
Mitigating Denial-of-Service Attacks in Contested Network Environments

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Quan Jia
Master of Science

George Mason University, 2012
Bachelor of Science

South China University of Technology, 2006

Director: Angelos Stavrou, Professor
Department of Computer Science

Spring Semester 2014
George Mason University

Fairfax, VA

Copyright c� 2014 by Quan Jia
All Rights Reserved

ii

Dedication

To Xun and our beloved daughter.

iii

Acknowledgments

This dissertation would not be possible without the help and support of many people, to
whom I am greatly indebted.

First and foremost, I would like to express my heartfelt gratitude to my advisor, Angelos
Stavrou, for his continuous guidance and support. Thanks to Angelos, I was given the
opportunity to experience di↵erent research projects covering various aspects of information
security and computer science. His advice and encouragement has not only been a great help
to my graduate studies but will also remain invaluable for my future career. Additionally, I
would like to thank other members of my dissertation committee, including Fei Li, Duminda
Wijesekera, Brian Mark, and Damon McCoy, for their insightful comments and precious
time in helping me improve this work.

My sincere thanks also go to Kun Sun, Dan Fleck, and other faculty members with whom
I was fortunate to collaborate on many projects and research papers. Their knowledge,
inspiration, and commitment have always made our working together a pleasure.

I am deeply thankful to my colleagues and friends Meixing Le, Fengwei Zhang, Sharath
Hiremagalore, Jiang Wang, Zhaohui Wang, Rahul Murmuria, and Chaitanya Yavvari, for
their unselfish input and help throughout my PhD research.

Last but not least, I would like to thank my lovely wife, Xun. The journey in pursuit
of a PhD is a long and di�cult one, and I would not have survived it without her constant
support and encouragement. She has always been there for me at hard times, even when
we were separated by oceans.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Motivation . 1

1.1.1 DoS Attacks On The Internet . 1

1.1.2 DoS Attacks In Mobile Ad Hoc Networks (MANETs) 3

1.2 Thesis Contributions . 5

1.3 Thesis Organization . 7

2 Background and Related Work . 8

2.1 Defenses Against Internet DDoS Attacks . 8

2.1.1 Filtering-based Defense . 8

2.1.2 Capability-based Defense . 10

2.1.3 Overlay-based Defense . 12

2.1.4 Other Defense Mechanisms . 13

2.2 Defenses Against MANET DoS Attacks . 13

3 Moving Target Defenses Against Internet DDoS Attacks 16

3.1 Introduction . 16

3.2 Protecting Critical Services Using Moving Proxies 18

3.2.1 Threat Model and Assumptions . 19

3.2.2 Architecture . 19

3.2.3 Discussion . 24

3.3 Protecting Open Services Using Moving Replicas 25

3.3.1 Threat Model and Assumptions . 26

3.3.2 Architecture . 27

3.3.3 Discussion . 31

3.4 Shu✏ing-based Attack Segregation . 32

3.4.1 Shu✏ing Strategy . 33

3.4.2 Theoretical Problem Modeling . 34

v

3.4.3 Optimal Solution . 36

3.4.4 A Special Case . 37

3.4.5 A Fast Heuristic Greedy Algorithm 38

3.4.6 Enhancing The Greedy Algorithm 40

3.5 Attack-Scale Estimation . 42

3.6 Evaluating Moving Target Defenses . 48

3.6.1 Attacker Quarantine Capability . 48

3.6.2 Overhead Evaluation . 53

4 Protecting Multi-path MANET Communications Using Capability 58

4.1 Introduction . 58

4.2 Threat Model & Assumptions . 59

4.3 Capability System Overview . 61

4.3.1 Capability Distribution . 62

4.3.2 Capability Enforcement . 63

4.4 Capability System Design and Implementation 64

4.4.1 Packet Format . 64

4.4.2 Data Structures . 65

4.4.3 Capability Distribution . 66

4.4.4 Capability Enforcement . 67

4.5 Discussion . 70

4.5.1 Improvement Over Existing Solutions 70

4.5.2 Security Analysis . 71

4.6 System Evaluation . 76

5 Conclusions and Future Work . 85

5.1 Conclusions . 85

5.2 Future Work . 88

Bibliography . 90

vi

List of Tables

Table Page

3.1 Notations used in section and their meanings. 35

3.2 Latency overhead introduced by proxy indirection. 54

3.3 Throughput overhead introduced by proxy indirection (Mb/s). 54

3.4 Time to switch between two proxy nodes (seconds). 55

4.1 Mitigating DoS attacks in a large, dynamic topology. 80

vii

List of Figures

Figure Page

3.1 Client Shu✏ing . 17

3.2 The MOTAG Architecture . 20

3.3 The Cloud-Enabled DDoS Defense Architecture 27

3.4 Comparison of the e↵ectiveness of greedy algorithm and dynamic program-

ming algorithm with 1,000 clients. (Curves are overlapping.) 46

3.5 Runtime of the dynamic programming algorithm with 1,000 clients. 46

3.6 Runtime of the greedy algorithm with 1,000 clients. 46

3.7 The optimal number of clients to assign to one service node computed using

the enumeration approach and the approximation approach. The Y-axis is

in log-scale, and the curves are overlapping. 47

3.8 Evaluate the MLE algorithm through examples (10,000 clients, 100 shu✏ing

service nodes). 47

3.9 The number of shu✏es needed to save 80% and 95% of benign clients from

malicious insiders. 49

3.10 Number of proxy nodes needed to save 95% of benign clients within 5, 10, and

15 shu✏es, with 10K and 100K clients and an increasing number of insiders. 50

3.11 Number of shu✏es to save 80% and 95% of 104 and 5 ⇥ 104 benign clients,

with 1,000 shu✏ing replica servers and varying bot numbers. 52

3.12 Number of shu✏es to save 80% and 95% of 104 and 5 ⇥ 104 benign clients,

with 105 bots and varying shu✏ing replica server numbers. 52

3.13 Cumulative percentage of saved benign clients vs. number of shu✏es, with

105 bots, 104 and 5⇥ 104 benign clients. 52

3.14 System prototype (C – Client, P – Replica Server). 56

3.15 Client migration time between two replica servers. 57

4.1 Overview of the flow control in CapMan system. 62

4.2 Topology for joint multi-path routing with one flow. 76

4.3 Topology for disjoint multi-path routing with one flow. 77

viii

4.4 DoS attack performed by an initiator using CBR tra�c. 78

4.5 DoS attack performed by an initiator using bursty tra�c. 78

4.6 Compare CapMan with uni-path capability-based solution using CBR tra�c. 79

4.7 Compare CapMan with uni-path capability-based solution using bursty tra�c. 79

4.8 Overhead of CapMan under di↵erent node speeds and time window sizes. . 81

4.9 Normalized overhead of CapMan. 82

4.10 Average packet latency of AOMDV routing with and without the protection

of CapMan. 83

4.11 Average packet delivery ratio of AOMDV routing with and without the pro-

tection of CapMan. 83

ix

Abstract

MITIGATING DENIAL-OF-SERVICE ATTACKS IN CONTESTED NETWORK ENVI-
RONMENTS

Quan Jia, PhD

George Mason University, 2014

Dissertation Director: Angelos Stavrou

In an increasingly connected world, ensuring availability of the services and applications

carried by computer networks is critical. As the most far-reaching computer network, the

Internet is home to millions of services that have profound influences on people’s lives

and work. Additionally, mobile ad hoc networks (MANETs), often used to support critical

military and civilian projects, rely on the availability of all participating nodes to fulfill their

missions. However, the availability of these networks and services are constantly threatened

by denial-of-service (DoS) attacks with growing intensity and sophistication. In this thesis,

we study di↵erent DoS combating mechanisms to protect services and hosts in the contested

Internet and MANET environments.

To mitigate distributed denial-of-service (DDoS) attacks bombarded by powerful botnets

on the Internet, we propose a moving target mechanism that progressively separates benign

clients from the mingled attackers. This mechanism is achieved by endowing mobility to

the defense system to evade naive attackers while smartly shu✏ing clients to quarantine

advanced and persistent attackers. We present two mobile defense architectures tailored for

di↵erent threat and application models. The first architecture, named MOTAG, is built on

secret moving network proxies that act as the intermediate layer between authenticated

clients and protected services. By only disclosing the active proxies to the authenticated

clients and quickly replacing the attacked ones, this intermediate layer becomes a moving

target that continues to escape from network flooding attacks. The second architecture,

enabled by the resource elasticity and network space of cloud computing, replicates open

web servers to partition incoming workloads of various clients. By dynamically instantiating

new replica servers scattered in the cloud and re-shu✏ing clients’ assignments, we are able

to quarantine flooding attacks targeting both network and computational resources. Under

both architectures, advanced attackers may follow the moving targets to persist their at-

tacks. To isolate the following attackers from benign clients, we perform elaborate shu✏ing

operations that intelligently redistribute clients among di↵erent proxies or replica servers.

For guiding the shu✏ing operations, we design an optimal dynamic programming algorithm

that expectedly saves the maximum number of benign clients from each shu✏e. We also

introduce a much faster greedy algorithm that can generate near-optimal shu✏ing plans

in realtime. Furthermore, a maximum-likelihood algorithm is employed to accurately esti-

mate the number of following attackers. Results from extensive simulations show that our

defense mechanism can save a vast majority of benign clients from persistent and intense

DDoS attacks in a few rounds of shu✏ing. Experiments that study the overhead of the

shu✏ing operation demonstrate that clients can be re-assigned among di↵erent proxies or

replica servers in several seconds.

In addition, this thesis introduces a capability-based mechanism that inhibits MANET

DoS attacks in the context of multi-path routing. Existing solutions are limited because

they assume that a single path is used to route tra�c for each flow. To prevent attacks

that multiply their throughput by employing multiple di↵erent routes, we present CapMan,

an enhanced capability-based mechanism that enforces per-flow limits across all employed

routes. To ensure overall capability compliance, CapMan not only informs all intermedi-

ate nodes of a flow about the assigned capability but also provides them with a global

throughput perspective via periodical summary exchange. Results show that CapMan is

able to maintain flow-wide capability constraints consistently and distributedly, even when

multiple colluding insiders attempt to exacerbate the attack. In the meantime, the impact

of CapMan on well-behaved flows is shown to be small.

Chapter 1: Introduction

1.1 Motivation

The emergence, evolution, and propagation of network technologies have revolutionized the

world. To date, with the proliferation of smart mobile devices and applications, people’s

lives and work have become more dependent on data networks than ever. Undoubtedly,

billions of people around the globe are using the Internet as their primary means to com-

municate, share information, and conduct business. More and more people are relying on

cellular networks for ubiquitous connections to the Internet and to one another. Wireless ad

hoc networks are quickly gaining popularity in vehicle-to-vehicle communications, military

operations, and disaster rescues. Given the increasingly critical roles that these networks

are playing, it is crucial to ensure their availability to the growing number of subscribers.

Over the past decade, denial-of-service (DoS) attacks have become the top threat to

network and service availability. By definition, a DoS attack is an attempt by one or more

machines to prevent the targeted victim from doing useful work [1]. A typical DoS attack

aims to make networks and servers unavailable to their intended users. Most commonly,

attackers flood the target with excessive network tra�c or service requests to exhaust the

victim’s limited network bandwidth or computational resources (CPU, memory, etc.). To

inflict profound damage and avoid being blocked, a DoS attack on the Internet is often

performed by numerous geographically distributed attacker-controlled zombies and are thus

addressed as distributed DoS (DDoS) attacks.

1.1.1 DoS Attacks On The Internet

DDoS attacks are one of the most common and potent security threats to Internet services.

A recent survey by Arbor Networks revealed both increasing DDoS attack intensity and

1

sophistication over the past decade [2]. The same survey also showed that large-scale DDoS

attacks have gained significant prevalence. In 2010, the highest throughput achieved by a

flooding DDoS attack reportedly reached 100 Gbps. In contrast, the cost to perform a DDoS

attack has proven to be surprisingly low. A Trend Micro white paper [3] about Russian

underground market disclosed that one-week DDoS service costs as little as $150. Lately,

ideology has become a new major driving force for DDoS attacks. The most well-known

incidents are the series of retaliation attacks initiated by WikiLeaks’ supporters to paralyze

the websites of MasterCard, Visa, and others [4]. The observed upward trend of DDoS

attacks can cripple the operation of critical infrastructures and online services, disrupting

both civilian and military facilities.

A DDoS attack is usually bombarded by a botnet composed of large numbers of infected

machines (i.e. bots) [5]. The actual attack can take many forms [6]. For example, TCP SYN

flooding can be used to deplete the victim’s available connections [7, 8]; UDP flooding [9],

smurf attacks [10], and DNS reflector attacks [11] are able to saturate the victim’s network

bandwidth; and application-level flooding [6] may drain the victim’s computation power.

Although on the surface, an attack may exhibit di↵erent characteristics, internally the

actions of the entire botnet are coordinated through a common command and control (C

& C) channel [12].

DDoS attacks are hard to prevent not only because of their multitude and distributed

nature but also due to the inherent designs of the Internet. Unlike circuit-switched networks

in which every end-to-end communication is allocated with an exclusive channel, the Inter-

net is based on packet switching where link resources are shared among many users [13].

A flooding DDoS attack can disturb or even shut out legitimate users by preempting as

many shared resources as possible [14]. In addition, the Internet was designed following the

end-to-end principle [15], which advocates building a simple network core that does little

more than packet transmission, while having sophisticated end systems to ensure reliabil-

ity, quality of service (QoS), and security. Undeniably, the end-to-end principle provides

tremendous convenience for developing and deploying new applications, which contributed

2

greatly to the unprecedented success of today’s Internet. However, following this principle

also resulted in a lack of security and controlling mechanisms on the network intermediaries,

making the Internet inherently vulnerable to distributed flooding attacks converging on end

systems [16].

To make up for the vulnerabilities introduced by the Internet design principles, re-

searchers proposed adding security functionalities, including filtering-based [17–19] and

capability-based mechanisms [20–23], to the Internet core and edge routers to stop attacks

from their sources. However, implementing these solutions calls for a universal upgrade on

the legacy Internet infrastructures and collaborative e↵orts among di↵erent Internet service

providers (ISPs). To date, none of them have received wide deployment due to the lack of

incentives. Overlay-based defenses [24–30] are considered to be more feasible alternatives

to address DDoS attacks because they enable unilateral and incremental deployment. Nev-

ertheless, to maintain resilience against strong flooding attacks, an overlay network must

own abundant resources to withstand and absorb the attack tra�c, which inevitably drags

overlay providers into an arms race with the ever-expanding botnets.

Among the deployed DDoS defense mechanisms, content delivery networks (CDNs) such

as Akamai [31] and Limelight [32] are employed to increase the availability of bulk data

services through widespread data replication. This has proven to be a viable and e↵ective

approach to protect web services involving only stateless transactions. However, plenty of

other Internet services are either stateful or hosting data too sensitive to be vastly replicated,

which calls for e↵ective protection on centralized servers. As of today, practical DDoS

mitigation for centralized Internet services still primarily depends on packet filtering using

access control lists (ACLs), despite their functional and operational limitations [2].

1.1.2 DoS Attacks In Mobile Ad Hoc Networks (MANETs)

Unlike the Internet that lives on fixed network infrastructures, a MANET is a dynamic

network that connects wireless mobile equipment without the support of established infras-

tructure. In MANETs, a wide range of radio-equipped devices, including laptops, smart

3

phones, and sensors, act as end-nodes and routers at the same time to enable multi-hop

communications. Compared to wireline networks, MANETs are characterized by dynamic

topology, constrained resources, and weakened physical security [33].

MANETs are exposed to a wider variety of DoS attacks. For example, signal jam-

ming attacks can obstruct the victim’s wireless radio communication [34]; route fabrication,

modification, and impersonation attacks can disturb route discovery and maintenance, lead-

ing to sub-optimal and potentially incorrect routing decisions, or even network wormholes

short-circuiting the flow of routing packets [35–37]; flooding attacks across di↵erent proto-

col layers may drain the victim’s limited computational resources and restrained battery

power [33].

MANETs are vulnerable to DoS attacks for several reasons. First, a MANET is com-

posed of mobile devices that lead to dynamic topology, making it di�cult to define a clear

line of defense that separates trusted and untrusted nodes. Second, since no fixed infras-

tructure or centralized administration is available, a MANET user must rely on untrusted

peers for packet delivery and feedback. Third, a MANET uses open air for radio com-

munication, which is susceptible to physical interference and channel congestion. Last but

not least, compared to Internet servers and desktops, wireless mobile devices are equipped

with constrained CPU, memory, and especially battery power, all of which are subject to

exhaustion attacks.

Many previous studies [36–44] endeavored to secure MANET routing and data for-

warding, but flooding attacks on end nodes have not drawn enough attention. To pro-

tect end nodes against flooding, reactive mechanisms, including decentralized intrusion

detection [45], distributed filtering [46] and attacker tracing [47], were proposed to detect

and block flooding attacks. However, more proactive approaches are needed to preserve

MANETs’ limited bandwidth and energy. To that end, capability-based solutions were in-

troduced to stop flooding DoS attacks by giving “control over resource usage to the owner

of the limited resource” [20, 48–51]. In an end-to-end communication, a capability token

refers to a ticket issued by the responder to the initiator, specifying the permitted tra�c

4

volume within a pre-defined window of time. Intermediate nodes between the initiator and

responder are responsible for performing tra�c policing according to the given capability.

Unfortunately, current capability-based mechanisms [48–51] are inadequate in that they

have failed to account for multi-path routing that can be exploited by attackers to increase

the throughput of flooding attacks.

1.2 Thesis Contributions

This thesis aims to combat flooding DoS attacks in both the Internet and MANET envi-

ronments. To protect Internet services from flooding DDoS attacks, we propose a moving

target defense mechanism to achieve progressive attack segregation [52–54]. In addition,

to secure MANET communications from network DoS attacks, we present a capability-

based defense to defeat flooding attacks that exploit multi-path routing to increase attack

throughput [55,56]. In summary, this thesis makes the following list of contributions:

• Created a proof-of-concept shu✏ing-based DDoS mitigation mechanism that realizes

the moving target defense strategy [57]. The goal of the mechanism is to separate

benign clients from attackers that inflict persistent flooding attacks. To progress

toward attack isolation, the proposed solution dynamically brings in new proxies or

servers into service, and intelligently re-assigns (i.e. shu✏es) clients from the attacked

nodes to the new nodes, as determined by the designed shu✏ing algorithms.

• Created an architecture to enable the shu✏ing-based defense on protecting critical

Internet services mandating client authentication against network flooding attacks.

This architecture employs dynamic network proxies as moving targets to relay tra�c

to and from the protected server. During a DDoS attack, the overwhelmed proxies are

quickly replaced by new proxies at di↵erent network locations. Clients are re-directed

as indicated by the shu✏ing mechanism.

• Created an architecture to enable the shu✏ing-based defense on protecting open In-

ternet services hosting anonymous users against both network and computational

5

flooding attacks. This architecture leverages the scale and resource elasticity o↵ered

by cloud computing to realize server replication and mobility. Our in-cloud replica

servers are turned into moving targets during DDoS attacks. When under attack,

new replica servers are dynamically instantiated to replace the ones being bombarded.

Clients are re-directed as indicated by the shu✏ing mechanism.

• Designed an optimal dynamic programming algorithm that expectedly separates the

maximum number of benign clients possible from attackers in each round of shu✏ing.

The algorithm was implemented in MATLAB [58] and evaluated via simulations using

a wide array of parameters.

• Designed a faster greedy algorithm that can produce near-optimal shu✏ing plans. The

greedy algorithm was compared with the dynamic programming algorithm analytically

and through MATLAB based simulations. The results show that the greedy algorithm

is almost as e↵ective as the dynamic programming algorithm, but it reduces the time

complexity by several orders of magnitude.

• Designed a maximum-likelihood algorithm that accurately estimates the number of

sophisticated and persistent attackers that follow the moving targets constituted by

our defense mechanism. The result of the maximum-likelihood estimation (MLE)

algorithm is fed to the dynamic programming algorithm and the greedy algorithm as

a key parameter in optimizing the shu✏ing plans. The accuracy and limitations of

the MLE algorithm were thoroughly evaluated. A remedy was studied to resolve the

limitations of the algorithm.

• Evaluated the integration of the algorithms against simulated DDoS attacks. The

results show that the proposed mechanism can e↵ectively mitigate intensive DDoS

attacks in a few shu✏es by separating a vast majority of benign clients from attackers.

• Implemented proof-of-concept prototypes of the two proposed architectures to evalu-

ate the overhead of client redirection operations. By implementing both proxies and

6

clients in PlanetLab [59], we demonstrate that during a shu✏ing operation, a client

can be re-directed between two proxies in less than one second. Using servers based

in Amazon EC2 [60] and clients resided in PlanetLab, our experiments show that

re-assigning clients to di↵erent replica servers can be accomplished in a few seconds

at worst.

• Created the first capability-based mechanism to mitigate DoS attacks on multi-path

MANET communications. The proposed solution empowers the responder of an end-

to-end flow to issue and distribute a capability that regulates per-flow throughput

within a specified window of time. To perform tra�c policing across all employed

routes, intermediate nodes on di↵erent routes will exchange bandwidth consumption

reports periodically to track the flow-wide throughput, making sure the flow capability

is universally enforced.

