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ABSTRACT 

ASSESSING THERMAL IMAGERY INTEGRATION INTO OBJECT DETECTION 

METHODS ON AIR-BASED COLLECTION PLATFORMS 

James Gallagher, M.S. 

George Mason University, 2023 

Thesis Director: Dr. Edward Oughton 

 

Object detection models commonly focus on utilizing the visible spectrum via 

Red-Green-Blue (RGB) imagery. Due to various limitations with this approach in low 

visibility settings, there is growing interest in fusing RGB with thermal long wave 

infrared (LWIR) (7.5 - 13.5 µm) images to increase object detection performance. 

However, we still lack baseline performance metrics evaluating RGB, LWIR and RGB-

LWIR fused object detection machine learning models, especially from air-based 

platforms. This study undertakes such an evaluation finding that a blended RGB-LWIR 

model generally exhibits superior performance compared to traditional RGB or LWIR 

approaches. For example, an RGB-LWIR blend only performed 1-5% behind the RGB 

approach in predictive power across various altitudes and periods of clear visibility. Yet, 

RGB fusion with a thermal signature overlayed provides edge redundancy and edge 

emphasis, both which are vital in supporting edge detection machine learning algorithms.
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INTRODUCTION 

Despite the recent growth and proliferation of machine learning (ML) object 

detection algorithms, most approaches commonly focus on the visible light portion of the 

electromagnetic spectrum, for example, using Red-Green-Blue (RGB) images 1 2 3 4. 

Hitherto, thermal long wave infrared (LWIR) spectrum has received less research 

attention for ML object detection activities. While machine-assisted RGB models are 

effective during daytime periods, machine-assisted LWIR-models are generally more 

effective at night or during periods of decreased visibility 5 6 7 8. Unlike RGB, LWIR 

provides superior edge enhancement of radiant object classes to further increase edge 

detection in object detection algorithms. Given the contrasting strengths and weaknesses 

between RGB and LWIR, a growing area of multispectral research examines the blending 

of these different capabilities with the ultimate aim of providing superior object detection 

9 10 11. For developing both RGB and LWIR models most software techniques are 

relatively similar. Although the pricing of LWIR sensors is becoming more economical, 

cost has traditionally been a prohibiting factor, limiting the amount of multispectral 

research activities taking place.  

Another complementary technology that is rapidly proliferating and becoming easier 

to access is commercially available off-the-shelf drone platforms 12 13. Increasingly, 

Uncrewed Aerial Systems (UASs) are being outfitted with not only RGB sensors to 



2 

 

collect overhead imagery, but also with an array of other infrared-related sensors, such as 

LWIR (7.5 - 13.5 µm), to collect valuable multispectral data 14.  

Given these limitations, the literature currently lacks scientific evaluation metrics on 

how different thermal image fusion techniques affect model performance when utilizing 

object detection methods from drone platforms. This research therefore intends to 

investigate the following four research questions: 

1. Determine which time of day is most optimal for each model type. 

2. Measure performance difference between models trained with image processing 

compared to models trained without image processing. 

3. Quantify model performance at fixed altitudes ranging between 15 m (50 ft) and 121 

m (400 ft). 

4. Determine average model performance between the RGB, LWIR and RBG-LWIR 

models. 

 

 
Figure 1: Comparative example of a nighttime scene with a blended RGB-LWIR approach on the left, and 

a traditional RGB image on the right.  
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The key contribution of this research is providing new quantitative scientific 

information for how RGB, LWIR, and RGB-LWIR object detection models perform from 

air-based drone platforms. The research focuses on identifying common object classes 

(cars, trucks etc.), as these provide generalizable insights for a wide range of object 

detection use cases in industrial, consumer, government, and military applications. Figure 1 

illustrates the comparative differences between fused RGB-LWIR imagery versus 

traditional RGB imagery in a low visibility setting. 

RGB-LWIR models deployed from UAS can be leveraged to solve a variety of spatial 

problems across diverse disciplines. An example use-case is the oil industry using RGB-

LWIR object detection to assess pipeline integrity using RGB and LWIR object detection. 

Electric companies can use RGB-LWIR object detection to evaluate electric infrastructure. 

Search and rescue teams can use UAS-deployed RGB-LWIR object detection to identify 

victims in any environment, regardless of  ambient illumination and temperature. The 

agriculture industry can also benefit from RGB-LWIR object detection by tracking and 

identifying specific livestock based not only on the thermal signature but also on the visible 

image of the animal. Lastly, military and law enforcement entities will benefit from RGB-

LWIR object detection to improve upon existing collection and surveillance capabilities.   
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LITERATURE REVIEW 

The existing literature identifies two key benefits for integrating LWIR with RGB to 

enhanced ML object detection models. Firstly, RGB sensors are limited in their capacity to 

detect in low visibility settings, or in situations where visibility is limited due to foliage, 

smoke or fog 15 16. Therefore, integrating LWIR imagery enhances both human and 

machine three-dimensional (3D) depth perception when compared to traditional RGB 

imagery, providing an overall increase in situational awareness 17. 

