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ABSTRACT 

A DECISION-GUIDED GROUP PACKAGE RECOMMENDER BASED ON MULTI-
CRITERIA OPTIMIZATION AND VOTING 

Hanan A. Mengash, PhD 

George Mason University, 2016 

DissertationDirector: Dr. Alexander Brodsky 

 

Recommender systems are intended to help users make effective product and service 

choices, especially over the Internet. They are used in a variety of applications and have 

proven to be valuable for predicting the utility or relevance of a particular item and for 

providing personalized recommendations. State-of-the-art recommender systems focus on 

atomic (single) products or services and on individual users. This dissertation considers 

three ways of extending recommender systems: (1) to make composite (package) rather 

than atomic recommendations; (2) to use multiple rather than single criteria for 

recommendations; and, most importantly, (3) to support groups of diverse users or 

decision makers who might have different, even strongly conflicting, views on the 

weights of different criteria. 

Complex group recommender systems with these features are important in such 

areas as public policy and budget recommendations, energy infrastructure investment, 
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and health care plan selection by organizations. However, the problem of how to develop 

such systems has not been adequately addressed. Package recommendations present a 

unique challenge because they require the recommendation space to be very large, even 

infinite, and to be implicitly rather than explicitly defined. And group recommenders are 

considerably more complex than individual user recommenders. One reason for this 

complexity is the need to effectively aggregate users’ preferences in a way that 

maximizes the group’s satisfaction, fairness, and user-friendliness. 

In this dissertation, I propose and develop a decision-guided group package 

recommender framework based on multi-criteria decision-optimization and voting. This 

framework operates on a very large, even infinite, recommendation space, which is 

implicitly defined by mathematical constraints. It is designed to provide a diverse set of 

optimal or near-optimal package recommendations to groups of users while taking into 

account the influence of individuals within the group, the dissimilarity of interest among 

the group’s members, and the size and homogeneity of the group. The framework applies 

six alternative decision-making (voting) methods to refine its recommendations. Five of 

these come from social choice theories, namely the instant runoff voting (IRV), hybrid 

Condorcet-IRV, average, least misery, and average without misery methods. In addition 

to them, I develop a new method, the structurally adjusted average. I also develop a 

technique for scaling up the group recommender system for very large, heterogeneous 

groups. 

In addition, I demonstrate how the proposed framework applies to a real problem 

through a case study of the Power Microgrid Operation and Investment Recommender 
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(PMOIR). PMOIR supports (1) operational decisions on how to control each microgrid 

component on, say, a half-hourly basis, and (2) investment decisions on microgrid 

components (e.g., renewable sources of energy and power storage) over an investment 

time horizon. In order to implement PMOIR, I mathematically model different power 

components and formalize the overall optimization problem. I also implement the 

optimization model for PMOIR as a mixed-integer linear programming (MILP) model. 

Finally, I validate the proposed framework with three experimental studies: (1) a 

study demonstrating that the proposed framework can produce a small set of 

recommendations that retain near-optimality, in terms of precision and recall, when 

compared with manual voting by human participants; (2) a study demonstrating the 

framework’s ability to support very large, heterogeneous groups with only minor 

degradation in precision and recall; and (3) a study demonstrating the framework’s 

feasibility, in terms of  computational time, for applying PMOIR on microgrids involving 

200 power components, over a five-year time horizon, with around 8 million binary 

variables. 
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CHAPTER 1: INTRODUCTION 

1.1# Group#Package#Recommenders:#The#Problem##

The Internet is now the greatest source of information that has ever existed. While 

information retrieval systems are helpful tools for guiding users to the information they 

want, they are limited to retrieving only the most relevant items. Users, however, need 

more personalized search systems that can return items more suited to their particular 

preferences and interests. This is the goal of recommender systems. 

Recommender systems help users who are overwhelmed with the range of 

products and services available by identifying those that are likely to match their 

preferences. These systems learn each user’s preferences and provide personalized 

recommendations. 

Most existing recommender systems deal with single items rather than composite 

products and services (“packages”), and with individual users rather than groups of users. 

However, there are many situations in which individual recommender systems cannot be 

used because people are operating in groups—for example, friends going to see a movie 

together, family members planning a vacation, civic planners deciding on energy 

infrastructure investment, or committee members deciding on public policy and budget 

recommendations. In such scenarios, group recommendations would be the optimal way 

to provide specific suggestions of products and services to meet the needs of the diverse 
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users or decision makers. While all the users may have different, even strongly 

conflicting preferences, a group recommender system (GRS) should consider each user as 

a member of the group and generate recommendations that reflect the whole group’s 

preferences. 

Because of the social nature of human beings, group activities are an important 

part of our everyday life. This fact motivates the study of GRSs, which is still a new area 

in comparison to the study of individual user recommender systems. Moreover, there are 

many situations where in which a group of people needs package recommendations in 

which multiple criteria are taken into account, such as cost, quality, reliability, and risk. 

While state-of-the-art recommender systems focus on atomic products and 

services and on individual users, this dissertation addresses group package recommenders 

(GPRs), which extend recommender systems in three ways:  

• To consider composite rather than atomic recommendations.  

• To use multiple rather than single criteria for recommendations. 

• To support groups of diverse users and decision makers with different, even 

strongly conflicting, views on the weights for different criteria. 

Some examples of this new class of recommendations are power-microgrid 

operational and investment recommendations, group-travel package recommendations, 

public policy and budget recommendations, and health-care plan selections by 

organizations. These recommendations are composite: a travel recommendation may 

involve interrelated air travel, accommodations, activities, and car rentals. They are also 

associated with multiple criteria, such as cost, benefit, enjoyment, satisfaction, and risk. 
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Finally, it is often necessary to satisfy a diverse group of individuals with different views 

on the relative importance of these criteria. This new class of recommender systems has 

not been addressed in previous research and is the focus of this dissertation. 

1.2# Previous#Research#and#Its#Limitations#

Extensive work has been done on recommender systems, most of it focused on 

single users rather than groups of users (e.g., [1-5]). Recently, though, researchers have 

proposed group recommenders in different domains and applications that use different 

strategies to aggregate individual preferences into group models. Some common uses of 

GRSs are in recommending TV programs and movies (e.g., [6-12]); finding songs to play 

in a shared public space (e.g., [13-15]); recommending video clips (e.g., [16]); 

recommending recipes to families (e.g., [17]); recommending photos (e.g., [18]); 

recommending web pages (e.g., [19, 20]); and finding tourist attractions for groups (e.g., 

[16, 21-25]). However, none of these applications was designed for packages of products 

and services, which require the recommendation space to be very large, even infinite, and 

implicitly rather than explicitly defined. 

More recently, there has been a host of research supporting package 

recommendations [26-33], but it does not consider dynamic preference learning and 

decision optimization. The CARD framework [34] and the COD framework [35] support 

packages of product and service definitions and provide recommendations based on 

dynamic preference learning and decision optimization. However, both CARD and COD 

are recommender systems for individuals rather than groups. 

In addition, the majority of recommender systems rely on a single ranking or 
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utility score, whereas in many applications there are multiple criteria, such as cost, 

quality, enjoyment, satisfaction, and risk, that need to be taken into account. Multi-

criteria ranking has recently been explored in recommendation set retrieval [5, 36-38]. 

These methods choose a set of alternatives on the basis of a distance measure calculated 

for each of the criteria. Multi-criteria ranking can support both similarity- and diversity-

based ranking. However, these methods are based on distance measures to increase the 

quality of each recommendation, which competes with the ability to diversify 

recommendations [34]. In addition, they focus on individual users rather than groups. 

There has also been work on multi-criteria recommender systems, which have 

roots in multi-criteria optimization techniques (e.g., [39, 40]). However, these systems 

focus on atomic products rather than composite products and on individual users rather 

than groups. 

Several approaches to aggregating individuals’ utility functions have been 

suggested [41-43]. Some earlier, multi-attribute utility theory (MAUT) methods of group 

decision are reviewed in [41], including the use of weighted algebraic means, as proposed 

in [42], and the use of the sample additive theory to aggregate the individuals’ utility 

functions, as proposed in [43]. The aggregated utility function, however, is only an 

approximation, and using it directly may limit decision makers’ flexibility in refining 

their choices.   

Furthermore, most existing GRSs require specific group characteristics rather than 

providing a general framework. For instance, the aggregation method in [10] works only 

when the group is very homogenous, and [6] works well only with small groups. And the 
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majority of these GRSs assume that individual preferences are already known [44]. The 

only exception is [45], which assumes they are not, but this method is based on members’ 

critiques of desired package features, which requires experience with those features that 

is not always available.  

Many GRSs are also intrusive and require significant feedback from users. For 

example, the Travel Decision Forum [23] and Collaborative Advisory Travel System 

(CATS) [45] require the group to negotiate the group model. Although feedback remains 

a primary factor in the recommender system concept, it might be better to extract 

information from users implicitly. 

In addition, most current GRSs aggregate preferences without using fairness 

criteria. For instance, in [23] and [10], group members whose preferred features are not 

selected are simply “left out,” not compensated with other desirable features. Using the 

average and plurality voting strategies, as in [9], does not avoid the fairness issue. 

Furthermore, most previous work has been based on aggregation strategies that 

combine the group members’ ratings in the same way without considering how they 

interact with each other. But it is natural for some members to have more influence in the 

aggregation of preferences than others—those with authority or expertise or who are 

more trusted, for example. These members must be treated differently to improve the 

group decision-making process. 

Regarding which aggregation strategies are to be used in group recommender 

models, several researchers (e.g., [44, 46-49]) have concluded that taking certain main 

factors into account while developing the GRS will yield a significant improvement. 
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These factors include the influence of group size, the influence of group homogeneity, 

the personality of each member, and the relationships among them.  

Several GRSs consider some of the main social factors when generating 

recommendations for groups (e.g., [8, 17, 21, 23, 45-47, 50]), but none was designed for 

packages, which require a large and implicitly defined recommendation space. 

I provide further details on related work in Chapter 2. 

Addressing these limitations of the previous research on recommender systems is 

the focus of my dissertation. To the best of my knowledge, based on popular group 

recommender surveys [44, 49, 51-54], there is no recommender system that involves both 

groups of users and composite recommendations using multiple criteria. The proposed 

framework will be the first recommender system to address all these issues. 

1.3# Research#Challenges#

A. Recommendation space. The recommendation space is very large and defined only 

implicitly. Therefore, multi-criteria optimization will be a key technique for 

supporting the decision-making process.  

B. Group recommendations. The challenges for GRSs are considerably more complex 

than for individual user recommenders. Some of the reasons for this complexity are: 

• Acquiring information about individual users’ preferences. While the usual 

individual recommender techniques can be used, such as collaborative and 

content-based filtering, it is difficult to infer an individual’s preferences when a 

group uses the recommender system [44] because individuals’ ratings may depend 

on their groups. For example, parents might be happy to watch a program with 
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their children but not want to watch it with their friends. 

• Effectively aggregating users’ preferences in a way that maximizes group 

satisfaction, fairness, and user-friendliness. In GRS, a group of users may share 

some preferences but not others. At least some preference conflicts are likely to 

occur, so some form of aggregation method is needed. This is the most obvious 

difference between group recommenders and individual recommenders. Choosing 

an aggregation method that maximizes the group’s satisfaction is a critical step in 

designing a group recommender. 

• Estimating a group utility function taking multiple factors into account. The 

problem of reducing the recommendation space can be addressed with an 

optimization technique for finding a small set of optimal or near-optimal 

recommendations. Before optimization can be applied, however, the GRS must be 

able to estimate a group utility function that captures the whole group’s 

preferences, taking into account a number of factors such as the influence of 

individuals within the group, the dissimilarity of interests among group members, 

the size of the group, and its homogeneity. 

• Helping a group of users reach a final decision. To refine the recommendations, 

one of the voting mechanisms from social choice theories can be used. These 

methods, however, apply only when there are a small number of alternatives to 

vote on. In the case of composite alternatives, the search space for 

recommendations is very large, making a voting method impractical. Therefore, 

we need to restrict the space of recommendations to a small subset that is highly 
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relevant to the whole group and which can then be refined through voting. 

• Determining actual group preferences for evaluative comparison to system 

recommendations. Research on GRSs presents a significant additional challenge 

in the difficulty of evaluating the effectiveness of group recommendations [8, 

55]—that is, determining an overall group preference to use as a ground truth for 

measuring the accuracy of a GRS. There are two main options: conducting live 

user studies and analyzing synthetic data sets. With either, it is difficult to 

determine an overall group preference to use as ground truth. 

The former needs group discussion and interaction to make the final decision, 

which will help to determine the ground truth for the whole group’s preferences. 

However, this is impractical for large-scale evaluation even apart from the 

overhead involved in bringing groups together, as large groups are needed for such 

studies. Furthermore, even if we do interview real users, we need to decide how 

the individual evaluations are to be integrated. This is difficult because different 

aggregation methods will give different results, and there is no single best 

aggregation method to apply. 

The latter option is based on generating synthetic groups from the users of a 

traditional individual recommender system. While this works well for large-scale 

evaluation, it is again difficult to determine “actual” group preferences (i.e., what a 

group’s preference outcome was) from individual users’ data [55]. 

C. Diversifying the recommendation set. Because the group utility is only an estimate, 

it is important to have alternatives that are sufficiently diverse in terms of individual 
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decision makers’ preferences. Hence there is a tradeoff to be made between the 

competing goals of optimization and diversity. 

Addressing these challenges in a single recommender system involving  

composite recommendations, using multiple criteria, and supporting groups of users  

introduces a dimension of complexity that has not been addressed, which is the focus of 

this dissertation. I provide further details of the dissertation’s contribution in the 

following section. 

1.4# Thesis#Statement#and#Summary#of#Contributions#

Thesis#Statement#

A decision-guided recommender can be developed that will 

• Automate the selection of packages of products and services in an optimal way, 

• Deal with multiple criteria associated with the packages, 

• Support large, heterogeneous groups of users, and 

• Be feasible in terms of efficiency and scalability. 

Summary#of#Key#Contributions#

A. Developing a framework for recommending composite products and services to 

groups. I have developed a decision-guided group package recommender framework 

based on multi-criteria decision optimization and voting. The framework operates on 

a very large, even infinite, recommendation space, which is implicitly defined. This 

framework is designed to do the following:!

• Extend the existing recommender systems in three ways, to (1) consider 
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composite recommendations, (2) deal with multiple criteria for recommendations 

and most importantly (3) support groups of users. 

• Take into account three important factors in group decision-making process: 

(1) the influence of individuals within the group, (2) the interest dissimilarity 

among group members, and (3) the size and homogeneity of the group.  

• Diversify group recommendation sets. Because the group utility function is only 

an estimate, it is important to have diverse alternatives to meet individual decision 

makers’ preferences. To do this I developed an extension of the diversity layering 

method used in the CARD framework [34].  

• Apply six alternative decision-making (voting) methods to refine the 

recommendations to their final form. Five of these come from social choice 

theories: the instant runoff voting (IRV) method, the hybrid Condorcet-IRV 

method, the average method, the least misery method, and the average without 

misery method. In addition, I developed a new method, the structurally adjusted 

average, which takes into account the influence of decision makers within the 

group and the dissimilarity of opinions among them. 

• Scale up the GRS for very large, heterogeneous groups. I did that by developing a 

technique based on clustering the whole group into smaller, homogeneous 

subgroups of decision makers with similar utilities. 

B. A case study of the Power Microgrid Operation and Investment Recommender 

(PMOIR). I demonstrate how the proposed framework applies to a real problem by 

considering a realistic case study in which PMOIR is used to support a group of 
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decision makers by recommending an optimal set of operation and investment 

decisions regarding interrelated power components in a power microgrid on a 

university campus. The recommendations include optimal settings and values of 

decision control variables, such as the amount of power generated from the resource 

components (e.g., batteries, backup generators, utility contracts, and renewable 

resources) and the amount consumed by the power-consuming service components 

(e.g., heating, ventilation, air conditioning, and lighting) in each time interval. The 

goal is to maximize the net present value (NPV) within the required demand 

satisfaction ratio and within the bound for greenhouse gas (GHG) emissions. This is 

done while taking into account all components’ interactions and satisfying a group of 

diverse decision makers who may have conflicting views on the weights of the 

relevant criteria. 

C. Formalizing and implementing optimization models for power component 

operation and investment. To implement PMOIR, I mathematically modeled 

different power components and formalized the overall optimization problem. In 

addition, I implemented the power optimization model for PMOIR as a mixed-integer 

linear programming (MILP) model using IBM Optimization Programming Language 

(OPL) and CPLEX Studio. 

D. Validating the effectiveness and efficiency of the proposed framework. This 

validation involved three experimental studies: 

• A study with human participants in which the precision and recall of the proposed 

framework were compared with voting procedures run manually by human 
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participants. This study showed that the proposed framework can produce a small 

set of recommendations that remain nearly optimal in precision and recall. 

• A study demonstrating the framework’s scalability to very large, heterogeneous 

groups. Utility functions were generated synthetically for members of such 

groups, and the precision and recall of the framework were compared with the 

recommendations that would be generated through applying manual voting 

methods on the entire large groups. The study demonstrated an average precision 

ranging from 0.95 for top-1 recommendations to 0.80 for top-5 recommendations. 

For recall, it demonstrated an average value ranging from 0.19 for top-1 

recommendations to 0.80 for top-5 recommendations. 

• A study demonstrating the feasibility in computational time of the proposed 

framework through a realistic case study using PMOIR. This study used data sets 

of various sizes involving different numbers of microgrid energy components 

over different time horizons. It demonstrated that the proposed framework is 

feasible and practicable to operate on medium-sized and large microgrids to 

generate small sets of optimal and diverse solutions within a reasonable time. For 

example, the largest data set in this study, involving 200 components over a five-

year time horizon, was solved in less than five hours. Note that this data set 

contained more than 23 million constraints and about 18 million variables, of 

which more than 8 million were binary and almost 10 million were continuous. 
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1.5# Organization#of#the#Dissertation#

This dissertation is organized as follows: 

• Chapter 2: Related work 

• Chapter 3: Group composite alternatives recommender (GCAR)  

• Chapter 4: GCAR steps and evaluation under each voting method 

• Chapter 5: Tailoring group package recommendations to large heterogeneous groups 

• Chapter 6: Case study: Power microgrid operation and investment recommender 

(PMOIR) 

• Chapter 7: PMOIR implementation and experimental study 

• Chapter 8: Conclusions and future work 
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CHAPTER 2: RELATED WORK 

2.1 Individual#Recommender#Systems#

An individual recommender system is a system that attempts to recommend items 

(e.g., movies, music, TV programs, books, news, web pages) that will be of interest to a 

single user [56]. Individual recommender systems try to predict the rating a user would 

give to an item he or she has not yet encountered on the basis of some reference 

characteristics, which may belong to the item’s content (the content-based approach) or 

to the user’s social environment (the collaborative filtering approach). 

Individual recommender systems have been extensively studied over the past two 

decades. Popular surveys (e.g., [1-5]) have classified individual recommenders into 

content-based, collaborative filtering (CF), and hybrid approaches. More recently, 

knowledge-based, utility-based, and demographic systems have been proposed, using 

different techniques to recommend alternatives to users. 