• Evaluated the capability-based mechanism both analytically and experimentally using

a proof-of-concept prototype implemented in NS2 [61]. The results show that the

proposed solution can e↵ectively identify and limit the impact of a network flooding

attack with a relatively small performance penalty.

1.3 Thesis Organization

In the rest of the thesis, we first provide an overview of the related work on combating

flooding DDoS attacks in Chapter 2. After that, Chapter 3 describes the strategy, architec-

tures, and algorithms of the shu✏ing-based moving target defense against Internet DDoS

attacks. Chapter 4 introduces the capability-based mechanism to stop MANET DoS at-

tacks exploiting multi-path routing communications. Chapter 5 concludes this thesis and

discusses directions for future research.

7

Chapter 2: Background and Related Work

This chapter reviews the background and related research on combatting flooding DDoS

attacks in the Internet and MANET environments. Much of the previous work on mitigating

DDoS attacks across di↵erent network contexts reflects similarities in their concepts and

design.

2.1 Defenses Against Internet DDoS Attacks

The Internet was originally designed for openness and scalability rather than security and

accountability. Given the size and structural complexity of today’s Internet, large botnets

can easily initiate a DDoS attack to bombard any resource-limited target. Since the high-

profile DDoS incident in 2000 that shut down several of the most visited websites including

Yahoo, eBay, CNN, Amazon, E*Trade, and ZDnet [62], DDoS attacks have become one of

the severest threats to Internet services. A recent CSI survey [63] reported that 16.8% of

the respondents had fallen victim to a DDoS attack in 2010.

Combating Internet DDoS Attacks has been an active area of research over the past

decade, resulting in a wide variety of solutions [64–66]. Many of the proposed mechanisms

fall into three major classes, namely filtering-based defenses, capability-based defenses, and

overlay-based defenses. The following subsections provide a comprehensive review on the

existing proposals that reside in and out of these classes.

2.1.1 Filtering-based Defense

To stop DDoS attack tra�c close to the source(s), filtering-based defenses [17–19] intend

to have ubiquitous packet filters deployed on Internet core and edge routers. Depending

on the specific protocols, the missions of the widely deployed filters are to block IP packets

8

with spoofed addresses, hosts emitting excessive tra�c, or flows deemed as malicious by

their receivers.

To thwart flooding attacks using packets with spoofed source addresses, ingress filter-

ing [18] proposed to validate the source address of each packet at its network entry point.

Ingress/Egress routers should only allow incoming/outgoing packets bearing source IPs

within the expected range. Internet service providers (ISPs) are in the best position to

implement ingress filtering because each device can be bound to a particular IP address as

soon as it connects to the internet. Although ingress filtering empowers individual ISPs to

regulate Internet users and prevent network misuse, this mechanism has not received wide

enough adoption to eradicate IP spoofing. A recent study [67] showed that more than 30%

of the tested Internet users can still spoof arbitrary IP addresses, and more than 75% of

the rest can forge IP addresses within their subnet.

By building a large botnet comprising a huge collection of compromised hosts, attackers

may be able to perform flooding DDoS attacks without IP spoofing. To mitigate flooding

attacks with or without IP spoofing, Pushback [17] proposed to rate-limit inordinate senders

via aggregate-based congestion control. An aggregate is a collection of packets sharing some

common properties, such as address prefix, application, or packet type. Pushback argued

that attack tra�c can be grouped into di↵erent aggregates from legitimate tra�c. Internet

routers are expected to identify and rate-limit all attacking aggregates in a collaborative

manner. However, di↵erentiating well-masked attack tra�c from legitimate tra�c is a

di�cult job that requires deep packet inspection, costing precious CPU cycles from the

routers. Moreover, given the lack of incentives, it is di�cult to foster the collaboration

among di↵erent ISPs on attack blocking.

Compared to Internet routers that can only understand up to the IP layer, the desti-

nation node of an end-to-end flow can spot a misbehaving source node more accurately.

Therefore, Stopit [19] aimed to have Stopit servers on the destination side collect com-

plaints about malicious source nodes and instruct Stopit servers on the source end to block

malicious flows locally. Each Stopit server manages one autonomous system (AS) that is

9

considered a fate-sharing unit. Passport [68] is employed for AS-level source validation to

prevent IP spoofing. Traceback technologies [27,69–74] can be used to locate the malicious

sources flagged by a destination node. Like Pushback, Stopit needs to be widely deployed

on the Internet to be e↵ective, but this is unlikely if no strong incentives are provided.

To conclude, filtering-based defenses assume that attack tra�c, regardless of whether IP

spoofing is used, are distinguishable from legitimate tra�c. This is a strong assumption that

is subject to dispute, given that sophisticated attackers may hide their intent by carefully

crafting their strategy and packets to mimic the behavior of legitimate clients. In addition,

to be adequately e↵ective against DDoS attacks, packet filters have to reach a high degree

of deployment to cover a broad range of ASes. The lack of incentives to encourage early

adopters remains a significant and unsolved problem.

2.1.2 Capability-based Defense

To address the attacker identification problem encountered by filtering-based approaches,

capability-based defenses [20–23, 75] let the destination node decide whether a particular

source node is allowed to send packets to the destination. In addition, the destination node

also sets the limit on the volume of tra�c that can be sent by a flow within a specified time

window. In essence, capability-based mechanisms give the control of resource usage to the

owner of the resources. Source nodes that violate the assigned capability will be considered

malicious.

The early research work that advocated capability-based defenses include [20] and [21].

Under these mechanisms, an Internet host that wants to send packets to another host must

first request the receiver’s approval. The source of a request to send is attested by the

forwarding routers. The approval from the destination node is issued in the form of a

flow-bound capability token that also defines the maximum throughput allowed. To be

compatible with legacy communication protocols while encouraging early adopters, flows

assigned with capabilities are treated preferentially during a DDoS attack. Meanwhile, a

capability serves as the gauge for regulating the approved communication flow. The routers

10

between the source and destination are responsible for performing tra�c policing according

to the given capability.

Although only a small portion of the overall bandwidth is expected to carry capability

requests under normal conditions, some early solutions are vulnerable to denial of capability

(DoC) attacks [76]. Instead of targeting the data channels, DoC attacks simply flood the

capability request channel to deny access to legitimate communications. To prevent DoC

attacks, TVA [22] was introduced to ensure per-path fairness among all capability requests.

Within TVA, the edge routers of trusted ASes will mark each capability request packet

to identify the routing path along which the request is forwarded. A hierarchical fair-

queueing system was proposed to make sure requests routed via di↵erent paths are fairly

processed. On the other hand, Portcullis [75] used a proof-of-work (PoW) solution that

guarantees per-computation fairness. Before capability requests from a particular source can

be delivered to the destination, the source node must solve crypto-puzzles disseminated by

well-provisioned services (e.g. DNS) and attach the answers to the requests. Participating

forwarding routers are responsible for verifying the answers and dropping all invalid requests.

Enforcing PoW will reduce attackers’ tra�c rate and increase the chances that legitimated

capability requests are going to reach the desired destinations.

Like filtering-based methods, capability-based mechanisms also rely on high degrees

of adoption to provide adequate protection. To implement capability-based solutions, new

primitives, including packet marking and cryptographic operations, will need to be added to

Internet routers. As in the case of filtering-based mechanisms, the need for such a large-scale

and expensive infrastructural upgrade is inevitably hampered by the lack of incentives. Be-

sides, incorporating capability in end-to-end communications also entails changes to client

software, which will introduce compatibility issues with the already deployed Internet ap-

plications.

11

2.1.3 Overlay-based Defense

To eliminate network administrative boundaries and enable incremental deployment, se-

cure overlay networks were proposed to provide authentication, filtering, indirection, attack

tracking and tolerance [24–29] on top of the physical Internet infrastructure. In general,

these solutions rely on a well-provisioned, distributed overlay network on the front end to

di↵use and absorb attack tra�c, shielding the hosts on the back end.

Among the early overlay solutions, SOS [24] introduced a three-tier network design with

doubly indirect routing to assure DDoS resiliency. A small portion of all overlay nodes

are employed to form each tier. Incoming flows are forwarded to the beacon nodes after

successful authentication, and then routed to the secret servlets that eventually lead to the

protected server. Overlay nodes can join and exit the network at runtime without a↵ecting

the overall stability. SOS is robust against pure flooding attacks in that attackers have

to bombard a large number of overlay nodes to cause a service disruption. However, SOS

is susceptible to sweeping attacks that target a subset of the overlay nodes at one time

and gradually sweep through the entire overlay network. It is also insu�cient to protect

individual clients that are followed by attackers. To address the limitations of SOS, the

spread-spectrum method [25] was proposed to encourage clients sending duplicated packets

to multiple overlay nodes to ensure a high packet delivery rate during an attack. Similar to

SOS, Phalanx [29] recommended using a swarm of proxy nodes to serve as mailboxes that

bounce end-to-end tra�c in the middle of the Internet. The destination hosts are expected

to actively contact the mailboxes to pick up legitimate packets, leaving attack tra�c to be

filtered out. To generalize the discussion on secure overlay networks, Mayday [26] studied

di↵erent overlay architectures and design options using an extended threat model. The

same paper also presented a series of lightweight authentication schemes to help identify

and screen out compromised overlay nodes.

TOR [30] is a well-known implementation of overlay network. It can o↵er anonymity

to both the source and the destination of an end-to-end communication to mitigate DDoS

attacks. With the help of encrypted onion routing, the source and destination can negotiate

12

a secret rendezvous point to exchange data packets. Unfortunately, insider attacks on TOR

can potentially expose the hidden services to external attackers [77].

The composition of an overlay network is often published and relatively static. There-

fore, the overlay itself may become a target of a flooding DDoS attack. Current overlay-

based defenses assume that attackers are incapable of overwhelming the entire overlay net-

work. This assumption inevitably drags overlay network providers into an arms race with

attackers, forcing constant investments on the overlay infrastructure to match the ever-

growing strength of botnets.

2.1.4 Other Defense Mechanisms

Some more recent studies proposed to separate the connection setup channel from the

data transfer channel [78, 79]. WRAPS [79] takes advantage of the referral relationship

between mutually trusted websites to provide privileged access for legitimate clients during

an attack. As client authentication is done at multiple referrer sites, WRAPS relies on the

aggregate capacity of all referral websites to resist flooding attacks. Similar to the overlay-

based schemes, Epiphany [78] uses proxies to relay the communication between clients and

servers. The di↵erence is that Epiphany employs di↵erent sets of proxies for connection

setup and data communication. Only setup proxies are published and addressable via

anycast. Hidden data proxies are dynamically recruited to build up ephemeral paths that

lead to the protected service.

2.2 Defenses Against MANET DoS Attacks

Compared to the Internet, mobile ad hoc networks are vulnerable to a wider range of DoS

attacks. The focus of this thesis is on network flooding attacks that aim to deplete the

limited bandwidth, computational resources, and battery power of the targeted node(s).

To serve that goal, this section reviews the related work on detecting and resolving network

flooding attacks in the MANET environment.

Wireless communication comes with limited physical security. Therefore, cryptographic

13

methods are usually used to implement node authentication, channel encryption, and packet

validation. For example, to combat flooding DoS attacks performed by external attack-

ers, [80] recommended that every packet should be digitally signed by the sender and verified

by all forwarders. HEAP [81] proposed a hop-by-hop packet authentication method using

keyed-hash message authentication code (HMAC) [82]. Asymmetric key based cryptogra-

phy was used as the cornerstone to build various security mechanisms [83]. Given the wide

application of cryptographic mechanisms, key management becomes a fundamental security

issue in MANETs. However, due to the dynamic and autonomous nature of MANETs, it is

unrealistic to assume a single static central authority that issues and maintains all public

keys. To address that, [84–86] employed distributed and mobile certificate authorities (CAs)

to provide reliable and tamper-proof key issuance and authentication.

Crypto-based solutions can e↵ectively protect MANETs from malicious outsiders, but

they do not o↵er resilience against attacks exerted by malicious insiders with valid cryp-

tographic credentials. To detect an insider attack and identify the misbehaving node(s)

behind it, intrusion detection systems (IDS) need to be deployed to trigger appropriate

response mechanisms. Due to the lack of fixed vantage points for tra�c monitoring, ex-

isting Internet IDS solutions are not directly applicable to MANETs. To realize global

anomaly detection, Zhang et al. [87] designed a distributed IDS architecture that allows

collaborative decision making in wireless ad hoc networks. In this solution, an independent

IDS module is installed on every node to monitor local tra�c while information gathered is

also exchanged among nodes to enable broader investigations on suspicious events. To en-

courage node cooperation while penalizing selfish and misbehaving nodes, researchers have

proposed token-based [88], credit-based [89], and reputation-based [90] schemes to record

the historical behavior of MANET nodes and publicize their credibility.

As discussed in Section 2.1.2, capability-based defenses were originally designed to pro-

tect Internet hosts from DDoS attacks. Recently, Alicherry et al. introduced a similar

mechanism [48–50] to address flooding attacks in MANETs. With the proposed solution,

14

data tra�c are denied by default. However, trusted nodes can request for network capabil-

ities that allow them to send packets to the desired nodes. A network capability is a policy

token that encodes both access control rules and tra�c-shaping parameters, which can be

verified by every intermediate node. Although using capability can preserve resources by

preventing unauthorized access, this solution is limited by its implicit assumption that a

single static route is used by each authorized flow, which is unrealistic in most cases con-

sidering the dynamic nature of MANET topologies. In other words, the compliance to a

per-flow capability cannot be guaranteed if multiple routing paths are employed. Attackers

can swamp a target node by spreading the attack tra�c to as many routes as possible and

approach (while staying under) the throughput limit along each path. To counter such at-

tacks, this thesis studies an improved capability-based mechanism that enables cross-path

collaboration to enforce flow-wide capabilities under the context of network mobility and

multi-path routing.

15

Chapter 3: Moving Target Defenses Against Internet DDoS

Attacks

3.1 Introduction

This chapter describes a family of dynamic defense mechanisms and architectures that aims

to protect Internet services from flooding DDoS attacks. The proposed solutions implement

a common moving target strategy that is designed to quarantine the impact of a DDoS

attack. To achieve that, we dynamically replace the nodes that are bombarded by the

attack and intelligently re-assign clients from the attacked nodes to the new nodes. We call

this procedure a shu✏ing operation. The purpose of the shu✏ing operation is to separate

benign clients from DDoS attackers by casting them onto di↵erent nodes. Through multiple

rounds of shu✏ing, our ultimate goal is to separate out and restore the quality of service

(QoS) for as many a↵ected benign clients as possible, thereby achieving attack isolation.

The basic idea of the shu✏ing operation can be illustrated by the simple example in

Figure 3.1. In this example, there are initially seven clients (including attackers, denoted by

C1, . . . , C7) and three serving nodes (referring to proxies in Section 3.2 and replica servers

in Section 3.3). C3 and C5 are attackers. First, clients are randomly assigned to all serving

nodes as suggested by the dotted lines: clients C1, C2, and C3 are assigned to node K1; C4

and C5 are assigned to node K2; and C6 and C7 are assigned to node K3. Attackers (C3 and

C5) will bring an attack to K1 and K2. However, since defenders cannot tell who the real

attackers are, clients C1�5 have to be considered as equally suspicious. To separate a↵ected

benign clients from attackers, our defense mechanism will react by replacing K1 and K2

with new serving nodes K4 and K5. Benign clients and attackers previously connecting to

K1 and K2 are re-assigned to K4 and K5, respectively. One possible way of re-appointing

is to send C1, C3, and C5 to K4 while matching C2 and C4 with K5, as indicated by the

16

solid lines. As a result, K5 will be saved, but K4 will remain under attack. The bindings

between C6, C7, and K3 stay unchanged because they are not a↵ected by the attack. In

this way, we can save C2 and C4 from an on-going attack.

C5

C3

K1
C1

C6

C7

K4

K2

K5

K3

C2

C4

Figure 3.1: Client Shu✏ing

Our shu✏ing mechanism realizes moving target defense (MTD) against DDoS attacks.

In contrast to most traditional security measures that are static in nature, MTD advo-

cates for controlled changes on network, software, and other system dimensions to increase

uncertainty and complexity for attackers [57]. Several existing security solutions have incor-

porated the idea of MTD. For example, network address space randomization [91] dynami-

cally changes the IP addresses of Internet hosts to hamper the propagation of hit-list worms.

Fast flux technique [92] employs a fast-changing proxy network of compromised machines to

evade lawful blocking and increase the availability of illegal websites. On mitigating DDoS

attacks, MOVE [93] migrates the attacked web server to a new network location. However,

MOVE does not account for attacks targeting computational resources (CPU, memory, etc.)

17

or extended attacks inflicted by advanced attackers that continue to follow the migrated

server.

This thesis introduces new architectures that create di↵erent types of moving targets

to address both network and computational flooding attacks. In the meantime, novel shuf-

fling mechanisms are proposed to segregate persistent and persistent attackers from benign

clients. In this chapter, Section 3.2 presents a packet indirection architecture that employs

moving proxies to protect critical services mandating client authentication against network

attacks. Section 3.3 describes a cloud-enabled architecture that uses moving replica servers

to mitigate both network and computational attacks on open services hosting anonymous

users. Section 3.4 explains the methodology and algorithms adopted by the shu✏ing mech-

anisms to achieve attack isolation.

3.2 Protecting Critical Services Using Moving Proxies

This section introduces MOTAG, a dynamic DDoS defense architecture that adopts moving

target strategy to protect centralized online services. In particular, MOTAG o↵ers DDoS

resilience for authorized and authenticated clients of security-sensitive services such as online

banking and e-finance. MOTAG employs a layer of secret moving proxies to mediate all

communications between clients and the protected application server. The network-level

filters surrounding the application server only allow tra�c from the valid proxy nodes to

reach the protected server.

Proxy nodes in MOTAG have two important characteristics. First, all proxy nodes are

secret in that their IP addresses are concealed from the general public and are exclusively

known by legitimate clients after successful authentication. Each legitimate client is pro-

vided with the IP address of one working proxy at any given time to avoid unnecessary

information leakage. Existing proof-of-work (PoW) schemes [75, 94–96] are applied to pro-

tect the client authentication channel. Second, proxy nodes are moving. As soon as an

active proxy node is attacked, it is replaced by another node at a di↵erent location, and

the associated clients are migrated to alternative proxies. These unique characteristics of

18

MOTAG not only enable us to mitigate brute-force DDoS attacks but also empower us to

discover and isolate malicious insiders that divulge the location of secret proxies to external

attackers. We do so by smartly shu✏ing (or repositioning) clients’ assignment to new proxy

nodes when their original proxies are under attack. The details of the shu✏ing mechanism

will be discussed in Section 3.4.

3.2.1 Threat Model and Assumptions

The MOTAG architecture is designed to protect security-sensitive online services against

network flooding attacks. The clients of the protected services are pre-authorized and au-

thenticated before they are served.

We assume powerful attackers with high aggregate bandwidth that are capable of over-

whelming any standalone machines on the Internet. However, we do not assume attackers

that can saturate well-provisioned Internet backbone links for ISPs, data centers, or cloud

service providers. Attackers, in case of uncertainty, can first perform a reconnaissance attack

(e.g., IP and port scanning) to pinpoint the targets for the subsequent flooding attack.

With the knowledge of the MOTAG architecture, attackers can re-target their attack to

flood the authentication channel through which legitimate clients are admitted. However,

we assume that it is significantly harder for attackers to pass strong authentication and

reach the proxies the way legitimate clients do. To uncover the network locations of our

secret moving proxies, persistent attackers may play as insiders by compromising authorized

machines or eavesdropping on legitimate clients’ network connections. Given the technical

di�culty of such advanced attacks, we assume the number of malicious insiders residing in

a protected system is limited.

3.2.2 Architecture

Figure 3.2 shows the MOTAG architecture, which consists of four interconnected compo-

nents: the authentication server, the proxies, the filter ring, and the application server.

The application server provides the online services (e.g., banking or e-finance services) to

19

be protected and made available to authenticated clients. The IP address of the application

server is concealed from all clients. The proxy nodes are a group of dynamic and distributed

machines that relay communications between clients and the application server. The filter

ring, similar to what was described in [26], comprises a number of high-speed routers placed

around the application server, allowing inbound tra�c only from valid proxy nodes. The

authentication server is responsible for authenticating clients and assigning legitimate ones

to active proxy nodes.

Client

Application
Server

3
3

. . .

1

2

4

Authentication
Server

. .
.

Filter Ring

PoW Protection

Proxy 1

Proxy 2

Proxy i

Proxy k

1 Client Authentication
2 Signaling
3 Data Communication
4 Command & Control

Figure 3.2: The MOTAG Architecture

MOTAG allows a client to access the application server only if the client can be success-

fully authenticated. One simple solution is to associate the application domain name with

the IP address of the authentication server during DNS registration. Each successfully au-

thenticated client is randomly assigned to one of the active proxy nodes whose IP addresses

are not publicly known. The authentication server will inform each client about the address

of the designated proxy, and in the meantime, it will also notify the proxy node about the

20

forthcoming connection from the client. The authentication server, as well as every proxy

node, maintains a dedicated interface for the purpose of signaling. Through this signaling

channel, proxies report to the authentication server when they are under attack; the au-

thentication server informs proxies about each client assignment and coordinates proxies’

actions against DDoS attacks. To prevent the authentication server from being flooded,

we employ proof-of-work (PoW) schemes [75,94–96] to ensure its availability for legitimate

clients.

