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ABSTRACT 

 
 
 

AN EVIDENCE MANAGEMENT MODEL FOR WEB SERVICES BEHAVIOR 
 
Murat Gunestas, PhD 
 
George Mason University, 2009 
 
Dissertation Director: Duminda Wijesekera 
 
 
 
Web service choreographies, orchestrations and dynamically invoking web services are 

three kinds of sample compositions. These compositions create service inter-

dependencies that can be misused for monetary or other gains. When a misuse is 

reported, investigators have to navigate through a collection of web-service or network 

logs to recreate suspected misuses. In order to facilitate this task, I propose creating 

forensic web services (FWS), specialized web services that, when used, would securely 

maintain transactional records between other web services. An independent agency can 

re-link these secure records residing in distributed FWS stations to reproduce the 

transactional history, and thereby substantiate or refute claims of misuse by providing 

supporting or refuting evidence.  

 

As multi-participant transactions migrate to web services, there is a potential for some of 

these parties to not fulfill their specified obligations or to work to achieve objectives 



 
 

contrary to those specified objectives. Preserving evidence of service behavior of all 

participating actors in complex web-based transactions can resolve such shortcomings. In 

order to achieve this, I propose a three-layered framework to preserve evidence of service 

behaviors in a non-refutable way. The lowest layer of my framework preserves 

transactional evidence of pair-wise participation using cryptographically secured FWS. 

The second layer uses this pair-wise evidence to derive evidence of complex interactions. 

The highest layer generates evidence of complex transactional behavior. 

 

Web service choreographies can be misused at multiple levels: namely exploiting their 

technical capabilities that I refer to as Service Misuses and using them to design complex 

illegal business schemes that I refer to as Business Misuses, such as Ponzi, pyramid, or 

money laundering schemes. One of the main problems with the latter kind of misuses is 

that they appear similar to a legal multi-stage business scheme to an external observer 

with a microscopic view; but in truth are macroscopically illegal.   I define some of these 

schemes precisely and show how to produce evidence of them using cryptographically 

secure local message repositories.  Such evidence would be helpful to financial fraud 

investigators, business arbiters, potential investors, and judicial actors. 

 

Detecting service or business misuses, in particular, over a set of evidence of observed 

web service interactions through a post-mortem investigation might disclose an extremely 

dramatic level of damage as is in the case of Ponzi schemes. Live detection of business 

misuses can assist a collection of services by alerting them to a spreading misuse that 



 
 

may target them or help in preventing service misuses. I abstract post-mortem detection 

queries for business and service misuses. 
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CHAPTER 1  
 
 

INTRODUCTION 

 

1.1. Problem Statement 

Interdependencies among web services are arising ubiquitously and consequently any 

misbehaving service affects other services. In such an environment, unless precautions 

are taken, the opportunity to provide accountability is reduced. Consequently, any service 

level log records stored at a disadvantaged and grieving service would provide little or no 

value in identifying the cause of grief. Holding the whole collection of interacting 

services accountable would be one method to address this inadequacy, but this would not 

address global business misuses that can be built from pairs of legal interactions. As will 

be shown during the course of my dissertation, Pyramidal and Ponzi schemes [52, 53, and 

54] are two cases in point. 

 

1.2. Thesis Statement 

My thesis statement is that it is possible to construct a forensically sound evidence 

management framework to accurately account for the global behaviors of composed web 

services in a secure, participant-neutral, and non-refutable way as a web service itself. I 
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propose a web-service framework to do so, and to decompose the demonstration of its 

viability into four sub parts: 

 

1. The first is to design a prototype implementation of a suitable framework. My 

framework constructs a web service that I refer to as Forensic Web Services (FWS) 

that generate evidence at service invocation times from composed web services; and, 

using the distributed approach; they can collect those evidences to provide a 

comprehensive evidence of the externally observable behavior of the complete 

compositions. 

2. The second is to upgrade the FWS into a three-layered framework, called the 

Evidence Generation Framework (EGF), which includes FWS at the bottom layer for 

pair-wise evidence generation, Evidence Derivation Web Service (EDWS) at the 

middle, and Comprehensive Evidence Generation Web Service (CEGWS) at the top; 

and to design a modular agent for endpoints capable of communicating with other 

components of the proposed framework. In EGF, using runtime interception, the 

bottom layer can record messages exchanged among parties, check session invariants, 

and verify the existence of signatures on the fly without polluting the business logic.  

3. The third is, based on evidences generated at the bottom layer, to design the CEGWS 

at the top along with web service choreography pattern and business misuse mining. 

Unlike the distributed approach followed in EGF, I designed a central approach for 

collecting evidences to recreate composed activities. That is, FWS stations as 
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proposed earlier are forced to push externally observed message evidences to 

CEGWSs at service invocation times. 

4. Finally, to detect, prevent and alert ongoing choreography misuses, I enhanced 

EDWS and CEGWS to generate online messages indicating the misuse. In this 

respect, I designed more abstract patterns for business and service misuses along with 

pattern directed queries based on those patterns. 

 

1.3. Significance of Contributions 

Digital forensics seeks legal evidence on computer/information systems. Digital forensic 

examinations are performed using specific methodologies in accordance with the digital 

environment and type of evidence under search. For example, a volatile medium (e.g. 

memory) examination would have different priorities from a forensic examination on 

databases. Forensics may address many needs, including but not limited to gathering 

evidence for legal cases, data recovery, debugging and performance.  In summary, 

relevant information should be collected answering three questions; “What is the nature 

of incident?”, “Who is/are involved?”, and “When did it happen?” To answer these 

questions, digital forensics attempts to discover the current state of the digital artifact, 

which can be a database, a log file, a floppy disk or a mobile device [1].    

 

Unlike traditional forensics implementations, applying forensics to web service 

infrastructures introduces novel problems such as need for neutrality and 
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comprehensiveness. The reliability issue, conversely, has always been a requirement for 

all forensics examinations.   

 

Web services are owned by organizations; that is, they have equal rights in the court of 

law when any dispute between parties turns into a law suit. Any log records residing at 

one party’s site would have no forensic value under these circumstances because records 

could have been altered to favor the owner. Redundancy of evidences would also raise as 

an issue for such cases, thus diminishing the credibility of evidences [2]. Many forensics 

investigations conducted through traditional systems have been held based on one site’s 

records. For traditional systems, these actions may be thought of as reasonable because 

investigators take advantage of querying users and establishing human factors to 

corroborate digital evidence. In service oriented architectures (SOA), both sites in a 

dispute would be automated and retain their own records. Both records would be under 

question by the opponent party, thus showing the need to have a neutral third party 

capturing and preserving evidence between interacting parties. 

 

As described earlier, web service compositions may span over many web services owned 

by many organizations. Such interdependent services create long, interdependent 

information flows. Thus, malicious data may stream over many web services. From the 

forensics perspective, besides neutrality, the evidence gathered should be comprehensive 

enough so that investigation can reach every related end point web service in order to 

reveal the actions performed by every party to the transaction. If not, incomplete 
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evidence may point to non-malicious web service nodes as the source of malice, thus 

misleading the investigators through the examination.  This comprehensive approach also 

helps in converging the evidences as Schum [2] introduces as a force of evidence. 

 

Yet another important principle that any evidence should possess is reliability. In a court 

of law, judicial fellows want to be convinced of the evidence, especially when it comes 

from a digital source. Because impersonation and replay attacks do occur in web services, 

cryptographic mechanisms would help in protecting the creator of information passed 

around in messages by signing them digitally. Such a requirement would entail web 

services relying on a state-of-the-art cryptography platform such as Public Key 

Infrastructure (PKI), which, to my opinion, meets the credibility property of evidence 

introduced by Schum [2].  

 

1.4. Summary of Contributions 

I extended Herzberg’s [7] evidences layer concept that addresses neutrality and reliability 

principles on evidences to service oriented architectures, developing the concept to three-

layered evidence generation framework.  

 

I added a new layer to the existing web services stack that can operate non-repudiation 

protocols and endpoint agents running this layer as a proof of concept. 
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I extended the framework to detect/generate comprehensive evidences for web service 

choreography use cases and business misuses in the case of Ponzi/Pyramidal illegal 

business schemes. 

 

I extended the framework to detect misuses online at service level and business level of 

composed web services. This extension can prevent service misuses and alert relevant 

web services against business misuses. 

 

1.5. Limitations of the Dissertation 

I have designed and described essential parts of the framework through the dissertation. 

My framework, however, has yet to be fully implemented.  Three major factors can 

impact such an implementation. The first is that, although I have designed those critical 

parts ready for a prospective scalable design which can distribute over diverse systems, 

such as, implementing appropriate trust delegation specifications, I have not addressed 

their scalability. The second is because I propose signatures and encryption based on 

PKI, cryptographic overhead may add unacceptably large computation time. Although I 

have pointed out some practical solutions, such as implementing secure conversations 

which can alleviate delays and computation overheads, I have not considered the 

performance degradation arising out of my design decisions. The final concern is 

potential storage overhead. Once again, this is considered out of scope of my 

dissertation.   
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1.6. Organization of the Dissertation 

Chapter 2 provides a brief background regarding service-oriented architectures 

particularly in the case of web services. Instead of including a separate literature review 

chapter, the “Related Work” sections of each chapter discuss and compare works relevant 

to my dissertation in the context of each self-contained chapter. Because chapters 3, 4, 5, 

and 6 are self-contained they detail their own problem statement as well. As an 

introductory work, Chapter 3 describes a single-layered distributed approach for 

generating and collecting evidences of web services behavior and shows its promise 

through a case study. Conversely, Chapter 4 proposes a three-layered centralized 

approach to detecting web service misuses and describes how business logic at endpoint 

services can integrate with the bottom layer without altering in existing code. 

Categorizing web service misuses into business and service level, Chapter 5 describes 

how business misuses can be mined at the top level out of evidences previously generated 

at the bottom level and stored at a central repository. Extending the work in previous 

chapters, Chapter 6 describes an online detection for service that can detect service 

misuses and alert about ongoing and business misuses. Chapter 7 reports my experiment 

results of accuracy and performance tests. Finally, Chapter 8 concludes the dissertation 

summarizing my contributions and discussing possible future research areas.  
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CHAPTER 2 
 
 

BACKGROUND 

 
2.1. Introduction 

Two conceptual elements lie at the basis of the current web services: (1) Use of XML 

(eXtensible Markup Language), SOAP (Simple Object Access Protocol) [3], and WSDL 

(Web Service Definition Language) [4] as basic building material; and (2) Complex 

applications built upon long-running, sometimes transactional executions created from 

basic elements using choreography, orchestration and compositional methods.  

 

2.2. Basic Paradigm 

XML format underlies the entire web service architecture and its artifacts. All schemas, 

definition files, and messages transmitted are formed with XML. WSDL, a XML based 

definition file, defines the interface of a web service in order for the service to be invoked 

by other services in accordance with the specifications of internal executions. SOAP, a 

XML based protocol, defines the metadata of the messages to be exchanged between 

services. Operations are defined in WSDL documents and they are the only mechanisms 

that can be employed for web services to communicate with each other. SOAP messages 
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are defined and exchanged as incoming and outgoing messages through the operations. 

WSDL proposes four types of operations: 

 

Notification: One message is sent to many receivers, such as broadcasting. 

One-Way: The message is sent and no response is expected, such as Fire-and-Forget. 

Request-Response: A typical RPC (Remote Procedure Call) structure: The message 

is sent from sender to receiver and response is pushed back to the sender. 

Solicit-Response: Request is sent without any data and the response is expected. 

 

Although there are four proposed operation types, the message exchanges can be defined 

in two ways, in summary, One-Way and Request-Response—this is so because 

notification and response-solicitation can both be represented by one-way and request-

response messages, respectively.  

 

2.3. Composition Paradigm 

The message exchange patterns (MEP) described above form the basis for the entire web 

service paradigm. These simple MEPs construct collaboration scenarios using the 

appropriate composition models. Two issues matter in defining a composition: (1) The 

specification of the individual services (2), and the pattern of collaboration. 
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2.3.1. Design Types 

Selecting the target provider services can be accomplished either statically or 

dynamically, that is, at design-time or run-time. Design-time selections entail a priori 

determination while run-time selections can introduce the opportunity to switch between 

web services among those that provide the same service. 

 

Static Composition: Static compositions propose web services to be selected and 

determined through the business applications at design-time. Currently, most web service 

implementations are static. A designer makes the selection manually based on description 

files (WSDL) published on the web. The designed application logic is deployed into 

either a business process engine as a process file or into any web service container in hard 

code. Unless any changes are applied to the logic, the web services specified in the 

application never change.  

 

Dynamic Composition: Unlike static composition, a designer specifies a class of web 

services using their exposed properties rather than selecting a particular collection of web 

services. The logic itself selects specific web services at run-time by asking any filter 

database residing at the site of the consumer or global Quality of Services provider 

residing on the Internet.  
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Static web service composition introduces less anonymity than the dynamic counterpart, 

thus taking less effort in forensic examination. Because dynamic composition imposes 

more burden in terms of revealing service activities and its actual performance at run-

time, it increases the need to have a comprehensive platform that preserves evidence of 

activities that occurs through an orchestration. 

 

2.3.2. Patterns 

Some authors [5] categorize web service composition from another perspective, that is, 

its patterns. According to these patterns, web services can be composed either of their 

typical pattern (hierarchical) or of a little more complex one (conversational).  

 

Hierarchical Composition: Through this pattern, the consumer web service calls 

another composite web service, passing the input parameter and receiving the result. 

Other than this request-response activity no other call is employed to the same instance at 

the target. The complexity of the composition is hidden in this pattern because the target 

system never allows changing its internal state other than using atomic calls.   

 

Conversational Composition: This pattern is mostly used when web services need to 

interact with each other more than once in order to execute the same complex transaction. 

In these scenarios, the target system, unavoidably, makes its internal state mutable, 

thereby causing overlapping instances to be created within parties to the composition. 
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From the forensics point of view, representing and recreating the activities in the latter 

pattern is more difficult than the former. Figure 2.1 illustrates the comparison between 

the two patterns. In the hierarchical pattern, the nested instance of an external web service 

completely finishes before returning the result while many interactions between instances 

can survive in the conversational pattern. Although describing what happened exactly 

during execution in the hierarchical pattern is reasonable, this may not be the case with 

conversational patterns.  

 

Figure 2.1. Hierarchical and Conversational Patterns (Adapted from [5]). 

 

2.3.3. Composition Standards and Languages 

Although there are many standards and specifications for web services, here, state-of-the-

art orchestration and choreography specifications are discussed specifically. BPEL 

(Business Process Execution Language) is a language for business process modeling. 

WS-BPEL and BPEL4WS are its two popular implementations for web service 

architecture. They can define both abstract and executable processes. They are two tools 
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to realize orchestration of composite web services from a centralized service. Conversely, 

WSCI (Web Service Choreography Interface) and WS-CDL (Web Services 

Choreography Description Language) create a global view of multi-party choreographies 

of web services from their individual description files. These languages enable 

collaborative processes that are recruiting multiple web services, and facilitate 

interactions between them from a global, high-level perspective rather than an individual 

service’s request-respond perspective.  
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CHAPTER 3 

 

FORENSIC WEB SERVICES: DISTRIBUTED APPROACH 

 

3.1. Introduction 

Web services are being used for many financial, government and military purposes. Their 

application is performed through seamlessly integrating web services of different 

organizations over the Internet using choreographies, orchestrations, dynamic 

invocations, brokering etc. These service-level compositional techniques create complex 

dependencies between web services belonging to different organizations and can be 

exploited. When exploited, they can affect multiple servers and organizations, resulting in 

financial loss or infrastructural damage. Investigating such incidents would require that 

dependencies between service invocations be retained in a neutral and secure way so that 

the alleged activity can be recreated in an undeniable way while preserving evidence that 

could lead to and support appropriate prosecutorial activity.  Material evidence currently 

extractable from web servers such as log records, XML firewall alerts from end point 

services, and the like, do not have forensic value because defendants can rightfully claim 

that they did not send that message, and plaintiffs can fabricate or alter the log record to 

deceive the court. In order to facilitate and base such investigations on reliable 
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infrastructure that can convince judicial systems, I propose designing Forensic Web 

Services (FWS) that preserve appropriate evidence to recreate the composed web service 

invocations independent of the parties with a vested interest. This would have a greater 

chance of being accepted in a court of law. A non-repudiation argument with log entries 

collected from many web servers has no forensic value. Forensics on web services could 

never be treated as a bilateral problem between two web services while there are so many 

standards and architectures composing multiple services and generating global activities. 

 

Consequently, FWS provide on-line forensic capabilities to other web services as a web 

service itself. To utilize them, FWS need to be integrated with web services that require 

them – referred to as customer web services of FWS. In order to do so, FWS provide a 

centralized service access point to its customer services. This information retained by 

FWS acting as a trusted third party can be directly provided to forensic examiners. 

Previous proposals to monitor web services [6] and generating evidence [7, 8, 9] have 

been for business purposes, and to the best of my knowledge I am unaware of their usage 

in forensic examinations. 

  

Organizations that are tightly integrated with each other through web transactions and 

processes can benefit from FWS in many ways. Firstly, organizations need to hold their 

partner services accountable when their vulnerabilities affect transactional 

confidentiality, availability, etc. Secondly, details of malicious activity may impact the 

severity of punishments or collectible monetary compensation. I show that undeniable 
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logging of critical information exchanges are an effective way to meet these two needs. 

Although not for forensics purposes, some logging and processing approaches exist for 

web services [10, 11], such as WSLogA [6]. Work reported in [12] offers an approach for 

online investigations for traditional digital forensic processes. However, none of them 

employs a trusted third party to generate and preserve evidence and a framework, as well 

as generate conclusive evidence as provided by the FWS framework. 

The rest of the chapter is written as follows. Section 3.2 describes some web-service 

exploits [13, 14, and 15], of which I use one as a case study. Section 3.3 describes the 

structure and functionality of the Forensic Web Service Framework.  Section 3.4 

describes the FWS logging that occurs during service invocations. Section 3.5 describes 

how an alleged transaction can be recreated in order to determine the guilty party. Section 

3.6 illustrates the work described in Section 3.5 through a case study. Section 3.7 

describes related work and Section 3.8 concludes the chapter. 

3.2. Overview of Web Service Attacks  

There are many attacks on web services, such as WSDL/UDDI scanning, parameter 

tampering, replays, XML rewriting, man-in-the-middle, eavesdropping, routing detours 

[15, 16, 17, 18, 19, 20, 21], and so on. In addition to web service attacks classified in [13, 

14], dynamic service selection, choreography, orchestration, and composition increase 

the ways of exploiting web services, such as application and dataflow attacks [22,23,24].  
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Now I show the details of a sample cross-site scripting (XSS) attack used to illustrate the 

capabilities of FWS. A typical XSS [25] attack may inject a malicious script to harm a 

web service that dynamically builds some of its information.  

 

Figure 3.1.  A Cross-Site Scripting (XSS) Attack Using Web Services 

 

1. Attacker updates Meteorology Web Service (MET_WS) database with 

“regionID=234;description=”Heavy Rain <script>document.write(’<img 

src=http://attacker_IP:9999?c=’+ document.cookie + ’ >’); </script>”” 
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2. According to the Choreography model, MET_WS fires regional messages to 

update Weather Web Service (WEA_WS) updateRegion 

(..ID=”234";Description=”..+mal-script+..”) 

3. Portal Web Service (POR_WS) sends weatherRequest(ID=”234") 

4. WEA_WS sends weatherRespond(ID=”234";Description=”..+mal-script+..”) 

5. Portal Web Application emits the mal-script in html form to requesting browsers. 

6. Vulnerable browsers run the mal-script and send cookie information to Attacker’s 

Fish Net Application. 

7. Attacker retrieves sensitive information from cookies. 

 

Figure 3.1 shows an attacker with stolen credentials injecting some malicious data and 

invoking an update operation on a meteorology service that stores this script (including 

instructions to steal cookies from web browsers). MET_WS gets infected with malicious 

data and delivers the data ignorantly to the WEA_WS, firing the updateRegion message. 

WEA_WS, accordingly to their choreography, passes malicious data to POR_WS, among 

other legal information. Then a web application, say Portal Web Application, invoking a 

weatherRequest operation at WEA_WS retrieves this malicious data and publishes the 

weather information to its subscribers in an html form, thereby making the subscribers 

download the mal-script and send their personal information stored in cookies to the 

attacker’s Fishing Net Application. Consequently, a Fishing Net Application managed by 

the Attacker can obtain sensitive user information as shown in Figure 3.1. An attacker, 

aware of choreography among web services, exploits this model and has Portal Web 
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Application delivered malicious data to its members using web services in this 

choreography model. 

 

The stated XSS attack shows how the business logic of a web service can be used to 

attack a server that depends upon other web services. In this scenario, Portal Web Service 

can claim that Weather Web Service sent the malicious content, whereas the actual source 

was Meteorology Web Service. This illustrates the need to have a mechanism that 

irrefutably points to the source of malice. 

 
3.3. The Forensic Web Service Framework 

The Forensic Web Service Framework provides two essential services: 

1. Pair-wise evidence generation: Collect transactional evidence of transactions that 

occur between pairs of services at service invocation times. 

2. Comprehensive evidence generation: On demand, compose pairs of evidences 

collected at services invocation times, and produce complex transactional scenarios 

that occurred during specified periods, and provide them for forensic examiners. 

 

In order to do so, FWS use Trusted Third Parties (TTP) that sits in between any two 

transactions. To obtain the services of a FWS system, all web servers sign-up with a 

forensic web service, as shown in Figure 3.2. In order to create comprehensive evidence 

of an attack scenario, all relevant FWS agents must cooperate by providing relevant pair-

wise transactional evidences that are stored with them. To locate registered FWS servers, 
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there is a FWS registry of all FWS servers.  Figure 3.2 illustrates typical message flows 

earning forensics capabilities to web services. Ellipse boxes refer to the member domain 

of any FWS. Every web service registered to any FWS utilizes its evidence modules to 

route its messages over FWS stations to reach their ultimate goals (dashed lines); every 

FWS can call each other’s  services through some investigation algorithms such as 

“collectDependents” (solid bold lines). Some central services for registry and security 

purposes, for example, would inevitably be called through the framework at any time 

(solid lines). 

 
 

Figure 3.2. The FWS Framework and Message Flows 
 

 
The following are necessary for FWS systems to function as required: 

 

1. The web-service call stack must be enriched with a WS-Evidence layer.  
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2. A message format is needed for communicating WS-Evidence layer messages and 

storing them in the FWS servers. 

3. All web services must use a client agent (Evidence module) that re-routes their 

transactional messages through FWS servers. 

4. The underlying system must provide a trust base and cryptographic services.  

 

3.3.1. Enhanced Web-Services Call Stack 

The existing WS stack consists of a three layers, where the bottom layer is consisting of 

SOAP messages, the middle layer of WS-Secure Conversations and the top layer of 

WSDL specifications. I propose to add an evidences layer in between the middle layer 

and the top layer to reroute transactions through the FWS servers, thereby allowing 

Sender WS and Receiver WS communication using their WSDLs to remain independent 

of the underlying WS-Evidence layer. Figure 3.3 shows how WS-Evidence is applied to a 

message that flows through web services and their existing stacks. Flows 1 and 6 show 

the activity performed by the agents; flows 2 and 5 show the communications occurring 

at the SOAP level; and 3 and 4 represent inputs and outputs from FWS-TTPs.  