A content-based recommender (e.g., [1, 57]) recommends items similar to the 

ones the user preferred in the past on the basis of features (contents) of those items. There 

are some limitations to the content-based approach: (1) limitation by the objects’ features; 

(2) overspecialization, since this method returns similar items to those the user has liked; 

(3) the cold start (or new users) problem, the fact that when users have not yet rated 

enough items, the system is unable to predict their interests [1, 2]. 
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Collaborative filtering (e.g., [1-3]) systems recommend items that have been 

preferred by similar users—that is, they reflect the preferences of the users rather than the 

features of the item. While CF is the most successful and widely used recommendation 

approach, it also has some limitations: (1) The cold start problem: in addition to the new 

users problem, explained above, the recommender system will not recommend an item 

until enough users have rated it (the new items problem). (2) Sparsity: the success of a 

recommender system depends on there being enough users in the system. In most 

recommender systems, each user rates only a small number of items, which make it 

difficult for the system to find similarities among the users or the items. (3) Gray sheep: 

users whose preferences do not consistently agree or disagree with those of any group of 

users [1, 2]. 

The hybrid approach (e.g., [4, 58-61]) combines methods of the CF and content-

based approaches to minimize the limitations they have when used separately. There are 

many ways to combine methods into hybrid recommender systems [59]. 

2.2# Package#Recommender#Systems##

Most existing recommender systems provide users with single items, such as 

movies, music, TV programs, and web sites. However, several applications need systems 

that can recommend packages of items. These include travel planning, health care 

planning, and course recommendations for students. In travel planning, for example, a 

user needs a package of recommendations including places to visit, accommodations, 

airline reservations, and car rental. 

Researchers have recently considered package recommendations. For example, 
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some [62] have recommended fixed-size packages that are tuples of the entities 

included—cities, airlines, and hotels—with fixed associations among the entities to 

determine entity scores. They queried documents using keywords instead of querying 

recommender systems. By contrast, work [33] recommended packages of variable size, 

subject to budgetary constraints, with the associations among entities to be captured using 

the notion of compatibility of sets. This system combined recommendations from systems 

that provided ratings for items. Work [63] proposed a novel framework for automatically 

generating itineraries from user-generated data such as uploaded pictures. CourseRank 

[32, 64] is a package recommender system that provides a minimal number of courses to 

students that will satisfy requirements and accord with past ratings of the courses. 

FlexRecs [29] is a package recommender system that generates complex 

recommendations from relational data and specified recommendation requirements by 

using relational algebra extended with additional features and operators. The CARD [34] 

and COD [35] frameworks support packages of product and service definitions and 

provide recommendations based on dynamic preference learning and decision 

optimization. The packages of services in CARD are characterized by a set of sub-

services, which in turn can be package or atomic. CARD uses a decision-guidance query 

language (DGQL) to define recommendation views, which specifies multiple utility 

metrics, in addition to the weighted utility function. COD was based on CARD and 

provides an efficient method for eliciting individuals’ utility functions. 

However, all of the above systems recommend packages of items for individuals 

rather than groups. There has been little research on group package recommendations. 
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One instance is Travel Decision Forum [23], which allows each group member to view 

the preferences of other members to help them reach an agreement on the desired features 

of a joint holiday. And CATS [45] is a critique-based group recommender that helps 

groups of users plan a joint ski holiday by letting them view ski packages and critique 

their features, and then recommending a new ski package in response to these critiques. 

Intrigue [21] recommends packages of tourist attractions to groups by using the weighted 

average strategy to take into account the preferences of relatively homogeneous 

subgroups, such as children. However, these recommenders do not make use of dynamic 

preference-learning or decision optimization. 

2.3# Group#Recommender#Systems##

There are many activities that can be done by groups of users, such as watching a 

movie, listening to music, or travelling. For these kinds of activities, a recommender 

should suggest items that satisfy the preferences of the whole group based on the 

individual preferences of its members. Such a recommender system is known as a group 

recommender system (GRS). 

A GRS is a system that attempts to recommend items that will satisfy a group of 

users with potentially competing interests [65]. Thus the success of a given 

recommendation depends not on the individual user’s interests but on those of the group 

as a whole. This makes GRSs more complex than individual recommenders, as described 

in [23]. One reason for this complexity is the need to effectively aggregate users’ 

preferences in a way that maximizes the group’s satisfaction, is fair, and is easy to use. 

Recently, researchers have proposed group recommenders in different domains 
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and applications that use different strategies to aggregate individual preferences into 

group models. Common uses of GRS include recommending TV programs, movies, and 

video clips (e.g., [6-12], [16]), finding songs to play in shared spaces (e.g., [13-15]), 

recommending meal recipes for families (e.g.,  [17]), recommending photos (e.g., [18]), 

recommending web pages (e.g., [19, 20]), and finding tourist attractions for groups of 

people (e.g., [16, 21-25]). The most popular GRSs in different domains are presented in 

the following subsection. 

2.3.1# Overview#of#Existing#Group#Recommender#Systems#

A large number of works have addressed group recommenders in different 

domains in the past two decades. For example, PolyLens [6] is a group movie 

recommender that is extended from the MovieLens system. It uses the least misery 

strategy, which takes the minimums of individual ratings to avoid causing “misery” for 

members. The authors addressed some important issues for group recommenders, such as 

groups’ privacy, members’ rights, and social value functions. MusicFx [13] is a group 

recommender that chooses background music to suit a group in a fitness center. To 

aggregate a group preference, it uses an average without the minimum rating. Pocket 

Restaurant Finder [25] recommends restaurants for groups of people going out to eat 

together on the basis of the users’ locations and the restaurants’ characteristics (distance, 

cost, cuisine). Intrigue [21] recommends tourist attractions to groups of users by 

following the weighted average strategy and using socio-demographic information about 

the participants. It takes into account the preferences of relatively homogeneous 

subgroups, such as children, in which each subgroup may have a different degree of 
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influence on the estimation of group preferences. Yu’s TV Recommender [10] selects a 

TV program for a group of users depending on the average of their ratings of program 

features. Travel Decision Forum [23] allows each group members to view the preferences 

of other members to help the group reach an agreement on the desired features of a joint 

holiday. I-Spy [20] is a community-based search engine that adapts queries and re-ranks 

its search results on the basis of community choices. E-Tourism [22] is a web-based 

service for recommending of group tourism activities. To compute group profiles, it uses 

three mechanisms: aggregation, intersection, and incremental intersection. CATS [45] is 

a critique-based group recommender that helps groups plan ski holidays by letting 

individual members view ski packages and critique their features and then recommending 

new packages in response to these critiques. Work [11] proposes voting mechanism for 

recommending TV shows to groups of people. It focuses on range voting, in which users 

give items ratings within a specified range, and the item with the greatest total rating is 

recommended to the group. 

Some recent group recommenders have been implemented on Facebook. For 

example, GroupFun [14] recommends a common set of music items to groups. It uses 

voting algorithms to determine users’ true preferences and aggregates those using the 

probabilistic weighted sum method. Happy Movie [7] is another application on Facebook 

that recommends movies to groups of users. 

2.3.2# Group#Modeling#Approaches##

As explained in popular group recommender surveys (e.g. [44, 49, 51-53]), there 

are two main approaches to group modeling: (a) aggregating individual predictions 
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(ratings or recommendations) into group predictions, and (b) aggregating individual 

preference models (profiles) into a model representing the preferences of the group as a 

whole. For both methods, there are many different strategies for the aggregation process 

(see Section 2.4). 

Aggregating individual predictions (e.g., [6, 7, 45, 66]) is based on aggregating 

lists of recommendations for individual members of a group. There are two ways of 

doing this: the CF method, which is explained in Section 2.1, and the rank aggregation 

method, which generates recommendation lists for each individual and merges these into 

a single recommendation list for the group by using one of the social choice strategies for 

combining multiple rankings (see Section 2.4). The approach of aggregating individual 

predictions can be formulated as follows [67]: 

• For each member mj, predict the rating rij of each candidate ci by mj. 

• Compute an aggregate rating Ri from the set {rij}. 

• Recommend the set of candidates with the highest predicted ratings Ri. 

 Many authors (e.g., [8, 17, 44, 48, 49, 51]) agree that merging individuals’ 

recommendations provides the worst GRS results in general. The problem of optimal 

solution search is the reason this approach is not used nowadays. However, it is useful 

when applied as an extension to the existing recommender systems, so that minimal 

changes to those systems are needed [48]. Some existing GRSs use this approach: 

PolyLens [6] and gRecs [66] for group movie recommendations, CATS [45] for group ski 

holidays, and [7] for group movie recommendations via Facebook. 

Aggregating individual preference models (e.g., [13, 20, 24, 68]) is based on 
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merging individuals’ profiles. On this approach, user profiles are usually represented as 

sets of weighted preferences or as sets of personal scores assigned by group members to 

the existing items [52]. Predictions for individual users are not needed in this approach. 

Instead, an aggregate model is built for the preferences of the group as a whole [67]. This 

approach can be formulated as follows [67]: 

• Compute an aggregate preference model M that represents the whole group’s 

preferences.  

• For each candidate ci, use model M to predict the whole group’s rating Ri. 

• Recommend the set of candidates with the highest predicted ratings Ri. 

The preference-aggregation approach provides better results in general because 

multiple aspects of the group can be considered. In addition, it resolves some privacy 

concerns because individual users’ preferences are not made visible [52]. Most 

contemporary GRSs use this approach rather than aggregating individual 

recommendations: Intrigue [24] recommends tourist attractions by dividing each tour 

group into homogeneous subgroups and specifying a preference model for each 

subgroup. The group model is built by computing the weighted average of the subgroup 

models, taking into account the importance of each subgroup. MusicFX [13], which 

chooses background music for fitness centers, computes a group preference for any given 

genre of music by taking the average of the squares of the users’ ratings of that genre. I-

Spy [20], a collaborative search framework, creates a group preference model without 

creating any individual preferences models first. It adapts search queries and re-ranks the 

results while taking into account the community (group) choices. HbbTV [68] is designed 
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for HbbTV browser, and its recommendations are based on user preferences and several 

filtering algorithms.  

In the following section, I explain the group decision strategies based on social 

choice theory that are the most used in existing GRSs. 

2.4# Overview#of#Voting#Methods#(Aggregation#Strategies)#

The main difficulty for group recommendation is effectively aggregating users’ 

preferences into a common social welfare function that will maximize the group’s 

satisfaction. Usually a number of different voting methods, called “aggregation 

strategies,” “social choice rules,” or “group decision rules,” can be used to solve this 

problem. Eleven aggregation strategies are explained in works [44, 52, 69]. In addition, 

other lists of aggregation strategies called “group decision rules” are explained in works 

[56, 70]. I summarize most of them in Table 2.1. 

 

Table 2.1:!Overview of Voting Methods (Aggregation Strategies) 

Voting Method 
(Aggregation 

Strategy) 
Summary of How It Works 

Majority Voting The item receiving more than 50% of the votes is selected for 
the group. 

Plurality Voting The item with the most votes is selected for the group. 
Plurality with 
Elimination 

Proceed in (n-1) rounds. After each round, the least preferred 
item is eliminated; those who voted for it have to vote again, for 
a remaining item. 

Instant Runoff 
Voting (IRV) 

Items are ranked in members’ preference lists. The least 
preferred item is eliminated, and any votes for that item are 
redistributed to the voters’ next choices. This continues until an 
item has a majority (over 50%). 
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Borda Count  Points are counted from items’ rankings in members’ 
preference lists, with the bottom item getting 0, the next up 
getting 1, and so on. The item with the most points is selected 
for the group. 

Condorcet Winner  If there is an item that is preferred in every one-to-one 
comparison with other items, that item is the Condorcet winner 
and should be selected for the group. 

Copeland Method  For each item, count the number of times it beats other items 
(using majority votes) and subtract the number of times it loses. 
The item with the highest result is selected for the group. 

Approval Voting For each item, count the members who rate it above a chosen 
approval threshold. Selects the item with the highest result 
value for the group. 

Group Satisfying 
Rule  

On each trial, items are considered one at a time in a random 
order. The first items for which all individual ratings exceed a 
certain threshold is selected. 

Average Individuals’ ratings for each item are averaged, and the one 
with the highest average is ranked first in the group’s ranked 
list. 

Weighted Average Weights are attached to individual ratings for each item, and the 
item with the highest weighted average is ranked first in the 
group’s ranked list. 

Additive Individuals’ ratings for each item are added together, and the 
one with the highest total value is ranked first in the group’s 
ranked list. 

Multiplicative Individuals’ ratings for each item are multiplied together, and 
the item with the highest product is ranked first in the group’s 
ranked list. 

Median Winner The median value of individuals’ ratings for each item is 
computed, and the item with the highest median is ranked first 
in the group’s ranked list. 

Least Misery For each item, the lowest of the individuals’ ratings is selected, 
and the item with the highest minimum is ranked first in the 
group’s ranked list. 

Average Without 
Misery 

Items with individual ratings below a certain threshold are 
excluded, and then individual ratings for each remaining item 
are averaged. The item with the highest average is ranked first 
in the group’s ranked list. 

Most Pleasure For each item, the highest of the individuals’ ratings is selected, 
and the item with the highest maximum is ranked first in the 
group’s ranked list. 

Fairness/Random 
Dictator Rule 

Items are ranked as if members are choosing them in turn. On 
each turn, one member is selected randomly, and his first 
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choices become the group’s choices. 
Most Respected 

Person/Dictatorship 
For each item, the rating of the most respected member of the 
group is used as the group’s rating for that item. 

 
 

2.4.1# Aggregation#Strategies#Used#in#Related#Work#

In [69], Masthoff presents and evaluates some group aggregation strategies (most 

summarized in Table 2.1) in a TV-recommendation domain with a small group of users. 

Here I review the most common strategies for GRS, including the additive, average, least 

misery, average without misery, and most pleasure strategies. In addition, I cite 

representative GRSs that use each and illustrate the differences among them with an 

example, which assumes that each user has a preference rating, from 1 (really hate) to 10 

(really like), for each item. 

• Additive strategy. This strategy adds individuals’ ratings for each item, and the 

item with the highest total value is ranked first in the group’s ranked list (see 

Table 2.2). A major problem with this strategy is the fact that individuals’ 

opinions become less significant as the group gets larger [52].  

Pocket Restaurant Finder [25] uses the additive strategy to recommend 

restaurants to groups of people going out to eat, on the basis of their locations and 

the restaurants’ characteristics, such as distance, cost, and cuisine. 

• Average strategy. This strategy averages individuals’ ratings for each item and 

sets the one with the highest average first in the group’s ranked list (see Table 

2.2). The main problem with this strategy is that it can give a high score to an 
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item that is disliked highly by some members if it is also liked highly by enough 

others. 

Travel Decision Forum [23] uses multiple aggregation strategies, 

including the average strategy and the median strategy, which takes the middle 

value of the users’ ratings rather than the average. It allows each group member to 

view the others’ preferences to help the group reach an agreement on the desired 

features of a joint holiday. In addition, Yu’s TV Recommender [10] selects a TV 

program for a group of users depending on the average of the individuals’ ratings 

of program features. 

In this strategy, weight can be assigned to individual preferences based on 

multiple criteria for some members in the group. For example, Intrigue [21] 

recommends tourist attractions to groups of users by assigning particular users’ 

ratings weights based on socio-demographic information about the participants. It 

takes into account the preferences of relatively homogeneous subgroups, such as 

children, in which each subgroup may have a different degree of influence on the 

estimation of the group’s preferences. Note that the group ranking list for the 

average strategy will be the same as for the additive strategy if no weights are 

assigned to users’ ratings. 

• Least misery strategy. This strategy takes the lowest individual rating for each 

item and ranks the item with the highest minimum first in the group’s ranked list, 

so that a group is as satisfied as its least-satisfied member (see Table 2.2). This 

avoids “misery” for all members. The main problem with this strategy is it will 
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miss an item that would be liked by all but one member of the group. 

PolyLens [6] is a group movie recommender that uses the least misery 

strategy. 

• Average without misery strategy. This strategy averages individual ratings, like 

the average strategy, with the difference that items with individual ratings below a 

certain threshold are excluded from the group recommendations. Table 2.2 shows 

an example of preference aggregation using this strategy with a threshold value of 

4 [52]. The main problem with this strategy is the same as with the least misery 

strategy: even if many members like a certain item, if one member really hates it, 

it will not appear in the group’s recommendations. 

MusicFx [13] is a group recommender that selects background music to 

suit a group in a fitness center. It uses the average without misery method to 

aggregate the group preference. The CATS system [45] also applies the misery 

strategy. 

• Most pleasure strategy. This strategy takes the maximum of the individual 

ratings for each item and ranks the item with the highest maximum first in the 

group’s ranked list, so that a group is as satisfied as its most satisfied member (see 

Table 2.2). The main problem with this strategy is that it can select an item for the 

group even if some members really hate it. However, this strategy may work well 

when the group members’ social relationships are strong and tight (e.g., couples 

or close friends), as explained in work [46]. 
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Table 2.2: Example of Group Ratings Using Five Different Strategies 

Users 
Items 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 
U1 10 4 3 6 10 9 6 8 10 8 
U2 1 9 8 9 7 9 6 9 3 8 
U3 10 5 2 7 9 8 5 6 7 6 

Group 
Ratings 

Additive  21 18 13 22 26 26 17 23 20 22 
Average  7 6 4.3 7.3 8.7 8.7 5.7 7.7 6.7 7.3 

Least Misery  1 4 2 6 7 8 5 6 3 6 
Average Without 

Misery - 6 - 7.3 8.7 8.7 5.7 7.7 - 7.3 

Most Pleasure 10 9 8 9 10 9 6 9 10 8 

Group 
Ranked 

List 

Additive  (I5-I6, I8, I4-I10, I1, I9, I2, I7, I3) 
Average  (I5-I6, I8, I4-I10, I1, I9, I2, I7, I3) 

Least Misery  (I6, I5, I4-I8-I10, I7, I2, I9, I3, I1) 
Average Without 

Misery (I5-I6, I8, I4-I10, I2, I7) 

Most Pleasure (I1-I5-I9, I2-I4-I6-I8, I3-I10, I7) 
 

 

In addition to these strategies, I review two other voting methods that I use in my 

research: the instant runoff voting (IRV) and the Condorcet voting methods. 

• Instant runoff voting (IRV). If there exists an alternative that has majority 

support (more than 50%), then it is selected for the whole group of voters. 

Otherwise, the alternative with the fewest first-place votes is eliminated from the 

election, and votes for it are redistributed to the voters’ next choices [71, 72]. If an 

exact tie exists for last place, the tied option that had the fewest votes in the 

previous round is eliminated. 

The IRV method weakens the need to vote strategically for an alternative 

that is not a voter’s first choice but has a better chance of winning, because 
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second and third choices still count if first choices are eliminated. However, it is 

well known that IRV does not meet the Condorcet winner criterion: it can result in 

a Condorcet winner being excluded from the choice set. 

• Condorcet-winner voting. If there is an item that is preferred in every one-to-one 

comparison with other items, that item is the Condorcet winner and should be 

selected for the group. Although this method does make the Condorcet winner 

impervious to elimination, it ends in ties fairly easily. 

