

An Evidence Management Model for Web Services Behavior

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Murat Gunestas
Master of Science

Atilim University, 2005
Bachelor of Science

The Faculty of Security Science, 1998

Director: Duminda Wijesekera, Assoc. Professor
Department of Computer Science

Fall Semester 2009
George Mason University

Fairfax, VA

ii

Copyright: 2009 Murat Gunestas
All Rights Reserved

iii

DEDICATION

I dedicate this to my greatest loss ever.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Professor Duminda
Wijesekera for his constant guidance and encouragement. He is the one, who is always
available and open to new ideas.

My sincere appreciations go to Turkish National Police and Turkish Government for their
scholarship that supported me during the research period in the US.

I would like to thank my committee members Professor Edgar Sibley for his well-timed
suggestions, Professor David Schum for his deep work on evidence science that render
my dissertation more expressive, and Professor Jeremy Allnutt for his comments and
cooperative approach.

My sincere thanks go to my whole family for their patience and my aunt for her constant
faith and support.

Finally I would like to thank my friends Ahmet Eker, Halim Iltas, and Tugrul Turhal for
their hospitality and company since the very first moment I arrived at the town.

v

TABLE OF CONTENTS

 Page
List of Tables…………………………………….…………….…...……….….…..…viii
List of Figures………………………………….……………….…..…………..……...ix

List of Abbreviations………………………….….………….………………..……….xi
Abstract..………xiii
Chapter 1 ...…1

INTRODUCTION...…1

1.1. Problem Statement ...1
1.2. Thesis Statement ..…1
1.3. Significance of Contributions ..…3
1.4. Summary of Contributions ...…5
1.5. Limitations of the Dissertation...…6
1.6. Organization of the Dissertation ..…7

Chapter 2 ...8
BACKGROUND ...…8

2.1. Introduction ..…8
2.2. Basic Paradigm ..…8
2.3. Composition Paradigm...…9

2.3.1. Design Types ...10
2.3.2. Patterns ...…11
2.3.3. Composition Standards and Languages ...…12

Chapter 3 ...14

FORENSIC WEB SERVICES: DISTRIBUTED APPROACH14

3.1. Introduction ..…14
3.2. Overview of Web Service Attacks ...…16
3.3. The Forensic Web Service Framework ..…19

3.3.1. Enhanced Web Service Call Stack ...…21
3.3.2. WS-Evidence Message Format ..…22
3.3.3. Evidence Module ...…25
3.3.4. Underlying Layer ...…26

3.4. Gathering Evidence at Service Invocation Time ...…29
3.4.1. Pair-wise Evidences ...…31

3.5. Creating Evidence for Scenarios ..…31
3.5.1. Data Types Representing Scenarios...…32
3.5.2. Building Digital Evidence Bag ..…33

3.6. A Case Study: The XSS Attack ...…39

vi

3.7. Related Work ...…44
3.8. Conclusions ..…47

Chapter 4 ...48

EVIDENCE GENERATION MODEL FOR WEB SERVICES48

4.1. Introduction ..…48
4.2. Approach ..…50
4.3. Evidence Generation and Retrieval ...…51

4.3.1. Pair-wise Evidence Generation ..…51
4.3.2. Evidence Strata ..…53

4.4. Prototype Architecture ...…54
4.4.1. Reference Architecture ..…54
4.4.2. Evidence Module Architecture ..…56

4.4.2.1. Inline TTP ..…60
4.4.2.2. Offline TTP ..…63

4.5. Building Evidences ..…67
4.5.1. Pair-wise Evidence ...…67
4.5.2. Derived Evidence ...…68

4.6. Related Work ...…69
4.7. Conclusions ..…73

Chapter 5 ...73

DETECTING ILLEGAL BUSINESS SCHEMES IN CHOREOGRAPHED

WEB SERVICES: THE PONZI/PYRAMIDAL CASE ..73

5.1. Introduction ..…73
5.2. Misusing Choreographies ..…77

5.2.1. Business Misuses ...…77
5.2.2. Service Misuses ...…77

5.3. The Evidence Generation Framework ...…78
5.4. Evidence of Observed Interactions ..…80
5.5. Evidence of Choreography ..…82