Secondly, LWIR sensors are superior at segmenting the object of interest from the 

image background (‘edge detection’), provided that the object of interest is radiating a 

thermal signature (as illustrated visually already in Figure 1). LWIR object detection is 

regularly adopted in military and homeland security use cases to detect illicit activity and 

identify targets, especially at night 18,19. However, most infrared (IR) sensors for military 

and national security applications use near-infrared (NIR), which operates between .75 – 

1.3 µm and does not work well for drone-based ML object detection models 20. 

In terms of the wider literature, one recent study evaluated ML object detection models 

that analyzed RGB and LWIR imagery to better identify humans from a ground-based 

system 18. In adverse weather conditions, when attempting to identify humans, the LWIR 

model achieved a mean Average Precision (mAP) of 97.9% while the RGB model 

achieved a mAP of 19.6% 18. Indeed, both LWIR and RGB models were tested, although 

no baseline performance metrics were provided for a blended RGB-LWIR approach. The 

research used ground-based sensors and utilized version 3 of the pre-trained convolutional 
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neutral network ‘You Only Look Once’ (YOLOv3). A thermal dataset was used to attempt 

to identify humans and animals during various weather conditions ranging from clear 

conditions to inclement conditions with limited visibility. Although their LWIR model 

outperformed the RGB model, the performance gap was most significant when visibility 

was limited. The thermal ML model was also highly accurate in differentiating multiple 

object classes in a single image, reaching a recall of 98% with an F1 score of 97% 18.  

A separate research study recently used LWIR imagery to train an object detection 

model that achieved an average accuracy of 91.9% during periods of limited visibility 21. 

However, it was identified that a shortfall of LWIR object detection is that LWIR cameras 

have difficulty identifying object classes at larger distance. As the object class is farther 

away, the thermal edges begin to blur and the thermal signature resolution deteriorates, 

making it difficult for the ML model to conduct edge detection 22. Thus, because of this 

resolution decrease over distance, this supports the conjecture that fusing RGB with LWIR 

provides additional value in model performance. 

Another research study that used LWIR sensors from a low-flying multirotor quadcopter 

collected thermal data to create a human detection model that identifies human heat 

signatures. The approach was applied to a rescue operations use case following natural 

disasters by using object segmentation and fusion technique called 4-channel 23. The 4-

channel ML model conducted “early fusion” of RGB-thermal images, performing better 

than the traditional “late fusion” model. This study focused on object segmentation of 

LWIR images taken from the UAS post-flight and did not conduct object detection from 

LWIR images or RGB-LWIR fused images. 
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The reliability of LWIR sensors to work in complex environments has led to adoption in 

numerous technologies. For example, LWIR sensors are used to advance semantic 

segmentation, classifying pixels in an image associated to a label class, with key use cases 

in autonomous driving 24 25,26. However, a key issue in the application of this technology to 

autonomous driving is the low resolution and heavy noise present in LWIR images when 

compared to RGB methods 27.  

LWIR based object detection does present several key challenges for ML algorithms. 

One such issue is blurring in LWIR imagery caused by object movement or LWIR camera 

movement 28. One study addressed this issue using a LWIR image restoration algorithm 

that conducts super-resolution reconstruction and deblurring while simultaneously running 

the object detection algorithm 28. Although the methods to deblur LWIR images does 

increase the overall accuracy of the object detection results, it also requires increased 

computer processing to conduct simultaneous image restoration and object detection when 

conducting real-time inference on edge devices. In this research study there is an 

undetermined level of image blurring induced by the moving airframe with RGB-LWIR 

cameras.  

Another issue with LWIR object detection is that there exists a shortage of publicly 

available LWIR datasets or pre-trained LWIR models 29. Indeed, there are multiple pre-

trained RGB ML models and datasets to choose from, but very few LWIR datasets and pre-

trained models. Labelled LWIR datasets are scarce because they are expensive to collect 

and produce, and LWIR cameras are not widely available to the same degree as RGB 

cameras 29 30.  
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A key benefit to blended RGB-LWIR is the ability to adjust fusion levels between the 

RGB-LWIR sensors as ambient and ground temperatures increase, creating an effect called 

thermal crossover. When the target object is the same temperature as the ground, thermal 

cross over takes place leading to a loss of contrast between the target object and the ground 

31. Depending on the environment and season, thermal crossover typically occurs twice a 

day. Via a ground based LWIR ML object detection model approach, thermal crossover is 

not as large an issue because the horizon provides a dark background to contrast against 

thermal target objects. However, from a UAS the bird’s-eye view of the ground offers 

significantly lower contrast with the target object. When using an LWIR camera without an 

RGB camera or having the ability to conduct RGB-LWIR fusion, the ambient and ground 

temperature must be factored in prior to flight.  

Thermal object detection is also advantageous because of the ability to conform an 

image to a desired color palette 32, thereby reducing the overall number of colors compared 

to RGB images 33. Often, RGB images can have backgrounds that blend in with the object 

of interest 34, making object detection a more challenging task. In contrast, thermal imagery 

highlights the object of interest and provides a consistent color palette  35. The study results 

will now be presented.  
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METHODS 

This method describes key steps including sensor selection, data collection, image 

processing and labeling, model training and the testing of air-based models. When these 

method steps are combined, they produce a final set of model performance metrics 

capable of answering the research question identified for investigation.  