2.4.2# Which#Strategy#Performs#Best#

Masthoff [44] conducted a number of experiments to determine which strategy is 

the best to use. She found that users cared about promoting fairness and about preventing 

misery. She also found that participants’ decisions reflected several strategies, including 

average, least misery, and average without misery; while other strategies, such as Borda 

count and Copeland rule, were clearly not used. 

Furthermore, she presented some item sequences chosen by the different 

aggregation strategies and asked participants to rate how satisfied they thought the group 

members would be with those sequences. She found that the multiplicative strategy 

worked the best, as all participants thought its sequences would keep all members 

satisfied. She judged that some strategies, including the Copeland rule, plurality voting, 

and least misery, could be discarded, as they were clearly found to make group members 

unhappy. 

Work [12] evaluated some of the aggregation strategies on a large data set of TV 

viewing patterns. It found that the average, additive, and average without misery 
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strategies (the “consensus-based” strategies) provided the best recommendation results. 

In addition, work [18] evaluated their approach using different social choice strategies 

and like work [12] found that the average, additive, average without misery, and fairness 

strategies outperformed the least misery, most pleasure, and plurality voting strategies 

(the “borderline” strategies). 

However, there is no perfect voting method that is fully fair. Mathematical 

economist Kenneth Arrow proved in 1950 [73] that there is no voting method that 

satisfies all consensus-desirable properties (fairness criteria), such as the following [71]:  

• The Condorcet criterion. If there is a choice that is preferred in every one-to-one 

comparison with the other choices, that choice should be the winner. (Plurality 

voting, Borda count, and IRV methods violate this criterion.) 

• The majority criterion. If a choice has a majority (more than 50%) of first-place 

votes, it should be the winner. (Plurality voting and Borda count methods violate 

this criterion.) 

• The monotonicity criterion. If voters change their votes to increase the 

preference for a candidate, it should not harm that candidate’s chances of 

winning. (The IRV method violates this criterion.) 

• The independence of irrelevant alternatives (IIA) criterion. If a non-winning 

candidate is removed from the ballot, it should not change the winner of the 

election. (The plurality voting, Borda count, IRV, and Copeland methods violate 

this criterion.) 

It is because of Arrow’s impossibility theorem that different voting methods are 
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still used. The choice of which method to use usually depends on which property people 

want to satisfy and what seems most fair in the situation [71]. 

Several other properties of aggregation strategies in GRS are also important: 

• Allowing the aggregation strategy to reflect the unequal influence of different 

individuals in the group depending on the situation, such as its being one user’s 

birthday. The most respected person (dictatorship) strategy seems to reflect this 

goal, but other users’ preferences should be taken into account too [74]. 

• Discouraging manipulation of the recommendation process. The IRV method is 

relatively resistant to strategic manipulation, as explained in [75]. 

• Taking characteristics of the group into account, such as its size and homogeneity. 

2.5# Social#Factors#in#Group#Recommender#Systems#

Regarding which aggregation strategies should be used in group recommender 

modeling, several researchers (e.g., [44, 46-49]) have concluded that taking certain main 

factors into account when developing the GRS yields a significant improvement. These 

factors include the influence of group size, the influence of group homogeneity, the 

personality of each member, and the relationships among them within the group. 

There is extensive work addressing group recommendations in different domains. 

MusicFx [13] recommends background music for gyms after users specify their 

preferences for specific genres. No group structure is considered, and only genres, not 

individual songs, are considered. PolyLens [6] is a small-group extension for the well 

known single-user recommender MovieLens. It recommends movies to groups while 

trying to satisfy at least the least-satisfied members, using the least misery aggregation 
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strategy. Pocket Restaurant Finder [25] recommends restaurants to a groups going out to 

eat together, generating its recommendations via the additive aggregation strategy. Yu’s 

TV [10] is a TV recommender that uses a vector-space model of TV programs’ features 

to find recommendations for groups. I-Spy [20] is a community-based search engine that 

adapts search queries and re-ranks the results in response to community choices. Every 

member is treated equally, which does not reflect real-life situations. FlyTrap [76] is 

recommends music to be played in public rooms. Its interface lets users control and easily 

see the reasons for its recommendations. 

All the GRSs above consider each group member equally: members’ personalities 

and the way each behaves in a group decision-making process are not taken into account. 

In addition, the relationships among group members and the possibly different relevance 

of members’ preferences have not been taken into account. The work on these issues is 

limited. 

Several existing GRSs have considered some of the main social factors when 

generating recommendations for groups of people [49]. For example, Work [17] is a 

family-based recipe recommender that focuses on the most appropriate recommendation 

strategy and user-weighting model. Its evaluation showed that the best performance of 

group recommendations is obtained when the individual data of group members are 

aggregated in a weighted manner. However, like most previous work, it focused on the 

content-relevance of the group members and ignored key characteristics of the group, 

such as its size and interest dissimilarity among its members, which resulted in sub-

optimal recommendations. Travel Decision Forum [23] makes recommendations that take 
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into account the preferences of each member and reflect interactions among members by 

allowing each member to view the preferences of the others, in order to help the group 

reach an agreement on desired features. CATS [45] is a critique-based group 

recommender for ski holidays that lets users to view ski packages and recommends new 

packages based on their critiques. This work presumes that the members’ current 

preferences depend on the preferences and behavior of other members. However, CATS 

users have to read the information on other members’ choices to adjust their initial 

opinions, and this is possible only for users who vote later. Intrigue [21] recommends 

tourist attractions to groups by assigning weights to particular users’ ratings on the basis 

of socio-demographic information about them. It takes into account the preferences of 

relatively homogeneous subgroups and allows each subgroup to have a different 

influence on the estimation of the group preferences. 

Other works have focused not only on members’ relevance preferences, but also 

on their disagreements over items. For example, GRec-OC [50] recommends books for 

online communities and tries to reduce individual members’ dissatisfaction; its 

recommendations are based on what similar groups have purchased. By using rank 

aggregation techniques, work [8] addressed interest similarity and dissimilarity among 

group members and found that the more alike the members are, the more effective the 

group recommendations are. It also addressed the affect of the group’s size on the GRS 

and showed that group recommendations are less effective than individual 

recommendations only for large groups (of size 8+) and that the difference is in fact very 

small for groups of moderate size (2, 3, and 4). Work [46] proposed a group 
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recommendation method that examines the key characteristics of groups and proposes a 

group consensus function for capturing social, expertise, and interest dissimilarity among 

group members. In work [47], the proposed GRS takes into account both an item’s 

relevance to the group and the disagreements among group members. 

However, none of the above GRSs was designed for packages of products and 

services, which would make the recommendation space very large and implicitly defined. 

It is necessary to modify the existing aggregation strategies to reflect other aspects, such 

as group size, within-group similarities, and each member’s role in the group. Thus the 

group decision-making method developed in my research reflects the influence of each 

member on the group decision-making process, the size of the group, and the group’s 

homogeneity to provide its composite group recommendations. 

2.6# MultiWCriteria#Recommender#Systems#

The majority of current recommender systems consider a single criterion, such as 

a single rating of an item by a user. While such systems provide successful 

recommendations in several applications, some recent works (e.g., [5, 38, 77]) have 

agreed that the incorporation of multiple criteria may produce more accurate 

recommendations because more complex users’ preferences can be represented [77]. 

Multi-criteria decision-making (MCDM) techniques have been extensively 

studied in the field of decision science. The two main families of MCDM techniques are 

those based on multi-attribute utility theory (MAUT) [78, 79] and those based on the 

outranking methods [80, 81]. 

The MAUT methods are based on aggregating the different criteria into a function 
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that has to be maximized. They include the simple multi-attribute rating technique 

(SMART) [82, 83], the simplest of the MAUT methods; the technique for order 

preference by similarity to ideal solution (TOPSIS) [84]; and the analytic hierarch 

process (AHP) [85], which uses pairwise comparisons to determine the criterion weights. 

The two main families of outranking methods are the ELECTRE [80, 81] and 

PROMETHEE methods [86, 87]. 

The vast majority of multi-criteria recommender systems (e.g., [35, 38, 39, 88]) 

take the MAUT approach, which provides prediction in the form of additive utility 

functions. Only a few (e.g., [40, 89]) use multi-objective mathematical programming 

methodologies, in which the goal is finding the Pareto-optimal solution to the 

optimization problem. As with the previous approach, only few multi-criteria 

recommender systems (e.g., [90]) use the outranking relations approach, on which 

preferences are expressed as a system of outranking relations between items. 

Note that although this dissertation focuses on composite products and services 

and support for groups of users, all the examples of multi-criteria recommender systems 

above focus on atomic products and services and on individual users. 

There are several approaches to aggregating individuals’ utility functions. Some 

earlier MAUT methods of group decision are reviewed in [41] and used in a number of 

works: the simple additive theory for aggregating individuals’ utility functions, proposed 

in [43]; the simple additive weighting (SAW) in [91]; the MAUT-group decision model 

in [92], which considers both preferential differences and preferential priorities to the 

model construction; and the use of weighted algebraic means, which is applied in the 
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WINGDSS software [93]. The group utility function computed in WINGDSS is 

appropriate in respect of satisfying the axioms given in [94]. 

In this research, I extract the group utility function based on the additive multi-

attribute group utility function proposed on earlier literature (e.g., [94, 95]) to aggregate 

the individuals’ utility functions. However, the aggregated utility function is only an 

approximation, and using it directly may limit the flexibility of decision makers to refine 

their choices. 

In addition, the AHP [96] and outranking methods are extended to group decision 

support. For example, work [97] developed a PROMETHEE technique for group 

decision support, and [98] developed a method for group decision support based on 

ELECTRE methodology. However, most of the techniques mentioned above focus on 

decision-making problems in which the number of alternatives is finite and the 

alternatives are explicitly defined. 

2.6.1# Recommendation#as#a#MultiWCriteria#DecisionWMaking#Problem#

Different multi-criteria decision-making (MCDM) methods can be applied to 

support multi-criteria recommender systems. These methods follow several steps [77], 

including: 

• Defining the object of decision, which is an item in recommender systems. 

• Defining a consistent family of criteria, which may be the multiple features of 

an item or the multiple dimensions along which it is being rated. 

• Developing a global preference model, which provides a way to aggregate the 

criteria values to express preferences between different items. 
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The existing multi-criteria recommender systems follow several approaches to 

developing the global preference models [5]:  

• Value-focused models. Marginal preferences on each criterion are synthesized 

into a utility function. These approaches are often called multi-attribute utility 

theory approaches. The vast majority of multi-criteria recommender systems (e.g., 

[35, 38, 39, 88]) use these approaches, which provide predictions in the form of 

additive utility functions. 

• Multi-objective optimization models. The goal of these approaches is to find a 

Pareto-optimal solution to the optimization problem. They are also called multi-

objective mathematical programming methodologies. Only a few multi-criteria 

recommender systems (e.g., [40, 89]) take this approach. 

• Outranking relations models. Preferences are expressed as a system of 

outranking relations between items. As with the previous approach, only a few 

multi-criteria recommender systems (e.g., [90]) take this approach. 

Note that while this research focuses on composite products and services and support for 

group of users, all the examples above focus on atomic products and services and on 

individual users. 

2.6.2# MultiWCriteria#Optimization#

Cases in which there are a finite number of criteria and an infinite number of 

alternatives belong to the field of multi-criteria optimization. Multi-criteria optimization 

problems have rarely been addressed in the context of recommender systems. This 

approach helps decision makers choose the best alternatives when multiple criteria are in 
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conflict with each other. The following methods are often used to address multi-criteria 

optimization problems and can be applied in multi-criteria recommender systems, as 

discussed in [1, 77]: 

• Finding Pareto-optimal solutions. 

• Reducing the problem to a single-criterion optimization problem by taking a 

linear combination of multiple criteria. 

• Optimizing the most important criterion and converting the other criteria to 

constraints. 

• Optimizing one criterion at a time, converting the optimal solution to a constraint, 

and repeating the process for other criteria. 

Few multi-criteria recommender systems have roots in multi-criteria optimization 

techniques; one example is work [39], which estimates the overall utility of a specific 

item for each user by adding the marginal utility of each criterion. Its model evaluation 

demonstrates that multi-criteria rating provides measurable improvements in modeling 

users’ preferences. Similarly, work [40] proposes a method for calculating the total utility 

of an item by using an aggregation function. After a total ordering has been established 

on the items, the system recommends to each user the items that maximize this total 

utility. Both of these systems, however, focus on atomic products and individual users. 

The CARD [34] and COD frameworks [35] do support packages of product and 

service definitions, and both provide recommendations based on multi-criteria 

optimization. CARD uses a decision-guidance query language (DGQL) [99, 100] to 

define recommendation views, which specify multiple utility metrics and the weighted 
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utility function. The CARD packages of services are described using the constraint 

representation, following [101-106]. COD is based on CARD and provides an efficient 

method of eliciting utility functions for individuals that are optimized to find diverse, 

multi-criteria recommendations. However, both CARD and COD are recommender 

systems for individuals rather than groups. 

2.7# Summary#of#the#Evaluation#of#Related#Work#

Extensive work has been done on recommender systems, most of it focused on 

single users rather than groups (e.g., [1-5]). Recently, researchers have proposed group 

recommenders in different domains and applications, using different strategies to 

aggregate individual preferences into group models (e.g., [6-25]). However, none of the 

above GRSs was designed for packages, which makes the recommendation space very 

large and implicitly defined.  

More recently, there has been a great deal of research supporting package 

recommendations [26-33], but these studies do not consider dynamic preference learning 

and decision optimization. The CARD [34] and COD [35] frameworks support packages 

and provide recommendations based on dynamic preference learning and decision 

optimization, but both are recommender systems for individuals rather than groups. 

In addition, the majority of recommender systems rely on a single ranking or 

utility score, whereas in many applications multiple criteria need to be considered, such 

as cost, quality, enjoyment, satisfaction, and risk. Multi-criteria ranking has recently been 

explored in recommendation-set retrieval [5, 36-38], but the methods in these studies 

were based on distance measures to increase the quality of each individual 
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recommendation, which competes with the ability diversify recommendations [34]. In 

addition, they focused on individual users rather than groups. 

A few existing multi-criteria recommender systems have roots in multi-criteria 

optimization techniques (e.g., [39, 40]), but these systems focus on atomic products and 

on individual users rather than groups. Furthermore, most previous work is based on 

aggregation strategies that always combine members’ ratings in the same way, without 

considering how group members interact with each other. In fact, it is natural for some 

members to have more influence than others on the aggregation of preferences—for 

example, users who have more authority or more expertise or who are more trusted. 

These members must be treated differently to improve the group decision-making 

process.  

Regarding which aggregation strategies should be used in group recommender 

modeling, several researchers (e.g., [44, 46-49]) have concluded that taking certain 

factors into account while developing the GRS yields a significant improvement. These 

factors include the influence of the group size, the influence of group homogeneity, the 

personality of each member, and the relationships among them within the group. Several 

GRSs have considered some major social factors when generating recommendations for 

groups (e.g., [8, 17, 21, 23, 45-47, 50]), but none of these was designed for package 

recommendation, which makes the recommendation space very large and implicitly 

defined. 

In the following section, I present a decision-guided group composite alternative 

recommender framework based on multi-criteria decision optimization and voting to 
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address the outlined limitations. This framework extends existing recommender systems 

in three ways: (1) to consider composite recommendations; (2) to deal with multiple 

criteria for recommendations, and (3) to support groups of users. 
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CHAPTER 3: GROUP COMPOSITE ALTERNATIVES RECOMMENDER 
(GCAR) 

3.1 Introduction#

As explained in Chapter 2, most of the work on recommender systems focuses on 

atomic products and services and on individual users. In this chapter, I focus on 

extending recommender systems in three ways: (1) to consider composite 

recommendations; (2) to deal with multiple criteria associated with recommendations; 

and, most importantly, (3) to support groups of users rather than individual users. 

Examples of this new class of recommender systems include recommenders for group-

travel packages, public policy and budgets, energy infrastructure investments, and health 

care plan selection by organizations. Recommendations by these systems are composite; 

for example, a travel recommendation might involve interrelated air reservations, 

accommodations, activities, and car rentals. They are associated with multiple criteria, 

such as cost, benefit, enjoyment, satisfaction, and risk. Finally, there is often a need to 

support a group of diverse users who may have conflicting views on weights for different 

criteria. The challenges for GRSs are considerably more complex than for individual user 

recommenders, as explained in Chapter 1. One reason for this is the need to effectively 

aggregate users’ preferences so as to maximize the group’s satisfaction, fairness, and 

user-friendliness. 

Addressing these challenges is the focus of this chapter. Here I develop and 
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propose the decision-guided group composite alternatives recommender (GCAR) 

framework based on multi-criteria decision optimization and voting to address the 

outlined limitations. The GCAR framework works on a very large recommendation 

space, which is implicitly defined by mathematical constraints. I consider six group 

decision-making methods, including three based on well known and commonly used 

aggregation strategies, the average, least misery, and average without misery strategies 

[44]. Two others are existing voting methods based on individuals’ rankings: instant 

runoff voting (IRV) and a hybrid Condorcet-IRV method. I also develop a new method, 

the structurally adjusted average method, to take into account the influence of decision 

makers within the group and the dissimilarity of opinions among them. 

However, group decision-making methods can be applied only when there are a 

small number of alternatives to vote on. In the case of composite alternatives, the search 

space is exponentially large, even infinite if some choices are continuous. It is thus 

impractical to use a voting method on such space directly. The idea of the proposed 

GCAR framework is to filter the very large recommendation space into a very small but 

diverse set of near-optimal choices, which can then be refined through group decision-

making methods. On one hand, it is important that these alternatives be close to optimal 

in terms of the estimated group utility function. On the other hand, because this function 

is only an estimate, it is important to have alternatives that are reasonably diverse in 

terms of individual decision makers’ preferences. To achieve this, I follow six steps: (1) 

Elicit the utility function for each member of the group; (2) Estimate the group utility 

function; (3) Use the group utility function to find an optimal recommendation 
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alternative; (4) Use diversity layering to generate a diverse set of l recommendations that 

contains the optimal recommendation alternative; (5) Rank this set for each individual; 

and (6) Apply a group decision-making method to refine the final top k 

recommendations. Note that the group utility estimation is parameterized on the basis of 

the target group decision-making method. 

The remainder of this chapter is organized as follows: Section 3.2 presents an 

overview of the proposed GCAR framework. Section 3.3 gives an overview of group 

decision-making methods used in the framework and proposes the structurally adjusted 

average method that I developed. Section 3.4 summarizes the chapter. Some of the work 

reported in this chapter was published in [107, 108]. 

3.2# Overview#of#the#Proposed#GCAR#Framework#

In this section, I first describe the recommendation space and then explain the 

recommendation process implemented by the proposed GCAR framework and the 

intuition behind this process. 

Recommendation space R, consists of composite products and services. Each 

recommendation alternative ! ∈ ! is mapped to a utility vector u = (!!… ,!!) from an 

n-dimensional utility space such that ∀! !, 1 ≤ ! ≤ !, !!:! → [0,1]. The components of a 

utility vector u!= (u1, u2, · · · , un) are associated with criteria—such as enjoyment, saving, 

and location attractiveness in a traveling domain—that have been previously defined. 

