
VARIABILITY MODELING AND META-MODELING FOR�
MODEL-DRIVEN SERVICE-ORIENTED ARCHITECTURES�

by�

Mohammad Ahmad Abu-Matar�
A Dissertation�

Submitted to the�
Graduate Faculty�

of�
George Mason University�

in Partial Fulfillment of�
The Requirements for the Degree�

of�
Doctor of Philosophy�

Information Technology�

Committee:

Dr. Hassan Gomaa, Dissertation Director

Dr. Jeff Offutt, Committee Member

Dr. Sanjeev Setia, Committee Member

Dr. Sam Malek, Committee Member

Dr. Daniel Menasce, Senior Associate Dean

Dr. Lloyd J. Griffiths, Dean, Volgenau
School of Engineering

Date: I / I "8 /' U--- Fall Semester 2011
George Mason University
Fairfax, VA

Variability Modeling and Meta-Modeling for

Model-Driven Service-Oriented Architectures

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Mohammad Ahmad Abu-Matar

Master of Science

Regis University, 2004

Bachelor of Science

Wright State University, 1993

Director: Hassan Gomaa, Professor

Department of Computer Science

Fall Semester 2011

George Mason University

Fairfax, VA

ii

Copyright: 2011 Mohammad Ahmad Abu-Matar

All Rights Reserved

iii

DEDICATION

I dedicate this work to:

My dear Parents, Ahmad and Husnieh, for their limitless and selfless support and

prayers.

My beloved Wife, Dima, for her patience, support, and for always being there for me.

My Children, Aya, Tuqa, Hamza, and Teeba, for their understanding and beautiful

smiles.

iv

ACKNOWLEDGEMENTS

All praise be to Allah (God) the Compassionate the Merciful. “O My Lord! Increase me

in knowledge”, The Holy Quran 20:114.

I would like to thank my parents, Ahmad and Husnieh, for their continuous and unlimited

support and prayers.

I would like to thank my wife, Dima, for her support, patience, and sacrifice.

I would like to thank my dissertation director, Dr. Hassan Gomaa, for his scholarly

teaching, encouragement, and support.

I would like to thank my committee member, Dr. Jeff Offutt, for his pointed advice,

teaching, and willingness to listen.

I would like to thank Dr. Daniel Menascé, Senior Associate Dean of the Volgenau School

of Engineering, for his generous support, in the form of PhD Fellowships, and his

scholarly direction.

I would like to thank the George Mason University Provost’s office for their generous

support in the form of the PhD Completion Grant.

I would like to thank my friend and school mate, Dr. Ahmad El-Khodary for his good

company, intellectual discussions, and help.

Last but not least, I would like to thank my longtime friends Amjad Al-Ramahi, Ayman

Hajmousa, Loai Alsalti, and Yaser Zaatreh for their selfless help and continuous advice.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. XI

LIST OF FIGURES ... XII

ABSTRACT ... XIV

1. INTRODUCTION .. 1

1.1. BACKGROUND... 1

1.2. MOTIVATION .. 2

1.3. GLOSSARY OF RELEVANT TERMS ... 5

1.4. PROBLEM STATEMENT .. 6

1.5. RESEARCH STATEMENT .. 7

1.6. RESEARCH APPROACH ... 7

1.7. IMPORTANCE AND RATIONALE FOR THIS RESEARCH 9

1.8. CONTRIBUTIONS .. 9

1.9. ORGANIZATION ... 11

2. RELATED RESEARCH ... 12

2.1. SERVICE ORIENTED COMPUTING (SOC) .. 12

2.2. SERVICE ORIENTED ARCHITECTURE (SOA) ... 13

2.3. SERVICE COMPOSITION .. 14

2.4. SOA VARIABILITY MODELING ... 15

2.4.1. SERVICE REQUIREMENTS VARIABILITY MODELING 15

2.4.2. SERVICE DESIGN VARIABILITY MODELING .. 17

2.4.3. VARIATION BY PARAMETERIZED SERVICES 18

2.4.4. VARIATION BY SERVICE COMPOSITION .. 20

2.5. SELF-ARCHITECTING SERVICE ORIENTED SYSTEMS 22

vi

2.6. SOFTWARE PRODUCT LINES ... 23

2.6.1. PRODUCT LINE UML-BASED SOFTWARE ENGINEERING (PLUS). 23

2.6.2. FEATURE ORIENTED DOMAIN ANALYSIS (FODA) 24

2.6.3. REUSE-DRIVEN SOFTWARE ENGINEERING METHOD (RSEB) 25

2.6.4. FAMILY-ORIENTED ABSTRACTION, SPECIFICATION, AND
TRANSLATION (FAST)... 26

2.6.5. KOBRA .. 27

2.7. FEATURE MODELING .. 27

2.8. MULTIPLE-VIEW MODELING .. 31

2.9. META-MODELING ... 32

2.10. MODEL DRIVEN ARCHITECTURE (MDA) .. 33

3. RESEARCH APPROACH ... 35

3.1. INTRODUCTION... 35

3.2. RESEARCH APPROACH ... 37

3.3. RELATION TO EXISTING RESEARCH APPROACHES........................... 38

3.4. FEATURE MODELING AND META-MODELING .. 39

3.5. MULTIPLE VIEW SERVICE VARIABILITY MODELING 39

3.6. MULTIPLE VIEW SERVICE VARIABILITY META-MODELING 40

3.7. CONSISTENCY CHECKING AND MAPPING RULES............................... 40

3.8. MODEL-DRIVEN SERVICE-ORIENTED PRODUCT LINE
ENGINEERING FRAMEWORK ... 41

3.9. PROOF-OF-CONCEPT TOOL PROTOTYPE ... 41

3.10. APPROACH VALIDATION .. 41

4. MULTIPLE-VIEW SERVICE VARIABILITY MODEL 43

4.1. INTRODUCTION... 43

4.2. USING SPL CONCEPTS TO MODEL SOA VARIABILITY 44

4.3. SERVICE CONTRACT VARIABILITY VIEW .. 46

4.4. BUSINESS PROCESS VARIABILITY VIEW .. 47

4.5. SERVICE INTERFACE VARIABILITY VIEW ... 48

4.6. SERVICE COORDINATION VARIABILITY VIEW 49

4.7. FEATURE VIEW ... 51

vii

4.8. MULTIPLE-VIEW SERVICE VARIABILITY MODEL RELATIONSHIPS .. 52

4.8.1. INTRA-VIEW RELATIONSHIPS ... 53

4.8.2. INTER-VIEW RELATIONSHIPS ... 55

4.8.3. FEATURE TO SERVICE CONTRACT VIEW RELATIONSHIPS 57

4.8.4. FEATURE TO BUSINESS PROCESS VIEW RELATIONSHIPS 57

4.8.5. FEATURE TO SERVICE INTERFACE VIEW RELATIONSHIPS 58

4.8.6. FEATURE TO SERVICE COORDINATION VIEW RELATIONSHIPS . 59

4.8.7. FEATURE DEPENDENCY TO SERVICE VIEWS RELATIONSHIPS .. 60

5. MULTIPLE-VIEW SERVICE VARIABILITY META-MODELING................... 61

5.1. INTRODUCTION... 61

5.2. SERVICE CONTRACT VARIABILITY META-VIEW 63

5.3. BUSINESS PROCESS VARIABILITY META-VIEW 64

5.4. SERVICE INTERFACE VARIABILITY META-VIEW 65

5.5. SERVICE COORDINATION VARIABILITY META-VIEW 66

5.6. FEATURE META-VIEW ... 66

5.7. SERVICE VARIABILITY META-MODEL RELATIONSHIPS 67

5.8. INTRA META-VIEW RELATIONSHIPS .. 68

5.9. INTER META-VIEW RELATIONSHIPS .. 69

5.10. FEATURE TO SERVICE CONTRACT META-VIEW RELATIONSHIPS . 70

5.11. FEATURE TO BUSINESS PROCESS META-VIEW RELATIONSHIPS . 71

5.12. FEATURE TO SERVICE INTERFACE META-VIEW RELATIONSHIPS . 72

5.13. FEATURE TO SERVICE COORDINATION META-VIEW
RELATIONSHIPS... 72

6. MODEL-DRIVEN SERVICE-ORIENTED PRODUCT LINE ENGINEERING
FRAMEWORK .. 74

6.1. INTRODUCTION... 74

6.2. PLATFORM INDEPENDENT MODEL (PIM) ... 75

6.3. PLATFORM SPECIFIC MODEL (PSM) .. 79

6.4. FEATURE BASED SERVICE APPLICATION DERIVATION 80

6.5. SPLPIM TO MEMBERPIM DERIVATION ALGORITHM 81

6.6. SERVICE-ORIENTED SPL ENGINEERING TOOL PROTOTYPE 82

viii

6.7. FEATURE META-VIEW ... 83

6.8. SERVICE META-VIEWS ... 84

6.9. FEATURE META-VIEW TO VARIABLE SERVICE META-VIEWS
MAPPING .. 85

6.10. CONSISTENCY CHECKING RULES .. 86

6.11. SERVICE MEMBER APPLICATION DERIVATION 88

6.12. CODE GENERATION .. 88

6.13. DEPLOYMENT AND EXECUTION .. 89

7. RESEARCH VALIDATION ... 90

7.1. VALIDATION APPROACH .. 90

7.2. SYSTEM TESTING APPROACH ... 92

7.3. UNIT TESTING ... 93

7.4. UNIT TEST CASES .. 93

7.4.1. FEATURE META-VIEW UNIT TESTS ... 94

7.4.2. SERVICE CONTRACT META-VIEW UNIT TESTS 96

7.4.3. BUSINESS PROCESS META-VIEW UNIT TESTS 96

7.4.4. SERVICE INTERFACE META-VIEW UNIT TESTS 97

7.4.5. SERVICE COORDINATION META-VIEW UNIT TESTS 97

7.4.6. INTER-VIEW RELATIONSHIPS UNIT TESTS ... 98

7.4.7. CONSISTENCY CHECKING RULES UNIT TESTS 99

8. ELECTRONIC COMMERCE SERVICE-ORIENTED SOFTWARE
PRODUCT LINE CASE STUDY .. 100

8.1. CASE STUDY OBJECTIVES .. 100

8.2. CASE STUDY VALIDATION APPROACH ... 101

8.3. ELECTRONIC-COMMERCE CASE STUDY PROBLEM DESCRIPTION
 101

8.4. FEATURE VIEW MODELING ... 102

8.5. SERVICE CONTRACT VARIABILITY VIEW MODELING 105

8.6. BUSINESS PROCESS VARIABILITY VIEW MODELING 106

8.7. SERVICE INTERFACE VARIABILITY VIEW MODELING 107

8.8. SERVICE COORDINATION VARIABILITY VIEW MODELING 108

8.9. FEATURE VIEW TO SERVICE VIEWS MAPPING 109

ix

8.10. MEMBER APPLICATIONS DERIVATION .. 112

8.10.1. BASIC E-COMMERCE APPLICATION ... 112

8.10.2. ENHANCED E-COMMERCE APPLICATION ... 115

8.11. CASE STUDY CONCLUSION .. 117

9. HOTEL RESERVATION SERVICE-ORIENTED SOFTWARE PRODUCT
LINE CASE STUDY ... 118

9.1. CASE STUDY OBJECTIVES .. 118

9.2. CASE STUDY VALIDATION APPROACH ... 119

9.3. HOTEL RESERVATIONS CASE STUDY PROBLEM DESCRIPTION .. 119

9.4. FEATURE VIEW MODELING ... 121

9.5. SERVICE CONTRACT VARIABILITY VIEW MODELING 122

9.6. BUSINESS PROCESS VARIABILITY VIEW MODELING 124

9.7. SERVICE INTERFACE VARIABILITY VIEW MODELING 125

9.8. SERVICE COORDINATION VARIABILITY VIEW MODELING 126

9.9. FEATURE VIEW TO SERVICE VIEWS MAPPING 127

9.10. MEMBER APPLICATIONS DERIVATION .. 129

9.10.1. CONVENTIONAL ROOMS APPLICATION .. 129

9.10.2. RESIDENTIAL ROOMS APPLICATION .. 131

9.11. CASE STUDY CONCLUSION .. 132

10. CONCLUSIONS ... 133

10.1. INTRODUCTION... 133

10.2. RESEARCH CONTRIBUTIONS ... 134

10.2.1. MULTIPLE-VIEW SERVICE VARIABILITY META-MODEL 134

10.2.2. MULTIPLE-VIEW SERVICE VARIABILITY MODEL 136

10.2.3. CONSISTENCY CHECKING AND MAPPING RULES 136

10.2.4. MODEL DRIVEN FRAMEWORK FOR SERVICE ORIENTED SPLS 136

10.2.5. SERVICE MEMBER APPLICATIONS DERIVATION RULES 137

10.2.6. SOAML VARIABILITY NOTATION ... 137

10.2.7. EXPLICIT MODELING OF SERVICE COORDINATION VARIABILITY
 138

10.2.8. PROOF-OF-CONCEPT TOOL PROTOTYPE .. 138

x

10.3. FUTURE RESEARCH .. 139

10.3.1. SERVICE VARIABILITY MEDIATION LAYER 139

10.3.2. EVOLUTION OF SERVICE ORIENTED SPLS 140

10.3.3. FEATURE BASED DISCOVERY OF SERVICE ORIENTED SPLS ... 140

10.3.4. ENHANCEMENTS OF THE TOOL PROTOTYPE (SOASPLE) 140

BIBLIOGRAPHY ... 142

BIBLIOGRAPHY ... 143

xi

LIST OF TABLES

Table Page

Table 2.1 PLUS Feature Stereotypes ..……30

Table 7.1 Feature Meta-View Unit Tests ..95

Table 7.2 Service Contract Meta-View Unit Tests ...96

Table 7.3 Business Process Meta-View Unit Tests ..96

Table 7.4 Service Interface Meta-View Unit Tests ..97

Table 7.5 Service Coordination Meta-View Unit Tests ..97

Table 7.6 Inter-View Relationships Unit Tests ...98

Table 7.7 Consistency Checking Rules Unit Tests ...99

Table 8.1 Feature to SOA Mapping ..111

xii

LIST OF FIGURES

Figure Page

Fig. 4.1 Service Contract View of an E-Commerce SPL ...…46

Fig. 4.2 Business Process View of an E-Commerce SPL ...48

Fig. 4.3 Service Interface View of an E-Commerce SPL ...49

Fig. 4.4 Service Coordination View of an E-Commerce SPL ..50

Fig. 4.5 Feature View of an E-Commerce SPL ..52

Fig. 4.6 E-Commerce SPL Multiple-View Service Variability Model54

Fig. 5.1 Service Contract Variability Meta-View ...63

Fig. 5.2 Business Process Meta-View ..64

Fig. 5.3 Service Interface Variability Meta-View ...65

Fig. 5.4 Service Coordination Variability Meta-View..66

Fig. 5.5 Feature Meta-View ...67

Fig. 5.6 Service Variability Meta-Model ...68

Fig. 6.1 E-Commerce SPL Service Oriented Multiple-View Platform Independent Model

...77

Fig. 6.2 Basic E-Commerce SPL Member Application ..78

Fig. 6.3 Two Types of PIMs in SoaSPLE ..79

Fig. 6.4 splPIM to memberPIM Derivation Process in SoaSPLE 81

Fig. 6.5 Feature View Meta-Model in SoaSPLE ..84

Fig. 6.6 Service Contract View Meta-Model in SoaSPLE ...85

Fig. 6.7 Multiple-View Service Variability View Meta-Model in EMF86

Fig. 6.8 Meta-Class OCL Annotation Example ..87

Fig. 8.1 Feature View of the E-Commerce SPL ...104

Fig. 8.2 Service Contract View of the E-Commerce SPL ..106

Fig. 8.3 Business Process View of the E-Commerce SPL ..107

Fig. 8.4 Service Interface View of the E-Commerce SPL ..108

Fig. 8.5 Service Coordination View of the E-Commerce SPL109

Fig. 8.6 E-Commerce splPIM ...110

Fig. 8.7 Basic Member E-Commerce Feature Model ...114

Fig. 8.8 Enhanced Member E-Commerce Feature Model ..116

Fig. 9.1 Feature View of the Hotel Reservation SPL ...122

Fig. 9.2 Service Contract View of the Hotel Reservation SPL123

Fig. 9.3 Business Process View of the Hotel Reservation SPL.124

Fig. 9.4 Service Interface View of the Hotel Reservation SPL.125

Fig. 9.5 Service Coordination View of the Hotel Reservation SPL.127

Fig. 9.6 Hotel Reservation splPIM. ..128

Fig. 9.7 Conventional Rooms Feature Model. ..130

xiii

Fig. 9.8 Residential Rooms Feature Model. ...131

ABSTRACT

VARIABILITY MODELING AND META-MODELING FOR

MODEL-DRIVEN SERVICE-ORIENTED ARCHITECTURES

Mohammad Ahmad Abu-Matar, PhD

George Mason University, 2011

Dissertation Director: Dr. Hassan Gomaa

Service Oriented Architecture (SOA) has emerged as an architectural style for distributed

computing that promotes flexible application development and reuse. One of the major

benefits claimed for SOA is the flexible building of IT solutions that can react to

changing business requirements quickly and economically. Services could be consumed

by many applications that have different requirements. In addition, applications usually

change by adding new requirements, removing existing requirements, or updating

existing requirements. Thus, applications that consume the same service usually exhibit

varying requirements. Varying requirements usually necessitate varying software

architectures that satisfy the varying requirements of software applications. Thus, both

requirements and architectures have intrinsic variability characteristics.

SOA development practices currently lack a systematic approach for managing

variability in service requirements and architectures. This dissertation addresses this gap

by applying software product line (SPL) concepts to model SOA systems as service

families. The dissertation introduces an approach to model SOA variability with a

multiple-view service variability model and a corresponding meta-model. The approach

integrates SPL concepts of feature modeling and commonality/variability analysis with

multiple service requirements and architectural views by using UML and the Service

Oriented Architecture Modeling Language (SoaML). At the heart of this research is a

multiple-view meta-model that defines the relationships among variable service views

and maps features to variable service models along with a corresponding consistency

checking rules that ensure the consistency of the multiple service views as they change.

The dissertation describes how to derive family member applications from the SPL and

presents a validation of the approach. This dissertation makes the case that the presented

multiple-view service variability modeling and meta-modeling approach facilitates

variability modeling of service families in a systematic and platform independent way.

The key contributions of this research include: Multiple-View Service Variability Meta-

Model, Multiple-View Service Variability Model, Consistency Checking and Mapping

Rules, Model Driven Framework for Service Oriented SPL Engineering, Service Member

Applications Derivation Rules, Explicit Modeling of Service Coordination Variability,

and a Proof-of-Concept Tool Prototype.

1

1. Introduction

1.1. Background

Service Oriented Architecture (SOA) has emerged as an architectural style [1] for

distributed computing that promotes flexible deployment and reuse. One of the major

benefits claimed for SOA is the flexible building of IT solutions that can react to

changing business requirements quickly and economically. The service-oriented

architectural style consists of service providers that register their services, and of service

requesters that search and discover these services based on their business needs.

Services could be consumed by many applications that have different requirements. In

addition, applications usually change by adding new requirements, removing existing

requirements, or updating existing requirements. Thus, applications that consume the

same services usually exhibit varying requirements needs.

Varying requirements usually necessitate varying software architectures. In other words,

when applications’ requirements are changed, the software architectures of these

applications are modified to satisfy the changed requirements. Thus, software

architectures usually vary to implement the varying requirements of software

applications. Therefore, both requirements and architectures have intrinsic variability

characteristics.

2

Software architectures describe application designs from different perspectives [1]. In

other words, the same application architecture consists of multiple depictions of different

perspectives, also called views that address specific architectural concerns. For example,

software architectures could describe conceptual, logical, and physical views of

application design [2].

1.2. Motivation

In SOA, service providers are usually decoupled from service requesters, thus requesters

and providers vary independently of each other. This variation manifests itself in several

ways, i.e. in changing requirements, changing architectures, and changing execution

environments. Requirements change because both clients and service providers will

always add, improve, all remove features to/from their applications. Architectures change

because in SOA, the architecture is not fixed, because the main elements of the

architecture are services usually provided by external providers. Furthermore, execution

environments vary because of the available variations in operating systems, middleware

environments, and programming languages. Thus, variability modeling is necessary to

manage the inherent complexity of service-oriented systems.

Variability also manifests itself in the execution environments, aka platforms, of service-

oriented systems as well. Service providers can have different platforms, i.e. operating

systems, middleware, and programming languages, than service consumers. In addition,

service consumers and providers can switch to different platforms for reasons such as

3

better performance and high availability. Again, managing the change in platforms for

multiple-view service-oriented systems can quickly become unwieldy.

It is hard to model complex and reasonably sized software systems from one perspective,

e.g., structural. To manage this complexity, the software engineering community has used

multiple-view modeling (Chapter 2) to model software systems from different

perspectives. In essence, the same application can be modeled from different

perspectives, where each perspective models a specific concern, e.g. requirements,

architectures, and physical environments. Multiple-view modeling techniques can be

applied to SOA modeling for the same reasons mentioned above. SOA systems can be

segregated into multiple views such as contract/ business workflow requirements views,

and service interface/ coordination architectural views. It should be noted, that these

views depend on each other. In other words, a change in one view could necessitate a

change in a different view.

