THE ONGOING AQUATIC MONITORING PROGRAM
 FOR THE GUNSTON COVE AREA

 OF THE TIDAL FRESHWATER POTOMAC RIVER

 OF THE TIDAL FRESHWATER POTOMAC RIVER}

2009

FINAL REPORT
December 2010
by
R. Christian Jones

Professor
Department of Environmental Science and Policy
Director
Potomac Environmental Research and Education Center
George Mason University
Project Director
\&
Richard Kraus
Assistant Professor
Department of Environmental Science and Policy
George Mason University
Co-Principal Investigator
to

Department of Public Works and Environmental Services County of Fairfax, VA

INTRODUCTION

This section reports the results of the on-going aquatic monitoring program for Gunston Cove conducted by the Department of Environmental Science and Policy at George Mason University and supported by the Department of Public Works of Fairfax County, Virginia. This study is a continuation of work originated in 1984 at the request of the County's Environmental Quality Advisory Committee and the Department of Public Works. The original study design utilized 12 stations in Gunston Cove, the Potomac mainstem, and Dogue Creek. Due to budget limitations and data indicating that spatial heterogeneity was not severe, the study has evolved such that only two stations are sampled, but the sampling frequency has been maintained at semimonthly during the growing season. This sampling regime provides reliable data given the temporal variability of planktonic and other biological communities and is a better match to other biological sampling programs on the tidal Potomac including those conducted by the Maryland Department of Natural Resources and the District of Columbia. Starting in 2004, the sampling period was reduced to April through September and photosynthesis determinations were ended.

The 1984 report entitled "An Ecological Study of Gunston Cove - 1984" (Kelso et al. 1985) contained a thorough discussion of the history and geography of the cove. The reader is referred to that document for further details.

This work's primary objective is to determine the status of biological communities and the physico-chemical environment in the Gunston Cove area of the tidal Potomac River for evaluation of long-term trends. This will facilitate the formulation of well-grounded management strategies for maintenance and improvement of water quality and biotic resources in the tidal Potomac. Important byproducts of this effort are the opportunities for faculty research and student training which are integral to the educational programs at GMU.

The authors wish to thank the numerous individuals and organizations whose cooperation, hard work, and encouragement have made this project successful. We wish to thank the Fairfax County Department of Public Works and Environmental Services, Wastewater Planning and Monitoring Division, Environmental Monitoring Work Unit, particularly Elaine Schaeffer and Shahran Moshsenin for their advice and cooperation during the study. The Northern Virginia Regional Park Authority facilitated access to the park and boat ramp. Without a dedicated group of field and laboratory workers this project would not have been possible. Thanks go to Beverly Bachman, Craig Beatty, Theresa Connor, Alex Graziano, Suzanne Dee, Saiful Islam, David Lieu, Sean Lusk, Naghma Malik, Brad Pratt, Jennifer Rafter, and Blake Spady. Claire Buchanan served as a voluntary consultant on plankton identification. Roslyn Cress, Natalie Vu, and Joanne Anderson were vital in handling personnel and procurement functions.

METHODS

A. Profiles and Plankton: Sampling Day

Sampling was conducted on a semimonthly basis at stations representing both Gunston Cove and the Potomac mainstem (Figure 1). One station was located at the center of Gunston Cove (Station 7) and the second was placed in the mainstem tidal Potomac channel off the Belvoir Peninsula just north of the mouth of Gunston Cove (Station 9). Dates for sampling as well as weather conditions on sampling dates and immediately preceding days are shown in Table 1. Gunston Cove is located in the tidal freshwater section of the Potomac about 20 km (13 miles) downstream from Washington, DC.

Gunston Cove Study

Figure 1. Gunston Cove area of the Tidal Potomac River showing sampling stations. Circles (•) represent Plankton/Profile stations, triangles ($\mathbf{\Delta}$) represent Fish Trawl stations, and squares (■) represent Fish Seine stations.

Table 1
Sampling Dates and Weather Data for 2009

Date	Type of Sampling				Avg Daily Temp (${ }^{\circ} \mathrm{C}$)		Precipitation (cm)	
	G	F	T	S	1-Day	3-Day	1-Day	3-Day
April 21	G	F			15.0	15.0	0.91	3.95
April 23			T	S	12.8	13.1	0	1.02
April 28		F*			23.3	24.1	0	0
May 5	G				13.3	13.5	0.69	4.32
May 8			T	S	18.9	17.8	0.01	3.80
May 18			T	S	13.3	17.2	0	1.40
May 19	G	F			14.4	14.4	0	0.08
June 1			T	S	18.3	20.0	0	0.58
June 2	G				25.0	21.5	0	0.58
June 16	G	F			21.1	22.8	0	0
June 19			T	S	23.3	21.7	0	2.77
June 23		F*			24.4	24.4	0	0.01
June 30	G				24.4	23.9	0.05	0.06
July 10			T	S	22.8	23.0	0	0
July 14	G	F			23.9	25.7	0	0
July 21			T	S	26.1	24.6	0	0.01
July 28	G				27.8	27.2	0.01	0.04
August 11	G	F			28.9	29.6	0.01	0.60
August 14			T	S	26.7	26.9	0	0.01
August 19		F*			27.8	28.3	0.33	0.34
August 25	G				25.0	25.7	0	0
August 28			T	S	23.9	26.5	0.33	0.33
Sept 16	G	F			22.2	23.1	0.01	0.50
Sept 22		F*	T	S	22.8	21.1	0	0

Type of Sampling: G: GMU profiles and plankton, F: nutrient and lab water quality by Fairfax County Laboratory, T: fish collected by trawling, S: fish collected by seining. *Samples collected by Fairfax County Lab Personnel

Sampling was initiated at 10:30 am. Four types of measurements or samples were obtained at each station : (1) depth profiles of temperature, conductivity, dissolved oxygen, pH , and irradiance (photosynthetically active radiation) measured directly in the field; (2) water samples for GMU lab determination of chlorophyll a and phytoplankton species composition and abundance; (3) water samples for determination of nutrients, BOD, alkalinity, suspended solids, chloride, and pH by the Environmental Laboratory of the Fairfax County Department of Public Works and Environmental Services; (4) net sampling of zooplankton and ichthyoplankton.

Profiles of temperature, conductivity, and dissolved oxygen were conducted at each station using YSI 6600 datasonde with temperature, conductivity, dissolved oxygen and pH probes. Measurements were taken at $0.3 \mathrm{~m}, 1.0 \mathrm{~m}, 1.5 \mathrm{~m}$, and 2.0 m in the cove. In the river measurements were made with the sonde at depths of $0.3 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}, 6 \mathrm{~m}, 8 \mathrm{~m}, 10 \mathrm{~m}$, and 12 m . Meters were checked for calibration before and after sampling. Profiles of irradiance (photosynthetically active radiation, PAR) were collected with a LI-COR underwater flat scalar PAR probe. Measurements were taken at 10 cm intervals to a depth of 1.0 m . Simultaneous measurements were made with a terrestrial probe in air during each profile to correct for changes in ambient light if needed. Secchi depth was also determined. The readings of at least two crew members were averaged due to variability in eye sensitivity among individuals.

A 1-liter depth-composited sample was constructed from equal volumes of water collected at each of three depths (0.3 m below the surface, middepth, and 0.3 m off of the bottom) using a submersible bilge pump. A $100-\mathrm{mL}$ aliquot of this sample was preserved immediately with acid Lugol's iodine for later identification and enumeration of phytoplankton. The remainder of the sample was placed in an insulated cooler with ice. A separate 1-liter sample was collected from 0.3 m using the submersible bilge pump and placed in the insulated cooler with ice for lab analysis of surface chlorophyll a. Separate 4 -liter samples were collected monthly at each site from just below the surface $(0.3 \mathrm{~m})$ and near the bottom (0.3 m off bottom) at each site using the submersible pump. This water was promptly delivered to the nearby Fairfax County Environmental Laboratory for determination of nitrogen, phosphorus, BOD, TSS, VSS, pH, total alkalinity, and chloride.

Microzooplankton was collected by pumping 32 liters from each of three depths (0.3 m , middepth, and 0.3 m off the bottom) through a $44 \mu \mathrm{~m}$ mesh sieve. The sieve consisted of a 12 -inch long cylinder of 6 -inch diameter PVC pipe with a piece of $44 \mu \mathrm{~m}$ nitex net glued to one end. The $44 \mu \mathrm{~m}$ cloth was backed by a larger mesh cloth to protect it. The pumped water was passed through this sieve from each depth and then the collected microzooplankton was backflushed into the sample bottle. The resulting sample was treated with about 50 mL of club soda and then preserved with formalin containing a small amount of rose bengal to a concentration of 5-10\%.

Macrozooplankton was collected by towing a $202 \mu \mathrm{~m}$ net (0.3 m opening, 2 m long) for 1 minute at each of three depths (near surface, middepth, and near bottom). Ichthyoplankton was sampled by towing a $333 \mu \mathrm{~m}$ net (0.5 m opening, 2 m long) for 2 minutes at each of the same depths. In the cove, the boat made a large arc during the tow
while in the river the net was towed in a more linear fashion along the channel.
Macrozooplankton tows were about 300 m and ichthyoplankton tows about 600 m . Actual distance depended on specific wind conditions and tidal current intensity and direction, but an attempt was made to maintain a constant slow forward speed through the water during the tow. The net was not towed directly in the wake of the engine. A General Oceanics flowmeter, fitted into the mouth of each net, was used to establish the exact towing distance. The depths were established by playing out rope equivalent to about 1.5-2 times the desired depth. Samples which had obviously scraped bottom were discarded and the tow was repeated. Flowmeter readings taken before and after towing allowed precise determination of the distance towed and when multiplied by the area of the opening produced the total volume of water filtered. Macrozooplankton and ichthyoplankton were preserved immediately with formalin to a concentration of $5-10 \%$. Rose bengal formalin with club soda pretreatment was used for macrozooplankton, but not for ichthyoplankton. Macrozooplankton was collected on each sampling trip; ichthyoplankton collections ended after July because larval fish were normally not found after this time.

Samples were delivered to the Fairfax County Environmental Services Laboratory by 2 pm on sampling day and returned to GMU by 3 pm . At GMU $10-15 \mathrm{~mL}$ aliquots of both depth-integrated and surface samples were filtered through $0.45 \mu \mathrm{~m}$ membrane filters (Gelman GN-6 and Millipore MF HAWP) at a vacuum of less than $10 \mathrm{lbs} / \mathrm{in}^{2}$ for chlorophyll a and pheopigment determination. During the final phases of filtration, 0.1 mL of MgCO_{3} suspension ($1 \mathrm{~g} / 100 \mathrm{~mL}$ water) was added to the filter to prevent premature acidification. Filters were stored in 20 mL plastic scintillation vials in the lab freezer for later analysis. Seston dry weight and seston organic weight were measured by filtering 200-400 mL of depth-integrated sample through a pretared glass fiber filter (Whatman 984AH).

Sampling day activities were normally completed by 5:30 pm.

B. Profiles and Plankton: Followup Analyses

Chlorophyll a samples were extracted in a ground glass tissue grinder to which 4 mL of dimethyl sulfoxide (DMSO) was added. The filter disintegrated in the DMSO and was ground for about 1 minute by rotating the grinder under moderate hand pressure. The ground suspension was transferred back to its scintillation vial by rinsing with 90% acetone. Ground samples were stored in the refrigerator overnight. Samples were removed from the refrigerator and centrifuged for 5 minutes to remove residual particulates.

Chlorophyll a concentration in the extracts was determined fluroometrically using a Turner Designs Model 10 field fluorometer configured for chlorophyll analysis as specified by the manufacturer. The instrument was calibrated using standards obtained from Turner Designs. Fluorescence was determined before and after acidification with 2 drops of $10 \% \mathrm{HCl}$. Chlorophyll a was calculated from the following equation which corrects for pheophytin interference:

$$
\text { Chlorophyll a }(\mu \mathrm{g} / \mathrm{L})=\mathrm{F}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}\left(\mathrm{R}_{\mathrm{b}}-\mathrm{R}_{\mathrm{a}}\right) /\left(\mathrm{R}_{\mathrm{s}}-1\right)
$$

where $\mathrm{F}_{\mathrm{s}}=$ concentration per unit fluorescence for pure chlorophyll a
$\mathrm{R}_{\mathrm{s}}=$ fluorescence before acid / fluorescence after acid for pure chlorophyll a
$\mathrm{R}_{\mathrm{b}}=$ fluorescence of sample before acid
$\mathrm{R}_{\mathrm{a}}=$ fluorescence of sample after acid
All chlorophyll analyses were completed within one month of sample collection.
Phytoplankton species composition and abundance was determined using the inverted microscope-settling chamber technique (Lund et al. 1958). Ten milliters of well-mixed algal sample were added to a settling chamber and allowed to stand for several hours. The chamber was then placed on an inverted microscope and random fields were enumerated. At least two hundred cells were identified to species and enumerated on each slide. Counts were converted to number per mL by dividing number counted by the volume counted. Biovolume of individual cells of each species was determined by measuring dimensions microscopically and applying volume formulae for appropriate solid shapes. Diatom biovolume was corrected for vacuole volume using the method employed by the Chesapeake Bay Program. This method was applied directly for discoid centrics and pennates. Biovolume for filamentous centrics like Melosira was corrected by taking $2 / 3$ of the calculated total cell biovolume.

Microzooplankton and macrozooplankton samples were rinsed by sieving a wellmixed subsample of known volume and resuspending it in tap water. This allowed subsample volume to be adjusted to obtain an appropriate number of organisms for counting and for formalin preservative to be purged to avoid fume inhalation during counting. A one mL subsample was placed in a Sedgewick-Rafter counting cell and whole slides were analyzed until at least 200 animals had been identified and enumerated. A minimum of two slides was examined for each sample. References for identification were: Ward and Whipple (1959), Pennak (1978), and Rutner-Kolisko (1974). Zooplankton counts were converted to number per liter (microzooplankton) or per cubic meter (macrozooplankton) with the following formula:

$$
\text { Zooplankton }\left(\# / \mathrm{L} \text { or \#/m }{ }^{3}\right)=\mathrm{NV}_{\mathrm{s}} /\left(\mathrm{V}_{\mathrm{c}} \mathrm{~V}_{\mathrm{f}}\right)
$$

where $\mathrm{N}=$ number of individuals counted
$\mathrm{V}_{\mathrm{s}}=$ volume of reconstituted sample, (mL)
$\mathrm{V}_{\mathrm{c}}=$ volume of reconstituted sample counted, (mL)
$\mathrm{V}_{\mathrm{f}}=$ volume of water sieved, (L or m ${ }^{3}$)
Ichthyoplankton samples were sieved through a $333 \mu \mathrm{~m}$ sieve to remove formalin and then reconstituted in ethanol. Larval fish were picked from the reconstituted sample with the aid of a stereo dissecting microscope. Identification of ichthyoplankton was made to family and further to genus and species where possible. If the number of animals in the sample exceeded several hundred, then the sample was split with a plankton splitter and the resulting counts were multiplied by the subsampling factor. The works Hogue et al. (1976), Jones et al. (1978), Lippson and Moran (1974), and Mansueti and Hardy (1967) were used for
identification. The number of ichthyoplankton in each sample was expressed as number per $10 \mathrm{~m}^{3}$ using the following formula:

Ichthyoplankton $\left(\# / 10 \mathrm{~m}^{3}\right)=10 \mathrm{~N} / \mathrm{B}$
where $\mathrm{N}=$ number ichthyoplankton in the sample
$\mathrm{V}=$ volume of water filtered, $\left(\mathrm{m}^{3}\right)$

C. Adult and Juvenile Fish

Fishes were sampled by trawling at Stations 7, 9, and 10 (Figure 1). A try-net bottom trawl with a 15 -foot horizontal opening, a $3 / 4$ inch square body mesh and a $1 / 4$ inch square cod end mesh was used. The otter boards were 12 inches by 24 inches. Towing speed was 2-3 miles per hour and tow length was 5 minutes. In general, the trawl was towed across the axis of the cove at Stations 7 and 10 and parallel to the channel at Station 9, but most tows curved up to 90° from the initial heading and many turned enough to head in the opposite direction. The direction of tow should not be crucial. Dates of sampling and weather conditions are found in Table 1.

Shoreline fishes were sampled by seining at 3 stations: 4, 6, and 11 (Figure 1). The seine was $45-50$ feet long, 4 feet high and made of knotted nylon with a $11 / 4$ inch square mesh. The seining procedure was standardized as much as possible. The net was stretched out perpendicular to the shore with the shore end in water no more than a few inches deep. The net was then pulled parallel to the shore for a distance of 100 feet by a worker at each end moving at a slow walk. At the end of the prescribed distance, the offshore end of the net was swung in an arc to the shore and the net pulled up on the beach to trap the fish. Dates for seine sampling were generally the same as those for trawl sampling.

We conducted drop ring (a.k.a, Wegner ring) sampling of submerged aquatic vegetation (SAV) beds to better quantify densities of juvenile fishes in these habitats. In Gunston Cove SAV beds develop during mid-summer and hamper sampling efforts with seines and trawls in shallow habitats. We conducted sampling with a 132 cm diameter drop ring from August $5^{\text {th }}$ to August $10^{\text {th }}$, representing peak SAV bed development within the cove. The contents of the ring (including the water) were removed and examined for the presence of juvenile fishes. We employed a stratified random sampling routine with equal probability of sampling in Pohick or Accotink Bays. We collected 30 drop ring samples, containing a total of 1348 juvenile fishes for a nominal fish density of 45 individuals per sample.

After the catch from various gear was hauled in, the fishes were measured for standard length to the nearest 0.5 cm . Standard length is the distance from the front tip of the head to the end of the vertebral column and base of the caudal fin. This is evident in a crease perpendicular to the axis of the body when the caudal fin is pulled to the side.

If the identification of the fish was not certain in the field, the specimen was
preserved in 10% formalin and identified later in the lab. Identification was based on characteristics in dichotomous keys found in several books and articles, including Jenkins and Burkhead (1983), Hildebrand and Schroeder (1928), Loos et al (1972), Dahlberg (1975), Scott and Crossman (1973), Bigelow and Schroeder (1953), and Eddy and Underhill (1978).

D. Submersed Aquatic Vegetation

Data on coverage and composition of submersed aquatic vegetation (SAV) were obtained from the SAV webpage of the Virginia Institute of Marine Science (http://www.wims.edu/bio/sav). Information on this web site was obtained from aerial photographs near the time of peak SAV abundance as well as ground surveys which were used to determine species composition.

E. Benthic Macroinvertebrates

Benthic macroinvertebrates were sampled using a petite ponar sampler at Stations 7 and 9. Triplicate samples were collected on each of four dates at each site. Bottom samples were sieved on site through a 0.5 mm stainless steel sieve and preserved with Rose Bengal formalin. Specimens were sorted and enumerated by taxa.

F. Data Analysis

Data for each parameter were entered into spreadsheets (Quattro Pro, Excel, or SigmaPlot) for graphing of temporal and spatial patterns. Long term trend analysis was conducted with Systat by plotting data for a given variable by year and then constructing a trend line through the data. For water quality parameters the trend analysis was conducted on data from the warmer months (June-September) since this is the time of greatest microbial activity and greatest potential water quality impact. For zooplankton and fish all data for a given year were used. When graphs are shown with a log axis, zero values have been ignored in the trend analysis. Linear regression and standard parametric (Pearson) correlation coefficients were conducted to determine the statistical significance of linear trends over the entire period of record.

RESULTS

A. Climatic and Hydrologic Factors

In 2009 air temperature was about average for most of the year. The period June through October was particularly warm (Table 2). August was the warmest month and July was somewhat below normal. There were 16 days with maximum temperature above $32.2^{\circ} \mathrm{C}$ $\left(90^{\circ} \mathrm{F}\right)$ during 2009 compared with 4 in 2004, 18 in 2005, 29 in 2006, 33 days in 2007, and 31 days in 2008. Precipitation was generally well above normal in the spring and early summer (almost twice normal for the April to June period), well below normal in July and August and above normal in September and October.

Table 2
Meteorological Data for 2009. National Airport. Monthly Summary.

MONTH

Air Temp	Precipitation
$\left({ }^{\circ} \mathrm{C}\right)$	(cm)

March	7.5	(8.1)	5.0	(9.1)
April	14.0	(13.4)	10.7	(7.0)
May	18.7	(18.7)	20.5	(9.7)
June	23.3	(23.6)	15.0	(8.0)
July	25.1	(26.2)	2.8	(9.3)
August	26.7	(25.2)	6.3	(8.7)
September	21.4	(21.4)	8.5	(9.6)
October	14.9	(14.9)	14.6	(8.2)
November	11.4	(9.3)	11.3	(7.7)
December	3.4	(4.2)	17.3	(7.8)

Note: 2009 monthly averages or totals are shown accompanied by long-term monthly averages (1971-2000).
Source: Local Climatological Data. National Climatic Data Center, National Oceanic and Atmospheric Administration.

> In a tidal freshwater system like the Potomac River, river flow entering from upstream is important in maintaining freshwater conditions and also serves to bring in dissolved and particulate substances from the watershed. High freshwater flows may also flush planktonic organisms downstream and bring in suspended sediments that decrease water clarity. The volume of river flow per unit time is referred to as "river discharge" by hydrologists.

Figure 2. Mean Daily Discharge: Potomac River at Little Falls (USGS Data). Month tick is at the beginning of the month.

Potomac River discharge during 2009 was generally near average (Figure 2). Higher than normal flows occurred in May and June. During July and August flow steadily declined reaching a low of about 1000 cfs in late September. Generally above normal flows began in late October and continued through the remainder of the year. Flows in Accotink Creek were near normal through mid June, but decreased steadily through July. During August and September flows returned to near normal, but were very low in October before recovering in November.

Accotink Creek at Braddock Road (USGS 01654000)

In the Gunston Cove region of the tidal Potomac, freshwater discharge is occurring from both the major river watershed upstream (measured at Little Falls) and from immediate tributaries. The major cove tributary for which stream discharge is available is Accotink Creek. Accotink delivers over half of the stream water directly entering the cove. While the gauge at Braddock Road only covers the upstream part of the watershed it is probably representative.

Figure 3. Mean Daily Discharge: Accotink Creek at Braddock Road (USGS Data).
B. Physico-chemical Parameters - 2009

Gunston Cove Study - 2009

Water temperature is an important factor affecting both water quality and aquatic life. In a well-mixed system like the tidal Potomac, water temperatures are generally fairly uniform with depth. In a shallow mixed system such as the tidal Potomac, water temperature often closely tracks daily changes in air temperature.

Figure 4. Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$. GMU Field Data. Month tick is at first day of month.
In 2009, water temperature followed the typical seasonal pattern at both sites (Figure 4). Station 7 warmed up more quickly in late spring-early summer typically being 1-2 C higher on each sampling date. Both sites showed a steady increase through the summer peaking in early August when water temperature approached $30^{\circ} \mathrm{C}$ at both sites. For most of the summer, the two stations showed similar air temperatures between 25° and $30^{\circ} \mathrm{C}$. Water temperature declined in late August and September.

National Airport Temperature - 2009

Mean daily air temperature
(Figure 5) was a good predictor of water temperature.