Each criterion has an associated domain Di, 1 ≤ i ≤ n, and each domain Di has a total 

ordering “better than,” denoted by ≽Di. For example, for the domain Saving, a1 ≽Saving a2 ⇔ 

a1 ≥ a2. 
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For a given group of m decision makers, the utility of each decision maker j is 

denoted by ∀! !, 1 ≤ ! ≤ !, !!: [0,1]! → [0,1], and the group utility is denoted by 

!: [0,1]! → [0,1]. 

Uj and U define a utility associated with each alternative ! ∈ !. Therefore, the 

user recommendation alternative utility for recommendation a is defined by !"!:! →

[0,1], where RUj (a) = Uj (u1(a),….,un(a)), and the group recommendation alternative 

utility is defined by !":! → [0,1], where RU (a) = U (u1(a),….,un(a)). 

The recommendation process implemented by the proposed GCAR framework is 

depicted in Figure 3.1.  

 

 
Figure 3.1: Group Composite Alternatives Recommender (GCAR) Framework 

 

As shown in the diagram, the process starts when a group of decision makers 

submits a request to the group recommender. The request specifies the group’s decision 
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constraints on recommendation alternatives. To generate the top k recommendations, the 

recommender follows six steps: (1) Elicit the utility function for each member of the 

group; (2) Estimate the group utility function; (3) Use this to find an optimal 

recommendation alternative; (4) Use diversity layering to generate a diverse set of l 

recommendations that contains the optimal alternative; (5) Rank or rate (depending on 

the method used in the last step) this set by each individual; and (6) Apply a group 

decision-making method to refine the final k recommendations. 

Before discussing these steps in detail, I will describe the intuition behind the 

process. First, I apply alternative group decision-making methods to make the final 

recommendations for a group of decision makers. Different group decision-making 

methods are used by different people, and the choice of method usually depends on the 

domain, the group’s characteristics, and what property people want to satisfy. No single 

method is considered to be generally superior to all others and fully fair [73]. 

In this chapter, I consider six group decision-making methods, any one of which 

can be used to instantiate the framework. Three are based on well known and commonly 

used aggregation strategies: the average, least misery, and average without misery 

strategies [44]. Two are voting methods based on individuals’ rankings: instant runoff 

voting (IRV) and the hybrid Condorcet-IRV method. I also develop a new aggregation 

strategy, the structurally adjusted average method, which takes into account the influence 

of decision makers within the group and the dissimilarity of opinions among them. 

(Applying alternative group decision-making methods is the last step of the process in 

Figure 3.1.) 



  46 
 

Group decision-making methods can be applied only when there are a small 

number of alternatives; composite alternatives, however, make the search space 

exponentially large or infinite, so that it is impractical to apply group decision-making 

methods directly. We first need to restrict the large search space to a small, highly 

relevant set that can then be refined through voting. 

To carry out this reduction, I apply mathematical optimization to produce a small 

set of recommendations that are: (1) close to optimal and (2) sufficiently diverse that 

group members will have enough flexibility. This explains the second-last step in Figure 

3.1 (Optimization and Diversity Layering). However, to complete the optimization and 

diversification, we need to estimate the group utility function that captures the whole 

group’s preferences. This explains the second step in Figure 3.1. This group utility 

function is parameterized on the basis of the target group decision-making method, and it 

must be based on the utility functions of the individual users, which are not known to the 

system and need to be extracted from the individuals. This is the first step in Figure 3.1. 

I now discuss each of these steps in detail, beginning with an overview of the 

group decision-making methods used in the last step of GCAR framework and leaving 

the other steps to be explained in the next chapter. 

3.3# Overview#of#Group#Decision#Methods#Used#in#GCAR#

In this section, I review the most commonly used aggregation strategies for GRS 

and two voting methods based on individuals’ rankings. I then propose the new group 

aggregation strategy that I developed, the structurally adjusted average method. 
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3.3.1# Aggregation#Strategies#

To illustrate how the existing aggregation strategies work, consider the following 

example: Let m be the number of users in a group and rji the rating of user j for 

alternative i, ranging from 1 (really hate) to 10 (really like). The group rating for 

alternative i, denoted by GRi, is shown in Table 3.1, which can be computed using any of 

these strategies, as explained in the following subsections. Finally, the alternatives are 

ranked in descending order on the basis of the resulting group rating values. 

Average!Strategy!

This strategy is the most straightforward. It assumes equal influence of all 

decision makers in the group. As shown in Table 3.1, it computes the group rating for 

alternative i by averaging the individual ratings, as follows: 

 

GR! =
1
! !!"

!

!!!
!!!!!!!!!! 3.1  

 

Table 3.1 Example to Illustrate the Aggregation Strategies Used in GCAR 

Users 
Alternatives 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 
U1 10 8 3 7 10 8 6 6 10 6 
U2 1 7 8 6 7 10 6 4 3 7 
U3 10 5 2 8 9 10 5 5 7 9 

GRi (by Average) 7 6.7 4.3 7 8.7 9.3 5.7 5 6.7 7.3 
GRi (by Least 

Misery) 
1 5 2 6 7 8 5 4 3 6 

GRi (by Average 
Without Misery 

- 6.7 - 7 8.7 9.3 5.7 5 - 7.3 
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Least!Misery!Strategy!

This aggregation strategy is suitable when the GRS needs to avoid causing 

“misery,” which it might do by recommending items that are strongly disliked by any 

member of the group. This strategy computes the group rating for an alternative i as the 

lowest rating assigned for that alternative by any of the group members, as follows: 

 

GR! = min
!
(!!")!!!!!!!!!!(3.2) 

 

Average!Without!Misery!Strategy!

This strategy averages individual ratings, like the average strategy, with the 

difference that alternatives with any rating below a certain threshold are not considered 

for the group recommendations. For the example in Table 3.1, the threshold rating is 4. 

3.3.2# Voting#Methods#

Because of Arrow’s impossibility theorem [73], which states that no voting 

method is fully fair, many voting methods are still used. The choice of method usually 

depends on the property people want to satisfy and what seems most fair in the situation 

[71]. In the GCAR framework, I consider IRV and a hybrid Condorcet-IRV method. Both 

are relatively resistant to strategic manipulation [75], which I believe is a critical feature. 
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But other voting methods, such as Borda, Kemeny, and Copeland, can also be applied in 

my framework. 

Definitions!

• One-to-one comparisons. Each pair of alternatives is compared to determine 

which is more preferred. Let P(ax , ay) be the number of decision makers who 

prefer alternative ax over ay. If P(ax , ay) > P(ay , ax), then ax wins the one-to-one 

comparison and beats ay [75] . 

• Condorcet winner criterion. If some alternative is preferred in every one-to-one 

comparison, then it should be the winner. Formally: An alternative ax is a 

Condorcet winner if and only if P(ax , ay) > P(ay , ax), ∀ ay ≠ ax [75]. 

Instant!Runoff!Voting!Method!

This is a method in which each voter ranks the alternatives in order of preference. 

For each alternative, the system then counts the number of voters who ranked it as their 

first choice. If any alternative has an outright majority, it is selected for the whole group. 

Otherwise, the alternative with the fewest first-place votes is eliminated, and its votes are 

redistributed to the voters’ next choices. This procedure is repeated until one alternative 

obtains a majority of votes among the remaining choices [71, 72]. If there is a tie for last 

place at any stage, special tie-breaking rules are applied to select the alternative to 

eliminate [71, 109]. 

This method reduces the need for individuals to vote strategically for alternatives 

that have a better chance of winning than their actual first choices, because second and 
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third choices still count if first choices are eliminated. 

In the GCAR framework, in order to conclude with a total ordering of the 

alternatives from which the final top k recommendations are selected and displayed to the 

group, I use the above IRV method with the difference that the system keeps eliminating 

last-place alternatives after the winner is declared. The total order associated with IRV is 

a list of eliminated alternatives ordered by the round in which each was eliminated. If a 

tie occurs for last place, the following tie-breaking rules apply: 

• Rule 1: if the number of decision makers who vote for these alternatives as their 

first choice = 0, (i.e., the alternatives are not the first choices of any decision 

maker), then, the first alternative to eliminate is randomly selected. 

• Rule 2: if the number of decision makers who vote for these alternatives as their 

first choice ≠ 0, (i.e., the alternatives are the first choice of at least one decision 

maker), then the tied alternative that received the fewest votes in the previous 

round is eliminated. If there is still a tie, then look back to the next most recent 

round, and if necessary to progressively earlier rounds, until one alternative can 

be eliminated. 

To illustrate how IRV works, suppose that we have a group of 9 decision makers 

who initially ranked a set of 3 recommendations as shown in Table 3.2. Alternative A2 

has the fewest first-choice votes, 2, so it is eliminated in the first round, and everyone’s 

choices must shift to fill in the gaps (see Table 3.3). 
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Table 3.2 IRV Initial Votes 

Total number of voters 4 2 3 
1st choice A1 A2 A3 
2nd choice A2 A3 A2 
3rd choice A3 A1 A1 

 
 

Table 3.3 IRV Round 1 

Total number of voters 4 2 3 
1st choice A1 A3 A3 
2nd choice A3 A1 A1 

 
 

Finally, A3 has the majority votes, and wins the election under the IRV method. 

By analyzing the initial preferences in Table 3.2, the one-to-one comparisons are as 

follows: 

• A1 vs. A2: A2 beats A1 

• A1 vs. A3: A3 beats A1 

• A2 vs. A3: A2 beats A3 

So even though A2 had the fewest first-place votes, it is the Condorcet winner, and thus 

IRV violates the Condorcet criterion. A2 is preferred in every one-to-one comparison but 

was eliminated in the first round and lost the election. Applying the standard IRV method 

on the ranked set of l recommendations to refine the top k recommendations might thus 

result in a Condorcet winner being excluded from the choice set. To avoid this outcome, 

a hybrid Condorcet-IRV method can be applied instead. 
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Hybrid!Condorcet>IRV!Method!!

This method makes use of both Condorcet’s pairwise comparison principle and 

the IRV method, like the Bentham method mentioned in work [75] but with some 

differences. The method checks whether an alternative exists that beats all other 

alternatives in one-to-one comparisons (a Condorcet winner). If so, that alternative is 

moved to the first place in a winner list (W); otherwise the IRV method is applied and the 

losing alternative is moved to an eliminated list (E). This process is repeated until no 

alternatives remain. The method thus ends with two lists: list W, in descending order by 

decision makers’ preferences, and list E, ordered in the opposite way. By reversing list 

E’s entries and appending them to list W, we create a list of alternatives in descending 

order from which we can select the top k recommendations. 

Figure 3.2 illustrates how the hybrid Condorcet-IRV method works. Suppose that 

we have a group of 9 decision makers who initially ranked 5 alternatives as shown in 

Table 3.4. In one-to-one comparisons, A2 beats all the other alternatives. Even though it 

has the fewest first-place votes, it is the Condorcet winner and is moved to list W, and 

everyone’s choices must be shifted to fill in the gaps (see Table 3.5). 

In Round 2, there is no Condorcet winner, so the method looks for an alternative 

with the majority of first-place votes. No alternative has a majority, so the alternative 

with the fewest first-choice votes, A4, is moved to list E (see Table 3.6). 
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Figure 3.2: Flowchart Illustrates the Hybrid Condorcet-IRV Method 

 

Table 3.4: Hybrid Condorcet-IRV, Initial Votes 

Total number of voters 4 2 3 
1st choice A1 A2 A5 
2nd choice A2 A3 A4 
3rd choice A3 A5 A2 
4th choice A4 A1 A1 
5th choice A5 A4 A3 
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Table 3.5: Hybrid Condorcet-IRV, Round 1 

Total number of voters 4 2 3 
1st choice A1 A3 A5 
2nd choice A3 A5 A4 
3rd choice A4 A1 A1 
4th choice A5 A4 A3 

 
 

Table 3.6: Hybrid Condorcet-IRV, Round 2 

Total number of voters 4 2 3 
1st choice A1 A3 A5 
2nd choice A3 A5 A1 
3rd choice A5 A1 A3 

 
 

In Round 3, there is neither a Condorcet winner nor a majority winner, so A3 is 

eliminated and moved to list E (see Table 3.7). 

 

Table 3.7: Hybrid Condorcet-IRV, Round 3 

Total number of voters 4 2 3 
1st choice A1 A5 A5 
2nd choice A5 A1 A1 

 
 

In Round 4, A5 is the Condorcet winner and is moved to list W. At that point only 

A1 remains, so it is moved to list W in the final round. The method ends with list W 

ordered as A2, A5, A1, and list E ordered as A4, A3. By reversing the order of the 

alternatives in list E and merging them with the alternatives in list W, we create an 
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ordered recommendation list, A2 ≻ A5 ≻ A1 ≻ A3 ≻ A4, from which we can select the top 

k recommendations. As this shows, one of the advantages of the hybrid Condorcet-IRV 

method is that it makes the Condorcet winner impervious to elimination. 

In the following subsection I propose a new group aggregation strategy, which I 

call the structurally adjusted average method. 

3.3.3# The#Structurally#Adjusted#Average#Method#

When aggregating individuals’ ratings into a group rating, this strategy takes into 

account two main factors: (a) the influence of individuals within the group and (b) the 

dissimilarity of opinion among group members.  

To consider the influence of individuals, I assign users different weights when I 

aggregate their ratings to compute the group rating. These weights reflect the expertise of 

the members. Because experts often attempt to persuade other group members, their 

opinions may be weighted more highly than others’. Depending on the domain of the 

group recommender, expertise can be divided into different quantitative levels into which 

each member will be assigned. For example, in the domain of movies, expertise levels 

will depend on the number of movies a member has watched from a list of popular 

movies [46]; in travel, levels will be assigned on the basis of average yearly travelling by 

each member (see Table 3.8). 

 

Table 3.8: Categorization of Expertise Levels Based on Average Yearly Travel 

The average yearly travelling <= 1 2 - 3 4 - 5 > 5 
Expertise level I II III IV 
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The normalized expertise level of group member j is defined as 

 

! !,! = !!j
!u!

!!!
!!!!!!!!!!(3.3) 

 

where !u is the absolute expertise level of group member u and the sum of the relative 

expertise levels of the group = 1. 

To take expertise into account, I compute the weighted average of the individual 

ratings for alternative i as follows: 

 

EGR! =
1
! !!

!

!!!
! . !!" !!!!!!!!!!(3.4) 

 

where Ej is the expertise of each decision maker j, m = |G|, and rij is the rating of user j for 

alternative i , and 0 ≤ !!!" ≤ 1 

As suggested in works [46, 47], the overall group rating of an alternative should 

reflect the degree of consensus in the ratings for that alternative among the group’s 

members. Thus if the weighted average of the individual ratings is the same for two 

alternatives, the one that has more similarity among its ratings should have a higher 
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group rating, in order to avoid misery for some members. Thus suppose that two 

alternatives, a1 and a2, have the same weighted average of individual ratings, as 

computed with Equation 3.4, but the group members’ similarity of opinion on a1 is 

greater than on a2, and we want only one of these two alternatives to be included in the 

small set of top alternatives. Intuitively, we will choose a1 to avoid causing misery to any 

members who strongly dislike a2. This kind of dissimilarity of opinion on an alternative 

tends to be more significant the larger the group is. 

To describe group dissimilarity over an alternative i, I use the standard deviation, 

 

!i1,… , !im = 1
! − 1 !ij − !"#i !

m

j=1
!!!!!!!!!!(3.5) 

 

where !!!i is the average of all the individual ratings for alternative i. 

Finally, to reflect both the influence of individuals within the group and the 

dissimilarity of opinion among them, I compute the group rating for alternative i as 

 

GRi = EGRi!. 1− !! !!!!!!!!!(3.6) 

 

where EGRi is the weighted average of the individual ratings for alternative I, as defined 

in Equation 3.4, and ! represents the dissimilarity penalty, defined as 
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! = !!. !!
!!max! !!!!!!!!!!(3.7) 

 

where !, 0 ≤ !!! ≤ 1, is a parameter representing an upper bound on the dissimilarity 

penalty (see Figure 3.3), σ is the standard deviation, as in Equation 3.5, and σmax is the 

maximum possible !; that is, 

 

σmax = max!! !i1,… , !im = 1
2

!
! − 1 !!!!!!!!!(3.8) 

 

where!0 ≤ !i1,… , !im ≤ 1 , and clearly 0 ≤ ! ≤ σmax. 

 

 
Figure 3.3: Adjusted Group Utility 
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I explain the other steps of the GCAR framework in the next chapter. 

3.4# Summary#

In this chapter, I described the proposed decision-guided group composite 

alternatives recommender (GCAR) framework, which is based on multi-criteria decision 

optimization and voting. The GCAR framework works on a very large, even infinite, 

recommendation space, which is implicitly defined by mathematical constraints. GCAR 

extends existing recommender systems in three ways: (1) it considers composite 

recommendations, (2) it deals with multiple criteria for recommendations, and (3) it 

supports a group of diverse users with conflicting views on weights for different criteria. 

I considered six group decision-making methods: three based on commonly used 

aggregation strategies, two voting methods based on individuals’ rankings, and a new 

aggregation strategy that I developed. The idea of this GCAR framework is to filter a 

very large recommendation space into a small, diverse set of near-optimal alternatives, 

which can then be refined through group decision-making methods. It is important that 

these alternatives be nearly optimal in terms of the estimated group utility function but 

also to be sufficiently diverse to reflect individual decision makers’ preferences. 

In the following chapter, I discuss each of the GCAR framework’s steps in detail. 

I also explain the preliminary experimental real-world user study that I conducted to 

evaluate the framework’s performance under each group decision-making method.  
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CHAPTER 4: GCAR STEPS AND EVALUATION UNDER EACH VOTING 
METHOD 

4.1# Introduction#

In the previous chapter, I described the decision-guided group composite 

alternatives recommender (GCAR) framework based on multi-criteria decision 

optimization and voting. 

To generate the top k recommendations, GCAR follows six steps: (1) eliciting a 

utility function for each group member, (2) estimating the group utility function, (3) 

using this to find an optimal recommendation, (4) generating a diverse recommendation 

set containing the optimal recommendation, (5) ranking or rating this set for each 

individual, and (6) using a group decision-making method to refine the top k 

recommendations. An overview of the methods used in step 6 was given in the previous 

chapter. In this chapter, I discuss each of the steps in detail. 

I also describe a preliminary experimental study I conducted with the approval of 

the Human Subjects Review Board (HSRB) of George Mason University to evaluate the 

GCAR framework’s performance with each group decision-making method. In this study, 

I used alternative methods of modeling the “actual” group preferences in order to fit the 

decision-making method being used. The study showed that for each decision-making 

method, the average precision and recall achieved by the proposed GCAR framework for 

top-1 recommendations are exactly the same as the ideal precision and recall (which are 
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obtained under the assumption of complete knowledge), and that they are 0–15% off the 

ideal for top-2 recommendations, 8–27% off for the top 3, and 23–34% off for the top 4. 

 The remainder of this chapter is organized as follows: Section 4.2 explains the 

extraction of the user utility functions. Section 4.3 explains the group utility estimation. 