 
 

Figure 3.3. WS-Evidence Stack 
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3.3.2. WS-Evidence Message Format 

WS-Evidence uses the message format of <#session|#message|#signatureK( 

#session|#message/sequence|#message/envelope))>, where # refers to the points in XML 

format, | refers to concatenation of elements, and / points to the sub parts of elements, to 

exchange between sending customer, FWS and receiving customer. Here the session 

element identifies a WS-Evidence conversation, and message corresponds to an element 

carrying the actual upper layer message along with its sequence number 

(message/sequence) in the conversation, such as, for example, sequence number 2 

corresponds to a response message if message exchange pattern (MEP) type is two-way 

and the protocol is SELP (soon to be described). Each endpoint, either sender or receiver, 

signs session, message/sequence, and message/envelope parts of the message in the 

ds:Signature element [26] of the message. Figure 3.4 illustrates a sample WS-Evidence 

message instance along with significant parts. 
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Figure 3.4. A Sample WS-Evidence Message 

 

FWS store the messages in two formats; LogRecordIndex (LRI) and LogRecord 

(LR). A LRI refers to the record of a single message within a WS-Evidence conversation. 

LR stores entire WS-Evidence sessions including all messages delivered to and/or 

generated by the FWS. LRI records are used for two reasons: the first for quick searches 

and the second for pointing to the entire LR. Each LRI is stored at both FWSs (operator 

and non-operator FWS -- soon to be described). LR, on the other hand, is stored only at 

the operator FWS and can be reached using LRI’s that refer to it. As shown in Figure 3.5, 

a FWS storing a LRI sets the value of its status field to that of the 

<wse:deliverRequest ...> 

 <wse:Session id="session"> 

  < wse:ttp>http://www.forensicsoa.org/DeliverService</fws:ttp> 

  < wse:Sender>http://www.source.org</fws:Sender> 

  < wse:Receiver>http://www.destination.org/services/EchoService</fws:Receiver> 

  < wse:Identifier>uuid:88754b00-161a-11da-b6d6-198de3c47c5</fws:Identifier> 

  < wse:Operation>echo 

    < wse:MEP>Two-Way</fws:MEP> 

  </ wse:Operation> 

 </ wse:Session> 

 < wse:Message> 

  <wsu:Timestamp> 

   <wsu:Created …>2005-09-08T10:05:27Z</wsu:Created> 

  </wsu:Timestamp> 

  < wse:MessageID>uuid:c3671020-15e0-11da-9b3a-f0439d4867bd</fws:MessageID> 

  < wse:Sequence Id="sequence">1|2|4</fws:Sequence> 

  < wse:Envelope Id="envelope"> 

PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGlc29hcGVudjpF…….. …………… 

……………………….      L3NvYXBlbnY6Qm9keT48L3NvYXBlbnY6RW52ZWxvcGU+ 

  </ wse:Envelope> 

 </ wse:Message> 

 < wse:Evidence> 

   <ds:Signature> 

    <ds:SignedInfo> 

    <ds:Reference URI="#session" > 

    <ds:Reference URI="#sequence" > 

    <ds:Reference URI="#envelope" > 

   </ds:SignedInfo> 

   <ds:SignatureValue/> 

   <ds:KeyInfo/> 

  </ds:Signature> 

 </ wse:Evidence> 
</ wse :deliverRequest> 
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message/sequence part of the message. The FWS also sets the timestamp 

with the value of message/timestamp part of the message and the recordinfo 

with the value of session part of the message. The envelope and ds:signature 

parts are not represented in LRIs but in LRs. LR contains the recordIndex part that 

has final timestamp and status values of the conversation referring to timestamp 

and sequence values of the last message in the conversation respectively.  

 

 

Figure 3.5. LRI and LR Formats 

 

<logRecordIndex ..> 

    <timestamp>05:00</timestamp> 

    <status>1</status> 

    <recordInfo protocol="URI"..> 

        <sessionID algorithm="URI"/> 

        <MEPType>string</MEPType> 

        <agreement/> 

        <partners> 

            <sender/> 

            <fwsttp/> 

            <receiver/> 

        </partners> 

    </recordInfo> 

</logRecordIndex> 

<logRecordIndex ..> 

    <timestamp>05:01</timestamp> 
    <status>2</status> 

    <recordInfo protocol="URI"/> 
</logRecordIndex> 

<logRecordIndex ..> 

    <timestamp>05:02</timestamp> 
    <status>3</status> 

    <recordInfo protocol="URI"/> 
</logRecordIndex> 

<logRecord …> 

  <recordIndex> 

    <timestamp>05:02</timestamp> 

    <status>3</status> 

    <recordInfo protocol="URI"..> 

      ... 

    </recordInfo> 

  <recordIndex> 

  <wse:Message> 

    <session/> 

    <message/> 

      <timestamp>05:00</timestamp> 
      <sequence>1</sequence> 

      <envelope>...</envelope> 

    <message> 

    <ds:signature/> 

  </wse:Message> 

  <wse:Message> 

    <session/> 

    <message/> 

      <timestamp>05:01</timestamp> 

      <sequence>2</sequence> 

      <envelope>...</envelope> 

    <message> 

    <ds:signature/> 

  </wse:Message> 

  <wse:Message> 

    <session/> 

    <message/> 

      <timestamp>05:02</timestamp> 
      <sequence>3</sequence> 

      <envelope>...</envelope> 

    <message> 

    <ds:signature/> 

  </wse:Message> 

 </logRecord> 
 

LRI for wse:Message Seq.1 

LRI for wse:Message Seq.2 

LRI for wse:Message Seq.3 
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3.3.3. Evidence Module 

Routing transactional information through FWS servers require that all transactions be 

reliably intercepted and routed, as shown in Figure 3.6.  

 

Figure 3.6. Evidence Module Brief Architecture (adapted from [30]) 

Although the next chapter describes the Evidence Module architecture in detail as a proof 

of concept, here I briefly describe a sender process and a receiver process sitting in front 

of each web service end point: 

1. The Sender Process: The Evidence Module captures the SOAP message from the 

upper layer (either from an upper handler in the handler chain or directly from sender 

API) as shown in the first pillar of Figure 3.7; and encapsulates the message in WS-

Forensics message format (see the second pillar in Figure 3.7) by adding signatures, 

routing the message to the operator FWS, etc., and submitting it to the lower layer— 

that is, WS-SecureConversation/WS-Trust handler (soon to be described in Section 

3.4).  
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2. The Receiver Process: The Evidence Module manages the WS-Evidence message 

from the lower layer. After validating signature according to the WS-Evidence 

session context it extracts the original SOAP message and either passes it to another 

handler (if it exists) in the chain or dispatches it to the intended 

service|portype|operation entity, provided the message is missing an upper handler in 

the chain. 

 

Many vendors [27, 28, 29, 30] support handler chains in front of their web application 

interface. For example, Axis2 [31] allows dynamic module engagement in their web 

services. My proposal attaches handler modules at both sides of the communication, 

similar to that of [9].  

3.3.4. Underlying Layer 

WS-Evidence is designed to run over a secure layer with the following services:   

Authentication: senders, receivers and FWS nodes. 

Delegated Authentication: As a trusted third party, FWS nodes authenticate themselves 

to the receiver on behalf of the sender. 

Confidentiality and Integrity of the Channels: between senders or receiver and FWS 

nodes must provide these. 

Reliability: Messages in channels between FWS nodes and customer nodes must be 

reliable.  
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Upper Layer WS-Evidence 

(Evidence Module) 

Receiver<->Sender 

WS-SecConv/WS-Trust 

(e.g. Rampart) 

Sender/Receiver<->FWS 

<soap:Envelope> 

<soap:Body> 

<GetCustomerInfo> 

<CustID>1</CustID>  

</GetCustomerInfo>  

</soap:Body>  

</soap:Envelope> 

 

<soap:Envelope> 

<soap:Body> 

<deliverRequest ...> 

<session> 

<message > 

<timestamp/> 

<sequence>1</sequence> 

<envelope>$Envelope$</envelope> 

</message> 

<ds:Signature> 

<ds:SignedInfo> 

<ds:Reference URI="#session" > 

<ds:Reference URI="#sequence" > 

<ds:Reference URI="#envelope" > 

</ds:SignedInfo> 

<ds:SignatureValue> 

<ds:KeyInfo> 

</ds:Signature> 

</deliverRequest >  
</soap:Body> 
<soap:Envelope> 

<soap:Envelope ……"> 

<soap:Header> 

<wss:Security > 

<wsc:SecurityContextToken Id='FWS-

SCT'/> 

<wsc:DerivedKeyToken Id='DKS'/> 

<ds:Signature>  

<ds:SignedInfo> 

<ds:Reference URI="#bodySignature"/> 

</ds:SignedInfo> 

<ds:KeyInfo> 

<wss:SecurityTokenReference> 

 <wss:Reference URI='#DKS' />  

</wss:SecurityTokenReference> 

</ds:KeyInfo>  

</ds:Signature> 

<wsc:DerivedKeyToken Id='DKE'/> 

<xenc:ReferenceList>  

<xenc:DataReference 

URI='#bodyEncryption'/>  

</xenc:ReferenceList> 

</wsse:Security> 

</soap:Header> 

<soap:Body Id="#bodySignature"> 
<EncryptedData Id="#bodyEncryption" 

<EncryptionMethod/> 

<wss:SecurityTokenReference> 

 <wss:Reference URI='#DKE' />  

</wss:SecurityTokenReference> 

<CipherData> 

<CipherValue>7qH0……iA==</CipherValue> 

</CipherData> 

</EncryptedData> 

</soap:Body> 

</soap:Envelope> 

Figure 3.7. SOAP Message Snapshots in Consecutive Layers 

Two properly implemented standards, WS-Trust [32] and WS-SecureConversation [33] 

satisfy these requirements. WS-Trust issues, renews and verifies tokens for security, and 

WS-SecureConversation builds secure sessions using XML encryption and signature. The 

processes described in Section 3.3 require secure channels between end-point web 

services and FWS nodes. Following briefly show how WS-Evidence message flows 

between a sender and a receiver through to a FWS using underlying security layer. 
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1- WS-SecureConversation/WS-Trust handler of the sender grabs the WS-Evidence 

message (see the second pillar in Figure 3.7) and builds a secure conversation by the 

means of Security Context Token (SCT) obtained from the Security Token Service 

(STS). FWS nodes also may have this role. The WS-Evidence message is encrypted 

by WS-SecureConversation (see the third pillar in Figure 3.7) and pushed into the 

transport layer to be sent to the FWS node through the conversation  

2- WS-SecureConversation/WS-Trust handler of the FWS node receives the encrypted 

SOAP message, decrypts it, extracts the actual WS-Evidence message, and pushes 

into the WS-Evidence layer to be processed as described in the next section. 

3- After processing WS-Evidence message, the FWS node pushes the message to its 

WS-SecureConversation/WS-Trust handler to build another secure conversation with 

the receiver as described in the first step. Then, the message is encrypted by the 

security handler, to be sent to the receiver through the conversation. 

4- WS-SecureConversation/WS-Trust handler of the receiver receives the encrypted 

SOAP message, decrypts it, extracts the actual WS-Evidence message, and pushes 

into the WS-Evidence layer to be dispatched. 

 

The reason for implementing two security contexts is to make message content 

transparent to the FWS so that they can scan the contents for further investigation, 

thereby allowing the possibility of isolating the ones used for forensic purposes. Having 

one context would eliminate the initial phases, thus alleviating the performance problem. 

However, I address such policy-specific decisions in my ongoing work. 
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3.4. Gathering Evidence at Service Invocation Time 

As stated earlier, FWS servers gather pair-wise transactional evidence that flows between 

sender and receiver web services, using the Simple Evidence Layer Protocol (SELP) [7]. 

There are four entities involved in the process: sender, receiver, operator FWS, and non-

operator FWS. Operator FWS refers to a FWS selected by either party to manage the 

steps listed below, and the Non-operator FWS belongs to the other party. I omit a detailed 

algorithm to select the operator FWS. Steps followed by the operator FWS are as follows, 

visualized in Figures 3.8 and 3.9.  

 

Assuming MsgSeq.1 is a request message coded as “1” through WS-Evidence 

specification , MsgSeq.2 is a response coded as “2”, MsgSeq.-1 is a failure coded as “-1”, 

and MsgSeq.3 is an acknowledgment coded as “3”, typical FWS TTP acts as below;  

1- FWS receives MsgSeq.1 (<#session|#message|#signatureSender-K(#session|”1”|# 

env )>). 

2- Validates, stores the message, creates an LR and LRI for MsgSeq.1 and notifies 

non-operator FWS.   

3- MsgSeq.1 is forwarded to the Receiver and starts a timer.  

4- If the response MsgSeq.2 cannot reach the FWS before timing out then, MsgSeq.-

1 (<#session|#message|#signatureFWS-K (#session|”-1”|# env)>) is signed by the 

FWS; it is stored and sent back to the Sender and an LRI is created and sent to the 

non-operator FWS. If MsgSeq.2 (<#session|#message|#signatureReceiver-
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K(#session|”2”|# env)>) arrives on time then, it is forwarded to the sender and 

stored in FWS along with notifying the non-operator FWS with its LRI. 

5- FWS creates, signs and sends MsgSeq.3 (<#session|#message|#signatureFWS-K 

(#session|”3” |#env)>) to the receiver. It also stores the message in the LR and 

sends the LRI to the non-operator FWS.  

 

 

Figure 3.8. An Operator FWS Managing the SELP Protocol (Adapted from [7]) 

The dependencies between stored data are maintained using LRIs sent from operator 

FWS to non-operator FWS, thus allowing any further investigator-process to hop up 

between FWS stations that store dependent records. 
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Figure 3.9. An Operator FWS Storing Messages  

3.4.1. Pair-wise Evidences 

The SELP protocol and FWS event logs retain the evidence to verify the following 

claims:  

Evidence of Origin (EOO): Sender’s claims of timely transmitting. 

Evidence of Delivery (EOD): Receiver’s claims of timely delivery. 

Evidence of Failure (EOF): Sender’s claims of receiver’s failures of timely receipt. 

Evidence of Availability (EOA):  Either party’s claim of non-availability of the other.   

Evidence of Agreement Violation (EOV): Either party’s claim of contractual violation.  

The next chapter shows their building blocks within WS-Evidence messages. 

 

3.5. Creating Evidence for Scenarios 

As stated earlier, the main objective of the FWS Framework is post-mortem 

investigations on inter-dependent scenarios containing more than one party in a 
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comprehensive manner. In order to do so, as shown in Figure 3.2, the FWS Framework 

utilizes FWS, FWS-Registry, and other services to generate comprehensive evidence by 

retrieving and processing evidence of pair-wise transactions stored in FWS nodes. I first 

describe data types used to represent the comprehensive evidence in the FWS framework, 

and the scenario generation algorithm that uses a graph to model service inter-

dependencies that should exist between the involved parties. Two parameters used in the 

process, node thresholds and time thresholds, demarcate the boundary of scenario 

generation. The nodes of the graph are web services and log records create their inter-

dependencies.  

 

3.5.1. Data Types Representing Scenarios 

FWS store sender-receiver information between web services in LRI tables that I use to 

generate the dependency graph. Nodes of the dependency graph are of the complex type 

WebServiceNode, where each WebServiceNode has a unique ID and the field 

nodeLevel represents the degree of adjacency of a web service node to the root web 

service node of the dependency graph. For example, nodeLevel=1 means the web service 

is directly adjacent to the root web service node. The field nodeThreshold is the 

boundary of the dependency graph. For example, a graph of a web service node with 

nodeLevel=3 and nodeThreshold=3 will not expand further over this specific web 

service node but only over other nodes with a lesser nodeLevel than nodeThreshold. 

The edges of the graph are represented using the complex data type LogRecordEdge with 



33 
 

components SenderID and ReceiverID attributes. Figure 3.10 and 3.11 shows a sample 

node and a sample edge respectively.  

 

Figure 3.10. An Instance of WebServiceNode 

 

Figure 3.11. An Instance of LogRecordEdge 

3.5.2. Building Digital Evidence Bag 

All dependency decisions use the following: 

 

WS-A sends WS-B in “one way”=> WS-B depends on WS-A 

WS-A sends WS-B in “two way”=> WS-B depends on WS-A and WS-A depends on WS-B 

<logRecordEdge id="uuid:#21323232323-11.12.2007:12:23:04" 

senderID="www.geocoding.com" receiverID="www.weatherservices.com" 

dependencyDirection="Two-Way"> 

    <logRecord> 

        <recordIndex> 

            <timestamp>2002-10-10T12:00:00-05:00</timestamp> 

            <status>1</status> 

            <recordInfo protocol="SELP"> 

                <sessionID> 

                <MEP>Two-Way|One-Way</MEP> 

                <agreement> 

                <partners> 

            </recordInfo> 

        </recordIndex> 

        <wse:Message> $MsgSeq.1 </wse:Message> 

        <wse:Message> $MsgSeq.2 </wse:Message> 

        <wse:Message> $MsgSeq.3 </wse:Message> 

    </logRecord> 

</logRecordEdge>  

<webServiceNode id="www.geocoding.com" nodeLevel="2" nodeThreshold="3"  

    <webService> 

        <Location>http://www.geocoding.com/service</Location> 

        <Port>LongitudePT</Port> 

        <Service>#geosrv</Service> 

        <Operation>getLongitude</Operation> 

        <IPAddress>66.234.12.231</IPAddress> 

        <InstanceID> 

    </webService> 

</webServiceNode>  
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FWS build a Digital Evidence Bag complying with the requirements in [34] by using the 

algorithm written using pseudo BPEL in Figure 3.12.  The algorithm works as follows: 

Any Requestor, such as a plaintiff or a prosecutor participating in the FWS framework 

can start building Digital Evidence Bags for an alleged attack by invoking the 

generateEvidenceBag process—which is done by including the webServiceNode 

(pointing to the suspected WS as root), startTime (time when suspected activity first 

detected), timeThreshold (defines the scope of investigation in terms of time), and 

nodeThreshold (defines the scope of investigation in terms of node depth) in the 

EvidenceBagIn message in line 4. Between lines 5 and 7 the FWS first checks which 

FWS (rootFWS) controls the web service node in question (rootWS), assigns the address 

of the rootFWS partner link, and starts processing by invoking the collectDependents 

process of that rootFWS with the DependentsBagIn message, which in turn runs in a 

distributed-recursive manner.  It is replied to with the DependentsBag message and 

employs a set of refinement tasks on the logRecordEdges part of the message, such as 

sorting, and grouping the records by the fwsttp field of LRI information in each 

logRecordEdge in the logRecordEdges array as referred in line 8. Because the 

collectDependents process only stores LRI information in LogRecordEdges there are 

no actual log records contained at this step. In order to turn lightweight LogRecordEdges 

(with LRI) into actual LogRecordEdges containing LRs, the generateEvidenceBag 

process first extracts distinct fwsttp’s from logRecordEdges into an array as pointed in 

line 9. Between lines 10 and 21, utilizing the flowN structure in BPEL [35], the algorithm 

creates dynamic parallel execution scopes for each distinct fwsttp.  For each distinct 
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fwsttp, it also creates dynamic partner links named OwnerFWSOfLogRecords and builds 

LogRecordEdgesInput arrays. Then, getLogRecordsByValue operations are invoked 

for each parallel scope and the results are combined in 

logRecordEdgesForEvidenceGraph. evidenceBagOut is assigned with 

logRecordEdgesForEvidenceGraph and constitutes the actual EvidenceGraph 

document. Between lines 23 and 25, some other necessary procedures may be applied to 

the document, such as scanning, signature matching, encrypting and signing, according to 

the policy in an appropriate order. Finally the requester is replied to in line 26.  
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Figure 3.12. Pseudo BPEL for Generating Evidence Bags 

 

1. partnerLinks: SecurityService; VirusScannerService; 

SignatureDetectionSrv; RootFWS; Requestor; FWSRegistry 

2. variables: EvidenceBagIn; EvidenceBagOut; LogRecordEdges; 

DependentsBagIn; DependentsBag; 

LogRecordEdgesForEvidenceGraph; 

3. begin 

4.  receive EvidenceBagIn from Requestor 

5. invoke getFWSs(RootWS) in FWSRegistry 

6.  assign RootFWS partnerLink 

7.  assign EvidenceBagIn to DependentsBagIn 

8.  invoke collectDependents(DependentsBagIn) in RootFWS 

9.  assign DependentsBag to LogRecordEdges 

10.  assign distinct ArrayOfFWSTTP from LogRecordEdges 

←!– Invokes a set of FWSTTPs to get actual LREs by their LRIs → 

←!– using flowN loop structure → 

11.  flowN N=‘countNodes(’ ArrayOfFWSTTP ‘...)’ indexVariable=’index’ 

12.   partnerLink: OwnerFWSOfLogRecords 

13.   variables: LogRecordEdgesOutput 

14.   assign OwnerFWSOfLogRecords partnerLink 

15.   invoke getLogRecordsByValue in OwnerFWSOfLogRecords 

16.   receive LogRecordEdgesOutput as getLogRecordsByValue callback 

←!—————– Stores the result ———————→ 

17.   append LogRecordEdgesForEvidenceGraph 

   from LogRecordEdgesOutput 

18.  end of flowN 

19.  assign LogRecordEdgesForEvidenceGraph to EvidenceBagOut 

20.  invoke scan(EvidenceBagOut) in VirusScannerService 

21. invoke detect(EvidenceBagOut) in SignatureDetectionSrv 

22.  invoke signAndEncrypt(EvidenceBagOut) in SecurityService 

23.  reply EvidenceBagOut to Requestor 

24. end 
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generateEvidenceBag is a wrapper process of the collectDependents process 

(specified as a BPEL in my original design) that contains an algorithm that is inspired by 

King’s dependency graph generation algorithm [36] and Wang’s evidence graph 

generation study [37]. I use LogRecordIndex’s (LRI) and not LogRecord’s (LR) because 

the latter reside only on one FWS, making the algorithm unusable. The process first 

creates instances of WebServiceNodes and LogRecordEdges arrays using the schema 

mentioned earlier. Then, it loads the dependentsBagIn message into these objects setting 

the webServiceNode part as a root level node; all other values in the input message are 

loaded into the corresponding variable. After the initialization phase, the algorithm listed 

in Figure 3.13 is used. Created objects, webServiceNodes and logRecordEdges are the 

nodes and edges of the dependency graph.  The algorithm traverses the LRIs starting 

from the decreasing order of time in search of dependent web service nodes among the 

sender/receiver fields of the log records and inserts them into the logRecordEdges 

setting senderID, receiverID, and dependencyDirection attributes (if their timestamp 

is within the time threshold). When a new partner web service is found in the LRIs, it 

adds this partner web service node into the webServiceNodes object only if the current 

web service node’s nodeLevel is equal or less than the nodeThreshold.  

 

When a partner web service node that does not belong to the operator FWS is found, the 

neighbor FWS hosting this partner web service node is found by querying the FWS-

Registry. The same algorithm is executed in the chosen neighbor FWS by invoking the 

collectDependents process of that FWS. This time, current web service nodes and 
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the log record edges added into the graph so far, are sent to initiate the same process in 

neighbor FWS, along with a smaller start time and larger node level values in the web 

service nodes. Because the start time and node level information are kept and transferred 

to external FWSs, the gathering of unrelated log records and infinite loops is prevented. 

