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ABSTRACT 

LNCRNAKB: A COMPREHENSIVE KNOWLEDGEBASE OF LONG NON-CODING 

RNAS 

Fayaz Seifuddin, Ph.D. 

George Mason University, 2019 

Dissertation Director: Mehdi Pirooznia 

 

High throughput technologies such as next-generation sequencing technologies have 

allowed the genomic structure to be interrogated at high resolution and scale. That 

includes long non-coding RNAs (lncRNAs), a class of non-protein-coding transcripts, 

that range from 200 nucleotides to 100 kb (approximately 10 kb on average). The number 

of estimated lncRNAs annotations in humans range from 20,000 to 100,000. There are 

several databases that exist for annotation of human lncRNAs. Most of these databases 

are available through web-based searchable interfaces. Our objective was to identify 

current and new lncRNAs databases, download and inspect their latest annotations, 

integrate this information into a single resource, and create the most comprehensive up-

to-date knowledge base that encompasses data from all major resources. Specifically, we 

provide a “one- stop shop” in which users can search for lncRNAs based on any 

keywords for e.g. genomic locations, gene names and types. LncRNAs annotations are 



 

 

xi 

commonly used as references for quantifying and identifying differentially expressed 

genes and transcripts in RNA-seq experiments. We used the Genotype Tissue Expression 

(GTEx) project RNA-seq data to quantify all the lncRNAs in our knowledge base using 

9,425 samples sequenced across 31 solid organ human normal tissues. We performed 

RNA-seq data analysis using a custom pipeline and created a comprehensive tissue-

specific expression body map of human lncRNAs. The sequence-function relationship of 

lncRNAs is not well understood compared to protein-coding genes whose function can be 

deduced from primary sequence alone. In addition to understanding and improving the 

annotations of lncRNAs, we sought to predict and determine molecular, biological and 

disease functions of lncRNAs. We positionally classified and predicted the coding 

potential of all lncRNAs using a machine learning approach. Using whole genome 

sequence (WGS) genotype data from the GTEx project we also identified lncRNAs 

regulated by genetic variants in cis. We performed mRNA-lncRNA co-expression 

network analysis and identified co-expression gene modules involved in known 

biological processes thus, deducing the potential function of lncRNAs. Our objective was 

to functionally annotate and characterize lncRNAs in our knowledge base and provide a 

comprehensive resource to empower the research community. 
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CHAPTER 1  

INTRODUCTION 

Background 

Most of the non-protein-coding part of the human genome was considered “junk 

DNA” in the year 2000 when scientists of the Human Genome Project presented the first 

rough draft of the human genome sequence (Venter et al., 2001; Lander et al., 2001). 

This was mainly because of its lack of protein-coding capacity and abundant occurrence 

of features such as non-coding RNAs, transposons, pseudogenes and repetitive regions. 

However, that notion is drastically changing with the introduction of high throughput 

technologies such as microarrays and Next-Generation Sequencing (NGS) that have 

allowed the non-coding genome to be interrogated at high resolution and scale (You et 

al., 2017; Hangauer et al., 2013). The Encyclopedia of DNA Elements (ENCODE) 

project reports that approximately 2% of the genome is protein-coding; however, 

approximately 80% of all nucleotides are detectably transcribed under some conditions 

(ENCODE Project Consortium, 2012). The discovery of active transcription of the 

human genome, coupled with the advances in genomic technologies and research, might 

be a key element to understand the possible “function” of the inaccurately labelled “junk 

DNA.” 
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Features of long non-coding RNAs 

Long non-coding RNAs (lncRNAs) are a class of non-protein-coding transcripts 

that range in length from 200 nucleotides/base pairs (bp) to 100 kilobases (kb) 

(approximately 10 kb on average) (Long non coding RNA biology, 2017). The majority 

of eukaryotic lncRNAs are produced by RNA polymerase II and capped at the 5′ end 

similar to protein coding genes (PCGs) (Guttman et al., 2009). LncRNAs may or may not 

be 3′-end polyadenylated (Long non coding RNA biology, 2017), could undergo splicing 

and have longer but fewer exons, compared to mRNAs (Derrien et al., 2012). Classes of 

lncRNAs are usually annotated relative to their position with nearby PCGs (DiStefano, 

2018), and include: (1) intergenic lncRNAs or lincRNAs, which are transcribed from 

regions at least >1 kb from PCGs, (2) bidirectional lncRNAs which are transcribed <1 kb 

of promoters in opposite direction of protein-coding transcripts, (3) intronic lncRNAs, 

which are transcribed within introns of PCGs, (4) exonic lncRNAs, which overlap with 

one or more exons of PCGs, (4) sense lncRNAs, which are transcribed in the same 

direction of PCGs and overlap with one or more exons or introns of these transcripts and 

(5) antisense lncRNAs, which are transcribed in the opposite direction of PCGs and 

overlap with one or more exons or introns of these transcripts. 

Many lncRNAs do not show the same pattern of high interspecies conservation as 

protein coding genes (PCGs) (Hezroni et al., 2015; Cabili et al., 2011; Guttman et al., 

2009; Li and Yang, 2017). Sequence conservation is comprised of short, 5′-biased 

patches of conserved sequence nested in exons (Hezroni et al., 2015). Many studies have 

reported that lncRNAs have low level of expression (Ponting et al., 2009). However, 
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lncRNAs have higher tissue-specific expression compared to mRNAs (Cabili et al., 2011; 

Jiang et al., 2016). Some lncRNAs include short open reading frames (sORFs) and 

undergo translation, though only a minority of such translation events results in stable 

and functional peptides (Housman and Ulitsky, 2016; Andrews and Rothnagel, 2014). 

Due to low sequence conservation and low levels of expression, the knowledge that 

lncRNAs are merely transcriptional noise is common (Ponjavic et al., 2007). 

 

Biological function, subcellular localization and disease functions of lncRNAs 

LncRNAs have been suggested to play diverse and important roles in many 

fundamental and critical biological processes, including: transcriptional regulation in cis 

or trans, post-transcriptional regulation, organization of nuclear domains, regulation of 

proteins or RNA molecules, epigenetic regulation, organ or tissue development, cell 

differentiation and apoptosis, cell cycle control, cellular transport, metabolic processes, 

and chromosome dynamics (Ponting et al., 2009; Kopp and Mendell, 2018). 

Predicting the subcellular localization of lncRNAs can provide valuable insights 

on how they perform many of their biological roles. Initially, lncRNAs were found to be 

primarily located in the nucleus and chromatin however, recently they have been found in 

other cellular compartments such as the cytoplasm (Mas-Ponte et al., 2017). Recently, 

DeepLncRNA, a deep learning algorithm has been developed which predicts lncRNA 

subcellular localization directly from lncRNA transcript sequences (Gudenas and Wang, 

2018). 
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Many lncRNAs have been associated to human disease (Chen et al., 2013; 

DiStefano, 2018). Several genetic variants identified using DNA microarrays (Genome 

Wide Association Studies (GWAS) and NGS technologies (exome and/or whole genome 

sequencing (WGS)), play an important role in human traits and complex diseases. 

However, numerous single nucleotide variants (SNVs) and copy number variants (CNVs) 

fall in the non-coding regions of the human genome (Zhang and Lupski, 2015). Genetic 

variants associated to disease are known to alter the expression of lncRNAs which 

successively could also regulate the expression of neighboring PCGs (Tan et al., 2017a; 

Kumar et al., 2013). Consequently, dysregulation of lncRNAs expression could 

potentially contribute to a variety of diseases through several biological pathways. 

 

Annotation of lncRNAs 

Currently, the number of estimated lncRNAs annotations in humans range from 

20,000 to 100,000 (Uszczynska-Ratajczak et al., 2018). Diverse publicly available 

resources dedicated to annotation of lncRNAs in humans and other species have been 

developed, which differ in data coverage and quality (Xu et al., 2017; Uszczynska-

Ratajczak et al., 2018; Fritah et al., 2014; Xu et al., 2017). Most of these databases are 

available through web-based searchable interfaces and also provide downloadable 

lncRNAs annotation files in Gene Transfer Format (GTF) or Gene Feature Format (GFF) 

(Ma et al., 2019; Chakraborty et al., 2014; Bhartiya et al., 2013). A few of these 

databases have attempted to integrate annotations from multiple sources and multi-omics 

data such as expression (occasionally tissue-specific), methylation, variation, 
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conservation and functional annotation of lncRNAs in humans. However, their 

annotations and integrations are sometimes outdated, not rigorous, incomprehensive, and 

incomplete. Frequently used resources of lncRNAs annotation include GENCODEv29 

(Frankish et al., 2019; Derrien et al., 2012), CHESS2.1 (Pertea et al., 2018), 

LNCipedia5.2 (Volders et al., 2015, 2013), NONCODEv5.0 (Fang et al., 2018), 

FANTOM5.0.v3 (Hon et al., 2017), MiTranscriptomev2 (Iyer et al., 2015) and 

BIGTranscriptomev1 (You et al., 2017). These resources annotated lncRNAs based on 

two main approaches: manual or automatic (Uszczynska-Ratajczak et al., 2018). 

Automatic annotation involves the use of bioinformatics methods such as StringTie 

(Pertea et al., 2015) and Cufflinks (Trapnell et al., 2012) to reconstruct gene and 

transcript models based on short sequence reads which is widely used due to the advances 

in NGS technologies and production of billions of RNA sequences/reads (RNA-seq) (Iyer 

et al., 2015). Manual annotation involves the creation and curation of gene and transcript 

models by human annotators based on RNA and protein experimental evidence and 

defined sets of rules (Frankish et al., 2019; Derrien et al., 2012). After reviewing the 

frequently used resources, majority of these used a hybrid annotation approach for 

identifying lncRNAs i.e. a combination of manual and automatic annotations in their 

pipelines. 

The current GENCODE annotation (v29) is widely used as an annotation for 

PCGs and lncRNAs. GENCODE used a hybrid approach for annotation of genes. It relies 

heavily on manual annotation where an expert curator interrogates all possible features 

(sequence, expression data and computational predictions) of a gene and considers all 
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possible annotations and biotypes for the gene concurrently. Additionally, experimental 

annotation methods such as Capture Long Seq (CLS) (Lagarde et al., 2017) which 

captures full length cDNAs, proteomics (Aslam et al., 2017) and RT-PCR (Rio, 2014) 

augment its annotation pipeline. 

CHESS2.1 used billions of short RNA-seq reads from the Genotype Tissue 

Expression (GTEx) project (GTEx Consortium et al., 2017), which included samples 

from numerous tissues collected from hundreds of individuals. Using a reference 

(RefSeq) (O’Leary et al., 2016) guided novel transcriptome assembly approach, 

CHESS2.1 assembled all samples, merged the results and applied a series of 

computational filters to exclude transcripts with insufficient evidence. Additional 

validation was performed based on unmatched mass spectrometry data. CHESS2.1 

encompasses all genes from RefSeq and GENCODE however, it adds 224 protein-coding 

gens and 2,671 lncRNAs based on robust experimental and alignment evidence.  

LNCipedia5.2 uses different sources of lncRNA transcripts (Ensembl release 92 

(Zerbino et al., 2018), RefSeq – Dec 2014 and NCBI Annotation release 106, FANTOM 

CAT (Hon et al., 2017)) and attempts to combine these into non-redundant records. It 

also includes other sources such as LncRNAdb (Amaral et al., 2011) , GENCODE 

(release 13), NONCODE v4 (Xie et al., 2014) and RNA-Seq data from various resources 

(Nielsen et al., 2014; Hangauer et al., 2013; Sun et al., 2015; Cabili et al., 2011). For 

each transcript, LNCipedia5.2 provides information on protein coding potential, locus 

conservation and published literature available.  
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NONCODEv5.0 also integrates multiple lncRNA resources (Ensembl, RefSeq, 

LncRNAdb, LNCipedia, RNA-seq, exosome expression profiles and old versions of 

NONCODE (Bu et al., 2012; Xie et al., 2014)). However, it contains lncRNA transcripts 

from multiple species (human, mouse, cow, rat, chimpanzee, gorilla, orangutan, rhesus 

macaque, opossum, platypus, chicken, zebrafish, fruit fly, Caenorhabditis elegans, yeast, 

arabidopsis and pig). NONCODEv5.0 provides information on: (i) conservation, (ii) 

diseases, (iii) lncRNAs and exosome expression profiles, and (iv) lncRNAs and RNA 

secondary structure.  

FANTOM5.0.v3 used a collection of transcript annotations from GENCODE 

release 19, Human BodyMap 2.0 (Cabili et al., 2011), MiTranscriptome (Iyer et al., 

2015), ENCODE and RNA-seq transcript assembly data from 70 FANTOM5 samples. 

This data was integrated with cap analysis of gene expression (CAGE) data sets 

(Andersson et al., 2014; Shiraki et al., 2003; FANTOM Consortium and the RIKEN PMI 

and CLST (DGT) et al., 2014; Arner et al., 2015) to build an atlas of human lncRNAs 

with accurate 5’ ends. Further characterization of these lncRNAs was performed using 

epigenomic, genomic and transcriptomic evidence. 

MiTranscriptomev2 used 7,256 RNA-seq libraries from tumors, normal tissues 

and cell lines comprising over 43 Terabytes (Tb) of sequence from 25 independent data 

sets including ENCODE, The Cancer Genome Atlas (TCGA) 

(https://www.cancer.gov/tcga) and the Human BodyMap 2.0. It also validated novel 

lncRNAs (transcripts without coding potential) by searching against a large human 

proteomics data set derived from benign tissue samples (Kim et al., 2014). 
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BIGTranscriptomev1 applied a custom transcriptome assembly pipeline, called 

CAFE to RNA-seq data comprising of 230 billion reads from ENCODE, Human 

BodyMap 2.0, TCGA and GTEx. Their pipeline claimed to have significantly improved 

the quality of the resulting transcriptome map by predetermining the orientation of the 

reads since most of the RNA-seq data used were generated using an unstranded protocol. 

Additionally, by including information about transcription start sites (CAGE-seq) 

(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014), cleavage 

and polyadenylation sites (3P-seq) (Nam et al., 2014; Nam and Bartel, 2012) 

significantly improved the transcriptome assemblies. 

  

Characterization and classification of lncRNAs 

The sequence-function relationship of lncRNAs is not well understood compared 

to PCGs whose function can be deduced from primary sequence alone (Hezroni et al., 

2015). Computational methods for distinguishing between PCGs and lncRNAs can be 

used to assess the sequence or the evolution of an uncharacterized transcript and predict 

whether it is likely to encode a protein. These methods use different features for 

classification of transcripts as coding or non-coding for e.g. the length of ORFs, 

nucleotide, codon or short word compositions/frequencies (k-mers), substitution patterns, 

the presence of sequences encoding known functional protein domains, similarity to 

known proteins, conservation or evolution. There are pros and cons for using these 

features in classification schemes that have to be considered while implementing these 

methods for e.g. relying on sequence similarities to entries in known protein databases 
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can be an issue for a putative lncRNA as some databases frequently contain “hypothetical 

protein” sequences without experimental evidence. In addition, if a lncRNA has sequence 

similarity to pseudogenes it may contain elements that score highly as potential 

functional domains or as similar to other proteins, but those elements will typically not 

reside in a functional ORF. There are several methods for distinguishing between PCGs  

and lncRNAs (Housman and Ulitsky, 2016). Broadly, these methods can be grouped into 

machine learning or evolutionary algorithms. 

Extensively used algorithms for predicting the coding potential of non-coding 

sequences are: Coding-Potential Assessment Tool (CPAT) (Wang et al., 2013)), FlExible 

Extraction of LncRNAs (FEELnc) (Wucher et al., 2017) and PhyloCSF (Lin et al., 2011).  