For example, a service-oriented E-Commerce system could have a view that describes

service contracts and service providers and consumers. Another view could be a business

process view that describes the workflow of order fulfillment. Yet another view could be

a service interface view that describes an ordering service’s operations and parameters. If

a task changes in the business process view, say a task is added to allow electronic check

payments, a new service interface for electronic check payment has to be added to the

service interface view. Likewise, if a credit check contract is added in the service contract

view, a credit check service provider gets added to provide this capability. For reasonably

4

sized applications, changes in the interdependent views of service-oriented systems can

quickly become unwieldy and difficult to manage.

It becomes evident from the aforementioned discussion, that requirements and

architectural variability concerns are dispersed among the multiple views of SOA

systems. To have a full picture of variability in SOA based systems, it would be

necessary to have one view that only describes variability in the entire system. In

addition, there is a need to model variability of SOA systems in all views in a consistent

manner. Furthermore, consistency of all related elements in the multiple views should be

ensured as these views are modeled.

Software Product Lines (SPL) and Commonality/Variability Modeling (Chapter 2) model

the variability of application families. Application families share common features, but

each differ in some unique way. The SPL’s PLUS methodology [3] models variability in

multiple views and has distinct modeling treatment for the different phases of the

software development life cycle of application families. Since SOA systems vary in such

a way that is similar to application families, i.e. they have common and variable features;

the research in this dissertation proposes the use of SPL concepts to model the variability

concerns of SOA systems.

It would be beneficent to have a framework that manages the aforementioned SOA

variability concerns in a unified and platform-independent manner. However, current

SOA variability management practices (Chapter 2) lack a systematic approach for

managing variability and are typically platform-dependent. Furthermore, existing SOA

5

variability management approaches [4], [5], [6], [7], [8], do not address the multiple-view

nature of variability in SOA in a unified and platform-independent manner.

1.3. Glossary of Relevant Terms

Some relevant terms that could have varying definitions in different disciplines are

defined in this section. The goal is to establish a consistent level of understanding for

terms used throughout this dissertation.

• Consistency Checking Rules – rules that are determined from the proposed

multiple-view meta-model, which ensure the consistency of the

interdependent views of SOA systems. (Chapter 5)

• Feature Modeling – a modeling practice that model common and variable

requirements for an application family (Chapter 2)

• Model Driven Architecture (MDA) –an Object Management Group (OMG)

initiative that promotes development practices where models are used as first

class entities. Software development is driven by constructing models in all

phases of the development life cycle.

• Multiple-View Modeling – a technique for describing the architecture of

software-intensive systems via the use of multiple or perspectives, where each

perspective, i.e. view, addresses specific set of concerns. Examples of

multiple views are: logical, physical, and development.

6

• Platform Independent Model (PIM) – within MDA, these models capture

business logic details independent of programming languages, operating

systems, or middleware environments.

• Platform Specific Model (PSM) – within MDA, these models represent

technology specific concerns such as software languages and middleware

environments. PIMs are transformed into PSMs using predefined

transformation rules. Eventually, PSMs are transformed into code.

• Software Product Lines (SPL) – are families of software systems that share

common functionality, where each member has variable functionality. The

main goal of SPL is the rapid development of member systems by using

reusable assets from all phases of the development life cycle. (Chapter 2)

• Service Oriented Software Product Line Engineering (SoaSPLE) – the

name of the framework and tool prototype proposed in this research. (Chapter

6).

• Variability Modeling – in SPL, this practice models changes in all SDLC

phases and all views of application families (Chapter 2).

• Unified View – a view that captures a specific concern that is dispersed

among the multiple views of a system. The Feature View, in this research,

captures variability concerns which are dispersed among the multiple views of

SOA based systems. (Chapters 4 and 5).

1.4. Problem Statement

7

Existing SOA variability management approaches do not provide a systematic way to

address variability concerns in a multiple-view, unified, consistent, and platform-

independent manner. Since SOA is multi-view in nature, it is necessary to have a

variability management approach that addresses variability concerns in SOA

systematically to ensure the consistency and correctness of service-oriented systems.

1.5. Research Statement

An approach and automated framework can be devised to model, develop, and execute

variable service oriented systems in a multiple-view, consistent, and platform-

independent manner by using Software Product Lines (SPL) and Feature Modeling

principles.

Since services in SOA can be used by different clients with varying functionality, SOA

variability modeling would benefit from SPL variability modeling techniques. Applying

SPL concepts, service oriented systems can be modeled as service application families.

1.6. Research Approach

This research addresses the lack of systematic approaches to handling variability

management concerns in SOA by developing a multiple-view variability modeling and

meta-modeling approach. Furthermore, this research addresses SOA variability

management concerns in a systematic and platform-independent way. The research

approach is summarized as follows:

8

1. Develop a multiple-view service variability model, and define the relationships

between the service views, since variability in SOA systems is too complex to be

modeled in a single view. This multiple-view model uses Feature Modeling to

construct a unifying view that describes variability in SOA which is dispersed in

multiple views.

2. Develop a multiple-view service variability meta-model that formalizes the

aforementioned multiple-view service variability model. A meta-model is needed

to serve as the underlying representation of the automated framework that is

proposed in this research.

3. Develop rules for consistency checking and mapping between the multiple views

in the meta-model to ensure that these views are consistent with each other as

SOA based systems change.

4. Develop service family member applications derivation rules; since the approach

integrates SPL concepts of application families with multiple-view modeling to

capture variability in SOA systems.

5. Automate the research approach by designing a model-driven framework, which

is implemented in a proof-of-concept prototype.

6. Validate this research by applying the multiple-view modeling approach and

proof-of-concept prototype to case studies. The case studies are E-Commerce

service-oriented SPL, and Hotel Reservations service-oriented SPL.

The research approach is described in more detail in Chapter 3.

9

1.7. Importance and Rationale for this Research

The ability of distributed computing systems to respond to change in an effective manner

is essential. SOA emphasizes an architectural style that enables software engineers to

design and implement loosely-coupled solutions that are amenable to change. However,

existing service-oriented variability design, development, and management approaches

are largely ad-hoc and do not ensure the consistency of multiple views of service-oriented

systems. In addition, existing approaches are largely platform-dependent, which impedes

their adoption in multiple technology platforms.

The multiple-view service variability modeling and meta-modeling approach presented in

this research allows the development of service-oriented application families, by using

the concepts of SPL and Feature Modeling, in a consistent and platform-independent

manner, thus enabling these application families to change in an effective and unified

manner.

It should be noted that parts of this dissertation have been published in refereed

conferences and workshops, in particular references [9], [10], [11], [12].

1.8. Contributions

This section summarizes the contribution of this research. A detailed contribution is

described in Chapter 10.

10

• Multiple-View Service Variability Meta-Model – this meta-model governs the

multiple-view service variability model and serves as the basis of the

automated of the SoaSPLE framework.

• Multiple-View Service Variability Model – this model provides notation for

capturing the variable multiple views of SOA systems.

• Consistency Checking and Mapping Rules – these rules ensure that the

variable multiple views of SOA systems are consistent with each other as

these systems change.

• Model Driven Framework for Service Oriented SPLs – this is an automated

framework that helps developers and modelers to systematically build variable

service-oriented SPLs.

• Service Member Applications Derivation Rules – these rules act upon

multiple-view service-oriented SPL models and derive single applications of

the SPL.

• SoaML Variability Notation – a notation to use the Service Oriented

Architecture Modeling Language for modeling service-oriented SPLs.

• Explicit Modeling of Service Coordination Variability – service coordination

was modeled down to the architectures of service coordinators where

individual coordination messages were tied to the variability of business

processes.

11

• Tool Prototype – a proof-of-concept tool prototype was developed to realize

and help in validating the proposed automated framework. The prototype was

built by using current SOA open-source modeling and execution technologies.

1.9. Organization

This dissertation is organized as follows. Chapter 2 surveys related research. Chapter 3

details the research approach. Chapter 4 describes a multiple-view service variability

modeling approach and views relationships. Chapter 5 describes a multiple-view service

variability meta-modeling approach. Chapter 6 presents a model-driven framework for

service-oriented SPL engineering along with a tool support environment. Chapter 7

presents the validation approach of this research, Chapter 8 details an E-Commerce case

study that validated the research. Chapter 9 details a Hotel Reservation System case study

that also validated the research. Finally, Chapter 10 concludes the dissertation, outlines

the contributions of this research, and suggests future work.

12

2. Related Research

This chapter presents a literature review that spans areas related to this research: service

oriented computing and architecture, service modeling, service oriented variability

techniques, software product lines (SPL), feature modeling, SPL based SOA variability

techniques, multiple-view modeling, meta-modeling, and model driven architecture

(MDA).

2.1. Service Oriented Computing (SOC)

Service Oriented Computing (SOC) is an emerging computing paradigm that evolved

from object orientation, client/server systems, and component-based computing. Unlike

traditional OO development practices where developers receive requirements and then

design and build applications, SOC divides development activities into three groups:

application builders (or service requesters), service brokers (or mediators), and service

developers (or providers) [13].

Application development is ideally accomplished via discovery of desired services and

service assembly rather than coding. Service providers publish their services on registries

where consumers can find and use them. Current Web services standards support the

aforementioned architecture, but do not necessarily adhere to the basic principles of

Service Oriented Computing (SOC). [14]

13

The following are some SOC principles [15]: loose coupling, service contract, autonomy,

abstraction, reusability, composability, statelessness, and discoverability.

2.2. Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is an emerging standard-based architectural style

for designing, building, and deploying flexible distributed software applications. SOA

emphasizes extremely loosely coupled design approaches where disparate systems, with

different computing platforms, can collaborate and evolve without major changes to their

existing core architectures. Services are designed as self-contained modules that can be

advertised, discovered, composed, and negotiated on demand.

Although SOA relies on existing software architecture practices like information hiding

and separation of concerns, it adds new ones like service composition, service

choreography, and service repositories. To realize a SOA, a process to identify and

design services has to be established much like the traditional processes of OOAD [16].

Several authors argue that to model business related services, the level of abstraction has

to be raised up closer to the business domain [16], [17]. Despite the wide academic and

industrial activities related to SOA, there is no systematic end-to-end methodology for

analyzing and designing service-oriented applications. There is a near unanimous

agreement [16], [17], [7], [19] that such a methodology is needed to elevate service-

oriented computing to a mainstream computing level. As a result, Service Oriented

Analysis and Design (SOAD) is emerging as a new field which is concerned with

14

identifying and building services based on business requirements. SOAD aims at treating

services as first class entities much like OOAD treated classes and objects.

Several UML meta-models [20] were developed to organize the SOAD activities. SOA

is based on a multi-level architecture that blends business process models, Enterprise

Architecture, Object Orientation, and Service Orientation [16]. The benefits of SOA [15]

can be realized when applied across multiple solution environments where processing is

highly distributed and each service has an explicit functional boundary and resource

requirements.

It should be noted that Web Services technology is the most prominent implementation

platform for SOA, however Web Services are only one manifestation of SOA and they do

not necessarily fully adhere to SOC principles [15]. Because of the current reliance on

Web Services, SOA requires the establishment of XML data representation architecture

[15].

2.3. Service Composition

Service composition, i.e. assembling services to build applications, is a central theme in

SOA because it emphasizes reuse at a higher level. Service composition is a fundamental

activity in any meaningful SOC environment [21]. Reuse is realized by assembling other

business partners’ services rather than reusing individual components.

The main challenges to composition stem from the changing nature of users’

requirements and the open environments that services reside in [22].

15

Any service composition approach must satisfy the following requirements [21]:

Connectivity, Nonfunctional QoS properties, Composition correctness, and Services

scalability.

It should be noted that service composition is not standardized and several approaches

exist to handle it.

2.4. SOA Variability Modeling

In this section, SOA variability modeling techniques in the requirements and architecture

phases are investigated.

2.4.1. Service Requirements Variability Modeling

Business Process Models (BPM) are the most widely used requirements artifacts in SOA.

In this section, variability modeling in UML activity diagrams is investigated since

activity diagrams are the most prominent graphical notations for representing BPM [23].

Activity diagrams are suitable for representing BPM for several reasons: the popularity of

the UML, precise semantics, and the rich structure of class modeling in UML 2.0 [23].

There are many ways to represent variability in activity diagrams [24]. Variability could

be modeled as an encapsulation of variant sub-processes [24]. This mechanism is

implemented simply by invoking the UML’s CallBehaviorAction meta-class on the

desired varying activity. Thus, variability is achieved by encapsulating different sub-

activities.

16

Variability can also be achieved by addition, replacement, and omission of encapsulated

sub-processes [24]. These mechanisms can be implemented by UML’s

CallBehaviorAction meta-classes as well. CallBehaviorAction meta-class can be added at

any location in the activity diagrams; however, the number of output parameters of the

new CallBehaviorAction meta-class must be equal to the number of ObjectFlowEdge

meta-classes [25] interrupted by the addition. Replacements and Omissions can be

implemented similarly with the careful consideration of the consistencies between input

and output parameters.

Extension points can also be used as a variability mechanism by having the

CallBehaviorAction meta-class call Activities that contain extending sub-processes at

pre-designated locations [24]. In addition, Delegation can be achieved by calling external

activities using the SendSignalAction [25] meta-class.

Parameterization is another popular variation mechanism which can be implemented in

several ways in UML Activity diagrams. The main goal of parameterization in activity

diagrams is the execution of variant Actions in the process flow. This can be achieved by

the utilization of DecisionNode, JoinNode, and guard expressions attached to

ActivityEdge meta-classes [25]. Actions themselves can be parameterized using

ValuePins . The data flow between actions can be parameterized using ParameterSet

meta-classes [25].

Data type variability can be implemented by using UML’s Activity ObjectNode meta-

class [25] that corresponds to variant types.

17

After detailing the different variability mechanisms in activity diagrams [24], several

annotations were presented in the form of stereotypes that can be used in the variant

activity diagrams.

 An SPL testing approach is described [26] where variation points in use cases are

converted into activity nodes in activity diagrams with variation point parameters.

Variant activity nodes are annotated with the <<adaptable>> stereotype. Further, feature

conditions are expressed in guard expressions with the ‘fc’ prefix [fc: condition]. It

should be noted that this approach is similar to the approach presented above [24] but on

a smaller scale and without the use of the activity diagrams meta-model. The SPL testing

approach [26] uses one stereotype, <<adaptable>>, and relies heavily on using guard

expressions to model feature conditions.

The stereotypes <<optional>> and <<alternative>> [27] are used to denote variant

activity nodes in Activity diagrams. The same stereotypes are also applied to partitions,

or Activity Swim Lanes, to highlight variant sequences instead of individual nodes.

Annotating entire sequences of nodes provides a richer and more explicit mechanism to

model variability in activity diagrams.

2.4.2. Service Design Variability Modeling

Services can be used in several systems through customization [5]. The basic, or generic,

service can be invoked by several systems with varying functionalities. To be used by

multiple consumers, services need to be designed with variability in mind.

18

 A variability analysis technique [28] is introduced into an existing service oriented

analysis and design method (SOAD). A four layered SOA architecture is adopted that

consists of: Business Process Layer, Unit Service Layer, Service Interface Layer, and

Service Component Layer. In addition, each layer is associated with a variability type:

Workflow (Business Process Layer), Composition (Unit Service Layer), Logic (Service

Component Layer), and Interface Mismatch (Service Interface Layer). Decision tables are

used to record variability types in each phase of the SOAD process. Decision tables are

used to map business process requirements to unit services and service components. This

approach emphasizes the process of creating adaptable services, but it does not provide

modeling nor automation methods.

Architectural patterns [5] are used to model variation points in Web Services. It is argued

that Web Services standards have inherent support for variability. For example, clients

can communicate with services implemented in different technologies like Java or .NET

and several protocols can be used to transfer messages between clients and services. In

addition, Web Services Definition Language (WSDL), and the Universal Description,

Discovery and Integration (UDDI) attributes and parameters can all be customized and

modeled as variation points.

2.4.3. Variation by Parameterized Services

In this approach, services are adapted for variation by introducing parameterized

variation points within the services. The following are some examples of service

parameterization:

19

- Operations and Parameters Variability

Operations and their parameters can be parameterized at the Interface Definition level for

services. (WSDL) documents can be exploited to implement variability when Web

Services are used as an implementation technology. In fact, each element in a WSDL

document could be considered as a candidate for a variation point [5]. In addition,

elements addition and operations reordering in WSDL do not break backward

compatibility [29]. Thus, evolving services’ operations based on product line members’

features is possible without introducing separate WSDL documents.

- Transport Variability

 Variation points can be realized in the transport choice for a service. For example,

 a software product line member can select SOAP as a transport while another

 member selects FTP [5]. Again, this transport choice could be parameterized

 within one WSDL document if Web Services are used for implementation.

- Endpoint Variability

 Variation points can be realized in the location choice for a service. For example,

 some product line members may specify URIs, while others only specify one

 location. Multiple endpoints may be needed for fault tolerance or data replication.

 Endpoints specification could be parameterized within WSDL as well.

- Discoverability and Binding Variability

 Variation points can be realized in the way the product line members are

 discovered and bound to. Services are advertised in public registries by exposing

 certain characteristics. Software product line members can parameterize these

20

 advertised characteristics to control how clients discover and bind to them. UDDI

 discovery technology can be used for this purpose as shown in [5]. On the other

 hand, some members may choose not to be discovered at all for security and other

 concerns. In these situations, the UDDI discovery mechanism could be

 parameterized to offline a product line member based on some features’

 conditions. Off-lining a product line member in the registry does not render it

 unusable, since its endpoint can be fed to selected clients statically.

- Error Handling Variability

 Variation points can be realized in the way product line members process their

 error handling [5]. Error handling can be parameterized based on feature

 conditions that dictate the actions taken in certain events. For example, some

 product line members may chose to simply log error messages while others may

 attempt some predetermined corrective actions.

Several design patterns like Strategy and Decorator can be used to realize the identified

variation points within services [5]. The Strategy pattern can be used to realize

operations’ variability, whereas the Decorator pattern can be used to realize parameters’

variability.

2.4.4. Variation by Service Composition

When grouping related features into services, variations can be realized by composing

feature-based services. A lightweight product line engineering approach [6] is proposed

with a specific phase for supporting service composition in the product line architecture.

21

Several variation points are introduced that can be used to customize the product line

during service selection in the application engineering phase:

• OrchestrationType – specifies the activities that constitute service invocations.

• DataModel – defines data exchanged between services

• ServiceSelection – specifies the types of bindings (static and dynamic) between

services in a composition.

• TypeOfException – is used to specify how a specific exception is handled.

• QualityFactor – specifies quality attributes, like cost and performance, needed by

different services.

However, service selection is not tied to feature selection of the product line and

composition verification is not explained.

Several design patterns like Composite, Iterator, and Chain of Responsibility can be used

to realize composition variation between services [5]. The Composite pattern can be used

to implement the composite service that encompasses other sub-services, whereas the

Iterator pattern can be used to implement the traversal of sub-services. In addition, the

Broker architectural pattern [3] could be used in designing the architecture for such a

composition.

A variability modeling language (OVM) is proposed [30] to model service composition

choices in business process definitions. A meta-model is introduced that explains the

relations among business process activities, variation points, and services. By modeling

variation points and their variants, service composition is determined based on users’

22

selection of available services that meet their goals. Thus, a user centric approach is

proposed where the selection of variants dictates service composition.

A Web Services based software product line engineering approach [4] is proposed where

components in the architecture were modeled using the <<web service>> stereotype.

Feature selection from feature models determined the selection of Web Services. UML

activity diagrams modeled customization choices based on feature/Web Service

interactions. However, the selection of Web Services that support feature selection was

predetermined and no discovery or composition of services was modeled in the

architecture.

2.5. Self-Architecting Service Oriented Systems

Some systems have intrinsic variability in both requirements and architectures, e.g.

emergency response systems. These types of systems can benefit from SOA principles to

facilitate their efficient construction and evolution.

A self-architecting SOA framework is proposed that allows domain experts to model

business processes and an SOA based architecture to be automatically generated [31].

Business processes are modeled by using an activity based modeling language [32]

similar to BPMN. Changing requirements trigger the regeneration of software

architecture. Qualities of service (QoS) requirements are modeled by using a scenario-

based modeling language to which QoS objectives are associated.

 To satisfy QoS requirements, an SOA is generated that optimizes utility function for the

entire system [33].

23

2.6. Software Product Lines

Software Product Lines (SPL) are families of software systems that share common

functionality, where each member has variable functionality [34], [35], [3]. The main

goal of SPL is the rapid development of member systems by using reusable assets from

all phases of the development life cycle.

In the SPL domain engineering phase, requirements, analysis, and architecture of the

application family is developed upfront. Then, in the application engineering phase, the

derivation of member applications is carried out by tailoring the architecture based on the

unique member application’s features.

Several SPL engineering methods exist in the literature as described in the following

subsections:

2.6.1. Product Line UML-based Software Engineering

(PLUS)

PLUS [3] is a UML based iterative software engineering method that extends the

COMET [36] method for software product lines. PLUS models commonality and

variability of product line families throughout the development life cycle. UML 2.0 is

extended using stereotypes, constraints, and tagged values. PLUS has two main phases:

• Domain Engineering – The commonality and variability of the domain are

analyzed through the following steps:

24

- Requirements modeling – user requirements are categorized as kernel,

optional, and alternative use case models. Variation points and use case

extensions are used to model variability. Feature models are constructed

based on the use case models. Dependencies between use cases and

features are explicitly outlined.

