Sentinel-1 Synthetic Aperture Radar Burned Area Detection Using Expectation Maximization in a Multiscale Approach

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University

by

Louis D. Heying Bachelor of Science Towson University, 2014

Director: Ruixin Yang, Associate Professor Geography and Geoinformation Science Department

> Spring Semester2023 George Mason University Fairfax, VA

Copyright 2023 Louis D. Heying All Rights Reserved

DEDICATION

I dedicate this work to my father and mother, Donald and Mary, and to my sister, Ruthie, and my brother, John.

ACKNOWLEDGEMENTS

I wish to thank my advisor, Dr. Ruixin Yang, for his guidance and support throughout this process. I also want to thank the members of my committee for their invaluable input and patience: Dr. John Qu, and Dr. Donglian Sun. I would also like to thank my family, friends, and colleagues for supporting and believing in me as I worked through this thesis, particularly both friend and colleague, Kyle Foster; and former Geography Club President and friend David M. Finally, I wish to thank the Alaska Satellite Facility for providing the code for the methodology that this work builds upon. This work was not supported by any funding and does not represent the views of the United States Government.

TABLE OF CONTENTS

	Page
List of Tables	vi
List of Figures	vii
List of Abbreviations	viii
Abstract	ix
I. Introduction	
II. Data Collection	7
III. Methodology	
IV. Results	
V. Discussion	
VI. Conclusion	
Appendix	
References	

LIST OF TABLES

Table	Page
Table 1 Woods Creek Fire Sentinel-1 Images	10
Table 2 French Fire Sentinel-1 Images	11
Table 3 Sentinel-2 Images	12
Table 4 Sentinel-2 dNBR Thresholds	21

LIST OF FIGURES

Page
6
9
15
19
20
23
25
26
28
29

LIST OF ABBREVIATIONS

Advanced Very High Resolution Radiometer	AVHRR
Alaska Satellite Facility	ASF
Application Programming Interface	API
Decibel	dB
differenced Normalized Burn Ratio	dNBR
Digital Elevation Model	DEM
European Space Agency	ESA
Google Earth Engine	GEE
Ground Range Detected	GRD
Hybrid Pluggable Processing Pipeline	НуРЗ
Indian Space Research Organisation	ISRO
Intergovernmental Panel on Climate Change	IPCC
Moderate Resolution Imaging Spectroradiometer	MODIS
National Aeronautics and Space Administration	NASA
NASA-ISRO Synthetic Aperture Radar	NISAR
Near Infrared	NIR
Normalized Burn Ratio	NBR
Representative Concentration Pathway	RCP
Shortwave Infrared	SWIR
Shuttle Radar Topography Mission	SRTM
Single Look Complex	SLC
Sum of Square Error	SSE
Synthetic Aperture Radar	SAR
Vertical transmit Vertical receive	VV
Vertical transmit Horizontal receive	VH
3D Elevation Program	3DEP

ABSTRACT

SENTINEL-1 SYNTHETIC APERTURE RADAR BURNED AREA DETECTION USING EXPECTATION MAXIMIZATION IN A MULTISCALE APPROACH

Louis D. Heying, M.S. George Mason University, 2023

Thesis Director: Dr. Ruixin Yang

This research explores wildfire burn mapping using Sentinel-1 Synthetic Aperture Radar (SAR) imagery for the 2021 Woods Creek Fire in the Helena-Lewis and Clark National Forest in Montana and the 2021 French Fire near Lake Isabella in Kern County California. Sentinel-1 SAR imagery is used since it can be collected during most weather conditions as well as in heavy smoke and is useful in the upper latitudes where wildfires often occur. Both the ascending and descending orbits as well as the co-polarity (VV) and cross-polarity (VH) are evaluated. The increase of wildfire occurrence is the result of lower precipitation and fuel moisture content as a result of climate change. The methodology by which SAR imagery detects wildfire burns is adapted to use SAR imagery from Google Earth Engine (GEE) and a method provided by the Alaska Satellite Facility (ASF). This method utilizes a stationary wavelet transform and math morphology to process imagery at various scales and expectation maximization in order to generate change classes. The resulting burn area is compared to Sentinel-2 differenced Normalized Burn Area (dNBR) and MODIS Burned Area. The ascending orbits of Sentinel-1 burned areas provided the best results compared to those of the descending orbits likely due to the limited ability of GEE to radiometrically terrain correct SAR imagery.

I. INTRODUCTION

Wildfires in North America are intensifying and becoming more commonplace as a result of the warming effects of climate change with the number of wildfires having increased in the late twentieth century and into the twenty-first century (Abatzoglou and William 2016, Parks and Abatzoglou 2020). These gradual changes have resulted in extended and extreme summer conditions which can lead to a greater abundance of fuel (Williams et al. 2019). Higher temperatures and lower precipitation have increased the frequency of hydrologic drought which contribute to this abundance of fuel comprised mostly of organic material (Trenberth 2011, Littell et al. 2016). Reduced snowpack, particularly in the North American West, is an additional contributor to the increases in burn fuel. There is an enhanced tendency to experience rain rather than snow during the winter season, which has adverse effects in the summer (Trenberth 2011). Drier conditions are not the sole explainer of climate change which leads to more frequent wildfires as fuel or vegetation type also have an impact on fire regimes (McKenzie and Littell 2017). At the same time, the summer season is lengthening at higher latitudes which is consequential to increased drought conditions through decreased snowpack (Schwartz 1998, Jolly et al. 2015). Earlier snowmelt in the North American West additionally contributes to increased wildfire activity (Westerling 2016). Particularly,

these conditions contribute to lower fuel moisture and results in a longer fire season (Halofsky et al. 2020).

Frequent wildfire impacts not only the ecologic balance of the forests it occurs in, but also has societal and economic impact in the populated areas which border forests (Keeton et al. 2007, Ager et al. 2019). Additionally, one of the outcomes of increased agriculture around the world is that the amount of burned area has decreased despite the increase in fire frequency (Andela et al. 2017).

With the increasing frequency of wildfire, forests are subject to repeated fires which impact the diversity of the forest as well as how quickly the forest recovers (Halofsky et al. 2020). The Representative Concentration Pathway (RCP) are trajectory scenarios for greenhouse gas projections where RCP 4.5 is an intermediate scenario where emissions level off and decline after 2040 and RCP 8.5 is an extreme scenario where emissions continue to increase. Viewing wildfire through the lens of the Intergovernmental Panel on Climate Change (IPCC) assessments, future projections utilizing climate models indicate that wildfires will further increase both under the RCP 4.5 and RCP 8.5 climate scenarios (Gao et al. 2021). This is further supported by climate projections which show that North America will be at an exceptional risk of drought through the twenty-first century (Cook et al. 2015). Increases in wildfire frequency as a result of climate change will not only occur during the summer season but also during the winter season in which fire activity had previously been minimal in the North America (Heidari et al. 2021). In November 2018, the non-summer Camp Fire in California was the deadliest and one of the costliest in the state's history underscoring the risk of

wildfire in the current century costing over \$16 billion and resulting in the loss of 85 lives (Baldassari 2018, CNBC 2018).

Wildfires are an ever-increasing threat for forests throughout the world, and especially for forests of North America. Accurate estimates of wildfire burn are difficult with in situ measurements due to the risks associated, and therefore, remote sensing is commonly used to estimate total area impacted. However, often times optical imagery is unable to obtain a clear observation during a wildfire event due to impacts of weather, time of day, or smoke. The microwave capabilities of SAR imagery are not dependent on illumination from the Sun but from the sensor itself and can thus be utilized under most conditions. SAR sensors are becoming more prolific as a source of remotely sensed imagery with various commercial SAR constellations entering into orbit as well as civil SAR sensors such as the upcoming National Aeronautics and Space Administration (NASA) and the Indian Space Research Organisation (ISRO) collaborative satellite NISAR (NASA-ISRO Synthetic Aperture Radar) to be launched into orbit in 2024. Radar sensors operate at various radio frequencies and bandwidths which interact with materials differently. This satellite will have an L-band sensor which is advantageous for monitoring forests. In advance of the launch of NISAR and the availability of its data, it is necessary to use more readily available C-band imagery. The L-band range of frequencies is from 1.0-2.0 gigahertz while the C-band rage of frequencies is from 4.0-8.0 gigahertz. This study intends to look at a method utilized by the Alaska Satellite Facility (ASF) using C-band SAR that is currently available through the European Space Agency's (ESA) Copernicus Programme and to apply this method to a sample of

wildfires in North America. The specific wildfires in this study are in areas which have a wide variety of terrain and therefore a method to mitigate radar effects from terrain is used. Many wildfires occur in areas which may not always be ideal for SAR imagery and using terrain correction techniques are required in order to get an accurate observation of a region.

In the past, wildfire burns have been typically mapped using remotely sensed optical imagery. The Landsat missions have been a mainstay of the mid to high resolution remotely sensed data from space since the 1970s and has been joined by the European Space Agency's (ESA) Copernicus Programme Sentinel-2 multispectral sensor. Observation by these sensors is hampered at higher latitudes by cloud cover as well as interference from the thick smoke from wildfires thus limiting the amount of usable data. The Normalized Difference Vegetation Index (NDVI) has been previously used to map out wildfire burn areas where there has been an abundance of vegetation using both the Advanced Very High Resolution Radiometer (AVHRR) and Landsat (Kasischke et al. 1993, Viedma et al. 1997, Salvador et al. 2000). One of the typical methods of mapping wildfire is through the use of the differenced Normalized Burn Ratio (dNBR) which calculates the change in what can be considered burn area between pre-fire and post-fire imagery (Garcia and Caselles 1991, Cocke et al. 2005, Key and Benson 2006). This method originally used Landsat Near-Infrared (NIR) and Shortwave-Infrared (SWIR) bands, around 7.5-9.0 micrometers and 2.08-2.35 micrometers respectively, to highlight burn based on decreases in plant moisture and increases in ground reflectivity (Garcia and Caselles 1991, Cocke et al. 2005, Key and Benson 2006).

