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Abstract 

Analysis of DNA mixture evidence does not always yield distinct profiles. This process is further 

complicated with low template DNA (LT-DNA) samples often seen in forensic casework. 

Traditional qualitative methods use thresholds to distinguish allele peaks from stutter peaks, 

noise, etc. resulting in data being omitted during analysis.  In cases where LT-DNA is present, 

low peaks that could potentially be attributed to low contributor profiles may not be called due to 

these instituted thresholds. The probabilistic genotyping computer software program created by 

Cybergenetics (Pittsburgh, PA), TrueAllele® Casework, considers all data and performs 

quantitative analysis using probability to represent uncertainty. It objectively forms likelihood 

ratios (LR) that compare the probabilities of an evidentiary genotype with a suspect genotype 

relative to a reference population. A joint likelihood function (JLF) takes two or more 

independent sets of data and compares them jointly as opposed to a single event. The JLF can 

elicit more identification information proving useful in DNA mixture analysis. This project used 

TrueAllele® Casework to perform DNA mixture analysis on two sets of previously published 

mixture data provided by Cybergenetics. The first set comprised 40 two contributor mixture 

samples and the second set included four sets of 10 randomized mixtures with two, three, four, 

and five contributors, respectively. The selected samples were interpreted singly and jointly in 

three variable groups: mixture weight, template concentration, and complex mixtures. The 

differences between the match logLRs of the single and joint analyses were calculated and an 

information gain was seen in all three groups when the samples were analyzed jointly. Changing 

DNA collection and amplification procedures for touch and DNA mixture evidence samples will 

increase the amount of data available for DNA mixture analysis using probabilistic genotyping. 

These procedures can be modified so that multiple swabs and replicate amplifications produce 
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more data that TrueAllele can analyze using the JLF. Jointly analyzing each independent 

evidence data can lead to higher match statistics which will ultimately help in the identification 

of those who commit crimes. 

Keywords: DNA mixtures, low template DNA, probabilistic genotyping, likelihood 

ratios, joint likelihood function 
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Introduction 

Overview  

Forensic casework is frequently composed of deoxyribonucleic acid (DNA) mixture 

evidence containing two or more contributors. Extracting genotypes from the evidence data and 

comparing them to suspect profiles in hopes of obtaining a DNA profile match can be a 

complicated process as the number of contributors in a mixture increase. The challenge is even 

greater when the evidence DNA is degraded and/or present in low quantities. Traditional mixture 

interpretation methods of DNA short tandem repeat (STR) analysis use a qualitative approach 

where thresholds are implemented to simplify the data into “all or nothing” allele events (Perlin 

& Sinelnikov, 2009). Pertinent quantitative data and its inherent patterns are discarded by these 

thresholds. Preservation of this invaluable and informative data can reduce the number of false 

inclusions, false exclusions, and inconclusive results.  

For over a decade, probabilistic genotyping (PG), or computer interpretation, has gained 

favor and utility in crime laboratories. Numerous validation studies have demonstrated how 

mathematical modeling of quantitative data in its entirety is more productive, efficacious, and 

objective (Perlin et al. 2009, 2014, 2015). TrueAllele® Casework is an expert system that is 

already implemented in many forensic labs. It uses hierarchical Bayesian probability modeling to 

explain quantitative data. When there is uncertainty in the data as is usually the case with 

mixtures or LT-DNA, this uncertainty is represented in the probability distribution for each 

possible allele pair at all loci for each contributor. This probability distribution is the inferred 

evidence genotype, which is subsequently compared to suspect genotypes to determine whether a 

match exists. Computers provide the capacity to interpret complex data, infer evidence 

genotypes, and calculate match statistics without discarding any identification information. 
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These tasks can also be performed simultaneously on more than one set of data (Ballantyne et al., 

2013; Perlin et al., 2011).  

A joint likelihood function (JLF) takes two or more independent sets of data and 

compares them jointly as opposed to a single event. The additional data used in the JLF 

constrains the probability distribution for each locus. This in turn, results in higher probabilities 

assigned to the allele pairs that provide a good explanation for each set of data. When replicate 

amplifications are performed for an evidence item, the STR profiles in each replicate can be 

analyzed together with the JLF (Ballantyne et al., 2013). Replicate amplifications are typically 

performed on LT-DNA samples to compensate for the increased stochastic effects seen during 

PCR which result in allele drop-out, indistinguishable stutter peaks, etc. To account for the 

replicate data using manual interpretation, a consensus profile is formed from the data peaks that 

are reproduced in two out of three runs. If an allele is seen in only one of the replicates but 

dropped out in the other two, it is not considered for the consensus profile (Butler, 2015, Chapter 

7). Like the traditional interpretation methods, the consensus approach discards information. PG 

methods use all the data and the JLF assigns a probability to those replicates that would 

otherwise be discarded. Qualitative approaches can be overwhelmed with additional data 

especially when high uncertainty is present. Replicate amplifications and the JLF can potentially 

provide more identification information leading to higher match statistics compared to match 

statistics from a single amplification. This can prove useful in DNA mixture analysis.  

Importance 

 Increased scrutiny and high public expectations of forensic DNA evidence calls for 

accurate, reliable, and efficient DNA mixture interpretation methods. These methods must result 
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in more probative and reliable identification information that can exculpate the innocent and 

incriminate those responsible of committing crimes. 

This project utilized TrueAllele® Casework to perform DNA mixture analysis and obtain 

match statistics in the form of logLR values. This analysis was performed on two sets of 

previously published data, varying in mixture weight and DNA quantity, that were provided by 

Cybergenetics. The first set comprised 40 two contributor mixture samples and the second set 

included two, three, four, and five contributor mixtures. The samples were interpreted singly and 

jointly in two ways: in duplicate and triplicate. Mixture weight and template concentration were 

two data variables that were considered independently. The data for each variable was analyzed 

separately to see how the uncertainty in each would affect the match log LR values obtained 

from joint and single analysis. The second set combined varying mixture weights, template 

concentrations, and number of contributors. It was demonstrated that replicate amplifications can 

result in higher match statistics. This supports the suggestion that DNA collection and 

amplification procedures in forensic cases be modified so that more data is available for DNA 

mixture analysis using probabilistic genotyping and the JLF.  

Background 

The use of DNA to uniquely identify an individual in forensic evidence has been a widely 

accepted and lauded method to identify perpetrators of violent crimes. A wide array of crime 

scene evidence samples is sent to forensic laboratories with hopes of retrieving highly coveted 

DNA profiles. Because genetic identity is naturally represented in an individual’s genotype, 

identification information is represented in a DNA profile. Because DNA profiles are vital to 

criminal justice proceedings, correctly inferring genotypes from evidence DNA using sound 
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scientific and statistical approaches is undoubtedly a delicate and important task. (Perlin, 

Kadane, et al., 2009; Perlin & Sinelnikov, 2009; Perlin, 2015).  