- Analysis modeling – the product line context and entity classes are

modeled using static class diagrams. Classes are categorized as kernel,

optional, and variants. Objects interactions in use cases are modeled by

UML dynamic communication diagrams. State based systems are modeled

by UML state chart diagrams.

- Architectural design modeling – a component based architecture is

designed for the software product line. Connections and communication

patterns among concurrent objects are explicitly designed. Software

architectural patterns are used throughout the architecture.

• Application Engineering – member applications are instantiated by tailoring the

product line architecture based on selected users’ features.

2.6.2. Feature Oriented Domain Analysis (FODA)

FODA is a domain analysis method based on identifying the common and distinguishing

features of family of systems [37]. The FODA method consists of three main phases:

25

• Context Analysis – The scope of the domain is analyzed by examining its external

environment. The relation between the domain and the external environment is

represented in a context model.

• Domain Modeling – The commonality and variability of the domain are analyzed

thru the following steps:

- Feature analysis – end users’ functional requirement are analyzed and

categorized into mandatory, optional, and alternative features. The

relations among the feature of the domain are represented in a tree-like

feature model.

- Information analysis – domain data requirements are analyzed by focusing

on domain knowledge entities and their relationship. The outcome of this

phase is represented in entity relationship (ER) or object oriented (OO)

models.

- Operational analyses – behavioral aspects of the domain are analyzed with

a focus on data and control flow. Domain functions are identified and

sequenced to satisfy previously identified features. The outcome is

represented in operational models.

• Architecture modeling – a high level software design of the overall structure of

the domain is developed. Concurrent processes, domain modules, and their

relationships are represented in the architectural model.

2.6.3. Reuse-driven Software Engineering Method (RSEB)

26

RSEB [38] is a use case driven domain modeling method that consists of several steps:

• Object-oriented business engineering – use cases are analyzed to derive

automatable business processes.

• Application family engineering – a layered architecture is developed for the

domain model.

• Component system engineering – reusable components and their connections are

developed.

• Application system engineering – selected applications from the domain are

developed based on the architecture.

RSEB uses variation points to express variability throughout the development process.

Variation points describe the location of variable behavior in use cases and architecture.

2.6.4. Family-Oriented Abstraction, Specification, and

Translation (FAST)

FAST [39] is a method for developing families of systems and environments for deriving

family members. The main processes of FAST are:

• A process for defining commonalities and variability for the family – parameters

are used to express variations.

• A process for producing family members – parameters are mapped into templates

which define family members.

27

• A language for specifying family members – a configuration language that

captures family variations thru parameterization.

• Generating software from specifications – a code generating environment that

generates executable family members.

2.6.5. KobrA

KobrA [40] is a component based incremental method for developing product lines

architectures. The method can be used for both single and family of systems. The most

important steps of KobrA are:

• Framework engineering – a generic reusable framework that represents all

products variations of the software family is developed. This step consists of:

Context realization, Component specification, and Component realization.

• Application engineering – specific products are instantiated from the generic

framework to meet unique customers’ requirements.

2.7. Feature Modeling

Feature modeling is rooted in the seminal work of Kang et al. [37] in the Feature

Oriented Domain Analysis (FODA) method. A feature is a requirement that is present in

one or more members of the product family [3]. Feature models are widely used in the

SPL requirements commonality and variability analysis phase. Specifically, they are used

to model the possible requirements configurations of SPL member applications.

28

Feature models are normally represented in tree-like graphical notations [37]. Although

several notations exist, only UML based notations are investigated in this literature

review.

Commonality and variability analysis is directly applied on class diagrams in a traditional

OO analysis phase [41]. The stereotype <<V>> is used to denote optional features and

the lack of this stereotype to denote common features. In addition, they apply this

convention to the operations and attributes of classes. However, this approach is not

expressive enough as it doesn’t address alternative features and their dependencies. Also,

this approach does not directly address variability analysis in the requirements phase.

A <<Variant>> stereotype is introduced [42] to denote optional features in class

diagrams. Furthermore, a tagged value with the keyword ‘feature’ is attached to each

<<Variant>> class. The purpose of this tagged value is to provide traceability between

features in the requirements models to classes in the analysis model. However, no

notation is provided to denote feature dependencies or feature groups.

A simple feature meta-model [43], using UML meta-class diagrams, is introduced. The

meta-model consists of a Feature meta-class which is specialized by CommonFeature,

VariableFeature, FunctionalFeature, and NonFunctionalFeature meta-classes.

VariableFeature aggregates two meta-classes: VariationPoint and Variant. Meta-

associations and dependencies are used to depict feature relations. In addition, predicate

logic expressions are provided to describe feature relationships. These expressions are

valuable contribution, since they can be translated to Object Constraint Language (OCL)

to constraint feature models’ dependencies.

29

 An approach for mapping the traditional tree-like feature models to UML [44] is

presented. Model templates, expressed in the desired UML notation, are created to

describe all possible combination of features from the feature model. These templates are

annotated with “presence conditions” and “meta-expressions”. Presence conditions

determine the inclusion or exclusion of features in the target template based on features

information from the source model. Meta-expressions describe feature attributes from the

source model as well. To carry out the transformation, “template instances” are created

by evaluating the presence conditions along with the meta-expressions. This approach is

interesting, because it provides a method to transform feature models to virtually any

model that is MOF-based (Meta Object Facility) [45]. However, the mapping approach

assumes that the starting source feature model is expressed as a tree and not as a generic

model.

In the PLUS method [3], feature models are derived from variant use case models and

represented by UML class diagrams. PLUS uses stereotypes to categorize reusable

requirements, i.e. Features as shown in Table 2.1.

30

Table 2.1 PLUS Feature Stereotypes

Feature/Feature Group Description

<<feature>> Represents the top-level feature element

<<common feature>> extends <<feature>> These features are present in all members of the

product line

<<optional feature>> extends <<feature>> These features are present in some members of the

product line

<<alternative feature>> extends <<feature>> Some members of the product line need to choose

from alternative features

<<default feature>> extends <<feature>> Alternative features may specify a default feature.

<<parameterized feature>> extends <<feature>> Parameterized features define a product line

parameter whose value needs to be defined at system

configuration time

<<feature group>> The top-level feature group element

<<zero-or-one-of feature group>> extends <<feature

group>>

Zero or one feature can be present in the product line

member

<<exactly-one-of feature group>> extends <<feature

group>>

Exactly one feature can be present in the product line

member

<<at-least-one-of feature group>> extends <<feature

group>>

At least one feature must be present in the product

line member

<<zero-or-more-of feature group>> extends

<<feature group>>

Zero or more features can be present in the product

line member.

31

In addition, feature dependencies are depicted as associations in the class diagram.

Associations, such as ‘requires’ and ‘mutually includes’, are used to illustrate feature

relationships. It should be noted this feature modeling notation is adopted by this

dissertation as explained in Chapter 4.

2.8. Multiple-View Modeling

In his seminal work on multiple-view architectures, Kruchten [46] argues that it is

unwieldy to capture the architecture of software-intensive systems on one diagram.

Further, he notes that such diagrams usually do not address the concerns of the diverse

stakeholders of such systems. To that end, Kruchten proposes a model for describing the

architecture of software-intensive systems via the use multiple views or perspectives (4+1

View), where each view addresses specific set of concerns. The 4 views are: logical,

process, physical, and development. The 1 view is the use case view which ties the 4

views together.

A multiple-view requirements engineering framework is described where each view is

defined based on viewpoints held by actors or agents [47]. Viewpoints template are

described which they can be instantiated for specific requirements engineering

techniques. Inter-Viewpoint communication relationships are described to help in

multiple viewpoint integration.

A dynamic navigation approach, of modeling information, in multiple-view models is

proposed [48]. The approach allows developers to automatically locate information in

32

multiple views regardless of the notation used. An underlying representation is defined to

describe the multiple views and mappings among the views.

2.9. Meta-Modeling

In language modeling, a meta-model is a model that describes a model. In other words, a

meta-model is a model used to specify a language [49]. Meta-models are used to capture

the essential features and properties of languages [50]. In a natural language analogy, all

languages have grammars that describe their structure. Natural languages’ grammars are

the meta-models that describe the proper structure of languages. In computer science,

programming languages have meta-models called Backus–Naur Form (BNF) [49] that

describes their valid syntax.

Another term used for language meta-models is abstract syntax [50], which is the

underlying and unifying structure of a language. The language itself is referred to as the

concrete syntax [50]. For example, in UML, the Meta-Object Facility (MOF) [45] meta-

model is the abstract syntax and the actual UML language diagrams are the Concrete

Syntax. Most modelers use the concrete syntax of languages, while the abstract syntax is

used by language engineers who normally create or modify languages.

Meta-models describe modeling languages at a higher level of abstraction than the

language itself [50]. Hence, concrete model, like a UML class diagram, is an instance of

its corresponding meta-model, which is MOF. Meta-models are especially useful to tools

developers since they can be used to describe several languages in a uniform way.

33

It should be noted that meta-modeling has existed for a long time and has been used in

data modeling for example.

2.10. Model Driven Architecture (MDA)

MDA [51] is an Object Management Group (OMG) initiative that promotes development

practices where models are used as first class entities. Software development is driven by

constructing models in all phases of the development life cycle. Platform Independent

Models (PIM) [52] capture business logic details independent of any technological

platform. Platform Specific Models (PSM) represent technology specific concerns like

software languages and environments. PIMs are transformed into PSMs using predefined

transformation definitions. Eventually, PSMs are transformed into code.

Evolving business requirements are handled by changing PIMs and generating PSMs

using the transformation definitions. Transformation definitions [45] consist of precise

transformation rules and mappings that transform elements in the PIM into elements in

the PSM automatically. Transformation rules are written using formal language that can

be understood by machines.

The most widely used MDA modeling language is the Unified Modeling Language

(UML). However, other languages can be used if they are based on Meta Object Facility

(MOF) [45] meta-model.

MDA aspires to improve productivity by letting developers focus on the PIM and having

them generate the PSM and code. Portability is gained by developing transformation

rules for new platforms while keeping the PIM intact. In addition, documentation

34

becomes always current and in sync with operational systems since all work is done on

the models.

The MDA vision depends heavily on tool support for building the PIM and PSM, the

formulation of transformation rules, and code generation.

35

3. Research Approach

3.1. Introduction

The purpose of this research is to develop a multiple-view variability modeling and meta-

modeling approach to address the modeling of variable service-oriented systems in a

systematic, unified, and platform-independent way.

When building variable systems, i.e. application families, software engineers typically

have the following design alternatives:

Traditional development approach, where requirements are gathered for current

capabilities at hand without considering functional requirements that can change in the

future. Consequently, analysis, design, testing, and implementation commence to build a

single application. When future requirements arise, the aforementioned development

activities are repeated to build another single application that satisfies the new

requirements. This process is repeated every time new requirements arise even if the new

desired application is only slightly different from the original application.

Software Product Line (SPL), aka application family, development approach. Instead of

developing new single systems from scratch for new requirements, current and

anticipated future requirements are gathered and analyzed to create a family of similar

but slightly different applications. Hence, analysis, architecture, design, and testing

36

artifacts are created for the entire SPL upfront. Consequently, components are built for

the entire application family and stored in repositories for future reuse. When anticipated

requirements arise, new member applications are derived from the variable component

architecture. Details of SPL engineering are described in Chapter 2.

Service-Oriented Software Product Lines. This alternative is similar to the SPL approach,

however instead of developing software components for the entire SPL upfront, this

approach employs services that might be developed by external providers. The analysis

and design activities are based on service interfaces and business process workflows.

Services could be discovered and bound at member application derivation time based on

their exposed interfaces. Obviously, considerable time and efforts are saved since the

developing organization does not have to create a complete variable component

architecture upfront as described in the previous design alternative.

This research develops an approach to facilitate and realize the service-oriented SPL

design alternative mentioned above. To achieve this goal, this research develops a

multiple-view model that specifies the relationships between variable service views.

Additionally, this research develops a multiple-view service variability meta-model that

formalizes the relationships and mappings of the multiple-view service variability model.

Consistency checking rules between the multiple service views are developed based on

the meta-model. Furthermore, this research presents an automated model-driven

framework that realizes the aforementioned meta-modeling and modeling approach. A

proof-of-concept tool prototype is developed to realize the automated framework. The

37

tool prototype is used to model and execute service oriented product lines (SPLs) and to

ensure the consistency of the multiple views of SPLs.

3.2. Research Approach

Since services in SOA could be used by different clients with varying functionality, SOA

variability modeling can benefit from software product lines (SPL) variability modeling

techniques. Applying SPL concepts, service oriented systems can be modeled as service

families. In particular, the research approach integrates SPL concepts of feature modeling

and commonality/variability analysis, meta-modeling, multiple-view modeling, and

service modeling to model SOA variability. The main goal of SPL is the reuse-driven

development of SPL member applications by utilizing reusable assets from all phases of

the software development life cycle. This goal is similar to the goal of SOA where

reusable service development is a common theme. The approach in this research

combines SPL variability modeling concepts [3] with SOA concepts, as represented in

the Unified Modeling Language (UML) [53] and the newly released standard

SoaML[54]. Such an approach facilitates variability modeling of service family

architectures in a systematic and platform independent way.

At the heart of the approach in this research is a meta-model that models requirements

and architectural views of variable service oriented systems. The meta-model captures

variability in the service views and adds a feature view that addresses the variability in

the SOA system in a unified manner. The meta-model also captures relationships among

the service views, and among the feature and service views. The meta-model is used to

38

help developers specify requirements, relate requirements to architectural artifacts, and

create new applications based on changing requirements.

A proof-of-concept service-oriented engineering environment (SoaSPLE) is developed to

validate the approach. This tool prototype is used in carrying out two case studies to

further validate the approach.

3.3. Relation to Existing Research Approaches

The research approach builds on existing research in the following ways:

Feature Modeling [37] – it is difficult to get a complete picture of the variability in the

service architecture, because it is dispersed among multiple views. To get a full

understanding of the variability in the service architecture, it is necessary to have one

view that focuses entirely on variability and defines dependencies in this variability. That

is the purpose of feature modeling.

SPL commonality/variability management [3] – since SOA development approaches lack

a systematic way to handle variability management concerns, SPL principles are

exploited to create a systematic methodology to handle variability management concerns

in variable SOA systems.

Multiple view modeling [2], [47], [48] – multiple-view modeling techniques are used to

model various views of SOA and to define the relationships among these views.

Meta-modeling of SPL phases [55], [50] – meta-modeling principles are used to

formalize the multiple-view service variability model and to help in defining consistency

checking rules among service views.

39

Model Driven Architecture [51], [56], [52], [45] – MDA is exploited to create a platform

independent service variability approach and in designing an automated framework to

realize this approach.

The following sections detail the research approach components:

3.4. Feature Modeling and Meta-Modeling

Traditionally, feature modeling [3], [37] is used to model the reusable requirements of

SPLs. In this research, in addition to modeling reusable requirements, feature modeling is

used to model the variability of the service architecture that is dispersed among the

multiple service views. In essence, feature modeling is exploited to produce a Feature

View that focuses entirely on variability and defines dependencies in the variability of the

service architecture. The Feature View is described in Chapters 4 and 5.

3.5. Multiple View Service Variability Modeling

A multiple-view model is developed to model the variability of requirements and

architectural views of SOA systems. The multiple views are integrated via explicit

relationships that describe their dependences.

The multiple-view variability model is intended to provide a modeling notation for

modelers to help in modeling service-oriented software product lines. The multiple-view

service variability model is described in Chapter 4.

40

3.6. Multiple View Service Variability Meta-Modeling

A multiple-view service variability meta-model is created to provide a formal description

of the aforementioned multiple-view service variability model. The meta-model contains

Meta-Views that model each View in the multiple-view model. In addition, the meta-

model captures the relationships between the service views and the relationships between

the feature view and service views.

The multiple-view service variability meta-model is embedded within the proof-of-

concept prototype to serve as Abstract Syntax [49] for the multiple-view model’s

Concrete Syntax [49]. The meta-model is described in Chapter 5.

3.7. Consistency Checking and Mapping Rules

To ensure consistency among the multiple service views, consistency checking rules are

derived from the semantic relationships between the multiple views in the meta-model. In

addition, mapping rules are derived to provide mapping between the feature view and

service views.

The consistency checking and mapping rules are annotated with the multiple-view

service variability meta-model in the proof-of-concept prototype to provide an automatic

consistency mechanism for modelers. Consistency and mapping rules are described in

Chapter 5.

41

3.8. Model-Driven Service-Oriented Product Line

Engineering Framework

This research exploits the model driven architecture (MDA) principles to create an

automated framework that realizes the multiple-view service variability approach for

building service-oriented SPLs.

The framework provides model-driven techniques to design service-oriented SPLs,

automation for service-oriented product line engineering, and model-driven techniques to

handle the variability of SOA middleware environments. This approach is described in

Chapter 6.

3.9. Proof-of-Concept Tool Prototype

To realize the aforementioned automated framework, this research built a model-driven

Service-Oriented SPL Engineering proof-of-concept tool prototype (SoaSPLE). The

goals of the prototype are: to demonstrate the feasibility of the automated service-

oriented SPL engineering framework, ensure the consistency of multiple views of the

multiple-view model, model multiple-view service-oriented variability SPLs, derive

member service applications from the SPLs, and to deploy, execute, and test member

applications of the SPL. The prototype is described in Chapter 6.

3.10. Approach Validation

42

The objective of the validation is to evaluate the approach in this research with regard to

the following properties:

The multiple views of the service-oriented software product line are consistent with each

other.

The multiple-view service variability model is compliant with the underlying multiple-

view service variability meta-model.

Derived software product line member applications are valid service-oriented SPL

members.

To achieve the aforementioned validation objectives, the validation procedure is divided

into two main testing tasks:

Unit Testing – this type of testing tests each element and relationship in the multiple-view

service variability meta-model. Unit testing is needed, because the case studies may not

exercise every part of the meta-model.

System Testing – this is a system-wide testing that tests the running service-oriented

applications of the SPL end-to-end.

Chapter 7describes the validation approach and unit testing, while Chapters 8 and 9 detail

system testing through two case studies.

43

4. Multiple-View Service Variability Model

4.1. Introduction

In this chapter, the multiple-view variability modeling approach that addresses SOA

variability concerns is introduced. The approach integrates software product lines (SPL)

feature modeling techniques with service modeling to model variability in multiple views

pertinent to SOA. Although earlier research (Chapter 2) provides ways to model

variability in service views, variability of each view has been addressed only individually

without relation to other views. By integrating feature modeling with multiple-view

service modeling, consistency between the multiple views can be checked and then

enforced. The approach is intended to be platform-independent in which SPL variability

modeling [3] concepts are combined with SOA concepts, as represented in UML and

SoaML [54].

Erl [15] describes service-oriented systems as having multiple perspectives where these

perspectives depend on each other. In essence, each perspective describes a distinct view

of the whole SOA system. In this research, the different SOA perspectives are formalized

into multiple Requirements and Architectural views.

Kruchten [46] introduced the 4+1 view model of software architecture, in which he

advocated a multiple view modeling approach for software architectures that addresses

44

the needs of distinct stakeholders. In the 4+1 multiple-view model, the use case view is

the unifying view (the 1 view of the 4+1 views). The approach in this research describes

a multiple view modeling approach for service-oriented software product lines in which

the unifying view is the feature model. In particular, feature modeling provides the added

dimension of modeling variability in service-oriented software product line architectures.

The other 4 views in the approach consist of 2 Requirements views (Service Contract and

Business Process) and 2 Architectural views (Service Interface and Service

Coordination).

Each view of the multiple-view model is depicted by a UML/SoaML diagram that

consists of new modeling elements that were created by directly extending the UML

meta-model. In addition, the relationships between the multiple service views are

described. Finally, the relationships that relate features to service views are developed

4.2. Using SPL Concepts to Model SOA Variability

Although, there are many differences between typical software product lines and service-

oriented architectures, this section analyzes how SPL concepts can be used to model SOA

variability. Since services in SOA could be used by different clients with varying

functionality, SOA variability modeling can benefit from SPL variability modeling

techniques. Service-oriented systems can be modeled as service families, similar to the

concept of SPL. The main goal of SPL is the reuse-driven development of SPL member

applications by using reusable assets from all phases of the development life cycle. This

45

goal is similar to the goal of SOA where reusable application development is a common

theme.

SOA and SPL differ in the following ways:

• In SPL, components (core assets and variants) are designed and implemented a

priori and usually owned by the same developing organization, whereas in SOA,

services are usually developed by external providers who are unaware of their

clients.

• SOA development practices focus on automating business workflows by

assembling services, whereas the focus of SPL is on developing application

families.

• Reuse in SPL is utilized in all phases of the development life cycle using all types

of assets, however in SOA, only services are reused [57].

• SPL approaches have explicit techniques to model variability. However, SOA

approaches rely on industry best practices and ad-hoc techniques [57].

Existing approaches to handling variability in SOA [6], [4], [7], [58], [59], [60], [61]

have used SPL concepts to model variability in service families (this is discussed in more

detail in Chapter 2). However, these approaches do not provide a treatment of multiple

variability concerns in SOA in a unified framework. Further, existing research mainly

treats SOA variability issues in a platform specific way by focusing on Web Services and

orchestration languages such as the Business Process Execution Language (BPEL).

