional insights into an attacker’s inten-

tions and techniques. Although the data collected by high-interaction honeypots provide a

rich source of information, they incur a high maintenance and operational cost. Therefore,

in this work, we bound the number of high-interaction honeypots, Hmax, that can be hosted

by a network defender.

Typically, honeypots are deployed in the DMZ region to monitor attack attempts on the

production servers. However, many known attack campaigns establish their initial foothold

by first compromising client machines through client-side attacks, social engineering etc.

Once established, an attacker moves laterally through the network by compromising addi-

tional machines and escalating privileges. To detect the lateral movement of an attacker

through insecure portions of the network, we advocate the need to deploy high-interaction

honeypots in the internal network. With an increasing adoption of Software-Defined Net-

works (SDNs) to control the flow of traffic through a network, these honeypots can be

physically located in a different zoned region of the network while individual honeypots can

be made discoverable from different network segments by installing the corresponding flow

rules on all the corresponding switches using the centralized controller [84].

Network-based detection mechanism: While honeypots assist in preventing lateral

movement of an attacker, detection mechanisms, on the other hand, enable a defender to

locate compromised machines that persist in the network and operate in a stealthy manner.

Existing network-based detection techniques monitor traffic at the network gateway as they

assume that all the peers and C&C server of all the bots are located outside the network.
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However, in the presence of a botnet that operates under architectural stealth, the volume

of observable bot traffic at the network gateway is reduced; resulting in a low detection

rate. A trivial countermeasure to capture a higher volume of bot traffic is to monitor traffic

through all internal routers/switches by mirroring traffic from the corresponding portions of

the to a central location. However, due to the poor scalability of these detection mechanisms

coupled with an ever-growing internal benign traffic volume, detecting bots in a reasonable

amount of time becomes infeasible. Hence, in this work, we only consider traffic from Mmax

network segments at any given time and monitor these segments for bot-related activity.

Furthermore, to improve network coverage, we dynamically select different segments of the

network to monitor traffic. As presented in Chapter 3, continuously changing the monitored

portion of the network improves the chances of intercepting botnet traffic.

5.4 Reinforcement Learning Model

In this work, the defender’s objective is to maximize the number of bots detected and re-

moved using a limited number of resources (here, honeypots and monitors). In an enterprise,

any machine that connects to the target network is susceptible to compromise and subse-

quent recruitment as a bot. Hence, determining the locations for placing defense mechanisms

is critical to detect bots and curb their spread within the network. Furthermore, as the bots
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can propagate through the network, the locations of these defense mechanisms must also

dynamically change to detect bots in different segments of the network. Due to the evolv-

ing nature of the threat, we propose a reinforcement learning (RL) approach to guide the

defender’s sequential decision-making process of placing monitors and honeypots over the

time horizon.

In our model, we consider an infinite horizon wherein the agent makes decisions on a

periodic basis; the time between decisions is referred to as an epoch. A timeline with the

sequence of events that occur between consecutive decisions is shown in Fig. 5.2. At each

decision point, the agent determines the network segments that will be monitored during

the next epoch. At the beginning of an epoch, bots perform one of two detectable activities

depending upon the stage in their respective lifecycle: (i) scan and subsequently, compromise

machines within the network (referred as scanning bots) or (ii) transmit/exchange update

messages with their peers and the C&C server (referred as transmission bots). The agent

observes the network activity for a time period ∆tmon during which (i) honeypots may

be scanned and compromised by the scanning bots, and (ii) traffic through the monitors is

captured for analysis by centralized bot detection mechanism. At t+∆tmon, the bot detection

mechanism processes the captured traffic and outputs a set of potential bots within the

network. It must be noted that the network-based detection mechanism is considered to be

imperfect with a known true positive rate (< 1) while inferences based on network activity

on honeypots is considered to be perfect with a true positive rate of 1.

After identifying the potential bots within the network, the defender removes them by

restoring the corresponding machines to their pristine state. Let ∆tclean be the time taken

to process the captured traffic by the detection mechanism and subsequently, remove the

identified bots. In a resource-constrained setting with an imperfect detection mechanism, the

defender may not have detected all the bots in the network. As a result, the bots that remain

undetected continue with the next stage in their respective lifecycle; bots with insufficient

peers will scan the network while bots with sufficient peers will exchange messages. The

basic elements of the model are defined below.
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Decision Variable: Given N monitoring points, the agent may choose to either pas-

sively monitor, m, traffic traversing a monitoring point, or place honeypot, h on a monitoring

point or place both, b, types of defense mechanisms. Moreover, due to resource constraints,

the agent may not be able to place either type of detector, e. The set of feasible deci-

sions/actions at time t is represented as a vector: xt = (xt1, x
t
2, ..., x

t
N ) where xti ∈ {e,m, h, b}.

It should be noted that placing multiple monitors on the same monitoring point does not

provide any additional benefit.

System State: The state of the system should capture the location of the bots within

the network. However, as the location of the bots are unknown prior to the placement of

defense mechanisms, we derive the state of the system by observing the attack indicators in

different segments of the network. Anomalous behaviors such as large number of unsuccessful

login attempts, increase in number of host scans and large number of outgoing sessions are

some of the most common symptoms of an ongoing attack [85]. Thus, in this model, we

determine the potential locations of bots in a network by observing anomalous behaviors in

different segments of the network. In particular, to estimate the number of bots at different

segments of the network, we track the total number of host scans and total number of

sessions that were recorded since the latest removal of bots from the network i.e., in the

time period [t+ ∆tmon + ∆tclean, t+ 1) in Fig. 5.2. It must be noted that these features can

be observed at all monitoring points (i.e., switches) with very low overhead.

For N monitoring points in a network, the state of the system, St, at any time t, is

defined as a 2 ·N -dimensional vector (ψh1 , ψ
s
1, ψ

h
2 , ψ

s
2, ..., ψ

h
N , ψ

s
N ) where ψhi , ψsi are, respectively,

the host scans state and the sessions state of the monitoring point i, i ∈ [1, N ]. In this work,

we model the host scans state and the sessions state of each monitoring point as either LOW,

MEDIUM or HIGH. In the presence of benign network activity, determining the accurate

state of each feature (host scans or sessions) at different monitoring points is challenging.

To address this issue, the defender must first establish a baseline behavior for each feature.

For instance, if µfi and σfi are the mean and standard deviation of each feature f ∈ {h, s} at
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monitoring point i, then the state at any given time t can be defined as:

ψfi =


HIGH, Totalfi (t) ≥ µfi + σfi

MED, Totalfi (t) ∈ (µfi − σ
f
i , µ

f
i + σfi )

LOW, Totalfi (t) ≤ µfi − σ
f
i

(5.1)

where, Totalfi (t) is total number of observations of feature f that was recorded during the

time period [t + ∆tmon + ∆tclean, t + 1). The intuition behind the Eq. 5.1 is that any large

deviations from the expected behavior is considered to be anomalous. It must be noted

that the objective of this work is not to design a botnet detection system rather a strategy

for placing defense mechanisms. While fine-tuning the definition of ψfi will yield accurate

results, it is beyond the scope of this work.

Reward Function: In a RL model, the choice of an optimal action is influenced by

the immediate reward R(St, xt) of an action. Here, the reward of an action is defined as the

number of bots that is correctly identified. However, taking an action, xt at time t, when

the system is in state St yields a reward that is measured at a later time, t+ ∆tmon+ ∆tclean.

This is a class of time-lagged information acquisition problems where we do not know the

value of the current state until it is updated after the uncertainty in the bot activity is

revealed. Therefore, the immediate reward of an action is estimated by using information

from the recent observations. Such problems occur in real world such as when travel and

hotel reservation decisions are done today for a future date whose value is unknown until

the date has occurred [86–88].

In this work, the number of bots in a network segment is estimated by determining the

number of hosts that have deviated from the expected behavior. Similar to the motivation

behind deriving the state of the system, the defender first establishes a baseline for the

network activity for each machine across all monitoring points. Let µfmc,i and σfmc,i be the

mean and standard deviation of the feature f for the machine mc when observed from

monitoring point i. We consider a simple threshold scheme to check whether a machine is a
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potential bot: Given any machine mc and a monitoring point i, if Totalfmc,i(t) is total number

of observations of a feature f that was recorded during the time period [t+∆tmon+∆tclean, t+

1), then the machine mc is considered as a bot if and only if Totalfmc,i(t) ≥ µfmc,i + 3 · σfmc,i.