STR Genotyping 

Biological evidence samples are subjected to a multi-step process where DNA is 

extracted from the biological specimens, quantified, and amplified via the polymerase chain 

reaction (PCR). Only specific non-coding regions of DNA containing short tandem repeats 

(STR) are targeted during amplification. These regions are referred to as STR loci or locus if 

referring to only one. These STR loci are composed of DNA segments where the sequence 

repeats itself. These segments are categorized by the number of base pairs (bp) in the repeating 

sequence and the number of repeating units in the locus. The number of repeats at a locus is 

given the term allele and a genotype is formed by two alleles at each locus: one passed down 

from the father and one from the mother. An individual is said to be homozygous at a locus when 

both alleles are the same value. A heterozygous individual has two different alleles. A vast 

amount of possible allele combinations exists for every locus which makes STR genotyping 

useful for human identification. The STR profile is the composite of these locus genotypes. In 

forensic science, commercial STR kits can target more than 20 STR loci that result in different 

genotype possibilities for a single individual (Butler, 2010, Chapter 8; Perlin, 2013). 

Conversion of biological evidence to DNA begins with extraction. This process involves 

the release of DNA from cells, purification of the DNA through washes, and concentration of the 

DNA. The DNA is then quantified to assess how much was extracted. A template amount of 0.5 

to 1 ng of DNA works best for most STR kits. If enough DNA is available for further processing, 

PCR amplification is performed. After PCR, millions of STR fragments are separated via 

capillary electrophoresis by size and represented as peaks in an electropherogram (EPG) 
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demonstrated in Figure 1 below (Butler, 2005, Chapters 1-3, 14). Peaks are a visual 

representation of DNA quantity and amount of PCR product measured by height in relative 

fluorescence units (RFU) and size in base pairs (bp). The amount of DNA present in a sample is 

indicated by the peak height. Peaks also represent alleles at each locus. An allele designation 

Figure 1 

EPG of all loci for reference sample H1 

 

Note. The peaks represent different sized STR fragments.  

is given to a peak based on its size. The size of a peak is determined by the number of base pairs 

(bp) the STR fragments contain. The greater the number of repeats in an STR fragment, the 

bigger the size of the peak. Larger sized alleles contain a greater number of bp and may not 

replicate as consistently during PCR leading to smaller amounts of PCR products. Because peak 

heights represent PCR product amount, larger sized alleles often have shorter peaks than smaller 

sized alleles. This proportionality is affected by DNA template concentration (Butler, 2010, 

Appendix 1; Butler, 2015, Chapter 4). 

Computer programs make allele designations for every locus which help in determining 

an STR profile. DNA analysis and interpretation then compare the evidence and reference STR 
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profiles to each other which can result in a DNA match (Butler, 2010, Chapters 1, 9-10, 

Appendix 1; Perlin & Szabady, 2001).  

DNA Mixture Interpretation 

The last step of forensic DNA typing is interpretation of the STR data. This involves 

inferring genotypes from the data. Evidence genotypes are compared to suspect genotypes and if 

a match exists, the weight of this evidentiary match must be represented by a statistic (Perlin, 

Kadane, et al., 2009; Perlin & Sinelnikov, 2009). Identification information present in the 

genotypes is measured by the match statistic.  

DNA mixture analysis requires additional steps. First, it must be determined that a 

mixture is present. This is accomplished by reviewing the EPG data for every locus. All loci are 

assessed for number of peaks, peak heights, and peak height ratios. A peak height ratio (PHR) is 

the measurement of the peak height of one allele over the peak height of another allele for a 

locus. PHRs are affected by locus size, effectiveness of fragment separation, and DNA template 

concentration. When an individual is homozygous at a locus, only one allele peak is present. A 

heterozygous individual will have two allele peaks at one locus and how well those alleles 

amplified is measured by the PHR. Heterozygous loci with relatively equal peak heights will 

have low PHR values. Peak height imbalance occurs when there is a large difference between the 

peak heights of heterozygous alleles indicated by a high PHR. A single source sample will 

usually produce one or two allele peaks at every locus with low PHR values. If the number of 

peaks at a locus is greater than two or the difference in peak height ratios is too great to originate 

from a single source (greater than 30%-40%), the STR data indicate the presence of a mixture 

(Butler, 2010, Appendix 1; Butler 2015, Chapter 4).  
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The mixture weight of each contributor is determined next. Different amounts of DNA 

are contributed by each individual present in a mixture. An individual that has contributed high 

quantities of DNA is said to be a major contributor and is identified by tall data peaks. Minor 

contributors are represented by shorter peaks indicating lower quantities of their DNA being 

present in the mixture. Once it has been determined that more than one contributor is present in a 

DNA evidence sample, their weight of contribution can be determined using PHRs (Butler, 2010, 

Chapter 10). Obtaining mixture weights for each contributor helps infer contributor genotypes 

which can be compared to a reference. If both the evidence and suspect genotypes match, a 

match statistic can be calculated, and the amount of identification information determined. 

Though simple in theory, DNA mixture analysis is known to be an intricate and difficult process. 

Single source samples usually provide clean and ideal data which makes DNA analysis of 

these samples a straightforward task. This is not usually the case for STR profiles derived from 

crime scene evidence. DNA evidence from crime scenes can be low template, damaged, or a 

mixture of two or more individuals. When evidence of this nature is amplified, it can result in 

low peak heights, missing peaks, or several peaks indicative of a mixture. Low peak heights 

indicate low quantities of DNA which can lead to peak height imbalance at heterozygous loci. If 

damage to the DNA is extensive, there will be regions in the DNA that will not amplify during 

PCR. This results in allele drop-out, an extreme form of peak height imbalance. When more than 

two contributors are present in a mixture, the amount of DNA present for each can vary 

potentially resulting in low peak heights and peak height imbalance between major and minor 

contributors. Each of these elements in isolation or combined, makes it difficult to confidently 

infer locus genotypes. This results in uncertainty in the data, the inferred genotypes, and the 

resulting match statistics (Ballantyne et al, 2013; Perlin et al., 2011).  
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The goal of qualitative and quantitative mixture interpretation methods is to address data 

uncertainty. Qualitative methods implement thresholds to address uncertainty but in doing so, 

discard data peaks that can be useful in determining genotypes if they fall below the threshold 

(Greenspoon et al., 2015). Figure 2 provides a visual example of how thresholds can discard 

information at a locus. This decreases the identification information of a subsequent match 

statistic. Perlin and Sinelnikov (2009) determined that qualitative mixture interpretation methods 

are less informative than quantitative methods. This is due to the utilization of all the available 

data by quantitative methods. The variation present in the data is mathematically accounted for 

by assigning probabilities to all possible genotypes at each locus (Bauer et al., 2020; Gill et al., 

2012; Perlin et al., 2014). Probabilities are used to explain the data peak patterns and preserve 

identification information.   

   Figure 2 

   EPG of TPOX for sample J4 

 

Note. The analytical threshold (AT) is set to 50 RFUs. 
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Interpretation of STR data culminates in the comparison of an evidence genotype with a 

reference genotype to see if a match is obtained. There are different approaches to calculate a 

match statistic, but quantitative approaches use likelihood ratios (LR) which account for 

probabilities. An LR “is a calculation of the ratio of probabilities of observing the DNA under 

two alternative hypotheses” (Gill et al., 2012). These hypotheses are commonly referred to as the 

prosecutor’s hypothesis and the alternative or defense hypothesis. The prosecutor’s hypothesis 

assumes that the suspect did contribute their DNA to the evidence while the alternative 

hypothesis is that some other unrelated individual contributed their DNA to the evidence. When 

the LR is greater than one, it supports the hypothesis that the suspect contributed to the evidence. 