CPAT is an alignment-free method that uses a logistic regression framework built with 

four sequence features: ORF size, ORF coverage defined as the ratio of ORF to transcript 

lengths, fickett score (combinational effect of nucleotide composition and codon usage 

bias (Fickett, 1982)) and hexamer score (dependence between adjacent amino acids in 

proteins (Fickett and Tung, 1992)). Analysis of coding potential using CPAT showed that 

all four selected features were concordantly higher in coding transcripts and lower in 

noncoding transcripts. CPAT achieved highest overall accuracy (0.97) when compared 

with CPC (0.87), PhyloCSF (0.76) and PORTRAIT (Arrial et al., 2009) (0.92).  

FEELnc annotates lncRNAs based on a machine learning method, Random Forest 

(RF) (Breiman, 2001), trained with general features such as multi k-mer frequencies, 

RNA sequence length and ORFs size. It is comprised of three modules: (i) filter, (ii) 

coding potential, and (iii) classifier. The filter module flags and removes transcripts if 
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these are monoexonic, short (< 200 base pairs (bp)) and/or overlapping (in sense) exons 

of the reference annotation, especially protein-coding exons. Using the filtered GTF 

annotation output file from the filter module, the coding potential module employs RF to 

calculate a coding potential score (CPS) for each transcript. For the training set, it can use 

a “known” set/annotation of mRNAs and lncRNAs transcript sequences and build a 

model using these to calculate CPS of a probable lncRNA sequence. However, due to the 

lack of a gold standard/known human lncRNAs data set for training, FEELnc 

implemented three strategies: intergenic, shuffle, and cross-species in the coding potential 

module. The intergenic approach extracts random intergenic sequences of length L from 

the genome of interest to model species-specific noncoding sequences as the non-coding 

training set. The shuffle approach builds the training data from random parts of PCGs 

while preserving a given k-mer frequency of the input sequence. The cross-species mode, 

builds the RF training model based on lncRNAs annotations in other species. To 

determine an optimal CPS cut-off, FEELnc automatically extracts the CPS that 

maximizes both sensitivity and specificity based on a 10-fold cross-validation. The CPS 

is between 0 and 1 where 0 indicates a non-coding RNA and a score close to 1 an mRNA. 

To classify potential lncRNAs with respect to the localization and the direction of 

transcription of nearby mRNAs (or other non-coding RNAs) transcripts is a commonly 

used approach and implemented in the classifier module of FEELnc. 

PhyloCSF is based on statistical phylogenetic model comparisons. Two 

phylogenetic models are created to differentiate coding and non-coding regions. One 

model represents the evolution of codons in protein-coding genes, and another represents 
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the evolution of nucleotide triplet sites in non-coding regions. The models have various 

parameters that can be adjusted based on the genomic regions being classified. When a 

new sequence needs to be categorized, its probabilities under the coding and non-coding 

model are calculated. Classification is based on the log-likelihood ratio = coding 

probability/non-coding probability. Statistical significance is based on a cut-off chosen 

determined by the distribution of the log-likelihood ratio statistic, or it can be chosen 

empirically based on classification performance in a test set. 

 

Tissue-specific expression and functional annotation of lncRNAs 

Tissue-specificity of lncRNAs expression are an important feature for 

functionally characterizing lncRNAs. Many lncRNAs show tissue-specific expression 

patterns, providing important clues about their specific functions (Yang et al., 2018; 

Cabili et al., 2011; Jiang et al., 2016). Analysis of RNA-seq data derived from 24 human 

tissues and cell types revealed that the majority of lincRNAs (approximately 80%) 

exhibit tissue-specific expression patterns, whereas such expression patterns are observed 

in a much smaller fraction of protein-coding genes (approx. 20%) (Melé et al., 2015; 

GTEx Consortium et al., 2017). Analysis of RNA-seq data derived across normal human 

tissues from 16 independent studies showed two classes of lncRNAs; ubiquitously 

expressed long non-coding RNAs (UE lncRNAs) and tissue-specific lncRNAs (TS 

lncRNAs) (Jiang et al., 2016). UE lncRNAs were characterized as housekeeping 

lncRNAs and 12% of these were expressed in all tissues while 2.3% of lncRNAs were 

expressed in only one tissue (TS lncRNAs). In addition, this study uncovered a range of 
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features that are specific to UE lncRNAs, including compact gene structure, high 

conservation, strict combinatorial regulation at transcriptional, post-transcriptional, and 

epigenetic levels, and strong regulation of enhancers. 

LncRNAs are emerging as key regulators of diverse biological processes and 

diseases. However, the combinatorial effects of these molecules in a specific biological 

function are poorly understood. Identifying co-expressed protein-coding genes of 

lncRNAs would provide useful insight into lncRNA functions. Unsupervised clustering 

methods can be used to extrapolate lncRNAs biological function based on the degree of 

connections to genes of known function. Using the genes expression profiles, these 

methods cluster them into group of genes, known as co-expression modules. These 

modules are then subject to over representation analysis (ORA) with specific pathways 

for e.g. Gene Ontology (GO) (Ashburner et al., 2000; The Gene Ontology Consortium, 

2019) or Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017), 

which determines the potential function of genes. ORA employs the hypergeometric test 

(Holmans, 2010) to determine if the overall functional enrichment is different than what 

would be expected by random chance. The significantly enriched terms can be used as an 

estimate of annotation for the genes with unknown function for e.g. lncRNAs. This is 

often referred to as the “guilt by association” principle (Ehsani and Drabløs, 2018a) . 
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CHAPTER 2  

lncRNAKB: A comprehensive knowledgebase of long non-coding RNAs (lncRNAs) 

 

ABSTRACT 

Motivation: There are several databases that exist for annotation of human long non-

coding RNAs (lncRNAs) that contain between 20,000 to 100,000 entries. These 

databases contain unique and overlapping lncRNAs that have been identified by next 

generation sequencing (NGS) methods. The information on lncRNAs provided in these 

databases is not rigorous thus, making it difficult to understand their molecular and 

cellular functions. Consequently, there is a need to systematically and carefully combine 

these annotations, create a non-redundant resource and provide valuable functional 

information on lncRNAs. 

Results: We have created the long non-coding RNA knowledgebase (lncRNAKB) by 

methodically integrating six widely used lncRNAs annotation databases (CHESS2.1, 

FANTOM5.0.v3, LNCipedia5.2, NONCODEv5.0, MiTranscriptomev2 and 

BIGTranscriptomev1). We present an annotation of a large number of unique lncRNAs 

(n=77,199). The lncRNAKB incorporates coding potential, classification/localization 

with respect to messenger RNAs (mRNAs), gene expression, tissue-specificity scores, 

expression quantitative trait loci (eQTL)-regulated lncRNA genes, phylogenetic 
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conservation and functional characterization to identify co-expressed mRNAs that would 

provide potential understanding on lncRNAs function. A machine learning approach was 

used to calculate the coding potential scores and classify the lncRNAs in the lncRNAKB 

annotation database as putative lncRNAs or mRNAs. Gene expression data of 9,074 

RNA-seq samples, collected from the Genotype Tissue Expression (GTEx) project was 

used to provide tissue-specific expression profiles and tissue-specificity scores in 31 solid 

organ human normal tissues. Using whole genome sequence (WGS) genotype data of 652 

subjects and tissue-specific gene expression data from the GTEx project we calculated 

cis-eQTLs in all tissues. We calculated and compared evolutionarily exon conservation 

between lncRNAs and protein-coding genes (PCGs) using an alignment of 30 vertebrate 

species. We used Weighted Gene Co-expression Network Analysis (WGCNA) to identify 

co-expression modules encompassing lncRNA-mRNA pairs that were subjected to 

enrichment analysis using Gene Ontology (GO) pathways to identify meaningful 

biological processes that lncRNAs could be potentially involved in and created dynamic 

Cytoscape networks for exploration and visualization. All components are provided in a 

user-friendly web interface. 

Availability: lncRNAKB is available at http://www.lncrnakb.org 

Contact: fayaz.seifuddin@nih.gov 

Supplementary Information: Supplementary data are available online. 
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INTRODUCTION 

Most of the non-protein-coding part of the human genome was considered “junk 

DNA” in the year 2000 when scientists of the Human Genome Project presented the first 

rough draft of the human genome sequence (Venter et al., 2001; Lander et al., 2001). 

However, that notion is drastically changing with the introduction of high throughput 

technologies such as Next-Generation Sequencing (NGS) that have allowed the non-

coding genome to be interrogated at high resolution and scale (You et al., 2017). The 

Encyclopedia of DNA Elements (ENCODE) project reports that approximately 2% of the 

genome is protein-coding; however, approximately 80% of all nucleotides are detectably 

transcribed under some conditions (ENCODE Project Consortium, 2012). Long non-

coding RNAs (lncRNAs) are a class of non-protein-coding transcripts that range in length 

from 200 nucleotides/base pairs (bp) to 100 kilobases (kb) (approximately 10 kb on 

average) (Long non coding RNA biology, 2017). Currently, the number of estimated 

lncRNAs annotations in humans range from 20,000 to 100,000 (Uszczynska-Ratajczak et 

al., 2018). 

LncRNAs have been suggested to play diverse and important roles in many 

fundamental and critical biological processes, including transcriptional and post-

transcriptional regulation, epigenetic regulation, organ or tissue development, cell 

differentiation and apoptosis, cell cycle control, cellular transport, metabolic processes 

and chromosome dynamics (Ponting et al., 2009; Kopp and Mendell, 2018). Many 

lncRNAs do not show the same pattern of high interspecies conservation as protein 

coding genes (PCGs) (Hezroni et al., 2015; Cabili et al., 2011; Guttman et al., 2009; Li 
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and Yang, 2017). Sequence conservation is comprised of short, 5′-biased patches of 

conserved sequence nested in exons (Hezroni et al., 2015). Many studies have reported 

that lncRNAs have low level of expression (Ponting et al., 2009). However, lncRNAs 

have higher tissue-specific expression compared to mRNAs (Cabili et al., 2011; Jiang et 

al., 2016). Some lncRNAs include short open reading frames (sORFs) and undergo 

translation, though only a minority of such translation events results in stable and 

functional peptides (Housman and Ulitsky, 2016; Andrews and Rothnagel, 2014). 

Recently, diverse publicly available resources dedicated to annotation of lncRNAs 

in humans and other species have been developed, which differ in data coverage and 

quality (Xu et al., 2017; Uszczynska-Ratajczak et al., 2018; Fritah et al., 2014; Xu et al., 

2017). Most of these databases are available through web-based searchable interfaces and 

also provide downloadable lncRNAs annotation files in Gene Transfer Format (GTF) or 

Gene Feature Format (GFF) (Ma et al., 2019; Chakraborty et al., 2014; Bhartiya et al., 

2013). A few of these databases have attempted to integrate annotations from multiple 

sources and multi-omics data such as expression (occasionally tissue-specific), 

methylation, variation, conservation and functional annotation of lncRNAs in humans. 

However, their annotations and integrations are sometimes outdated, not rigorous, 

incomprehensive, and incomplete.  

Frequently used resources of lncRNAs annotation include GENCODEv29 

(Frankish et al., 2019; Derrien et al., 2012), CHESS2.1 (Pertea et al., 2018), 

LNCipedia5.2 (Volders et al., 2015, 2013), NONCODEv5.0 (Fang et al., 2018), 

FANTOM5.0.v3 (Hon et al., 2017), MiTranscriptomev2 (Iyer et al., 2015) and 
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BIGTranscriptomev1 (You et al., 2017). These resources annotated lncRNAs based on 

two main approaches: manual or automatic (Uszczynska-Ratajczak et al., 2018). 

Automatic annotation involves the use of bioinformatics methods such as StringTie 

(Pertea et al., 2015) and Cufflinks (Trapnell et al., 2012) to reconstruct gene and 

transcript models based on short sequence reads which is widely used due to the advances 

in NGS technologies and production of billions of RNA sequences/reads (RNA-seq) (Iyer 

et al., 2015). Manual annotation involves the creation and curation of gene and transcript 

models by human annotators based on RNA and protein experimental evidence and 

defined sets of rules (Derrien et al., 2012). 

We developed lncRNAKB (https://www.lncrnakb.org) which carefully combines 

the frequently used lncRNAs annotation resources mentioned above using a cumulative 

stepwise intersection method. Our method of integration compares the annotations 

thoroughly, discarding redundant and ambiguous lncRNAs records. In addition, the 

cumulative approach accounts for the large overlap between the lncRNAs annotation 

databases. The lncRNAKB provides a comprehensive downloadable, searchable and 

viewable (via the UCSC Genome Browser) (Casper et al., 2018) GTF annotation file of 

human PCGs and a large number of lncRNAs (n=77,199) that can be used by researchers 

to quantify their RNA-seq expression data for lncRNAs discovery. Using the method of 

FEELnc (FlExible Extraction of LncRNAs) (Wucher et al., 2017), we filtered and 

classified the lncRNAs with respect to overlap with mRNAs, thus, providing additional 

categorization of lncRNAs. Furthermore, with FEELnc we calculated the coding potential 

of the aforementioned lncRNAs based on a Random Forest (RF) (Breiman, 2001) model 
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trained with general features such as multi k-mer frequencies and presence of ORFs. To 

significantly enrich and improve lncRNAs’ annotations in the lncRNAKB to support 

function inference we implemented the latest analysis pipeline and analyzed the largest 

and most comprehensive tissue-specific RNA-Seq data available through the Genotype 

Tissue Expression (GTEx) project (GTEx Consortium et al., 2017) and created a tissue-

specific expression body map of human lncRNAs. We calculated tissue-specificity scores 

across all the genes in the lncRNAKB which elucidated the tissue-specificity of lncRNAs 

compared to mRNAs. In addition, we calculated expression quantitative trait Loci 

(eQTL)-regulated lncRNA genes using the GTEx expression with whole genome 

sequencing (WGS) genotype data and created a tissue-specific eQTL body map of human 

lncRNAs in the lncRNAKB. We also calculated and compared the conservation scores 

(derived from an alignment of 30 vertebrate species) (Casper et al., 2018) for all PCGs 

and lncRNAs (exon-level) in the lncRNAKB, which can be viewed and downloaded from 

the website. Genome-wide gene expression data (raw counts and normalized), eQTL 

results and tissue-specificity scores across all tissues are freely available for visualization 

and download on the lncRNAKB website. Furthermore, to predict lncRNA functions, we 

used the guilt by association principle (Ehsani and Drabløs, 2018a) and Weighted Gene 

Co-expression Network Analysis (WGCNA) (Langfelder and Horvath, 2008) method 

analyzing lncRNAs-mRNAs co-expression patterns in a tissue-specific manner. We 

performed enrichment analysis of annotation terms for all co-expression modules 

identified and showed the functional pathways associated with lncRNAs, creating a 

tissue-specific body map of functionally annotated lncRNAs. All pathway results files are 



30 

 

freely available to download. Moreover, for each module we have created a dynamic 

network figure on the website to view the strength of connections between the highest 

ranking mRNAs and lncRNAs by pathway. The lncRNAKB is highly beneficial because 

it integrates multi-omics data with the aim to significantly enrich and improve lncRNAs’ 

annotations to support functional implications. 

 

MATERIALS AND METHODS 

Data sources and collection 

 We identified lncRNAs databases by conducting a broadly cast literature 

search of the PubMed database through February 28th, 2019 with the following keyword 

algorithm: (lncrna or long noncoding or long non-coding rna or noncoding) and 

(annotation or function or database). A total of 13,412 articles were returned filtered by 

humans species and published within the past five years sorted by the best match criteria. 

These were manually reviewed by looking at their titles, abstracts, keywords, and full text 

as needed to identify those that reported on lncRNAs annotations, databases and function. 

