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Abstract

Recent experimental evidence suggests that the perception of temporal intervals is influenced by the temporal context in
which they are presented. A longstanding example is the time-order-error, wherein the perception of two intervals relative
to one another is influenced by the order in which they are presented. Here, we test whether the perception of temporal
intervals in an absolute judgment task is influenced by the preceding temporal context. Human subjects participated in a
temporal bisection task with no anchor durations (partition method). Intervals were demarcated by a Gaussian blob (visual
condition) or burst of white noise (auditory condition) that persisted for one of seven logarithmically spaced sub-second
intervals. Crucially, the order in which stimuli were presented was first-order counterbalanced, allowing us to measure the
carryover effect of every successive combination of intervals. The results demonstrated a number of distinct findings. First,
the perception of each interval was biased by the prior response, such that each interval was judged similarly to the
preceding trial. Second, the perception of each interval was also influenced by the prior interval, such that perceived
duration shifted away from the preceding interval. Additionally, the effect of decision bias was larger for visual intervals,
whereas auditory intervals engendered greater perceptual carryover. We quantified these effects by designing a
biologically-inspired computational model that measures noisy representations of time against an adaptive memory prior
while simultaneously accounting for uncertainty, consistent with a Bayesian heuristic. We found that our model could
account for all of the effects observed in human data. Additionally, our model could only accommodate both carryover
effects when uncertainty and memory were calculated separately, suggesting separate neural representations for each.
These findings demonstrate that time is susceptible to similar carryover effects as other basic stimulus attributes, and that
the brain rapidly adapts to temporal context.
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Introduction

The processing of any stimulus feature requires an understand-

ing of the temporal context in which it occurs. For example, in

order to properly process music or speech, the brain must learn to

predict and adapt to rapidly changing stimuli. The ability to learn

temporal relationships depends on our ability to perceive

differences in duration. However, the processing of duration

remains an elusive aspect of psychology and neuroscience [1,2].

Recent research has suggested that the brain adapts to changes

in duration in a manner similar to other stimulus features, such as

orientation and size, such that repeated presentations of the same

duration lead to a contraction of perceived time that is relative to

the adapter duration [3]. Separately, researchers have also shown

that timed responses exhibit central tendency [4], where response

times trend towards the mean of previously experienced stimuli

[5,6]. Here, we present data and computational modeling

suggesting that both effects are manifestations of the same

underlying process. More specifically, we provide evidence that

the brain continuously adapts to temporal context.

A core feature of duration processing is that temporal estimates

are noisy. Noisy estimations entail a level of uncertainty that scales

with duration length, in accordance with Weber-Fechner psycho-

physical laws. Attempts to model this effect have utilized a variety

of procedures, including pacemaker accumulation [7], perceptron-

like processes [8], state-dependent readout [9], and most recently

drift-diffusion processes [10]. However, the influence of the prior

temporal context is generally ignored in these models, with the

perception of each interval being independent of every other

interval. Yet, between-trial changes, also known as carryover

effects, may reveal hidden sources of variance and bias that can

inform how the underlying representations were generated and

decisional computations accomplished [11,12].

Carryover effects can be broadly divided into two categories.

Perceptual carryover refers to the influence of the preceding stimulus

on the present stimulus, whereas decisional carryover is the

influence of the preceding decision on the present decision

[13,14]. Both types of carryover can be either assimilative or

contrastive; assimilative effects may relate to uncertainty in

decision-making criteria, whereas contrastive effects may represent

sensory adaptation. To explore both effects, we utilized a variant

of the commonly used temporal bisection task, in which

participants are presented with stimuli at a range of possible

durations and must classify each stimulus into ‘‘short’’ or ‘‘long’’

duration categories [15]. In this variant, known as the partition
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method, no explicit anchors are provided, and so the categorical

boundary for duration categories must be computed based on the

statistics of presented stimuli. In this way, our task is more similar

to absolute identification tasks than relative discrimination tasks,

where subjects are explicitly comparing two quantities. Previous

work has demonstrated that the bisection point, a measure of the

categorical boundary between short and long, is typically located

at the geometric mean of the stimulus set [16], and does not

depend on the presence of anchors.

In our study, we sought to measure the carryover effect of both

the previous stimulus duration and the previous decision on the

present response. Previous work using absolute identification of

time intervals has demonstrated that consecutive trial responses

are positively correlated [17]; however, it is unclear whether this

assimilation is caused by a change in perception, or a bias to

respond similarly to the previous trial. To surmount this issue, the

presentation order in our experiment was determined by a first-

order counterbalanced de Bruijn sequence, in which every possible

transition between each duration in our stimulus set occurred an

equal number of times (Materials and Methods). Notably, any

randomized sequence will become first-order counterbalanced

with sufficient time; the advantage of the de Bruijn in our case was

to minimize the number of trials necessary for complete

counterbalancing, reducing the time for a single session to 15

minutes. By using a first-order counterbalanced sequence, we

could separately measure the influence of every prior duration on

the perception of every current duration. Furthermore, we could

also measure the influence of every prior decision on every current

response. We found that the perception of time is susceptible to

similar adaptive and decisional effects as other categorical stimuli,

where the responses for any given interval are simultaneously

assimilated by the prior response and contrasted away from the

prior interval. We quantified this effect by implementing a

computational model of an ideal observer that incorporates an

implicit memory prior distribution [18], which also estimates the

uncertainty associated with any given estimate of time. These

findings reveal a number of previously unknown phenomena for

time perception, and provide further insight into the underlying

computations necessary for adapting to changing temporal

contexts.

Results

Human participants (n = 80) were tested on a speeded 2AFC

temporal bisection task (see Methods and Figure 1a). Separate

groups (n = 40 ea.) performed the bisection task with unimodal

auditory or visual stimuli.