It should be noted that this rule to identify suspicious machines can be modified based on

the specific settings of the target network and does not limit the generality of the proposed

RL model.

Post-decision System State: The post-decision system state, Sxt , is the immediate

transition in the state of the system after the decision xt is taken. Similar to the reward

function, the change in the state of the system can only be observed at a later time; here at

time t+ 1. Therefore, we estimate the post-decision state of the system by determining the

expected effect of a decision.

Our estimation is based on the rationale that the objective of placing a defense mecha-

nism at a monitoring point is to remove bots from that portion of the network by inspecting

the behavior of the machines that exhibit anomalous behavior. In particular, suppose the

machines mc1,mc2, ...,mck are identified as potential bots from the monitoring point i (due

to their deviations in the feature, say, f), then placing a defense mechanism (honeypot if

f is the host scans count, otherwise monitor if f is the sessions count) is expected to re-

store the machines mcj , j ∈ [1, k] to their pristine state. As a result of the cleaning process,

the agent expects to record µfmcj,i
,∀j ∈ [1, k] observations of feature f at the monitoring

point i during the time [t + ∆tmon + ∆tclean, t + 1). Assuming that the machines that are

not expected to be affected by this decision continue with their latest recorded behavior

(at [t − 1 + ∆tmon + ∆tclean, t)), then the new post-decision state of monitoring point i for

a feature f can be obtained by computing using Eq. 5.1 where the estimated total number

of observations of feature f , T̂ otal
f

i (t + 1) =
∑

j∈[1,k]

µ̂fmcj,i
+

∑
j /∈[1,k]

µfmcj,i
where µ̂fmcj,i

is the

estimated behavior of the machine mcj after the placement of a defense mechanism. It must

be noted that since the baseline values (µfmcj,i, σ
f
mcj,i

) of all machines at different monitoring

points are established as a pre-processing step, the post-decision state reached by a system
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due to an action can be obtained immediately.

Exogenous Information: The exogenous information (or uncertainty), Bt+1, is the in-

formation from the environment that arrives after decision xt. The uncertainty is attributed

to the co-existence of benign and malicious behavior within the network; making it challeng-

ing to model the evolution of bots within a network. In the RL model, the uncertainty is

captured by observing the network activity and extracting features from different monitoring

points.

State transition function: The state transition function, St+1 = τ(St, xt, Bt+1), defines

the next evolution of the system state at time t+ 1. However, due to the absence of a model

to predict Bt+1, the state transition probabilities are unknown. Hence, a reinforcement

learning based approach is used to study the evolution of the system state.

Objective Function: The objective function is measured as the long-run total dis-

counted value of the states V j(S) as the the iteration index j → ∞, which is derived using

the recursive Bellman’s optimality Equation (Eq. 5.2) shown below [89]. Here, V j(S) is the

cumulative sum of discounted R(St, xt) rewards for the learning phase whose iterations are

index from 1 to j. In this work, we consider a 365-day cycle in which decisions are made at

the start of each day. The learning phase goes through several iterations (indexed with j) of

365-day cycles. As the value of a state is measured in terms of number of correctly identified

bots, the objective function will be to maximize the long-run total discounted value of the

states V j(S); higher the value of V j(S), the better the system state. The model strives to

transition from one good state to another by making a decision that is guided by the highest

value of the estimated future states that are reachable at any given time t.

5.4.1 Phases of Reinforcement Learning

RL achieves the objective by processing in three phases, namely, exploration, learning and

learned. The recursive Bellman’s optimality equation that updates the value of the states
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Figure 5.3: State transition diagram

is given as follows:

V j(Ŝxt−1) = (1− αj)V j(Ŝxt−1) + αjνj (5.2)

νj =

[
max
xt∈X

{
R(St, xt) + βV j(Ŝxt )

}]
(5.3)

where Ŝxt is the estimated post-decision state reached by the system at state St under the

action xt, αj is the learning parameter that is decayed gradually, X is the set of all feasible

decisions from which the model will choose a decision at every iteration and β is the fixed

discount factor that allows the state values to converge in a long-run. It should be noted

that the value of the estimated post-decision state Ŝxt−1 is updated at time t (in Eq. 5.3)

using the estimated reward function and the value of the estimated post-decision states that

can be reached under different actions. In a classical RL formulation, the immediate real

rewards and the immediate value of the post-decision states at time t are known; hence,

the value of the post-decision state at time t− 1 can be updated using Eq. 5.2 and Eq. 5.3.

However, as both the rewards and post-decision states are estimated, we update the value

of the post-decision state only after the real rewards for an action is observed.

A snapshot of the state-transition diagram is shown in Fig. 5.3 in which Ut denotes the

uncertainty (before and after removing bots) after taking an action and Ot+1 denotes the
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features observed at different monitoring points after removing the bots; the bot removal

stage is denoted by Et+1. In this model, during the learning phase, the choice of an action

xt when the system is in state St is determined by the estimated reward function R(St, xt).

After taking the action xt, the uncertainty Ut+1 unfurls, transitioning the system to the

state St+1, As the uncertainty Ut+1 unfurls (shown in trapezoidal box in Fig. 5.3), bots

are removed at stage Et+1 and the agent observes the real rewards which is then used to

update the value of the estimated post-decision state Ŝxt−1. The three phases of learning are

described below:

Exploration Phase: In this phase, the RL algorithm would explore several non-optimal

decisions and acquire the value of the system states that are visited. As described in Alg. 3,

Eq. 5.2 is used without the max operator in Eq. 5.3 by taking random decisions for placing

defense mechanisms, and the value of V j(Sxt ) and V j(Ŝxt−1) is used from the previously stored

values if the state was visited or 0 otherwise. Since the algorithm begins with V 0(S) = 0,∀S

at j = 0, exploration helps to populate the values of some of the states that are visited.

Exploration is stopped after a certain number of iterations, which depends on the size of

the state-space and the number of iterations planned for the learning phase.

Learning Phase: In this phase, the algorithm would take (near-) optimal decisions at

time t, which is obtained from Eq. 5.3 with the max operator (lines 13− 14 in Alg. 3). The

value of the post-decision state at time t − 1 is updated at time t + 1 as per Eq. 5.2 with

the real rewards. After several iterations, learning is stopped when convergence of the value

of the states is achieved, as measured in terms of the mean-square error of the stochastic

gradient [88].

Learned Phase: This is the implementation phase of the RL. The inputs to this phase

include the value of the states at the time when learning was terminated and the estimated

reward function. In this phase, the RL algorithm would take optimal decisions at each time

t, which is obtained from Eq. 5.3 with the max operator. The algorithm will evaluate all its

feasible actions and chooses an action that takes the system to the post-decision state with

the highest value.
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Algorithm 3: Exploration and Learning Phase
Require: The baseline values ψfi of each feature, f ∈ {h, s} for each monitoring point i,

baseline values ψfmc,i for each machine mc, the decision space X , initial learning
parameter α0 = 0.8 at time t = 0, the discount parameter β = 0.95, number of iterations
for learning, J = 1000.

Ensure: State value function, V (S),∀S
1: For all states, set V (S) = 0
2: for all j = {1, ..., J} do
3: if j ≤ 0.3 · J then
4: Phase = Exploration
5: else
6: Phase = Learning
7: end if
8: for all t = {1, ..., 365} do
9: Observe features from the monitoring points and determine state St

10: if Phase == Exploration then
11: Choose a random defense placement decision, xt
12: else
13: Estimate the immediate reward R(St, xt) and the post-decision state Ŝxt as

described in Sec. 5.4, ∀xt ∈ X
14: Choose the action x′t that gives the maximum value in Eq. 5.3
15: end if
16: if t > 2 then
17: Observe the real reward at t+ ∆tmon + ∆tclean

18: Decay the learning parameter, αj = αj

1+e , where e = j2

1.25·1014+j
(see [90])

19: Update the value of the post-decision state V j(Ŝxt−1) using Eq. 5.2 and Eq. 5.3
with the real reward and the value of αj.