46

4.3. Service Contract Variability View

This Requirements view models service contracts and service participants. Service

contracts are prescribed by collaborating organizations to govern and regulate their

interactions. Service contracts may include service interfaces, policies, and service level

agreements.

To model the service contract view, SoaML’s ServiceContract element, which specifies

the agreement between providers and consumers, is used. It should be noted that

SoaSML’s ServiceContract element is based on UML’s Collaboration element, which

is represented by dashed bubbles (Fig. 4.1).To model variability, a ServiceContract is

specialized into kernel, optional, and alternative ServiceContracts. Kernel contracts are

required by all members of an SPL, whereas optional contracts are required by only some

members. An alternative contract is a variant of a kernel or optional contract to meet a

specific requirement of some SPL members. Fig. 4.1 depicts service contracts of an E-

Commerce SPL.

It should be noted that UML 2.0 specification allows the use of multiple stereotypes per

Fig. 4.1 Service Contract View of an E-Commerce SPL

«kernel»

«ServiceContract» Purchasing

:Payment Service

:Ordering Service

«kernel»

«Participant»

Seller

«kernel»

«Participant»

Bank

«kernel»

«Participant»

Buyer

«optional»

«Participant»

Rating

Agency

«view»

Service Contract View

:CheckCreditRating

Service

«optional»

«ServiceContract» Credit Checking

«kernel»

«ServiceContract» Inventory Ordering

:Electronics

Ordering Service
:Books Ordering

Service
«optional»

«Participant»

Electronic

Supplier

«kernel»

«Participant»

Book

Publisher

SalesTax Service

«optional»

«ServiceContract» Sales Tax

«optional»

«Participant»

Tax Agency

47

modeling element. Therefore, this research uses this feature by attaching a stereotype that

conveys an SOA concept and another stereotype that conveys a reusability concept for

each element in the multiple-view service variability model. However, this usage of

stereotypes is for display purposes only, since the multiple-view service variability model

consists of meta-classes that directly extend the UML meta-model.

Each service contract prescribes roles for the organizations participating in it. Hence, the

Service Contract View also models contract participants. Participants are entities that

abide by service contracts and provide or require service interfaces. Service interfaces are

discussed in the Service Interface View below. To model contract participants, SoaML’s

Participant element is used, which specifies providers or consumers of services. This

element extends the UML Class element. A Participant is specialized into kernel,

optional, or alternative Participants. An example of the Service Contract View is given

in Fig. 4.1.

4.4. Business Process Variability View

This Requirements view models the workflow of business processes. Participants can

define internal business processes to conduct their business. In this way, each

organization can define its own business processes while satisfying inter-organization

business contracts. This view consists of one or more business process models.

Neither SoaML nor UML explicitly model business process workflow. Since a business

process workflow is composed of a sequence of activities, UML Activity diagrams are

used to model business processes. From an SPL perspective, each activity in the Activity

48

model is specialized into kernel, optional, or alternative Activity. An example of the

Business Process View is given in Fig. 4.2, where the Seller Participant has its own

internal business process modeled as an Order Fulfillment business process. Note that

this business process is modeled as an SPL service activity diagram consisting of a

sequence of service activities (kernel, optional, default, and alternative), which can be

tailored into a service application business process in the SPL application derivation

phase (Chapter 6).

4.5. Service Interface Variability View

Services expose their capabilities through service interfaces only. This Architectural view

models service interfaces that specify the operations provided or required by

Participants.

Service interfaces are modeled by using SoaML’s ServiceInterface class. Service

Interfaces are specialized into kernel, optional, or variant ServiceInterfaces.

Fig. 4.2 Business Process View of an E-Commerce SPL

49

An example of the Service Interface View is given in Fig. 4.3. An organization that plays

the Seller role in the Purchasing ServiceContract must be able to implement and

advertize an Ordering Service exposed through the Ordering ServiceInterfaces, which

enables Buyer Participants to order goods from Seller Participants.

4.6. Service Coordination Variability View

The Service Coordination View models the sequencing of service invocations. It should

be noted that this is an Architectural view that is related to the business workflow

described in the Business Process View. In other words, each business process, i.e.,

Activity Diagram, in the Business Process View is associated with a

ServiceCoordinator in the Service Coordination View. It should be noted that this

Fig. 4.3 Service Interface View of an E-Commerce SPL

50

coordination is centralized where one ServiceCoordinator solely coordinates one

business process.

Services should be self-contained and loosely coupled. In order to have a high degree of

reuse, dependencies between services should be kept to a minimum [62]. Hence, service

coordination is used in situations where multiple services need to be accessed and access

to them needs to be coordinated and/or sequenced [63].

The Service Coordination View consists of ServiceCoordinator elements which are

direct extensions of UML Class meta-class. Service Coordinators, depicted on UML

communication diagrams, interact with clients and services. Services in the Service

Coordination View are modeled via the ServiceInterface elements. In addition, from a

reuse perspective, a ServiceCoordinator is specialized into kernel, optional, or variant

ServiceCoordinators. ServiceCoordinators receive messages from clients and/or

services, and send messages to clients and/or services. The sequencing of multiple service

invocations is encapsulated within the Coordinator [62]. Service Coordination can be

Fig. 4.4 Service Coordination View of an E-Commerce SPL

51

categorized by type of coordination (independent, distributed, or hierarchical), and the

degree of concurrency (sequential or concurrent) [63]. An example of the Service

Coordination View is shown in Fig. 4.4, where the Order Fulfillment

ServiceCoordinator coordinates service invocations for the Order Fulfillment Business

Process (Fig. 4.2). Notice how the Order Fulfillment ServiceCoordinator encapsulates

all sequencing logic and only sends and receives messages to and from services thus

minimizing coupling among services. In addition, notice how messages are annotated by

feature conditions between square brackets. These conditions act as guards that allow

messages to be fired only if the feature conditions are true.

4.7. Feature View

With multiple-view service variability modeling, it is possible to define the variability in

each view. However, it is difficult to get a complete picture of the variability in the

service architecture because it is dispersed among the multiple views. To get a full

understanding of the variability in the service architecture, it is necessary to have one

view that focuses entirely on variability and defines dependencies in this variability. That

is the purpose of the Feature View described in this section.

Feature modeling is the process of identifying reusable requirements or characteristics of

members of an SPL in terms of features and organizing them into a feature model. The

Feature View consists of Feature elements which are direct extensions of the UML Class

meta-class. Feature models are used to express and manage similarities and differences

among different family members in an SPL. Features are specialized into kernel,

52

optional, or alternative Features. Kernel features among products in an SPL are

mandatory, while different features among them may be optional or alternative features.

Related features can be grouped into feature groups, which constrain how features are

used by a product of an SPL. Feature modeling is discussed in more details in Chapter 2.

A feature model of an E-Commerce SPL is shown in Fig. 4.5. The feature model consists

of UML classes that denote reusable requirements, i.e. features. In addition, the feature

model contains feature group classes which are aggregations of optional or alternative

features. In addition, feature dependencies are depicted as associations in the class

diagram.

It is necessary to conduct commonality and variability analysis, represented in feature

models, in order to understand how service-oriented systems can change in reaction to

changing requirements. In addition, as will be shown in Section 4.9, the Feature View

serves as a unifying view since features can be mapped to multiple service views.

4.8. Multiple-View Service Variability Model Relationships

Fig. 4.5 Feature View of an E-Commerce SPL

53

In this section, the relationships between views of the service variability multiple-view

model are defined. It is important to develop these relationships to gain an understanding

of what happens in one view if a change happens in another view. This understanding

serves as a basis for the consistency checking rules described in Chapter 5. In addition,

these relationships illustrate how the Requirements views can be mapped to Architectural

views and how the Feature View serves as the unifying view for all views.

4.8.1. Intra-View Relationships

The associations and dependencies inside each view are defined. A ServiceContract, in

the Service Contract View, is associated with two or more Participants, because a

ServiceContract defines the relationships for participating entities in the SOA system.

For example, in Fig. 4.6b, the Purchasing ServiceContract is associated with Buyer and

Seller Participants. ServiceContracts may contain other ServiceContracts to form

composite contracts [54].

Participants provide or require services in the Service Contract View (Fig. 4.6b).

Services are exposed through ServiceInterfaces in the Service Interface View (Fig 4.6d).

ServiceCoordinators, in the Service Coordination View (Fig. 4.6e), coordinate one or

more services as they send and receive messages to/from services. It should be noted that

services are exposed through ServiceInterfaces in the Service Interface view.

It should also be noted that the intra-view relationships of the Feature View are adopted

based on previous research [55] and explained in Chapter 2.

54

Fig. 4.6 E-Commerce SPL Multiple-View Service Variability Model

«kernel»

«ServiceContract» Purchasing

:Payment Service

:Ordering Service

«kernel»

«Participant»

Seller

«kernel»

«Participant»

Bank

«kernel»

«Participant»

Buyer

«optional»

«Participant»

Rating

Agency

«Service Contract View»

(c)

:CheckCreditRating

Service

«optional»

«ServiceContract» Credit Checking

«kernel»

«ServiceContract» Inventory Ordering

:Electronics

Ordering Service
:Books Ordering

Service
«optional»

«Participant»

Electronic

Supplier

«kernel»

«Participant»

Book

Publisher

(d)

(b)

SalesTax Service

«optional»

«ServiceContract» Sales Tax

«optional»

«Participant»

Tax Agency

«Business Process View»

«Service Interface View»

«kernel» «BusinessProcess» Order Fulfilment

Place

Order

Check CR

Lookup Pref.

Customer

Calculate

Discount

«kernel»

«alternative»

«default»
«optional»

Make

Payment

«kernel»

Calculate

Tax

«optional»
Check

Availability

«kernel»

«common feature»

E-Commerce Kernel

«optional
feature»

Sales Tax

«optional feature»

Credit Rating

«at least-one-of

feature group»

Payment

«default feature»

Credit Card

«optional feature»

Electronic Check

«exactly-one-of
feature group»

ConsumerType

«alternative feature»

Regular Customer

«alternative feature»

Preferred Customer

requires

«optional
feature»

Electronic Goods

«optional
feature»

Discount

«at least-one-of

feature group»

Inventory

«default feature»

Books

«optional feature»

Electronics

requires requires

(a)

«kernel»

«Participant»

:Buyer

E9: Order
Detail

«kernel»

«ServiceInterface»

:Inventory

E2
: C
he
ck
 Av

ail
ab
ilit
y

«kernel»

«ServiceInterface»

:Ordering

E3: Place Order

«optional»

«ServiceInterface»

:Credit Rating

«optional»

«ServiceInterface»

:Sales Tax

«kernel»

«ServiceInterface»

:Payment

«kernel»

«Service Coordinator»

:Order Fullfilment

[sale
s tax

]:E6:
 Calc

ulate
 Tax

E8: Make Payment

E1: Buyer

Request

[credit rating]:

E4: Check Credit

«variant»

«ServiceInterface»

:Preferred Customers

«optional»

«ServiceInterface»

:Discount [discount]:E7: Calculate

Discount

(e)«Service Coordination View»

«Feature View»

«optional»

«ServiceInterface»

IElectronicsOrdering

orderElectronics()

chkOrderStatus()

«optional»

«ServiceInterface»

ISalesTax

calculateTax()

getTaxrate()

«optional»

«ServiceInterface»

ICreditRating

checkCreditRate()

getCreditScore()

«kernel»

«ServiceInterface»

IBooksOrdering

orderBooks()

chKOrderStatus()

placeOrder()

chkOrderStatus()

«kernel»

«ServiceInterface»

IOrdering

updateItem()

«kernel»

«ServiceInterface»

Inventory

chkAvailability()

cancelPayment()

«kernel»

«ServiceInterface»

IPayment

pay()

55

4.8.2. Inter-View Relationships

The associations and dependencies between the multiple views of the multiple-view

service variability model are defined.

A service-oriented SPL has one or more ServiceContract elements. For example, in the

Service Contract View of Fig. 4.6b, an E-Commerce SPL has Purchasing, Credit

Checking, Inventory Ordering, and Sales Tax ServiceContract elements.

Participant elements provide or require ServiceInterface elements, because

participating entities only interact through interfaces to minimize coupling among

services. For example, in Fig. 4.6b, the Tax Agency Participant provides the ISalesTax

ServiceInterface (Fig. 4.6d), while the Seller Participant (Fig. 4.6b) requires the

ISalesTax ServiceInterface.

Participant elements can define their own internal business processes. Business process

details are not known to other Participants and can change without notice to other

Participants in the service-oriented system. This minimizes coupling and allows

Participants to change their business processes without affecting the operation of other

participants in the system. For example, in Fig. 4.6c, The Seller Participant has an Order

Fulfillment business process, which is comprised of Activity elements.

Activity elements can be either local or service elements. Local Activities are executed

within the Participant execution environment, e.g. ‘Calculate Discount’, whereas

Service Activities are executed by calling external services exposed through

ServiceInterfaces. For example, in Fig. 4.6c, the Calculate Tax Activity is executed by

calling a SalesTax service exposed through the ISalesTax ServiceInterfaces (Fig. 4.6d).

56

Activities in the Business Process View are realized by calling operations of services

exposed by ServiceInterfaces. For example, the ‘Check CR’ Activity in the Order

Fulfillment business process (Fig. 4.6c) is realized by calling the checkCreditRate

operation of the Credit Rating service exposed through the ICreditRating

ServiceInterface (Fig. 4.6d).

ServiceCoordinator elements, in the Service Coordination View, coordinate the

sequencing of service invocations exposed by ServiceInterfaces in the Service Interface

View. For example, the Order Fulfillment ServiceCordinator (Fig. 4.6e) invokes

operations on the Credit Rating service exposed through the ICreditRating

ServiceInterface (Fig. 4.6d).

Messages in the Service Coordination View (Fig. 4.6e) trigger operation invocations on

ServiceInterface sin the Service Interface View (Fig. 4.6d). For example, the ‘Calculate

Tax’ Message in Fig. 4.6e is triggered by an invocation of an operation on the ISalesTax

ServiceInterface (Fig. 4.6d).

Elements in one view of the multiple-view service variability model affect elements in

other views. For example, in Fig. 4.6c, when the Calculate Tax Activity is added to the

Order Fulfillment Business Process View, a Sales Tax ServiceContract is introduced

into the E-Commerce SPL in the Service Contract View (Fig. 4.6b). Consequently, a Tax

Agency Participant is also added, which provides an ISalesTax ServiceInterface in the

Service Interface View (Fig. 4.6d).

It should be noted that these relationships are enforced by an underlying meta-model

described in Chapter 5.

57

4.8.3. Feature to Service Contract View Relationships

A Feature is supported by one or more ServiceContract elements in the Service

Contract View. For example, when feature Credit Rating (Fig. 4.6a) is selected, the

Credit Checking ServiceContract is configured into the SPL member application (Fig.

4.6b). The variability stereotype on a ServiceContract dictates the type of feature it may

map to. For instance, an optional feature (e.g., Credit Rating) can only be supported by

optional service contracts (e.g., Credit Checking service contract). Similarly, an

alternative feature may be supported by alternative service contracts only.

A Feature is supported by one or more Participants. For example, when the Electronic

Goods optional feature (Fig. 4.6a) is selected, which means the Seller will start selling

electronic items in addition to books, the ElectronicSupplier Participant participates in

the InventoryOrdering ServiceContract (Fig. 4.6b). Consequently, the

ElectronicsOrdering ServiceInterface will be introduced into the InventoryOrdering

ServiceContract (Fig. 4.6b). Hence, the selection of one feature in the Feature View is

supported by two service model elements (contract and interface) in the service Contract

and Interface views respectively.

4.8.4. Feature to Business Process View Relationships

A Feature is supported by one or more Activities in the Business Process View. For

example, when the Discount optional feature is selected (Fig. 4.6a), which means that the

system changes to provide the ‘Discount’ capability, the Calculate Discount Activity is

58

added to the Order Fulfillment Business Process (Fig. 4.6c). Thus, the Discount optional

feature is supported by an optional Calculate Discount Activity in the Business Process

View. Features may be supported by one or more nodes in the Activity diagram of the

business process, or by an entire business process.

4.8.5. Feature to Service Interface View Relationships

Service Interfaces can support Features in three ways:

• A Feature is supported by one or more ServiceInterfaces. For example, if the

Credit Rating optional feature is selected (Fig. 4.6a), the Seller Participant has to

provide a new ServiceInterface that can interact with a credit rating agency.

Thus, the Credit Rating optional feature is supported by an optional Credit Rating

ServiceInterface in the Service Interface View (Fig. 4.6d).

• Abstract ServiceInterfaces – here, an abstract ServiceInterface is specialized

differently for each member of the product line [3]. The main advantage of this

approach is the isolation of each variation in a separate subclass. However, this

approach suffers from the problem of combinatorial explosion when the number

of features is large, and a subclass is needed for each feature and feature

combination. In other word, there would be many subclasses of the parent

ServiceInterface, which can become quickly unwieldy.

• Parameterized ServiceInterfaces– here, one parameterized service class is

created with feature related configuration parameters which are assigned different

values for different members of the product line [3]. The main advantage of this

59

approach is that there would be only one parameterized ServiceInterface instead

of several variant classes. The main disadvantage is that the parameterized

ServiceInterface is affected by more than one feature.

4.8.6. Feature to Service Coordination View Relationships

ServiceCoordinators can support Features in two ways:

• Specialization – ServiceCoordinators can be specialized, using inheritance, to

model variability [3]. In this case, a parent coordinator class will be extended to

realize selected features or feature combinations. The main advantage of this

approach is the isolation of each variation in a separate subclass. However, this

approach suffers from the combinatorial explosion problem explained above.

• Parameterization – ServiceCoordinators can be pre-designed with variation

points based on Features in the feature model. For example, the Service

Coordination View of the Order Fulfillment business process (Fig. 4.6e) has a

pre-designed ServiceCoordinator with kernel and variant message invocations.

Notice, that optional and variant messages on the service coordination

communication diagram are preceded with the corresponding feature name in the

feature model (Fig. 4.6a) between square brackets to identify a conditional

message. These feature names act as guards that prevent a message sequence from

being invoked if the corresponding feature has not been selected. Optional and

variant message paths will be invoked if the corresponding features are selected in

the target member application. The advantages and disadvantages of this approach

60

are the same as for the parameterization of the Service Interface View explained

above.

4.8.7. Feature Dependency to Service Views Relationships

In a feature model, relationships between features are represented by feature

dependencies, where features may require other features or where features are mutually

exclusive of each other. In other words, a feature may depend on another feature, or a

feature must not be included along with another feature [3].

If there is a dependency between two features that are supported by two different service

model elements (e.g., service contract, or service interface), the dependency between the

two features must map to a dependency between the two service model elements. For

example, in the feature model (Fig. 4.6a), the Regular Customer feature requires the

Credit Rating feature. Therefore, the Check CR Activity (Fig. 4.6c), which supports the

Regular Customer feature, must relate to the ICreditRating ServiceInterface (Fig. 4.6d),

which supports the Credit Rating feature . These relationships are enforced by the

underlying meta-model as well (Chapter 5).

61

5. Multiple-View Service Variability Meta-Modeling

5.1. Introduction

The multiple-view variability modeling approach (Chapter 4) is based on a meta-model

that precisely describes all views and view relationships. Each view in the multiple-view

model is described by a corresponding meta-view in the meta-model. There are two

Requirements meta-views, Contract and Business Process, and two Architecture meta-

views, Service Interface and Service Coordination. In addition, there is a Feature meta-

view that describes the Feature view in the multiple-view variability model.

The meta-modeling approach in this research builds on previous research [55], in which a

multiple-view modeling and meta-modeling approach for SPL was described. The

approach has a multiple-view meta-model that defines the different perspectives of SPL.

The meta-model depicts life cycle phases, views within each phase, and meta-classes

within each view. Consistency checking rules are specified based on the relationships

among meta-classes in the meta-model. More details on this approach are covered in

Chapter 2.

The meta-modeling approach in this research exploits meta-modeling to achieve the

following goals:

62

• Model intra and inter views relationships of the multiple views of service-

oriented systems.

• Describe variability of interrelated views of SOA to produce an overall

description of service-oriented systems. In other words, the approach detects

changes in a specific view if a change happens in different, but related, views.

• Describe variability of SOA in a unified way. Since the multiple views of

SOA use different modeling notations, meta-modeling provides one notation

to describe all views in one language at a higher level of abstraction.

• Specify variability of service-oriented systems in a platform-independent

manner by using meta-classes that could be mapped to several technology

platforms.

• Formulate consistency checking rules that ensure the consistency of the

multiple-views of service-oriented systems as they change. OCL-based rules

are determined from the meta-model to ensure multiple-views consistency.

• Use the multiple-view variability meta-model to produce a model-driven

automated framework. MDA tools use meta-models to represent models at a

high level and to derive model-to-model and model-to-code transformation

definitions [52].

The following sections describe the multiple meta-views of the service variability meta-

model, their relationships, and consistency checking rules.

63

5.2. Service Contract Variability Meta-View

SoaML’s ServiceContract meta-class is used to model elements in this meta-view. This

meta-class extends the UML Collaboration meta-class. To model variability,

ServiceContract meta-classes are categorize as kernel, optional, or alternative (Fig. 5.1).