If the LR is less than one, support for the alternative hypothesis strengthens. The base 10 

logarithm of the LR, logLR, is used to measure the change of information in the evidence, show 

how well the data preserves identification information, and can be expressed in ban units (Good, 

1979, as cited in Ballantyne et al., 2013). The match logLR weighs the strength of the 

relationship between the evidence genotype and suspect genotype relative to a population. 

Because quantitative methods utilize all the available data in an STR profile and objectively infer 

evidence genotypes, preservation of identification information is captured best in the match 

logLR obtained from probabilistic genotyping (Perlin et al., 2014). How informative the match 

logLR is then measured by its value which also indicates how much identification information 

was preserved from the quantitative data. In criminal proceedings, LR match statistics that reach 

or surpass 6 ban (one in a million) tend to have the most persuasive effect on juries, but the 

method used to calculate the match logLR should also be an indicator of how informative and 

reliable a match statistic is (Koehler, 2001, as cited in Perlin & Sinelnikov, 2009). TrueAllele 

computes this match statistic using all the identification information present in the data. 
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TrueAllele® Casework 

 TrueAllele® Casework is a software program that uses a hierarchical Bayesian model to 

explain STR data and infer genotypes. The likelihood function (LF) in Bayes theorem accounts 

for genotype, mixture weight, PCR stutter, relative amplification, and DNA degradation that may 

be present in the data using the peak height variation and mixture variation between different loci 

(Perlin et al., 2011). A statistical search of the STR data using Markov chain Monte Carlo 

(MCMC) is conducted by the computer which tries different variable combinations to explain the 

data. Thousands of MCMC cycles sequentially test these variables using new combinations each 

cycle. The combinations that give a better explanation for the data are assigned a higher 

likelihood (giving  higher probability values) and a lower likelihood is given to the pairs whose 

explanation is poor (leading to lower probability for the combination). The result is a posterior 

probability distribution for all allele pairs at every locus for each contributor from which 

genotypes are inferred. A match LR, expressed as a logLR, is calculated when the inferred 

evidence genotypes are compared to a reference genotype from a particular individual relative to 

a population. Because TrueAllele uses all the quantitative data available for interpretation, the 

match logLR is a reliable number conveying a sample’s identification information (Ballantyne et 

al., 2013; Greenspoon et al., 2015; Perlin et al., 2011; Perlin et al., 2015; Perlin & Sinelnikov, 

2009). 

Independent sets of data can be analyzed and multiplied together using a joint likelihood 

function (JLF). The probabilities that result for each independent data set are multiplied together 

using the JLF which increases the posterior probability distribution of the locus allele pairings. 

When there is high uncertainty in STR data as seen with LT-DNA and mixtures, the posterior 

probability distribution will be diffuse for allele pairings across all loci. A diffuse probability is 
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indicative of uncertainty and will result in a lower match statistic. Joint interpretation of multiple 

data sets can lead to higher probabilities because the additional data is constrained by the 

variable combinations that give the best explanation jointly during MCMC sampling. A JLF can 

help tighten and increase those probability distributions if LT-DNA and mixture samples are 

amplified in replicates and interpreted jointly (Perlin, Kadane, et al., 2009). Replicate 

amplification of evidence highly suspected to contain LT-DNA or consist of a mixture, will 

provide a greater amount of data that TrueAllele can readily process. By applying the JLF, 

higher probabilities will naturally result in higher and more informative match statistics for 

replicates that come from the same piece of evidence or evidentiary material that are closely 

related.   

Review of Literature 

TrueAllele uses probabilistic modeling (Bayes theorem) and statistical sampling 

(MCMC) methods that have been established for decades and are used by different disciplines 

such as “nuclear physics, psychology, computer learning, economics, biological systems, and 

more recently, DNA analysis” to explain complex data patterns (Greenspoon et al., 2015). It has 

been established that mathematical modeling of complex evidence mixture data has produced 

consistently higher match statistics compared to manual review. Computer interpretation has 

proven to be objective, efficient, and reproducible in several studies. Perlin et al. (2009, 2011, 

2013, 2014, 2015) have performed validation studies using Cybergenetics TrueAllele® Casework 

for mixture interpretation. Interpretation was performed on data obtained from premixed 

templates from the National Institute of Standards and Technology (NIST), adjudicated cases 

from the New York State Police Forensic Investigation Center (Perlin et al., 2011, 2013), 

mixture evidence in 72 cases from the Virginia Department of Forensic Science, and data created 
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by Sorenson Forensics for the Kern County Regional Crime Laboratory in these particular 

validation studies, respectively. The studies compared the traditional qualitative methods of 

inclusion probability and combined probability of inclusion to TrueAllele interpretation and 

concluded that TrueAllele preserved the most identification information. The preservation of 

identification information by TrueAllele has supported its use in criminal cases. 

TrueAllele has been officially used in forensic casework since 2009 and it has been 

instrumental in many criminal trials such as Commonwealth of Pennsylvania v. Kevin J. Foley 

and Commonwealth of Pennsylvania v. Glenn Lyons. The United Kingdom (UK) has also used 

TrueAllele. Match statistics calculated by TrueAllele were pivotal in the case of the Queen v. 

Duffy & Shivers where Brian Shivers was convicted of murdering two soldiers who died in the 

2009 terrorist attack of the Massereene Barracks in Northern Ireland (Perlin, 2013, 2015; Perlin 

& Galloway, 2012; Perlin & Sinelnikov, 2009). TrueAllele has also been used to identify victims 

from the World Trade Center disaster and in building the UK’s National DNA Database. Crime 

labs in California, Louisiana, Maryland, South Carolina, Ohio, Georgia, and Virginia have 

already incorporated TrueAllele into their DNA analysis process (Bauer et al., 2020; Kwong, 

2017). 

Because previous validation studies established the reliability and objectivity of 

probabilistic genotyping and TrueAllele is already used in forensic casework, it is important to 

explore other applications of computer modeling in mixture interpretation. An earlier study by 

Ballantyne et al. (2013) looked at how a JLF can increase identification information with 

samples varying in mixture weight. Mixture weight is the measurement of how much template 

DNA was contributed to the sample by a single contributor to the mixture. (Perlin & Szabady, 

2001). Peak height imbalance helps distinguish one contributor from another but when a mixture 
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contains equal contributor weights, the peak heights are also relatively equal. Equal weighted 

mixtures increase uncertainty in the inferred genotypes leading to a decrease in identification 

information. Ballantayne et al.’s 2013 study used binomial sampling of an equal weighted 

mixture to produce sub-samples containing different mixture weights to elicit more identification 

information. Several sample groupings were analyzed using the data from a single experiment, 

but two experiments were combined and analyzed using a JLF. TrueAllele was used to jointly 

analyze the two sets of data to test the hypothesis that joint analysis of multiple experiments will 

increase identification information. This study found that pairing one experiment with another 

generally increased identification information. Even though there were instances where no 

increase was seen and even a decrease occurred, the full sample genotype information was 

recovered using the joint likelihood thus preserving and increasing identification information. 