Observations of Earth's surface can be made under most weather conditions through the use of ESA's Sentinel-1 Synthetic Aperture Radar (SAR) constellation. The Sentinel-1 constellation provides SAR imagery that can be used to study environmental phenomena such as agriculture and change detection over a set observation scenario—six or twelve days depending on the region of the world (Fletcher et al. 2012, ESA 2012). Sentinel-1 has been collecting data since October 2014 and is able to collect texture and surface information in the form of phase and amplitude data (Fletcher et al. 2012, ESA 2012). The C-band sensor on the Sentinel-1 satellites collects dual polarity SAR imagery in the co-polarity (VV or HH) and the cross-polarity (VH or HV). A visual example of the relationship between the VV and VH polarities can be seen in Figure 1 as false color composite. The utilization of SAR imagery allows for an additional method to monitor wildfire burns in cloudier regions of the world. The research question for this thesis is to apply the multiscale approach for detecting change in Sentinel-1 images and apply it to a sample of wildfires in North America.

Figure 1. Colorized Sentinel-1 SAR image over the location of the Woods Creek Fire dated August 8, 2021. The colorized image is an RGB composite of the VV, VH and VV/VH ratio after conversion to dB.

II. DATA COLLECTION

C-Band SAR can be used to observe the change in scattering from vegetation comparing before and after a fire event (Imperatore et al. 2017). The mechanism by which SAR interacts with vegetation is both geometric and dielectric which depends on the vegetation type and the nature of the wildfire (Imperatore et al. 2017). Previous studies found that C-Band and L-Band SAR gave the best results for forest monitoring due to the lower frequency of transmission interacting with the leaves in the forest canopy and tree trunks (Tanase et al. 2010). In this particular case, vegetation is able to be considered a dielectric for the radar energy based on the water content of the vegetation (Steele-Dunne et al. 2017). Using Sentinel-1 C-Band SAR, a decrease in cross-polarity (VH) radar backscatter—energy returning back to the satellite—can be used to observe effects of vegetation burn, while an increase in the co-polarity (VV) radar backscatter can be used to look at the secondary effects of a wildfire burn which includes increased exposure of the ground or a double bounce effect (Imperatore et al. 2017). This effect would be seen when the leafy vegetation is burned away which changes the scattering effect of radar energy to react multiple times with the woody structure of vegetation before returning to the sensor.

The first event used for this study is the Woods Creek Fire in the Helena-Lewis and Clark National Forest in Montana, United States. The wildfire is located about 16 miles from Townsend, Montana and began on July 19, 2021 and was fully contained by October 31, 2021. This site was selected as it is a higher latitude—above 45°N— wildfire

event in North America and is in a region of mountainous terrain where many wildfires often occur (See Figure 2). Sentinel-1 SAR and Sentinel-2 multispectral data are available in this area. The Sentinel-1 images are dated before the fire and after it had started. Several ratio images will be created to look at the progress of the fire over time for both the co-polarity (VV) and the cross-polarity (VH) with the reference image dated July 3, 2021. The location of Woods Creek Fire is displayed in Figure 2 along with the French Fire in California. A total of six ratio images for both orbit directions will be created; for each of the three comparison dates, one for the co-polarity and the other for the cross-polarity image.

The second study area is the French Fire which occurred in California from August 18, 2021 through October 21, 2021. This fire occurred near Lake Isabella in Kern County, California (see Figure 2). The area exhibits a moderate amount of terrain and thus terrain correction is necessary as well though is not considered high latitude. These two fires were selected in order to evaluate the overall methodology on a diverse subset of locations.

All of the images are accessible in Google Earth Engine (GEE) before being downloaded to be further processed in a Python environment. For the Woods Creek Fire, the images being used in the ascending orbit using relative orbit number 164. Due to the terrain, the ascending orbit may be impacted by terrain despite methods in GEE to correct for slope. A descending orbit will be investigated as well using relative orbit number 100 and a reference image dated July 7, 2021. A list of these images can be found in Table 1.

Figure 2. Overview of wildfire locations for this study in the United States.

The Sentinel-1 images used for the French Fire were from relative orbit number 64 for the ascending pass and relative orbit number 144 for the descending pass (See Table 2). The reference images to create the ratio images for the descending and ascending orbit are dated August 15, 2021 and August 4, 2021 respectively. Again, a total of six ratio images for each orbit direction will be looked at for the French Fire. Table 1. List of the images from the Ascending and Descending orbits and the corresponding date for the Woods Creek Fire. The fire began on July 19, 2021 and was contained on October 31, 2021. The entries in **bold** font are used a corresponding reference images for the ratio images.

Ascending Orbit Image Name at the Woods Creek Fire	
S1B_IW_GRDH_1SDV_20210703T012005_20210703T012030_027623_034C01_8499	7/3/2021
S1B_IW_GRDH_1SDV_20210808T012007_20210808T012032_028148_035BA1_81AC	8/8/2021
S1B_IW_GRDH_1SDV_20210913T012009_20210913T012034_028673_036BFE_937C	9/13/2021
S1B_IW_GRDH_1SDV_20211007T012009_20211007T012034_029023_037695_7565	10/7/2021
Descending Orbit Image Name at the Woods Creek Fire	Date
Descending Orbit Image Name at the Woods Creek Fire S1A_IW_GRDH_1SDV_20210707T133234_20210707T133259_038672_04904A_5D62	Date 7/7/2021
Descending Orbit Image Name at the Woods Creek Fire S1A_IW_GRDH_1SDV_20210707T133234_20210707T133259_038672_04904A_5D62 S1A_IW_GRDH_1SDV_20210812T133236_20210812T133301_039197_04A082_87AC	Date 7/7/2021 8/12/2021
Descending Orbit Image Name at the Woods Creek Fire S1A_IW_GRDH_1SDV_20210707T133234_20210707T133259_038672_04904A_5D62 S1A_IW_GRDH_1SDV_20210812T133236_20210812T133301_039197_04A082_87AC S1A_IW_GRDH_1SDV_20210917T133237_20210917T133302_039722_04B28B_4E0	Date 7/7/2021 8/12/2021 9/17/2021

The difference between the ascending and descending orbits is the direction by which the data are collected by the Sentinel-1 satellites and may impact the observed data in areas of high terrain with radar shadow or void areas. The satellites collect data at a 29.1° - 46.0° incidence angle— which is measured from the angle of the zenith to the sensor—depending on the position of the ground in relation to the satellite—which does not account for the slope of the terrain. The co- and cross polarities will also be processed for the ascending and descending orbit images. The SAR imagery format utilized is the Ground Range Detected (GRD) imagery since this is stored in the GEE catalog as opposed to the Single Look Complex imagery (SLC).

Table 2. List of the images from the Descending and Ascending orbit and the corresponding date for the French Fire. The fire began on August 18, 2021 and was contained on October 21, 2021. The entries in **bold** font are used as the corresponding reference images for the ratio images.

Descending Orbit Image Name at the French Fire	
S1A_IW_GRDH_1SDV_20210815T140015_20210815T140040_039241_04A1FD_BACF	8/15/2021
S1A_IW_GRDH_1SDV_20210827T140016_20210827T140041_039416_04A7FC_D64B	8/27/2021
S1A_IW_GRDH_1SDV_20210920T140017_20210920T140042_039766_04B3FD_F79E	9/20/2021
S1A_IW_GRDH_1SDV_20211026T140017_20211026T140042_040291_04C632_E950	10/26/2021
Ascending Orbit Image Name at the French Fire	Date
Ascending Orbit Image Name at the French Fire S1B_IW_GRDH_1SDV_20210804T015014_20210804T015039_028090_0359D6_362B	Date 8/4/2021
Ascending Orbit Image Name at the French Fire S1B_IW_GRDH_1SDV_20210804T015014_20210804T015039_028090_0359D6_362B S1B_IW_GRDH_1SDV_20210828T015015_20210828T015040_028440_0364BA_6D6E	Date 8/4/2021 8/28/2021
Ascending Orbit Image Name at the French Fire S1B_IW_GRDH_1SDV_20210804T015014_20210804T015039_028090_0359D6_362B S1B_IW_GRDH_1SDV_20210828T015015_20210828T015040_028440_0364BA_6D6E S1B_IW_GRDH_1SDV_20210921T015016_20210921T015041_028790_036F96_0332	Date 8/4/2021 8/28/2021 9/21/2021

Sentinel-2 multispectral imagery will also be used for the accuracy assessment of the SAR product. This data will also be accessed via GEE where it has been already preprocessed for surface reflectance under the Sentinel-2 Level 2A Surface Reflectance image collection. This data will be used to generate the dNBR for the fires at a 20-meter resolution (See Table 3). The Sentinel-2 based reference images for the dNBR are dated July 24, 2021 for the Woods Creek Fire and August 1, 2021 for the French Fire.

