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Service Oriented Architecture (SOA) has emerged as an architectural style for distributed 

computing that promotes flexible application development and reuse. One of the major 

benefits claimed for SOA is the flexible building of IT solutions that can react to 

changing business requirements quickly and economically. Services could be consumed 

by many applications that have different requirements. In addition, applications usually 

change by adding new requirements, removing existing requirements, or updating 

existing requirements. Thus, applications that consume the same service usually exhibit 

varying requirements. Varying requirements usually necessitate varying software 

architectures that satisfy the varying requirements of software applications. Thus, both 

requirements and architectures have intrinsic variability characteristics.  

SOA development practices currently lack a systematic approach for managing 

variability in service requirements and architectures. This dissertation addresses this gap 



 

 

by applying software product line (SPL) concepts to model SOA systems as service 

families. The dissertation introduces an approach to model SOA variability with a 

multiple-view service variability model and a corresponding meta-model. The approach 

integrates SPL concepts of feature modeling and commonality/variability analysis with 

multiple service requirements and architectural views by using UML and the Service 

Oriented Architecture Modeling Language (SoaML). At the heart of this research is a 

multiple-view meta-model that defines the relationships among variable service views 

and maps features to variable service models along with a corresponding consistency 

checking rules that ensure the consistency of the multiple service views as they change. 

The dissertation describes how to derive family member applications from the SPL and 

presents a validation of the approach. This dissertation makes the case that the presented 

multiple-view service variability modeling and meta-modeling approach facilitates 

variability modeling of service families in a systematic and platform independent way. 

The key contributions of this research include: Multiple-View Service Variability Meta-

Model, Multiple-View Service Variability Model, Consistency Checking and Mapping 

Rules, Model Driven Framework for Service Oriented SPL Engineering, Service Member 

Applications Derivation Rules, Explicit Modeling of Service Coordination Variability, 

and a Proof-of-Concept Tool Prototype. 
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1. Introduction 
 

 
 

1.1.  Background  

Service Oriented Architecture (SOA) has emerged as an architectural style [1] for 

distributed computing that promotes flexible deployment and reuse. One of the major 

benefits claimed for SOA is the flexible building of IT solutions that can react to 

changing business requirements quickly and economically. The service-oriented 

architectural style consists of service providers that register their services, and of service 

requesters that search and discover these services based on their business needs. 

Services could be consumed by many applications that have different requirements. In 

addition, applications usually change by adding new requirements, removing existing 

requirements, or updating existing requirements. Thus, applications that consume the 

same services usually exhibit varying requirements needs. 

Varying requirements usually necessitate varying software architectures. In other words, 

when applications’ requirements are changed, the software architectures of these 

applications are modified to satisfy the changed requirements. Thus, software 

architectures usually vary to implement the varying requirements of software 

applications. Therefore, both requirements and architectures have intrinsic variability 

characteristics.  
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Software architectures describe application designs from different perspectives [1]. In 

other words, the same application architecture consists of multiple depictions of different 

perspectives, also called views that address specific architectural concerns. For example, 

software architectures could describe conceptual, logical, and physical views of 

application design [2]. 

1.2. Motivation 

In SOA, service providers are usually decoupled from service requesters, thus requesters 

and providers vary independently of each other. This variation manifests itself in several 

ways, i.e. in changing requirements, changing architectures, and changing execution 

environments. Requirements change because both clients and service providers will 

always add, improve, all remove features to/from their applications. Architectures change 

because in SOA, the architecture is not fixed, because the main elements of the 

architecture are services usually provided by external providers.  Furthermore, execution 

environments vary because of the available variations in operating systems, middleware 

environments, and programming languages. Thus, variability modeling is necessary to 

manage the inherent complexity of service-oriented systems. 

Variability also manifests itself in the execution environments, aka platforms, of service-

oriented systems as well. Service providers can have different platforms, i.e. operating 

systems, middleware, and programming languages, than service consumers. In addition, 

service consumers and providers can switch to different platforms for reasons such as 
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better performance and high availability. Again, managing the change in platforms for 

multiple-view service-oriented systems can quickly become unwieldy. 

It is hard to model complex and reasonably sized software systems from one perspective, 

e.g., structural. To manage this complexity, the software engineering community has used 

multiple-view modeling (Chapter 2) to model software systems from different 

perspectives.  In essence, the same application can be modeled from different 

perspectives, where each perspective models a specific concern, e.g. requirements, 

architectures, and physical environments. Multiple-view modeling techniques can be 

applied to SOA modeling for the same reasons mentioned above. SOA systems can be 

segregated into multiple views such as contract/ business workflow requirements views, 

and service interface/ coordination architectural views. It should be noted, that these 

views depend on each other. In other words, a change in one view could necessitate a 

change in a different view. 

For example, a service-oriented E-Commerce system could have a view that describes 

service contracts and service providers and consumers. Another view could be a business 

process view that describes the workflow of order fulfillment. Yet another view could be 

a service interface view that describes an ordering service’s operations and parameters. If 

a task changes in the business process view, say a task is added to allow electronic check 

payments, a new service interface for electronic check payment has to be added to the 

service interface view. Likewise, if a credit check contract is added in the service contract 

view, a credit check service provider gets added to provide this capability. For reasonably 
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sized applications, changes in the interdependent views of service-oriented systems can 

quickly become unwieldy and difficult to manage. 

It becomes evident from the aforementioned discussion, that requirements and 

architectural variability concerns are dispersed among the multiple views of SOA 

systems. To have a full picture of variability in SOA based systems, it would be 

necessary to have one view that only describes variability in the entire system. In 

addition, there is a need to model variability of SOA systems in all views in a consistent 

manner. Furthermore, consistency of all related elements in the multiple views should be 

ensured as these views are modeled. 

Software Product Lines (SPL) and Commonality/Variability Modeling (Chapter 2) model 

the variability of application families. Application families share common features, but 

each differ in some unique way. The SPL’s PLUS methodology [3] models variability in 

multiple views and has distinct modeling treatment for the different phases of the 

software development life cycle of application families. Since SOA systems vary in such 

a way that is similar to application families, i.e. they have common and variable features; 

the research in this dissertation proposes the use of SPL concepts to model the variability 

concerns of SOA systems. 

It would be beneficent to have a framework that manages the aforementioned SOA 

variability concerns in a unified and platform-independent manner. However, current 

SOA variability management practices (Chapter 2) lack a systematic approach for 

managing variability and are typically platform-dependent. Furthermore, existing SOA 
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variability management approaches [4], [5], [6], [7], [8], do not address the multiple-view 

nature of variability in SOA in a unified and platform-independent manner.  

1.3. Glossary of Relevant Terms 

Some relevant terms that could have varying definitions in different disciplines are 

defined in this section. The goal is to establish a consistent level of understanding for 

terms used throughout this dissertation. 

• Consistency Checking Rules – rules that are determined from the proposed 

multiple-view meta-model, which ensure the consistency of the 

interdependent views of SOA systems. (Chapter 5) 

• Feature Modeling – a modeling practice that model common and variable 

requirements for an application family (Chapter 2) 

• Model Driven Architecture (MDA) –an Object Management Group (OMG) 

initiative that promotes development practices where models are used as first 

class entities. Software development is driven by constructing models in all 

phases of the development life cycle. 

• Multiple-View Modeling – a technique for describing the architecture of 

software-intensive systems via the use of multiple or perspectives, where each 

perspective, i.e. view, addresses specific set of concerns. Examples of 

multiple views are: logical, physical, and development. 
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• Platform Independent Model (PIM) – within MDA, these models capture 

business logic details independent of programming languages, operating 

systems, or middleware environments. 

• Platform Specific Model (PSM) – within MDA, these models represent 

technology specific concerns such as software languages and middleware 

environments. PIMs are transformed into PSMs using predefined 

transformation rules. Eventually, PSMs are transformed into code. 

• Software Product Lines (SPL) – are families of software systems that share 

common functionality, where each member has variable functionality.  The 

main goal of SPL is the rapid development of member systems by using 

reusable assets from all phases of the development life cycle. (Chapter 2) 

• Service Oriented Software Product Line Engineering (SoaSPLE) – the 

name of the framework and tool prototype proposed in this research. (Chapter 

6). 

• Variability Modeling – in SPL, this practice models changes in all SDLC 

phases and all views of application families (Chapter 2). 

• Unified View – a view that captures a specific concern that is dispersed 

among the multiple views of a system. The Feature View, in this research, 

captures variability concerns which are dispersed among the multiple views of 

SOA based systems. (Chapters 4 and 5). 

1.4. Problem Statement 
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Existing SOA variability management approaches do not provide a systematic way to 

address variability concerns in a multiple-view, unified, consistent, and platform-

independent manner. Since SOA is multi-view in nature, it is necessary to have a 

variability management approach that addresses variability concerns in SOA 

systematically to ensure the consistency and correctness of service-oriented systems. 

1.5. Research Statement 

An approach and automated framework can be devised to model, develop, and execute 

variable service oriented systems in a multiple-view, consistent, and platform-

independent manner by using Software Product Lines (SPL) and Feature Modeling 

principles.  

Since services in SOA can be used by different clients with varying functionality, SOA 

variability modeling would benefit from SPL variability modeling techniques. Applying 

SPL concepts, service oriented systems can be modeled as service application families. 

1.6. Research Approach 

This research addresses the lack of systematic approaches to handling variability 

management concerns in SOA by developing a multiple-view variability modeling and 

meta-modeling approach. Furthermore, this research  addresses SOA variability 

management concerns in a systematic and platform-independent way. The research 

approach is summarized as follows: 
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1. Develop a multiple-view service variability model, and define the relationships 

between the service views, since variability in SOA systems is too complex to be 

modeled in a single view. This multiple-view model uses Feature Modeling to 

construct a unifying view that describes variability in SOA which is dispersed in 

multiple views.  

2. Develop a multiple-view service variability meta-model that formalizes the 

aforementioned multiple-view service variability model. A meta-model is needed 

to serve as the underlying representation of the automated framework that is 

proposed in this research. 

3. Develop rules for consistency checking and mapping between the multiple views 

in the meta-model to ensure that these views are consistent with each other as 

SOA based systems change. 

4. Develop service family member applications derivation rules; since the approach 

integrates SPL concepts of application families with multiple-view modeling to 

capture variability in SOA systems. 

5. Automate the research approach by designing a model-driven framework, which 

is implemented in a proof-of-concept prototype. 

6. Validate this research by applying the multiple-view modeling approach  and 

proof-of-concept prototype to case studies. The case studies are E-Commerce 

service-oriented SPL, and Hotel Reservations service-oriented SPL. 

The research approach is described in more detail in Chapter 3. 
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1.7. Importance and Rationale for this Research 

The ability of distributed computing systems to respond to change in an effective manner 

is essential. SOA emphasizes an architectural style that enables software engineers to 

design and implement loosely-coupled solutions that are amenable to change. However, 

existing service-oriented variability design, development, and management approaches 

are largely ad-hoc and do not ensure the consistency of multiple views of service-oriented 

systems. In addition, existing approaches are largely platform-dependent, which impedes 

their adoption in multiple technology platforms. 

The multiple-view service variability modeling and meta-modeling approach presented in 

this research allows the development of service-oriented application families, by using 

the concepts of SPL and Feature Modeling, in a consistent and platform-independent 

manner, thus enabling these application families to change in an effective and unified 

manner. 

It should be noted that parts of this dissertation have been published in refereed 

conferences and workshops, in particular references [9], [10], [11], [12]. 

1.8. Contributions 

This section summarizes the contribution of this research. A detailed contribution is 

described in Chapter 10. 
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• Multiple-View Service Variability Meta-Model – this meta-model governs the 

multiple-view service variability model and serves as the basis of the 

automated of the SoaSPLE framework. 

• Multiple-View Service Variability Model – this model provides notation for 

capturing the variable multiple views of SOA systems. 

• Consistency Checking and Mapping Rules – these rules ensure that the 

variable multiple views of SOA systems are consistent with each other as 

these systems change. 

• Model Driven Framework for Service Oriented SPLs – this is an automated 

framework that helps developers and modelers to systematically build variable 

service-oriented SPLs. 

• Service Member Applications Derivation Rules – these rules act upon 

multiple-view service-oriented SPL models and derive single applications of 

the SPL. 

• SoaML Variability Notation – a notation to use the Service Oriented 

Architecture Modeling Language for modeling service-oriented SPLs. 

• Explicit Modeling of Service Coordination Variability – service coordination 

was modeled down to the architectures of service coordinators where 

individual coordination messages were tied to the variability of business 

processes. 



11 

 

• Tool Prototype – a proof-of-concept tool prototype was developed to realize 

and help in validating the proposed automated framework. The prototype was 

built by using current SOA open-source modeling and execution technologies. 

1.9. Organization 

This dissertation is organized as follows. Chapter 2 surveys related research. Chapter 3 

details the research approach. Chapter 4 describes a multiple-view service variability 

modeling approach and views relationships. Chapter 5 describes a multiple-view service 

variability meta-modeling approach. Chapter 6 presents a model-driven framework for 

service-oriented SPL engineering along with a tool support environment. Chapter 7 

presents the validation approach of this research, Chapter 8 details an E-Commerce case 

study that validated the research. Chapter 9 details a Hotel Reservation System case study 

that also validated the research. Finally, Chapter 10 concludes the dissertation, outlines 

the contributions of this research, and suggests future work. 
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2. Related Research 

 

This chapter presents a literature review that spans areas related to this research: service 

oriented computing and architecture, service modeling, service oriented variability 

techniques, software product lines (SPL), feature modeling, SPL based SOA variability 

techniques, multiple-view modeling, meta-modeling, and model driven architecture 

(MDA). 

2.1. Service Oriented Computing (SOC) 

Service Oriented Computing (SOC) is an emerging computing paradigm that evolved 

from object orientation, client/server systems, and component-based computing. Unlike 

traditional OO development practices where developers receive requirements and then 

design and build applications, SOC divides development activities into three groups: 

application builders (or service requesters), service brokers (or mediators), and service 

developers (or providers) [13]. 

Application development is ideally accomplished via discovery of desired services and 

service assembly rather than coding. Service providers publish their services on registries 

where consumers can find and use them. Current Web services standards support the 

aforementioned architecture, but do not necessarily adhere to the basic principles of 

Service Oriented Computing (SOC). [14] 
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The following are some SOC principles [15]: loose coupling, service contract, autonomy, 

abstraction, reusability, composability, statelessness, and discoverability. 

2.2. Service Oriented Architecture (SOA) 

Service Oriented Architecture (SOA) is an emerging standard-based architectural style 

for designing, building, and deploying flexible distributed software applications. SOA 

emphasizes extremely loosely coupled design approaches where disparate systems, with 

different computing platforms, can collaborate and evolve without major changes to their 

existing core architectures. Services are designed as self-contained modules that can be 

advertised, discovered, composed, and negotiated on demand.  

Although SOA relies on existing software architecture practices like information hiding 

and separation of concerns, it adds new ones like service composition, service 

choreography, and service repositories. To realize a SOA, a process to identify and 

design services has to be established much like the traditional processes of OOAD [16]. 

Several authors argue that to model business related services, the level of abstraction has 

to be raised up closer to the business domain [16], [17]. Despite the wide academic and 

industrial activities related to SOA, there is no systematic end-to-end methodology for 

analyzing and designing service-oriented applications. There is a near unanimous 

agreement [16], [17], [7], [19] that such a methodology is needed to elevate service-

oriented computing to a mainstream computing level. As a result, Service Oriented 

Analysis and Design (SOAD) is emerging as a new field which is concerned with 
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identifying and building services based on business requirements. SOAD aims at treating 

services as first class entities much like OOAD treated classes and objects. 

Several UML meta-models [20] were developed to organize the SOAD activities.  SOA 

is based on a multi-level architecture that blends business process models, Enterprise 

Architecture, Object Orientation, and Service Orientation [16]. The benefits of SOA [15] 

can be realized when applied across multiple solution environments where processing is 

highly distributed and each service has an explicit functional boundary and resource 

requirements. 

It should be noted that Web Services technology is the most prominent implementation 

platform for SOA, however Web Services are only one manifestation of SOA and they do 

not necessarily fully adhere to SOC principles [15]. Because of the current reliance on 

Web Services, SOA requires the establishment of XML data representation architecture 

[15]. 

2.3. Service Composition 

Service composition, i.e. assembling services to build applications, is a central theme in 

SOA because it emphasizes reuse at a higher level. Service composition is a fundamental 

activity in any meaningful SOC environment [21]. Reuse is realized by assembling other 

business partners’ services rather than reusing individual components.  

The main challenges to composition stem from the changing nature of users’ 

requirements and the open environments that services reside in [22]. 
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Any service composition approach must satisfy the following requirements [21]: 

Connectivity, Nonfunctional QoS properties, Composition correctness, and Services 

scalability. 

It should be noted that service composition is not standardized and several approaches 

exist to handle it.  

2.4. SOA Variability Modeling 

In this section, SOA variability modeling techniques in the requirements and architecture 

phases are investigated. 

2.4.1. Service Requirements Variability Modeling 

Business Process Models (BPM) are the most widely used requirements artifacts in SOA. 

In this section, variability modeling in UML activity diagrams is investigated since 

activity diagrams are the most prominent graphical notations for representing BPM [23].  

Activity diagrams are suitable for representing BPM for several reasons: the popularity of 

the UML, precise semantics, and the rich structure of class modeling in UML 2.0 [23]. 