We further searched the references of these articles to identify any other articles that were 

potentially missed by the initial PubMed search. In addition to the literature search, we 

reviewed the frequently used and updated lncRNABlog (https://www.lncrnablog.com/) 

Database section which provides a summary of up-to-date published lncRNAs resources. 

We also consulted with clinicians and researchers in the field to identify lncRNAs data 

sources that are widely used. After the review, we chose to integrate six main sources of 

existing well-known and widely used human lncRNAs annotation databases in the 
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knowledgebase, including: CHESS2.1 (Pertea et al., 2018), LNCipedia5.2 (Volders et al., 

2013, 2015), NONCODEv5.0 (Bu et al., 2012; Xie et al., 2014; Fang et al., 2018), 

FANTOM5.0.v3 (Hon et al., 2017), MiTranscriptomev2 (Iyer et al., 2015) and 

BIGTranscriptomev1 (You et al., 2017). Table 2.1 summarizes significant details for 

each data source after evaluation and the lncRNAs related-information that will be 

publicly and freely available via our knowledgebase after integration.
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Table 2.1: Summary of lncRNAs annotation databases. 
Summary of lncRNAs annotation databases that have been integrated into the lncRNAKB and the types of data included in 
each resource. 
  

CHESS2.1 LNCipedia5.2 NONCOD
Ev5.0 

FANTOM5.0.v
3 

MiTranscriptome
v2 

BIGTranscriptom
ev1 

lncRNAKB 

Annotation 
source file name 

chess2.1.gff lncipedia_5_2_hc
_hg38.gtf 

NONCOD
Ev5_huma
n_hg38_lnc

RNA.gtf 

FANTOM_CAT
.lv3_robust.only

_lncRNA.gtf 

mitranscriptome.h
g19.v2.gtf 

BIGTranscriptome
_lncRNA_catalog.

hg19.gtf 

lncRNAKB_hg3
8_v6.gtf 

Website http://ccb.jh
u.edu/chess/ 

https://lncipedia.
org/info 

http://www
.noncode.or
g/index.php 

http://fantom.gs
c.riken.jp/5/ 

http://mitranscripto
me.org/ 

http://bhyou.dotho
me.co.kr/ 

https://www.lnc
rnakb.org 

Reference 
[PMID] 

Pertea et al., 
2018 

[30486838] 

Volders et al., 
2013, 2015, 2019 

[30371849] 

Fang et al., 
2018 

[29140524] 

Hon et al., 2017 
[28241135] 

Iyer et al., 2015 
[25599403] 

You et al., 2017 
[28396519] 

Under 
preparation 

Genome 
reference 

build/version 

hg38 hg19, hg38 hg19, hg38 hg19 hg19 hg19 hg38 

Annotation 
method/source 

GENCODE 
(release 25 

and 27), 
RefSeq, 

FANTOM5, 
RNA-seq 
(GTEx-

phs000424.
v6.p1 in 
May of 
2016), 

transcript 
assembly, 

mass 
spectrometr

y 
(validation) 

Ensembl, RNA-
seq (Human 

BodyMap 2.0 
lincRNAs), 
LncRNAdb, 
GENCODE 
(release 13), 

RefSeq-
Dec2014, 

RefSeq-NCBI 
(release 106), 
Nielsen et al., 

Hangauer et al., 
NONCODE, Sun 
and Gadad et al., 
2015, FANTOM 

CAT 

Ensembl, 
RefSeq, 

lncRNAdb, 
LNCipedia, 
RNA-seq 
(Human 

BodyMap 
2.0 

lincRNAs), 
Exosome 

Expression 
Profile, old 
versions of 
NONCOD

E 

GENCODE 
(release 19), 

Human 
BodyMap 2.0, 

miTranscriptom
e, ENCODE and 

an RNA-seq 
assembly from 
70 FANTOM5 
samples, cap 

analysis of gene 
expression 

(CAGE) data 

7,256 RNA 
sequencing (RNA-
seq) libraries from 

tumors, normal 
tissues and cell 

lines comprising 
over 43 Tb of 

sequence from 25 
independent 

studies including 
ENCODE, TCGA, 
Human BodyMap 
2.0, proteomics 

(validation) 

ENCODE, TCGA, 
GTEx, Human 

BodyMap 2.0, the 
Human Protein 

Atlas, GENCODE 
(release 19), 

RefSeq, PacBio 

CHESS2.1, 
LNCipedia5.2, 

NONCODEv5.0, 
FANTOM5.0.V

3, 
MiTranscripto

mev2, 
BIGTranscripto

mev1 
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CHESS2.1 LNCipedia5.2 NONCOD

Ev5.0 
FANTOM5.0.v

3 
MiTranscriptome

v2 
BIGTranscriptom

ev1 
lncRNAKB 

Number of 
lncRNAs (genes) 

18,887 56,946 96,308 27,871 63,505 14,090 77,199 

Number of 
lncRNAs 

(transcripts) 

56,927 127,802 172,216 89,833 175,259 26,591 224,286 

Number of 
lncRNAs 
(exons) 

159,891 357,620 429,240 251,201 539,840 87,316 611,340 

Number of 
protein-coding 

genes 

22,883 - - - - - 22,518 

Tissue-specific 
Expression/scor

e 

yes no yes yes yes yes yes 

Tissue-specific 
Expression 

Quantitative 
Trait Loci 
(eQTLs) 

no no no no no no yes 

UCSC genome 
browser/Custo

m Genome 
Browser Track 

no yes yes yes yes no yes 

External Gene 
information/link
s (Gene Cards 
or RefSeq or 
Ensembl or 

UCSC) 

yes yes yes yes yes yes yes 

Coding 
potential 

prediction/score 

no yes no yes yes yes yes 
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CHESS2.1 LNCipedia5.2 NONCOD

Ev5.0 
FANTOM5.0.v

3 
MiTranscriptome

v2 
BIGTranscriptom

ev1 
lncRNAKB 

Conservation 
information 

no yes yes yes yes no yes 

Gene-level 
functional 

annotation, 
mRNA co-
expression, 

pathway 
enrichment 

analysis 

no no yes yes yes no yes  
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Data integration 

We downloaded lncRNAs annotation files in gene transfer format (GTF) or gene 

feature format (GFF) (https://useast.ensembl.org/info/website/upload/gff.html#moreinfo) 

from all six annotation databases (links in Table 2.1) identified by the comprehensive 

analytical review above. To streamline the data integration step all the GTF or GFF 

annotations were parsed to the same format using the following steps: (i) if necessary, we 

updated the coordinates of annotation using the UCSC liftOver tool (Casper et al., 2018) 

from hg19 to hg38 (latest genome build), and (ii) for each chromosome, we split the gene 

and transcript records into individual files named by chromosome, strand, start and stop 

base pair locations. Each gene block file contained the transcripts information and the 

transcript block file contained the exons information. In cases where the annotation file 

did not have any genes information (only containing transcripts or exons records) we 

used the gene ids in the transcripts or exons records to get the first and last exon, then 

manually created a gene entry using the base pair locations of the first exon (as gene 

start), of the last exon (as gene stop), and transcript strand to represent the gene strand. 

We also removed redundant records from all annotation files. 

Using CHESS2.1 as the reference annotation database (containing both protein-

coding and lncRNAs genes) we used a cumulative stepwise intersection method to merge 

it with the rest of the five lncRNAs annotation databases in this order: (i) 

FANTOM5.0.v3, (ii) LNCipedia5.2,  (iii) NONCODEv5.0, (iv) MiTranscriptomev2 and 

(v) BIGTranscriptomev1 at the genes and transcripts levels. The order of intersection was 

arbitrary. Figure 2.1 illustrates the cumulative stepwise intersection method for two 
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databases as an example, D1 (CHESS2.1) in blue and D2 (FANTOM5.0.v3-lncRNAs 

only) in green. At the gene level (top panel), we only kept those genes from D2 that had 

full overlap, were completely enclosed within D1 genes, or no overlap with D1 genes on 

the same strand (results of intersection shown in orange). We discarded genes in D2 that 

had partial overlap with D1 genes (marked in red X) because we did not want to re-define 

boundaries of genes in the reference annotation database. 

For genes that intersected, we compared these individually at the transcript level 

(D1 and D2 transcripts shown in blue and green with smaller bars, introns and exons as 

compared to genes, bottom panel, respectively). For each gene, we compared the D2 

transcripts starts and stops with the intersected gene boundary (dashed gray lines) 

because we observed that in some databases the transcript boundaries exceeded the gene 

boundaries. By this rule, we removed several transcripts (marked with a red X) that were 

probably incorrectly assigned to genes. In addition, if a transcript in D2 had partial 

overlap with transcripts in D1, we incorporated that transcript (marked with red ticks). If 

a transcript in D2 had no overlap with any transcripts in D1, we added the transcript 

including all the exons to the gene record accordingly. If a transcript in D2 was exactly 

identical to any transcript in D1 we did not add it. For genes with no overlap in D1, we 

added all the transcripts and corresponding exons to the merged annotation as a lncRNA 

entry (marked in red ticks). 
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Figure 2.1: Illustration showing the stepwise intersection of two annotation databases. 
Illustration showing the stepwise intersection of two annotation databases D1 
(CHESS2.1) (blue) and D2 (FANTOM5.0.v3-lncRNAs only) (green) at the gene and 
transcript levels. The genes are shows as solid rectangles and the transcripts are shown 
with exons and introns. The white arrows show the direction/strand in which the gene is 
transcribed. The orange bars show the results of the intersection (D1 intersect D2) at the 
gene level. The red X marks show transcripts that were not incorporated into the merged 
annotation and vice versa for the red ticks. D3 (LNCipedia5.2), D4 (NONCODEv5.0), 
D5 (MiTranscriptomev2) and D6 (BIGTranscriptomev1) were merged using the same 
cumulative stepwise intersection method (see Methods: Data integration). 
 
 
 
Architecture of the database 

The 3-tier server architecture model containing data, logic and presentation tiers 

has been implemented as shown in Figure 2.2. The popular MySQL open source 

relational database management system (RDBMS) has been employed for the data tier, 
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expanded with a NoSQL document storage. NoSQL document storage is a JSON-based 

(JavaScript Object Notation) data structure format and as such has a flexible dynamic 

structure with no schema constraints which makes it suitable for literature and document 

storage. The MySQL RDBMS (version 8.0) is ideal for data indexing and a powerful 

query system for relational data. The logic tier is responsible for the communication 

between the user queries from the presentation tier and fetching the outcome from the 

data tier, as well as data integration from MySQL and NoSQL data sources.  The 

presentation tier contains several modules based on AJAX (Asynchronous JavaScript and 

XML), jQuery (JavaScript Query system version 3.3.1 - https://jquery.com/), and the 

PHP server-side scripting language (version 7.1.18.), as well as the CSS (Cascading Style 

Sheets) code to describe how HTML elements are to be displayed on user side web 

interface. JQuery and AJAX have the advantage of asynchronous background calls to the 

logic tier, native JSON parsing, and dynamic rendering of the browser display, which 

makes the data retrieval system perform more efficiently. The Web server is hosted on a 

CentOS 7 operating system using an Apache (2.4.33) web server. The user interface is 

functional across major web-browsers such as Chrome, Safari, and Firefox on Linux, 

Mac, iOS, Android, and Windows OS platforms. 
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Figure 2.2: Schema of the web/database segment of the lncRNAKB. 
 
 
 
Classification/Annotation and coding potential of lncRNAs using Random Forest 

 We used FEELnc (FlExible Extraction of LncRNAs) (Wucher et al., 2017) to 

classify/annotate and calculate the coding potential of lncRNAs in the lncRNAKB. 

FEELnc annotates lncRNAs based on a machine learning method, Random Forest (RF) 

(Breiman, 2001), trained with general features such as multi k-mer frequencies, RNA 

sequence length and open reading frames (ORFs) size. It is comprised of three modules: 

(i) filter, (ii) coding potential, and (iii) classifier.  

Filter The filter module flags and removes transcripts overlapping (in sense) 

exons of the reference annotation and especially protein-coding exons. We used the 

GENCODEv29 (Derrien et al., 2012) GTF file as the reference annotation to get an 

estimate of the number of transcripts from lncRNAKB overlapping with protein_coding 
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transcripts (transcript_biotype=protein_coding). We used GENCODE as the reference 

annotation for protein-coding genes because it is comprehensively and manually curated. 

We arbitrarily set the minimal fraction out of the candidate lncRNAs size to be 

considered for overlap to be excluded as 0.75 (> 75% overlap) to retain many lncRNAs 

transcripts. Transcripts < 200 base pairs (bp) long were filtered out and monoexonic 

transcripts were retained.  

Coding potential	We used the filtered GTF annotation output file from the filter 

module and calculated a coding potential score (CPS) for each transcript using the coding 

potential module. Due to the lack of a gold standard/known human lncRNAs data set for 

training, we used the “intergenic” mode in the module. This approach extracts random 

intergenic sequences of length L from the genome of interest to model species-specific 

noncoding sequences as the non-coding training set. We used the human reference 

genome FASTA file (hg38) and the GENCODE GTF file as the reference annotation. To 

get the best training set of known mRNAs, we used transcript_biotype=protein_coding 

and transcript_status=KNOWN for the RF model. We used the default values for the k-

mer sizes, number of trees and ORF type. To determine an optimal CPS cut-off, FEELnc 

automatically extracts the CPS that maximizes both sensitivity and specificity based on a 

10-fold cross-validation. The CPS was between 0 and 1 where 0 indicates a non-coding 

RNA and a score close to 1 an mRNA.  

Classifier	To classify potential lncRNAs with respect to the localization and the 

direction of transcription of nearby mRNAs (or other non-coding RNAs) transcripts as 

shown in Supplementary Figure 2.1, we used the classifier module. We used the final set 
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of lncRNAs transcripts output from the coding potential module and classified them 

using the GENCODEv29 GTF file as the reference annotation. A sliding window size 

around each lncRNA was used to check for possible overlap with nearest reference 

transcripts. We used a minimum and maximum window size of 10 kilobase (kb) and 

100kb respectively. The classification method reported all interactions within the defined 

window and established a best partner transcript using certain rules. 

 

Tissue-specific expression profiling and expression quantitative trait loci (eQTLs) 

 Expression profiling We analyzed the largest and most comprehensive tissue-

specific RNA-seq data available through the Genotype Tissue Expression (GTEx) project 

(GTEx Consortium et al., 2017) to create a tissue-specific expression body map of human 

lncRNAs across all the genes in the GTF annotation file from lncRNAKB. We 

downloaded raw paired-end RNA-seq data (FASTQ files – GTEx Release v7) from the 

dbGap portal (study_id=phs000424.v7.p2) of 31 solid organ human normal tissues. For 

each solid tissue, quality control of paired-end reads were assessed using FastQC tools 

(Andrews), adapter sequences and low-quality bases were trimmed using Trimmomatic 

(Bolger et al., 2014) and aligned to latest version of the human reference genome (H. 

sapiens, GRCh38) using the latest version of HISAT2 (Kim et al., 2015), which is a 

splice-aware aligner that maps reads to the reference. Using uniquely aligned reads to the 

human genome, gene-level expression (raw read counts) were generated with the 

featureCounts software (Liao et al., 2014), which assigns reads to features in a fast and 

parallelizable framework. After visualizing the distribution of uniquely mapped paired-
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end reads assigned to genes across all the GTEx samples we chose to exclude samples 

with < 106 reads assigned to genes. In addition, there were samples with data that we 

could not map or download. We normalized the raw read counts to Transcripts Per 

Kilobase Million (TPM) (Wagner et al., 2012) (https://www.rna-seqblog.com/rpkm-

fpkm-and-tpm-clearly-explained/). For each gene in the lncRNAKB annotation database, 

we created a box plot distribution to visualize its tissue-specific expression pattern across 

all tissues.  