Figure 5. Average Daily Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$ at Reagan National Airport.

Gunston Cove Study - 2009

Specific conductance measures the capacity of the water to conduct electricity standardized to $25^{\circ} \mathrm{C}$. This is a measure of the concentration of dissolved ions in the water. In freshwater, conductivity is relatively low. Ion concentration generally increases slowly during periods of low freshwater inflow and decreases during periods of high freshwater inflow. In years of low freshwater inflow during the summer and fall, conductance may increase dramatically if brackish water from the estuary reaches the study area.

Figure 6. Specific Conductance (uS/cm). GMU Field Data. Month tick is at first day of month.

During most of 2009, specific conductance (Figure 6) exhibited similar patterns in the cove (Station 7) and the river (Station 9). Relatively high values in mid April gave way to somewhat reduced conductance in mid May following some large freshwater runoff events. Conductivity then gradually increased at both sites through the remainder of the year reaching a maximum in early August in the cove and in September in the river. Chloride exhibited a similar pattern (Figure 7).

Gunston Cove Study - 2009

Chloride ion (Cl -) is a principal contributor to conductance. Major sources of chloride in the study area are sewage treatment plant discharges, road salt, and brackish water from the downriver portion of the tidal Potomac. Chloride concentrations observed in the Gunston Cove area are very low relative to those observed in brackish, estuarine, and coastal areas of the MidAtlantic region.

Figure 7. Chloride (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Oxygen dissolved in the water is required by freshwater animals for survival. The standard for dissolved oxygen (DO) in most surface waters is $5 \mathrm{mg} / \mathrm{L}$. Oxygen concentrations in freshwater are in balance with oxygen in the atmosphere, but oxygen is only weakly soluble in water so water contains much less oxygen than air. This solubility is determined by temperature with oxygen more soluble at low temperatures.

Figure 8. Dissolved Oxygen (mg/L). GMU Field Data. Month tick is at first day of month.
Dissolved oxygen was generally about $3-4 \mathrm{mg} / \mathrm{L}$ higher in the cove than in the river (Figure 8). An exception was in April and early May when cove and river values were similar. In the cove dissolved oxygen was generally above 100% indicating a general surplus of photosynthesis over respiration (Figure 9). Values above 140%, observed on two occasions in the cove, are indicative of very active photosynthesis. In the river values were generally less than 100% indicating lower photosynthesis and an excess of respiration.

Figure 9. Dissolved Oxygen (\% saturation). GMU Field Data. Month tick is at first day of month.

Gunston Cove Study - 2009

> pH is a measure of the concentration of hydrogen ions $(\mathrm{H}+)$ in the water. Neutral pH in water is 7 . Values between 6 and 8 are often called circumneutral, values below 6 are acidic and values above 8 are termed alkaline. Like DO, pH is affected by photosynthesis and respiration. In the tidal Potomac, pH above 8 indicates active photosynthesis and values above 9 indicate intense photosynthesis.

Figure 10. pH. GMU Field Data. Month tick is at first day of month.
Field pH at the Gunston Cove station was consistently higher than the river station by about 1 pH unit (Figure 10). The exception was in April and May following major runoff events from the watershed. Values above 8.5 were typical in the cove while values around 7.5 were found in the river channel. These differences are to be expected given the more intensive photosynthesis in the cove indicated by the dissolved oxygen data. Lab pH showed a similar difference between the two stations (Figure 11).

Gunston Cove Study - 2009

pH may be measured in the field or in the lab. Field pH is more reflective of in situ conditions while lab pH is done under more stable and controlled laboratory conditions and is less subject to error. Newer technologies such as the Hydrolab and YSI sondes used in GMU field data collection are more reliable than previous field pH meters and should give results that are most representative of values actually observed in the river.

Figure 11. pH. Noman Cole Lab Data. Month tick is at first day of month.

Figure 12. Total Alkalinity $\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right)$. Fairfax County Lab data. Month tick is at first day of month.

Total alkalinity was generally slightly higher in the river than in the cove (Figure 12). Following a sharp divergence in April, values at both stations increased slowly but steadily through late August. Values were typical of previous years. Water clarity as reflected by Secchi disk depth was highest in spring in the river at over 1 m , but declined in June and hovered around 0.8 m for the rest of the year (Figure 13). In the cove Secchi depth increased in May to about 0.9 m and declined somewhat to around 0.7 m for the rest of the year.

Gunston Cove Study - 2009

> Secchi Depth is a measure of the transparency of the water. The Secchi disk is a flat circle or thick sheet metal or plywood about 6 inches in diameter which is painted into alternate black and white quadrants. It is lowered on a calibrated rope or rod to a depth at which the disk disappears. This depth is termed the Secchi Depth. This is a quick method for determining how far light is penetrating into the water column. Light is necessary for photosynthesis and thereby for growth of aquatic plants and algae.

Figure 13. Secchi Disk Depth (m). GMU Field Data. Month tick is at first day of month.

Gunston Cove Study - 2009

Light Attenuation is another approach to measuring light penetration. This is determined by measuring light levels at a series of depths starting near the surface. The resulting relationship between depth and light is fit to a semilogarithmic curve and the resulting slope is called the light attenuation coefficient. This relationship is called Beer's Law. It is analogous to absorbance on a spectrophotometer. The greater the light attenuation, the faster light is absorbed with depth. More negative values indicate greater attenuation. Greater attenuation is due to particulate and dissolved material which absorbs and deflects light.

Figure 14. Light Attenuation Coefficient $\left(\mathrm{m}^{-1}\right)$. GMU Field Data. Month tick is at first day of month.

Light attenuation coefficient data generally fell in the range -1.0 to $-2.5 \mathrm{~m}^{-1}$ (Figure 14). Temporal and spatial trends were similar to those for Secchi depth. In the cove light attenuation was greatest in April and early May (more negative coefficient) and was less for the remainder of the year. In the river light attenuation was least in spring (less negative coefficient) and was generally higher in the summer, but was always less than in the cove. Turbidity was lower in spring at both sites and higher in the summer (Figure 15). Values were similar in both river and cove on most dates.

Gunston Cove Study - 2009

Turbidity is yet a third way of measuring light penetration. Turbidity is actually a measure of the amount of light scattering by the water column. Light scattering is a function of the amount and size of particles in the water. Small particles scatter more light than large ones and more particles result in more light scattering than fewer particles.

Figure 15. Turbidity (NTU). GMU Lab Data. Month tick is at first day of month.

Gunston Cove Study - 2009

Figure 16. Ammonia Nitrogen (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Ammonia nitrogen was higher at the river station than in the cove through midsummer (Figure 16). Cove values were in the range $0-0.03 \mathrm{mg} / \mathrm{L}$ during this period while river values were $0.05-0.08$. In September there was a spike in ammonia at both sites followed by a decline. Un-ionized ammonia was very low at both stations through the entire year (Figure 17). Values were well below those causing toxicity problems.

Gunston Cove Study - 2009

Figure 17. Un-ionized Ammonia Nitrogen (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Nitrate Nitrogen refers to the amount of N that is in the form of nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$. Nitrate ion is the most common form of nitrogen in most well oxidized freshwater systems. Nitrate concentrations are increased by input of wastewater, nonpoint sources, and oxidation of ammonia in the water. Nitrate concentrations decrease when algae and plants are actively growing and removing nitrogen as part of their growth.

Figure 18. Nitrate Nitrogen (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Nitrate nitrogen was highest in late May and exhibited a steady decline through the growing season at both stations. The decrease was significantly faster in the cove from $1.2 \mathrm{mg} / \mathrm{L}$ in May to $0.1 \mathrm{mg} / \mathrm{L}$ in late August (Figure 18). The river showed a similar decline through the summer, but remained higher than the cove with a minimum of $0.6 \mathrm{mg} / \mathrm{L}$ in August. Nitrite nitrogen remained very low throughout the year, was consistently higher in the river than in the cove (Figure 19).

Gunston Cove Study - 2009

Figure 19. Nitrite Nitrogen (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Organic nitrogen measures the nitrogen in dissolved and particulate organic compounds in the water. Organic nitrogen comprises algal and bacterial cells, detritus (particles of decaying plant, microbial, and animal matter), amino acids, urea, and small proteins. When broken down in the environment, organic nitrogen results in ammonia nitrogen. Organic nitrogen is determined as the difference between total Kjeldahl nitrogen and ammonia nitrogen.

Figure 20. Organic Nitrogen (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Organic nitrogen in the cove exhibited a steady increase from late May through August reaching a peak of about $1.2 \mathrm{mg} / \mathrm{L}$ (Figure 20). In the river values exhibited a less marked seasonal pattern with peak value in May at about $0.9 \mathrm{mg} / \mathrm{L}$.

Phosphorus (P) is often the limiting nutrient in freshwater ecosystems. As such the concentration of P can set the upper limit for algal growth. Total phosphorus is the best measure of P availability in freshwater since much of the P is tied up in biological tissue such as algal cells. Total P includes phosphate ion $\left(\mathrm{PO}_{4}^{-}\right.$ ${ }^{3}$) as well as phosphate inside cells and phosphate bound to inorganic particles such as clays.

Figure 21. Total Phosphorus (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Total phosphorus was fairly constant through much of the year in the range of 0.05-0.10 mg / L at both stations (Figure 21). Cove values showed a steady increase from late May through August similar to the organic nitrogen pattern. In the river there was little seasonality. Soluble reactive phosphorus was consistently higher in the river than in the cove (Figure 22). In the cove values were in the range $0.002-0.02 \mathrm{mg} / \mathrm{L}$ and showed a seasonal decline, while in the river values were generally $0.015-0.040$. In the river higher values were found from late May to early July.

Gunston Cove Study - 2009

Soluble reactive phosphorus (SRP) is a measure of phosphate ion $\left(\mathrm{PO}_{4}^{-3}\right)$. Phosphate ion is the form in which P is most available to primary producers such as algae and aquatic plants in freshwater. However, SRP is often inversely related to the activity of primary producers because they tend to take it up so rapidly. So, higher levels of SRP indicate either a local source of SRP to the waterbody or limitation by a factor other than P.

Figure 22. Soluble Reactive Phosphorus (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Gunston Cove Study - 2009

$\mathrm{N}: \mathrm{P}$ ratio is determined by summing all of the components of N (ammonia, nitrate, nitrite, and organic nitrogen) and dividing by total P. This ratio gives an indication of whether N or P is more likely to be limiting primary production in a given freshwater system. Generally, values above 7.2 are considered indicative of P limitation while values below 7.2 suggest N limitation. N limitation could lead to dominance by cyanobacteria who can fix their own N from the atmosphere.

Figure 23. N/P Ratio (by mass). Fairfax County Lab Data. Month tick is at first day of month.
N/P ratio was generally in the range 15-35 (Figure 23). All of the readings were above 7.2 indicating P limitation. At both sites values were highest in late May and declined steadily through the summer. Biochemical oxygen demand (BOD) was consistently higher in the cove than in the river (Figure 24). In the cove values were generally $2-3 \mathrm{mg} / \mathrm{L}$ whereas most river values were $1 \mathrm{mg} / \mathrm{L}$.
Gunston Cove Study - 2009

> Biochemical oxygen demand (BOD) measures the amount of decomposable organic matter in the water as a function of how much oxygen it consumes as it breaks down over a given number of days. Most commonly the number of days used is 5 . BOD is a good indicator of the potential for oxygen depletion in water. BOD is composed both dissolved organic compounds in the water as well as microbes such as bacteria and algae which will respire and consume oxygen during the period of measurement.

Figure 24. Biochemical Oxygen Demand (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Figure 25. Total Suspended Solids (mg/L). Fairfax County Lab Data. Month tick is at first day of month.

Total suspended solids were generally in the range $5-25 \mathrm{mg} / \mathrm{L}$ at both stations (Figure 25). TSS was elevated in April in the cove, but decreased and remained low through June. In July cove TSS increased reaching $26 \mathrm{mg} / \mathrm{L}$ in early August. River values were generally slightly lower than those in the cove and showed a midsummer maximum at about $19 \mathrm{mg} / \mathrm{L}$. Volatile suspended solids were consistently $2-3 \mathrm{mg} / \mathrm{L}$ greater in the cove than in the river (Figure 26). VSS showed a slight elevation in the late summer at both stations.

Gunston Cove Study - 2009

Volatile suspended solids (VSS) is determined by taking the filters used for TSS and then ashing them to combust (volatilize) the organic matter. The organic component is then determined by difference. VSS is a measure of organic solids in a water sample. These organic solids could be bacteria, algae, or detritus. Origins include sewage effluent, algae growth in the water column, or detritus produced within the waterbody or from tributaries. In summer in Gunston Cove a chief source is algal (phytoplankton) growth.

Figure 26. Volatile Suspended Solids (mg/L). Fairfax County Lab Data. Month tick is at first day of month.
C. Phytoplankton -2009

Gunston Cove Study - 2009

Chlorophyll a is a measure of the amount of algae growing in the water column. These suspended algae are called phytoplankton, meaning "plant wanderers". In addition to the true algae (greens, diatoms, cryptophytes, etc.) the term phytoplankton includes cyanobacteria (sometimes known as "blue-green" algae). Both depth-integrated and surface chlorophyll values are measured due to the capacity of phytoplankton to aggregate near the surface under certain conditions.

Figure 27. Chlorophyll a (ug/L). Depth-integrated. GMU Lab Data. Month tick is at the first day of month.

Chlorophyll a exhibited a clear seasonal pattern at both sites with values substantially higher in the cove. In the cove values increased abruptly in June and remained in the 20-30 ug/L range through August (Figure 27). In the river, chlorophyll a levels gradually increased through the summer to a pead of $15 \mathrm{ug} / \mathrm{L}$ in early August before declining through the remainder of the year. Depth-integrated and surface chlorophyll showed a similar pattern (Figure 28) with surface values being slightly lower in the cove.

Gunston Cove Study - 2009

In the Gunston Cove, there is very little difference in surface and depth-integrated chlorophyll levels because tidal action keeps the water wellmixed which overcomes any potential surface aggregation by the phytoplankton. Summer chlorophyll concentrations above $30 \mathrm{ug} / \mathrm{L}$ are generally considered characteristic or eutrophic conditions.

Figure 28. Chlorophyll $a(\mathrm{ug} / \mathrm{L})$. Surface. GMU Lab Data. Month tick is at first day of month.

Figure 29. Phytoplankton Density (cells/mL).

Phytoplankton cell density provides a measure of the number of algal cells per unit volume. This is a rough measure of the abundance of phytoplankton, but does not discriminate between large and small cells. Therefore, a large number of small cells may actually represent less biomass (weight of living tissue) than a smaller number of large cells. However, small cells are typically more active than larger ones so cell density is probably a better indicator of activity than of biomass. The smaller cells are mostly cyanobacteria.

Phytoplankton density was generally low in April and May in both areas (Figure 29). In the cove density increased strongly in early June to about 350,000 cells $/ \mathrm{mL}$. A decline occurred through the remainder of June reaching a low of less than 100,000 cells $/ \mathrm{mL}$ in late June. Phytoplankton density in the cove increased again in July and remained high through August at $300,000-400,000$ cells $/ \mathrm{mL}$ In the river densities were fairly constant from April through June, but then increased markedly in July exceeding 200,000 in late July. Total biovolume showed a somewhat similar seasonal pattern in the cove (Figure 30). Cove biovolume increased in through the spring reaching about $70 \times 10^{6} \mathrm{um}^{3} / \mathrm{mL}$ in mid-June. Following a late June decline cove biovolume reached an annual maximum of about $120 \times 10^{6} \mathrm{um}^{3} / \mathrm{mL}$ in mid July. and then showed a general declined through September. In the river biovolume was relatively low through spring and summer with highest values of about $20 \times 10^{6} \mathrm{um}^{3} / \mathrm{mL}$ in July and late August followed by a surge in September.

Figure 30. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$).

The volume of individual cells of each species is determined by approximating the cells of each species to an appropriate geometric shape (e.g. sphere, cylinder, cone, cube, etc.) and then making the measurements of the appropriate dimensions under the microscope. Total phytoplankton biovolume (shown here) is determined by multiplying the cell density of each species by the biovolume of each cell of that species. Biovolume accounts for the differing size of various phytoplankton cells and is probably a better measure of biomass. However, it does not account for the varying amount of water and other nonliving constituents in cells.

Figure 31. Phytoplankton Density by Major Group (cells/mL). Gunston Cove.

Phytoplankton density in the cove was overwhelmingly dominated by cyanobacteria for most of the year (Figure 31). Cryptophytes were roughly coequal to cyanobacteria in April and May and were generally second in abundance. Diatoms and greens contributed to the abundance total in July. In the river cryptophytes were the most abundant during spring and early summer, but cyanobacteria surged from July on (Figure 32).

Figure 32. Phytoplankton Density by Major Group (cells/mL). River.

The dominant cyanobacteria on a numerical basis were:

Aphanocapsa -- small sphere
Merismopedia - a rectangular colony of small spheres
Unk. Cyano - small spherical cells of unknown species
Oscillatoria - a filament
Chroococcus - individual spherical cells
Microcystis - an irregular colony of spherical cells

Figure 33. Phytoplankton Density by Dominant Cyanobacteria (cells/mL). Gunston Cove.
In the cove Oscillatoria was the dominant cyanobacterium with some contribution from other taxa in late July and August (Figure 33). Raphidiopsis, UnkBGA, and Anabaena present in late July and August. In the river an unknown spherical cyanobacterium (UnkBGA) were most numerous through midsummer (Figure 34). Oscillatoria surged in mid July, Merismopedia was very abundant in late July, and Anabaena and Oscillatoria were most common in late August and September.

Figure 34. Phytoplankton Density by Dominant Cyanobacteria (cells/mL). River.

Figure 35. Phytoplankton Density (\#/mL) by Dominant Noncyanobacterial Taxa. Gunston Cove.

In the cove two flagellates, Chroomonas and Cryptomonas were the most numerous of the noncyanobacterial taxa for most of the year (Figure 35). In mid July Pennate 1 was codominant and in September Chromulina was co-dominant. In the river dominance in abundance was mostly shared by Chroomonas and Cryptomonas (Figure 36). Pennate 1 was important in mid summer. Sennia, Chromulina, and Spermatozoopsis made substantial contributions at both stations in certain months.

Figure 36. Phytoplankton Density (\#/mL) by Dominant Taxa. River.

Total phytoplankton biovolume can be broken down into groups:
Cyano - cyanobacteria
("blue-green" algae)
Greens - green algae
Diatoms - includes both centric and pinnate Cryptos - cryptophytes
Other - includes euglenoids, crysophytes, and dinoflagellates

Figure 37. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Major Groups. Gunston Cove.
In the cove the relatively low biovolumes in April and May were dominated by cryptophytes (Figure 37). In early June green algae were important and in mid June diatoms were clearly dominant. In July and August cyanobacteria was clearly dominant with other algae and cryptophytes being important in early August. In the river, diatoms and cryptophytes shared dominance on all dates (Figure 38). Green algae and other algae made contributions in spring and early summer and cyanobacteria increased in late summer and fall.

While dominating cell density, cyanobacteria typically make up a much smaller portion of phytoplankton biovolume. As with cell density, biovolume was generally greater in the cove.

Figure 38. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Major Groups. River.

Cyanobacteria are generally most common in late summer and that is when they normally make the largest contribution to phytoplankton biovolume. Important taxa for biovolume which were not on the top list for cell density are:
Coelospherium - a spherical colony of round unicells
Anabaena - a filament of spherical cells
Raphidiopsis - a filament of discoid cells

Figure 39. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Cyanobacteria Taxa. Gunston Cove.
In the cove Oscillatoria was the overwhelming dominant cyanobacterium in terms of biovolume for the entire year (Figure 39).. In the river cyanobacterial biovolume was very low through June (Figure 40). Oscillatoria was increased greatly in mid July and then increased again in August and September. Merismopedia was most important in late July and Anabaena was significant in late August.

Figure 40. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Cyanobacterial Taxa. River.

Figure 41. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Dominant Noncyanobacterial Taxa. Gunston Cove.

Cryptomonas dominated noncyanobacterial biovolume in April and May (Figure 41). In early June Euglena and Ankistrodesmus were most important and Melosira had a short period of strong dominance in mid June. Cryptomonas continued to be important for the rest of the year with discoid centrics also present. Ankistrodesmus, Euglena, and Trachelomonas were all important on individual dates. In the river biovolume was low through mid August (Figure 42). Cryptomonas was a consistent dominant through this period with discoid centrics usually subdominant and most abundant in mid July.

Figure 42. Phytoplankton Biovolume ($\mathrm{um}^{3} / \mathrm{mL}$) by Dominant Taxon.

D. Zooplankton - 2009

Figure 43. Rotifer Density by Dominant Taxa (\#/L). Cove.
In the cove, rotifers increased in May and early June to about 2500/L. By late June rotifers dropped to about 500/L and then increased steadily to a major peak of over $8000 / \mathrm{L}$ in mid July. A general decline occurred during the remainder of the year reaching less than 1000/L in mid September (Figure 43). Brachionus and Filinia were most important in early June and Brachionus, Keratella and Polyarthra contributed to the July peak. In the river rotifers were much less abundant showing a peak in mid May of only 300/L and in early July of about 500/L (Figure 44). Brachionus and Keratella were the dominant rotifers in the river.

Figure 44. Rotifer Density by Dominant Taxa (\#/L). River.

Gunston Cove Study - 2009

Bosmina is a small-bodied cladoceran, or "waterflea", which is common in lakes and freshwater tidal areas. It is typically the most abundant cladoceran with maximum numbers generally about 100-1000 animals per liter. Due to its small size and relatively high abundances, it is enumerated in the microzooplankton samples. Bosmina can graze on smaller phytoplankton cells, but can also utilize some cells from colonies by knocking them loose.

Figure 45. Bosmina Density by Station (\#/L).
In 2009 the small cladoceran Bosmina occurred sporadically in the cove reaching a maximum of about 150/L in August (Figure 45). In the river Bosmina exhibited a gradual seasonal increase reaching a maximum of nearly 270/L in late August. Diaphanosoma, typically the most abundant larger cladoceran in Gunston Cove, exhibited two peaks at both sites (Figure 46). The late May peak exceeded $10,000 / \mathrm{m}^{3}$ in both areas. The second peak was more pronounced at the river site attaining $7000 / \mathrm{m}^{3}$ whereas in the cove this August peak reached only $2000 / \mathrm{m}^{3}$.

Gunston Cove Study - 2009

Diaphanosoma is the most abundant larger cladoceran found in the tidal Potomac River. It generally reaches numbers of 1,000-10,000 per m^{3} (which would be 1-10 per liter). Due to their larger size and lower abundances, Diaphanosoma and the other cladocera are enumerated in the macrozooplankton samples. Diaphanosoma prefers warmer
temperatures than some cladocera and is often common in the summer.

Figure 46. Diaphanosoma Density by Station (\#/m ${ }^{3}$)

Gunston Cove Study - 2009

Figure 47. Daphnia Density by Station $\left(\# / \mathrm{m}^{3}\right)$.
Daphnia was common mainly in April and May and was most abundant in the cove reaching $1400 / \mathrm{m}^{3}$ (Figure 47). Ceriodaphnia was present sporadically at low densities in both river and cove reaching a maximum of about $150 / \mathrm{m}^{3}$ in the cove and $110 / \mathrm{m}^{3}$ in the river (Figure 48).