A. SENSOR SELECTION 

 The LWIR camera selected for this research is the FLIR (Forward-Looking Infrared) 

Vue Pro R. The FLIR Vue Pro R is a radiometric capable camera designed specifically for 

drones and costs $2,914 USD. The field of view (FOV) for the camera is 45° with a lens 

diameter of 6.8mm 36. The 30 Hz variant of the FLIR Vue Pro R will be used. Although the 

30 Hz FLIR Vue Pro results in a higher frames per second (30 FPS) compared to the 9 Hz 

variant (9 FPS), the 30 Hz is export controlled and cannot be purchased outside of the 

United States. Both 30 Hz and 9 Hz variants produce the same LWIR resolution. The 

camera resolution is 336 x 256 and has a spectral band of 7.5 - 13.5 µm. The operating 

temperature range for the FLIR Vue Pro R is -20° C (-4° F) to 50° C (122° F) 36.  

 The RGB camera selected for this research is the RunCam 5 Orange, which is designed 

for drone applications and costs $110 USD. The RunCam 5 uses a Sony IMX377 12 

megapixel image sensor which has a FOV of 145° with adjustable resolution, ranging from 

1080P at 60 FPS to 4K at 30 FPS 37. 1080P (1920 x 1080 resolution) at 60 FPS (60 Hz) 

will be used for this research. Shutter speed, ISO, color style, saturation, exposure, contrast, 

sharpness and white balance are all set to the default settings.  
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B. DATA COLLECTION  

Overhead imagery collection for the air-based ML models is collected from the DJI 

Inspire 2 (Figure 2). The RGB and LWIR cameras on the multirotor  are co-aligned to 

maintain the same field of view to ensure that similar images are being collected between 

the two sensors 38. Data are collected during various times of the day at different 

temperatures to ensure data diversity. Footage is recorded and extracted on the camera’s 

micro-SD cards. Frames of interest from the footage will then be extracted and converted 

into images to train the ML model. Images will also be collected from various altitudes to 

ensure image diversity and to help reduce model performance loss at higher altitudes.  

A 3D printed component for the RGB camera was designed and printed to be able to 

directly mount the RGB camera to the LWIR camera. The 3D printed mounting bracket 

reduces parallax as well as ensures the same FOV of both cameras. This fixed FOV makes 

fusing the LWIR and RGB footage easier in Adobe Premier Pro. The file to print the 

mounting bracket can be found in Appendix I.  
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Figure 1: The primary air-based platform used for this research (the DJI Inspire 2) carrying the RGB-

LWIR payload.  

 

The original training images are collected from various camera angles at five different 

times of the day 39. These original images consist of 100 RGB and 100 LWIR extracted 

from the full-motion video footage with each object class. The RGB and LWIR footage is 

then fused in Adobe Premier Pro with a 50-50 fusion ratio to create an additional 100 

images for the fused RGB-LWIR dataset (Figure 3). Geometric distortions (skew) were not 

addressed. Photometric distortions (image degradation from Moiré pattern noise) were 

addressed by adjusting the RGB layer during the fusion process to prevent double edges 

produced by parallax from the two sensors. As distance and parallax from the target object 

increased, the RGB layer was adjusted and scaled, ensuring a consistent clean overlap 

between RGB and LWIR footage.
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Figure 2: An example of an RGB image (left), an RGB-LWIR fused image (middle) and a LWIR image (right).  
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C. IMAGE PROCESSING AND LABELING 

IP techniques are then applied to the original images to increase the quantity available in 

the training dataset while simultaneously generating edge-enhanced images to increase 

model performance 40. Six image processing techniques were conducted on the original 

images consisting of three image augmentation techniques and three edge detection 

techniques. Image augmentation is the process of generating newly transformed variants of 

the original image to grow the image dataset as well as increase image diversity.41 The 

three image augmentation techniques used in this research are flipping, blurring and 

flipping & blurring.  

Edge detection is the process of using kernels to conduct three steps. The first step is 

noise reduction within an image without removing edges. The second step is to use a high 

pass filter that helps to highlight edges. The last step is to conduct edge localization, which 

is the process of enhancing primary edges while eliminating spurious edges. 42 The three 

edge detection techniques used in this research are Gaussian Thresholding (GT), Difference 

of Gaussians (D0G) and Sobel-XY. See Figure 4 for a visual example of each of these 

techniques for RGB, LWIR and fused RGB-LWIR.  

Python code was used to generate and export additional images using image 

augmentation and edge detection. All the code used for generating and exporting new 

images can be found in the image processing link in Appendix I 43. The blurred and blurred 

+ flipped image augmentation techniques are especially useful because of video vibrations 

caused by the oscillatory motions from the airframe’s propellers 44. Model training on 

blurred images helps to ensure that the model will continue to work when frames are 
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blurred due to camera movement, target object movement, or both. Although 

counterintuitive, training ML models with blurred images tends to increase detection rates 

and confidence levels 45..  
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Figure 3: Visual examples of the three image augmentation and the three edge detection techniques applied to the original images.  