Tissue-specificity scores In addition to gene expression visualization, we 

calculated two tissue-specificity metrics (Tau and Preferential Expression Measure 

(PEM)) (Kryuchkova-Mostacci and Robinson-Rechavi, 2017; Russ and Futschik, 2010) 

using the normalized TPM expression values across all genes and tissues (no filter 

applied). Tau was calculated as follows (Yanai et al., 2005): ! = ∑ (%&'())
+
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where (/0= expression of the gene in tissue 7, 8= number of tissues). Tau summarizes in a 

single number whether a gene is tissue-specific or ubiquitously expressed across all 

tissues. PEM was calculated as follows (Huminiecki et al., 2003): 9:; = <=>%? @
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C where (/0= expression of the gene in tissue 7, D0= summary of the expression of 

all genes in tissue 7, 8= number of tissues). PEM shows for each tissue separately how 

specific the gene is to that tissue. The PEM scores the expression of a gene in a given 

tissue in relation to its average expression across all other genes and tissues. To compute 

Tau and PEM, we calculated and used the average expression across all replicates for 

each gene by tissue. All genes that were not expressed in at least one tissue were removed 



43 
 

from the analysis. For comparison purposes with Tau, for each gene, we used the 

maximum specificity value of PEM across all tissues (normalized between 0 to 1, using 

the maximum across all genes). 

Principal	Component	Analysis To explore gene expression similarity between 

tissues and across GTEx samples as well as summarize lncRNAs tissue-specific 

expression we performed a principal component analysis (PCA) (Son et al., 2018). We 

used the normalized TPM expression values, transformed by taking the <=>E(F9; + 1), 

across all lncRNAs (n = 77,199) and tissues (n = 31) (no filters applied). We used the 

prcomp package in R (Team, 2012). 

 Genotype file processing We also downloaded whole genome sequence (WGS) 

data in blood-derived DNA samples (Variant Call Format (VCF) file – GTEx Release v7) 

from the dbGap portal (study_id=phs000424.v7.p2) to conduct tissue-specific expression 

quantitative trait loci (eQTL) analysis. We created an eQTL body map of human 

lncRNAs, across all the genes in the GTF annotation file from lncRNAKB. We 

preprocessed the VCF file using the following steps with a combination of PLINKv1.9 

(Chang et al., 2015; Purcell and Chang) vcfv0.1.15 (Danecek et al., 2011) and bcfv1.9 

tools (Narasimhan et al., 2016): (i) removed indels; (ii) excluded missing and multi-

allelic variants; (iii) selected "FILTER == 'PASS'" variants; (iv) excluded variants with 

minor allele frequency (MAF) < 5%; (v) updated the coordinates of single nucleotide 

polymorphisms (SNPs) using the UCSC liftOver tool (Casper et al., 2018) from hg19 to 

hg38 (latest genome build); (vi) changed the SNPs IDs to dbSNP (Sherry et al., 2001) 

rsID using dbSNP Build 151; (vii) converted to bed, bim and fam format. For each solid 
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tissue, we only selected subjects that had both WGS data and gene expression data. We 

generated a subset of the VCF files by tissue and re-calculated the MAF to exclude 

variants with MAF < 5%. After converting to ped and map format, we ran principal 

component analysis (PCA) on each tissue to get a set of genotype covariates using 

eigensoftv6.1.4 (Price et al., 2006; Patterson et al., 2006). 

eQTL analysis For each solid tissue, we implemented a two-step filtering 

approach using the raw gene expression counts matrix quantified across all the genes in 

the lncRNAKB GTF annotation file. First, we filtered genes based on the normalized 

TPM expression values, keeping genes with TPM > 0.50 in at least 20% of the samples. 

Second, we filtered genes based on the raw counts, keeping genes with counts > 2 in at 

least 20% of the samples. The edgeR (Robinson et al., 2010) package in R (Team, 2012) 

was used to process the filtered read counts into log2 counts per million (log2CPM) and 

the limma-voom R package (Ritchie et al., 2015) (Law et al., 2014) was used to 

normalize the data between samples using trimmed mean of M-values (TMM) (Robinson 

and Oshlack, 2010). The expression files were then sorted by gene start and stop, 

compressed with BGZIP and indexed with TABIX (Li, 2011). Only tissues with > 80 

samples were included in the cis-eQTL analysis. In the eQTL analysis, we included the 

first five principal components (PCs) that explained the most variation in the genotype 

data by looking at their scree plots by tissue. Sex was also included as a covariate. Within 

each tissue, cis-eQTLs were identified by linear regression, as implemented in 

FastQTLv2.0 (threaded option) (Ongen et al., 2016), adjusting for the five PCs and sex. 

We restricted our search to variants within 1 Megabase (Mb) of the transcription start site 
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(TSS) of each gene and in the tissue of analysis. To evaluate the significance of the most 

highly associated variant per gene we used the adaptive permutations option in FastQTL 

between 1000 and 10000 permutations. Once we obtained the permutation p-values for 

all the genes, we accounted for multiple testing to determine the significant cis-eQTLs. 

We used the Benjamini and Hochberg correction method (Haynes, 2013) to calculate the 

false discovery rate (FDR) in R statistical programming language (R) (Team, 2012). For 

each tissue, all cis-eQTL results were visualized using a manhattan plot created using the 

qqman package in R (Turner, 2014). 

  

Conservation Analysis 

 Conservation of exons between protein-coding genes and lncRNAs in the 

lncRNAKB annotation database was analyzed using the bigWigAverageOverBed (Pohl 

and Beato, 2014) and the cons30way (hg38) track (Siepel et al., 2005) both downloaded 

from the UCSC genome browser. This track shows multiple alignments of 30 vertebrate 

species and measurements of evolutionary conservation using two methods (phastCons 

and phyloP (Cooper et al., 2005)) from the PHAST package (Hubisz et al., 2011) for all 

thirty species. The multiple alignments were generated using multiz (Blanchette et al., 

2004) and other tools in the UCSC/Penn State Bioinformatics comparative genomics 

alignment pipeline. An exon-level BED file was created using the lncRNAKB GTF 

annotation file separately for protein-coding genes and lncRNAs. We merged 

overlapping exons within transcripts to avoid counting conservation scores of 

overlapping base pairs more than once. For each exon, the bigWigAverageOverBed 
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function calculates the average conservation score across all base pairs. Using boxplots 

we visualized and compared the average conservation score differences between 

lncRNAs and protein-coding exons. 

 

Functional characterization of lncRNAs using a network-based approach 

 We used the “guilt by association” principle to functionally characterize lncRNAs 

in the lncRNAKB across all 31 solid organ human normal tissues in the GTEx data 

(Ehsani and Drabløs, 2018a). This method is widely used to identify well-annotated 

genes that seem to be involved in some of the same processes as a given un-annotated 

gene. It is based on comparison of gene expression profiles between lncRNAs and 

mRNAs using metrics such as Pearson or Spearman correlation, applying a specific cut-

off, and performing enrichment analysis of annotation terms in the most highly ranked 

mRNAs. The significantly enriched terms can be used as an estimate of annotation for the 

lncRNAs. 

Using the filtered log2CPM and TMM normalized gene expression data (see 

Methods: Tissue-specific expression profiling and expression quantitative trait loci 

(eQTLs), subsection: eQTL analysis), we used the weighted gene co-expression network 

analysis (WGCNA) approach (Langfelder and Horvath, 2008) as implemented in the Co-

Expression Modules identification Tool (CEMiTool) package in R (Russo et al., 2018) to 

identify modules of lncRNA-mRNA pairs that are co-expressed and therefore likely work 

in concert to carry out various biological functions. Additionally, we filtered the gene 

expression data by log2CPM > 2 in at least 20% of the samples to avoid random 
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correlations. In the CEMiTool, default parameters were mostly used with the following 

exceptions: (i) Pearson method was used for calculating the correlation coefficients, (ii) 

the network type used was unsigned, (iii) no filter was used for the expression data, (iv) 

applied Variance Stabilizing Transformation (VST) and the correlation threshold for 

merging similar modules were set to 0.90. After identifying co-expressed gene modules, 

we performed over-representation analysis (ORA) by module based on the 

hypergeometric test (Yu et al., 2012) that can be used to reveal if a set of co-expressed 

genes is enriched for genes belonging to known pathways or functions. We used Gene 

Ontology (GO) pathways (Ashburner et al., 2000; The Gene Ontology Consortium, 2019; 

Gene Ontology Consortium, 2015) to check for overrepresentation of genes and 

determined the most significant module functions based on pathways FDR q-value ≤ 

0.05 (Storey, 2002). The background set used for the pathway enrichment analysis was 

genes represented across all GO pathways. To visualize the interactions between the 

genes in each co-expression module, we output the top 25 most notable pathways across 

all modules and the entire module adjacency/correlation matrix (correlations > 0.20), 

available for downloading. We filtered the module adjacency matrices based on 

correlations > 0.20 across all genes in each pathway, and created a JSON file (one per 

pathway) to produce interactive networks using Cytoscape v3.6.0 JavaScript modules 

(Shannon et al., 2003). This will give users the ability to visualize the potential biological 

functionality of lncRNAs in lncRNAKB across all 31 solid organ human normal tissues. 
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RESULTS 

Database Content  

Figure 2.3 illustrates the results of the lncRNAKB that are discussed in detail in 

each section below. Table 2.1 summarizes the number of lncRNAs features (genes 

n=77,199, transcripts n= 224,286 and exons n= 611,340) in the lncRNAKB GTF 

annotation file. 

 
 
 

 

Figure 2.3: Overview of specific components of the lncRNAKB. 
All components of the lncRNAKB which provide valuable information on lncRNAs and 
are freely available for viewing and downloading on the web resource. 
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Downloadable, searchable and viewable annotation database in gene transfer format 

(GTF) 

The final merged GTF annotation in lncRNAKB has 99,717 genes, 530,947 

transcripts, 3,513,069 exons (include both PCGs and lncRNAs) and is freely available to 

download from the website. We generated a UCSC Genome Browser custom track of the 

lncRNAKB GTF annotation file. The UCSC Genome Browser is accessible within the 

lncRNAKB website via a html IFRAME to view the lncRNAKB GTF annotation file in 

combination with other tracks on the Genome Browser. On the website, users can search 

the lncRNAKB annotation database by ID, chromosomes, gene start and stop 

coordinates, gene type, gene names, names of the six lncRNAs sources or any other 

descriptor and download the search results in .csv format.  

Table 2.2 shows the results of the cumulative stepwise intersection method across 

the six lncRNAs annotation databases compared to the reference (CHESS2.1) at the gene 

level. NONCODEv5.0 and MiTranscriptomev2 added 20,700 and 15,164 genes 

respectively, which was a substantial contribution. While CHESS2.1 already incorporated 

data from FANTOM5.0.v3, based on the cumulative stepwise intersection method we 

added additional 7,157 genes from FANTOM5.0.v3. LNCipedia5.2 on the other hand 

added 10,506 genes. We arbitrarily chose the order of the annotation databases for 

intersection therefore. The last source, BIGTranscriptomev1 contributed only 333 genes 

which indicates that there was extensive overlap with other annotation databases. 

To be specific, after merging all six annotation databases, we define “overlap” 

(between one or more sources for a gene) if transcripts (with exons) were added to an 
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overlapping gene (within or fully overlapping) or a new gene (with transcript and exons) 

was added to the annotation entirely. Figure 2.4 illustrates the overlap at the gene level 

after the cumulative stepwise intersection method was applied across all six sources. 

5,295 genes overlapped between all six sources. In addition, there was considerable 

overlap between different annotation databases. All of LNCipedia5.2 genes overlapped 

with one or more of the annotation databases. NONCODEv5.0 added the highest number 

of non-overlapping genes (n=16,080) followed by MiTranscriptomev2 (n=14,620). 

BIGTranscriptomev1 added only 333 unique gene entries due to its overlap with genes in 

the other databases. CHESS2.1 was used as the reference annotation database and 

contains protein-coding (n=20,352) and lncRNAs genes (n=18,897). However, from 

Figure 2.4, we observed that the number of non-overlapping genes added from 

CHESS2.1 is 9,595, which could possibly indicate that we added non-coding transcripts 

from overlapping lncRNAs in other annotation databases to the protein-coding genes. 

Supplementary Table 2.1a and 2.2b shows the number of transcripts and the sources of 

annotation databases at gene level for protein-coding genes between CHESS2.1 and 

lncRNAKB, respectively. Comparing Supplementary Table2.1a and Supplementary 

Table2.2b showed that the number of transcript entries for the protein coding genes in 

lncRNAKB was much higher than that in chess (approximately 40,330 more transcript 

entries in lncRNAKB compared to CHESS2.1). This suggests that a good proportion of 

the lncRNAs transcripts (~15%) overlap with or fall within the boundary of protein 

coding genes. Supplementary Table 2.2a and 2.2b shows the number of transcripts and 

the sources of annotation databases at gene level for non-coding genes between 
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CHESS2.1 and lncRNAKB, respectively. By comparing all 4 tables, we show that we 

have effectively added numerous non-coding genes (n=53,941) and non-coding 

transcripts (n=207,681) from different lncRNAs annotation databases. 

 
 
 
Table 2.2: Results of the cumulative stepwise intersection method. 
Results of the cumulative stepwise intersection method across the six lncRNAs 
annotation databases compared to the reference (CHESS2.1) at the gene level. 

 
1The original number of genes in the sources shown here are slightly less than the actual 
downloaded GTF/GFF annotation files (Table 2.1) because we removed redundant genes 
and transcripts records (see Materials and Methods: Data integration). 
 

  
CHESS2.1 lncRNAKB_hg38_v2.gtf Source 1Original 

number of 

genes in 

source after 

applying the 

lncRNAKB 

redundancy 

filter 
 

46,421 45,857 CHESS2.1 46,421 
  

7,157 FANTOM5.0.v3 21,457 
  

10,506 LNCipedia5.2 40,188 
  

20,700 NONCODEv5.0 63,055 
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15,164 MiTranscriptomev2 45,282 

  
333 BIGTranscriptomev1 13,525 

Total 46,421 99,717 
 

229,928 

 
 
 

 

Figure 2.4: Upset plot showing the overlap of all six lncRNAs annotation databases. 
Upset plot showing the overlap of all six lncRNAs annotation databases at the gene level, 
after the cumulative stepwise intersection method across. The orange bars indicate the 
total number of genes in each source before merging. The black bars indicate the total 
number of genes present within a database or shared between databases indicated by 
black dots present below the x-axis of the plot. Genes uniquely contributed by a single 
database would be represented as a single dot that horizontally aligns with the respective 
database. Black dots connected by lines indicate the number of databases that share the 
genes represented in the bar plot. 
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Classification/annotation and coding potential of lncRNAs using Random Forest 

 The final merged GTF annotation in lncRNAKB has 99,717 genes, 530,947 

transcripts, 3,513,069 exons (include both PCGs and lncRNAs). After executing the 

FEELnc filter module on the lncRNAKB GTF, the output had 96,539 genes, 311,241 

transcripts and 1,200,236 exons that were not filtered (transcripts > 200 bp long and < 

75% overlap with protein-coding transcripts) and considered to be “candidate lncRNAs.” 