The return message from the neighbor FWS is in the DependentsBag schema; therefore, 

web service nodes and log record edges are added to the current DependentsBag.  

 

Figure 3.13. Comprehensive Evidence Generation (collectDependents Algorithm) 

←!– Starts extracting values (timeThreshold, nodeThreshold, etc.) → 

←!– from DependentsBagIn and initializes creating the → 

←!– WebServiceNodes and LogRecordEdges instances of GRAPH → 

1. baseTime = startTime - timeThreshold 

2. for each logRecordIndex LRI ∈ FWS { 

3.     timeThreshold=timeTreshold - (startTime - LRI.timeStamp) 

4.     startTime=LRI.timestamp 

5.     for each webServiceNode WS ∈ GRAPH { 

6.  if (SenderWS | ReceiverWS ∈ LRI & LRI ∉ GRAPH & 

 R.timestamp ≥ baseTime & WS.nodeLevel ≤ WS.nodeThreshold) { 

7.       Add LRI as edge into GRAPH 

8.      if (LRI’s partner web service PWS ∈ GRAPH) { 

9.   PWS.nodeLevel=WS.nodeLevel+1 

10.   PWS.nodeThreshold=nodeThreshold 

11.   Add the PWS into GRAPH } 

12.      if (LRI’s PWS ∈ this.FWS & LRI’s PWS ∈ GRAPH) { 

13.   NeighbourFWS = getFWS(PWS) 

14.   NeighbourFWS.collectDependents(DependentsBagIn) 

15.   Merge DependentsBagOut into GRAPH}}}} 

16. return GRAPH in DependentsBagOut format 
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The collectDependents process returns a dependentsBag output to the wrapper 

process, generateEvidenceBag. Because logRecordEdges in dependentsBag only 

contains LRI information, it is refined by the wrapper process, and building the 

evidenceBag. In order to meet the requirements [38] on chain of custody for digital 

forensics, the document is signed with the private key of the host FWS. 

 
 

3.6. A Case Study: The XSS Attack 

Now, I show how any agent can use FWS to create comprehensive evidence for the XSS 

attack described earlier. Through the Case Study, I assume that FWS-1 owns POR_WS 

(Portal Web Service), GEO_WS (Geocoding Web Service), and so many others, while 

FWS-2 owns WEA_WS (Weather Web Service) and MET_WS (Meteorology Web 

Service), along with other many services. Table 3.1 lists sample log records available at 

FWS-1 and FWS-2 in LRI (Log Record Index) format. Arrows illustrate how the 

collectDependents algorithm reveals activities dependent to each other spanning over 

many web services and FWS stations. The bold records refer to log records linked to each 

other and used to build the dependency graph as edges between web service nodes. Each 

record applies the LRI format ({Timestamp| SessionID| status| fwsttp| Sender| Receiver}). 

 

Assume that an official decides to generate a digital evidence bag of this incident using 

the above parameters--please remember the “collectDependents” algorithm in Figure 3.13 

and the parameters to draw the dependency scope in the examination: rootWS=POR_WS, 
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startTime=17, nodeThreshold=3, and timeThreshold=16. The examiner first defines the 

rootFWS by querying from FWS-Registry and sets FWS-1 as the root, thereby invoking 

the collectDependents process at FWS-1. I now apply the algorithm to this example 

through the following steps. 

 

 Table 3.1. Log Record Indexes in FWS-1 and FWS-2 

LRIs in FWS-1 LRIs in FWS-2 

... ... 
1|234|Response|FWS-

1|TRE_WS|VRE_WS.vresPT.ReserveVehic

le  

1|234|Response|FWS-

1|TRE_WS|VRE_WS.vresPT.ReserveVehic

le 
2|2134|Request|FWS-2|WEA_WS| 

GEO_WS..getLongtitute 

2|2134|Request|FWS-2|WEA_WS| 

GEO_WS..getLongtitute 

3|2134|Response|FWS-2|WEA_WS| 

GEO_WS..getLongtitute 
3|2134|Response|FWS-2|WEA_WS| 

GEO_WS..getLongtitute 
4|2164|Response|FWS-1|TRE_WS| 

HRE_WS.hresPT.ReserveHotel 
4|2164|Response|FWS-1|TRE_WS| 

HRE_WS.hresPT.ReserveHotel 
6|21572|Request|FWS-1|TRE_WS| 

ARE_WS.aresPT.ReserveAirline 

5|2196|Request|FWS-2|MET_WS| 

WEA_WS..updateRegion 

9|21572|Response|FWS-1|TRE_WS| 

ARE_WS.aresPT.ReserveAirline 
7|34563|Request|FWS-2|VRE_WS| 

HRE_WS.hresPT.HotelLocation 

10|34534|Request|FWS-2|POR_WS| 

WEA_WS..weatherRequest 
8|34563|Response|FWS-2|VRE_WS| 

HRE_WS.hresPT.HotelLocation 

12|22534|Request|FWS-1|TRE_WS| 

VRE_WS.vresPT.ReserveVehicle 

10|34534|Request|FWS-2|POR_WS| 

WEA_WS..weatherRequest 

13|34534|Response|FWS-2|POR_WS| 

WEA_WS..weatherRespond 

11|34567|Response|FWS-2|VRE_WS| 

HRE_WS.hresPT.HotelLocation 
14|34523|Request|FWS-1|WEA_WS| 

GEO_WS..getLongtitute 
12|22534|Request|FWS-1|TRE_WS| 

VRE_WS.vresPT.ReserveVehicle 
17|34523|Response|FWS-1|WEA_WS| 

GEO_WS..getLongtitute 
13|34534|Response|FWS-2|POR_WS| 

WEA_WS..weatherRespond 

… 14|34523|Request|FWS-1|WEA_WS| 

GEO_WS..getLongtitute 

… ... 

… 17|34523|Response|FWS-1|WEA_WS| 

GEO_WS..getLongtitute 

 

 
 

Step 1: FWS-1 first retrieves LRIs in Table 3.1, and starts traversing on LRIs in 

decreasing time order. In this example, this order spans LRIs from time 17 to time 1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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because of timeThreshold value 16. The algorithm skips LRIs in times 17 and 14 because 

they do not contain POR_WS as any other partner in their records. It finds an LRI with 

time 13 related to POR_WS, adds the LRI as LogRecordEdge, and adds the partner web 

service, WEA_WS, as the dependent WebServiceNode because it has yet to be included 

in the graph created so far. 

Step 2: Because WEA_WS is registered to another FWS, FWS-2, this process assigns the 

FWS-2 as neighbor FWS and invokes the collectDependents process with 

rootWS=WEA_WS, startTime=13, timeThreshold=12, logRecordEdges, and 

webServiceNodes already in the graph. 

Step 3: FWS-2 retrieves the LRIs and starts from the LRI with time 13. It ignores LRI 13 

because it is already in the graph and LRIs with time 12 and 11 because of irrelevancy.  

Step 4: FWS-2 adds the LRI in time 10 because the partners are already in the graph. The 

records in 8 and 7 are ignored because of their irrelevancy to the graph. FWS-2 adds the 

LRI in time 5 because one of its partners is included in the graph. The other partner 

MET_WS is added to the graph with a higher node level 3. Because MET_WS is 

registered to FWS-2 there is no need to call another FWS to collect its dependents.  

Step 5: After ignoring 4, the records in time 3 and 2 are added because of their relevancy 

to WEA-WS. 

Step 6: FWS-2 returns to FWS-1 since there remains no record to traverse. 

Step 7: FWS-1 continues to process from LRI with time 12. It ignores LRIs with time 10, 

3, and 2 although they are relevant, but they are already in the graph. It also ignores other 

records because they are unrelated to the graph. 
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Figure 3.14. The Instance of EvidenceBag for The Case Study 

 

<EvidenceBag xmlns:p1="http://ite.gmu.edu/schema/FWSXmlSchema" 

xmlns:p2="http://www.w3.org/2000/09/xmldsig#" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

<evidenceBagSynopsis> 

    <OperatorFWS FWS-1> 

    <RootWS POR_WS > 

    <processStartTime>2002-10-10T12:00:00-05:00</processStartTime> 

    <processEndTime>2002-10-10T12:00:00-05:00</processEndTime> 

    <startTime>2002-10-10T12:00:00-05:00</startTime> 

    <timeThreshold>16</timeThreshold> 

    <nodeThreshold>3</nodeThreshold> 

    <numberOfWebServiceNodes>4</numberOfWebServiceNodes> 

    <numberOfLogRecordEdges>3</numberOfLogRecordEdges> 

    <requestorPrincipal>www.justice.gov/#33332324242</requestorPrincipal> 

</evidenceBagSynopsis> 

<dependencyGraph> 

    <webServiceNodes length="4"> 

        <webServiceNode id="POR_WS" nodeLevel="0"..> 

        <webServiceNode id="WEA_WS" nodeLevel="1"..>//added at step 1 

        <webServiceNode id="MET_WS" nodeLevel="2"..>//added at step 4 

        <webServiceNode id="GEO_WS" nodeLevel="2"..>//added at step 5 

    </webServiceNodes> 

<logRecordEdges length="3"> 

    <logRecordEdge id="34534" senderID="POR-WS" receiverID="WEA_WS"    

dependencyDirection="Two-Way"> //added at step 1 

        ... 

        <Message>MsgSeq.1</Message>//added at step 4 

        <Message>MsgSeq.2</Message>//added at step 1 

        ... 

    </logRecordEdge> 

    <logRecordEdge id="2196" senderID="MET_WS" receiverID="WEA_WS" 

dependencyDirection="One-Way"> //added at step 4 

        ... 

        <Message>MsgSeq.1</Message>//added at step 4 

        ... 

    </logRecordEdge> 

    <logRecordEdge id="2134" senderID="WEA_WS" receiverID="GEO_WS" 

dependencyDirection="One-Way"> //added at step 4 

        ... 

        <Message>MsgSeq.1</Message>//added at step 5 

        <Message>MsgSeq.2</Message>//added at step 5 

        ... 

    </logRecordEdge> 

</logRecordEdges>  

</dependencyGraph>  

<ds:Signature> 

<ds:SignedInfo> 

<ds:Reference URI="#evidenceBagSynopsis" > 

<ds:Reference URI="#dependencyGraph" > 

</ds:SignedInfo> 

<ds:SignatureValue> 

<ds:KeyInfo> 

</ds:Signature> 

</EvidenceBag>  
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Figure 3.14 illustrates the GRAPH produced through the above steps, where 

LogRecordsEdges is an array of LogRecordEdge’s and WebServiceNodes is 

of WebServiceNode’s collected through the run. The output is signed (notice 

ds:Signature) by the executer FWS of the generateEvidenceBag process.  

 

Figure 3.15. The Dependency Graph for the Case Study 

 
The case study described above shows how the FWS framework could be helpful for 

revealing dependencies between web services through composition models and scenarios 

as illustrated in Figure 3.2. Arrows refer to Log Records as edges in a graph; and circles 

refer to Web Services as nodes. The figure depicts how the web service choreography 

instance through the Case Study could be represented. This figure is also a result of a 

typical digital evidence bag document that constitutes a graph which points to 

dependencies among the source (MET_WS) and the victim (POR_WS) of malicious 
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activity/path, as well as a possible stepping stone (WEA_WS) through the incident. The 

scenarios can be improved; and FWS could be applied to more complex attacks. For the 

sake of clarity, a simple scenario has been implemented through this chapter.   

 

3.7. Related Work 

To the best of my knowledge, there is no distributed forensic framework for investigating 

inter-related web services designed so far. However, the work cited in the rest of this 

section shares some common features with my objectives or methods. 

 

WS-NRExchange [9] influenced the model I employ for pair-wise evidence generation 

with some differences. [9] provides a framework to support fair non-repudiable B2B 

(Business to Business) communications on the basis of a trusted deliver agent notion. It 

implements the coeffey-saidha [39] protocol to provide non-repudiation in their work. 

However, the framework is designed to run with other protocols as well. Reference [9] 

only proposes delivering evidences to the related parties, but not preserving them in 

trusted agents. Furthermore, choreographed, composed services are ignored. Although [9] 

was not designed for forensics, I use relevant parts in my pair-wise evidence generation.    

 

Herzberg et al. [7] introduces the notion of having an Evidences Layer for e-commerce 

transactions. They propose this layer to be at the bottom of the e-commerce stack and on 

top of a transport layer (such as TLS/SSL, or TCP/IP). They introduce two protocols to 
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generate and deliver evidences to involved parties in message exchange; the first is the 

Simple Evidence Layer Protocol and the second is the optimistic one. They employ 

notaries in the first protocol while generating and delivering evidences. I use the layering 

approach of Herzberg [7] in the web service stack with minor changes, such as adding the 

time stamping point, and the use of their SELP as my pair-wise evidence generation 

protocol. Like others, Herzberg et al [7] was not designed for forensics. 

 

I use trusted third parties for pair-wise evidence generation as did Coffey-Saidha et al 

[39]. Certified email protocols [44] have also used them, although there are mail 

certification protocols without TTP [8]. Although inline TTPs are immature for business 

transactions, they add value to forensics evidence.  Onieva [40] gives the intermediary 

usage perspective in the implementation of inline TTPs for e-commerce transactions. 

Onieva also supports multi-recipient cases through these intermediaries, but not for 

forensics. Bilal [41] uses BPEL for non-repudiation protocol implementation in web 

services, but does not use TTP, his method thereby lacking the capability to handle 

message content.  

 

WSLogA [11] tracks web service invocations by logging service invocations using SOAP 

intermediaries. Therefore, it captures the external behavior of service invocations.  The 

main purpose of WSLogA is to provide feedback to business organizations by 

comprehensively logging services usage records. However, it does not address any 
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distributed collection mechanism necessary to gather comprehensive forensic evidence 

over services sharing multiple servers. 

  

My work has been influenced by many papers on network forensics, of which I describe 

two. Wang uses IDS (Intrusion Detection System) alerts [37] to generate an evidence 

graph for network forensic analysis. Local reasoning and global reasoning helps them in 

defining malicious activity in individual hosts and networks respectively. Unlike Web 

Server Nodes in my study, they use hosts as nodes in their graphs. 

 

ForNet [43] is another distributed forensic framework that uses logs from routers in a 

network to run agents that provide their log records to ForNet servers. Unlike Wang [37], 

ForNet use succinct information of every regular network packets adequate to trace the 

actual source of packets even when they are spoofed. Although ForNet was not designed 

for Web Services, my work has been inspired by the design of it. 

 

[45] introduces web services collecting log records. Instead of neutral observation of 

interactions, it, rather, focuses on providing PKI-based secure audit trails that can be 

stored any un-trusted hosts so that any modification, alteration on audit trail cannot go 

undetected. Similar mechanism is designed partially for my digital evidence bag 

documents, since the evidences should have integrity.  
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3.8. Conclusions 

Composed, choreographed or stand-alone web services span many applications and legal 

domains. Consequently, any vulnerability in one service can be exploited to affect more 

than one service. Once a complaint of an alleged attack is launched, it is necessary to 

investigate the nature and source of the attack and assign blame for it. I proposed a 

framework referred to as Forensic Web Services that provides this capability as a service 

to other web services by logging service invocations. I have shown my preliminary 

design and stated how collected logs can provide the capability to produce a bag of 

digital evidence to re-create the attack from its logs. 
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CHAPTER 4 

 

EVIDENCE GENERATION MODEL FOR WEB SERVICES  

4.1. Introduction 

Many multi-party businesses are in the process of being transferred to web services. In 

addition, due to the open nature of the Internet, despite best efforts, imposters and even 

legitimate actors may not adhere to their obligations within a complex business 

transaction. In such scenarios, it may be necessary to examine exchanged information, 

and re-create the business process in order to find the incorrect or inappropriate 

components, and possibly correct them. The success of such an effort depends upon 

being able to preserve the data obtained from the transaction, a.k.a. evidence, in their 

original form so that the parties to a dispute or an external entity - such as a jurist - could 

be convinced of the true nature of the transaction that took place. Because most complex 

web transactions are constructed by a synchronized collection of two-party data 

exchanges, if exchanges can be preserved in their original form and provide convincing 

arguments as to their synchronized exchange, or lack thereof, I can convincingly 

construct the instance of the transaction that took place. The objective of this chapter is to 

provide a systematic methodology for this proposed process. In this chapter I concentrate 

on the breaches that violate security related properties, and I concentrate on a 
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methodology that addresses preserving evidence of three main security properties: 

namely, confidentiality, integrity and availability. With respect to these issues, I describe 

a methodology that promotes some software engineering issues that arise in the process: 

namely, separation of concerns, reusability, and interoperability. Integrating an evidence 

generation mechanism with existing systems is a burden while using current approaches 

[9, 6]. It requires some level of control over communicating parties, such as retaining 

complete records of exchanged messages, etc. It may also force senders/receivers to 

engage in additional activities such as signing and joining sessions. The question is: how 

can the evidence layer achieve this in a way that is transparent to the business logic? 

 

As a solution, I propose enhancing the notion of Evidences Layer proposed by Herzberg 

[7] for networks into a three-layered framework, and show a modular design of my 

framework. I achieve this modularity by using the principle referred to as Inversion of 

Control (IoC) for web services, where IoC [46] is a style of software construction 

whereby generic code controls the execution of problem-specific code. The generic code 

is developed independently and reused on demand in different contexts. IoC provides 

sufficient control over communicating parties while maintaining separation of evidence 

generation logic. Using runtime interception, the proposed evidence layer can record 

messages exchanged among parties, check session invariants, and verify the existence of 

signatures on the fly without polluting the business logic.  
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The rest of the chapter is written as follows. Section 4.2 describes my overall design 

approach. Section 4.3 describes the three layers of the framework. Section 4.4 presents 

my prototype architecture. Section 4.5 describes the process of creating evidence of 

global behavior from local behaviors. Section 4.6 describes related work and Section 4.7 

concludes the chapter. 

 

4.2.  Approach 

Figure 4.1 shows a high-level view of my three-layered evidence generation model, with 

three parties transacting with each other. If all of them subscribe to proposed service, the 

evidence layer establishes communication channels transparent to the three parties to 

collect and preserve communications at the lowest layer of the framework. This is done 

by storing them in cryptographically secure repositories. I use IoC to weave these 

evidence generation modules that intercept invocation from/to the services and forward 

them to the evidence framework.  I show a prototype implementation of the pair-wise 

model using Axis2, and present many protocols that can be used at this layer.  

 

The second layer can use a rule engine or a mining system to derive additional facts from 

them, thereby being able to reveal violations that are not directly evident in pair-wise 

message records. Although I do not provide details of rules and their utility at this layer, I 

briefly demonstrate how evidences of complex scenarios can be derived from stored 

instances of pair-wise communications. The next chapter shows the details.  
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Figure 4.1. The Evidence Generation Framework 

4.3. Evidence Generation and Retrieval  

4.3.1. Pair-wise Evidence Generation 

I provide non-repudiation, fairness, and timeliness in my pair-wise evidence generation. I 

use digital signatures to provide proof of receipt and delivery, link a message to its 

creator/sender and provide message integrity. In web services architecture, URLs may 

define identities and some organizational information as may appear in a digital 

certificate. Fair message exchange and non-repudiation evidences may be problematic 

because a sender may always prefer to get a proof or receipt. 
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For accountability, I use fair non-repudiation mechanisms that utilize Trusted Third 

Parties (TTP). I do so because, although there are fair exchange protocols for two 

participants (for e.g. Markowitch [8]), these assume that the participants have a-priori 

knowledge of the message contents; I do not use them because web services may not 

always know the contents. 

 

I require timeliness because of the time sensitive nature of most business transactions. 

Due to communication delays and the possibility of the endpoint’s malicious intent, many 

previous studies suggest using time-stamp authorities—but these take additional 

messages. Although the framework has endpoints signed the time-stamps at their sites it 

bases evidence records on time observed at TTPs. 

 

Evidence servers gather pair-wise transactional evidence that flows between sender and 

receiver web services, employing inline TTPs using the Simple Evidence Layer Protocol 

(SELP) or offline TTPs using Optimistic Evidence Layer Protocol (OELP).  Herzberg’s 

[7] SELP and OELP are two protocols used by end-points to obtain non-repudiable 

evidence by using a specific message format and digital signatures. Because the messages 

are XML and SOAP based I use the message format of 

<#session|#message|#signatureK(#session|#message/sequence| 

#message/envelope))> of which I described the parts in previous chapter. 
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4.3.2. Evidence Strata 

The evidence repositories created using any of the stated protocols can be used to 

retrieving (1) pair-wise evidence, (2) derived evidence, and (3) comprehensive evidence. 

 

Pair-wise evidence refers to evidences that are part of a particular interaction that may be 

one-way, two-way, complete, or incomplete. Pair-wise evidences are mostly of interest to 

one party and exchanged at service invocation time. They are also used to construct 

derived and comprehensive evidence. Evidence of origin would help the receiver to hold 

the sender accountable of the incoming message and evidence of delivery would help a 

sender in the same way.  Conversely, an evidence of failure of either of these reveals the 

non-availability of the other party for service. 

 

Derived evidence helps revealing violations against one web service’s security property 

or violations regarding a service level agreement, such as evidence of availability or 

evidence of violation, respectively.  

 

Comprehensive evidence refers to evidences that help in revealing multi-party 

executions of global compositions. 
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4.4. Prototype Architecture 

4.4.1. Reference Architecture 

It is essential to know little about Axis2 [30, 31] architecture in order to comprehend how 

evidence layer model is realized through a selected endpoint framework.  

 

Message Exchanges in Axis2: Four main types of message exchange occur in Axis2 

architecture; In-Only, Out-Only, In-Out, and Out-In. In-Only and Out-Only messages 

represent incoming or outgoing messages that are one way and not responded. Through 

the chapter, I, uniquely, call these messages OneWay for that In-Only and Out-Only 

messages refer to the same thing in the wire. In server side, typically, for one way 

operations an operation context that features in-only message exchange pattern is created. 

The client side, on the other hand creates an operation context featuring out-only pattern. 

Client side calls fireAndForget() method to push out-only messages into out-flow, thus 

sending it to the ultimate goal as a one way message. In-Out and Out-In messages 

represent incoming or outgoing messages that are two way and are to be responded. This 

pattern introduces two messages at least; and I call the first one, TwoWay1st and 

TwoWay2nd for the second. In server side, typically, for two way operations an operation 

context that features in-out message exchange pattern is created. The client side, on the 

other hand creates an operation context featuring out-in pattern. Client side calls 

sendReceive() method to push first message into out-flow, thus sending it to the ultimate 
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goal as a request message. After application logic prepares the response message the 

message is pushed into out-flow and sent back to the sender client. 

 

Figure 4.2. Context-based Message Exchange in Axis2 

Context-based management: A typical message to be sent or received has a lifecycle in 

Axis2 architecture. Business logic, for instance, creates a request message with 

appropriate parameters, such as Endpoint reference, target service name, operation or 

action name for the service. A Message Context through the out flow has been created for 

that request. The system preserves all necessary properties of the message and builds the 

basic request as a SOAP message upon the configuration of the system. Through the out 

flow, the system, as the case may access and alter Message Context. 