Direct effects
The de Bruijn sequence allowed us to divide our analysis into

the direct and carryover effect of each stimulus (Figure 1b). For the

direct effects, we replicated a number of well-known findings

within the time perception literature. First, the bisection point

(BP), a measure of the perceptual midpoint, occurred between the

geometric and arithmetic means of the dataset for auditory and

visual stimuli (Figure 2a,c), consistent with duration-spacing effects

previously reported [16]. Second, the coefficient of variation (CV),

a normalized index of perceptual variability (equivalent to the

Weber Fraction), was significantly smaller for auditory than visual

stimuli [t(70) = -17.985, p,0.0001] (Figure 2c), similar to previous

findings that auditory stimuli are more precisely timed than visual

stimuli [6]. Chronometric functions, derived from the reaction

time (RT) for each stimulus, revealed that RT parametrically

decreased as duration increased (Figure 2b), with faster RTs

Figure 1. Task Design (a) Participants performed a 2AFC
temporal bisection task, in which they were required to
categorize whether an interval belonged to ‘‘short’’ or ‘‘long’’
categories. On a given trial, participants viewed a fixation point,
followed by either a burst of white noise or a Gaussian blur, which
persisted for one of seven durations. Participants were then required to
respond as quickly but as accurately as possible which category the
stimulus belonged to, which initiated the following trial. Separate
groups participated in the auditory and visual versions of the task. (b)
Temporal distance matrix for de Bruijn sequence. The stimulus set
included seven logarithmically-spaced intervals between 300 and
900 ms. The presented matrix displays the distance, in ms, between
every possible successive trial combination between current and prior
durations. Direct effects are the influence of the present stimulus (ti) on
a response whereas carryover effects are the influence of the preceding
trial stimulus (ti-1). (c) Trial order determined by the path guided de
Bruijn sequence was modulated by a random pairing of sinusoids,
providing a perceptually stochastic sequence with relatively equal
spacing of stimulus pairs throughout the entire session; red circles
indicate a particular pair of trials (520–433 ms).
doi:10.1371/journal.pone.0100803.g001
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occurring after the BP had elapsed, consistent with response choice

preparation findings [19].

Carryover Effects
For decisional carryover, we observed that the preceding

decision had a strong impact on subsequent decisions (Figure 3a),

such that responses were assimilated by the prior response [20].

The BP for stimuli on which the prior stimulus was judged as long

was thus shifted leftward for both visual [t(35) = 4.717, p,0.0001]

and auditory [t(38) = 6.852, p,0.0001] stimuli. This effect was

significantly larger for visual stimuli [F(1,75) = 21.727, p,0.0001];

Additionally, there was no effect of prior decision on variability for

auditory stimuli [t(38) = 20.713, p = 0.480], yet for visual stimuli

the CV was significantly larger when the prior response choice was

‘‘long’’, rather than ‘‘short’’ [t(35) = 22.149, p = 0.038].

For perceptual carryover, the effect of prior stimulus duration

exhibited a contrastive effect on the perception of the present

duration (Figure 3b). Specifically, the longer the prior interval, the

more likely the following interval would be judged as short, and

vice versa. This effect manifested as a linear effect on the BP;

however, this was only exhibited for auditory [F(1,38) = 10.517,

p = 0.002] and not visual [F(1,32) = 1.505, p = 0.229] stimuli. No

effect of prior duration was observed on variability measures for

either modality [Visual: F(1,32) = 0.383, p = 0.540; Auditory:

F(1,38) = 0.493, p = 0.487].

For RT, we also noted a linear effect of prior duration on the

present RT (Figure 3c,d), with shorter prior durations leading to

faster reaction times. This effect was found for both auditory

[F(1,38) = 76.591, p,0.0001] and visual [F(1,32) = 83.405, p#

0.0001] stimuli, and is reminiscent of sequential foreperiod effects

[21], in which the RT on a target detection task is modulated by

the time of target occurrence on the previous trial.

A remarkable difference between the decisional and perceptual

carryover effects is that both effects shifted the position of the BP,

yet in opposite predictions. However, we observed that these two

effects existed to different degrees between auditory and visual

stimuli; auditory stimuli engendered more perceptual carryover

and less decision bias, whereas visual stimuli the opposite pattern.

This difference is noteworthy, as duration was identical between

the two conditions, and suggests that sensory modality has a

differential impact on decision-making and adaptive mechanisms

for time. In order to quantify these differences, we determined

indices for both effects. Decision-bias, characterizing the effect of

the prior response, was characterized as the signed difference

between BPs for each prior condition [(prior rLong) – (prior

rShort)]; a negative value for this index indicates that responses

were assimilated by the response on the previous trial. To quantify

perceptual carryover, we used the slope of the best fitting linear

regression to the BP values across all seven prior interval

conditions. A positive value thus represents a contrastive effect,

with responses shifting away from the prior interval, whereas a

negative value represents an assimilative effect. A strong correla-

tion between the two values was exhibited [Pearson r = 0.711, p,

0.0001], that also existed separately for auditory [Pearson

r = 0.717, p,0.0001] and visual [Pearson r = 0.649, p,0.0001]

participants alone (Figure 4a). Individual participants who showed

large degrees of contrastive perceptual carryover showed lower

degrees of decision bias, whereas participants with large degrees of

decision bias exhibited either no perceptual carryover or an

opposite, assimilative carryover. Furthermore, individual data

points for auditory and visual stimuli occupied separate quadrants

of the correlation, confirming our mean group findings, but also

showing that the effect is continuous across individuals.

Figure 2. Direct effects of duration. (a) Temporal bisection performance for two representative subjects on different modality versions of the
task. The probability of categorizing each duration as Long as well as the best fitting logistic function are displayed. (b) Average chronometric
functions for auditory and visual participants. Reaction time decreased as a function of duration, but dropped off faster after the BP was passed and
was faster for auditory stimuli at the longest duration tested. Error bars indicate s.e. of the mean. (c) Individual participant performance for the
bisection point (x-axis) and coefficient of variation (y-axis) values derived from psychometric data, as well as marginal histograms for each; there were
no differences between BP values for auditory or visual participants, but significantly lower CV values for the auditory task.
doi:10.1371/journal.pone.0100803.g002
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Two points are worth noting regarding the correlation between

decision bias and perceptual carryover effects. First, although both

indices are correlated, they are both drawn from the same dataset

and both describe shifts in the bisection point; as such, when both

effects travel in the same direction, they will necessarily be

correlated. For example, when the previous response is ‘‘long’’, it is

more likely that the previous stimulus was also long in duration,

and so any assimilative (or contrastive) effect measured by the

decision bias and perceptual carryover indices will quantify the

same shift in the BP (lower-left and upper-right quadrants of

Figure 4a). However, it is noteworthy that a number of

participants in our sample exhibited both assimilative and

contrastive effects simultaneously (upper-left quadrant of

Figure 4a). These participants thus exhibited both an assimilation

of the current decision to the previous response, and a contrast of

the perception of the current duration away from the previous

duration.

In addition to the relation between perceptual and decisional

carryover, we examined the influence of these indices on other

main effects. The result of this analysis demonstrated that only

decision bias had a strong influence on the mean session CV,

manifesting as a negative correlation [Pearson r = 20.687, p,

0.0001], that again existed separately for auditory [Pearson r = 2

0.469, p,0.005] and visual [Pearson r = 20.623, p,0.0001]

participants (Figure 4b), suggesting that decision bias serves as a

hidden source of variance in mean session performance.