The authentication server also assigns a capability token for every client-to-proxy ses-

sion. This token limits the client’s throughput by specifying the number of packets (or the

number of bytes) allowed for the session in the next time window (t seconds). A proxy

should receive two identical copies of the capability token for every session: one from the

authentication server to notify new client assignment, and one from the client as a proof of

identity. Each proxy node maintains a per-session packet counter to regulate client tra�c

according to the associated capability. Capability-based tra�c policing is the key for detect-

ing external, brute-force flooding attacks by distinguishing authorized packets from illegal

ones. Furthermore, abusive attacks such as sharing an assigned capability with external

attackers are not going to consume more server-side bandwidth than the pre-defined limit.

To secure communications between proxy nodes and the application server, a lightweight

authenticator as described in Mayday [26] can be employed for proxy identity validation.

The filter ring routers can perform fast lookups to verify such lightweight authenticators

encoded in proxy-to-server packets. These authenticators can be dynamically altered to

improve security. Once changes are made, active proxy nodes will receive timely updates

via the dedicated signaling channel. Using the lightweight authenticator not only allows

the filter ring routers to quickly discard unauthorized tra�c but also enables us to revoke

the access of compromised proxies.

21

Secret Moving Proxies

The MOTAG architecture creates a tra�c indirection layer with a pool of geographically

distributed proxies that attackers are incapable of compromising altogether. This layer of

proxies can di↵use attackers’ tra�c and shield the application server. Not all proxies are

active all the time. Instead, only a small subset of the proxies are working at any given

time to keep costs down. The mapping from clients to the working proxies is many-to-one.

An ideal source for the proxy pool is one or several cloud computing environments where

customers are charged only for the running instances. The IP addresses of all proxies are

withheld from the general public. The authentication server will match legitimate clients

to each working proxy. Our proxies are resilient to reconnaissance attacks because packets

from unauthorized IPs will be dropped.

If some proxy nodes are under attack, they will be shut down and a number of new proxy

nodes at di↵erent network locations will be activated for replacement. Proxy substitution is

a fast, lightweight operation because all proxies run the same simple tra�c indirection logic

and maintain no client state. All session information is centrally stored at the application

server. A few hot spare proxies can be kept alive over time to quickly start functioning

when necessary. All clients connecting to the attacked nodes will be intelligently re-assigned

across the entire set of replacement proxies with the goal of separating legitimate clients

from DDoS attackers. The new assignment can be pushed to the a↵ected clients by the

authentication server, or the clients can be forced to pass re-authentication for security

assurance. We name the overall process of proxy replacement and client re-allocation as

client-to-proxy shu✏ing, which will be discussed in detail in Section 3.4. When there is no

attack, no shu✏ing is necessary. Only a small set of proxy nodes with constant IP addresses

will be used to serve all legitimate clients.

MOTAG is di↵erent from existing overlay network solutions [24–26, 29], which rely on

a fairly static network composition of overlay nodes to tolerate and filter out the attack

tra�c. Building and maintaining a static and resilient overlay network entails extensive and

continuous investment to acquire more nodes and bandwidth. In addition, sweeping [25]

22

and adaptive [26] flooding attacks may still cause severe service disruptions. In contrast,

MOTAG keeps its proxies confidential and mobile. Only authenticated clients are informed

about their assigned proxies. In this way, MOTAG enhances defense agility against massive,

sophisticated attacks while reducing its dependence on the volume of proxy resources.

Authentication with Proof-of-Work Protection

Maintaining high availability of the authentication server is essential to our moving target

defense. The authentication server acts as the initial checkpoint to separate legitimate

clients from illegal ones. User authentication is also used as the mechanism to bind a

legitimate client to a specific network flow. Only with such unique binding are we able to

track the behavior of each client throughout the shu✏ing process. Every client must pass

authentication before being assigned to a working proxy that eventually routes tra�c to the

application server. The IP addresses of the authenticated clients are recorded and sent to

the proxies that enforce IP-based filtering. The authentication server is also responsible for

advertising subsequent client-to-proxy re-assignments during shu✏ing. MOTAG is agnostic

to the specific authentication mechanism employed.

The authentication server is the only component of the MOTAG architecture that can

be publicly addressed. Consequently, it can be considered as a new target of flooding DDoS

attacks. To protect the authentication server from the re-targeted attacks, we employ ex-

isting proof-of-work (PoW) schemes [75, 94–96] to throttle the achievable throughput of

attackers. PoW mechanisms force clients to solve cryptographic puzzles before allowing

them to consume resources on the server side. In particular, enforcing PoW can realize

per-computation fairness on bandwidth usage among all clients [75], prevent connection

depletion attacks [96], and mitigate DDoS attacks on application-level authentication pro-

tocols [94, 95]. However, while suppressing attackers’ throughput, mandating extra com-

putational tasks also imposes considerable overhead on legitimate clients, making it a less

preferable option for securing application data communication. Therefore, MOTAG only

uses PoW approaches to protect client authentication because authentication packets are

23

infrequently sent and are more delay-tolerant compared to data packets. We propose to use

the more e�cient client-to-proxy shu✏ing mechanism to mitigate flooding attacks on the

data communication.

3.2.3 Discussion

By hiding proxies while enforcing client authentication, MOTAG can e↵ectively protect

its packet delivery system from external attackers. Moreover, by keeping proxies mobile

and performing guided shu✏ing on client-to-proxy assignments, MOTAG can also mitigate

insider attacks that expose secret proxies to flooding attacks.

Advanced attackers can implant malicious insiders in the targeted system via social engi-

neering, compromising legitimate clients, stealing clients’ identities for authentication, and

eavesdropping on clients’ network connections. Although the number of installed insiders

might be small considering the high technical sophistication required for such targeted at-

tacks, the damages caused by these insiders can be quite significant. Once insiders uncover

the IP addresses of some proxy nodes, they will notify external attackers who will carry out

flooding attacks against these exposed proxies. We address such attacks as insider-assisted

DDoS attacks, or simply insider attacks. Although insider attacks cannot be fully prevented,

we aim to minimize their impact on innocent clients. To that end, Section 3.4 introduces

a client-to-proxy shu✏ing mechanism that can restore service availability for benign clients

and quarantine the impact of insider attacks over time.

The MOTAG architecture employs dynamic, private proxies as moving targets to mit-

igate network flooding DDoS attacks on services o↵ered to authorized and authenticated

clients. Our solution does not rely on global adoption on Internet routers or collaboration

among ISPs to function, nor do we depend on resource-abundant overlay network to out-

muscle high bandwidth attacks and provide fault tolerance. Instead, we take advantage

of our proxies’ secrecy and mobility properties to fend o↵ powerful attackers. This entails

lower deployment costs while o↵ering substantial defensive agility, resulting in an e↵ective

DDoS protection.

24

However, MOTAG cannot o↵er resilience against computational flooding attacks or be

applied to protect open Internet services that do not enforce client authentication. To

address these problems, Section 3.3 presents a cloud-enabled architecture that o↵ers wider

DDoS protection for generic Internet services.

3.3 Protecting Open Services Using Moving Replicas

This section introduces a cloud-enabled, moving target defense architecture that confuses,

evades, and isolates attackers that attempt to blend in with benign users and mount DDoS

attacks against Internet services. Section 3.2 proposed MOTAG, a dynamic DDoS mit-

igation architecture for critical services for authorized and authenticated clients. Unlike

MOTAG, we describe in this section a more generic solution that also protects services

open to anonymous users. We focus our e↵orts on web services because they are the most

popular yet vulnerable Internet applications. Our defense leverages the resource elasticity

o↵ered by cloud computing to intelligently replicate the attacked service when compromised.

However, instead of blindly expanding system capacity on demand, we go one step further,

attempting to isolate the source(s) of the attack. To that end, we employ the shu✏ing mech-

anism to scramble client-to-server assignments: when an attack occurs, we instantiate new

replica servers at di↵erent network locations and compute an assignment plan to migrate

a↵ected clients to the new servers. All attacked servers are recycled to confuse attackers

and reduce costs. The network locations of the new replicas are not published and are

only known to the subset of clients assigned to them. By keeping track of the assignments

and whether a new replica is also attacked, we can quickly tell benign client sessions from

potentially malicious ones. The details of the shu✏ing mechanism and related algorithms

will be provided in Section 3.4.

Under this architecture, attackers are forced to keep chasing the “moving” replicas in

order to sustain their attack, which eventually enables us to isolate them onto a progressively

smaller set of replicas while moving benign clients away from them. In this way, we can not

only defeat blind network flooding attacks but also segregate attackers that act as insiders

25

to expose the network locations of our replica servers or cause a computational attack.

3.3.1 Threat Model and Assumptions

Network DDoS attacks employ voluminous tra�c to deplete a victim’s bandwidth. Com-

putational DDoS attacks exhaust a victim’s limited computation resources (CPU, memory,

etc.). These attacks are usually performed by attacker-controlled botnets that are composed

of a large number (millions) of infected machines. We assume botnets are capable of bom-

barding standalone physical servers on the Internet. To combat that, our solution proposes

to deploy services in the cloud that enables dynamic server replication. We assume botnets

can overwhelm individual cloud servers but not the aggregate of all cloud data centers that

host our servers.

To access our servers in the cloud, all clients have to be redirected by the DNS servers

followed by the cloud load balancing devices. We assume DNS servers are well-provisioned,

and DDoS attacks against DNS service is beyond the scope of this paper. To bypass the

redirection steps, attackers may use reconnaissance attacks to locate and gain information

about our servers. Incorporating moving target defense in our solution will allow us to evade

naive attackers that are unable to receive or parse our re-assignment messages. However, we

assume that more persistent attackers, especially human-controlled bots that are equipped

with browser-like software, are able to blend in with benign users and follow the moving

replica servers. These persistent attackers can act as insiders to launch computational

attacks or disclose the network locations of the replica servers to outsiders that mount

network or computational attacks. For simplicity without loss of generality, any replica

server assigned with one or more persistent bots are considered under attack in our modeling.

We assume the occurrence of a DDoS attack can be easily detected with signs such as

sudden network congestion and abrupt surge of HTTP requests. Advanced tra�c analysis

techniques, such as [97,98], can also be used for early detection and the detection of sophis-

ticated attacks. Once an attack is detected, the solution below can be applied for attack

mitigation and isolation.

26

3.3.2 Architecture

To mitigate DDoS attacks, we propose a cloud-enabled moving target defense architecture

to achieve attacker segregation. Our goal is to save benign clients by separating them from

attackers via client-to-server shu✏ing: when an attack occurs, our defense dynamically in-

stantiates new replica servers and intelligently re-assigns a↵ected clients to the new servers.

Our solution leverages the resource elasticity and scale o↵ered by cloud computing to instan-

tiate and hide new replica servers. Each client, identified by the IP address, is randomly

assigned to one of the active replica servers. As a result, attackers will only be able to

see the servers to which their bots are assigned. Through multiple rounds of shu✏ing as

guided by the algorithms to be discussed in Section 3.4, we can gradually separate benign

clients from attackers. When there is no attack, only a small number of static servers are

maintained to meet the requirement of the regular workload.

Lo
ad

B

al
an

ce
r

Client

Coordination
Server

DNS
Server Cloud Domain 1

Cloud Domain 2

…

1.
 R

es
ol

ve

ex
am

pl
e.

co
m

2.
 G

o
to

 C
D

_1

Cloud Domain K

Replica A

…

…

3.
Req

ue
st

CD_1

4.
Go t

o R
ep

lic
a A

5. Request DATA

6. Reply DATA

Server
Replicas

…

Replica A Xa clients
Replica B Xb clients

CD1

CD2

…
…

…
…

CDK

4.
 A

ss
ig

n
C

lie
nt

Figure 3.3: The Cloud-Enabled DDoS Defense Architecture

The system architecture and components that enable our moving target defense is shown

27

in Figure 3.3. This architecture presents a distributed connection redirection system de-

ployed across multiple cloud computing domains. To reach the protected web service, a

client must first resolve its domain name via DNS (step 1). The DNS server will send the

client to a cloud domain where our DDoS defense is in place (step 2). One or more load

balancers are established in each cloud domain to greet newly arrived clients (step 3). A

load balancer keeps records about the active replica servers within the same domain and

assigns new clients to these replicas according to selected load-balancing algorithms. The

load balancer informs both the corresponding client and replica on every new assignment

(step 4). As a result, the replica will add the client IP to its whitelist. Once the client

contacts the replica, the replica will provide the client with the requested service (step 5,

6).

The coordination server is the central controller that maintains global client-to-server

bindings and directs defensive reactions to DDoS attacks. Although the mechanism is cen-

trally controlled at the backend, all client-facing components are fully distributed, forming

a robust layer of defense against DDoS attacks. Next, we describe each key component in

greater detail.

Load Balancer

A load balancer assigns each new client to a replica server. Clients are identified by their

IP addresses. Each client IP is only matched with one replica server (i.e. sticky sessions).

The load balancer will inform the server and the client on every client-to-server assignment.

At least one load balancer is installed in each cloud domain to keep track of all co-located,

active replica servers. Here, di↵erent domains refer to groups of separately managed cloud

servers that do not share common bottleneck links. They can be datacenters deployed at

di↵erent geo-locations by the same cloud provider or di↵erent cloud systems operated by

distinct providers. Deploying multiple load balancers per cloud domain and simply having

more cloud domains can improve attack resiliency and fault tolerance. The DNS records

of all load balancers can be registered under the domain name of the protected web server.

28

Techniques including round-robin DNS [99] can be used to send clients to di↵erent load

balancers.

Each network load balancer maintains an up-to-date list of online replica servers in its

local domain. Any load balancing algorithm can be applied to assign clients to replicas.

We make sure our load balancers will redirect each client to a running replica. For web

services, this can already be achieved via HTTP redirection messages (i.e. status code

301) [100] that are handled automatically by client browsers. The reasons for using redi-

recting load balancers are two-fold: first, tra�c redirection resembles a two-way handshake,

which can e↵ectively stop junk packets with spoofed source IPs; second, by not making load

balancers the middleman of client-server communication, we lower the risk of having them

be a bottleneck during an attack.

To ensure the load balancers’ availability, many cloud providers, including Amazon [60],

enable auto-scaling of a virtual load balancer to provide on-demand capacity. It is reported

that the throughput of a dedicated load balancer can reach 40 Gbps [101]. To avoid be-

coming a system bottleneck, multiple distributed load balancers can be deployed at the

backbone network link of each cloud domain to increase resiliency against flooding attacks.

Replica Servers

Compared to load balancers, web servers are more vulnerable to flooding attacks. To

combat such a threat, we replicate the protected service within the cloud environment.

When there is no attack, only a small number of replica servers are maintained to meet the

requirement of the regular workload. Each client is redirected to an active replica by a load

balancer. Replica servers enforce whitelist-based filtering, only admitting clients whose IPs

are confirmed by the referring load balancer.

Once some replicas are bombarded by a flooding attack, a number of substitute replicas

will be instantiated at di↵erent network locations. All clients served by the attacked replicas

will be re-assigned across the entire set of replacement replica servers. This process is

called client-to-server shu✏ing. Replica servers that are used for shu✏ing are thus called

29

shu✏ing replicas. The attacked replica servers will notify associated clients about their new

assignments. For stateless web applications, such notification can be simply implemented

by HTTP redirection code (3xx) [100]. After sending out all notifications, the attacked

replicas will be taken o✏ine and recycled. To expedite the replica replacement process, a

few hot spare replica servers can be maintained at runtime.

Dynamically replacing attacked replica servers constitutes moving targets that signifi-

cantly raise the level of uncertainty for attackers. To inflict longstanding attacks, attackers

have to keep chasing the “moving” replicas. Assuming attackers cannot overwhelm the un-

derlying cloud infrastructure, they will need to send out scouts that play as normal clients

to follow the moving replicas. However, as will be discussed in Section 3.4, our shu✏ing

mechanism can expose and isolate such scouts, and save the a↵ected benign clients over

time.

Coordination Server

The coordination server maintains the global state of the defense system and directs realtime

actions against DDoS attacks. In particular, it tracks the number of clients bound to

each replica server and records which replicas are currently under attack. In response to

a DDoS attack, the coordination server runs the shu✏ing algorithms to separate benign

clients from bots. Based on the number of attacked replica servers and the current client

distribution, the coordination server computes an optimal shu✏ing plan that maximizes the

probability of attack segregation. To ensure e�cient shu✏ing operations, the coordination

server decides the number of clients to be re-assigned from an attacked replica to a newly

instantiated replica. It does not control the specific assignments of individual clients. The

coordination server communicates among cloud domains via a dedicated command and

control channel that is inaccessible to clients. Section 3.4 provides detailed analysis on the

shu✏ing procedure and related algorithms.

30

3.3.3 Discussion

This section proposed a cloud-enabled architecture to mitigate network and computational

DDoS attacks against open web services. This architecture lays the foundation for client-

to-server shu✏ing, which can e↵ectively segregate the attackers that pretend to be benign

but exfiltrate the network locations of the servers or exert computational attacks. Us-

ing client redirection and whitelist based tra�c filtering can help defeat IP spoofing and

reconnaissance attacks.

The architecture is designed to be deployed as a cloud-based end system, which can be

independently implemented and managed by a non-ISP organization. The resource elasticity

o↵ered by cloud computing makes our solution scalable to withstand strong DDoS attacks.

As long as the underlying cloud computing infrastructure is available, the designed system

is expected to gradually segregate attackers and restore QoS for benign-but-a↵ected clients.

Resources are not allocated permanently but elastically, which incurs minimal maintenance

costs compared to having dedicated defensive infrastructures.

In addition to this architecture and the MOTAG architecture introduced in Section 3.2.2,

we apply optimized client shu✏ing operations to achieve attack isolation. The next section

is going to provide detailed analysis and evaluation of the shu✏ing procedure.

31

3.4 Shu✏ing-based Attack Segregation

This section presents the modeling, analysis, and evaluation of the proof-of-concept client

shu✏ing mechanism. The goal of shu✏ing is to separate benign clients from persistent

attackers (i.e. bots) following and bringing attack to the moving targets constituted by

our DDoS defense architectures. In the context of the MOTAG architecture described in

Section 3.2, the moving targets are the secret moving proxies employed to mediate the

communication between clients and the application server; persistent attackers refer to the

malicious insiders that divulge the IP addresses of the secret proxies to external attackers. In

the case of the cloud-enabled architecture for protecting open Internet services in Section 3.3,

the moving targets become the dynamically instantiated replica servers residing in the

cloud; persistent attackers are the advanced bots that exfiltrate the network locations of

the replica servers or exert computational attacks. The shu✏ing mechanism to be discussed

in this section is an abstracted methodology that can be applied to both architectures. For

the convenience of discussion, we will address the proxies and replica servers of respective

architectures uniformly as service nodes, and call persistent attackers persistent bots, or

simply bots.

It is hard to achieve attacker segregation using an engineering method because persistent

bots may behave exactly like benign clients. With our solution, new service nodes are

dynamically instantiated during a DDoS attack to replace the ones bombarded by bots.

The shu✏ing operation refers to a structured method of re-assigning the a↵ected clients

from the attacked service nodes to the new service nodes. Benign clients are saved when

assigned to the service nodes with no bots. To maximize the number of benign clients saved

from each shu✏e, we need to make informed and optimal decisions based on the status quo.

To that end, we developed algorithms to realize fast attacker segregation. The controlled

and optimized shu✏ing process will enable us to mitigate an intensive DDoS attack in a

few rounds of shu✏ing.

32

3.4.1 Shu✏ing Strategy

Before diving into the mathematical analysis, we first explain the underlying theory of the

shu✏ing mechanism. Section 3.1 illustrated the basic idea through a simplified example.

Here we provide a formal description about the rationale and methodology.

Our shu✏ing mechanism is triggered by the occurrence of a DDoS attack. At time of

peace, only a small number of static service nodes are kept online to meet the requirement

of a regular workload. As soon as an attack happens, new services nodes are instantiated

to replace the attacked nodes and perform client shu✏ing. The set of active service nodes

can be logically divided into two groups, namely serving service nodes and shu✏ing service

nodes. Serving service nodes provide more reliable QoS to the known benign clients, while

shu✏ing service nodes are employed for shu✏ing operations and only o↵er intermittent

connections to suspicious clients. If attacked, shu✏ing service nodes will be replaced and

the associated clients are flushed and reassigned.

At the beginning, all service nodes are unmarked. Clients are randomly assigned to

di↵erent service nodes. If some service nodes are attacked after the initial assignment, they

will be marked as shu✏ing service nodes while the others are regarded as serving service

nodes. By employing the shu✏ing algorithms described below, we repeatedly shu✏e the

client assignment within the shu✏ing service node group to distinguish persistent bots from

benign clients and segregate them.

After each shu✏e, some shu✏ing service nodes may remain under attack while others

may not. The shu✏ing service nodes that are no long under attack become serving service

nodes and the associated clients are marked as trusted and considered as saved from the

on-going attack. Clients connected to the attacked service nodes are considered untrusted

because we cannot tell who the actual bots are among them. To save the benign-but-a↵ected

clients, we randomly re-distribute all the untrusted clients across the entire group of shu✏ing

service nodes. Given the specific number of untrusted clients and available service nodes,

new shu✏ing service nodes can be instantiated to help accelerate the shu✏ing operations.