 

Axis2 manages WSDL message exchange patterns by the means of mutually created 

Operation Contexts. In accordance with the role (client or server) it features, any 

endpoint send and receive messages through an Operation Context which contain 

message contexts, as illustrated in Figure 4.2. 
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Extensible Message Handling: Axis2 architecture provides a phased handling 

mechanism in both inflow and outflow pipes. The message context mentioned above 

drops by each handler registered for related service. A handler chain mechanism 

regulates the order of handler execution by the means of phases defined in configuration 

context, that is, from the very beginning of Axis2 web service framework. Axis2 allows 

user defined phases, thus leading handlers to run in a layered behavior. 

  

4.4.2. Evidence Module Architecture 

The prototype implementation is simply designed over the above architecture, where 

Axis2 allows modules to place their own handlers to retain their own control over 

messages. A module can utilize the extensible message handling mechanism of Axis2 to 

craft and process messages through In-Flow and Out-Flow pipes towards Axis2 channels 

– all business layer messages on their way to the transport layer and all transport layer 

messages in the opposite direction. As shown in Figure 4.3, I employ 

EvidenceOutHandler and EvidenceInHandler to handle application messages that are 

originating from the services engaged to the module and WS-Evidence messages 

targeting evidence-mindful services. To successfully realize pair-wise evidence 

generation, there is need for additional messages shuttling between parties (endpoints and 

TTPs), such as control and acknowledgment messages which entail the module to have 

evidence context that will last longer than regular Axis2 operation contexts. Therefore, 

my evidence module proposes evidence sessions that squeeze in existing context-based 
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sessions that are inevitably retarded because of the delays employed by additional 

messages and evidence processing. I however map evidence context to operation context 

using Internal Message Handling to successfully abstract pair-wise evidence generation 

from existing contexts. Evidence context includes information such as protocol type (e.g. 

SELP or OELP etc), time-out value, TTP address, etc. My module employs control 

messages in order for participants to negotiate on evidence context information and to 

start an evidence session. Through the first design I introduce three control messages; 

CreateSession, CreateSessionResponse, and TerminateSession.  

 

Once the session is established, the module performs internal message handling that 

refers to a set of message transformation activities (building and processing respectively 

outgoing and incoming messages) between transport, WS-Evidence, and upper layers. 

Internal component calls facilitate the transformation process leading to the use of 

custom components, such as MessageBuilder, MessageSender, MessageValidator, and 

MessageProcessor.  As shown in Figure 4.3, a typical pair-wise evidence generation 

session is maintained by means of the software artifacts described below.  

 

EvidenceInHandler captures incoming messages before releasing them to the use of the 

upper phases’ handlers and the targeted message receiver. This handler looks up the 

related evidence session using session ID value in the incoming message. According to 

the state of the session and the type of the message, it calls the required component to 

process the message. 
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Figure 4.3. Evidence Module Architecture 
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EvidenceOutHandler captures outgoing messages before being sent by transport sender. 

It may either create a new evidence session related to the application message if there is 

none yet, or call the relevant component to craft the message. 

 

EvidenceMessageReceiver obtains control and acknowledgement messages and 

responds with the appropriate message using components in charge. However, 

applications messages are processed, extracted here, and released to business logic in a 

form in which they are expected from the actual endpoint.    

 

MessageSender pushes additional messages into out flow. Message processors call it 

when an outgoing message is to be sent. 

 

MessageBuilder builds messages either from scratch (e.g. additional messages) or 

extends existing ones with new parts. EvidenceOutHandler and MessageSender mostly 

call this component through a builder factory to instantiate correct message builders 

according to message type to be sent out. Builders utilize a set of Axiom API to 

create/alter SOAP parts and messages. They also employ signing mechanism using xml-

dsig specification. 

 

MessageProcesssor processes the incoming messages, such as extracting the inner 

application envelope, to invoke the actual receiver application operation. 

EvidenceInHandler and MessageReceiver mostly utilize this component. Like message 
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builders, every message type has its own processor instance obtained from a factory 

object. Very similar to message builders, processors also use Axiom API to parse and 

modify the SOAP messages 

 

MessageValidator is in use for verifying digital signatures that are underpinning the 

evidence mechanism proposed by WS-Evidence. Like message builders, it implements 

this mechanism by pursuing the xml-dsig specification [26].  

Having taken control, my module sends and receives WS-Evidence messages via TTP or 

directly from/to other endpoints in accordance with the protocol selected for the session. 

Here, I describe how this architecture takes part in generating evidences, as a layer 

mapping critical activities in the architecture to protocol runs by implementing In-line 

and Off-line TTPs. 

 

4.4.2.1. Inline TTP 

Three entities involved in inline TTPs are sender, receiver, and a TTP. Sender and 

receiver sides have evidence modules that act as agents that generate evidence messages 

at endpoints. Figures 4.4 and 4.5 show the relevant steps in a UML (Unified Modeling 

Language) sequence diagram [47].   
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Two Way Implementation: 

1. The evidence module in the Sender side intercepts (in   EvidenceOutHandler) the 

request of an envelope and pauses the message context. 

2. Creates (using MessageBuilder) and sends (using MessageSender) a 

CreateSessionRequest to the receiver web service for the target operation. 

3. The evidence module in the receiver side receives (in EvidenceMessageReceiver) the 

message and creates and sends a response message back to the sender. It also creates a 

session. 

4. Sender’s evidence module builds TwoWay1st (<#session|#message|#signatureSender-

K(#session|”1”|# env )>) from the message context paused and sends it to TTP. 

5. The TTP recieves TwoWay1st, stores the message, forwards it to the receiver, and 

starts a timer. 

6. Receiver’s evidence module intercepts (in EvidenceInHandler) the message, processes 

(e.g. validates using MessageProcessor and MessageValidator) and extracts the actual 

envelope to release it to the expected receiver operation. 

7. Receiver application prepares a response message and sends it back to the sender. 

8. Receiver’s evidence module intercepts the response envelope, builds a TwoWay2nd 

(<#session |#message |#signatureReceiver-K(#session|”2”|# env)>)  message and sends it 

back to the TTP. If the response TwoWay2nd cannot reach the TTP before timing out, 

then, Failure (<#session|#message |#signatureTTP-K (#session|”-1”|# env)>) is signed by 

the TTP; it is stored and sent back to the Sender. 
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9. The TTP forwards TwoWay2nd   to the sender; it also creates, signs, stores, and sends 

TwoWayAck (<#session|#message|#signatureTTP-K (#session|”3” |#env)>) to the 

receiver. 

10. Sender’s evidence module intercepts the message, processes (e.g. validates) and 

extracts the actual envelope releasing it to the expected application. It also creates and 

sends a TerminateSession to the receiver web service for related session, thus, 

terminating the session. 

 

 

Figure 4.4. Inline TTP – Two Way 

One Way Implementation: 

The protocol run is similar with two way implementation in the first three steps. Starting 

at the fourth step, the protocol follows the steps below:  

4. Sender sends a OneWay (<#session| #message |#signatureSender-K (#session|”4”|# env 

)>) message to the TTP. 
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5. The TTP receives the OneWay message, stores the message, and forwards it to the 

Receiver. It also creates, signs, stores, and sends OneWayAck 

(<#session|#message|#signatureTTP-K (#session|”5” |#env)>) to the sender. 

6. Receiver’s evidence module intercepts the message, processes (e.g. validates) and 

extracts the actual envelope to release it to the expected receiver operation. 

7. Sender’s evidence module creates and sends a TerminateSession to the receiver web 

service for the related session, thus, terminating the session. 

 

 

Figure 4.5. Inline TTP - One Way 

4.4.2.2.  Offline TTP 

There are normally two entities involved in protocol run: sender, and receiver. [7] 

Proposes TTP involvement when any acknowledgments are not generated. This protocol 

may be chosen when there is a risk of performance bottleneck or man-in-the-middle 

attack on TTPs. In this case TTPs do not monitor the activity online, but knows the 
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session ID to collect evidence after the exchange. The corresponding one way and two 

way protocols are as follows. Figures 4.6 and 4.7 show the relevant steps in a UML 

sequence diagram [47]. 

 

Two Way Implementation: 

1. Sender’s evidence module intercepts the request envelope and pauses the message 

context. 

2. Creates and sends a CreateSessionRequest to the receiver web service for the related 

operation. 

3. Receiver’s evidence module intercepts the message and creates and sends a response 

message back to the sender. It also creates a session and informs TTP with session 

information (CreateSession message). 

4. Sender’s evidence module builds TwoWay1st (<#session|#message|#signatureSender-

K(#session|”1” |# env )>) from the message context paused and sends it to the receiver 

directly. 

5. Receiver’s evidence module intercepts the message, processes (e.g. validates) and 

extracts the actual envelope to release it to the expected receiver operation. 

6. Receiver application prepares a response message and sends it back to the sender.  

7. Receiver’s evidence module intercepts the response envelope, builds a TwoWay2nd 

(<#session |#message |#signatureReceiver-K(#session|”2”|# env)>)  message and sends it 

back to the sender. 
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8. Sender’s evidence module creates, signs, stores, and sends TwoWayAck (<#session 

|#message| #signatureSender-K (#session|”3” |#env)>) to the receiver. 

9. Both endpoints’ evidence modules send evidence messages (TwoWay2nd for receiver 

and TwoWay1st|TwoWayAck for sender) they collected during the session run to the 

TTP.  

10. Sender’s evidence module creates and sends a TerminateSession to the receiver 

web service for the related session, thus, terminating the session. 

 

 

Figure 4.6. Offline TTP - Two Way 

One Way Implementation: 

The protocol run is similar to the two way implementation in the first three steps. Starting 

at the fourth step, the protocol follows the steps below:  
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4. Sender sends OneWay (<#session|#message| #signatureSender-K(#session|”4”|# env )>) 

message to Receiver. 

5. Receiver’s evidence module intercepts the message, processes (e.g. validates) and 

extracts the actual envelope to release it to the expected receiver operation. 

6. Receiver creates, signs, stores, and sends OneWayAck 

(<#session|#message|#signatureReceiver-K (#session|”5” |#env)>) to the sender. 

7. Both sender and receiver send the evidences (OneWayAck by Sender and OneWay by 

Receiver) they gathered during the invocation time to TTP. 

8. The evidence module in the Sender side creates and sends a TerminateSession to the 

receiver web service for the related session, thus, terminating the session. 

 

 

Figure 4.7. Offline TTP - One Way 
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4.5. Building Evidences 

4.5.1. Pair-wise Evidence 

 

Figure 4.8. Building Blocks of Pair-wise Evidence 

As detailed through the protocol runs above, WS-Evidence messages contain signatures 

as evidence, thereby constituting various pair-wise evidences that may be of interest to 

endpoints. Figure 4.8 illustrates how WS-Evidence messages constitute pair-wise 

evidences through a UML class diagram [47]. 
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4.5.2. Derived Evidence 

In this case, endpoints can gather evidences from TTPs at any time rather than service 

invocation time. In order to generate evidences from TTPs for specific time intervals I 

rely on the evidences stored at TTPs. Evidences gathered this way can be used by a web 

service to exculpate from accusations. Depending upon the service level agreements, the 

number of evidences would increase. I here give two examples assuming endpoints have 

a time-out agreement in the first case and scheduled invocations in the second. 

 

Evidence of Availability (EOA) [7]: Availability of a web service for a certain time 

interval refers to the fact that TTP has not produced any Failure (refer to step 8 in the 

Two Way implementation) message in that period. Either against counterfeit Failure 

evidence or for no specific reason, any web service may request availability evidence in 

order to exculpate itself at various stages. To do so, it prepares an EOARequest 

containing a start time and an end time and sends it to the FWS. FWS checks the records 

for Failure evidences which prove that the web service did not respond to some requests 

where it meets the time criteria in EOARequest. If FWS encounters no evidence then it 

produces new evidence of availability proving that the service was available at that time 

interval, signs it and sends to the requester service in EOAResponse message. 

 

Evidence of Violation (EOV): Web services make agreements at the service level. For 

example, some services may need to be updated at certain times with one way messages. 
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They define this requirement in an agreement. Services that are not invoked at the 

scheduled time interval may request an evidence of violation in order to exculpate 

themselves if any incident occurs that stems from the absence of this invocation. The web 

service in question prepares an EOVRequest message including the start time and end 

time values defining time interval and also sender web service’s identity. FWS checks its 

records for submissions originating from that sender and targeted at the web service in 

question where the time criteria are met in the request. If FWS encounters no records of 

submission while meeting the criteria then it produces an evidence of violation message, 

signs it and sends to the requester service. 

 

4.6. Related Work 

Rather than applying inline or offline TTP notion, [48] propose a novel language, BP-

Mon, for observing business processes in BPEL. One can translate BP-Mon queries into 

BPEL processes so that they can run those monitor processes on the same execution 

environment. While this provides capability of observing the details of internal runs, this 

however, lacks non-repudiation, thereby introducing less sound evidences from forensic 

perspective. 

 

Ardissono [49] proposed a framework to support monitoring choreographed services and 

detection of faults along with notification of affected parties. The framework is based on 

WS-Coordination. There are similarities between the framework and WS-
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BusinessActivity: (1) The framework notifies the monitor about the choreography paths 

traversed during the execution of overall choreography model. (2) The monitor uses 

choreography specs to inference the possibility of how successful the execution of 

choreography model through the states of web services involved in the choreography. It 

measures the portion of the choreography that has been completed at a given time. While 

neutrality can be reached at some level the framework lacks non-repudiation; and 

endpoints can always act unlike their notifications which cannot cryptographically be 

detected. 

 

As mentioned earlier WS-NRExchange [9] influenced the model I employ for pair-wise 

evidence generation with some differences. Their framework is designed to run with 

many non-repudiation protocols [8]. Their work, however, reveals that they had little 

success in separating WS-NRExchange from lower layers; they are bound to Java RMI. 

Axis2-based services, however, successfully separates the lower layer (HTTP, SMTP, 

TCP, etc) from the SOAP layer. Reference [9] only proposes delivering evidences to the 

related parties, but not using stored evidences in trusted agents for further evidence 

derivation as described in Section 4.5.2 Furthermore, they do not address choreographed, 

composed services.     

 

Although Herzberg et al. [7] introduced the notion of an Evidences Layer for e-commerce 

transactions; they never mention how endpoints run such protocols. Their work seems 

sound in separating evidences layer from business logic, however, it lacks explaining 
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how such layer could be attractive for e-commerce systems in terms of integration costs, 

such as alteration in their existing code. 

 

I use trusted third parties for pair-wise evidence generation as did others [40, 41] through 

their studies. Onieva [40] gives the intermediary usage perspective in the implementation 

of inline TTPs for e-commerce transactions, and supports multi-recipient cases through 

these intermediaries, but not as a complete separate layer. Bilal [41] uses BPEL for non-

repudiation protocol implementation in web services, but does not use TTP; his method 

thereby lacks the capability of producing derived evidences based on log records.  

 

I employed handlers over existing web service architecture in order to design Evidence 

Module.  Although there are many vendors or platforms [27,28,29,30]  that provide 

infrastructure for chaining handlers in their web service stack, with Axis2, Apache et al. 

[31] have implemented some ws-* standards, such as Rampart for WS-

SecureConversation, Rahas for WS-Trust, Sandesha2 for WS-RM, and Kandula for WS-

Coordination [42].  

 

As mentioned earlier WSLogA [6] tracks web service invocations by logging service 

invocations using SOAP intermediaries. Therefore, it captures the external behavior of 

service invocations.  The main purpose of WSLogA is to provide feedback to business 

organizations by comprehensively logging services usage records. However, they never 

produce non-refutable evidences. 
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4.7. Conclusions 

Previous Chapter showed that neutral, tamper resistant evidences can be used for dispute 

resolution and mal-actor participation among web services. In this chapter, I showed how 

web services can use such an evidence resolution framework. This can be introduced to 

web services in a systematic way that would eliminate custom re-engineering web 

services.  

  



73 
 

 

 
 

CHAPTER 5  

 

DETECTING ILLEGAL BUSINESS SCHEMES IN 

CHOREOGRAPHED WEB SERVICES:  

THE PONZI/PYRAMIDAL CASE 
 
 
 

5.1. Introduction 

Dynamic service invocations and generating content specific operations among 

choreographed web services are being deployed across many industries, creating service 

inter-dependencies between web services. These dynamic service inter-dependencies can 

be exploited to create a new class of misuses. Some of them exploit the infrastructural 

dependencies of the services themselves and others use them to create illegal business 

schemes.  This chapter focuses on detecting a special type of the second kind: namely 

Ponzi/Pyramidal investment schemes created to defraud unsuspecting investors. 

 

Implemented illegal business schemas are difficult to detect because most of them are 

similar to legal business schemas for a microscopic observer, and become apparent only 

through a macroscopic view. Thus, they can elude local monitoring of web transactions. 

Among the plethora of possible illegal business schemes, I choose to study two popular 

ones: namely, pyramidal and Ponzi schemes. These are difficult to differentiate from 
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Multi Level Marketing schemes that either run their own business or invest in others. 

However, the basic dynamics of Ponzi/pyramidal schemes is rob Paul to pay George 

[50]. Charles Ponzi [51] was the first to run such a scheme. For many years, he collected 

money that promised return on investment within 90 days for customers who enrolled 

others in the scheme. He returned the money to the early investors using the money 

invested by late joiners. Other than running this scheme, he never ran any business nor 

invested in other businesses and, consequently, did not produce any profit nor incurred 

any loss. Charles Ponzi was the first, but not the last, to run such a scheme.  Even today, 

many incidents, including those that conduct Internet based Ponzi schemes, are being 

investigated [52, 53]. In 2006, 25,000 web sites suspected of promoting a pyramid 

scheme were investigated to shut down by the Securities Exchange Commission (SEC) 

[54]. 

 
Table 5.1. Pyramid Scheme (Adapted from [55]) 

 # Payment of $400 

Level 1 $100 x 3 = 
$300 

# # # 

Level 2 $30 x 9 = 
$270 

# # # # # # # # # 

Level 3 $30 x 27 = 
$810 

# # # # # # # # # # # # # # # # # # # # # # # # # # # 

Level 4 $30 x 81 = 
$2430 

# # # # # # # # #... # # # # # # # # #... # # # # # # # # #... 

----------------------------------------------------- 
…… 

Level 21 
10460353203 #s 

Even Larger than World Population 

 
 
Classic pyramidal schemes also use the same principle, and are shown in Table 5.1. A 

smart con-artist, or orchestrator, that originates the scheme convinces the top-level 
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investors by promising them large returns on investment, as do subsequently recruited 

investors to their potential customers. Table 5.1 shows the activities of an investor and his 

recruits. My example is organized as a 4-level payment scheme with a span of 3: that is, 

only up to 4 levels of ancestral recruiters will gain a profit from investments, and every 

recruit at any level recruits 3 others. The first level investor recruits 3 others and gets paid 

$100 per recruit. These recruits are in-turn expected to recruits 3 others ad infinitum, 

thereby building a recruit tree. The original investor will be paid $30 (not $100 this time) 

per sub-recruits at levels 2, 3 and 4. The original investor does not get involved with sub-

recruits at levels 2, 3, and 4 and does not profit from investors beyond level 4. The 

orchestrator considers recruit activity to be complete when he receives an investment of 

$400 from an investor. And, therefore, the orchestrator pays his recruiters $100 for 1st 

parent or $30 for the 3 immediate ancestral recruiters, thus paying only $190 at most in 

return on one investment of $400. Consequently, any investor makes $3810 

(2430+810+270+300) as return on investment (ROI) to a promoter if s/he successfully 

recruits 3 other promoters and they subsequently become successful in recruiting a 

minimum specified number of other investors (3 in this scheme) all the way down to the 

4th level. However, because of active promotions, the scheme disperses fast; but, it 

becomes unsustainable at some later time. Then, many promoters are unpaid due to the 

lack of new investors [55]. 

 

As financial institutions and their business partners are moving to service oriented 

architectures such as dynamic brokering over investment firms or stock markets that are 
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using semantic web services are holding more promise. Nevertheless, these techniques 

provide a way to orchestrate illegal and unfair business practices. Therefore, in order to 

detect such illegal schemes, one needs to have a comprehensive non-repudiable 

perspective of complex multi party transaction models. A multi party communication can 

arise in two possible ways among dynamic web services. In the first, a static 

communication pattern is specified, and all participants follow this prior-known pattern. 

In the second, web services discover and transact with other services, thereby 

dynamically creating choreographies that were unknown a-priori. Consequently, in order 

to discover illegal activity, one has to seek illegal business transactions using both kinds 

of choreographies. 

 

The rest of the chapter is written as follows. Section 5.2 shows how web choreographies 

can be misused. Section 5.3 explains the framework to collect evidences of pair-wise web 

communications in order to detect web choreographies. Section 5.4 defines the objectives 

satisfiable from collected evidence. Section 5.5 describes how choreographed global 

behavior can be derived from local observations. Section 5.6 formally defines Ponzi 

schemas. Section 5.7 describes how global misbehavior can be mined from a collection 

of local evidence of business transactions. Section 5.8 describes how to estimate damages 

resulting from a Ponzi Schema. Section 5.9 describes related work and Section 5.10 has 

my concluding comments. 
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5.2. Misusing Choreographies 

5.2.1. Business Misuses 

In business misuses, an orchestrator creates a large business scheme that abuses legal 

constraints in producing profits, without abusing the underlying choreography or 

attacking the infrastructure. Sometimes, a business level mal-actor is a partner in a 

choreography that deviates from the originally specified choreography. A choreography 

is said to deviate from its specification if one of the participants of the transaction does 

not behave as specified. Such deviations may provide an undue advantage to one partner 

over others. For example, a travel agency may favor recommending certain hotels or car-

rentals over others that provide comparable or better value to tourists. 

 

5.2.2. Service Misuses 

These attacks exploit design flaws on static choreography models, where mal-actors 

abuse visible syntactic inter-dependencies of choreographed services.  

 

A dataflow attack can be used to leak mal-code into partner services among regular data. 

Unless the recipient service checks for content, malicious data can pass between the 

systems. Chapter 3 describes a cross site scripting attack scenario that may leave 

evidence that can be used to identify a stepping stone as the attacker.  
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Instantiation flooding [56] generates a typical DoS attack on composed web service when 

a mal-actor repeatedly invokes a receiver process at a target web service. Such attacks 

affect mostly hierarchically composed web services where the flood of requests can 

deviate the state of the choreography engine (for e.g. BPEL runtime). Alternatively, an 

attacker can target a specific web service by using a partner in choreography as a 

steppingstone; where, on request, a process of the steppingstone may invoke a process at 

the target service. Flooding may crash the steppingstone and the target for which the 

attacker can blame the steppingstone.  

 
5.3. The Evidence Generation Framework 

This section briefly reviews an evidence generation framework proposed in previous 

chapter, and will be used to track business level choreographic misuses. This Evidence 

Generation Framework (EGF) shown in Figure 4.1, consist of three layers. The bottom 

layer (Pair-wise Evidence Generation Service – FWS-TTP) generates evidence for pair-

wise interactions between web services. The middle layer (Evidence Derivation Service - 

EDWS) derives facts from available pair-wise evidence in order to refute or justify 

claims of agreement violations between communicating partner services. The highest 

layer (Comprehensive Evidence Generation Service - CEGWS) generates instances of 

requested choreographies from layer 2 and layer 3 data. The EGF provides on-line 

evidence generation and management capabilities to other web services as a web service 

itself. In order to use the services of EGF, other web services (referred to as member 
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services of the EGF) should integrate EGF with themselves using a centralized service 

access point. Thereafter, EGF acts as a trusted third party. 