There are many ways to represent variability in activity diagrams [24]. Variability could 

be modeled as an encapsulation of variant sub-processes [24]. This mechanism is 

implemented simply by invoking the UML’s CallBehaviorAction meta-class on the 

desired varying activity.  Thus, variability is achieved by encapsulating different sub-

activities.  
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Variability can also be achieved by addition, replacement, and omission of encapsulated 

sub-processes [24]. These mechanisms can be implemented by UML’s 

CallBehaviorAction meta-classes as well. CallBehaviorAction meta-class can be added at 

any location in the activity diagrams; however, the number of output parameters of the 

new CallBehaviorAction meta-class must be equal to the number of ObjectFlowEdge 

meta-classes [25] interrupted by the addition. Replacements and Omissions can be 

implemented similarly with the careful consideration of the consistencies between input 

and output parameters.  

Extension points can also be used as a variability mechanism by having the 

CallBehaviorAction meta-class call Activities that contain extending sub-processes at 

pre-designated locations [24].  In addition, Delegation can be achieved by calling external 

activities using the SendSignalAction [25] meta-class.  

Parameterization is another popular variation mechanism which can be implemented in 

several ways in UML Activity diagrams. The main goal of parameterization in activity 

diagrams is the execution of variant Actions in the process flow. This can be achieved by 

the utilization of DecisionNode, JoinNode, and guard expressions attached to 

ActivityEdge meta-classes [25]. Actions themselves can be parameterized using 

ValuePins . The data flow between actions can be parameterized using ParameterSet 

meta-classes [25].  

Data type variability can be implemented by using UML’s Activity ObjectNode meta-

class [25] that corresponds to variant types. 
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After detailing the different variability mechanisms in activity diagrams [24], several 

annotations were presented in the form of stereotypes that can be used in the variant 

activity diagrams.  

 An SPL testing approach is described [26] where variation points in use cases are 

converted into activity nodes in activity diagrams with variation point parameters. 

Variant activity nodes are annotated with the <<adaptable>> stereotype. Further, feature 

conditions are expressed in guard expressions with the ‘fc’ prefix [fc: condition]. It 

should be noted that this approach is similar to the approach presented above [24] but on 

a smaller scale and without the use of the activity diagrams meta-model. The SPL testing 

approach [26] uses one stereotype, <<adaptable>>, and relies heavily on using guard 

expressions to model feature conditions.  

The stereotypes <<optional>> and <<alternative>> [27] are used to denote variant 

activity nodes in Activity diagrams. The same stereotypes are also applied to partitions, 

or Activity Swim Lanes, to highlight variant sequences instead of individual nodes. 

Annotating entire sequences of nodes provides a richer and more explicit mechanism to 

model variability in activity diagrams.  

2.4.2. Service Design Variability Modeling 

Services can be used in several systems through customization [5]. The basic, or generic, 

service can be invoked by several systems with varying functionalities. To be used by 

multiple consumers, services need to be designed with variability in mind.  
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 A variability analysis technique [28] is introduced into an existing service oriented 

analysis and design method (SOAD). A four layered SOA architecture is adopted that 

consists of: Business Process Layer, Unit Service Layer, Service Interface Layer, and 

Service Component Layer. In addition, each layer is associated with a variability type: 

Workflow (Business Process Layer), Composition (Unit Service Layer), Logic (Service 

Component Layer), and Interface Mismatch (Service Interface Layer). Decision tables are 

used to record variability types in each phase of the SOAD process.  Decision tables are 

used to map business process requirements to unit services and service components. This 

approach emphasizes the process of creating adaptable services, but it does not provide 

modeling nor automation methods.  

Architectural patterns [5] are used to model variation points in Web Services. It is argued 

that Web Services standards have inherent support for variability. For example, clients 

can communicate with services implemented in different technologies like Java or .NET 

and several protocols can be used to transfer messages between clients and services. In 

addition, Web Services Definition Language (WSDL), and the Universal Description, 

Discovery and Integration (UDDI) attributes and parameters can all be customized and 

modeled as variation points.  

2.4.3. Variation by Parameterized Services 

In this approach, services are adapted for variation by introducing parameterized 

variation points within the services. The following are some examples of service 

parameterization: 
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- Operations and Parameters Variability 

Operations and their parameters can be parameterized at the Interface Definition level for 

services. (WSDL) documents can be exploited to implement variability when Web 

Services are used as an implementation technology. In fact, each element in a WSDL 

document could be considered as a candidate for a variation point [5]. In addition, 

elements addition and operations reordering in WSDL do not break backward 

compatibility [29]. Thus, evolving services’ operations based on product line members’ 

features is possible without introducing separate WSDL documents.  

- Transport Variability 

 Variation points can be realized in the transport choice for a service. For example, 

 a software product line member can select SOAP as a transport while another 

 member selects FTP [5]. Again, this transport choice could be parameterized 

 within one WSDL document if Web Services are used for implementation.  

- Endpoint Variability 

 Variation points can be realized in the location choice for a service. For example, 

 some product line members may specify URIs, while others only specify one 

 location. Multiple endpoints may be needed  for fault tolerance or data replication. 

 Endpoints specification could be parameterized within WSDL as well.  

- Discoverability and Binding Variability 

 Variation points can be realized in the way the product line members are 

 discovered and bound to. Services are advertised in public registries by exposing 

 certain characteristics. Software product line members can parameterize these 
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 advertised characteristics to control how clients discover and bind to them. UDDI 

 discovery technology can be used for this purpose as shown in [5].  On the other 

 hand, some members may choose not to be discovered at all for security and other 

 concerns. In these situations, the UDDI discovery mechanism could be 

 parameterized to offline a product line member based on some features’ 

 conditions. Off-lining a product line member in the registry does not render it 

 unusable, since its endpoint can be fed to selected clients statically.  

- Error Handling Variability 

 Variation points can be realized in the way product line members process their 

 error handling [5]. Error handling can be parameterized based on feature 

 conditions that dictate the actions taken in certain events. For example, some 

 product line members may chose to simply log error messages while others may 

 attempt some predetermined corrective actions.  

Several design patterns like Strategy and Decorator can be used to realize the identified 

variation points within services [5]. The Strategy pattern can be used to realize 

operations’ variability, whereas the Decorator pattern can be used to realize parameters’ 

variability. 

2.4.4. Variation by Service Composition 

When grouping related features into services, variations can be realized by composing 

feature-based services. A lightweight product line engineering approach [6] is proposed 

with a specific phase for supporting service composition in the product line architecture. 
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Several variation points are introduced that can be used to customize the product line 

during service selection in the application engineering phase: 

• OrchestrationType – specifies the activities that constitute service invocations. 

• DataModel – defines data exchanged between services 

• ServiceSelection – specifies the types of bindings (static and dynamic) between 

services in a composition. 

• TypeOfException – is used to specify how a specific exception is handled. 

• QualityFactor – specifies quality attributes, like cost and performance, needed by 

different services. 

  

However, service selection is not tied to feature selection of the product line and 

composition verification is not explained. 

Several design patterns like Composite, Iterator, and Chain of Responsibility can be used 

to realize composition variation between services [5]. The Composite pattern can be used 

to implement the composite service that encompasses other sub-services, whereas the 

Iterator pattern can be used to implement the traversal of sub-services. In addition, the 

Broker architectural pattern [3] could be used in designing the architecture for such a 

composition.  

A variability modeling language (OVM) is proposed [30] to model service composition 

choices in business process definitions. A meta-model is introduced that explains the 

relations among business process activities, variation points, and services. By modeling 

variation points and their variants, service composition is determined based on users’ 
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selection of available services that meet their goals. Thus, a user centric approach is 

proposed where the selection of variants dictates service composition.  

A Web Services based software product line engineering approach [4] is proposed where 

components in the architecture were modeled using the <<web service>> stereotype. 

Feature selection from feature models determined the selection of Web Services. UML 

activity diagrams modeled customization choices based on feature/Web Service 

interactions. However, the selection of Web Services that support feature selection was 

predetermined and no discovery or composition of services was modeled in the 

architecture. 

2.5. Self-Architecting Service Oriented Systems 

Some systems have intrinsic variability in both requirements and architectures, e.g. 

emergency response systems. These types of systems can benefit from SOA principles to 

facilitate their efficient construction and evolution.  

A self-architecting SOA framework is proposed that allows domain experts to model 

business processes and an SOA based architecture to be automatically generated [31]. 

Business processes are modeled by using an activity based modeling language [32] 

similar to BPMN. Changing requirements trigger the regeneration of software 

architecture. Qualities of service (QoS) requirements are modeled by using a scenario-

based modeling language to which QoS objectives are associated. 

 To satisfy QoS requirements, an SOA is generated that optimizes utility function for the 

entire system [33]. 
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2.6. Software Product Lines 

Software Product Lines (SPL) are families of software systems that share common 

functionality, where each member has variable functionality [34], [35], [3]. The main 

goal of SPL is the rapid development of member systems by using reusable assets from 

all phases of the development life cycle. 

In the SPL domain engineering phase, requirements, analysis, and architecture of the 

application family is developed upfront. Then, in the application engineering phase, the 

derivation of member applications is carried out by tailoring the architecture based on the 

unique member application’s features. 

Several SPL engineering methods exist in the literature as described in the following 

subsections: 

2.6.1. Product Line UML-based Software Engineering 

(PLUS) 

PLUS [3] is a UML based iterative software engineering method that extends the 

COMET [36] method for software product lines. PLUS models commonality and 

variability of product line families throughout the development life cycle. UML 2.0 is 

extended using stereotypes, constraints, and tagged values. PLUS has two main phases: 

• Domain Engineering – The commonality and variability of the domain are 

analyzed through the following steps:  
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- Requirements modeling – user requirements are categorized as kernel, 

optional, and alternative use case models. Variation points and use case 

extensions are used to model variability. Feature models are constructed 

based on the use case models. Dependencies between use cases and 

features are explicitly outlined. 

- Analysis modeling – the product line context and entity classes are 

modeled using static class diagrams. Classes are categorized as kernel, 

optional, and variants. Objects interactions in use cases are modeled by 

UML dynamic communication diagrams. State based systems are modeled 

by UML state chart diagrams. 

- Architectural design modeling – a component based architecture is 

designed for the software product line. Connections and communication 

patterns among concurrent objects are explicitly designed. Software 

architectural patterns are used throughout the architecture.  

• Application Engineering – member applications are instantiated by tailoring the 

product line architecture based on selected users’ features.  

2.6.2. Feature Oriented Domain Analysis (FODA) 

FODA is a domain analysis method based on identifying the common and distinguishing 

features of family of systems [37]. The FODA method consists of three main phases: 
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• Context Analysis – The scope of the domain is analyzed by examining its external 

environment. The relation between the domain and the external environment is 

represented in a context model. 

• Domain Modeling – The commonality and variability of the domain are analyzed 

thru the following steps: 

- Feature analysis – end users’ functional requirement are analyzed and 

categorized into mandatory, optional, and alternative features. The 

relations among the feature of the domain are represented in a tree-like 

feature model. 

- Information analysis – domain data requirements are analyzed by focusing 

on domain knowledge entities and their relationship. The outcome of this 

phase is represented in entity relationship (ER) or object oriented (OO) 

models. 

- Operational analyses – behavioral aspects of the domain are analyzed with 

a focus on data and control flow. Domain functions are identified and 

sequenced to satisfy previously identified features. The outcome is 

represented in operational models. 

• Architecture modeling – a high level software design of the overall structure of 

the domain is developed. Concurrent processes, domain modules, and their 

relationships are represented in the architectural model.  

2.6.3. Reuse-driven Software Engineering Method (RSEB) 
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RSEB [38] is a use case driven domain modeling method that consists of several steps: 

• Object-oriented business engineering – use cases are analyzed to derive 

automatable business processes. 

• Application family engineering – a layered architecture is developed for the 

domain model. 

• Component system engineering – reusable components and their connections are 

developed. 

• Application system engineering – selected applications from the domain are 

developed based on the architecture. 

RSEB uses variation points to express variability throughout the development process. 

Variation points describe the location of variable behavior in use cases and architecture. 

2.6.4. Family-Oriented Abstraction, Specification, and 

Translation (FAST) 

FAST [39] is a method for developing families of systems and environments for deriving 

family members. The main processes of FAST are: 

• A process for defining commonalities and variability for the family – parameters 

are used to express variations. 

• A process for producing family members – parameters are mapped into templates 

which define family members. 
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• A language for specifying family members – a configuration language that 

captures family variations thru parameterization. 

• Generating software from specifications – a code generating environment that 

generates executable family members. 

2.6.5. KobrA 

KobrA [40] is a component based incremental method for developing product lines 

architectures. The method can be used for both single and family of systems. The most 

important steps of KobrA are: 

• Framework engineering – a generic reusable framework that represents all 

products variations of the software family is developed. This step consists of: 

Context realization, Component specification, and Component realization. 

• Application engineering – specific products are instantiated from the generic 

framework to meet unique customers’ requirements. 

2.7. Feature Modeling 

Feature modeling is rooted in the seminal work of Kang et al. [37] in the Feature 

Oriented Domain Analysis (FODA) method.  A feature is a requirement that is present in 

one or more members of the product family [3]. Feature models are widely used in the 

SPL requirements commonality and variability analysis phase. Specifically, they are used 

to model the possible requirements configurations of SPL member applications.  
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Feature models are normally represented in tree-like graphical notations [37]. Although 

several notations exist, only UML based notations are investigated in this literature 

review. 

Commonality and variability analysis is directly applied on class diagrams in a traditional 

OO analysis phase [41]. The stereotype <<V>> is used to denote optional features and 

the lack of this stereotype to denote common features. In addition, they apply this 

convention to the operations and attributes of classes. However, this approach is not 

expressive enough as it doesn’t address alternative features and their dependencies. Also, 

this approach does not directly address variability analysis in the requirements phase.  

A <<Variant>> stereotype is introduced [42] to denote optional features in class 

diagrams. Furthermore, a tagged value with the keyword ‘feature’ is attached to each 

<<Variant>> class. The purpose of this tagged value is to provide traceability between 

features in the requirements models to classes in the analysis model. However, no 

notation is provided to denote feature dependencies or feature groups.  

A simple feature meta-model [43], using UML meta-class diagrams,  is introduced. The 

meta-model consists of a Feature meta-class which is specialized by CommonFeature, 

VariableFeature, FunctionalFeature, and NonFunctionalFeature meta-classes. 

VariableFeature aggregates two meta-classes: VariationPoint and Variant. Meta- 

associations and dependencies are used to depict feature relations. In addition, predicate 

logic expressions are provided to describe feature relationships. These expressions are 

valuable contribution, since they can be translated to Object Constraint Language (OCL) 

to constraint feature models’ dependencies. 
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 An approach for mapping the traditional tree-like feature models to UML [44] is 

presented.  Model templates, expressed in the desired UML notation, are created to 

describe all possible combination of features from the feature model. These templates are 

annotated with “presence conditions” and “meta-expressions”. Presence conditions 

determine the inclusion or exclusion of features in the target template based on features 

information from the source model. Meta-expressions describe feature attributes from the 

source model as well. To carry out the transformation, “template instances” are created 

by evaluating the presence conditions along with the meta-expressions. This approach is 

interesting, because it provides a method to transform feature models to virtually any 

model that is MOF-based (Meta Object Facility) [45]. However, the mapping approach 

assumes that the starting source feature model is expressed as a tree and not as a generic 

model.  

In the PLUS method [3], feature models are derived from variant use case models and 

represented by UML class diagrams. PLUS uses stereotypes to categorize reusable 

requirements, i.e. Features as shown in Table 2.1. 
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Table 2.1 PLUS Feature Stereotypes 

Feature/Feature Group Description 

<<feature>>  Represents the top-level feature element 

 

<<common feature>> extends <<feature>> These features are present in all members of the 

product line 

<<optional feature>> extends <<feature>> These features are present in some members of the 

product line 

<<alternative feature>>  extends <<feature>> Some members of the product line need to choose 

from alternative features 

<<default feature>> extends <<feature>> Alternative features may specify a default feature. 

<<parameterized feature>> extends <<feature>> Parameterized features define a product line 

parameter whose value needs to be defined at system 

configuration time 

<<feature group>> The top-level feature group element 

<<zero-or-one-of feature group>>  extends <<feature 

group>> 

Zero or one feature can be present in the product line 

member 

<<exactly-one-of feature group>>  extends <<feature 

group>> 

Exactly one feature can be present in the product line 

member 

<<at-least-one-of feature group>> extends <<feature 

group>> 

At least one feature must be present in the product 

line member 

<<zero-or-more-of feature group>> extends 

<<feature group>> 

Zero or more features can be present in the product 

line member. 
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In addition, feature dependencies are depicted as associations in the class diagram. 

Associations, such as ‘requires’ and ‘mutually includes’, are used to illustrate feature 

relationships. It should be noted this feature modeling notation is adopted by this 

dissertation as explained in Chapter 4. 

2.8. Multiple-View Modeling 

In his seminal work on multiple-view architectures, Kruchten [46] argues that it is 

unwieldy to capture the architecture of software-intensive systems on one diagram. 

Further, he notes that such diagrams usually do not address the concerns of the diverse 

stakeholders of such systems. To that end, Kruchten proposes a model for describing the 

architecture of software-intensive systems via the use multiple views or perspectives (4+1 

View), where each view addresses specific set of concerns. The 4 views are: logical, 

process, physical, and development. The 1 view is the use case view which ties the 4 

views together. 