Sentinel-2 Images for Woods Creek Fire	Date
S2B_MSIL2A_20210724T181919_N0301_R127_T12TVS_20210724T210835	7/24/2021
S2B_MSIL2A_20210813T181919_N0301_R127_T12TVS_20210813T211107	8/13/2021
S2B_MSIL2A_20210912T181909_N0301_R127_T12TVS_20210912T222650	9/12/2021
S2B_MSIL2A_20211002T182109_N0301_R127_T12TVS_20211002T222829	10/2/2021
Sentinel-2 Images for French Fire	Date
	Date
S2A_MSIL2A_20210801T182921_N0301_R027_T11SLV_20210801T224704	8/1/2021
S2A_MSIL2A_20210801T182921_N0301_R027_T11SLV_20210801T224704 S2B_MSIL2A_20210826T182919_N0301_R027_T11SLV_20210826T222949	8/1/2021 8/26/2021
S2A_MSIL2A_20210801T182921_N0301_R027_T11SLV_20210801T224704 S2B_MSIL2A_20210826T182919_N0301_R027_T11SLV_20210826T222949 S2A_MSIL2A_20210920T183041_N0301_R027_T11SLV_20210920T230838	8/1/2021 8/26/2021 9/20/2021

Table 3. List of Sentinel-2 images to be used for dNBR for the Woods Creek Fire and the French Fire. The entries in bold font are used a corresponding reference images for the dNBR.

The Moderate Resolution Imaging Spectroradiometer (MODIS) Burned Area which is also found in the GEE catalog was used to check against the SAR areas as well (Giglio et al. 2021). The MODIS Burned Area dataset is at a resolution of 500 meters and combines data from the Aqua and Terra MODIS sensors. The data are stored as monthly composites with burned by Julian day The dates that were used for the burn area were the dates of August 12, 2021 and the maximum burn area date of September 17, 2021 for the Woods Creek Fire in Montana and the date of August 28, 2021 and the maximum burn area date of September 21, 2021 for the French Fire in California.

Other methods of wildfire burn extraction that have previously been utilized include using SAR interferometric methods to look at coherence in a burn area between two dates and using a ratio or difference image of two time periods and using thresholding methods (Liew et al. 1999, Lasaponara and Tucci 2019). One of the thresholding methods often used is K-Means which looks for clusters of data points on a histogram (Celik 2009, Lee et al. 2021). Some additional methods use a data fusion approach in which optical imagery is used in combination with SAR imagery and processed through a neural network (Ban et al. 2020, Zhang et al. 2019, Zhang et al. 2021).

III. METHODOLOGY

The methodology in use first utilizes images in the Google Earth Engine (GEE) catalog before further processing takes places. GEE is a multi-petabyte platform which contains various satellite imagery and geospatial datasets. It allows for rapid prototyping and image processing on Google's Cloud infrastructure as a result of its all-in-one web interface and Python and JavaScript APIs (Gorelick et al. 2017). The Sentinel-1 SAR data in GEE has been preprocessed to include thermal noise removal, radiometric calibration, and has been slope corrected. The benefit of using GEE is that the data has been preprocessed up to a certain point which enables the user to tailor the data to their needs. Further preprocessing will be done through another GEE tool, the Analysis Ready Data Preparation toolkit for Sentinel-1 which is a series of tools that provides additional preprocessing for Sentinel-1 imagery in GEE (Mullissa et al. 2021). The toolkit provides additional terrain flattening for Sentinel-1 SAR imagery. An acknowledged drawback of this type terrain flattening utilized within GEE is that without precise orbit data, the results still suffer from passive distortions such as layover and shadow. The preprocessing performed in GEE utilizes the Analysis Ready Data Preparation Toolkit for terrain correction, border noise removal, and decibel conversion. To find burn area, an approach outlined by Ajadi et al. (2016) will be utilized and has been provided for use by the ASF for the Python processing portion of the methodology (See Figure 3).

Figure 3. Flowchart of data processing. The Analysis Ready Data Preparation toolkit performs the terrain correction, border noise removal, and decibel conversion in GEE.

The first step is to query the study area for the specific images for both the ascending and descending orbit passes and process the data through the GEE application, Analysis Ready Data Preparation toolkit. Using these set of tools, the selected Sentinel-1 images receive some radiometric terrain correction with some of the distortion effects from the terrain removed. This is particularly necessary for the Woods Creek Fire and the French Fire which both occurred in mountainous terrain. While radiometric terrain correction allows for images to be compared outside of the same relative orbit, it is necessary in this case to compare the imagery with similar geometry along the side of the mountain to minimize the impact of slope aspect.

The radiometric terrain correction performed is an angular based correction using a digital elevation model (DEM) in GEE. This makes use of the Sentinel-1 incidence angle that is also present with the Sentinel-1 dataset. It is recommended that a DEM in the same resolution as the image data is used to perform a correction. The 3D Elevation Program (3DEP) DEM from USGS at a 10-meter resolution which was derived from lidar was used for terrain correction. This increases the fidelity of the terrain correction compared to the 30-meter SRTM DEM. This backscatter correction is based off the terrain and SAR incidence angle (Vollrath et al. 2020). More complex forms of radiometric terrain corrections are not used because of the limited nature of the GRD imagery data within GEE (Vollrath et al. 2020). Other methods to perform terrain correction use the SLC data which includes the SAR phase information as well as methods which use a simulated SAR image from a DEM to correct the radar image (Hoekman and Reiche 2015, Small 2011, Loew and Mauser 2007).

The next step is to remove noise prone areas along the border of the Sentinel-1 images using the toolkit. This removal is based on an incidence angle mask in order to minimize noise based on non-optimal incidence angles along the edge of an image (Hird et al. 2017). The images are then converted from the original linear power values to decibel (10*log10(x)) format which helps normalize the image to make brighter pixels more distinguishable from darker pixels. From there, a ratio image is created in GEE between the reference image and the comparison image of image pairs and will be ready for the change detection. Since the image has been logarithmically scaled it is important to note that the difference of these two images is a logarithmic ratio. Here, the ratio

images are downloaded for processing in a Python environment where they are run through a modified version of the script by Ajadi et al. (2016).

Following preprocessing, the process described by Ajadi et al. (2016) is to perform non-local means filtering on the image. As described by Ajadi et al. (2016), nonlocal means filtering allows for radar speckle—which is caused by interference during the acquisition of an image— in the images to be filtered uniformly across the scene with minimal loss of detail. This is a departure from the process described by the original authors since now the ratio image is first created within GEE before processing using non-local means filtering. The original methodology used images processed first with non-local means filtering before the ratio image was made. The reason for this change is to make use of GEE's image processing and georeferencing so that these additional steps would not need to be performed in Python.

Next is to apply a two-dimensional stationary wavelet transform. The twodimensional stationary wavelet transform allows for a multiscale approach to look at areas of change by filtering most of the prevailing parts of the image at various decomposition levels. A lower decomposition level produces an image that is closer to the original input scale and uses less computational power though has higher levels of noise. Higher decomposition levels resolve changes in an image by reconstructing the image so the prevailing geometry is preserved without the high noise components but uses more computational power. This is followed by performing math morphology to help pull out bright or darkened areas from the ratio image through a process of opening

and closing regions. This process helps to further reduce noise while preserving details along the edges of regions.

Expectation maximization is utilized to help calculate the change classes. As stated by Ajadi et al. (2016), this assumes that the SAR imagery in decibels has characteristics of a Gaussian curve. This finds the local maximums on the image histogram which can then be used to establish class thresholds. The number of classes chosen is incrementally approached though the use of the sum of square error (SSE) to check against the image. An overview of these steps performed on an image can be seen in Figure 4.

Figure 4. Overview of processing on an image. This example uses the ascending August 28 Sentinel-1 Image in the VH polarity for the French Fire, CA a.) The original GRD SAR image range: -27.5dB to-2.4dB; b.) Slope corrected SAR image range: -26.7dB to -2.9dB; c.) Ratio image range -30.5dB to 41.2dB; d.) Ratio image after wavelet filtering and math morphology range: -115.4dB to 65.1 dB; e.) Expectation Maximization creates two change classes and one class of no change; f.) Vectorized and filled areas of change.

The parameters that were used at first were the suggested parameters of a 20 by 20 pixel structure element in the math morphology step, six decompositions for the stationary wavelet transform and up to three classes during the expectation maximization step. This was later changed to 30 by 30 pixel structure element for the math morphology, four decompositions in the stationary wavelet transform and up to ten classes for expectation maximation for all the images of the Woods Creek Fire. The

descending orbit of the French fire uses recommended parameters while the ascending orbit used a smaller structure element of 10 by 10 pixels for math morphology.

After these steps, the resulting classified image is converted to change and no change areas. These areas are then vectorized and compared to Sentinel-2 dNBR and the MODIS Burn Area images to examine the accuracy of the Sentinel-1 burn area product. This step compares the Sentinel-2 dNBR to both the ascending and descending orbits passes of the SAR burn area due to the potential terrain effects despite the correction efforts. While radiometric terrain correction mitigates effects from terrain in the collected images, there is still potential for missed data or readings by the sensor due to radar shadow effects and void areas from the terrain.

Figure 5. Overview of the French Fire, CA with the VV and VH polarity SAR burn areas from August 28, 2021 over the dNBR image from August 25, 2021. Brighter areas indicate more severe burning.

The optical imagery that is compared will be from a similar time period as the ratio images looked at. An example of this can be seen in the NBR image with SAR burn areas in Figure 5, The dNBR was categorized into four different threshold classes: low, medium low, medium high, and high (See Table 4). The Sentinel-2 bands used were band 8 and band 12 which correspond to the NIR and SWIR wavelengths respectively. In the same light, the MODIS burn areas will be compared against the SAR imagery though is of a much lower resolution at about 500 meters per pixel compared to the Sentinel-2's 20-meter pixel.

Burn Severity	dNBR
Low	0.10-0.27
Moderate Low	0.27-0.44
Moderate High	0.44-0.66
High	>0.66

Table 4. The Sentinel-2 dNBR burn severity thresholds used for comparison against the SAR burn area.