 
The EGF as a service receives and retains service requests and responds in a 

cryptographically secure manner, retains these correspondences in secure repositories, 

and provides them for dispute resolution and forensic investigations. EGF provides so 

called evidence adapters for all requests. 

 
The previous chapter shows a prototype implementation of EGF layer 1, and presents 

many protocols based on One-Way and Request-Response message exchange patterns 

(MEP). Currently, EGFs provide evidence for non-repudiation, fairness, and timeliness 

using digital signatures to provide proof of receipt and delivery, link a message to its 

creator/sender, and provide message integrity. For accountability, EGF uses fair non-

repudiation mechanisms that utilize Trusted Third Parties (TTP). Because, although there 

are fair exchange protocols for two participants that do not use TTPs (for e.g. 

Markowitch [8]), these protocols assume that the participants have prior knowledge of 

the message contents. I do not use them because web services may not always know 

expected message content. I require timeliness because of the time sensitive nature of 

most business transactions. I base evidence records on time observed at TTPs. EGF 

servers gather pair-wise transactional evidence that flows between sender and receiver 

web services, employing inline TTPs that use the Simple Evidence Layer Protocol 

(SELP) or offline TTPs using Optimistic Evidence Layer Protocol (OELP) of Herzberg’s 
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[7]. SELP and OELP are two protocols used by end-points to obtain non-repudiable 

evidence by using a specific message format and digital signatures. 

 

5.4. Evidence of Observed Interactions 

Web services use many kinds of messages, such as one-way or request-response, in order 

to choreograph business processes among themselves that correspond to the four 

proposed WSDL operation types (in-only, out-only, in-out, out-in). Nevertheless, an 

external observer that is ignorant of the business processes can observe only One-Way 

and Request-Response MEPs, formalized in Definition 5.1. 

 

Definition 5.1 (messages): A web-services message consists of the following 

components: 

1. Mandatory Fields: of Sender and Receiver Time, where the first two are chosen from 

URLs and the last chosen from T. 

2. Optional Fields: a finite set of attributes from a set A. 

3. Message content: consists of strings from an alphanumeric set C. I use | to denote 

string concatenation and sigA(r) to denote the string obtained from signing r with A’s 

key. 

4. Notation: If m is a message, I denote “m.a” to be the value of the attribute “a” in 

message “m”. For example, m.time is the value of the timestamp on m. 
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Definition 5.1 establishes notation to be used in describing the messages used to extract 

knowledge about externally observable facts about choreographies. Because different 

choreography specifications may select different labels for their identifier fields in order 

to bypass naming convention problems, I use XPATH expressions to specify ID values. 

Secondly, because any fabricator can produce messages, I rely on cryptographically 

secure messages to ascertain reliable evidence.  The messages are collected to derive so 

called evidence objectives - claims that are to be substantiated or refuted using the 

collected evidence, such as the origin of generation, properties of messages, or intended 

recipient. Such evidence is generated from cryptographically secure messages. 

Sometimes objectives such as evidence of delivery or evidence of non-availability may 

require messages to be signed by a TTP. 

  

Definition 5.2 (Primitive Evidence Objectives): 

1. Evidence of Origin: A message m with origin A and content r|sigA(r) from A to B is 

said to provide evidence of origin. 

2. Evidence of Delivery: A message m with content ack|sigTTP(ack|m), where TTP is a 

trusted third party  or content ack|sigB(ack|m), and where B is m.recipient is said to 

provide evidence of delivery. 

3. Message Evidence: An evidence of a message m is said to be a pair (m1, m2), where 

m1 is an evidence of origin and m2 is an evidence of delivery of m. 

As definition 5.2 says, I require cryptographic evidences from a web service of a trusted 

third party for claims of origin and delivery. Previous chapter shows how Evidence of 
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Origin and Evidence of Delivery can be collected at TTPs using the WS-Evidence 

messages that are generated using non-repudiation protocols. These message evidences 

(MEs) are stored as Log Records (LRs) throughout the Evidence Generation Framework 

as described in Chapter 4. Because LRs may contain large volumes of data, I use 

Message Evidence Indexes (MEI) that refers to messages. Table 5.2 shows a sample 

index table, where the first column is an index for stored packets that have attributes of 

time, sender, message string, and content in subsequent columns. As shown, index 1 

refers to a message with content <..invID..> sent by A to B.  

Table 5.2. MEI Table 

ID Time Sender Receiver Msg Content 

63.. 21 A B r <..invID..> 
67.. 22 B C m ”..” 
68.. 23 C B k <..payID..> 

 

 

5.5. Evidence of Choreography 

Although there are many choreography specification languages, my objective is to 

recognize choreographies from externally observed messages. Hence, I need to develop a 

method to abstract the relevant properties of these messages. This section develops the 

basic notation used to specify potential relationships between messages. 

 

Authors [57, 58] describe three different artifacts to correlate messages among web 

services, keys, properties, and time intervals, listed from the strongest to the weakest with 

respect to relating messages. Time intervals use message time stamps and attribute values 
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to relate messages. A key is a pre-chosen attribute of a message that can uniquely identify 

a scenario in the given application domain. I use all three forms of message correlation. 

Consequently, I define three kinds of choreography patterns. I use the following notations 

in order to define my notion of choreography patterns. 

 

Definition 5.3 (Message Attribute Equations): Suppose that (a1,…,an) is a vector of 

message attributes and m, m’ are messages. Then an equation of the form m.ai=m’.aj is 

said to be a message attribute equation. A finite collection of such equations where all 

equations are chosen from (a1,…,an) is said to be a set of attribute equations. If comparing 

only one attribute value between any two chosen messages can uniquely relate them, then 

the set of equations is said to be set of key equations. 

 

For example, m1.sender = m2.reciver and m1.domain = m2.domain are two message 

attribute equations. But m1 and m2 are compared using two attributes from every 

message. Thus, they do not form a set of key equations. Assume that an investor can be 

identified from a field, say id issued by an investment company instead of using a global 

identifier. For example, it can use 3 as an investment id for two different investments sent 

to different investment companies, such as company A and B, yet cannot use 3 for other 

investments sent to the same company, say A. To define a set of key equations for this 

case, I assume there is an invest message sent to a company that has only the id attribute 

and the authorization message sent to the bank has attributes invComp and invID. Hence 
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invest.receiver == authorization and invComp and invest.id ==authorization.invID are 

key equations. 

 

Definition 5.4 (Time-based Choreography Patterns): I recursively define the set of 

time-based choreography patterns ℙtime as follows: 

1. If m is a message, then {m}∈ℙtime. That is, a set consisting of a message is considered 

a time-based message pattern. 

2. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x⊗ty∈ℙ is said to be 

a time based concurrency pattern whose members are {(a,b)| a∈x and b∈y}. 

3. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x∪ty∈ℙtime is said to 

be a time-based choice pattern whose members are x∪ty. That is, the pattern x∪ty has 

members of x or members of y. 

4. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x;ty∈ℙ is said to be a 

time-based sequencing pattern whose members are {(a,b)| a∈x, b∈y, a.time < 

b.time}. That is, the pattern x must appear before the pattern y. 

5. Suppose that x∈ℙtime is a time-based pattern. Then recursively define the time-based 

recursive patterns x1,t=x, x(n+1),t=f(xn,t,x), where the function f defines a choreography 
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for x(n+1),t from xn,t and x using the operators ⊗t, ∪t and ;t. Then define x*,t to be 

LFP(f,x). That is, x*,t is the least fixed point of the inductive definition. 

 

Definition 5.5 (Property-based Choreography Patterns): I recursively define the set of 

property-based choreography patterns ℙprop as follows: 

1. If m is a message, then {m}∈ℙprop. That is, a set consisting of a message is considered 

a property-based pattern. 

2. Suppose that x∈ℙprop and y∈ℙprop are property-based patterns, and (a1,…,an) is a 

vector of message attributes. Then, one can say that x⊗py∈ℙprop is a property based 

concurrency pattern whose members are {(a,b)| a∈x, b∈y, a.ai1=b.aj1, … a.aim=b.ajm}. 

That is, the pair of messages (a,b) are chosen from patterns x and y satisfying the 

condition that satisfy a set of attribute equations chose from a vector (a1,…an) of 

attributes. 

Suppose that x∈ℙprop and y∈ℙprop are property-based patterns. Then, x∪py∈ℙprop is a 

property-based choice pattern whose members are chosen from the set x∪py. That is, 

a property-based pattern x∪py has members of x or members of y. 
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3. Suppose that x∈ℙprop and y∈ℙprop are patterns and (a1,…an) is a vector of message 

attributes. Then, x;py∈ℙprop is a property-based sequencing pattern whose members 

are {(a,b)| a∈x, b∈y, a.time < b.time,a.ai1=b.aj1, … a.aim=b.ajm. That is, the pattern x 

must appear before the pattern y and the patterns must satisfy the specified set of 

attribute equations a.ai1=b.aj1, … a.aim=b.ajm. 

4. Suppose that x∈ℙprop is a pattern and (a1,…,an) is a vector of message attributes. 

Then, recursively define the time-based recursive patterns using the equations x1,t=x, 

x(n+1),p=f(xn,p,x) where the function f defines a choreography for x(n+1),p from xn,p and x 

and a set of message equations, say E using the operators ⊗p, ∪p and ;p. Then, define 

x*,p to be LFP(f,x,E). That is, x*,p is the least fixed point of the inductive definition. 

 

 

Definition 5.6 (Key-based Patterns): Replacing “property-based equations” with “key-

based equations” in definition 5.5 gives key-based choreography patterns.  

 

Definition 5.7 (State of a Pattern): If S=S1;xS2, where x could refer to t (i.e. time based) 

or prop (i.e. property based), then S1 is said to be a state of a choreography.  

 

For example, (m1⊗pm2) is s state of the choreography patterns ((m1⊗pm2);pm3);pm4 and it 

represents a partial computation of the complete choreography pattern.  
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Figure 5.1 illustrates the choreographies of invest and pay transactions. In state 1, the 

Invest message (1) has been sent to the Investment Company and the Authorize message 

(2) has been sent to the Bank. When the Bank sends the Confirmation message (3) to the 

Investment Company, then the state of the choreography becomes 2. The Deliver 

message (4) is the last observed message of this choreography, and its receipt represents 

state 3.  The messages of choreographies are defined as follows:  

invest.sender = Investor, invest.recivever=InvComp, invest.content = 

invest|sigInvestor(Invest) 

authorize.sender=Investor, authorize.reciever=Bank, 

authorize.content=authorize|sigInvestor(authorize) 

confirm.sender=Bank, confirm.reciever=InvComp, 

confirm.content=confirm|sigBank(confirm) 

deliver.sender=InvCompany, deliver.reciever=Investor, 

deliver.content=deliver|sigInvCompany(deliver) 

 

Then define choreographies for investing and paying (shown in Figure 5.1) as: 

1. Investing = (invest⊗pauthorize);p confirm;p deliver where the message attribute 

equations are given as: 

invest.sender=authorize.sender and  

authorize.reciever=confirm.sender and 

confirm.reciever=invest.sender 
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2. Paying = (pay⊗pauthorize);p confirm;p acknowledge where the message attribute 

equations are given as: 

pay.sender=authorize.sender and  

authorize.reciever=confirm.sender and 

confirm.reciever=invest.sender 

 

 
 

Figure 5.1. Sample Invest and Pay Choreographies 

 
Deriving such choreographies from external observations can reveal some illegal 

business transactions or reveal some illegal parts of large financial businesses. 

Additionally, members of a transaction can derive the actual instance of the transaction 

that they participate in and observer the behavior of their partners. For example, a party B 

authorizes the Bank to release some amount of money to party A. The Bank, however, 

releases the money with some additional fees each time, thereby reducing the money 
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deposited in A’s account. In order to avoid being a party to such deceptions, any service 

provider should be able to obtain all instances of participating choreographies.  

 

5.5.1. Pattern Directed Choreography Mining 

In this section I show how to mine choreography instances of given patterns from log 

records of all observed web transactions using streamSQL [59] and a StreamBase 

platform [60]. StreamSQL is an event pattern language that can be used to define queries 

over streams of data and StreamBase is an event processing platform that can run those 

queries over input source from a file or a database and produce outputs.  StreamSQL has 

several commands, of which I describe a few that I used. CREATE INPUT STREAM 

creates data streams from a named file pre-configured in a known schema. CREATE 

OUTPUT STREAM creates an output stream pre-configured according to a schema. The 

PATTERN phrase is used to define the search criteria from multiple input streams. A 

WITHIN phrase is used to create the maximum size of a window that moves along a 

collection of aligned streams searching for a pattern.  
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 GenereateCHOR-Investing 
Description: Given the MEI table and the pattern, emits the appropriate messages pertaining 
to instances of the pattern. 
Input: MEIs are processed as multiple (four for this pattern) inputs 

Output: CHOR Investing 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

 
18 
19 

 
20 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE OUTPUT STREAM InvestsOut; 
CREATE STREAM InvestOut ; 
CREATE STREAM AuthorizeOut ; 
CREATE STREAM ConfirmOut ; 
CREATE STREAM DeliverOut ; 
SELECT * FROM MEI 
      WHERE msg=="invest" AND  receiver=="B"  
      INTO InvestOut 
      WHERE msg=="authorize"AND receiver=="Bank"  
      INTO AuthorizeOut 
      WHERE msg=="confirm" AND sender=="Bank" AND receiver=="B"  
      INTO ConfirmOut 
      WHERE msg=="deliver" AND sender=="B"  
      INTO DeliverOut; 
SELECT AinvestB.*, AauthorizeBank.*, BankconfirmB.*, BdeliverA.* 
      FROM PATTERN (((InvestOut AS AinvestB AND AuthorizeOut AS AauthorizeBank)  
                    THEN   ConfirmOut AS BankconfirmB) THEN DeliverOut AS BdeliverA)  
      WITHIN 8 ON time 
      WHERE AinvestB.sender=BdeliverA.receiver AND AauthorizeBank.sender=AinvestB.sender 
                       AND AauthorizeBank.sender=BdeliverA.receiver 
      INTO InvestsOut; 

 

Figure 5.2. Generate Evidence of Invest Choreography 

The query in Figure 5.2 accepts MEI records in ascending order of their timestamp fields. 

In order to successfully process the pattern query, it produces four streams to process 

different message patterns such as invest, deliver. Appropriate predicates in each 

WHERE clause provide message pattern features, such as sender and receiver 

information. The WITHIN phrase uses a window of size 8 in the time filed of records in 

search of the specified pattern.  The SELECT part gathers the required information about 

the detected pattern and emits the result to InvestsOut table specified as the output form 
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as a parameter to the INTO phrase. Figure 5.3 shows how an Investing choreography is 

mined from the 12 MEI records of Table 5.3.  

Table 5.3. Sample MEI Records 

ID Time Sender Receiver Msg Content 

23 1 D A purchase productID=3 
34 2 A Bank authorize ..invID=23… 
45 3 G F book Room=56 
47 4 A B invest invID=23 
78 5 Q O invest L1Promoter  
79 6 P O pay 150 
83 7 Bank B confirm invID=23 
91 8 H L invest L2Promoter  
93 9 B A deliver ..invID=23 
96 10 K L pay 30 
97 11 G F book Room=57 
98 12 V X pay 30 

 
 

 
Figure 5.3. Generating Evidence for Investing 

 
The query collects evidences for a specified choreograph pattern.  Although the sliding 

window helps prevent the same record being counted to create scenario instances for 

more than one episode, I can use other message attributes to prevent this double counting. 

For example, I can do so by using relations definable using XPATH based functions as 

shown below right after line 20 of the query. 
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WHERE  GetXPATHValue(AinvestB.content,”../invID/”) == 
GetXPATHValue(AauthorizeBank.content,”../invID/”) && 
GetXPATHValue(AinvestB.content,”../invID/”) == 
GetXPATHValue(BankconfirmB.content,”../invID/”) && 
GetXPATHValue(AinvestB.content,”../invID/”) == 
GetXPATHValue(BdeliverA.content,”../invID/”) 

 
In addition, if I knew a key set of attributes (that is a set of attributes that uniquely 

identify a choreography pattern), those can be passed in order to identify the instances 

easily. Investor ID=23 would be an example of such a key attribute. Then, the query finds 

all evidence related to investor 23, as opposed to finding invest instances for all investors. 

 
5.6. Evidence of Global Misuse 

Mining choreographies that are created due to message contents from external 

observations requires linkage parameters, which can be derived from some externally 

invisible message content making them not very helpful for external monitors and 

auditors. One opportunity to obtain them arises when one of the unhappy participants, 

say, a victim, makes a complaint mostly about a financial loss. In that case, I use the 

following method to detect a spreading Ponzi like scheme. 

1. Accept the complaints from victims. 

2. Examine the content of specimen records such as a promoting or invest message 

provided by the potential victim. 

3. Determine the parameters in evidence that can be linked together.  

4. Detect choreographies and design them as (e.g. or pattern CHOR) dynamics of the 

algorithms. 

5. Create the algorithms/queries. 
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6. Run the algorithms/queries in appropriate order and more than one when required. 

7. Collect a set of comprehensive evidences and determine if the scheme is illegal and 

its effect over the network. 

8. Broadcast an alert to current and potential future victims. 

 

The method described above works for hierarchical schemes. Different methods could be 

applied for other types of schemes. I apply my heuristic method to generate the 

algorithms for a Ponzi-like scheme. 

 

5.6.1. Ponzi Schemes over Web Services 

Typical Ponzi-like schemes have three types of actors: a malicious investment service 

acting as the orchestrator (a.k.a. con-artist) and many investor services acting as 

promoters or victims (depending upon their investment and return rates). Figure 5 

illustrates how such actors collaborate with each other to spread the financial scheme 

over a network of web services. The Investment Company, InvComp (a.k.a Orchestrator), 

promotes A (Promoter) to recruit B into its scheme (by promising a quick return on 

investment) and encourages it to promote other potential investors. This promoting 

activity (using Promote messages) may not necessarily be observed through the records 

because promoters may choose other means to convince investors. After being promoted, 

if A invests (Invest messages) in InvComp, then one can say that A has been recruited. 

Then A starts promoting InvComp to other investors in order to get a quick return on 
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his/her investment, and in the process recruits B. I recognize that B has been promoted by 

A because of the reference value in the content field of the invest message sent by B to 

InvComp. In accordance with the return policy of the scheme, InvComp awards A with a 

payment (evidenced in the Pay message from InvComp to A). The choreographies 

between Investment Company, Recruiters, and Recruitees spread in an investor web 

service network. When a recruitee cannot recruit enough investors, then it loses the 

money invested, thus being treated as victim (Victim). Figure 5.4 illustrates those 

complete and incomplete recruit choreographies. 

 
 

Figure 5.4. Ponzi-like Recruits over Web Services 

 
However, I do not assume that I know the global scheme when mining, and instead 

assume that either a promoter web service identity or an invest message is submitted to a 

law enforcement agency by a victim.  Following the heuristic algorithm presented above, 
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I can find invest, pay, and promote messages that contain attributes that refer to each 

other, thus collaborating with each other in a pervasive manner.  

 

5.6.2. Pattern Discovery 

Here I describe how to discover the patterns that will help in creating comprehensive 

evidence of illegal business schemes. Following the heuristic algorithm above, let us 

assume that a victim brings an invest message that contains a promoter web service. A 

query on evidence repository could show that it receives pay messages from other web 

services and also have sent an invest message to the same alleged investment company’s 

web service. A set of sample records of invest and pay method are shown in Table 5.4. 

Table 5.4. MEI Tuples Featuring a Misuse Scheme 

ID Time Sender Receiver Msg Content 

…      
 45 B InvComp invest Promoter=A  
 55 InvComp A pay 150 
…      
 67 C InvComp invest Promoter=B  
 76 InvComp B pay 150 
 78 InvComp A pay 30 
…      
 87 Victim InvComp invest Promoter=C 
 89 InvComp C pay 150 
 92 InvComp B pay 30 
 104 InvComp A pay 30 

 

 

Given the records in Table 5.4, anyone can observe the pattern that keeps the fraudulent 

activity alive, where the invest messages are linked by sender header fields and promoter 

content fields. That is, every promoter web service in an invest message is being paid 
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right after this invest message. Now, it is time to correlate MEs to conclude that the 

promoter, victim, and the orchestrator may be involved in a hidden recruit choreography. 

In cases where the promoting activity does not involve a web service message, I can 

include those message or choreography patterns as part of the recruit activity. I name this 

content-based choreography as recruit. The pattern I as the signature of “rob Paul to pay 

George” activity and pattern II as the link between the recruiter and recruitee, thereby 

enabling the mining of recruit paths to create recruit trees from MEI records. For 

simplicity, I define patterns succinctly; but, more complex patterns may include pay 

messages, adding complexity to queries.  

 
Table 5.5. Ponzi Scheme of Fan 1 and Depth 1 

I 

invest;p pay where  
invest.sender=A and 
invest.reciever=B and pay.sender=B 
and pay.reciever=C   and       
invest.prometer=pay.reciever 

II 

invest1;p invest2 where 
invest1.sender=C and invest1. 
receiver=B and invest2.sender=A and 
invest2.reciever=B and 
invest2.promoter= invest1.sender 

 

Table 5.4 shows that investors subsequently play a promoter’s role within a subsequent 

recruit choreography pattern making a recursive investment scheme. For example, notice 

that investor B sends an invest message to the InvComp at time 45. At time 67 another 

investor, C, makes a reference to B through its investment message and B gets a payment 

(see the pay message at time 76) from InvComp afterwards. The same choreography can 

be observed between C and other subsequent investors, revealing that they recruited other 
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investors as shown in later records. Thus, in order to detect such a scheme, I need to 

recognize these recursive investment and payback schemes. The recursive scheme creates 

a recruit-tree that joins a recruiter to all of its recruitees. By traversing a path in a recruit 

tree from a chosen (victim) node to the root of the tree (say recruit-paths), one could find 

the orchestrator. The path Victim-C-B-A in Figure 5.4 is such a recruit path.  

 

I use the following notation to specify recruit trees formally. Choose any integer k (to be 

used as the fan out of the recruit tree). Then, all finite sequences of {0,1,…,k-1} are used 

as identifiers for web service nodes. I use the notation k
<ω to denote the set of finite 

subsequences of {0,1,…,k-1}. For example, all binary sequences can be used to index 

trees with fan out 2, where the left child of node xp is xpo and the right child is xp1, where 

p is a finite sequence of integers {0,1}, i.e. 2<ω. I also use the notation p<q to denote that 

p is a subsequence of q where p,q∈k
<ω. I denote the length of any p∈ k

<ω  by |p|. Now 

suppose p∈k
<ω where |p|=m and p=<p0,..,pm-1>. Then, define the ith ancestors of p for i≥1 

as ancestor(i) =<p0,..,pm-i>. Ø represents the empty string in k<ω. 

 

Definition 5.8 (Recruit Trees of fan out k and depth m): Suppose I is an investment 

company web service. Inductively define active(n) for every integer n as follows: 

1. active(0)={m} where m is defined as a message where m.sender=PØ, m.receiver=I   

(say Eq 1) 
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2. Suppose active(n) has been defined and p∈ k
<ω with |p|=n. Then, for each i∈{0,1,…k-

1} define active(p^i)=msg;pPayBack(p^i)  (say Eq 2) where  msg satisfies the 

property msg.sender=Pp^i   msg.reciever=I and msg.content=invest (say Eq 3) and 

PayBack(p^i) is of the form 

PayBack(p^i)=msg1∩pmsg2,…,∩pmsgm where every msgi is of the form 

msgi.content=pay, msgi.sender=I, msgi.receiver=Pancestor(p,i) (say Eq 4) for i≤l. 