A multiple-view requirements engineering framework is described where each view is 

defined based on viewpoints held by actors or agents [47]. Viewpoints template are 

described which they can be instantiated for specific requirements engineering 

techniques. Inter-Viewpoint communication relationships are described to help in 

multiple viewpoint integration.  

A dynamic navigation approach, of modeling information, in multiple-view models is 

proposed [48]. The approach allows developers to automatically locate information in 
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multiple views regardless of the notation used. An underlying representation is defined to 

describe the multiple views and mappings among the views.  

2.9. Meta-Modeling 

In language modeling, a meta-model is a model that describes a model. In other words, a 

meta-model is a model used to specify a language [49]. Meta-models are used to capture 

the essential features and properties of languages [50].  In a natural language analogy, all 

languages have grammars that describe their structure. Natural languages’ grammars are 

the meta-models that describe the proper structure of languages. In computer science, 

programming languages have meta-models called Backus–Naur Form (BNF) [49] that 

describes their valid syntax. 

Another term used for language meta-models is abstract syntax [50], which is the 

underlying and unifying structure of a language. The language itself is referred to as the 

concrete syntax [50]. For example, in UML, the Meta-Object Facility (MOF) [45] meta-

model is the abstract syntax and the actual UML language diagrams are the Concrete 

Syntax. Most modelers use the concrete syntax of languages, while the abstract syntax is 

used by language engineers who normally create or modify languages. 

Meta-models describe modeling languages at a higher level of abstraction than the 

language itself [50]. Hence, concrete model, like a UML class diagram, is an instance of 

its corresponding meta-model, which is MOF. Meta-models are especially useful to tools 

developers since they can be used to describe several languages in a uniform way. 
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It should be noted that meta-modeling has existed for a long time and has been used in 

data modeling for example. 

2.10. Model Driven Architecture (MDA) 

MDA [51] is an Object Management Group (OMG) initiative that promotes development 

practices where models are used as first class entities. Software development is driven by 

constructing models in all phases of the development life cycle. Platform Independent 

Models (PIM) [52] capture business logic details independent of any technological 

platform. Platform Specific Models (PSM) represent technology specific concerns like 

software languages and environments. PIMs are transformed into PSMs using predefined 

transformation definitions. Eventually, PSMs are transformed into code. 

Evolving business requirements are handled by changing PIMs and generating PSMs 

using the transformation definitions. Transformation definitions [45] consist of precise 

transformation rules and mappings that transform elements in the PIM into elements in 

the PSM automatically. Transformation rules are written using formal language that can 

be understood by machines.  

The most widely used MDA modeling language is the Unified Modeling Language 

(UML). However, other languages can be used if they are based on Meta Object Facility 

(MOF) [45] meta-model.  

MDA aspires to improve productivity by letting developers focus on the PIM and having 

them generate the PSM and code. Portability is gained by developing transformation 

rules for new platforms while keeping the PIM intact. In addition, documentation 
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becomes always current and in sync with operational systems since all work is done on 

the models.  

The MDA vision depends heavily on tool support for building the PIM and PSM, the 

formulation of transformation rules, and code generation.  
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3. Research Approach 

 

3.1. Introduction 

The purpose of this research is to develop a multiple-view variability modeling and meta-

modeling approach to address the modeling of variable service-oriented systems in a 

systematic, unified, and platform-independent way. 

When building variable systems, i.e. application families, software engineers typically 

have the following design alternatives: 

Traditional development approach, where requirements are gathered for current 

capabilities at hand without considering functional requirements that can change in the 

future. Consequently, analysis, design, testing, and implementation commence to build a 

single application. When future requirements arise, the aforementioned development 

activities are repeated to build another single application that satisfies the new 

requirements. This process is repeated every time new requirements arise even if the new 

desired application is only slightly different from the original application. 

Software Product Line (SPL), aka application family, development approach. Instead of 

developing new single systems from scratch for new requirements, current and 

anticipated future requirements are gathered and analyzed to create a family of similar 

but slightly different applications. Hence, analysis, architecture, design, and testing 
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artifacts are created for the entire SPL upfront. Consequently, components are built for 

the entire application family and stored in repositories for future reuse. When anticipated 

requirements arise, new member applications are derived from the variable component 

architecture. Details of SPL engineering are described in Chapter 2.  

Service-Oriented Software Product Lines. This alternative is similar to the SPL approach, 

however instead of developing software components for the entire SPL upfront, this 

approach employs services that might be developed by external providers.  The analysis 

and design activities are based on service interfaces and business process workflows. 

Services could be discovered and bound at member application derivation time based on 

their exposed interfaces. Obviously, considerable time and efforts are saved since the 

developing organization does not have to create a complete variable component 

architecture upfront as described in the previous design alternative. 

This research develops an approach to facilitate and realize the service-oriented SPL 

design alternative mentioned above. To achieve this goal, this research develops a 

multiple-view model that specifies the relationships between variable service views. 

Additionally, this research develops a multiple-view service variability meta-model that 

formalizes the relationships and mappings of the multiple-view service variability model. 

Consistency checking rules between the multiple service views are developed based on 

the meta-model. Furthermore, this research presents an automated model-driven 

framework that realizes the aforementioned meta-modeling and modeling approach. A 

proof-of-concept tool prototype is developed to realize the automated framework. The 
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tool prototype is used to model and execute service oriented product lines (SPLs) and to 

ensure the consistency of the multiple views of SPLs. 

3.2. Research Approach 

Since services in SOA could be used by different clients with varying functionality, SOA 

variability modeling can benefit from software product lines (SPL) variability modeling 

techniques. Applying SPL concepts, service oriented systems can be modeled as service 

families. In particular, the research approach integrates SPL concepts of feature modeling 

and commonality/variability analysis, meta-modeling, multiple-view modeling, and 

service modeling to model SOA variability. The main goal of SPL is the reuse-driven 

development of SPL member applications by utilizing reusable assets from all phases of 

the software development life cycle. This goal is similar to the goal of SOA where 

reusable service development is a common theme. The approach in this research 

combines SPL variability modeling concepts [3] with SOA concepts, as represented in 

the Unified Modeling Language (UML) [53] and the newly released standard 

SoaML[54]. Such an approach facilitates variability modeling of service family 

architectures in a systematic and platform independent way. 

At the heart of the approach in this research is a meta-model that models requirements 

and architectural views of variable service oriented systems. The meta-model captures 

variability in the service views and adds a feature view that addresses the variability in 

the SOA system in a unified manner. The meta-model also captures relationships among 

the service views, and among the feature and service views. The meta-model is used to 
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help developers specify requirements, relate requirements to architectural artifacts, and 

create new applications based on changing requirements. 

A proof-of-concept service-oriented engineering environment (SoaSPLE) is developed to 

validate the approach. This tool prototype is used in carrying out two case studies to 

further validate the approach. 

3.3. Relation to Existing Research Approaches 

The research approach builds on existing research in the following ways:  

Feature Modeling [37] – it is difficult to get a complete picture of the variability in the 

service architecture, because it is dispersed among multiple views. To get a full 

understanding of the variability in the service architecture, it is necessary to have one 

view that focuses entirely on variability and defines dependencies in this variability. That 

is the purpose of feature modeling. 

SPL commonality/variability management [3] – since SOA development approaches lack 

a systematic way to handle variability management concerns, SPL principles are 

exploited to create a systematic methodology to handle variability management concerns 

in variable SOA systems. 

Multiple view modeling [2], [47], [48] – multiple-view modeling techniques are used to 

model various views of SOA and to define the relationships among these views.  

Meta-modeling of SPL phases [55], [50] – meta-modeling principles are used to 

formalize the multiple-view service variability model and to help in defining consistency 

checking rules among service views. 
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Model Driven Architecture [51], [56], [52], [45] – MDA is exploited to create a platform 

independent service variability approach and in designing an automated framework to 

realize this approach. 

The following sections detail the research approach components: 

3.4. Feature Modeling and Meta-Modeling 

Traditionally, feature modeling [3], [37] is used to model the reusable requirements of 

SPLs. In this research, in addition to modeling reusable requirements, feature modeling is 

used to model the variability of the service architecture that is dispersed among the 

multiple service views. In essence, feature modeling is exploited to produce a Feature 

View that focuses entirely on variability and defines dependencies in the variability of the 

service architecture. The Feature View is described in Chapters 4 and 5. 

3.5. Multiple View Service Variability Modeling 

A multiple-view model is developed to model the variability of requirements and 

architectural views of SOA systems. The multiple views are integrated via explicit 

relationships that describe their dependences.  

The multiple-view variability model is intended to provide a modeling notation for 

modelers to help in modeling service-oriented software product lines. The multiple-view 

service variability model is described in Chapter 4. 
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3.6. Multiple View Service Variability Meta-Modeling 

A multiple-view service variability meta-model is created to provide a formal description 

of the aforementioned multiple-view service variability model. The meta-model contains 

Meta-Views that model each View in the multiple-view model. In addition, the meta-

model captures the relationships between the service views and the relationships between 

the feature view and service views. 

The multiple-view service variability meta-model is embedded within the proof-of-

concept prototype to serve as Abstract Syntax [49] for the multiple-view model’s 

Concrete Syntax [49]. The meta-model is described in Chapter 5. 

3.7. Consistency Checking and Mapping Rules 

To ensure consistency among the multiple service views, consistency checking rules are 

derived from the semantic relationships between the multiple views in the meta-model. In 

addition, mapping rules are derived to provide mapping between the feature view and 

service views. 

The consistency checking and mapping rules are annotated with the multiple-view 

service variability meta-model in the proof-of-concept prototype to provide an automatic 

consistency mechanism for modelers. Consistency and mapping rules are described in 

Chapter 5. 
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3.8. Model-Driven Service-Oriented Product Line 

Engineering Framework 

This research exploits the model driven architecture (MDA) principles to create an 

automated framework that realizes the multiple-view service variability approach for 

building service-oriented SPLs.  

The framework provides model-driven techniques to design service-oriented SPLs, 

automation for service-oriented product line engineering, and model-driven techniques to 

handle the variability of SOA middleware environments. This approach is described in 

Chapter 6. 

3.9. Proof-of-Concept Tool Prototype 

To realize the aforementioned automated framework, this research built a model-driven 

Service-Oriented SPL Engineering proof-of-concept tool prototype (SoaSPLE). The 

goals of the prototype  are: to demonstrate the feasibility of the automated service-

oriented SPL  engineering framework, ensure the consistency of multiple views of the 

multiple-view model, model multiple-view service-oriented variability SPLs, derive 

member service applications from the SPLs, and  to deploy, execute, and test member 

applications of the SPL. The prototype is described in Chapter 6. 

3.10. Approach Validation 
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The objective of the validation is to evaluate the approach in this research with regard to 

the following properties:  

The multiple views of the service-oriented software product line are consistent with each 

other.  

The multiple-view service variability model is compliant with the underlying multiple-

view service variability meta-model.  

Derived software product line member applications are valid service-oriented SPL 

members.  

To achieve the aforementioned validation objectives, the validation procedure is divided 

into two main testing tasks: 

Unit Testing – this type of testing tests each element and relationship in the multiple-view 

service variability meta-model.  Unit testing is needed, because the case studies may not 

exercise every part of the meta-model.  

System Testing – this is a system-wide testing that tests the running service-oriented 

applications of the SPL end-to-end.  

Chapter 7describes the validation approach and unit testing, while Chapters 8 and 9 detail 

system testing through two case studies. 
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4. Multiple-View Service Variability Model 

 

4.1. Introduction 

In this chapter, the multiple-view variability modeling approach that addresses SOA 

variability concerns is introduced. The approach integrates software product lines (SPL) 

feature modeling techniques with service modeling to model variability in multiple views 

pertinent to SOA. Although earlier research (Chapter 2) provides ways to model 

variability in service views, variability of each view has been addressed only individually 

without relation to other views. By integrating feature modeling with multiple-view 

service modeling, consistency between the multiple views can be checked and then 

enforced. The approach is intended to be platform-independent in which SPL variability 

modeling [3] concepts are combined with SOA concepts, as represented in UML and 

SoaML [54].  

Erl [15] describes service-oriented systems as having multiple perspectives where these 

perspectives depend on each other. In essence, each perspective describes a distinct view 

of the whole SOA system. In this research, the different SOA perspectives are formalized 

into multiple Requirements and Architectural views. 

Kruchten [46] introduced the 4+1 view model of software architecture, in which he 

advocated a multiple view modeling approach for software architectures that addresses 
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the needs of distinct stakeholders.  In the 4+1 multiple-view model, the use case view is 

the unifying view (the 1 view of the 4+1 views). The approach in this research describes 

a multiple view modeling approach for service-oriented software product lines in which 

the unifying view is the feature model. In particular, feature modeling provides the added 

dimension of modeling variability in service-oriented software product line architectures. 

The other 4 views in the approach consist of 2 Requirements views (Service Contract and 

Business Process) and 2 Architectural views (Service Interface and Service 

Coordination). 

Each view of the multiple-view model is depicted by a UML/SoaML diagram that 

consists of new modeling elements that were created by directly extending the UML 

meta-model. In addition, the relationships between the multiple service views are 

described. Finally, the relationships that relate features to service views are developed 

4.2. Using SPL Concepts to Model SOA Variability 

Although, there are many differences between typical software product lines and service-

oriented architectures, this section analyzes how SPL concepts can be used to model SOA 

variability. Since services in SOA could be used by different clients with varying 

functionality, SOA variability modeling can benefit from SPL variability modeling 

techniques. Service-oriented systems can be modeled as service families, similar to the 

concept of SPL. The main goal of SPL is the reuse-driven development of SPL member 

applications by using reusable assets from all phases of the development life cycle. This 
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goal is similar to the goal of SOA where reusable application development is a common 

theme. 

SOA and SPL differ in the following ways: 

• In SPL, components (core assets and variants) are designed and implemented a 

priori and usually owned by the same developing organization, whereas in SOA, 

services are usually developed by external providers who are unaware of their 

clients. 

• SOA development practices focus on automating business workflows by 

assembling services, whereas the focus of SPL is on developing application 

families. 

• Reuse in SPL is utilized in all phases of the development life cycle using all types 

of assets, however in SOA, only services are reused [57]. 

• SPL approaches have explicit techniques to model variability. However, SOA 

approaches rely on industry best practices and ad-hoc techniques [57]. 

 

Existing approaches to handling variability in SOA [6], [4], [7], [58], [59], [60], [61] 

have used SPL concepts to model variability in service families (this is discussed in more 

detail in Chapter 2). However, these approaches do not provide a treatment of multiple 

variability concerns in SOA in a unified framework. Further, existing research mainly 

treats SOA variability issues in a platform specific way by focusing on Web Services and 

orchestration languages such as the Business Process Execution Language (BPEL). 
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4.3. Service Contract Variability View 

This Requirements view models service contracts and service participants. Service 

contracts are prescribed by collaborating organizations to govern and regulate their 

interactions. Service contracts may include service interfaces, policies, and service level 

agreements.  

To model the service contract view, SoaML’s ServiceContract element, which specifies 

the agreement between providers and consumers, is used. It should be noted that 

SoaSML’s ServiceContract element is based on UML’s Collaboration element, which 

is represented by dashed bubbles (Fig. 4.1).To model variability, a ServiceContract is 

specialized into kernel, optional, and alternative ServiceContracts.  Kernel contracts are 

required by all members of an SPL, whereas optional contracts are required by only some 

members. An alternative contract is a variant of a kernel or optional contract to meet a 

specific requirement of some SPL members. Fig. 4.1 depicts service contracts of an E-

Commerce SPL. 

It should be noted that UML 2.0 specification allows the use of multiple stereotypes per 

 
Fig. 4.1 Service Contract View of an E-Commerce SPL 
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modeling element. Therefore, this research uses this feature by attaching a stereotype that 

conveys an SOA concept and another stereotype that conveys a reusability concept for 

each element in the multiple-view service variability model. However, this usage of 

stereotypes is for display purposes only, since the multiple-view service variability model 

consists of meta-classes that directly extend the UML meta-model. 

Each service contract prescribes roles for the organizations participating in it. Hence, the 

Service Contract View also models contract participants. Participants are entities that 

abide by service contracts and provide or require service interfaces. Service interfaces are 

discussed in the Service Interface View below. To model contract participants, SoaML’s 

Participant element is used, which specifies providers or consumers of services. This 

element extends the UML Class element. A Participant is specialized into kernel, 

optional, or alternative Participants. An example of the Service Contract View is given 

in Fig. 4.1. 

4.4. Business Process Variability View 

This Requirements view models the workflow of business processes. Participants can 

define internal business processes to conduct their business. In this way, each 

organization can define its own business processes while satisfying inter-organization 

business contracts. This view consists of one or more business process models. 

Neither SoaML nor UML explicitly model business process workflow. Since a business 

process workflow is composed of a sequence of activities, UML Activity diagrams are 

used to model business processes. From an SPL perspective, each activity in the Activity 
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model is specialized into kernel, optional, or alternative Activity. An example of the 

Business Process View is given in Fig. 4.2, where the Seller Participant has its own 

internal business process modeled as an Order Fulfillment business process. Note that 

this business process is modeled as an SPL service activity diagram consisting of a 

sequence of service activities (kernel, optional, default, and alternative), which can be 

tailored into a service application business process in the SPL application derivation 

phase (Chapter 6). 