Gunston Cove Study - 2009

Figure 48. Ceriodaphnia Density by Station (\#/m ${ }^{3}$).

Gunston Cove Study - 2009

Figure 49. Moina Density by Station $\left(\# / \mathrm{m}^{3}\right)$.
Moina was found sporadically in the cove and river at low levels except for mid June in the cove when a value of $1000 / \mathrm{m}^{3}$ was reached (Figure 49). Leptodora, the large cladoceran predator, was consistently present in May and June in both cove and river (Figure 50). In the cove the peak was in early May at $1500 / \mathrm{m}^{3}$, but values remained relatively high through June. In the river an early mid May peak of about $300 / \mathrm{m}^{3}$ was observed.

Gunston Cove Study - 2009

Leptodora is substantially larger than the other cladocera mentioned. Also different is its mode of feeding - it is a predator on other zooplankton. It normally occurs for brief periods in the late spring or early summer.

Figure 50. Leptodora Density by Station (\#/m ${ }^{3}$).

Gunston Cove Study - 2009

Copepod eggs hatch to form an immature stage called a nauplius. The nauplius is a larval stage that does not closely resemble the adult and the nauplii of different species of copepods are not easily distinguished so they are lumped in this study. Copepods go through 5 naupliar molts before reaching the copepodid stage which is morpho-logically very similar to the adult. Because of their small size and high abundance, copepod nauplii are enumerated in the microzooplankton samples.

Figure 51. Copepod Nauplii Density by Station (\#/L).
Copepod nauplii increased from levels of less than 50/L in April reaching 600/L $\left(600,000 / \mathrm{m}^{3}\right)$ in July in the cove (Figure 51). In the river a steady increase from April through June resulted in a peak of 850/L in late June. At both sites copepod nauplii continued to be found at substantial levels through September. Eurytemora exhibited highest densities in April or early May (Figure 52). Maximum values were about $22,000 / \mathrm{m}^{3}$ in the cove and $13,000 / \mathrm{m}^{3}$ in the river. Eurytemora declined through the summer to values of less than $1000 / \mathrm{m}^{3}$ by September at both sites.

Gunston Cove Study - 2009

Eurytemora affinis is a large calanoid copepod characteristic of the freshwater and brackish areas of the Chesapeake Bay. Eurytemora is a cool water copepod which often reaches maximum abundance in the late winter or early spring. Included in this graph are adults and those copepodids that are recognizable as Eurytemora.

Figure 52. Eurytemora Density by Station (\#/m ${ }^{3}$).

Figure 53. Diaptomus Density by Station (\#/m ${ }^{3}$).
Diaptomus was most abundant at both sites in late April attaining 3000/m ${ }^{3}$ in the cove and nearly $5000 / \mathrm{m}^{3}$ in the river (Figure 53). Diaptomus declined to very low levels by midsummer. Other calanoid copepods were highest in early May in the cove reaching nearly $2600 / \mathrm{m}^{3}$. In the river peaks of about $1200 / \mathrm{m}^{3}$ were observed in early June and early July (Figure 54).

Gunston Cove Study - 2009

Figure 54. Other Calanoids Density by Station $\left(\# / \mathrm{m}^{3}\right)$.

Figure 55. Cyclopoid Copepods by Station (\#/m³).
Cyclopoid copepods reaching maximum densities in the cove in mid summer at both sites (Figure 55). The peak was just over $9000 / \mathrm{m}^{3}$ in the cove and about $7000 / \mathrm{m}^{3}$ in the river.

E. Ichthyoplankton

Larval fishes are transitional stages in the development of juvenile fishes. They range in development from newly hatched, embryonic fish to juvenile fish with morphological features similar to those of an adult. Many fishes such as clupeids (herring family), white perch, striped bass, and yellow perch disperse their eggs and sperm into the open water and the larvae of these species are carried with the current and termed "ichthyoplankton". Other fish species such as sunfish and bass lay their eggs in "nests" on the bottom and their larvae are rare in the plankton.

After hatching from the egg, the larva draws nutrition from a yolk sack for a few days time. When the yolk sack diminishes to nothing, the fish begins a life of feeding on other organisms. This post yolk sack larva feeds on small planktonic organisms (mostly small zooplankton) for a period of several days. It continues to be a fragile, almost transparent, larva and suffers high mortality to predatory zooplankton and juvenile and adult fishes of many species, including its own. When it has fed enough, it changes into an opaque juvenile, with greatly enhanced swimming ability. It can no longer be caught with a slow-moving plankton net, but is soon susceptible to capture with the seine or trawl net.

In 2009, we collected 14 samples (7 at each Station), comprising a total of 2419 larvae. Of these, approximately twice as many $(\mathrm{n}=1618)$ were taken at Station 9. The fish larvae are often difficult to distinguish at the species level, thus some of the counts are only to the genus level.

Catches expressed as abundance are presented in Table 3 below. As is typical, the bulk of the catch (82.4%) was members of the herring family. Most of these (73.1%) were larvae of either gizzard shad or threadfin shad. Most, if not all, were probably gizzard shad, since threadfin shad have been extremely rare in our collections of juvenile and adult fishes. Larval white perch were second in rank (17.1%). Other species were very rare in 2009 with only the shad and river herring (genus Alosa) comprising more than 0.4% of the total.

Table 3. The larval fishes collected in Gunston Cove and the Potomac River in 2009
Table 3
Larval Fishes Collected, by Taxon
Gunston Cove Study - 2009
Taxon
Common Name
Number caught $\%$ of
Sta 7 Sta 9 Total

Total

Alosa sp.

Dorosoma sp.

Brevortia tyranus
Morone americana
Perca flavescens
Menidia beryllina
Strongylura marina
Total

American shad, alewife, hickory shad, or blueback herring $\quad 129 \quad 95 \quad 224 \quad 9.3$
gizzard shad or $\begin{array}{lllll}\text { threadfin shad } & 629 & 1139 & 1768 & 73.1\end{array}$
$\begin{array}{lllll}\text { Atlantic menhaden } & 0 & 0 & 0 & 0.0\end{array}$
$\begin{array}{lllll}\text { white perch } & 33 & 381 & 414 & 17.1\end{array}$
$\begin{array}{lllll}\text { yellow perch } & 1 & 1 & 2 & 0.1\end{array}$
$\begin{array}{llllll}\text { inland silverside } & 8 & 2 & 10 & 0.4\end{array}$
Atlantic needlefish $\quad \underline{1} \quad 0 \quad 1 \quad<0.1$
$801 \quad 1618 \quad 2419 \quad 100.0$

Gunston Cove Ichthyoplankton
Mean over all Stations - 2009

Ichthyoplankton are defined as larval fishes which are drifting with the currents. In the Gunston Cove area, clupeid fishes (shad and herring) and members of the genus Morone (white perch and striped bass) are major contributors to the ichthyoplankton. Many other species such as sunfish and killifish are vastly underrepresented in the ichthyoplankton owing to the fact that they lay eggs in a nest on the bottom where the larvae hatch and develop.

Figure 56. Clupeid Larvae by Date. Month label is at the beginning of the month.
Clupeid larvae include blueback herring, alewife, hickory shad, and gizzard shad. These are difficult to distinguish and have similar spawning patterns so they are lumped into one group for this analysis. Clupeids increased in the study areas through April and May attaining a maximum in early June (Figure 56). White perch larval density peaked at the same time in May (Figure 57). Yellow perch (Perca flavescens) and inland silverside (Menidia beryllina) were captured only sporadically in low numbers and without a clear pattern.

Gunston Cove Ichthyoplankton
Mean over all Stations - 2009

Herrings, Morone spp.. and yellow perch breed during a short interval in the spring of each year. The females broadcast the eggs into the water and the male does the same with its sperm. Hatching from these eggs, the larvae remain in suspension as they develop, first using yolk sac material and then beginning to feed on small zooplankton. Inland silverside larvae are spawned over SAV (submersed aquatic vegetation) beds and generally are found within the SAV rather than in open water where these samples were collected.

Figure 57. Other Fish Larvae by Date. Month label is at the beginning of the month.
E. Adult and juvenile fishes - 2009

Trawls

Trawl sampling was conducted between 23 April and 22 September at three fixed stations (7, 9 , and 10) that have been sampled continuously since the inception of the survey. A total of 2284 fishes comprising 30 species were collected (Table 4). The majority (84.4%, numerically) of the fish collected were represented by 5 species: alewife (41.8%), white perch (23.4%), bluegill sunfish and pumpkinseed (9.7%; grouped due to similarity in habitats and body shape; includes Lepomis sp.), and bay anchovy (9.5). Other numerically abundant species (annual total >20) included: blue catfish (5.1%), spottail shiner (2.6%), Atlantic menhaden (1.2%), and blueback herring (1.1%). The other 21 species were observed sporadically and at low abundances (Table 4, 5A, \& 5B). The fractional values in Tables 4, 5 and 6 are due to a couple of occasions when two net tows were made at the same station. This procedure was carried out when the catch in the first tow was very low (<5 fish) in order to more precisely estimate the catch rate for the species present. In these circumstances, the grand total from both tows was halved to provide a catch per tow that was comparable with other sites/dates.

Seasonal patterns in catches tended to show bimodal patterns, which were driven by reproduction and successful recruitment of the dominant species. Typical of previous years, bay anchovy only appeared in the catches at the end of the sampling season, (Tables 5A and 5B). Bay anchovy spawn in polyhaline areas and the offspring exhibit up-estuary dispersal into freshwater during late summer and fall. For the two primary sunfish species (and in general for the two sunfish genera, Lepomis and Enneacanthus), moderate catches in May represented adults in spawning condition and higher catches at the end of July and in August represented primarily young-of-the-year (YOY) individuals that had grown to sizes large enough to be retained by the gear and quantified by the survey. Most of the sunfish catch occurred at station 10, where dense SAV beds develop. These sunfish species associate strongly with SAV beds when available, and this type of habitat has been shown to have a positive influence on survival and growth.

The dominant anadromous species, white perch, was ubiquitous occurring on every sampling date and all stations (Tables 5B and 6). In the spring adult white perch were primarily caught in the nets while later in the summer juveniles dominated.

In total numbers of fish, Stations 9 and 10 were similar, but Station 10 had the greatest species richness (20 species compared with only 13 species at Station 9; Table 6). Station 7 also had 20 species, and was the numerically dominant station due to a large catch of alewife on June-19, large catches of anchovy, and consistently high catches of white perch (Tables 5 and 6). Station 9 is located in the mainstem of the Potomac River and is unique relative to the other trawl stations, which share similar species composition and richness.

Table 4
Adult and Juvenile Fish Collected by Trawling Gunston Cove Study - 2009

Anguillidae	Anguilla rostrata	American eel	0
Clupeidae	Alosa aestivalis	blueback herring	26
	Alosa mediocris	hickory shad	3
	Alosa pseudoharengus	alewife	956
	Alosa sapidissima	American shad	19
	Alosa sp.	herring or shad	1
	Dorosoma cepedianum	gizzard shad	12
	Brevoortia tyrannus	Atlantic menhanden	28
Engraulidae	Anchoa mitchilli	bay anchovy	216
Cyprinidae	Carassius auratus	goldfish	3.5
	Cyprinus carpio	common carp	0
	Hybognathus regius	eastern silvery minnow	0
	Notemigonius crysoleucas	golden shiner	0
	Notropis hudsonius	spottail shiner	60.5
Catostomidae	Carpiodes cyprinus	quillback	0
	Catostomus commersoni	white sucker	0
	Erimyzon oblongatus	creek chubsucker	1
Ictaluridae	Ameiurus catus	white catfish	1
	Ameiurus nebulosus	brown bullhead	5
	Ictalurus furcatus	blue catfish	116
	Ictalurus punctatus	channel catfish	11
Belonidae	Strongylura marina	Atlantic needlefish	0
Cyprinodontidae	Fundulus diaphanus	banded killifish	8.5
	Fundulus heteroclitus	mummichog	0
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	0
Atherinidae	Menidia beryllina	inland silverside	4.5
Gobiidae	Gobiosoma bosc	naked goby	0
Percichthyidae	Morone americana	white perch	536.5
	Morone saxatilis	striped bass	6
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	2.5
	Lepomis auritus	redbreast sunfish	2
	Lepomis gibbosus	pumpkinseed	57
	Lepomis macrochirus	bluegill	115.5
	Lepomis microlophus	redear sunfish	9
	Lepomis sp.	sunfish	50
	Micropterus dolomieu	smallmouth bass	0
	Micropterus salmoides	largemouth bass	9
	Pomoxis nigromaculatus	white crappie	1
Percidae	Etheostoma olmstedi	tessellated darter	15
	Perca flavescens	yellow perch	5
Soleidae	Trinectes maculatus	hogchoker	4

TOTAL

Table 5A

Table 5B

		Adult and Juvenile Fish Collected by Trawling Gunston Cove Study - 2009			
Anguillidae	Anguilla rostrata	American eel	14-Aug	28-Aug	22-Sep
Clupeidae	Alosa aestivalis	blueback herring	2	0	15
	Alosa mediocris	hickory shad	0	1	0
	Alosa pseudoharengus	alewife	6	0	0
	Alosa sapidissima	American shad	15	0	0
	Alosa sp.	herring or shad	0	0	0
	Dorosoma cepedianum	gizzard shad	1	2	0
	Brevoortia tyrannus	Atlantic menhaden	0	0	0
Engraulidae	Anchoa mitchilli	bay anchovy	60	106	34
Cyprinidae	Carassius auratus	goldfish	1.5	0	0
	Cyprinus carpio	common carp	0	0	0
	Hybognathus regius	eastern silvery minnow	0	0	0
	Notemigonius crysoleucas	golden shiner	0	0	0
	Notropis hudsonius	spottail shiner	0	10	5
Catostomidae	Carpiodes cyprinus	quillback	0	0	0
	Catostomus commersoni	white sucker	0	0	0
	Erimyzon oblongatus	creek chubsucker	0	0	0
Ictaluridae	Ameiurus catus	white catfish	0	0	0
	Ameiurus nebulosus	brown bullhead	2	0	0
	Ictalurus furcatus	blue catfish	0	18	11
	Ictalurus punctatus	channel catfish	0	0	0
Belonidae	Strongylura marina	Atlantic needlefish	0	0	0
Cyprinodontidae	Fundulus diaphanus	banded killifish	1.5	3	0
	Fundulus heteroclitus	mummichog	0	0	0
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	0	0	0
Atherinidae	Menidia beryllina	inland silverside	0.5	0	0
Gobiidae	Gobiosoma bosc	naked goby	0	0	0
Percichthyidae	Morone americana	white perch	93	5	5
	Morone saxatilis	striped bass	0	0	0
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	. 5	1	1
	Lepomis auritus	redbreast sunfish	0	2	0
	Lepomis gibbosus	pumpkinseed	3	,	13
	Lepomis macrochirus	bluegill	5.5	9	2
	Lepomis microlophus	redear sunfish	2	0	3
	Lepomis sp.	sunfish	1	0	0
	Micropterus dolomieu	smallmouth bass	0	0	0
	Micropterus salmoides	largemouth bass	1	0	0
	Pomoxis nigromaculatus	white crappie	0	0	0
Percidae	Etheostoma olmstedi	tessellated darter	0	0	0
	Perca flavescens	yellow perch	0	0	0
Soleidae	Trinectes maculatus	hogchoker	0	0	0
TOTAL			195.5	158	89

Table 6

		Adult and Juvenile Fish Collected by Trawling Gunston Cove Study - 2009			
		Station	7	9	10
Anguillidae	Anguilla rostrata	American eel	0	0	0
Clupeidae	Alosa aestivalis	blueback herring	22	4	0
	Alosa mediocris	hickory shad	2	0	1
	Alosa pseudoharengus	alewife	923	6	27
	Alosa sapidissima	American shad	1	16	2
	Alosa sp.	herring or shad	1	0	0
	Dorosoma cepedianum	gizzard shad	5	0	7
	Brevoortia tyrannus	Atlantic menhaden	2	0	26
Engraulidae	Anchoa mitchilli	bay anchovy	130	86	0
Cyprinidae	Carassius auratus	goldfish	0	0	0
	Cyprinus carpio	common carp	0	0	0
	Hybognathus regius	eastern silvery minnow	0	0	0
	Notemigonius crysoleucas	golden shiner	0	0	0
	Notropis hudsonius	spottail shiner	37	4.5	19
Catostomidae	Carpiodes cyprinus	quillback	0	0	0
	Catostomus commersoni	white sucker	0	0	0
	Erimyzon oblongatus	creek chubsucker	0	0	1
Ictaluridae	Ameiurus catus	white catfish	0	1	0
	Ameiurus nebulosus	brown bullhead	2	2	1
	Ictalurus furcatus	blue catfish	1	115	1
	Ictalurus punctatus	channel catfish	4	7	0
Belonidae	Strongylura marina	Atlantic needlefish	0	0	0
Cyprinodontidae	Fundulus diaphanus	banded killifish	0	0	8.5
	Fundulus heteroclitus	mummichog	0	0	0
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	0	0	0
Atherinidae	Menidia beryllina	inland silverside	1	0	3.5
Gobiidae	Gobiosoma bosc	naked gobi	0	0	0
Percichthyidae	Morone americana	white perch	276	151.5	109
	Morone saxatilis	striped bass	0	6	0
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	0	0	2.5
	Lepomis auritus	redbreast sunfish	0	0	2
	Lepomis gibbosus	pumpkinseed	11	0	46
	Lepomis macrochirus	bluegill	5	0	110.5
	Lepomis microlophus	redear sunfish	0	0	9
	Lepomis sp.	sunfish	0	0	50
	Micropterus dolomieu	smallmouth bass	0	0	0
	Micropterus salmoides	largemouth bass	2	0	7
	Pomoxis nigromaculatus	white crappie	1	0	0
Percidae	Etheostoma olmstedi	tessellated darter	1	1	13
	Perca flavescens	yellow perch	1	0	4
Soleidae	Trinectes maculatus	hogchoker	0	4	0
TOTAL			1428	404	452.5

Gunston Cove Study - 2009

Figure 58. Adult and Juvenile Fishes Collected by Trawling. Dominant Species by Station.
The six most abundant species varied in representation across stations with a single large catch of alewife dominating the pattern at station 7 (Figure 58). Blue catfish were almost exclusively observed at station 9 in relatively high abundance. Blue catfish are primarily a mainstem species and have not featured prominently at stations within the cove. At stations 7 and 9, bay anchovy and white perch made up significant proportion of the total catch. By comparison, high numbers of juvenile bluegill sunfish (primarily late in the season) and white perch dominated the catch rates at station 10. Spottail shiner was present in low but significant abundance at each station.

White perch (Morone americana), the most common fish in the open waters of Gunston Cove, continues to be an important commercial and popular game fish. Adults grow to over 30 cm long. Sexual maturity begins the second year at lengths greater than 9 cm . As juveniles they feed on zooplankton and macrobenthos, but as they get larger consume fish as well.

Bay anchovy (Anchoa mitchill), is not commercially valuable, but is a significant link between the plankton community and large fish like white perch and striped bass. They reproduce in small batches throughout the warmer months. They grow to a maximum of 9 cm . In Gunston Cove this species is frequently very abundant, but its occurrence is erratic.

Trawling collects fish that are located in the open water near the bottom. Due to the shallowness of Gunston Cove, the volume collected is a substantial part of the water column. However, in the river channel, the near bottom habitat through which the trawl moves is only a small portion of the water column. Fishes tend to concentrate near the bottom or along shorelines rather than in the upper portion of the open water.

Gunston Cove Study - 2009

Figure 59. Adult and Juvenile Fishes Collected by Trawling. Dominant Species by Month.

Disregarding large single catches of alewife (in June) and bay anchovy (in August), white perch, bluegill sunfish, and spottail shiner were the most common species that were present throughout the sampling season (Figure 59). The bimodal pattern represented by higher overall catch rates early and late during the season, reflects adults that tend to be captured more frequently during April (spawning season), and annual cohorts of juveniles that are more variable from year-to-year and tend to occur in trawl catches later in the year. In 2009, the most productive months were June, July, and August.

Blueback herring (Alosa aestivalis) was formerly a major commercial species, but is now less common due to overfishing. Adults grow to over 30 cm and are found in the coastal ocean. They return to tidal freshwater embayments and freshwater creeks to spawn in April and May. They feed on zooplankton and may eat fish larvae.

Alewife (Alosa pseudo-

 harengus), like blueback herring, was once a valuable commercial species. They also grow in the coastal ocean to about 30 cm as adults and return to tidal creeks in March and April to spawn at about age 4. As juveniles they feed on zooplankton and, sometimes, on fish larvae.> Channel cat (Ictalurus punctatus) is an introduced species from the Mississippi River basin. They are year round residents, growing to more than 45 cm and are sexually mature at 4-6 years of age. They spawn in nests on the bottom in May-June and the eggs and larvae are protected by the male. As larvae they feed on zooplankton; juveniles and adults on benthos, fishes, and plant material.

Seines

Seine sampling was conducted approximately semi-monthly at 4 stations between 24 April and 12 September. Three of these stations $(4,6,11)$ have been sampled continuously since 1985 and the fourth ancillary station (4A) was added in recent years as a substitute for station 4 when dense SAV impeded seining. Station 4A was located approximately 520 m ESE of station 4 at the canoe launch beach of Pohick Regional Park. Although both sites have cobble substrate, SAV at 4A is routinely cleared to allow access to boaters; therefore, seining there is not impeded. In 2009, regardless of SAV density, station 4A was sampled concurrently with station 4 so that catch composition could be compared.

A total of 40 seine samples were conducted, comprising 7460 fishes and 32 species (Table 7). The most abundant species in seine catches was banded killifish (36.1%), followed by gizzard shad (18.8\%), Atlantic menhaden (11.6\%), white perch (10.0\%), and bluegill sunfish and pumpkinseed (5.5\%, combined; includes Lepomis sp. which likely represent these species in similar proportion). Several other species occurred at moderate abundances (>20 total) including: spottail shiner, golden shiner, American shad, largemouth bass, quillback, eastern silvery minnow, mummichog, inland silverside, tessellated darter, and striped bass (Table 7). Other species occurred sporadically at low abundances. Though at moderate abundances, American shad (all juveniles) still featured prominently in our catches, which continues a pattern first observed 3 years ago, coincident with increased larval stocking efforts at Pohick Regional Park. Also continuing a recent trend were moderate catches of (primarily juvenile) largemouth bass, which reflects relatively high recruitment success in 2007, 2008, and 2009. One species observed in 2009 that has not been recorded in Gunston Cove since 1984 was a juvenile shorthead redhorse (Moxostoma macrolepidotum).

Seasonal patterns were variable with June and July numerically representing the most productive period. Peaks in abundance typically lasted 4 to 6 weeks, and for some species these peaks represented adults during the spawning season (e.g., golden shiner, spottail shiner, silverside, pumpkinseed, and bluegill) or during summer growth period (e.g., eastern silvery minnow, and tessellated darter). Other peaks in catch constituted pulses of juveniles that recently recruited to shallow habitats accessible by the seine (e.g., gizzard shad, Atlantic menhaden, white perch, and striped bass). For the numerically dominant banded killifish, catches were high are variable throughout the sampling period, averaging 270 per date.