Computational Modeling
The behavioral findings of the present experiment exhibit a

number of novel findings not previously demonstrated for

duration. Moreover, these effects are unaccounted for by extant

models of time perception. Current Bayesian accounts of timing

judgments assumes that individuals combine noisy sensory

representations with a memory prior based on the range of

intervals in the stimulus set, in order to reduce uncertainty

associated with timing judgments [5,6,22]. In our experiment, the

mean of the memory prior likely serves as the criterion for

categorization; however, these models assume the prior is

accurately represented, and so predict no change based on recent

events. Computational models investigating how the memory

prior is acquired throughout a session utilize Kalman filtering,

where the prior is iteratively updated after each trial [23]. In this

case, an additional factor known as the Kalman gain (g) determines

how much each new event is weighted in the next computation of

the prior. If g declines over the session, the prior becomes

stabilized and accurately represents the distribution of stimuli, but

if g remains high, the prior is always influenced by the most recent

trial [24].

Figure 3. Carryover effects of duration. (a) Grand average psychometric curves for auditory and visual participants displaying the response for
each duration on trials preceded by a response choice Long or Short. Insets display the average BP across participants for each prior choice condition;
participants were more likely to classify an interval as long (or short) if the prior decision, independent of the prior interval, was classified as long (or
short). Error bars indicate s.e. of the mean. Asterisks indicate significance at p,0.05. (b) Perceptual influence of the prior interval for visual and
auditory participants. The far left point on each graph indicates the BP for the prior null condition; notably, the BP for the null prior condition was in
the middle of the range of BPs observed for all prior duration conditions for both auditory and visual stimuli. Auditory participants exhibited a linear
effect of prior interval, such that shorter prior intervals were associated with more leftward psychometric curves and smaller BPs, indicating a greater
probability of categorizing stimuli as longer. No effect of prior interval was found for visual participants. (c) Response matrices displaying reaction
time (RT) for every condition pairing. Slower RTs (hotter pixel colors) were found for shorter durations that were preceded by trials with longer
durations. (d) RT data for each prior duration, averaged across current duration; both auditory and visual participants exhibited a strong linear effect
of the prior duration.
doi:10.1371/journal.pone.0100803.g003
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In order to properly account for temporal context, we

developed an ideal observer model that utilizes a Bayesian

heuristic approximation of behavior [18]. Specifically, we assumed

that the brain continuously adapts to a fluctuating temporal

context; however, we also assumed that the brain is limited in the

retention of temporal information, and so implemented a ‘‘leaky’’

prior, in which information about past time intervals is continu-

ously lost. As such, the memory prior only includes remembered

intervals extending back for a limited number of trials (M). We

modeled the perception of duration on each trial as a noisy sensory

process, with each interval drawn from a Gaussian probability

distribution with a standard deviation that grew proportionally

with longer intervals, in accordance with the scalar property of

time (see Methods). Next, we implemented a function of the

adaptive influence of the perceived, rather than veridical, intervals

within our limited memory window (figure S1a). This function,

which takes the form of adaptive exponential decay, served as a

weighting parameter for remembered durations, and so more

recent intervals were weighted more heavily when calculating the

mean of the memory prior [25] (Figure 5). In this way, our

weighting function approximates a high Kalman gain. Adaptive

decay functions have been demonstrated in a variety of sensory

and memory phenomena [26–29] and so were explicitly imple-

mented. In our model, the memory window and adaptive

influence are intrinsically related; longer windows lead to a greater

influence of trials further back in the stimulus history, character-

ized by a longer decay function.

One aspect of decision-making that most models must account

for is uncertainty [30]. In our approach, we modeled uncertainty

as a difference threshold limit (h) that fluctuated randomly

between trials with Gaussian noise, and represented the minimum

temporal distance needed to accurately discriminate a temporal

interval from the mean of the memory prior [31]. On a given trial

i, the optimal observer in our model thus implements a decision

rule, in which the present trial duration ti, estimated with sensory

noise, is compared to the current value of the adaptive prior

outlined above; if the difference between these two values exceeds

h, then the observer responds ideally with the correct decision. If

Figure 4. Relationship between decision bias and perceptual influence in individual participants. (a) Correlation between decision bias,
defined as the signed difference between prior(long) and prior(short) bisection points, and perceptual asymmetry, defined as the slope of the best
fitting regression line through bisection points for each prior interval condition; negative slopes indicate assimilative effects whereas positive slopes
indicate contrastive effects. Smaller decision bias (closer to zero) was associated with greater contrastive perceptual effects, whereas greater decision
bias (more negative) was associated with assimilative effects. Auditory and visual participants occupied separate quadrants, with greater decision bias
for visual stimuli and greater perceptual contrast for auditory stimuli. (b) Correlation between decision bias and mean session coefficient of variation
(CV); greater decision bias was associated with a larger CV. (c, d) Auditory and visual participant data with model performance from 500 permutations
overlaid for both correlations from above. The model was able to account for a wide variety of performances that encompassed the majority of
participants.
doi:10.1371/journal.pone.0100803.g004
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the uncertainty threshold is not reached, then the observer selects

the same response as on the previous trial (i–1). Previous work has

demonstrated that, when provided feedback on each trial, subjects

will respond similarly to the reinforced choice on the previous trial

when the perception of the current trial is ambiguous; without

feedback, subjects will respond similarly to the previous response

[20]. An implication of this finding is that the previous response

represents the ‘‘best guess’’ when the current stimulus identity is

uncertain, which may arise from the finding that human subjects

are naturally biased to perceive positive correlations between

randomly associated values [26]. In this way, uncertain estimates

are chosen in a manner that is non-random, and depends on the

prior stimulus decision history. Furthermore, the adaptive nature

of the prior allows for shifts in uncertainty for the same temporal

interval that is directly proportional to shifts in the prior. For

example, a 433 ms interval is more likely to be estimated with

uncertainty when the mean of the prior is near 433 ms, but will

become less uncertain as the prior shifts away.

In order to compare the performance of our observer model to

behavioral data, we ran 500 simulations with the window size of

the memory prior (M) and the uncertainty threshold (h) as the only

free parameters, being randomly assigned for each permutation

(see Materials and Methods). Variability of the sensory estimates

was constant, at a value that matched the mean variability of

auditory participant estimates (CV = 0.16). We chose a single value

for the CV for several reasons. First, we wanted to reduce the

number of free parameters in our model; second, our value of CV

matches previous estimates of the CV for temporal bisection

performance across a wide variety of studies [16]; third, we wanted

to see if carryover effects alone could account for timing

variability, without adding noise to the estimation process. That

is, although participants exhibited CVs higher than 0.16, we

wanted to see if, by modifying carryover effects, we could account

for greater session variability. We found that both decision bias

and perceptual carryover effects were recapitulated in our

modeled dataset, with a range of values that were strikingly

similar to the values of participants (Figure 4c). The similarity

between the simulated and observed data suggests that human

participants adopt a strategy that is in line with the Bayesian

heuristic implemented in our model. Also, it is noteworthy that our

model was able to reproduce the pattern of simultaneous

assimilation for decision bias and contrast for perceptual carryover

observed in human participants (upper left quadrant, Figure 4c).