20: end if
21: end for
22: end for

5.5 Simulation Results

In this work, we consider an enterprise network shown in Fig. 5.4 to study the performance

of the RL model. The network is composed of 106 machines with 98 clients machines

and 8 servers that are distributed across 4 subnets. In this network, the four switches,

SW1, SW2, SW3 and SW4, act as the monitoring points for placing the monitors and honey-

pots. These switches, as depicted in the figure, are remotely controlled by an administrator

to: (i) activate/deactivate mirroring ports that mirror traffic to the central monitor for anal-

ysis and, (ii) insert flow rules on the switches to make honeypots discoverable at different

subnets in a SDN-based network. It should be noted that the physical location of the hon-

eypots does not influence an agent’s decisions to place the defense mechanisms and hence,
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Figure 5.4: Enterprise network

their location is ignored in the above figure.

Defender’s Parameters: For the considered, we set Hmax = 2,Mmax = 2 i.e., a max-

imum of two honeypots and monitors can be placed in the network. Additionally, existing

botnet detection mechanisms [18, 20] show a true positive rate of at least 90% when eval-

uated against known malwares. However, if an attacker introduces perturbations to the

malware’s behavior, the performance of the detection mechanism may degrade. Hence, to

account for the performance degradation, in this study, we conservatively estimate the true

positive rate at 70%

In this work, we consider a 365-day scheduling horizon in which the agent makes decisions

at the start of each day. During each epoch (1 day), for the first 12 hours i.e., ∆tmon = 0.5, the

defender observes the network activity on the deployed honeypots and mirrors traffic from

the monitors to the central location. For the purposes of this simulation-based study, we set

∆tclean = 0, i.e., the time taken for the detection mechanism to analyze the captured traffic

and restore the identified machines to their pristine state is considered to be instantaneous.
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Benign Traffic Generation: The network activity of benign machines play a crucial

role in setting the baseline behavior of the observable features at different monitoring points

and consequently, in the defense placement decisions taken by an agent. In our simulation,

the traffic characteristics were obtained from [91] in which the researchers developed traffic

profiles for different types of protocols based the traffic captured in a testbed environment.

In the considered network, each machine generates four types of traffic: HTTP, FTP, SMTP

(for Email) and DNS with a traffic composition similar to that of [91]. Since the agent’s

decisions are influenced by the total number of recorded observations for each feature, the

simulation only requires the distribution of the rate at which machines generate requests.

A summary of the request rate distributions for different types of traffic is provided in

Table 5.1. In addition to complete sessions (for HTTP, FTP and Email), we considered a

1% packet drop rate to simulate scanning-like behavior for benign machines.

In order to set the baseline behavior, we considered a 365-day simulation in which each

machine generated traffic in accordance to the request rates in Table 5.1. During this

simulation, we learn the feature statistics, µfi , σ
f
i of each feature f ∈ h, s for each monitoring

point i at any epoch and µfmc,i and σfmc,i of each feature f for each machine mc as observed

from the monitoring point i. Fig. 5.5 illustrates the baseline behavior for the sessions and

host scans state of switch, SW2. In the figure, the red line and the green line provide the

demarcations for the HIGH, MED and LOW states.

Botnet Parameters: In addition to the benign traffic, compromised machines generate

traffic adhering to the bot lifecycle described in Sec. 6.2. In our simulation, the parameter

to generate the network activity of a bot were determined either based on known behavior

obtained via malware analysis reports or through a conservative estimate that would enable a

stealthy operation. At the start of the simulation, machines within the network are assumed

to be compromised by a client-side attack with an initial compromise probability of 0.03 i.e.,

on an average ≈ 3 client machines are expected to be initially infected. After establishing

the initial foothold, the bots scan the network and enlist dmax = 3 machines for subsequent

compromise. As described earlier, the bots can perform two types of scans: random and
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Figure 5.5: Total number of sessions and scans observed from switch SW2

stealthy; the bots choose the scanning strategy with a probability of 0.8 and 0.2, respectively.

Here, we consider a stealthy botnet in which each bot compromises only pmin = 1 additional

machine. Upon compromising and recruiting additional bots, the bots begin exchanging

messages with their peers every ν = 15 minutes. Finally, in this simulation, we considered
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Table 5.1: Benign traffic - Request rate distribution

Traffic Request Rate Additional details
HTTP 7.39e5 + • 80% of requests to the Internet. 20% of

8.58e4 ·Beta(10, 8.26) requests to the internal Web servers.
(per day) • Requests are evenly distributed across

the internal Web servers.
FTP Uniform random intervals • Requests from machines are served

of 1 - 5 hours by the respective local FTP servers.
• FTP requests from Subnet-3 are
served by the server in Subnet-1.

Email Uniform random intervals • Requests are evenly distributed across
of 1 - 30 mins the internal Email servers.

DNS Generate 5 requests to • Requests are evenly distributed across
resolve a HTTP request the internal DNS servers.

a best case setting for a botnet wherein the bots were always present in the network i.e., if

all the bots are removed by the defense mechanisms, then new bots are created through a

client-side attack in the subsequent epoch.

Fig. 5.5 also illustrates the spike in network activity (w.r.t. no. of sessions and host

scans) in the presence of such a botnet when no defense mechanisms were installed in the

network. It must be noted that as there were no defense mechanisms, after the initial

scan (during the first few epochs) and subsequent compromise, the bots do not return to

their scanning state. Hence, no anomalous scanning activities is observed in the subsequent

epochs.

5.5.1 Comparison with Alternative Strategies and Metrics

In order to study the effectiveness of the RL model to detect and remove stealthy botnets,

we considered the following alternative placement strategies.

• Static Strategy: In this strategy, the defender’s objective is to detect any botnet activity
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in the segments of the network that hosts sensitive data. In the considered network, the

file servers in Subnet-1 and Subnet-2 were assumed to host sensitive data and hence, in this

strategy the defender places both the monitors and honeypots on switches SW2 and SW3.

• Centrality-weighted Strategy: This strategy – proposed in Chapter 3 – is a proactive

approach to dynamically place defense mechanisms in a network. Assuming that the file

servers in Subnet-1 and Subnet-2 host sensitive data, this strategy models the network

as a graph and computes a centrality metric referred to as mission-betweenness centrality

for each monitoring point in the network; a monitoring point with a high centrality value

is expected to intercept a larger volume of bot traffic and hence, improve the chances of

detecting botnets that operate under architectural stealth. After computing the centrality,

the strategy chooses monitoring points randomly weighted by their centrality values; higher

the centrality value, higher the probability of being chosen. Although the strategy was

proposed to place only monitors, in our simulations, the placement of honeypots were also

guided by the same policy.

• Myopic Strategy: This strategy is motivated by the existing practice to analyze traffic

in a network segment only when the network operator observes a significant spike in the

network activity. In particular, the defender places a honeypot (a monitor) on a network

segment when the host scan state (sessions state) reaches the HIGH state. Unlike the earlier

strategies, the defense placement decisions in this strategy are driven by the information

acquired from the operating environment. However, dissimilar to the RL model, this strategy

does not account for the long-term values of the state that the system may transition to as

a result of the decision.

The following metrics were used to compare the above strategies:

• Bot Liveprint: Maximum number of bots present during the simulation.

• Bot Meanprint: Average number of bots present during the simulation.

• Maximum Bot Lifetime: The lifetime of a bot is the time period (in days) during which

the underlying machine was controlled by an attacker. The maximum bot lifetime is the

longest time period during which any machine was controlled by an attacker.
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Table 5.2: Performance comparison of different strategies

Strategy Avg. Bot Avg. Bot Avg. Max. Bot Avg. BPT
Liveprint Meanprint Lifetime (days) (days)

Static 14.06 12.30 360.3 362.1

Centrality 11.28 2.89 48.94 74.86

Myopic 11.44 3.34 26.84 52.30

RL 12.90 2.97 20.0 37.40

• Botnet Persistence Time (BPT): The maximum lifetime of a botnet where the lifetime

of a botnet is defined as the time between the appearance of the first bot in the network to

the time when all the bots were removed. As mentioned earlier, in our simulation, when all

the bots are removed from the network, the simulator spawns new bots.