The productivity of catches at each site varied approximately two-fold from $\mathrm{n}=1244$ fish at station 6 to $\mathrm{n}=2530$ at station 11 (Table 9). These stations were similar to each other in species richness with values ranging between 19 and 21 species during 2009. Of these species, 12 were common to all four seine stations. A few high abundance species dominated this pattern (i.e., made up $>20 \%$ of the total), but particular dominants varied by site. At sites 6 and 4A, gizzard shad and banded killifish were the dominant species. At site 11 Atlantic menhaden, banded killifish, and white perch dominated, and at site 4 , banded killifish were dominant.

Table 7

	Adult and Juvenile Fish Collected by Seining Gunston Cove Study - 2009		
Clupeidae	Alosa aestivalis	blueback herring	11
	Alosa mediocris	hickory shad	1
	Alosa pseudoharengus	alewife	6
	Alosa sapidissima	American shad	40
	Dorosoma cepedianum	gizzard shad	1402
	Brevoortia tyrannus	Atlantic menhaden	867
Engraulidae	Anchoa mitchilli	bay anchovy	5
Cyprinidae	Carassius auratus	goldfish	4
	Cyprinella analostana	satinfin shiner	4
	Cyprinus carpio	common carp	0
	Hybognathus regius	eastern silvery minnow	205
	Notemigonus crysoleucas	golden shiner	110
	Notropis hudsonius	spottail shiner	144
Catastomidae	Carpiodes cyprinus	quillback	60
	Catostomus commersoni	white sucker	1
	Erimyzon oblongatus	creek chubsucker	0
	Moxostoma macrolepidotum	shorthead redhorse	1
Ictaluridae	Ameiurus nebulosus	brown bullhead	0
Belonidae	Strongylura marina	Atlantic needlefish	12
Cyprinodontidae	Fundulus diaphanus	banded killifish	2695
	Fundulus heteroclitus	mummichog	189
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	44
Atherinidae	Menidia beryllina	inland silverside	277
Percichthyidae	Morone americana	white perch	749
	Morone saxatilis	striped bass	49
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	2
	Lepomis auritus	redbreast sunfish	16
	Lepomis gibbosus	pumpkinseed	166
	Lepomis macrochirus	bluegill	218
	Lepomis microlophus	redear sunfish	8
	Lepomis sp.	sunfish	30
	Micropterus dolomieu	smallmouth bass	0
	Micropterus salmoides	largemouth bass	34
	Pomoxis nigromaculatus	crappie	1
Percidae	Etheostoma olmstedi	tessellated darter	107
	Perca flavescens	yellow perch	2
Channoidea	Channa argus	northern snakehead	0

Table 8A
Adult and Juvenile Fish Collected by Seining
Gunston Cove Study - 2009

			23-Apr	8-May 18	18-May	1-Jun	19-Jun	10-Jul
Clupeidae	Alosa aestivalis	blueback herring	0	0	0	0	1	0
	Alosa mediocris	hickory shad	0	0	0	0	1	0
	Alosa pseudoharengus	alewife	0	0	0	0	6	0
	Alosa sapidissima	American shad	0	0	0	0	0	29
	Dorosoma cepedianum	gizzard shad	0	1	0	0	747	654
	Brevoortia tyrannus	Atlantic menhaden	47	814	5	1	0	0
Engraulidae	Anchoa mitchilli	bay anchovy	0	4	1	0	0	0
Cyprinidae	Carassius auratus	goldfish	2	1	0	0	0	0
	Cyprinella analostana	satinfin shiner	0	3	0	0	0	0
	Cyprinus carpio	common carp	0	0	0	0	0	0
	Hybognathus regius	eastern silvery minnow	2	0	2	0	2	39
	Notemigonus crysoleucas	golden shiner	65	10	10	25	0	0
	Notropis hudsonius	spottail shiner	31	19	6	0	1	9
Catastomidae	Carpiodes cyprinus	quillback	0	0	0	0	23	26
	Catostomus commersoni	white sucker	0	0	0	0	0	1
	Erimyzon oblongatus	creek chubsucker	0	0	0	0	0	0
	Moxostoma macrolepidotum	shorthead redhorse	0	0	0	0	0	0
Ictaluridae	Ameiurus nebulosus	brown bullhead	0	0	0	0	0	0
Belonidae	Strongylura marina	Atlantic needlefish	0	1	0	0	10	1
Cyprinodontidae	Fundulus diaphanus	banded killifish	171	378	407	456	284	300
	Fundulus heteroclitus	mummichog	23	4	10	2	0	10
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	2	2	1	0	2	2
Atherinidae	Menidia beryllina	inland silverside	48	63	120	2	25	10
Percichthyidae	Morone americana	white perch	2	3	1	7	17	239
	Morone saxatilis	striped bass	0	0	0	0	26	16
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	0	0	1	0	0	1
	Lepomis auritus	redbreast sunfish	0	0	0	2	0	0
	Lepomis gibbosus	pumpkinseed	27	10	47	37	3	11
	Lepomis macrochirus	bluegill	101	13	36	20	2	2
	Lepomis microlophus	redear sunfish	0	0	0	0	0	0
	Lepomis sp.	sunfish	0	0	3	2	0	20
	Micropterus dolomieu	smallmouth bass	0	0	0	0	0	0
	Micropterus salmoides	largemouth bass	1	1	9	1	3	11
	Pomoxis nigromaculatus	crappie	0	0	0	0	0	0
Percidae	Etheostoma olmstedi	tessellated darter	12	6	4	8	8	14
	Perca flavescens	yellow perch	0	1	0	0	1	0
Channoidea	Channa argus	northern snakehead	0	0	0	0	0	0
TOTAL			534	1334	4663	563	31162	1395

Table 8B
Adult and Juvenile Fish Collected by Seining Gunston Cove Study - 2009

Clupeidae	Alosa aestivalis	blueback herring	21-July 14-Aug		28-Aug 22-Sept	
			0	10	0	0
	Alosa mediocris	hickory shad	0	0	0	0
	Alosa pseudoharengus	alewife	0	0	0	0
	Alosa sapidissima	American shad	3	8	0	0
	Dorosoma cepedianum	gizzard shad	0	0	0	0
	Brevoortia tyrannus	Atlantic menhaden	0	0	0	0
Engraulidae	Anchoa mitchilli	bay anchovy	0	0	0	0
Cyprinidae	Carassius auratus	goldfish	0	1	0	0
	Cyprinella analostana	satinfin shiner	0	1	0	0
	Cyprinus carpio	common carp	0	0	0	0
	Hybognathus regius	eastern silvery minnow	84	42	33	1
	Notemigonus crysoleucas	golden shiner	0	0	0	0
	Notropis hudsonius	spottail shiner	36	42	0	0
Catastomidae	Carpiodes cyprinus	quillback	11	0	0	0
	Catostomus commersoni	white sucker	0	0	0	0
	Erimyzon oblongatus	creek chubsucker	0	0	0	0
	Moxostoma macrolepidotum	shorthead redhorse	1	0	0	0
Ictaluridae	Ameiurus nebulosus	brown bullhead	0	0	0	0
Belonidae	Strongylura marina	Atlantic needlefish	0	0	0	0
Cyprinodontidae	Fundulus diaphanus	banded killifish	31	159	124	385
	Fundulus heteroclitus	mummichog	79	59	1	1
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	0	1	3	31
Atherinidae	Menidia beryllina	inland silverside	0	4	0	5
Percichthyidae	Morone americana	white perch	241	124	82	33
	Morone saxatilis	striped bass	6	0	0	1
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	0	0	0	0
	Lepomis auritus	redbreast sunfish	3	3	6	2
	Lepomis gibbosus	pumpkinseed	15	11	2	3
	Lepomis macrochirus	bluegill	39	4	1	0
	Lepomis microlophus	redear sunfish	0	5	3	0
	Lepomis sp.	sunfish	0	5	0	0
	Micropterus dolomieu	smallmouth bass	0	0	0	0
	Micropterus salmoides	largemouth bass	2	4	2	0
	Pomoxis nigromaculatus	crappie	1	0	0	0
Percidae	Etheostoma olmstedi	tessellated darter	22	20	12	1
	Perca flavescens	yellow perch	0	0	0	0
Channoidea	Channa argus	northern snakehead	0	0	0	0
TOTAL			574	503	269	763

Table 9
Adult and Juvenile Fish Collected by Seining Gunston Cove Study - 2009

Clupeidae	Alosa aestivalis	blueback herring	0	0	10	1
	Alosa mediocris	hickory shad	0	0	1	0
	Alosa pseudoharengus	alewife	0	0	6	0
	Alosa sapidissima	American shad	0	0	26	14
	Dorosoma cepedianum	gizzard shad	12	288	2	1100
	Brevoortia tyrannus	Atlantic menhaden	40	11	762	54
Engraulidae	Anchoa mitchilli	bay anchovy	0	0	4	1
Cyprinidae	Carassius auratus	goldfish	1	0	0	3
	Cyprinella analostana	satinfin shiner	0	4	0	0
	Cyprinus carpio	common carp	0	0	0	0
	Hybognathus regius	eastern silvery minnow	11	1	191	2
	Notemigonus crysoleucas	golden shiner	54	30	4	22
	Notropis hudsonius	spottail shiner	9	14	104	17
Catastomidae	Carpiodes cyprinus	quillback	0	1	24	35
	Catostomus commersoni	white sucker	0	0	0	1
	Erimyzon oblongatus	creek chubsucker	0	0	0	0
	Moxostoma macrolepidotum	shorthead redhorse	0	0	1	0
Ictaluridae	Ameiurus nebulosus	brown bullhead	0	0	0	0
Belonidae	Strongylura marina	Atlantic needlefish	7	0	5	0
Cyprinodontidae	Fundulus diaphanus	banded killifish	731	535	573	856
	Fundulus heteroclitus	mummichog	164	23	0	2
Poeciliidae	Gambusia holbrooki	eastern mosquitofish	24	6	0	14
Atherinidae	Menidia beryllina	inland silverside	34	36	201	6
Percichthyidae	Morone americana	white perch	24	92	560	73
	Morone saxatilis	striped bass	1	4	34	10
Centrarchidae	Enneacanthus gloriosus	bluespotted sunfish	2	0	0	0
	Lepomis auritus	redbreast sunfish	5	7	0	4
	Lepomis gibbosus	pumpkinseed	67	56	10	33
	Lepomis macrochirus	bluegill	91	83	1	43
	Lepomis microlophus	redear sunfish	8	0	0	0
	Lepomis sp.	sunfish	12	18	0	0
	Micropterus dolomieu	smallmouth bass	0	0	0	0
	Micropterus salmoides	largemouth bass	16	10	0	8
	Pomoxis nigromaculatus	crappie	1	0	0	0
Percidae	Etheostoma olmstedi	tessellated darter	8	24	10	65
	Perca flavescens	yellow perch	0	1	1	0
Channoidea	Channa argus	northern snakehead	0	0	0	0
TOTAL			1322	1244	2530	2364

Seines - Average per Seine: 2009

Figure 60. Adult and Juvenile Fish Collected by Seining. Dominant Species by Station.
Typical of shallow littoral zone habitats in Gunston Cove during the past decade, the most productive period for seine sampling occurred in the months of May, June, and July (Figure 60). Banded killifish occurred in every month, while other species peaked at different times: Atlantic menhaden were primarily captured in May, gizzard shad (mostly juveniles) were captured primarily in June and July, and white perch (also primarily juveniles) were captured primarily in July and August. Atlantic menhaden spawn coastally during winter and recruit to shallow tidal freshwater habitats earlier than gizzard shad and white perch, which spawn in the spring during April and May and recruit as juveniles to the littoral zone June and July.

Banded killifish (Fundulus diaphanus) is a small fish, but the most abundant species in shoreline areas of the cove. Individuals become sexually mature at about 5 cm in length and may grow to over 8 cm long. Spawning occurs throughout the warmer months over vegetation and shells. They feed on benthic invertebrates, vegetation, and very small fishes.

White perch (Morone americana), which was discussed earlier in the trawl section, is also a common shoreline fish as juveniles collected in seines.

> Seining is conducted in shallow water adjacent to the shoreline. Some fish minimize predation by congregating along the shoreline rather than disperse through the open water. While seines and trawls tend to collect about the same number of individuals per effort, seines sample a smaller volume of water emphasizing the higher densities of fish along the shoreline.

Figure 61. Adult and Juvenile Fish Collected by Seining. Dominant Species by Month.

The 6 dominant species ranked by catch rate included banded killifish and white perch, which were present at every station (Figure 61). Other common species in 2009 included sunfish (pooled), gizzard shad, Atlantic menhaden and silverside. Whereas banded killifish were ever present in seine catches, gizzard shad occurred mainly at stations 4A and 6. Atlantic menhaden were similarly restricted spatially to stations 11 and 4A. In addition, more white perch were captured at station 11 than all other stations combined, which continues a longterm trend for this species to be less abundant in the cove than near the mainstem of the Potomac.

> Spottail shiner (Notropis hudsonius), a member of the minnow family, is moderately abundant in the open water and along the shore. Spawning occurs throughout the warmer months. It reaches sexual maturily at about 5.5 cm and may attain a length of 10 cm . They feed primarily on benthic invertebrates and occasionally on algae and plants.

Mummichog (Fundulus heteroclitus) is a close relative of the dominant seine fish, banded killifish, who it closely resembles. Individuals become sexually mature in their second year and grow to a maximum length of 10 cm . Mummichog is very common in shallow bay waters and is an important food for larger fishes.

Inland silverside (Menidia beryllina) is a small fish which is collected sporadically in the Gunston Cove seines. This species is characteristic of brackish water conditions, but often enters tidal freshwater to feed. Adults may reach 7 cm long. Spawning occurs throughout the warmer months. Food consists almost exclusively of zooplankton. It is food for larger fishes and shoreline birds like egrets.

Drop-ring Sampling of Fish

We selected 30 sites using a stratified random sampling routine with equal probability of sampling any SAV-colonized location in Pohick or Accotink Bays (Figure 62). The 30 drop ring samples contained a total of 1348 juvenile fishes for a nominal fish density of 44.9 individuals per sample. Here we compare 2009 with results from 2008 and 2007.

Figure 62 Map of Gunston Cove demonstrating extent of SAV beds in Pohick and Accotink Bays (preliminary 2009 data from aerial surveys; see www.vims.edu/bio/sav). The red dots are locations sampled with the drop ring in 2009.

The species richness in drop ring samples in 2009 was slightly greater than in past years (12 in 2009, 9 in 2008, and 10 in 2007). Six species have been common to all years and 15 species total have been collected over the 3 year period. Increased species richness in 2009 was due to the capture of a single juvenile creek chub sucker (Erimyzon oblongus) and 11 juvenile common carp (Cyprinus carpio). These species are common in Gunston Cove, but have not been captured in drop ring samples until now.
Banded killifish had the highest densities overall and did not varied non-significantly between years (Figure 63). Tessellated darter density in 2009 declined to similar a similar level as 2007. In 2009, fish density increased from 2008 for tessellated darter, white perch, brown bullhead, and mummichog. Also, notable was the high goldfish
 density, which was significantly higher than in previous years and exceeded 2 per square meter on average (Figure 63).
Declines in density were observed for bluegill sunfish, American, pumpkinseed, and eastern mosquitofish.

Figure 63 Geometric mean density of juvenile fishes in drop ring samples from SAV beds in Gunston Cove. Means are compared for three years, and corresponding asymmetric confidence intervals are plotted. Geometric mean was used due to the high frequency of zero catches (calculations were made with $\ln (x+1)$
transformed data that were back-transformed for graphing). The geometric mean approaches the arithmetic mean when data normally distributed and is lower than the arithmetic mean when data are right-skewed (e.g., when there are many zeros).

F. Submersed Aquatic Vegetation - 2009

The distribution of submersed aquatic vegetation (SAV) in the Gunston Cove area in fall 2009 as determined by the annual VIMS aerial photography survey is shown in Figure 64. SAV was present at high densities in both Pohick and Accotink Bays and into the inner portions of Gunston Cove. Total coverage was about 162 hectares, down from the peak of over 200 hectares in 2005 , similar to the last 2 years. The fringing beds continued to be found along much of the shoreline and the bed of SAV has intensified along the sill at the mouth of the cove. Species data for 2009 was not available for Gunston Cove from the VIMS website, but field observations indicate that Hydrilla tends to dominate in the shallows with Vallisneria, Myriophyllum, and Ceratophyllum common in deeper areas.

Valisneria americana Water celery

Hydrilla verticillata Hydrilla

Figure 64. Distribution and Density of Submersed Aquatic Vegetation in the Gunston Cove area. 2008. VIMS (http://www.vims.edu/bio/sav/index.html).

Macroinvertebrate sampling was resumed in 2009 after several years. Triplicate petite ponar samples were collected at the cove (Station 7) and river (Station 9) sites on four dates (May 5, June 2, June 30, and September 16).

Oligochaetes were the most common invertebrates collected in these samples and were found at about the same density in both river and cove (Figure 65). In the cove diptera (chironomid/midge) larvae made up the bulk of the remaining organisms with a few amphipods turning up in some of the samples. In the river, several groups were found in moderate numbers: amphipods (crustaceans commonly known as scuds), Corbicula (Asiatic clam), and gastropods (snails, mostly Japanese mystery snail). Diptera were rare in the river.

Figure 65. Average abundance of various benthic macroinvertebrate taxa in petite ponar samples collected on four dates in 2009.

These results are consistent with previous collections. The composition of the benthic macroinvertebrate community at these two sites seems to mainly reflect the texture of bottom substrates. In the cove at Station 7, the bottom sediments are fine and organic with anoxia just below the surface. These conditions favor chironomids and oligochaetes and are not supportive of the other taxa found in the river. In the river sediments are coarser and are comprised of a mixture of bivalve shells (mainly Corbicula) and sand/silt. This type of substrate is supportive of a wider array of species.

DISCUSSION

A. 2009 Data

The year 2009 was characterized by near normal temperatures with August being the warmest month. There were 16 days with high temperatures above $90^{\circ} \mathrm{F}\left(32.2^{\circ} \mathrm{C}\right)$ in 2009 which was the least since 2004. Potomac River flows were above average in May and June with one large surge exceeding 100,000 cfs. July, August, and early September had near normal flows, but late September and October were below normal reflecting the dry conditions from July through September. Flows again exceeded normal in late October. Local tributary flows were about normal in spring, but dropped below normal in June and July reflecting lower precipitation.

Specific conductance was relatively high through mid April, but declined markedly in May and then slowly increased through the remainder of the year as depicted by our biweekly monitoring (Figure 6). Chloride showed a similar pattern. Total alkalinity also showed a gradual increase through the year at both sites. All of these parameters reflected a gradual increase in ionic concentration as freshwater flow declined during summer and fall.

Dissolved oxygen was high at both stations in the spring reflecting increased solubility of oxygen at lower temperatures. DO concentrations remained high during the summer in the cove as photosynthetic production offset decreased solubility leading to supersaturation conditions in the cove. pH was also elevated during the summer in the cove further indicating high photosynthetic rate.

Water clarity was generally slightly higher in the river than in the cove as indicated by Secchi depth, light attenuation coefficient and turbidity. However, differences were less marked than in previous years as the cove becomes clearer.

Ammonia nitrogen was higher in the river than in the cove in spring and early summer. River values declined in late summer reaching the lower cove values. Nitrate showed a gradual seasonal decline at both stations with values remaining somewhat higher in the river. Nitrite nitrogen was also consistently higher in the river. Organic nitrogen was generally higher in the cove and reached a peak in August. Total phosphorus was fairly constant and similar at both sites. Soluble reactive phosphorus was consistently higher in the river and did not show any clear seasonal patterns. N to P ratio was similar at the two sites and declined somewhat seasonally, but remained in the range indicating phosphorus limitation. BOD and VSS were higher in the cove than in the river reflecting the higher phytoplankton densities.

In the cove chlorophyll concentrations were low in April and early May, but increased and late May to about $30 \mathrm{ug} / \mathrm{L}$ and remained in the 20-30 ug/L range through the summer. In the river chlorophyll remained below $5 \mathrm{ug} / \mathrm{L}$ through June and peaked at about $17 \mathrm{ug} / \mathrm{L}$ in late July. In the cove phytoplankton density and biovolume increased strongly in June and remained high for most of the remainder of the summer. One exception was late June when
both phytoplankton measures were quite low in the cove. In the river phytoplankton were low through June, but increased somewhat in July and August. Cyanobacteria dominated phytoplankton density in the cove principally due to Oscillatoria. In the river densities were somewhat lower and Oscillatoria shared dominance with other cyanobacteria. Cryptophytes were also important in density values in the river especially in spring and early summer. Biovolume in the cove increased strongly in mid June led by diatoms and then by cyanobacteria in July. In the river cryptophytes and diatoms were most important all year.

Rotifers were numerous in the cove for most of the year with Brachionus being dominant or codominant and Keratella and Polyarthra being very abundant in mid July. In the river rotifers were much less abundant with peaks in late June and September. The small cladoceran Bosmina was found in moderate numbers in summer samples from both sites with a peak in the river in late August. The larger cladoceran Diaphanosoma was quite high in early June and mid August at both sites. Following its high abundance in April, Daphnia was fairly uncommon. Leptodora was quite abundant in May and June in the cove and was found at somewhat lower levels in the river at the same time. Copepod nauplii were present at moderate values in the cove and river over the entire year showing a tendency to increase through the year. Eurytemora was very abundant in some samples in April, May and June and was rarer in the late summer and fall. Diaptomus peaked in April in both cove and river at moderately high densities. Cyclopoid copepods were abundant in the cove and river in June.

In 2009 ichthyoplankton was dominated by Dorosoma sp (gizzard shad) and, to a lesser extent, Morone sp. (white perch or striped bass) which comprised over 90% of the catch. Alosids, yellow perch, and inland silversides were found reduced numbers.

In trawls, the majority of the catch was composed of 4 species: alewife, bay anchovy, bluegill sunfish, blue catfish, and white perch. As usual, white perch was found throughout the year at all stations. The sunfish were found throughout the year, but mainly at cove sites. In both groups, adults tended to be captured in spring and juveniles in the late summer. The most abundant species collected in seines was banded killifish followed by gizzard shad, Atlantic menhaden and white perch. Banded killifish and white perch were collected at all stations and throughout the year.

Submersed aquatic vegetation (SAV) continued to be present at high densities in both Pohick and Accotink Bays and to penetrate the inner portions of Gunston Cove in 2008. A fringe of SAV was observed all along the Gunston Cove shoreline and a band of lower density SAV was found across the cove mouth. Coverage reported by aerial surveys was much elevated over pre-2005 levels, but less extensive than in 2005.