The study concluded by suggesting that using joint likelihoods with samples varying in mixture 

weight can obtain greater identification information in routine casework as well. Variations in 

mixture weight can be generated with “micro-geographical samplings” of physiological stain 

evidence and creation of sub-samples from limited dilutions of DNA extract of mixture evidence 

(Ballantyne et al., 2013). The resulting data from these sub-samples created from casework 

evidence can be interpreted jointly using TrueAllele resulting in more genetic information.  

Materials and Methods 

Materials 

• TrueAllele® Casework 

• TrueAllele® Visual User Interface (VUIer™) 

• TrueAllele® VUIer™ manuals for Analyze, Data, Request, Review, and Report modules  

• Microsoft Excel 
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• STR data from Perlin & Sinelnikov (2009)  

o Perlin & Sinelnikov (2009) data set is composed of DNA from two unrelated 

individuals. The set contains five different mixture weights of 10%, 30%, 50%, 

70%, and 90% for DNA template concentrations of 1 ng, 0.5 ng, 0.25 ng, and 

0.125 ng for each contributor. There were two sets which yielded 40 samples. 

Figure 3 shows the composition of each sample. 

        Figure 3 

        First sample set composition 

 

        Note. (Perlin & Sinelnikov, 2009) 

• STR data from Perlin et al. (2015)  

o This data set was composed of 40 randomized mixture items. These items were 

separated into four groups of two, three, four, and five contributors. Each group 

had a total of 10 mixtures. The mixtures were made from five known references: 

K01, K02, K03, K04, and ASB. Only four samples were used from this set for 
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analysis: mixtures 1.1, 2.8, 3.6, and 4.2. References K01 and ASB were present in 

all four samples. 

Methods 

 After computer installation of TrueAllele® Casework and TrueAllele® VUIer™, 

familiarization with the manuals, and completion of the tutorial material, data for analysis was 

selected considering two common sources of data uncertainty: mixture weight and template 

concentration. Using the data from Perlin & Sinelnikov (2009), mixture weight and template 

concentration were considered as separate variables to see which elicited more information using 

the JLF. A second data set (Perlin et al., 2015) involved more complex mixtures which varied in 

mixture weight, template concentration, and number of contributors. All three variables of the 

second data set were intertwined in the joint analysis. 

In order to observe how well a JLF recovers identification information from varying 

mixture weights, the 1 ng template samples were used from the Perlin & Sinelnikov (2009) data 

in different mixture weight combinations. Table 1 shows these combinations. Each sample was 

analyzed independently using TrueAllele® Casework. Then the samples were combined in 

duplicate and triplicate for joint analysis. This same pattern was also used for the low template 

samples.    

Table 1 

Mixture Weight Combinations for Single and Joint Interpretation 

 References A1 and G1 References H1 and N1 

Mixture 
Weight 

Single Duplicate  Triplicate Single Duplicate Triplicate 

0.9/0.1 B1 B1+D1 B1+C1+D1 I1 I1+K1 I1+J1+K1 

0.7/0.3 C1 C1+D1 D1+E1+F1 J1 J1+K1 K1+L1+M1 

0.5/0.5 D1 B1+C1  K1 I1+J1  
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 References A1 and G1 References H1 and N1 

Mixture 
Weight 

Single Duplicate  Triplicate Single Duplicate Triplicate 

0.3/0.7 E1 D1+E1  L1 K1+L1  

0.1/0.9 F1 D1+F1  M1 K1+M1  

  E1+F1   L1+M1  

Note. Mixture weight is indicated for the single samples.  

 To test whether a joint likelihood recovers genetic information from low template 

samples, only the sample groups that changed in concentration (as seen in Figure 3), but not in 

mixture weight, were combined for joint analysis. Table 2 shows these combinations. Table 3 

shows the combinations for the second set of data that included more complex mixtures.  

Table 2 

Combinations of Template Concentrations for Single and Joint Interpretation 

 References A1 and G1 References H1 and N1 

Template 
Concentration 

(ng) 
Single Duplicate  Triplicate Single Duplicate Triplicate 

0.5 B2 - F2 B3+B4 B2+B3+B4 I2 – M2 I3+I4 I2+I3+I4 

0.25 B3 - F3 C3+C4 C2+C3+C4 I3 – M3 J3+J4 J2+J3+J4 

0.125 B4 - F4 D3+D4 D2+D3+D4 I4 – M4 K3+K4 K2+K3+K4 

  E3+E4 E2+E3+E4  L3+L4 L2+L3+L4 

  F3+F4   M3+M4  

Note. Samples B2, C2, D2, E2, and F2 all have concentrations of 0.5 ng and each was analyzed 

singly. As were samples B3 - F3 and B4 - F4. 

        Table 3 

        Combinations of Complex Mixtures for Single and Joint Interpretation 

References ASB and K01 

Number of 
Contributors 

Single Duplicate  Triplicate 

2 1.1 1.1 + 2.8 1.1 + 3.6 + 4.2 

3 2.8 1.1 + 3.6  
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References ASB and K01 

Number of 
Contributors 

Single Duplicate  Triplicate 

4 3.6 1.1 + 4.2  

5 4.2 3.6 + 4.2  

         Note. The number of contributors is indicated for the single samples. 

 TrueAllele® Casework Visual User Interface (VUIer™) contains six modules where 

different steps of the interpretation and analysis process are performed: Analyze, Data, Request, 

Review, Report, and Tools. The Data, Request, Review, and Report modules were primarily 

used for this research. The STR data files from Perlin & Sinelnikov (2009) and Perlin et al. 

(2015) were stored in a TrueAllele World, a database where files and interpretation requests are 

stored, from which they were accessed for subsequent analysis (Hornyak et al., 2015).  

The Data module was used to access the TrueAllele World that contained the two sets of 

previously published data. The STR data files were downloaded and used to form interpretation 

requests for each single sample, duplicate combination, and triplicate combination for mixture 

weight, template concentration, and complex mixtures groups in the Request module. Each 

interpretation request indicated the maximum number of contributors for each sample being 

analyzed.  The requests were reviewed and uploaded to a cloud server where they were 

processed.  

TrueAllele uses MCMC statistical searching where different variables (genotype, mixture 

weight, etc.) are used to try to explain the STR data and separate the contributors in a mixture. 

Contributor genotypes are inferred from the probability distributions determined for each 

variable during MCMC sampling. The number of times the computer will subject the data to 

MCMC sampling is determined by the number entered for burn-in and read-out cycles in the 

Request module (Greenspoon et al., 2015; Hornyak et al., 2015; Perlin et al., 2011, 2013). The 

time it takes for an interpretation request to process depends on the number of cycles used for 
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each request. A high number of cycles will usually result in more information but will also lead 

to longer running times. Fewer cycles lead to shorter running times. When data is known to be 

complex and high uncertainty is expected, a greater number of burn-in and read-out cycles are 

used. Single source data or simple mixtures can be processed with lower cycle settings. The 

number of cycles that can be chosen vary from 5,000 (5K), 10,000 (10K), 25,000 (25K), 50K, 

100K, and 250K. 

The samples in Tables 1 and 2 were analyzed using 5K burn-in and read-out cycles. 