Generally speaking, the more shu✏ing service nodes available, the faster the bots will be

33

quarantined.

By repeating the shu✏ing operation for multiple rounds, keeping track of the attacked

service nodes and untrusted clients, we can gradually identify most benign clients and

narrow down the range of suspicious clients. The bots will eventually be quarantined, and

the attack damage will be minimized.

Notice that the shu✏ing process is stateless, meaning each shu✏e is considered inde-

pendent. The tags (trusted/untrusted) placed on clients will be reset after every shu✏e, to

avoid being confused by bots’ inconsistent behavior. These tags do not necessarily reflect

the true identity of the clients. Plus, the roles of service nodes (shu✏ing/serving) are inter-

changeable across shu✏es, depending on the behavior of the bots. The goal of the shu✏ing

operations is to separate benign but attacked/suspected clients from true bots. Although

some bots may make us believe in their innocence by staying inactive, we can ensure that

they are not going to cause extra damage if they begin to attack later.

3.4.2 Theoretical Problem Modeling

We first constructed a mathematical model of the shu✏ing process. Notations used in this

model are summarized in Table 3.1. We consider a snapshot of the entire system before

shu✏ing is performed. There are a total number of N clients, M of whom are persistent

bots that act as malicious insiders (M  N). There are a constant number of P service

nodes used for shu✏ing. Notice that after certain rounds of shu✏ing, some service nodes

may stop participating in the shu✏ing operations if they are no longer under attack. In

that case, we can activate more service nodes to supplement the need for shu✏ing clients.

We assume P < N ; otherwise, each client can be allocated with an exclusive service node to

accomplish complete attacker isolation. In practice, many clients are assigned to a service

node.

For the purpose of fast attacker segregation, we endeavor to save as many benign clients

as possible from each round of shu✏ing. Since shu✏ing is a stochastic process, we can only

calculate the probability that a given service node is attacked. With that probability, we

34

Table 3.1: Notations used in section and their meanings.

Notation Meaning
N number of clients (including benign clients and bots)
M number of persistent bots
P number of shu✏ing service nodes
S number of clients to be saved
p
i

probability that the i-th shu✏ing service node is not under
attack

x
i

number of clients assigned to the i-th shu✏ing service node

derived E(S), the expected number of benign clients to be saved in one round. Therefore,

solving the following optimization problem will maximize the number of benign clients to

be saved.

max E(S) =
PX

i=1

p
i

· x
i

=

P
P

i=1

�
N�xi
M

�
x
i�

N

M

� (3.1)

subject to
PX

j=1

x
j

= N

In the above equation, x1, x2, . . . , xP denote the numbers of clients we assign over these

P shu✏ing service nodes. p
i

denotes the probability that the i-th service node is not under

attack, which is also the probability that all M bots are assigned to other service nodes.

Hence,

p
i

=

�
N�xi
M

�
�
N

M

�

where
�
N

M

�
computes the total number of ways to distribute the M bots within the client

population N , and
�
N�xi
M

�
gives the number of combinations that all bots are within the

N � x
i

clients not connecting to shu✏ing service node i.

35

3.4.3 Optimal Solution

To solve the above optimization problem, we state the problem alternatively with regard

to its key parameters. Let S(N,M,P) denote the maximum expected number of benign

clients that we can save in one shu✏e, subject to a total number of N clients (including

bots), M bots, and P shu✏ing service nodes. To solve S(N,M,P), we can instead solve

max {S(a, b, 1) + S(N � a,M � b, P � 1)}, where a is the number of clients assigned to

the last service node, and b is the number of bots among a. Although we do not have

direct control over b, there is a probability Pr(b) associated with each possible value of

b 2 [0,min{a,M}]. These probabilities will vary as we change the value of a. For each

di↵erent a, we can compute the expected result of the decomposed problem. In this way, the

original optimization problem can be recursively broken down into a series of sub-problems,

until all potential solutions for the sub-problems can be readily enumerated.

We use a dynamic programming approach to solve these sub-problems in a bottom-

up fashion, until eventually arriving at the optimal solution to the original problem. In

particular, we incrementally build a lookup table, starting from using only one service node

(P = 1). To compute the one service node case, we have

S(a, b, 1) =

8
>><

>>:

a, b = 0

0, b > 0

(3.2)

Solutions for larger service node numbers can be generated using

S(N,M,P) = max
1aN�1

{
X

b

Pr(b)⇥ [S(a, b, 1) + S(N � a,M � b, P � 1)]}

where

Pr(b) =

�
M

b

��
N�M

a�b

�
�
N

a

� , b 2 [0,min(a,M)] (3.3)

36

Algorithm 1, below, describes the implementation of the dynamic programming procedure.

Two tables, assign no and save no, are created to store the number of clients to assign to

each service node and the expected number of benign clients to be saved, respectively. The

overall time complexity of the algorithm is O(N3 ·M2 · P), while the space complexity is

O(N ·M · P).

Algorithm 1 Optimal-Assign(N,M,P)

1: Initialize assign no[0 · · · , N, 0 · · · ,M, 0 · · ·P] and save no[0, · · · , N, 0 · · · ,M, 0 · · · , P]
2: for i 1, N do
3: for j 1,M do
4: for k 1, P do
5: compute S(i, j, k) using Equations 3.2 and 3.3, with a 2 [1, i � 1] and b 2

[1,min{j, a}];
6: select a = ↵ that maximize S(i, j, k);
7: update table entry assign no[i, j, k] = ↵ and save no[i, j, k] = S(i, j, k).

3.4.4 A Special Case

Although the dynamic programming algorithm is guaranteed to produce optimal client-to-

service-node assignment, it is inadequate for making realtime decisions against on-going

DDoS attacks due to its high time complexity. We hope to identify the common structure

of an optimal solution that can be applied directly at runtime. As a special but practical

case, we are going to show that it is always best to evenly distribute all clients to every

service node when the number of bots (M) is relatively small.

Theorem 1. Evenly distributing clients to all shu✏ing service nodes maximizes E(S), when

M  P and client-to-service-node distribution is uniform.

Proof. We prove Theorem 1 using the exchange argument. For simplicity without loss

of generality, we consider an arbitrary pair of service nodes among all shu✏ing service

nodes. Assume there are V clients on one service node and W clients on the other, where

V + W = T . Given that client-to-service-node distribution is uniform and M  P , it

is expected that there are one or two bots assigned to this pair of service nodes. Using

37

Equation 3.1, when M = 1, we have

E(S) =

�
T�V

1

�
· V

�
T

1

� +

�
T�W

1

�
·W

�
T

1

� =
2 · V ·W

T

When M = 2, we have

E(S) =

�
T�V

2

�
· V

�
T

2

� +

�
T�W

2

�
·W

�
T

2

� =
V ·W · (T � 2)

T · (T � 1)
.

In both cases, V = W maximizes E(S). Since this pair of shu✏ing service nodes is

randomly chosen, we can apply an exchange argument on any pair of shu✏ing service nodes

iteratively, and eventually arrive at the conclusion that all the shu✏ing service nodes should

have the same amount of clients to maximize E(S).

As a result, in the special case where the number of bots is less than or equal to the

number of service nodes, we can obtain an optimal client-to-service-node assignment in

linear time O(N) by randomly assigning N/P clients to each service node.

3.4.5 A Fast Heuristic Greedy Algorithm

The discussion in Section 3.4.4 covers the special case in which M  P . However, a runtime

algorithm is still needed to solve more general cases whereM > P . To that end, we designed

a fast heuristic greedy algorithm that is capable of generating near-optimal shu✏ing plans.

Algorithm 2 describes each step of the greedy algorithm for computing the client-to-

service-node assignment, with the main function called GreedyAssign. Instead of targeting

the global optimization problem, the greedy algorithm tries to optimize for one service node

at a time. The algorithm first computes the number of clients (!) that should be assigned

to the first service node under the original problem setting, so as to save the maximum

number of benign clients expectedly from this node. To do that, the algorithm enumerates

all possible values of x1 (denoting the number of clients to be assigned to the first service

38

node), ranging between [0, N � 1]. x1 cannot be N. Otherwise, everyone will be attacked if

there is one bot on board. For each possible value of x1, the algorithm computes the result

of p
i

· x1. The value of x1 = ! that yields the maximum result becomes the final selection.

This subroutine is described in procedure MaxOneNode of Algorithm 2. Without further

computation, the algorithm attempts to assign ! clients to as many service nodes as possible

until running out of clients or service nodes. The computation will terminate under three

conditions. First, when there are more service nodes left than clients, each client will be

assigned to an exclusive service node. Second, when there is only one service node left, all

remaining clients will be appointed to it. Third, when the expected number of remaining

bots is rounded to 0, all remaining clients will be evenly distributed for load balancing.

Otherwise, if the number of remaining clients is less than !, the algorithm updates the

problem setting (N 0,M 0, P 0) with the remaining unassigned clients and service nodes, and

calls itself recursively. The computational complexity of the greedy algorithm is O(N ·M)

while its space complexity is O(P).

To evaluate the optimality of the greedy algorithm, we compare it head-to-head with

the dynamic programming algorithm through a series of MATLAB simulations. It is worth

mentioning that the high computational complexity of the dynamic programming algorithm

only permitted experiments with relatively small parameters (up to 1,000 clients and 200

service nodes).

Figure 3.4 shows the numbers of benign clients saved in one shu✏e by running the two

algorithms. As we can see, the curves denoting respective algorithms almost overlap in all

cases, indicating that the e↵ectiveness of the greedy algorithm closely approaches to the

optimal dynamic programming algorithm.

The advantage of using the greedy algorithm is reflected by comparing Figure 3.5 and 3.6.

Even though small client, bot, and service node numbers were used, the dynamic program-

ming algorithm required tens of hours to compute the client-to-service-node assignments. In

contrast, the greedy algorithm needed only a few milliseconds to complete the same tasks.

Therefore, the greedy algorithm is preferred as the runtime algorithm to guide shu✏ing

39

Algorithm 2 Greedy algorithm for computing client-to-service-node assignment.

function GreedyAssign(Client, Bot, ServNode)
if Client  ServNode then

Assign 1 exclusive service node to each client
else if ServNode = 1 then

Assign all clients to the last service node
else if Bot = 0 then

Evenly distribute Client over ServNode
else

! =MaxOneNode(Client, 0, Client� 1, Bot)
NodeToF ill = floor(Client/!)
if NodeToF ill � ServNode then

NodeToF ill = ServNode� 1
RemC = Client�NodeToF ill ⇤ !
RemP = ServNode�NodeToF ill
RemB = Round(Bot⇤RemC

Client

)
Fill NodeToF ill Proxies with ! clients each
Fill the rest proxies according to
GreedyAssign(RemC,RemB,RemP)

procedure MaxOneNode(Client, Lbound, Ubound,Bot)
Max=0, MaxAssign=0
for i = Lbound! Ubound do

Save =
�
Client�i

Bot

�
i/
�
Client

Bot

�

if Save > Max then
Max = Save, MaxAssign = i

return MaxAssign

operations against on-going DDoS attacks.

3.4.6 Enhancing The Greedy Algorithm

As discussed above, the greedy algorithm aims to maximize the number benign clients

expectedly to be saved from one service node at a time. For an arbitrary service node i,

the number of clients assigned to it and the number of benign clients that can be saved are

denoted as x
i

and S
i

, respectively. The expected value of S
i

is computed as follows.

E(S
i

) = p
i

· x
i

=

�
N�xi
M

�
�
N

M

� · x
i

(3.4)

The subroutine MaxOneNode of Algorithm 2 finds the value of x
i

that maximizes E(S
i

)

by enumerating all possible choices. For the purpose of this discussion, we name this

40

approach the enumeration approach. The enumeration approach can find the optimal value

of x
i

in O(N · M) time complexity, where N denotes the total number of all clients and

M denotes the number of bots among the clients. Therefore, as N and M get larger, the

running time of the subroutine MaxOneNode becomes notably longer.

To further improve the e�ciency of the greedy algorithm, we designed an approximation

approach that can find a near-optimal value of x
i

in O(1) time complexity. This is done by

solving Equation 3.4 using Stirling’s Approximation n! ⇡ (n
e

)n
p
2⇡n and a series of other

approximations assuming M << N , as follows:

E(S
i

) =
(N �M)!(N � x

i

)!

(N �M � x
i

)! N !
· x

i

⇡
(N �M)N�M (N � x

i

)N�xi
p
(N �M)(N � x

i

)

(N �M � x
i

)N�M�xiNN

p
(N �M � x

i

)N
· x

i

⇡ (N �M)N�M (N � x
i

)N�xi

(N �M � x
i

)N�M�xiNN

· x
i

⇡ (
N �M

N
)xi · x

i

Let x
i

= N ·�
M

, we have

E(S
i

) = (1� M

N
)
N·�
M · N · �

M
= e��

N · �
M

(3.5)

After applying approximation lim
n!1

(1� 1/n)n ⇡ e�1 on the derivation of Equation 3.5,

we get

41

@E(S
i

)

@�
=

e�� ·N
M

· (1� �) (3.6)

Apparently, the derivation of E(S
i

) equals 0 if and only if � = 1. In other words, � = 1

maximizes E(S
i

). As a result, assigning x
i

= N

M

clients to service node i will optimize the

expected number of benign clients that can be saved, which is

Max(E(S
i

)) =
N

M · e (3.7)

To evaluate the accuracy and the optimality of the approximation approach, we compare

it with the enumeration approach using a series of simulations in MATLAB. Figure 3.7

shows the numbers of clients that should be assigned to one service node to expectedly

save the maximum number of benign clients, computed using the enumeration approach

and the approximation approach respectively. Since the enumeration approach compares

all possible choices, we know that it is always giving the optimal selection for one service

node. In Figure 3.7, we notice that the results produced by the approximation approach

overlap with those given by the enumeration approach in almost all cases. Therefore, as

a faster approach (O(1) time complexity) that can still generate near-optimal results, we

believe the approximation approach is the preferred method in computing the number of

clients to assign to one service node for the greedy algorithm.

3.5 Attack-Scale Estimation

When applying the greedy algorithm or the dynamic programming algorithm, the number

of persistent bots M is a key parameter in computing the optimized client-to-service-node

shu✏e plans. In the earlier discussions, we assumed that M is known. However, in practice,

42

no such prior knowledge is provided. Since M has direct influence on the client-to-service-

node assignments, accurately estimating M is critical. To achieve that, we designed a

Maximum Likelihood Estimation (MLE) algorithm.

The core idea of the MLE algorithm is to evaluate the likelihood of each possible value of

M with regard to the number of observed service nodes that are not under attack (denoted

asX). The MLE algorithm computes the probability that a particular value ofM is going to

cause X service nodes not to be hit by an attack. All possible values of M are enumerated,

and the one that corresponds to the highest probability becomes the final estimate of M .

In the following discussion, the likelihood that an arbitrary value of M is going to leave

X = ⇡ service nodes not under attack is denoted as Pr(X = ⇡). To compute Pr(X = ⇡), we

build Equation 3.8 by employing the inclusion-exclusion principle under the balls-and-urns

model [102].

Pr(X = ⇡) = Pr(X � ⇡)�
✓
⇡ + 1

⇡

◆
Pr(X � (⇡ + 1))

+

✓
⇡ + 2

⇡

◆
Pr(X � (⇡ + 2))� . . .

+ (�1)P�⇡

✓
P

⇡

◆
Pr(X � P) (3.8)

In Equation 3.8, Pr(X � ⇧) stands for the probability that at least ⇧ (⇧ = ⇡,⇡ +

1, . . . , P) service nodes are not under attack, P is the total number of all shu✏ing service

nodes. In particular, these⇧ unattacked service nodes constitute the setU = {u1, u2, . . . , u⇧}.

Set U can be any ⇧ sized subset of the P shu✏ing service nodes.

The key idea to compute Pr(X � ⇧) is similar to the way that Equation 3.1 and

Equation 3.4 were derived. If a particular set U of service nodes are not under attack, all

persistent bots must be among the clients assigned to other service nodes (the complement

of U). Thus, we can derive Equation 3.9, in which
P(⇧)

U denotes the summation over

43

all possible combinations of U (all ⇧ sized subsets of the P shu✏ing service nodes), and

N �
P⇧

j=1 xuj gives the number of clients connecting to the service nodes outside of the

set U. Specifically, u
j

is an arbitrary service node within the set U, and x
uj denotes the

number of clients assigned to that node.

Pr(X � ⇧) =

P(⇧)
U

�
N�

P⇧
j=1 xuj
M

�
�
N

M

� (3.9)

Under a certain client-to-service-node assignment scheme x, we can now correlate Pr(X =

⇡) with the potential values of M by combining Equation 3.8 and 3.9.

To evaluate the accuracy of MLE through example cases, we implemented the algo-

rithm in MATLAB and ran a series of simulations. The actual bot numbers (X-axis), the

estimated bot numbers (the solid line corresponding to the Y-axis on the left), along with

the percentage of attacked service nodes (the dotted line corresponding to the Y-axis on

the right), are plotted in Figure 3.8. In this figure, each data point is the mean of 40 re-

peated runs surrounded by a 99% confidence interval. From the results, we notice that MLE

produces accurate estimation numbers unless all shu✏ing service nodes are under attack.

As discussed above, MLE always chooses the value of M that maximizes the likelihood

function. For the special case where all shu✏ing service nodes are under attack, the likeli-

hood is always greater with the higher value of M . Consequently, the largest possible M ,

i.e. the overall client number N , becomes the final estimate. Given this is an unrealistic

overestimation, extra shu✏ing service nodes should be instantiated to make sure at least

one service node is not under attack. Below, we theoretically determine the number of shuf-

fling service nodes P needed to meet this requirement under uniform client-to-service-node

assignment.

We abstract an approximate model as following: There are P shu✏ing service nodes

and M bots. We assign M bots sequentially onto the service nodes.

44

Theorem 2. If M > log1� 1
P

�
1
P

�
, there is a high probability that all service nodes will be

attacked.

Proof. Let X denote the number of service nodes that are not under attack. Let

X
i

=

8
>><

>>:

1, if service node i is not under attack;

0, otherwise.

Then the expected value of X is

E (X) =
PX

i=1

E (X
i

) =
PX

i=1

Pr[X
i

= 1] = P

✓
1� 1

P

◆
M

When all shu✏ing service nodes are attacked with high probability, the expected number

of unattacked shu✏ing service nodes E (X) < 1. We have

E (X) < 1) P

✓
1� 1

P

◆
M

< 1)M > log1� 1
P

✓
1

P

◆

According to Theorem 2, when all shu✏ing service nodes are under attack, P must be

increased such that M  log1� 1
P

�
1
P

�
. The resource elasticity permitted by the underlying

cloud infrastructure allows su�cient space for us to increase the number of service nodes.

Therefore, we can always be confident in the estimations made by the MLE algorithm.

45

0 100 200 300 400 5000

20%

40%

60%

80%

100%

Number of Persistent Bots

Sa
ve

d
B

en
ig

n
C

lie
nt

s

Greedy
Dynamic Programming

200 Nodes

150 Nodes

100 Nodes

50 Nodes

Figure 3.4: Comparison of the e↵ectiveness of greedy algorithm and dynamic programming
algorithm with 1,000 clients. (Curves are overlapping.)

50 100 200 300 400 5000

0.5

1

1.5

2

2.5x 108

Number of Persistent Bots

R
un

ni
ng

 T
im

e
(m

s)

50 Nodes
100 Nodes
150 Nodes
200 Nodes

Figure 3.5: Runtime of the dynamic programming algorithm with 1,000 clients.

50 100 200 300 400 500

1

2

3

4

Number of Persistent Bots

R
un

ni
ng

 T
im

e
(m

s)

50 Nodes
100 Nodes
150 Nodes
200 Nodes

Figure 3.6: Runtime of the greedy algorithm with 1,000 clients.

46

50 100 150 200 250 300 350 400 450 500100

101

102

103

104

Number of Persistent Bots

C
lie

nt
s

Pe
r N

od
e

 1K,Enum
1K,Approx
5K,Enum
5K,Approx
10K,Enum
10K,Approx
100K,Enum
100K,Approx

Figure 3.7: The optimal number of clients to assign to one service node computed using the
enumeration approach and the approximation approach. The Y-axis is in log-scale, and the
curves are overlapping.

0 20 50 80100 150 200 250 300 350
10
50

100
150
200
250
300
350
400
450
500
550
600

Real Bot Number

Es
tim

at
ed

 B
ot

 N
um

be
r

0 50 100 150 200 250 300 350

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

A
tta

ck
ed

 S
er

vi
ce

N

od
es

’ P
er

ce
nt

ag
e

Estimated Attacker Number
Attacked Service Nodes’ Percentage

Figure 3.8: Evaluate the MLE algorithm through examples (10,000 clients, 100 shu✏ing
service nodes).