5.5.2 Results

In this work, the network was simulated using PeerSim [92] – a simulator that was designed

to support scalable simulation of P2P protocols. All the strategies were evaluated for a

365-day cycle with defense placement decisions made at the beginning of each epoch (or

day). For each strategy, the simulation was repeated for 50 runs in which each run was

initialized with a different seed that controlled the operations of a bot. The performance of

each strategy was averaged across all the runs and the average value was used for comparing

strategies at 95% confidence interval.

The summary of the results is provided in Table 5.2. As expected, the static placement

strategy performs the worst amongst its alternatives. While the static strategy ensured that

the bots in Subnet-1 and Subnet-2 were removed, it could not detect bots in Subnet-3. As

a result, once a botnet was established in Subnet-3, the bots continued to persist in the

network till the end of the simulation.
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(b) Centrality Strategy
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(c) Myopic Strategy
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Figure 5.6: Total number of bots in the DMZ for one 365-day run

The dynamic strategies, on the other hand, provide a significantly better protection

against such stealthy and persistent botnets. In particular, the Centrality-weighted and the

Myopic strategies reduce the maximum lifetime of a bot by at least 85% and consequently,

reduce the lifetime of a botnet (BPT) by more than 80%. The performance of these strategies

strongly suggest that introducing dynamism while making defense placement decisions –

guided by simple and/or intuitive policies – can significantly improve the security posture

of the network.
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Between the Centrality-weighted and Myopic strategies, we did not observe a statisti-

cally significant difference in their performance across the following metrics: bot liveprint

and meanprint. However, the Myopic strategy showed a significant improvement (over

Centrality-weighted strategy) in reducing the lifetime of a bot and as well as the lifetime

of the botnet. This was because the decisions taken by the Centrality-weighted strategy

were largely concentrated around Subnet-1 and Subnet-2 (since, the corresponding switches

had high centrality values) and hence, the bots in Subnet-3 and DMZ persisted for a longer

period of time. Myopic strategy, on the other hand, took decisions based on the informa-

tion obtained from the network; the strategy immediately reacted to spikes in the network

activity and placed defense mechanisms on those subnets. Thus, when bots propagated

and operated in Subnet-3 (or DMZ), the Myopic strategy observed a spike in the network

activity and removed corresponding bots quicker than the Centrality-weighted strategy (as

shown in Fig. 5.6). This improvement in performance strongly suggests that the decisions

that are guided by the information acquired from an environment leads to effective defense

placements.

Finally, amongst the dynamic strategies, the RL model showed the largest reduction in

the lifetime of a bot as well as in the lifetime of the botnet (BPT). Similar to the reasoning

behind the performance of Myopic strategy, the RL model’s performance stems from the fact

that its decisions are based on the information acquired from the operating environment.

However, the RL model synthesizes the acquired information to estimate the immediate

reward (in terms of number of bots) and the post-decision state – whose long-term value

is obtained through learning – to make decisions. A comparison of the estimated and real

rewards (and the post-decision states) for one 365-day run is depicted in Fig. 5.7. In the

model, the post-decision states capture the impact of a decision on the bots that survive a

defense placement decision. As a result, the RL model is able to control the evolution of a

botnet within the network and thus, perform better than its alternatives.
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Figure 5.7: Real and Estimated Rewards at switch SW2
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Figure 5.8: Real and Estimated Post-decision States at switch SW2

5.6 Conclusions

In this chapter, we addressed the challenge of reducing the lifetime of stealthy botnets

within a network. To this end, we adopted a defense-in-depth approach to combine the

proactive nature of honeypots to detect lateral movement of bots along with the reactive

nature of botnet detection mechanisms to detect persistent bots. In a resource-constrained

environment, we proposed a RL-based model to place the limited number of honeypots
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and monitors with an objective of maximizing the number of bots detected and removed

from the network. We provided a proof-of-concept of the proposed approach, and studied

its performance in a simulated environment. The results show that the RL-based approach

performs better than its static or proactive strategies in protecting a network against stealthy

botnets.
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Chapter 6: A Moving Target Defense Approach to Mitigate

DDoS Attacks in Proxy-Based Architectures

6.1 Introduction

Existing moving target-based architectures [28–30] leverage cloud environments to host a

small set of active proxies. Incoming connection requests are validated by a well-provisioned

lookup server which then redirects each authorized user to one of the secret active proxies to

serve the user’s subsequent requests. When under attack, a central server instantiates new

proxies and clients associated with attacked proxies are moved to these newly instantiated

proxies. To weed out compromised clients (assumed to be insiders), existing architectures

shuffle the clients before assigning them to new proxies such that the insiders are eventually

isolated from the innocent clients. Existing architectures assume that insiders persist in

the system during an attack and hence, initiate the movement only after the attack has

occurred. Such a reactive mechanism presents weaknesses that can be exploited to diminish

the protection offered by these architectures.

To illustrate current limitations, we first present a new type of attack – the proxy har-

vesting attack – which can be used to collect information about a possibly large number of

proxies before launching a massive DDoS attack against all known proxies. We show that

state-of-the-art solutions are vulnerable to this attack. Next, we present a simple attacker

isolation technique, BIND-SPLIT, to counter proxy harvesting attacks. We prove that, un-

der the described attack model, the number of users that are affected by a DDoS attack can

be minimized when a system is utilizing BIND-SPLIT. One limitation of BIND-SPLIT is

that it requires the lookup server to maintain a static mapping between clients and proxies,

which may lead to an uneven load distribution across proxies, thereby adversely affecting

a system’s performance. To address this issue while simultaneously reducing the impact

96



of DDoS attacks, we propose a lightweight defense technique, PROTAG, which proactively

reconfigures the attack surface by periodically replacing one or more proxies and reassigning

clients to new proxies. Finally, we show how BIND-SPLIT and PROTAG can be combined

in a hybrid approach which integrates proactive cyber defense and attacker-isolation.

6.2 Threat Model

In this section, we briefly describe the threat model we consider in our work. We primarily

focus on protecting Internet services that require client authentication, such as online bank-

ing and e-commerce portals. In our threat model, the attacker employs bandwidth-based or

volumetric DoS attacks – such as SYN flood and DNS amplification – to disrupt the avail-

ability of target services. We assume a persistent attacker possessing sufficient capabilities

(e.g., controlling a well-provisioned botnet) to simultaneously attack multiple proxies and

any subsequent new proxy that may be spawned to mitigate the impact of the attack. Such

repeated attack behavior using botnets is one of the emerging trends in DDoS attacks [25,93].

In a typical attack, bots spoof the IP addresses of traffic generated to congest network links

of the target network. However, we assume that the attacker does not have sufficient capa-

bilities to congest backbone links such as ISP networks or cloud infrastructures. In addition

to leveraging a botnet, attackers may compromise the credentials of legitimate clients or

eavesdrop on legitimate client’s network connections and use them as insiders. They can

then use this capability to learn the location of secret proxies and feed this information to

the botnet in order to launch a DDoS attack. We assume that the number of such insiders

is much smaller than the number of legitimate clients served by the target system.

6.3 Limitations of Current MTD Architectures

Existing moving target architectures [28–30] hide the location of an application server behind

a layer of proxies. These proxies receive requests on behalf of the application server and

97



forward requests (responses) from (to) the clients. Figure 6.1 gives an overview of state-of-

the-art moving target-based architectures. Essentially, they include three main components:

a well-provisioned lookup server, proxy servers, and the application server. A description of

each component is provided below.

Client 
Proxy  

Server, P 
Well-Provisioned 
Lookup Server 

Application 
Server 

(1) Request Access 

(2) Challenge 

(3) Response 

1.  Verify Response 
2.  Redirect to a random 

proxy server, P 

(4) Proxy server, P  

(5) Request 
(6) Forward 
Request 

(7) Response 

(8) Forward Response 

Proxy  
Server, P’ 

Determine new proxy, P’ 
(9) Under Attack 

(10) Redirect to P’ 

(11) Request (12) Forward 
Request 

Figure 6.1: Overview of Moving Target-based Architecture

Well-Provisioned Lookup Server: To communicate with the application server, the

client sends a request to a well-provisioned lookup server (step 1). The lookup server re-

sponds to the client’s request by issuing a challenge (step 2) such as user credentials [28] or

Proof-of-Work (PoW) [30]. These challenge-response mechanisms aim to filter illegal clients
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who are either unauthorized to use the system or impersonate a legitimate client by IP

spoofing. Upon solving this challenge (step 3), the client is redirected to a random active

proxy server (step 4) that relays requests from the client to the application server. To en-

sure that the lookup server (whose IP address is public) is not susceptible to DoS attacks,

existing architectures employ either a well-provisioned server – such as Content Distribu-

tion Networks [30] or a load-balancing DNS [29] – or leverage existing PoW schemes to force

clients to solve cryptographic puzzles before they can consume the lookup server’s resources.