5.5.1. Pattern Directed Choreography Mining ...…89
5.6. Evidence of Global Misuse ..…92

5.6.1. Ponzi Schemes over Web Service ..…93
5.6.2. Pattern Discovery ...…95

5.7. Detecting Global Misuses ..…99
5.8. Generating Comprehensive Evidence ..…101
5.9. Damage Estimation ..…105
5.10. Related Work ...…108
5.11. Conclusions ..…109

Chapter 6 ...110

ONLINE DETECTION AND ALERT MODEL AGAINST MISUSES OVER WEB

SERVICES...110

6.1. Introduction ..…110
6.2. The EGF in Online Mode ..…111

vii

6.2.1. Enhanced Pair-wise Evidence Generation ...…113
6.2.2. Evidence Derivation...…115
6.2.3. Comprehensive Evidence Generation ..…115

6.3. Online Detection Model ...…116
6.3.1. Online Detection of Business Misuses ..…117

6.3.1.1. Abstracting Misuse Patterns ..…117
6.3.1.2. Mapping Messages to Types ..…118
6.3.1.3. Mapping Web Service to Roles ...…119
6.3.1.4. Using More Abstract Content Linkage ..…120

6.3.2. Online Detection of Service Misuses ...…123
6.3.2.1. Malicious Content ..…123
6.3.2.2. Instantiation of Flooding ..…124

6.4. Alert Model ..…126
6.4.1. Scaling Down the Alert Domain ..…127

6.4.1.1. Dependency Tree Generation ..…127
6.4.1.2. Web Service Types ..…130
6.4.1.3. Potential Members ...…130

6.5. Online EGF Architecture ...…130
6.5.1. Business Level Design ...…131
6.5.2. Service Level Design ...…134

6.6. Related Work ...…137
6.7. Conclusions ..…138

Chapter 7 ...139

EVALUATION OF EXPERIMENT RESULTS AND VALIDATION

STATEMENT ...139
7.1. Introduction ..…139
7.2. Data Set Characteristics ...…140
7.3. Test Environment ...…145
7.4. Accuracy and Performance ..…146

7.4.1. Testing Accuracy ...…146
7.4.2. Testing Performance ..…151

7.5. Validation Statement ..…153
Chapter 8 ...155

CONCLUSION ...155
8.1. Conclusions ..…155
8.2. Future Work ...…157

Appendix ... 158

References ... 159

viii

LIST OF TABLES

Table Page
Table 3.1. Log Record Indexes in FWS-1 and FWS-2 ...…40
Table 5.1. Pyramid Scheme ..…74
Table 5.2. MEI Table ..…82
Table 5.3. Sample MEI Records ...…91
Table 5.4. MEI Tuples Featuring a Misuse Scheme ...…95
Table 5.5. Ponzi Scheme of Fan 1 and Depth 1 ..…96
Table 6.1. Message Type Table (MTT) ..…118
Table 6.2. Web Service Role Table (WSRT) ...…119
Table 6.3. Signature Table (ST) ..…123
Table 6.4. Web Service Threshold Table (WSTT) ...…125
Table 7.1. Query-Pattern Mapping ...…139
Table 7.2. Overlapping Invest Choreography Instances ...…142
Table 7.3. Test Environment ...…146
Table 7.4. Test Results for GenerateRecruitTree..…151