Additionally, we found that our model exhibited the same

Figure 5. Implicit memory model schematic. (a) On a given trial, a temporal interval t (here, auditory) is perceived as a draw from a Gaussian
noise distribution f(t) that varies between trials and scales with longer durations (normalized here for presentation). (b) Once the length of the
interval is perceived, the estimate is compared to the present criterion, (black dashed line), which changes from trial to trial depending on the prior
distribution of trials. An uncertainty threshold, h (gray dashed lines) indicates the distance surrounding the criterion beyond which an interval can be
accurately discriminated, and is also drawn from a Gaussian distribution. (c) The memory criterion was formed by adaptively weighting a limited
number of intervals in the immediate stimulus history, limited by a given memory window size (M). The weighting function of preceding intervals (v)
exponentially decayed in time and was proportional to M, such that larger window sizes led to a longer decay function and a greater influence of
intervals further back in the stimulus history; curves represent the decay function for different values of M. (d) The decision stage on each trial ideally
categorized perceived stimuli as longer or shorter than the criterion if they exceeded uncertainty. The model reproduced patterns of decision bias
(top graph: gray line = prior resp(shorter); black line = prior resp(longer)) by selecting the prior response when uncertainty could not be overcome,
and exhibited perceptual carryover (middle graph: gray line = prior dur(900 ms); black line = prior dur(300 ms)) by judging each stimulus relative to
the adaptive prior. Bottom graph displays model data bisection points displaying a linear (contrastive) effect of prior interval.
doi:10.1371/journal.pone.0100803.g005
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correlation between decision bias and variability as in human

participants (Figure 4d). This is noteworthy as sensory variability

was set in our model at a constant value that did not vary between

simulations. As such, variability in decision bias alone could

account for an increase in CV over twice the size of modeled

sensory variance, suggesting that the CV is highly susceptible to

decision bias.

In order to address the contribution of M and h parameters to

participant performance, we fit our observer model to individual

participants (Materials and Methods, Figure 6). Our model fits

indicated that both visual and auditory participants were able to

hold a similar number of intervals in the memory prior, (,13

intervals), with no significant difference between the two groups

[t(71) = 0.815, p = 0.418]. For the uncertainty threshold h, we

found that visual participants exhibited a significantly higher mean

threshold (84 ms) than auditory participants (49 ms) [t(71) = 2

3.842, p,0.0005], suggesting that a crucial difference between

auditory and visual timing is the uncertainty associated with

judgment comparisons, rather than the fidelity of the sensory

system for independently estimating a given duration.

We further note that our model exhibited a number of patterns

not explicitly modeled. Foremost, we found that duration estimates

exhibited the classic pattern of central tendency, with a regression

to the mean (figure S2), suggesting that short-term dependencies

can give rise to the pattern of central tendency [31,32], and that

central tendency can arise from a simple adaptive process, rather

than an optimal reduction of noise that is seen as separate from

carryover effects [26]. Additionally, we found that the fluctuating

memory prior exhibited 1/f noise characteristics (figure S1b), a

commonly observed feature in models of memory, which further

suggests that long-term patterns can arise from a limited number

of trials [32].

Model Variations
Although our model was able to recapitulate the carryover

effects observed in human participants, it is possible that these

effects did not rely on the entire model as designed. That is, it is

unclear how much each assumption in our model contributes to

the observed data. In order to measure the influence of particular

factors, we constructed four alternative versions of our model (see

Materials and Methods). In the first alternative, we tested the

influence of the limited memory prior by generating an ideal

observer with an unlimited memory (unlimited-prior model). In

this version, recent trials are still weighted more heavily, but every

trial is retained in the memory prior. As the number of trials

retained in memory shapes the adaptive decay function in our

model, the influence of prior trials decays much more gradually. In

the second alternative, we tested the influence of the uncertainty

threshold h by generating an observer with zero uncertainty (zero-

uncertainty model). In this version, the observer can always

identify if the current interval is longer or shorter than the mean of

the memory prior, and so never intentionally responds similarly to

the previous trial. In the third alternative, we tested the influence

of the adaptive decay function by removing its influence entirely

(zero-weighting model). In this version, the observer still retains

only a limited number of trials in memory, but there is no

weighting of more recent trials. In the fourth alternative, we asked

if the uncertainty threshold and the implicit memory prior are

computed independently, or rather mutually depend on the

statistics of the environment. Recent studies have shown that both

animals [33] and humans [25] can adapt to the variability of

temporal information when the intervals tested are unknown, but

stable. Whereas the prior is derived from the mean of the

durations stored in memory, it is possible that the threshold is

derived from the variance of remembered durations. In the fourth

version, the width of the Gaussian distribution used for drawing h
for each trial was determined by the variance of intervals stored in

memory (memory-based uncertainty). In this way, the uncertainty

in any judgment between a current interval and the mean of the

prior depends on both the variance of the prior and the number of

the trials retained. Furthermore, memory distributions retaining a

larger number of repeats will also be characterized by less variance

[34].

Comparison of the alternative models with the original data is

displayed in Figure 7 and figure S3. Notably, none of the four

models covers the same range of data as available in the full

implementation. Comparison of the fits to subject data between

the original model and alternative models demonstrated that the

original model fit the data significantly better than any of the

alternatives (all p,0.05; table S1). However, we do note that, when

segregating the data by modality, the memory-based uncertainty

model and the original model fit the data from visual-modality

subjects equally well [t(35) = 1.182, p = 0.245]; we additionally note

that the zero-weighting model fit the data for both auditory and

visual participants quite well, with the original model only being

better at the trend level (p = 0.058; table S1). However, the

alternative models allow for a dissection of the relative contribu-

tion of each parameter to both carryover effects. In the unlimited-

prior model, little to no contrastive perceptual carryover is

observed, with only decision bias and assimilative carryover

existing. In the zero-uncertainty model, the perceptual carryover

effect dominates observer responses, with most observers showing

little to no decision bias, and contrastive perceptual effects

dominating. Comparing values of M and h between both models

revealed that veridical performance, and very little carryover, is

associated with high values of M and low values of h (figure S4).