B. Water Quality Trends: 1983-2009

To assess long-term trends in water quality, data from 1983 to 2009 were pooled into a single data file. Then, subgroups were selected based on season and station. For water quality parameters, we focused on summer (June-September) data as this period is the most stable and often presents the greatest water quality challenges and the highest biological activity and abundances. We examined the cove and river separately with the cove represented by Station 7 and the river by Station 9. We tried several methods for tracking long-term trends, settling on a scatterplot with LOWESS trend line. Each observation in a particular year is plotted as an open circle on the scatterplot. The LOWESS (locally weighted sum of squares) line is drawn by a series of linear regressions moving through the years. We also calculated the Pearson correlation coefficient and performed linear regressions to test for statistical significance of a linear relationship over the entire period of record (Tables 10 and 11). This was similar to the analysis performed in previous report.

Table 10
Correlation and Linear Regression Coefficients
Water Quality Parameter vs. Year for 1984-2009
GMU Water Quality Data
June-September

	Corr. Coeff.	Station 7 Reg. Coeff.	Signif.	Corr. Coeff.	Station 9 Reg. Coeff.	Signif.
Parameter						
Temperature	0.163	0.064	0.010	0.067	----	NS
Conductivity, standardized to $25^{\circ} \mathrm{C}$	0.152	2.67	0.019	0.009	----	NS
Dissolved oxygen, mg / L	0.025	----	NS	0.160	0.028	0.024
Dissolved oxygen, percent saturation	0.088	----	NS	0.167	0.367	0.018
Secchi disk depth	0.662	1.54	<0.001	0.354	0.714	<0.001
Light extinction coefficient	0.590	0.114	<0.001	0.123	----	NS
pH, Field	-0.088	---	NS	0.060	----	NS
Chlorophyll, depth-integrated	-0.472	-4.08	<0.001	-0.209	-0.781	0.004
Chlorophyll, surface	-0.480	-4.38	<0.001	-0.203	-0.899	0.004

For Station 7, $\mathrm{n}=234-253$ except pH , Field where $\mathrm{n}=187$ and Light extinction coefficient where $\mathrm{n}=173$.
For Station 9, n=192-206 except pH, Field where n=154 and Light extinction coefficient where n=141.
Significance column indicates the probability that a correlation coefficient this large could be due to chance alone. If this probability is greater than 0.05 , then NS (not significant) is indicated.

Table 11
Correlation and Linear Regression Coefficients Water Quality Parameter vs. Year for 1983-2009 Fairfax County Environmental Laboratory Data June-September

| | | Station 7
 Rarameter | | | Corr. Coeff. | Reg. Coeff. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Signif. \quad Corr. Coeff. | Station 9 |
| :--- |
| Reg. Coeff. | Signif.

For Station 7, n=334-375 except Nitrite Nitrogen where $\mathrm{n}=297$ and Chlorophyll a where $\mathrm{n}=135$.
For Station 9, $\mathrm{n}=334-383$ except Nitrite Nitrogen where $\mathrm{n}=296$ and Chlorophyll a where $\mathrm{n}=135$.
Significance column indicates the probability that a correlation coefficient this large could be due to chance alone. If this probability is greater than 0.05 , then NS (not significant) is indicated.

Water temperatures during the summer months generally varied between 20 and $30^{\circ} \mathrm{C}$ over the study period (Figure 69).
The LOWESS curve indicated an average of about $26^{\circ} \mathrm{C}$ with a distinct upward trend in the last few years approaching $28^{\circ} \mathrm{C}$. Linear regression analysis indicated a significant linear trend in water temperature in the cove when the entire period of record is considered (Table 10). This upward trend is due principally to observations since 2000.

Figure 69. Long term trend in Water Temperature (GMU Field Data). Station 7. Gunston Cove.

> In the river summer temperatures have occupied a similar range to that in the cove (Figure 70). The trend line did show a little dip in the mid1990's and a slight rise since then. Linear regression over the study period was not significant (Table 10). The increase over the last 5 years is less obvious than in the cove data.

Figure 70. Long term trend in Water Temperature (GMU Field Data). Station 9. Gunston Cove.

Specific conductance was generally in the range 200-400 uS/cm over the study period (Figure 71). Some significantly higher readings have been observed sporadically. A slight increase in specific conductance was suggested by the LOWESS line over the study period. This was confirmed by linear regression analysis which found a significant linear increase of $2.7 \mathrm{uS} / \mathrm{cm}$ per year over the long term study period (Table 10). The results for 2009 were centered around the trend line in contrast to 2007 and 2008.

Figure 71. Long term trend in Specific Conductance (GMU Field Data). Station 7. Gunston Cove.

Conductivity values in the river were in the same general range as in the cove (Figure 72). Most values were between 200 and $400 \mathrm{uS} / \mathrm{cm}$ with a few much higher values. These higher values are probably attributable to intrusions of brackish water from downstream during years of low river flow. Linear regression did not reveal a significant trend in river conductivity (Table 10). As in the cove, the 2009 results were more typical than 2007 and 2008 reflecting more normal freshwater inflow conditions.

Figure 72. Long term trend in Specific Conductance (GMU Field Data). Station 9. River mainstem.

Chloride levels were clustered in a relatively narrow range of 20-60 mg / L for the entire study period (Figure 73). Higher values observed in some years were probably due to the estuarine water intrusions that occur in dry years. The trend is nearly flat and a linear regression was not statistically significant (Table 11). 2009 levels were above those observed in 2008, a wet year yielding lower chloride levels.

Figure 73. Long term trend in Chloride (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 74. Long term trend in Chloride (Fairfax County Lab Data). Station 9. River mainstem.

Figure 75. Long term trend in Dissolved Oxygen, mg/L (GMU Data). Station 7. Gunston Cove.

Station 9: June-Sept

In the river dissolved oxygen values generally were in the range $5-9 \mathrm{mg} / \mathrm{L}$ over the long term study period (Figure 76). The LOWESS trend line suggested a decline in the 1980's, an increase in the early to mid 1990's and a decline in the 2000's. The linear regression analysis over the entire period indicated a significant positive trend with slope of 0.028 mg / L per year (Table 10). This implies an increase of $0.9 \mathrm{mg} / \mathrm{L}$ over the study period. However, 2009 readings look very similar to those of 1984.

Figure 76. Long term trend in Dissolved Oxygen, mg/L (GMU Data). Station 9. River mainstem.

Figure 77. Long term trend in Dissolved Oxygen, \% saturation (GMU Data). Station 7. Gunston Cove.

In the river dissolved oxygen was generally less than 100% indicating that photosynthesis was much less important in the river than in the cove (Figure 78). The temporal pattern showed a slight decline in the 1980's, an increase in the 1990's, and a subsequent slight decline in the 2000's. In the river a significant linear increase was indicated by regression analysis with a slope of 0.37% per year yielding about 10% increase over the study period (Table 10). However, 2009 readings occupy a similar range to those observed in 1983.

Figure 78. Long term trend in Dissolved Oxygen, \% saturation (GMU Data). Station 9. Gunston Cove.

Figure 79. Long term trend in Secchi Disk Transparency (GMU Data). Station 7. Gunston Cove.

Figure 80. Long term trend in Secchi Disk Transparency (GMU Data). Station 9. River mainstem.

Figure 81. Long term trend in Light Attenuation Coefficient (GMU Data). Station 7. Gunston Cove.

Figure 82. Long term trend in Light Attenuation Coefficient (GMU Data). Station 9. River mainstem.

Figure 83. Long term trend in Field pH (GMU Data). Station 7. Gunston Cove.

Figure 84. Long term trend in Field pH (GMU Data). Station 9. River mainstem.

Lab pH as measured by Fairfax County personnel were generally in the range 7.5 to 9.5 over the long term study period (Figure 85). Since about 1998 a decline is evident with the trend line decreasing from about 9 to about 8.2. Linear regression indicated a significant decline in lab pH over the study period at a rate of about 0.027 pH units per year or a total of 0.65 units over the study period (Table 11).

Figure 85. Long term trend in Lab pH (Fairfax County Lab Data). Station 7. Gunston Cove.

In the river, long term pH trends as measured by Fairfax County lab personnel indicate that most values fell between 7 and 9 (Figure 86). The trend line has increased and decreased slightly over the years with data since 1998 showing a slight decline. pH in the river showed a significant linear decline with a rate of 0.019 per year yielding a total decline of 0.45 units over the long term study period (Table 11).

Figure 86. Long term trend in Lab pH (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 87. Long term trend in Total Alkalinity (Fairfax County Lab Data). Station 7. Gunston Cove.

In the river a similar pattern has been observed over the three decadal intervals (Figure 88). However, there is a slightly significant linear trend over the period with a slope of 0.18 mg / L suggesting a very modest increase of about $0.5 \mathrm{mg} / \mathrm{L}$
(Table 11).

Figure 88. Long term trend in Total Alkalinity (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 89. Long term trend in Biochemical Oxygen Demand (Fairfax County Lab Data). Station 7. Gunston Cove.

Station 9: June-Sept

In the river biochemical oxygen demand exhibited a less distinct pattern through the mid 1990's (Figure 90). However, since that time it has decreased steadily to a median value of $1 \mathrm{mg} / \mathrm{L}$. BOD in the river has exhibited a significant linear decrease at a rate of 0.07 units when the entire period of record was considered (Table 11).

Figure 90. Long term trend in Biochemical Oxygen Demand (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 91. Long term trend in Total Suspended Solids (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 92. Long term trend in Total Suspended Solids (Fairfax County Lab Data). Station 9. Potomac mainstem.

Volatile suspended solids have consistently declined over the study period and this decline seems to have accelerated in recent years (Figure 93). The LOWESS trend line has declined from $20 \mathrm{mg} / \mathrm{L}$ in 1984 to $4 \mathrm{mg} / \mathrm{L}$ in 2009. VSS has demonstrated a significant linear decline at a rate of 0.79 mg / L per year or a total of 19 mg / L over the study period (Table 11).

Figure 93. Long term trend in Volatile Suspended Solids (Fairfax County Lab Data). Station 7. Gunston Cove.

Station 9: June-Sept

In the river the trend line for volatile suspended solids (VSS) was steady from 1984 through the mid 1990's, but has decreased consistently since then. Trend line values of about $7 \mathrm{mg} / \mathrm{L}$ in 1984 have dropped to about $2 \mathrm{mg} / \mathrm{L}$ in 2009 (Figure 94). VSS in the river demonstrated a significant linear decline at a rate of 0.19 mg / L per year or $4.7 \mathrm{mg} / \mathrm{L}$ since 1984 (Table 11).

Figure 94. Long term trend in Volatile Suspended Solids (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 95. Long term trend in Total Phosphorus (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 96. Long term trend in Total Phosphorus (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 97. Long term trend in Soluble Reactive Phosphorus (Fairfax County Lab Data). Station 7. Gunston Cove.

Soluble reactive phosphorus (SRP) in the river has generally been present at higher levels than in the cove, but has undergone a similar decline and resurgence (Figure 98). By 2008 the trend line in the river was at 0.025 mg / L compared to less than 0.01 mg / L in the cove. Again, this may reflect less demand for P in the river; algae in the river may be more light-limited. Values in the river in 2009 were slightly higher than in the 1980's. In the river SRP showed a positive linear trend over the study period (Table 11)

Figure 98. Long term trend in Soluble Reactive Phosphorus (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 99. Long term trend in Ammonia Nitrogen (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 100. Long term trend in Ammonia Nitrogen (Fairfax County Lab Data). Station 9. Potomac mainstem.

Figure 101. Long term trend in Un-ionized Ammonia Nitrogen (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 102. Long term trend in Un-ionized Ammonia Nitrogen (Fairfax County Lab Data). Station 9. Potomac mainstem.

Nitrate nitrogen has demonstrated a steady decline in the cove over the entire period of record (Figure 103). The trend line was at 1.5 mg / L in 1983 and by 2009 was at $0.5 \mathrm{mg} / \mathrm{L}$. Linear regression suggested a decline rate of $0.034 \mathrm{mg} / \mathrm{L}$ per year yielding a total decline of 0.9 mg / L over the long term study period (Table 11).

Figure 103. Long term trend in Nitrate Nitrogen (Fairfax County Lab Data). Station 7. Gunston Cove.

Station 9: June-Sept

Figure 104. Long term trend in Nitrate Nitrogen (Fairfax County Lab Data). Station 9. River mainstem.

Figure 105. Long term trend in Nitrite Nitrogen (Fairfax County Lab Data). Station 7. Gunston Cove.

Nitrite nitrogen in the river demonstrated a pattern of decrease during the long term study period (Figure 106). The LOWESS line dropped from $0.07 \mathrm{mg} / \mathrm{L}$ in 1986 to $0.03 \mathrm{mg} / \mathrm{L}$ in 2009. Linear regression indicated a significant linear decline at a rate of $0.001 \mathrm{mg} / \mathrm{L}$ per year or $0.025 \mathrm{mg} / \mathrm{L}$ over the study period (Table 11).

Figure 106. Long term trend in Nitrite Nitrogen (Fairfax County Lab Data). Station 9. Potomac mainstem.

Organic nitrogen in the cove was fairly high in the 1980's and has since undergone a consistent decline through 2009 (Figure 107). In 1983 the trend line was at $1.3 \mathrm{mg} / \mathrm{L}$ and dropped to 0.6 mg / L in 2009. Regression analysis indicated a significant decline over the study period at a rate of about $0.054 \mathrm{mg} / \mathrm{L}$ per year or a total of $1.35 \mathrm{mg} / \mathrm{L}$ over the whole study period (Table 11).

Figure 107. Long term trend in Organic Nitrogen (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 108. Long term trend in Organic Nitrogen (Fairfax County Lab Data). Station 9. River mainstem.

Nitrogen to phosphorus ratio (N/P ratio) in the cove exhibited large variability, but the trend line was flat until about 1998. Since then, there has been a clear decline with the LOWESS line approaching 19 by 2009 (Figure 109). Regression analysis over the period of record indicates a statistically significant decline at a rate of 0.25 per year or about 5.5 units over the entire period (Table 11).

Figure 109. Long term trend in N to P Ratio (Fairfax County Lab Data). Station 7. Gunston Cove.

Figure 110. Long term trend in N to P Ratio (Fairfax County Lab Data). Station 9. River mainstem.
C. Phytoplankton Trends: 1984-2008

Figure 111. Long term trend in Depth-integrated Chlorophyll a (GMU Lab Data). Station 7. Gunston Cove.

In the river depth-integrated chlorophyll a was fairly consistent through 2000 with the trend line varying between 20 and $30 \mathrm{ug} / \mathrm{L}$ (Figure 112). However, in recent years a strong decline has been observed with values now at about $10 \mathrm{ug} / \mathrm{L}$. Regression analysis revealed a significant linear decline at a rate of 0.78 $\mathrm{ug} / \mathrm{L} / \mathrm{yr}$ when the entire period is considered (Table 10).

Figure 112. Long term trend in Depth-integrated Chlorophyll a (GMU Lab Data). Station 9. River mainstem.

Figure 113. Long term trend in Surface Chlorophyll a (GMU Data). Station 7. Gunston Cove.

Figure 114. Long term trend in Surface Chlorophyll a (GMU Data). Station 9. River mainstem.

Figure 115. Long term trend in Surface Chlorophyll a (Fairfax County Data). Station 7. Gunston Cove.

Figure 116. Long term trend in Surface Chlorophyll a (Fairfax County Data Data). Station 9. River mainstem.

Figure 117. Interannual Comparison of Phytoplankton Density by Region.

Gunston Cove Study
Log average Phytoplankton - All months and stations

By looking at individual years (Figure 118), we see that phytoplankton densities in the 2009 were lower than in 2004-2006 and, in fact, are consistent with a continuing decline in phytoplankton densities which began in about 2000.

Figure 118. Interannual Trend in Average Phytoplankton Density. Units are thousands of cells per mL .
D. Zooplankton Trends: 1990-2009

Station 7: All Months

In the Cove total rotifers continued to show a slight decline after an initial period of steady increase (Figure 119). The LOWESS fit line indicated about 900/L in 2009, up from about 400/L in 1990, but less than about $1200 / \mathrm{L}$ in 2000. Linear regression analysis continued to indicate a statistically significant linear increase in total rotifers over the period since 1990 (Table 12).

Figure 119. Long term trend in Total Rotifers. Station 7. Gunston Cove.

Figure 120. Long term trend in Total Rotifers. Station 9. River mainstem.

Table 12
Correlation and Linear Regression Coefficients
Zooplankton Parameters vs. Year for 1990-2009
All Nonzero Values Used, All Values Logged to Base 10

Parameter	Corr. Coeff.	Station 7 Reg. Coeff.	Signif.	Corr. Coeff.	Station 9 Reg. Coeff.	Signif.
Brachionus (m)	0.153 (354)	0.026	0.004	-0.018 (278)	----	NS
Conochilidae (m)	0.189 (318)	0.024	0.001	-0.140 (235)	-0.022	0.032
Filinia (m)	0.216 (300)	0.035	<0.001	-0.084 (189)	----	NS
Keratella (m)	0.287 (363)	0.041	<0.001	-0.010 (288)	----	NS
Polyarthra (m)	0.180 (350)	0.025	0.001	-0.055 (270)	----	NS
Total Rotifers (m)	0.181 (380)	0.023	<0.001	-0.121 (300)	-0.018	0.036
Bosmina (m)	0.100 (202)	----	NS	0.126 (237)	0.017	0.053
Diaphanosoma (M)	0.025 (293)	----	NS	0.027 (195)	----	NS
Daphnia (M)	0.161 (247)	0.032	0.011	0.049 (153)	----	NS
Chydorid cladocera (M)	0.337 (202)	0.056	<0.001	0.375 (122)	0.053	<0.001
Leptodora (M)	0.071 (149)	----	NS	-0.089 (102)	----	NS
Copepod nauplii (m)	0.397 (359)	0.044	<0.001	0.227 (296)	0.030	<0.001
Adult and copepodid copepods (M)	0.103 (476)	0.018	0.024	0.076 (341)	----	NS

Significance column indicates the probability that a correlation coefficient this large could be due to chance alone. If this probability is greater than 0.05 , then NS (not significant) is indicated.

M indicates species was quantified from macrozooplankton samples; m indicates quantification from microzooplankton samples.

Station 7: All Months

Brachionus is the dominant rotifer in Gunston Cove and the trends in total rotifers are mirrored in those in Brachionus (Figure 121). The LOWESS line for Brachionus suggested about 3500/L in 2008, down from 4000/L in 1999, but greater than the 100/L found in 1990. Note that 2007-2009 had higher levels than the immediately previous years. A statistically significant linear increase was found over the study period (Table 12).

Figure 121. Long term trend in Brachionus. Station 7. Gunston Cove.

Figure 122. Long term trend in Brachionus. Station 9. River mainstem.

Station 7: All Months

Conochilidae increased strongly from 1990-1995, but has since leveled off. In 2009 the LOWESS trend line stood at about 50/L similar to other recent years (Figure 123).
This was well above levels of about $5 / \mathrm{L}$ in 1990 . Over the entire period of record, a significant linear increase was found (Table 12).

Figure 123. Long term trend in Conochilidae. Station 7. Gunston Cove.

In the river, Conochilidae exhibited a strong increase in the early 1990's similar to that observed in the cove (Figure 124). However, since that time densities have declined steadily in the river. The trend line has gone from 3/L in 1990 to 35/L in 1995 to 2/L in 2009. When the entire period of record was examined, there was a significant negative linear trend (Table 12).

Figure 124. Long term trend in Conochilidae. Station 9. Gunston Cove.

Station 7: All Months

Figure 125. Long term trend in Filinia. Station 7. Gunston Cove.

> In the river Filinia demonstrated an increase through about 2001, but has declined strongly since. The trend line indicates about $2 / \mathrm{L}$ in 2009, below both the $7 / \mathrm{L}$ in 1990 and well as the peak of 20/L (Figure 126). When the entire period of record was examined, there was not a significant linear trend (Table 12).

Figure 126. Long term trend in Filinia. Station 9. River mainstem.

Station 7: All Months

Figure 127. Long term trend in Keratella. Station 7. Gunston Cove.

Station 9: All Months

Figure 128. Long term trend in Keratella. Station 9. Gunston Cove.

Station 7: All Months

The trend line for Polyarthra in the cove increased steadily from 1990 to about 2000 rising from 15/L to about 60/L (Figure 129). Since 2000 densities have remained relatively steady. Regression analysis indicated a significant linear increase when the entire period of record was examined (Table 12).

Figure 129. Long term trend in Polyarthra. Station 7. Gunston Cove.

Station 9: All Months

In the river Polyarthra continued a marked decline with the LOWESS line reaching about 4/L, down from about 30/L in 1997, and even lower than the 5/L observed in 1990 (Figure 130). Linear regression analysis did not indicate a significant trend over the period of record (Table 12).

Figure 130. Long term trend in Polyarthra. Station 9. River mainstem.

Station 7: All Months

Bosmina in the cove showed an increase from 7/L in 1990 to about $25 / \mathrm{L}$ in 2000 (Figure 131). Since 2000 a very modest decline has occurred reaching 20/L in 2009. Linear regression did not indicate a significant trend in the cove over the entire period of record (Table 12).

Figure 131. Long term trend in Bosmina. Station 7. Gunston Cove.
Station 9: All Months

In the river mainstem the LOWESS curve for Bosmina increased from 1990 to 1995, and has remained rather constant since (Figure 132). The current trend line value of 30/L remains higher than the 6/L found for 1990. Regression analysis revealed a significant linear increase over the entire period of record (Table 12).

Figure 132. Long term trend in Bosmina. Station 9. River mainstem.

Figure 133. Long term trend in Diaphanosoma. Station 7. Gunston Cove.

In the river the LOWESS line suggested a generally stable trend in Diaphanosoma (Figure 134). The trend line value of $700 / \mathrm{m}^{3}$ found in 2007 compared with values as high as $800 / \mathrm{m}^{3}$ in 1999 and 1993 and as low as the $200 / \mathrm{m}^{3}$ in 1990. Regression analysis indicated no significant linear trend over the period of record (Table 12).

Figure 134. Long term trend in Diaphanosoma. Station 9. River mainstem.

Station 7: All Months

Daphnia in the cove stabilized in 2009, reaching about $90 / \mathrm{m}^{3}$ similar to about $100 / \mathrm{m}^{3}$ in 1995 (Figure 135). This is up from the low of about $10 / \mathrm{m}^{3}$ in 1992 and the value of $40 / \mathrm{m}^{3}$ in 1990. Regression analysis examining the entire period of record gave some support for a linear increase (Table 12).

Figure 135. Long term trend in Daphnia. Station 7. Gunston Cove.

Daphnia in the river has shown a lot of variability over time, but little consistent trend (Figure 136). The trend line in 2009 reached $70 / \mathrm{m}^{3}$, substantially higher than the level observed at the beginning of the record in 1990 and similar to higher trend line values from the late 1990's. Regression analysis indicated no significant linear trend over the study period (Table 12).

Figure 136. Long term trend in Daphnia. Station 9. River mainstem.

Figure 137. Long term trend in Chydorid Cladocera. Station 7. Gunston Cove.

In the river chydorids stabilized at about $30 / \mathrm{m}^{3}$, down from the 1999 high of $40 / \mathrm{m}^{3}$, but still above the low of about $4 / \mathrm{m}^{3}$ in the early 1990's (Figure 138). There was evidence for a linear increase in chydorids over the entire study period as indicated by linear regression analysis (Table 12).

Figure 138. Long term trend in Chydorid Cladocera. Station 9. River mainstem.