IV. RESULTS

An accuracy assessment for the producer's accuracy, user's accuracy, overall accuracy and Cohen's kappa coefficient was performed on each image for both locations comparison of the Sentinel-1 SAR results to the various levels of Sentinel-2 dNBR as well as to the MODIS Burn Area Product. Confusion matrices for the Sentinel-1 SAR burn area against both the Sentinel-2 dNBR and MODIS Burn Area can be found in the Appendix. The producer, user, and overall accuracy were selected as metrics in order to evaluate how well the SAR burn area method is compared to optical burn area calculations. Cohen's kappa was selected as an additional metric in order to compare these methods directly and to describe how well they agree with one another. One thousand sample points were generated in each of the two areas of interest within a bounding box. Land cover type was not considered for the burn area since the desire is to evaluate the methodology on unmasked SAR imagery.

Sentinel-2 images that were used were selected to be temporally coincidental to the Sentinel-1 images as much as possible. The main limiting factor to this was image availability due to cloud cover over the study area therefore cloud covered images were kept to a minimum for the dates that were looked at. These images were manually filtered to ensure the study area was not obscured by clouds. This is the case for both the pre-fire image as well as the fire event image. Four burn thresholds for dNBR analysis—low, moderate-low, moderate-high, and high burn ratio—were used and each compared to the SAR data.

The MODIS selected Burn Area data, like the Sentinel-2 data, was as close to the imaging date of the Sentinel-1 images as possible. The maximum extent burn area was used for the September comparisons for both the Woods Creek Fire and the French Fire.

Figure 6. Burn areas identified by the SAR for the Woods Creek Fire. In each plot, the label gives the date (ex., 08AUG21), polarity (VV or VH), and ascending (ASC) or descending (DSC). The identified SAR burned pixels are in yellow hatch marks overlaid on the Sentinel-2 dNBR image (gray scale) for the corresponding date.

The overall accuracy of the Woods Creek Fire utilizing this method shows that there was notable inconsistency over the area that was looked at for the chosen dates. The SAR data that had the best results were the VV polarity in the ascending pass while the least favorable results were those of the VH polarity particularly in the descending orbit. The VV polarity SAR data had high accuracies against the moderate high and high dNBR data in the ascending pass. The descending pass VV SAR data was less consistent over the time period looked at with October having the lowest accuracy of all the co-polarized data for Montana. This can be particularly observed in Figure 6 when looking at the burn area maps for the fire. VV burn area for most of the ascending and descending data follows burn area closely to the Sentinel-2 dNBR than the VH data for the Woods Creek Fire. However, the August SAR burn area had the highest accuracy at the Woods Creek Fire at 84.4% when compared to the high dNBR for the month. The overall accuracy of the VH SAR burn area shows a low overall accuracy across the various levels of dNBR as well as MODIS which can be seen in Figure 7. The October descending VH SAR burn area had the lowest overall accuracy as well.

Figure 7. Overall accuracy and kappa coefficient values against the MODIS and Sentinel-2 burned area identification for the MT fire. The notations for the SAR cases are the same as those used in Figure 6. Four thresholds (Low [L], Moderate Low [MI], Moderate High (Mh), and High [H]) for dNBR burn severity with Sentinel-2 (S2) are treated separately.

The Cohen's kappa for the Woods Creek Fire shows that the results were very random with low kappa coefficients which explains the spotty results when looking at the results displayed spatially. The possible reasons for this are brought up in the discussion. The moderate-low Sentinel-2 dNBR had the least amount of randomness across orbit and polarity (See Figure 7). MODIS in comparison consistently takes the middle ground when compared with the NBR data. There was not much of a pattern in the amount of randomness when splitting the data up between the polarities.

Figure 8. Burn areas identified by the SAR for the French Fire. In each plot, the label gives the date (ex., 28AUG21), polarity (VV or VH), and ascending (ASC) or descending (DSC). The identified SAR burned pixels are in yellow hatch marks overlaid on the Sentinel-2 dNBR image (gray scale) for the corresponding date.
The overall accuracy of the French Fire is much more consistent between the polarities. Figure 8 shows that the ascending orbit gave the best results with stronger results from the VH polarity as opposed to the VV polarity. Overall, the ascending orbit had a higher accuracy for both polarities than the descending orbit. The comparison of SAR burn area against the moderate-low Sentinel-2 dNBR was the most consistent in both polarities for the ascending orbit direction with over 80% accuracy as seen in Figure 9. When compared against the other dNBR levels in the ascending orbit, the accuracy of the SAR data was much more varied. SAR burn area comparison with the MODIS data gave good results, though not as strong as some of the other dNBR levels likely to the limiting factor of resolution on this smaller fire. The descending orbit burn area results were not as strong as the ascending orbit with much lower overall accuracies for the September and October VV SAR burn area and lower accuracies throughout with the VH polarity. Overall accuracy on the same time period in the VH data was much closer between the various dNBR levels than the VV SAR burn areas. These results for the French Fire in Figure 9 show there is agreeance between the SAR data and the optical data for both Sentinel-2 dNBR and the MODIS burn areas. Overall accuracy was as high as 87.4% in the VH polarity when compared to the low Sentinel-2 NBR on using the SAR image from August 28, 2021. Likewise, SAR comparison to the MODIS on this date was found to be an 85% overall accuracy.

Figure 9. Overall accuracy values against the MODIS and Sentinel-2 burned area identification for the CA fire. The notations for the SAR cases are the same as those used in Figure 8. Four thresholds (Low [L], Moderate Low [MI], Moderate High (Mh), and High [H]) for dNBR burn severity with Sentinel-2 (S2) are treated separately.

Figure 10 shows kappa Coefficient for the French Fire with more randomness in the descending orbits. Cohen's kappa for the French Fire shows that the ascending orbit SAR burn area was not random when compared against dNBR resulting in high kappa coefficients. The results of the low Sentinel-2 dNBR had the least random results followed by the moderate-low, the moderate-high, then high dNBR levels. The VH polarity had slightly lower randomness—or higher kappa values—compared to the VV polarity. SAR comparison with the MODIS burn areas also showed low randomness compared comparable to that of the low and moderate-low Sentinel-2 dNBR. Comparing this orbit to the descending orbit shows that the descending orbit exhibited much more randomness in the results with the October SAR burn area being the most random of all the data compared against Sentinel-2 and MODIS imagery.

Figure 11. kappa coefficient against the MODIS and Sentinel-2 burned area identification for the CA fire. The notations for the SAR cases are the same as those used in Figure 8. Four thresholds (Low [L], Moderate Low [MI], Moderate High (Mh), and High [H]) for dNBR burn severity with Sentinel-2 (S2) are treated separately.

V. DISCUSSION

Dialing in the parameters of the math morphology and expectation maximization to get accurate change detection proved to be difficult at first with results showing very minimal change in the SAR imagery as opposed to the optical imagery. At first, the results did not fit well at the Woods Creek fire for any of the dates using the recommended parameters. The parameters were changed from the recommended in order to get a better representation of change occurring at the site of the fire. The parameters that worked best for the Woods Creek Fire used a math morphology structure element of 30 by 30 pixels—where dilation and erosion will use 30 pixel squares, in addition to increasing the number of change classes to ten during expectation maximization. This is to help take into account other activities occurring in the scene that may be influencing change such as agriculture, changes in the nearby lake, and variances in extreme terrain. These parameters were used for both the ascending and the descending passes for this fire.

For the French Fire, the recommended values were used for the descending orbit. The recommended values used a 20 by 20 pixel structure element for the math morphology step where the dilation and erosion use a 20 pixel square, six decompositions for the stationary wavelet transform, and three classes for expectation maximization. Six decompositions were used since this was a smaller fire and was not as computationally intensive due to less area being processed. The ascending orbit was changed slightly

30

using a 10 by 10 pixel structure element in the math morphology step in order to help reduce some added noise from a larger structure element.

Results show that the SAR burn area for the Woods Creek Fire in Montana had a lot of randomness to it. While visually it is possible to see where a burn area might be, there are larger areas which were not included in the optical burn area. This is likely due to a few factors in the data itself and the processing of the data. As the fire was mostly on the western part of the mountain, the ascending pass was more advantageous picking up the leftover burn scar from the fire but had a hard time on the eastern side of the mountain. Additionally, the method of terrain correction was likely not good enough for the amount terrain present for this fire due to it spanning over both the eastern and western slopes of the mountain. The terrain flattening that was used did not rely on any of the orbit data present for Sentinel-1 since the data was processed from data within the GEE catalog which is absent of the precise orbit data that are published by ESA.

Despite the problems, the VV polarity across both orbit directions was consistently better than the VH polarity. This is most likely due to the coniferous forests which are present in this area of the United States. While the VH polarity had better results when being compared to the Sentinel-2 dNBR on only one occasion from the ascending orbit on September 13, 2021.

The SAR comparison to the Sentinel-2 and the MODIS imagery of the French Fire had comparable results to each other. The results turned out well despite using the terrain correction algorithm based solely on incidence angle and slope aspect. What was expected and seen in the Sentinel-2 dNBR comparisons was that the SAR burn areas

31

were more similar to the lower categories of burn severity than the high categories of burn severity, with the highest levels of accuracy alternating between the low or the moderate low burn severity categories. This may vary in other scenarios absent any quadpolarity data since SAR is dependent on collection geometry.

In evaluating both the Montana and the California area of interests, the SAR burn area seems to follow closely that of the moderate-low Sentinel-2 dNBR using this methodology as it currently is and also follows the burn areas of MODIS decently as well.