The zero-weighting model shows only a slight increase in

Figure 6. Model fits of experimental data. Individual fits indicated
that the window size of the memory prior did not differ between
participants performing on the auditory or visual versions of the task.
However, uncertainty threshold values did significantly differ, with
higher thresholds for visual participants (p,0.05). Error bars represent
s.e. of the mean.
doi:10.1371/journal.pone.0100803.g006
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contrastive carryover, indicating that this effect likely relies on an

adaptive decay that is limited in time; however, this model was still

very successful at fitting the data, suggesting that a limited window

of trials is also important for producing carryover. Lastly, and

perhaps most importantly, the memory-based uncertainty model

exhibited only assimilative biases, suggesting that, for both

assimilative and contrastive effects to occur in decision bias and

perceptual carryover, the width of the uncertainty distribution

must be computed independently of the memory distribution. We

also note that none of the alternative models were able to fully

reproduce the simultaneous pattern of assimilative and contrastive

effects observed in the full model (upper left quadrants of Figure 7).

As a final test, we also examined a variation of our model in

which the scaling factor for variability of the perceptual

measurement of each duration (ts in equation 1) was also set as

a free parameter. We found that this additional model also

exhibited the same carryover effects as when variability was held

constant, in our original model, and fits to individual participants

produced equivalent of M and h as the original model (figure S7).

However, we also found that the fits to auditory and visual

participants produced variability values that were not significantly

different from one another [t(69) = -0.592, p = 0.556], further

suggesting that a crucial difference between the auditory and visual

modalities for time is the threshold for measuring differences,

rather than the noisiness of measuring intervals.

Discussion

The main finding of our study is that human participants exhibit

serial dependencies in temporal bisection. These dependencies

take the form of decision bias, in which the current response is

assimilated by the response on the previous trial, and perceptual

carryover, in which the perceived duration of the current stimulus

is contrasted away from the previous duration. Notably, each type

of carryover effect pushes responses in opposite directions, and can

even occur simultaneously in some individuals. These findings are

rendered invisible when looking at the mean level of performance

across a given session. However, mean variability (CV) is strongly

influenced by the degree of decision bias in our sample, suggesting

that decision-level variance and perceptual variance can be

dissociated into separable components.

In addition to the present findings, we note that our model can

accommodate a diverse set of findings in temporal perception.

Foremost is the observation that our model replicates measures of

central tendency, in which estimates of duration are systematically

biased toward the mean of the stimulus distribution. Previous

models have suggested that central tendency arises through an

optimal Bayesian integration process that improves precision [5].

Crucial to these models is the assumption that the observer has

access to an accurate representation of the prior. Although the

shape of this distribution may change, depending on stimulus

features and the shape of the underlying distribution [6,35], it is

generally thought that participants accurately learn the range of

the prior relatively early in the session [24]. However, this

formulation precludes the occurrence of carryover effects, except

for early in the session when the prior is learned [23]. In our

model, participants have access to a representation of the prior

that is both limited in time and adapted by recent trials. Notably,

there is no assumption in our model that the prior reduces

variability; rather, the uncertainty threshold that surrounds the

prior is where changes in variability arise.

A second type of finding in temporal perception that can be

explained by our model is anchor effects. A number of studies have

now demonstrated that the response to a stimulus can depend on

the presentation of previous intervals that are irrelevant to the

required judgment [9,36–38]. Our model can predict such effects

by assuming that previous intervals are integrated into the

adaptive prior, such that their influence still lingers in the

judgment of a subsequent duration. That is, even if the task

requires a participant to discriminate between two temporal

intervals, previous intervals will interfere with that judgment by

influencing the memory for duration.

Context dependent and independent timing
Recently, there has been debate about the role of context

dependent versus independent representations of time in the

human brain [1,2]. Context dependencies extend beyond the

distribution of intervals, and include the sensory modality and

motor requirements of the task. Recent research has shown that

different neural circuits are invoked, depending on the temporal

context [39], suggesting that different circuits are optimal for

different contexts. Our findings suggest that different modalities

are susceptible to different kinds of contextual carryover effects;

auditory stimuli exhibit more perceptual carryover, whereas visual

stimuli are more susceptible to decision bias. These findings are in

accordance with recent evidence suggesting that auditory stimuli

engender the rapid formation of representations [40] and that A1

neurons are susceptible to prior stimulus history [28] while

attention to visual stimuli impairs performance with nearby

distractors [41]. Furthermore, these findings support theories

suggesting that stimulus encoding relies on a relative, rather than

absolute, coding scale, obviating the need for long-term represen-

tations [42].

Regarding the neural basis of these effects, a number of

candidate regions that have been implicated in temporal

processing may be related. Electrophysiological recordings have

implicated inferior parietal neurons in the encoding of temporal

information leading to a decision in a task similar to that used here

[43]. Additionally, transcranial magnetic stimulation of inferior

parietal cortex in humans has been found to shift perceived

duration, independent of response bias, and increase activity at

frontocentral sites [44]. Other recent research has demonstrated

that supplementary motor area (SMA) and basal ganglia neurons

exhibit tuning preferences for different durations [2], suggesting

that the SMA and basal ganglia may serve as an accumulator-

readout for time. However, it may be that perceptual carryover

and decision bias are based within separate neuronal populations

in distinct regions.

Adaptive Timing
Recent research has shown that adaptation-level effects for a

variety of stimulus attributes can alter perceived duration

[36,45,46]. Here we extend these findings by showing that time

itself can adaptively change perceived duration. This finding is

consistent with a recent channel-based model of time that showed

adaptation effects for long exposures of repeated temporal

intervals [3]. Regarding the neural basis for such effects, one

possibility is that incoming sensory signals encode temporal

duration as a basic stimulus feature. Recent research has shown

that V1 neurons can learn to encode temporal expectancies [47],

and that A1 neurons can encode temporal rate information [48].

Temporal information may thus be encoded by the detection of

offset responses that are temporally tuned for a range of intervals

[2].

Adaptive timing may be advantageous for organisms by

allowing for the formation of temporal expectancies. Indeed, a

major challenge for the nervous system is making predictable

inferences in the face of dynamic, noisy stimulus environments;
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adaptation to time may thus allow the nervous system to predict

when particular events are going to occur and thus maximize

information transmission [49]. Recent research has shown that

forming accurate temporal expectations improves behavioral

performance and the signal-to-noise ratio of sensory information

[50], which may relate to dynamic changes in sensory cortical

neurons [47,51]. Our findings suggest a model of adaptation that

responds to a perceptually stochastic stream of intervals by

attempting to home in on a mean criterion.