The Service Contract View prescribes roles for the entities participating in it. Hence, this

meta-view also models contracts’ participants. Participants are entities that abide by

service contracts and provide or require service interfaces. SoaML’s Participant meta-

class is used (Fig. 5.1) which specifies providers or consumers of services. This meta-

class extends the UML Class meta-class. The Participant meta-class is specialized into

Provider and Consumer Participant. Variability is modeled the same way as

ServiceContract meta-classes, i.e. kernel, optional, and alternative.

Fig. 5.1 Service Contract Variability Meta-View

64

5.3. Business Process Variability Meta-View

Neither SoaML nor UML explicitly model business process workflow. Since a business

process is composed of a sequence of activities, UML Activity meta-classes are used to

model meta-classes in this meta-view (Fig. 5.2). Activity meta-classes are categorized as

kernel, optional, or alternative.

Activity meta-classes are specialized into Local and Service meta-classes (Fig. 5.2).

Local Activities are executed within the Participant execution environment, whereas

Service Activities are executed by invoking external services exposed through

ServiceInterfaces.

Fig. 5.2 Business Process Meta-View

65

5.4. Service Interface Variability Meta-View

Service interfaces (Fig. 5.3) are modeled by SoaML’s ServiceInterface meta-classes.

This meta-class extends the UML Interface meta-class. ServiceInterface meta-classes

specify provided and required interfaces by Participants. A ServiceInterface is

categorized as kernel, optional, or variant. It should be noted that the ‘variant’

categorization is used for the Architectural Views in contrast to ‘alternative’, which is

used for the Requirements Views.

To manage complexity, variability meta-modeling for service ServiceInterface is

restricted to the whole interface and the whole operation. In other words, selected

features in the SPL could be supported by a new service ServiceInterface or by a new

operation in an existing ServiceInterface.

Fig. 5.3 Service Interface Variability Meta-View

66

5.5. Service Coordination Variability Meta-View

The Service Coordination Meta-View (Fig. 5.4) consists of ServiceCoordinators, which

are modeled by extending the UML Class meta-class. Messages sent and received by

ServiceCoordinators are modeled as SoaML’s MessageType meta-classes. MessageType

extends UML DataType meta-class. ServiceCoordinator and MessageType are

categorized as kernel, optional, or variant.

5.6. Feature Meta-View

Features (Fig. 5.5) are modeled by UML meta-classes that extend UML Class meta-class.

Features are categorized into kernel, optional, alternative, and default depending on the

characteristic of the reusable requirements as described in section 2. Feature groups (Fig.

5.5) are modeled by UML meta-classes as well. Feature groups refer to constraints on the

selection of a group of features (e.g., preventing selection of mutually exclusive features).

Fig. 5.4 Service Coordination Variability Meta-View

67

Feature groups are categorized into ZeroOrMoreOf, AtleastOneOf, ExactlyOneOf, and

ZeroOrOneOf. Feature dependencies represent relationships between features and are

modeled as UML meta-classes. Finally, Feature Conditions are Boolean constraints that

determine the selection or de-selection of features in the SPL.

5.7. Service Variability Meta-Model Relationships

This section describes the relationships of the unified service variability meta-model (Fig.

5.6) that ties all the aforementioned views together. The meta-model consists of 5 meta-

views (4+1 feature view) that correspond to each view in the multiple-view model

(Chapter 4). The Feature Meta-View (Fig. 5.5) unifies the service views as explained in

Chapter 4.

It should be noted that these relationships are enforced by the associations and

dependencies of the multiple-view service variability meta-model. OCL rules are

Fig. 5.5 Feature Meta-View

68

provided as shown below for the relationships that cannot be explicitly described in the

meta-model.

5.8. Intra Meta-View Relationships

The associations and dependencies inside each view are described (Fig. 5.6) along with

OCL, which are used when additional constraints are needed for the relationships.

- A ServiceContract meta-class, in the Service Contract Meta-View, is associated

with two or more Participants.

A kernel ServiceContract must relate to at least 2 kernel Participants

Fig. 5.6 Service Variability Meta-Model

69

context servicecontract inv: reuseStereotype =’kernel’ implies

(select participant.reuseStereotype = ‘kernel’)->size() >= 2

- ServiceContract meta-classes may contain other ServiceContracts meta-classes to

form composite contracts [54].

- The ServiceCoordinator meta-class in the Service Coordination view is associated

with a MessageType meta-class as it sends/receives messages to/from services.

5.9. Inter Meta-View Relationships

The associations and dependencies between the multiple views of the multiple-view

service variability meta-model are defined (Fig. 5.6).

- A service-oriented SPL has one or more ServiceContract meta-classes. In essence,

ServiceContract meta-classes form the basis of any service-oriented SPL.

- Participant meta-classes, in the Service Contract Meta-View, provide or require

ServiceInterface meta-classes in the Service Interface Meta-View.

A Participant must provide or require at least one ServiceInterface
context participant inv: reuseStereotype =’kernel’ implies

serviceinterface->exists(si | si.reuseStereotype =‘kernel’)

- Participant meta-classes can be associated with Activity meta-classes in the

Business Process Meta-View. This relationship defines a meta-business process,

comprised of Activity meta-classes, for the Participant meta-classes.

70

- Activity meta-classes, in the Business Process Meta-View, are mapped to

ServiceInterface meta-classes in the Service Interface Meta-View. In essence,

Activities are realized by service operations exposed through ServiceInterfaces.

- Each Business Process (comprised of Activity meta-classes), in the Business

Process View, is associated with one unique ServiceCoordinator meta-class in

the Service Coordination View. It should be noted that centralized coordination is

assumed.

- ServiceCoordinator meta-classes, in the Service Coordination Meta-View,

interact with ServiceInterface meta-classes in the Service Interface Meta-View.

- MessageType meta-classes, in the Service Coordination Meta-View, trigger

Operation meta-classes invocations on the ServiceInterface meta-classes, in the

Service Interface Meta-View.

The following sections describe constraints on relationships between the Feature Meta-

View and the Service views. Consistency checking rules that add explicit constrains on

relationships between meta-classes are determined. Consistency checking rules are

specified in English and OCL.

5.10. Feature to Service Contract Meta-View Relationships

- A Feature meta-class, in the Feature Meta-View, is related to one or more

ServiceContract meta-classes in the Service Contract View. The variability

stereotype on a ServiceContract dictates the type of Feature it may support. For

instance, an optional feature can only be supported by optional service contracts.

71

Similarly, an alternative feature can only be supported by alternative service

contracts.

A Kernel ServiceContract can only support a kernel Feature
 context Feature inv: reuseStereotype = ‘kernel’ implies

 servicecontract- >size() >= 1 and servicecontract.reuseStereotype

 = ‘kernel’

- A Feature meta-class is related to one or more Participant meta-classes. The

variability stereotype on a Participant dictates the type of Feature it may

support.

An optional Participant can only support an optional Feature
 context Feature inv: reuseStereoType = ‘optional’ implies

 participant->size() >=1 and participant.reuseStereoType

 = ‘optional’

5.11. Feature to Business Process Meta-View

Relationships

- A Feature meta-class is related to one or more Activity meta-classes in the

Business Process View. The variability stereotype on an Activity dictates the

type of Feature it may support. A Feature could be supported by an entire

business process, comprised of Activity meta-classes, in the Business Process

Meta-View.

 An optional Activity can only support an optional Feature
 context Feature inv: reuseStereoType = ‘optional’ implies

 activity->size() >=1 and activity.reuseStereoType = ‘optional’

72

5.12. Feature to Service Interface Meta-View Relationships

- A Feature meta-class is related to one or more ServiceInterface meta-classes

in the Service Interface Meta-View. The variability stereotype on a

ServiceInterface dictates the type of Feature it may support.

 A variant ServiceInterface can only support an alternative Feature
 context Feature inv: reuseStereoType = ‘alternative’ implies

 serviceinterface->size() >= 1 and

 serviceinterface.reuseStereoType = ‘variant’

- A Feature meta-class is related to one or more Operation meta-classes in the

Service Interface Meta-View. The variability stereotype on an Operation

dictates the type of Feature it may support.

 An optional Operation can only support an optional Feature
 context Feature inv: reuseStereoType = ‘optional’ implies

 operation->size() >= 1 and operation.reuseStereoType = ‘optional’

It should be noted that the stereotype ‘variant’ is used for architectural meta-classes,

while the stereotype ‘alternative’ is used for requirements meta-classes [3].

5.13. Feature to Service Coordination Meta-View

Relationships

- A Feature meta-class is related to one or more ServiceCoordinator meta-

classes in the Service Coordination View. It should be noted that each

business process, comprised of Activity meta-classes, is associated with a

73

unique ServiceCoordinator. The variability stereotype on a

ServiceCoordinator dictates the type of Feature it may support.

 A kernel ServiceCoordinator can only support a kernel Feature
 context Feature inv: reuseStereoType = ‘kernel’ implies

 servicecoordinator->size() >= 1 and

 servicecoordinator.reuseStereoType = ‘kernel’

- A Feature meta-class is related to one or more MessageType meta-classes in

the Service Coordination Meta-View. The variability stereotype on a

MessageType dictates the type of Feature it may support.

 An alternative MessageType can only support an alternative Feature
 context Feature inv: reuseStereoType = ‘alternative’ implies

 messagetype->size() >= 1 and messagetype.reuseStereoType =

 ‘alternative’

74

6. Model-Driven Service-Oriented Product Line
Engineering Framework

6.1. Introduction

This research created an automated framework that realizes the multiple-view service

variability approach. To that end, this research exploits the model driven architecture

(MDA) principles to achieve the following goals:

• Development of model-driven techniques to design service-oriented SPLs,

since MDA research has focused on the design of single object-oriented

applications.

• Automation of service-oriented product line engineering – this includes SPL

Domain and Application Engineering, i.e. Requirements, Analysis, Design,

Member Application Derivation, and Deployment (Chapter 2).

• Development of model-driven techniques to handle the variability of SOA

middleware platforms which are usually hosted by the Enterprise Service Bus

(ESB).

• Development of a model-driven service-oriented tool prototype that realizes

the aforementioned framework.

75

As explained in Chapter 2, MDA treats software models as first-class entities in the

software development process. In other words, programmers develop requirements and

design models first without worrying about coding and platform concerns. These models

are referred to as Platform-Independent Models (PIM). Once the PIMs are verified to

match business requirements, they get transformed into more refined models geared

towards specific technology platforms. These models are termed Platform-Specific

Models (PSM). Finally, code is generated from the PSMs for a targeted technology

platform such as Java, or .NET. Future software maintenance is performed on the PIMs

and code is re-generated from them. This way, models and code are always in sync and

developers can concentrate on business logic instead of platform and technology

concerns. In addition, the PSMs can be reused if the target platform is selected again.

The rest of the chapter describes the details of a model-driven service-orient SPL

framework that was created by this research. The chapter illustrates how MDA concepts

are applied to service-oriented SPL engineering. More importantly, the chapter details

how traditional MDA concepts are adapted to cater for service-oriented SPL engineering.

Finally, a proof-of-concept tool prototype (SoaSPLE) that realizes the automated

framework is described.

6.2. Platform Independent Model (PIM)

In typical MDA approaches [52], [51],[45] only one PIM is constructed for the entire

application. Since SPLs are family of applications, this research proposes the

construction of two types of PIMs:

76

1. A software product line PIM – this PIM models the entire service-oriented

software family (SPL) with all variability information. The SPL PIM is a

multiple-view PIM since it is based on the multiple-view service variability

model explained in Chapter 4. Fig. 6.1 depicts a multiple-view PIM for an E-

Commerce SPL. In this research, this model is termed splPIM.

2. Software member application PIMs – these PIMs model the derived member

applications of the service-oriented SPL. In this research, each model is

termed memberPIM. Fig. 6.2 depicts an example of a derived member

application of the aforementioned multiple-view splPIM (Fig. 6.1). Fig. 6.2c

shows a feature selection, a.k.a. feature configuration, of a memberSPL. Fig.

6.2a,b,d,e show the derived service variability views that supports the feature

selection. Derivation of the memberPIM from the splPIM is described later in

this chapter.

Fig. 6.3 depicts the process of creating two types of PIMs in SoaSPLE.

77

Fig. 6.1 E-Commerce SPL Service Oriented Multiple-View Platform Independent Model

«kernel»

«ServiceContract» Purchasing

:Payment Service

:Ordering Service

«kernel»

«Participant»

Seller

«kernel»

«Participant»

Bank

«kernel»

«Participant»

Buyer

«optional»

«Participant»

Rating

Agency

«Service Contract View»

(c)

:CheckCreditRating

Service

«optional»

«ServiceContract» Credit Checking

«kernel»

«ServiceContract» Inventory Ordering

:Electronics

Ordering Service
:Books Ordering

Service
«optional»

«Participant»

Electronic

Supplier

«kernel»

«Participant»

Book

Publisher

(d)

(b)

SalesTax Service

«optional»

«ServiceContract» Sales Tax

«optional»

«Participant»

Tax Agency

«Business Process View»

«Service Interface View»

«kernel» «BusinessProcess» Order Fulfilment

Place

Order

Check CR

Lookup Pref.

Customer

Calculate

Discount

«kernel»

«alternative»

«default»
«optional»

Make

Payment

«kernel»

Calculate

Tax

«optional»
Check

Availability

«kernel»

«common feature»

E-Commerce Kernel

«optional
feature»

Sales Tax

«optional feature»

Credit Rating

«at least-one-of

feature group»

Payment

«default feature»

Credit Card

«optional feature»

Electronic Check

«exactly-one-of
feature group»

ConsumerType

«alternative feature»

Regular Customer

«alternative feature»

Preferred Customer

requires

«optional
feature»

Electronic Goods

«optional
feature»

Discount

«at least-one-of

feature group»

Inventory

«default feature»

Books

«optional feature»

Electronics

requires requires

(a)

«kernel»

«Participant»

:Buyer

E9: Order
Detail

«kernel»

«ServiceInterface»

:Inventory

E2
: C
he
ck
 Av

ail
ab
ilit
y

«kernel»

«ServiceInterface»

:Ordering

E3: Place Order

«optional»

«ServiceInterface»

:Credit Rating

«optional»

«ServiceInterface»

:Sales Tax

«kernel»

«ServiceInterface»

:Payment

«kernel»

«Service Coordinator»

:Order Fullfilment

[sale
s tax

]:E6:
 Calc

ulate
 Tax

E8: Make Payment

E1: Buyer

Request

[credit rating]:

E4: Check Credit

«variant»

«ServiceInterface»

:Preferred Customers

«optional»

«ServiceInterface»

:Discount [discount]:E7: Calculate

Discount

(e)«Service Coordination View»

«Feature View»

«optional»

«ServiceInterface»

IElectronicsOrdering

orderElectronics()

chkOrderStatus()

«optional»

«ServiceInterface»

ISalesTax

calculateTax()

getTaxrate()

«optional»

«ServiceInterface»

ICreditRating

checkCreditRate()

getCreditScore()

«kernel»

«ServiceInterface»

IBooksOrdering

orderBooks()

chKOrderStatus()

placeOrder()

chkOrderStatus()

«kernel»

«ServiceInterface»

IOrdering

updateItem()

«kernel»

«ServiceInterface»

Inventory

chkAvailability()

cancelPayment()

«kernel»

«ServiceInterface»

IPayment

pay()

78

«ServiceContract»

Purchasing

:Payment Service

:Ordering Service

«Participant»

Seller

«Participant»

Bank

«Participant»

Buyer

«Participant»

Rating

Agency

«Service Contract View»

:CheckCreditRating

Service

«ServiceContract»

Credit Checking

«ServiceContract» Inventory Ordering

:Books Ordering

Service

«Participant»

Book

Publisher

«Business Process View»

«Service Interface View»

«Feature View»

«BusinessProcess» Order Fulfilment

Place

Order
Check CR Make

Payment

Check

Availability

«common feature»

E-Commerce Kernel

«optional feature»

Credit Rating

requires

requires

«default feature»

Credit Card

«default feature»

Regular

Customer

requires

«default feature»

Books

requires

(a)

(b) (c)

(d)

(e)«Service Coordination View»

«interface»

«service»

ICreditRating

checkCreditRate()

getCreditScore()

placeOrder()

chkOrderStatus()

«interface»

«service»

IOrdering

«Interface»

«service»

IInventory

chkAvailability()

cancelPayment()

«Interface»

«service»

IPayment

pay()

«ServiceInterface»

:Buyer

E9: Order

Detail

«ServiceInterface»

:Inventory

E2
: C
he
ck
 A
va
ila
bil
ity

«ServiceInterface»

:Ordering

E3: Place Order

«ServiceInterface»

:Credit Rating

«ServiceInterface»

:Payment
«kernel»

«Service Coordinator»

:Order Fullfilment

E8: Make Payment

E1: Buyer

Request

[c
re
d
it
 r
a
ti
n
g
]:

E
4
:
C
h
e
c
k
 C
re
d
it

Fig. 6.2 Basic E-Commerce SPL Member Application

79

6.3. Platform Specific Model (PSM)

This research does not provide transformation rules for transforming memberPIMs to

PSMs, since the MDA literature already includes these rules. For example,

transformation rules that transform PIMs, constructed in UML, to different platforms

such as Java, .NET, and SQL, already exist [52], [51], [45].

However, this research can utilize any PIM to PSM transformation rules based on the

desired target platform. In this research, this capability is realized by designing a

transformation facility in the automated service-oriented SPL framework. Based on the

desired target platform, a transformation rules definition can be imported into the

Fig. 6.3 Two Types of PIMs in SoaSPLE

80

transformation facility. Consequently, this definition is used to transform memberPIMs to

the target platform’s PSM.

6.4. Feature Based Service Application Derivation

Member application derivation is based on feature selection from the feature model. It

should be noted that the derived model is an application multiple-view model that is

based on the multiple-view service variability model and meta-model described in

Chapters 4 and 5.

To automatically derive member applications, this research defines a member application

derivation algorithm that derives memberPIMs from the splPIM. The derivation

algorithm traverses the splPIM, based on selected features, and constructs the

memberPIMs from the SOA elements that are mapped to the selected features.

The derivation algorithm is implemented in JAVA code that takes splPIM and feature

selection as inputs and produces memberPIMs. Fig. 6.4 depicts the major building blocks

of the derivation process in the automated framework (SoaSPLE).

81

6.5. splPIM to memberPIM Derivation Algorithm

The member application derivation algorithm traverses the Feature-to-SOA mapping

model and constructs multiple-view service-oriented member applications based on

selected features of member applications.

 The algorithm inputs are the Feature-to-SOA mapping model and the selected features

for the specific member application. The algorithm de-selects SOA elements that are not

mapped to any selected feature. Then, the algorithm traverses the selected features and

constructs the derived member application by following the ‘supBy’ attributes of each

selected feature. These attributes refer to SOA elements from the multiple service views.

The output of the algorithm is a multiple-view service-oriented member application.

Fig. 6.4 splPIM to memberPIM Derivation Process in SoaSPLE

82

6.6. Service-Oriented SPL Engineering Tool Prototype

To realize the automated framework described in this chapter, this research built a model-

driven Service-Oriented SPL Engineering proof-of-concept tool prototype (SoaSPLE).

The goals of the prototype are as follows:

• Demonstrate the feasibility of the automated service-oriented SPL engineering

framework described in this dissertation.

• Ensure the consistency of multiple views of the multiple-view model for both

the SPL and member applications.

• Model multiple-view service-oriented variability SPLs.

• Derive member service applications from the SPLs.

• Deploy, execute, and test member applications of the SPL.

This research designed and implemented a tool prototype by utilizing the Eclipse

Modeling Framework (EMF) [64]. EMF is an open-source meta-modeling framework

and code generation facility for building tools and languages based on a structured meta-

model called Ecore. Ecore is the meta model, which is the basis of the meta-modeling

language provided by EMF. Ecore is equivalent to the Meta-Object Facility (MOF)

provided by the OMG for UML.

EMF allows modelers to create meta-models in three different ways: direct diagramming

with Ecore modeling elements, writing Java classes that define the meta-model, and

writing XMI schema that defines the meta-model. Once a meta-model is constructed in

83

one format, EMF automatically creates the definition of the meta-model in the other

formats. Further, when the meta-model is modified in any format, EMF automatically

updates the other formats. In this research, meta-models were created with direct

construction of Ecore meta-modeling elements. It should be noted that EMF provides

runtime support where instances of the meta-models, i.e. models, can be manipulated by

programs.

This research utilizes EMF as a design environment. In other words, the Ecore meta-

modeling language is used to create all model elements in this research as first-class

modeling elements. By representing the modeling elements of the meta-views as first-

class elements, high flexibility is gained, which facilitates precise modeling and

consequently helps achieve the goals mentioned above. The following subsections detail

the design steps of SoaSPLE.

6.7. Feature Meta-View

This research modeled the Feature Meta-View (Chapter 5) as an Ecore meta-model. Fig.

6.5 depicts a snapshot of the Feature View meta-model in SoaSPLE.

84

6.8. Service Meta-Views

This research models the Service Variability Meta-Views (Chapter 5) by using the Ecore

meta-model as well. Fig. 6.6 depicts the Service Contract Meta-View in SoaSPLE.