Image Augmentation Edge Detection 
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After image processing, a total of 5,400 new training images are generated, resulting in a 

total of 6,300 total images. 90% of the dataset (5,670 images) is used for training, 5% (315 

images) is used for validation, and the remaining 5% (315 images) is used for testing. None 

of the newly generated images are used for testing. This is to ensure that testing results are 

similar across all ML models. Lastly, all images are labeled using LabelImg, which is an 

open-source python based image labeler 46.   

 

D. MODEL TRAINING 

This research will utilize YOLOv7 as the Convolutional Neural Network (CNN) to 

perform object detection 47. YOLOv7 was selected because to date it surpasses all existing 

object detectors in terms of speed and accuracy 48. YOLOv7 is considered one the fastest 

open-source object-detection models currently available 49,50 48. A primary shortfall of this 

family of object detection models is that YOLO approaches can struggle to detect smaller 

objects within an image, which is primarily due to spatial constraints in the algorithm 51 52. 

There are six YOLOv7 models currently available. The standard YOLOv7 variant is used 

for this research study 53.     

The standard YOLOv7 model was selected for this research because it is the smallest in 

size, easy to deploy in the field on edge devices, and also the fastest model (2.8 ms average 

inference time) 52. YOLOv7-E6E is the largest model, attaining on average 4.7% higher 

mAP then the standard YOLOv7 model used in this research. However, it is also 16.9 ms 

slower on inference than the standard model. A comparative analysis of three other YOLO 

models was conducted to assess how different pre-trained neural networks performed when 
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presented with the same RGB, LWIR and RGB-LWIR labeled training dataset. The three 

object detection models assessed were YOLOv5, YOLOv7E6E, and YOLOv8. All of these 

YOLO models use PyTorch as their deep learning framework. YOLOv8 is the newest 

variant of the YOLO family and was released as this research was culminating near 

completion.  

Figure 5 depicts the mean average performance of the three sensor types as they relate to 

their respective object detection model type along the y-axis. The mean object class mAP is 

visualized along the x-axis to demonstrate which model types performed best at identifying 

certain object classes. YOLOv8 outperformed other models in identifying larger object 

classes (car, truck), but had difficulty in identifying smaller object classes (person). The 

YOLOv7 and YOLOv7E6E models performed exceptionally well in identifying people. 

YOLOv5 performed the poorest and had the most difficulty in identifying people. 

Conversely, sensor performance was dependent on the type of object-detection model 

selected. The RGB model performed the best in YOLOv8 (95.5% mAP) but in contrast 

performed the worst in YOLOv7E6E (83.3% mAP). LWIR had a significant increase in 

mAP performance between YOLOv7 and YOLOv7E6E (10.5% increase).  
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The RGB-LWIR models performed generally consistently between YOLOv7, 

YOLOv7E6E and YOLOv8. YOLOv5 overall performed the worst, falling 24.2% mAP 

behind YOLOv8.      

Figure 4: Model, object class and sensor performance when presented to different pre-trained object 

detection models.  

 

 

Using YOLOv7 three models were trained: the RGB, LWIR and RGB-LWIR models. 

The RGB and LWIR models were selected because of the common use of these sensors in 

research today, as well as to establish benchmark metrics that could be used to better 

quantify RGB-LWIR model performance. The RGB-LWIR model is trained on images 

with an equal part fusion of 50% RGB and 50% LWIR images. Although the fusion ratio 

can be adjusted to optimize model performance based on ambient temperature and 

illumination levels,  the RGB-LWIR model was trained on equally fused images to 

standardize results. Each model was trained on 300 original unprocessed images and 1,800 

images generated from image processing, resulting in a total of 2,100 images used to train 
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each model. The labeled image dataset used to train each model was equally divided by the 

three object classes of car, truck, and person, resulting in 700 images total for each object 

class. 

The model is trained through 55 epochs. This number was selected to prevent 

overtraining. There is an imbalance in the number of car and truck labels in the dataset, 

making overfitting a possibility if the models are trained through too many epochs 54. Cars 

have the most labels in the dataset while trucks have the least. Training the dataset beyond 

the 55 epochs selected may result in an increase in false positives, thus decreasing the mAP 

of the model. After the completion of training the three models (RGB, LWIR and RGB-

LWIR) are ready for evaluation from drone-based imagery at different periods of day at 

various altitudes.  

 

 

E. TESTING AIR-BASED MODELS  

A multirotor drone will be utilized to fly at fixed elevations to determine inference 

performance via mAP for both sensors and all three model types. As indicated in Figure 6, 

to assess the models and sensors new test images will be extracted from video footage, 

separate from those used for training, collected at 15 m (50 ft), 30 m (100 ft), 45 m (150 ft), 

61 m (200 ft), 76 m (250 ft), 91 m (300 ft), 106 m (350 ft), and 121 m (400 ft). Footage 

cannot be collected above 121 m due to Federal Aviation Administration (FAA) drone 

regulation that prohibit drones from flying above 121 m (400 ft). Additionally, data will be 

collected at five different periods of the day. These include Pre-Sunrise (low-thermal cross-
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over, low illumination), Post-Sunrise (low-thermal cross-over, medium illumination), 

Solar-Noon (high-thermal cross-over, high illumination), Pre-Sunset (high-thermal cross-

over, medium illumination) and Post-Sunset (high-thermal cross-over, low illumination). 