Proxy Servers: Existing architectures assume the availability of a large pool of proxy

servers – with only a small number of them active at any point in time. The IP addresses of

active proxy servers are kept secret, i.e., they are not disclosed to clients who are unable to

solve the challenge issued in step 2. Authorized clients contact the corresponding proxy server

which in turn relays requests (responses) to (from) the application server (steps 5 through

8). As the location of the application server is known only to these proxy servers, the

attack surface shifts from the application server to the active proxies. Existing architectures

assume that proxies are equipped with a detection mechanism that enables them to detect

an attack. When attacked, the proxy servers first inform the lookup server (step 9). Then,

the lookup server instantiates new proxy servers and redirects clients associated with the

attacked proxies to the new proxies (Step 10). Additionally, an attack on a secret proxy

implies that one of the clients connected to the attacked proxy is acting as an insider and

divulging the proxy address to the attacker. Therefore, before redirecting the victims to

new proxies, the lookup server uses a client-to-proxy shuffling strategy to segregate innocent

clients from insiders and allocates them to different proxies. As a result of this shuffling

process, the number of innocent clients impacted during subsequent flooding attacks is

reduced.

Application Server: The application server hosts one or more services and maintains

a state for each client connected to it. As the application server stores all the session

information, the proxies are lightweight and only implement a simple traffic indirection

logic to relay requests/responses.
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Existing moving target-based architectures are limited by their threat model, which

assume that insiders (i.e., malicious clients able to solve the challenge) persist in the network

during an attack. Such an assumption is necessary to facilitate effective isolation of innocent

clients from insiders. However, under a more general threat model, in which the behavior of

the insiders is unknown, we show that it is possible to circumvent the existing moving-target

based defenses. To this end, we present a novel attack, called proxy harvesting attack, and

propose an architecture to counter this attack.

6.3.1 Proxy Harvesting Attack

In this section, we present the proxy harvesting attack. The attacker’s goal is to collect IP

addresses of as many proxy servers as possible before launching a coordinated attack against

multiple proxies. We make no assumption regarding an insider’s behavior. In particular, we

do not assume that the insiders persist in the system during or after a DDoS attack.

In MOTAG, the proxy harvesting attack works as shown in Figure 6.2a. After an insider

authenticates, the authentication server assigns it to one of the active proxy servers at

random. Through this process, the insider learns the IP address of a secret active proxy.

Then the insider authenticates again with the authentication server and learns a new IP

address. Ideally, this process is repeated until the IP addresses of all active servers are

collected.

For DoSE, the proxy harvesting attack can be modified as shown in Figure 6.2b. An

insider first collects a set of puzzles from the CDN. A benign client should choose one of the

puzzles at random and solve it. Upon submitting its solution to the CDN, the client will

be redirected to a secret proxy. However, an insider, after collecting the set of puzzles, can

distribute them to other insiders and solve multiple puzzles in parallel. The insider can then

collect these solutions and submit them to learn the location of multiple secret proxies.

In both architectures, once all or a significant number of active proxies have been discov-

ered, the insider will outsource this information to external attackers (such as botmasters)
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Figure 6.2: Proxy Harvesting Attack on existing moving target-based architectures

to launch a coordinated DDoS attack against all known active proxies. As mentioned ear-

lier, when active proxies are under attack, the lookup servers will move affected clients and

shuffle them among the new proxies to isolate the insider. However, if the insider is not

present in the system, the shuffling operation does not provide any advantage in identifying

the insider and only increases the overhead for the defender.
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6.3.2 Analysis of the Proxy Harvesting Attack

In this section we analyze the proxy harvesting attack against MOTAG. For the sake of

brevity, we omit the analysis for DoSE, which, however, is straightforward to conduct simi-

larly to what we show below for MOTAG.

In MOTAG, the insider needs to interact only with the lookup server (here, authenti-

cation server) to harvest IP addresses of active proxy servers. As the lookup server assigns

the clients to proxy servers randomly, the insider may be assigned to a previously known

proxy server. The number of requests that must be made by an insider to discover all the

IP addresses can be modeled as a classical variation of the Coupon Collector’s Problem

[94]. Hence, if there are N active proxy servers, the expected number of requests the insider

must make to the lookup server is N · log(N) + γ ·N + o(1) where γ ≈ 0.5772156 is the Euler-

Mascheroni constant and o(1) ≈ 0.5. Therefore, if there are 50 active proxies, on average the

insider needs to make 225 requests to learn all the IP addresses. It should be noted that,

when multiple insiders collude to harvest IP addresses, the expected number of requests per

insider decreases.

In practice, insiders may not know the exact number of proxies that are active at a given

time, but they may know the range of IP addresses used by active proxies. Additionally, if an

insider makes a large number of requests to the lookup server, an intrusion detection system

may flag the situation as suspicious. Therefore, the attacker needs to determine the optimal

number of authentication requests to strive a balance between stealthiness and harvesting

enough proxies. We can model this problem as an optimization problem with the objective

to maximize the number of active proxies discovered while simultaneously minimizing the

likelihood of detection. Using the dynamic programming formulation in [95], the Bellman

equation yielding the optimal stopping criterion is

A(r, n) = min{D(n+ 1), c+ pr,n ·A(r + 1, n+ 1) + (1− pr,n) ·A(r, n+ 1)} (6.1)

where,
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• A(r, n) is the expected cost incurred by the insider to learn r distinct IP addresses by

making n requests;

• D(n) is the expected cost incurred by the insider when the attack is detected after

making n requests.;

• c is the cost of a single request to the lookup server;

• pr,n is the conditional probability of discovering a new IP address given that r distinct

IP addresses were discovered from n requests. From [95], pr,n = C(r+1,n+1)
C(r,n) where

C(r, n) =
∑∞
j=0

(r+j)!
j!(r+j)n

As the number of IP addresses harvested increases with the number of requests to the

lookup server, intuitively Eq. 6.1 maximizes the number of requests, n, made an insider

subject to the constraint that the total cost of making n requests does not exceed the cost

of detection, D(n). Therefore, based on Eq. 6.1, the optimal probing strategy is as follows:

if the insider detection cost D(n) is less than the cost to discover new proxies, then make

new request, otherwise stop.

6.4 BIND-SPLIT Strategy

The proxy harvesting attack exploits the lookup server’s random assignment scheme – i.e.,

an incoming client request is randomly assigned to one of the active proxies – to discover

multiple proxies before launching an attack. One of the approaches to overcome the proxy

harvesting attack is to maintain a predefined mapping of clients to proxies, thus limiting

the number of IP addresses that can be harvested by insiders. In this section, we present

BIND-SPLIT, a simple, yet efficient, client-to-proxy mapping strategy that can be used to

isolate insiders even if they do not persist in the system.

In the BIND-SPLIT strategy, the lookup server is configured to maintain a static map-

ping between clients and active proxies. Let N = Cp · P0 be the total number of clients with

each one of the P0 proxy servers initially serving Cp clients. Each client has a binding to a
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particular server, which persists even if the client logs out and logs back in again. Also, let I

be the number of insiders wherein each insider can only discover the IP address of the server

to which it is currently assigned. If the goal of the defender is to minimize the total number

of times any server can be attacked, the BIND-SPLIT strategy we propose appears to be

asymptotically optimal. We assume the defender does not have sufficient server resources

to preemptively assign every client its own server, which clearly would minimize attacks.

Under the BIND-SPLIT strategy, clients remain bound to their assigned server until that

server is attacked. When any server is attacked, the attacked server is shut down and two

new servers are spawned in its place. The clients from the attacked server are split into

two equal-size groups and migrated to the new servers. If the attacked server has only one

client, then that client must be an insider.