3. Let active(n+1)=active(p^0)∪p,..,∪pactive(p^(n-1)) 

4. Define a recruit tree to be active* =LFP(f,m,E) where the function f is defined in (1) 

and (2), the set of message equations E are defined in (1) and (2), and the message m 

is defined in (1). 

Notation: I denote the class of Ponzi schemes of fan k and depth l and attribute equations 

E as Ponzi(k,l,E), where E is the collection of equations Eq 1, Eq 2 Eq 2 and Eq4. 

 

Definition 5.8 provides a generic definition for Ponzi-like schemes where the number of 

recruits employed by any recruiter is limited to an integer k and the number of ancestors 

deriving a payback from the recruitment is at most an integer value l. As an explanation, 

the web service nodes are numbered by strings chosen from {0,1,…,k-1}, resulting in 

trees where every node has at most n. Thus, the parameter p in Definition 8 is used to 

denote a path with |p| elements in such a tree. Thus, step 0, with the empty string Ø, 

represents the recruiter in item (1) of the definition. Item (2) of the definition assumes 

that the tree has been defined up to a path p of length n and finds its next level. This step 

consists of a sequential composition of two steps. In the first part, Pp sends messages to 



99 
 

each of its children to invest. Then, the second part of the choreography shows each of 

these children investing in I, followed by the investor I paying ancestors of these 

children. The ancestors that are being paid back are limited to at most l generations. Item 

(3) of definition 8 collects all possible paths that extend the tree to the next level n+1; 

and, Item (4) collects all sub trees with depth n+1. Thus, the pattern I in Table 5.5 is a 

Ponzi scheme where n=2 and l=1. That is, every recruiter recruits only two investors, and 

the only person that benefits from these recruits’ investments are their recruiter. 

 

5.7. Detecting Global Misuses 

Here I introduce a special query based on StreamSQL that discovers the pattern I defined 

in Table 5.5. 

 
 DetectRecruits 

Description: Glides over MEIs using window size 3 to detect pattern I along with the predicates 
specified in WHERE clause. 
Input:MEI tuples 
Output:Ponzi-like recruit MEI pairs 

1 
2 
3 
4 
5 
6 
7 
8 
 
9 
10 
11 
 
12 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE OUTPUT STREAM PonziDetectOut ; 
CREATE STREAM InvestFilterOut ; 
CREATE STREAM PayFilterOut ; 
SELECT * FROM MEI 
    WHERE msg=="invest" INTO InvestFilterOut 
    WHERE msg=="pay" INTO PayFilterOut; 
SELECT "Ponzi-like recruit" AS detected, invest.time AS investTime, pay.time AS payTime,     
    pay.receiver AS recruiter, invest.sender AS recruitee 
    FROM PATTERN (InvestFilterOut AS invest THEN PayFilterOut AS pay)  
    WITHIN 3 (days)  ON time 
    WHERE invest.receiver==pay.sender AND  
                     regexmatch(".*"+"promoter="+pay.receiver+".*", invest.content)     
INTO PonziDetectOut; 

 

Figure 5.5. Detecting Recruits of Ponzi Schemes 
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DetectRecruits query in Figure 5.5 accepts MEI records in ascending order of 

timestamps. In order to successfully process the pattern query, it filters the records into 

two, invest and pay employing the predicates defined in line 6 and 7. This will allow the 

pattern to employ the appropriate template (see THEN phrase) in line 9. That is, invest 

messages are expected before pay messages. Predicates defined in line 11 say that the 

receiver of the invest message should be equal to the sender of the following pay message 

and the promoter value in the content of the invest message should be the receiver of the 

following pay message. The window size is set to 3 in line 10. The SELECT part gathers 

the required information about the detected pattern and emits the result to the 

PonziDetectOut table. Figure 5.6 shows how two Ponzi-like recruits are detected using 

a window of size 3 from a collection of 9 MEIs. Figure 5.6 shows how messages in a 

MEI table come into the query and are processed as two separate streams shown as pipes, 

where transparent rectangles represent two different snapshots of the query window, one 

that arrived at time 5 and the other that arrived at time 8.  

 
Figure 5.6. Detecting Ponzi-like Patterns 
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Detecting few Ponzi-like recruits may give little confidence in declaring that a Ponzi 

scheme was detected.  In order to increase the confidence, I can define some minimum 

support value as threshold, thus alerting only when the threshold is met. The query below 

can be added to strengthen the previous detecting query along with a predefined 

minimum support value. AlertRecruits query alerts each time at least 6 Ponzi-like 

recruits are detected over the output of the previous query. AlertRecruits can be added to 

DetectRecruits query to decrease the number of false positives.  

 AlertRecruits 
Description: Counts over detected Ponzi-like recruits using window size 6 as minimum support. 
Emits Ponzi alerts when minimum support is reached 
Input:PonziDetectOut from DetectRecruits 
Output:Ponzi alerts 

1 
2 
3 

SELECT ”Ponzi Alerts”, count() AS minSup 
FROM PonziDetectOut [SIZE 6 TUPLES] 
INTO PonziAlerts; 

 

Figure 5.7. Enhancing Ponzi Detection 

 
5.8. Generating Comprehensive Evidence 

This section shows how to detect the orchestrator, or the earliest known recruiter, of a 

Ponzi schema by climbing any recruit path towards its beginning. Then one can follow all 

possible paths that originate at the detected recruiter and discover all others that invested 

in the Ponzi scheme. This can be found by creating a choreography defined as follows: 

 

Suppose the complaint brings the invest message msg and it is known that the investment 

company used by all participants is I, then define ancestorChain(n) as follows: 
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ancestorChain(0)=msg, 

ancestorChain(n+1)=ml;p(m1;pk1∪p,.., ∪p ml-1;pkl-1);p ancestor(ancestorChain(n),n) 

satisfying the equations E : 

m1.content=pay and k1.content=invest,…,ml-1.content=pay and kl-1.content=invest and 

ml.content=invest and ml.time  < m1.time < k1.time and ,…, ml.time < ml-1.time > kl-

1.time and ml.reciever=I.  

Define Earliest(msg) as lfp(f,msg,E).  

As a special case, I show how to compute the ancestor chain of the pattern II in Table 5.5 

using StreamSQL below in Figure 5.8.  

.  ClimbRecruitPath 
Description: Given the promoter traces back the MEI records and finds the path and the 
distance to/from Orchestrator using pattern II. 
Input: Promoter $P, MEI tuples 

Output: Ancestor Chain of Promoters as RecruitPathOut 

1 
2 
 
3 
4 
5 
6 
7 
8 
9 
 
10 
11 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE OUTPUT STREAM RecruitPathOut( 
    $MEI schema , newPromoter string); 
CREATE STREAM LocalStream ; 
DECLARE pointerPromoter string DEFAULT$PUPDATE FROM (SELECT newPromoter AS 
pointerPromoter FROM RecruitPathOut); 
SELECT * FROM MEI 
     WHERE msg=="invest" AND receiver=="O" AND sender==pointerPromoter  
     INTO LocalStream; 
SELECT time, sender, receiver, msg, content, 
       GetXPATHValue(content,”../promoter/”) AS newPromoter 
      FROM   LocalStream 
      INTO   RecruitPathOut; 

Figure 5.8. Computing the Orchestrator 

ClimbRecruitPath is a trace-back query. Given a recruiter, it traces back recruiters 

upwards to find the orchestrator. Therefore, it can derive the start time of the scheme and 

traverses every record in descending order of timestamps looking for the sender of invest 
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messages.  In order to do so, my query declares a dynamic variable (see DECLARE) 

called pointerPromoter in line 4 and the suspected promoter is passed as a default 

value (see DEFAULT) as the orchestrator. Each time the output emits a hop meeting the 

criteria in line 7, the promoter value is picked out from the content of the invest message 

by XPATH function (SELECT clause in line 9). It is then written to the output stream 

(line 2), and assigned to the dynamic variable pointerPromoter in line 5. The newly 

assigned value is used as the predicate in line 7 for locating the next message if it 

matches the sender value.  

 

 

Figure 5.9.  Climbing the Recruit Path 

Figure 5.9 illustrates how the query traverses back through sample MEI tuples. The query 

emits tuples at times 11, 9, 3 and 1. Such a query reveals the distance between a specified 

recruiter and the orchestrator. Because long paths imply the un-sustainability of the 

scheme, one could get the likelihood of a recruiter becoming a victim of the scheme (that 

is not being able to recover the investment and the predicted profits). One other benefit of 

this algorithm is that it locates one of the oldest message records to start my trace-

forward algorithms and to create the maximal comprehensive evidence of the scheme. 
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Having discovered the earliest recruits or the orchestrator of the schema, one can start 

tracing forward and generating the evidence. The next query compiles the evidence, using 

pattern II. The output is a table partially shown in Figure 5.11. 

 

 GenerateRecruitTree 
Description: Tracing forward the MEIs, outputs an appropriate table to create tree-view of the 
scheme using the pattern II. 
Input:MEI tuples 

Output: RecruitsOut table leading to recruiter->recruitee tree structure 

1 
2 
3 
4 
5 
6 
 
7 
 
8 
9 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE OUTPUT STREAM RecruitsOut ; 
CREATE STREAM InvestFilterOut ; 
SELECT * FROM MEI 
     WHERE msg=="invest" AND receiver=="O" INTO InvestFilterOut; 
SELECT recruitee.time AS recruitTime,  
     recruiter.sender AS recruiter, recruitee.sender AS recruitee 
     FROM PATTERN (InvestFilterOut AS recruiter THEN InvestFilterOut AS recruitee)  
     WITHIN 6 (days) ON time 
     WHERE recruiter.sender== GetXPATHValue(recruitee .content,”../promoter/”) 
     INTO RecruitsOut; 

Figure 5.10. Generate Recruit Tree 

The query in Figure 5.10 accepts MEI tuples. The first SELECT clause in line 4 is a 

typical filter with predicates addressing invest messages that are sent to the suspected 

orchestrator “O”. Pattern II is defined through the query after PATTERN clause. The 

PATTERN clause duplicates the invest MEIs so that it can apply the appropriate template 

(see THEN clause) and predicates (see WHERE clause in line 8) between messages. The 

query uses a window of size 6, limiting the query in finding the patterns only within the 

specified period. Small size windows may lead the query to miss more correlations than 

do big size windowed queries. Figure 5.11 shows how the query progresses and when it 

emits its findings. 



 

Figure 5.11 illustrates how the query advances through the records. At time 3, th

emits the first recruit; and

5, another recruit is discovered. By time 20, a window of size 6 do

consecutive messages that

window size impacts the outputs of the query. Right next to 

trees reveal the promoting architecture of the scheme at various levels.

 

5.9. Damage Estimation

Finally, I show how to estimate the damage caused by such schemes and the profits made 

by the promoters. Based on the findings above
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how the query advances through the records. At time 3, th

and, at time 4, the second. When the query processing reaches time 

another recruit is discovered. By time 20, a window of size 6 do

ges that create a specified pattern. Tables in Figure 5.11

window size impacts the outputs of the query. Right next to the tables

trees reveal the promoting architecture of the scheme at various levels. 

stimation 

to estimate the damage caused by such schemes and the profits made 

by the promoters. Based on the findings above, collecting the messages 
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Figure 5.11. Generating Recruit Tree 
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between endpoints can be used to measure the damage. RenderWinLossTable query in 

Figure 5.12 creates and renders a WinLossTable that contains promoter web services 

found by previous query and their earnings and losses through the scheme run.  

 

The query in Figure 5.12 accepts MEIs in ascending order of time and promoter web 

services (see line 2) found by the GenerateRecruitTree. After creating the table in line 

4, it loads the table with the incoming promoter web service list (see INSERT in line 5). 

Because I assume that there are homogenous invest and pay choreographies as described 

earlier—not an unrealistic assumption compared to real scenarios, one can access amount 

values from deliver and acknowledgment messages respectively using invID and payID 

values in first invest and pay messages of both choreography instances (remember Figure 

3). This is done by using the patterns in lines 13 and 17 that locate correct amounts for 

each invest and pay choreography instances. Collecting invest and pay amounts would 

lead us to computing the amount of money flows between web services involved in the 

scheme, thus revealing who has what role through the incident, such as victim, promoter, 

or orchestrator. Notice the UPDATE clauses in lines 19 and 20, previously collected 

amounts of gain and paid are set correctly in the table when they meet the criteria in 

WHERE clause. That is, each correspondent promoter web service is updated in gain and 

paid fields when the query encounters invest and pay message related to them. 
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 RenderWinLossTable 
Description: Tracing forward the MEIs, renders an appropriate table showing how web 
services took part in the scheme. 
Input:MEI tuples, promoters from GenerateRecruitTree query as RecruitTreeResultsIn 

1 
2 
 
4 
 
 
5 
 
 
6 
7 
8 
9 
 
10 
 
11 
12 
 
 
 
13 
 
14 
 
 
15 
16 
 
 
 
17 
 
18 
 
 
19 
 
 
20 
 
 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE INPUT STREAM RecruitTreeResultsIn ( 
    ID int, promoter string); 
CREATE MEMORY TABLE WinLossTable ( 
    ID int, promoter string, paid double, gain double 
)    PRIMARY KEY(ID) USING btree; 
INSERT INTO WinLossTable (ID, promoter, paid, gain)  
     SELECT ID,promoter,0.0 AS paid ,0.0 AS gain  
     FROM RecruitTreeResultsIn; 
CREATE STREAM InvestDeliverOut ; 
CREATE STREAM PayAckOut ; 
SELECT * FROM MEI 
      WHERE (msg=="invest" AND receiver=="O") OR (msg=="deliver" AND sender=="O")  
      INTO InvestDeliverOut 
      WHERE (msg=="pay" AND sender=="O") OR (msg=="acknowledge" AND receiver=="O")   
      INTO PayAckOut; 
CREATE STREAM InvestOut ; 
SELECT  
       double(GetXPATHValue(deliver.content,”./amount/”))AS amount, 
       invest.sender AS sender, 
       invest.receiver AS receiver 
       FROM PATTERN (InvestDeliverOut AS invest THEN InvestDeliverOut AS deliver)  
       WITHIN 3 ON time 
       WHERE invest.msg=="invest" AND deliver.msg=="deliver" AND  
        GetXPATHValue(invest.content,”../invID/”) ==  GetXPATHValue(deliver.content,”../invID/”)  
       INTO InvestOut; 
CREATE STREAM PayOut ; 
SELECT  
       double(GetXPATHValue(ack.content,”./amount/”)) AS amount, 
       pay.sender AS sender, 
       pay.receiver AS receiver 
      FROM PATTERN (PayAckOut AS pay THEN PayAckOut AS ack)  
      WITHIN 3 ON time 
      WHERE pay.msg=="pay" AND ack.msg=="acknowledgment" AND    
       GetXPATHValue(pay.content,”./payID/”)== GetXPATHValue(ack.content,”./payID/”)   
      INTO PayOut;  
UPDATE WinLossTable USING InvestOut AS i 
      SET paid = paid + i.amount 
      WHERE promoter == i.sender; 
UPDATE WinLossTable USING PayOut AS p 
      SET gain = gain + i.amount 
      WHERE promoter == p.receiver; 

 

Figure 5.12. Rendering a Damage Table for Recruit Tree 
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5.10. Related Work 

Luckham [61] proposes Rapide, an event pattern language that defines complex patterns, 

that has been implemented in some service oriented architectures. To my knowledge, 

none of them provide non-repudiable messages. Luckham [61] also provides rules to 

specify business collaborations compliant with the ISO 15022 standard. Although 

complex event processing (CEP) is a wide application area, most of the efforts do not 

derive global behavior from external observations.  

 

Widder et.al. [62] propose a new approach based on discriminant analysis of events, 

grouping them if they represent an unknown pattern. They envision using their method in 

recognizing new patterns of credit card use and fraud related to them. Their approach, 

however, strongly depended on having complete knowledge of events to accurately 

derive behavior. Thus, maliciously created events may raise difficulties in to-be-

developed detection algorithms. They implement the experiment environment based on a 

CEP [61] engine.  

 

Semantic correlation of message exchanges allows recreating the exact instances of the 

choreographies. DePauw et al. [63] present a heuristic algorithm to find the correlations 

between messages. They employed a set of refinement efforts on tables to achieve the 

correlations. Barros et al. [57] list other possible opportunities for correlation as described 

earlier. However, they offer no algorithm to employ them.  
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5.11. Conclusions 

I have precisely specified choreographies that could be used to detect Ponzi and other 

illegal schemas occurring among web services. I have shown how to specify these 

choreographies using StreamSQL, a language and a run-time that can process queries 

over streams of data. Although my choreographies only specify some Ponzi schemas, the 

method holds promise in specifying and detecting other illegal business schemes [64] that 

can be mined from repositories of financial transactions. The next chapter addresses 

extending my method in developing an online warning system that detects business 

schemas that appear legal from a microscopic view, but are macroscopically illegal. 
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CHAPTER 6 

 

ONLINE DETECTION AND ALERT MODEL AGAINST MISUSES  

OVER WEB SERVICES 
 
 
 
6.1. Introduction 

Financial institutions and their business partners are moving to service oriented 

architecture; and semantic web services are building much more promise such as 

dynamic brokerage over investment firms or the stock market. The previous chapter 

introduced queries that generate evidence of web services behavior such as legal 

choreographies or misusing choreographies in the case of Ponzi/Pyramidal schemes. 

Those pattern queries generate evidence out of messages stored at repositories. 

Especially, illegal business schemes may keep running and dispersing over new web 

services as time passes. Rather than post mortem or late detection there is need to have an 

online detection and alert mechanism for immediate responses, such as informing 

potential victim services regarding the spreading of illegal business activity.  

 

In addition to business misuses, mentioned above, there are exploits at service level as 

well. Mal-actors in those cases abuse the inter-dependency spanning over the web 

services employed by static choreography models. Dataflow attack, for example, is a 
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special type of service level exploits that is most difficult to detect since the malicious 

code leaks into services among regular data. Chapter 3 described a XSS (cross site 

scripting) attack scenario in detail; web services, would definitely consider online 

detection, prevention, or alert mechanism on demand against those. Instantiation flooding 

[56] is another service misuse of denial of service (DoS) type on web service 

compositions. Briefly, the attacker repeatedly invokes the receiver operation of the 

process at the target web service. The target engine tries to instantiate every request, thus 

reaching DoS. The web services that are confident on maximum throughput values would 

consider a detection and prevention model against such kind of misuses. 

 

Through the chapter, I give brief explanation of my framework which I enhance for it can 

help online detection of web choreography misuses in section 6.2. Section 6.3 describes 

my online detection model and sample queries than can detect different types of misuses 

in real time. Section 6.4 describes an alert model that can warn potential intended 

endpoints, such as potential dependent web services. Section 6.5 describes the online 

detection architecture that is designed for the EGF framework. Section 6.6 discusses 

related work; and Section 6.7 concludes the chapter. 

 

6.2. The EGF in Online Mode 

In order to facilitate and base evidence generation on a reliable infrastructure that can 

convince the services who wants accountability on their transactions and fast detection 
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when misused, I proposed designing an Evidence Generation Framework (EGF) that 

preserve appropriate evidence to recreate the composed web service invocations 

independently of the partners of the transaction in Chapter 4. While evidence derivation 

and comprehensive evidence generation is done by storing/retrieving evidences in 

cryptographically secure repositories in Chapter 5, I here propose upgrading those layers 

to function in online mode by caching evidence streams and querying from those. To do 

so, bottom layer passes evidence indexes into upper layers at service invocation time, 

thus feeding these services with live evidences for mining complex ones out of them. 

Having employed cache based live queries onto those layers I propose a twofold response 

model; alert and prevent as illustrated in Figure 6.1.  

 
 

 
 

 

Figure 6.1. The EGF in Online Mode 
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6.2.1. Enhanced Pair-wise Evidence Generation 

The EGF provides online detection by means of two services: CEGWS (Comprehensive 

Evidence Generation Web Service) and EDWS (Evidence Derivation Web Service) as 

illustrated in Figure 6.1. The former generates evidence against global and complex 

misuses and the latter generates evidence against service misuses. 

 

As I explained pair-wise evidence generation process in detail through previous chapters, 

WS-Evidence messages flow between endpoint web services (notice double sided arrows 

in Figure 6.1) through FWS-TTPs in a specific message structure as below: 

 

<#session| #message |#signatureSender-K (#session|”4”|# env )> 

 

In order to enrich the EGF with online capability, I propose enhancing the pair-wise 

evidence generation process at TTPs. Below, the pseudo BPEL diagram shows a typical 

delivery process connecting to online services at service invocation time, thus leading to 

online detection, prevention, or alert mechanisms on demand.  
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Figure 6.2. Deliver Process for Online EGF 

 

The pseudo process above shows sender-receiver interactions and live detection 

invocations rather than detailed activities through the process. The deliver process at 

TTPs extracts each message received (notice the first Receive in Figure 6.2) in MEI 

format defined in previous chapter where sender and receiver fields extracted from 

#session—msg and content fields from the #message parts of a WS-Evidence application 

message (e.g. OneWay in Figure 2); and ID and time fields are assigned by the process 

itself—and stores them at stations. In order to glue the process to online services for 

detection, prevention, and alerting I enrich the process as described above. That is, the 

process forwards MEIs into EDWS (notice the Invoke after first Receive) and CEGWS 

(notice the Invoke before Reply) thus earning the EGF framework live detection 

capabilities. 
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6.2.2. Evidence Derivation 

In the second layer, endpoints can gather evidences from TTPs at any time rather than 

service invocation time. In order to generate evidences from TTPs for specific time 

intervals I rely on the evidences stored at TTPs. Evidences gathered this way can be used 

by a web service to exculpate from accusations. Depending upon the service level 

agreements, the number of evidences would increase. Chapter 4 explains samples for 

evidence of violations against time-out agreements and scheduled invocations between 

two endpoints. I here demonstrate how Evidence Derivation services (EDWS) can derive 

evidences regarding service misuses online, thus leading to immediate feedbacks to the 

bottom layer for probable prevention. 

 

6.2.3. Comprehensive Evidence Generation 

The top layer can use a rule engine or a mining system to generate global (multi-party) 

facts, thereby being able to reveal misuses that are not directly evident in pair-wise 

message records (first layer) and cannot be revealed deriving the evidences at the second 

layer. Through the chapter, I demonstrate how live evidences of complex scenarios can 

be mined from evidence of observed interactions of pair-wise communications. The 

framework generates alerts for potential victims, investigators, or arbiters of such global 

misuses so that they can take immediate actions. 
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6.3. Online Detection Model 

Any intrusion detection approach today mentions two types of detection model; one is 

anomaly detection and the other is misuse based. For my work, I follow the misuse based 

approach.     