ix

LIST OF FIGURES

Figure Page
Figure 2.1. Hierarchical and Conversational Patterns……………………...……….…12
Figure 3.1. A Cross-Site Scripting (XSS) Attack Using Web Services.....................…17
Figure 3.2. The FWS Framework and Message Flows ...…20
Figure 3.3. WS-Evidence Stack ..…21
Figure 3.4. A Sample WS-Evidence Message ..…23
Figure 3.5. LRI and LR Formats ...…24
Figure 3.6. Evidence Module Brief Architecture ..…25
Figure 3.7. SOAP Message Snapshots in Consecutive Layers…27
Figure 3.8. An Operator FWS Managing the SELP Protocol…30
Figure 3.9. An Operator FWS Storing Messages ...…31
Figure 3.10. An Instance of WebServiceNode ...…33
Figure 3.11. An Instance of LogRecordEdge ...…33
Figure 3.12. Pseudo BPEL for Generating Evidence Bags ..…36
Figure 3.13. Comprehensive Evidence Generation (collectDependents Algorithm) .…38
Figure 3.14. The Instance of EvidenceBag for The Case Study…42
Figure 3.15. The Dependency Graph for the Case Study ...…43
Figure 4.1. The Evidence Generation Framework ..…51
Figure 4.2. Context-based Message Exchange in Axis2...…55
Figure 4.3. Evidence Module Architecture ...…58
Figure 4.4. Inline TTP – Two Way ...…62
Figure 4.5. Inline TTP – One Way ...…63
Figure 4.6. Offline TTP – Two Way...…65
Figure 4.7. Offline TTP – One Way ...…67
Figure 4.8. Building Blocks of Pair-wise Evidence ..…67
Figure 5.1. Sample Invest and Pay Choreographies ...…88
Figure 5.2. Generate Evidence of Invest Choreography ...…90
Figure 5.3. Generating Evidence for Investing ...…91
Figure 5.4. Ponzi-like Recruits over Web Services ..…94
Figure 5.5. Detecting Recruits of Ponzi Schemes...…99
Figure 5.6. Detecting Ponzi-like Patterns ...…100
Figure 5.7. Enhancing Ponzi Detection ..…101
Figure 5.8. Computing the Orchestrator ...…102
Figure 5.9. Climbing the Recruit Path ...…103
Figure 5.10. Generate Recruit Tree ...…104
Figure 5.11. Generating Recruit Tree ...…105

x

Figure 5.12. Rendering a Damage Table for Recruit Tree…107
Figure 6.1. The EGF in Online Mode ...…112
Figure 6.2. Deliver Process for Online EGF ...…114
Figure 6.3. Business Misuse Case...…116
Figure 6.4. Live Detection of Ponzi-like Recruits ..…120
Figure 6.5. Detected Ponzi-like Patterns...…122
Figure 6.6. Detecting Malicious Content ..…124
Figure 6.7. Detecting Instantiation Flooding ..…125
Figure 6.8. Generating Dependency Tree (Forward) ..…128
Figure 6.9. Generated Dependency Trees ...…129
Figure 6.10. Online CEGWS Architecture ...…131
Figure 6.11. Online EDWS Architecture ..…135
Figure 7.1. Density of Ponzi Records over MEI-I ..…141
Figure 7.2. Overlapping Ponzi Records over MEI-I ...…143
Figure 7.3. Proximity Values of Records over MEI-I ..…144
Figure 7.4. Capacity Values of Test Data ...…145
Figure 7.5. Accuracy Rates for GenerateCHOR-Investing…147
Figure 7.6. Accuracy Rates for DetectRecruits ..…148
Figure 7.7. Accuracy Rates for DetectRecruitsK...…149
Figure 7.8. Accuracy Rates for GenerateRecruitTree ...…152
Figure 7.9. Performance Test Results ...…153

xi

LIST OF ABBREVIATIONS

B2B Business to Business

BI Business Intelligence

BPEL Business Process Execution Language

CEGWS Comprehensive Evidence Generation Web Service

CEP Complex Event Processing

CSV Comma Separated Values

CPU Central Processing Unit

CR Completeness Rate

DoS Denial of Service

EDWS Evidence Derivation Web Service

EGF Evidence Generation Framework

EOA Evidence of Availability

EOD Evidence of Delivery

EOF Evidence of Failure

EOO Evidence of Origin

EOV Evidence of Agreement Violation

FWS Forensic Web Services

IDS Intrusion Detection System

IoC Inversion of Control

JVM Java Virtual Machine

LFP Least Fixed Point

LR Log Record

LRI Log Record Index

MEI Message Evidence Index

MEP Message Exchange Patterns

MTT Message Type Table

OELP Optimistic Evidence Layer Protocol

OWASP Open Web Application Security Project

PKI Public Key Infrastructure

RPC Remote Procedure Call

RR Recruit Rate

SARESA Sense & Response Service Architecture

xii

SCT Security Context Token

SEC Securities Exchange Commission

SELP Simple Evidence Layer Protocol

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

ST Signature Table

STS Security Token Service

TTP Trusted Third Party

UML Unified Modeling Language

WS Web Services

WS-CDL Web Services Choreography Description Language

WSCI Web Service Choreography Interface

WSDL Web Service Definition Language

WSLA Web Service Level Agreement

WSRT Web Service Role Table

WSTT Web Service Threshold Table

XML eXtensible Markup Language

XSS Cross-site Scripting

ABSTRACT

AN EVIDENCE MANAGEMENT MODEL FOR WEB SERVICES BEHAVIOR

Murat Gunestas, PhD

George Mason University, 2009

Dissertation Director: Duminda Wijesekera

Web service choreographies, orchestrations and dynamically invoking web services are