An additional mechanism that may be invoked in adaptation is

repetition suppression [52]. Indeed, recent suggestions have been

made that time perception may be mediated by the strength of

neural firing for stimulus features. In these energy-readout models,

variations in perceived duration arise from the repetition of

stimulus features [36], such that the repeated pairing of two stimuli

of equal durations leads to a relative contraction of the duration of

the second stimulus relative to the first. Although not specifically

hypothesized within our model, we explored the possibility that

repetition of stimulus duration leads to a change in perception,

and so may have contributed to our findings. However, we found

no change in the perceived length of duration when the same

interval was repeated, measured relative to the null condition,

where the preceding trial was a blank screen, and so no adaptation

should have occurred (Figure S5). This finding suggests that the

changes we observed were not due to differences arising from a

repetition-suppression type mechanism for duration.

In the present study, we utilized a path-guided de Bruijn

sequence to test for the effects of carryover. The use of the de

Bruijn sequence in cognitive neuroscience was originally intended

for fMRI studies as a test of continuous carryover of stimulus

attributes. Accordingly, measures of carryover in fMRI BOLD

signal are related by the difference between successive pairings of

stimuli; a difference in signal intensity changes that matches the

presumed distance between pairings can be used to isolate

neuronal populations that are tuned for the manipulated stimulus

attribute. The primary advantage of this technique is that the

results of the present experiment may be easily adapted for

neuroimaging. Furthermore, computational modeling of prior

duration, uncertainty and adaptive weighting may all be applied to

model-based fMRI designs [53]. Lastly, we note that our paradigm

may be useful for developmental, psychiatric and neurological

studies of patient populations. Numerous timing deficits in

psychiatric and neurological pathologies have been previously

identified [54], and developmental studies have tracked how

timing abilities normally or abnormally develop [55]; notably,

many of these studies utilize the temporal bisection task for

identifying timing disturbances. Additionally, a number of these

studies find disturbances or changes in variability, characterized by

larger CVs. Changes in the CV have previously been interpreted

to reflect alterations in the underlying representation of temporal

intervals. In our study, we demonstrate that CV is affected by

decision bias, rather than the underlying representation. By

utilizing our design for temporal bisection, it is possible to measure

perceptual carryover and decision bias effects, and so provide a

more nuanced profile of timing deficits and differences in different

populations.

Lastly, in our model, we formulated the representation of time

on a given trial as a noisy process that is normally distributed and

scales with duration length, approximating a likelihood or basis

function [5]. However, we leave it open how this representation is

generated. Accordingly, our model could be integrated into any

number of available models for timing that incorporate scalar

variability. We suggest that a likely candidate for the creation of

sensory representations could be found in a recent drift-diffusion

firing rate model of time perception [10]. Our reasoning is that

drift-diffusion models are well suited for predicting behavior on

2AFC paradigms, including the shape of the chronometric

function observed in the present study [19]. We additionally note

that our model as it applies to the current dataset leaves open

other refinements. Particularly, we modeled uncertainty and prior

size parameters (h and M) as stationary across a given session. In

practice, this is unlikely, as non-stationarity is a common

occurrence in psychophysics [12]. One possibility may be that h
and M adaptively change throughout a session to periods of

perceptual stability; such an implementation would be similar to

the Bayesian heuristic solution for ‘‘change-point’’ processing,

wherein the set of presented stimuli randomly shifts throughout a

session [56]. Additionally, we note that the memory prior in our

model does not include the ITI between trials as a factor. Longer

delays between trials may be associated with greater decay in

memory, and changing ITI length has previously been shown to

influence carryover effects for other stimulus dimensions [57].

Indeed, in our model, we modeled decay across trials, rather than

time, and further assumed that the memory window is limited to a

particular number of trials. Yet, there is no reason why our model

could not be implemented with a memory process that decays over

time, or one that does not require a memory window but instead

has the weight of distant intervals decay practically to zero. In

Figure 7. Alternative model comparisons. Each graph displays the results of 200 permutations of an alternative model (green points) compared
with the original model (faded points). Four models were tested: an unlimited-prior model, which assumed a perfect memory prior that continuously
integrated all perceived intervals across the entire session; a zero-uncertainty model, where uncertainty in the comparison of the present duration
with the mean of the prior did not impact decisions and h was set to zero; a zero-weighting model, in which the prior was still limited and varied
between permutations, but no adaptation weighting was applied (all remembered intervals contributed equally to the prior); a memory-based
uncertainty model, where h was set to match the variability of the intervals stored in the limited memory prior. None of the alternative models
reproduced the full pattern of data observed in participants or in the full model.
doi:10.1371/journal.pone.0100803.g007
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either case, we expect the results of such models to be similar to

the one presented here. However, future implementations of our

model may require adjusting these and other variables throughout

a session.

We further note that our model of human performance shares a

number of commonalities with other models of timing, such as

memory mixing [58,59], uncertainty thresholds [31], and implicit

standards [25]. However, we note that none of these other models

in their current forms can accommodate the set of findings in our

data; that is, in order for a model to apply to trial-by-trial

carryover effects, it must produce both decision bias and perceptual

carryover simultaneously. Our choice to compare our model to

alternative variations represents an attempt to explore the

contributions of each of our assumptions. As shown, none of our

model alternatives were able to fully account for the data,

suggesting that carryover effects require both a computation of

uncertainty and an implicit memory prior that is adapted in time.

Of most interest in this regard are the results of our fourth model

alternative, where the degree of uncertainty is determined by the

variability of the environment. Although it has been demonstrated

in other timing domains that human and animal participants

account for the variability of time intervals across a given session

[33,34], our results demonstrate that this information is not used

for measuring uncertainty in the estimates. This finding suggests

that uncertainty is calculated in the brain separately from memory

variance. It is also interesting then to note that when fitting the

model to individual participants, we found larger values of h for

visual than auditory participants, whereas the size of the memory

prior was equal between modalities. The implication of this finding

is that uncertainty is calculated in modal-specific regions, whereas

memory for duration is stored amodally.

Finally, we note that our investigation and modeling of

carryover effects has implications beyond time perception. Indeed,

carryover effects are a long-standing psychological phenomenon

that have been demonstrated for a variety of stimulus properties,

such as pitch [57], size [14], density [60] and brightness [61], as

well as more complex stimuli such as faces [62] and monetary

value [63]. We suggest that our findings and model may thus

generalize to the larger corpus of carryover effects and can provide

some insight.