Atmospheric and location related metadata will also be recorded prior to each flight, to 

support both this study but also the reusability of images in future research. This metadata 

includes temperature (C°), wind speed (meters per second), illumination (lux), time, date, 

and location.  

Five test images will be extracted at every elevation for each image type. This will result 

in 120 images (5 RGB, LWIR and RGB-LWIR images across the 8 elevations) per flight, 

with 600 labeled images (5 flights) per daily period. Following ten full flights, a total of 

1,200 test images will be collected to evaluate model and sensor performance. When 

calculating mAP for test images, variables will be constrained to a confidence level of 10% 

with an intersection of union (IoU) of 65%. After executing the test code, the notebook will 

export critical metrics such as precision, recall, precision-recall curve, mAP@.5 and 

mAP@.5:95. For this research, only mAP@.5 will be used to measure sensor and model 

performance at fixed elevations. The labeled test image dataset and test script can be found 

in the Test Data link and YOLOv7 Training Code notebook link in Appendix I. 
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Figure 6: The research approach given key uncertainty factors, including time of day, image model and altitude.  
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RESULTS 

The mAP results are reported for all three models at various fixed elevations to measure 

performance change over different elevations, as well as daily time periods. Therefore, the 

findings are segmented for eight elevations, including 15 m (50 ft), 30 m (100 ft), 45 m 

(150 ft), 61 m (200 ft), 76 m (250 ft), 91 m (300 ft), 106 m (350 ft), and 121 m (400 ft). 

The test area selected was a busy four-way intersection in Gaithersburg, Maryland. This 

intersection was selected because of the complex environmental blend of objects among 

various lighting shades. The collection site also provided multiple vantage points of 

vehicles entering and leaving the intersection, thus helping to generate realistic data.  

The best overall predictive performance was exhibited by the RGB-LWIR model (with a 

mean mAP of 59.8%), followed by the traditional RGB model (58.6%). In contrast, the 

LWIR model performed the poorest (with a mean mAP of 36.3%). The best individual 

performing instance was the blended RGB-LWIR hybrid at 47 m elevation during the Pre-

Sunrise period (with a mean mAP of 94.6%). Moreover, the worst performing instance was 

the LWIR model at 125 m during the Post-Sunrise period (with a mean mAP of 2.1%).  

Figure 7 (A) graphically depicts all 120 model performance data points for each model 

type, elevation, and time of day period. The RGB-LWIR model performed very strongly 

during periods of limited visibility (Pre-Sunrise and Post-Sunset), while the RGB models 

exhibited superior performance during daytime periods of visibility. In particular, the RGB-
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LWIR fusion approach demonstrated strong predictive power during the Pre-Sunrise and 

Post-Sunset periods between elevations of 16 m and 67 m. During periods of clear 

visibility, RGB and RGB-LWIR mAP decreases gradually as elevation increases. 

Conversely, during periods of limited visibility mAP model performance decreases at a 

quicker rate, with performance declining upwards of 78 m. Although largely inferior in 

performance when compared to the other models, the LWIR performance was generally 

consistent across all five illumination periods. 

As visualized within Figure 7 (B), when using the traditional RGB model as a baseline, 

the RGB-LWIR model had up to a 49.9% increase in performance during the Post-Sunset 

period. Out of the eighty total elevation and time-of-day data points, the RGB-LWIR 

approach ranked in all top fifteen places with mean mAP values averaging 82.7%. In 

contrast, while the LWIR model achieved the bottom twelve lowest ranking positions with 

mean performance averaging 8.6%. The RGB-LWIR model performed best overall at 47 m 

during Pre-Sunrise hours (with a mean mAP of 94.6%) and performed worst overall at 121 

m, also at Pre-Sunrise hours (with a mean mAP of 16.7%).  

The RGB approach achieved the highest mAP during periods of clear visibility (Post-

Sunrise to Pre-Sunset). Figure 7 (B) visualizes model performance against the RGB 

baseline, demonstrating that RGB approaches are best suited for daytime conditions while 

the RGB-LWIR approach is best suited for nighttime conditions. The greatest difference 

between the RGB and RGB-LWIR model performance during clear visibility conditions 

was at noon (7.25% difference in mean mAP), followed by Post-Sunrise (3.2% difference 

in mean mAP) and then Pre-Sunset (1.2% difference in mean mAP). The RGB model 
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performed best at 16 m at noon (94.5% in mean mAP) and performed worst at 125 m 

during Post-Sunset hours (5.8% in mean mAP).  

 

Figure 7: Panel plot of model performance metrics for key uncertainty factors. Conference intervals 

reported at 1 standard deviation. 

 

The LWIR approach had the lowest predictive power of all three models, with a 

negative performance change of up to -69.2% when compared to the RGB model baseline. 