three kinds of sample compositions. These compositions create service inter-

dependencies that can be misused for monetary or other gains. When a misuse is

reported, investigators have to navigate through a collection of web-service or network

logs to recreate suspected misuses. In order to facilitate this task, I propose creating

forensic web services (FWS), specialized web services that, when used, would securely

maintain transactional records between other web services. An independent agency can

re-link these secure records residing in distributed FWS stations to reproduce the

transactional history, and thereby substantiate or refute claims of misuse by providing

supporting or refuting evidence.

As multi-participant transactions migrate to web services, there is a potential for some of

these parties to not fulfill their specified obligations or to work to achieve objectives

contrary to those specified objectives. Preserving evidence of service behavior of all

participating actors in complex web-based transactions can resolve such shortcomings. In

order to achieve this, I propose a three-layered framework to preserve evidence of service

behaviors in a non-refutable way. The lowest layer of my framework preserves

transactional evidence of pair-wise participation using cryptographically secured FWS.

The second layer uses this pair-wise evidence to derive evidence of complex interactions.

The highest layer generates evidence of complex transactional behavior.

Web service choreographies can be misused at multiple levels: namely exploiting their

technical capabilities that I refer to as Service Misuses and using them to design complex

illegal business schemes that I refer to as Business Misuses, such as Ponzi, pyramid, or

money laundering schemes. One of the main problems with the latter kind of misuses is

that they appear similar to a legal multi-stage business scheme to an external observer

with a microscopic view; but in truth are macroscopically illegal. I define some of these

schemes precisely and show how to produce evidence of them using cryptographically

secure local message repositories. Such evidence would be helpful to financial fraud

investigators, business arbiters, potential investors, and judicial actors.

Detecting service or business misuses, in particular, over a set of evidence of observed

web service interactions through a post-mortem investigation might disclose an extremely

dramatic level of damage as is in the case of Ponzi schemes. Live detection of business

misuses can assist a collection of services by alerting them to a spreading misuse that

may target them or help in preventing service misuses. I abstract post-mortem detection

queries for business and service misuses.

1

CHAPTER 1

INTRODUCTION

1.1. Problem Statement

Interdependencies among web services are arising ubiquitously and consequently any

misbehaving service affects other services. In such an environment, unless precautions

are taken, the opportunity to provide accountability is reduced. Consequently, any service

level log records stored at a disadvantaged and grieving service would provide little or no

value in identifying the cause of grief. Holding the whole collection of interacting

services accountable would be one method to address this inadequacy, but this would not

address global business misuses that can be built from pairs of legal interactions. As will

be shown during the course of my dissertation, Pyramidal and Ponzi schemes [52, 53, and

54] are two cases in point.

1.2. Thesis Statement

My thesis statement is that it is possible to construct a forensically sound evidence

management framework to accurately account for the global behaviors of composed web

services in a secure, participant-neutral, and non-refutable way as a web service itself. I

2

propose a web-service framework to do so, and to decompose the demonstration of its

viability into four sub parts:

1. The first is to design a prototype implementation of a suitable framework. My

framework constructs a web service that I refer to as Forensic Web Services (FWS)

that generate evidence at service invocation times from composed web services; and,

using the distributed approach; they can collect those evidences to provide a

comprehensive evidence of the externally observable behavior of the complete

compositions.

2. The second is to upgrade the FWS into a three-layered framework, called the

Evidence Generation Framework (EGF), which includes FWS at the bottom layer for

pair-wise evidence generation, Evidence Derivation Web Service (EDWS) at the

middle, and Comprehensive Evidence Generation Web Service (CEGWS) at the top;

and to design a modular agent for endpoints capable of communicating with other

components of the proposed framework. In EGF, using runtime interception, the

bottom layer can record messages exchanged among parties, check session invariants,

and verify the existence of signatures on the fly without polluting the business logic.

3. The third is, based on evidences generated at the bottom layer, to design the CEGWS

at the top along with web service choreography pattern and business misuse mining.