Conclusions

Studies of duration processing entail an understanding of the

temporal context in which intervals are presented. The results of

the present study demonstrate that contextual effects extend to

single-trial data, where the duration and response choice of a given

trial exerts a diminishing influence on future trials. Our findings

suggest that time is an adaptable attribute of stimulus encoding

that adjusts to dynamic changes in unpredictable stimulus

contexts.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all subjects, and

the Institutional Review Boards of both the University of

Pennsylvania and George Mason University approved the study

protocol.

Participants
A total of 80 right-handed participants, age 18–30 years, were

included. All participants were naı̈ve to the task design and no

participant performed in any more than one version of the task.

Participants were drawn from students around the University of

Pennsylvania and George Mason University campuses, and were

assigned course credit for their participation.

Stimuli and design
Participants performed a modified version the temporal

bisection task (partition variant; [15]). All participants sat in front

of a gamma-corrected, cathode-ray tube (CRT) monitor, with a

refresh rate of 100 Hz. Participants viewed a series of stimuli, one-

at-a-time, that persisted for one of seven logarithmically spaced

intervals of time, between 300 and 900 ms. On each trial,

participants were required to judge whether the stimulus presented

was ‘‘long’’ or ‘‘short’’, based on their own subjective feeling, and

press one of two response keys for each choice. Participants were

instructed to make each response as quickly, yet as accurately as

possible, and not to over-think their responses. At the beginning of

the experiment, participants were presented with three stimuli at

the geometric mean of the stimulus set as an example of the

average stimulus duration and for comparison purposes for the

first few trials. All visual stimuli were generated in the Python

programming environment using extensions provided by Psy-

chopy, version 1.75 [64], and consisted of a centrally-presented

Gaussian luminance blur, presented at 100% contrast against a

grey background (mean luminance: 117 cd/m2) with a FWHM of

2 cm. All auditory stimuli were generated using Audacity, version

2.0 (http://audacity.sourceforge.net/), and consisted of a white

noise burst (0.5 amplitude, 44100 Hz digitization), presented via

headphones at a comfortable volume, individually adjusted for

each participant (loudness range: [69–73 dB). Each trial consisted

of the presentation of a centrally presented fixation point for

500 ms, followed by the presentation of the stimulus of variable

duration, followed by a blank screen that was terminated by a

choice response. The order of stimulus presentation was deter-

mined by a path-guided de Bruijn sequence (https://cfn.upenn.

edu/aguirre/wiki/public:de_bruijn). de Bruijn sequences are

modified Hamiltonian cycles through a stimulus set, such that

every possible order combination of stimuli is presented [65]. The

path-guided process of the de Bruijn sequence allows the

Hamiltonian cycle to be modified by a guide function, which

can provide an underlying structure to the perceptually stochastic

sequence in which stimuli are presented. The guide-function was

modulated by a sum of sinusoids with random periods between 20

and 40 elements (unit labels). An additional label for null (empty)

trials was added to the matrix, so as to include trials where no

stimulus was presented; on null trials, subjects viewed a blank

screen for 550 ms, followed by the appearance of the fixation point

for the next trial. The resulting trial matrix consisted of 64 possible

trial types and a sequence of 512 trials. Each duration in the total

sequence was presented 64 times. For each of the prior conditions,

each duration was presented eight times.

Behavioral Analysis
The first trial was removed for each participant from the

analysis. All trials were additionally filtered by a RT cutoff of

1000 ms, such that trials for which the RT exceeded 1000 ms

were discarded (figure S6); we chose this threshold to limit ISI

length and on the basis of work suggesting that serial dependencies

are strongest for ISIs within this range [66]. Psychometric and

Chronometric curves were first generated for each participant

based on the full dataset. Psychometric curves were generated by

plotting the proportion of long response choices for each of the

seven tested durations; these points were then fitted by a sigmoidal,

logistic curve using the psignifit version 2.5.6 software package (see

http://bootstrap-software.org/psignifit/) for Matlab, which im-
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plements the maximum-likelihood method described by Wich-

mann & Hill [67]. Upper and lower thresholds, the approximate

points at which the subject is 25% or 75% likely to judge the

stimulus as long, were calculated using the bias-corrected

bootstrap method implemented by psignifit, based on 1999

simulations [68]. The results of this analysis yielded the bisection

point (BP; the time value at which subjects were equally likely to

judge the stimulus as long or short), the difference limen (DL; the

difference between the upper [75%] and lower [25%] threshold

values divided in half), and the coefficient of variation (CV; DL/

BP). The BP thus reflects the subjective midpoint of the range of

tested durations, while the CV reflects the normalized variability

of measurements. We note that our choice of nomenclature here

reflects standard use among studies of time perception; BP is used

here instead of the more common point of subjective equality

(PSE), as the latter term implies an explicit comparison between

two stimuli. Chronometric curves were constructed by plotting the

RT for each of the seven possible durations. Participants with poor

Psychometric fits were removed from the analysis; all subjects with

a CV value of 1 or greater were removed, resulting in four subjects

removed from the visual version of the present experiment and

one subject removed from the auditory version.

For the exploration of carryover effects, trial types were divided

up for each participant. To explore decision bias effects,

participant responses were segregated into trials preceded by a

long or short response choice, resulting in two separate conditions

for each duration trial type. Psychometric and Chronometric

curves were again generated using the procedure outlined above.

For perceptual carryover effects, participant responses were

segregated into trials preceded by each of the eight possible prior

trial types. A total of eight Psychometric and Chronometric curves

were generated for each of the carryover conditions.

Computational Modeling
In order to quantify the influence of prior decision and

perceptual carryover effects observed in behavioral data, we

constructed an optimal observer model that implemented a

heuristic Bayesian approximation of behavior. The model begins

by assuming that the length of time of any given interval t on trial i,

is drawn from a noisy sensory representation of the form

f (t)~
1

ts

ffiffiffiffiffiffi
2p
p e

{(t{ti )
2

2ts2 ð1Þ

which implements a Gaussian probability distribution for elapsing

intervals of time t with mean ti and standard deviation ts, such that

ts scales linearly with a constant coefficient of variation, in

accordance with the scalar property of time and Weber’s law. For

modeling purposes, the CV was set at the mean for participant

performance on the auditory version of our task (0.16). The model

further assumes that on any given trial i, the observer computes a

running weighted average of the bisection point, representing the

midpoint of the range of previously experienced stimuli. We note

that the estimate of the bisection point on each trial here

represents the average of perceived, not actual, durations

experienced; as such, the bisection point is based on the noisy

sensory estimates of duration from previous trials. The running

average for trial i is referred to as and takes the form

ti ~ P
M

j~1
f (ti{j)