Fig. 6.5 Feature View Meta-Model in SoaSPLE

85

6.9. Feature Meta-View to Variable Service Meta-Views

Mapping

This research constructed another Ecore meta-model that establishes the mapping

relationships among the Service Meta-Views and the Feature Meta-View. This meta-

model is a representation of the Service Variability Meta-Model described in Chapter 5.

The mapping relationships were modeled as meta-class associations. In other words, The

Feature meta-class from the Feature Meta-View has an association with each meta-class

of the service meta-views. In addition, the service views meta-classes have associations

with each other. The end result is one Ecore meta-model that represent the multiple-view

service variability meta-model described in Chapter 5. Fig. 6.7 depicts this meta-model in

SoaSPLE.

Fig. 6.6 Service Contract View Meta-Model in SoaSPLE

86

This research constructed a Mapping Facility within the tool prototype that enables

modelers to map features to service views. This Mapping Facility is governed by the

multiple-view service variability meta-model described in Chapter 5 and shown in Fig.

6.7. The use of the Mapping Facility is demonstrated in the case studies of Chapters 8 and

9.

6.10. Consistency Checking Rules

This research applied the consistency checking rules (Chapter 5) to the multiple-view

service variability meta-model. The OCL consistency checking rules were added to the

multiple-view service variability meta-model as Ecore annotations [64]. SoaSPLE

Fig. 6.7 Multiple-View Service Variability View Meta-Model in EMF

87

executes the consistency rules when service models, based on the multiple-view service

variability meta-model (Chapter 5), are created. If the service models violate these

consistency checking rules, SoaSPLE emits popup messages indicating the violation.

Validation of the consistency checking rules is described in Chapter 7, 8, and 9.

For example, to implement the following OCL rule:

A Kernel ServiceContract can only support a kernel Feature
context Feature inv: reuseStereotype = ‘kernel’ implies

servicecontract->size() >= 1 and servicecontract.reuseStereotype =

‘kernel’

The Feature meta-class in the Feature Meta-View model in the tool prototype was

annotated with the OCL rule as shown in Fig. 6.8. When the meta-model is compiled in

the tool, SoaSPLE generates Java code that represents the aforementioned OCL rule.

When models are created based on the meta-model, SoaSPLE automatically evaluates the

Fig. 6.8 Meta-Class OCL Annotation Example

88

embedded OCL rules using the underlying Java code.

6.11. Service Member Application Derivation

This research derives service member applications by applying a derivation algorithm as

described in section 6.6. The derivation algorithm is implemented in Java and defined in

SoaSPLE. SoaSPLE automatically generates Java classes and interfaces for all meta-

classes in the meta-model. In other words, each meta-class in the multiple-view service

variability meta-model is represented internally in SoaSPLE as a Java class. SoaSPLE’s

derivation algorithm gets executed against the generated meta-classes’ Java code. The

Derivation component within SoaSPLE takes the splPIM and feature selection as inputs

and produces the specific memberPIM as an output as explained in section 6.5.

6.12. Code Generation

As mentioned in section 6.3 , this research does not provide rules for transforming

memberPIMs into memberPSMs, since the MDA literature already includes these rules.

This research designed SoaSPLE in such a way to use any PIM-to-PSM transformation

rules based on the desired target platform.

SoaSPLE uses a Java/Web Services PIM-to-PSM transformation rules to derive the

memberPSMs. If a different target language is desired, say .NET instead of Java, users of

SoaSPLE can use a .NET PIM-to-PSM transformation rules and regenerate the

89

memberPSMs. It should be noted that the alternate transformation rules are applied to the

original memberPIMs.

6.13. Deployment and Execution

SoaSPLE employs several technologies for deploying and executing service member

applications:

• Eclipse runtime support environment [64].

• Apache ODE [65] – ODE is an open source BPEL engine. The generated

BPEL code is compiled and deployed to ODE. The BPEL code invokes

services based on WSDL files.

• Apache CXF [66] – CXF is an open-source web-services framework that

supports standard APIs such as JAX-WS and JAX-RS as well as WS

standards including SOAP, and WSDL.

• Eclipse Swordfish [67] – Swordfish is an open-source extensible Enterprise

Service Bus (ESB).

The case studies in Chapter 8 and 9 demonstrate the implementation, deployment, and

execution of member applications by using SoaSPLE.

90

7. Research Validation

7.1. Validation Approach

The objective of the validation is to evaluate the approach in this research with regard

to the following properties:

1. The multiple views of the service-oriented software product line are consistent

with each other. More specifically, the evaluation validates that the following

multiple-view modeling relationships, described in Chapter 4 and 5, are satisfied:

a) Intra-View Relationships, i.e. the relationships between meta-classes

within each meta-view.

b) Inter-View Relationships, i.e. the relationships between meta-classes

across the meta-views.

c) Feature to Service Views Relationships (Mapping Features to SOA),

i.e., feature meta-classes are supported by valid meta-classes in the

multiple views according to the mapping rules described in Chapter 5.

This property is referred to as Consistency throughout the chapter.

2. The multiple-view service variability model is compliant with the underlying

multiple-view service variability meta-model. In other words, each element in the

91

multiple-view model is a valid instantiation of its corresponding meta-class in the

meta-model. In addition, each association in the multiple-view model is a valid

instantiation of its corresponding meta-association in the meta-model. This

property is referred to as Compliance throughout the chapter.

3. Derived software product line member applications are valid service-oriented SPL

members. Hence, the evaluation validates the following two characteristics of

service member derivation:

a) The derived member applications are valid members of the SPL family.

This implies that member applications are only derived if they adhere to a

valid feature selection from the feature model which describes the

requirements of the entire SPL.

b) The derived SPL member applications are valid service-oriented

applications, i.e. they execute within a service-oriented environment and

their constituent components can be invoked as the business workflow of

the application is exercised.

This property is referred to as Legitimacy throughout the chapter.

To achieve the aforementioned validation objectives, the validation procedure is

divided into two main testing tasks:

1. Unit Testing – this type of testing tests each element and relationship in the

multiple-view service variability meta-model. Unit testing is needed, because

the case studies may not exercise every part of the meta-model.

92

2. System Testing – this is a system-wide testing that tests the running service-

oriented applications of the SPL end-to-end.

This chapter details unit testing, while Chapters 8 and 9 details system testing through the

case studies.

7.2. System Testing Approach

This type of testing ensures that each feature of the SPL’s feature model is tested by

tracing the sequence of activities for each business process of the member application

through testing the sequence of service coordinators and service invocations. The testing

results are demonstrated by having an execution trace that validates that the activity

model sequence, i.e. the business process, is executed by the service coordinator and

service operation invocations.

System testing validates the Legitimacy property. System testing is accomplished by

conducting case studies using the proof-of-concept tool prototype, SoaSPLE. The case

studies involve feature modeling of the SPL, multiple-view variability modeling of the

SPL, consistency checking of the SPL’s multiple views, derivation of the service member

applications of the SPL, and execution of member applications of the SPL. Two case

studies are conducted: an electronic commerce service-oriented SPL and a hotel

reservation service-oriented SPL. The case studies are detailed in Chapters 8 and 9.

93

7.3. Unit Testing

Unit testing validates the Consistency and Compliance properties by demonstrating

that each element in the multiple-view service variability meta-model can be

instantiated as a modeling element. In addition, unit testing demonstrates that each

association and consistency rule in the meta-model can be satisfied between elements

of the instantiated model. Unit testing is accomplished via SoaSPLE. The following

types of unit tests are carried out:

a. Test cases to validate the consistency checking rules of each type of

meta-model relationships, i.e. intra-view, inter-view, and feature-to-

SOA mapping. This type of unit tests validates the Consistency

property.

b. Test cases to create a multiple-view service model, which results in the

creation of model instances of each meta-class and model associations

of each meta-association. This type of unit tests validates Compliance

property.

7.4. Unit Test Cases

Many unit tests are expressed via the JUnit Testing Framework. JUnit is an open-source

unit testing framework that allows Java developers to write repeatable unit tests for their

code. In this research, JUnit tests were designed to operate on Java code that represents

the meta-modeling elements of the multiple-view service variability meta-model. This is

94

possible, because Eclipse Modeling Framework (Chapter 6) creates Java interfaces for all

meta-modeling elements. Hence, the JUnit tests in this research programmatically create

modeling elements and associations of the multiple-view meta-model and then run

pertinent tests.

Other unit tests are performed by directly engaging SoaSPLE to test for specific

scenarios. Unit tests are detailed in the remainder of this chapter per meta-view of the

multiple-view service variability meta-mode

7.4.1. Feature Meta-View Unit Tests

95

Table 7.1 Feature Meta-View Unit Tests

Unit Test Meta-Model

Element

Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Create kernel

Feature
KernelFeature Purchasing Kernel Feature Pass Pass JUnit

Create Optional

Feature
OptionalFeature Credit Rating Optional Feature Pass Pass JUnit

Create Alternative

Feature
AlternativeFeature Preferred Customer Alternative

Feature

Pass Pass JUnit

Create

ZeroOrMoreOf

Feature Group

ZeroOrMoreOf Consumer Type ExactlyOneOf

Feature Group

Pass Pass JUnit

Create

AtleastOneOf

Feature Group

AtleastOneOf Payment AtleastOneOf Feature Group Pass Pass JUnit

Create

ExactlyOneOf

Feature Group

ExactlyOneOf Consumer Type ExactlyOneOf

Feature Group

Pass Pass JUnit

Create

ZeroOrOneOf

Feature Group

ZeroOrOneOf Dummy

ZeroOrOneOf Feature Group

Pass Pass JUnit

Select two

mutually exclusive

features

Feature

FeatureGroup

Regular Customer Feature Preferred

Customer Features

Fail Fail Manual

Select an optional

feature without a

feature it depends

on

Feature

OptionalFeature

Electronic Goods Optional Feature

E-Commerce Kernel Feature

Fail Fail Manual

Select each feature

in ExactlyOneOf

Feature Group on

its own

Feature

FeatureGroup

Regular Customer Feature Preferred

Customer Features

Consumer Type ExactlyOneOf

Feature Group

Pass Pass Manual

Select each feature

in ZeroOrOneOf

Feature Group on

its own

Feature

FeatureGroup

Dummy Feature

Dummy ZeroOrOneOf Feature Group

Pass Pass Manual

Do Not select a

feature from

ExactlyOneOf

Feature Group

Feature

FeatureGroup

Regular Customer Feature Preferred

Customer Features

Consumer Type ExactlyOneOf

Feature Group

Fail Fail Manual

Do Not select a

feature from a

AtleastOneOf

Feature Group

Feature

FeatureGroup

Books Feature

Electronics Feature

Inventory AtleastOneOf Feature

Group

Fail Fail Manual

Select more than

one feature from

ExactlyOneOf

Feature Group

Feature

FeatureGroup

Regular Customer Feature Preferred

Customer Features

Consumer Type ExactlyOneOf

Fail Fail Manual

Select more than

one feature from

ZeroOrOneOf

Feature Group

Feature

FeatureGroup

Dummy Feature

Dummy ZeroOrOneOf Feature Group

Fail Fail Manual

Select more than

one feature from

ZeroOrMoreOf

Feature Group

Feature

FeatureGroup

Dummy Feature

Dummy ZeroOrMoreOf Feature

Group

Pass Pass Manual

96

7.4.2. Service Contract Meta-View Unit Tests

7.4.3. Business Process Meta-View Unit Tests

Table 7.2 Service Contract Meta-View Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/Ma

nual

Create Kernel

Service Contract
KernelServiceContract Purchasing Service

Contract

Pass Pass JUnit

Create Optional

Service Contract
OptionalServiceContract Sales Tax Service

Contract

Pass Pass JUnit

Create Alternative

Service Contract
AlternativeServiceContract Dummy Service

Contract

Pass Pass JUnit

Create Kernel

Participant
KernelParticipant Buyer Kernel Participant Pass Pass JUnit

Create Optional

Participant
OptionalParticipant Rating Agency Optional

Participant

Pass Pass JUnit

Create Alternative

Participant
AlternativeParticipant Dummy Alternative

Participant

Pass Pass JUnit

Create a

ServiceContract

with Zero

Participants

KernelServiceContract Purchasing Service

Contract

Fail Fail Manual

Create a

ServiceContract

with One Participant

OptionalServiceContract Credit Checking Service

Contract

Fail Fail Manual

Table 7.3 Business Process Meta-View Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Create a Kernel

Activity
KernelActivity Place Order Pass Pass JUnit

Create an Optional

Activity
OptionalActivity Calculate Discount Pass Pass JUnit

Create an

Alternative Activity
AlternativeActivity Lookup Preferred

Customer

Pass Pass JUnit

Create a Start Node

with no Next

Activity

StartNode Dummy Start Node Fail Fail Manual

97

7.4.4. Service Interface Meta-View Unit Tests

7.4.5. Service Coordination Meta-View Unit Tests

Table 7.4 Service Interface Meta-View Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Create a Kernel

ServiceInterface
KernelServiceInterface IOrdering Pass Pass JUnit

Create an Optional

ServiceInterface
OptionalServiceInterface ICreditRating Pass Pass JUnit

Create a Variant

ServiceInterface
VariantServiceInterface Dummy Iface Pass Pass JUnit

Create a Kernel

Operation
KernelOperation placeOrder() Pass Pass JUnit

Create an Optional

Operation
OptionalOperation orderElectronics() Pass Pass JUnit

Create a Variant

Operation
VariantOperation Dummy Operation Pass Pass JUnit

Table 7.5 Service Coordination Meta-View Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Create a Kernel

ServiceCoordinator
KernelServiceCoordinator Order Fulfillment Pass Pass JUnit

Create an Optional

ServiceCoordinator
OptionalServiceInterface Residential Booking Pass Pass JUnit

Create a Variant

ServiceCoordinator
VariantServiceInterface Dummy Pass Pass JUnit

Create a

ServiceCoordinator that

sends Zero Messages

ServiceCoordinator Dummy Pass Pass Manual

Create a

ServiceCoordinator that

sends One or more

Messages

ServiceCoordinator Dummy Pass Pass Manual

98

7.4.6. Inter-View Relationships Unit Tests

Table 7.6 Inter-View Relationships Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Create a

ServiceContract with

No Participants

OptionalServiceContract Timing Optional

ServiceContract

Fail Fail Manual

Create a

ServiceContract with

One Participants

OptionalServiceContract

OptionalParticipant

Timing Optional

ServiceContract

Fail Fail Manual

Create a Participant that

does not provide or

consume a

ServiceInterface

Participant

ServiceInterface

Dummy Fail Fail Manual

Create a Participant that

does provide or

consume a

ServiceInterface

Participant

ServiceInterface

Dummy Pass Pass Manual

Create Business Process

that is not associated

with a Participant

Activity

Participant

Dummy Fail Fail Manual

Create an Activity that

is not mapped to

ServiceInterface

Activity

ServiceInterface

Dummy Fail Fail Manual

Create a Business

Process that is not

associated with a

ServiceCoordinator

Activity

ServiceCoordinator

Dummy Fail Fail Manual

99

7.4.7. Consistency Checking Rules Unit Tests

Table 7.7 Consistency Checking Rules Unit Tests

Unit Test Meta-Model Element Model Element Expected

Result

Pass/

Fail

JUnit/

Manual
Map a Kernel Feature to

a Kernel

ServiceContract

KernelFeature

KernelServiceContract

Pass Pass Manual

Map a Kernel Feature to

Optional

ServiceContract

KernelFeature

OptionalServiceContract

Fail Fail Manual

Map a Kernel Feature to

a Variant

ServiceContract

KernelFeature

VariantServiceContract

Fail Fail Manual

Map a Kernel Feature to

Kernel Participant
KernelFeature

KernelParticipant

Pass Pass Manual

Map a Kernel Feature to

Optional Participant
KernelFeature

OptionalParticipant

Fail Fail Manual

Map a Kernel Feature to

an Alternative

Participant

KernelFeature

AlternativeParticipant

Fail Fail Manual

Map a Kernel Feature to

a Kernel Activity
KernelFeature

KernelActivity

Pass Pass Manual

Map a Kernel Feature to

an Optional Activity
KernelFeature

OptionalActivity

Fail Fail Manual

Map a Kernel Feature to

a Alternative Activity
KernelFeature

AlternativeActivity

Fail Fail Manual

Map a Kernel Feature to

a Kernel

ServiceInterface

KernelFeature

KernelServiceInterface

Pass Pass Manual

Map a Kernel Feature to

Optional

ServiceInterface

KernelFeature

OptionalServiceInterface

Fail Fail Manual

Map a Kernel Feature to

Variant ServiceInterface
KernelFeature

VariantServiceInterface

Fail Fail Manual

Map a Kernel Feature to

Kernel

ServiceCoordinator

KernelFeature

KernelServiceCoordinator

Pass Pass Manual

Map a Kernel Feature to

Optional

ServiceCoordinator

KernelFeature

OptionalServiceCoordinator

Fail Fail Manual

Map a Kernel Feature to

Variant

ServiceCoordinator

KernelFeature

VariantServiceCoordinator

Fail Fail Manual

100

8. Electronic Commerce Service-Oriented Software
Product Line Case Study

8.1. Case Study Objectives

The purpose of conducting this case study is to evaluate the approach in this research

with regard to the validation properties detailed in Chapter 7. These properties are listed

here briefly:

1. The multiple views of the service-oriented software product line are consistent

with each other. This property is referred to as Consistency.

2. The multiple-view service variability model is compliant with the underlying

multiple-view service variability meta-model. This property is referred to as

Compliance

3. Derived software product line member applications are valid service-oriented SPL

members. Hence, the evaluation validates the following two characteristics of

service member derivation:

a. The derived member applications are valid members of the SPL family.

b. The derived SPL member applications are valid service-oriented

applications.

This property is referred to as Legitimacy.

101

8.2. Case Study Validation Approach

The validation approach of the case study is a system testing approach that validates the

derived service member applications of an electronic commerce software product line

(SPL). This type of testing ensures that each feature of the SPL’s feature model is tested

by tracing the sequence of activities for each business process of member applications

through testing the sequence of service coordinators and service invocations. The testing

results are demonstrated by having an execution trace that shows that the activity model

sequence, i.e. the business process, is executed by the service coordinators and service

operation invocations.

The case study is conducted via the proof-of-concept tool prototype, SoaSPLE. The case

study involves feature modeling of the SPL, multiple-view variability modeling of the

SPL, consistency checking of the SPL’s multiple views, derivation of the service member

applications of the SPL, and execution of member applications of the SPL.

8.3. Electronic-Commerce Case Study Problem

Description

This case study demonstrates the modeling of an E-Commerce web based SPL. The E-

Commerce SPL consists of sellers, buyers, suppliers, banks, and tax and credit check

agencies. Sellers get their goods from suppliers and sell them to interested buyers. Sellers

define their own business workflow to check buyers’ credit history, replenish goods’

inventory, assess sales tax and fulfill buyers’ orders among other things.

102

The E-Commerce domain has inherent variable requirements – different types of sellers,

different types of sold goods, different payment methods, multiple suppliers, several sales

tax jurisdictions, multiple pricing and discount schemes, and the like.

The following sections illustrate the steps taken to conduct the case study.

8.4. Feature View Modeling

Commonality and variability analysis of the E-Commerce SPL is performed in this step.

The result of this step is a feature model, which represent the Feature View of the

multiple-view service variability model (Chapter 4). After commonality and variability

analysis, it was determined that the E-Commerce SPL can vary in the following ways:

a) The E-Commerce SPL will always have Purchasing and Inventory capabilities. In

addition, it will always have Sellers, Buyers, Book Publisher, and Bank roles. The

Seller role will always have an Order Fulfillment business process. Finally, the E-

Commerce SPL will always have Ordering, Payment, and Books Ordering

capabilities. All this common functionality is grouped into the ‘E-Commerce

Kernel’ <<common feature>> in the feature model, which includes the following

features: ‘Purchasing’, ‘Order Fulfillment’, ‘Ordering’, ‘Payment’, ‘Inventory’,

and ‘Books’.

b) The E-Commerce product line can either have a credit checking option for regular

customers and partners, which would then require a credit rating capability;

however, if the business always deals with trusted buyers and partners, this

103

capability is not required. This requirement is modeled as a ‘Credit Rating’

<<optional feature>>.

c) A Seller can decide to offer electronic goods for its customers. In turn, an

electronic goods supplier would be needed for the Inventory feature. This

requirement is modeled as ‘Electronics’ <<optional feature>>.

d) The Order Fulfillment business process of the Seller role can offer two types of

payments: credit card, which is default, and electronic check. This requirement is

modeled as a ‘Payment’ <<at least-one-of feature group>> with a ‘Credit Card’,

which is a default feature stereotyped with <<default feature>>, and an

‘Electronic Check’, which is an <<optional feature>> in the feature model.

e) The Seller can offer a discount capability that can be selected seasonally. This

requirement is modeled as a ‘Discount’ feature, which has the <<optional

feature>> stereotype in the feature model.

f) The Order Fulfillment business process of the Seller can offer a ‘Preferred

Customer’ capability for customers with existing credit records to speed up order

processing. This requirement is modeled as a ‘Consumer Type’ <<exactly-one-of

feature group>> with a ‘Preferred Customer’ <<alternative feature>> and a

‘Regular Customer’ << alternative feature >> feature in the feature model. The

‘Regular Customer’ feature requires the ‘Credit Rating’ feature mentioned above.