The three least performing instances for LWIR occurred at the Post-Sunrise period with 

negative performance values ranging between -59.0% and 69.2%. Noon was the next 
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lowest performing period for LWIR, with the top 3 negative performance values reaching 

RGB baseline differences between -52.0% and 39.9%. The LWIR model also suffered the 

sharpest decrease in performance over elevation, with the worst performance localized 

between 94 m to 121 m. The LWIR model performed best at 16 m during Post-Sunset 

period (74.3% mAP) and performed worst at Pre-Sunset at 94 m (9.5% mAP). 

During Post-Sunrise, RGB and RGB-LWIR approaches both performed similarly below 

94 m, with RGB-LWIR performing consistently between -4% and 8% of the RGB baseline. 

LWIR regularly performed far below the RGB baseline, ranging between -9% and -69.3%, 

explained by factors already well identified in the literature (e.g., higher altitudes lead to 

decreased resolution when compared to RGB). Both LWIR and RGB-LWIR performance 

deteriorated rapidly at 109 m and 125 m when compared to the RGB baseline (for example, 

between -11% to -69.3% below the traditional RGB approach). The LWIR model 

performed the worst during periods of clear visibility, for example, with the worse LWIR 

performance occurring Post-Sunrise (-24.7% from RGB baseline), Pre-Sunset (-12.1% 

from RGB baseline) and noon (-11.3% from RGB baseline).    

In Figure 8 (A), when analyzing model performance by elevation and daytime periods 

(Post-Sunrise, noon, Pre-Sunset) both RGB and RGB-LWIR models performed similarly at 

all elevations. Both models had near identical mAP performance between 16 m and 62 m. 

Both RGB and RGB-LWIR models also shared comparable mAP performance decreases 

over different elevations. Both RGB and RGB-LWIR models achieved the highest mAP at 

the lowest altitudes and gradually decreased mAP performance over elevation, losing 

approximately 1-5% in mAP performance every 15 m. 
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Figure 8: Model performance during night-day periods. Conference intervals reported at 1 standard 

deviation.  

 

In contrast, in Figure 8 (B) when analyzing model performance at night, the RGB-LWIR 

model significantly outperformed both RGB and LWIR approaches. Unlike the RGB 

model which had a consistent reduction in mAP over altitude, the RGB-LWIR model 

performed consistently between 16 m and 47 m with performance slightly increasing over 

increasing altitudes (14.1% mAP increase between 16 m and 47 m). At 47 m, the RGB-

LWIR approach had a higher mAP (94.6%) than the RGB model, with the best predictive 

performance at the same altitude during periods of daytime illumination (91.5%).       
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 Figure 9: Image processed (IP) versus non-image processed model performance comparison.  

 

 

As illustrated in Figure 9 (A) models trained on images with image processing 

techniques performed on average 1.8% better than models trained without image 

processing. RGB-LWIR object detection performance improved by 6.8% with image 

Model Performance and Image Processing Metrics 

 



27 

 

processing, while the LWIR model improved by 1.8%. The RGB model surprisingly 

performed worst by 1.65% when image processing was applied. In Figure 9 (B) daytime 

mAP performance (post-sunrise, noon, pre-sunset) models trained with image processing 

performed 2.4% better than daytime models without image processing. Nighttime mAP 

performance (pre-sunrise, post-sunset) models trained with image processing performed 

.9% better than models trained without image processing. 

Figure 9 (C) visualizes model performance across various fixed elevations. At 

maximum elevation (121 m) the RGB-LWIR model with image processing performed 

5.3% better than the RGB-LWIR model without image processing. At 121 m the RGB 

model with image processing outperformed the RGB model without image processing by 

13.4%. For LWIR, applying image processing negatively affected model performance by 

8.7% at 121 m. For elevations 47 m and below, image processing techniques did improve 

LWIR object detection performance, ranging between 25%-5% improvement in overall 

LWIR performance. Conversely, RGB object detection was improved by image processing 

when the sensor was between 78 m and 121 m. Image processing consistently improved 

RGB performance by 3% -6% from 78 m to 121 m.     

Figure 9 (D) illustrates a generally consistent trend in model performance between the 

RGB-LWIR and RGB models during day-time periods. However, LWIR had a significant 

increase in performance as ambient and ground temperatures increased during daytime 

hours. The LWIR model performance increased by 18% between post-sunrise and noon 

periods, followed by an additional 14% increase in performance between noon and pre-

sunset periods.  
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DISCUSSION 

Given the lack of baseline performance metrics evaluating RGB, LWIR, and LWIR-

RGB fused object detection machine learning models, especially from air-based platforms, 

this study undertook such an assessment. Whereas most object detection models have 

commonly focus on utilizing the visible spectrum using RGB imagery, the method 

undertaken here fused RGB with thermal LWIR (7.5 - 13.5 µm) images. 

Thus, over 6,300 training images were collected for RGB and LWIR sensors, mounted 

on a multirotor drone, creating an openly available fused RGB-LWIR dataset. Three object 

detection models were then trained, each based on one of the three image types identified 

(RGB, LWIR, and RGB-LWIR). After training, an additional 1,200 testing images were 

collected from eight separate altitudes at five separate periods of the day. These images 

were then used to assess mAP performance for key uncertainty factors (altitude and time of 

day). 