 
 

Figure 6.3. Business Misuse Case 

Through the misuse based approach, I categorize the misuses over web services. Low 

level security implementations (e.g. WS-Security, WS-Trust) eliminate most 

vulnerability and prevent exploits over them such as identity impersonation, 

confidentiality violations.  Through the layer, WS-Evidence, that I proposed earlier, I 

claim that more complex, misuses over web services can be detected. I classify them as 
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service misuses that are targeting services directly. Denial of service is the most common 

technique to misuse any services, thus very likely to target web services. Dataflow attack 

is another way of employing a misuse mostly exploiting vulnerability at endpoint web 

services. The most complex misuses over web services would be business misuses as 

illustrated in a misuse case diagram in Figure 6.3.  

 

6.3.1. Online Detection of Business Misuses 

Web services build choreographies and perform illegal business activities such as Ponzi 

schemes, pyramid schemes, or money-laundering global models. My detection model 

looks for specific misuse pattern featuring this activity. Rule generators of the EGF 

framework either heuristically figure out what the pattern exactly is or they may employ 

more abstract misuse patterns which more likely tends to produce false positives. I 

proposed a heuristic algorithm for discovering Ponzi-like misuse of choreographies in 

Chapter 5. However, I need more abstract patterns to detect business misuses without 

being dependent on any specific scenario case. 

  
6.3.1.1. Abstracting Misuse Patterns 

The query proposed in previous chapter is concrete and can be strictly applied to a 

specific domain of misuse emergences. For example, my heuristically discovered patterns 

would apply to only one specific orchestrator of the scheme. Here, I propose abstracting 

those concrete patterns to address more misuses that may have occurred than those based 

on one orchestrator. To achieve this, I use role based abstraction to generalize the 
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endpoint web services’ involvement in the service choreography. I also use type based 

abstraction to generalize messages flowing between endpoints. In order to determine to 

what roles and types the web services and messages pertain, I propose using two 

methods; the first is to mine past data and learn their classes and the second is to get their 

roles at registration. Using these techniques I believe I can create type and role tables for 

messages and web services respectively. Through this chapter, I assume I already have 

those classification tables and PEG services having access those tables. 

 

6.3.1.2. Mapping Messages to Types 

Web services carry message names through the body parts of SOAP envelopes 

corresponding to the content of the messages. Different XML schemas may use different 

names for the same entity. For example, a pay activity may be represented by either 

“payInput” or “sendPay” through their SOAP envelopes. Hence, a typical type table 

should be able to address one-to-many activity-to-messages relations as illustrated in 

Table 6.1. 

 

Table 6.1. Message Type Table (MTT) 

ID Message Type 

1 PayInput Pay 
2 SendPay Pay 
3 PayRequest Pay 
4 Investment Invest 
5 InvInput Invest 
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Given the above table and a MEI record, instead of MEI.msg==”invest” or 

MEI.msg==”pay”, I achieve abstracting as below for invest and pay types of messages 

through my pattern queries: 

MTT.message==MEI.msg AND MTT.type=="Invest" 
MTT.message==MEI.msg AND MTT.type=="Pay" 
 
 

6.3.1.3. Mapping Web Services to Roles 

As a reminder of the restriction to external observations of messages, I only have web 

service endpoints’ identities as sender and receiver. Because I base my signature 

verification on PKI, that is, only the public keys registered in the system; I, however, now 

need role information. For example, a web service would act as an investment company 

accepting investing messages from investors and would act as an investor investing on 

other companies. A typical role table should be able to address many-to-many web 

services to roles relations as illustrated in Table 6.2. 

Table 6.2. Web Service Role Table (WSRT) 

ID Service Role 

1 A Investee 
2 A Investor 
3 C Investor 
4 D Bank 
5 A BankCustomer 

 

 
Given the above table and a MEI record, for both receiver and sender of a message, I 

achieve abstracting as below for invest type of message through my pattern queries: 

 

WSRT.service==MEI.receiver AND WSRT.role=="Investee"  
WSRT.service==MEI.sender AND WSRT.role=="Investor" 
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 DetectRecruits 
Description: Glides over MEIs using window size 3 to detect pattern I in previous chapter 
along with the predicates specified in WHERE clause. 
Input:MEI tuples 
Output:Ponzi-like recruit MEI pairs 

1 
2 
 
3 
 
4 
5 
 
6 
 
7 
8 
9 
10 
11 
12 
13 
 
14 
 
 
15 
16 
 
 
17 
16 
 
 
17 
 
18 
19 
 
20 

CREATE INPUT STREAM MEI ($MEI schema); 
  CREATE INPUT STREAM MessageTypesIn ( 
 ID int, message string, type string); 
  CREATE INPUT STREAM WSRolesIn ( 
 ID int, service string, role string); 

CREATE OUTPUT STREAM PonziDetectOut ; 
  CREATE MEMORY TABLE MessageTypesTable ( 
       ID int, message string,  type string)  PRIMARY KEY(ID) USING btree; 
  CREATE MEMORY TABLE WSRolesTable ( 
       ID int, service string,  role string)    PRIMARY KEY(ID) USING btree; 
   INSERT INTO MessageTypesTable (ID, message, type)  
       SELECT ID, message, type FROM MessageTypesIn; 
  INSERT INTO WSRolesTable (ID, service, role)  
       SELECT ID, service, role FROM WSRolesIn; 

CREATE STREAM InvestFilterOut ; 
CREATE STREAM PayFilterOut ; 
SELECT * FROM MEI, MessageTypesTable AS MTT,  
    WSRolesTable AS WSRTInvestee, WSRolesTable AS WSRTInvestor  
    WHERE MTT.message==MEI.msg AND MTT.type=="invest" AND  
         WSRTInvestee.service == MEI.receiver AND    
         WSRTInvestee.role==”Investee”  
    INTO InvestFilterOut 
    WHERE MTT.message==MEI.msg AND MTT.type=="pay" AND    
         WSRTInvestor.service == MEI.receiver AND    
         WSRTInvestor.role==”Investor” 
     INTO PayFilterOut; 
SELECT "Ponzi-like recruit" AS detected, invest.time AS investTime,    
     pay.time AS payTime, pay.receiver AS recruiter,  
     invest.sender AS recruitee 
    FROM PATTERN (InvestFilterOut AS invest THEN 
         PayFilterOut AS pay)  
    WITHIN 3 (days)  ON time 
    WHERE invest.receiver==pay.sender AND     
         regexmatch(".*"+pay.receiver +".*", invest.content) 
    INTO PonziDetectOut; 

Figure 6.4. Live Detection of Ponzi-like Recruits 

6.3.1.4. Using More Abstract Content Linkage 

Previous chapter used exact XPaths of linkage parameters through the message. Here I 

generalize this as well. Therefore, for my abstract detection queries I propose regular 
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expression matching through the entire content of messages. Below is an example of 

looking for a promoter reference through an invest message without binding it to a 

specific path of a specific schema. 

 

regexmatch(".*"+payMEI.receiver +".*", investMEI.content) 

 

Hereafter I show how to mine business misuse instances of given patterns over live MEIs 

of all observed web transactions using streamSQL [59] and a StreamBase platform [60] 

that I explained in previous chapter.  

 

The query in Figure 6.4 is in streamSQL and can detect an abstract misuse pattern, say, of 

what happens in real time. DetectRecruits accepts live MEI records sorted in ascending 

order of timestamp by a sort operator. It also accepts message type table in line 2 and web 

service role table in line 3 from the local source and loads them into memory tables in 

lines 7-10. In order to successfully process the abstracted pattern query, it filters the 

records into two: invest and pay employing the predicates defined in lines 14 and 16. 

Notice the WHERE clauses in these predicates employ abstractions by looking up type 

and role tables as described earlier. Having invest and pay streams separate, the query, 

now, employs the appropriate template (see THEN phrase) in line 17. That is, invest 

messages are expected before pay messages. Predicates defined in line 19 say that the 

receiver of the invest message should be equal to the sender of the following pay message 

and the promoter value in the content of the invest message should be the receiver of the 
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following pay message. The window size is arbitrarily set to 3 in line 18. The SELECT 

part gathers the required information about the detected pattern and emits the result to the 

PonziDetectOut table. Figure 6.5 shows how two Ponzi-like recruits are detected using 

the window of size 3 from a collection of 9 MEIs. Figure 6.5 shows how messages in a 

MEI table come into the query and are processed as two separate streams shown as pipes, 

where transparent rectangles represent two different snapshots of the query window; one 

that arrived at time 5 and the other that arrived at time 8.  

 

 
 

Figure 6.5. Detected Ponzi-like Patterns 

Detecting few Ponzi-like recruits may give little confidence in declaring that a Ponzi 

scheme was detected.  In order to increase the confidence one can define some minimum 

support value as threshold thus alerting only when it meets. The AlertRecruits query 

presented in previous chapter (see Figure 5.7) can be appended to above query as it is to 

achieve this. 
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6.3.2. Online Detection of Service Misuses 

Unlike business misuses, service misuses do not need a global perspective to indicate 

illegal intent. Even only one malicious message can launch an attack or exploit some 

vulnerability at a target web service. Or a specifically designed set of messages can 

employ exploits at a target web service. For both cases below I briefly describe malicious 

content and instantiation of flooding techniques and propose detection queries for them.    

 

6.3.2.1. Malicious Content 

Here the signature of the misuse would be malicious content carried inside the messages. 

A typical example would be XSS attack described in Chapter 3. Detecting such attacks 

needs less complicated queries that require scanning the content and a well built library 

of malicious scripts. Assuming already having such a library as illustrated in Table 6.3, 

the query in Figure 6.6 detects messages that contain those signatures of malicious 

scripts. Those script signatures might be derived some prevention cheat sheets such as 

OWASP’s (Open Web Application Security Project) [65].  

 

Table 6.3. Signature Table (ST) 

ID Misuse Signature 

1 XSS <script> 
2 BufferOverFlow /sh 
3 BufferOverFlow /bash 
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 DetectMalicousContent 
Description: Checks every message content if there is a malicious content. 
Input: MEI tuples 
Output: Matched attacks 

1 
2 
 
3 
4 
 
 
5 
6 
7 
8 
9 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE INPUT STREAM AttackSignaturesIn ( 
 ID int, name string, signature string); 
CREATE OUTPUT STREAM AttacksOut; 
CREATE MEMORY TABLE SignatureTable ( 
    ID int, name string,  signature string 

)    PRIMARY KEY(ID) USING btree; 
INSERT INTO SignatureTable (ID, name, signature)  
               SELECT ID, name, signature FROM AttackSignaturesIn; 
SELECT SIG.name AS misuse FROM SignatureTable AS SIG, MEI 
    WHERE regexmatch(".*"+SIG.signature+".*", MEI.content)  
    INTO AttacksOut; 

 

Figure 6.6. Detecting Malicious Content 

DetectMalicousContent  accepts live messages in MEI tuples and loads attack signatures 

prior to their run in lines 5-6. Attack signatures may reside in a database table or a regular 

expression file. In either case, there are readers and database clients to pass tuples into the 

input adapter, thus allowing them to be used in expression matches at line 8. 

 

6.3.2.2. Instantiation of Flooding 

Another service misuse type would be denial of service that is very common for every 

type of service application. Below the SOAP layer the problem is the same with typical 

DoS over HTTP services; however, in the web services case, the transport layer may 

vary, thus a SOAP layer solution would helpful. Assuming that TTP processes run over 

hardware with high computation power, I address instantiation floods targeting receiver 

services. Each receiver web service may declare different thresholds for its processes 
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depending upon their business logic or memory usage. Therefore, as shown in Table 6.4, 

there is need to have a table at TTP stations storing web services, and relevant threshold 

values of maximum throughput, say, per second, against probable instantiation flooding 

attacks.  

 

Table 6.4. Web Service Threshold Table (WSTT) 

ID Service Threshold 

1 A 4 
2 B 19 
3 C 99 

 
 

 
 DetectInstantiationFlooding 

Description: Using time based window checks if there is a set of messages targeting at same 
receiver exceeding its threshold in number. 
Input:MEI tuples 
Output:“Instantiation Flooding” alerts containing attacker, victim, count and time interval 
information 

1 
2 
 
3 
4 
 
 
5 
6 
7 
8 
 
9 
10 
11 
 
12 
13 
14 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE INPUT STREAM ThresholdsIn ( 
   ID int, service string, threshold int); 
CREATE OUTPUT STREAM DoSsOut ; 
CREATE MEMORY TABLE ThresholdTable ( 
    ID int, receiver string, threshold int 
)    PRIMARY KEY(ID) USING btree; 
INSERT INTO ThresholdTable (ID, receiver, threshold)  
    SELECT ID, service, threshold FROM ThresholdsIn; 
CREATE STREAM AggregateByTimeOut ; 
SELECT sender, receiver, count() AS count,  
    firstval(time) AS startTime, lastval(time) AS endTime  
    FROM MEI [SIZE 8 ADVANCE 1 TIME OFFSET 0] 
    GROUP BY receiver, sender INTO AggregateByTimeOut; 
SELECT “Instantiation Flooding” AS misuse, a.sender AS attacker,    
    a.receiver AS victim, count,  a.startTime, a.endTime 
    FROM AggregateByTimeOut a, ThresholdTable t 
    WHERE count>t.threshold AND a.receiver==t.receiver  
    INTO DoSsOut; 

 

Figure 6.7. Detecting Instantiation Flooding 
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The query in Figure 6.7 accepts live messages in MEI tuples and loads service thresholds 

prior to its run in lines 5-6. Service thresholds may reside in a database table or a regular 

expression file. In either case there exist readers and database clients to pass tuples into 

the input adapter, thus allowing them to be used in threshold matches. Since the actual 

frequency of the messages determines whether a set of messages is malicious or not, the 

above query uses the time window rather than using timestamp values inside records. 

That is, messages incoming every 8 seconds are processed by the query. And the window 

shifts every second as coded in line 9. For every 8-second sets of messages the query 

groups the messages in sender and receiver fields in line 10 and selects the count values 

for each group in line 8. The WHERE clause in line 13  detects if there is an 

“Instantiation Flooding” attempt from a certain “sender” (called attacker) based on 

“receiver” (called victim) services’ threshold criteria in a 8-second window of live MEI 

records. Finally the matching result is emitted in line 14. 

 

6.4. Alert Model 

Having generated enough evidences regarding a misuse, my framework sends targeted 

alerts. As described above I categorize misuses and define their types. In order to 

introduce a stable and robust alerting framework I have to address two issues: First, I 

need to define an effective domain of web services to alert. Based on types of alerts the 

scope of the web service network to be alerted is determined. Second, I need to tune the 

queries to produce unique alerts per misuse detection, thus denying false positives. Here I 

describe how to scale down the alert domain. 
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6.4.1. Scaling Down the Alert Domain 

The alert model described above has to scope the alerting domain. One important reason 

for that is to deny the framework producing so many unnecessary alert messages, thus 

causing network congestions, waste of computation at endpoints, and triggering 

endpoints to take actions mistakenly. I describe three ways to narrow the alert recipient 

domain. First, depending upon misuses I consider alerting only dependent web services 

given a message, thus creating a dependency tree starting from the message as root.  

Second, for some misuses one may need to know the types of web services that have the 

potential to take part in the misuse as victim. As described earlier, Ponzi schemes target 

web services that are the type of investor, that is, web services that are likely to make 

investments through web services architectures. As third, not only for predefined misuses 

but also for use cases there is need to warn potential members. Mostly for anomaly based 

scenarios the framework alerts the potential domain of a choreography model regarding a 

suspicious unknown misuse of the model. Hereafter, I describe how I can draw the 

intended domain regarding those methods. 

 

6.4.1.1. Dependency Tree Generation 

When a suspected activity occurs and is detected relating to a message then there is need 

to alert other services upon this activity. One of the essential issues in an alert model is to 

scale down the alert domain for fast access to intended endpoints and not spending time 

trying to access/disturb irrelevant services. Learning dependencies over past message 
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interactions becomes vital at this point and is twofold: First, one can trace back to learn 

possible web service invocations causing the root activity; and second, tracing forward 

could allow one to learn downstream invocations possibly caused by the root. However, 

the observed two messages may not necessarily be linked to each other. For example, 

when A sends a message to B and B sends a message to C, the first message may not 

have to be the cause of the second. Authors [57, 58, 63] work mostly on exact correlation 

of messages. Basu et. al. [66] proposes a probabilistic work that is trying to understand 

the message correlations with various probabilities. Here I, however, do not need exact 

causal correlations to obtain the downstream dependents of a message. The query below 

learns downstream dependencies for a web service as root. The query expects to start 

from a record in the past and traverses the records forward generating a dependents table. 

 GenerateDependencyTree 
Description: Tracing forward the MEIs, outputs a table to create tree-view of dependents. 
Input: MEI tuples 

Output: DependentsOut table leading to invoker->dependent tree structure 

1 
2 
3 
 
4 
 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
16 

CREATE INPUT STREAM MEI ($MEI schema); 
CREATE INPUT STREAM DependentsIn ( service string); 
CREATE OUTPUT STREAM DependentsOut ( 
    time timestamp, invoker string, dependent string ); 
CREATE MEMORY TABLE DependencyTable (service string)     
    PRIMARY KEY(service) USING btree; 
INSERT INTO DependencyTable (service)  
    SELECT service FROM DependentsIn; 
INSERT INTO DependencyTable (service)  
    SELECT dependent FROM DependentsOut;  
CREATE STREAM NotInTreeOut; 
SELECT MEI.*, dt_out.service AS inTree  
    FROM MEI OUTER JOIN DependencyTable AS dt_out  
    WHERE MEI.receiver == dt_out.service INTO NotInTreeOut;  
SELECT NITO.time AS time, NITO.sender AS invoker,  
    NITO.receiver AS      dependent  
    FROM NotInTreeOut AS NITO, DependencyTable AS dt 
    WHERE NITO.sender==dt.service AND isnull(NITO.inTree)  
    INTO DependentsOut; 

Figure 6.8. Generating Dependency Tree (Forward) 
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The query in Figure 6.8 accepts MEI records and a root service as shown in line 2. The 

query loads (lines 5-6) the root service into the DependencyTable which is created on 

memory and is appended each time the new dependent services are found. The SELECT 

in lines 10-12 retrieves the MEI even if the receiver of the MEI is not in the table and 

adds a new field, inTree , as null. The next SELECT checks if the inTree value is null 

and the sender is in the DependencyTable. If the criteria meet in line 15 the output 

stream (notice “FROM DependentsOut”) inserts a new dependent service into the table 

in lines 7-8, thus building a downstream dependency table.  

 
Figure 6.9. Generated Dependency Trees 

Figure 6.9 illustrates the actions that GenerateDependencyTree takes traversing over a 

set of MEI tuples listed at the top in ascending order of time. Tuples at times 1,2,3,5, and 

7 meet the criteria that the query looks for. It emits outputs including invoker and 

dependent fields. These two fields lead to building dependencies in tree form. 
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6.4.1.2. Web Service Types 

The EGF requires web services to register under specific role types, such as “investor”, 

“investee” or “bank”. This could be associated with related misuse types. That is, an 

investor web service might be a victim, promoter, or a prospective victim for a Ponzi-like 

misuse as defined earlier. This could help the EGF to alert the exact web services when a 

specific misuse is detected by looking up the potential web services of the associated 

type. For example, only investor web services would be alerted for a detected Ponzi-like 

misuse. 

 

6.4.1.3. Potential Members 

When a suspicious activity is observed regarding a global model all possible web services 

that can get involved in the model are to be alerted. This might be achieved in two ways: 

First, early association with global models (use patterns) and second extracting the global 

models along with all possible branches that it may climb up at any probability. The first 

can be performed during the first registration of use pattern. The latter requires that 

global patterns be examined in detail along with all logical splits, choices, loops, etc. 

  

6.5. Online EGF Architecture 

The EGF introduces two different online architectures for detection, prevention, and 

alerting. The first is for business misuses, thereby employed remotely on a central system 

that gathers all messages. The second is for service misuses, thus employed at TTP 
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stations mostly for prevention purposes or marking the malicious activity for detection 

purposes. 

 

6.5.1. Business Level Design 

A central online web service called CEGWS generates business level comprehensive 

evidences. As shown in Figure 6.10, collecting the Message Evidence Index records from 

TTPs at their service invocation times when it produces and stores alerts. CEG Alert 

clients send alerts to relevant web services that might be threatened by the misuse. 

 

 
 

Figure 6.10. Online CEGWS Architecture 

The CEG (Comprehensive Evidence Generation) Web Service collects MEI records 

from other FWS-TTP stations. The records are stored on one hand and directed to the 
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StreamBase MEI input adapters to be processed for evidence of business misuses or other 

comprehensive evidences. The web service accepts one way WS-Evidence messages 

including MEIs from TTP stations and lower level security mechanisms are performed 

for confidentiality and authentication purposes. 

 

The MEI Input Adapter is a live input adapter accepting SOAP messages and 

outputting MEI tuples in real time into online detection event applications. As the 

StreamBase input adapter API empowers such live adapters (e.g. JMS, IBM MQ) I 

propose designing a real time adapter which is extracting index records from WS-

Evidence SOAP messages and passing MEI records into StreamSQL process engines for 

query runs. 

 

MEI Tuples are produced by MEI input adapters. They all enter StreamBase processors 

and related StreamBase event application. They, at this early phase, are inevitably 

unsorted on the time field. 

 

The Sort Operator, using an on-demand window size, sorts incoming records because 

MEI records are assumed unordered when they first arrived from several TTP stations. 

Therefore, patterns that need time based dependencies among the messages coming from 

a variety of stations could even be detected.  
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Misuse Pattern Queries are based on a particular pattern query language, streamSQL, 

and as shown earlier, discovered misuse patterns are queried using those streamSQLs. 

StreamBase’s modular event application structure would introduce the capability of 

mining many patterns consecutively. In accordance with the pattern streaming MEIs 

might be ordered in ascending or descending timestamps. Each query is supposed to emit 

different outputs as alerts, thus requiring calling output adapter simultaneously for several 

times. 

 

Alert Outputs are mostly designed in SELECT parts of streamSQLs of misuse patterns. 

The type of detected misuse is the essential part for any alert output so that the alert 

output adapter can take appropriate action and the Alert Client can invoke web services 

that might get affected. The schema below shows the essential fields for a typical alert 

output. 

 

The Alert Output Adapter processes over the alert outputs and based on the type of 

misuse it calls Alert WS-Client to send alert messages. 

 

The Alert Client is a typical WS client called by the Alert Output Adapter when misuse 

is detected. It creates SOAP communications with endpoint web services through WS-

Evidence alert message specification. It fires one way alert messages as including the 

details described below.  
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Alert Messages contain information related to a business misuse incident. Business 

misuses may be in several types (#misuse_type) and each types of misuse may feature 

various schemes (#misuse_code). I, therefore, propose coding each scheme distinctly. 

Each misuse scheme consists of one or more malicious actors (#mal_actors{actor1, 

actor2…actorN}), thereby alert messages having a series of mal-actors.  

 

{#misuse_type, #misuse_code, #mal_actors{actor1, actor2…actorN}} 

 

Evidence modules at endpoints or specifically designed XML firewalls can absorb the 

alert messages in above format. They can take immediate actions such as creating a rule 

ignoring messages coming from suspected malicious actors or creating a black list for not 

being involved in any activity with them. 