Section 4.4 presents the optimization and diversity layering. Section 4.5 discusses the 

preliminary experimental study used to evaluate the framework. Section 4.6 summarizes 

the chapter. Some of the work reported in this chapter was published in [110]. 

4.2# Eliciting#User#Utility#Functions#

The GCAR framework adopts the COD method [35] for eliciting the utility 

function of each decision maker. This method starts by representing a number of 

distinguishable recommendations in terms of utility vectors to each decision maker. Each 

returned recommendation stretches the dimension it represents (e.g., saving), and relaxes 

the other dimensions (e.g., enjoyment, attractiveness of location). The process iteratively 

updates the utility vector in response to the decision maker’s feedback until an exit point 

is reached (e.g., when there is “no difference” between the recommendations presented). 

Upon exit, the recommendation space will be constructed according to the utility vector 

learned. 

Recommendation space R, consists of composite products and services. Each 

recommendation is mapped to a utility vector u, from an n-dimensional utility space!!, 

which is presented as !!!. This mapping is denoted by U : R → !!!. The components of a 

utility vector u!= (u1, u2, · · · , un) are associated with criteria such as enjoyment, saving, 

or attractiveness of location, that have been previously defined. Each criterion has an 
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associated domain Di, 1 ≤ i ≤ n, and each domain Di has a total ordering “better than,” 

denoted by ≽Di. For example, for the domain Saving, a1 ≽Saving a2 ⇔ a1 ≥ a2. 

The relative importance the user places on each dimension is modeled by a vector 

of weights w


 = (w1, w2, ··· , wn), where |w


| = !!!!
!!! = 1, which is called an axis. 

Each component wi captures the weight of the i-th dimension according to a decision 

maker j. Therefore for each decision maker j, the total utility of a recommendation ak, 

with regard to the vector wj, is defined as: 

!! ! = !!!!! + !!!!! +⋯+ !!"!!!!!!!!!!!!(4.1) 

where !! = 1!
!!! . 

4.3# Estimating#the#Group#Utility#Function#

In this research, I assume that the members of a group have agreed on the overall 

set of criteria but not on their weights. The problem of arriving at a unified set of criteria 

for multiple decision makers has been studied (e.g., [41, 79, 93]) and is outside the scope 

of this research. 

Estimating the group utility function is the second step in Figure 3.1. Recall that a 

group utility function U: [0,1]! → [0,1] maps a vector of criteria !!… ,!! ∈ [0,1] into a 

combined group utility U(!!… ,!!) ∈ [0,1]. This group utility estimation is 

parameterized on the basis of the target group decision-making method that is applied in 

the last step, as explained in Chapter 3.  I now discuss in detail how I estimate the group 

utility using each of these methods. 
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4.3.1# Average#Strategy#

I use the additive utility function, which has been used in many early works (e.g. 

[94, 95]) and some recent ones (e.g. [35, 92]). I estimate the group utility of an alternative 

ak as follows: for the i-th dimension, the individual weights important to that dimension 

are aggregated into the group weight wi by calculating the algebraic mean of the 

individual weights as: 

 

!! =
1
! !!"

!

!!!
!!!!!!!!!(4.2) 

 

where j = 1, …., m, and m is the number of decision makers in the group. The group 

utility of alternative a with regard to axis wi is defined as 

 

! ! = !!!! + !!!! +⋯+ !!!!!!!!!!!!!!(4.3) 

 

where !! = 1!
!!! , and !! = 1!

!!! . 

 

4.3.2# Least#Misery#Strategy#

In this strategy, the group utility is computed as the minimum utility value for any 

alternative among group members, as follows: 
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! ! = min
!
(!! (!))!!!!!!!!!!(4.4) 

 

where Uj is the utility of decision maker j, 1 ≤ ! ≤ !, for an alternative a, as defined in 

Equation 4.1. 

4.3.3# Average#Without#Misery#Strategy#

In this strategy, the group utility is computed as in the average strategy, but those 

alternatives with any individual utilities below a certain threshold t are not considered in 

the group recommendations. More formally, 

 

!! ! = 1
! !! ! , such!that!!∀! , 1 ≤ ! ≤ !, !!! ! ≥ !!!!!!!!!!!! 4.5

!

!
 

 

4.3.4# Structurally#Adjusted#Average#Strategy#

First, to estimate the group utility while taking the expertise factor into account, I 

compute the algebraic mean of the individual criteria-weights as 

 

!′! =
1
! !!

!

!!!
! .!!" !!!!!!!!!(4.6) 
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where Ej is the expertise of each decision maker j, m = |G|, and wji! is the weight of i-th 

criterion for individual decision maker j. Then, for an alternative a, I define the weighted 

group utility that takes the expertise factor into account, denoted by (EU), as 

 

!" ! = !′!!! + !′!!! +⋯+ !′!!!!!!!!!!!!!(4.7) 

 

where !! = 1!
!!! , and !! = 1!

!!! . 

Second, to describe dissimilarity of opinion among group members over an 

alternative, I use the standard deviation, 

 

! !1,… ,!m = 1
! − 1 !j − !" !

m

j=1
!!!!!!!!!(4.8) 

 

where m = |G|, Uj is the decision maker j’s utility for alternative a , as defined in Equation 

4.1 , and AU is the average utility for an alternative a, as defined in Equation 4.3. 

Finally, to reflect both the influence of individuals within the group and the 

dissimilarity of opinion among them, I compute the adjusted group utility as: 
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! = !"!. 1− !! !!!!!!!!!(4.9) 

 

where EU is the weighted group utility defined in Equation 4.7 and ! represents the 

dissimilarity penalty defined in Equation 3.7. 

4.3.5# Instant#Runoff#Voting#(IRV)#Method#

First, for each decision maker, I rank the set of alternatives in descending order by 

her extracted utility Uj. Second, I apply the IRV method to obtain the group-ranked list of 

alternatives. Finally, I estimate the group utility of each alternative ! ∈ ! as 

 

!" ! = ! − !
! − 1 !!!!!!!!!(4.10) 

 

where RU(a) = U(u1(a),….,un(a)), n is the number of ranked alternatives, and i is the 

position of alternative a in the ranked set resulting from the IRV method. 

4.3.6# Hybrid#CondorcetWIRV#Method#

I estimate the group utility of each alternative ! ∈ ! in a similar process to the 

IRV method, except that I apply the hybrid Condorcet-IRV method instead.  

4.4# Optimization#and#Diversity#Layering#

Because it is not practical for decision makers to focus on more than a small set of 

alternatives, the goal of this step is to produce this small set. On the one hand, it is 
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important that the alternatives be nearly optimal in terms of the group utility function. On 

the other hand, since this function is only an estimate, it is also important that the 

alternatives be diverse in terms of the individual decision makers’ preferences. 

Note that the optimal choices according to the estimated utility may limit the 

flexibility to diversify recommendations. There is thus a tradeoff to be made between two 

competing goals: optimization and diversity. To find the right balance, I follow two steps. 

First, for optimization, I find the optimal choice A1 by maximizing the estimated group 

utility, A1 ∈ !argmax! !!(!!(!)), where ! ∈ !, u(A) is the utility vector, and U (u (A)) is 

the estimated group utility corresponding to vector u (A), which is computed by using any 

of the six group decision-making methods explained above. 

Second, for diversification, I adapt the diversity layering method from CARD 

[34]. However, the dimensions of the utility space in [34] are the original criteria, 

whereas, I am advocating using the space of the extracted utilities of the individual 

decision makers instead. 

The motivation for this choice is that individuals may not be satisfied if none of 

the options presented to them for voting are closely related to their own preferences. We 

would like to mimic as closely as possible the popular group decision-making 

mechanisms in which the alternatives are proposed by individual members and thus 

reflect their preferences. However, the diversity layering method, described below, will 

still provide options that are either optimal or fall within a bounded distance of the 

optimal group utility. 

The key idea is to create a diverse subset of recommendations that correspond to 
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different individual’s utility functions while remaining within a bounded distance of the 

optimal group utility score to provide a balance between optimality and diversity. I 

partition the recommendation space into q layers, starting with the layer that includes the 

optimal recommendation and maximizes the group utility U. The second layer includes 

the recommendations close to the optimal one and with total utility of at least the 

maximum group utility minus ε (a percentage of the maximum group utility score). The 

third layer includes recommendations with a total utility values of not less than the 

maximum minus 2ε. In general, a recommendation in the i-th layer will have a utility 

value of at least the maximum group utility minus (i-1)ε. Within each layer, I select n 

recommendations to maximize each dimension of the recommendation space in turn. 

The example depicted in Figure 4.1 illustrates the diversity layering method. 

Here, RU1 and RU2 are two individual decision makers’ utilities, and U is the group 

utility, which is defined as a linear combination of RU1 and RU2. The polygon set in the 

figure depicts all the possible utility vectors of the recommendations. Among these, A1 is 

the optimal recommendation for maximizing U. 

The second layer includes recommendations for which U >= max{U} – ε, where ε 

is a percentage of max{U}, say 2%. The selected recommendations in this layer are A2 

and A3 because they maximize RU1 and RU2, which provides diversity while restricting 

the group utility within its layer preserves the distance from the optimal recommendation. 

The third layer includes recommendations for which U >= max{U} – 2ε, and the selected 

recommendations are A4 and A5, which maximize RU1 and RU2 respectively. 
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Figure 4.1: Diversity Layering 

 

The diversity layering method generates a set of alternatives by optimizing each 

user’s utility function in each layer. It may not scale well for large groups—for example, 

where the number of individuals is greater than the number of diversity recommendations 

needed. In such cases, the system may complete the set of recommendations early, before 

completing optimization over all member’s utility functions, even while still in the first 

layer. We can solve this problem by clustering large groups into homogenous subgroups 

and diversifying recommendations across subgroups rather than individuals. This is 

considered in Chapter 5. 

After the diversity set of recommendations has been generated, they are presented 

to each individual decision maker in descending order of group utility, and each decision 
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maker ranks (or rates, depending on the decision-making method being used) the 

recommendations in a way that reflects her own preferences. Allowing each member to 

rank the pre-final results individually avoids the effects of an incorrect estimation of 

individual decision makers’ utility functions in the first step. 

These individual rankings of the optimal and diverse recommendations are the 

input for the group decision-making method that is applied in the last step to determine 

the final top k recommendations. 

4.5# Initial#Experimental#Evaluation#

Experimental!Setting!

I conducted a preliminary experimental study to evaluate the GCAR framework’s 

precision and recall under each group decision-making method. Precision and recall 

metrics are widely used in information-retrieval scenarios. Recall is the proportion of 

truly good recommendations that appear in the top recommendations, and precision is the 

proportion of the recommendations that are truly good ones [1]. 

The study involved 67 human participants, all of them graduate students, in 13 

groups of different sizes, as follows: 1 group of 2 participants; 2 groups of 3 participants; 

2 groups of 4 participants; 4 groups of 5 participants; 2 groups of 6 participants; 1 group 

of 9 participants; and 1 group of 10 participants. The hypothesis of this study was that the 

GCAR framework can produce a small set of recommendations that remain nearly 

optimal in precision and recall. 

The data for the study were actual data on vacation packages, which I extracted 
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from a popular commercial travel website by submitting a request for a two-week 

vacation in Los Angeles, California, including non-stop round-trip airfare, from 

Washington Dulles Airport. All the packages returned by this website were extracted 

keeping only the cost and number of stars (enjoyment) of each package. 

Experimental!Methodology!

I undertook to study the framework’s performance with different decision-making 

methods, not to determine which method is the best. Extensive work has been done on 

GRSs, showing that some methods are better than others in different situations (e.g., [12, 

44]). For this research, in which the method that best fits the situation is chosen 

externally, I am studying the accuracy of my own system, in the face of the 

approximations necessary in the large selection space, and in comparison to ideal 

accuracy, which is obtained under the assumption of complete knowledge (without 

approximations). 

For evaluation purposes, I consider for each group only the packages that have 

been evaluated by all the group’s members. These evaluations are based on ratings on a 

scale of 1 (strongly disagree) to 5 (strongly agree). For each group, I then apply the 

GCAR framework using each group decision-making method on the same dataset to 

repeatedly generate the top 4 recommendations. Finally, to generate the ground truth for 

each group, I aggregate the actual individual preferences into the group’s actual overall 

preferences using the alternative group decision-making methods so as to fit the choice of 

the method used in the framework. 

To estimate the recall of the GCAR framework at a given rank k, I gather all the 
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packages rated 4 or above from the group ground truth into a set called “Good.” Then, for 

each group, I calculate the estimated recall as: 

 

!"#$%%! ! =  
| !! ∈ !!""# rank r ≤k |

|{Good}|
!!!!!!!!!!(4.11) 

 

 Next, I compute the average recall at each rank k, for each group decision-making 

method, by taking the average of recall k among all the 13 groups. The results are shown 

in Figures 4.2 to 4.7. 

Similarly, I estimate the precision of the GCAR framework at a given rank k for 

each group as 

 

Precision! k = ! | !! ∈ !!""# rank r ≤k |
k

!!!!!!!!!!(4.12) 

 

Finally, I compute the average precision at each rank k, for each group decision-

making method, by taking the average of precision k among all the 13 groups. The results 

are also shown in Figures 4.2 to 4.7. 
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Figure 4.2: Average Recall and Precision for GCAR vs. Ideal (Average Strategy) 

 

 
Figure 4.3: Average Recall and Precision for GCAR vs. Ideal (Least Misery Strategy) 
 

 
Figure 4.4: Average Recall and Precision for GCAR vs. Ideal (Average without Misery) 
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Figure 4.5: Average Recall and Precision for GCAR vs. Ideal (Structurally Adjusted Average)  

 

 
Figure 4.6: Average Recall and Precision for GCAR vs. Ideal (IRV Method) 

 

 
Figure 4.7: Average Recall and Precision for GCAR vs. Ideal (Condorcet-IRV Method) 

!

Experimental!Results!

The study shows that for top-1 recommendations, the average recall and precision 

achieved by the proposed GCAR framework under each decision-making method are 

exactly the same as the ideal. 
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For top-2 recommendations, the GCAR framework obtained recall and precision 

within 90% of the ideal under all the methods except least misery method, for which the 

recommendations were within 85% of the ideal. 

For top-3 recommendations, GCAR framework’s recall and precision were within 

80% of the ideal for all methods except least misery and average without misery, for 

which they were 20 to 27% off from the ideal. Recall and precision were 23 to 34% off 

from the ideal for top-4 recommendations under all methods. 

Statistical!Analysis!

For the statistical analysis, I calculate the confidence interval (CI) for the 

estimated mean of the percentage differences between the GCAR framework’s accuracy 

and the ideal, in terms of recall and precision, using alternative group decision methods. 

For this calculation, I apply the following formula: 

 

!"#$%&#'(!!"#$ = !"#$%&!!"#n± !"!. !!"#$ !!!!!!!!!(4.13) 

 

where se is the standard error of the mean and tcrit is the two-tailed critical value of t for 

the 0.05 level of significance. The results are illustrated in Figure 4.8. 
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Figure 4.8: Confidence Interval at Level 95% for the Estimated Mean of the Percentage Differences 

Between GCAR Accuracy and Ideal, in Terms of Recall and Precision 
 

Note that the CI for the top-1 recommendation (i.e., when k = 1) is not shown in 

Figure 4.8. This is because it is equal to 0; that is, we are 95% confident that the 

framework’s accuracy under all six methods, will match the ideal accuracy in recall and 

precision for top-1 recommendations. 

In Figure 4.8, the markers in the middle of the vertical lines represent the mean of 

the percentage differences between the GCAR framework’s accuracy and the ideal. The 

vertical lines indicate the confidence interval. For instance, under the average strategy, 

for top-2 recommendations, the mean percentage difference between the proposed 

framework’s accuracy and the ideal will be between 0 and 20%. It will also not be off by 

more than 30% from the ideal for top-3 recommendations (40% for top-4) under any 

method but least misery, for which the accuracy may decrease. 

As I mentioned, extensive work on GRSs has explained that some methods are 
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better than others in different situations. I think that the accuracy of the proposed 

framework decreases under the least misery strategy because that method works well 

only with small groups [6], whereas the groups in this study were relatively large. 

4.6# Summary#

In this chapter, I explained the steps of the proposed GCAR framework. I also 

described a preliminary experimental study I conducted to evaluate the framework’s 

performance under each of the six group decision-making methods. I used alternative 

methods to model the “actual” group preferences so as to fit the decision-making method 

used in the framework. The study showed that GCAR framework can produce a small set 

of recommendations that remain nearly optimal under any of the methods: the average 

precision and recall it achieved ranged from ideal, for top-1 recommendations, to 

between 23 and 34% off the ideal for top-4 recommendations. 

Although the framework is designed to be high scalable in terms of alternatives 

through utility optimization, it may not scale well for large numbers of decision makers. 

One reason is the fact that eliciting the utility function for each user may not be practical 

for large groups. In addition, aggregation methods for large groups can lose accuracy, as 

indicated in many works (e.g., [8, 47]). 

Therefore, in the following chapter I propose a technique for improving the 

quality of the GCAR framework with large, heterogeneous group of users who may have 

strongly conflicting views on weights for different criteria. 
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CHAPTER 5: TAILORING GROUP PACKAGE RECOMMENDATIONS TO 
LARGE HETEROGENEOUS GROUPS 

5.1# Introduction#

In the previous chapter, I described the proposed GCAR framework, which 

provides a diverse set of group package recommendations based on multi-criteria 

decision optimization. However, this framework is designed for small groups of users and 

is not flexible enough to support very large, heterogeneous groups with multiple 

conflicting views on the weights of different criteria. In many areas, recommendations 

affect large numbers of users. For example, many employees of a company might like to 

go to a conference, or a large number of people in a county or a city might want to 

influence its infrastructure investments. A few group recommenders have applied 

algorithms to improve large-group recommendations (e.g., [24, 111-113]), but none of 

them was designed to support package recommendations that are implicitly defined. 

The focus of this chapter is extending the GCAR framework to support large 

heterogeneous groups. The contributions of the chapter are twofold. First, I propose a 

technique for scaling up GCAR for such groups. The idea is to randomly select a 

representative sample of the entire group and elicit the utility function of each member in 

the sample. Then, these utility functions are clustered into a number of relatively small 

homogeneous subgroups of users with similar utilities, and the representative utility 

function for each cluster is used to find the optimal recommendation for the subgroup. 
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These subgroup utility functions are then combined to estimate the utility function of the 

entire group, U. However, using U directly may limit the flexibility of users to refine 

their choices. Therefore I use the estimated U to derive a small set of near-optimal 

recommendations that are also diverse in terms of the subgroups’ utility functions. 

Finally, one of the voting methods is used to determine the top k recommendations. 

Second, I conduct an experimental study to demonstrate the framework’s 

scalability to very large heterogeneous groups. In this study, the utility functions of 

members were synthetically generated, and the precision and recall of the proposed 

framework were compared to the recommendations that would be generated through 

manual voting methods by the entire large groups. The study demonstrated an average 

precision ranging from 0.95 for top-1 recommendations to 0.80 for top-5 

recommendations. For recall, it demonstrated an average ranging from 0.19 for top-1 

recommendations to 0.80 for top-5 recommendations. 