We analyze BIND-SPLIT by considering a tree T . Each vertex of T represents a proxy

spawned by BIND-SPLIT. Initially T consists of a root note, with edges to each of the initial

P0 proxies. When an attack occurs on some proxy p, we augment T by creating two new

nodes, corresponding to the new proxies spawned by BIND-SPLIT. We make these nodes

descendants of the attacked proxy. Notice that a node in T is only a leaf node if the proxy

corresponding to it is never attacked. Therefore, to bound the total number of proxies

attacked by I insiders, it suffices to bound the total number of non-leaf nodes in T . Now

consider the proxies at some depth d > 0 in T . We argue that there can be only I non-leaf

nodes at depth d. By definition of BIND-SPLIT, the clients served by two different proxies

at depth d must be disjoint. Therefore at most I of the proxies at depth d can contain an

insider, and so at most I proxies at depth d can have children. It’s clear that T can also

have depth at most O(logCp), and therefore contains at most O(I · logCp) non-leaf nodes.

The maximum number of proxies used by the BIND-SPLIT strategy is O(I · logCp). This

is the same order of growth as the number of attacks. The simple reason is that each time

there is an attack on a server, the server is retired and two new servers spawned, increasing

the server count by one. Note that, if BIND-SPLIT uses too many proxies to be practically

applicable in some settings, it is possible to modify it to use fewer proxies. Specifically, the
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defender can merge proxies that have not been attacked for a long time. This modification

has the drawback of increasing the time to isolate an attacker on the merged proxies, in case

the merged proxies did contain an insider and the new proxy is later attacked.

6.5 Proactive Proxy Migration Architecture

A limitation of BIND-SPLIT is the tight coupling of clients to proxies which may lead to sub-

optimal load distribution across proxies. Furthermore, the effectiveness of existing moving

target-based architecture against DDoS attack degrades in the presence of proxy harvesting

attacks: moving and shuffling clients among proxies occur only after a DDoS attack has been

detected. To strike a balance between the performance and service availability, we propose

PROTAG (PROactive proxy-based moving TArGet architecture). Inspired by Fast-Flux

Service Networks (FFSN) – a popular network architecture used by botnets, phishers and

spammers to provide high availability for their services [96] – we periodically migrate clients

to new proxies irrespective of whether an attack has been detected. Such proactive move-

ment would disrupt the reconnaissance efforts of insiders by invalidating all or part of the

information they were able to gather. In fact, as implied by our reasoning in Section 6.3.1,

in order to remain stealthy, attackers will first gather IP addresses of multiple proxies over

a possibly extended period of time, and only at a later stage they will use that information

to launch a DDoS attack. If, by that time, many clients have been migrated to new proxies,

the attack will be either disrupted or at least mitigated. Finally, after an attack, PROTAG

harnesses the insider isolation principle of BIND-SPLIT strategy to partition the clients

across proxy pools and eventually isolate the insiders.

Within the existing MOTAG architecture, a proactive proxy movement strategy can be

defined in terms of two primary factors: proxy selection and movement frequency. Proxy

selection involves determining which proxies to replace, whereas a strategy’s movement

frequency determines when to replace the proxies. In this work, we consider a simple,

yet effective, strategy in which a subset of active proxies is chosen uniformly at random for

replacement. Effectiveness of this strategy is evaluated by computing the expected number
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of active proxies that can be discovered in comparison with existing architectures where no

proactive action is implemented.

6.5.1 Proxy Movement

Let P = {P1, P2, ..., PK} be the set of all available proxies. We assume that, at any time t ∈ T

– where T is a set of discrete time points – only k (with k < K) proxies are active, and we

use Pt = {Pit1 , Pit2 , ..., Pitk
} – where itj ∈ [1,K] for all j ∈ [1, k] and all t ∈ T – to denote the set

of active proxies at time t.

In PROTAG, the authentication server initiates the movement procedure every ∆t time

units – we refer to ∆t as the reconfiguration period and to f = 1
∆t as the reconfiguration

frequency. At that time, the authentication server chooses a subset of m active proxies

Pr ⊆ Pt, with |Pr| = m, uniformly at random. Additionally, the authentication server

chooses m available (but currently not active) proxy servers P ′r uniformly at random from

the set P\Pt. All the clients associated with a proxy in Pr are then migrated to a proxy in

P ′r.

The authentication server maintains each client-proxy association for a period of time

∆t∗, which we refer to as the association period. If a client assigned to a proxy Pi closes

the connection with Pi and re-authenticates with the authentication server before ∆t∗ time

units since it was originally assigned to Pi, then the authentication server assigns it to the

same proxy. This mechanism imposes an upper bound on the rate at which an insider may

discover new proxies. In fact, the insider may not discover more than 1
∆t∗ proxies per time

unit by doing repeated authentication requests.

The time interval ∆t∗ is determined by the network administrator by taking into account

the desired load per proxy (in terms of number of clients) and the expected arrival rate of

clients, thereby ensuring that proxies are not overloaded. The frequency with which the

proxies are moved depends on the number of active proxy addresses that an insider can learn

in ∆t time units. In other words, if proxies are proactively moved using this strategy every

∆t time units, then an insider would have discovered at most d ∆t
∆t∗ e proxies. Determining

106



the value of ∆t is critical to ensure that the strategy is effective: the smaller the value of

∆t, the higher the insider’s effort to harvest proxies. To this end, we derive the expected

number of active proxies that can be discovered by multiple insiders as a function of the

number of authentication requests and the reconfiguration interval ∆t.

6.5.2 Analysis of PROTAG

In this section, we model the problem as a game between insiders and authentication server,

such that, at each round, the insiders send multiple independent probes to discover proxies

while the authentication server moves multiple proxies. Let I be the number of insiders and

m be the number of active proxies moved by the authentication server at each round of the

game. For the sake of analysis, we assume that the reconfiguration period ∆t is a multiple of

the association period ∆t∗, that is ∆t = z ·∆t∗ where z ∈ Z+ is a positive integer. Therefore,

at each round, the authentication server first moves m of the k active proxies – using the

strategy described earlier – followed by each insider making z authentications at times that

are multiple of ∆t∗. For the purpose of this analysis, we consider a finite number q ∈ Z+

of rounds of this game. The defender moves m proxies at times 0,∆t, 2 ·∆t, . . . , (q − 1) ·∆t,

and, for each round r ∈ [1, q], each insider makes an authentication request at times (r −

1) · ∆t, (r − 1) · ∆t + ∆t∗, . . . , (r − 1) · ∆t + (z − 1) · ∆t∗. The total number of authentication

requests made by all the insiders during the q rounds is then ntot = q · z · I. As each probe

at times (r − 1) ·∆t+ x ·∆t∗, x ∈ [0, z − 1] is assigned an active proxy uniformly at random –

independently of the specific client – the expected number of distinct proxies discovered by

I insiders at the end of q rounds by making z probes at each round is equal to the number

of distinct proxies discovered by an insider making z · I probes at each round.

An example of the timeline of an authentication server-insider game is shown in Fig-

ure 6.3. In this example, q = 3, z = 3 and I = 1. The insider makes a move every ∆t∗ = 2

time units while the authentication server makes a move every ∆t = z ·∆t∗ = 6 time units.

LetXr be a random variable representing the number of distinct active proxy IP addresses

discovered at the end of round r ∈ [1, q]. The effectiveness of the strategy can be evaluated
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Figure 6.3: Example of authentication server-insider game

by computing the expected value of Xq, that is the expected number of distinct proxies that

the insider discovers by the end of the q-th round of the game. This can be computed as

E[Xq] =
∑k
i=1 (i · Pr[Xq = i]). For the first round, the probability that the insider discovers x

proxies out of k active proxies after z · I authentications, Pr[X1 = x], is given by the number

of ways to arrange x distinct proxies from k active proxies across z ·I authentications divided

by the number kz·I of possible outcomes. Therefore, the probability distribution for X1 is

given by

Pr[X1 =x] =
P(k,x) · S

(x)
(z·I)

kz·I
, x ∈ [1,min(z · I, k)] (6.2)

where,

• S
(r)
n =

∑r
j=1

(−1)r−jjn
j!(r−j)! is a Stirling number of the second kind, which is the number of

ways to divide a set of n objects into r nonempty subsets. Intuitively, this captures

the notion that multiple authentication requests may yield the same IP address.

• P(k,x) is the number of ways to arrange x-element subsets from a k-element set.