This dependency is modeled as a ‘Requires’ association in the feature model.

g) Some states require their citizens to pay sales tax on internet-based purchases.

Thus, Sellers need to include tax calculation capabilities in their Order Fulfillment

104

business process based on the Buyers’ state of residence. This requirement is

modeled as a ‘Sales Tax’ <<optional feature>> in the feature model.

Based on the aforementioned analysis, a feature model was created in SoaSPLE as shown

in Fig. 8.1.

As the modeler was building the feature model, SoaSPLE automatically checked the

model against the Feature Meta-View of the multiple-view service variability meta-model

(Chapter 5) by using the embedded consistency checking rules. Violations of these

 Fig. 8.1 Feature View of the E-Commerce SPL

105

consistency checking rules were detected by SoaSPLE and the modeler had to take

corrective actions to create a valid feature model.

8.5. Service Contract Variability View Modeling

This is a Requirements view that describes service contracts (Chapter 4). Based on the

feature model described in the previous section and knowledge of the E-Commerce

domain, it was decided to model ServiceContracts and Participants as shown in the

Service Contract View in Fig. 8.2. The model in Fig. 8.2 consists of Purchasing,

Inventory Ordering, Credit Checking, and Sales Tax ServiceContract classes. In addition,

the model contains Buyer, Seller, Bank, Rating Agency, Book Publisher, Electronic

Supplier, and Tax Agency service Participants. ServiceContracts and Participants are

categorized as kernel, or optional. Kernel elements are required by all members of the E-

Commerce SPL, whereas optional elements are required by only some members. Thus,

the model describes how service Participants interact with each other through

ServiceContracts to makeup an E-Commerce family of applications. It should be noted

that this model is based on the Service Contract Variability Meta-Model described in

Chapter 5.

106

8.6. Business Process Variability View Modeling

This Requirements view models the workflow of the Order Fulfillment business process

that is defined by the Seller Participant. This view is based on the Business Process Meta-

Model described in Chapter 5.

A UML Activity diagram is constructed with kernel, optional, and alternative activities as

shown in Fig. 8.3.

Fig. 8.2 Service Contract View of the E-Commerce SPL

107

8.7. Service Interface Variability View Modeling

This Architectural view models service interfaces, which specify the operations provided

or required by Participants. Service interfaces are modeled by using the ServiceInterface

element as described in Chapter 5. ServiceInterfaces are categorized as kernel, optional,

or variant.

Upon examining the activities of the Order Fulfillment business process (section 8.6) and

based on the E-Commerce domain knowledge, it was decided to have the following

service interfaces (Fig. 8.4): IOrdering, IInventory, IBooksOrdering, ICreditRating,

ISalesTax, IElectronicsOrdering, and IPayment. It should be noted that these service

Fig. 8.3 Business Process View of the E-Commerce SPL

108

interfaces are provided or required by service participants that are modeled in the Service

Contract View (section 8.5).

8.8. Service Coordination Variability View Modeling

This Architectural view models service coordinators that coordinate business workflow

(Chapter 4). The Order Fulfillment ServiceCoordinator coordinates the Order Fulfillment

business process described in section 8.6. Upon examining the Activities of the Order

Fulfillment business process (section 8.6) and their corresponding service interfaces

Fig. 8.4 Service Interface View of the E-Commerce SPL

109

(Section 8.7), a ServiceCoordinator was designed as shown in figure 8.5. The syntax of

service coordination was described in Chapter 4.

8.9. Feature View To Service Views Mapping

Once the views were constructed, mapping features to service views commenced.

Mapping the feature view to the service variability views was done manually by using the

Mapping Facility within SoaSPL. Here, the modeler constructed a mapping by

associating features from the feature view with service elements in the variable service

views. It should be noted that this mapping is governed by the underlying multiple-view

service variability meta-model described in Chapters 5.

Based on the feature view (section 8.4) and the E-Commerce domain knowledge, a

mapping was constructed as shown in Fig. 8.6.

Fig. 8.5 Service Coordination View of the E-Commerce SPL

110

Table 8.1 shows how each feature, in the feature model, is supported by SOA elements

from the different views. Also, the table shows that one feature in the feature model could

be supported by one or more SOA elements from different views of the multiple view

model.

It should be noted that this mapping represents the entire SPL platform-independent

model, which was termed splPIM in Chapter 6. The splPIM will be used in the service

member derivation phase below to derive service member applications.

Fig. 8.6 E-Commerce splPIM

111

Table 8.1 Feature to SOA Mapping

Feature

View

Feature

Category

Service

Contract View

Business

Process

View

Service

Interface View

Service

Coordination

View
E-Commerce

Kernel

Common

(this feature

includes all

the kernel

features in the

SPL, namely

Purchasing,

Order

Fulfillment,

Ordering,

Payments,

and Books)

Purchasing

ServiceContract
Inventory

ServiceContract
Ordering

ServiceContract
Buyer Participant

Seller Participant

Bank Participant

Book Publisher

Participant

Order

Fulfillment

Business

Process

Payment

ServiceInterface
Ordering

ServiceInterface
Books Ordering

ServiceInterface

Order Fulfillment

ServiceCoordinator

Credit Card

Payment

Default Payment

ServiceInterface

Electronic

Check

Payment

Optional Payment

ServiceInterface

Preferred

Customer

Alternative ‘Lookup

Preferred

Customer’

Activity

Customers

ServiceInterface

Regular

Customer

Default ‘Check CR’

Activity

Credit Rating

ServiceInterface

Discount Optional ‘Calculate

Discount’

Activity

Discount

ServiceInterface

Sales Tax Optional Sales Tax

ServiceContract

‘Calculate

Tax’

Activity

Sale Tax

ServiceInterface

Electronics Optional Electronic

Supplier

Participant

 Electronics

Ordering

ServiceInterface

Credit

Rating

Optional ‘Check CR’

Activity

Credit Rating

ServiceInterface

112

8.10. Member Applications Derivation

At this phase of the case study, a complete multiple-view service-oriented E-Commerce

splPIM is constructed. Therefore, service member applications of the product line family

can be derived based on feature selection from the feature view. Two service member

applications were derived as follows:

8.10.1. Basic E-Commerce Application

To specify the first member application, feature selection from the feature model (section

8.4) is performed as follows:

a. ‘E-Commerce Kernel’ feature is always selected since it is a common feature

and contains all kernel features in the SPL. This common feature is supported

by: Purchasing Service Contract which includes the Ordering and the Payment

Service Interfaces, Seller, Buyer, and Bank Participants which are associated

with the Purchasing Service Contract, Inventory Ordering Service Contract

which includes the Books Ordering Service Interface, and Book Publisher

Participant which is associated with the Inventory Ordering Service Contract,

and Order Fulfillment Business Process which is associated with the Seller

Participant and includes the Place Order, Make Payment, and Check

Availability Activities.

b. ‘Regular Customer’ <<alternative feature>> is selected, which is a part of the

‘Consumer Type’ <<exactly-one-of feature group>>. Consequently, the

113

‘Credit Rating’ <<optional feature>> is selected since the ‘Regular Customer’

feature requires ‘Credit Rating’. These features are supported by Credit

Checking Service Contract, which includes the Credit Rating Service Interface

which is associated with the Rating Agency Participant and the Check CR

Activity.

c. ‘Credit Card’ <<default feature>> is selected, which is a part of the ‘Payment’

<<at least-one-of feature group>>. This feature is supported by the Make

Payment Activity, and the Payment Service Interface.

To derive the Basic E-Commerce application, the Member Application Derivation

facility of SoaSPLE (Chapter 6) was invoked. The derived multiple-view service-oriented

Basic E-Commerce application features are depicted in Fig. 8.7.

114

Next, the Code Generation Facility of SoaSPLE (Chapter 6) was invoked to transform the

derived Basic E-Commerce application to Java/Web Services code. Web Services

Description Language (WSDL) was produced for the Service Interface View. Business

Process Execution Language (BPEL) code was generated for the Service Coordination

View.

Once code was generated, the Basic E-Commerce member application was deployed and

executed. The execution logs show how each feature of the feature model is exercised by

Fig. 8.7 Basic Member E-Commerce Feature Model

115

tracing the sequence of activities of the Order Fulfillment business process through

testing the sequence of the ServiceCoordinator and service invocations.

8.10.2. Enhanced E-Commerce Application

To specify the second member application, feature selection from the feature model is

performed as follows:

a) E-Commerce Kernel’ feature is again selected since it contains all kernel

features in the SPL, and therefore it will be supported by the same SOA

elements as in the Basic Application above.

b) ‘Preferred Customer’ optional feature, which is supported by the ‘Lookup Pref

Customer’ Activity in the Order Fulfillment Business Process. Consequently,

the ‘Discount’ feature is automatically selected since it is required by the

‘Preferred Customer’ feature .The Discount feature is supported by the

‘Calculate Discount’ Activity in the Order Fulfillment Business Process.

c) ‘Sales Tax’ optional feature is selected, which is supported by the ‘Calculate

Tax’ Activity, SalesTax ServiceContract, SalesTax ServiceInterface, and Tax

Agency Participant. Again, notice how the selection of one feature drives the

selection of several SOA elements that span multiple views.

d) ‘Electronic Check’ optional feature is selected along with the ‘Credit Card’

default feature; these 2 features are supported by the Make Payment Activity

and the Payment ServiceInterface.

116

e) ‘Electronic Goods’ optional feature is selected, which is supported by

Electronic Supplier Participan and Electronics Ordering ServiceInterface.

To derive the Enhanced E-Commerce application, the Member Application Derivation

facility was invoked. The derived multiple-view service-oriented Enhanced E-Commerce

application features are depicted in Fig. 8.8.

Fig. 8.8 Enhanced Member E-Commerce Feature Model

117

Next, the Code Generation Facility was invoked to transform the derived Enhanced E-

Commerce application to Java/Web Services code. Web Services Description Language

(WSDL) was produced for the Service Interface View. Business Process Execution

Language (BPEL) code was generated for the Service Coordination View.

Once code was generated, the Enhanced E-Commerce member application was deployed

and executed.

8.11. Case Study Conclusion

The modeler in the case study modeled the commonality and variability of an E-

Commerce SPL by creating a feature model. Then, multiple-view service variability

model was created. Afterwards, the modeler mapped the feature model to the multiple-

view service model. Then, two member applications were derived from the SPL. Finally,

service member applications were deployed and executed.

During the modeling phases, SoaSPLE detected invalid modeling steps and reported them

to the modeler. Consequently, the modeler took corrective actions and produced valid

models.

This case study validated the research approach of this dissertation by satisfying the three

properties set forth in Chapter 7, namely: Consistency, Compliance, and Legitimacy. The

tool prototype (SoaSPLE) was used to carry out the case study. System testing was

achieved by making sure that each feature of the feature view was exercised by tracing

the sequence of activities of the Order Fulfillment business process through testing the

sequence of the ServiceCoordinator and service invocations.

118

9. Hotel Reservation Service-Oriented Software Product
Line Case Study

9.1. Case Study Objectives

The purpose of conducting this case study is to evaluate the approach in this research

with regard to the validation properties detailed in Chapter 7. These properties are listed

here briefly:

1 The multiple views of the service-oriented software product line are consistent

with each other. This property is referred to as Consistency.

2 The multiple-view service variability model is compliant with the underlying

multiple-view service variability meta-model. This property is referred to as

Compliance

3 Derived software product line member applications are valid service-oriented SPL

members. Hence, the evaluation validates the following two characteristics of

service member derivation:

a. The derived member applications are valid members of the SPL family.

b. The derived SPL member applications are valid service-oriented

applications.

 This property is referred to as Legitimacy.

119

9.2. Case Study Validation Approach

The validation approach of the case study is a system testing approach that validates the

derived service member applications of an electronic commerce software product line

(SPL). This type of testing ensures that each feature of the SPL’s feature model is tested

by tracing the sequence of activities for each business process of member applications

through testing the sequence of service coordinators and service invocations. The testing

results are demonstrated by having an execution trace that shows that the activity model

sequence, i.e. the business process, is executed by the service coordinators and service

operation invocations.

The case study is conducted via the proof-of-concept tool prototype, SoaSPLE. The case

study involves feature modeling of the SPL, multiple-view variability modeling of the

SPL, consistency checking of the SPL’s multiple views, derivation of the service member

applications of the SPL, and execution of member applications of the SPL.

9.3. Hotel Reservations Case Study Problem Description

A Hotel Reservation Software Product Line (SPL) can be tailored to the needs of an

individual hotel chain or hotel. The system manages information about rooms,

reservations, customers, and customer billing. The system provides functionality for

making reservations, check in, and check out, in addition to generating reports and

displays. In addition, several optional and variant capabilities are provided.

120

A customer may make reservations, change, or cancel reservations. When making a

reservation through a reservation clerk, a customer gives personal details, states the room

type, number of occupants, and dates of arrival and departure. A reservation is either

guaranteed by credit card or not guaranteed. Reservations that are not guaranteed are

automatically cancelled at a pre-specified time, e.g., 6 PM. A no-show customer has to

pay for a guaranteed reservation. A desk clerk can check in a customer (with or without a

prior reservation), change the checkout date, and check out the customer. A specific

room is assigned to the customer at check-in time and a customer record is created. A

customer may pay by cash, check, or credit card. A customer billing record is created

and the customer receives a check out statement. A customer who does not check out by

the checkout time is charged for an additional night.

Optional capabilities of the Hotel Reservation System are:

a) Management reports. The manager may view the hotel occupancy figure for

the present or past dates, view projected occupancy figures for future dates,

and view financial information, including room revenue information.

b) Automatic cancellation for non-guaranteed reservations. At a pre-specified

time, e.g., 6 PM, all rooms that are not guaranteed are cancelled and

guaranteed reservations are marked as “must-pay”

c) Automatic billing of no-show guaranteed reservations. At a pre-specified

time, e.g., 7 AM, a report is generated of no-shows with guaranteed

reservations. A billing record is created for each no-show reservation. At the

121

same time, a report is also produced giving the total occupancy and revenue

(computed from rooms allocated) for the previous night.

d) Block bookings. A travel company can book a block of rooms at a discounted

rate for one or more nights. Bills are charged directly to the travel company.

e) Variant functionality includes the reservation of residential suites instead of

hotel rooms, where a guest can occupy a suite for a week or month at a time,

paying a weekly or monthly rate.

The following sections illustrate the steps taken to conduct the case study.

9.4. Feature View Modeling

Commonality and variability analysis of the Hotel Reservations SPL is performed in this

step. The result of this step is a feature model (Chapter 4). Based on commonality and

variability analysis, a feature model was created in SoaSPLE as shown in Fig. 9.1. As the

modeler was building the feature model, SoaSPLE automatically checked the model

against the Feature Meta-View of the multiple-view service variability meta-model

(Chapter 5) using the embedded consistency checking rules. Violations of these

consistency checking rules were detected by SoaSPLE and the modeler had to take

corrective actions to create a valid feature model.

122

9.5. Service Contract Variability View Modeling

This is a Requirements view that describes service contracts (Chapter 4). Based on the

feature model described in the previous section and knowledge of the Hotel Reservation

domain, it was decided to model ServiceContracts and Participants as shown in the

Service Contract View in Fig. 9.2.

Fig. 9.1 Feature View of the Hotel Reservation SPL

123

As the modeler was building the service contract view model, SoaSPLE automatically

checked the model against the Service Contract Meta-View of the multiple-view service

variability meta-model (Chapter 5) using the embedded consistency checking rules.

Violations of these consistency checking rules were detected by SoaSPLE and the

modeler had to take corrective actions to create a valid service contract model.

Fig. 9.2 Service Contract View of the Hotel Reservation SPL

124

9.6. Business Process Variability View Modeling

This Requirements view models the workflow of the business processes in the Hotel

Reservation SPL. This view is based on the Business Process Meta-Model described in

Chapter 5. There are three business processes in the Hotel Reservation SPL: Individual

Reservation (kernel), Conference Reservation (optional), and Block Reservation

(optional). The Individual Reservation business process view is depicted in Fig. 9.3.

As the modeler was building the business process view model, which consists of three

business processes, SoaSPLE automatically checked the model against the Business

Process Meta-View of the multiple-view service variability meta-model (Chapter 5) using

the embedded consistency checking rules. Violations of these consistency checking rules

Fig. 9.3 Business Process View of the Hotel Reservation SPL

125

were detected by SoaSPLE and the modeler had to take corrective actions to create a

valid business process model.

9.7. Service Interface Variability View Modeling

This Architectural view models service interfaces, which specify the operations provided

or required by Participants. Service interfaces are modeled by using the ServiceInterface

element as described in Chapter 5. Upon examining the activities of the three business

processes and based on the Hotel Reservation domain knowledge, it was decided to have

the service interfaces depicted in Fig. 9.4.

Fig. 9.4 Service Interface View of the Hotel Reservation SPL

126

As the modeler was building the service interface view model, SoaSPLE automatically

checked the model against the Service Interface Meta-View of the multiple-view service

variability meta-model (Chapter 5) using the embedded consistency checking rules.

Violations of these consistency checking rules were detected by SoaSPLE and the

modeler had to take corrective actions to create a valid service interface model.

9.8. Service Coordination Variability View Modeling

This Architectural view models service coordinators that coordinate business workflow

(Chapter 4). This view consists of three service coordinators: Individual Booking

(kernel), Conference Booking (optional), and Block Booking (optional). Each service

coordinator coordinates one of the business processes described in section 9.6.Upon

examining the activities of the three business processes (section 9.6) and their

corresponding service interfaces (section 9.7), three Service Coordination Views were

designed. The Individual Service Coordination View is depicted in Fig. 9.5. SoaSPLE

was used to create these views in a similar fashion to the other views.

127

9.9. Feature View To Service Views Mapping

Once the views were constructed, mapping features to service views commenced.

Mapping the Feature View to the Service Variability Views was done manually by using

the Mapping Facility within SoaSPLE. Here, a mapping was constructed by associating

features from the feature view with service elements in the variable service views. It

should be noted that this mapping is governed by the underlying multiple-view service

variability meta-model described in Chapters 5.

Based on the feature view (section 9.4) and the Hotel Reservations domain knowledge,

the mapping was constructed as depicted in Fig 9.6.

Fig. 9.5 Service Coordination View of the Hotel Reservation SPL

128

Fig. 9.6 Hotel Reservation splPIM

129

As the modeler was constructing the mapping, SoaSPLE automatically checked the

mapping model against the multiple-view service variability meta-model (Chapter 5)

using the embedded consistency checking rules. Violations of these consistency checking

rules were detected by SoaSPLE and the modeler had to take corrective actions to create

a valid mapping.

It should be noted that this mapping represents the entire SPL platform-independent

model, which was termed splPIM in Chapter 6. The splPIM will be used in the service

member derivation phase below to derive service member applications.

9.10. Member Applications Derivation

At this phase of the case study, a complete multiple-view service-oriented Hotel

Reservation SPL is constructed. Therefore, service member applications of the product

line family can be derived based on feature selection from the feature view. Two service

member applications were derived as follows:

9.10.1. Conventional Rooms Application

To specify the member application, feature selection from the feature model (section 9.4)

was configured as shown in Fig. 9.7.

130

To derive the Conventional Rooms application, the Member Application Derivation

facility of SoaSPLE (Chapter 6) was invoked. Next, the Code Generation Facility

(Chapter 6) was invoked to transform the derived application to Java/Web Services code.

Web Services Description Language (WSDL) was produced for the Service Interface

View. Business Process Execution Language (BPEL) code was generated for the Service

Coordination View.

Once code was generated, the Conventional Rooms member application was deployed

and executed. The execution logs show how each feature of the feature model is

Fig. 9.7 Conventional Rooms Feature Model

131

exercised by tracing the sequence of the activities of the corresponding business process

through testing the sequence of the corresponding ServiceCoordinator and service

invocations.

9.10.2. Residential Rooms Application

To specify the member application, feature selection from the feature model (section 9.4)

was configured as shown in Fig. 9.8.

Fig. 9.8 Residential Rooms Feature Model

132

Next, the Code Generation Facility (Chapter 6) was invoked to transform the derived

application to Java/Web Services code. Web Services Description Language (WSDL)

was produced for the Service Interface View. Business Process Execution Language

(BPEL) code was generated for the Service Coordination View.

Once code was generated, the Residential Rooms member application was deployed and

executed.

9.11. Case Study Conclusion

The modeler in the case study modeled the commonality and variability of a Hotel

Reservations SPL by creating a feature model. Then, multiple-view service variability

model was created. Afterwards, the modeler mapped the feature model to the multiple-

view service model. Then, two member applications were derived from the SPL. Finally,

service member applications were deployed and executed.

During the modeling phases, SoaSPLE detected invalid modeling steps and reported them

to the modeler. Consequently, the modeler took corrective actions and produced valid

models. Screen shots of these errors are depicted in the appendix.

This case study validated the research approach of this dissertation by satisfying the three

properties set forth in Chapter 7, namely: Consistency, Compliance, and Legitimacy. The

tool prototype (SoaSPLE) was used to carry out the case study. System testing was

achieved by making sure that each feature of the feature view was exercised by tracing

the sequence of activities of the Order Fulfillment business process through testing the

sequence of the ServiceCoordinator and service invocations.