Because this first set of data was composed of simple two contributor mixtures with known 

concentrations and mixture weights, the number of cycles was kept at 5K. The set of complex 

mixtures in Table 3 were analyzed using 50K cycles to account for the higher degree of 

variability in the data. All the requests were run once except for the following: D3, C4, D4, L3, 

J4, D3+D4, L3+L4, and F2+F3+F4. Initial run results for these samples deviated slightly in their 

inferred mixture weights compared to their original design and results from the previous studies 

and analyses performed on the same data in Perlin & Sinelnikov (2009). The averages of both 

runs were used, and the second run results were used for D3+D4. 

Once the interpretation requests were done processing, the Review module was used to 

check the locus probability distributions for each set. The match logLR results for each 

interpretation request were obtained in the Report module. The inferred genotypes for each 

request were selected and compared to the references in the sample mixture relative to a random 

population. The NIST1036_2017_ALL was the population database chosen for this research 

which contains allele frequencies for the Caucasian, African American, Asian, and Hispanic 

population groups used to calculate match statistics (National Institute for Standards and 

Technology, 2014). Each comparison was broken down by sample, contributor, number of 
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contributors, weight of each contributor, the standard deviation, the KL (Kullback-Leibler) 

statistic, and the match logLR values for each reference. The evidence sample, designed mixture 

weight of each contributor, and the match logLR values are presented in tables below.  

Data Analysis and Interpretation 

 The match logLRs obtained from each interpretation request were grouped by single, 

duplicate, and triplicate analysis for each variable group. Results from samples B-F and I-K 

showed a change in logLRs for single and joint analyses. The results for samples I-K are shown 

here to display the change in match information for 50/50 mixture weights, minor contributors, 

and low template concentrations. Tables 4-6 display mixture weight combinations, Tables 7-9 

display LT-DNA results, and Table 10-11 contain results for complex mixtures. 

Mixture Weight Comparison 

 Mixture weights (MW) are calculated by summing the peak height values of the minor 

peaks and dividing that value by the sum of all peaks at a locus. Manual calculations use only the 

loci where major and minor contributor peaks are distinguishable. TrueAllele and PG software 

can calculate the weights for all loci (Greenspoon et al., 2015; Perlin et al., 2013). Many studies 

state that equal weighted mixtures result in lower and more diffuse probabilities. Because each 

possible allele pair combination will be equally likely with similar sized peaks, the probability 

distribution will decrease in 50/50 mixtures. Ballantyne et al. (2013) claim that mixtures where 

two individuals have contributed an approximate equal amount of DNA are some of the most 

challenging because there are no distinct major and minor peaks. Differences in peak heights 

help attribute which contributor goes with which genotype thus increasing the identification 

information (Perlin et al., 2013, 2015; Perlin & Sinelnikov, 2009). Different mixture weight 
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combinations were analyzed to compare what mixture weight variations gained more 

identification information in the match logLR when interpreted jointly. 

   Table 4 

   Single Interpretation Results Comparing MW 

Sample 
Mixture 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I1 0.9/0.1 17.7879 12.9775 

J1 0.7/0.3 17.0208 18.1206 

K1 0.5/0.5 9.2528 10.5971 

L1 0.3/0.7 16.5517 18.3432 

M1 0.1/0.9 11.7348 19.1745 

 

 Sample K1 contains 50/50 contributions of reference H1 and N1. It is seen in Table 4 

above and Figure 4 below that both references in sample K1 have the lowest match logLR values 

in this set. This result was expected as were the lower logLRs for reference H1 in sample M1 and 

reference N1 in sample I1 because equal and low MWs (0.5 and 0.1) obtain lower probability 

distributions in their inferred genotypes. 

           Figure 4 

            MW - Histogram showing the match logLR values from single analysis 
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   Table 5 

   Duplicate Interpretation Results Comparing MW 

Sample 
Mixture 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I1+K1 
0.9/0.1 

+ 
0.5/0.5 

17.7879 19.1727 

J1+K1 
0.7/0.3 

+ 
0.5/0.5 

17.6994 19.0926 

I1+J1 
0.9/0.1 

+ 
0.7/0.3 

17.7879 19.0615 

K1+L1 
0.5/0.5 

+ 
0.3/0.7 

17.7584 19.1468 

K1+M1 
0.5/0.5 

+ 
0.1/0.9 

17.7812 19.1745 

L1+M1 
0.3/0.7 

+ 
0.1/0.9 

17.4381 19.1745 

 

 Table 5 above displays the logLRs for the duplicate combinations. It can be noticed 

immediately that an information gain was observed for each reference in each duplicate as 

compared to the single analyses shown in table 4. The logLR values for I1+K1 and I1+J1 were 

equal at 17.7879 ban. This can occur when the probability is practically near or equal to 100% 

for evidence genotype allele pairs meaning that all the probability is concentrated on the 

reference allele pairs. When the same population database is used for the match logLR 

calculation, a maximum value is obtained because the LR calculation changes from uncertain 

probability divided by the population at the reference allele pair to one divided by the population 

genotype. Reference H1 in sample I1 has a weight of 0.9 or 90% as does reference N1 in sample 

M1indicating that probability is concentrated on the allele pairs of these references in the 
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duplicate and triplicate joint analyses. Duplicates and triplicates containing references whose 

weights are 90% have logLR values that are equal or close to equal indicating that high mixture 

weights whose probability is close to 100% “maxes out” a match logLR value.  

 

          Table 6 

          Triplicate Interpretation Results Comparing MW 

Sample 
Mixture 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I1+J1+K1 

0.9/0.1 
+ 

0.7/0.3 
+ 

0.5/0.5 

17.7879 19.1732 

K1+L1+M1 

0.5/0.5 
+ 

0.3/0.7 
+ 

0.1/0.9 

17.7879 19.1745 

 

 Triplicate analysis showed little to no change compared to duplicate analysis but a gain 

was demonstrated in triplicate analysis compared to single analysis. Some logLR values in Table 

5 and 6 are equal or close to equal. When the quantity of DNA is high and the inferred genotype 

probability distribution is near or reaches 100% probability, the major contributor’s logLR value 

ceases to increase and stays relatively constant at its maximum value (Bauer et al., 2020). Minor 

contributors can have their logLR values display this trend as well.  

LT-DNA Comparison 

 After DNA extraction is performed, the quantity of DNA present in the evidence is 

determined. Quantities of 0.2 ng and lower are deemed low template (Butler, 2010, Chapter 14, 

18). The stochastic effects of PCR are exacerbated as DNA quantities decrease leading to greater 
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occurrences of peak height imbalance, allele drop-out, stutter, etc. This results in heightened 

uncertainty, lower probability distributions, and lower match statistics for LT-DNA samples.  

The proportional relationship between DNA weight contribution and logLR values 

dictates that as the amount of DNA contributed increases so does the logLR for major and minor 

contributors. The opposite is also observed. When the amount of DNA weight decreases so does 

the logLR (Bauer et al., 2020; Perlin & Sinelnikov, 2009). When a mixture sample is low 

template, minor contributors with exceptionally low mixture weights have even lower amounts 

of DNA present in the sample resulting in extremely low and uninformative logLRs. This trend 

is displayed in these results. The results of the single analyses for samples at the lowest template 

concentrations of 0.125 ng in the first data set are shown in Table 7. Though the concentrations 

are constant for samples I4-M4, each sample has a different mixture weight. It can be observed 

that as weight decreases, logLR values rapidly decrease as well at low template concentrations. 