47

3.6 Evaluating Moving Target Defenses

3.6.1 Attacker Quarantine Capability

This section experimentally evaluates the e↵ectiveness of the shu✏ing mechanism used in

separating benign clients from attackers. As discussed in Section 3.4, the shu✏ing mech-

anism can be applied on the MOTAG architecture (Section 3.2) to segregate malicious

insiders from the authenticated clients, and can also be combined with the cloud-enabled

architecture (Section 3.3) to save benign clients from the moving replica servers followed

by persistent bots. To better evaluate the shu✏ing mechanism with regard to di↵erent ar-

chitectures and application models, we implemented the core algorithms in MATLAB and

ran simulated attacks under di↵erent settings.

Segregating Insiders From Authenticated Clients

To simulate an attack scenario on MOTAG, we injected a small number of insiders simulta-

neously into the group of authenticated clients. These insiders will bring external attackers

to some secret moving proxies, causing these proxies to be flooded. To respond to the

attack, the applied shu✏ing mechanism will dynamically replace the overwhelmed proxies,

and intelligently re-distribute a↵ected clients among all shu✏ing proxies. For ease of com-

parison and evaluation, a fixed number of shu✏ing proxies are kept active throughout each

experiment. We assumed that the attackers are aggressive and own infinite bandwidth.

Consequently, all shu✏ing proxies that are assigned one or more insiders are regarded as

under attack. However, as discussed in Section 3.2, we only assumed a limited number of

insiders (hundreds) considering the di�culty of bypassing strong authentication. In all of

our simulations, the MLE algorithm from Section 3.5 was used to estimate the number of

remaining insiders. The greedy algorithm discussed in Section 3.4.6 was used to compute

the optimized client-to-proxy assignment plan for each shu✏e. Mersenne twister [103] was

employed as the random number generator for all simulation runs.

Figure 3.9 shows the number of shu✏es needed to save 80% and 95% of benign clients

48

under various parameters. In particular, Figures 3.9a and 3.9b vary the number of insid-

ers while keeping the total number of clients and shu✏ing proxies constant. Figures 3.9c

and 3.9d only change the number of shu✏ing proxies while having the other two parameters

fixed. 10,000 clients were simulated in the experiments that produced Figures 3.9a and 3.9c;

100,000 clients were simulated in the simulations that generated Figures 3.9b and 3.9d. For

each setting, we ran the same simulation 30 times to get the mean with a 99% confidence

interval plotted.

10 50 100 200 300 400 5000

5

10

15

20

25

30

35

40

Number of Insiders

N
um

be
r o

f S
hu

ffl
es

 80%
 95%

(a) Varying the number of insiders under 10K clients,

100 shu✏ing proxies.

10 50 100 150 200 250 300 350 400 450 5000

10

20

30

40

50

Number of Insiders

N
um

be
r o

f S
hu

ffl
es

 80%
 95%

(b) Varying the number of insiders under 100K clients,

100 shu✏ing proxies.

406080100 150 200 250 300 350 400 450 5000

5

10

15

20

25

Number of Shuffling Proxies

N
um

be
r o

f S
hu

ffl
es

 80%
 95%

(c) Varying the number of shu✏ing proxies under 10K

clients, 100 insiders.

406080100 150 200 250 300 350 400 450 5000

5

10

15

20

25

Number of Shuffling Proxies

N
um

be
r o

f S
hu

ffl
es

 80%
 95%

(d) Varying the number of shu✏ing proxies under

100K clients, 100 insiders.

Figure 3.9: The number of shu✏es needed to save 80% and 95% of benign clients from
malicious insiders.

From Figures 3.9a and 3.9b, we can see that the number of shu✏es needed to save the

same percentage of benign clients grows almost linearly with the increase in the number of

insiders. More shu✏es indicate a longer time to mitigate an attack, but it also means that

49

attackers have to devote much more e↵ort to recruit more insiders. Figures 3.9c and 3.9d

reveal that when the numbers of clients and insiders are fixed, the number of shu✏es needed

drops as more shu✏ing proxies are used. The decline of the curves is much steeper when the

proxy number is lower than the insider number, but it stabilizes after the proxies outnumber

the insiders. Moreover, the narrow confidence intervals of all the data points indicate that

the performance of our shu✏ing algorithm is reliable and predictable.

10 50 100 200 300 400 500 600 700 8000

200

400

600

800

1000

Number of Insiders

N
um

be
r o

f S
hu

ffl
in

g
Pr

ox
ie

s

10K, 5 Shuffles
100K, 5 Shuffles
10K, 10 Shuffles
100K, 10 Shuffles
10K, 15 Shuffles
100K, 15 Shuffles

Figure 3.10: Number of proxy nodes needed to save 95% of benign clients within 5, 10, and
15 shu✏es, with 10K and 100K clients and an increasing number of insiders.

Moreover, it is worth noting that the increase from 10,000 to 100,000 clients caused

almost no di↵erence in the simulation results. Instead, the figures show that the ratio

between the number of shu✏ing proxies and the number of insiders is the primary factor

deciding the number of shu✏es needed to achieve a pre-defined goal. To further explore the

relationship between the proxy number and the insider number, we performed experiments

with varying insider numbers to find out the minimum number of shu✏ing proxies required

to save 95% of benign clients within 5, 10, and 15 shu✏es, respectively. The results are

displayed in Figure 3.10, with the number of insiders ranging from 10 to 800. The solid

lines represent experiments with 10, 000 clients while the dotted lines denote simulations

using 100, 000 clients. This figure reflects a close-to-linear relationship between the number

50

of required shu✏ing proxies and the number of insiders in achieving a constant security

goal. Again, a ten fold increase in the client population only showed minor di↵erences in

the results, and the 99% confidence intervals are almost negligible.

Isolating Persistent Bots Attacking Open Internet Services

To assess the e↵ectiveness of the shu✏ing mechanism in mitigating DDoS attacks on open

Internet services, we simulated intensive attacks initiated by botnets composed of large

numbers of persistent bots. Instead of assuming all benign clients and bots are present

at the start of the simulations, we adopted a more realistic approach that assumed both

benign clients and bots arrive in a Poisson process. In our experiments, the arrival rate

of bots was 5,000 per three shu✏es while that of benign clients was 100 per three shu✏es.

We also simulated a number of replica servers to host and shu✏e clients and bots. Similar

to the previous simulations that used fixed numbers of shu✏ing proxies, constant numbers

of shu✏ing replica servers were employed throughout individual simulation runs for the

convenience of comparison. Replica servers assigned with any number of persistent bots

were regarded as attacked. By observing the numbers of replica servers under attack, the

shu✏ing algorithms decided the total number of clients to be assigned to each replica server.

Benign clients, together with bots, were randomly assigned to replica servers to fill up all

available spaces. Across our experiments, we varied the numbers of benign clients, persistent

bots, and shu✏ing replica servers to study the performance of the shu✏ing algorithms in

saving a↵ected benign clients under di↵erent conditions. All simulations were repeated 30

times to plot the mean and 99% confidence interval.

First, we ran simulations with 1,000 shu✏ing replicas and varied numbers of benign

clients and bots. The results are plotted in Figure 3.11. One can see that the number of

shu✏es required to save 80% and 95% of benign clients rises slowly with the increase in the

populations of bots and clients. In the worst case, a ten-fold increase on the bot number

results in a less than three-fold increase on the shu✏e number; for a given number of bots,

a five-fold increase on the benign clients only introduces less than 70% (40) more shu✏es

51

1 2 3 4 5 6 7 8 9 100

50

100

150

Number of Bots(x104)

N
um

be
r o

f S
hu

ffl
es

10K benign clients,80%
10K benign clients,95%
50K benign clients,80%
50K benign clients,95%

Figure 3.11: Number of shu✏es to save 80% and 95% of 104 and 5 ⇥ 104 benign clients,
with 1,000 shu✏ing replica servers and varying bot numbers.

9 10 11 12 13 14 15 16 17 18 19 200
20
40
60
80

100
120
140
160

Number of Shuffling Replicas(x102)

N
um

be
r o

f S
hu

ffl
es

10K benign clients,80%
10K benign clients,95%
50K benign clients,80%
50K benign clients,95%

Figure 3.12: Number of shu✏es to save 80% and 95% of 104 and 5 ⇥ 104 benign clients,
with 105 bots and varying shu✏ing replica server numbers.

0 0.2 0.4 0.6 0.8 0.950
20
40
60
80

100
120

150

Percentage of Clients Saved

N
um

be
r o

f S
hu

ffl
es

10K benign clients
50K benign clients

Figure 3.13: Cumulative percentage of saved benign clients vs. number of shu✏es, with 105

bots, 104 and 5⇥ 104 benign clients.

52

to save the designated percentage of clients.

Next, we changed the number of shu✏ing replica servers while keeping the client popu-

lation (104, 5⇥104) and bot population (105) constant. The curves in Figure 3.12 show that

the number of shu✏es needed to save the same percentage of benign clients drops steadily

when we add more replica servers.

One interesting pattern consistent across both figures is that in most cases, the number

of shu✏es it takes to save 95% of benign clients is more than 40% higher than what is needed

to save 80% of benign clients. To explore this pattern in greater detail, we recorded the

number of benign clients saved in each shu✏e and plotted a cumulative percentage graph

in Figure 3.13. Apparently, the early shu✏es were able to separate more benign clients

from bots than the latter shu✏es. The reason is that, as more benign clients were saved, it

became harder to separate the remaining ones out because bots gradually accounted for a

greater percentage of the remaining population.

3.6.2 Overhead Evaluation

The overhead introduced by our MTD solutions are largely determined by their respective

architectures. To evaluate the overhead caused by the MOTAG architecture discussed in

Section 3.2 and the cloud-enabled server replication architecture presented in Section 3.3,

we implemented a proof-of-concept prototype for each and ran various experiments on them.

Evaluating The Overhead Of The MOTAG Architecture

The MOTAG architecture mainly introduces two aspects of overhead to the communication

between clients and the application server, namely proxy-based communication indirection,

and client-to-proxy shu✏ing.

First, to assess the overhead introduced by proxy-based tra�c indirection, we selected

10 geographically distinct U.S. nodes from PlanetLab [59] to form five end-to-end flows. We

also randomly picked 24 other nodes that spread across the country to serve as proxies. We

measured the latency and throughput for both direct and indirect communications of the five

53

Table 3.2: Latency overhead introduced by proxy indirection.

Direct Indirect
RTT Mean RTT Overhead Max RTT Overhead

1 63ms 104ms 63.35% 143ms 125.41%
2 86ms 99ms 15.64% 128ms 49.45%
3 83ms 102ms 23.73% 133ms 60.47%
4 90ms 112ms 23.77% 131ms 45.18%
5 84ms 107ms 27.73% 120ms 42.48%

Table 3.3: Throughput overhead introduced by proxy indirection (Mb/s).

1 2 3 4 5
Direct 90.66 83.46 86.24 123.30 121.20
Indirect 15.20 14.46 13.99 15.97 14.09

flows. The results are shown in Table 3.2 and Table 3.3, respectively. For these experiments,

SSH tunneling through individual proxy nodes was employed to relay tra�c between end

nodes. Round trip time (RTT) numbers in Table 3.2 were obtained by bouncing short TCP

messages back and forth between the end nodes of each flow 100 times to compute the mean.

The throughput number of each flow in Table 3.2 is the average of ten Iperf [104] sessions.

Apparently, the impact of proxy-based indirection on latency (mostly less than 30%) is

much less significant than its influence on throughput. The drop on throughput is not only

caused by the extra relay hop but is also the result of message encryption and decryption

enforced by SSH agents. In fact, di↵erent crypto strategies, including no encryption, can

be listed as options when implementing MOTAG-based systems. Users can make informed

decisions based on the nature of the protected application.

The time needed to shu✏e clients among di↵erent proxy nodes determines the agility

and usability of MOTAG against insider attacks. Quick shu✏es will make it harder for

attackers to follow and have insiders quarantined faster. At the same time, benign but

shu✏ed clients will su↵er less severe service disruptions. To quantify the impact of our

54

Table 3.4: Time to switch between two proxy nodes (seconds).

1 2 3 4 5
MEAN 0.514 0.512 0.509 0.546 0.530
MAX 0.677 0.773 0.693 0.714 0.753
MIN 0.291 0.208 0.249 0.357 0.214

system to the end users, we measured the time it takes to switch a client from one proxy

node to another. For this experiment, we chose five geographically dispersed nodes from

PlanetLab to serve as the destination servers. We randomly picked one other node to play

the role of the authentication server. We timed the entire process by which our local client

receives notification from the authentication server, discards the current proxy, and then

connects to the new proxy to reach back to the destination server. During this process,

the authentication server sends a session ticket to both the client and the new proxy node.

The client will present this ticket to the proxy for identify validation. Only after that, the

new proxy node will start forwarding packets for the client. We used another 8 PlanetLab

nodes as proxies and switched between them. The average, maximum, and minimum proxy

switching times corresponding to each destination are listed in Table 3.4. The numbers are

fairly small yet consistent. A less than one-second proxy switching time will enable fast

client-to-proxy shu✏ing without causing significant service disruption for most non-realtime

applications.

Evaluating The Overhead Of The Cloud-Enabled Architecture

To study the overhead of the cloud-enabled architecture with moving replica servers, we

built a proof-of-concept prototype as described by Figure 3.14. We implemented two replica

servers and a coordination server/coordinator on separate Amazon EC2 [60] micro instances.

We used 60 PlanetLab nodes as clients. Each replica server runs a simple web server that

displays static webpages fetched from a network-mounted storage. The web server logic is

55

P1

P2

Coordinator

Network
Storage

1
23

4
5
6

7

C

C

C
C C

Figure 3.14: System prototype (C – Client, P – Replica Server).

written in Node.js [105].

Initially, all clients are served by replica P1. When a simulated attack is triggered on P1,

P1 notifies and consults the coordinator about the next step (step 1). In general, the coor-

dinator will make shu✏ing decisions either by running the greedy algorithm or by looking

up the pre-computed client-to-server assignment tables generated by the dynamic program-

ming algorithm. The decisions are sent back to the attacked replica to guide subsequent

shu✏ing operations. In our case, the coordinator will respond by asking P1 to redirect all

clients to replica P2 (step 2). As a result, P1 will proactively send redirection notifications

to all clients (step 3). Upon receipt, clients will start to contact and reload the current web

page P2 (steps 4, 5, 6, and 7).

Unlike conventional HTTP-based communications that start with client requests, the

redirection operation is always initiated by an attacked replica server. To send unsolicited

messages to HTTP clients, we take advantage of the WebSocket [106] technology multiplex-

ing HTTP(S) ports (80 and 443). WebSocket is supported by all major browsers. Therefore,

the adoption of our mechanism does not depend on extra software being installed on the

client side. For this prototype, our server injects a snippet of Javascript code (40 LOC) into

the requested webpage to establish a WebSocket between clients and the replica server.

With this prototype system, we studied the network overhead of redirecting clients from

the attacked replica server (P1) to a new replica server (P2). This prototype ran Firefox

browsers (v17.0) on up to 60 geographically distributed PlanetLab nodes as clients, who all

visited the same webpage (246KB) initially served by replica server P1. The time for all

56

10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Clients

M
ig

ra
ti

o
n

 T
im

e
 (

s
e
c
)

All Clients

Per Client

Figure 3.15: Client migration time between two replica servers.

clients to complete step 1-7 (i.e. redirection time from P1 to P2) is shown in Figure 3.15. In

this figure, the upper curve shows the time it took to successfully redirect all clients, while

the lower curve reveals the average redirection time per client. The measurement for each

data point was repeated 15 times to obtain the mean and 95% confidence interval. The

results show that we can re-assign 60 clients in less than 5 seconds. This indicates a low

overhead of client re-assignment operations, but we still expect more room for improvement

because our server program was single-threaded and not optimized at all. Compared to the

proxy switching times displayed in Table 3.4, Figure 3.15 shows a longer delay of redirecting

one client between two replica servers. The di↵erence is largely due to the need to reload

the webpage in the latter case. This cloud-based prototype was mainly developed to show

the feasibility of the approach and provide a lower bound on performance. The system is

not expected to slow down with more replica servers because all replicas act independently

and in parallel.

57

Chapter 4: Protecting Multi-path MANET Communications

Using Capability

4.1 Introduction

Compared to the Internet, mobile ad hoc networks (MANETs) lack a clear line of defense

and are therefore more vulnerable to flooding Denial-of-Service (DoS) attacks. To protect

unicast MANET communications from flooding attacks, Alicherry et al. introduced capa-

bility mechanisms [48–50] that enforce quota-based tra�c control on each end-to-end flow.

However, existing capability defenses for MANETs focus on preventing DoS attacks when

a single path is used to route tra�c of each flow; they do not o↵er protection against DoS

attacks if end nodes communicate through multiple paths. In fact, multi-path routing is a

desired function for MANETs because it provides better load balancing, improved fault tol-

erance, and more e�cient use of bandwidth. Unfortunately, it also generates a new threat

vector multiplying the potential impact of DoS attacks. Indeed, even if the bandwidth

consumption on individual routing paths can be constrained within the assigned quota, the

aggregated multi-path tra�c may become much higher than that.

This section presents the design, implementation, and evaluation of CapMan, a capability-

based security mechanism that prevents DoS attacks exploiting multi-path MANET com-

munications. CapMan is designed to be installed on every node and enforce capability

limits that e↵ectively regulate all end-to-end network flows. CapMan consists of two main

protocols: the capability distribution and the capability enforcement. The capability dis-

tribution protocol empowers the responder of an end-to-end flow to issue and distribute a

capability to the initiator and the intermediate nodes along all the employed routing paths.

To comply with the protocol, the initiator of a flow has to request the responder’s explicit

58

permission before sending any data packets. To grant access to the initiator behind a re-

ceived connection request, the responder sends a capability token back to the initiator. This

capability token is not only the passport that allows the initiator to send data packets, but

it is also cached by all intermediate nodes for restricting the throughput of the flow. To per-

form tra�c policing, the capability enforcement protocol ensures the capability constraint

is enforced on a per-hop basis across all employed routing paths. To achieve that under

the context of dynamic topology and multi-path routing, intermediate nodes on di↵erent

paths exchange bandwidth accountability and consumption reports periodically so that all

cooperating nodes are informed of the global network state in a scalable and consistent

manner. The broadcast of the bandwidth usage reports empowers individual nodes to reg-

ulate end-to-end tra�c across multiple dynamic routing paths, as dictated by the per-flow

capabilities.

The proposed mechanism can e↵ectively identify and mitigate sophisticated DoS attacks

that target multi-path routing protocols, even when both the initiator and the responder

are colluding malicious insiders. Aside from the capability set by the responder, which is

referred to as flow capability, we also introduce a default capability that defines the upper

bound of all flow capabilities. If a malicious responder distributes a flow capability greater

than the default capability, the default value will be used, and the suspicious responder can

be detected and further investigated.

4.2 Threat Model & Assumptions

Due to the dynamic nature of MANETs, there is no infrastructure or other form of network

separation as seen in wired networks. As a result, attackers are given great flexibility

in selecting targets and attack methodology. For instance, attackers can simply jam the

telecommunication channel, or dump massive junk packets onto a victim to exhaust its

constrained computation, communication, and energy resources.

To prevent arbitrary attacks initiated by external attackers, cryptographic methods

should be implemented to secure the physical communication channels. In particular,

59

public-key cryptography needs to be employed for the purpose of node authentication,

channel encryption, and packet validation. Only authorized and authenticated hosts should

be allowed to join a protected network and send packets to other members. For our research,

we assume these fundamental security measures are already in place to prevent external at-

tacks. In particular, we assume each authorized node in a MANET is identified by a unique

and attested public/private key pair. However, given the dynamic and autonomous nature

of MANETs, it is unrealistic to rely on a single CA (certificate authority) for reliable and

continuous key management service. Instead, decentralized PKI architectures that employ

distributed CAs [84–86] can be adopted to provide reliable and tamper-proof key issuance

and attestation.

Cryptographic protocols can e↵ectively block external attackers but are inadequate to

prevent malicious insiders from attacking within the trusted group. In an e↵ort to address

insider threats, this part of the work focuses on protecting MANETs from flooding DoS

attacks launched by malicious insiders. In particular, our solution enforces a capability-

based mechanism on each unicast packet flow. For this work, we use the term “flow” to

refer to a uni-directional packet stream traveling from the initiator to the responder. The

initiator is the node from which the packet stream originates, while the responder is the

destination node of the packet stream. Therefore, a UDP stream is considered one flow from

the initiator (source) to the (responder), while a bi-directional TCP connection is regarded

as two flows in two opposite directions.

Multi-path routing [107, 108] is a routing functionality that allows packets of a single

flow to be delivered using multiple paths between the two end nodes. It is a desirable

feature for MANET communications because it can lead to better load balancing, improved

fault tolerance, and higher aggregate throughput. Unfortunately, it also exacerbates the

possibility and intensity of flooding DoS attacks. In hostile environments, any node in a

MANET can be malicious and start these attacks against others. Based on their targets,

these flooding attacks can be classified into the following two categories:

• End Node Targeted: Flooding attacks targeting end nodes aim to saturate the

60

bandwidth or exhaust the CPU and power energy of a flow responder, making it

unavailable to legitimate flows. Such attacks can be carried out by an individual

malicious node or multiple colluding nodes. A malicious initiator can exploit multi-

path routing to increase its tra�c load, while malicious intermediate nodes can further

augment the attack through packet forging or replay.