VI. CONCLUSION

The goal of this research is to search for methods with SAR imagery to detect burn area and monitor change quickly. In one case, the burned area in SAR is similar to the area on optical imagery with the French Fire in California. This research partially showed how well burned area can be detected in an area with a moderate amount of terrain effects despite minimal terrain correction with one of the two locations being a good example. Burn area using SAR as a method for detection is viable in areas where the amount of terrain is fairly moderate and the geometries of the SAR collection work out. Terrain correction method impacts how successful SAR satellites are utilized for wildfires especially in the North American West where wildfire commonly occurs. This research will also support the further utilization of cloud based remote sensing analysis in which this method is performed on a platform such as GEE. This research additionally sets up opportunities for further research to compare SAR imagery collected from different orbital directions.

One of the limitations of this research is the type of terrain correction under the scope of GEE with the available data. An alternative data source of radiometrically terrain corrected SAR imagery could have been acquired through the ASF's Hybrid Pluggable Processing Pipeline (HyP3). This could potentially be topic for future research. Some of the other difficulties of this methodology include the need to fine tune the parameters to make sure that it is not overrepresenting or underrepresenting the change

33

present on the ground. This may also be future research area for the comparisons of terrain correction methods.

A limitation on the data itself is that the Sentinel-1 SAR imagery is collected at a different time and periodicity from the Sentinel-2 multispectral imagery. Wildfire is a dynamic event and thus a one-to-one comparison between the data is not able to be made. Additionally, the SAR imagery is differentiating a change in structure between two time periods while the optical imagery is differentiating a change in chemistry between two time periods. Precipitation could have an impact on the SAR backscatter values and could impact actual change between the time period. An ascending pass may have different results from a descending pass in areas of high terrain or the cross-polarity change could have a different result from the co-polarity change. Clearly understanding the effect of orbit direction or polarity would also be useful when designing or planning SAR systems in support of wildfires or for forest management.

Additionally, while this project looked at Sentinel-1 SAR imagery sampling dates over a longer period of time, another research area could have been how well this algorithm can perform against successive images over the study area over a shorter time period early on in the lifecycle of a wildfire. Land cover could be looked at based upon how sensitive C-Band SAR is to certain vegetation types and using various land cover datasets in conjunction with this methodology as well.

Understanding and utilizing SAR imagery for wild fire has the potential for it to being used in areas in which normal optical imagery will not be able to image due to clouds, smoke or to be able to get a burn area for areas in which airborne flying over may be difficult due to it being a very remote area or in a denied airspace.

APPENDIX

Appendix: confusion matrices; user's, producer's and overall accuracies for all cases.

Woods Creek Fire, MONTANA

August Ascending

VV	Reference Se	entinel-2 L	ow dNBR		VH	Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	680	171	851	79.90599	No burn	409	91	500	81.8
Burn	53	96	149	64.42953	Burn	324	176	500	35.2
Ref. total	733	267	1000		Ref. total	733	267	1000	
Producer's %	92.7694407	35.95506	Overall %	77.6	Producer's %	55.79809	65.9176	Overall %	58.5

VV Reference Sentinel-2 Moderate Low dNBR					VH	Reference Sentinel-2 Moderate Low dNI			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	713	138	851	83.78378	No burn	430	70	500	86
Burn	62	87	149	58.38926	Burn	345	155	500	31
Ref. total	775	225	1000		Ref. total	775	225	1000	
Producer's %	92	38.66667	Overall %	80	Producer's %	55.483871	68.88889	Overall %	58.5

VV	Reference Sentinel-2 Moderate High dNBR					Reference Sentinel-2 Moderate High dNE			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	743	108	851	87.30905	No burn	443	57	500	88.6
Burn	72	77	149	51.67785	Burn	372	128	500	25.6
Ref. total	815	185	1000		Ref. total	815	185	1000	
Producer's %	91.1656442	41.62162	Overall %	82	Producer's %	54.3558282	69.18919	Overall %	57.1

VV	Reference Se	entinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	771	80	851	90.59929	No burn	451	49	500	90.2
Burn	99	50	149	33.55705	Burn	419	81	500	16.2
Ref. total	870	130	1000		Ref. total	870	130	1000	
Producer's %	88.6206897	38.46154	Overall %	82.1	Producer's %	51.8390805	62.30769	Overall %	53.2

VV	Reference MODIS Burn				VH	Reference M	ODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	648	203	851	76.14571	No burn	383	117	500	76.6
Burn	54	<i>9</i> 5	149	63.75839	Burn	319	181	500	36.2
Ref. total	702	298	1000		Ref. total	702	298	1000	
Producer's %	92.3076923	31.87919	Overall %	74.3	Producer's %	54.5584046	60.73826	Overall %	56.4

August Descending

VV	Reference Sentinel-2 Low dNBR					Reference Se			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	603	204	807	74.72119	No burn	568	119	687	82.67831
Burn	130	63	193	32.64249	Burn	165	148	313	47.28435
Ref. total	733	267	1000		Ref. total	733	267	1000	
Producer's %	82.2646658	23.59551	Overall %	66.6	Producer's %	77.4897681	55.43071	Overall %	71.6

VV	Reference Se	entinel-2 N	/loderate L	ow dNBR	VH	Reference Sentinel-2 Moderate Low dNB			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	642	165	807	79.5539	No burn	592	95	687	86.17176
Burn	133	60	193	31.08808	Burn	183	130	313	41.53355
Ref. total	775	225	1000		Ref. total	775	225	1000	
Producer's %	82.8387097	26.66667	Overall %	70.2	Producer's %	76.3870968	57.77778	Overall %	72.2

VV Reference Sentinel-2 Moderate High dNBR				VH	Reference Sentinel-2 Moderate High c				
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	676	131	807	83.76704	No burn	613	74	687	89.22853
Burn	139	54	193	27.97927	Burn	202	111	313	35.46326
Ref. total	815	185	1000		Ref. total	815	185	1000	
Producer's %	82.9447853	29.18919	Overall %	73	Producer's %	75.2147239	60	Overall %	72.4

VV	Reference Se	entinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	713	94	807	88.35192	No burn	629	58	687	91.5575
Burn	157	36	193	18.65285	Burn	241	72	313	23.00319
Ref. total	870	130	1000		Ref. total	870	130	1000	
Producer's %	81.954023	27.69231	Overall %	74.9	Producer's %	72.2988506	55.38462	Overall %	70.1

VV	Reference M	ODIS Burn			VH	Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	568	239	807	70.38414	No burn	537	150	687	78.16594
Burn	130	63	193	32.64249	Burn	161	152	313	48.5623
Ref. total	698	302	1000		Ref. total	698	302	1000	
Producer's %	81.3753582	20.86093	Overall %	63.1	Producer's %	76.9340974	50.33113	Overall %	68.9

VV	Reference Se	entinel-2 L	ow dNBR		VH	Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	576	197	773	74.51488	No burn	426	129	555	76.75676
Burn	75	152	227	66.96035	Burn	225	220	445	49.4382
Ref. total	651	349	1000		Ref. total	651	349	1000	
Producer's %	88.4792627	43.55301	Overall %	72.8	Producer's %	65.437788	63.03725	Overall %	64.6

VV	/V Reference Sentinel-2 Moderate Low dNB				VH Reference Sentinel-2 Moderate Lov				ow dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	672	101	773	86.93402	No burn	495	60	555	89.18919
Burn	97	130	227	57.26872	Burn	274	171	445	38.42697
Ref. total	769	231	1000		Ref. total	769	231	1000	
Producer's %	87.3862159	56.27706	Overall %	80.2	Producer's %	64.3693108	74.02597	Overall %	66.6

VV	VV Reference Sentinel-2 Moderate High dNB				VH	H Reference Sentinel-2 Moderate Hig			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	709	64	773	91.72057	No burn	518	37	555	93.33333
Burn	129	98	227	43.17181	Burn	320	125	445	28.08989
Ref. total	838	162	1000		Ref. total	838	162	1000	
Producer's %	84.6062053	60.49383	Overall %	80.7	Producer's %	61.8138425	77.16049	Overall %	64.3

VV	/V Reference Sentinel-2 High dNBF				VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	731	42	773	94.56662	No burn	532	23	555	95.85586
Burn	151	76	227	33.48018	Burn	350	95	445	21.34831
Ref. total	882	118	1000		Ref. total	882	118	1000	
Producer's %	82.8798186	64.40678	Overall %	80.7	Producer's %	60.3174603	80.50847	Overall %	62.7

VV	Reference MODIS Burr		Reference MODIS Burr		1		VH	Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %		
No burn	614	159	773	79.43079	No burn	455	100	555	81.98198		
Burn	84	143	227	62.99559	Burn	243	202	445	45.39326		
Ref. total	698	302	1000		Ref. total	698	302	1000			
Producer's %	87.965616	47.35099	Overall %	75.7	Producer's %	65.1862464	66.88742	Overall %	65.7		

September Descending

VV	Reference Se	entinel-2 L	ow dNBR		VH	Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	615	257	872	70.52752	No burn	352	183	535	65.79439
Burn	36	92	128	71.875	Burn	299	166	465	35.69892
Ref. total	651	349	1000		Ref. total	651	349	1000	
Producer's %	94.4700461	26.36103	Overall %	70.7	Producer's %	54.0706605	47.56447	Overall %	51.8

VV	VV Reference Sentinel-2 Moderate Low dNB					VH Reference Sentinel-2 Moderate Lo			ow dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	719	153	872	82.45413	No burn	421	114	535	78.69159
Burn	50	78	128	60.9375	Burn	348	117	465	25.16129
Ref. total	769	231	1000		Ref. total	769	231	1000	
Producer's %	93.4980494	33.76623	Overall %	79.7	Producer's %	54.7464239	50.64935	Overall %	53.8