Negative logLRs were even observed. Greater gains in identification information are seen for 

low template samples when analyzed jointly.  

         Table 7 

          Results from Single Interpretation of LT-DNA Samples 

Sample 

(0.125 ng) 

Target 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I4 0.9/0.1 17.4153 1.9852 

J4 0.7/0.3 8.6165 6.0900 

K4 0.5/0.5 8.0504 8.4280 

L4 0.3/0.7 -0.4628 13.7580 

M4 0.1/0.9 -0.4874 18.2591 
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         Table 8 

         Results from Duplicate Interpretation of LT-DNA Samples 

Sample 

(0.25 ng + 
0.125 ng) 

Target 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I3+I4 0.9/0.1 17.7828 9.8831 

J3+J4 0.7/0.3 11.6383 10.6104 

K3+K4 0.5/0.5 9.3065 10.7250 

L3+L4 0.3/0.7 14.4494 17.1665 

M3+M4 0.1/0.9 6.4534 19.1743 

 

 Since the joint amplifications were done within each sample group not across like in the 

MW group, sample K (50/50 MW) shows a small increase to the logLR across single, duplicate, 

and triplicate analyses for references H1 and N1 compared to the other samples whose weights 

were unequal. This was expected due to prior studies stating that equal weight ratios result in 

lower probability distributions compared to samples with unequal weight ratios. Though the LT-

DNA sample group combinations used only varying template amounts, mixture weight influence 

was simultaneously observed. Samples where references H1 and N1 had weights of 90% 

obtained logLRs close to their maximum value when analyzed in duplicate and triplicate as seen 

with mixture weight combinations. Samples with 70%, 30% and 10% weight at 0.125 ng showed 

an increase in their logLR values from single, to duplicate, and to triplicate analyses. This was as 

expected due to the increasing constrains placed on each possible pair during MCMC sampling 

when more than one set of data are analyzed jointly. The probability distributions tighten and 

increase as more data is available especially for contributors with low weight contributions in 

LT-DNA samples.  
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         Table 9 

         Results from Triplicate Interpretation of LT-DNA Samples 

Sample 
(0.5 ng + 0.25 
ng + 0.125 ng) 

Target 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference N1 
logLR 

I2+I3+I4 0.9/0.1 17.7879 13.7131 

J2+J3+J4 0.7/0.3 15.7304 17.1075 

K2+K3+K4 0.5/0.5 8.7466 9.8877 

L2+L3+L4 0.3/0.7 14.4260 17.6315 

M2+M3+M4 0.1/0.9 7.4670 19.1745 

 

Complex Mixtures with up to 5 Contributors 

 The second data set used mixtures with two, three, four, and five contributors. Mixture 

weights varied for each reference contributor. References ASB and K01 were chosen based on 

predetermined mixture weights. Samples containing these two references were chosen and 

combined for joint analyses considering their weight differences. Sample 1.1 was chosen because 

ASB and K01 each had near 50/50 weight contributions. The remaining samples were chosen 

based on the unequal weight ratios of ASB compared to K01. Table 10 below shows the logLR 

results for references ASB and K01 along with their TrueAllele determined mixture weight. Like 

the first data set, logLR values for each reference decreased as mixture weight decreased. 

     Table 10 

     Results from Single Interpretation of Complex Samples 

Mixture 
Sample 

Mixture Weight 
(ASB/K01) 

Reference ASB 
logLR 

Reference K01 
logLR 

1.1 0.4965/0.5035 13.4193 11.1957 

2.8 0.2552/0.6153 16.7984 16.3593 

3.6 0.9006/0.0254 20.3219 3.3181 

4.2 0.1372/0.5404 0.7290 17.3530 
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When these complex samples were analyzed jointly, the increase in information was greatest for 

the lowest weights but consistently greater as more samples were added to the joint likelihood. 

Tables 11 and 12 demonstrate this gain. The highest weights showed the same trend of little to 

no change in the maximum logLR. 

     Table 11 

     Results from Duplicate Interpretation of Complex Samples 

Mixture 
Sample 

Mixture Weight 
(ASB/K01) 

Reference ASB 
logLR 

Reference K01 
logLR 

1.1 + 2.8 
0.4815 + 0.3146/        
0.5018 + 0.6354 

19.1947 16.9255 

1.1 + 3.6 
0.1349 + 0.8729/            
0.5015 + 0.0612 

20.3211 13.5960 

1.1 + 4.2 
0.4383 + 0.0846/           
0.2851 + 0.5493 

16.6537 17.5757 

3.6 + 4.2 
0.9076 + 0.0538/           
0.0193 + 0.5782 

20.3219 17.9900 

 

  Table 12 

  Results from Triplicate Interpretation of Complex Samples 

Mixture 
Sample 

Mixture Weight 
(ASB/K01) 

Reference ASB 
logLR 

Reference K01 
logLR 

1.1 + 3.6 + 4.2 
0.4466 + 0.8616 + 0.0521/   
0.4656 + 0.0286 + 0.6233 

20.3219 18.1666 

 

Research Results and Discussion 

The logLR results for single, duplicate, and triplicate analyses were used to calculate the 

difference between each analysis method. The differences were calculated as follows for 

references A1 and G1, H1 and N1, and ASB and K01: 
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Duplicate log LR - single log LR 

Triplicate log LR - single log LR 

Triplicate log LR - duplicate log LR 

These calculations were made for all three variables of mixture weight, low template 

concentration, and complex mixtures. The resulting values indicate how much information was 

either gained or lost when performing joint analysis of multiple data samples using the JLF.  

Mixture Weight 

 The difference calculations were performed for each sample group. The information gain 

or loss across each sample for mixture weight was consolidated for each reference shown 

numerically in Tables 14-17. Table 13 shows the log LR values across all three analysis methods 

for sample K1. Figures 5-8 visually represent this gain in histograms. 

   Table 13 

   Interpretation Results for Sample K1 Using Varied MW Combinations 

Sample 
Target 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference 
N1 logLR 

Information 
Gain/Loss 

H1 

Information 
Gain/Loss 

N1 

K1 0.5/0.5 9.2528 10.5971   

I1+K1 
0.9/0.1 

+ 
0.5/0.5 

17.7879 19.1727 8.5351 8.5756 

J1+K1 
0.7/0.3 

+ 
0.5/0.5 

17.6994 19.0926 8.4466 8.4955 

K1+L1 
0.5/0.5 

+ 
0.3/0.7 

17.7584 19.1468 8.5056 8.5497 

K1+M1 
0.5/0.5 

+ 
0.1/0.9 

17.7812 19.1745 8.5284 8.5774 

I1+J1+K1 

0.9/0.1 
+ 

0.7/0.3 
+ 

17.7879 19.1732 8.5351 8.5761 
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Sample 
Target 
Weight 
(H1/N1) 

Reference H1 
logLR 

Reference 
N1 logLR 

Information 
Gain/Loss 

H1 

Information 
Gain/Loss 

N1 

0.5/0.5 

K1+L1+M1 

0.5/0.5 
+ 

0.3/0.7 
+ 

0.1/0.9 

17.7879 19.1745 8.5351 8.5774 

 

        Table 14 

        MW - Difference of Single and Joint Analysis for Reference A1 

A1 
Samples 

Target 
Weight 

Dup-single Trip-single Trip-Dup 

B 0.9 0.0006 0.0006 0.0000 

C 0.7 1.4820 1.4829 0.0009 

D 0.5 15.7077 15.7084 0.0007 

E 0.3 -0.2148 0.1107 0.3256 

F 0.1 6.8666 7.1925 0.3259 

  

Sample K1 gains identification information by approximately 8.5 ban using joint analysis 

shown in Table 13. As previously mentioned, the sample containing the higher mixture weight 

provided a higher logLR which eventually plateaued between duplicate and triplicate analysis 

methods. Tables 14 and 15 show that the greatest information gain for references A1 and G1 

were seen when their weight contributions were 50% where information increased by 15.7 ban in 

A1 and close to 15 ban in G1. When references had a low weight contribution of 10%, gain in 

information was also seen. As mixture weight increased, the gain in information was negligible. 