 The remainder of this chapter is organized as follows: Section 5.2 gives a high-

level overview of the proposed technique. Section 5.3 explains the entire group sampling 

and the eliciting of user utilities. Section 5.4 explains the clustering process. Section 5.5 

explains the estimation of the group utility from the subgroups’ utilities. Section 5.6 

discusses the experimental evaluation of the GCAR framework’s scalability to large 

groups. Finally, Section 5.7 summarizes the chapter. Some of the work reported in this 

chapter was published in [114]. 

5.2# GCAR#with#a#Technique#to#Support#Very#Large#Groups#

For a group of m users, the utility of each user j, denoted by ∀! !, 1 ≤ ! ≤ !, 
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!!: [0,1]! → [0,1], maps a vector of criteria !!… ,!! ∈ [0,1] into a user utility 

!!(!!… ,!!) ∈ [0,1]. Similarly, the utility of each subgroup z is denoted by ∀!!, 1 ≤ ! ≤

!, !!: [0,1]! → [0,1], where k is the total number of subgroups. In addition, the entire 

group sample utility is denoted by !: [0,1]! → [0,1]. 

Uz and U define a utility associated with each alternative ! ∈ !. Therefore, the 

subgroup recommendation alternative utility for recommendation a is defined by 

!"!:! → [0,1], where RUz(a) = Uz (u1(a),….,un(a)), and the recommendation alternative 

utility for the entire group sample is defined by !":! → [0,1], where RU(a) = 

U(u1(a),….,un(a)).  

The recommendation process implemented by the proposed technique is depicted 

in Figure 5.1. 

 

 
Figure 5.1: GCAR Framework with the Proposed Technique to Support Very Large Groups 
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As shown in the diagram, to generate the top k recommendations for a large 

heterogeneous group, the recommender follows seven steps: (1) sampling the entire large 

group; (2) eliciting the utility function for each member in the sample; (3) clustering 

these utility functions into small homogeneous subgroups of similar utilities; (4) 

extracting the representative utility function for each subgroup; (5) estimating the utility 

function of the entire group and using it to find an optimal recommendation; (6) 

diversifying the recommendations across the subgroups; and (7) applying a group 

decision-making method to refine the top k recommendations. 

Some of these steps are similar to steps in the basic GCAR framework. The 

sampling and clustering steps are added for very large groups, and the diversity-layering 

step in Figure 5.1 is applied to the extracted utilities of the subgroups rather than those of 

the individual decision makers. In this chapter, I explain in detail only the new steps.  

5.3# Sampling#the#Entire#Group#and#Eliciting#User#Utilities#

In the real world, resources are often limited, which makes it impractical to elicit 

the utility function of every user in a large group. This is why the proposed framework 

begins by randomly selecting a representative sample of users. This sampling phase can 

be skipped in situations with sufficient resources. For details on eliciting the utility 

function of each user, refer to Section 4.2. 

5.4# Clustering#Users’#Utilities#

The goal is to cluster the numerous individual utility functions of the sample into 

a number of small subgroups in such a way that the utility functions in each subgroup are 
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more similar to each other than to those in other subgroups. Formally, I aim to partition 

the m utility functions into a set of k clusters C = {c1, c2, …, ck} so as to minimize the 

within-cluster sum of squares, which is defined as 

 

argmin
!

!! − !!
!

!!!∈!!!

!

!!!
!!!!!!!!!!(5.1) 

 

where Uj  is the utility of decision maker j, 1 ≤ ! ≤ !, for an alternative a, as defined in 

Equation 4.1, and !! is the mean of cluster CZ. For clustering, I choose to use the k-means 

algorithm for its simplicity and popularity [115]. By definition, k = l – 1, where l is the 

number of alternatives needed from the optimization and diversity layering step. To 

compute the distance between the input vector and the clustering center, the algorithm 

uses the Euclidean distance [116]. 

With very large groups, it is normal for individual members to represent either 

just themselves or a number of users. For example, in the case of public infrastructure 

investments, we might have individual members representing the government sector, the 

private sector, expert decision makers, and environmental protection organizations. 

Therefore, I introduce a representation factor rj, ∀! !, 1 ≤ ! ≤ !, which is the number of 

users member j represents. This factor figures in the estimation of the utility functions for 

both the subgroups and the entire group. Consequently, the utility function of a given 

subgroup CZ is defined as 
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!! ! = 1
!!

! (!!(!
!

!!!
)!. !!)!!!!!!!!!! 5.2  

 

where p is the number of users in subgroup CZ and |CZ| is the normalized size of subgroup 

CZ (the total number of users represented by this subgroup), which is defined as 

!! = !! !!
!!! . 

5.5# Estimating#Group#Utility#on#the#Basis#of#Subgroup#Utilities#

This group utility estimation is parameterized on the basis of the group decision-

making method to be applied in the last step of Figure 5.1. Six such methods were 

explained in Chapters 3 and 4. I now discuss how I estimate the group utility from the 

subgroups’ utilities with some of these methods. For the IRV and the Condorcet-IRV 

methods, see Chapter 4. 

5.5.1# Average#Strategy##

The influence InfZ of subgroup CZ on the group’s preferences is computed as 

 

!"#! =
!!
! !!!!!!!!!!! 5.3  

 

where |CZ| is the normalized size of subgroup CZ and |G| is the normalized size of the 
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entire group sample, which is defined as ! = !!!!
!!! ; , and!( !!"#!)!

!!! = 1. 

Taking InfZ into account for each subgroup, the group utility is then defined as 

 

! ! = ! (!!(!
!

!!!
)!. !"#!)!!!!!!!!!!(5.4) 

 

5.5.2# Least#Misery#Strategy#

In this strategy, the group utility is computed as the lowest utility given to any 

alternative by the subgroups, as follows: 

 

U u = min
!
(U! (u))!!!!!!!!!!(5.5) 

 

where UZ is defined as in Equation 5.2. 

5.5.3# Average#without#Misery#Strategy##

In this strategy, the group utility is computed as in the average strategy, but those 

alternatives with any subgroup utility below a certain threshold t are excluded from the 

group recommendations. More formally, 
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! ! = ! (!!(!
!

!!!
)!. !"#!), such!that!∀! , 1 ≤ ! ≤ !!,!"#! !! u ≥ !!!!!!!!!!(5.6) 

 

5.5.4# Structurally#Adjusted#Average#Strategy##

This strategy was developed in this research and was explained in Chapter 3. It 

computes the group utility by taking into account two main GRS factors: (a) the influence 

of individuals within the group; and (b) the dissimilarity of opinion among group 

members. To describe dissimilarity of opinion among subgroups over an alternative, I use 

the standard deviation: 

 

! !1,… ,!k = 1
! − 1 !Z −!" !

k

z=1
!!!!!!!!!!! 5.7 ! 

 

where MU is the mean of subgroup utilities for alternative a. Finally, to reflect both the 

influence of subgroups in the entire group and the dissimilarity of opinion among them, I 

compute the adjusted group utility as 

 

! =!!!. 1− !! !!!!!!!!!! 5.8  

 

where WU is the weighted average group utility, as defined in Equation 5.4, and ! 
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represents the dissimilarity penalty, as defined in Equation 3.7. 

5.6# Experimental#Evaluation#of#GCAR#Scalability##

5.6.1# Experimental#Setting#

The first three steps of the technique involve approximating group utility, because 

working with all the members individually is impractical with very large groups. But this 

raises the important question of how much accuracy (in terms of precision and recall) we 

lose in these approximations. I conducted an experiment to answer this question. I 

compared the precision and recall of the proposed framework, as explained in Section 

5.2, to the results that would be generated by manual voting by the entire large groups 

(the baseline).   

In this experiment, I set the group size m to three different values, 1000, 10,000, 

and 100,000, with 20 groups of each, and I assume that each alternative i, 1 ≤ !!≤ !, is 

associated with only two utilities, u1 and u2. For the recommendation space, the number 

of alternatives N is set to 1000, and I generate these alternatives by assuming that the 

recommendations, in terms of u1 and u2, are uniformly distributed on a quarter circle, as 

shown in Figure 5.2, where ∀!, !! = cos !!.!!!.! , and !! = sin !!.!
!!.!. Note that these 

correspond to the Pareto-optimal selection, and that if there are additional alternatives 

located inside the circle, they will not be considered because they will be dominated. 
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Figure 5.2: Alternatives Generation 

 

In this study, large enough groups of people are considered that it is impractical to 

consider real user utility functions. Therefore, I assume that for each user j, 1 ≤ !!≤ !, the 

proposed framework has correctly extracted her utility function, Uj , and that each user j 

represents only herself, for simplicity. These user utilities are simulated as shown in 

Figure 5.3, for which I formulated the utility functions so that they are geometrically 
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Figure 5.3: User Utilities Generation 

  

5.6.2# Experimental#Methodology#

For both the baseline and the proposed framework, I used the weighted average 

method, as explained in Section 5.5, to generate the top 5 recommendations for each 

group. To answer the question above, I calculated the recall and precision metrics of the 

top 5 recommendations returned by the proposed framework and by the baseline. Recall 

is the proportion of relevant recommendations that appear among the top 

recommendations, and precision is the proportion of the recommendations that are 

relevant [1]. In this study, any of the framework’s top recommendations (F) is considered 

relevant if it is one of the baseline system’s top recommendations (B). 

For each group, I estimated the recall of the framework at a given rank k as 
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!"#$%%! ! = !! ∩ !!
! !!!!!!!!!!(5.9) 

 

Then I computed the average recall at each rank k for the proposed framework by taking 

the average of recall (k) among all groups. The result is shown in Figure 5.4. 

Similarly, for each group I estimated the precision of the proposed framework at 

rank k as 

 

!"#!"#"$%! ! = ! !! ∩ !!! !!!!!!!!!!(5.10) 

 

and then computed the average precision at each rank k by taking the average of 

precision(k) among all groups. The result is shown in Figure 5.5. 
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5.6.3# Experimental#Results#

 

 
Figure 5.4: Average Recall vs. Rank (k) for the Proposed Framework 

 

 
Figure 5.5: Average Precision vs. Rank (k) for the Proposed Framework 
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As shown in Figures 5.4 and 5.5, at rank 1 almost all the top-1 recommendations 

returned by the proposed framework were relevant. This indicates that we lost almost no 

accuracy among top-1 recommendations by applying the technique, even with the 

approximations. For top-2 recommendations, 86% of the returned recommendations are 

relevant. However, for top-3, -4, and -5 recommendations, only about 20% of the 

returned recommendations were irrelevant. 

For the statistical analysis, I calculated the CI at level 95% for the estimated mean 

of the proposed framework’s recall and precision. The results are given in Table 5.1. We 

are 95% confident that we will not lose more than 25% of our outcomes’ recall and 

precision for top-5 recommendations by applying the proposed technique, in which the 

original large groups are approximated. 

 

Table 5.1: Confidence Interval at Level 95% for the Accuracy Estimated Mean 
 

 k = 1 k = 2 k = 3 k = 4 k = 5 

Recall 0.19 
± 0.01 

0.35 
± 0.02 

0.50 
± 0.03 

0.64 
± 0.04 

0.80 
± 0.05 

Precision 0.95 
± 0.06 

0.86 
± 0.06 

0.82 
± 0.05 

0.79 
± 0.05 

0.80 
± 0.05 

 

5.7# Summary#

In this chapter, I proposed a technique for scaling up GCAR for very large 

heterogeneous groups. The idea is to select a representative sample of the large group, 

elicit utility functions from its members, and cluster these functions into small 
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homogeneous subgroups of users with similar utilities. The representative utility function 

for each cluster is then used to find the optimal recommendation for the subgroup and to 

diversify the final recommendations. 

I also described a study I conducted to demonstrate this scalability. In this study, 

the utility functions of members of very large groups were synthetically generated, and 

the precision and recall of the proposed framework were measured against the 

recommendations that would be generated by manually voting by the entire groups. The 

study showed that the proposed framework, which approximated the original large 

groups, can produce a small set of near-optimal recommendations. The experiment also 

shows that in applying the framework we did not lose more than 21% of the accuracy for 

top-5 recommendations. 

In the next chapter, I demonstrate how the GCAR framework applies to a real 

problem by considering a realistic case study. 
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CHAPTER 6: CASE STUDY: POWER MICROGRID OPERATION AND 
INVESTMENT RECOMMENDER (PMOIR) 

6.1# Introduction#

In the previous chapters, I described the proposed GCAR framework, which 

provides a diverse set of package recommendations to a group of users. I also described a 

proposed technique for scaling the GCAR up to handle very large, heterogeneous groups, 

and I described the experiments I conducted to evaluate the precision and recall of the 

framework’s outcomes. 

In this chapter, I demonstrate how the proposed framework applies to a real 

problem by considering a realistic case study of a power microgrid operation and 

investment recommender (PMOIR) used to recommend to a group of decision makers a 

set of optimal operation and investment decisions involving interrelated power 

components in a power microgrid of a university campus. A microgrid is an integrated 

system of energy resources together with a sophisticated decision system for controlling 

them, such as the power microgrid of a university campus, an industrial facility, or a 

building complex (see Figure 6.1). 

The energy operation and investment recommendations include optimal settings 

and values for decision control variables, such as the amount of power generated from the 

resource components (e.g., batteries, backup generators, utility contracts, and renewable 

resources) and the amount consumed by service components (e.g., heating, ventilation, 
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air conditioning, and lighting) in each time interval. The goal is to maximize the net 

present value (NPV) within the required demand satisfaction ratio and within the bound 

for greenhouse gas (GHG) emissions. This is to be done while taking into account all 

components’ interactions and satisfying a diverse group of decision makers (e.g., the 

general staff, executives, energy managers, and environment protection officers) who 

may have conflicting views on weights for the relevant criteria. As indicated in works 

[117, 118], making optimal planning and investment decisions for interrelated energy 

components is a complex problem because of the variety of energy resources, the 

interdependencies of the energy components, the complex interactions between old and 

new equipment in every time interval over an investment time horizon, the huge diurnal 

and annual variations in energy consumption, and environmental problems. 

In order to implement PMOIR, I mathematically modeled specific power 

components based on the models described in work [119]. These components include 

renewable resources, battery units, backup generators, utility contracts, and power-

consuming services. I also formalized the optimization problem, which involves all these 

energy components and their complex operational interdependencies. This is the focus of 

this chapter; the implementation of the PMOIR case study is described in Chapter 7. 

The rest of this chapter is organized as follows: Section 6.2 gives a high-level 

description of a group package recommender for the renewable energy operation and 

investment problem. Section 6.3 describes the optimization formalization. Section 6.4 

describes the power component modeling. Section 6.5 summarizes the chapter. 
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6.2# Renewable#Energy#Operation#and#Investment#Group#
Recommender#

 

Consider a realistic case study of a power microgrid of a university campus like 

the one in Figure 6.1, which involves a number of components, such as services like: 

lighting, cooling, water heating, etc., utility contracts, and backup generators. Now 

suppose that a group of decision makers are planning to invest in the renewable energy 

components of this microgrid, namely the solar photovoltaic cells and wind turbines. 

Investing in these components is not trivial because their power supply is unpredictable 

and may drop suddenly, which will require either immediately supplementing it from 

other power components like batteries or reducing the demand. Thus the components 

interact with each other as a package: whenever the supply from the renewable 

components drops, other components must compensate for it. In addition, the microgrid 

system needs to decide on an hourly basis how much power is to be supplied or used by 

each component.  

This microgrid consists of both the installed energy components and others that 

may have to be purchased later in the time horizon to meet the entire campus’s future 

power demands. The energy managers have recently seen a significant growth in power 

demand, and because the campus is continuing its expansion rapidly, they realize that the 

existing energy components will not be able to satisfy future power demand. 

For these reasons, a group of decision makers from different departments must 

determine the best investment and operation options to satisfy current and future power 

demand while also addressing the optimal operation of the new components with the 
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installed ones. The goal is to maximize their NPV within the bounds for GHG emissions.  

This should be done while satisfying the group of decision makers, who have different 

views on appropriate weights for the criteria. For example, while the general staff and the 

executives give the highest weight to the NPV criterion, the energy managers consider 

the demand–satisfaction ratio the most important, and the environmental protection 

people focus on reducing the GHG emissions. 

 

 
Figure 6.1: Example of a University Campus Microgrid 

 

To solve this problem with the proposed GCAR framework, I mathematically formalized 

the overall optimization problem, as described in the next section. 
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6.3# Optimization#Formalization#

Assume that a microgrid consists of a set of power components C ={c1, … , ck } 

that includes a subset of components available at the initial time horizon, denoted by 

(initAvaC), and a subset of components that are not yet available but might be purchased 

later in the time horizon, denoted by (notInitAvaC), where ! = initAvaC ∪ notInitAvaC. 

These components can be considered power-producing resources, such as backup 

generators and solar panels, or power-consuming services, such as lighting and heating.  

The time horizon T is a set of discrete hourly time intervals, T = {1, …, N} where 

N = 24 if the time horizon is one operational day with interval length, and N = 8760 if the 

time horizon is one operational year with interval length, and so on. An interval length 

of 1 means that each time interval is an hour long.  

Generally, every component i ∈ C is associated with the following: 

1. A vector of controls !! = (!!!… ,!!"), which represents the control actions 

that component i takes over time horizon T, and where each ait, !1 ≤ ! ≤ !, 

1 ≤ ! ≤ !, is the control action that component i takes at time t. Therefore, 

the control actions for all components over the time horizon T is represented 

as matrix A: 

 

! =
!!
⋮
!!

=
!!! ⋯ !!!
⋮ ⋱ ⋮
!!! ⋯ !!"
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These control actions are defined as follows: 

• avail[i] indicates whether component i is available at the initial time 

interval; ∀! ∈ !, avail[i] = 1 if component i is available and 0 otherwise.  

• buyFlag[i] indicates whether new component i should be purchased, 

where ∀! ∈ !!"#$!%#&'(), buyFlag[i] = 1 if component i is to be 

purchased and 0 otherwise. In addition, ∀! ∈ !!"!#$%&', buyFlag[i] = 0. 

• on[i,t] indicates whether component i supplies or uses an amount of 

power at time interval t, such that ∀!component!!! ∈ !, on[i,t] = 1 if i 

supplied or used power at t and 0 otherwise. 

• kw[i,t]!∈ ℝ! indicates how much power should be supplied by each 

component i ∈ C in each time interval t ∈ T.! 

2. A number of metrics, such as cost, GHG emissions, and number of payments 

during the time horizon, where each payment consists of a specific amount 

paid at a specific time interval. These metrics are discussed for each 

component type in the following subsections. 

3. A number of operational and investment constraints, in terms of control 

actions !!. For example, the capacity in kw of a power generator is a 

constraint on the amount of power that this component can generate. 

Every operation and investment decision option for this problem will involves the 

values of all the component decision control vectors over the time horizon. In addition, 

each option is associated with a utility vector u = !!… ,!!   from an n-dimensional 

utility space, such that ∀! !, 1 ≤ ! ≤ !, !!:! → [0,1], where each utility ui has a specific 



  99 
 

domain Di and represents a specific criterion. For example, u1 represents the NPV, u2 

represents the GHG emissions, and u3 represents the demand-satisfaction ratio, where 

!! = 1!
!!! . Furthermore, each utility has a global weight, utilityWeighti, such that 

!"#$#"%&'#(ℎ!! = 1!
!!! . Therefore, the total utility of all components, given their 

control action matrix A, denoted by !"#$%&#'%'#( ∶ ! → [0,1], is defined as 

 

TotalUtility ! = !"#$#"%&'#(ℎ!! !×!!"#$#"%!
!