• Intermediate Node Targeted: Another form of DoS attacks aims to overwhelm the

bottleneck intermediate nodes in the network. By purposely directing flows with high

tra�c volumes to the victim, malicious upstream nodes can congest or even disable

the resource-limited target downstream. This can cause substantial packet loss and

lead to debilitating results for other flows that share the same link. Although active

queue management (AQM) schemes like [109] are available to provide fairness among

flows, they are insu�cient for di↵erentiating normal high throughput communications

from malicious tra�c or prioritizing tra�c of critical applications when a DoS attack

happens. In addition, colluding malicious nodes can take advantage by forming large

numbers of flows to achieve high aggregate throughput.

This work aims to mitigate DoS attacks targeting both end nodes and intermediate

nodes in MANETs. Next, we will explain in detail our comprehensive, capability-based

solution named CapMan.

4.3 Capability System Overview

A high-level flow control of the CapMan system is depicted in Figure 4.1. CapMan consists

of two interdependent components, namely capability distribution and capability enforce-

ment. Each node in the network runs an identical copy of the CapMan system. The

operation of CapMan is triggered by packet reception. A flow responder executes the ca-

pability distribution module upon receiving a connection request packet. If the connection

is granted, the capability distribution module then generates a capability token and sends

it back to the initiator. An intermediate node, upon seeing a capability packet, updates

61

its local capability table and forwards the packet to the next hop until reaching the flow

initiator. When a data packet reaches an intermediate node, the node runs the capability

enforcement module to decide whether to forward this packet. Every node periodically

puts together and broadcasts capability summary packets that advertise the node’s local

capability status. The receivers activate the capability enforcement component to process

these packets and adjust their local capability settings accordingly.

Type?

Am I
Responder?

Data/Request
Packet

Yes

Capability
Distribution

Capability
Packet

Capability
Enforcement

Summary
Packet

No

Packet

Figure 4.1: Overview of the flow control in CapMan system.

4.3.1 Capability Distribution

Capability distribution is the process of capability issuance from the responder to the ini-

tiator, which accurately distributes the capability among all employed routing paths. The

solution to capability issuance problem is straightforward and has already been studied by

other researchers [48]. However, it is more challenging to ensure that intermediate nodes

along all paths are informed about the assigned flow capability in a dynamic network. To

maintain up-to-date knowledge of the multi-path routing information, CapMan records the

routing path for each data packet in a Path Recording Header (PRH). By inspecting the

PRH of received packets, the responder can keep track of the routing paths currently used

62

by the flow. When a new route is detected, the responder will immediately notify the nodes

on that path about the flow’s capability. In this way, every forwarding intermediate node

is guaranteed to be informed about the flow capability, which is used as the yardstick for

capability enforcement.

4.3.2 Capability Enforcement

Capability enforcement requires all nodes along di↵erent routing paths to collaborate in

a distributed manner on enforcing the overall capability requirement. From the capability

distribution process, intermediate nodes are informed about the per-flow capability assigned

by the responder. To make sure this capability is adhered to at all times, nodes on every

routing path not only have to watch their local tra�c, but they also need to be aware of the

data rate of the same flow on all other routes. In CapMan, this is accomplished by having

all nodes periodically exchange bandwidth consumption reports (i.e. capability summaries).

With the information collected globally, each node can then dynamically adjust its local rate

enforcement policy with regard to the flow-wide capability fulfillment. Therefore, CapMan

can ensure that the overall capability is e↵ectively enforced across multiple routing paths.

It is worth noting that a possible alternative to this solution is to split the per-flow

capability among all employed routes. Admittedly, this approach could save the e↵ort and

bandwidth from conducting summary exchange. Nevertheless, considering the dynamic

topology of MANETs and the imbalanced bandwidth distribution among di↵erent routes,

it is almost impossible to draw an optimal tra�c partition plan that can e↵ectively utilize

the capacity of each path. As such, splitting capability may adversely a↵ect the throughput

of legitimate flows while leaving available network resources underutilized. Therefore, we

believe that routing decisions made by the underlying multi-path routing protocol should

not be unnecessarily restrained.

63

4.4 Capability System Design and Implementation

Before diving into the design and implementation details of the capability distribution and

the capability enforcement components, it is necessary to introduce the physical pieces that

collectively constitute our capability system.

4.4.1 Packet Format

Capability Packet

First and foremost, a new type of capability packet is needed to fulfill the goal of capability

distribution. This packet is created by the flow responder. It contains several key pieces of

information so that an updatable capability is associated with a unique flow and can cover

new paths in the case of routing updates. For the sake of flow binding, the responder derives

a unique flow identifier (FID) for each incoming flow. The FID is composed of the initiator’s

ID, the responder’s ID, and a unique sequence number issued by the responder. The FID

is encoded into corresponding capability packets along with the assigned capability value.

This o↵ers two important benefits. First, for the actual data communication, the initiator

only needs to include the FID in the data packets instead of the entire capability token,

thereby lowering the overhead. Second, the FID can later be used to aggregate per-flow

capabilities for a particular node, so as to flag attackers who attempt to gain advantage

by launching a great number of flows. A capability packet also embraces a path recording

header (described below) that dictates the routing path it should be forwarded through.

This enables the flow responder to disseminate the capability token to newly discovered

routes. The capability packet is signed by the responder using his group credentials so that

its authenticity and integrity can be verified by other nodes.

Path Recording Header

To detect routing updates, a path recording header (PRH) is added to regular data packets.

It records the routing path through which a data packet is delivered. PRH is incrementally

64

filled by each intermediate node during the forwarding process. On each hop, the processing

node appends his signed ID onto the PRH. Therefore, when a data packet arrives, the

responder would be able to inspect the PRH to get a complete route sequence. To reduce the

transmission overhead, we employ a signature aggregation technique [110] that compresses

the signatures of all intermediate nodes into one small signature field in the header of

data packets. When a new routing path is found, the responder clones this header into a

capability packet that is sent back to the initiator, reversing the recorded path.

Summary Packet

A new summary packet is introduced for the purpose of capability enforcement. A sum-

mary packet contains a list of PRH and rate value pairs for each flow, reporting the flow’s

throughput on a particular path during the previous time window. Summary packets sent

by di↵erent nodes are the vehicles for cross-path collaboration on capability policing. All

nodes that serve a flow are required to generate and broadcast summary packets periodi-

cally. As a result, they will be able to gain a comprehensive view of the global capability

consumption.

4.4.2 Data Structures

Capability Table

Every node in CapMan maintains a capability table that archives each flow and its asso-

ciated capability. This is a hash table that indexes each flow with the corresponding FID.

The table is updated when a new capability packet is received. Old capability entries are

purged at flow termination or expiration.

Summary Table

The per-node summary table is a data structure that stores summary messages reported by

nodes on other routing paths. The table has a hierarchical structure that uses FID, PRH,

and node ID to separate flows, routing paths, and reporting nodes, respectively. Each entry

65

in the table corresponds to one summary packet the processing node receives. An entry is

updated when a new matching summary packet is received from the same node.

Leaky Bucket

Per-path throughput of any flow is computed once per time window, and the result is

broadcasted via a summary packet. However, a periodical throughput check on all nodes is

not enough to guarantee that the capability is abided all the time. Well-tuned bursty tra�c

can potentially bypass such intermittent inspections. Therefore, leaky buckets are installed

on all nodes to cope with attacks exploiting bursty tra�c and to provide enhanced quality of

service (QoS). Each bucket is associated with one route of a flow. Conceptually, the property

of rate limiting by leaky bucket is consistent with our goal of enforcing capability. In

addition, it can e↵ectively curb the degree of burstiness. Therefore, the combination of leaky

bucket and regular summary exchange ensures that the capability is enforced regardless of

tra�c patterns.

4.4.3 Capability Distribution

To establish a transport layer flow for data communication, the initiator has to send a con-

nection request to the responder, asking for the responder’s explicit approval. The request

can be either a TCP SYN packet or a special UDP packet. If the responder is willing to ac-

cept the connection, it needs to reply to the initiator with a capability packet that specifies

the maximum data rate for the flow. The responder decides the capability for the flow in

consideration of all necessary factors, including available bandwidth, the application behind

this connection, as well as the capabilities already assigned to the same initiator. Complex

algorithms can be developed to achieve a sound mapping between available resources and

the assigned capabilities but are beyond the scope of this paper.

Once the capability is decided, the responder creates a capability packet and sends it

back to the initiator along the reverse route of the request packet. Each intermediate node

along the route extracts the capability and saves it into its local capability table under

66

the pertinent flow. This cached capability will serve as the passport for future packets

of the same flow. Assuming the route stays unchanged within a single roundtrip time,

the capability packet should eventually reach the flow initiator. After that, the initiator

begins to send data packets to the responder using the capability. Each data packet only

includes the FID of the flow instead of the entire capability token to reduce the transmission

overhead. In case no capability is issued or the cached capability expires, a minimal rate

limit would be enforced on the flow to only allow connection requests to proceed. When

a new route is used for an existing flow, the responder will construct another capability

packet and send it back to the initiator, reversing the new route.

4.4.4 Capability Enforcement

The process of enforcing the advertised capabilities is a combination of local policing and

flow-wide message exchange on each node. Local policing is conducted continuously by the

per-path leaky bucket. Cross-path message exchange happens periodically on pre-defined

time windows with a certain degree of freedom. The purpose of undertaking such message

exchange is to let all intermediate nodes be aware of the flow-wide throughput and thus

adapt their bucket leaking rate.

Local Capability Policing

For each incoming data packet, the processing node inspects the packet header to extract

its flow and path information and searches the local capability table for a match. If found,

the data packet is inserted at the end of the corresponding leaky bucket or dropped if the

bucket overflows. However, if no capability is available for this flow, the packet will be

placed in the bucket for anonymous tra�c with a minimal capability. Packets in di↵erent

buckets are leaked at di↵erent rates to the next hop. The per-bucket leaking rate is updated

when summary messages are received from other routing paths of the same flow.

After forwarding a data packet, the size of the packet is added to the per-path tra�c

counter, which will be reset at the start of the next window. Before the current time

67

window expires, the recorded tra�c volume is used to compute the local throughput of the

corresponding flow. The result of that computation will be included in the summary packet

broadcasted to other nodes. The size of throughput calculation window should approximate

a pre-defined value. However, to avoid generating too much extra tra�c and thus clogging

the network channel, the window should not be too small (e.g. < 5sec). On the other hand,

the window size should not be too large (e.g. > 30sec). Otherwise, it may inhibit natural

flow dynamics. One feasible practice is to combine the summary packets with the “Hello”

messages generated by the underlying routing algorithm. Consolidating these two types of

messages can lower the overhead by reducing the number of broadcasts sent by each node.

In addition, using the neighbor-discovering time window for throughput calculation can help

the capability enforcement protocol quickly adjust to topology changes in a cost-e↵ective

manner. However, a certain degree of randomness should be enforced on all timers to avoid

global broadcast synchronization. To further reduce the chance of broadcast collision, the

802.11 CSMA/CA protocol can be adopted for simplicity, although more sophisticated

algorithms are available [111,112] for improved e�ciency and fault tolerance.

Leaking Rate Determination

DoS attacks are hard to stop under the multi-path routing paradigm in that it not only

boosts potential throughput for legitimate users but also widens the gate for attackers.

Without a collaborative defense across all employed routes, attacks can be launched simply

by approaching the assigned capability on each routing path while overwhelming the victim

with the number of routes. To combat flooding attacks that exploit multi-path routing, our

solution o↵ers every cooperating node a global view that aggregates a flow’s throughput on

all employed paths via summary message exchange.

On receiving a summary packet, a cooperating node will break it down and inspect

every hPath, Throughputi tuple inside. Tuples that represent paths going through the

processing node will be discarded. Others will be used for updating the local summary

table. Stale summary packets (whose sequence numbers are smaller than or equal to a

68

matched table entry) will be dropped. Each update in the summary of the capability table

triggers a recalculation of the leaking rate for all pertaining leaky buckets. The algorithm

for updating the leaking rate is described in Algorithm 3 and explained below.

Algorithm 3 Algorithm for updating local leaking rate.
for all SummaryEntry

i

of F
K

do
Count NumOfPaths

for j = 1! NumOfPaths do
Calculate Thruput

j

TotalThruput+ = Thruput
j

diff = CAP
FK � TotalThruput

if |diff | > Threshold then
if diff < 0 then

LeakRate� = Threshold
else

LeakRate+ = Threshold
else

LeakRate+ = diff

For a given flow F
K

, the leaking-rate-updating algorithm first calculates the number of

routing paths that are used for packet forwarding. This is done by traversing the summary

entries under F
K

and finding all unique PRHs. In addition, the algorithm computes the

throughput of each route for the last time window. Ideally, for any route that the computing

node (CN) is not on, CN should receive a summary message sent from each of its member

nodes. When all members of a route report consistent throughput values, either the median

or the mean of the reports could be selected as the final throughput value for that route.

Nevertheless, under a more realistic and adverse environment, CN may receive summary

messages reporting throughput values in a wide range, for some attackers may intentionally

send false summary data to mislead other nodes. In that case, the median value of all

received reports should be used because it is more robust to thwart anomalous values than

the mean. We will show in Section 4.5.2 that unless malicious nodes can dominate the route

in number, the damage will be limited if the median is used.

By aggregating per-route throughput for F
K

, we can get the overall throughput from

all routes of the flow. We then compare this value with the assigned capability to get the

diff in the algorithm. A negative diff means the flow throughput already exceeds the

69

capability, and the leaking rate should be dropped. If the diff is positive, we know that

the capability is underutilized, and the throughput can be increased by as much as diff .

However, the value of diff is the flow-wide deficit or margin and should not be cut or

filled in fully by nodes on any individual route. Otherwise, it would introduce recurring

and detrimental fluctuations on the flow throughput in which spikes can be several times

higher than the assigned capability. To avoid this undesirable consequence, we introduce

a threshold T = CK
P

, where C
K

is the capability for flow F
K

and P represents the total

number of routing paths used to transmit F
K

. This threshold is designed to contain the

variation range of leaking rate (LR) between consecutive time windows. When any node

updates its LR, it has to make sure that |LR
new

�LR
old

|  T . In the worst case, we assume

the overall throughput of F
K

at moment A is Thruput
A

< C
K

. As soon as intermediate

nodes that route packets for F
K

notice this, they all immediately increase their local LR

by T . At moment B when all updates are complete, we can derive that the new overall

throughput Thruput
B

= Thruput
A

+ T ⇥ P = Thruput
A

+ C
K

< 2C
K

. Thus, we show

that under CapMan, the throughput of any flow F
K

can never exceed 2C
K

. In fact, the

threshold defined by our algorithm is not the only way to confine the variance of per-flow

throughput. Alternative algorithms, such as TCP congestion control routines, can also be

tailored for this purpose.

4.5 Discussion

4.5.1 Improvement Over Existing Solutions

Existing capability-based mechanisms [20–22] work well under the context of uni-path rout-

ing. They use capability distribution algorithms similar to CapMan. However, the assigned

per-flow capabilities are independently enforced by each route. Intermediate nodes on one

route are clueless about other routes that also carry tra�c for the same end-to-end flow.

This is not a problem for the Internet where a single, static routing path is usually employed

to deliver packets for a unicast communication. Unlike the Internet, MANETs feature more

70

dynamic topologies and more resource-constrained nodes. Multi-path routing is desirable

and more likely, given the ad hoc nature of the network. Unfortunately, multi-path routing

is not accounted for by the existing capability-based mechanisms for MANETs [48–50]. To

take advantage of multi-path routing, flooding attackers can greatly boost their throughput

by employing as many disjoint routes as possible, even if the throughput along each route

stays under the capability limit.

CapMan addresses this threat by adopting distributed capability enforcement. As all

relay nodes periodically broadcast route-specific bandwidth consumption reports for every

residing flow, intermediate nodes along any route will discover the global throughput for

any flow of interest. Based on this knowledge, a per-flow capability can be collaboratively

enforced across multiple routes, as discussed in Section 4.4.4. The advantage of CapMan

over existing solutions will be further illustrated via simulations, in Section 4.6. In addi-

tion, our capability-based mechanism works with any connected network topology and is

independent of MANET routing protocols.

4.5.2 Security Analysis

This section presents an analytical evaluation of CapMan’s e↵ectiveness on mitigating in-

sider DoS attacks. In particular, we analyze CapMan’s resilience against brute-force flood-

ing attacks and abusive attacks targeting on CapMan’s internal operations. Attacks on end

nodes and bottleneck intermediate nodes are both addressed.

Brute-force Flooding Attacks

To mount a flooding DoS attack on any node in the network, an attacker only needs to

establish an end-to-end connection with the target and flood through the communication

channel. In this case, the attacker plays the role of flow initiator, and the victim is the

responder. The attack can be amplified by one or more attackers sitting on the paths

between the end nodes. However, unless the attacker can take over a route completely,

the attack will be blocked by the friendly nodes that realize the aggregated throughput

71

from the initiator is greater than the assigned capability. Indeed, in CapMan, every node

is responsible for policing the tra�c received from its immediate upstream node. Thus, an

invisible, cross-route line of defense is formed by all friendly nodes, which can stop flooding

attacks from propagating to the rest of the network. For example, if an initiator sends an

excessive amount of tra�c to a flow, the first hop along any route will be able to detect that

violation and seize forwarding packets for the flow until the overall throughput falls below

the capability. Attempts by malicious intermediate nodes to intensify the attacks will be

stopped by their next hops in the same way. One exception occurs when the attacker is

in the immediate neighborhood of the responder. In that case, the responder will need to

block the attacking neighbors or move to a new network location to establish new neighbors.

Abusive Attacks

CapMan is robust against abusive attacks that attempt to exploit or disrupt our capability-

oriented protocols in the following ways: Colluding end nodes may establish inordinate

capabilities or an excessive number of flows to swamp bottleneck intermediate nodes; ma-

licious insiders may bombard the capability request channel; and attackers may become

intermediate nodes and attack established flows by abusing the internal operations of Cap-

Man. We will discuss each potential threat and the corresponding counter-measures below.

Containing colluding end nodes Malicious initiators and responders can collude in

launching DoS attacks that aim to deplete the constrained network, CPU, or energy re-

sources of intermediate nodes along multiple paths. A malicious responder can deliberately

assign a high capability that allows an immense packet rate for a flow to consume as much

bandwidth as possible. This type of attack can be easily detected when intermediate nodes

see a particularly high capability assigned to and used by any flow. Since every capability

token encodes the identities of the associated flow initiator and responder, the colluding

nodes should be quickly pinpointed and removed. Further, a default capability can be pre-

configured o✏ine by the network administrator, specifying the upper-bound of any flow

capability. However, stealthier colluding nodes can set up a plethora of flows with normal

72

or even small capabilities to attack and avoid being detected. In such cases, per-flow capa-

bilities need to be aggregated for particular initiators or responders for attack detection.

For automatic attack mitigation, active queue management (AQM) schemes can be

employed as the foundation to ensure fairness among flows. On top of that, when congestion

occurs, the packet-dropping probability derived by AQM can be further compounded by

a factor set proportional to the size of corresponding per-flow and aggregated capabilities.

In other words, the packets of flows or end nodes bearing considerably higher capabilities

are much more likely to be dropped. As a result, colluding end nodes will be penalized for

issuing excessive capabilities, and their throughput will be largely contained.

On the other hand, there might be nodes that run special or critical applications that

warrant the use of high capabilities. Network administrators can make a list of such nodes

and inform the entire network about these special cases.

Defense against DoC attacks From the earlier research on capability-based defense [76],

we learned about a variant of DoS attacks that floods the capability request channel to deny

the access of legitimate requests. Such an attack is addressed as a denial-of-capability (DoC)

attack. To combat DoC attacks, CapMan ensures that only a small portion of the over-

all bandwidth is assigned to the capability request channel. Moreover, CapMan requires

every capability request packet to be digitally signed by the corresponding initiator using

its unique private key. Hence, source-based fair queuing can be adopted to ensure that

capability requests from di↵erent nodes are treated fairly along each hop of delivery.

Preventing flooding attacks by malicious intermediates As discussed earlier, ma-

licious intermediate nodes may exploit established connections to launch or assist flooding

attacks. Given that the forwarding path of each packet is recorded and attested, it is

di�cult for intermediate nodes to impersonate the initiator by flooding with forged pack-

ets. Instead, malicious intermediate nodes can store and replay past packets in a flooding

attempt. However, once the aggregate throughput of the exploited flow goes beyond the as-

signed capability limit, the next friendly node along each route will throttle the attack tra�c

73

to ensure global capability compliance. The excessive packets that overflow the downstream

leaky buckets will be discarded away from the target.

The only exception happens when a malicious intermediate node is an immediate neigh-

bor of the targeted node. In that case, the attack tra�c incorporating replayed packets

will directly hit the victim. As discussed earlier, to stop an attack performed by immediate

neighbors, the victim node will need to directly block the attacking neighbors, if possible,

or move away from the attackers to establish new, friendly neighbors.

Robustness against dishonest intermediates In CapMan, friendly intermediate nodes

depend on summary messages from other nodes to frame the global throughput, which is

the foundation for local leaky rate computation and tra�c policing. High accuracy and

delivery rate of the summary reports are essential to maintaining e↵ective cross-path col-

laboration. To disturb the delivery of summary packets, malicious intermediate nodes may

initiate a black-hole attack by not generating or forwarding any summary packets. However,

black-hole attacks are unlikely to cause much impact without having attackers dominate

the network in number. Since all summary reports are broadcasted, friendly nodes will be

able to disseminate and receive these packets unless they are surrounded by only attackers.