The trend is clearly demonstrated in the histograms for each reference. 
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        Table 15 

      MW - Difference of Single and Joint Analysis for Reference G1 

G1 
Samples 

Target 
Weight 

Dup-single Trip-single Trip-Dup 

B 0.1 5.7571 5.9119 0.1549 

C 0.3 1.0859 1.2416 0.1557 

D 0.5 14.9558 14.9562 0.0004 

E 0.7 0.0447 0.0447 0.0000 

F 0.9 0.0000 0.0000 0.0000 

 

 

 

      Figure 5 

      MW - Histogram showing difference between single and joint analysis for A1 
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     Figure 6 

      MW - Histogram showing difference between single and joint analysis for G1 

 

 

 

      Table 16 

        MW - Difference of Single and Joint Analysis for Reference H1 

H1 
Samples 

Target 
Weight 

Dup-single Trip-single Trip-Dup 

I 0.9 0.0000 0.0000 0.0000 

J 0.7 0.7228 0.7671 0.0442 

K 0.5 8.5039 8.5351 0.0312 

L 0.3 1.0466 1.2362 0.1897 

M 0.1 5.8749 6.0531 0.1783 
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      Table 17 

        MW - Difference of Single and Joint Analysis for Reference N1 

N1 
Samples 

Target 
Weight 

Dup-single Trip-single Trip-Dup 

I 0.1 6.1396 6.1957 0.0561 

J 0.3 0.9565 1.0526 0.0962 

K 0.5 8.5496 8.5768 0.0272 

L 0.7 0.8174 0.8313 0.0139 

M 0.9 0.0000 0.0000 0.0000 

 

 Similar information gain trends are seen for references for H1 and N1 where 50% and 

10% weight contributions see an increase match logLR values. It is noted that the differences in 

information gain are greater for reference A1 and G1 at the 50% weight. This was because the 

single logLRs were lower for these references than those for reference H1 and N1.  

 The greatest gains in information are seen between single and duplicate and single and 

triplicate analysis when different mixture weight combinations are analyzed jointly. Adding an 

additional sample to the joint analysis showed small gains in identification information.  

       Figure 7 

       MW - Histogram for H1 showing the difference between single and joint analysis 
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      Figure 8 

       MW - Histogram for N1 showing the difference between single and joint analysis 

 

LT-DNA  

 Information gain using joint analysis was consistently obtained for the minor contributor 

in low template samples for each sample group. The major contributor at the same template 

concentration also saw gains but not to the same extent. When using mixture weight as a 

variable, there was little difference between the duplicate and triplicate logLRs. Here, the gain is 

incremental when analyzing LT-DNA samples jointly as seen for reference N1 in sample I. 

Table 18 

Difference Between Single and Joint Analysis Results for LT-DNA Sample I4 

Sample 
Template 

Concentration 
(ng) 

TA Weight (H1/N1) 
Reference 
H1 logLR 

Reference 
N1 logLR 

Information 
Gain/Loss 

H1 

Information 
Gain/Loss 

N1 

I4 0.125 0.9132/0.0868 17.4153 1.9852   

I3+I4 0.25 + 0.125 
0.8714 + 0.9087/             
0.1286 + 0.0913 

17.7828 9.8831 0.3675 7.8979 

I2+I3+I4 
0.5 + 0.25+ 

0.125 
0.8872 + 0.8670 + 0.8618/ 
0.1128 + 0.1330 + 0.1382 

17.7879 13.7131 0.3726 11.7279 
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     Figure 9 

      LT-DNA - Histogram showing increase in identification information for Sample I4 

 

 

Negligible gains are seen for H1 in sample I as it was the major contributor at 90%. Table 18 and 

Figure 9 demonstrate how information increased for the minor contributor as more data was 

implemented in the JLF. 

 

        Table 19 

        LT-DNA - Difference Between Single and Joint Analysis Results for A1 

A1 
Samples 

Target 
Weight 

Avg TA 
Weight 

Dup-single Trip-single Trip-Dup 

B 0.9 0.8722 4.3333 6.6763 2.3430 

C 0.7 0.6555 5.1950 7.0154 1.8204 

D 0.5 0.4430 1.0953 1.9679 0.8726 

E 0.3 0.2789 3.8418 3.3096 -0.5322 

F 0.1 0.1064 5.7164 8.2118 2.4954 
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        Table 20 

        LT-DNA - Difference Between Single and Joint Analysis Results for G1 

G1 
Samples 

Target 
Weight 

Avg TA 
Weight 

Dup-single Trip-single Trip-Dup 

B 0.1 0.1278 5.3227 17.1853 11.8626 

C 0.3 0.3445 10.1584 11.8278 1.6694 

D 0.5 0.5555 6.6943 6.2894 0.6687 

E 0.7 0.7211 3.6723 2.7292 -0.9431 

F 0.9 0.8942 0.0035 -0.0046 -0.0081 

 

 Tables 19 and 20 show the difference between single and joint analysis for references A1 

and G1. Information gain is again greatest in the samples where the references have 10% mixture 

weight. This increase continues from duplicate to triplicate analysis. A minor decrease in 

identification information is seen for reference G1 when its weight is 90% between the triplicate 

and single sample.  

Sample C also shows an increase of information for A1 and G1 that is not expected. This 

was due to differences in the target weight and the weights calculated by TrueAllele in the 

individual analysis data for C4. TrueAllele determined that C4 had a ratio close to 50/50 in the 

single analysis. Despite the TrueAllele average weight for sample C being close to the target 

weight, the difference between single and joint analysis shows a gain consistent with mixture 

weight combinations of 50/50 samples and unequal weighted samples. Figures 10 and 11 show 

the histograms for A1 and G1. 
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    Figure 10 

     LT-DNA - Histogram showing change in identification information for A1 

 

 

    Figure 11 

   LT-DNA - Histogram showing change in identification information for G1 
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Tables 21 and 22 show the gain in identification information using joint analysis for 

references H1 and N1. Reference H1 showed the similar anomaly in sample L as was seen for 

references A1 and G1 in sample C. Both samples were a 70/30 mixture weight. Though 

unexpected, information gain was still the result. Reference N1 showed the expected trend as 

seen in sample I where gain in information increased when low template minor contributor 

samples were analyzed jointly with other samples. Figures 12 and 13 show the histograms for 

references H1 and N1. Sample K showed the least amount of information gain as expected for a 

50/50 mixture, but a small gain was still observed. 