VV	Reference Sentinel-2 Moderate High dNB				VH	Reference Sentinel-2 Moderate High			igh dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	767	105	872	87.95872	No burn	456	79	535	85.23364
Burn	71	57	128	44.53125	Burn	382	83	465	17.84946
Ref. total	838	162	1000		Ref. total	838	162	1000	
Producer's %	91.5274463	35.18519	Overall %	82.4	Producer's %	54.4152745	51.23457	Overall %	53.9

VV	Reference Se	eference Sentinel-2 High dNB			VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	799	73	872	91.62844	No burn	476	59	535	88.97196
Burn	83	45	128	35.15625	Burn	406	59	465	12.68817
Ref. total	882	118	1000		Ref. total	882	118	1000	
Producer's %	90.5895692	38.13559	Overall %	84.4	Producer's %	53.968254	50	Overall %	53.5

VV	Reference M	Reference MODIS Burn			VH	Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	650	222	872	74.54128	No burn	383	152	535	71.58879
Burn	48	80	128	62.5	Burn	315	150	465	32.25806
Ref. total	698	302	1000		Ref. total	698	302	1000	
Producer's %	93.1232092	26.49007	Overall %	73	Producer's %	54.8710602	49.66887	Overall %	53.3

October Ascending

VV	Reference Sentinel-2 Low dNBR					Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	519	188	707	73.40877	No burn	475	132	607	78.25371
Burn	130	163	293	55.6314	Burn	174	219	393	55.72519
Ref. total	649	351	1000		Ref. total	649	351	1000	
Producer's %	79.9691834	46.43875	Overall %	68.2	Producer's %	73.1895223	62.39316	Overall %	69.4

VV	Reference Sentinel-2 Moderate Low dNB				VH	Reference Sentinel-2 Moderate Low of			ow dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	605	102	707	85.57284	No burn	542	65	607	89.2916
Burn	171	122	293	41.63823	Burn	234	159	393	40.45802
Ref. total	776	224	1000		Ref. total	776	224	1000	
Producer's %	77.9639175	54.46429	Overall %	72.7	Producer's %	69.8453608	70.98214	Overall %	70.1

VV	/V Reference Sentinel-2 Moderate High dNE					VH Reference Sentinel-2 Moderate Hig			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	643	64	707	90.94767	No burn	568	39	607	93.57496
Burn	200	93	293	31.74061	Burn	275	118	393	30.02545
Ref. total	843	157	1000		Ref. total	843	157	1000	
Producer's %	76.2752076	59.23567	Overall %	73.6	Producer's %	67.3784104	75.15924	Overall %	68.6

VV	Reference Se	entinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	668	39	707	94.48373	No burn	587	20	607	96.70511
Burn	225	68	293	23.20819	Burn	306	87	393	22.1374
Ref. total	893	107	1000		Ref. total	893	107	1000	
Producer's %	74.8040314	63.5514	Overall %	73.6	Producer's %	65.7334826	81.30841	Overall %	67.4

VV	Reference M	ODIS Burn			VH	Reference M	ODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	551	156	707	77.93494	No burn	494	113	607	81.38386
Burn	147	146	293	49.82935	Burn	204	189	393	48.0916
Ref. total	698	302	1000		Ref. total	698	302	1000	
Producer's %	78.9398281	48.34437	Overall %	69.7	Producer's %	70.773639	62.58278	Overall %	68.3

October Descending	October	Descending
--------------------	---------	------------

VV	Reference Se	entinel-2 L	ow dNBR		VH	Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	298	114	412	72.3301	No burn	207	86	293	70.64846
Burn	351	237	588	40.30612	Burn	442	265	707	37.48232
Ref. total	649	351	1000		Ref. total	649	351	1000	
Producer's %	45.9167951	67.52137	Overall %	53.5	Producer's %	31.8952234	75.49858	Overall %	47.2

VV	Reference Se	entinel-2 N	/loderate L	ow dNBR	VH	Reference Sentinel-2 Moderate Low dN			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	346	66	412	83.98058	No burn	254	39	293	86.68942
Burn	430	158	588	26.87075	Burn	522	185	707	26.1669
Ref. total	776	224	1000		Ref. total	776	224	1000	
Producer's %	44.5876289	70.53571	Overall %	50.4	Producer's %	32.7319588	82.58929	Overall %	43.9

VV	Reference Se	entinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High dN			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	371	41	412	90.04854	No burn	272	21	293	92.83276
Burn	472	116	588	19.72789	Burn	571	136	707	19.23621
Ref. total	843	157	1000		Ref. total	843	157	1000	
Producer's %	44.0094899	73.88535	Overall %	48.7	Producer's %	32.2657177	86.6242	Overall %	40.8

VV	Reference Se	entinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	389	23	412	94.41748	No burn	282	11	293	96.24573
Burn	504	84	588	14.28571	Burn	611	96	707	13.5785
Ref. total	893	107	1000		Ref. total	893	107	1000	
Producer's %	43.5610302	78.50467	Overall %	47.3	Producer's %	31.5789474	89.71963	Overall %	37.8

VV	Reference M	ODIS Burn			VH	VH Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	317	<i>9</i> 5	412	76.94175	No burn	221	72	293	75.42662
Burn	381	207	588	35.20408	Burn	477	230	707	32.53182
Ref. total	698	302	1000		Ref. total	698	302	1000	
Producer's %	45.4154728	68.54305	Overall %	52.4	Producer's %	31.6618911	76.15894	Overall %	45.1

French Fire, California

August Ascending

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	626	75	701	89.3009986	No burn	664	81	745	89.1275168
Burn	76	223	299	74.5819398	Burn	38	217	255	85.0980392
Ref. total	702	298	1000		Ref. total	702	298	1000	
Producer's %	89.17379	74.8322148	Overall %	84.9	Producer's %	94.58689	72.8187919	Overall %	88.1

VV	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate Low dNBR				
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %	
No burn	670	31	701	95.5777461	No burn	713	32	745	95.704698	
Burn	137	162	299	54.180602	Burn	94	161	255	63.1372549	
Ref. total	807	193	1000		Ref. total	807	193	1000		
Producer's %	83.02354	83.9378238	Overall %	83.2	Producer's %	88.35192	83.4196891	Overall %	87.4	

VV	Reference	Sentinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	685	16	701	97.7175464	No burn	733	12	745	98.3892617
Burn	188	111	299	37.1237458	Burn	140	115	255	45.0980392
Ref. total	873	127	1000		Ref. total	873	127	1000	
Producer's %	78.46506	87.4015748	Overall %	79.6	Producer's %	83.96334	90.5511811	Overall %	84.8

VV	Reference	Sentinel-2 H	ligh dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	697	4	701	99.4293866	No burn	743	2	745	99.7315436
Burn	249	50	299	16.722408	Burn	203	52	255	20.3921569
Ref. total	946	54	1000		Ref. total	946	54	1000	
Producer's %	73.67865	92.5925926	Overall %	74.7	Producer's %	78.54123	96.2962963	Overall %	79.5

VV	Reference	MODIS Burn			VH	Reference	MODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	596	105	701	85.021398	No burn	617	128	745	82.8187919
Burn	37	262	299	87.6254181	Burn	16	239	255	93.7254902
Ref. total	633	367	1000		Ref. total	633	367	1000	
Producer's %	94.15482	71.389646	Overall %	85.8	Producer's %	97.47235	65.1226158	Overall %	85.6

August Descending

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference	Reference Sentinel-2 Low dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %	
No burn	685	157	842	81.3539192	No burn	681	114	795	85.6603774	
Burn	17	141	158	89.2405063	Burn	21	184	205	89.7560976	
Ref. total	702	298	1000		Ref. total	702	298	1000		
Producer's %	97.57835	47.3154362	Overall %	82.6	Producer's %	97.00855	61.7449664	Overall %	86.5	

VV	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate Low dNBF				
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %	
No burn	752	90	842	89.3111639	No burn	737	58	795	92.7044025	
Burn	55	103	158	65.1898734	Burn	70	135	205	65.8536585	
Ref. total	807	193	1000		Ref. total	807	193	1000		
Producer's %	93.18463	53.3678756	Overall %	85.5	Producer's %	91.3259	69.9481865	Overall %	87.2	

VH	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate High o			igh dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	737	58	795	92.7044025	No burn	763	32	795	95.9748428
Burn	70	135	205	65.8536585	Burn	110	<i>9</i> 5	205	46.3414634
Ref. total	807	193	1000		Ref. total	873	127	1000	
Producer's %	91.3259	69.9481865	Overall %	87.2	Producer's %	87.39977	74.8031496	Overall %	85.8

VV	Reference	Sentinel-2 H	ligh dNBR		VH	VH Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	822	20	842	97.6247031	No burn	784	11	795	98.6163522
Burn	124	34	158	21.5189873	Burn	162	43	205	20.9756098
Ref. total	946	54	1000		Ref. total	946	54	1000	
Producer's %	86.89218	62.962963	Overall %	85.6	Producer's %	82.87526	79.6296296	Overall %	82.7

VV	Reference	MODIS Burn			VH	Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	626	216	842	74.3467933	No burn	623	172	795	78.3647799
Burn	7	151	158	95.5696203	Burn	10	195	205	95.1219512
Ref. total	633	367	1000		Ref. total	633	367	1000	
Producer's %	98.89415	41.1444142	Overall %	77.7	Producer's %	98.42022	53.133515	Overall %	81.8

September Ascending

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	540	97	637	84.7723705	No burn	574	104	678	84.660767
Burn	93	270	363	74.3801653	Burn	59	263	322	81.6770186
Ref. total	633	367	1000		Ref. total	633	367	1000	
Producer's %	85.30806	73.5694823	Overall %	81	Producer's %	90.6793	71.6621253	Overall %	83.7