This discussion will return to the research questions identified earlier in this paper, to 

discuss the key findings now that results have been obtained and reported. 

 

1. Determine which time of day is most optimal for each model type. 

 

The RGB-LWIR model performed the best during pre-sunrise hours, with the highest 

mAP reaching 94.6%. The RGB model performed best at noon, attaining a high mAP of 

94.5%. Noon was the best period for RGB object detection because of a reduction in 
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shadows. Post-sunrise and pre-sunset hours are characterized by large shadows cast by 

the object classes, which most likely decreased edge contrast, thereby decreasing edge 

detection within the RGB model 23. Counter to expectation, the LWIR model performed 

best during the Post-Sunset period. Surfaces during Post-Sunset periods generally retain 

ample amounts of heat from the day. Increased ground surface temperature provides less 

contrast to the object class (thermal crossover) which would reduce edge detection 55. The 

Post-Sunrise period is associated with cooler ground temperatures, thus providing greater 

contrast to warm object classes, and resulting in higher predictive power. Post-Sunset 

ground temperature is still warm, thus decreasing the background contrast of object 

classes.  

The LWIR model had the best performance in Post-Sunset conditions, but performed 

very poorly in Pre-Sunrise conditions. The three least performing instances for LWIR 

occurred during the Post-Sunrise period with negative performance values ranging 

between -59.0% and 69.2%. Noon was the next lowest performing period for LWIR, with 

the top 3 negative performance values reaching RGB baseline differences between -

52.0% and 39.9%. One limitation is that these findings may be season-dependent, and 

therefore further research should be conducted during a greater annual range of months 

(particularly summer months) to further quantify these differences in sensor performance 

during larger temperature ranges. 

 

2. Measure performance difference between models trained with image processing 

compared to models trained without image processing. 



30 

 

 

Models trained on images with edge-enhanced image augmentation performed on 

average 1.8% better than models trained without image augmentation. RGB-LWIR object 

detection performance improved by 6.8% with image augmentation, while the LWIR 

model improved by 1.8%. The RGB model surprisingly performed worst by 1.65% with 

image augmentation. For daytime mAP performance (post-sunrise, noon, pre-sunset) 

models trained with image processing performed 2.4% better than daytime models 

without image processing. Nighttime mAP performance (pre-sunrise, post-sunset) models 

trained with image processing performed .9% better than models trained without image 

processing. 

When comparing elevation to model performance, the RGB-LWIR improved the 

most from image processing because of the compound edges provided by both the LWIR 

and RGB sensors 56. At maximum elevation (121 m) the RGB-LWIR model with image 

processing performed 5.3% better than the model without image processing. The RGB 

model with image processing outperformed the RGB model without image processing by 

13.4%. For LWIR, applying image processing negatively affected model performance by 

8.7% at 121 m. This is most likely due to the high presence of distortion and noise in 

LWIR images at higher elevations 57. For elevations 47 m and below, image processing 

techniques did improve LWIR object detection performance, ranging between 25%-5% 

improvement in overall LWIR performance. This demonstrates that image processing 

techniques are not beneficial when applying them to noisy images with low resolution. In 
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future research a data-processing step will need to be implemented for images with low 

resolution if image processing is to be conducted 58.  

This research demonstrates that each sensor type benefits differently from image 

processing techniques. The RGB model did not benefit from models trained with image 

processing until the RGB sensor was above 94 m, while the LWIR model benefited from 

image processing when the LWIR sensor was 47 m and below. The RGB-LWIR model 

was the only model that had a consistent improvement in performance over elevation 

when image processing was applied.             

 

3. Quantify model performance at fixed altitudes ranging between 15 m (50 ft) and 121 

m (400 ft). 

 

During Post-Sunrise, RGB and RGB-LWIR approaches both performed similarly 

below 94 m, with RGB-LWIR performing consistently between -4% and 8% of the RGB 

baseline. LWIR regularly performed far below the RGB baseline, ranging between -9% 

and -69.3%, explained by factors already well identified in the literature (e.g., higher 

altitudes lead to decreased resolution when compared to RGB). Both LWIR and RGB-

LWIR performance deteriorated rapidly at 109 m and 125 m when compared to the RGB 

baseline (for example, between -11% to -69.3% below the traditional RGB approach). 

When analyzing model performance by elevation and daytime periods (Post-Sunrise, 

noon, Pre-Sunset) both RGB and RGB-LWIR models performed similarly at all 

elevations. Both models had near identical mAP performance between 16 m and 62 m. 
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Both RGB and RGB-LWIR models also shared comparable mAP performance decreases 

over different elevations. Both RGB and RGB-LWIR models achieved the highest mAP 

at the lowest altitudes and gradually decreased mAP performance over elevation, losing 

approximately 1-5% in mAP performance every 15 m. 

When visualizing mAP metrics across different periods of the day, there was a slight 

upward trend in the Pre-Sunset results between 109 m and 121. This upward trend is most 

likely due to variety in the types of images being introduced into the model. The images 

tested at 121 m are likely of higher quality than the images at 109 m. This is due to 

external factors such as the number of object classes in each image, lighting, vehicle 

angle and drone position 40. Sun position (sunrise and sunset) may have also played a role 

in RGB sensor and model performance. For a truly consistent experiment, a static object 

class can be used in future research to measure model performance and sensor type over 

elevation and illumination levels. However, this approach is not necessarily feasible for 

realistic applications where complex scenes with changing or moving object-classes are 

present. 