 

         Table 21 

         LT-DNA - Difference Between Single and Joint Analysis Results for H1 

H1 
Samples 

Target 
Weight 

Avg TA 
Weight 

Dup-single Trip-single Trip-Dup 

I 0.9 0.8849 0.3675 0.3726 0.0051 

J 0.7 0.6708 3.0218 7.1139 4.0921 

K 0.5 0.5014 1.2561 0.6962 -0.5599 

L 0.3 0.3183 14.9122 14.8888 -0.0234 

M 0.1 0.1777 6.9408 7.9544 1.0136 

 

        Table 22 

LT-DNA - Difference Between Single and Joint Analysis Results for N1 

N1 
Samples 

Target 
Weight 

Avg TA 
Weight 

Dup-single Trip-single Trip-Dup 

I 0.1 0.1151 7.8979 11.7279 3.8300 

J 0.3 0.3292 5.1346 11.6317 6.4971 

K 0.5 0.4987 2.297 1.4597 -0.8373 

L 0.7 0.6818 3.4085 3.8735 0.4650 

M 0.9 0.8223 0.9152 0.9154 0.0002 
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   Figure 12 

   LT-DNA - Histogram showing change in identification information for H1 

 

 

    Figure 13 

    LT-DNA - Histogram showing change in identification information for N1 
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Complex Mixtures 

 This data set provided a close simulation to evidence data where mixture weight, 

template concentration, and number of contributors are random making mixture analysis 

difficult. The application of the JLF in this data set resulted in significant incremental gain in 

information for the contributor with the lowest MW. Reversing the roles of major and minor 

contributors was a consideration made when selecting these complex samples. The data 

complemented each other well when analyzed jointly. The information gain for reference K01 as 

the more minor contributor in sample 3.6 is shown in Table 23 and in Figure 14. Reference ASB 

is the major contributor in this sample and the logLR remains relatively unchanged with each 

analysis method. 

 

 

Table 23 

Difference Between Single and Joint Analysis Results for Complex Mixture 3.6 

Sample 
Mixture Weight 

(ASB/K01) 
Reference ASB 

logLR 
Reference K01 

logLR 

Information 
Gain/Loss 

ASB 

Information 
Gain/Loss 

K01 

3.6 0.9006/0.0254 20.3219 3.3181   

1.1 + 3.6 
0.1349 + 0.8729/            
0.5015 + 0.0612 

20.3211 13.5960 -0.0008 10.2779 

1.1 + 3.6 + 4.2 
0.4466 + 0.8616 + 0.0521/                   
0.4656 + 0.0286 + 0.6233 

20.3219 18.1666 0.0000 14.8485 
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     Figure 14 

          Histogram showing change in identification information for Sample 3.6 

 

 

 

Table 24 

Difference Between Single and Joint Analysis Results for Complex Mixture 4.2 

Sample 
Mixture Weight 

ASB/K01) 
Reference ASB 

logLR 
Reference K01 

logLR 

Information 
Gain/Loss 

ASB 

Information 
Gain/Loss 

K01 

4.2 0.1372/0.5404 0.7290 17.3530   

1.1 + 4.2 
0.4383 + 0.0846/           
0.2851 + 0.5493 

16.6537 17.5757 15.9247 0.2227 

3.6 + 4.2 
0.9076 + 0.0538/           
0.0193 + 0.5782 

20.3219 17.9900 19.5929 0.6370 

1.1 + 3.6 + 4.2 
0.4466 + 0.8616 + 0.0521/                   
0.4656 + 0.0286 + 0.6233 

20.3219 18.1666 19.5929 0.8136 
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     Figure 15 

     Histogram showing change in identification information for Sample 4.2 

 

 

 Sample 4.2 reversed the roles for references ASB and K01. ASB was the minor 

contributor and a significant information gain of 16 and 20 ban was obtained when sample 4.2 

was analyzed jointly with samples 1.1 and 3.6 in duplicates and triplicate, respectively, as seen in 

Table 24 and Figure 15. As the major contributor, reference K01 had large logLRs regardless of 

analysis method but did have slight information gain unlike reference ASB when it was the 

major contributor in sample 3.6. 

 

    Table 25 

    Change in Identification Information for Reference ASB       

ASB 
Samples 

Avg 
Weight 

Dup-single Trip-single Trip-Dup 

1.1 0.4657 5.3039 6.9026 1.5987 

2.8 0.3785 2.3963   

3.6 0.8784 -0.0008 0.0000 0.0008 

4.2 0.1234 17.7588 19.5929 1.8341 
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      Table 26 

      Change in Identification Information for Reference K01 

K01 
Samples 

Avg 
Weight 

Dup-single Trip-single Trip-Dup 

1.1 0.4515 4.8367 6.9709 2.1342 

2.8 0.6254 0.5662   

3.6 0.0384 10.2779 14.8485 4.5706 

4.2 0.5728 0.4298 0.8136 0.3837 

 

 

 Change in identification information for references ASB and K01 in each sample 

between joint and single interpretation are shown in Tables 25 and 26. Information gain was the 

greatest when the references were the more minor contributors at average mixture weights of 

0.1234 and 0.0384 for ASB and K01, respectively. Sample 2.8 was not included in the triplicate 

analysis because the pairings that better reversed major and minor contributors for each reference 

were samples 3.6 and 4.2. Sample 1.1 was used as the sample where the mixture weights for 

each reference were relatively equal. Figures 16 and 17 show how using joint analysis provides 

greater identification for those samples that usually result in diffuse probabilities and lower 

match logLRs when analyzed independently: mixtures with contributor weight ratios of 50/50 

and low template minor contributors.  
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     Figure 16 

     Histogram showing change in identification information for ASB 

 

 

 

     Figure 17 

     Histogram showing change in identification information for K01 
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Conclusion 

Higher match statistics were consistently obtained when samples were analyzed jointly 

compared to the independent analysis of each sample. Mixture weight and template 

concentration played a significant role in how much identification information was elicited from 

the data when analyzed in duplicate and triplicate. Information gain was seen consistently in all 

the samples but in greater amounts for samples with a 50/50 mixture weight and for contributors 

whose weights were close to or lower than 10%. Overall, major contributors saw little to no 

change in their match logLR values but in several cases a slight increase was observed.  

  These research results impact the field of forensic biology analysis because joint 

likelihood functions can increase the probability distribution across all loci resulting in higher 

match statistics. This would support using PG as the standard for complex mixture interpretation. 

Another suggestion would be to modify DNA evidence collection and amplification procedures 

for LT-DNA and mixture samples so that more data is available for PG software programs like 

TrueAllele to analyze the data jointly using the JLF (Ballantyne et al., 2013). Certain limitations 

can exist with using TrueAllele which include cost of purchasing the software and understanding 

the mathematical and statistical concepts inherent with PG.  

 Future directions of this research would be to generate laboratory data and use TrueAllele 

mixture interpretation to perform the analysis. Touch DNA samples can be collected using 

multiple swabs to provide the independent sets of data needed for joint analysis. Different 

substrates such as glass, plastic, wood, metal, etc. can be used to assess how much touch DNA is 

retrieved from different surfaces and if probabilistic genotyping can preserve the identification 

information using joint likelihood functions.  
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