133

10. Conclusions

10.1. Introduction

This research has introduced a multiple-view modeling and meta-modeling approach that

addresses variability concerns of service oriented application families. The purpose of

this research was to develop a multiple-view variability modeling approach to address the

design and implementation of variable service-oriented applications families in a

systematic, unified, and platform-independent manner.

 In particular, this research has described the integration of Software Product Lines (SPL)

concepts of feature modeling and commonality/variability analysis techniques with

service views using the Unified Modeling Language (UML) and the Service Oriented

Modeling Language (SoaML).

To achieve the aforementioned goals, this research developed a multiple-view service

variability meta-model that specifies the relationships between variable service views

(Chapter 5). In addition, this research developed a multiple-view service variability

model based on the aforementioned meta-model (Chapter 4). Furthermore, this research

created consistency checking rules to ensure the consistency of the multiple views of

service-oriented application families (Chapter 5). This research also developed mappings

between the Requirements views and the Architectural views of the multiple-view service

134

variability meta-model (Chapter 5). This research has created derivation rules to

automatically derive service member applications of service application families

(Chapter 6). In addition, this research has developed an automated model-driven service-

oriented framework for SPL engineering (Chapter 6).

A proof-of-concept prototype (SoaSPLE) was developed to realize the aforementioned

framework. SoaSPLE was used to model and execute service oriented application

families and to ensure the consistency of the multiple views of service families.

Validation of this research consisted of Unit Testing and System Testing. Unit testing

tests each element and relationship in the multiple-view service variability meta-model.

System Testing is a system-wide testing that tests the derived service-oriented

applications of the SPL end-to-end. This research used SoaSPLE to conduct two case

studies in the E-Commerce and Hotel Reservation domains (Chapters 8 and 9).

It should be pointed out that although this research described the multiple-view service

variability meta-model by using UML and SoaML, the approach could also be used with

other service modeling notations.

This chapter briefly outlines the contributions of this research and points out future

research goals.

10.2. Research Contributions

The following subsections briefly detail the contributions of this research:

10.2.1. Multiple-View Service Variability Meta-Model

135

The main contribution of this research is the development of a multiple-view service

variability meta-model that defined Service Requirements and Architectural views. The

meta-model described the relationships between the views of service-oriented product

lines. As described in Chapter 2, previous research has focused on variability analysis

and management of individual views of SOA systems, for example on variability of

business process flow only or on variability of service interfaces. A major contribution of

this research is to enable modelers to analyze what changes in one view if a change

happens in another view. In another words, this research has presented an approach to

model and manage variability in SOA systems in a unified manner.

The multiple-view service variability meta-model described:

a) Meta-models for variable service Requirements Views – Service Contract and

Business Process meta-classes, their attributes, relationships, and constraints.

b) Meta-models for variable service Architectural Views – Service Interface and

Service Coordination meta-classes, their attributes, relationships, and

constraints.

c) Meta-model for a Feature View that describes the variability of the SPL,

which is dispersed in the requirements and architectural views. Thus, the

Feature View acts as a unifying view for all other views.

d) Intra-View Relationship – The associations and dependencies inside each

view were described.

e) Inter-View Relationships – The associations and dependencies between the

different service views were described.

136

f) Mapping between Requirements and Architectural Views – the mapping

between the Feature View and the Requirements and Architectural Views was

described.

10.2.2. Multiple-View Service Variability Model

This research developed a multiple-view service variability model based on the

aforementioned meta-model. This model contains service modeling elements expressed

in UML and SoaML. This model can be used by modelers to create Requirements and

Architectural views of service-oriented SPLs and to create the mappings between the

Feature view and the SOA elements of the Requirements and Architectural views.

10.2.3. Consistency Checking and Mapping Rules

This research has developed consistency checking rules to ensure the consistency among

the multiple views of service-oriented SPLs. In addition, these rules ensure the proper

mapping between the Feature View and the service Requirements and Architectural

views of the service-oriented SPL. The consistency checking rules are expressed in the

Object Constraint Language (OCL) and are based on the meta-classes and meta-

associations of each view of the multiple-view service variability meta-model.

10.2.4. Model Driven Framework for Service Oriented

SPLs

137

Unlike traditional Model Driven Architecture (MDA) approaches, this research

introduced the notion of having multiple Platform Independent Models (PIMs) to

accommodate service-oriented SPLs:

• A software product line PIM – this PIM models the entire service-oriented

software family (SPL) with all variability details.

• Service member application PIMs – these PIMs model the derived service

member applications of the service-oriented SPL. Each member PIM is

derived from the SPL PIM based on feature selection (Chapter 6).

By developing these PIMs, this research helps in facilitating variability modeling of

service families in a platform independent way. For example, the approach does not

restrict the representation of service interfaces to WSDL or restrict business workflows

execution to BPEL.

10.2.5. Service Member Applications Derivation Rules

This research has developed derivation rules for the automatic derivation of service

member applications of service-oriented SPLs. The derivation rules derive service

member applications PIMs from the SPL PIM. These rules were expressed in Java and

they operate on the meta-classes of the multiple-view SPL PIM.

10.2.6. SoaML Variability Notation

138

This research extended the OMG’s SOA Modeling Language (SoaML) with variability

notations to enable modeling of service-oriented SPLs. This extension was accomplished

by extending the SoaML meta-model with variability meta-classes as explained in

Chapter 5.

10.2.7. Explicit Modeling of Service Coordination

Variability

Existing SOA SPL variability modeling approaches modeled variability in business

process workflow only (Chapter 2). A major contribution of this research is to introduce a

Service Coordination View that explicitly models the architectural variability of service

coordinators and their service invocations (Chapter 5).

In other words, this research has associated a Service Coordinator with each business

process in the Business Process View. This coordinator encapsulates variability

information of the business process and coordinates service invocations based on this

variability information.

10.2.8. Proof-of-Concept Tool Prototype

This research has developed a proof-of-concept tool prototype (SoaSPLE) to realize the

automated model driven SPL framework and to validate the multiple-view service

variability approach. SoaSPLE (Chapter 6) embodies the multiple-view service

139

variability meta-model and provides automatic and semi-automatic capabilities to model,

design, implement, and deploy service-oriented SPLs.

SoaSPLE was developed by using the Eclipse Modeling Framework (EMF) and utilized

several SOA and JAVA technologies as explained in Chapter 6. SoaSPLE was used to

conduct two case studies to validate this research (chapters 8 and 9).

10.3. Future Research

This section describes potential future research inspired by the current research.

10.3.1. Service Variability Mediation Layer

In service-oriented systems, the architecture is not fixed, because the main elements of

the architecture are services normally provided by external providers. In addition, a major

characteristic of SOA is the decoupling between consumers and provided services [15]

where both can change independently of each other. Hence, the challenge is how to

design variability for service consumers independent of provided services and yet use

services in a way that satisfies variable application scenarios?

To solve the aforementioned problem, a Mediation Layer [59] is proposed that sits

between service consumers and provided services. This is an intermediary architectural

layer that decouples service consumers and providers. This layer consists of Mediation

Modules that handle the variability needed by service consumers when they interact with

external service providers.

140

10.3.2. Evolution of Service Oriented SPLs

Once service member applications of the SPL are derived and deployed, new features

may be added, modified, or deleted to/from the Feature View. This research is concerned

with designing an approach that can handle feature evolution and their impact on existing

SPL member applications. The proposed approach should satisfy the evolved

requirements while guarantying the operation of existing member applications.

10.3.3. Feature Based Discovery of Service Oriented

SPLs

Services could be discovered on demand based on features in the Feature View. Once

service member applications are derived, a Service Discovery mechanism is proposed to

discover services for member applications. Once services are discovered, service

composition commences to build service member applications.

10.3.4. Enhancements of the Tool Prototype (SoaSPLE)

Some enhancements to SoaSPLE are proposed:

• Synthesis of SoaSPLE components into an Eclipse Plug-in [64] which could

be used as a standalone modeling tool.

• Replacement of the Java based derivation rules with a standardized

transformation language like ATL [68] or QVT [69].

141

• Addition of a Simulation Environment to enable modelers to simulate the

execution of service-oriented SPLs before code generation.

142

Bibliography

143

Bibliography

[1] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Wiley, 2009.

[2] P. Kruchten, “The 4+1 View Model of Architecture,” IEEE Softw., vol. 12, no. 6, pp.

42–50, Nov. 1995.

[3] H. Gomaa, Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison-Wesley Professional, 2004.

[4] H. Gomaa and M. Saleh, “Software product line engineering for Web services and

UML,” in Proceedings of the ACS/IEEE 2005 International Conference on Computer

Systems and Applications, Washington, DC, USA, 2005, p. 110–vii.

[5] N. Y. Topaloglu and R. Capilla, “Modeling the Variability of Web Services from a

Pattern Point of View,” in Web Services, vol. 3250, L.-J. (LJ) Zhang and M. Jeckle,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 128-138.

[6] R. Capilla and N. Y. Topaloglu, “Product Lines for Supporting the Composition and

Evolution of Service Oriented Applications,” in Principles of Software Evolution,

International Workshop on, Los Alamitos, CA, USA, 2005, vol. 0, pp. 53-56.

[7] S. Apel, C. Kaestner, and C. Lengauer, “Research challenges in the tension between

features and services,” in Proceedings of the 2nd international workshop on Systems

development in SOA environments, New York, NY, USA, 2008, pp. 53–58.

[8] F. M. Medeiros, E. S. Almeida, and S. R. L. Meira, “SOPLE-DE: An Approach to

Design Service-Oriented Product Line Architectures,” in Software Product Lines:

Going Beyond, vol. 6287, J. Bosch and J. Lee, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 456-460.

[9] Abu-Matar, M., Gomaa, H., Kim, M., and Elkhodary, A.M., “Feature Modeling for

Service Variability Management in Service-Oriented Architectures,” in SEKE(2010),

2010, pp. 468-473.

144

[10] M. Abu-Matar and H. Gomaa, “Feature Based Variability for Service Oriented

Architectures,” in 2011 9th Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2011, pp. 302-309.

[11] M. Abu-Matar and H. Gomaa, “Variability Modeling for Service Oriented

Product Line Architectures,” in Software Product Line Conference (SPLC), 2011

15th International, 2011, pp. 110-119.

[12] M. Abu-Matar and H. Gomaa, “Service Variability Meta-Modeling for Service-

Oriented Architectures,” presented at the ACM/IEEE 14th International Conference

on Model Driven Engineering Languages and Systems MODELS 2011, Wellington,

New Zealand, 2011.

[13] “OASIS SOA Reference Model TC | OASIS.” [Online]. Available:

http://www.oasis-open.org/committees/soa-rm/. [Accessed: 23-Jul-2011].

[14] M. N. Huhns and M. P. Singh, “Service-Oriented Computing: Key Concepts and

Principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75-81, 2005.

[15] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and Design.

Prentice Hall, 2005.

[16] “Elements of Service-Oriented Analysis and Design,” 02-Jun-2004. [Online].

Available: http://www.ibm.com/developerworks/webservices/library/ws-soad1/.

[Accessed: 09-May-2011].

[17] M. Colombo, E. Nitto, M. Penta, D. Distante, and M. Zuccalà, “Speaking a

Common Language: A Conceptual Model for Describing Service-Oriented Systems,”

in Service-Oriented Computing - ICSOC 2005, vol. 3826, B. Benatallah, F. Casati,

and P. Traverso, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 48-

60.

[18] I. H. Kruger and R. Mathew, “Systematic development and exploration of

service-oriented software architectures,” pp. 177- 187, Jun. 2004.

[19] Arsanjani, Ali, “Service-oriented modeling and architecture,” 09-Nov-2004.

[Online]. Available: http://www.ibm.com/developerworks/library/ws-soa-design1/.

[Accessed: 13-May-2011].

[20] Johnston, Simon, “UML 2.0 Profile for Software Services,” 13-Apr-2005.

[Online]. Available:

http://www.ibm.com/developerworks/rational/library/05/419_soa/. [Accessed: 13-

May-2011].

145

[21] N. Milanovic and M. Malek, “Current Solutions for Web Service Composition,”

IEEE Internet Computing, vol. 8, no. 6, pp. 51-59, Nov-2004.

[22] P. Yu, X. Ma, and J. Lu, “Dynamic Software Architecture Oriented Service

Composition and Evolution,” in Proceedings of the The Fifth International

Conference on Computer and Information Technology, Washington, DC, USA, 2005,

pp. 1123–1129.

[23] A. Kalnins and V. Vitolins, “Use of UML and Model Transformations for

Workflow Process Definitions,” cs/0607044, Jul. 2006.

[24] A. Schnieders, “Variability Mechanism Centric Process Family Architectures,” in

Proceedings of the 13th Annual IEEE International Symposium and Workshop on

Engineering of Computer Based Systems, Washington, DC, USA, 2006, pp. 289–298.

[25] “UML 2.0 Superstructure Specification,” 15-Apr-2011. [Online]. Available:

http://dret.net/biblio/reference/uml20super. [Accessed: 13-May-2011].

[26] E. M. Olimpiew and H. Gomaa, “Reusable Model-Based Testing,” in Formal

Foundations of Reuse and Domain Engineering, vol. 5791, S. H. Edwards and G.

Kulczycki, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 76-85.

[27] Y. Choi, G. Shin, Y. Yang, and C. Park, “An Approach to Extension of UML 2.0

for Representing Variabilities,” in Proceedings of the Fourth Annual ACIS

International Conference on Computer and Information Science, Washington, DC,

USA, 2005, pp. 258–261.

[28] S. H. Chang and S. D. Kim, “A Service-Oriented Analysis and Design Approach

to Developing Adaptable Services,” in Services Computing, IEEE International

Conference on, Los Alamitos, CA, USA, 2007, vol. 0, pp. 204-211.

[29] F. Curbera, D. Ferguson, M. Nally, and M. L. Stockton, “Toward a Programming

Model for Service-Oriented Computing,” in Service-Oriented Computing - ICSOC

2005, vol. 3826, B. Benatallah, F. Casati, and P. Traverso, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 33-47.

[30] K. Petersen, N. Bramsiepe, and K. Pohl, “Applying Variability Modeling

Concepts to Support Decision Making for Service Composition,” pp. 1-1, Sep. 2006.

[31] S. Malek, N. Esfahani, D. A. Menasce, J. P. Sousa, and H. Gomaa, “Self-

Architecting Software SYstems (SASSY) from QoS-annotated activity models,” in

2009 ICSE Workshop on Principles of Engineering Service Oriented Systems,

Vancouver, BC, Canada, 2009, pp. 62-69.

146

[32] N. Esfahani, S. Malek, J. P. Sousa, H. Gomaa, and D. A. Menascé, “A Modeling

Language for Activity-Oriented Composition of Service-Oriented Software

Systems,” in Model Driven Engineering Languages and Systems, vol. 5795, A.

Schürr and B. Selic, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.

591-605.

[33] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex, and J. P. Sousa, “A

framework for utility-based service oriented design in SASSY,” in Proceedings of the

first joint WOSP/SIPEW international conference on Performance engineering -

WOSP/SIPEW ’10, San Jose, California, USA, 2010, p. 27.

[34] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,

3rd ed. Addison-Wesley Professional, 2001.

[35] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line

Engineering: Foundations, Principles and Techniques, 1st ed. Springer, 2005.

[36] H.Gomaa, Designing Concurrent, Distributed (text only) by H.Gomaa. Addison-

Wesley Professional, 2000.

[37] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-Oriented

Domain Analysis (FODA) Feasibility Study. 1990.

[38] M. L. Griss, J. Favaro, and M. d’Alessandro, “Integrating Feature Modeling with

the RSEB,” in Proceedings of the 5th International Conference on Software Reuse,

Washington, DC, USA, 1998, p. 76–.

[39] D. M. Weiss, “Software Synthesis: The FAST Process,” IN PROCEEDINGS OF

THE INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY

PHYSICS, RIO DE JANEIRO, 1995.

[40] M. Matinlassi, “Comparison of Software Product Line Architecture Design

Methods: COPA, FAST, FORM, KobrA and QADA,” in Proceedings of the 26th

International Conference on Software Engineering, Washington, DC, USA, 2004, pp.

127–136.

[41] M. Morisio, G. H. Travassos, and M. E. Stark, “Extending UML to Support

Domain Analysis,” in Proceedings of the 15th IEEE international conference on

Automated software engineering, Washington, DC, USA, 2000, p. 321–329.

[42] I. Philippow and M. Riebisch, “Systematic Definition of Reusable

Architectures,” 2001.

147

[43] S. D. Kim, S. H. Chang, and H. J. La, “Traceability Map: Foundations to

Automate for Product Line Engineering,” in Software Engineering Research,

Management and Applications, ACIS International Conference on, Los Alamitos,

CA, USA, 2005, vol. 0, pp. 340-347.

[44] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A Template

Approach Based on Superimposed Variants,” in Generative Programming and

Component Engineering, vol. 3676, R. Glück and M. Lowry, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 422-437.

[45] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise

Computing. Wiley, 2003.

[46] P. B. Kruchten, “The 4 1 view model of architecture,” IEEE SOFTWARE, vol.

12, p. 42--50, 1995.

[47] B. Nuseibeh, J. Kramer, and A. Finkelstein, “Expressing the relationships

between multiple views in requirements specification,” in Proceedings of the 15th

international conference on Software Engineering, Baltimore, Maryland, United

States, 1993, pp. 187–196.

[48] E. O’Hara-Schettino and H. Gomaa, “Dynamic navigation in multiple view

software specifications and designs,” J. Syst. Softw., vol. 41, no. 2, pp. 93–103, May

1998.

[49] A. Kleppe, Software Language Engineering: Creating Domain-Specific

Languages Using Metamodels, 1st ed. Addison-Wesley Professional, 2008.

[50] T. Clark, A. Evans, P. Sammut, and J. Willans, Applied Metamodelling: A

Foundation for Language Driven Development. 2004.

[51] S. J. MELLOR, K. Scott, A. Uhl, and D. Weise, MDA Distilled. Addison-Wesley

Professional, 2004.

[52] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven

Architecture(TM): Practice and Promise, 1st ed. Addison-Wesley Professional, 2003.

[53] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User

Guide, The, 2nd ed. Addison-Wesley Professional, 2005.

[54] “SoaML.” [Online]. Available: http://www.omg.org/spec/SoaML/. [Accessed: 23-

Jul-2011].

148

[55] H. Gomaa and M. E. Shin, “Multiple-view modelling and meta-modelling of

software product lines,” IET Software, vol. 2, no. 2, pp. 94-122, Apr. 2008.

[56] “MDA.” [Online]. Available: http://www.omg.org/mda/. [Accessed: 26-Jul-

2011].

[57] A. Helferich, G. Herzwurm, S. Jesse, and M. Mikusz, “Software product lines,

service-oriented architecture and frameworks: worlds apart or ideal partners?,” in

Proceedings of the 2nd international conference on Trends in enterprise application

architecture, Berlin, Heidelberg, 2007, pp. 187–201.

[58] J. Park, “An approach to developing reusable domain services for service

oriented applications,” New York, NY, USA, 2010, pp. 2252–2256.

[59] M. Abu-Matar, “Mediation Based Variability Modeling for Service Oriented

Software Product Lines,” presented at the SEKE09, 2009.

[60] Medeiros, F. M., Almeida, E. S. d., and Meira, S. R. d. L., “Towards an

Approach for Service-Oriented Product Line Architectures,” in Workshop on Service-

oriented Architectures and Software Product Lines, 2009.

[61] S. Gunther and T. Berger, “Service-oriented product lines: Towards a

development process and feature management model for web services,” in 12th

International Software Product Line Conference, 2008.

[62] H. Gomaa, Software Modeling and Design: UML, Use Cases, Patterns, and

Software Architectures, 1st ed. Cambridge University Press, 2011.

[63] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A. Menascé, “Software

adaptation patterns for service-oriented architectures,” in Proceedings of the 2010

ACM Symposium on Applied Computing, New York, NY, USA, 2010, pp. 462–469.

[64] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse

Modeling Framework, 2nd Edition, Dimensions: 7x9-1/4 ed. 2008.

[65] “Apache ODE -- Index.” [Online]. Available: http://ode.apache.org/. [Accessed:

25-Jul-2011].

[66] “Apache CXF -- Index.” [Online]. Available: http://cxf.apache.org/. [Accessed:

25-Jul-2011].

[67] “Swordfish SOA Runtime Framework Project.” [Online]. Available:

http://www.eclipse.org/swordfish/. [Accessed: 25-Jul-2011].

149

[68] “ATL.” [Online]. Available: http://eclipse.org/atl/. [Accessed: 25-Jul-2011].

[69] “QVT 1.0.” [Online]. Available: http://www.omg.org/spec/QVT/1.0/. [Accessed:

25-Jul-2011].

150

CURRICULUM VITAE

Mohammad Abu Matar is a software engineering academic and practitioner with over 17

years of technical experience in teaching, research, management, architecture, systems

engineering, training, software design and development.

Mohammad has earned a BS degree in Electrical Engineering (Wright State University),

an MS degree in Information Technology (Regis University), an MS degree in Software

Engineering (George Mason University), and a PhD in Software Engineering from

George Mason University.

Mohammad’s specialty is the architecture of multi-tier distributed software systems with

a special interest in Service Oriented Architecture (SOA).

Mohammad is an independent IT Architecture Consultant and an Affiliate Adjunct

Faculty at the MS in Software Engineering program of Regis University (Denver,

Colorado).