Moving proxies invalidates knowledge acquired by the insider. Let Ar be a random

variable which represents the number of known proxies that are removed when the authen-

tication server moves m proxies at round r. Also, let Dr be the maximum number of active
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proxies that the insider might have already discovered by the end of round r− 1. Such num-

ber cannot exceed the number x + Ar of proxies discovered at the end round r. Therefore,

the value of Dr depends on the outcome of Ar, that is

Dr(Ar = l) = min ((r − 1) · z, x+ l, k) (6.3)

Hence, for x ∈ [1,min (r · z · I, k)], the probability distribution of Xr is given by

Pr[Xr=x] =

Dr(Ar=l)∑
y=1

Pr[Xr = x|Xr−1 = y] · Pr[Xr−1 = y] (6.4)

Then, combining Eq. 6.3 and Eq. 6.4, we can write

Pr[Xr = x] =

m∑
l=0

Dr(Ar=l)∑
y=max(l,1)

(Pr[Xr=x|Xr−1=y,Ar=l]·Pr[Ar=l|Xr−1=y]·Pr[Xr−1=y]) (6.5)

In Eq. 6.5, Pr[Ar = l|Xr−1 = y] =
C(y,l)·C(k−y,m−l)

C(k,m) . If the insider has discovered y and x

proxies by the end of rounds r− 1 and r respectively, then during the z · I authentications at

round r, the insider should have discovered x− (y− l) new proxies where l ∈ [0,m]. However,

the insider may encounter s already known proxies, where s ∈ [0, y− l]. Therefore, for a given

s, Pr[Xr = x|Xr−1 = y,Ar = l] is the number of ways of arranging x− (y − l) distinct proxies

from k − (y − l) unknown active proxies and s distinct proxies from y − l discovered active

proxies across z · I authentications out of kz·I possible outcomes. Hence,

Pr[Xr = x|Xr−1 = y,Ar = l] =

y−l∑
s=0

P(k−(y−l),x−(y−l))P(y−l,s)C(x−(y−l)+s,s)S
(x−(y−l)+s)
z·I

kz·I
(6.6)

where,

• S
(r)
n is a Stirling number of the second kind
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• P(n,r) is the number of ways of arranging r-element subsets of an n-set

• C(n,r) is the number of ways of choosing r objects from a set of n objects

By substituting Eq. 6.6 in Eq. 6.5 and recursively solving for r = Q with Eq. 6.2 as the

base case, we derive Pr[Xq = x],∀x ∈ [1, k].

6.6 Insider Isolation Algorithm

PROTAG significantly disrupts an attacker’s efforts to discover the IP addresses of active

proxies and, hence, reduce the impact of an attack. The impact of a DDoS attack can

be defined as the average number of innocent clients who suffer from a degraded quality

of service during the attack. In the proposed architecture, the impact of a DDoS attack

on a given number of active proxies, on average, remains constant as all the clients are

distributed uniformly at random across the same pool of active proxies. To reduce the

impact of subsequent DDoS attacks, we propose a simple insider isolation algorithm which

incorporates the isolation principles of the BIND-SPLIT strategy to partition clients into

different proxy pools and eventually, isolate insiders into proxy pools with fewer innocent

clients.

In this algorithm, the lookup server maintains a mapping for each client to a set of

proxies. Before the onset of an attack, all the clients are associated with a single pool of

active proxies. After an attack, for each attacked proxy pool P, the lookup server will first

spawn two new proxy pools P1 and P2 with the same size as the attacked proxy pool. Next,

the server will randomly partition the clients associated with the attacked proxy pool into

two groups C1, C2 and re-assign clients in Ci to proxy pool Pi, i = 1, 2. For subsequent

connection requests by any client in Ci, the lookup server will re-direct it to proxy pool Pi,

i = 1, 2.
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6.6.1 Analysis

We analyze the proposed insider isolation algorithm and provide theoretical upper bound

on the number of attacks and the number of proxies necessary to completely isolate the

insiders. To analyze the algorithm, consider a tree T where the nodes of the tree {P, C}

represent the identity of the proxy pool P and the set of clients C associated with it. An

edge from {P, C} to {P ′, C′} exists if and only if proxies in P were attacked and the lookup

server spawned proxies in P ′ and assigned clients in C′ ⊂ C to proxies in P ′ where |C′| = |C|
2 .

It can be seen that at any depth d all sets of clients at depth d are disjoint and hence,

the resulting tree T has a total depth of log(N), where N is the total number of clients. The

depth of the tree provides an upper bound on the number of DDoS attacks experienced by

a client before isolating the insiders. In other words, the number of attacks experienced by

any user of the system is bounded by log(N). Furthermore, the number of proxies spawned

by the algorithm can be calculated by counting the number of leaf nodes in T . As a base

case, consider a scenario where there is exactly one insider in the system among N ′ clients

associated with a proxy pool P ′. In this case, the resulting tree T ′ will be a skewed binary

tree with log(N ′) leaf nodes. When there are I insiders, then in the worst case, after each

attack, the insiders will be evenly distributed across all the proxy pools. Consider the set

F of subtrees rooted at nodes at depth log(I). The root of each subtree T ′ ∈ F represents a

proxy pool with N
I innocent clients and one insider. As there are at most I such subtrees,

the maximum number of proxies is log
(
N
I

)
· I · |Pi| where |Pi| is the number of proxies in the

initial active proxy pool.

6.7 Simulation Results

In this section, we study the proxy harvesting attack, validate the proactive movement and

the insider isolation algorithm presented in the previous section through simulations.
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Figure 6.4: No. of probes by an insider for different detection costs

6.7.1 Proxy Harvesting Attack

In order to illustrate the trade-off in the attacker’s actions in MOTAG-based architectures

(whether to authenticate or not), we simulated Eq. 6.1 for various values of the detection

cost and number of active proxies. In the simulation, we assumed, D(n) = P (n) · d, where

P (n) = (1− e−(α·n)) is the probability that the attacker makes n probes and d is the cost for

an insider to be detected. Such exponential distributions have been used in the past [97] to

model the effort required by an attacker to successfully mount an attack. In our simulations,

we set α = 0.05. The cost of detection, d, and the cost of probing, c, were normalized by

setting d = z · c, z ∈ Z+. In our simulations, we assumed c = 1. Figure 6.4 shows the number

of authentication probes as a function of the detection cost d. As expected, the number

of authentication probes made by an insider decreases as the detection cost increases. The

rationale behind this trend is that, as the detection cost d increases, the expected cost of

insider detection D(n) increases for every subsequent probe. This restricts the number of

authentication probes for the insider. As shown in Figure 6.5, for lower detection costs, an
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Figure 6.5: No. of discovered proxies vs. number of active proxies

insider can discover at least 70% of the active proxies and hence, can launch a significant

DDoS attack against known proxies.

6.7.2 PROTAG

To assess the performance of PROTAG, we simulated Eq. 6.5 for 40 active proxies with

different numbers of insiders. In our simulation, the insiders made a total of 100 probes.

As discussed earlier, the number of proxies discovered by an attacker using I insiders is

equivalent to the number of proxies discovered by one insider sending I probes. Figure 6.6

and Figure 6.7 depict the probability distribution of the number of proxies discovered by

multiple insiders with and without applying PROTAG, where z is the number of authen-

tications between consecutive proxy movements by the authentication server. As shown in

the figures, when there is no proactive movement, there is a high probability of discovering

most of the proxies with an expected value of 37. However, with proactive movement, the

probability distribution shifts such that the probability of discovering more than 80% of the
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Figure 6.6: Probability distribution of the number of discovered proxies when authentication
server moves m = I proxies

proxies reduces significantly. In particular, for proactive movement, the expected number

of proxies discovered is 20 and 26 respectively, reducing the number of discovered proxies

by 46% and 30% respectively. Furthermore, we observed that by increasing the number of

probes made by the insider, the probability distribution of the number of proxies discovered

by an insider did not change.

On the other hand, if the authentication server moves multiple proxies (m > 1), the

expected number of discovered proxies can be reduced. Figure 6.6 and Figure 6.7 depict the

probability distribution of discovered proxies when the authentication server moves m = I

and m = 0.5 · I proxies, respectively. It can be seen that the expected number of discovered
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Figure 6.7: Probability distribution of the number of discovered proxies when authentication
server moves m = 0.5 · I proxies

proxies can be restricted to the case when the authentication server moved only one proxy.