 

6.5.2. Service Level Design 

A local online evidence derivation web service called EDWS generates service level 

evidences. As shown in Figure 6.11, it receives the envelopes from the deliver process at 

TTPs prior to their service invocations it produces, and prevents or marks relevant 

messages. EDWS Alert clients send alerts to CEG web services so that they might help 

through some further investigations. EDWS Message clients invoke the deliver process 

back to continue their actual invocations. 
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I propose an application level prevention model, that is, the Deliver process conducts 

early detection by invoking the EDWS. The process pushes the deliver messages into 

locally implemented EDWS that runs queries defined in streamSQL earlier. First, the 

receive activity initiates instances for each request and pushes the messages into local 

detection service that checks the messages using reasonable window sizes to look for 

misuse patterns. The detected messages are marked and all messages are sent back to the 

process.  

 

In accordance with the policies employed by the service logical operator in Figure 6.2, 

one option is that a termination is performed over the instance or branches other way and 

continues as the rest of the process instructs. However, in any case, the alert message is 

produced and sent to CEGWS for further investigation. This is done by the alert client as 

illustrated below. 

 

Figure 6.11. Online EDWS Architecture 
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EDWS is invoked by the Deliver processes at TTPs at service invocation times. The 

records are processed by the StreamSQL pattern queries for service misuses such as 

instantiation flooding or malicious content. The tuples are marked if they feature the 

misuse pattern and in accordance with the policies, the deliver process either terminates 

those sessions or lets them run. 

 

The architecture employs Regex readers to read malicious signatures from a signature file 

and the related query loads them into a memory table for further lookups through the 

detection process.  

 

Other types of readers or local input adapters parse other service level agreement (SLA) 

files in order to load significant threshold values into lookup tables queried during 

detection. 

 

The EDWS Message Client marks the messages involved in any misuse. As a typical 

web service client invokes the deliver process back addressing the second receive activity 

(remember Figure 6.2) in the process. 

 

The EDWS Alert Client is different from the CEG alert client because it connects to 

only CEG web services rather than endpoint web services. It creates store messages in 

MEI format with a specific msg value “alert” and content value as defined in alert 
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message definition above. On the contrary of TTP stations, EDWS clients send alert 

messages in MEI format inside store messages.  

 

6.6. Related Work 

As mentioned in previous chapter, Widder et.al. [14] propose a new approach based on 

the discriminant analysis of events grouping them if they represent an unknown pattern. 

They envision their approach would help recognizing new patterns of credit card 

transaction use case scenarios and the fraud activities related to them. Their approach, 

however, does not promise any live detection and alert mechanism.  

 

Sense & response service architecture (SARESA) of [66] provides real time business 

intelligence (BI) unlike traditional BIs. SARESA introduces a complete process of 

detecting, interpreting, automation, and response to business partners. Rather than my 

live external observations of communications it proposes an event-driven architecture 

that is collecting the events from members. Therefore, it is incapable of prevention. On 

the other hand, leaving the partners free to send events to the system would deny it being 

more sensitive in detection which is not the case through my model. However, SARESA 

has the advantage of serving diverse IT architectures and is not bound to only web 

services. 
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Ari [67] describes a data mining model management system that addresses model 

outdates, scalable management,  semantic differences between models, and business 

process integration for real time BI over SOA. Although the work in [67] does not 

propose or address specific real time architecture it helps those systems to be multi 

dimensional in time, syntax, or semantics regarding the models they can use. Such 

technique is similar to my abstraction method only in one dimension, which is, bridging 

the syntax gap. 

 

6.7. Conclusions 

To abstract detection queries I generalized them based on web service roles and message 

types. Using such queries I introduced a more promising online detection model for web 

services. Proposing a dependency tree generation query I narrowed the domain of 

potential web services to be effected and should be alerted based on detection query 

outputs. Categorizing misuses at the service and business level I briefly designed a 

prevention model for service misuses and an alert model for the business level. 
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CHAPTER 7 

 

EVALUATION OF EXPERIMENT RESULTS AND  

VALIDATION STATEMENT 

 

 

 
7.1. Introduction 

Through my dissertation, I introduced a three layered platform to generate evidences of 

web services misuses. The services at the bottom and middle layers have been studied by 

others with a narrower scope [9, 41, 69, and 70]. Therefore, I tended to validate the third 

layer of my evidence generation framework in which I introduced novel queries in 

Chapter 5. I summarized those queries and the patterns they follow along with the names 

I used through the chapter in Table 7.1 below. 

Table 7.1. Query-Pattern Mapping 

Query Name Pattern Pattern Name 

GenereateCHOR-Investing (invest⊗pauthorize);p confirm;p deliver  invest-chor 

DetectRecruits invest;p pay invest-pay 

ClimbRecruitPath invest1;p invest2 invest-invest 

GenerateRecruitTree invest1;p invest2 invest-invest 

 

 In order to test their accuracy and performance rates. I generated synthetic data and used 

a special simulation platform as my test environment. 
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7.2. Data Characteristics 

I introduced an illegal business scheme, which is novel to the best of my knowledge. 

Therefore, I was unable to access real data featuring such scheme. However, I generated 

special synthetic data in MEI format called MEI-I that reflect Ponzi/Pyramid Schemes, 

which I introduced in Chapter 5. The MEI-I, having 1 record per second, contains 193827 

records in total spreading over three days (January 19, 2006 – January 21, 2006). The 

MEI-I is a file in CSV (Comma Separated Values) format. I focused on four aspects 

which one can observe through real life records of a potential Ponzi scheme while 

generating the MEI-I that are defined and explained shortly. The first is the density of 

messages over the course of the entire life cycle of the scheme. The second is the 

proximity rates between selected messages. The third is the overlapping rate of 

overlapping transactions and choreographies. And finally the capacity rate of data that 

hides such a complex scheme among its records.  

 

Density: Typical Ponzi records reflect a tree structure which builds on hierarchical 

recruits in depth and horizontal recruits in breadth (fan). Through the infant phase, that is 

early levels, the tree has few recruits and grows extremely fast in its mid way; and 

towards the end of tree, it starts being unsustainable, and therefore fewer recruits start to 

appear and consequently lower the spread. The chart in Figure 7.1 illustrates how Ponzi 

records scatter over the synthetic data. In order to measure the spread, I define density as 
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the number of records obtained per time interval. In my study, I used 12 hour time 

intervals to compute density. 

 

Figure 7.1. Density of Ponzi Records over MEI-I 

Overlapping: As mentioned, Ponzi records scatter based on fan and depth. While one 

can observe overlapping recruits in fan, it is impossible to see overlapping recruits over 

the same recruit paths in depth, because the records are time sequentialized within a path.  

Assuming R1, R11, and R12 are recruiters; and R1 recruits both R11 and R12, thus 

constituting a recruit tree of fan 2 and depth 1. For such a recruit tree, while invest-

chorR11 and invest-chorR12 choreography instances can overlap each other, neither invest-

chorR11 nor invest-chorR12 can overlap invest-chorR1 choreography instance over MEI 

records. I measure overlaps simply counting pairs of choreography instances of which 
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message records cannot be isolated from one another when they are sorted based on their 

timestamps. The sample overlapping records are shown in Table 7.2. According to the 

table, while invest-chorO31 - invest-chorO33 and invest-chorO32 - invest-chorO33 are 

overlapping, invest-chorO31 - invest-chorO33 is an example for totally isolated instances. 

Therefore, given the table below, I count 2 overlaps. Based on this measurement, I 

counted the overlaps through MEI-I and obtained the numbers listed in Figure 7.2 for 

invest-chor and invest-pay choreographies. 

Table 7.2. Overlapping Invest Choreography Instances 

Time Sender Receiver Msg Content 

2006-01-19 01:28:26 O31 Bank authorize invID=31 

2006-01-19 01:30:08 O31 O invest promoter=O3   invID=31 

2006-01-19 01:31:47 Bank O confirm invID=31 

2006-01-19 01:32:03 O32 Bank authorize invID=32 

2006-01-19 01:33:04 O O31 deliver invID=31 

2006-01-19 01:34:41 O32 O invest promoter=O3   invID=32 

2006-01-19 01:34:54 Bank O confirm invID=32 

2006-01-19 01:35:03 O33 O invest promoter=O3   invID=33 

2006-01-19 01:35:06 O33 Bank authorize invID=33 

2006-01-19 01:35:10 Bank O confirm invID=33 

2006-01-19 01:35:13 O O33 deliver invID=33 

2006-01-19 01:35:17 O O32 deliver invID=32 

 

Towards the mid life of a Ponzi scheme, when the scheme spreads rapidly the number of 

overlapping records, are expected to be high. Figure 7.2 shows that recruit levels from 2 

to 5 records are so dense and so are their overlapping rates. Notice that the numbers of 

overlapping records for invest-chor and invest-pay patterns are variables of my detection 

queries. 
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Figure 7.2. Overlapping Ponzi Records over MEI-I 

Proximity: I define proximity as distance (seconds) in time between the first message 

and the last message of related pattern (choreography) instance through MEI records. As 

I employed previously defined patterns for dynamics of my queries, one essential criteria 

for their success would be the proximity of pattern instances. For example, if an invest 

message is unexpectedly further away from a pay message, then this pattern may go 

undetected, thus leading to higher false negative rates subsequently. Figure 7.3 shows 

proximity values for each pattern regarding their message evidence indexes over my test 

data. I show minimum, average, and maximum values in seconds that may further help in 

determining query parameters in general and window sizes in particular.  
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Number of Recruits (N) 3 9 27 9 9 3 3 3
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invest-pay 0 2 5 4 1 0 0 0
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Figure 7.3. Proximity Values of Records over MEI

Capacity: The properties I described so far could be helpful in evaluating the accuracy 
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7.3. Proximity Values of Records over MEI-I 

The properties I described so far could be helpful in evaluating the accuracy 

and performance of queries, because they directly effect how those patterns spread over 

my test records. They, however, have little use in performance evaluation. For 

performance evaluation, developing a simple data generation code and created three more 

data sets using the seed data (MEI-I) I originally created. MEI-X is a data set that 

contains the same Ponzi malicious activity. However it is 10 times bigger than MEI

number of records. MEI-XX and MEI-L are other two sets that are 20 and 50 times 

bigger respectively as shown in Figure 7.4.  

min avg max

9 92.83 1202

17 109.31 1220

17 31795.2 53226

Proximity
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Figure 7.4. Capacity Values of Test Data

7.3. Test Environment 

As I mentioned earlier, I defined use/misuse patterns using StreamSQL and subsequently 

employed StreamBase platform to detect those patterns. I used specially generated data 

described above in MEI structure. I implemented StreamBase’s feed simulation platform 

accepting those data in CSV files. The platform empowers users to run their StreamSQLs 

over any user-defined file satisfying the data schema expected by the query. The platform 

also provides observing outputs of query runs. Using the StreamBase Manager, one can 

also observe CPU and Memory usage during the course of query executions. Although 

StreamBase encourages using their enterprise servers for benchmarking and better 

performance, I observed that their feed simulation platform was adequate to test my 

queries even over vast amount of data at reasonable resource allocation rate. Table 7.3 
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Figure 7.4. Capacity Values of Test Data 
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employed StreamBase platform to detect those patterns. I used specially generated data 

described above in MEI structure. I implemented StreamBase’s feed simulation platform 

ta in CSV files. The platform empowers users to run their StreamSQLs 

defined file satisfying the data schema expected by the query. The platform 

also provides observing outputs of query runs. Using the StreamBase Manager, one can 

CPU and Memory usage during the course of query executions. Although 

StreamBase encourages using their enterprise servers for benchmarking and better 

performance, I observed that their feed simulation platform was adequate to test my 

t amount of data at reasonable resource allocation rate. Table 7.3 
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shows the details of my test environment, which is identically, used for all further 

experiments.   

Table 7.3. Test Environment 

 Hardware 

CPU :Intel Core2 T7400  
 2.16 GHz, 4MB L2 Cache,                      
667 MHz FSB 

Physical 

Memory 

 
:2 Gigabyte, 995 MHz 

Harddisk :250 GB, 7200 rpm 
 

 Software 

Operating 

System 

 
:Windows XP SP2 

JVM :SUN JDK 1.5.0.15 
StreamBase 

Studio 

 
:6.4 Version 

Max Heap 

Size 

 
:1024 MB 

 

 

7.4. Accuracy and Performance 

In order to test accuracy and performance using the environment described above, I tested 

four major queries listed in introduction section over appropriate data set/s.  

 

7.4.1. Testing Accuracy 

Effective tuning on queries would lead to more reasonable accuracy rates, such as 

optimization on window sizes or adding/reducing message attribute equations for 

approximating queries from property-based patterns to key-based patterns. 

 

Generating Evidence for Invest Choreography: Through the records in MEI-I, I have 

hidden 66 invest choreography instances of which proximity and overlapping rates have 

been given earlier in this chapter. After running the GenereateCHOR-Investing 
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streamSQL given in Chapter 5 for generating evidence of invest choreographies, 

observed accuracy values were invariant based on the window size used. Figure 7.5 

shows those True Positive, False Negative, and False Positive values, which show that 

bigger window sizes decrease False Negatives while increasing True Positives. I 

observed that I cannot avoid false positives as long as the number of overlapping invest-

chor instances is above 0 with bigger window sizes. False positives were based on 

overlapping invest choreography instances. Because the query is property based, it is not 

resistant to overlapping records. When I employed records that are key based and slightly 

changed the query to detect based on key attributes over records then I observed 0 false 

positives. This, however, may not be the case in real life all the time. 

 

 

Figure 7.5. Accuracy Rates for GenereateCHOR-Investing 
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Generating Evidence for Ponzi-like recruits: Through the records in MEI-I, I have 

hidden 63 invest-pay hidden choreographies of which proximity and overlapping rates 

have been given earlier (notice the values for invest-pay patterns in Figures 7.2 and 7.3) 

in this chapter. After running the DetectRecruits streamSQL given in Chapter 5 for 

generating evidence of Ponzi-like choreographies observed accuracy values were 

invariant based on the window size used. Figure 7.6 shows those True Positive, False 

Negative, and False Positive values, which show that bigger window sizes decrease False 

Negatives while increasing True Positives. I observed that I cannot avoid false positives 

as long as the number of overlapping invest-pay instances is above 0 when bigger 

window sizes are used. False positives were based on overlapping invest choreography 

instances. Because the query is property based, it is not resistant to overlapping records.  

 

Figure 7.6. Accuracy Rates for DetectRecruits 
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When I employed records that are key based and slightly changed the query to detect 

based on key attributes over records then, I observed 0 false positives. To upgrade Ponzi 

detection query to a key-based query, DetectRecruitsK, I added below clause and the 

results showed as in Figure 7.7. While the original query only matches  a receiver of a 

pay message of the preceding invest message content, this new predicate looks to match a 

sender of an invest message with subsequent pay message content, thus mutually 

correlating invest-pay message pair based on a key property. However, this may not be 

the case in real life all the time. 

AND regexmatch(".*"+"recruit="+invest.sender+".*", pay.content) 
 

 

Figure 7.7. Accuracy Rates for DetectRecruitsK 
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unlike other queries, a missing record through the path prevents the query from 

computing the path although it is still runs and wastes CPU time.  

 

Generating Recruit Trees: The GenerateRecruitTree uses invest-invest pattern as 

well. The proximity values for this pattern have been shown earlier in this chapter. 

Because invest-invest records defined in this pattern can never overlap due to its 

hierarchical (recall investR1; investR12 described earlier) structure. Consequently the false 

positives are non-existent due to zero overlaps. Running the GenerateRecruitTree 

streamSQL given in Chapter 5 for generating recruit trees there are three properties one 

can observe regarding the success of such query, number of recruits in fan 1 and depth 1 

(e.g. a recruiter->recruitee pair) detected, number of distinct sub trees varying in fan and 

depth, detected recruit rate, and the completeness rate of the tree revealed. Detected 

recruits are expected to constitute a tree structure. However, missing branches due to 

partial outputs might create distinct sub trees without creating the main recruit tree. 

Queries running within small window sizes may generate a large number of unconnected 

sub recruit trees thereby decreasing the chance to compute the main recruit tree. For 

example, the query may generate R1->R11, R1->R12, R1->13, R12->R121, and R122-

>R1222 recruiter->recruitee pairs, where while one can observe first four pairs constitute 

a tree with four branches in fan 3 and depth 2. The R122->R1222 pair, however, cannot 

link to the previous tree because of missing R12->R122 recruit, thus constituting an 

independent tree in fan 1 and depth 1. Therefore, the number of distinct sub trees is 2 for 

this output. Using number of detected recruits (R) and the total number of recruits (N) of 
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the main tree, I compute the detected recruit rates (RR=R/N*100) dividing the number of 

detected recruits by the total number of recruits. I also compute the completeness rate 

(CR=RR/T) by dividing the detected recruit rate by the number of distinct sub trees (T). I 

introduce the Completeness Rate formula, because neither the detected recruit rate nor 

the number of distinct sub trees is adequate to measure the ability to completely 

determine the recruit tree. I observed high rates in detected recruits where the number of 

distinct and unconnected sub trees were higher as well, thus decreasing the completeness 

of the generated tree. Table 7.4 shows the results within various window sizes and their 

corresponding outcomes. The graph in Figure 7.8 also illustrates how completeness rate 

deviates from detected recruit rate within various window sizes.  

Table 7.4. Test Results for GenerateRecruitTree 

Recruit 
Tree 

(N=63) 

Detected 
Recruits 

(R) 

Distinct 
Sub-Trees 

(T) 

Detected 
Recruit Rate 

(RR=R/N*100) 

Completeness 
Rate 

(CR=RR/T) 

18-size 1 1 1.59 1.59 

500-size 4 1 6.35 6.35 

5000-size 7 1 11.11 11.11 

10000-size 9 1 14.29 14.29 

20000-size 14 4 22.22 5.56 

31796-size 30 5 47.62 9.52 

45000-size 47 4 74.60 18.65 

53227-size 63 1 100.00 100.00 

100000-size 63 1 100.00 100.00 

193827-size 63 1 100.00 100.00 
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Figure 7.8. Accuracy Rates for GenerateRecruitTree 
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Recruit path climbing algorithm which traverses backward over records showed best 

performance where there is no need to use larger window sizes. 

 

 

Figure 7.9. Performance Test Results 
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could converge the evidence outcomes tuning the force of time, property, and key-based 

patterns directing those queries. 
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CHAPTER 8 

 

CONCLUSION 

 

8.1. Conclusions 

Critical applications, such as those used by business, crave for accountability, which can 

only be achieved by having of forensically sound evidence. As a successor to business 

implementations, existing implementations of service-oriented architectures have little 

promise in providing sound evidences.  As I mentioned earlier, for service-oriented 

architectures I consider evidences as sound only if they are neutral, comprehensive, and 

reliable because of interdependencies between services and the ability to build global 

services using composed services.  

 

I extended the existing evidences layer notion of Herzberg et al. to the web services 

paradigm as a state-of-the-art technology in SOA. The evidences layer proposed by me 

includes non-repudiation protocols implementing Trusted Third Parties (TTPs) which is 

unavoidable in achieving neutrality of interactive evidence. They also promise reliability 

because of the cryptographic backing used during the process. I enhanced the existing 

notion of evidence collection with the distributed collection of evidences residing in 



156 
 

many TTPs that I refer to as FWS-TTP in order to reach comprehensive evidence to 

address the need to reveal global views of composed service executions. Through this 

work, I based the collection process on actual log records (LR) and their indexes (LRI) 

residing on FWS-TTPs rather than on a central repository. Although I was unable to test 

my distributed collection algorithm, it holds promise in narrowing the scope of 

examination regarding any incident.  

 

Placing the FWS-TTPs at the bottom I upgraded my evidence management model into a 

three-layered Evidence Generation Framework (EGF). The new model proposed a central 

approach in storing and collecting evidences regarding global model executions. I 

designed endpoint modules that can be used to integrate existing web services without 

any custom re-engineering and without polluting the existing business logic at endpoints. 

 

Although I explained how my framework can generate pair-wise evidences through 

prototype architecture, this would have no promise with respect to generating evidences 

against global models for either use or misuse cases. To generate comprehensive 

evidences, at the top layer of my framework, I designed queries mining use and misuse 

case patterns of web service choreographies out of message evidence indexes (MEI) 

stored at a central repository. I precisely defined the Ponzi/Pyramidal business scheme as 

a misuse pattern along with corresponding queries. Because it was not possible to obtain 

real data, I tested queries using a set of synthetic data specifically prepared for revealing 

the success of queries. 
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Finally, in order to respond to the detected misuses, as they occurred, I introduced a live 

detection/prevention/alert model. I first generalized the queries to run in a live 

environment and address a larger set of misuses. Categorizing the architecture for service 

and business level designs: I explained how FWS-TTPs should feed upper layers while 

generating pair-wise evidences at service invocation times, how feedback results are used 

from service level for prevention, and how business level generates alerts based on live 

MEIs. 

 

In my opinion, such a framework would help its member web services in many ways, 

such as providing the basis for many global model specifications and solving disputes 

among partners. In addition, it might also be an effective platform for revealing ongoing 

global business misuses and alerting members of their occurrence. 

 

8.2. Future Work 

As mentioned during the case study in Chapter 3, the collection of dependent messages 

and services might traverse over multiple-TTPs, that is, the need may arise to make the 

EGF scalable all over the Internet. In order to achieve similar tasks, WS-Trust and SAML 

based federation and delegation mechanisms should be reified over the framework. 
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I have already mentioned two types of basic evidence based on service level agreements 

(SLA) in Chapter 4: (1) Evidence of Violation and (2) Evidence of Availability. In 

addition, many different types of Evidence of Violations could be generated from SLAs 

and EGFs. Using a predefined format for SLAs, such as WSLA (Web Service Level 

Agreement) [69], a generic algorithm would be helpful to create evidence of violations in 

the case of an unexpected behavior of one or more of the endpoints. Some SLA 

monitor/detection mechanisms [70] could also evidently run over the framework. 

 

Although I have designed an agent using Axis2’s extensible handling mechanism, as of 

the time of this writing, there is no actively running adapter module working for 

evidence-mindful web services. An industrial effort in creating an “Evidence as Service” 

concept would reduce the effort in enhancing the reliability of business logic at endpoint 

services. 
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Publications 

 

The contributions of my dissertation have been published/submitted in international 
venues as listed below: 
 
 
[1] M. Gunestas, D. Wijesekera, and A. Singhal, "Forensic Web Services," presented 

in Fourth Annual IFIP WG 11.9 International Conference on Digital Forensics 
Kyoto, Japan, 2008. 

 
[2] M. Gunestas, D. Wijesekera, and A. Elkhodary, "An Evidence Generation Model 

for Web Services," presented in The IEEE International Conference on System of 

Systems Engineering (SoSE '09), 2009. 
 
[3] M. Gunestas, D. Wijesekera, and A. Singhal, “Forensics over Web Services: The 

FWS”, Accepted for Web Services Security Development and Architecture: 

Theoretical and Practical Issues, IGI Global, 2009. 
 
[4] M. Gunestas and D. Wijesekera, "Detecting Illegal Business Schemes in 

Choreographed Web Services: The Ponzi/Pyramidal Case," To-be-submitted to 

Sixth Annual IFIP WG 11.9 International Conference on Digital Forensics Hong 
Kong, 2010. 

 
[5] M. Gunestas and D. Wijesekera, "Online Detection and Alert Model for Misuses 

over Web Services," Under review in CollaborateCom 2009 - The 5th 

International Conference on Collaborative Computing: Networking, Applications 

and Worksharing, 11-14 November, Crystal City, Washington D.C., USA, 2009. 
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