The coding potential score (CPS) cut-off determined by the Random Forest (RF) 

classification (see Methods: Classification/Annotation and coding potential of lncRNAs 

using Random Forest: Coding Potential) on the training data was 0.434 (separating 

protein-coding (mRNAs) versus lncRNAs transcripts). Based on this cut-off, 83,190 

genes, 219,324 transcripts, 622,122 exons were classified as lncRNAs and 31,402 genes, 

91,845 transcripts, 577,978 exons as protein-coding. The classification module 

categorized 141,394 lncRNAs transcripts as GENIC (when the lncRNA transcript 

overlaps an mRNA/protein-coding transcript from the reference annotation file) and 

50,540 as INTERGENIC (lincRNAs). Table 2.3 summarizes the results of the classifier 

module with a breakdown of interactions between the two types of lncRNAs and their 

partner mRNAs/protein-coding transcripts. The lincRNAs are, on average 23kb away 

from their mRNA partner. 

 
 
 
Table 2.3: Summary of classification of lncRNAs transcripts. 
Summary of classification of lncRNAs transcripts with respect to the localization and the 
direction of transcription of proximal RNA transcripts. The legend below explains the 
categories in detail: 
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1GENIC: when the lncRNA gene overlaps an RNA gene from the reference annotation 
file 
2INTERGENIC (lincRNA): otherwise 
 
GENIC type : 
Then exonic or intronic locations: 
1aOverlapping subtype: the lncRNA partially overlaps the RNA partner transcript 
1bContaining subtype: the lncRNA contains the RNA partner transcript 
1cNested subtype: the lncRNA is contained in the RNA partner transcript 
 
INTERGENIC type: 
2aDivergent subtype: the lncRNA is transcribed in head to head orientation with RNA 
partner transcript 

• Then upstream or downstream locations 
2bConvergent subtype: the lncRNA is oriented in tail to tail with orientation with RNA 
partner transcript 

• Then upstream or downstream locations 
2cSame_strand subtype: the lncRNA is transcribed in the same orientation with RNA 
partner transcript 

• Then upstream or downstream locations 
 

  
1GENIC  

1aOverlapping 1bContaining 1cNested Total 
Antisense Exonic 9,326 1,816 3,552 14,694 
Antisense Intronic 1,302 1,284 8,330 10,916 

Sense Exonic 29,942 42,160 29,087 101,189 
Sense Intronic 327 994 13,274 14,595 

Total 40,897 46,254 54,243 141,394      
 

2INTERGENIC  
2aConvergent 2bDivergent 2cSame_Strand Total 

Upstream - 14,930 13,408 26,470 
Downstream 11,540 - 10,662 24,070 

Total 11,540 14,930 24,070 50,540 
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Tissue-specific expression profiling and expression quantitative trait loci (eQTLs) 

 Expression profiling Supplementary Table 2.3 shows the number of RNA-seq 

samples we analyzed across 31 solid organ human normal tissues from GTEx (n=9,425). 

Supplementary Table 2.4 shows the summary statistics of alignment (total number of 

paired-end reads, total number of uniquely aligned paired-end reads, unique and overall 

alignment rate) across all samples analyzed by tissue. Supplementary Table 2.5 shows the 

summary statistics of quantification (total gene count, total number of uniquely aligned 

paired-end reads used for quantification, total number of uniquely aligned paired-end 

reads assigned to genes and proportion of successfully assigned paired-end reads to 

genes) across all RNA-seq samples analyzed by tissue. Supplementary Figure 2.2 shows 

the distribution of uniquely aligned paired-end reads assigned to genes across all samples. 

Bars highlighted in red show the numbers of samples with < 106 reads assigned to genes 

(n=351) that were excluded from further analysis. In the lncRNAKB, users can visualize 

the normalized gene expression levels (TPM) across 31 solid organ human normal tissues 

by searching for any gene. Figure 2.5 shows an example box plot distribution of gene 

NPPB (natriuretic peptide B) for visualization. NPPB  had a Tau (overall) and PEM score 

(top five highest positive tissue-specificity score in the heart tissue) of 1 and 1.49 

respectively (see subsection: Tissue-specificity Scores). It functions as a cardiac hormone 

and plays a key role in cardiac homeostasis. A high concentration of this protein in the 

bloodstream is indicative of heart failure. Even though NPPB is categorized as a PCG, it 

has three transcript isoforms that are characterized as lncRNAs. Users can download 

these boxplots by gene and download genome-wide gene expression matrices (raw counts 
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and TPM) in text format across all 31 solid organ human normal tissues in the 

lncRNAKB. 

 

Figure 2.5: Gene expression box plot distribution. 
Gene expression box plot distribution of gene NPPB (natriuretic peptide B). The x-axis 
represents the 31 solid organ human normal tissues from GTEx and y-axis is the TPM 
expression. NPPB was ranked among the top five heart-specific genes. 
 
 
 

Tissue-specificity	scores Figure 2.6 shows the density distribution of tissue-

specificity metrics (Tau and Preferential Expression Measure (PEM)) across protein-

coding genes (PCGs) and lncRNAs in the lncRNAKB annotation database as a 

comparison. The tissue-specificity scores vary from 0 to 1, where 0 means broadly 

expressed, and 1 is specific. Figure 2.6 displays the maximum specificity value of PEM 
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among all tissues while Tau is calculated and displayed across all tissue (see Methods: 

Tissue-specific expression profiling and expression quantitative trait loci (eQTLs): 

subsection: Tissue-specificity scores). Overall, Figure 2.6 shows that lncRNAs have 

higher tissue-specificity compared to PCGs and the possibility that lncRNA tissue-

specificity could be driven by individual tissues. We created a clickable human body map 

highlighting 31 solid organ human normal tissues from GTEx, in which users can click 

on any tissue and rank the genes by PEM score to get a potential list of tissue-specific 

lncRNAs. Supplementary Figure 2.3 shows the density distributions of PEM scores 

across PCGs and lncRNAs as a comparison in the lncRNAKB annotation database by 

tissue. It reports a positive value for genes over-expressed and a negative value for genes 

under-expressed in the specific tissue, respectively. Supplementary Figure 2.3 shows that 

the tissue-specificity and gene expression between PCGs and lncRNAs varies among 

tissues but, most of the lncRNAs have similar expression patterns compared to PCGs. 

Supplementary Figure 2.3 shows that individually lncRNAs might be not very specific to 

one tissue but, overall (as shown in Figure 2.6) these are tissue-specific. All tissue-

specific figures and score files are available for viewing and downloading individually on 

the lncRNAKB website in tissue-specific pages. 
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Figure 2.6: Distribution of tissue-specificity scores. 
Distribution of tissue-specificity scores (Tau [left] and PEM [right]) with data for RNA-
seq of 31 solid organ human normal tissues from GTEx across protein-coding genes 
(PCGs) and lncRNAs in the lncRNAKB as a comparison. The tissue-specificity scores 
varies from 0 to 1, where 0 means broadly expressed, and 1 is specific. Graph created 
with density function from R, which computes kernel density estimates. 
 
 
 
 

Principal Component Analysis Figure 2.7 shows the results of PCA using 

<=>E(F9; + 1) transformed lncRNAs expression data across all tissues in the 

lncRNAKB. Tissues show a characteristic transcriptional signature, as revealed by PCA 

of lncRNA expression. The separation is between nonsolid (blood) and solid tissues and, 

within solid tissues, brain and testis are the most distinct. This is an additional 

confirmation that lncRNAs are tissue-specific.  



59 
 

 

Figure 2.7: Principal Component Analysis of GTEx samples using lncRNA expression. 
Principal Component Analysis (PCA) of GTEx samples based on lncRNA expression. 
PCA of all samples based on expression levels of lncRNAs (KLMN(OPQ+ R) 
transformed). Expression of lncRNAs alone also recapitulates tissue types. 
 
 
 
 

eQTL analysis Table 2.4 summarizes the results of the cis-eQTL analysis. The 

number of RNA-seq samples with WGS data across 31 solid organ human normal tissues 
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from GTEx were (n=5,502). 25 tissues had > 80 samples (n=5,393) with WGS and 

included in the cis-eQTL analysis. After pre-processing the WGS VCF file (initially with 

50,862,464 variants) across all samples (n=652), 5,835,187 SNPs were leftover for the 

cis-eQTL analysis (see Methods: Tissue-specific expression profiling and expression 

quantitative trait loci (eQTLs): Genotype File Processing). For each tissue, Table 2.4 

shows the number of samples (stratified by sex), the number of SNPs available after 

preprocessing, the number of genes that met the TPM threshold criteria from the RNA-

seq data (PCG and lncRNAs), the total number of SNP-gene pairs that were tested within 

1 Mb of the transcription start site (TSS) of each gene and the number of top cis-eQTL 

genes that met the permutation p-value <= 0.05 threshold after the FastQTLv2.0 adaptive 

permutations approach (see Methods: Tissue-specific expression profiling and expression 

quantitative trait loci (eQTLs): eQTL Analysis). In the lncRNAKB, users can visualize 

the cis-eQTL results by tissue via a manhattan plot. Figure 2.8 shows an example plot 

from the heart tissue. All figures are available for viewing and download individually on 

the lncRNAKB website in tissue-specific pages. Users can also download genome-wide 

compressed cis-eQTL results files (text format) by tissue (all SNP-gene pairs and top 

SNP-gene pairs generated via permutation). 
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Figure 2.8: Manhattan plot illustrating the results of the cis-eQTL analyses. 
Manhattan plot illustrating the results of the cis-eQTL analysis from the heart tissue. The 
x-axis are the chromosomes and each dot on the y-axis represents the cis-eQTL -log10 
(p-values) of the SNP-gene pairs that were tested within 1 Mb of the TSS of each gene.
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Table 2.4: Summary results of the cis-eQTL results available from the lncRNAKB. 
Summary results of the cis-eQTL results available from the lncRNAKB. Tissues with < 80 samples are shown here but, were excluded 
from the analysis. 
 

Tissue Number_
of_RNA_
seq_samp
les_with_

WGS 

Numb
er_of_
Males 

Numb
er_of_
Femal

es 

Number_of
_SNPs_with
_MAF_grea
ter_than_0.

05 

Total_numb
er_of_genes
_passed_filt

er 

Total_n
umber_
of_PCG

s 

Total_num
ber_of_lnc

RNAs 

Total_SNP_g
ene_pairs_e

QTLs 

Total_SNP_gene
_pairs_with_per
mutation_pvalue
_less_than_0.05 

Adipose_Tissue 363 220 143 5,952,169 27,029 15,175 11,854 54,871,184 5,766 

Adrenal_Gland 146 82 64 5,886,806 25,943 14,973 10,970 51,879,876 4,077 

Bladder 9 4 5 5,462,615 28,695 15,597 13,098 - - 

Blood 356 226 130 5,953,536 18,412 11,788 6,624 37,414,178 2,877 

Blood_Vessel 378 241 137 5,963,536 25,614 14,770 10,844 51,947,442 5,854 

Bone_Marrow - - - - - - - - - 

Brain 170 116 54 5,857,467 31,339 16,148 15,191 62,844,553 3,488 

Breast 184 102 82 5,901,708 28,839 15,680 13,159 58,130,064 4,267 

Cervix_Uteri 8 0 8 5,522,234 28,706 15,649 13,057 - - 

Colon 250 148 102 5,907,992 28,297 15,781 12,516 57,063,773 4,767 

Esophagus 353 221 132 5,941,386 26,803 15,439 11,364 54,314,052 4,815 

Heart 251 163 88 5,913,705 24,959 14,788 10,171 50,153,256 4,375 

Kidney 29 23 6 5,742,588 28,917 15,726 13,191 - - 

Liver 118 77 41 5,871,833 23,846 14,204 9,642 47,689,780 2,759 

Lung 274 182 92 5,926,605 29,045 15,744 13,301 58,884,074 5,461 

Muscle 359 220 139 5,962,131 22,042 13,558 8,484 44,548,539 4,454 

Nerve 268 174 94 5,941,274 29,326 15,472 13,854 59,363,204 7,416 

Ovary 99 0 99 5,873,449 27,292 14,845 12,447 54,588,663 3,466 

Pancreas 167 98 69 5,905,087 23,569 14,210 9,359 47,408,959 #N/A 

Pituitary 108 76 32 5,814,865 30,586 15,848 14,738 60,707,019 3,949 

Prostate 101 0 101 5,810,666 30,373 15,931 14,442 60,377,553 #N/A 

Salivary_Gland 63 43 20 5,771,591 28,409 15,679 12,730 - - 

Skin 442 278 164 5,966,760 27,316 15,442 11,874 55,698,051 6,210 

Small_Intestine 90 54 36 5,777,092 30,046 15,950 14,096 59,426,622 2,987 
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Spleen 108 62 46 5,874,443 28,284 14,969 13,315 56,914,604 4,743 

Stomach 182 104 78 5,890,077 26,974 15,530 11,444 54,242,450 3,804 

Testis 171 0 171 5,875,543 47,909 17,777 30,132 98,376,057 8,951 

Thyroid 286 183 103 5,941,584 29,715 15,604 14,111 60,217,108 7,611 

Uterus 82 0 82 5,795,583 28,175 15,166 13,009 55,748,102 3,037 

Vagina 87 0 87 5,837,620 28,423 15,629 12,794 56,861,978 2,865 
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Conservation Analysis 

 Figure 2.9 shows the two box plot distributions of exon sequence conservation 

scores comparing protein-coding and lncRNAs in the lncRNAKB annotation database. 

Overall, it shows that exons in the protein-coding genes have higher mean sequence 

conservation scores compared to lncRNAs. Users can download the conservation scores 

across exons on the lncRNAKB website stratified by protein-coding genes and lncRNAs. 

In addition, on the gene display page we will present the conservation scores for exons in 

that gene. 

 
 
 
 

 

Figure 2.9: Distribution of mean PhastCons exon sequence conservation scores. 
Distribution of mean PhastCons exon sequence conservation scores across lncRNAs and 
protein-coding genes in the lncRNAKB. 
 

Functional characterization of lncRNAs using a network-based approach 

 Supplementary Table 2.6 summarizes the results of the WGCNA analysis 

across the 31 solid organ human normal tissues using the GTEx RNA-seq data. After 
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filtering genes with low expression in the lncRNAKB annotation database by tissue (See 

Methods: Functional characterization of lncRNAs using a network-based approach), on 

average, we had gene expression data across approximately 14,699 protein-coding genes 

and 3,389 lncRNAs per tissue. We identified 1,208 lncRNA-mRNA co-expression 

modules across all tissues (on average approximately 43 modules per tissue). On average, 

across all tissues, each module had approximately 487 genes including 92 lncRNAs, 

indicating favorable co-expression of lncRNAs with PCGs. Supplementary Table 2.7 

summarizes the results of the over-representation analysis (ORA) based on the 

hypergeometric test using the Gene Ontology (GO) pathways across all the modules 

identified in the 31 solid organ human normal tissues. It displays the number of GO 

pathways tested, number of pathways with p-value ≤ 0.05 and FDR q-value ≤ 0.05 in all 

modules by tissue. On average, across all modules, each tissue had approximately 10,849 

and 2,592 pathways (out of approximately 83,240 pathways that were tested on average 

across all modules per tissue) with p-value ≤ 0.05 and q-value ≤ 0.05 respectively, 

indicating significant enrichment of biological processes within these modules. 