!!!
 

 

The overall optimization problem is to maximize the total utility over the action 

matrix A, subject to three kinds of constraints: the generic balance constraints for the 

entire problem model, the utility-definition constraints for the entire model, in terms of 

the component metrics, and the specific constraints for each power component. Formally, 

the optimal control action matrix Ao is the one that maximizes the utility the microgrid 

system can achieve:  

 

!! ∈ !"#max
!
!"#$%&#'%'#((!) 

subject to 

!"#"$%&!!"#$%&'(#%$ ! ∧ 

!"#$#"%!!"#$%$&$'%!!"#$%&'(#%$(!) ∧ 

!"#$"%&%'!!"#$%&'(#%$! !! !∀!!! ∈ ! 
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where:  

• Matrix !! represents the control actions that all components must take to achieve 

optimal utility over the entire time horizon, and 

• Vector !!  represents the control actions that component i takes over the time 

horizon T. 

In the following sections, I describe in details each of these constraints, starting 

with the balance and utility definition constraints in this section, and leaving the power 

component constraints for the next. 

6.3.1# Generic#Constraints#

In addition to the specific constraints for each component i given its control 

actions vector, !! !∀!!! ∈ !,!there are generic constraints for the entire model, given the 

control action matrix A, that need to be satisfied. These are as follows: 

• For a stable power supply to be maintained, the sum of power supply and power 

demand for any time interval must equal 0; that is, 

 

∀!! ∈ ! !"#$%!
!

!!!
!!" = 0 

 

where poweri is the power in kW that component i produces or consumes, given 

the control actions vector !!, in any time interval t. This value is positive if the 

component supplies power, negative if it receives power, and zero if it is 

unavailable at t or is turned off. 
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• In any time interval, if a component i is OFF, the output or input power from or to 

i for this time interval must equal 0; that is, 

 

∀ ! ∈ !"#$"%&%'(, ! ∈ !  

!" !, ! = 0!⟹ !" !, ! = 0 

 

• For each component, if any amount of power is generated or used by the 

component in a time interval, the component must be ON for this time interval: 

 

∀ ! ∈ !"#$"%&%'(, ! ∈ ! , 

!"[!, !] ≥ !!⟹ !" !, ! = 1 

 

where ! ∈ ℝ,!"#!! > 0 

• For each component, at any time interval, the value of control action on[i,t] 

cannot exceed the value of control action avail[i]:  

 

∀ ! ∈ !"#$"%&%'(, ! ∈ ! !!"[!, !] ≤ !"!#$[!] 

 

• At any time interval, the amount of power produced or consumed by any 

component must be bounded by a minimum and a maximum value: 

 

∀ ! ∈ !"#$"%&%'(, ! ∈ ! −!!×!!"[!, !] ≤ !"[!, !] ≤ !×!"[!, !] 
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where M is a constant. 

• For each initially available component, the value of the control action buyFlag[i] 

is 0 and that of avail[i] is 1: 

 

∀ ! ∈ initAvaC !!"#$%&' ! = 0 

∀ ! ∈ initAvaC !!"!#$ ! = 1 

 

• For each component that is not initially available, the value of the control action 

avail[i] is equal to the value of the control action buyFlag[i]: 

 

∀ ! ∈ notInitAvaC !!"!#$ ! = !"#$%&'[!] 

 

• The demand-satisfaction ratio, which is explained in the next subsection, must be 

greater than or equal to an accepted value. For example, the microgrid energy 

system must satisfy at least 95% of the total power demand: 

 

!"#$%&'%&()(!) ≥ !""#$%#&!!"#$% 

 

6.3.2# Utility#Definition#Constraints#

In this subsection, I describe the global utility definition constraints for the entire 

model in terms of the component metrics. The global utility is the additive combination 
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of the net present value (NPV), the GHG emission, and the demand-satisfaction ratio for 

the entire model. 

Net present value (NPV) utility. NPV is the difference between the present 

value of cash inflows and the present value of cash outflows, which is defined as 

 

!"# = !!
1+ ! !!!

!

!!!
 

 

where Ft is the net cash flow during an interval ! ∈ ! and r is the discount rate, per 

interval t, used to determine the present value of future cash flows by taking into account 

the time-value of money.  

For the proposed model, F is the total payments per each interval t, denoted by 

payPerInt[t], which is defined as 

 

∀! ! ∈ !"#$"%&%'(, ! ∈ ! !!"#$%&'()[!] = !"!
!

!!!
!"#$%&'[!, !] 

 

where payPerComp[i,t] is the total number of payments for each component i at interval 

t, defined as 

 

!"#$%&'()! !, ! = !"#
!"#$%&$'(

!"#$%&'$%()$*)"+[< !!, !"#$%&$'( >, !] 



  104 
 

 

and payPerCompCostCateg[< !, !!!!!!!!!>,t] is the total payments for each cost 

category of component i at interval t, defined as  

 

∀!(! ∈ !"#$"%&%'(, ! ∈ !, ! ∈ {1,… ,!"#$%&'!( < !!, !"#$%&$'( > }): 

!"#$%&'()!'(*+'"+%, < !!, !"#$%&$'( >, ! != 
!!!

!"#$%&'() ≪ !!, !"#$%&$'( >,! > !! ∶ !!!!in!!"#$%&'()"* ≪ !!, !"#$%&$'( >,! >
!!

0!!!!!!!!!!!!!!! ∶ !!!!"ℎ!"#$%!
 

 

Note that !"#$%&'() ≪ !!, !"#$%&$'( >,! > , for each component type, is calculated 

as described in Section 6.4. 

GHG emissions utility. The total GHG emissions, denoted by totalCo2Value, is 

the sum of the emissions generated by all components i. Formally,  

 

!"!#$%"2!"#$% ! = !"#$%"&'()"2[!]
!

!!!
 

 

where !"#$%"&'()"2[!], for each component type, is calculated as described in Section 

6.4. 

Demand-satisfaction ratio utility. The demand-satisfaction ratio, denoted by 

demSatRatio, is the ratio of the total supplied power to the total needed power: 
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!"#$%&'%&() ! = !"!#$%&''$()*+,(!)÷ !"!#$%&'#()*+ 

where  

!"!#$%&''$()*+, ! = !"#$%&$%[!]
!∈!"#$%&"'

 

 

!"#$%&$% ! = !"[!, !]
!

!!!
 

and 

!"!#$%&'#()*+ = !"#$%!&"'("'[!]
!∈!"#$%&"'

 

 

!"#$%!&"'("' ! = !"#$#"%&'("%)"*+,% !, !
!

!!!
 

 

6.4# Power#Component#Modeling#

In this section, I describe how the metrics are derived for each component type 

and the constraints based on the types of the components. 

6.4.1# Utility#Power#Contract#

A utility contract is a service agreement between a utility company and its 

business partners that defines all the commercial terms for the sale of power between the 

two parties, including the cost of using the power, the cost of the maximum peak demand 
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bound, and the penalty charge for exceeding this bound.  

Cost: 

Each contract component i has only one cost category (conCost) for each time 

interval. This typically includes both the peak demand charge and the total power 

consumption charge. The peak demand charge, denoted by peakDemand, measures the 

maximum rate of power consumption for any time interval. The total power consumption 

charge, denoted by powerConsum, measures the rate of power consumption in the 

specific billing period. Formally, ∀! ∈ !"#$%&'$(, such that !"#$%&'$( ⊂ !, and ∀! ∈

!, conCost[i,t] is defined as 

 

!"#$"%& !, ! = !"#$%&"'()* !, ! + !"#$%"&#'( !, ! , 

where: 

!"#$%&"'()* !, ! = !" !, ! !×!!"#$%&%'($&$%)#(!" !, ! ), and 

!"#$%"&#'( !, ! = !" !, ! !×!!"#$%&'("%"&)*(!" !, ! ) 

 

The !"#$%&%'($&$%)# and the !"#$%&'("%"&)* are functions that are represented as 

piece-wise or step-wise linear functions [119], for example: 

!"#$%&%'($&$%)# ! =
12¢!,!!!!!!!!!!!!!!!!0 < ! ≤ 3000
10¢!, 3000 < ! ≤ 6000
!!8¢!,!!!!!!!!!!!!!!!!!!!!!!!!!!!!! > 6000
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!"#$%&'("%"&)* ! =
!!1.50$!,!!!!!!!!!!!!!!!!0 < ! ≤ 1000
!3.00$!,!!!!!!!!1000 < ! ≤ 2000
!!6.00$!,!!!!!!!!!!!!!!!!!!!!!!!!!! > 2000

 

 

Payments: 

This cost category (conCost) has number of payments (noPayment) during the 

time horizon, and each payment p has an amount (payAmount) that is paid at a specific 

time interval (payInterval). For example, if this cost category is paid monthly, there will 

be 12 payments in a one-year time horizon. On an hourly-basis time horizon, the first 

payment (p = 1) will be made at t = 730, the second (p = 2) at t = 1460, and so on. 

Formally, 

∀!(! ∈ C!"#$%&#', ! ∈ !, and ! ∈ {1,… ,!"#$%&'!( < !, !"#$%&$'( > }): 

 

!"#$%&'!( < !!, !"#$"%& > = !"!#$!!"#$%&!!"!!"#$ℎ!!!!"!!!(!. !. ,!!÷ 730) 

!"#$%&'(") << !, !"#$"%& >,! > = !!×!730, 

payAmount[<<i,!!"#$"%& >, p>]= 

!! !"#$"%& !, !
!"#$%&'()"* !!! !!!!!"#$%&'()"* !

!,!!!!!!1 < ! ≤ !"#$%&'!([< !, !"#$%&$'( >]
!

!!!!!!!!!!!"#$"%& !, !
!!!!!!!!!!"#$%&'()"* ! !!!!!!

!,!!!!!!!!!!!!!!!!!!!!!!!!!!! = 1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 

 

where <<i,costCateg>, p> is a tuple associating a payment number with its cost category 

for each utility contract, and the constant 730 is the total number of hours in a month. 

 



  108 
 

GHG emissions:  

The total GHG emission of each contract component i, denoted by 

conTotalCO2[i], is the sum of conCO2, which is the GHG emission of component i in 

each time interval. Formally, ∀! ∈ !"#$%&'$(, conTotalCO2[i] is defined as 

 

!"#$"%&'()2[!] = !"#$%2[!, !]
!

!!!
 

where: 

!"#$%2 !, ! = !" !, ! !×!!"#$%2!"#$%, 

 

and conCO2perKw is the GHG emission (in Btu) produced in the consumption of each 

kilowatt of power. 

 

Operational and investment constraints:  

At any time interval, the total kw consumption must not exceed the contract peak 

demand bound: 

∀ ! ∈ !"#$%&'$(, ! ∈ ! !!" !, ! ≤ !"#$%"&#'( !  

6.4.2# Backup#Power#Generator#

Large organizations usually have backup generators in case of power outages or 

for peak demand times. A generator requires fuel to operate and typically has an 

efficiency function of fuel consumption (genEfficiency[i]) based on the amount of power 

it generates. This function, which can be defined as a piece-wise linear function or a step-
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wise linear function, determines the amount of fuel needed for each kilowatt generated. 

Cost:  

Every backup generator has three cost categories: fuel, maintenance, and 

depreciation, the difference between its present value and its residual value at the end of 

the time horizon. There is also a fourth cost category for each new generator purchased 

during the time horizon, which is equal its price. The fuel and depreciation cost 

categories are defined as follows: 

 

∀! ∈ !"#"$%&'$(, such that !"#"$%&'$( ⊂ !, and ∀! ∈ !: 

!"#$%"&'()* !, ! = !"#$%&'(# !, ! !×!!"#$%%&'&"#'( ! (!"[!, !])!×!!"[!, !] 

!"#$"%&'()* ! = !"#$%"&"#'()*"[!]− !"#$"%&'()*+)*("[!] 

 

Payments: 

As indicated previously, each cost category has a number of payments during the 

time horizon, and each payment has an amount paid at a specific time interval. For 

example, while the genFuelCost could be paid monthly, with 12 payments in a time 

horizon of one year, the genMaintCost is paid annually and the genDeprCost is 

considered only at the end of the time horizon; that is, when t = N. Formally, 

 

∀(! ∈ !"#"$%&'$(, ! ∈ !, ! ∈ {1,… ,!"#$%&'!( < !!, !"#$%&$'( > }): 

!"#$%&'!( << !!,!"#$ >> = total!number!of!months!in!!!(i. e.!!!!÷ 730) 

!"#$%&'!( << !,!"#$%&$"$'& >> = total!number!of!years!in!!!(i. e.!!!!÷ 8760) 
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!"#$%&'!( << !,!"#$"%&'(&)* >> = 1!(i. e.!!only!paid!when!! = !) 

!"#$%&'!( << !,!"#$%&'( >> = 1!(i. e.!!only!paid!when!! = 1) 

 

!"#$%&'(") << !,!"#$ >,! > = !!×!730 

!"#$%&'(") << !,!"#$%&$"$'& >,! > = !!×!8760 

!"#$%&'(") << !,!"#$"%&'(&)* >,! > = ! 

!"#$%&'(") << !,!"#$%&'( >,! > = 1 

 

!"#$%&'() << !,!"#$ >,! > = 

!! !"#$%"&'()* !, !
!"#$%&'()"* !!! !!!!!"#$%&'()"* !

!,!!!!1 < ! ≤ !"#$%&!"#[< !, !"#$%&$'( >]
!

!"#$%"&'()* !, !
!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%&'()"* ! !!!!!!!!!!!!!!!!!!!

!,!!!!! = 1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 

!"#$%&'() << !,!"#$%&$"$'& >,! > = !"#$%&#'()*' ! !×!!"!#$[!] 

!"#$%&'() << !,!"#$"%&'(&)* >,! > = !"#$"%&'()* ! !×!!"!#$[!] 

!"#$%&'() << !,!"#$%&'( >,! > = !"#$"%&'()*+,-. ! !×!!"#$%&'[!] 

 

Note that constant 730 represents the total number of hours per month, and 

constant 8760 represents the total number of hours per year.  

 

GHG emissions: 

The total GHG emission of generator component i, denoted by genTotalCO2[i], is 

the sum of genCO2, which is the GHG emission of component i in every time interval. 
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Formally, ∀! ∈ !"#"$%&'$(, genTotalCO2[i] is defined as 

 

!"#$%&'()*2[!] = !"#$%2[!, !]
!

!!!
 

where: 

!"#$%2 !, ! = !" !, ! !×!!"#$%2!"#$%, 

 

and genCO2perKw is the GHG emission (in Btu) produced by the consumption of each 

kilowatt of power. 

 

Operational and investment constraints:  

For any generator component, at any time interval, i.e.,!∀ ! ∈ !"#"$%&'$(, ! ∈ !  

the output power must not exceed the generator’s capacity: 

!" !, ! ≤ !"#$%&%'()* !  

 

6.4.3# Renewable#Energy#Resources#

Renewable energy systems (e.g., photovoltaic systems, and wind turbines) 

generally supply energy that comes from natural sources, such as sunlight and wind. 

While these are much more environmentally friendly than non-renewable energy 

resources, they are much more expensive to use and depend on environmental factors like 

sunshine or wind activity, which makes it difficult to control their output power. The 

output of these components is represented as the predicted power (in kW) generated over 
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a time horizon, denoted by predictedOutput[i,t] ∀(! ∈ !"#"$%&'"(, ! ∈ !), such that 

!"#"$%&'"( ⊂ !. 

Cost:  

Each renewable resource has two main cost categories: annual maintenance and 

depreciation. As with the generators, there is also a cost of new equipment category for 

resources newly purchased during the time horizon. These categories are defined and 

calculated like the generator categories. 

Payments: 

 ∀!(! ∈ !"#"$%&'"(, ! ∈ !, ! ∈ {1,… ,!"#$%&'!( < !!, !"#$%&$'( > }), the 

payAmount[<< i, costCateg>, p>],  payInterval[<< i, costCateg>, p>], and noPayments <

!!, !"#$%&$'( >  are defined and calculated like the values for the generator components. 

GHG emissions:  

Because renewable resources do not typically use fuel to produce power, the total 

GHG emission of each renewable component i, denoted by renTotalCO2[i], is equal to 0. 

Operational and investment constraints:  

In any time interval, the power used from any renewable resource component can 

not exceed the power generated by it: 

∀ ! ∈ !"#"$%&'"(, ! ∈ ! !!" !, ! ≤ !"#$%&'#$()'!)'[!, !]! 

 

6.4.4# Battery#Storage#Units#

A battery storage component is in one of three performance states at a given time: 

discharging (supplying power), charging (consuming power), or idle; that is, the value of 
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kw[i,t] can be positive, negative, or 0. A battery typically has a limited number of design 

charge–discharge cycles, denoted by batLifeCycles, before it is considered inefficient and 

needs to be replaced. 

Cost:  

Like the renewable components, a battery has two main cost categories, 

maintenance and depreciation, and a third category for new battery purchases. The 

depreciation cost is the cost of wear caused by using the battery. To determine the 

cumulative number of cycles used, we divide the value of the used cumulative 

charge/discharge cycles of the battery, cumChargeDischarge, by the power in kilowatts 

for a single cycle life energy, cycleEnergy. This result, denoted by cumCycles, is 

multiplied by the new battery cost and divided by batLifeCycles. Formally, the 

depreciation cost is defined as follows: 

 

∀! ∈ !"##$%&$', such that !"##$%&$' ⊂ !, and ∀! ∈ !: 

!"#$%&'()*# ! = 

!"#$e!"#$%&'()* ! !×!!"#$%!&'( ! ! = ! + 1 !/!!"#$%&'()*+',[!] 

where: 

!"#$%!&'( ! ! = !!"#$ℎ!"#$%&'(ℎ!"#$ ! !/!!"!#$%&$'("[!] , 

and 

!"#$ℎ!"#$%&'(ℎ!"#$ ! = |!"[!, !]
!

!!!
| 
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Payments:  

 ∀!(! ∈ !"##$%&$', ! ∈ !, ! ∈ {1,… ,!"#$%&'!( < !!, !"#$%&$'( > }); the 

values of payAmount[<< i, costCateg>, p>],  payInterval[<< i, costCateg>, p>], and 

noPayments < !!, !"#$%&$'( >  are defined and calculated similarly to the values for the 

generator components. 

GHG emissions:  

As with the renewable resources, the total GHG emission of each battery 

component i, denoted by batTotalCO2[i], is equal to 0. 

Operational and investment constraints:  

For any battery component, at any time interval, ∀ ! ∈ !"##$%&$', ! ∈ ! , 

• The discharge power amount must equal at least the minimum discharge rate: 

!" !, ! ≥ !"#$"%&ℎ!"#$%!&$[!] 

• The charging power amount must not exceed the maximum charge rate: 

!" !, ! ≤ !"#$ℎ!"#$%!&$[!] 

• At the beginning of the time horizon, when t = 1, the discharge power amount 

cannot exceed the battery’s initial energy: 

!" !, 1 ≤ !"#$%&#&"'(%)*+,[!] 