4.5. Service Interface Variability View 

Services expose their capabilities through service interfaces only. This Architectural view 

models service interfaces that specify the operations provided or required by 

Participants.  

Service interfaces are modeled by using SoaML’s  ServiceInterface class. Service 

Interfaces are specialized into kernel, optional, or variant ServiceInterfaces.  

 

 

Fig. 4.2 Business Process View of an E-Commerce SPL 
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An example of the Service Interface View is given in Fig. 4.3. An organization that plays 

the Seller role in the Purchasing ServiceContract must be able to implement and 

advertize an Ordering Service exposed through the Ordering ServiceInterfaces, which 

enables Buyer Participants to order goods from Seller Participants. 

4.6. Service Coordination Variability View 

The Service Coordination View models the sequencing of service invocations. It should 

be noted that this is an Architectural view that is related to the business workflow 

described in the Business Process View. In other words, each business process, i.e., 

Activity Diagram, in the Business Process View is associated with a 

ServiceCoordinator in the Service Coordination View. It should be noted that this 

 
Fig. 4.3 Service Interface View of an E-Commerce SPL 
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coordination is centralized where one ServiceCoordinator solely coordinates one 

business process.  

Services should be self-contained and loosely coupled. In order to have a high degree of 

reuse, dependencies between services should be kept to a minimum [62]. Hence, service 

coordination is used in situations where multiple services need to be accessed and access 

to them needs to be coordinated and/or sequenced [63]. 

The Service Coordination View consists of ServiceCoordinator elements which are 

direct extensions of UML Class meta-class. Service Coordinators, depicted on UML 

communication diagrams, interact with clients and services. Services in the Service 

Coordination View are modeled via the ServiceInterface elements.  In addition, from a 

reuse perspective, a ServiceCoordinator is specialized into kernel, optional, or variant 

ServiceCoordinators. ServiceCoordinators receive messages from clients and/or 

services, and send messages to clients and/or services. The sequencing of multiple service 

invocations is encapsulated within the Coordinator [62]. Service Coordination can be 

 
Fig. 4.4 Service Coordination View of an E-Commerce SPL 
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categorized by type of coordination (independent, distributed, or hierarchical), and the 

degree of concurrency (sequential or concurrent) [63]. An example of the Service 

Coordination View is shown in Fig. 4.4, where the Order Fulfillment 

ServiceCoordinator coordinates service invocations for the Order Fulfillment Business 

Process (Fig. 4.2). Notice how the Order Fulfillment ServiceCoordinator encapsulates 

all sequencing logic and only sends and receives messages to and from services thus 

minimizing coupling among services. In addition, notice how messages are annotated by 

feature conditions between square brackets. These conditions act as guards that allow 

messages to be fired only if the feature conditions are true. 

4.7. Feature View 

With multiple-view service variability modeling, it is possible to define the variability in 

each view. However, it is difficult to get a complete picture of the variability in the 

service architecture because it is dispersed among the multiple views. To get a full 

understanding of the variability in the service architecture, it is necessary to have one 

view that focuses entirely on variability and defines dependencies in this variability. That 

is the purpose of the Feature View described in this section. 

Feature modeling is the process of identifying reusable requirements or characteristics of 

members of an SPL in terms of features and organizing them into a feature model. The 

Feature View consists of Feature elements which are direct extensions of the UML Class 

meta-class.  Feature models are used to express and manage similarities and differences 

among different family members in an SPL. Features are specialized into kernel, 
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optional, or alternative Features. Kernel features among products in an SPL are 

mandatory, while different features among them may be optional or alternative features. 

Related features can be grouped into feature groups, which constrain how features are 

used by a product of an SPL. Feature modeling is discussed in more details in Chapter 2. 

A feature model of an E-Commerce SPL is shown in Fig. 4.5. The feature model consists 

of UML classes that denote reusable requirements, i.e. features. In addition, the feature 

model contains feature group classes which are aggregations of optional or alternative 

features. In addition, feature dependencies are depicted as associations in the class 

diagram. 

It is necessary to conduct commonality and variability analysis, represented in feature 

models, in order to understand how service-oriented systems can change in reaction to 

changing requirements. In addition, as will be shown in Section 4.9, the Feature View 

serves as a unifying view since features can be mapped to multiple service views. 

4.8. Multiple-View Service Variability Model Relationships 

 
Fig. 4.5 Feature View of an E-Commerce SPL 
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In this section, the relationships between views of the service variability multiple-view 

model are defined. It is important to develop these relationships to gain an understanding 

of what happens in one view if a change happens in another view. This understanding 

serves as a basis for the consistency checking rules described in Chapter 5. In addition, 

these relationships illustrate how the Requirements views can be mapped to Architectural 

views and how the Feature View serves as the unifying view for all views. 

4.8.1. Intra-View Relationships 

The associations and dependencies inside each view are defined.  A ServiceContract, in 

the Service Contract View, is associated with two or more Participants, because a 

ServiceContract defines the relationships for participating entities in the SOA system. 

For example, in Fig. 4.6b, the Purchasing ServiceContract is associated with Buyer and 

Seller Participants. ServiceContracts may contain other ServiceContracts to form 

composite contracts [54]. 

Participants provide or require services in the Service Contract View (Fig. 4.6b). 

Services are exposed through ServiceInterfaces in the Service Interface View (Fig 4.6d).  

ServiceCoordinators, in the Service Coordination View (Fig. 4.6e), coordinate one or 

more services as they send and receive messages to/from services. It should be noted that 

services are exposed through ServiceInterfaces in the Service Interface view. 

It should also be noted that the intra-view relationships of the Feature View are adopted 

based on previous research [55] and explained in Chapter 2. 
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Fig. 4.6 E-Commerce SPL Multiple-View Service Variability Model 
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4.8.2. Inter-View Relationships 

The associations and dependencies between the multiple views of the multiple-view 

service variability model are defined. 

A service-oriented SPL has one or more ServiceContract elements. For example, in the 

Service Contract View of Fig. 4.6b, an E-Commerce SPL has Purchasing, Credit 

Checking, Inventory Ordering, and Sales Tax ServiceContract elements.  

Participant elements provide or require ServiceInterface elements, because 

participating entities only interact through interfaces to minimize coupling among 

services. For example, in Fig. 4.6b, the Tax Agency Participant provides the ISalesTax 

ServiceInterface (Fig. 4.6d), while the Seller Participant (Fig. 4.6b) requires the 

ISalesTax ServiceInterface. 

Participant elements can define their own internal business processes. Business process 

details are not known to other Participants and can change without notice to other 

Participants in the service-oriented system. This minimizes coupling and allows 

Participants to change their business processes without affecting the operation of other 

participants in the system. For example, in Fig. 4.6c, The Seller Participant has an Order 

Fulfillment business process, which is comprised of Activity elements.  

Activity elements can be either local or service elements. Local Activities are executed 

within the Participant execution environment, e.g. ‘Calculate Discount’, whereas 

Service Activities are executed by calling external services exposed through 

ServiceInterfaces. For example, in Fig. 4.6c, the Calculate Tax Activity is executed by 

calling a SalesTax service exposed through the ISalesTax ServiceInterfaces (Fig. 4.6d). 
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Activities in the Business Process View are realized by calling operations of services 

exposed by ServiceInterfaces. For example, the ‘Check CR’ Activity in the Order 

Fulfillment business process (Fig. 4.6c) is realized by calling the checkCreditRate 

operation of the Credit Rating service exposed through the ICreditRating 

ServiceInterface (Fig. 4.6d). 

ServiceCoordinator elements, in the Service Coordination View, coordinate the 

sequencing of service invocations exposed by ServiceInterfaces in the Service Interface 

View. For example, the Order Fulfillment ServiceCordinator (Fig. 4.6e) invokes 

operations on the Credit Rating service exposed through the ICreditRating 

ServiceInterface (Fig. 4.6d). 

Messages in the Service Coordination View (Fig. 4.6e) trigger operation invocations on 

ServiceInterface sin the Service Interface View (Fig. 4.6d). For example, the ‘Calculate 

Tax’ Message in Fig. 4.6e is triggered by an invocation of an operation on the ISalesTax 

ServiceInterface (Fig. 4.6d). 

Elements in one view of the multiple-view service variability model affect elements in 

other views. For example, in Fig. 4.6c, when the Calculate Tax Activity is added to the 

Order Fulfillment Business Process View, a Sales Tax ServiceContract is introduced 

into the E-Commerce SPL in the Service Contract View (Fig. 4.6b). Consequently, a Tax 

Agency Participant is also added, which provides an ISalesTax ServiceInterface in the 

Service Interface View (Fig. 4.6d). 

It should be noted that these relationships are enforced by an underlying meta-model 

described in Chapter 5. 
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4.8.3. Feature to Service Contract View Relationships 

A Feature is supported by one or more ServiceContract elements in the Service 

Contract View. For example, when feature Credit Rating (Fig. 4.6a) is selected, the 

Credit Checking ServiceContract is configured into the SPL member application (Fig. 

4.6b). The variability stereotype on a ServiceContract dictates the type of feature it may 

map to. For instance, an optional feature (e.g., Credit Rating) can only be supported by 

optional service contracts (e.g., Credit Checking service contract). Similarly, an 

alternative feature may be supported by alternative service contracts only. 

A Feature is supported by one or more Participants. For example, when the Electronic 

Goods optional feature (Fig. 4.6a) is selected, which means the Seller will start selling 

electronic items in addition to books, the ElectronicSupplier Participant participates in 

the InventoryOrdering ServiceContract (Fig. 4.6b). Consequently, the 

ElectronicsOrdering ServiceInterface will be introduced into the InventoryOrdering 

ServiceContract (Fig. 4.6b). Hence, the selection of one feature in the Feature View is 

supported by two service model elements (contract and interface) in the service Contract 

and Interface views respectively. 

4.8.4. Feature to Business Process View Relationships 

A Feature is supported by one or more Activities in the Business Process View. For 

example, when the Discount optional feature is selected (Fig. 4.6a), which means that the 

system changes to provide the ‘Discount’ capability, the Calculate Discount Activity is 
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added to the Order Fulfillment Business Process (Fig. 4.6c). Thus, the Discount optional 

feature is supported by an optional Calculate Discount Activity in the Business Process 

View. Features may be supported by one or more nodes in the Activity diagram of the 

business process, or by an entire business process.  

4.8.5. Feature to Service Interface View Relationships 

Service Interfaces can support Features in three ways: 

• A Feature is supported by one or more ServiceInterfaces. For example, if the 

Credit Rating optional feature is selected (Fig. 4.6a), the Seller Participant has to 

provide a new ServiceInterface that can interact with a credit rating agency. 

Thus, the Credit Rating optional feature is supported by an optional Credit Rating 

ServiceInterface in the Service Interface View (Fig. 4.6d). 

• Abstract ServiceInterfaces – here, an abstract ServiceInterface is specialized 

differently for each member of the product line [3]. The main advantage of this 

approach is the isolation of each variation in a separate subclass. However, this 

approach suffers from the problem of combinatorial explosion when the number 

of features is large, and a subclass is needed for each feature and feature 

combination. In other word, there would be many subclasses of the parent 

ServiceInterface, which can become quickly unwieldy. 

• Parameterized ServiceInterfaces– here, one parameterized service class is 

created with feature related configuration parameters which are assigned different 

values for different members of the product line [3]. The main advantage of this 
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approach is that there would be only one parameterized ServiceInterface instead 

of several variant classes. The main disadvantage is that the parameterized 

ServiceInterface is affected by more than one feature. 

4.8.6. Feature to Service Coordination View Relationships 

ServiceCoordinators can support Features in two ways: 

• Specialization – ServiceCoordinators can be specialized, using inheritance, to 

model variability [3]. In this case, a parent coordinator class will be extended to 

realize selected features or feature combinations. The main advantage of this 

approach is the isolation of each variation in a separate subclass. However, this 

approach suffers from the combinatorial explosion problem explained above. 

• Parameterization – ServiceCoordinators can be pre-designed with variation 

points based on Features in the feature model. For example, the Service 

Coordination View of the Order Fulfillment business process (Fig. 4.6e) has a 

pre-designed ServiceCoordinator with kernel and variant message invocations. 

Notice, that optional and variant messages on the service coordination 

communication diagram are preceded with the corresponding feature name in the 

feature model (Fig. 4.6a) between square brackets to identify a conditional 

message. These feature names act as guards that prevent a message sequence from 

being invoked if the corresponding feature has not been selected. Optional and 

variant message paths will be invoked if the corresponding features are selected in 

the target member application. The advantages and disadvantages of this approach 



60 

 

are the same as for the parameterization of the Service Interface View explained 

above. 

4.8.7. Feature Dependency to Service Views Relationships 

In a feature model, relationships between features are represented by feature 

dependencies, where features may require other features or where features are mutually 

exclusive of each other. In other words, a feature may depend on another feature, or a 

feature must not be included along with another feature [3].  

If there is a dependency between two features that are supported by two different service 

model elements (e.g., service contract, or service interface), the dependency between the 

two features must map to a dependency between the two service model elements. For 

example, in the feature model (Fig. 4.6a), the Regular Customer feature requires the 

Credit Rating feature. Therefore, the Check CR Activity (Fig. 4.6c), which supports the 

Regular Customer feature, must relate to the ICreditRating  ServiceInterface (Fig. 4.6d), 

which supports the Credit Rating feature . These relationships are enforced by the 

underlying meta-model as well (Chapter 5). 
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5. Multiple-View Service Variability Meta-Modeling 

 

5.1. Introduction 

The multiple-view variability modeling approach (Chapter 4) is based on a meta-model 

that precisely describes all views and view relationships. Each view in the multiple-view 

model is described by a corresponding meta-view in the meta-model. There are two 

Requirements meta-views, Contract and Business Process, and two Architecture meta-

views, Service Interface and Service Coordination. In addition, there is a Feature meta-

view that describes the Feature view in the multiple-view variability model. 

The meta-modeling approach in this research builds on previous research [55], in which a 

multiple-view modeling and meta-modeling approach for SPL was described. The 

approach has a multiple-view meta-model that defines the different perspectives of SPL. 

The meta-model depicts life cycle phases, views within each phase, and meta-classes 

within each view. Consistency checking rules are specified based on the relationships 

among meta-classes in the meta-model. More details on this approach are covered in 

Chapter 2. 

The meta-modeling approach in this research exploits meta-modeling to achieve the 

following goals: 
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• Model intra and inter views relationships of the multiple views of service-

oriented systems. 

• Describe variability of interrelated views of SOA to produce an overall 

description of service-oriented systems. In other words, the approach detects 

changes in a specific view if a change happens in different, but related, views.  

• Describe variability of SOA in a unified way. Since the multiple views of 

SOA use different modeling notations, meta-modeling provides one notation 

to describe all views in one language at a higher level of abstraction.  

• Specify variability of service-oriented systems in a platform-independent 

manner by using meta-classes that could be mapped to several technology 

platforms. 

• Formulate consistency checking rules that ensure the consistency of the 

multiple-views of service-oriented systems as they change. OCL-based rules 

are determined from the meta-model to ensure multiple-views consistency. 

• Use the multiple-view variability meta-model to produce a model-driven 

automated framework. MDA tools use meta-models to represent models at a 

high level and to derive model-to-model and model-to-code transformation 

definitions [52]. 

The following sections describe the multiple meta-views of the service variability meta-

model, their relationships, and consistency checking rules. 
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5.2. Service Contract Variability Meta-View 

SoaML’s ServiceContract meta-class is used to model elements in this meta-view. This 

meta-class extends the UML Collaboration meta-class. To model variability, 

ServiceContract meta-classes are categorize as kernel, optional, or alternative (Fig. 5.1).  

The Service Contract View prescribes roles for the entities participating in it. Hence, this 

meta-view also models contracts’ participants. Participants are entities that abide by 

service contracts and provide or require service interfaces. SoaML’s Participant meta-

class is used (Fig. 5.1) which specifies providers or consumers of services. This meta-

class extends the UML Class meta-class. The Participant meta-class is specialized into 

Provider and Consumer Participant. Variability is modeled the same way as 

ServiceContract meta-classes, i.e. kernel, optional, and alternative. 

 

 

Fig. 5.1 Service Contract Variability Meta-View  
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5.3. Business Process Variability Meta-View 

Neither SoaML nor UML explicitly model business process workflow. Since a business 

process is composed of a sequence of activities, UML Activity meta-classes are used to 

model meta-classes in this meta-view (Fig. 5.2).  Activity meta-classes are categorized as 

kernel, optional, or alternative. 

Activity meta-classes are specialized into Local and Service meta-classes (Fig. 5.2). 

Local Activities are executed within the Participant execution environment, whereas 

Service Activities are executed by invoking external services exposed through 

ServiceInterfaces. 

 
Fig. 5.2 Business Process Meta-View  
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5.4. Service Interface Variability Meta-View 

Service interfaces (Fig. 5.3) are modeled by SoaML’s ServiceInterface meta-classes. 

This meta-class extends the UML Interface meta-class.  ServiceInterface meta-classes 

specify provided and required interfaces by Participants. A ServiceInterface is 

categorized as kernel, optional, or variant. It should be noted that the ‘variant’ 

categorization is used for the Architectural Views in contrast to ‘alternative’, which is 

used for the Requirements Views.  

To manage complexity, variability meta-modeling for service ServiceInterface is 

restricted to the whole interface and the whole operation. In other words, selected 

features in the SPL could be supported by a new service ServiceInterface or by a new 

operation in an existing ServiceInterface. 