Supplementary Table 2.8 shows the results of WGCNA in heart tissue for all 

lncRNA-mRNA co-expression modules identified. There were 61 modules identified in 

the heart using gene expression data across 16,882 protein-coding genes and 2,762 

lncRNAs. Supplementary Table 2.8 separates the number of genes and lncRNAs in each 

module, representing the size of each. It displays a list of lncRNAs and top 20 hub genes 

(genes with highest connectivity) in each module. Supplementary Table 2.9 shows the 

results of all GO pathways enriched in the heart tissue by module. There were several 
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significant pathways identified (q-value <= 0.05) with many of these involved in heart 

related biological processes. Figure 2.10 highlights the network figure created using 

Cytoscape for module M2 identified in the heart tissue. This module is involved in heart-

specific processes such as heart growth, development and contraction. The network has 

148 genes (34 protein-coding and 106 lncRNAs) after filtering the adjacency matrix with 

correlations < 0.20 and “heart development” specific pathways/genes. The orange 

triangles and green circles/nodes represent lncRNAs and mRNAs respectively. The 

thickness of the edges highlights the connectivity (degree) between nodes. The relatively 

strong connections of several lncRNAs to PCGs in this network hypothetically shows that 

these could be potentially involved in the same heart development specific biological 

processes. 
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Figure 2.10: Cytoscape network for lncRNA-mRNA co-expression module in the heart. 
Cytoscape network for lncRNA-mRNA co-expression Module 2 (M2) in the heart 
identified using WGCNA. The network was filtered for heart development genes (n=148) 
and correlations > 0.20. Orange triangles and green circles/nodes represent lncRNAs and 
PCGs respectively. The density of gray lines/edges represents the strength of the 
connection between genes. 

 
 
 
On the lncRNAKB website, for each tissue, users can view and download the 

WGCNA results (similar to Supplementary Table 2.8) and module enrichment results for 

all GO pathways (similar to Supplementary Table 2.9) as comma separated (.csv) files. In 

addition, for notable pathways in a module, users can visualize and download the 
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corresponding network figures checking for connections of lncRNAs with relevant 

mRNAs involved in known biological processes. 

 

DISCUSSION AND FUTURE DIRECTIONS 

 There is a large volume of transcriptomics data publicly available and currently 

being produced at an unprecedented rate. Novel transcripts assembly using RNA-seq data 

is a method that generates thousands of new transcripts that need to be characterized. 

Several of these novel transcripts are categorized as lncRNAs. A few lncRNAs 

annotation databases and knowledgebases have materialized to store and collect relevant 

data, hypothesizing that this information can be used by biologists to determine the 

functional repertoire of these transcripts. Generally, lncRNA knowledgebases are 

constructed using one or both of these methods: (i) transcriptome assembly using public 

RNA-seq data (several hundred to thousands of samples) or (ii) combining existing 

annotation databases. A few of these databases attempt to integrate annotations from 

multiple sources and go beyond that by integrating multi-omics data such as expression 

(occasionally tissue-specific), methylation, variation, conservation and functional 

annotation of lncRNAs in humans. However, from our review of existing resources, those 

annotations and integrations are sometimes outdated, not rigorous, incomprehensive, and 

incomplete. 

 We have created the lncRNAKB, a well-structured research tool that delivers 

valuable data on human lncRNAs, which can be used for functional molecular studies or 

development of methods for classification and annotation. These important features are 
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central points of the lncRNAKB: (i) carefully integrating six extensively used lncRNAs 

annotation databases using a cumulative step-wise intersection method, (ii) filtering 

lncRNAs based on their genomic positions relative to known PCGs, (iii) annotating and 

classifying lncRNAs based on a machine learning method using features such as k-mer 

frequencies and ORF length, (iv) creating a tissue-specific expression body map of 

lncRNAs, (v) calculating tissue-specificity scores of lncRNAs compared to mRNAs, (vi) 

creating a tissue-specific eQTL body map of lncRNAs, (vii) calculating exon level 

conservation scores for all PCGs and lncRNAs, (viii) using the guilt by association 

principle  and WGCNA  method to analyze lncRNAs-mRNAs co-expression patterns in a 

tissue-specific manner, (ix) creating a tissue-specific body map of functionally annotated 

lncRNAs using enrichment analysis of annotation terms for all co-expression modules 

and (x) implementing a web resource providing organized and easy-to-follow navigation 

for users to view and download all content related to lncRNAs. Additionally, when 

extensive new lncRNAs annotation databases emerge, we can incorporate these into 

lncRNAKB. 
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CHAPTER 3  

Annotation and functional characterization of lncRNAs using integrative GWAS, 

eQTL and network analysis in lncRNAKB: a case-study in the context of heart 

diseases 

 

ABSTRACT 

 Advent of high-throughput sequencing technologies and development of efficient 

tools to analyze big data has led to the surprising discovery that only ~2% of the human 

genome is protein coding and that a majority of the genome though transcribed, falls into 

the non-protein coding transcripts category. LncRNAs are non-protein coding transcripts 

that are longer than 200bp (base pairs). Several groups of researchers have used manual 

and automated techniques to identify and annotate lncRNAs in the human genome. 

However, questions remain about the purpose and function of these lncRNAs and 

whether they play a critical role in normal cell function and/or in disease. Here we 

present a pipeline and case study in heart tissue that uses publicly available RNA-seq and 

genome-wide association (GWAS) data to functionally characterize 77,199 lncRNAs 

available in the lncRNAKB built by step-wise integration of six commonly used lncRNA 

human annotation databases. We performed tissue-specific expression quantitative trait 

loci (cis-eQTL) analysis and overlaid these to GWAS summary data from the UK 
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Biobank on several heart diseases, to identify subsets of single nucleotide polymorphisms 

(SNPs) in lncRNAs that may have pleiotropic association between gene expression and 

disease phenotype using Summary-data Mendelian Randomization (SMR) analysis. We 

constructed heart-specific protein coding-lncRNA co-expression networks to functionally 

characterize the cellular processes that the lncRNAs may be involved in using Weighted 

Gene Co-expression Network Analysis (WGCNA) and overlapped the SMR prioritized 

lncRNAs on “notable” pathways. These analyses will provide insight into the underlying 

biology of lncRNAs in cell function and heart disease. Using our pipeline, we were able 

to find heart specific lncRNAs and creating co-expression networks sheds light on the 

function of lncRNAs in heart disease and how they might contribute to gene expression 

and pathology. 

 

INTRODUCTION 

 Long non-coding RNAs (lncRNAs) are a class of non-protein-coding transcripts 

that range from 200 nucleotides to 100 kb (approximately 10 kb on average) (Long non 

coding RNA biology, 2017). The majority of eukaryotic lncRNAs are produced by RNA 

polymerase II and capped at the 5′ end similar to protein coding genes (PCGs) (Guttman 

et al., 2009). LncRNAs may or may not be 3′-end polyadenylated (Long non coding 

RNA biology, 2017), could undergo splicing and have longer but fewer exons, compared 

to mRNAs (Derrien et al., 2012). Classes of lncRNAs are usually annotated relative to 

their position with nearby PCGs (DiStefano, 2018), and include: (1) intergenic lncRNAs 

or lincRNAs, which are transcribed from regions at least >1 kb from PCGs, (2) 
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bidirectional lncRNAs which are transcribed <1 kb of promoters in opposite direction of 

protein-coding transcripts, (3) intronic lncRNAs, which are transcribed within introns of 

PCGs, (4) exonic lncRNAs, which overlap with one or more exons of PCGs, (4) sense 

lncRNAs, which are transcribed in the same direction of PCGs and overlap with one or 

more exons or introns of these transcripts and (5) antisense lncRNAs, which are 

transcribed in the opposite direction of PCGs and overlap with one or more exons or 

introns of these transcripts.  

Many lncRNAs do not show the same pattern of high interspecies conservation as 

protein coding genes (PCGs) (Hezroni et al., 2015; Cabili et al., 2011; Guttman et al., 

2009; Li and Yang, 2017). Sequence conservation is comprised of short, 5′-biased 

patches of conserved sequence nested in exons (Hezroni et al., 2015). Many studies have 

reported that lncRNAs have low level of expression (Ponting et al., 2009). However, 

lncRNAs have higher tissue-specific expression compared to mRNAs (Cabili et al., 2011; 

Jiang et al., 2016). Some lncRNAs include short open reading frames (sORFs) and 

undergo translation, though only a minority of such translation events results in stable 

and functional peptides (Housman and Ulitsky, 2016; Andrews and Rothnagel, 2014). 

Due to low sequence conservation and low levels of expression, the knowledge that 

lncRNAs are merely transcriptional noise is common (Palazzo and Lee, 2015). Owing to 

the advances in high throughput sequencing technologies there have been thousands of 

lncRNAs that have been annotated across human tissues however, only a small 

proportion have been functionally characterized (Palazzo and Lee, 2015). Individual 

lncRNAs have been suggested to carry out a variety of functions, including 
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transcriptional regulation in cis (e.g., XIST) (Clemson et al., 1996) or trans (e.g., Fendrr) 

(Grote et al., 2013), organization of nuclear domains, and regulation of proteins or RNA 

molecules (Kopp and Mendell, 2018). In addition, there has been increased evidence 

suggesting that dysregulation of lncRNAs is involved in many diseases (Chen et al., 

2013; Wapinski and Chang, 2011). Despite the fact that only a minority of lncRNAs have 

been adequately functionally characterized, there is no agreement on the transcriptional 

regulatory mechanisms by which lncRNAs might perform (Bassett et al., 2014; Palazzo 

and Lee, 2015). 

We have developed a comprehensive lncRNAs annotation database called the 

long non-coding RNA knowledgebase (lncRNAKB – http://www.lncrnakb.org) in which 

we systematically integrated six lncRNAs annotation databases and generated a large 

number of unique lncRNAs (n=77,199). There are many components of the lncRNAKB, 

generated across 31 solid human normal tissues using RNA-seq (9,074 samples) and 

Whole Genome Sequence (WGS) (652 samples) genotype data, obtained from the 

Genotype Tissue Expression (GTEx Release v7) project (GTEx Consortium et al., 2017). 

Some of these include: (i) tissue-specific gene expression profiles, (ii) tissue-specific 

expression quantitative trait loci (cis-eQTLs) and (iii) tissue-specific Weighted Gene Co-

expression Network Analysis (WGCNA) (Langfelder and Horvath, 2008) analyzing 

lncRNAs-mRNAs co-expression patterns, followed by Gene Ontology (GO) pathways 

enrichment analysis (Gene Ontology Consortium, 2015; The Gene Ontology Consortium, 

2019; Ashburner et al., 2000). All these data are publicly available for viewing and 

downloading through the web resource.  



74 
 

In light of availability of these data on lncRNAs from the lncRNAKB, we sought 

out to perform a multi-omics integration analysis to build a reasonable case for assigning 

probable functions of lncRNAs. We focus our integrative analysis on the heart tissue and 

present a case-study to identify lncRNAs that could be potentially involved in 

transcriptional regulatory mechanisms possibly leading to heart diseases. There have 

been several genome-wide association (GWAS) studies that have identified many genetic 

variants associated with heart disorders such as cardiovascular disease, coronary heart 

disease, congenital heart disease, cardiomyopathy, heart failure, acute myocardial 

infarction, atherosclerotic heart disease, atrial fibrillation and chronic ischemic heart 

disease (Buniello et al., 2019). However, the mechanism by which these genetic variants 

exert their effects on complex diseases/traits is generally unknown because of the 

complex linkage disequilibrium (LD) between them and the causal mutations 

(Raychaudhuri, 2011). In addition, GWAS have shown that majority of these variants are 

located in non-coding regions enriched for long intergenic non-coding RNAs (lincRNAs) 

(Cabili et al., 2011). Several eQTL studies have been implemented across many human 

tissues and cell types showing that the regulation in expression of PCGs is mediated by 

GWAS/trait associated genetic variants in cis (cis-eQTLs) (Nicolae et al., 2010). 

Additionally, lincRNAs-eQTLs studies have also shown that there are a substantial 

number of cis-eQTLs in lincRNAs and demonstrated that the genetic regulation of 

lincRNA expression is independent of the regulation of neighboring PCGs (Popadin et 

al., 2013). It has also been shown that the transcription of cis-eQTLs in lincRNAs that are 

associated with traits, contributes to chromosomal architecture and thereby the regulation 
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of nearby trait-associated PCGs expression levels (Tan et al., 2017b). Significant 

enrichment of cis-eQTLs in lincRNAs suggests that many Single Nucleotide 

Polymorphism (SNP)-trait associations could perhaps act through gene expression of 

lincRNAs (i.e. SNP → Gene expression (PCGs and/or lincRNAs) → trait) (Hernandez et 

al., 2012; Porcu et al., 2018). This relationship can be investigated in studies of traits if 

SNP and gene expression data are available from the same samples. However, it is rare 

for transcriptomic studies examining complex diseases/traits to have supplementary 

genotype data and large sample sizes due to shortage of genomic material and cost thus, 

underpowered. In contrast, GWAS of traits alone have large sample sizes but, do not 

have accompanying gene expression data. Therefore, overall detection of eQTLs and 

those with small effect sizes is hindered. Considering the limitations stated above, there 

have been development of methods in prioritizing causal genes at GWAS loci (Veturi and 

Ritchie, 2018; Schaefer et al., 2018). 

Transcriptome-wide association studies (TWAS) have been previously employed 

to integrate GWAS and eQTL data to prioritize genes that are associated with traits 

(Gusev et al., 2016). The general idea for a TWAS is to use a known gene expression and 

SNP dataset (eQTLs) as a reference panel to determine the gene-trait association from 

GWAS. There are three steps for conducting a TWAS: (i) the reference expression panel 

(for e.g. GTEx) is used to perform a cis-eQTL analysis with gene expression data, 

searching for variants within a specified distance for e.g. 1 Megabase (Mb) of the 

transcription start site (TSS) of each gene and in the tissue of analysis which is 

considered your training data, (ii) the training data is used to predict/impute the gene 
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expression of thousands of individuals in a GWAS study, and (iii) the predicted/imputed 

gene expression measures are statistically associated to trait. The predicted/imputed gene 

expression estimates can be conceptualized as a linear model of genotypes with weights 

(strength of correlation between SNPs and gene expression from the training data) while 

accounting for LD among SNPs. For steps (ii) and (iii), two approaches could be used: 

(a) If individual-level genotype data is available from the GWAS study, expression 

prediction may be performed sequentially using the effect sizes from the reference panel 

and measure the association between predicted expression and a trait for e.g. using 

PrediXcan2 (Gamazon et al., 2015), and/or (b) if only summary-level data is available 

from the GWAS study, the SNP-trait standardized effect sizes can be used directly 

(weighted linear combinations) while accounting for LD among SNPs to estimate 

association between predicted expression and a trait for e.g. using Fusion (Gusev et al., 

2016) and S-PrediXcan (Barbeira et al., 2018). 

Mendelian Randomization (MR) is a method that can be used to test the effect of 

exposure (gene expression) on an outcome (trait) through an instrumental variable 

(genetic variant/SNP) (Porcu et al., 2018; Smith and Ebrahim, 2003). Therefore, MR can 

be used to prioritize causal genes at GWAS loci, if the gene expression and outcome 

(trait) data on the same samples are available. MR analysis can be conducted using a two-

stage method. It comprises of two regression steps: the first-step is the regression of the 

exposure (gene expression) on the instrumental variable (genetic variant/SNP), and the 

second-step is the regression of the outcome (trait) on the fitted values of the exposure 

from the first step. Since the outcome is continuous, the causal effect of the risk factor in 
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the outcome can be estimated using a 2-stage least squares approach (Burgess et al., 

2017). GWAS data with large sample sizes that include both gene expression and 

outcome (trait) data on the same samples are rare. However, many GWAS meta-analysis 

and eQTL studies with large cohorts and summary-level results (for e.g. effect sizes or 

test statistics) are publicly available (GTEx Consortium et al., 2017; Bycroft et al., 2018). 