• For the remaining time intervals, where ! ∈ {2,… ,!}, the discharge power 

amount cannot exceed the battery’s current charge. That is, 

!" !, ! ≤ !"#$%&&'(#$ℎ!"#$ !, ! − 1 ,where 

!"#$%&&'(#$ℎ!"!" !, ! + 1 = !"#$%&&'(#$ℎ!"#$[!, !]− !"[!, !] 

• The battery’s current charge must not exceed its capacity: 



  115 
 

!"#$%&&'(#$ℎ!"#$[!, !] ≤ !"#$"%"&'#([!] 

• At the beginning of the time horizon, when t = 1, the cumulative charge–

discharge power is equal to zero: 

!"#$ℎ!"#$%&'(ℎ!"#$ !, 1 = 0 

 

6.4.5# PowerWConsuming#Services#

Power-consuming components are services that contribute to the power demand, 

such as HVAC, lighting, and water heating. Each service component i, requires an 

amount of power, denoted by serPredictedDemand, to run during each time interval. 

Cost:  

Because there are no power-related costs to operating a service other than the cost 

of supplying power, the cost of any service component for any time interval is 0: 

∀! ! ∈ !"#$%&"', ! ∈ ! !!"#$%!& !, ! = 0 

Payments:  

Because the cost is always 0, there are no payments for these components. 

GHG emissions:  

The total GHG emissions of each service component i, denoted by serTotalCO2[i], is 0. 

Operational and Investment Constraints:  

In any time interval, the power supplied to component i must be equal to the 

power needed if the service is ON and 0 otherwise: 

∀ ! ∈ !"#$%&"' !!"#$%&"'! ⊂ !, ! ∈ !): 

!" !, ! = !"#$#"%&'("%)"*+,% !, ! !×!!"[!, !] 
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6.5# Summary#

In this chapter, I showed how the proposed framework applies to a real problem 

by considering a case study in which PMOIR is used to support a group of decision 

makers by recommending a set of optimal operation and investment decisions regarding 

interrelated power components in the power microgrid of a university campus. 

The energy operation and investment recommendations included optimal values 

for decision control variables, such as the amount of power generated from the power 

resource components and consumed by the power consuming services components at 

every time interval. The goal is to maximize the total NPV, within constraints on the 

demand-satisfaction ratio and the GHG emissions, while taking into account the 

components’ interactions and satisfying a group of decision makers with possibly 

different views on the weights of various criteria. To implement PMOIR, I 

mathematically modeled renewable resources, batteries, backup generators, utility 

contracts, and power consuming services, and formalized the optimization problem, 

which involves all these components and their inter dependencies. 

In the next chapter, I explain the implementation of the power optimization model 

for PMOIR. I also describe the experimental study I conducted to demonstrate the 

proposed framework’s feasibility for applying PMOIR on medium and large power 

microgrids. 
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CHAPTER 7: PMOIR IMPLEMENTATION AND EXPERIMENTAL STUDY 

7.1# Introduction#

In the previous chapter, I mathematically described and modeled a library of 

specific power components. I also formalized the optimization for the entire problem, 

which involves the interrelations between all these components. In this chapter, I describe 

the implementation of the power optimization model for PMOIR that was formalized in 

the last chapter. I also describe an experimental study I conducted to demonstrate the 

proposed GCAR framework’s feasibility, in terms of computational time, for applying 

PMOIR on power microgrids. The aim of this study is to determine whether the 

framework is practical for applying to realistically large problems to achieve near-

optimal financial and operational results within a reasonable amount of time. 

The specific contributions of this chapter are as follows: First, I implement the 

power optimization model for PMOIR as a mixed-integer linear programming (MILP) 

model using IBM’s Optimization Programming Language (OPL) [120] and CPLEX 

Studio to decide on the power resource investment and operation. Second, I conduct an 

experimental study to demonstrate the GCAR framework’s feasibility in computational 

time for recommending a small set of optimal investment and operation decisions in a 

case study using PMOIR and realistic data sets. This study is conducted with data set of 

multiple sizes involving different numbers of energy components over different time 
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horizons. The largest data set, which involves 200 components over a five-year time 

horizon, contains more than 23 million constraints and about 18 million variables, of 

which more than 8 million are binary and nearly 10 million are continuous. This data set 

is solved in less than five hours, which shows that the framework is feasible for use in 

medium-sized and large microgrids. 

The remainder of this chapter is organized as follows: Section 7.2 demonstrates 

the OPL implementation of the entire optimization model and the optimization of the five 

power components. Section 7.3 presents the experimental study and its results. Section 

7.4 summarizes the chapter. 

7.2# OPL#Implementation#

In this section, I describe the OPL implementation of the entire optimization 

model and of the five power component models formalized in the last chapter. I begin by 

describing the implementation of the entire optimization model, and then for each power 

component, I describe how its general variables and parameters are defined, how the 

operational and investment metrics are driven, and how its specific constraints are 

modeled in OPL. 

7.2.1# Entire#Model#Implementation#

Figure 7.1 shows the general declarations of the time horizon, tide five power 

components, the general metrics and weights, and the general decision variables. These 

correspond to the declarations described in Section 6.3. 
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Figure 7.1: General Declarations in OPL 

 

Figure 7.2 describes the common component cost categories, as formally defined 

in the last chapter. 
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Figure 7.2: Common Component Cost Category Declarations in OPL 

 

Figure 7.3 shows the payment amounts and the payment intervals declarations, 

which are needed for the NPV calculations. Figure 7.4 shows the declarations for other 

common metrics, such GHG emissions and the demand-satisfaction ratio, as well as the 

optimization statement. These correspond to the declarations described in Section 6.3.2. 
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Figure 7.3: NPV Calculations in OPL 

 

 
Figure 7.4: General Metrics Calculations in OPL 

 

Finally, Figure 7.5 shows the common operational and investment constraints that need to 
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be satisfied, which were formally defined in Section 6.3.1. 

 

 
Figure 7.5: Common Operational and Investment Constraints in OPL 

 

7.2.2# Power#Component#Implementation#

In this subsection, I describe the implementation of the five power component 

models formally defined in the last chapter. These components are utility contracts, 

backup generators, renewable resources, batteries, and power consuming services. 
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Utility!Power!Contract:!!

Figure 7.6 shows the declarations for the variables and parameters of the contract 

and the way its specific costs and GHG emissions are driven. The specific constraints for 

the utility power contract are shown in Figure 7.7. These all correspond to the description 

in Section 6.4.1. 

 

 
Figure 7.6: Utility Power Contract Parameters, Variables, and Metric Calculations in OPL 

 

 
Figure 7.7: Utility Contract Operational and Investment Constrains in OPL 
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Backup!Power!Generator:!!

Figure 7.8 shows the implementation details of the parameters and decision 

variables for the backup generator and the calculations for its cost and GHG emission 

metrics. These correspond to the explanations in Section 6.4.2. The specific operational 

and investment constraints to be satisfied for each backup generator are shown in Figure 

7.9. 

 

 
Figure 7.8: Backup Generator Parameters, Variables, and Metric Calculations in OPL 
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Figure 7.9: Backup Generator Operational and Investment Constraints in OPL 

 

Renewable!Energy!Resources:!!

The OPL implementation of the renewable components’ parameters, decision 

variables, metrics, and constraints is shown in Figure 7.10, which corresponds to the 

explanations in Section 6.4.3. 

 

 
Figure 7.10: Renewable Resource Parameters, Variables, Metrics, and Constraints in OPL 
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Battery!Storage!Units:!

 Figure 7.11 shows the battery parameters, decision variables, and metric 

calculations. The operational and investment constraints are shown in Figure 7.12. All of 

these correspond to the explanations in Section 6.4.4. 

 

 
Figure 7.11: Battery Component Parameters, Variables, and Cost Calculations in OPL 
 

 
Figure 7.12: Battery Component Operational and Investment Constraints in OPL 
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Power>Consuming!Services:!!

Finally, Figure 7.13 shows the parameters and decision variables of the power-

consuming components. It also shows how the related metrics are calculated, and how the 

specific operational and investment constraints are implemented in OPL. All of these 

correspond to the explanations in Section 6.4.5. 

 

 
Figure 7.13: Power-Consuming Service Parameters and Constraints in OPL 

 

7.3# Experimental#Study#

The question I address in this experiment is whether the proposed GCAR 

formulation for a realistically large case study is practical for generating a small set of 

optimal and diverse solutions within a reasonable amount of time. To answer this 

question, I apply the GCAR framework to a realistic case study using PMOIR. 

7.3.1# Experimental#Settings#and#Methodology#

In this study, the utility function of each member of a group of three decision 
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makers is generated synthetically. The group utility function is estimated using the 

average group decision-making method that was detailed in Chapter 3. 

The study considers three different microgrid sizes: a small microgrid of up to 50 

power components, a medium-sized microgrid of up to 100 components, and a large 

microgrid of up to 200 components. All the power components belong to the types 

described and modeled in Chapter 6. In addition, all three microgrids are operated over 

three different time horizons: one year, three years, and five years. 

Ten data sets are generated and tested for each microgrid over each time horizon, 

in order to measure the efficiency of the branch and bound, and branch and cut of MILP 

Solver. These data sets are generated with real data from [121], which provides annual 

energy usage information (in kWh) from 1989 to 2010 at the University of Texas at 

Austin. 

For the optimization step, OPL is used with the ILOG CPLEX Solver engine 

[122], and a 1% relative gap is set as the stopping criteria for CPLEX. The testing is 

performed on 2.6 workstation with Intel Core i7 processor and a memory of 16 GB 1600 

MHz DDR. 

The optimization model, which was formalized in the last chapter, is applied in 

this case study with a variation to support the diversity step of the GCAR framework. 

After the group’s total utility has been maximized, each decision maker’s utility is also 

maximized in turn, subject to an additional constraint: the total utility is bounded by the 

maximum group utility minus ε, where ε corresponds to 2% of the maximum group 

utility score. The idea is to create a subset of diverse recommendations, each of them 



  129 
 

based on a different individual’s utility function, while preserving a bounded distance 

from the optimal group utility score to provide a balance between optimality and 

diversity, as described in Chapter 4. 

The generated data follows a typical daily system-demand profile, as shown in 

Figure 7.14 [123]. To estimate the demand for the next five years, a 1.4% annual growth 

rate is assumed, which is consistent with work [124].  

 

 
Figure 7.14: Typical Yearly Load Profile [123] 

 

Following Figure 7.14, the peak hours are from 5 p.m. to 9 p.m., the mid-peak 

hours from 7 a.m. to 5 p.m., and the off-peak hours from 9 p.m. to 7 a.m. The hourly 

prices for power generation are generated by following the curve in Figure 7.15 from 

work [125]. They show that on a typical day, the price varies between 2 and 4 ¢ per 

kilowatt-hour in the early morning and reaches 8¢ at peak usage time. 
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Figure 7.15: Hourly Prices for Power Generation [125] 

 

7.3.2# Experimental#Results#

The mean resolution times for all three microgrid sizes over the three time 

horizons are depicted in Figure 7.16. The largest data set in this study, which involves 

200 components over a five-year time horizon, contains over 23 million constraints, and 

about 18 million variables, of which over 8 million variables are binary and nearly 10 

million variables are continuous. This largest dataset is solved in less than five hours of 

solver time, meaning the proposed framework is feasible for use with medium-sized and 

large microgrids to generate a small set of optimal and divers solutions within a 

reasonable time. Note that the resolution time includes the time required for the group 

utility optimization and the optimization over each decision maker’s utility to diversify 

the recommendation set. 
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Figure 7.16: Experimental Mean Resolution Time  

for Three Microgrid Sizes over Three Time Horizons 
 

For the statistical analysis, I calculate the CI at a 95% level for the estimated 

mean of the time resolution for each microgrid size and over each time horizon. The 

results are illustrated in Table 7.1: the mean resolution time for the smallest data set (50 

components over a one-year time horizon) is 36.49 minutes, with upper and lower bounds 

of 1.22 minutes. The mean resolution time for the largest data set (200 components over a 

five-year time horizon) is 299.02 minutes, with upper and lower bounds of 4.22 minutes. 
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Table 7.1: Confidence Interval at Level 95% for the Estimated Mean of the Time 
Resolution (in Minutes) 

 

Microgrid Size 
Time Horizon (in years) 

1 3 5 

Small  
(50 Components) 36.49 ± 1.22 73.09 ± 2.17 130.38 ± 2.13 

Medium  
(100 Components) 109.06 ± 1.47 158.15 ± 2.34 230.21 ± 3.28 

Large  
(200 Components) 187.06 ± 2.12 239.36 ± 3.36 299.02 ± 4.22 

 

7.3.3# PostWProcessing#Phase#

After the diverse set of recommendations is generated, they are to be presented to 

each decision maker in descending order of group utility, and each decision maker ranks 

the set in accordance with his or her preferences. Finally, one of the voting methods 

described in Chapter 3 is applied on the ranked set of recommendations to determine the 

final top k recommendations. 

7.4# Summary#

In this chapter, I described the implementation of the power optimization model 

for PMOIR as a MILP model using OPL and the CPLEX solver to decide on power 

resource investment and operations on an hourly-basis time horizon. I also described a 

study I conducted to show the framework’s feasibility in actual scenarios. This study 

involved multiple data set sizes and time horizons. The largest data set was solved in less 

than five hours, showing that the framework is practicable for its intended purposes. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

In this chapter, I summarize the research presented in this dissertation and suggest 

directions for future work. 

8.1# Conclusions#

State-of-the-art recommender systems focus on atomic products and services and 

on individual users. This research deals with extending recommender systems in three 

ways: (1) to consider composite recommendations; (2) to deal with multiple, rather than 

single, criteria for recommendations; and (3) to support groups of diverse users with 

different, even conflicting, views on weights for different criteria. To the best of my 

knowledge, based on popular group recommender surveys [44, 49, 51-54], no existing 

recommender system works with groups of users and composite, multi-criteria 

recommendations. The proposed system is the first to address these issues. 

I have proposed a decision-guided group composite alternatives recommender 

framework based on multi-criteria decision optimization and voting. This framework 

works on a very large, or even infinite, recommendation space, which is implicitly 

defined by mathematical constraints. It is designed to provide a diverse set of near-

optimal package recommendations to groups of users, while taking into account the 

different influence of individuals in the group, the interest dissimilarity among them, and 

the size and homogeneity of the group. The framework applies six decision-making 
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methods to refine its recommendations. Five of these come from social choice theories—

instant runoff voting (IRV), hybrid Condorcet-IRV, average, least misery, and average 

without misery—and the last, the structurally adjusted average method, I developed. In 

addition, I propose a technique for scaling this framework up to handle very large, 

heterogeneous groups. This technique involves clustering the large group into small, 

homogeneous subgroups of decision makers with similar utilities. 

I also developed a power microgrid operation and investment recommender 

(PMOIR) as a case study to demonstrate the applicability of the framework. PMOIR 

recommends a set of operation and investment decisions involving the components of a 

power microgrid to a group of decision makers who need to maximize the NPV within 

bounds set on the demand-satisfaction ratio and the GHG emissions while taking into 

account all the component’s interactions, and multiple potentially conflicting views on 

the importance of various criteria. To implement this, I modeled the different 

components, formalized the optimization problem, and implemented the power 

optimization model as a mixed-integer linear programming (MILP) model using OPL and 

CPLEX Studio. 

Finally, I validated the proposed framework with three experimental studies: 

1. A study comparing the precision and recall of the framework to the results of 

manual voting by human participants. This study showed that for each decision-

making method, the average precision and recall achieved by the framework 

ranged from being the same as the ideal (for top-1 recommendations) to being up 

to 34% off it (for top-4 recommendations). 
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2. A study demonstrating the framework’s scalability to very large, heterogeneous 

groups. This study compared the precision and recall of the framework to 

recommendations that would be generated by manual voting by the entire groups. 

Utility functions for the large groups’ members were generated synthetically. The 

study found an average precision ranging from 0.95 (for top-1 recommendations) 

to 0.80 (for top-5 recommendations) and an average recall of 0.19 (for top-1 

recommendations) to 0.80 (for top-5 recommendations). 

3. A study demonstrating the feasibility, in terms of computational time, of the 

framework in a realistic case study using PMOIR. This study used multiple data 

set sizes and time horizons to demonstrate that the proposed framework is feasible 

for generating small sets of optimal and diverse solutions in a reasonable time 

with medium-sized and large microgrids. 

8.2# Future#Work#

Further exploration is possible in many areas: 

• The recommendation process could be sped up by leveraging historical data. The 

goal would be to identify a new user’s utility function by analyzing a database of 

previously collected utility functions. 

• Different group decision-making methods are used by different people, and the 

choice usually depends on the domain, the group’s characteristics, and the 

property people want to satisfy. No single voting method is superior to all others 

and fully fair. In the GCAR framework, I consider six methods, but others, such 

as Borda, Kemeny, and Copeland, could be applied to it in future work. 



  136 
 

• I have assumed that the individuals in a group have already agreed on the overall 

set of criteria, simply not on their weights. However, in future work this 

assumption could be relaxed and the criteria themselves examined and refined.  

• Future research can model a range of power and renewable energy components 

going beyond the five formalized and modeled in this work. 

• In the microgrid problem I considered, I assumed for simplicity that new 

investment equipment was bought in the first interval of the time horizon. In 

future work, we could decide not only whether to buy a new component, but when 

to buy it.  

• I addressed only the net present value of the microgrid power components; 

however, it would be worth addressing the possibility of leveraging the existing 

energy market to sell excess capacity during time intervals with low demands. 

• A good user-interface design can be incorporated into the framework to increase 

group members’ satisfaction. 
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APPENDIX A: GMU INSTITUTIONAL REVIEW BOARD (IRB) APPROVAL 
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APPENDIX B: PUBLICATIONS RELATED TO THIS DISSERTATION 

This research has resulted in the following publications: 

• Mengash, H., and Brodsky, A., "GCAR: A Group Composite Alternatives 
Recommender Based on Multi-Criteria Optimization and Voting", In: 
Proceedings of the 47th Hawaii International Conference on System Science 
(HICSS), January 6-9, 2014, IEEE Computer Society Press, 2014, pp.1113-1121.  

• Mengash, H., and Brodsky, A., "DG-GPR: A Decision-Guided Group Package 
Recommender with Hybrid Condorcet-Instant Runoff Voting", in DSS 2.0, 
Supporting Decision Making with New Technologies. Frontiers in Artifical 
Intelligence and Applications, IOS Press, Paris, France, 2014, pp. 317 - 328. 

• Mengash, H., and Brodsky, A., "A Group Package Recommender Based on 
Learning Group Preferences, Multi-Criteria Decision Analysis, and Voting", 
EURO Journal on Decision Processes, Springer Berlin Heidelberg, vol. 3, pp. 
275-304, 2015. 

• Mengash, H., and Brodsky, A., "Tailoring Group Package Recommendations to 
Large Heterogeneous Groups Based on Multi-Criteria Optimization", In: 
Proceedings of the 49th Hawaii International Conference on System Science 
(HICSS), January 5-8, 2016, IEEE Computer Society Press, 2016, pp.1537-1546. 
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