These results also show that, if the cost of frequently moving a proxy is high, then the

authentication server can move at a lesser frequency and compensate for the additional

information gained by an attacker by moving multiple proxies (proportional to the number

of authentication probes) at a later time.

6.7.3 Insider Isolation Algorithm

To study the performance of the proposed insider isolation algorithm, we considered a system

serving 10,000 users with a varying number of insiders. In order to simulate the user’s
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Figure 6.8: Percentage of innocent users affected during a sequence of attacks

behavior, in our environment, after every hour, the users (if not connected) log into the

system with a probability of 0.8 and if connected, they disconnect with a probability of 0.5.

These simulations were conducted for a period of 500 hours (∼ 3 weeks of uptime) starting

with a proxy pool of 2 active proxies. In our simulation, we assumed that the attacker’s

objective is to discover at least 50% of the active proxies before launching the attack. Against

such a threat model, we studied the performance of the proposed algorithm to save at least

90% of innocent users with and without proactive movement. All simulations were repeated

30 times and the results were averaged over these independent trials.

As expected, the percentage of innocent users who are affected due to repeated DDoS

attacks decreases with every subsequent attack (shown in Figure 6.8). As described in

section 6.6, the insider isolation algorithm spawns new proxies and partitions clients across

these proxies after an attack. As the number of insiders increases, the average number of

proxies instantiated also increases as depicted in Figure 6.9. When deployed in a cloud

environment such as Amazon EC2, the cost of on-demand instances to host the proxies
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Figure 6.9: Average number of proxies required to isolate 90% of innocent users from insiders

(which is about $0.007 per hour for EC2 instances based on their spot pricing) would cost

the enterprise less than $150 dollars (for 500 insiders) to mitigate attacks lasting for 100

hours and protect more than 90% of innocent users from subsequent attacks. To understand

the impact of initial proxy pool size, we repeated the experiment with 10, 25 and 50 proxies

and observed less than 5% decrease in the number of saved innocent users. In addition to the

cost incurred from deploying the proxies, the users of the application incur an overhead cost

due to frequent redirection to new proxies. As studied by researchers in [29], the clients are

expected to experience less than 3 seconds overhead as a result of the redirection operation.

We also studied the impact of coupling PROTAG with the insider isolation algorithm.

Here, we considered a movement strategy in which, from each active proxy pool, an active

proxy was replaced on an hourly basis. As illustrated in Figure 6.10, PROTAG, on average,
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reduced the number of attacks observed during an experiment’s lifetime by 4. As a result, it

was observed that the average number of innocent users who are affected due to an attack

decreased by 40% in comparison to the setting without PROTAG (shown in Figure 6.11).

6.8 Conclusions

In this chapter, we first presented a new type of attack, the proxy harvesting attack, and

showed that state-of-the art proxy-based architectures are vulnerable to such a reconnais-

sance strategy. Next, to overcome the limitations of current approaches, we proposed a

proactive strategy – namely PROTAG – to periodically replace one or more proxies and

remap clients to proxies, with the goal of disrupting the attacker’s reconnaissance efforts,

and an insider isolation approach to mitigate ongoing attacks. We validated our solution

in a simulated environment, and simulation results confirmed that PROTAG is effective in

reducing the number of proxies an attacker can discover in a given amount of time as well

as reduce the impact of a wave of DDoS attacks.
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Chapter 7: Future Work

In this thesis, I have demonstrated the potential for ACD models and techniques to reverse

the asymmetric advantage of an attacker – performing botnet-assisted malicious activities

– in favor of the defender. In particular, we develop ACD techniques to detect long-term

exfiltration campaigns and mitigate DDoS attacks.

While the proposed techniques have proved to be effective in a simulated environment, as

part of our future work, we intend to deploy these techniques in a live network environment

and test their effectiveness. In addition to this, there are several interesting directions for

future work.

7.1 Advanced Adversarial Capabilities

In our threat model, we do not consider an adaptive adversary who takes actions in response

to the monitoring strategy of the defender. For instance, the attacker may have the capability

to discover which network nodes are being monitored by probing nodes in the network. In

an enterprise network, a simple probing strategy could be to send malicious packets to a

node and depending on whether or not the packet successfully reached the destination, the

attacker can determine the node’s monitoring state. At an ISP network level, an attacker

can leverage probing strategies described by Shinoda et al. [64], and by Shmatikov and

Wang [65] to identify the presence of passive detectors in a network. In these probing

attacks, the attacker sends unique probes to nodes that are suspected of being monitored

by a detector. If a node is monitored by a detector, then the corresponding alert will be

published in a report that is publicly accessible. Once the attacker learns the location of

the monitors, the attacker can relay the exfiltration traffic through a sequence of bots such

the total volume intercepted by the monitors is minimized.
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While probing reveals the location of monitors, it also generates alerts that can be

observed by the defender. Therefore, developing a monitor placement strategy that considers

information from the alerts can be casted in a game-theoretic framework through which we

can study the Nash equilibria and the dominant strategies for the defender and the attacker.

Along similar lines, McCarthy et al. [98] considered the problem of placing imperfect sensors

on nodes within a network to detect malicious domains that are used in a DNS exfiltration

campaign. To this end, they propose a POMDP model that accumulates noisy information

from the sensors to guide the placement decision of sensors subject to cost constraints and

routing policy constrains within the network.

7.2 Adversarial Machine Learning

With the rapid growth in the capabilities of a malware, defense mechanisms based on static

analysis (ranging from simple firewall rules to static binary analysis) have become obsolete.

This has paved the way to the rise of defense mechanisms that leverage machine learn-

ing algorithms to detect malwares based on behaviorial-analysis. For instance, Chapter 4

presented a detection mechanism that leveraged intrinsic characteristics in the network be-

havior of bots and Chapter 5 leveraged the spike in the network activity (i.e., number of host

scans and number of outgoing sessions) to guide the placement of the defense mechanisms

(honeypots and monitors).

In an environment where adversaries are aware of the learning algorithm, they could

intentionally introduce noise to either cause a malicious flow be misclassified as a benign

flow or bias the learning processing. For instance, to evade detection by DeBot, the bots

could append random bytes of data to the update messages so that the corresponding ma-

licious flows and the benign flows are clustered together. As a result, the similarity score

of the compromised host and a benign host (in its neighborhood) will remain unaffected by

the clustering processing. Such noises that increase the false positive and negative rate of

machine learning algorithm are known as adversarial examples [99].
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Similarly, the policy learnt by the RL model is dependent on the accuracy of baseline

behaviors. Typically, the baseline behavior of a network is established prior to learning by

analyzing the network traffic captured in the past. However, if the hosts were compromised

during the baseline determination phase, the bots could poison the data by introducing

network activity that would result in high baseline values [100]. Thus, during the learning

and learnt phases of the reinforcement learning model, the bots could continue to operate

below the established baselines. Developing learning algorithms that are robust to the noise

or bias introduced by malwares is a potential direction for future work.

7.3 Combining Different ACD Techniques

In Chapter 5, we developed a reinforcement learning model to reduce the lifetime of botnets.

The results indicated that combining honeypots and network-based detection mechanisms

improves the overall security posture of the network. Building on this work, one of the

potential directions of future work is to include the cost of cleaning and restoring a machine

to its pristine state. In particular, as the cleansing operation for different machines may

vary based on their availability or mission-criticality, the reinforcement learning model must

be tuned to learn the optimal time to clean by performing cost-benefit analysis.

Furthermore, as individual ACD techniques can only partially protect a network, we plan

to investigate the possibility of combining existing MTD mechanisms such as OS rotation

with ACD mechanisms proposed in this thesis (such as dynamic monitoring). To this end, we

developed a framework in [101] that takes a principled approach to study the effectiveness of

combining different MTD techniques. Inspired by the idea of behind attack graphs [102,103],

the framework first captures the relationship between a given set of MTD techniques and

their impact on the information required for an attacker to successfully exploit a weakness.

Based on this relationship, subject to cost constraints, the framework determines the optimal

setting for the given set of MTDs that reduces the overall probability of a successful attack.

As part of our future work, we intend to extend this framework and include network-wide

ACD techniques to provide an effective network protection.
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