Summary Mendelian Randomization analysis (SMR) (Zhu et al., 2016) is a method that 

prioritizes genes that are targeted by genetic variants/SNPs in GWAS of complex 

diseases. It combines (using MR concepts) summary-level data from two-samples for e.g. 

independent GWAS and data from eQTL studies to identify pleiotropic association 

between the expression level of a gene (exposure) and a trait (outcome). Pleiotropic 

association is when the causal variant affects both gene expression and trait. The test 

statistic from SMR is an approximate "# interpreted as the effect of gene expression on 

outcome (trait) free of non-genetic confounders. It is also possible that there are two 

distinct causal variants in LD with each other, one influencing gene expression and the 

other the outcome (trait) which is of less interest in prioritizing genes with SMR. In 

pleiotropic associations, the effect sizes of gene expression on outcome (trait) would be 

approximately similar for genetic variants/SNPs in LD with each other in the cis-eQTL 

region. Therefore, testing for heterogeneity in the effect sizes of gene expression on 

outcome (trait), estimated for the SNPs in the cis-eQTL region would be equivalent to 

testing against the null hypothesis that there is a single causal variant affecting both the 

gene expression and outcome (trait). SMR has developed a method to test for 

heterogeneity in dependent instruments (HEIDI). 
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To better understand the contribution of lncRNAs expressed in heart tissue and 

prioritize these based on the effects of genetic variation/SNPs on lncRNAs expression in 

heart diseases, we performed a systematic cis-eQTL study and SMR analysis using seven 

heart disease related GWAS (myocardial infarction, atrial fibrillation, atherosclerosis, 

cardiomyopathy, chronic heart disease, heart failure and obesity) obtained from the UK 

Biobank (Bycroft et al., 2018). In addition, to further understand the potential 

transcriptional regulatory mechanisms by which these prioritized lncRNAs may perform, 

we overlap the WGCNA lncRNA-mRNA co-expression gene modules information 

identified in the heart tissue (results available on lncRNAKB) against the prioritized 

lncRNAs (across all seven GWAS) in any module enriched for heart specific GO 

processes. Therefore, using these approaches we demonstrate the relevance of data 

available on lncRNAKB and one of the numerous ways that biologists can use these 

datasets to understand lncRNAs and augment their research on lncRNAs discovery. 

 

MATERIALS AND METHODS 

Heart-specific tissue expression and expression quantitative trait loci (eQTLs) data: 

We downloaded the heart-specific transcriptome and eQTLs datasets from the 

lncRNAKB (http://www.lncrnakb.org). The lncRNAKB contains RNA-seq expression 

profiles summarized at gene-level in raw read counts and normalized to Transcripts Per 

Kilobase Million (TPM) (Wagner et al., 2012) (https://www.rna-seqblog.com/rpkm-

fpkm-and-tpm-clearly-explained/) using the GTEx project (Release v7) RNA-seq data 

and the gene transfer format (GTF) annotation file 
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(https://useast.ensembl.org/info/website/upload/gff.html#moreinfo) from lncRNAKB. 

After excluding samples with < 106 reads assigned to genes, there were 430 samples 

quantified across 99,717 genes (77,199 lncRNAs and 22,518 PCGs) in the heart tissue. 

Details of the RNA-seq data analysis are outlined in Chapter two (see Methods: Tissue-

specific expression profiling and expression quantitative trait loci (eQTLs): subsection: 

Expression profiling).  

Using the TPM normalized expression matrix across all genes and tissues (no 

filter applied) we calculated a tissue-specificity metric called Preferential Expression 

Measure (PEM) (Kryuchkova-Mostacci and Robinson-Rechavi, 2017). PEM shows how 

specific a gene is to the heart tissue. The PEM scores the expression of a gene in the heart 

tissue in relation to its average expression across all other genes and tissues. To compute 

PEM, we calculated and used the average expression across all replicates for each gene 

by tissue. All genes that were not expressed in at least one tissue were removed from the 

analysis. Details of the tissue-specificity score analysis are outlined in Chapter two (see 

Methods: Tissue-specific expression profiling and expression quantitative trait loci 

(eQTLs): subsection: Tissue-specificity scores). 

The lncRNAKB also contains heart-specific cis-eQTL data generated using the 

methods outlined in Chapter two (see Methods: Tissue-specific expression profiling and 

expression quantitative trait loci (eQTLs): subsection: eQTL analysis). Briefly, 

50,153,256 SNP-gene pairs (cis-eQTLs) were calculated using 251 RNA-seq samples 

with blood-derived WGS genotype data (163 males:88 females), 5,913,705 SNPs, and 

24,959 genes (10,171 lncRNAs:14,788 PCGs). We filtered the original genotype data 



80 
 

(50,862,464 variants) across all samples (n=652), from the GTEx project using standard 

measures i.e. excluding variants that were indels, missing, multiallelic, “FAIL” and < 5% 

minor allele frequency (MAF). We subset the genotype data for 251 heart samples and 

filtered SNPs < 5% MAF as an additional step. Details of the genotype file processing are 

outlined in Chapter two (see Methods: Tissue-specific expression profiling and 

expression quantitative trait loci (eQTLs): subsection: Genotype file processing). Genes 

were retained if TPM > 0.50 in at least 20% of the samples. Furthermore, only genes with 

counts > 2 in at least 20% of samples were kept. Log2 counts per million (log2CPM) and 

the limma-voom R package (Ritchie et al., 2015) (Law et al., 2014) was used to 

normalize the data between samples using trimmed mean of M-values (TMM) (Robinson 

and Oshlack, 2010). The cis-eQTLs were identified by linear regression, as implemented 

in FastQTLv2.0 (threaded option) (Ongen et al., 2016), adjusting for the five PCs and sex 

within 1 Megabase (Mb) of the transcription start site (TSS) of each gene. The cis-eQTL 

results were visualized using a manhattan plot created using the qqman package in R 

(Turner, 2014). To evaluate the significance of the most highly associated variant per 

gene we used the adaptive permutations option in FastQTL between 1000 and 10000 

permutations. After permutation, 4,365 unique genes (1,913 lncRNAs) had a cis-eQTL 

with permutation p-value ≤ 0.05 which were used for the multi-omics integrative 

analysis with GWAS data using SMR. 
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Genome-wide association studies (GWAS) in heart diseases: 

 Table 3.1 shows the seven heart diseases related GWAS summary data that were 

selected from the UK Biobank (Bycroft et al., 2018) for the integrative analysis. Details 

of the methods for generating the GWAS data are outlined in the UK Biobank manuscript 

and website (http://www.nealelab.is/uk-biobank). GWAS summary data used for this 

case study did not include hundreds of thousands of samples as desired. However, as a 

proof of concept, we illustrated the integration process of GWAS, eQTL and network 

analysis to functionally annotate lncRNAs thus, highlighting potential use of datasets 

available on thousands of lncRNAs (across numerous tissues) in the lncRNAKB using 

considerably larger GWAS summary data obtained via meta-analysis. 

 
 
 
Table 3.1: Descriptive summary of the GWAS summary data for SMR analysis. 
Descriptive summary of the GWAS summary data used for the SMR analysis 
n = sample size, ncase = number of cases, ncontrol = number of controls, mSNP = number of 
SNPs 
 
 

GWAS (UK 
Biobank) - 

Disease 

ncase ncontro

l 
mSNP GWAS summary data download link 

Chronic Heart 
Disease 

8,75
5 

328,4
44 

11,400,
324 

https://www.dropbox.com/s/rdz3f8ind6m
qlcp/40001_I259.gwas.imputed_v3.both

_sexes.tsv.bgz?dl=0 -O 
40001_I259.gwas.imputed_v3.both_sexe

s.tsv.bgz   
Myocardial 
Infarction 

3,92
7 

333,2
72 

11,400,
324 

https://www.dropbox.com/s/53ksig4hhxk
fjh6/40001_I219.gwas.imputed_v3.both

_sexes.tsv.bgz?dl=0 -O 
40001_I219.gwas.imputed_v3.both_sexe

s.tsv.bgz  
Atrial 

Fibrillation 
3,81

8 
333,3

81 
11,400,

324 
https://www.dropbox.com/s/uluig1qhvz7
veek/I48.gwas.imputed_v3.both_sexes.ts
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v.bgz?dl=0 -O 
I48.gwas.imputed_v3.both_sexes.tsv.bgz 

Heart Failure 617 336,5
82 

11,400,
324 

https://www.dropbox.com/s/ruhz8ihfqvio
k49/I50.gwas.imputed_v3.both_sexes.tsv

.bgz?dl=0 -O 
I50.gwas.imputed_v3.both_sexes.tsv.bgz 

Atherosclerosi
s Heart 
Disease 

340 336,8
59 

11,400,
324 

https://www.dropbox.com/s/vojnvx9zc4lodo
1/40001_I251.gwas.imputed_v3.both_sexes.

tsv.bgz?dl=0 -O 
40001_I251.gwas.imputed_v3.both_sexes.ts

v.bgz  
Cardiomyopat

hy 
285 336,9

14 
11,400,

324 
https://www.dropbox.com/s/x164s4tlb4v
jffe/I42.gwas.imputed_v3.both_sexes.tsv

.bgz?dl=0 -O 
I42.gwas.imputed_v3.both_sexes.tsv.bgz 

Obesity 217 336,9
82 

11,400,
324 

https://www.dropbox.com/s/o5gfs1ny01
n50za/E66.gwas.imputed_v3.both_sexes.

tsv.bgz?dl=0 -O 
E66.gwas.imputed_v3.both_sexes.tsv.bg

z 
 

 

Summary Mendelian Randomization (SMR) integrating GWAS and eQTL data for 

lncRNA candidate prioritization in heart diseases: 

 To test for the relationship between SNPs, gene expression, and a trait we applied 

the SMR method across the whole genome using summary data from seven GWAS of 

heart diseases (see Methods: Genome-wide association studies (GWAS) in heart 

diseases) and heart eQTLs (see Methods: Heart tissue expression and expression 

quantitative trait loci (eQTLs) data). In a traditional MR analysis, consider $ as an 

instrumental variable (genetic variant/SNP), % as the exposure (gene expression) and & as 

the outcome (trait). MR tests whether the effect of $ on & is mediated by % (i.e. SNP ($) 

→ Gene expression (PCGs and/or lincRNAs) (%) → trait (&)) using the estimates of % on 
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$, )*+,-. and estimates of & on $, )*+,-/ thus, )*+,./ = )*+,-/ )*+,-.⁄  derived using 

a 2-stage least squares approach (Burgess et al., 2017). MR analysis requires SNP, gene 

expression and trait data to be measured on the same sample. However, it is not feasible 

to collect GWAS and transcriptomic data on hundreds of thousands of samples in the 

same study. SMR uses a two-sample MR approach to derive an approximate "# test 

statistic defined by the following equation 2345 =
-678 -698

-678 :-698
 where $-/ and $-. (equation 5, 

online methods) in (Zhu et al., 2016) are the summary statistics from the GWAS and cis-

eQTL study, respectively (Zhu et al., 2016). The SMR test can possibly detect three 

modes of association between gene expression and trait through SNPs: (i) causality ($ → 

% → &), (ii) pleiotropy ($ → % and $ → &) or (iii) linkage ($;→ % and $#→ &), $; and $# 

are in LD. Since SMR uses only the top cis-eQTL that is strongly associated with gene 

expression as an instrument ($) it is unable to distinguish between causality and 

pleiotropy. As mentioned in the introduction, that LD between two causal variants, one 

influencing gene expression and the other influencing trait is of less interest in SMR. The 

test for heterogeneity in dependent instruments (HEIDI), developed in SMR, considers 

that )*+,./ i.e. the estimated effect sizes of gene expression on outcome (trait) are 

expected to be equal at any of the cisSNPs to the top associated cis-eQTL due to LD 

between them if there is only a single causal variant affecting both gene expression and 

outcome (trait). LD is estimated from the reference sample used to calculate the cis-

eQTLs. Genes with a HEIDI p-value < 0.05 indicate signs of heterogeneity and are not 

considered for prioritization. 



84 
 

SMR was run using all the estimate of SNP effects on the traits from summary 

GWAS related to heart disease. The summary GTEx heart eQTL data consisted of 

9,391,776 cis-eQTLs SNPs for 4,365 genes, selected using a cis-eQTL permutation p-

value ≤ 0.05. Only cis-eQTLs with p-value ≤ 5 x 10-4 (475,150 cis-eQTLs) were 

included in the SMR analysis. In the SMR test, the top associated cis-eQTL for each gene 

was used as the instrument. Default values were used for the HEIDI test. The significance 

level for the SMR test was defined as nominal SMR p-value (<345) ≤ 0.05. Genes with 

HEIDI p-value (<=>?@?) ≥ 0.05 were retained as prioritized showing no evidence of 

heterogeneity. 

 

Heart-specific functional characterization of lncRNAs using a network-based 

approach: 

Unsupervised clustering methods can be used to extrapolate lncRNAs biological 

function based on the degree of connections to genes of known function. Using the genes 

expression profiles, these methods cluster them into group of genes, known as co-

expression modules. These modules are then subject to over representation analysis 

(ORA) with specific pathways for e.g. Gene Ontology (GO) (Gene Ontology Consortium, 

2015; The Gene Ontology Consortium, 2019) or Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa et al., 2017), which determines the potential function of 

genes. ORA employs the hypergeometric test (Holmans, 2010) to determine if the overall 

functional enrichment is different than what would be expected by random chance. The 

significantly enriched terms can be used as an estimate of annotation for the genes with 
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unknown function for e.g. lncRNAs (Ehsani and Drabløs, 2018b). This is often referred 

to as the “guilt by association” principle. 

The co-expressed gene modules were identified using the Co-Expression Modules 

identification Tool (CEMiTool) (Russo et al., 2018). This is a slight modification of the 

Weighted Gene-Coexpression Network Analysis (WGCNA) (Langfelder and Horvath, 

2008) method. Excellent details of the WGCNA theory are available from this website 

(https://horvath.genetics.ucla.edu/coexpressionnetwork/). The goal of WGCNA is to 

identify modules of genes that are co-expressed in an experiment and therefore likely 

work in concert to carry out various biological functions. Briefly, pairwise Pearson 

correlation coefficients are calculated between all gene expression levels in the analysis. 

The resulting correlation matrix is transformed into a so-called adjacency matrix of 

connection strengths using a power function with the formula ((1 + DEFF*G,+HEI) 2⁄ )K 

where the parameter of this function is selected so that the resulting network best satisfies 

a scale-free topology. This adjacency matrix is then converted into a topological overlap 

matrix (TOM), and then modules of densely interconnected genes are derived from the 

network by hierarchical clustering of the topological overlap. The main difference 

between the algorithm in CEMiTool and WGCNA is that WGCNA provides a function 

named “pickSoftThreshold” that can automatically select the L value; however, the 

CEMiTool has created an alternative algorithm that improves the automatic selection of 

the L  value, allowing for more reliable and consistent results.  

The lncRNAKB contains heart-specific WGCNA results generated using the 

methods outlined in Chapter two (see Methods: Tissue-specific expression profiling and 
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expression quantitative trait loci (eQTLs): Functional characterization of lncRNAs using 

a network-based approach). Briefly, there were 61 gene co-expression modules identified 

in the heart using expression data from the GTEx project across 16,882 protein-coding 

genes and 2,762 lncRNAs. On average there were approximately 276 genes including 45 

lncRNAs per module. Network plots were constructed by selecting “notable” pathways 

based on the GO pathways enrichment results. The network plots were generated using 

Cytoscape v3.6.0 (Shannon et al., 2003) package by visualizing edges with correlation > 

0.20. LncRNAs that were prioritized by SMR analysis for each GWAS were overlaid on 

top of these networks to potentially elucidate their functional roles in heart disease. 