  

Fig. 5.3 Service Interface Variability Meta-View  
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5.5. Service Coordination Variability Meta-View 

The Service Coordination Meta-View (Fig. 5.4) consists of ServiceCoordinators, which 

are modeled by extending the UML Class meta-class. Messages sent and received by 

ServiceCoordinators are modeled as SoaML’s MessageType meta-classes. MessageType 

extends UML DataType meta-class. ServiceCoordinator and MessageType are 

categorized as kernel, optional, or variant. 

5.6. Feature Meta-View 

Features (Fig. 5.5) are modeled by UML meta-classes that extend UML Class meta-class. 

Features are categorized into kernel, optional, alternative, and default depending on the 

characteristic of the reusable requirements as described in section 2. Feature groups (Fig. 

5.5) are modeled by UML meta-classes as well. Feature groups refer to constraints on the 

selection of a group of features (e.g., preventing selection of mutually exclusive features). 

 
Fig. 5.4 Service Coordination Variability Meta-View  
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Feature groups are categorized into ZeroOrMoreOf, AtleastOneOf, ExactlyOneOf, and 

ZeroOrOneOf. Feature dependencies represent relationships between features and are 

modeled as UML meta-classes. Finally, Feature Conditions are Boolean constraints that 

determine the selection or de-selection of features in the SPL. 

5.7. Service Variability Meta-Model Relationships 

This section describes the relationships of the unified service variability meta-model (Fig. 

5.6) that ties all the aforementioned views together. The meta-model consists of 5 meta-

views (4+1 feature view) that correspond to each view in the multiple-view model 

(Chapter 4). The Feature Meta-View (Fig. 5.5) unifies the service views as explained in 

Chapter 4.  

It should be noted that these relationships are enforced by the associations and 

dependencies of the multiple-view service variability meta-model. OCL rules are 

 

Fig. 5.5 Feature Meta-View  
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provided as shown below for the relationships that cannot be explicitly described in the 

meta-model. 

5.8. Intra Meta-View Relationships 

 

The associations and dependencies inside each view are described (Fig. 5.6) along with 

OCL, which are used when additional constraints are needed for the relationships.  

- A ServiceContract meta-class, in the Service Contract Meta-View, is associated 

with two or more Participants. 

A kernel ServiceContract must relate to at least 2 kernel Participants 

 

 
Fig. 5.6   Service Variability Meta-Model 
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context servicecontract inv: reuseStereotype =’kernel’ implies 

(select participant.reuseStereotype = ‘kernel’)->size() >= 2 

 

- ServiceContract meta-classes may contain other ServiceContracts meta-classes to 

form composite contracts [54]. 

- The ServiceCoordinator meta-class in the Service Coordination view is associated 

with a MessageType meta-class as it sends/receives messages to/from services. 

 

5.9. Inter Meta-View Relationships 

The associations and dependencies between the multiple views of the multiple-view 

service variability meta-model are defined (Fig. 5.6). 

- A service-oriented SPL has one or more ServiceContract meta-classes. In essence, 

ServiceContract meta-classes form the basis of any service-oriented SPL. 

- Participant meta-classes, in the Service Contract Meta-View, provide or require 

ServiceInterface meta-classes in the Service Interface Meta-View. 

A Participant must provide or require at least one ServiceInterface 
context participant inv: reuseStereotype =’kernel’ implies 

serviceinterface->exists(si | si.reuseStereotype =‘kernel’) 

 

- Participant meta-classes can be associated with Activity meta-classes in the 

Business Process Meta-View. This relationship defines a meta-business process, 

comprised of Activity meta-classes, for the Participant meta-classes. 
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- Activity meta-classes, in the Business Process Meta-View, are mapped to 

ServiceInterface meta-classes in the Service Interface Meta-View. In essence, 

Activities are realized by service operations exposed through ServiceInterfaces. 

- Each Business Process (comprised of Activity meta-classes), in the Business 

Process View, is associated with one unique ServiceCoordinator meta-class in 

the Service Coordination View. It should be noted that centralized coordination is 

assumed. 

- ServiceCoordinator meta-classes, in the Service Coordination Meta-View, 

interact with ServiceInterface meta-classes in the Service Interface Meta-View. 

- MessageType meta-classes, in the Service Coordination Meta-View, trigger 

Operation meta-classes invocations on the ServiceInterface meta-classes, in the 

Service Interface Meta-View. 

The following sections describe constraints on relationships between the Feature Meta-

View and the Service views. Consistency checking rules that add explicit constrains on 

relationships between meta-classes are determined. Consistency checking rules are 

specified in English and OCL. 

5.10. Feature to Service Contract Meta-View Relationships 

- A Feature meta-class, in the Feature Meta-View, is related to one or more 

ServiceContract meta-classes in the Service Contract View. The variability 

stereotype on a ServiceContract dictates the type of Feature it may support. For 

instance, an optional feature can only be supported by optional service contracts. 
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Similarly, an alternative feature can only be supported by alternative service 

contracts. 

A Kernel ServiceContract can only support a kernel Feature 
 context Feature inv: reuseStereotype = ‘kernel’ implies 

 servicecontract- >size() >= 1 and servicecontract.reuseStereotype 

 = ‘kernel’ 

 

- A Feature meta-class is related to one or more Participant meta-classes. The 

variability stereotype on a Participant dictates the type of Feature it may 

support. 

An optional Participant can only support an optional Feature 
 context Feature inv: reuseStereoType = ‘optional’ implies  

 participant->size() >=1 and participant.reuseStereoType 

  = ‘optional’ 

 

5.11. Feature to Business Process Meta-View 

Relationships 

- A Feature meta-class is related to one or more Activity meta-classes in the 

Business Process View. The variability stereotype on an Activity dictates the 

type of Feature it may support. A Feature could be supported by an entire 

business process, comprised of Activity meta-classes, in the Business Process 

Meta-View. 

 An optional Activity can only support an optional Feature 
 context Feature inv: reuseStereoType = ‘optional’ implies  

 activity->size() >=1 and activity.reuseStereoType = ‘optional’ 
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5.12. Feature to Service Interface Meta-View Relationships 

- A Feature meta-class is related to one or more ServiceInterface meta-classes 

in the Service Interface Meta-View. The variability stereotype on a 

ServiceInterface dictates the type of Feature it may support. 

 A variant ServiceInterface can only support an alternative Feature 
 context Feature inv: reuseStereoType = ‘alternative’ implies 

 serviceinterface->size() >= 1 and     

 serviceinterface.reuseStereoType = ‘variant’ 

   

- A Feature meta-class is related to one or more Operation meta-classes in the 

Service Interface Meta-View. The variability stereotype on an Operation 

dictates the type of Feature it may support. 

 An optional Operation can only support an optional Feature 
 context Feature inv: reuseStereoType = ‘optional’ implies 

 operation->size() >= 1 and operation.reuseStereoType = ‘optional’ 

 

 

It should be noted that the stereotype ‘variant’ is used for architectural meta-classes, 

while the stereotype ‘alternative’ is used for requirements meta-classes [3]. 

 

5.13. Feature to Service Coordination Meta-View 

Relationships 

- A Feature meta-class is related to one or more ServiceCoordinator meta-

classes in the Service Coordination View. It should be noted that each 

business process, comprised of Activity meta-classes, is associated with a 
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unique ServiceCoordinator. The variability stereotype on a 

ServiceCoordinator dictates the type of Feature it may support. 

 A kernel ServiceCoordinator can only support a kernel Feature 
 context Feature inv: reuseStereoType = ‘kernel’ implies  

 servicecoordinator->size() >= 1 and       

 servicecoordinator.reuseStereoType = ‘kernel’ 

 

- A Feature meta-class is related to one or more MessageType meta-classes in 

the Service Coordination Meta-View. The variability stereotype on a 

MessageType dictates the type of Feature it may support. 

 An alternative MessageType can only support an alternative Feature 
 context Feature inv: reuseStereoType = ‘alternative’ implies 

 messagetype->size() >= 1 and messagetype.reuseStereoType = 

 ‘alternative’ 
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6. Model-Driven Service-Oriented Product Line 
Engineering Framework 

 

6.1. Introduction 

This research created an automated framework that realizes the multiple-view service 

variability approach. To that end, this research exploits the model driven architecture 

(MDA) principles to achieve the following goals: 

• Development of model-driven techniques to design service-oriented SPLs, 

since MDA research has focused on the design of single object-oriented 

applications. 

• Automation of service-oriented product line engineering – this includes SPL 

Domain and Application Engineering, i.e. Requirements, Analysis, Design, 

Member Application Derivation, and Deployment (Chapter 2). 

• Development of model-driven techniques to handle the variability of SOA 

middleware platforms which are usually hosted by the Enterprise Service Bus 

(ESB). 

• Development of a model-driven service-oriented tool prototype that realizes 

the aforementioned framework. 
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As explained in Chapter 2, MDA treats software models as first-class entities in the 

software development process. In other words, programmers develop requirements and 

design models first without worrying about coding and platform concerns. These models 

are referred to as Platform-Independent Models (PIM). Once the PIMs are verified to 

match business requirements, they get transformed into more refined models geared 

towards specific technology platforms. These models are termed Platform-Specific 

Models (PSM). Finally, code is generated from the PSMs for a targeted technology 

platform such as Java, or .NET. Future software maintenance is performed on the PIMs 

and code is re-generated from them. This way, models and code are always in sync and 

developers can concentrate on business logic instead of platform and technology 

concerns. In addition, the PSMs can be reused if the target platform is selected again. 

The rest of the chapter describes the details of a model-driven service-orient SPL 

framework that was created by this research. The chapter illustrates how  MDA concepts 

are applied to service-oriented SPL engineering. More importantly, the chapter details 

how traditional MDA concepts are adapted to cater for service-oriented SPL engineering. 

Finally, a proof-of-concept tool prototype (SoaSPLE) that realizes the automated 

framework is described. 

6.2. Platform Independent Model (PIM) 

In typical MDA approaches [52], [51],[45] only one PIM is constructed for the entire 

application. Since SPLs are family of applications, this research proposes the 

construction of two types of PIMs: 
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1. A software product line PIM – this PIM models the entire service-oriented 

software family (SPL) with all variability information. The SPL PIM is a 

multiple-view PIM since it is based on the multiple-view service variability 

model explained in Chapter 4. Fig. 6.1 depicts a multiple-view PIM for an E-

Commerce SPL. In this research, this model is termed splPIM. 

2. Software member application PIMs – these PIMs model the derived member 

applications of the service-oriented SPL. In this research, each model is 

termed memberPIM. Fig. 6.2 depicts an example of a derived member 

application of the aforementioned multiple-view splPIM (Fig. 6.1). Fig. 6.2c 

shows a feature selection, a.k.a. feature configuration, of a memberSPL. Fig. 

6.2a,b,d,e show the derived service variability views that supports the  feature 

selection. Derivation of the memberPIM from the splPIM is described later in 

this chapter.  

Fig. 6.3 depicts the process of creating two types of PIMs in SoaSPLE. 
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Fig. 6.1 E-Commerce SPL Service Oriented Multiple-View Platform Independent Model 
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Fig. 6.2 Basic E-Commerce SPL Member Application 
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6.3. Platform Specific Model (PSM) 

This research does not provide transformation rules for transforming memberPIMs to 

PSMs, since the MDA literature already includes these rules. For example, 

transformation rules that transform PIMs, constructed in UML, to different platforms 

such as Java, .NET, and SQL, already exist [52], [51], [45]. 

However, this research can utilize any PIM to PSM transformation rules based on the 

desired target platform. In this research, this capability is realized by designing a 

transformation facility in the automated service-oriented SPL framework. Based on the 

desired target platform, a transformation rules definition can be imported into the 

 
Fig. 6.3 Two Types of PIMs in SoaSPLE 
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transformation facility. Consequently, this definition is used to transform memberPIMs to 

the target platform’s PSM.   

6.4. Feature Based Service Application Derivation 

Member application derivation is based on feature selection from the feature model. It 

should be noted that the derived model is an application multiple-view model that is 

based on the multiple-view service variability model and meta-model described in 

Chapters 4 and 5. 

To automatically derive member applications, this research defines a member application 

derivation algorithm that derives memberPIMs from the splPIM. The derivation 

algorithm traverses the splPIM, based on selected features, and constructs the 

memberPIMs from the SOA elements that are mapped to the selected features.  

The derivation algorithm is implemented in JAVA code that takes splPIM and feature 

selection as inputs and produces memberPIMs. Fig. 6.4 depicts the major building blocks 

of the derivation process in the automated framework (SoaSPLE). 
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6.5. splPIM to memberPIM Derivation Algorithm 

The member application derivation algorithm traverses the Feature-to-SOA mapping 

model and constructs multiple-view service-oriented member applications based on 

selected features of member applications. 

 The algorithm inputs are the Feature-to-SOA mapping model and the selected features 

for the specific member application. The algorithm de-selects SOA elements that are not 

mapped to any selected feature. Then, the algorithm traverses the selected features and 

constructs the derived member application by following the ‘supBy’ attributes of each 

selected feature. These attributes refer to SOA elements from the multiple service views. 

The output of the algorithm is a multiple-view service-oriented member application. 

 

 

 
Fig. 6.4 splPIM to memberPIM Derivation Process in SoaSPLE 
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6.6. Service-Oriented SPL Engineering Tool Prototype 

To realize the automated framework described in this chapter, this research built a model-

driven Service-Oriented SPL Engineering proof-of-concept tool prototype (SoaSPLE). 

The goals of the prototype are as follows: 

• Demonstrate the feasibility of the automated service-oriented SPL engineering 

framework described in this dissertation. 

• Ensure the consistency of multiple views of the multiple-view model for both 

the SPL and member applications. 

• Model multiple-view service-oriented variability SPLs. 

• Derive member service applications from the SPLs. 

• Deploy, execute, and test member applications of the SPL. 

 

This research designed and implemented a tool prototype by utilizing the Eclipse 

Modeling Framework (EMF) [64]. EMF is an open-source meta-modeling framework 

and code generation facility for building tools and languages based on a structured meta-

model called Ecore.  Ecore is the meta model, which is the basis of the meta-modeling 

language provided by EMF.  Ecore is equivalent to the Meta-Object Facility (MOF) 

provided by the OMG for UML. 

EMF allows modelers to create meta-models in three different ways: direct diagramming 

with Ecore modeling elements, writing Java classes that define the meta-model, and 

writing XMI schema that defines the meta-model. Once a meta-model is constructed in 
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one format, EMF automatically creates the definition of the meta-model in the other 

formats.  Further, when the meta-model is modified in any format, EMF automatically 

updates the other formats. In this research, meta-models were created with direct 

construction of Ecore meta-modeling elements. It should be noted that EMF provides 

runtime support where instances of the meta-models, i.e. models, can be manipulated by 

programs.  

This research utilizes EMF as a design environment. In other words, the Ecore meta-

modeling language is used to create all model elements in this research as first-class 

modeling elements. By representing the modeling elements of the meta-views as first-

class elements, high flexibility is gained, which facilitates precise modeling and 

consequently helps achieve the goals mentioned above. The following subsections detail 

the design steps of SoaSPLE. 

6.7. Feature Meta-View 

This research modeled the Feature Meta-View (Chapter 5) as an Ecore meta-model. Fig. 

6.5 depicts a snapshot of the Feature View meta-model in SoaSPLE. 
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6.8. Service Meta-Views 

This research models the Service Variability Meta-Views (Chapter 5) by using the Ecore 

meta-model as well. Fig. 6.6 depicts the Service Contract Meta-View in SoaSPLE.  

 

 

 

 

 

 
Fig. 6.5 Feature View Meta-Model in SoaSPLE 
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6.9. Feature Meta-View to Variable Service Meta-Views 

Mapping 

This research constructed another Ecore meta-model that establishes the mapping 

relationships among the Service Meta-Views and the Feature Meta-View. This meta-

model is a representation of the Service Variability Meta-Model described in Chapter 5.  

The mapping relationships were modeled as meta-class associations. In other words, The 

Feature meta-class from the Feature Meta-View has an association with each meta-class 

of the service meta-views. In addition, the service views meta-classes have associations 

with each other. The end result is one Ecore meta-model that represent the multiple-view 

service variability meta-model described in Chapter 5. Fig. 6.7 depicts this meta-model in 

SoaSPLE. 

 

 
Fig. 6.6 Service Contract View Meta-Model in SoaSPLE 
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This research constructed a Mapping Facility within the tool prototype that enables 

modelers to map features to service views. This Mapping Facility is governed by the 

multiple-view service variability meta-model described in Chapter 5 and shown in Fig. 

6.7. The use of the Mapping Facility is demonstrated in the case studies of Chapters 8 and 

9. 

6.10. Consistency Checking Rules 

This research applied the consistency checking rules (Chapter 5) to the multiple-view 

service variability meta-model. The OCL consistency checking rules were added to the 

multiple-view service variability meta-model as Ecore annotations [64].  SoaSPLE 

 

 
Fig. 6.7 Multiple-View Service Variability View Meta-Model in EMF 
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executes the consistency rules when service models, based on the multiple-view service 

variability meta-model (Chapter 5), are created. If the service models violate these 

consistency checking rules, SoaSPLE emits popup messages indicating the violation. 

Validation of the consistency checking rules is described in Chapter 7, 8, and 9. 