vi{j

0
@

1
A

1PM
j~1

vi{j
ð2Þ

where M is the size of the running average window and v is an

adaptive weighting function. The form of v was modeled as an

exponential decay function

vi~e{il ð3Þ

where vi[ v1,v2,:::,vMf g and l represents the decay constant

with l = 1/M, in order to more closely represent longer decay

curves observed in previous studies [18,25–28]. In this way, v is

directly scaled by M, so that larger windows sizes lead to longer

decays. Equation 2 thus computes the weighted geometric mean of

preceding temporal intervals extending back for a finite window in

time, and approximates the assumed prior distribution of intervals

on a given trial i. On a given trial, the model thus implements the

following decision rule

r(l)i~
r(l)i{1,

f (t)iw ti,

for Df (t)i{ ti Dvh

otherwise

( )
ð4Þ

where r(l)i is the response choice for ‘‘long’’ on trial i and h
represents an uncertainty threshold. We note that equation 4 can

be altered for ‘‘short’’ response choices r(s)i by changing the second

line to f(t)i,ti. The value of h represents the least discriminable

interval of time, such that intervals that have a difference lower

than this value cannot be accurately differentiated. We modeled

this difference by drawing from a Gaussian distribution on each

trial, with a mean of ti and a SD of h, and then calculating the

absolute difference between that value and ti. The model thus

computes the difference between the presently perceived interval

of time, drawn from a noisy distribution (equation 1), and the

subjective midpoint of previously experienced intervals, drawn

from the prior distribution that is limited in time and weighted by

recent adaptation (equation 2). If the difference between these two

values exceeds the uncertainty threshold (h), then the subject

responds ideally by indicating whether ti is longer or shorter than

ti, otherwise, if the difference does not exceed uncertainty, the

observer simply responds with the same response from the

previous trial i–1.

Monte Carlo simulations of the observer model were run

through the de Bruijn sequence of presented stimuli; with M and h
as the only two free parameters. Values of M ranged between 1

and 30 (step size = 1), whereas h ranged between 1 and 150 ms

(step size = 1 ms). For a given run of the model, individual

responses were concatenated and analyzed with the exact same

method as the behavioral data outlined above. Model permuta-

tions were run 500 times, with eleven psychometric curves

generated for each run, giving a total of 5500 psychometric

curves. Decision bias and perceptual carryover effects were

evaluated in the same manner as behavioral data (see Results)

for each run.

In addition to the original model, four model variants were also

run to test for the contribution of any given parameter to the

model: a zero-uncertainty model, in which the value of h was set to

0, and so no prior decisions were ever selected; an unlimited-prior

model, in which the value of M grew proportional to the number

of trials tested, ensuring that no intervals were ever lost from the

prior; a zero-adaptation model, in which the value of v was

constant, so that no preferential weighting of prior intervals

occurred. Lastly, we contructed an alternative model where the

value of h was determined by the SD of intervals in memory; in

this model, h was calculated on each trial as the standard error of
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ti. Each of these models were permuted 200 times for comparison

with the results of the main model.

We fit the original model to individual participant performance

by using the values of M and h from our original Monte Carlo

simulation. This was accomplished by calculating the root mean-

squared error (RMSE) between predictions of the model and

human performance [33]. As participants each exhibited decision-

bias and perceptual carryover, we calculated the RMSE between

model outputs and these values for each subject [16]. The model

output that best matched human performance was found by

finding which model parameters out of the permuted set had the

minimal RMSE for each participant. Alternative models were fit

in the same manner to participant data, and RMSE values were

compared between models. However, we acknowledge that this

comparison is limited, as not all of the alternative models had the

same number of free parameters.

Data Availability
The behavioral data and computational model from this study

are both freely available online at http://archlab.gmu.edu/pang/

resources.html.

Supporting Information

Figure S1 (a) Example run of the observer model. Black

circles represent the perceived (not actual) duration on each trial;

green shadings represent the noisy distributions from which the

perceived duration was drawn. The red line represents the

weighted geometric mean of perceived durations in the implicit

memory prior. (b) 1/f scaling in model performance. Left columns

display the evolving value of the criterion for three modeled

observers with decreasing window sizes. Right columns display the

corresponding power spectra in log space. As the window size for

the memory prior increases, the power spectra exhibit a greater

linear decline in power, consistent with 1/f pink noise spectra.

(TIFF)

Figure S2 Central tendency effects of modeled data. For

each modeled participant, the mean estimate of each current

duration category was calculated. The horizontal dashed line

indicates the mean stimulus duration; the diagonal dashed identity

line represents veridical performance. Large plotted points

represent the mean of modeled observers (N = 500), with faded

points representing individual observers.

(TIFF)

Figure S3 Evaluation of average model fits for the
original and alternative models. Left panel displays model

performance for the aggregate total; right panel displays auditory

and visual data separately. Error bars represent standard error.

The values plotted are [1 – RMSE], such that higher values

represent better fits.

(TIFF)

Figure S4 Comparison of model parameters between
two alternative models. In the unlimited-prior and zero-

uncertainty models, only one parameter, h or M, was varied.

Colored points display the value of the varied parameter. In the

unlimited-prior model, lower values of h (in seconds) are associated

with less carryover, whereas in the zero-uncertainty model, higher

values if M (in trials) lead to less carryover.

(TIFF)

Figure S5 Repetition effects. For visual and auditory

participants, grand-averaged psychometric curves are displayed

representing the conditions where the same interval was presented

twice (Prior Repeat), or the prior interval was a Null event, where

participants viewed a blank screen. No differences in the bisection

point were observed for either condition in either modality.

(TIFF)

Figure S6 Number of trials removed after RT cutoff of
1000 ms for each duration (max = 64). Significantly more

trials were removed for visual than auditory stimuli

[F(6,384) = 2.930, p = 0.008]. Both modalities demonstrated an

effect of duration [F(6,384) = 15.688, p,0.001], with more trials

being removed around the middle range of durations.

(TIFF)

Figure S7 Fits to individual participant data of the
original model with perceptual variability as a free
parameter. Model fits are shown next to the corresponding fit

values from the original model from Figure 6. The model with

variability as a free parameter (‘‘Changing CV’’) produced values

of window size (a) and threshold size (b) that were not significantly

different from their counterparts in the original model (all p.0.05),

and also produced threshold values that were significantly higher

for visual than auditory participants (p,0.05). (c) Additionally, no

difference between the variability of perceptual measurements was

found for fits to auditory and visual participants (p.0.05).

(TIFF)

Table S1 Paired t-test values, displayed as t-statistics,
comparing the original model fits against each of the
alternative model fits. Separate comparisons are displayed for

the entire set of subjects, and separated between auditory and

visual subjects.

(TIFF)
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