Station 7: All Months

In the cove Leptodora, the large predaceous cladoceran, was found at increased levels in 2009, and the trend line continued a gradual increase reaching about $100 / \mathrm{m}^{3}$, down from its high of about $200 / \mathrm{m}^{3}$ in 1994, but above the 1990 value of $10 / \mathrm{m}^{3}$ (Figure 139). There was not evidence for a significant linear change in Leptodora over the entire study period (Table 12).

Figure 139. Long term trend in Leptodora. Station 7. Gunston Cove.

In the river, Leptodora densities continued to increase following a decline which began in 1995 resulting in trend line values of about $100 / \mathrm{m}^{3}$ for 2009 (Figure 140). These values are well above those observed in 1990, but are substantially lower than the peak of $300 / \mathrm{m}^{3}$ in 1994. Linear regression analysis did not detect a significant linear trend when the whole study period was considered (Table 12).

Figure 140. Long term trend in Leptodora. Station 9. River mainstem.

Figure 141. Long term trend in Copepod Nauplii. Station 7. Gunston Cove.

Figure 142. Long term trend in Copepod Nauplii. Station 9. River mainstem.

Adult and copepodid copepods increased strongly in the early 1990's and since have remained fairly constant (Figure 143). Levels in 2009 were higher resulting in a trend line level of about $1000 / \mathrm{m}^{3}$, above the initial level of $200 / \mathrm{m}^{3}$ observed in 1990 and similar to the a peak of $1000 / \mathrm{m}^{3}$ in 1994. Copepods exhibited a significant linear increase over the study period (Table 12).

Figure 143. Long term trend in Adult and Copepodid Copepods. Station 7. Gunston Cove.

Figure 144. Long term trend in Adult and Copepodid Copepods. Station 9. River mainstem.

E. Ichthyoplankton Trends

Ichthyoplankton monitoring provides a crucial link between nutrients, phytoplankton, zooplankton and juvenile fishes in seines and trawls. The ability of larvae to find food after yolk is consumed may represent a critical period when survival determines the abundance of a yearclass. The timing of peak density of feeding stage fish larvae is a complex function of reproductive output as well as the temperature and flow regimes. These peaks may coincide with an abundance or scarcity of zooplankton prey. When the timing of fish larva predators overlaps with their zooplankton prey, the result is often a high abundance of juveniles that can be observed in high density in seines and trawl samples from throughout the cove. In addition, high densities of larvae but low juvenile abundance may indicate that other factors (e.g., lack of significant refuge for settling juveniles) are modifying the abundance of a year-class. For example, there is more variability in the smoothed trend of fish density from seine and trawl catches for species such as river herring, gizzard shad, and white perch, than there is in the larval density trends. This situation has multiple explanations including a change in distribution of larvae during development and significant year-class modifications that occur during late larval and early juvenile stages.

For all of the dominant species of ichthyoplankton, densities have exhibited a slightly declining or relatively flat trend over the course of monitoring on this survey. Clupeid larvae (which are primarily river herring and gizzard shad), Morone sp. (mostly white perch), Atherinids (inland silversides), and yellow perch all exhibited a spike in density during the earliest five years of monitoring. In all cases, this pattern was followed by a rapid decline to a relatively flat trend in density during the past decade. For Clupeids, Morone sp. and Atherinids, 1996 was an exceptional year with high mean larval densities. Comparing 2009 with the previous year, the largest changes occurred for Alosa sp. and Dorosoma sp. with an approximate 15- and 3.4-fold increase in total number captured, respectively for these groups (Table 13).

The peaks in abundance over the season reflect characteristic spawning times of each species. The earliest are yellow perch (Figure 152) and white perch (Figure 148), followed by gizzard shad and river herring (Figure 146), and inland silversides (Figure 150). Yellow perch tend to have a narrower spawning period - thus the larval density peaks at the beginning of the sampling season and tapers rapidly. By comparison, white perch begin spawning early but have a more protracted spawning period. Consequently, white perch larvae are found throughout most of the sampling season. Gizzard shad and river herring show a more pronounced peak in mean larval density that is centered around the last weeks of May. More detailed analysis of periodicity and inter-annual variability of larval fish data could be combined effectively with regional temperature, river flow patterns, and zooplankton data, but this is beyond the scope of this report.

Table 13. The larval fishes collected in Gunston Cove and the Potomac River in 2004-09
Table 13
Larval Fishes Collected, by Taxon
Gunston Cove Study - 2004-09

Taxon	Common Name		$\underline{2004}$	$\underline{2005}$	Number caught			$\underline{2009}$	Total (\%)	
			$\underline{2006}$		$\underline{2007}$	$\underline{2008}$				
Clupeidae	herr shad	ng and family		0	650	0	6	0	0	656 (5.5)
Alosa sp.	Am alew shad herr	rican shad, ife, hickory or blueback ng	1596	569	63	103	15	224	2570 (21.8)	
Dorosoma	$\begin{aligned} & \text { gizz } \\ & \text { threa } \end{aligned}$	ard shad or dfin shad	841	2110	254	992	510	1768	6475 (54.8)	
Brevortia tyranus		menhanden	0	0	0	0	2	0	$2(<0.1)$	
Morone sp.	whit strip	perch or ed bass	377	242	52	233	427	414	1745 (14.8)	
Perca flavescens		yellow perch	0	0	136	70	6	2	214 (1.8)	
Menidia beryllina		inland silversi	12	26	54	31	8	10	141 (1.2)	
Cyprinus carpio		common carp	1	0	0	0	0	0	$1(<0.1)$	
Notropis hudsonius spottail shiner			1	0	0	0	0	0	$1(<0.1)$	
Erimyzon oblongus			2	1	0	0	0	0	$3(<0.1)$	
		creek chubsucker								
Strongylura marina			0	0	0	0	1	1	$2(<0.1)$	
		Atlantic needlefish								
Unidentified			0	0	0	5	0	0	$5(<0.1)$	
Total			2830	3598	559	1440	969	2419	11815	

Figure 145. Long term trend in Clupeid Larvae.

Figure 146. Seasonal pattern in Clupeid Larvae.

A graph of clupeid fish larvae averaged over all stations from 1993 through 2003 is shown in Figure 145. Because of the difficulty of distinguishing post yolk sack gizzard shad from the alewife and blueback herring, this graph groups all three species. The trend line remains steady at about 7 larvae per 10 m^{3} where it has been since about 1999. It remains lower than values of about 25 per 10 m^{3} in the mid 1990's.

The seasonal pattern in clupeid larvae for 1993-2007 (Figure 146) shows that a peak in density occurs about 80-85 days after March 1, or in the last two weeks of May. A first explanation of the timing and breadth of the peak most certainly lies in the interannual variability of the development of warming of the creek and cove water. A second explanation is the sequentially extended spawning period by the three dominant clupeid species. The occurrence of the peak late in the spring may indicate a dominance of gizzard shad larvae in the data.

Figure 147. Long term trend in Morone Larvae.

The seasonal occurrence of number of white perch larvae per $10 \mathrm{~m}^{3}$ is shown in Figure 148. The highest density of larvae occurs on the earliest date that larvae appear in the collections and declines thereafter. This peak occurs in early April.

Figure 148. Seasonal pattern in Morone Larvae.

Figure 149. Long term trend in Atherinid Larvae.

The long term trend in density of Atherinid larvae (probably all inland silverside larvae) is presented in a LOWESS graph in Figure 149. The number of atherinid larvae per $10 \mathrm{~m}^{3}$ caught in individual tows in 2007 has remained rather low. These open water collections are probably not totally representative of the population of larvae in the cove, since they may remain in the shallows along the shore or in the submerged weed beds where than....n man....nd

The seasonal occurrence of atherinid larvae per $10 \mathrm{~m}^{3}$ is shown in a LOWESS graph in Figure 150. The pattern shows maximum density around 97 days after March 1, or around the first or second week of June. However, the peak is not pronounced, and the density persists at a slightly lower level into the fall.

Figure 150. Seasonal pattern in Atherinid Larvae.

The LOWESS graph in Figure 151 gathers the trend in density of yellow perch since 1993. Following unusually high densities in 1996, the general trend is a decline to lower numbers although they were caught in many samples in 2007 and 2008.

The long term pattern of seasonal occurrence of yellow perch larval density is presented in a LOWESS graph in Figure 152. The greatest densities occur in early April, but larvae persist as late as early June.
\qquad

Figure 151. Long term trend in Yellow Perch Larvae.

Figure 152. Long term trend in Yellow Perch Larvae.

Trawls

Overall patterns
Annual abundance of juvenile fishes inside Gunston Cove is indexed by mean catch per trawl in the inner cove (stations 7 and 10 combined; Table 14, Figure 153a). Since 1984, this index has fluctuated by over an order of magnitude, and the pattern was predominately due to changes in the catch rate of white perch (Figure 153a). Consequently, the catch rates of white perch and all species combined has exhibited a continuous declining trend across this entire period (Figure 153b). On average, catch rates of fishes within the cove were approximately one-third of what was recorded in the first few years of the survey (Figure 153b). The overall catch rate for the inner cove in 2009 was below the long-term mean (111.3) for the survey, and ranked in the $50^{\text {th }}$ percentile. Of the most typically captured species only, alewife showed a remarkable increase to the highest level observed on this survey. At station 9 in the main stem of the river, catch rate of all species combined was also below the long-term mean (57.7), and ranked in the $40^{\text {th }}$ percentile. At station 9 , juvenile fishes are less common than in shallower nursery habitats represented by stations inside the cove. Therefore, catch rates at station 9 exhibited less variability than in the cove and generally reflected more, older fish in these samples than at the other stations. Annual trends in total catch rate at station 9 were still driven by white perch (Figure 153a). With the exception of 2007 which had the highest catch rate on the survey, white perch catch rates at station 9 have demonstrated a relatively flat trend. By comparison, the importance of other species in the catches is apparent via a more variable trend in catch rate of all species combined at station 9 (Figure 153b,c).

High inter-annual variability in juvenile abundance is a typical life history characteristic of many juvenile anadromous fishes such as white perch and anadromous alosines, and catch rates on this survey reflect this. In addition, some of the variability at stations 7 and 10 coincides with a pronounced increase in SAV since 2000. This increase in SAV not only reduced the efficiency of trawls at station 10, but may represent a significant alternative habitat for white perch. Therefore, a spatial shift in the distribution of juvenile white perch might also have affected catches at station 7 where SAV does not directly impede trawling.

Annual trends in other dominant species captured by the trawl survey are presented below. Note that the smoothed trends were generated by LOWESS algorithm on non-zero catches. For species that were captured in a high proportion of the catches, these trends approach the same pattern as the mean catch per trawl. By comparison, the trend in mean catch per trawl of species that are infrequently captured will be relatively flat.

Table 14
Mean catch of adult and juvenile fishes per trawl for all months at Stations 7 and 10 combined

Year	all specie	white perch	blueba herring	alewife	gizzard shad	bay anchovy	spottail shiner	brown bullhead	mpkin -seed
2009	94.0	19.2	1.1	47.5	0.6	6.5	2.8	0.2	2.8
2008	70.7	16.2	0.0	0.1	4.0	0.3	2.6	0.6	7.0
2007	227.3	141.4	23.6	8.8	0.2	15.8	20.1	0.2	2.6
2006	23.4	8.6	1.4	0.6	0.2	2.0	2.7	0.4	1.6
2005	64.4	19.9	10.6	15.2	0.9	0.0	6.1	0.4	1.4
2004	340.3	19.5	281.3	27.5	0.7	0.5	6.7	0.1	0.4
2003	50.3	9.6	18.8	3.5	0.0	7.4	2.8	1.3	0.5
2002	81.0	15.5	9.9	27.7	0.1	16.2	0.7	0.9	1.7
2001	143.5	47.0	40.5	9.9	0.3	35.1	2.8	3.3	1.4
2000	70.0	54.9	3.6	1.9	2.4	1.7	1.3	2.0	0.6
1999	86.9	63.2	4.2	0.5	1.0	5.4	4.8	2.4	1.8
1998	83.2	63.9	2.2	0.5	0.6	3.7	6.8	1.0	1.7
1997	81.4	61.7	1.9	1.0	5.0	2.6	2.9	1.5	1.2
1996	48.0	35.4	2.5	1.6	0.5	0.2	2.6	0.5	2.1
1995	88.6	69.7	4.1	2.1	0.4	3.0	3.0	1.9	1.8
1994	92.2	66.9	0.8	0.1	0.1	0.5	6.2	3.2	2.7
1993	232.1	203.3	1.3	0.5	1.3	0.6	6.9	4.3	3.2
1992	112.8	81.6	0.2	0	0.9	0.8	2.4	11.5	5.1
1991	123.7	90.9	1.0	0.5	8.1	2.6	2.9	12.4	1.7
1990	72.8	33.3	21.9	3.2	0.1	1.1	1.1	10.0	0.5
1989	78.4	14.9	16.1	0.2	42.4	0.2	0.5	3.0	0.6
1988	96.0	45.1	11.2	8.8	12.7	8.3	1.8	5.3	0.9
1987	106.7	54.3	16.0	3.5	5.6	8.8	0.7	15.0	1.4
1986	124.6	65.4	1.9	24.0	4.1	4.2	0.5	18.4	0.6
1985	134.4	43.2	13.5	12.4	2.9	48.1	0.9	9.6	0
1984	167.8	99.5	7.5	0.7	13.8	8.1	1.7	33.3	0.2

Table 15
Mean catch of adult and juvenile fishes per trawl for all months at Station 9

Year	all	white	American	bay	spottail	brown		channel tessell. hog-		
species	perch	eel	anchovy	shiner	bullhead	cat darter choker				
2009	40.4	15.2	0.0	8.6	0.4	0.2	0.7	0.1	0.4	
2008	95.0	10.0	0.0	80.0	0.1	0.0	0.0	0.0	0.0	
2007	253.8	195.7	0.0	0.7	1.1	0.0	0.0	0.9	0.0	
2006	68.1	31.0	0.2	3.0	0.2	8.0	4.6	0	0.2	
2005	91.1	36.5	0.0	12.1	1.8	2.2	4.7	0.1	0.1	
2004	41.9	20.4	0.0	0.0	1.1	2.2	6.6	0.0	0.9	
2003	62.5	29.9	0.1	0.0	0.6	2.1	14.1	1.2	6.6	
2002	52.9	27.2	0.1	0.5	0	2.2	10.2	0.8	1.9	
2001	77.1	40.1	0.2	22.2	0.1	0.9	5.5	0.8	1.3	
2000	52.4	43.4	0.1	0	0.1	2.2	0.9	0	2.2	
1999	23.1	19.1	0.1	0.2	0	0.2	3.2	0	0.9	
1998	22.1	12.8	0.1	0.4	0.1	0.2	4.5	2.0	0.2	
1997	49.6	37.2	0.2	0	1.1	0.3	2.3	0.4	0.3	
1996	14.0	7.0	0.1	0	0.1	0.1	1.7	0.8	0	
1995	31.9	17.4	0.3	0.2	0.2	4.3	2.0	0.1	0.5	
1994	31.9	13.4	3.1	0.1	0	2.4	4.2	3.5	2.4	
1993	31.2	6.8	1.6	0	6.6	1.3	6.8	7.9	1.2	
1992	27.5	14.2	2.6	0	0	1.2	1.7	0.8	6.6	
1991	67.9	42.4	0.4	1.9	0.1	1.0	1.9	0.4	6.3	
1990	101.5	50.6	1.0	0	0.1	5.2	0.8	0.1	4.0	
1989	14.3	7.9	0.2	0.4	0	1.5	0.3	0.3	0.2	
1988	19.2	5.2	0	11.5	0	0	1.6	0	0.5	

Table 16
Mean catch of adult and juvenile fishes per trawl for all months at Stations 7, 9, and 10 combined

Year	all species	white perch	blueback herring	alewife	$\begin{gathered} \text { gizzard } \\ \text { shad } \end{gathered}$	bay anchovy	spottail shiner	brown ch bullhead	annel cat
2009	76.2	17.9	0.9	31.9	0.4	7.2	2.0	0.2	0.4
2008	78.8	14.1	0.0	0.0	2.7	26.8	1.7	0.4	0.0
2007	236.1	159.5	16.6	11.6	0.1	10.7	13.8	0.1	0.0
2006	38.3	16.1	1.0	0.4	0.1	2.4	1.0	2.9	1.5
2005	114.8	26.4	7.5	15.8	0.6	4.3	4.6	1.0	1.8
2004	240.8	19.8	187.6	19.5	0.5	0.3	4.8	0.8	2.2
2003	54.4	16.4	12.6	2.3	0	4.9	2.0	1.6	5.3
2002	71.6	19.6	6.6	19.0	0.1	10.6	0.4	1.3	4.6
2001	122.3	45.8	27.6	6.8	0.3	31.0	1.9	2.6	1.8
2000	64.1	51.0	2.4	1.3	1.7	1.1	0.9	2.1	1.4
1999	65.6	48.4	2.8	0.3	0.7	3.7	3.2	1.7	0.8
1998	62.8	46.8	1.4	0.4	0.4	2.6	4.5	0.7	2.1
1997	70.8	53.5	1.3	0.7	3.3	1.7	2.3	1.1	3.1
1996	36.7	25.9	1.6	1.1	0.3	0.1	1.7	0.4	2.0
1995	69.7	52.3	2.7	1.5	0.2	2.1	2.0	2.7	2.9
1994	73.2	50.1	0.5	0	0.1	0.4	4.2	2.9	2.2
1993	167.8	140.4	0.9	0.4	0.9	0.4	6.8	3.3	1.8
1992	88.5	62.3	0.2	0	0.6	0.6	1.7	8.6	0.5
1991	103.8	73.6	0.6	0.4	5.2	2.4	1.9	8.4	4.7
1990	82.4	39.1	14.6	2.2	0.1	0.8	0.8	8.4	13.3
1989	57.0	12.6	11.0	0.2	28.4	0.3	0.3	2.5	0.7
1988	85.7	39.8	9.7	7.6	11.0	8.7	1.6	4.6	0.3
1987	106.7	54.3	16.0	3.5	5.6	8.8	0.7	15.0	0
1986	124.6	65.4	1.9	24.0	4.1	4.2	0.5	18.4	0
1985	134.4	43.2	13.5	12.4	2.9	48.1	0.9	9.6	0
1984	202.6	133.3	6.6	0.6	13.4	8.0	1.6	35.0	0.1

Table 17
The number of trawls per station in each month at Stations 7, 9, and 10 in each year

Year	Months										
	J F	M	A	M	J	J	A	S	O	N D	D
2009		0	1	2	2	2	2	1	0	0	0
2008		0	1	2	2	2	2	1	0	0	0
2007		0	1	2	2	2	2	1	0	0	0
2006		0	1	2	2	2	2	1	0	0	0
2005	Sta 7 \& 9	0	1	2	2	2	2	1	1	0	0
	Sta 10	0	1	2	2	2	2	0	0	0	0
2004	Sta 7, 9\&10	0	1	1	2	2	2	1	0	0	0
2003		1	2	2	2	2	1	1	1	1	1
2002											
	Sta 7 \& 9	1	2	2	2	2	2	2	1	1	1
	Sta 10	0	2	2	2	2	2	2	1	1	1
2001											
	Sta 7	1	2	2	1	2	3	2	1	1	1
	Sta 9	1	2	1	1	2	3	2	1	1	1
	Sta 10	1	2	2	1	2	3	2	1	1	1
2000		1	2	2	2	2	2	2	2	1	1
1999		1	2	2	2	2	2	2	1		1
1998		1	2	2	2	2	2	2	1	1	1
1997		1	2	2	2	2	2	2	2	1	1
1996											
	Sta 7	1	2	2	1	2	1	2	1	1	1
	Sta 10	1	2	1	2	2	1	2	1	1	1
	Sta 9	1	2	2	1	2	1	2	1	1	1
1995		1	2	2	2	2	2	2	2	1	
1994		1	1	1	2	2		2	2	1	
1993		1	1	2	2	3	2	2	2	1	1
1992											
	Sta 7 and 10	1	1	1	1	1	1	1	1	1	1
	Sta 9	1	1		1	1	1	1	1	1	1
1991		1	1	1	1	1	1	1	1	1	
1990		1	1	1	1	1	1	1	1		
1989	1	1	1	1	1	1	2	2	1	1	
1988											
	Sta 7 and 10	1	1	1	2	2	2	2	1	1	
	Sta 9							2	1	1	
1987	Sta 7 and 10	1	1	1	1	1	1	1	1	1	
1986	Sta 7 and 10	1	1	1	1	1	1	1	1	1	
1985	Sta 7 and 10		1	1	1		1	1	2	1	
1984	Sta 7 and 10	1	2	3	2	3	2	3	3	2	1

Table 18
Mean catch of adult and juvenile fishes per trawl in all months at each station

Year	Station 10	Station 7	Station 9
2009	45.2	142.8	40.2
2008	91.3	50.0	95.0
2007	64.4	390.1	253.8
2006	6.2	40.7	68.1
2005	20.2	96.6	91.1
2004	22.4	658.2	41.9
2003	39.4	61.3	62.5
2002	70.9	91.2	52.9
2001	119.1	167.8	77.1
2000	44.8	95.1	52.4
1999	56.6	117.2	23.1
1998	78.1	88.3	22.1
1997	51.4	111.5	49.6
1996	31.5	64.5	14.0
1995	69.6	107.6	31.9
1994	62.1	122.2	31.9
1993	109.2	354.9	31.2
1992	70.2	155.5	27.5
1991	73.6	173.9	67.9
1990	68.4	77.2	101.5
1989	104.2	52.6	14.3
1988	96.2	95.8	19.2
1987	131.9	84.3	
1986	153.4	95.8	
1985	146.1	122.6	
1984	207.7	197.4	

Trawl Stations 7 and 10 All Species and White Perch

Cove: Stations 7 \& 10

Figure 153a. Trawls. Annual Averages. All Species and White Perch. Cove Stations 7 and 10.

Figure 153b. Trawls. Long Term Trend in Total Catch

Mean total number of fish per trawl sample exhibited a decline since the study began (Table 14 and Figure $153 \mathrm{a}, \mathrm{b}$), and this pattern was primarily a function of catches of white perch. The decline in white perch catch rates was punctuated by strong cohorts in 1993, 2007, and to a lesser degree 1984. Excepting the strong year-classes, white perch catch rates appear to have gone through three phases: low to moderate catch rates between 1985 and 1990, high to moderate catch rates between 1991 and 2000, and low catch rates between 2001 and 2009. For the remaining component of the catch, a complementary pattern is evident. Species other than white perch made up: a moderate to large proportion of the catch until 1990; a relative small part of the catch between 1991 and 2000; and, excepting 2006, a moderate to large proportion of the catch from 2001 to 2009.

Cove: Stations 7 \& 10

Figure 153c. Trawls. Long Term
Trend in White Perch. Sta $7 \& 10$.

Trawl Stations 7 and 10
Blueback Herring and Alewife

Figure 154a. Trawls. Annual Averages. Blueback Herring and Alewife. Cove Stations.
Although the strong year-class effects varied by species for the anadromous fishes, the same three phases of abundance for white perch were also evident for juvenile river herring (collectively, alewife and blueback herring). Moderate catch rates until 1990 were followed by a period of consistently low catch rates until 2000, after which catch rates have been moderate to high. It cannot be determined from these data whether low catch rates in 2006 and 2009 signify the start of a period of low catch rates, as time averaged trends still indicate the most recent period is higher than in any previous time during the survey (Figures $154 \mathrm{~b} \& \mathrm{c}$).