For example, to implement the following OCL rule: 

A Kernel ServiceContract can only support a kernel Feature 
context Feature inv: reuseStereotype = ‘kernel’ implies  

servicecontract->size() >= 1 and servicecontract.reuseStereotype = 

‘kernel’ 

 

The Feature meta-class in the Feature Meta-View model in the tool prototype was 

annotated with the OCL rule as shown in Fig. 6.8. When the meta-model is compiled in 

the tool, SoaSPLE generates Java code that represents the aforementioned OCL rule. 

When models are created based on the meta-model, SoaSPLE automatically evaluates the 

 
 

Fig. 6.8 Meta-Class OCL Annotation Example 
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embedded OCL rules using the underlying Java code. 

6.11. Service Member Application Derivation 

This research derives service member applications by applying a derivation algorithm as 

described in section 6.6. The derivation algorithm is implemented in Java and defined in 

SoaSPLE. SoaSPLE automatically generates Java classes and interfaces for all meta-

classes in the meta-model. In other words, each meta-class in the multiple-view service 

variability meta-model is represented internally in SoaSPLE as a Java class. SoaSPLE’s 

derivation algorithm gets executed against the generated meta-classes’ Java code. The 

Derivation component within SoaSPLE takes the splPIM and feature selection as inputs 

and produces the specific memberPIM as an output as explained in section 6.5. 

6.12. Code Generation 

As mentioned in section 6.3 , this research does not provide rules for transforming 

memberPIMs into memberPSMs, since the MDA literature already includes these rules. 

This research designed SoaSPLE in such a way to use any PIM-to-PSM transformation 

rules based on the desired target platform. 

SoaSPLE uses a Java/Web Services PIM-to-PSM transformation rules to derive the 

memberPSMs. If a different target language is desired, say .NET instead of Java, users of 

SoaSPLE can use a .NET PIM-to-PSM transformation rules and regenerate the 
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memberPSMs. It should be noted that the alternate transformation rules are applied to the 

original memberPIMs.  

6.13. Deployment and Execution 

SoaSPLE employs several technologies for deploying and executing service member 

applications: 

• Eclipse runtime support environment [64].  

• Apache ODE [65] – ODE is an open source BPEL engine. The generated 

BPEL code is compiled and deployed to ODE. The BPEL code invokes 

services based on WSDL files. 

• Apache CXF [66] – CXF is an open-source web-services framework that 

supports standard APIs such as JAX-WS and JAX-RS as well as WS 

standards including SOAP, and WSDL. 

• Eclipse Swordfish [67] – Swordfish is an open-source extensible Enterprise 

Service Bus (ESB). 

The case studies in Chapter 8 and 9 demonstrate the implementation, deployment, and 

execution of member applications by using SoaSPLE. 
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7. Research Validation 

 

7.1. Validation Approach 

The objective of the validation is to evaluate the approach in this research with regard 

to the following properties:  

1. The multiple views of the service-oriented software product line are consistent 

with each other. More specifically, the evaluation validates that the following 

multiple-view modeling relationships, described in Chapter 4 and 5, are satisfied: 

a) Intra-View Relationships, i.e. the relationships between meta-classes 

within each meta-view. 

b) Inter-View Relationships, i.e. the relationships between meta-classes 

across the meta-views. 

c) Feature to Service Views Relationships (Mapping Features to SOA), 

i.e., feature meta-classes are supported by valid meta-classes in the 

multiple views according to the mapping rules described in Chapter 5. 

This property is referred to as Consistency throughout the chapter. 

2. The multiple-view service variability model is compliant with the underlying 

multiple-view service variability meta-model. In other words, each element in the 
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multiple-view model is a valid instantiation of its corresponding meta-class in the 

meta-model. In addition, each association in the multiple-view model is a valid 

instantiation of its corresponding meta-association in the meta-model. This 

property is referred to as Compliance throughout the chapter. 

3. Derived software product line member applications are valid service-oriented SPL 

members. Hence, the evaluation validates the following two characteristics of 

service member derivation: 

a) The derived member applications are valid members of the SPL family. 

This implies that member applications are only derived if they adhere to a 

valid feature selection from the feature model which describes the 

requirements of the entire SPL. 

b) The derived SPL member applications are valid service-oriented 

applications, i.e. they execute within a service-oriented environment and 

their constituent components can be invoked as the business workflow of 

the application is exercised. 

This property is referred to as Legitimacy throughout the chapter. 

To achieve the aforementioned validation objectives, the validation procedure is 

divided into two main testing tasks: 

1. Unit Testing – this type of testing tests each element and relationship in the 

multiple-view service variability meta-model.  Unit testing is needed, because 

the case studies may not exercise every part of the meta-model.  
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2. System Testing – this is a system-wide testing that tests the running service-

oriented applications of the SPL end-to-end.  

This chapter details unit testing, while Chapters 8 and 9 details system testing through the 

case studies. 

7.2. System Testing Approach 

This type of testing ensures that each feature of the SPL’s feature model is tested by 

tracing the sequence of activities for each business process of the member application 

through testing the sequence of service coordinators and service invocations. The testing 

results are demonstrated by having an execution trace that validates that the activity 

model sequence, i.e. the business process, is executed by the service coordinator and 

service operation invocations.   

System testing validates the Legitimacy property. System testing is accomplished by 

conducting case studies using the proof-of-concept tool prototype, SoaSPLE. The case 

studies involve feature modeling of the SPL, multiple-view variability modeling of the 

SPL, consistency checking of the SPL’s multiple views, derivation of the service member 

applications of the SPL, and execution of member applications of the SPL. Two case 

studies are conducted: an electronic commerce service-oriented SPL and a hotel 

reservation service-oriented SPL. The case studies are detailed in Chapters 8 and 9. 
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7.3. Unit Testing 

Unit testing validates the Consistency and Compliance properties by demonstrating 

that each element in the multiple-view service variability meta-model can be 

instantiated as a modeling element. In addition, unit testing demonstrates that each 

association and consistency rule in the meta-model can be satisfied between elements 

of the instantiated model. Unit testing is accomplished via SoaSPLE. The following 

types of unit tests are carried out: 

a. Test cases to validate the consistency checking rules of each type of 

meta-model relationships, i.e. intra-view, inter-view, and feature-to-

SOA mapping. This type of unit tests validates the Consistency 

property. 

b. Test cases to create a multiple-view service model, which results in the 

creation of model instances of each meta-class and model associations 

of each meta-association. This type of unit tests validates Compliance 

property. 

7.4. Unit Test Cases 

Many unit tests are expressed via the JUnit Testing Framework. JUnit is an open-source 

unit testing framework that allows Java developers to write repeatable unit tests for their 

code. In this research, JUnit tests were designed to operate on Java code that represents 

the meta-modeling elements of the multiple-view service variability meta-model. This is 
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possible, because Eclipse Modeling Framework (Chapter 6) creates Java interfaces for all 

meta-modeling elements. Hence, the JUnit tests in this research programmatically create 

modeling elements and associations of the multiple-view meta-model and then run 

pertinent tests.  

Other unit tests are performed by directly engaging SoaSPLE to test for specific 

scenarios. Unit tests are detailed in the remainder of this chapter per meta-view of the 

multiple-view service variability meta-mode 

7.4.1. Feature Meta-View Unit Tests 
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Table 7.1 Feature Meta-View Unit Tests 

Unit Test Meta-Model 

Element 

Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Create kernel 

Feature 
KernelFeature Purchasing Kernel Feature Pass Pass JUnit 

Create Optional 

Feature 
OptionalFeature Credit Rating Optional Feature Pass Pass JUnit 

Create Alternative 

Feature 
AlternativeFeature Preferred Customer Alternative 

Feature 

Pass Pass JUnit 

Create 

ZeroOrMoreOf 

Feature Group 

ZeroOrMoreOf Consumer Type ExactlyOneOf 

Feature Group 

Pass Pass JUnit 

Create 

AtleastOneOf 

Feature Group 

AtleastOneOf Payment AtleastOneOf Feature Group Pass Pass JUnit 

Create 

ExactlyOneOf 

Feature Group 

ExactlyOneOf Consumer Type ExactlyOneOf 

Feature Group 

Pass Pass JUnit 

Create 

ZeroOrOneOf  

Feature Group 

ZeroOrOneOf Dummy  

ZeroOrOneOf  Feature Group 

Pass Pass JUnit 

Select two 

mutually exclusive 

features 

Feature 

FeatureGroup 

Regular Customer Feature Preferred 

Customer Features 

Fail Fail Manual 

Select an optional 

feature without a 

feature it depends 

on 

Feature 

OptionalFeature 

Electronic Goods Optional Feature 

E-Commerce Kernel Feature 

Fail Fail Manual 

Select each feature 

in ExactlyOneOf 

Feature Group on 

its own 

Feature 

FeatureGroup 

Regular Customer Feature Preferred 

Customer Features 

Consumer Type ExactlyOneOf 

Feature Group 

Pass Pass Manual 

Select each feature 

in ZeroOrOneOf 

Feature Group on 

its own 

Feature 

FeatureGroup 

Dummy Feature 

Dummy ZeroOrOneOf Feature Group 

Pass Pass Manual 

Do Not select a  

feature from 

ExactlyOneOf 

Feature Group 

Feature 

FeatureGroup 

Regular Customer Feature Preferred 

Customer Features 

Consumer Type ExactlyOneOf 

Feature Group 

Fail Fail Manual 

Do Not select a  

feature from a 

AtleastOneOf 

Feature Group 

Feature 

FeatureGroup 

Books Feature 

Electronics Feature 

Inventory AtleastOneOf Feature 

Group 

 

Fail Fail Manual 

Select more than 

one feature from 

ExactlyOneOf 

Feature Group 

Feature 

FeatureGroup 

Regular Customer Feature Preferred 

Customer Features 

Consumer Type ExactlyOneOf 

Fail Fail Manual 

Select more than 

one feature from 

ZeroOrOneOf 

Feature Group 

Feature 

FeatureGroup 

Dummy Feature 

Dummy ZeroOrOneOf Feature Group 

Fail Fail Manual 

Select more than 

one feature from 

ZeroOrMoreOf 

Feature Group 

Feature 

FeatureGroup 

Dummy Feature 

Dummy ZeroOrMoreOf Feature 

Group 

Pass Pass Manual 
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7.4.2. Service Contract Meta-View Unit Tests 

 

7.4.3. Business Process Meta-View Unit Tests 

Table 7.2 Service Contract Meta-View Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/Ma

nual 

Create Kernel 

Service Contract 
KernelServiceContract Purchasing Service 

Contract 

Pass Pass JUnit 

Create Optional 

Service Contract 
OptionalServiceContract Sales Tax Service 

Contract 

Pass Pass JUnit 

Create Alternative 

Service Contract 
AlternativeServiceContract Dummy Service 

Contract 

Pass Pass JUnit 

Create Kernel 

Participant 
KernelParticipant Buyer Kernel Participant Pass Pass JUnit 

Create Optional 

Participant 
OptionalParticipant Rating Agency Optional 

Participant 

Pass Pass JUnit 

Create Alternative 

Participant 
AlternativeParticipant Dummy Alternative 

Participant 

Pass Pass JUnit 

Create a 

ServiceContract 

with Zero 

Participants 

KernelServiceContract Purchasing Service 

Contract 

Fail Fail Manual 

Create a 

ServiceContract 

with One Participant 

OptionalServiceContract Credit Checking Service 

Contract 

Fail Fail Manual 

Table 7.3 Business Process Meta-View Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Create a Kernel 

Activity 
KernelActivity Place Order Pass Pass JUnit 

Create an Optional 

Activity 
OptionalActivity Calculate Discount Pass Pass JUnit 

Create an 

Alternative Activity 
AlternativeActivity Lookup Preferred 

Customer 

Pass Pass JUnit 

 

Create a Start Node 

with no Next 

Activity 

StartNode Dummy Start Node Fail Fail Manual 
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7.4.4. Service Interface Meta-View Unit Tests 

 

7.4.5. Service Coordination Meta-View Unit Tests 

 

 

Table 7.4 Service Interface Meta-View Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Create a Kernel 

ServiceInterface 
KernelServiceInterface IOrdering Pass Pass JUnit 

Create an Optional 

ServiceInterface 
OptionalServiceInterface ICreditRating Pass Pass JUnit 

Create a Variant 

ServiceInterface 
VariantServiceInterface Dummy Iface Pass Pass JUnit 

Create a Kernel 

Operation 
KernelOperation placeOrder() Pass Pass JUnit 

Create an Optional 

Operation 
OptionalOperation orderElectronics() Pass Pass JUnit 

Create a Variant 

Operation 
VariantOperation Dummy Operation Pass Pass JUnit 

Table 7.5 Service Coordination Meta-View Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Create a Kernel 

ServiceCoordinator 
KernelServiceCoordinator Order Fulfillment Pass Pass JUnit 

Create an Optional 

ServiceCoordinator 
OptionalServiceInterface Residential Booking Pass Pass JUnit 

Create a Variant 

ServiceCoordinator 
VariantServiceInterface Dummy Pass Pass JUnit 

Create a 

ServiceCoordinator that 

sends Zero Messages 

ServiceCoordinator Dummy Pass Pass Manual 

Create a 

ServiceCoordinator that 

sends One or more 

Messages 

ServiceCoordinator Dummy Pass Pass Manual 
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7.4.6. Inter-View Relationships Unit Tests 

 

 

 

 

 

 

 

 

Table 7.6 Inter-View Relationships Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Create a 

ServiceContract with 

No Participants 

OptionalServiceContract Timing Optional 

ServiceContract 

Fail Fail Manual 

Create a 

ServiceContract with 

One Participants 

OptionalServiceContract 

OptionalParticipant 

Timing Optional 

ServiceContract 

Fail Fail Manual 

Create a Participant that 

does not provide or 

consume a 

ServiceInterface 

Participant 

ServiceInterface 

Dummy Fail Fail Manual 

Create a Participant that 

does provide or 

consume a 

ServiceInterface 

Participant 

ServiceInterface 

Dummy Pass Pass Manual 

Create Business Process 

that is not associated 

with a Participant 

Activity 

Participant 

Dummy Fail Fail Manual 

Create an Activity that 

is not mapped to 

ServiceInterface 

Activity 

ServiceInterface 

Dummy Fail Fail Manual 

Create a Business 

Process that is not 

associated with a 

ServiceCoordinator 

Activity 

ServiceCoordinator 

Dummy Fail Fail Manual 
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7.4.7. Consistency Checking Rules Unit Tests 

   

 

Table 7.7 Consistency Checking Rules Unit Tests 

Unit Test Meta-Model Element Model Element Expected 

Result 

Pass/ 

Fail 

JUnit/

Manual 
Map a Kernel Feature to 

a Kernel 

ServiceContract 

KernelFeature 

KernelServiceContract 

Pass Pass  Manual 

Map a Kernel Feature to 

Optional 

ServiceContract 

KernelFeature 

OptionalServiceContract 

Fail Fail  Manual 

Map a Kernel Feature to 

a Variant 

ServiceContract 

KernelFeature 

VariantServiceContract 

Fail Fail  Manual 

Map a Kernel Feature to 

Kernel Participant 
KernelFeature 

KernelParticipant 

Pass Pass  Manual 

Map a Kernel Feature to 

Optional Participant  
KernelFeature 

OptionalParticipant 

Fail Fail  Manual 

Map a Kernel Feature to 

an Alternative 

Participant 

KernelFeature 

AlternativeParticipant 

Fail Fail  Manual 

Map a Kernel Feature to 

a Kernel Activity 
KernelFeature 

KernelActivity 

Pass Pass  Manual 

Map a Kernel Feature to 

an Optional Activity 
KernelFeature 

OptionalActivity 

Fail Fail  Manual 

Map a Kernel Feature to 

a Alternative Activity 
KernelFeature 

AlternativeActivity 

Fail Fail  Manual 

Map a Kernel Feature to 

a Kernel 

ServiceInterface 

KernelFeature 

KernelServiceInterface 

Pass Pass  Manual 

Map a Kernel Feature to 

Optional 

ServiceInterface  

KernelFeature 

OptionalServiceInterface 

Fail Fail  Manual 

Map a Kernel Feature to 

Variant ServiceInterface  
KernelFeature 

VariantServiceInterface 

Fail Fail  Manual 

Map a Kernel Feature to 

Kernel 

ServiceCoordinator  

KernelFeature 

KernelServiceCoordinator 

Pass Pass  Manual 

Map a Kernel Feature to 

Optional 

ServiceCoordinator 

KernelFeature 

OptionalServiceCoordinator 

Fail Fail  Manual 

Map a Kernel Feature to 

Variant 

ServiceCoordinator 

KernelFeature 

VariantServiceCoordinator 

Fail Fail  Manual 
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8. Electronic Commerce Service-Oriented Software 
Product Line Case Study 

 

8.1. Case Study Objectives 

The purpose of conducting this case study is to evaluate the approach in this research 

with regard to the validation properties detailed in Chapter 7. These properties are listed 

here briefly: 

1. The multiple views of the service-oriented software product line are consistent 

with each other. This property is referred to as Consistency. 

2. The multiple-view service variability model is compliant with the underlying 

multiple-view service variability meta-model. This property is referred to as 

Compliance  

3. Derived software product line member applications are valid service-oriented SPL 

members. Hence, the evaluation validates the following two characteristics of 

service member derivation: 

a. The derived member applications are valid members of the SPL family.  

b. The derived SPL member applications are valid service-oriented 

applications. 