 

 

RESULTS 

Heart-specific tissue expression and expression quantitative trait loci (eQTLs): 

 Figure 3.1 illustrates the density distributions of PEM scores across PCGs (n = 

20,220) and lncRNAs (n = 72,083) in the heart tissue. It reports a positive value for genes 

over-expressed and a negative value for genes under-expressed, respectively. Figure 3.1 

shows that most of the lncRNAs have similar expression patterns compared to PCGs in 

the heart. Supplementary Table 3.1 shows PEM scores across all genes in the lncRNAKB 

annotation database in heart tissue. Figure 3.2 shows the gene expression distribution 

across all tissues for top five heart-specific lncRNAs (selected by highest PEM scores). 

Figure 3.2 illustrates that the expression values of all five lncRNAs are higher in heart 

compared to other tissues suggesting heart-specificity. Figure 3.3 shows a manhattan plot 
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that illustrates the genome-wide results of 50,153,256 cis-eQTLs analyzed in the heart 

tissue. 4,365 genes (1,913 lncRNAs) had a cis-eQTL with an adaptive permutation p-

value ≤ 0.05. 
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Figure 3.1: Distribution of PEM tissue-specificity scores in heart tissue. 
Distribution of Preferential Expression Measure (PEM) tissue-specificity scores 
calculated with RNA-seq data of heart tissue (430 samples) from GTEx across PCGs (n = 
20,220) and lncRNAs (n = 72,083) in the lncRNAKB as a comparison. A positive or 
negative value indicates genes are over-expressed or under-expressed, respectively. 
Graph created with density function from R, which computes kernel density estimates. 
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Figure 3.2: Gene expression box plot distribution of the top five lncRNAs with the 
highest heart-specific PEM scores. 
Gene expression box plot distribution of the top five lncRNAs with the highest heart-
specific PEM scores. The x-axis represents the 31 solid organ human normal tissues from 
GTEx and y-axis is the TPM expression. The heart tissue is highlighted using a solid red 
box and the PEM scores are shown on the left-hand side of individual plots. 
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Figure 3.3: Manhattan plot illustrating the results of the cis-eQTL analyses from the heart 
tissue. 
Manhattan plot illustrating the results of the cis-eQTL analyses from the heart tissue. The 
x-axis are the chromosomes and each dot on the y-axis represents the cis-eQTL -log10 (p-
values) of the SNP-gene pairs that were tested within 1 Mb of the TSS of each gene. 

 
 
 

SMR prioritized lncRNA candidates in heart diseases: 

 Figure 3.4 shows manhattan plots to visualize the results of SMR analysis across 

seven GWAS related to heart disease. In total, we identified 1,054 genes (out of 4,365 

genes), tagged by 859 SNPs/cis-eQTLs, at the nominal significance level (<345 ≤ 0.05) 

for the seven heart diseases (Figure 3.4 and Supplementary Table 3.2). Table 3.2 

summarizes the results of the SMR analysis across each GWAS. Table 3.2 shows that in 

addition to PCGs, SMR also prioritized several lncRNAs. 
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Figure 3.4: Manhattan plots illustrating the results of the SMR analysis across seven 
GWAS related to heart disease. 
Manhattan plots illustrating the results of the SMR analysis across seven GWAS related 
to heart disease. The x-axis are the chromosomes and each dot on the y-axis represents 
the gene-based SMR -log10 (MNOP), indicating pleiotropic association between the 
expression level of a gene (exposure) and a trait (outcome) i.e. when the causal variant 
affects both gene expression and trait. Genes above the blue line with SMR p-value 
(MNOP ≤ 0.05) and HEIDI p-value (MQRSTS ≥ 0.05) were considered as SMR 
prioritized/significant. 

 
 

 
 
Table 3.2: Number of genes (PCGs and lncRNAs) prioritized by SMR. 
Number of genes (PCGs and lncRNAs) prioritized by SMR (MNOP ≤ 0.05) for seven 
heart diseases. 
 
GWAS (UK Biobank) - 

Trait 
Number of genes (PCGs) 

passing SMR test 
Number of genes 

(lncRNAs) passing SMR 
test 

Chronic Heart Disease 77 59 
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Myocardial Infarction 47 45 

Atrial Fibrillation 104 92 

Heart Failure 83 65 

Atherosclerosis Heart 
Disease 

63 84 

Cardiomyopathy 79 69 

Obesity 51 57 

 
 
 
 

Heart-specific functional characterization of lncRNAs using a network-based 

approach: 

 For weighted gene co-expression network analysis we utilized a comprehensive 

heart transcriptome dataset, which contains RNA-seq data from the GTEx project with 

251 samples (including WGS genotype data) across 16,882 PCGs and 2,762 lncRNAs. 61 

co-expression gene modules were identified (see Chapter two: Supplementary Table 2.8). 

On average there were approximately 276 genes including 45 lncRNAs per module. The 

largest module (M1) had 3,532 genes including 595 lncRNAs, whereas one module 

(M60) had no lncRNAs. On average, across all modules, 13,830 and 2,391 GO pathways 

(out of 104,175 pathways that were tested across all modules) had a p-value ≤ 0.05 and q-

value ≤ 0.05 respectively, indicating significant enrichment of biological processes within 

these modules (see Chapter two: Supplementary Table 2.9). Table 3.3 highlights four 

“notable” pathways (in three modules) that were chosen based on the following criteria: 

(i) q-value ≤ 0.05, (ii) the number of genes that overlap in each pathway (Count), (iii) the 

number of lncRNAs in each module, and (iv) their biological relevance to heart tissue. 

The heart development process has 466 genes whose specific outcome is the progression 
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of the heart over time, from its formation to the mature structure thus, related to cardiac 

development. The lipid catabolic pathway has 247 genes resulting in lipid breakdown, 

lipid catabolism, lipid degradation, lipolysis and multicellular organism lipid catabolic 

process thus, related to cholesterol metabolism. The muscle system process has 282 genes 

and involved in muscle physiology thus, could affect the heart muscle largely. 

 
 

 
Table 3.3: Four “notable” GO pathways enriched in three co-expression gene modules. 
Four “notable” GO pathways enriched (ORA) in three co-expression gene modules 
(WGCNA) identified using GTEx RNA-seq data (n = 251, with genotype data) across 
16,882 PCGs and 2,762 lncRNAs in the heart tissue. 
 
 
Module GO_Pathway_ID pvalue qvalue Count_of

_genes_in

_pathway 

numbe

r_gene

s_in_m

odule 

number_lnc

rnas_in_mo

dule 

M1 GO_HEART_DEVELOPME

NT 

3.93E-

05 

0.0080 93 3532 595 

M2 GO_HEART_DEVELOPME

NT 

0.0002 0.0144 54 1955 428 

M2 GO_LIPID_CATABOLIC_P

ROCESS 

1.85E-

07 

4.85E-

05 

41 1955 428 

M6 GO_MUSCLE_SYSTEM_P

ROCESS 

9.44E-

06 

0.0031 18 512 84 
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Figure 3.5 illustrates the Cytoscape network plots that were generated for the four 

“notable” pathways (in three modules) shown in Table 3.3. LncRNAs that were 

prioritized by SMR analysis (<345 ≤ 0.05) for each GWAS were overlaid on top of these 

networks to potentially elucidate their functional roles in heart diseases. 

 
 
Figure 3.5: Cytoscape networks for four “notable” GO pathways in the heart enriched in 
three co-expression gene modules. 
Cytoscape networks for four “notable” GO pathways in the heart enriched (ORA) in three 
co-expression gene modules (WGCNA). The networks were filtered based on 
correlations > 0.20. Orange triangles and green circles/nodes represent lncRNAs and 
PCGs respectively. Orange triangles with a red circle represent SMR prioritized (MNOP ≤ 
0.05) lncRNAs. The density of gray lines/edges represents the strength of the connection 
between genes. 
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Table 3.4 shows the number of lncRNAs that were SMR prioritized (Table 3.2 

and Supplementary Table 3.2) overlaid on top of the four “notable” networks/pathways 

as a summary. First, Table 3.4 demonstrates that there were several lncRNAs within each 

network with correlations > 0.20 thus, indicating robust mRNA-lncRNA co-expression. 

Second, there were a couple of lncRNAs that were SMR prioritized (<345 ≤ 0.05) in 

three out of four “notable” networks/pathways using GWAS summary data from seven 

heart diseases: myocardial infarction, atrial fibrillation, atherosclerosis, cardiomyopathy, 

chronic heart disease, heart failure and obesity obtained from the UK Biobank (Bycroft et 

al., 2018). Supplementary Table 3.3, 3.4, 3.5, and 3.6 provides individual details for each 

network (mainly gene ids and gene type) and flags lncRNAs that were SMR prioritized.   

On further review of PCGs and lncRNAs in these “notable” networks we have 

successfully identified potential genes which are known to play a role in cardiac related 

diseases for e.g. in co-expression gene module M2 (heart development), we observed a 

tight co-expression of several lncRNAs with MYH7 (myosin heavy chain 7), which 

encodes molecular motor proteins for heart contraction. MYH7 has been shown to be 

regulated by a cluster of lncRNAs (Han et al., 2014). We also observed MHRT (Myosin 

Heavy Chain Associated RNA Transcript), a lncRNA known to have a cardioprotective 

role by acting as a decoy to the BRG1 (brahma-related gene 1) (Hermans-Beijnsberger et 

al., 2018). MHRT is co-expressed with SGCG (sarcoglycan gamma) which maintains the 

structure of muscle tissue and is highly expressed in heart tissue. In co-expression gene 

module M2 (lipid catabolic process), we observed a lncRNA RP11-532N4.2 whose 

expression has been shown to be dysregulated following ischemia (Saddic et al., 2017). 
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We also observed SIRT5 (sirtuin 5) which is an important regulator of heart function. 

Mutations in the SIRT5 gene promoter have been associated with acute myocardial 

infarction (Chen et al., 2018). In co-expression gene module M6 (muscle system process) 

we observed NPPA-AS1 which is a lncRNA antisense to NPPA (Natriuretic Peptide A) 

and mutations in it are likely to be associated with atrial fibrillation. There have also been 

a few reviews in describing the potential of lncRNAs involvement to cardiac biology in 

humans and mice (Frank et al., 2016; Scheuermann and Boyer, 2013; Hu et al., 2018; 

Hobuß et al., 2019). 

 
 
 
Table 3.4: Details of Cytoscape networks for the four “notable” networks/pathways. 
Details of each Cytoscape network for the four “notable” networks/pathways (in three 
modules) chosen. Disease represents the seven heart diseases which were used for the 
SMR analysis. The number of lncRNAs SMR prioritized had MNOP ≤ 0.05. 
 

Mod

ule 

GO_Pathway

_ID 

Count_of_ge

nes_correlati

on_greater_t

han_0.2 

number_of

_PCGs_in

_network 

number_of_

lncRNAs_in

_network 

number_of_ln

cRNAs_SMR

_prioritized 

Disease 

M1 GO_HEART_

DEVELOPM

ENT 

78 25 46 0 - 

M2 GO_HEART_

DEVELOPM

ENT 

148 34 106 4 Atheroscler

osis, 

Myocardial 

Infarction, 

Atrial 
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Fibrillation 

M2 GO_LIPID_C

ATABOLIC_

PROCESS 

101 20 75 3 Atheroscler

osis, 

Myocardial 

Infarction, 

Atrial 

Fibrillation 

M6 GO_MUSCL

E_SYSTEM_

PROCESS 

126 104 18 1 Cardiomyop

athy 

 
 
 
 
 
 

DISCUSSION 

 To date, there are hundreds of thousands of novel lncRNA transcripts that are 

being annotated in the human genome. Consequently, there has been some effort in 

assigning function to them based on various criteria such as: (i) expression levels, (ii) 

splicing, (iii) conservation, and (iv) experimental evidence. However, lncRNAs are 

known to have low levels of expression and low conservation thus, challenging to study 

experimentally. In an effort to combine widely used lncRNAs annotation databases and 

collate valuable information on lncRNAs in a systematic manner we have developed the 

lncRNAKB. There are several types of data sets available on lncRNAKB across 77,199 

lncRNAs and 31solid organ human normal tissues that could be used to evaluate 



98 
 

lncRNAs function on a case-by-case basis. Here we show an example pipeline in the 

human heart tissue of how researchers could use lncRNAKB to provisionally label 

lncRNAs as functional and prioritize them for further experimental studies. The main 

components of the pipeline include: (i) identifying genetic variants/SNPs within a 

specific window that regulate the expression of lncRNAs (cis-eQTLs) in a tissue-specific 

manner since tissue enriched lncRNAs are an ideal starting point to search for human 

lncRNAs that are functional in a pathophysiological setting, (ii) overlapping GWAS 

summary data in a trait-relevant tissue with cis-eQTL summary data, to identify subsets 

of SNPs in lncRNAs that may have pleiotropic association between gene expression and 

disease phenotype, (iii) identifying tissue-specific modules of gene co-expression 

between mRNAs and lncRNAs to assign potential function to lncRNAs due to correlation 

with mRNAs of known function determined by modular pathway enrichment analysis 

with known biological processes, and (v) overlapping the subset of lncRNAs prioritized 

with GWAS and cis-eQTL colocalization within “notable” networks/pathways. This 

pipeline provides a way to gain insight into the function of numerous lncRNAs that we 

have added in the lncRNAKB and we can characterize numerous lncRNAs that may play 

a significant role in pathways related to many diseases/traits across several human 

tissues. 
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CONCLUSION AND FUTURE DIRECTIONS 

There is a large volume of transcriptomics data publicly available and currently 

being produced at an unprecedented rate. Novel transcripts assembly using RNA-seq data 

is a method that generates thousands of new transcripts that need to be characterized. 

Several of these novel transcripts have been categorized as lncRNAs. While these data 

support the presence of lncRNAs in cell and tissue specific manner, bigger questions 

surrounding the purpose and functionality of lncRNAs in human biology remain. Several 

lncRNA databases have tried to address some of these questions, however, there is 

clearly a need to integrate the lncRNA annotation between databases to create a non-

redundant list of well-annotated lncRNA entries that could be utilized by biologists to 

pursue research in this area. 

 To address this need, we have created the lncRNAKB, a well-structured research 

tool that delivers valuable data on human lncRNAs, which can be used for data 

exploration and hypothesis building purpose. Briefly, the lncRNAKB is the end-product 

of systematic step-wise integration of six widely used lncRNA databases that resulted in 

a total non-redundant 99,717 genes entries that were accompanied with 530,947 

transcripts and 3,513,069 exon entries. All the annotated lncRNAs can be browsed at 

http://www.lncrnakb.org. This web-resource also provides a comprehensive list of 

information that researchers can access for every lncRNA entry. This includes viewing 
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and downloading coding potential, conservation score, tissue specific expression 

information, and tissue specificity score for any gene of interest from the website. In 

addition to the gene-level information, we have also created a lncRNA body map where 

we have utilized the gene expression information and created a tissue specific gene 

expression and network pages that can be browsed by researchers and the information 

downloaded as per their research needs. This information includes gene expression count 

and TPM matrix for all the tissues, eQTL results and lncRNA-mRNA co-expression 

clusters/modules and the pathway enrichment results of respective modules. Put-together, 

the above-described features presented in the lncRNAKB web-resource will provide a 

comprehensive set of information that could be used by biologist interested in pursuing 

research in lncRNAs in their tissue or biological process of interest. 
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Supplementary Figure 2.1: Illustration showing the different classes of lncRNAs with 
respect to localization and the direction of transcription of nearby mRNAs (protein-
coding genes). 
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Supplementary Figure 2.2: Distribution of successfully assigned RNA-seq reads to 
lncRNAKB gene annotation. Red bars represent samples with < 10,000,000 assigned 
reads. 
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Supplementary Figure 2.3: Preferential Expression Measure (PEM) tissue-specificity 
scores across 31 solid organ human normal tissues PCGs (black) vs. lncRNAs (red). 
Graph created with density function from R, which computes kernel density estimates. 
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