Cove: Stations 7 \& 10

Figure 154b. Trawls. Long term trend in Blueback Herring (Alosa aestivalis). Cove Stations.

Cove: Stations 7 \& 10

Figure 154c. Trawls. Long term trend in Alewife (Alosa pseudoharengus). Cove Stations.

Trawl Stations 7 and 10 Gizzard Shad and Bay Anchovy

Figure 155a. Trawls. Annual Averages. Gizzard Shad and Bay Anchovy. Cove Stations.
Gizzard shad catch rates in trawls in 2009 contribute to a pattern of high inter-annual variability that appears to have started in 1999 (Figure 155a,b). Trend analysis with LOWESS emphasized declining gizzard shad catch rates for stations 7 and 10. Bay anchovy catch rates were also low in 2009 at inner cove stations, but LOWESS trend analysis suggests a recent upward trend. Although they are primarily resident in more saline portions of the estuary, their sporadic occurrence in tidal freshwater may represent significant transport of productivity from the lower regions of the Potomac. In addition, as they are an annual species, the parabolic trend in mean catch rates over the course of the survey (Figure 155c) is more indicative of prevailing environments (favorable versus unfavorable for early life stages and estuarine transport) than spawning stock abundance.

Cove: Stations 7 \& 10
Cove: Stations 7 \& 10

Figure 155b. Trawls. Long term trend in Gizzard Shad (Dorosoma cepedianum).

Figure 155c. Trawls. Long term trend in Bay Anchovy (Anchoa mitchilli).

Trawl Stations 7 and 10 Spottail Shiner and Pumpkinseed

Figure 156a. Trawls. Annual Averages. Spottail Shiner and Pumpkinseed. Cove Stations.

Cove: Stations 7 \& 10

Figure 156b. Trawls. Long-term
Trends in Spottail Shiner
Notropis hudsonius). Cove Stations.

Spottail shiner and sunfish (bluegill and pumpkinseed) are typically captured in low numbers relative to anadromous species, but they are consistently observed in the majority of all trawl and seine samples (Figure $156 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$). In all three species, an increasing (albeit minor) trend has been observed since the beginning of the survey. In recent years (since 2000), smoothed trends suggest a more sharply increasing pattern in the midst of high variability for all of these species. These individuals were mostly juveniles, indicating relatively high reproductive success as measured by this survey.

Cove: Stations 7 \& 10

Figure 156c. Trawls. Long term trend in Pumpkinseed (Lepomis gibbosus). Cove.

Cove: Stations 7 \& 10

Figure 156d. Trawls. Long term trend in Bluegill (Lepomis macrochirus). Cove.

Trawl Stations 7 and 10
Brown Bullhead

Figure 157a. Annual Averages. Brown Bullhead. Cove Stations.
Very few brown bullhead were captured during 2009, continuing a declining trend that has proceeded continuously since the start of the survey. This trend is evident both in the mean catch rate as well as the density of bullhead in non-zero catches (Figure 157a,b). Tessellated darter were consistently encountered at low abundance in trawl samples - at typical abundances of 1 to 2 individuals per trawl when observed at stations 7 and 10 (Figure 157c).

Cove: Stations 7 \& 10

Figure 157b. Trawls. Long term trend in Brown Bullhead (Ameirus nebulosus).

Cove: Stations 7 \& 10

Figure 157c. Trawls. Long term trend in Tessellated Darter (Etheostoma olmstedi).

Trawl Station 9
All Species and White Perch

Figure 158a. Trawls. Annual Averages. All Species and White Perch. River Station.
At the river channel station (station 9), 2009 marks a three-year downward trend in total fish catch rate (Figure 158a). Overall, catch rates of white perch and all species combined at station 9 were typically lower and less variable than at inner cove stations. Much of the variation at station 9 is directly attributable to the catch of white perch, but other species have become more important in recent years. These trends are not evident in the density of fish in positive catches, which has remained relatively constant around 11per trawl for all species combined and around 10 per trawl for white perch (Figures 158b,c). Trends in mean catch rate for total catch and white perch at station 9 have fluctuated a small amount but generally remained flat through the history of the survey.

River: Station 9

Figure 158b. Trawls. Long term trend in Total Catch. River Station.

River: Station 9

Figure 158c. Trawls. Long term trend in White Perch (Morone americana). River Sta.

Trawl Station 9
American Eel, Bay Anchovy, and Spottail Shiner

Figure 159a. Trawls. Annual Averages. Eel, Bay Anchovy, and Spottail Shiner. River Station.
Since 1988 when station 9 was incorporated as part of the survey, bay anchovy, spottail shiner, and American eel have occurred sporadically at station 9 (Figures 159a,b,c). Trends in mean catch rates for bay anchovy and spottail shiner were qualitatively similar to stations 7 and 10, but the absolute values were lower with one notable exception. A record catch of bay anchovy in September of 2008 was the highest on record and indicates strong reproductive success and/or upstream transport.

Figure 159b. Trawls. Long term trend in Bay Anchovy (Anchoa mitchilli). River.

Figure 159c. Trawls. Long term trend in Spottail Shiner (Notropis hudsonius). River.

Trawl Station 9
Brown Bullhead and Channel Cat

River: Station 9

Figure 160b. Trawls. Long term Trend in Brown Bullhead (Ameiurus nebulosus).

Figure 160a. Trawls. Annual Averages. Brown Bullhead and Channel Cat. River Station.

Overall, catch rates for all catfish species have been variable and at low levels (mean of 2 to 4 per trawl) compared to most other species that were observed (Figure 160a,b,c,d). In particular, 2009 ranked as one of the 6 lowest years in mean catch rate for brown bullhead and channel catfish at station 9. Long-term mean trends were also variable and thus are difficult to characterize. One species that warrants close attention is the invasive, blue catfish, which was positively identified on the survey in 2001 and has been captured each year since then.

Figure 160c. Trawls. Long term trend in Channel Cat (Ictalurus punctatus). River Station.

River: Station 9

Figure 160d. Trawls. Long term trend in Blue Catfish (Ictalurus furcatus). River Station.

Figure 161a. Trawls. Annual Averages. Tessellated Darter and Hogchoker. River Station.
Station 9 represented low but consistent catch rates for demersal species, tessellated darter and hogchoker (Figure 161a,b,c). On rare occasions, catches exceeded 50 individuals per trawl, but when encountered typical catch rates for either species were less than 4 per trawl. The mean annual trend is relatively flat for each of these species, not varying on average more than one individual per trawl over the entire span of time.

Figure 161b. Trawls. Long term trend in Tessellated Darter (Etheostoma olmstedi). River Station.

River: Station 9

Figure 161c. Trawls. Long term trend in Hogchoker (Trinectes maculatus). River Station.

Seines
Mean annual seine catch rates were generally less variable than trawl catch rates, but the longterm trend with a period of lower catch rates during the mid-1990s is reflected in seine samples (Figures 162 and 163). The drop in the moving average (LOWESS trend) of catch rates during the middle of the series reflected a lower density of fish in non-zero catches (Figure 163) - a pattern that is only weakly evident from the lowest annual mean catch rates (zeros included) for 1993 and 1995 (Figure 162). Of the three most abundant years, 1994 was driven primarily by a single large catch of alewife, whereas high catch rates in 1991 and 2004 were a result of high catch rates of spottail shiner, blueback herring and (in 2004) alewife (Table 19). Overall, white perch and banded killifish have been the dominant species in seine samples throughout the survey, and this pattern also held in 2009.

Over the course of the survey mean annual seine catch rates of white perch have exhibited a gradual decline (Figures 164a), and the density of white perch in non-zero catches has declined at a faster rate over this period (Figure 164b). As this declining pattern is also reflected in the trawl data for the inner cove and there is a flat trend for white perch at station 9 , it may be that white perch distribution has shifted towards the main stem of the Potomac and/or that abundance at a larger spatial scale has declined. Another important factor is the recent pronounced increase in SAV, which is not effectively sampled but may represent a significant alternative habitat for white perch. Efforts to quantify gear efficiency and alternative methods to sample vegetated habitats are needed to understand the relative importance of these factors. We have developed a approach to sample SAV using drop-ring sampling and have incorporated this at part of the regular monitoring (see "Drop Ring Sampling" section). In addition, mean annual catch rates of banded killifish have exhibited a long-term increasing trend (Figure 164a), and the density of banded killifish in non-zero catches has also increased by approximately five-fold (Figure 164c). Banded killifish have been the dominant species in seine samples during the past nine years.

The relative success of banded killifish is coincidental (rather than functionally related) to declines in white perch as these species show very little overlap in ecological and life history characteristics. Instead, prominent increases in mean catch rates of banded killifish are associated with development of SAV in the cove since 2000. The SAV provides refuge for banded killifish adults and juveniles and may enhance feeding opportunities with epifaunal prey items.

Table 19
Mean catch of adult and juvenile fishes per seine at Stations 4, 6, and 11 and all months

Year	all species	white perch	banded killifish	blueback herring	alewife	spottail shiner	inland silverside
2009	169.9	22.5	61.3	0.3	0.2	4.2	9.0
2008	185.5	15.7	50.8	0.3	0.1	2.4	14.9
2007	113.4	10.6	32.2	8.0	2.6	3.6	2.6
2006	165.3	7.6	113.7	3.2	0.4	3.6	16.2
2005	230.4	45.3	139.9	1.2	6.7	10.7	6.6
2004	304.5	6.8	99.0	11.1	73.8	38.0	9.5
2003	97.9	6.8	43.3	2.4	3.0	6.7	3.2
2002	168.4	23.1	89.7	4.1	2.2	12.5	14.4
2001	131.6	29.5	53.4	0.4	4.8	14.0	7.4
2000	154.0	30.0	26.2	1.7	6.6	24.7	49.6
1999	100.6	17.1	17.6	13.5	0.4	11.4	23.0
1998	111.6	22.4	31.5	2.1	1.0	25.9	8.7
1997	119.2	19.1	36.0	27.7	0.8	5.0	13.7
1996	102.0	29.8	20.6	8.4	6.1	12.8	2.7
1995	66.4	20.6	7.0	1.6	2.0	5.5	10.5
1994	272.9	15.5	10.9	0.1	228.7	9.4	0.1
1993	61.5	6.9	20.0	2.8	1.7	8.9	8.8
1992	140.0	39.3	11.3	54.3	0	10.0	4.1
1991	249.1	38.1	24.1	97.0	0.2	26.0	8.5
1990	91.9	34.8	8.7	5.0	1.3	10.2	3.3
1989	131.9	47.9	8.1	2.4	0.6	9.9	2.1
1988	119.9	53.6	8.7	3.0	0.4	7.1	5.8
1987	91.9	41.9	6.0	0.1	0	9.1	13.8
1986	96.4	46.0	5.6	0.2	1.1	7.6	7.8
1985	96.7	50.2	0.6	0.4	0.4	12.3	14.7

2007 \& 2008 averages do not include Station 4A

Table 20
The number of seines in each month at Station 4, 4A, 6, and 11 in each year Year Month

	J F	F	M	A	M	J	J	A	S	O	N	D
2009	Sta4, 6,\&11	0	1	2	2^{*}	2^{*}	2^{*}	1^{*}	0	0	0	
	Sta 4A	0	1	2	2	2	2	1	0	0	0	
2008	Sta4,6,\&11	0	1	2	2^{*}	2^{*}	2^{*}	1^{*}	0	0	0	
	Sta 4A	0	1	2	2	2	2	1	0	0	0	

2007 Sta 4,6,\&11 00

Sta 4A	0	0	0	0	2	2	1	0	0	0

2006
Sta $4 \quad 0 \quad 1$
Sta $6 \quad 0 \quad 1$
Sta $11 \quad 0 \quad 1$
2005
$\begin{array}{lllllllllll}\text { Sta } 4 \& 6 & 0 & 1 & 2 & 2 & 2 & 0^{*} & 0^{*} & 0 & 0 & 0 \\ \text { Sta } 11 & 0 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 0 & 0\end{array}$
2004
$\begin{array}{lll}\text { Sta } 4 & 0 & 1 \\ \text { Sta } 6 & 0 & 1\end{array}$
1

Table 21
Mean catch of adult and juvenile fishes per seine in all months at each station

Year	Station 4	Station 6	Station 11
2009	132.2	124.4	253.0
2008	93.3	303.1	160.0
2007	146.8	104.6	89.0
2006	121.6	206.3	160.6
2005	268.6	231.6	184.4
2004	247.8	238.0	365.6
2003	65.8	119.1	108.8
2002	126.6	206.1	172.5
2001	141.9	137.6	115.5
2000	222.7	140.5	98.8
1999	168.9	78.1	54.7
1998	165.4	115.0	54.4
1997	185.9	126.4	45.3
1996	106.1	109.3	91.2
1995	62.4	77.5	59.3
1994	81.2	609.1	46.3
1993	91.1	32.6	60.9
1992	181.6	113.9	122.8
1991	253.8	155.8	327.3
1990	103.3	96.1	76.3
1989	113.9	162.2	119.6
1988	118.7	129.6	111.2
1987	102.3	105.0	70.5
1986	112.1	102.5	80.3
1985	65.2	122.8	95.7

Figure 162. Seines. Annual Average over All Stations. All Species.
The recent declining trend in mean catch rate of all species combined between 2004 and 2007, rebounded in 2008 and 2009 (Figure 162). Since the mid 1990's, the smoothed curve indicates a steadily increasing catch rate for all species combined (Figure 163).

Seines: All Stations

Figure 163. Seines. Long term trend in Total Seine Catch.

Seine Stations 4, 6, and 11
White Perch and Banded Killifish

Figure 164a. Seines. Annual Average over All Stations. White Perch and Banded Killifish.
Long-term trends in mean annual catch rates (Figure 164a) and long-term densities in non-zero catches (Figures 164b,c) for the two dominant species in seine hauls have exhibited a negative association ($r=-0.55$) over the course of the survey through 2000 (Figure 164). From 2001 to 2009, catch rates of the two species have been positively correlated ($\mathrm{r}=0.42$). Further, high initial numbers of white perch were followed by a prominent decline beginning around 1990 to less than half the average at the beginning of the survey. By comparison, banded killifish numbers were relatively low and constant until 1998 when a prominent increase began.

Figure 164b. Seines. Long term trend in White Perch (Morone americana). All Stations.

Figure 164c. Seines. Long term trend in Banded Killifish (Fundulus diaphanus). All Stations.

Seine Stations 4, 6, and 11
Blueback Herring and Alewife

Figure 165a. Seines. Annual Average over All Stations. Blueback Herring and Alewife.
Mean annual catch rates for river herring (alewife and blueback herring) have exhibited sporadic peaks related to the capture of a large schools of fish (exceeding 200 for alewife and approaching 100 individuals for blueback herring) in single hauls (Figure 165a). Typically, less than 10 of either species were captured in a single sample (Figures 165b,c). Though numbers are low, densities in non-zero seine catches of alewife have exhibited a subtle increasing trend whereas with blueback herring the trend is relatively flat.

Figure 165b. Seines. Long term trend in Blueback Herring (Alosa aestivalis). All Stations.

Figure 165c. Seines. Long term trend in Alewife (Alosa pseudoharengus). All Stations.

Seine Stations 4, 6, and 11
Spottail Shiner and Inland Silverside

Figure 166a. Seines. Annual Average over All Stations. Spottail Shiner and Inland Silverside.
Owing to their affinity for marginal and littoral zone habitats, spottail shiner and inland silverside were consistently captured at moderate abundances throughout the course of the survey (Figure 166a). Although a few high abundance years (1991, 2000, and 2004) have occurred and a subtle declining trend in density in non-zero catches was present (Figure 166c,b), while the overall pattern of abundance indices in seines has been relatively unchanging during the course of monitoring (166a).

Figure 166b. Seines. Long term trend in Spottail Shiner (Notropis hudsonius). All Stations.

Figure 166c. Seines. Long term trend in Inland Silverside. (Menidia beryllina). All Stations.

In summary, trawl and seine catches continue to provide valuable information about long-term trends in the fish assemblage of Gunston Cove. The development of extensive beds of SAV over the past nine years should be providing more favorable conditions for banded killifish, spottail shiner, inland silverside, and several species of sunfish (bluegill and pumpkinseed) and largemouth bass. Indeed, seine and trawl sampling has indicated a coincident and relative increase in many of these species. In addition, juvenile anadromous species continue to be an important component of the fish assemblage with more diverse catches (owing to the occurrence of American and hickory shad) and a slight indication of greater abundance of juvenile river herring. Although anadromous white perch appear to be declining in the cove, a large amount of available SAV habitat is not adequately sampled and may represent another important habitat type utilized by white perch. Current efforts to incorporate drop-ring sampling to quantify fishes in vegetated habitats and efforts to quantify catch efficiency should lead to higher quality data that will provide a more accurate long-term view of the fish assemblage and trends for the dominant species.

Drop ring sampling methodology was developed in a mini-study during 2007 and the approach was added to the routine monitoring activities in 2008. These data provide information on juvenile fish abundance from areas of Gunston Cove and habitats (SAV beds) that are not sampled (or not sampled well) by fixed station seine and trawl sampling. Consequently, drop ring data complement the fixed station sampling which provides information from shoreline and deeper non-vegetated habitats. The results demonstrated that the current level of sampling effort provides a minimally sufficient precision to detect inter-annual changes in abundance of many of the key species (e.g., banded killifish) as well as some important fishery species that occurred with low frequency (e.g., American eel). A manuscript detailing seine catch efficiency and drop ring sampling work for 2007, 2008, and 2009 has been drafted for publication, and will detail methodological aspects as well as comparisons of fish catches between areas sampled with seines and beds of SAV.
F. Submersed Aquatic Vegetation (SAV) Trends: 1994-2009

A comprehensive set of annual surveys of submersed aquatic vegetation in the Gunston Cove area is available on the web at http://www.vims.edu/bio/sav/. This is part of an ongoing effort to document the status and trends of SAV as a measure of Bay recovery. Maps of SAV coverage in the Gunston Cove area are available on the web site for the years 1994-2008 except for 2001. Tables are also provided summarizing the extent of each bed. The map for 2009 was provided earlier in this report (Figure 64). To examine the long-term trends in SAV in Gunston Cove, the coverage of SAV in "inner" Gunston Cove was gleaned from the tables of individual beds for each year from the web site. For 1996 and 2005, coverage area was estimated from maps as no tables for individual beds were available. Inner Cove was delineated by a line from Gunston Hall to the Coast Guard station (did not include the bed across the mouth of the cove).

Changes in total SAV coverage in the inner portion of Gunston Cove over the period 1994-2009 are shown in Figure 167. SAV coverage remained relatively constant over the period from 1994 to 2003. However, significant increases were found in 2004 and 2005 and coverage remained high through 2008. In fact the increases may have started earlier. Aerial photography for the
years 2002-2004 were collected unusually late, from mid October to mid November after plant beds had started breaking up. In earlier years and in 2005, aerial photography from mid August to mid September (when beds would normally be at their greatest) was utilized. This means that the increase in SAV coverage may have begun several years earlier. In 2006, imagery was taken in October so this may account for the decline from 2005. Note that the increase in SAV coverage corresponds with a clear decline in phytoplankton and a clear increase in water clarity (Secchi depth). In 2008, chlorophyll was higher than in any year since 2004. While this did not result in less light availability as measured by Secchi depth, it needs to be watched closely. Chlorophyll a decreased in 2009 and Secchi depth increased; there was a slight increase in SAV coverage.

The following scenario, based on prevailing concepts of SAV-phytoplankton-light interactions, seems most likely to explain these observations. Declining phytoplankton populations have led to an increase in water clarity which allows SAV to grow to greater depths and spread. The SAV coverage will tend to further inhibit phytoplankton by shading and further increase water clarity (Secchi depth). This will allow spread of SAV into even deeper areas. For the last several years, the SAV acreage has remained fairly constant suggesting that the cove has stabilized at a stage of increased SAV, but not full restoration. Full restoration would occur when SAV covers the entire cove as was apparently the case in the early part of the $20^{\text {th }}$ century (Carter et al. 1983, Cummings et al. 1916).

Figure 167. Inner Cove SAV Coverage. 1994-2009. Graphed with average summer (JuneSeptember) Depth-integrated Chlorophyll a (ug/L) and Secchi Depth (cm) measured at Station 7 in Gunston Cove.

LITERATURE CITED

Bigelow, H.B. and W.C.Schroeder. 1953. Fishes of the Gulf of Maine. Fishery bulletin No. 74, Vol. 53. U.S. Government Printing Office. Washinton, D.C. 577 pp.
Carter, V., P.T. Gammon, and N.C. Bartow. 1983. Submersed Aquatic Plants of the Tidal Potomac River. Geological Survey Bulletin 1543. U.S. Geological Survey. 63 pp.
Chesapeake Bay Program. 2006 Ambient water quality criteria for dissolved oxygen, water clarity, and chlorophyll a for the Chesapeake Bay and its tidal tributaries. 2006 Addendum. Downloaded from Bay Program website 10/13/2006.
Cummings, H.S., W.C. Purdy, and H.P. Ritter. 1916. Investigations of the pollution and sanitary conditions of the Potomac watershed. Treasury Department, U.S. Public Health Service Hygienic Laboratory Bulletin 104. 231 pp.
Dahlberg, M.D. 1975. Guide to coastal fishes of Georgia and nearby states. University of Georgia Press. Athens, GA 187 pp.
Eddy, S. and J.C. Underhill. 1978. How to know the freshwater fishes. 3rd Ed. W.C. Brown Co. Dubuque, IA. 215 pp.
Hildebrand and Schroeder. 1928. Fishes of the Chesapeake Bay. U.S. Bureau of Fisheries Bulletin 53, Part 1. Reprinted 1972. T.F.H. Publishing, Inc. Neptune, NJ. 388 pp.
Hogue, J.J, Jr., R.Wallus, and L.K. Kay. 1976. Preliminary guide to the identification of larval fishes in the Tennessee River. Technical Note B19. Tennessee Valley Authority. Knoxville, TN.
Islam, S. 2001. Seasonal dynamics of micro-, nanno-, and picoplankton in the tidal freshwater Potomac River in and around Gunston Cove. Ph.Dissertation. George Mason University. 127 pp.
Jenkins, R.E. and N.M. Burkhead. 1994. The freshwater fishes of Virginia. American Fisheries Society. Washington, DC. 1080 pp.
Jones, P.W., F.D. Martin, and J.D. Hardy, Jr. 1978. Development of fishes of the Mid-Atlantic bight. Volumes I-VI. Fishe and Wildlife Service, U.S. Department of the Interior. FWS/OBS-78/12.
Kelso, D.W., R.C. Jones, and P.L. deFur. 1985. An ecological study of Gunston Cove -1984-85. 206 pp.
Lippson, A.J. and R.L. Moran. 1974. Manual for identification of early development stages of fishes of the Potomac River estuary. Power Plant Siting Program, Maryland Department of Natural Resources. PPSP-MP-13.
Loos, J.J., W.S. Woolcott, and N.R. Foster. 1972. An ecologist's guide to the minnows of the freshwater drainage systems of the Chesapeake Bay area. Association of Southeastern Biologists Bulletin 19: 126-138.
Lund, J.W.G., C. Kipling, and E.C. LeCren. 1958. The inverted microscope method of estimation algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170.
Mansueti, A.J. and J.D. Hardy, Jr. 1967. Development of fishes of the Chesapeake Bay region: an atlas of egg, larvae and juvenile stages: Part 1. Natural Resources Institute. University of Maryland. 202 pp .
Merritt, R.W. and K.W. Cummins. 1984. An introduction to the aquatic insects of North America. 2nd edition. Kendall/Hunt Publishing Co., Dubuque, IA. 722 pp.