This property is referred to as Legitimacy. 
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8.2. Case Study Validation Approach 

The validation approach of the case study is a system testing approach that validates the 

derived service member applications of an electronic commerce software product line 

(SPL). This type of testing ensures that each feature of the SPL’s feature model is tested 

by tracing the sequence of activities for each business process of member applications 

through testing the sequence of service coordinators and service invocations. The testing 

results are demonstrated by having an execution trace that shows that the activity model 

sequence, i.e. the business process, is executed by the service coordinators and service 

operation invocations.  

The case study is conducted via the proof-of-concept tool prototype, SoaSPLE. The case 

study involves feature modeling of the SPL, multiple-view variability modeling of the 

SPL, consistency checking of the SPL’s multiple views, derivation of the service member 

applications of the SPL, and execution of member applications of the SPL. 

8.3. Electronic-Commerce Case Study Problem 

Description 

This case study demonstrates the modeling of an E-Commerce web based SPL. The E-

Commerce SPL consists of sellers, buyers, suppliers, banks, and tax and credit check 

agencies. Sellers get their goods from suppliers and sell them to interested buyers. Sellers 

define their own business workflow to check buyers’ credit history, replenish goods’ 

inventory, assess sales tax and fulfill buyers’ orders among other things. 
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The E-Commerce domain has inherent variable requirements –   different types of sellers, 

different types of sold goods, different payment methods, multiple suppliers, several sales 

tax jurisdictions, multiple pricing and discount schemes, and the like.  

The following sections illustrate the steps taken to conduct the case study. 

8.4. Feature View Modeling 

Commonality and variability analysis of the E-Commerce SPL is performed in this step. 

The result of this step is a feature model, which represent the Feature View of the 

multiple-view service variability model (Chapter 4). After commonality and variability 

analysis, it was determined that the E-Commerce SPL can vary in the following ways: 

a) The E-Commerce SPL will always have Purchasing and Inventory capabilities. In 

addition, it will always have Sellers, Buyers, Book Publisher, and Bank roles. The 

Seller role will always have an Order Fulfillment business process. Finally, the E-

Commerce SPL will always have Ordering, Payment, and Books Ordering 

capabilities. All this common functionality is grouped into the ‘E-Commerce 

Kernel’ <<common feature>> in the feature model, which includes the following 

features: ‘Purchasing’, ‘Order Fulfillment’, ‘Ordering’, ‘Payment’, ‘Inventory’, 

and ‘Books’. 

b) The E-Commerce product line can either have a credit checking option for regular 

customers and partners, which would then require a credit rating capability; 

however, if the business always deals with trusted buyers and partners, this 
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capability is not required. This requirement is modeled as a ‘Credit Rating’ 

<<optional feature>>. 

c) A Seller can decide to offer electronic goods for its customers. In turn, an 

electronic goods supplier would be needed for the Inventory feature. This 

requirement is modeled as ‘Electronics’ <<optional feature>>. 

d) The Order Fulfillment business process of the Seller role can offer two types of 

payments: credit card, which is default, and electronic check. This requirement is 

modeled as a ‘Payment’ <<at least-one-of feature group>> with a ‘Credit Card’, 

which is a default feature stereotyped with <<default feature>>, and an 

‘Electronic Check’, which is an <<optional feature>> in the feature model. 

e) The Seller can offer a discount capability that can be selected seasonally. This 

requirement is modeled as a ‘Discount’ feature, which has the <<optional 

feature>> stereotype in the feature model. 

f) The Order Fulfillment business process of the Seller can offer a ‘Preferred 

Customer’ capability for customers with existing credit records to speed up order 

processing. This requirement is modeled as a ‘Consumer Type’ <<exactly-one-of 

feature group>> with a ‘Preferred Customer’ <<alternative feature>> and a 

‘Regular Customer’ << alternative feature >> feature in the feature model. The 

‘Regular Customer’ feature requires the ‘Credit Rating’ feature mentioned above. 

This dependency is modeled as a ‘Requires’ association in the feature model. 

g) Some states require their citizens to pay sales tax on internet-based purchases. 

Thus, Sellers need to include tax calculation capabilities in their Order Fulfillment 
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business process based on the Buyers’ state of residence. This requirement is 

modeled as a ‘Sales Tax’ <<optional feature>> in the feature model. 

Based on the aforementioned analysis, a feature model was created in SoaSPLE as shown 

in Fig. 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the modeler was building the feature model, SoaSPLE automatically checked the 

model against the Feature Meta-View of the multiple-view service variability meta-model 

(Chapter 5) by using the embedded consistency checking rules. Violations of these 

 Fig. 8.1 Feature View of the E-Commerce SPL 
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consistency checking rules were detected by SoaSPLE and the modeler had to take 

corrective actions to create a valid feature model. 

8.5. Service Contract Variability View Modeling 

This is a Requirements view that describes service contracts (Chapter 4). Based on the 

feature model described in the previous section and knowledge of the E-Commerce 

domain, it was decided to model ServiceContracts and Participants as shown in the 

Service Contract View in Fig. 8.2. The model in Fig. 8.2 consists of Purchasing, 

Inventory Ordering, Credit Checking, and Sales Tax ServiceContract classes. In addition, 

the model contains Buyer, Seller, Bank, Rating Agency, Book Publisher, Electronic 

Supplier, and Tax Agency service Participants. ServiceContracts and Participants are 

categorized as kernel, or optional. Kernel elements are required by all members of the E-

Commerce SPL, whereas optional elements are required by only some members. Thus, 

the model describes how service Participants interact with each other through 

ServiceContracts to makeup an E-Commerce family of applications. It should be noted 

that this model is based on the Service Contract Variability Meta-Model described in 

Chapter 5. 
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8.6. Business Process Variability View Modeling 

This Requirements view models the workflow of the Order Fulfillment business process 

that is defined by the Seller Participant. This view is based on the Business Process Meta-

Model described in Chapter 5. 

A UML Activity diagram is constructed with kernel, optional, and alternative activities as 

shown in Fig. 8.3.  

 

 

 

 

 

 

  

Fig. 8.2 Service Contract View of the E-Commerce SPL 
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8.7. Service Interface Variability View Modeling 

This Architectural view models service interfaces, which specify the operations provided 

or required by Participants. Service interfaces are modeled by using the ServiceInterface 

element as described in Chapter 5. ServiceInterfaces are categorized as kernel, optional, 

or variant.  

Upon examining the activities of the Order Fulfillment business process (section 8.6) and 

based on the E-Commerce domain knowledge, it was decided to have the following 

service interfaces (Fig. 8.4): IOrdering, IInventory, IBooksOrdering, ICreditRating, 

ISalesTax, IElectronicsOrdering, and IPayment. It should be noted that these service 

  

Fig. 8.3 Business Process View of the E-Commerce SPL 
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interfaces are provided or required by service participants that are modeled in the Service 

Contract View (section 8.5). 

 

 

8.8. Service Coordination Variability View Modeling 

This Architectural view models service coordinators that coordinate business workflow 

(Chapter 4). The Order Fulfillment ServiceCoordinator coordinates the Order Fulfillment 

business process described in section 8.6. Upon examining the Activities of the Order 

Fulfillment business process (section 8.6) and their corresponding service interfaces  

 

  
Fig. 8.4 Service Interface View of the E-Commerce SPL 
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(Section 8.7), a ServiceCoordinator was designed as shown in figure 8.5. The syntax of 

service coordination was described in Chapter 4. 

 

 

 

8.9. Feature View To Service Views Mapping 

Once the views were constructed, mapping features to service views commenced. 

Mapping the feature view to the service variability views was done manually by using the 

Mapping Facility within SoaSPL. Here, the modeler constructed a mapping by 

associating features from the feature view with service elements in the variable service 

views. It should be noted that this mapping is governed by the underlying multiple-view 

service variability meta-model described in Chapters 5.  

Based on the feature view (section 8.4) and the E-Commerce domain knowledge, a 

mapping was constructed as shown in Fig. 8.6. 

  

Fig. 8.5 Service Coordination View of the E-Commerce SPL 
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Table 8.1 shows how each feature, in the feature model, is supported by SOA elements 

from the different views. Also, the table shows that one feature in the feature model could 

be supported by one or more SOA elements from different views of the multiple view 

model. 

It should be noted that this mapping represents the entire SPL platform-independent 

model, which was termed splPIM in Chapter 6. The splPIM will be used in the service 

member derivation phase below to derive service member applications. 

 

 

 

 

 

 

 

 

 

 

  
Fig. 8.6 E-Commerce splPIM 
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Table 8.1 Feature to SOA Mapping 

Feature 

View 

Feature 

Category 

Service 

Contract View 

Business 

Process 

View 

Service 

Interface View 

Service 

Coordination 

View 
E-Commerce 

Kernel 

Common 

(this feature 

includes all 

the kernel 

features in the 

SPL, namely 

Purchasing, 

Order 

Fulfillment, 

Ordering, 

Payments, 

and Books) 

Purchasing 

ServiceContract 
Inventory 

ServiceContract 
Ordering 

ServiceContract 
Buyer Participant 

Seller Participant 

Bank Participant 

Book Publisher 

Participant 
 

Order 

Fulfillment 

Business 

Process 

Payment 

ServiceInterface 
Ordering 

ServiceInterface 
Books Ordering 

ServiceInterface 

Order Fulfillment 

ServiceCoordinator 

Credit Card 

Payment 

Default   Payment 

ServiceInterface 

 

Electronic 

Check 

Payment 

Optional   Payment 

ServiceInterface 

 

Preferred 

Customer 

Alternative  ‘Lookup 

Preferred 

Customer’ 

Activity 

Customers 

ServiceInterface 

 

Regular 

Customer 

Default  ‘Check CR’ 

Activity 

Credit Rating 

ServiceInterface 

 

Discount Optional  ‘Calculate 

Discount’ 

Activity 

Discount 

ServiceInterface 

 

Sales Tax Optional Sales Tax 

ServiceContract 

‘Calculate 

Tax’ 

Activity 

Sale Tax 

ServiceInterface 

 

Electronics Optional Electronic 

Supplier 

Participant  

 Electronics 

Ordering 

ServiceInterface 

 

Credit 

Rating 

Optional  ‘Check CR’ 

Activity 

Credit Rating 

ServiceInterface 
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8.10. Member Applications Derivation 

At this phase of the case study, a complete multiple-view service-oriented E-Commerce 

splPIM is constructed. Therefore, service member applications of the product line family 

can be derived based on feature selection from the feature view. Two service member 

applications were derived as follows: 

8.10.1. Basic E-Commerce Application 

To specify the first member application, feature selection from the feature model (section 

8.4) is performed as follows: 

a. ‘E-Commerce Kernel’ feature is always selected since it is a common feature 

and contains all kernel features in the SPL. This common feature is supported 

by: Purchasing Service Contract which includes the Ordering and the Payment 

Service Interfaces, Seller, Buyer, and Bank Participants which are associated 

with the Purchasing Service Contract, Inventory Ordering Service Contract 

which includes the Books Ordering Service Interface, and Book Publisher 

Participant which is associated with the Inventory Ordering Service Contract, 

and Order Fulfillment Business Process which is associated with the Seller 

Participant  and includes the Place Order, Make Payment, and Check 

Availability Activities. 

b. ‘Regular Customer’ <<alternative feature>> is selected, which is a part of the 

‘Consumer Type’ <<exactly-one-of feature group>>. Consequently, the 
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‘Credit Rating’ <<optional feature>> is selected since the ‘Regular Customer’ 

feature requires ‘Credit Rating’. These features are supported by Credit 

Checking Service Contract, which includes the Credit Rating Service Interface 

which is associated with the Rating Agency Participant and the Check CR 

Activity. 

c. ‘Credit Card’ <<default feature>> is selected, which is a part of the ‘Payment’ 

<<at least-one-of feature group>>. This feature is supported by the Make 

Payment Activity, and the Payment Service Interface. 

To derive the Basic E-Commerce application, the Member Application Derivation 

facility of SoaSPLE (Chapter 6) was invoked. The derived multiple-view service-oriented 

Basic E-Commerce application features are depicted in Fig. 8.7. 
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Next, the Code Generation Facility of SoaSPLE (Chapter 6) was invoked to transform the 

derived Basic E-Commerce application to Java/Web Services code. Web Services 

Description Language (WSDL) was produced for the Service Interface View. Business 

Process Execution Language (BPEL) code was generated for the Service Coordination 

View. 

Once code was generated, the Basic E-Commerce member application was deployed and 

executed. The execution logs show how each feature of the feature model is exercised by 

  
Fig. 8.7 Basic Member E-Commerce Feature Model 
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tracing the sequence of activities of the Order Fulfillment business process through 

testing the sequence of the ServiceCoordinator and service invocations. 

8.10.2. Enhanced E-Commerce Application 

To specify the second member application, feature selection from the feature model is 

performed as follows: 

a) E-Commerce Kernel’ feature is again selected since it contains all kernel 

features in the SPL, and therefore it will be supported by the same SOA 

elements as in the Basic Application above.  

b) ‘Preferred Customer’ optional feature, which is supported by the ‘Lookup Pref 

Customer’ Activity in the Order Fulfillment Business Process. Consequently, 

the ‘Discount’ feature is automatically selected since it is required by the 

‘Preferred Customer’ feature .The Discount feature is supported by the 

‘Calculate Discount’ Activity in the Order Fulfillment Business Process.  

c) ‘Sales Tax’ optional feature is selected, which is supported by the ‘Calculate 

Tax’ Activity, SalesTax ServiceContract, SalesTax ServiceInterface, and Tax 

Agency Participant. Again, notice how the selection of one feature drives the 

selection of several SOA elements that span multiple views. 

d) ‘Electronic Check’ optional feature is selected along with the ‘Credit Card’ 

default feature; these 2 features are supported by the Make Payment Activity 

and the Payment ServiceInterface. 
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e) ‘Electronic Goods’ optional feature is selected, which is supported by 

Electronic Supplier Participan and Electronics Ordering ServiceInterface. 

To derive the Enhanced E-Commerce application, the Member Application Derivation 

facility was invoked. The derived multiple-view service-oriented Enhanced E-Commerce 

application features are depicted in Fig. 8.8. 

 

 

  
Fig. 8.8 Enhanced Member E-Commerce Feature Model 
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Next, the Code Generation Facility was invoked to transform the derived Enhanced E-

Commerce application to Java/Web Services code. Web Services Description Language 

(WSDL) was produced for the Service Interface View. Business Process Execution 

Language (BPEL) code was generated for the Service Coordination View.  

Once code was generated, the Enhanced E-Commerce member application was deployed 

and executed. 

8.11. Case Study Conclusion 

The modeler in the case study modeled the commonality and variability of an E-

Commerce SPL by creating a feature model. Then, multiple-view service variability 

model was created. Afterwards, the modeler mapped the feature model to the multiple-

view service model. Then, two member applications were derived from the SPL. Finally, 

service member applications were deployed and executed. 

During the modeling phases, SoaSPLE detected invalid modeling steps and reported them 

to the modeler. Consequently, the modeler took corrective actions and produced valid 

models. 

This case study validated the research approach of this dissertation by satisfying the three 

properties set forth in Chapter 7, namely: Consistency, Compliance, and Legitimacy. The 

tool prototype (SoaSPLE) was used to carry out the case study. System testing was 

achieved by making sure that each feature of the feature view was exercised by tracing 

the sequence of activities of the Order Fulfillment business process through testing the 

sequence of the ServiceCoordinator and service invocations. 
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9. Hotel Reservation Service-Oriented Software Product 
Line Case Study 

 

9.1. Case Study Objectives 

The purpose of conducting this case study is to evaluate the approach in this research 

with regard to the validation properties detailed in Chapter 7. These properties are listed 

here briefly: 

1 The multiple views of the service-oriented software product line are consistent 

with each other. This property is referred to as Consistency. 

2 The multiple-view service variability model is compliant with the underlying 

multiple-view service variability meta-model. This property is referred to as 

Compliance  

3 Derived software product line member applications are valid service-oriented SPL 

members. Hence, the evaluation validates the following two characteristics of 

service member derivation: 

a. The derived member applications are valid members of the SPL family.  

b. The derived SPL member applications are valid service-oriented 

applications. 

 This property is referred to as Legitimacy. 
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9.2. Case Study Validation Approach 

The validation approach of the case study is a system testing approach that validates the 

derived service member applications of an electronic commerce software product line 

(SPL). This type of testing ensures that each feature of the SPL’s feature model is tested 

by tracing the sequence of activities for each business process of member applications 

through testing the sequence of service coordinators and service invocations. The testing 

results are demonstrated by having an execution trace that shows that the activity model 

sequence, i.e. the business process, is executed by the service coordinators and service 

operation invocations.  

The case study is conducted via the proof-of-concept tool prototype, SoaSPLE. The case 

study involves feature modeling of the SPL, multiple-view variability modeling of the 

SPL, consistency checking of the SPL’s multiple views, derivation of the service member 

applications of the SPL, and execution of member applications of the SPL. 