VV	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate Low dNE			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	590	47	637	92.6216641	No burn	630	48	678	92.920354
Burn	148	215	363	59.2286501	Burn	108	214	322	66.4596273
Ref. total	738	262	1000		Ref. total	738	262	1000	
Producer's %	79.9458	82.0610687	Overall %	80.5	Producer's %	85.36585	81.6793893	Overall %	84.4

VV	Reference	Sentinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High dNBF			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	615	22	637	96.5463108	No burn	660	18	678	97.3451327
Burn	233	130	363	35.8126722	Burn	188	134	322	41.6149068
Ref. total	848	152	1000		Ref. total	848	152	1000	
Producer's %	72.52358	85.5263158	Overall %	74.5	Producer's %	77.83019	88.1578947	Overall %	79.4

VV	Reference	Sentinel-2 H	ligh dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	631	6	637	99.0580848	No burn	673	5	678	99.2625369
Burn	287	76	363	20.9366391	Burn	245	77	322	23.9130435
Ref. total	918	82	1000		Ref. total	918	82	1000	
Producer's %	68.73638	92.6829268	Overall %	70.7	Producer's %	73.31155	93.902439	Overall %	75

VV	Reference	MODIS Burn			VH	Reference	MODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	523	114	637	82.1036107	No burn	550	128	678	81.120944
Burn	76	287	363	79.0633609	Burn	49	273	322	84.7826087
Ref. total	599	401	1000		Ref. total	599	401	1000	
Producer's %	87.31219	71.5710723	Overall %	81	Producer's %	91.8197	68.0798005	Overall %	82.3

September Descending

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	613	265	878	69.8177677	No burn	437	129	566	77.2084806
Burn	20	102	122	83.6065574	Burn	196	238	434	54.8387097
Ref. total	633	367	1000		Ref. total	633	367	1000	
Producer's %	96.84044	27.7929155	Overall %	71.5	Producer's %	69.03633	64.8501362	Overall %	67.5

VV	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate Low di			ow dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	707	171	878	80.523918	No burn	496	70	566	87.6325088
Burn	31	91	122	74.5901639	Burn	242	192	434	44.2396313
Ref. total	738	262	1000		Ref. total	738	262	1000	
Producer's %	95.79946	34.7328244	Overall %	79.8	Producer's %	67.20867	73.2824427	Overall %	68.8

VV	Reference	Sentinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High dN			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	783	95	878	89.1799544	No burn	534	32	566	94.3462898
Burn	65	57	122	46.7213115	Burn	314	120	434	27.6497696
Ref. total	848	152	1000		Ref. total	848	152	1000	
Producer's %	92.33491	37.5	Overall %	84	Producer's %	62.9717	78.9473684	Overall %	65.4

VV	Reference	Sentinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR				
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %	
No burn	830	48	878	94.5330296	No burn	555	11	566	98.0565371	
Burn	88	34	122	27.8688525	Burn	363	71	434	16.359447	
Ref. total	918	82	1000		Ref. total	918	82	1000		
Producer's %	90.41394	41.4634146	Overall %	86.4	Producer's %	60.45752	86.5853659	Overall %	62.6	

VV	Reference	MODIS Burn			VH	Reference	MODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	579	299	878	65.9453303	No burn	420	146	566	74.204947
Burn	20	102	122	83.6065574	Burn	179	255	434	58.7557604
Ref. total	599	401	1000		Ref. total	599	401	1000	
Producer's %	96.6611	25.436409	Overall %	68.1	Producer's %	70.11686	63.5910224	Overall %	67.5

October Ascending

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	368	244	612	60.130719	No burn	495	242	737	67.1641791
Burn	225	163	388	42.0103093	Burn	98	165	263	62.7376426
Ref. total	593	407	1000		Ref. total	593	407	1000	
Producer's %	62.05734	40.04914	Overall %	53.1	Producer's %	83.47386	40.5405405	Overall %	66

VV	Reference	Sentinel-2 N	/loderate Lo	ow dNBR	VH	Reference Sentinel-2 Moderate Low dNBF			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	464	148	612	75.8169935	No burn	601	136	737	81.5468114
Burn	270	118	388	30.4123711	Burn	133	130	263	49.4296578
Ref. total	734	266	1000		Ref. total	734	266	1000	
Producer's %	63.21526	44.3609023	Overall %	58.2	Producer's %	81.88011	48.8721805	Overall %	73.1

VV	Reference	Sentinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High d			igh dNBR
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	528	84	612	86.2745098	No burn	654	83	737	88.7381275
Burn	304	84	388	21.6494845	Burn	178	85	263	32.3193916
Ref. total	832	168	1000		Ref. total	832	168	1000	
Producer's %	63.46154	50	Overall %	61.2	Producer's %	78.60577	50.5952381	Overall %	73.9

VV	Reference	Sentinel-2 H	ligh dNBR		VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	561	51	612	91.6666667	No burn	687	50	737	93.2157395
Burn	340	48	388	12.371134	Burn	214	49	263	18.6311787
Ref. total	901	99	1000		Ref. total	901	99	1000	
Producer's %	62.26415	48.4848485	Overall %	60.9	Producer's %	76.24861	49.4949495	Overall %	73.6

VH	Reference	Sentinel-2 H	ligh dNBR		VH	Reference	MODIS Burn		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	687	50	737	93.2157395	No burn	506	231	737	68.6567164
Burn	214	49	263	18.6311787	Burn	93	170	263	64.6387833
Ref. total	901	99	1000		Ref. total	599	401	1000	
Producer's %	76.24861	49.4949495	Overall %	73.6	Producer's %	84.47412	42.394015	Overall %	67.6

October Descending

VV	Reference	Sentinel-2 L	ow dNBR		VV	Reference	ow dNBR		
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	370	241	611	60.5564648	No burn	370	241	611	60.5564648
Burn	223	166	389	42.6735219	Burn	223	166	389	42.6735219
Ref. total	593	407	1000		Ref. total	593	407	1000	
Producer's %	62.3946	40.7862408	Overall %	53.6	Producer's %	62.3946	40.7862408	Overall %	53.6

VV	Reference	Sentinel-2 L	ow dNBR		VH	Reference Sentinel-2 Moderate Low dN				
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %	
No burn	370	241	611	60.5564648	No burn	394	146	540	72.962963	
Burn	223	166	389	42.6735219	Burn	340	120	460	26.0869565	
Ref. total	593	407	1000		Ref. total	734	266	1000		
Producer's %	62.3946	40.7862408	Overall %	53.6	Producer's %	53.67847	45.112782	Overall %	51.4	

VV	Reference	Sentinel-2 N	/loderate H	igh dNBR	VH	Reference Sentinel-2 Moderate High dNB			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	512	99	611	83.797054	No burn	439	101	540	81.2962963
Burn	320	69	389	17.7377892	Burn	393	67	460	14.5652174
Ref. total	832	168	1000		Ref. total	832	168	1000	
Producer's %	61.53846	41.0714286	Overall %	58.1	Producer's %	52.76442	39.8809524	Overall %	50.6

VH	Reference Sentinel-2 Moderate High dNBR				VH	Reference Sentinel-2 High dNBR			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	439	101	540	81.2962963	No burn	480	60	540	88.8888889
Burn	393	67	460	14.5652174	Burn	421	39	460	8.47826087
Ref. total	832	168	1000		Ref. total	901	99	1000	
Producer's %	52.76442	39.8809524	Overall %	50.6	Producer's %	53.27414	39.3939394	Overall %	51.9

VV	Reference	MODIS Burn			VH	Reference MODIS Burn			
SAR – Sentinel-1	No burn	Burn	SAR total	User's %	SAR – Sentinel-1	No burn	Burn	SAR total	User's %
No burn	368	243	611	60.2291326	No burn	326	214	540	60.3703704
Burn	231	158	389	40.6169666	Burn	273	187	460	40.6521739
Ref. total	599	401	1000		Ref. total	599	401	1000	
Producer's %	61.43573	39.4014963	Overall %	52.6	Producer's %	54.42404	46.6334165	Overall %	51.3

REFERENCES

- Abatzoglou, John T., and A. Park Williams. "Impact of Anthropogenic Climate Change on Wildfire across Western US Forests." *Proceedings of the National Academy of Sciences*, vol. 113, no. 42, Oct. 2016, pp. 11770–75, doi:10.1073/pnas.1607171113.
- Ager, Alan A., et al. "Wildfire Exposure to the Wildland Urban Interface in the Western US." *Applied Geography*, vol. 111, Oct. 2019, p. 102059, doi:10.1016/j.apgeog.2019.102059.
- Ajadi, Olaniyi A., et al. "Change Detection in Synthetic Aperture Radar Images Using a Multiscale-Driven Approach." *Remote Sensing*, vol. 8, no. 6, June 2016, p. 482, doi:10.3390/rs8060482.
- Andela, N., et al. "A Human-Driven Decline in Global Burned Area." *Science*, vol. 356, no. 6345, June 2017, pp. 1356–62, https://doi.org/10.1126/science.aal4108.
- Ban, Yifang, et al. "Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning." *Scientific Reports*, vol. 10, no. 1, Jan. 2020, p. 1322, https://doi.org/10.1038/s41598-019-56967-x.
- Baldassari, Erin. "Camp Fire Death Toll Grows to 29, Matching 1933 Blaze as State's Deadliest." *East Bay Times*, 11 Nov. 2018, https://www.mercurynews.com/crews-continue-to-battle-strong-winds-in-deadly-camp-fire.
- Celik, Turgay. "Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering." *IEEE Geoscience and Remote Sensing Letters*, vol. 6, no. 4, Oct. 2009, pp. 772–76, https://doi.org/10.1109/LGRS.2009.2025059.
- Cook, Benjamin I., et al. "Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains." *Science Advances*, Feb. 2015, doi:10.1126/sciadv.1400082. world.
- Cocke, Allison E., et al. "Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data." *International Journal of Wildland Fire*, vol. 14, no. 2, June 2005, pp. 189–98, doi:10.1071/WF04010.