More sophisticated attackers may attempt to distort the flow-wide throughput image

seen by others by advertising false summaries claiming fabricated rate values. For exam-

ple, to help an attacking initiator gain higher throughput on other routes, the colluding

intermediate nodes can substantially downplay their reported per-path throughput of the

malicious flow. Conversely, they can drastically overstate a benign flow’s throughput on

their routes, with the goal of bringing down the overall throughput of the benign flow and

starve its initiator.

To limit the damage that can be caused by a few dishonest nodes, all intermediate nodes

on every routing path broadcast their own versions of summary reports. As a result, one

should receive multiple reports for each route originated from di↵erent nodes. If all nodes

of a route are friendly and honest, they should report consistent throughput values. Hence,

any of the reported numbers can be used to compute the aggregate throughput of the flow.

74

However, given the presence of dishonest nodes, large discrepancies may arise. In this case,

we use the median value of all reported throughput numbers for each route because it is

robust against distorted numbers, unless attackers can dominate a route in number.

Suppose a node receives summary reports from N di↵erent nodes regarding an arbi-

trary route <. Among them are G good (honest) reports and B bad (dishonest) reports.

Obviously, N = G + B. To maximize their impact, the bad reports should agree with but

deviate far from the good reports. The bad reports may claim throughput values higher

or lower than the good reports. In any case, dishonest nodes will cause no damage if the

median value is drawn from a good report. To ensure that the median is always drawn from

a good report, the following conditions must be satisfied:

If bad reports claim higher throughput values,

8
><

>:

N+1
2  G, if N is odd

N

2 + 1  G, if N is even
(4.1)

If bad reports claim lower throughput values,

8
><

>:

N+1
2 > B, if N is odd

N

2 > B, if N is even
(4.2)

Based on Formulas 4.1 and 4.2, we find out that to eliminate the impact of dishonest

intermediate nodes that falsely report higher or lower throughput numbers, we need to

make sure that

8
><

>:

G � B + 1, if N is odd

G � B + 2, if N is even
(4.3)

In other words, as long as the number of dishonest nodes is smaller than that of friendly

nodes on each individual route, the global throughput perceived by individual intermediate

75

nodes will not be manipulated.

Undeniably, attackers can gain advantage by occupying key network positions. In par-

ticular, a dishonest node located at the joint of multiple routing paths is more dangerous

because it can advertise fake throughput numbers for all these routes. On the other hand,

however, friendly joint nodes are more resilient to distorted summary reports because they

can obtain more first-hand throughput data than other nodes.

4.6 System Evaluation

We implemented a prototype of CapMan in the NS2 [61] simulator and evaluated its e�cacy

and overhead in di↵erent scenarios. For all simulations, we use IEEE 802.11 as the MAC

layer protocol and AOMDV [108] as the multi-path routing protocol. The original design

of AOMDV focused on providing fault tolerance instead of load balance. Therefore, one

optimal path is always used until it breaks. Alternative routes are cached and will only

be activated one at a time to replace the current route when it fails. To better simulate

attackers that flood the victim simultaneously along multiple routing paths, we slightly

modified the NS2 implementation of AOMDV to achieve round-robin routing that employs

all available paths in parallel to maximize end-to-end throughput.

Figure 4.2: Topology for joint multi-path routing with one flow.

First of all, we assessed the e↵ectiveness of CapMan in preventing DoS attacks launched

by a flow initiator using a simple topology described in Figure 4.2. There is one malicious

76

S D

2

1

4

3

Figure 4.3: Topology for disjoint multi-path routing with one flow.

initiator (S), one responder (D), and five intermediate nodes. The packet flow between S

and D is routed via four paths 1! 3! 4, 1! 3! 5, 2! 3! 4, and 2! 3! 5. D issues

a capability to S that specifies a maximum data rate of 100Kbps. However, S attempts to

flood D with a constant bit rate (CBR) tra�c at 900Kbps and a bursty (exponential on/o↵)

tra�c with a peak rate of 1,000Kbps. CapMan is enforced to suppress the throughput of

the attack in both cases. The results are shown in Figure 4.4 and Figure 4.5, respectively.

Apparently, in both cases, CapMan is able to constrain flow throughput to the level of the

assigned capability.

To demonstrate the improvement made by CapMan over existing capability mecha-

nisms on mitigating multi-path flooding attacks, we also implemented the deny-by-default

mechanism [48] in NS2 and ran another set of simulations with the topology displayed in

Figure 4.3. In this topology, two disjoint routes (1! 3, 2! 4) are used to forward tra�c

from S to D. The flow is bound to a capability of 50Kbps, while the malicious S attempts

to flood D with a CBR tra�c of 200Kbps and a bursty tra�c with a peak rate of 200Kbps.

Figure 4.6 and Figure 4.7 exhibit the achieved throughput numbers of the CBR and bursty

tra�c, with and without the protection of CapMan. The di↵erences are obvious. Like the

previous simulations, CapMan once again brings down the attacker throughput to within

the capability limit. In contrast, although the deny-by-default solution also reduces the

throughput of the attack tra�c to some extent, attackers can still score twice as high as the

specified capability. In fact, the more disjoint routes that the attackers can exploit under

77

Figure 4.4: DoS attack performed by an initiator using CBR tra�c.

Figure 4.5: DoS attack performed by an initiator using bursty tra�c.

deny-by-default, the higher throughput they will be able to achieve, given that the flow

capability is only enforced independently by each route.

To evaluate CapMan under a more realistic and mobile environment, we created a large

network topology with 50 nodes randomly distributed in an area of 600x600 meters. The

movement of all nodes followed the Random Waypoint model with an average pause time

of 30 seconds. We used the default radio transmission range of 250 meters and set the

per-node bandwidth to 1.0Mbps. All simulations ran for a duration of 1,000 seconds.

To further investigate the e↵ectiveness of CapMan when facing sophisticated DoS at-

tacks, we randomly picked 6 nodes to form three UDP flows. Flow 1 connected two benign

78

10 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

Time (sec)

Th
ro

ug
hp

ut
 (K

bp
s)

Attacker Traffic Deny−by−default CapMan Capability

Figure 4.6: Compare CapMan with uni-path capability-based solution using CBR tra�c.

20 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Time (sec)

Th
ro

ug
hp

ut
 (K

bp
s)

Attacker Traffic Deny−by−default CapMan Capability

Figure 4.7: Compare CapMan with uni-path capability-based solution using bursty tra�c.

nodes. Flow 2 was started by a malicious initiator to flood a benign responder. Flow 3 was

established between two colluding attackers that created a large capability to drain precious

bandwidth resources from intermediate nodes. In addition, 6 other nodes were arbitrarily

chosen to launch black-hole attacks against capability enforcement. With a total of 9 out

of 50 nodes in the network being malicious, we intended to test: 1) the ability of CapMan

to prevent flooding attacks under a dynamic topology; 2) the impact of CapMan on benign

flows; 3) the robustness of CapMan against abusive nodes. In this experiment, we set the

maximum node speed as 5m/s. The capability for the first two flows was configured to

be 100kbps. The colluding attackers of the third flow deliberately set a high capability of

79

Table 4.1: Mitigating DoS attacks in a large, dynamic topology.

Flow ID Setting Capability
No Capability CapMan

Throughput Std Throughput Std
Flow 1 50Kbps 100Kbps 45.93Kbps 4.39Kbps 39.77Kbps 1.50Kbps
Flow 2 500Kbps 100Kbps 206.71Kbps 67.62Kbps 81.43Kbps 8.43Kbps
Flow 3 500Kbps 1Mbps 191.82Kbps 50.29Kbps 51.28Kbps 5.97Kbps

1Mbps. To combat that, we set the default capability to be 150kbps. To show the di↵er-

ence with and without CapMan, we ran the same flows under each setting 10 times. The

results are summarized in Table 4.1, in which the mean and standard deviation of each

flow’s throughput are displayed. From Table 4.1, we can see that the throughput of Flow 1

dropped approximately 13% when CapMan was in e↵ect. In contrast to the small impact

that CapMan introduced to the benign flow, the throughput of the two attacking flows was

reduced by more than 60% and 73%, respectively. It is worth noting that the above results

were achieved under the presence of black-hole attackers, demonstrating the reliability of

broadcasting summary reports.

Next, we measured the overhead of CapMan using the same topology settings. A pair of

end nodes were randomly selected to form one UDP flow using CBR tra�c. The maximum

node moving speed was set to 0.001m/s, 1m/s, 5m/s, 10m/s, 15m/s, and 20m/s for a series

of simulations. The packet size was configured to be 512bytes. Packets were sent from the

initiator to the responder at 50ms time intervals. To ensure coverage, we used a time-to-live

(TTL) of 10 for all summary packets. Figure 4.8a and Figure 4.8b illustrate the variation of

the overhead with increasing speeds, while Figure 4.8c and Figure 4.8d show the changes of

the overhead from the perspective of growing time window sizes. For each run, we recorded

the total number of broadcasts sent as well as the average sizes of all summary packets.

For the convenience of implementation, in our proof-of-concept prototype of CapMan on

NS2, a summary packet only enclosed the sender’s information, some metadata (sequence

number, timestamp), PRH, and the throughput information. No cryptographic signatures

were included. Each data point in the figures represents the mean value of 30 runs with

80

(a) Number of broadcasts regarding node speed (b) Summary packet size regarding node speed

(c) Number of broadcasts regarding time window size (d) Summary packet size regarding time window size

Figure 4.8: Overhead of CapMan under di↵erent node speeds and time window sizes.

90% confidence intervals plotted around it.

As the maximum node speed grows, Figure 4.8a and Figure 4.8b reveal a slower-than-

linear increase in both the total number of broadcasts and the average size of the summary

packets. The reason is that when all nodes in a network move faster, they are inclined to

choose neighbors within shorter distances as the next hop for routing. In this case, between

the same pair of end nodes, packets should travel more-but-shorter hops to reach their

destinations. Nevertheless, according to Figure 4.8c and Figure 4.8d, the changes on the

overhead are actually subtle when the time window size of capability enforcement changes.

Ideally, the total number of broadcasts should drop considerably as per-node broadcast

frequency (i.e. the inverse of time window size) decreases. However, in a mobile environ-

ment, multiple routing updates can happen within an extended time window, thus adding

81

to the number of broadcasting nodes. To reduce the overhead introduced by CapMan, var-

ious techniques, including [113] and [114], can be employed to improve the e�ciency of the

broadcast-oriented summary exchange.

0 1 5 10 15 200

1

2

3

4

Speed (m/s)

No
rm

al
iz

ed
 O

ve
rh

ea
d

10 20 30Time Window Size (s):

Figure 4.9: Normalized overhead of CapMan.

In addition, by computing the number of broadcasted summary packets per delivered

data packet, we measured the normalized overhead of CapMan. To do that, we ran three

CBR flows under the same network and mobility settings as in the previous simulations. The

results obtained under di↵erent node speeds and time window sizes are plotted in Figure 4.9.

As was revealed in the previous experiments, the changes on node speed have more impact

on the overhead than the variances on time window size. Faster node movement not only

causes more intermediate nodes to be employed for most routes, but it also results in more

frequent changes on routing. Similar to the case of stretched time windows, nodes on both

the switched-in routes and the switched-out routes would broadcast summary packets for

the same lapsed time window. When the network is relatively stable (speed  5m/s), the

normalized overhead of CapMan stays under one summary packet per delivered data packet.

Last but not least, we compared the end-to-end packet latency as well as packet delivery

ratio (PDR) of the AOMDV routing protocol with and without enforcing the CapMan

defense mechanism. For each setting, we ran the same simulation 10 times and plotted 90%

82

0 1 5 10 156

7

8

9

10

11

12

13

14

15

Maximum Speed (m/s)

Pa
ck

et
 L

at
en

cy
 (m

s)

Unprotected
CapMan

Figure 4.10: Average packet latency of AOMDV routing with and without the protection
of CapMan.

0 1 5 10 150.75

0.80

0.85

0.90

0.95

1.00

Maximum Speed (m/s)

Pa
ck

et
 D

el
iv

er
y

R
at

io

Unprotected
CapMan

Figure 4.11: Average packet delivery ratio of AOMDV routing with and without the pro-
tection of CapMan.

confidence intervals around the means. As was stated earlier, we slightly modified the NS2

implementation of AOMDV to achieve round-robin routing using all available paths. This

may introduce unpredictable end-to-end packet latency to benign flows since the shortest

path is not always used.

83

Figure 4.10 shows that CapMan incurs only a small fraction of extra latency. The delay

introduced by CapMan is negligible when the topology is relatively static and grows slowly

as the maximum speed increases. When the maximum node moving speed reaches 15m/s,

the additional latency caused by CapMan is 9.5% compared to the unprotected system.

A similar trend is shown in Figure 4.11 which discloses the di↵erence in packet delivery

ratios. When the maximum node moving speed reaches 15m/s, the packet delivery ratio of

CapMan is only 8.9% lower than the unprotected system.

84

Chapter 5: Conclusions and Future Work

5.1 Conclusions

This thesis studied the mechanisms used to mitigate flooding DDoS attacks in the con-

tested Internet and MANET environments. The goal is to sustain the system and network

availability of the protected hosts even in the presence of strong attackers. To combat

DDoS attacks bombarded by powerful botnets on the Internet, we devised a shu✏ing-based

moving target mechanism that is capable of separating benign clients from both naive and

sophisticated attackers. With the help of the optimized shu✏ing algorithms, we can pro-

gressively quarantine the impact of a DDoS attack and restore the QoS for the a↵ected

benign clients. To implement the shu✏ing-based defense against network flooding attacks

on critical services serving authorized and authenticated clients, we designed a MOTAG ar-

chitecture [52, 53] that employs secret moving proxies as the intermediate layer to perform

tra�c indirection and to segregate attackers. To protect open web services from DDoS at-

tacks targeting both network and computational resources, we constructed a cloud-enabled

architecture [54] that dynamically replicates the protected servers when under attack and

smartly redistributes clients as dictated by the shu✏ing algorithms. In addition, we created

a capability-based mechanism to inhibit flooding DoS attacks exploiting multi-path com-

munications in MANETs. Our approach enforces capability limits assigned to end-to-end

flows across all employed routing paths. Our theoretical analysis and experimental evalua-

tion demonstrate that the proposed solutions can e↵ectively mitigate flooding DDoS attacks

in di↵erent adversarial network environments.

In Chapter 3, we introduced a family of moving target mechanisms and architectures

that aim to segregate DDoS attackers from benign clients on the Internet. The MOTAG

architecture is established on the basis of a large pool of network proxies that can be used

85

to relay communications between authenticated clients and the protected servers. We keep

all proxies private, only disclosing the IP addresses of the active proxies to authorized

clients after successful authentication. To increase the uncertainty for attackers and also to

lower the operational costs, a small yet dynamic subset of proxies are kept active to serve

legitimate clients. If hit by an attack, these proxies are replaced at runtime by backup

proxies at di↵erent network locations. As a result, the set of active proxies become moving

targets that not only can evade naive and brute-force attackers but also help to expose and

isolate advanced attackers that continue to follow.

On the basis of our research on MOTAG, we designed a more versatile, cloud-enabled

architecture that endows mobility to open web servers. By deploying replicated server

instances in the cloud, we leverage the network space and resource elasticity o↵ered by the

underlying cloud computing infrastructure to realize service mobility and scalability. Similar

to the moving proxies in MOTAG, the attacked replica servers are dynamically replaced by

newly instantiated replica servers spread in the wide space of the cloud computing network.

By intelligently redirecting a↵ected clients among the substitute servers, we are able to

isolate DDoS attacks that aim to preempt server-end network and computational resources

from the intended clients.

As our core e↵ort to optimize the shu✏ing operations that re-allocate clients under

attack to achieve attacker segregation, we developed a series of algorithms that can ex-

pectedly separate the maximum number of benign clients from attackers in each shu✏e.

A theoretically optimal dynamic programming algorithm and a fast greedy algorithm were

proposed to compute the desired client assignment plan. A maximum-likelihood estimation

(MLE) algorithm was presented and analyzed to make educated guesses on the number of

persistent attackers following the constructed moving targets.

We thoroughly evaluated the e↵ectiveness and overhead of our moving target defenses.

Experiments that simulated various DDoS attacks demonstrate that the shu✏ing-based

mechanism can successfully quarantine the constantly following attackers in a few rounds of

shu✏ing. We also implemented proof-of-concept prototypes of the MOTAG architecture and

86

the cloud-enabled architecture on PlanetLab and Amazon EC2, respectively. Experiments

with the prototypes show that the time overheads of redirecting clients between di↵erent

proxies and di↵erent replica web servers are both low.

Compared to existing Internet DDoS defense mechanisms, our moving target solutions

do not rely on dedicated infrastructures to outmuscle botnets and absorb attack tra�c,

nor do they require sophisticated security functionalities to be widely deployed on Internet

routers. Instead, we opt for a dynamic approach that turns network proxies and replica

servers into moving targets to continuously confuse and evade attackers. This approach

allows us to mitigate intense DDoS attacks over time even if we own much fewer resources

than the attackers do. The proposed solutions can be independently deployed by individual

organizations without the support of ISPs. Modern cloud computing providers, with their

abundance of resources and pay-per-use policies, are ideal for hosting our DDoS mitigation

systems.

In addition to protecting Internet services from DDoS attacks, this thesis also aimed

to secure hosts in MANETs against DoS attacks launched by malicious insiders. To this

end, we designed CapMan, a capability-based mechanism to stop flooding attacks targeting

multi-path MANET communications. CapMan binds each end-to-end flow to a unique

capability issued by the flow responder and makes sure intermediate nodes on all employed

routing paths are informed about the per-flow capabilities. To enforce the flow capability

limit in the multi-path routing context, participating nodes across di↵erent paths exchange

bandwidth consumption reports periodically to maintain a global throughput image and

adjust local policing rates accordingly. Simulations using NS2 show that CapMan is able

to contain the throughput of attacking flows routed through multiple paths, even in the

case of colluding intermediate and end nodes. In the meantime, only a small portion of the

network bandwidth will be consumed by the control packets of CapMan.

87

5.2 Future Work

The research presented in this thesis can lead to a number of future research directions that

cover di↵erent aspects of DDoS defense in contested networking environments. We discuss

a few of them in this section.

The analysis and experiments performed for this thesis show that shu✏ing-based mov-

ing target defense is a novel and e↵ective strategy for mitigating Internet DDoS attacks.

However, more work needs to be done before we can implement a practical defense system

that realizes this idea.

First, the current threat model assumed the worst case that attackers own infinite

bandwidth. Consequently, one persistent attacker that follows a moving proxy or replica

server is enough to cause that service node to be attacked. In practice, however, botnets

always have limited attacking power. Therefore, not all exposed service nodes will end up

being attacked. Incorporating a parameter that estimates the realistic size and capability of

attackers may allow us to build a more practical model of the problem, hence constructing

a solution that works better against attacks of average intensity.

Second, in the cloud-enabled architecture that uses dynamic replica servers as moving

targets, client redistribution operations are e�cient only if no client state information needs

to be migrated. This is the case for stateless services or stateful services that keep session

information at the back-end storage location. In other scenarios, such as attacks targeting

the back-end filesystem or database, or attacks on services without separate storage, state

information needs to be transferred while clients are being re-assigned. For the purpose of

swift client migration, auxiliary technologies such as lightweight virtualization are needed

to encapsulate per-client sessions. So far, migrating the states of a large number of clients

independently and in parallel remains an unsolved problem.

Third, the economics of the proposed moving target defense is also an interesting re-

search problem. Compared to conventional DDoS mitigation mechanisms that are static in

nature, our moving target solutions do not depend on the sheer volume of resources to dilute

an attack. Instead, a relatively small number of service nodes are used to launder clients

88

over time. Therefore, the cost of running our defense should be multiplying the prices of

employed service nodes by the time it takes to quarantine the attack. For defenders, while

maximizing the number of saved benign clients, another important goal is to improve the

cost-e↵ectiveness by using resources more e�ciently. From the attackers’ perspective, if it

becomes di�cult to disable the targeted service, a di↵erent type of inflicted damage is to

raise the cost of running the defense system. The strategies for defenders and attackers to

achieve their respective goals warrant more study.

On combating MANET DoS attacks, future research can integrate our capability-based

mechanism with dynamic routing protocols. Such an integration not only reduces the

overhead of broadcasting periodical summary reports, but it also provides accurate and up-

to-date multi-path routing information to the capability enforcement module. In addition,

reputation-based mechanisms can be compounded with our solution on giving credibility

scores to di↵erent nodes. In this way, di↵erent weights can be assigned to reports originating

from intermediate nodes, enhancing the robustness of the system against dishonest and

misbehaving nodes in the network.

89

Bibliography

90

Bibliography

[1] M. Handley, E. Rescorla, and IAB, “Internet Denial-of-Service Considerations,”
RFC 4732 (Informational), Internet Engineering Task Force, Dec. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4732.txt

[2] D. Anstee and D. Bussiere, “Worldwide infrastructure security report viii,” 2012.
[Online]. Available: http://www.arbornetworks.com/report

[3] T. Micro, “Russian underground 101,” http://www.trendmicro.com/cloud-content/
us/pdfs/security-intelligence/white-papers/wp-russian-underground-101.pdf, 2012.