9.3. Hotel Reservations Case Study Problem Description 

A Hotel Reservation Software Product Line (SPL) can be tailored to the needs of an 

individual hotel chain or hotel. The system manages information about rooms, 

reservations, customers, and customer billing. The system provides functionality for 

making reservations, check in, and check out, in addition to generating reports and 

displays. In addition, several optional and variant capabilities are provided. 
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A customer may make reservations, change, or cancel reservations.  When making a 

reservation through a reservation clerk, a customer gives personal details, states the room 

type, number of occupants, and dates of arrival and departure.  A reservation is either 

guaranteed by credit card or not guaranteed. Reservations that are not guaranteed are 

automatically cancelled at a pre-specified time, e.g., 6 PM.  A no-show customer has to 

pay for a guaranteed reservation.  A desk clerk can check in a customer (with or without a 

prior reservation), change the checkout date, and check out the customer.  A specific 

room is assigned to the customer at check-in time and a customer record is created.  A 

customer may pay by cash, check, or credit card.  A customer billing record is created 

and the customer receives a check out statement.  A customer who does not check out by 

the checkout time is charged for an additional night. 

Optional capabilities of the Hotel Reservation System are: 

 

a) Management reports. The manager may view the hotel occupancy figure for 

the present or past dates, view projected occupancy figures for future dates, 

and view financial information, including room revenue information. 

b) Automatic cancellation for non-guaranteed reservations. At a pre-specified 

time, e.g., 6 PM, all rooms that are not guaranteed are cancelled and 

guaranteed reservations are marked as “must-pay” 

c) Automatic billing of no-show guaranteed reservations. At a pre-specified 

time, e.g., 7 AM, a report is generated of no-shows with guaranteed 

reservations.  A billing record is created for each no-show reservation.  At the 
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same time, a report is also produced giving the total occupancy and revenue 

(computed from rooms allocated) for the previous night. 

d) Block bookings. A travel company can book a block of rooms at a discounted 

rate for one or more nights. Bills are charged directly to the travel company. 

e) Variant functionality includes the reservation of residential suites instead of 

hotel rooms, where a guest can occupy a suite for a week or month at a time, 

paying a weekly or monthly rate. 

The following sections illustrate the steps taken to conduct the case study. 

9.4. Feature View Modeling 

Commonality and variability analysis of the Hotel Reservations SPL is performed in this 

step. The result of this step is a feature model (Chapter 4). Based on commonality and 

variability analysis, a feature model was created in SoaSPLE as shown in Fig. 9.1. As the 

modeler was building the feature model, SoaSPLE automatically checked the model 

against the Feature Meta-View of the multiple-view service variability meta-model 

(Chapter 5) using the embedded consistency checking rules. Violations of these 

consistency checking rules were detected by SoaSPLE and the modeler had to take 

corrective actions to create a valid feature model. 
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9.5. Service Contract Variability View Modeling 

This is a Requirements view that describes service contracts (Chapter 4). Based on the 

feature model described in the previous section and knowledge of the Hotel Reservation 

domain, it was decided to model ServiceContracts and Participants as shown in the 

Service Contract View in Fig. 9.2.   

  
Fig. 9.1 Feature View of the Hotel Reservation SPL 
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As the modeler was building the service contract view model, SoaSPLE automatically 

checked the model against the Service Contract Meta-View of the multiple-view service 

variability meta-model (Chapter 5) using the embedded consistency checking rules. 

Violations of these consistency checking rules were detected by SoaSPLE and the 

modeler had to take corrective actions to create a valid service contract model. 

 

  
Fig. 9.2 Service Contract View of the Hotel Reservation SPL 
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9.6. Business Process Variability View Modeling 

This Requirements view models the workflow of the business processes in the Hotel 

Reservation SPL. This view is based on the Business Process Meta-Model described in 

Chapter 5. There are three business processes in the Hotel Reservation SPL: Individual 

Reservation (kernel), Conference Reservation (optional), and Block Reservation  

(optional). The Individual Reservation business process view is depicted in Fig. 9.3. 

As the modeler was building the business process view model, which consists of three 

business processes, SoaSPLE automatically checked the model against the Business 

Process Meta-View of the multiple-view service variability meta-model (Chapter 5) using 

the embedded consistency checking rules. Violations of these consistency checking rules 

  

Fig. 9.3 Business Process View of the Hotel Reservation SPL 
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were detected by SoaSPLE and the modeler had to take corrective actions to create a 

valid business process model. 

9.7. Service Interface Variability View Modeling 

This Architectural view models service interfaces, which specify the operations provided 

or required by Participants. Service interfaces are modeled by using the ServiceInterface 

element as described in Chapter 5. Upon examining the activities of the three business 

processes and based on the Hotel Reservation domain knowledge, it was decided to have 

the service interfaces depicted in Fig. 9.4. 

 

  
Fig. 9.4 Service Interface View of the Hotel Reservation SPL 
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As the modeler was building the service interface view model, SoaSPLE automatically 

checked the model against the Service Interface Meta-View of the multiple-view service 

variability meta-model (Chapter 5) using the embedded consistency checking rules. 

Violations of these consistency checking rules were detected by SoaSPLE and the 

modeler had to take corrective actions to create a valid service interface model. 

9.8. Service Coordination Variability View Modeling 

This Architectural view models service coordinators that coordinate business workflow 

(Chapter 4). This view consists of three service coordinators: Individual Booking 

(kernel), Conference Booking (optional), and Block Booking (optional). Each service 

coordinator coordinates one of the business processes described in section 9.6.Upon 

examining the activities of the three business processes (section 9.6) and their 

corresponding service interfaces (section 9.7), three Service Coordination Views were 

designed. The Individual Service Coordination View is depicted in Fig. 9.5. SoaSPLE 

was used to create these views in a similar fashion to the other views. 
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9.9. Feature View To Service Views Mapping 

Once the views were constructed, mapping features to service views commenced. 

Mapping the Feature View to the Service Variability Views was done manually by using 

the Mapping Facility within SoaSPLE. Here, a mapping was constructed by associating 

features from the feature view with service elements in the variable service views. It 

should be noted that this mapping is governed by the underlying multiple-view service 

variability meta-model described in Chapters 5.  

Based on the feature view (section 9.4) and the Hotel Reservations domain knowledge, 

the mapping was constructed as depicted in Fig 9.6. 

 

  

Fig. 9.5 Service Coordination View of the Hotel Reservation SPL 
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Fig. 9.6 Hotel Reservation splPIM 
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As the modeler was constructing the mapping, SoaSPLE automatically checked the 

mapping model against the multiple-view service variability meta-model (Chapter 5) 

using the embedded consistency checking rules. Violations of these consistency checking 

rules were detected by SoaSPLE and the modeler had to take corrective actions to create 

a valid mapping. 

It should be noted that this mapping represents the entire SPL platform-independent 

model, which was termed splPIM in Chapter 6. The splPIM will be used in the service 

member derivation phase below to derive service member applications. 

9.10. Member Applications Derivation 

At this phase of the case study, a complete multiple-view service-oriented Hotel 

Reservation SPL is constructed. Therefore, service member applications of the product 

line family can be derived based on feature selection from the feature view. Two service 

member applications were derived as follows: 

9.10.1. Conventional Rooms Application 

To specify the member application, feature selection from the feature model (section 9.4) 

was configured as shown in Fig. 9.7. 
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To derive the Conventional Rooms application, the Member Application Derivation 

facility of SoaSPLE (Chapter 6) was invoked. Next, the Code Generation Facility 

(Chapter 6) was invoked to transform the derived application to Java/Web Services code. 

Web Services Description Language (WSDL) was produced for the Service Interface 

View. Business Process Execution Language (BPEL) code was generated for the Service 

Coordination View. 

Once code was generated, the Conventional Rooms member application was deployed 

and executed. The execution logs show how each feature of the feature model is 

  

 

Fig. 9.7 Conventional Rooms Feature Model 
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exercised by tracing the sequence of the activities of the corresponding business process 

through testing the sequence of the corresponding ServiceCoordinator and service 

invocations. 

9.10.2. Residential Rooms Application 

To specify the member application, feature selection from the feature model (section 9.4) 

was configured as shown in Fig. 9.8. 

  

 

Fig. 9.8 Residential Rooms Feature Model 
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Next, the Code Generation Facility (Chapter 6) was invoked to transform the derived 

application to Java/Web Services code. Web Services Description Language (WSDL) 

was produced for the Service Interface View. Business Process Execution Language 

(BPEL) code was generated for the Service Coordination View. 

Once code was generated, the Residential Rooms member application was deployed and 

executed. 

9.11. Case Study Conclusion 

The modeler in the case study modeled the commonality and variability of a Hotel 

Reservations SPL by creating a feature model. Then, multiple-view service variability 

model was created. Afterwards, the modeler mapped the feature model to the multiple-

view service model. Then, two member applications were derived from the SPL. Finally, 

service member applications were deployed and executed. 

During the modeling phases, SoaSPLE detected invalid modeling steps and reported them 

to the modeler. Consequently, the modeler took corrective actions and produced valid 

models. Screen shots of these errors are depicted in the appendix. 

This case study validated the research approach of this dissertation by satisfying the three 

properties set forth in Chapter 7, namely: Consistency, Compliance, and Legitimacy. The 

tool prototype (SoaSPLE) was used to carry out the case study. System testing was 

achieved by making sure that each feature of the feature view was exercised by tracing 

the sequence of activities of the Order Fulfillment business process through testing the 

sequence of the ServiceCoordinator and service invocations. 
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10. Conclusions 

 

10.1. Introduction 

This research has introduced a multiple-view modeling and meta-modeling approach that 

addresses variability concerns of service oriented application families. The purpose of 

this research was to develop a multiple-view variability modeling approach to address the 

design and implementation of variable service-oriented applications families in a 

systematic, unified, and platform-independent manner. 

 In particular, this research has described the integration of Software Product Lines (SPL) 

concepts of feature modeling and commonality/variability analysis techniques with 

service views using the Unified Modeling Language (UML) and the Service Oriented 

Modeling Language (SoaML).  

To achieve the aforementioned goals, this research developed a multiple-view service 

variability meta-model that specifies the relationships between variable service views 

(Chapter 5). In addition, this research developed a multiple-view service variability 

model based on the aforementioned meta-model (Chapter 4). Furthermore, this research 

created consistency checking rules to ensure the consistency of the multiple views of 

service-oriented application families (Chapter 5). This research also developed mappings 

between the Requirements views and the Architectural views of the multiple-view service 
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variability meta-model (Chapter 5). This research has created derivation rules to 

automatically derive service member applications of service application families 

(Chapter 6). In addition, this research has developed an automated model-driven service-

oriented framework for SPL engineering (Chapter 6). 

A proof-of-concept prototype (SoaSPLE) was developed to realize the aforementioned 

framework. SoaSPLE was used to model and execute service oriented application 

families and to ensure the consistency of the multiple views of service families.  

Validation of this research consisted of Unit Testing and System Testing. Unit testing 

tests each element and relationship in the multiple-view service variability meta-model. 

System Testing is a system-wide testing that tests the derived service-oriented 

applications of the SPL end-to-end. This research used SoaSPLE to conduct two case 

studies in the E-Commerce and Hotel Reservation domains (Chapters 8 and 9). 

It should be pointed out that although this research described the multiple-view service 

variability meta-model by using UML and SoaML, the approach could also be used with 

other service modeling notations.  

This chapter briefly outlines the contributions of this research and points out future 

research goals. 

10.2. Research Contributions 

The following subsections briefly detail the contributions of this research: 

10.2.1. Multiple-View Service Variability Meta-Model 



135 

 

The main contribution of this research is the development of a multiple-view service 

variability meta-model that defined Service Requirements and Architectural views. The 

meta-model described the relationships between the views of service-oriented product 

lines. As described in Chapter 2, previous research has focused on variability analysis 

and management of individual views of SOA systems, for example on variability of 

business process flow only or on variability of service interfaces. A major contribution of 

this research is to enable modelers to analyze what changes in one view if a change 

happens in another view. In another words, this research has presented an approach to 

model and manage variability in SOA systems in a unified manner. 

The multiple-view service variability meta-model described: 

a) Meta-models for variable service Requirements Views – Service Contract and 

Business Process meta-classes, their attributes, relationships, and constraints. 

b) Meta-models for variable service Architectural Views – Service Interface and 

Service Coordination meta-classes, their attributes, relationships, and 

constraints. 

c) Meta-model for a Feature View that describes the variability of the SPL, 

which is dispersed in the requirements and architectural views. Thus, the 

Feature View acts as a unifying view for all other views. 

d) Intra-View Relationship – The associations and dependencies inside each 

view were described. 

e) Inter-View Relationships – The associations and dependencies between the 

different service views were described. 
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f) Mapping between Requirements and Architectural Views – the mapping 

between the Feature View and the Requirements and Architectural Views was 

described. 

10.2.2. Multiple-View Service Variability Model 

This research developed a multiple-view service variability model based on the 

aforementioned meta-model. This model contains service modeling elements expressed 

in UML and SoaML. This model can be used by modelers to create Requirements and 

Architectural views of service-oriented SPLs and to create the mappings between the 

Feature view and the SOA elements of the Requirements and Architectural views. 

10.2.3. Consistency Checking and Mapping Rules 

This research has developed consistency checking rules to ensure the consistency among 

the multiple views of service-oriented SPLs. In addition, these rules ensure the proper 

mapping between the Feature View and the service Requirements and Architectural 

views of the service-oriented SPL. The consistency checking rules are expressed in the 

Object Constraint Language (OCL) and are based on the meta-classes and meta-

associations of each view of the multiple-view service variability meta-model. 

10.2.4. Model Driven Framework for Service Oriented 

SPLs 
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Unlike traditional Model Driven Architecture (MDA) approaches, this research 

introduced the notion of having multiple Platform Independent Models (PIMs) to 

accommodate service-oriented SPLs: 

• A software product line PIM – this PIM models the entire service-oriented 

software family (SPL) with all variability details. 

• Service member application PIMs – these PIMs model the derived service 

member applications of the service-oriented SPL. Each member PIM is 

derived from the SPL PIM based on feature selection (Chapter 6). 

By developing these PIMs, this research helps in facilitating variability modeling of 

service families in a platform independent way. For example, the approach does not 

restrict the representation of service interfaces to WSDL or restrict business workflows 

execution to BPEL. 

10.2.5. Service Member Applications Derivation Rules 

This research has developed derivation rules for the automatic derivation of service 

member applications of service-oriented SPLs. The derivation rules derive service 

member applications PIMs from the SPL PIM. These rules were expressed in Java and 

they operate on the meta-classes of the multiple-view SPL PIM. 

10.2.6. SoaML Variability Notation 
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This research extended the OMG’s SOA Modeling Language (SoaML) with variability 

notations to enable modeling of service-oriented SPLs. This extension was accomplished 

by extending the SoaML meta-model with variability meta-classes as explained in 

Chapter 5. 

10.2.7. Explicit Modeling of Service Coordination 

Variability 

Existing SOA SPL variability modeling approaches modeled variability in business 

process workflow only (Chapter 2). A major contribution of this research is to introduce a 

Service Coordination View that explicitly models the architectural variability of service 

coordinators and their service invocations (Chapter 5).  

In other words, this research has associated a Service Coordinator with each business 

process in the Business Process View. This coordinator encapsulates variability 

information of the business process and coordinates service invocations based on this 

variability information. 

10.2.8. Proof-of-Concept Tool Prototype 

This research has developed a proof-of-concept tool prototype (SoaSPLE) to realize the 

automated model driven SPL framework and to validate the multiple-view service 

variability approach. SoaSPLE (Chapter 6) embodies the multiple-view service 
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variability meta-model and provides automatic and semi-automatic capabilities to model, 

design, implement, and deploy service-oriented SPLs. 

SoaSPLE was developed by using the Eclipse Modeling Framework (EMF) and utilized 

several SOA and JAVA technologies as explained in Chapter 6. SoaSPLE was used to 

conduct two case studies to validate this research (chapters 8 and 9). 

10.3. Future Research 

This section describes potential future research inspired by the current research. 

10.3.1. Service Variability Mediation Layer 

In service-oriented systems, the architecture is not fixed, because the main elements of 

the architecture are services normally provided by external providers. In addition, a major 

characteristic of SOA is the decoupling between consumers and provided services [15] 

where both can change independently of each other. Hence, the challenge is how to 

design variability for service consumers independent of provided services and yet use 

services in a way that satisfies variable application scenarios? 

To solve the aforementioned problem, a Mediation Layer [59] is proposed that sits 

between service consumers and provided services. This is an intermediary architectural 

layer that decouples service consumers and providers. This layer consists of Mediation 

Modules that handle the variability needed by service consumers when they interact with 

external service providers. 
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10.3.2. Evolution of Service Oriented SPLs 

Once service member applications of the SPL are derived and deployed, new features 

may be added, modified, or deleted to/from the Feature View. This research is concerned 

with designing an approach that can handle feature evolution and their impact on existing 

SPL member applications. The proposed approach should satisfy the evolved 

requirements while guarantying the operation of existing member applications. 

10.3.3. Feature Based Discovery of Service Oriented 

SPLs 

Services could be discovered on demand based on features in the Feature View. Once 

service member applications are derived, a Service Discovery mechanism is proposed to 

discover services for member applications. Once services are discovered, service 

composition commences to build service member applications. 

10.3.4. Enhancements of the Tool Prototype (SoaSPLE) 

Some enhancements to SoaSPLE are proposed: 

• Synthesis of SoaSPLE components into an Eclipse Plug-in [64] which could 

be used as a standalone modeling tool. 

• Replacement of the Java based derivation rules with a standardized 

transformation language like ATL [68] or QVT [69]. 
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• Addition of a Simulation Environment to enable modelers to simulate the 

execution of service-oriented SPLs before code generation. 
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