CNBC, "Deadly California Wildfire Now 100% Contained after Scorching 154,000 Acres." *CNBC*, 25 Nov. 2018, https://www.cnbc.com/2018/11/25/deadlycalifornia-wildfire-now-100percent-contained.html.

European Space Agency, ESA. "Sentinel-1 Technical Guide." 2012

- Fletcher, Karen, and European Space Agency, editors. *Sentinel-1: ESA's Radar Observatory Mission for GMES Operational Services*. ESA Communications, 2012.
- Gao, Peng, et al. "Robust Projections of Future Fire Probability for the Conterminous United States." *Science of The Total Environment*, vol. 789, Oct. 2021, p. 147872, doi:10.1016/j.scitotenv.2021.147872.
- García, M. J. López, and V. Caselles. "Mapping Burns and Natural Reforestation Using Thematic Mapper Data." *Geocarto International*, vol. 6, no. 1, 1991, pp. 31–37, https://doi.org/10.1080/10106049109354290.
- Giglio, L., C. Justice, L. Boschetti, D. Roy. *MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V061* 2021, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD64A1.061.
- Gorelick, Noel, et al. "Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone." *Remote Sensing of Environment*, vol. 202, Dec. 2017, pp. 18–27, doi:10.1016/j.rse.2017.06.031.
- Halofsky, Jessica E., et al. "Changing Wildfire, Changing Forests: The Effects of Climate Change on Fire Regimes and Vegetation in the Pacific Northwest, USA." *Fire Ecology*, vol. 16, no. 1, Jan. 2020, p. 4, doi:10.1186/s42408-019-0062-8.
- Heidari, Hadi, et al. "Effects of Climate Change on Natural-Caused Fire Activity in Western U.S. National Forests." *Atmosphere*, vol. 12, no. 8, July 2021, p. 981, doi:10.3390/atmos12080981.
- Hird, Jennifer N., et al. "Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping." *Remote Sensing*, vol. 9, no. 12, Dec. 2017, p. 1315, https://doi.org/10.3390/rs9121315.
- Hoekman, Dirk H., and Johannes Reiche. "Multi-Model Radiometric Slope Correction of SAR Images of Complex Terrain Using a Two-Stage Semi-Empirical Approach." *Remote Sensing of Environment*, vol. 156, Jan. 2015, pp. 1–10, https://doi.org/10.1016/j.rse.2014.08.037.

- Imperatore, Pasquale, et al. "Effect of the Vegetation Fire on Backscattering: An Investigation Based on Sentinel-1 Observations." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 10, no. 10, Oct. 2017, pp. 4478–92, doi:10.1109/JSTARS.2017.2717039.
- Jolly, W. Matt, et al. "Climate-Induced Variations in Global Wildfire Danger from 1979 to 2013." *Nature Communications*, vol. 6, no. 1, July 2015, p. 7537, https://doi.org/10.1038/ncomms8537.
- Kasischke, Eric S., et al. "Monitoring of Wildfires in Boreal Forests Using Large Area AVHRR NDVI Composite Image Data." *Remote Sensing of Environment*, vol. 45, no. 1, July 1993, pp. 61–71, https://doi.org/10.1016/0034-4257(93)90082-9.
- Keeton, William S., et al. "Chapter 13 Climate Variability, Climate Change, and Western Wildfire with Implications for the Urban–Wildland Interface." *Living on the Edge*, edited by Austin Troy and Roger G. Kennedy, vol. 6, Emerald Group Publishing Limited, 2007, pp. 225–53, doi:10.1016/S1569-3740(06)06013-5.
- Key, Carl H., and Nathan C. Benson. "Landscape Assessment (LA)." In: Lutes, Duncan C.; Keane, Robert E.; Caratti, John F.; Key, Carl H.; Benson, Nathan C.; Sutherland, Steve; Gangi, Larry J. 2006. FIREMON: Fire Effects Monitoring and Inventory System. Gen. Tech. Rep. RMRS-GTR-164-CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA-1-55, vol. 164, 2006, http://www.fs.usda.gov/treesearch/pubs/24066.
- Lasaponara, Rosa, and Biagio Tucci. "Identification of Burned Areas and Severity Using SAR Sentinel-1." *IEEE Geoscience and Remote Sensing Letters*, vol. 16, no. 6, June 2019, pp. 917–21, https://doi.org/10.1109/LGRS.2018.2888641.
- Lee, Jaese, et al. "Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering." *Korean Journal of Remote Sensing*, vol. 37, no. 5_3, 2021, pp. 1373–87, https://doi.org/10.7780/kjrs.2021.37.5.3.4.
- Liew, S. C., et al. "Delineating Land/Forest Fire Burnt Scars with ERS Interferometric Synthetic Aperture Radar." *Geophysical Research Letters*, vol. 26, no. 16, 1999, pp. 2409–12, https://doi.org/10.1029/1999GL900189.
- Littell, Jeremy S., et al. "A Review of the Relationships between Drought and Forest Fire in the United States." *Global Change Biology*, vol. 22, no. 7, 2016, pp. 2353–69, https://doi.org/10.1111/gcb.13275.

- Loew, Alexander, and Wolfram Mauser. "Generation of Geometrically and Radiometrically Terrain Corrected SAR Image Products." *Remote Sensing of Environment*, vol. 106, no. 3, Feb. 2007, pp. 337–49, https://doi.org/10.1016/j.rse.2006.09.002.
- McKenzie, Donald, and Jeremy S. Littell. "Climate Change and the Eco-hydrology of Fire: Will Area Burned Increase in a Warming Western USA?" *Ecological Applications*, vol. 27, no. 1, 2017, pp. 26–36, https://doi.org/10.1002/eap.1420.
- Mullissa, Adugna, et al. "Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine." *Remote Sensing*, vol. 13, no. 10, Jan. 2021, p. 1954, doi:10.3390/rs13101954.
- Parks, S. A., and J. T. Abatzoglou. "Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017." *Geophysical Research Letters*, vol. 47, no. 22, 2020, p. e2020GL089858, doi:10.1029/2020GL089858.
- Salvador, R., et al. "A Semi-Automatic Methodology to Detect Fire Scars in Shrubs and Evergreen Forests with Landsat MSS Time Series." *International Journal of Remote Sensing*, vol. 21, no. 4, Jan. 2000, pp. 655–71, https://doi.org/10.1080/014311600210498.
- Schwartz, Mark D. "Green-Wave Phenology." *Nature*, vol. 394, no. 6696, Aug. 1998, pp. 839–40, doi:10.1038/29670.
- Small, David. "Flattening Gamma: Radiometric Terrain Correction for SAR Imagery." IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 8, Aug. 2011, pp. 3081–93, https://doi.org/10.1109/TGRS.2011.2120616.
- Steele-Dunne, Susan C., et al. "Radar Remote Sensing of Agricultural Canopies: A Review." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 10, no. 5, 2017, pp. 2249–73, doi:10.1109/JSTARS.2016.2639043.
- Tanase, Mihai A., et al. "Properties of X-, C- and L-Band Repeat-Pass Interferometric SAR Coherence in Mediterranean Pine Forests Affected by Fires." *Remote Sensing of Environment*, vol. 114, no. 10, Oct. 2010, pp. 2182–94, doi:10.1016/j.rse.2010.04.021.
- Trenberth, Kevin E. "Changes in Precipitation with Climate Change." *Climate Research*, vol. 47, no. 1–2, Mar. 2011, pp. 123–38, doi:10.3354/cr00953.

- Verhegghen, Astrid, et al. "The Potential of Sentinel Satellites for Burnt Area Mapping and Monitoring in the Congo Basin Forests." *Remote Sensing*, vol. 8, no. 12, Nov. 2016, p. 986, https://doi.org/10.3390/rs8120986.
- Viedma, O., et al. "Modeling Rates of Ecosystem Recovery after Fires by Using Landsat TM Data." *Remote Sensing of Environment*, vol. 61, no. 3, Sept. 1997, pp. 383– 98, https://doi.org/10.1016/S0034-4257(97)00048-5.
- Vollrath, Andreas, et al. "Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine." *Remote Sensing*, vol. 12, no. 11, Jan. 2020, p. 1867, https://doi.org/10.3390/rs12111867.
- Williams, A. Park, et al. "Observed Impacts of Anthropogenic Climate Change on Wildfire in California." *Earth's Future*, vol. 7, no. 8, 2019, pp. 892–910, doi:10.1029/2019EF001210.
- Westerling, Anthony LeRoy. "Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring." *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 371, no. 1696, June 2016, p. 20150178, doi:10.1098/rstb.2015.0178.
- Zhang, Puzhao, et al. "An Implicit Radar Convolutional Burn Index for Burnt Area Mapping with Sentinel-1 C-Band SAR Data." *ISPRS Journal of Photogrammetry* and Remote Sensing, vol. 158, Dec. 2019, pp. 50–62, https://doi.org/10.1016/j.isprsjprs.2019.09.013.
- Zhang, Puzhao, et al. "Learning U-Net without Forgetting for near Real-Time Wildfire Monitoring by the Fusion of SAR and Optical Time Series." *Remote Sensing of Environment*, vol. 261, Aug. 2021, p. 112467, https://doi.org/10.1016/j.rse.2021.112467.
BIOGRAPHY

Louis D. Heying received his Bachelor of Science in Geography and Environmental Planning from Towson University in 2014. After receiving his Master of Science in Earth Systems Science from George Mason University in 2023, he will continue his career with the federal government.