[4] J. Vijayan, “Update: Mastercard, visa others hit by ddos attacks over wik-
ileaks,” http://www.computerworld.com/s/article/9200521/Update MasterCard
Visa others hit by DDoS attacks over WikiLeaks?taxonomyId=82&pageNumber=1,
2010.

[5] B. McCarty, “Botnets: Big and bigger,” Security & Privacy, IEEE, vol. 1, no. 4, pp.
87–90, 2003.

[6] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

[7] C. E. R. Team, “Cert advisory ca-1996-21 tcp syn flooding and ip spoofing attacks,”
September 1996. [Online]. Available: http://www.cert.org/advisories/CA-1996-21.
html

[8] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spa↵ord, A. Sundaram, and D. Zam-
boni, “Analysis of a denial of service attack on tcp,” in Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on. IEEE, 1997, pp. 208–223.

[9] C. E. R. Team, “Cert advisory ca-1996-01 udp port denial-of-service attack,”
Februrary 1996. [Online]. Available: http://www.cert.org/advisories/CA-1996-01.
html

[10] ——, “Cert advisory ca-1998-01 smurf ip denial-of-service attacks,” Janurary 1998.
[Online]. Available: http://www.cert.org/advisories/CA-1996-01.html

[11] ——, “Denial of service attacks using nameservers,” April 2000. [Online]. Available:
http://www.cert.org/advisories/CA-1996-01.html

[12] F. C. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: exploring a root-cause
methodology to prevent distributed denial-of-service attacks,” in Proceedings of the

91

10th European conference on Research in Computer Security, ser. ESORICS’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 319–335. [Online]. Available:
http://dx.doi.org/10.1007/11555827 19

[13] D. Clark, “The design philosophy of the darpa internet protocols,” in ACM SIG-
COMM Computer Communication Review, vol. 18, no. 4. ACM, 1988, pp. 106–114.

[14] V. D. Gligor, “A note on denial-of-service in operating systems,” Software Engineer-
ing, IEEE Transactions on, no. 3, pp. 320–324, 1984.

[15] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, Nov. 1984. [Online].
Available: http://doi.acm.org/10.1145/357401.357402

[16] V. D. Gligor, “Guaranteeing access in spite of distributed service-flooding attacks,”
in Security Protocols. Springer, 2005, pp. 80–96.

[17] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Con-
trolling high bandwidth aggregates in the network,” ACM Computer Communication
Review, vol. 32, pp. 62–73, 2002.

[18] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service
attacks which employ ip source address spoofing,” RFC 2827 (Best Current Practice),
Internet Engineering Task Force, May 2000, updated by RFC 3704.

[19] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: network-layer dos defense
against multimillion-node botnets,” in Proceedings of the ACM SIGCOMM 2008 con-
ference on Data communication. New York, NY, USA: ACM, 2008, pp. 195–206.

[20] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing internet denial-of-service with
capabilities,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, pp. 39–44, 2004.

[21] A. Yaar, A. Perrig, and D. Song, “Si↵: A stateless internet flow filter to mitigate ddos
flooding attacks,” in IEEE Symposium on Security and Privacy, 2004, pp. 130–143.

[22] X. Yang, D. Wetherall, and T. Anderson, “Tva: a dos-limiting network architecture,”
IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1267–1280, 2008.

[23] X. Liu, X. Yang, and Y. Xia, “Netfence: preventing internet denial of service from
inside out,” in Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM,
ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 255–266. [Online].
Available: http://doi.acm.org/10.1145/1851182.1851214

[24] A. D. Keromytis, V. Misra, and D. Rubenstein, “Sos: Secure overlay services,” in
Proceedings of ACM SIGCOMM, 2002, pp. 61–72.

[25] A. Stavrou and A. D. Keromytis, “Countering dos attacks with stateless
multipath overlays,” in Proceedings of the 12th ACM conference on Computer and
communications security, ser. CCS ’05. New York, NY, USA: ACM, 2005, pp.
249–259. [Online]. Available: http://doi.acm.org/10.1145/1102120.1102153

92

[26] D. G. Andersen, “Mayday: distributed filtering for internet services,” in USITS’03:
Proceedings of the 4th conference on USENIX Symposium on Internet Technologies
and Systems. Berkeley, CA, USA: USENIX Association, 2003, pp. 3–3.

[27] R. Stone, “Centertrack: an ip overlay network for tracking dos floods,” in SSYM’00:
Proceedings of the 9th conference on USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2000, pp. 15–15.

[28] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang, “dfence: Transparent
network-based denial of service mitigation,” in NSDI, 2007.

[29] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: withstanding
multimillion-node botnets,” in Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation, ser. NSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 45–58. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1387589.1387593

[30] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion
router,” in In Proceedings of the 13th Usenix Security Symposium, 2004.

[31] “Akamai,” http://www.akamai.com.

[32] “Limelight networks,” http://www.limelight.com.

[33] B. Wu, J. Chen, J. Wu, and M. Cardei, “A Survey of Attacks and
Countermeasures in Mobile Ad Hoc Networks,” in Wireless Network Security, ser.
Signals and Communication Technology, Y. Xiao, X. S. Shen, and D.-Z. Du,
Eds. Boston, MA: Springer US, 2007, ch. 5, pp. 103–135. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-33112-6\ 5

[34] T. Karygiannis and L. Owens, “Wireless network security,” NIST special publication,
vol. 800, p. 48, 2002.

[35] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: a secure on-demand routing
protocol for ad hoc networks,” Wirel. Netw., vol. 11, no. 1-2, pp. 21–38, 2005.

[36] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-demand secure
routing protocol resilient to byzantine failures,” in Proceedings of the 1st ACM work-
shop on Wireless security. ACM, 2002, pp. 21–30.

[37] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer, “A secure
routing protocol for ad hoc networks,” in Network Protocols, 2002. Proceedings. 10th
IEEE International Conference on. IEEE, 2002, pp. 78–87.

[38] H. Yih-Chun and A. Perrig, “A survey of secure wireless ad hoc routing,” Security &
Privacy, IEEE, vol. 2, no. 3, pp. 28–39, 2004.

[39] P. Papadimitratos and Z. J. Haas, “Secure data transmission in mobile ad hoc net-
works,” in Proceedings of the 2nd ACM workshop on Wireless security. ACM, 2003,
pp. 41–50.

93

[40] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: a defense against wormhole
attacks in wireless networks,” in INFOCOM 2003. Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications. IEEE Societies, vol. 3. IEEE,
2003, pp. 1976–1986.

[41] ——, “Rushing attacks and defense in wireless ad hoc network routing protocols,” in
Proceedings of the 2nd ACM workshop on Wireless security. ACM, 2003, pp. 30–40.

[42] S. Lu, L. Li, K.-Y. Lam, and L. Jia, “Saodv: a manet routing protocol that can with-
stand black hole attack,” in Computational Intelligence and Security, 2009. CIS’09.
International Conference on, vol. 2. IEEE, 2009, pp. 421–425.

[43] Y.-C. Hu, D. B. Johnson, and A. Perrig, “Sead: Secure e�cient distance vector routing
for mobile wireless ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, pp. 175–192,
2003.

[44] S. Marti, T. J. Giuli, K. Lai, M. Baker et al., “Mitigating routing misbehavior in
mobile ad hoc networks,” in International Conference on Mobile Computing and Net-
working: Proceedings of the 6 th annual international conference on Mobile computing
and networking, vol. 6, no. 11, 2000, pp. 255–265.

[45] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balu-
pari, C.-Y. Tseng, and T. Bowen, “A general cooperative intrusion detection ar-
chitecture for manets,” in Information Assurance, 2005. Proceedings. Third IEEE
International Workshop on. IEEE, 2005, pp. 57–70.

[46] X. Wu and D. K. Yau, “Mitigating denial-of-service attacks in manet by distributed
packet filtering: a game-theoretic approach,” in Proceedings of the 2nd ACM sym-
posium on Information, computer and communications security. ACM, 2007, pp.
365–367.

[47] X. Jin, Y. Zhang, Y. Pan, and Y. Zhou, “Zsbt: A novel algorithm for tracing dos at-
tackers in manets,” EURASIP Journal on Wireless Communications and Networking,
vol. 2006, no. 2, pp. 82–82, 2006.

[48] M. Alicherry, A. D. Keromytis, and A. Stavrou, “Deny-by-default distributed security
policy enforcement in mobile ad hoc networks,” in Proceedings of the 5th International
Conference on Security and Privacy in Communication Networks, September 2009.

[49] ——, “Evaluating a collaborative defense architecture for manets,” in IMSAA’09:
Proceedings of the 3rd IEEE international conference on Internet multimedia services
architecture and applications. Piscataway, NJ, USA: IEEE Press, 2009, pp. 229–234.

[50] M. Alicherry and A. D. Keromytis, “Diploma: Distributed policy enforcement archi-
tecture for manets,” in Proceedings of the 4th International Conference on Network
and System Security (NSS), September 2010, pp. 89–98.

[51] ——, “Securing manet multicast using diploma,” in Proceedings of the 5th Interna-
tional Workshop on Security (IWSEC), November 2010, pp. 232–250.

94

[52] Q. Jia, K. Sun, and A. Stavrou, “Motag: Moving target defense against internet denial
of service attacks,” in Proceedings of 22nd International Conference on Computer
Communications and Networks (ICCCN). IEEE, 2013.

[53] H. Wang, Q. Jia, D. Fleck, W. Powell, F. Li, and A. Stavrou, “A moving target ddos
defense mechanism,” Computer Communications (COMCOM), submitted to.

[54] Q. Jia, H. Wang, D. Fleck, F. Li, and A. Stavrou, “Catch me if you can: A cloud-
enabled ddos defense,” The 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2014), submitted to.

[55] Q. Jia, K. Sun, and A. Stavrou, “Capman: Capability-based defense against multi-
path denial of service (dos) attacks in manet,” in Proceedings of the first International
Workshop on Privacy, Security and Trust in Mobile and Wireless Systems, 2011.

[56] ——, “Capability-based defenses against dos attacks in multi-path manet communi-
cations,” Wireless Personal Communications, 2013.

[57] D. of Homeland Security, “Moving target defense,” 2011. [Online]. Available:
http://www.cyber.st.dhs.gov/moving-target-defense/

[58] MATLAB, version 7.8.0 (R2009a). Natick, Massachusetts: The MathWorks Inc.,
2009.

[59] “Planetlab,” http://www.planet-lab.org/.

[60] Amazon.com, “Amazon web services,” http://aws.amazon.com.

[61] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/.

[62] G. Sandoval and T. Wolverton, “Leading web sites under attack,”
2000. [Online]. Available: http://news.cnet.com/Leading-Web-sites-under-attack/
2100-1017 3-236683.html

[63] R. Richardson, “20102011 annual CSI computer crime and security survey,” Computer
Security Institute, Tech. Rep., 2011.

[64] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense
mechanisms,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39–53, Apr.
2004. [Online]. Available: http://dx.doi.org/10.1145/997150.997156

[65] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense mech-
anisms countering the dos and ddos problems,” ACM Computing Surveys (CSUR),
vol. 39, no. 1, p. 3, 2007.

[66] M. Abliz, “Internet denial of service attacks and defense mechanisms,” University of
Pittsburgh, Tech. Rep. TR-11-178, Mar 2011.

[67] R. Beverly, A. Berger, Y. Hyun, and kc cla↵y, “Understanding the e�cacy of deployed
internet source address validation filtering,” in Internet Measurement Conference,
A. Feldmann and L. Mathy, Eds. ACM, 2009, pp. 356–369.

95

[68] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and adoptable source
authentication,” in NSDI, J. Crowcroft and M. Dahlin, Eds. USENIX Association,
2008, pp. 365–376.

[69] S. Bellovin, M. Leech, and T. Taylor, “Internet draft: Icmp traceback messages,”
http://tools.ietf.org/html/draft-ietf-itrace-04, 2003.

[70] D. Dean, M. Franklin, and A. Stubblefield, “An algebraic approach to ip traceback,”
ACM Transactions on Information and System Security (TISSEC), vol. 5, no. 2, pp.
119–137, 2002.

[71] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network support for
ip traceback,” ACM SIGCOMM Computer Communication Review, vol. 30, no. 4,
pp. 295–306, 2000.

[72] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T.
Kent, and W. T. Strayer, “Hash-based ip traceback,” in ACM SIGCOMM Computer
Communication Review, vol. 31, no. 4. ACM, 2001, pp. 3–14.

[73] M. T. Goodrich, “E�cient packet marking for large-scale ip traceback,” in Proceedings
of the 9th ACM conference on Computer and communications security. ACM, 2002,
pp. 117–126.

[74] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale ip traceback in high-speed internet:
Practical techniques and theoretical foundation,” in Security and Privacy, 2004. Pro-
ceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 115–129.

[75] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu, “Portcullis:
Protecting connection setup from denial-of-capability attacks,” in Proceedings of the
ACM SIGCOMM, August 2007.

[76] K. Argyraki and D. R. Cheriton, “Network capabilities: The good, the bad and the
ugly,” in ACM HotNets-IV, 2005.

[77] L. Overlier and P. Syverson, “Locating hidden servers,” in Proceedings of the 2006
IEEE Symposium on Security and Privacy, ser. SP ’06, Washington, DC, USA, 2006,
pp. 100–114.

[78] V. Kambhampati, C. Papadopoulos, and D. Massey, “Epiphany: A location hiding
architecture for protecting critical services from ddos attacks,” in The 42nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2012), 2012.

[79] X. Wang and M. K. Reiter, “Wraps: Denial-of-service defense through web referrals,”
in 25th IEEE Symposium on Reliable Distributed Systems. IEEE Computer Society,
2006, pp. 51–60.

[80] X. Wu and D. K. Y. Yau, “Mitigating denial-of-service attacks in manet by distributed
packet filtering: a game-theoretic approach,” in ASIACCS ’07: Proceedings of the 2nd
ACM symposium on Information, computer and communications security. New York,
NY, USA: ACM, 2007, pp. 365–367.

96

[81] R. Akbani, T. Korkmaz, and G. Raju, “Heap: A packet authentication scheme for
mobile ad hoc networks,” Ad Hoc Networks, vol. 6, no. 7, pp. 1134–1150, 2008.

[82] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-hashing for
message authentication,” 1997, updated by RFC 6151. [Online]. Available:
http://tools.ietf.org/html/rfc2104

[83] J.-P. Hubaux, L. Buttyán, and S. Capkun, “The quest for security in mobile ad hoc
networks,” in Proceedings of the 2nd ACM international symposium on Mobile ad hoc
networking & computing, ser. MobiHoc ’01. New York, NY, USA: ACM, 2001, pp.
146–155. [Online]. Available: http://doi.acm.org/10.1145/501436.501437

[84] L. Zhou, F. B. Schneider, and R. Van Renesse, “Coca: A secure distributed online
certification authority,” ACM Transactions on Computer Systems (TOCS), vol. 20,
no. 4, pp. 329–368, 2002.

[85] S. Yi and R. Kravets, “Moca : Mobile certificate authority for wireless ad hoc
networks,” Ad Hoc Networks, vol. 51, p. 65, 2003. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.11.1281&rep=rep1&type=pdf#page=71

[86] C. Zouridaki, B. L. Mark, K. Gaj, and R. K. Thomas, “Distributed CA-based PKI
for mobile ad hoc networks using elliptic curve cryptography,” in Public Key Infras-
tructure. First European PKI Workshop: Research and Applications, EuroPKI 2004.
Proceedings. Springer-Verlag, 2004, pp. 232–45 BN – 3 540 22 216 2+.

[87] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,” in Proceed-
ings of the 6th annual international conference on Mobile computing and networking.
ACM, 2000, pp. 275–283.

[88] H. Yang, J. Shu, X. Meng, and S. Lu, “Scan: self-organized network-layer security
in mobile ad hoc networks,” Selected Areas in Communications, IEEE Journal on,
vol. 24, no. 2, pp. 261–273, 2006.

[89] L. Buttyan and J.-P. Hubaux. (2001) Nuglets: a virtual currency to stimulate
cooperation in self-organized mobile ad hoc networks. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.8953

[90] S. Buchegger and J.-Y. Le Boudec, “Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks,” in Parallel, Distributed and
Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on. IEEE,
2002, pp. 403–410.

[91] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis,
“Defending against hitlist worms using network address space randomization,”
in Proceedings of the 2005 ACM workshop on Rapid malcode, ser. WORM
’05. New York, NY, USA: ACM, 2005, pp. 30–40. [Online]. Available:
http://doi.acm.org/10.1145/1103626.1103633

[92] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux
service networks,” in NDSS. The Internet Society, 2008.

97

[93] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein, “Move: An
end-to-end solution to network denial of service,” in Network and Distributed System
Security Symposium, NDSS 2005. The Internet Society, 2005.

[94] T. Aura, P. Nikander, and J. Leiwo, “Dos-resistant authentication with client puzzles,”
in Security Protocols Workshop, 2000, pp. 170–177.

[95] D. Dean and A. Stubblefield, “Using client puzzles to protect tls,” in Proceedings of
the 10th conference on USENIX Security Symposium - Volume 10, ser. SSYM’01.
Berkeley, CA, USA: USENIX Association, 2001, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251327.1251328

[96] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten, “New client puzzle
outsourcing techniques for dos resistance,” in Proceedings of the 11th ACM conference
on Computer and communications security, ser. CCS ’04. New York, NY, USA: ACM,
2004, pp. 246–256. [Online]. Available: http://doi.acm.org/10.1145/1030083.1030117

[97] T. M. Gil and M. Poletto, “Multops: a data-structure for bandwidth attack
detection,” in Proceedings of the 10th conference on USENIX Security Symposium -
Volume 10, ser. SSYM’01. Berkeley, CA, USA: USENIX Association, 2001, pp. 3–3.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267612.1267615

[98] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for classifying
denial of service attacks,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, ser.
SIGCOMM ’03. New York, NY, USA: ACM, 2003, pp. 99–110. [Online]. Available:
http://doi.acm.org/10.1145/863955.863968

[99] T. Brisco, “DNS Support for Load Balancing,” RFC 1794 (Informational), Internet
Engineering Task Force, Apr. 1995. [Online]. Available: http://www.ietf.org/rfc/
rfc1794.txt

[100] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616 (Draft
Standard), Internet Engineering Task Force, Jun. 1999, updated by RFCs 2817,
5785, 6266, 6585. [Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[101] F5.com, “Big-ip system,” http://www.f5.com/pdf/products/big-ip-platforms-
datasheet.pdf.

[102] N. Johnson and S. Kotz, Urn Models and Their Applications: An Approach to Modern
Discrete Probability Theory. New York: Wiley, 1977, ch. 1.3.2.

[103] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans. Model.
Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998. [Online]. Available:
http://doi.acm.org/10.1145/272991.272995

[104] “Iperf,” http://iperf.sourceforge.net.

[105] “Node.js,” http://www.nodejs.org.

98

[106] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455 (Informational),
Internet Engineering Task Force, Dec. 2011. [Online]. Available: http://www.ietf.
org/rfc/rfc6455.txt

[107] S. Mueller, R. Tsang, and D. Ghosal, “Multipath routing in mobile ad hoc networks:
Issues and challenges,” in Performance Tools and Applications to Networked Systems,
volume 2965 of LNCS. Springer-Verlag, 2004, pp. 209–234.

[108] M. K. Marina and S. R. Das, “On-demand multipath distance vector routing in ad
hoc networks,” in Proceedings of IEEE International Conference on Network Protocols
(ICNP, 2001, pp. 14–23.

[109] W. chang Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic fair blue: A
queue management algorithm for enforcing fairness,” in Proceedings of IEEE INFO-
COM, 2001, pp. 1520–1529.

[110] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably encrypted
signatures from bilinear maps,” in EUROCRYPT, 2003, pp. 416–432.

[111] X. Zhang and K. G. Shin, “Chorus: collision resolution for e�cient wireless
broadcast,” in Proceedings of the 29th conference on Information communications,
ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 1747–1755.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1833515.1833756

[112] C.-Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya, “Reliable broadcast in
radio networks: the bounded collision case,” in Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed computing, ser. PODC
’06. New York, NY, USA: ACM, 2006, pp. 258–264. [Online]. Available:
http://doi.acm.org/10.1145/1146381.1146420

[113] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile ad
hoc networks,” in Proceedings of the 3rd ACM international symposium on Mobile ad
hoc networking & computing, ser. MobiHoc ’02. New York, NY, USA: ACM, 2002,
pp. 194–205. [Online]. Available: http://doi.acm.org/10.1145/513800.513825

[114] S. Pleisch, M. Balakrishnan, K. Birman, and R. van Renesse, “Mistral:
e�cient flooding in mobile ad-hoc networks,” in Proceedings of the 7th ACM
international symposium on Mobile ad hoc networking and computing, ser.
MobiHoc ’06. New York, NY, USA: ACM, 2006, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1132905.1132907

99

Curriculum Vitae

Quan Jia received his Bachelor of Science in Software Engineering from South China Uni-
versity of Technology in 2006. He received his Master of Science in Information Security and
Assurance from George Mason University in 2012. His research interests include network
and system availability, operating system security, and virtualization.

100