When analyzing model performance over elevation, during daytime hours, model 

performance decreased gradually over elevation. Excluding LWIR, performance 

generally decreased consistently between 1-5% over every 15 m, as reported in Figure 7 

(A). During nighttime hours the decrease in mAP was much sharper, with performance 

dropping significantly at 62 m (15.3% reduction in mAP).    
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4. Determine average model performance between the RGB, LWIR and RBG-LWIR 

models. 

 

The best overall predictive performance was exhibited by the RGB-LWIR model (with a 

mean mAP of 59.8%), followed by the traditional RGB model (58.6%). In contrast, the 

LWIR model performed the poorest (with a mean mAP of 36.3%). The RGB-LWIR model 

performed very strongly during periods of limited visibility (Pre-Sunrise and Post-Sunset), 

while the RGB models exhibited superior performance during daytime periods of visibility. 

In particular, the RGB-LWIR fusion approach demonstrated strong predictive power across 

all periods of the day.  

When analyzing the mean average across all mAP results, the RGB-LWIR method 

outperformed the RGB approach by 5.6%. Although the mean mAP is similar between these 

two models, both performed inversely under different illumination conditions and altitudes. 

For example, the RGB-LWIR approach was superior for conducting object detection in 

periods of limited visibility. This finding is counterintuitive to the belief that LWIR by itself 

would be the best suited sensor to conduct object detection in nighttime settings. The RGB-

LWIR fusion helped to dampen long-distance blurring and thus the resolution loss that LWIR 

sensors suffer from as object classes become farther away. The RGB fusion allows for an 

additional edge to be overlayed on the thermal signature of the object class, providing edge 

redundancy and edge emphasis, both which are vital in supporting edge detection machine 

learning algorithms 58. The LWIR fusion with RGB was only beneficial if the object classes 

were radiating thermal energy between 7.5 - 13.5 µm 10. Cold object classes would not be 
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detected by the LWIR model and would thus be reliant on the RGB model for detection. The 

novelty of the RGB-LWIR model is that it combines critical edge information from objects 

with both visible-RGB edges and non-visible radiant-specific edges to increase performance 

as well as model resiliency. Examples of radiant-specific edges can be vehicle wheels, engine 

compartments, exhaust systems, and people.         

The model performance metrics from this research indicate both future research 

opportunities and research limitations in deploying air-based multispectral object detection 

models. For example, the results demonstrate that not one specific object detection model 

type is best suited for all conditions, and that each ML model type has its own strengths and 

weaknesses for certain situations. More specifically, the RGB model performed best during 

daytime hours due to superior resolution across all altitudes. In contrast, the RGB-LWIR 

model performed best at night because of superior edge refining characteristics. However, 

the LWIR model exhibited the lower performance during all day time periods because of 

rapid resolution deterioration as elevation increased.  
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CONCLUSION 

This research successfully quantified the performance of three unique models and found 

that the RGB-LWIR model generally performed the best. This is because RGB-LWIR 

provided consistent detection performance across many daily time periods with 

heterogenous illumination levels. Indeed, the blended RGB-LWIR approach only 

performed 1-5% behind the RGB approach at various altitudes during periods of clear 

visibility, while also having the advantage of operating in poor visibility settings. The 

RGB-LWIR fusion approach demonstrated strong predictive power during the Pre-Sunrise 

and Post-Sunset periods between elevations of 16 m and 67 m.  

Lastly, two key contributions are made from this research of high relevance to the 

scientific community. Firstly, the factors affecting model performance from drone 

platforms are quantified (including distance, time of day and sensor type), which are highly 

relevant to the development of new multispectral image recognition algorithms and future 

use cases/applications. Secondly, this research generated the first air-based multispectral 

training dataset of labeled data consisting of 6,300 images. Other researchers can therefore 

utilize this resource for training new multispectral models (with the production of this 

dataset constituting two full months of labelling work alone).   
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APPENDIX I. DATA AVAILABILITY 

The datasets generated during and analyzed during the current study are available in the 

Zenodo repository. Links to the code and datasets to the Zenodo repositories are provided 

in the below hyperlinked text.  

• Air-based labeled data for all object classes  

• Air-based ML model weights 

• Image processing code 

• YOLOv7 training & testing code 

• Inference videos 

• Test images with labels (images at elevation with labels) 

• 3D printed RGB mount 

 

https://zenodo.org/record/7465521#.Y6Jk0XbMJD8
https://zenodo.org/record/7466077#.Y6KiEXbMJD8
https://github.com/jmansub4/RGB-LWIR_YOLOv7_training_testing
https://github.com/jmansub4/RGB-LWIR_YOLOv7_training_testing
https://zenodo.org/record/7469011#.Y6M04HbMJD8
https://zenodo.org/record/7591134#.Y9lhx3bMJD8
https://zenodo.org/record/7460106
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