Pennack, R.W. 1978. Fresh-water invertebrates of the United States. 2nd ed. Wiley-Interscience. New York, NY.
Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Bulletin 184. Fisheries Research Board of Canada. Ottawa, Canada. 966 pp.
Standard Methods for the Examination of Water and Wastewater. 1980. American Public Health Association, American Waterworks Association, Water Pollution Control Federation. 15th ed. 1134 pp.
Thorp, J.H. and A.P. Covich, eds. 1991. Ecology and classification of North American Freshwater Invertebrates. Academic Press. San Diego, CA. 911 pp.
Wetzel, R.G. 1983. Limnology. ${ }^{\text {nd }}$ ed. Saunders. 767 pp.
Wetzel, R.G. and G.E. Likens. 1991. Limnological analyses. $2^{\text {nd }}$ ed. Springer-Verlag. 391 pp.

Anadromous Fish Survey 2009

Background

The commercially valuable anadromous fishes in the herring family (Clupeidae) live as adults in the coastal ocean, but return to freshwater creeks and rivers to spawn. In the midAtlantic region, four species are present: American shad, blueback herring, alewife, and hickory shad.

The American shad grows to be the largest and spawns in the shallow flats along the Potomac River channel. In the 1700s and early 1800s, incredibly large numbers of American shad were caught each spring as they came up the river to spawn. The records from 1814-1824 of just one fishery located at Chapman's Landing opposite Mason Neck, Virginia indicate that the annual catch varied from 27,939 to 180,755 American shad (Massmann 1961). By 1982, the numbers caught in the entire river had dwindled so much that a moratorium was placed on both commercial and sport harvest of the species. In 1995, the Interstate Commission on the Potomac River Basin began a process of capturing ripe American shad in gill nets off Dogue Creek and Fort Belvoir, stripping eggs from the females, and fertilizing the eggs with milt from males. The resulting young were raised in hatcheries for several days and then released, as fry, in the river below Great Falls (Cummins 2005). Through the 2002 season, over 15.8 million fry were released into the river, and by 2003 - the year after the restoration program ended - the population was judged strong enough to support a limited commercial fishery as bycatch in gill net fisheries. Moreover, a replacement stocking program continues (Jim Cummins, pers. comm.). The Virginia Department of Game and Inland Fisheries has also released some of the larvae at the boat ramp in Pohick Bay Regional Park in Gunston Cove (Mike Odom, USFWS; pers. comm.).

Prior to the 1900s, spawning occurred in the river as high as Great Falls (Smith and Bean 1899). In recent years spawning has occurred mostly downriver between Piscataway Creek and Mason Neck (Lippson et al. 1979). We do not normally catch individuals of this species as adults, juveniles, or larvae. The adults are not caught because our trawls mostly sample fishes that stay near the bottom of the water column, and the American shad remain in the river where the water column is deeper. The juveniles mostly remain in the channel also, but as reported above, in 2006 and 2007 some juvenile American shad were captured at our seine stations. Hickory shad has similar spawning habitats and co-occurs with American shad, but is far less common than American shad or river herring, and less is known about its life history. Coincident with the appearance of juvenile American shad at our seine stations, we have also observed small numbers of juvenile hickory shad in recent years.

The alewife and blueback herring, collectively called river herring, are commercially valuable, although typically less valuable than American shad. In past centuries, their numbers were apparently even greater than those of the American shad. Massmann (1961) reported that from 1814 to 1824, the annual catch at Chapman's Landing ranged from 343,341 to 1,068,932 fish. The alewife spawns in tributary creeks of the Potomac River and travels farther into these creeks than do the other species. The blueback herring also enters creeks to spawn, but may also utilize downstream tidal embayments to spawn.

Although there are no restrictions on their harvest in the Potomac, river herring were listed in 2006 by NOAA as species of concern due to widespread declining population indices. Population indices of river herring in the Potomac are available from seine surveys of juveniles conducted by MD-DNR. Juvenile catch rate indices are highly variable but have been lower in
the most recent decade for both species (blueback herring mean: 1998-2008=0.77 vs. 19591997=1.57; alewife mean: 1998-2008=0.35 vs. 1959-1997=0.55). This pattern is not reflected in the seine and trawl catches in Gunston Cove, which have fluctuated very little or increased slightly since the inception of the survey. While the DNR indices may represent a basin wide pattern, it is not yet possible to determine the relative contribution of juveniles from Pohick and Accotink Creeks to the Gunston Cove or DNR surveys. Such information would provide a better understanding of the population dynamics of specific tributaries.

Another set of economically valuable fishes are the semi-anadromous white perch and striped bass, which are sought after by both the commercial fishery and the sport-fishery. Both spawn in the Potomac River. Striped bass spawn primarily in the river channel between Mason Neck and Maryland Point, while white perch spawn primarily further upriver, from Mason Neck to Alexandria, and also in the adjacent tidal embayments (Lippson et al. 1979). Although spawning is concentrated in a relatively small region of the river, offspring produced there spread out to occupy habitats throughout the estuary (including surf-zone habitats of barrier islands in some years; Kraus, personal observation). These juveniles generally spend the first few years of life in the estuary and may adopt a seasonal migratory pattern when mature. While most striped bass adults are migratory (spending non-reproductive periods in coastal seas), recent work indicates that a significant (albeit small) proportion of adults are resident in the estuaries. Specific information about striped bass migratory patterns in the Potomac is lacking.

Two other herring family species are semi-anadromous and spawn in the area of Gunston Cove. These are the gizzard shad and the threadfin shad. Both are very similar morphologically and ecologically, but in our collections, threadfin shad are found downriver of Mason Neck, and gizzard shad are found upriver of Mason Neck. Neither is commercially valuable, but both are important food sources of larger predatory fishes.

For several years, we have focused a monitoring program on the spawning of these species in Pohick Creek, Accotink Creek, and, less regularly, Dogue Creek. We have sampled for adult individuals each spring since 1988 and for eggs and larvae since 1992. After 16 years of using hoop nets to capture adults, we shifted in the spring of 2004 to visual observations and seine, dip-net, and cast-net collections. This change in procedures was done to allow more frequent monitoring of spawning activity and to try to determine the length of time the spawning continued. We had to drop Accotink Creek from our sampling in 2005, 2006, and 2007 because of security-related access controls at Fort Belvoir. Fortunately, access to historical sampling locations from Fort Belvoir was regained in 2008 and 2009. Results for 2009 sampling are presented below, and 2010 samples are still being processed. A summary of historical results was provided in the 2007 annual report for this project, and an analysis and synthesis of these data to determine seasonal spawning periodicity and long-term trends is currently in preparation.

Introduction

Since 1988, George Mason University researchers have been surveying spawning river herring in Pohick Creek and adjacent tributaries of the Potomac River. The results have provided information on the annual occurrence and seasonal timing of spawning runs for alewife (Alsoa pseudoharengus) and blueback herring (A. aestivalis), but inferences on abundance have been limited for several reasons. The amount of effort to sample spawners has varied greatly between years and the methods have changed such that it is difficult to standardize the numbers captured or observed in order to understand annual fluctuations in abundance. In addition,
ichthyoplankton sampling in the creeks has been contemporaneous with spawning runs, and thus it has not reflected outdrift of larvae which may continue after the spawners leave. River discharge was also not measured during the previous ichthyoplankton sampling. To maintain coherence with historical efforts while increasing the value of the data from surveys of Pohick and Accotink Creeks, we developed a modified protocol with two main objectives: 1) quantify the magnitude of outdrifting larvae and coincident creek discharge rate in order to calculate total larval production; 2) quantify seasonal spawning run timing, size distribution and sex ratio of adult river herring using hoop nets (a putatively non-selective gear used throughout the majority of the survey). These modifications were accomplished with little additional cost and provided results that are more comparable to assessments in other parts of the range of these species. Quantico and Dogue creeks were also sampled previously, but the frequency was more sporadic. Due to logistics and expense required to conduct comparable sampling efforts, we did not attempt any sampling at Quantico and Dogue creeks and instead focused entirely on Pohick and Accotink creeks.

Methods

We conducted approximately weekly sampling trips from March $11^{\text {th }}$ to May $20^{\text {th }}$ in 2009. Sampling locations in each creek were located near the limit of tidal influence and as close as possible to historical locations. On one day each week, we sampled ichthyoplankton by holding a conical plankton net with a mouth diameter of 0.25 m and a square mesh size of 0.333 mm in the stream current for 10 minutes. A mechanical flow meter designed for low velocity measurements was suspended in the net opening and provided estimates of water volume filtered by the net. Depending upon flow conditions (we only sampled where creek depth allowed complete submergence of the net opening), we collected 2 to 3 ichthyoplankton samples per week in each creek, and these were spaced out evenly along the stream cross-section. Coincident with plankton samples, we calculated stream discharge rate from measurements of stream crosssection area and current velocity (at 2 to 5 locations along the cross-section). The ichthyoplankton samples were preserved in 10% formalin and transported to the GMU laboratory for identification and enumeration of fish larvae. Identification of larvae was accomplished with multiple taxonomic resources: primarily Lippson \& Moran (1974), Jones et al. (1978), and Walsh et al. (2005). River herring (both species) have demersal eggs (tend to sink to the bottom) that are frequently adhesive. As this situation presents a significant bias, we made no attempts to quantify egg abundance in the samples. We estimated total larval production (P) in each creek using the formula: $P=D^{*} V^{*} I$, where D is the density of larvae (per cubic meter), V is the mean river discharge rate (cubic meters per second), and I is the sampling period in seconds.

The hoop net was deployed once each week in the morning and retrieved the following morning (see Picture 1). All fish in the hoop net were identified, enumerated, and measured. Any river herring were retained for reproductive examination in the laboratory, while all other species were released. To obtain creek-specific information on fecundity, we attempted to quantify oocytes from our samples. Unfortunately, gravid females were in running ripe (i.e., with hydrated oocytes) or spent condition, making fecundity estimates from our samples unreliable. Instead we used published estimates of fecundity and observed sex ratios in our catches to estimate spawner abundance. Spawner abundance (A) was estimated for river herring species and gizzard shad (a sympatric anadromous species with similar spawning behavior) using the formula: $A=P /(R * S)$, where R is the mean fecundity based upon mean female size in the catch, and S is the observed sex ratio (\%female). Alewife fecundity estimates were derived from

Kissil (1974), using an unpublished length conversion from this work where fork length $=0.88$ * total length. In addition, we adjusted fecundity for alewife based upon Jessop (1993), who estimated that the number of eggs actually spawned is 0.67% of the total fecundity estimated from oocyte counts in gonad samples. Less reproductive information for gizzard shad was available and we did not evaluate sex ratio in the catches because the gizzard shad were released alive. For estimates of gizzard shad spawner abundance we used size-based estimates of fecundity derived from landlocked populations as reported by Jons \& Miranda (1997) and Michaletz (1998) and assumed a sex ratio of 50% female. This was accomplished by using the formula from the lake with the largest sample size in Michaletz (1998) and scaling the result by the expected mean proportion of eggs $>0.65 \mathrm{~mm}$ diameter (i.e., "functional fecundity" in Jons \& Miranda, 1997).

Similar to 2008 on nearly every sampling date, we found that some being had torn holes in the nets. Tracks along the shore, bite marks on fishes in the nets, and consultation with natural resource assessment staff at Fort Belvoir indicated that river otters (which have recently increased in abundance in these areas) were the likely cause. To keep out otters, we covered the outside of the net in poultry fencing, and used a scarecrow to deter otters, but these measures were not successful. This issue clearly reduced the numbers of fish in our samples, but we cannot determine the magnitude of the bias. The main assumption (which we cannot test) is that the river otter actions did not bias the sex ratio or size distribution results. At the end of the sampling season we tested a metal gate with narrow slots that was placed on the opening of the net. The slots were large enough to allow herring to enter the net, but too narrow for otters to enter. The results in 2009 were equivocal because the spawning had mostly ended by the time we added this device to the net. In 2010, we continued to use this excluder device with remarkable results: no holes were found at the end of 24 hours deployments, and we captured record numbers of herring with little or no bycatch of other species. The larval data are still being processed and 2010 results will be discussed in the next annual report.

Picture 1. Hoop net deployed in Pohick creek. The top of the hoop net is exposed at both high and low tide to avoid drowning turtles, otters, or other air-breathing vertebrates. The hedging is angled downstream in order to funnel up-migrating herring into the opening of the net. The scarecrow was used to deter river otters from entering the net.

Results

Our creek sampling work in 2009 spanned a total of 11 weeks, during which we collected 44 ichthyoplankton samples, and 39 adult alewife in spawning condition. We did not observe any adult blueback herring. The two river herring species are remarkably similar during both larval and adult stages, and distinguishing larvae can be extraordinarily time consuming. Thus, for purposes of larval identification we assumed that all Alosa larvae were A. pseudoharengus
(alewife). In addition, there was a remote possibility that two Dorosoma species could be present in our samples, and these are also extremely difficult to distinguish as larvae. Due to the absence of juveniles in seine and trawl samples from the adjacent Gunston Cove and adjacent Potomac River, we disregarded the possibility that threadfin shad (D. petenense) were present in our ichthyoplankton samples.

Densities of alewife were very low in 2009 creek ichthyoplankton samples. In total our samples yielded only 2 Alosa larvae, but by comparison we captured 471 Dorosoma larvae. The Alosa values were at the low end of the range of larval counts from previous sampling, and in specific years, counts in the hundreds have been observed for these species (see previous annual report). Additionally, we recorded 5 sucker larvae (family Catostomidae), 64 minnow larvae (family Cyprinidae), and 3 sliverside larvae (Menidia sp.) and 1 sunfish (Lepomis sp.) larvae (pooled across creeks). In these data, we had the advantage of measurements of river discharge

Figure 1. Discharge rate (A) and density of larval alewife (B) observed in Pohick and Accotink creeks during 2009. Boxes in the lower panel indicate numbers of adults in hoop net catches for Pohick (P) and Accotink (A) creeks. measured at the same locations and times where ichthyoplankton samples were taken. River discharge was consistenly higher in Pohick creek (except for the last sampling date) and ranged between 1.7 and $96 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ (Figure 1). Larval density was low for Alosa exhibiting a single peak on May $14^{\text {th }}$ when 2 larvae were captured in Pohick creek (Figure 1). Dorosoma (not shown) larval density increased towards the end of the sampling period and peaked on the last day of sampling in both creeks.

Averaged across the entire sampling period of 70 days, the total discharge was estimated to be on the order of 43 and 96 million cubic meters for Accotink and Pohick creeks, respectively (Table 1). Given the observed mean densities of larvae, the total production of Alosa larvae was estimated at approximately 0 and 1.6 million for Accotink and Pohick creeks, respectively. Dorosoma density was higher leading to total larval production estimates of 52 and 174 million for Accotink and Pohick creeks, respectively. In part because of problems with otters, numbers of adults in hoop nets were very low. Overall, only 39 alewife were captured, and these numbers were too low to support creek specific sex ratio estimation. Therefore, the pooled sex ratio for both creeks was used to estimate spawner abundance. Based upon observed mean female fork lengths, sex ratios, total larval production, and published estimates of fecundity (see Methods), the abundance of spawning alewife was estimated to be only 43 in Pohick Creek during the period of sampling, and no spawning is predicted from Accotink creek based upon larval abundance. By comparison, there was greater variability between creeks for gizzard shad spawner abundance estimates, which ranged between 2,845 and 31,821 for Accotink and Pohick

Creeks, respectively. Because the mortality rates of eggs and newly hatched larvae are unknown from these systems, these estimates should be considered minimum conservative values. Any adjustment for egg or post-hatch mortality would tend to increase the estimate of spawner abundance. Certainly, due to the presence of alewife in hoop net catches from Accotink some spawning was taking place, but this obviously did not lead to a detectable abundance of larvae. In addition for gizzard shad, a sex ratio skewed in favor of males (as we observed for alewife) would also tend to increase the estimated total spawner abundance, but this information was not collected in order to release gizzard shad as part of the hoop net by-catch.

Table 1. Estimation of alewife and gizzard shad spawner abundance from Accotink and Pohick creeks during spring 2009.

	$\underline{\text { Accotink Creek }}$	Pohick Creek
Mean discharge $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	7.1	38.9
Total discharge, $3 / 11$ to $5 / 20\left(\mathrm{~m}^{3}\right)$	$42,996,502$	$96,608,120$
Alewife		
Mean density of larval Alosa $\left(\mathrm{m}^{-3}\right)$	0	0.017
Total larval production	0	$1,618,234$
Adult alewife mean fork length (mm)	221	227
Alewife fecundity	37,869	58,569
Sex ratio $(\% \mathrm{~F})$	0.62	0.62
Number of female alewife	0	28
Total number of alewife	0	43
Gizzard shad	0.361	1.80
Mean density of larval Dorosoma $\left(\mathrm{m}^{-3}\right)$	$15,542,929$	$173,824,211$
Total larval production	384	353
Adult gizzard shad mean total length (mm)	24782	21503
Gizzard shad fecundity	0.5	0.5
Sex ratio $(\% \mathrm{~F})$	1423	15910
Number of female gizzard shad	2845	31821
Total number of gizzard shad		

Discussion

Despite problems with otters or other animals tearing nets, the results from the modified creek sampling protocol continued to provide important insights about anadromous clupeid spawning (especially alewife) in Pohick and Accotink Creeks. In 2008, 2009 and throughout the history of the survey, the consistent presence of alewife and lack of blueback herring suggests that Pohick and Accotink Creeks are a more suitable habitat for alewife (at least during the past 3 decades). The presence of spent and running ripe females in our catches also indicates that some spawning is occurring in tidal areas downstream. The importance of upstream spawning locations relative to tidal habitats is simply unknown for these systems, but previous work in other systems indicates that the most important spawning areas typically occur upstream of the influence of tides for river herring. The low catches of adults in hoop nets mirrors the low estimates of total spawner abundance from larval data (Table 1), indicating that the number of alewife in either creek during the 11 weeks in which sampling took place was low and potentially less than 100. Consistently higher numbers of alewife and gizzard shad spawners suggests that Pohick Creek provides a more productive spawning habitat for anadromous clupeids. The
longer-term trend for lower counts of adults in hoop nets and lower larval counts also reflects declining indices of abundance from throughout the range of this species. Due to the recent (NOAA, 2006) listing of river herring as species of conservation concern, annual estimation of spawner abundance should be a continued priority for annual monitoring in these creeks.

Several factors contribute to uncertainty of the estimates of spawner abundance. Although some of these can be addressed with modifications of sampling protocol, other factors are beyond the scale of this project to address. Our weekly sampling efforts were adjusted based upon military training schedules at Fort Belvoir and flood events that prevented safe deployment of sampling gear. Our sampling approach provides information about low to moderate flow conditions only with no ability to examine higher frequency (< weekly) patterns. Alewife spawning, egg development, and hatching may happen in as little as 3 to 7 days; therefore, it is possible to miss a peak spawning event between sampling dates and during flood events. Unfortunately, given the logistical constraints of access to our sites through military controlled training areas, it is unlikely that we would be able to address this potential bias in future efforts.

Additionally, low larval densities for alewife as well as the other species raises questions about the efficacy of the sampling approach. Sampling in 2010 has produced a large number of adults due to the use of an effective excluder device for otters, and analysis of larval samples will provide an understanding about whether this is correlated with high production of larvae. On the one hand, anadromous fishes typically exhibit strong year-class fluctuations, and reproductive success of freshwater spawning fishes (anadromous and otherwise) is strongly correlated with freshwater flow (Wood \& Austin 2009). The year 2009 had a lower total discharge during our sampling, and this may have affected the strength of the spawning run. We do not have any comparable estimates from other years for these systems to evaluate the creek-specific variability in spawner abundance, larval export, or correlations with discharge and juvenile abundance. At the very least, additional years of data will be needed to address such questions.

Literature cited

Cummins, J.D. 2005. The Potomac River American shad restoration project. 2004 Summary Report. Interstate Commission on the Potomac River Basin Report No. 05-2. $6+3$ p.
Jessop B.M. 1993. Fecundity of Anadromous Alewives and Blueback Herring in New-Brunswick and Nova-Scotia. Transactions of the American Fisheries Society 122:85-98
Jones, P. W., F. D. Martin, and J. D. Hardy, Jr. 1978. Development of fishes of the Mid-Atlantic Bight: an atlas of egg, larval, and juvenile stages, volume 1. Acipenseridae through Ictaluridae. U.S. Fish and Wildlife Service, FWS/OBS-78/12.
Jons, G.D., and L.E. Miranda 1997. Ovarian weight as an index of fecundity, maturity, and spawning periodicity. Journal of Fish Biology 50:150-156
Kissil, G.W. 1974. Spawning of the anadromous alewife, Alos pseudoharengus, in Bride Lake, Connecticut. Transactions of the American Fisheries Society 103:312-317.
Lippson, A. J., M. S. Haire, A. F. Holland, F. Jacobs, J. Jensen, R. L. Moran-Johnson, T. T. Polgar, and W. A. Richkus. 1979. Environmental atlas of the Potomac Estuary. Environmental Center, Martin Marietta Corp. 280 p.
Lippson, A. J., and R. L. Moran. 1974. Manual for the identification of early developmental stages of fishes of the Potomac River estuary. Maryland Department of Natural Resources, Baltimore.
NOAA (Department of Commerce). 2006. Endangered and Threatened Species; Revision of

Species of Concern List, Candidate Species Definition, and Candidate Species List. Federal Register, Vol. 71, No. 200, Tuesday, October 17, 2006, pp. 61022-61025.
Massmann, W.H. 1961. A Potomac River shad fishery, 1814 - 1824. Chesapeake Sci. 2 (1-2): 76-81.
Michaletz, P.H. 1998. Effect of body size on fecundity, the gonadsomatic index, egg size, and timing of spawning of gizzard shad. Journal of Freshwater Ecology 13(3):307-315.
Smith, H.M., and B.A.Bean . 1988. List of fishes known to inhabit the waters of the District of Columbia and vicinity. U.S. Fish Commission Bulletin 18:179-187.
Walsh H.J., L.R Settle, and D.S. Peters. 2005. Early life history of blueback herring and alewife in the lower Roanoke River, North Carolina. Transactions of the American Fisheries Society 134:910-926.
Wood, R.J., and H.M. Austin. 2009. Synchronous multidecadal fish recruitment patterns in Chesapeake Bay, USA. Canadian Journal of Fisheries and Aquatic Sciences 66:496-508.