Unlike the distributed approach followed in EGF, I designed a central approach for

collecting evidences to recreate composed activities. That is, FWS stations as

3

proposed earlier are forced to push externally observed message evidences to

CEGWSs at service invocation times.

4. Finally, to detect, prevent and alert ongoing choreography misuses, I enhanced

EDWS and CEGWS to generate online messages indicating the misuse. In this

respect, I designed more abstract patterns for business and service misuses along with

pattern directed queries based on those patterns.

1.3. Significance of Contributions

Digital forensics seeks legal evidence on computer/information systems. Digital forensic

examinations are performed using specific methodologies in accordance with the digital

environment and type of evidence under search. For example, a volatile medium (e.g.

memory) examination would have different priorities from a forensic examination on

databases. Forensics may address many needs, including but not limited to gathering

evidence for legal cases, data recovery, debugging and performance. In summary,

relevant information should be collected answering three questions; “What is the nature

of incident?”, “Who is/are involved?”, and “When did it happen?” To answer these

questions, digital forensics attempts to discover the current state of the digital artifact,

which can be a database, a log file, a floppy disk or a mobile device [1].

Unlike traditional forensics implementations, applying forensics to web service

infrastructures introduces novel problems such as need for neutrality and

4

comprehensiveness. The reliability issue, conversely, has always been a requirement for

all forensics examinations.

Web services are owned by organizations; that is, they have equal rights in the court of

law when any dispute between parties turns into a law suit. Any log records residing at

one party’s site would have no forensic value under these circumstances because records

could have been altered to favor the owner. Redundancy of evidences would also raise as

an issue for such cases, thus diminishing the credibility of evidences [2]. Many forensics

investigations conducted through traditional systems have been held based on one site’s

records. For traditional systems, these actions may be thought of as reasonable because

investigators take advantage of querying users and establishing human factors to

corroborate digital evidence. In service oriented architectures (SOA), both sites in a

dispute would be automated and retain their own records. Both records would be under

question by the opponent party, thus showing the need to have a neutral third party

capturing and preserving evidence between interacting parties.

As described earlier, web service compositions may span over many web services owned

by many organizations. Such interdependent services create long, interdependent

information flows. Thus, malicious data may stream over many web services. From the

forensics perspective, besides neutrality, the evidence gathered should be comprehensive

enough so that investigation can reach every related end point web service in order to

reveal the actions performed by every party to the transaction. If not, incomplete

5

evidence may point to non-malicious web service nodes as the source of malice, thus

misleading the investigators through the examination. This comprehensive approach also

helps in converging the evidences as Schum [2] introduces as a force of evidence.

Yet another important principle that any evidence should possess is reliability. In a court

of law, judicial fellows want to be convinced of the evidence, especially when it comes

from a digital source. Because impersonation and replay attacks do occur in web services,

cryptographic mechanisms would help in protecting the creator of information passed

around in messages by signing them digitally. Such a requirement would entail web

services relying on a state-of-the-art cryptography platform such as Public Key

Infrastructure (PKI), which, to my opinion, meets the credibility property of evidence

introduced by Schum [2].

1.4. Summary of Contributions

I extended Herzberg’s [7] evidences layer concept that addresses neutrality and reliability

principles on evidences to service oriented architectures, developing the concept to three-

layered evidence generation framework.

I added a new layer to the existing web services stack that can operate non-repudiation

protocols and endpoint agents running this layer as a proof of concept.

6

I extended the framework to detect/generate comprehensive evidences for web service

choreography use cases and business misuses in the case of Ponzi/Pyramidal illegal

business schemes.

I extended the framework to detect misuses online at service level and business level of

composed web services. This extension can prevent service misuses and alert relevant

web services against business misuses.

1.5. Limitations of the Dissertation

I have designed and described essential parts of the framework through the dissertation.

My framework, however, has yet to be fully implemented. Three major factors can

impact such an implementation. The first is that, although I have designed those critical

parts ready for a prospective scalable design which can distribute over diverse systems,

such as, implementing appropriate trust delegation specifications, I have not addressed

their scalability. The second is because I propose signatures and encryption based on

PKI, cryptographic overhead may add unacceptably large computation time. Although I

have pointed out some practical solutions, such as implementing secure conversations

which can alleviate delays and computation overheads, I have not considered the

performance degradation arising out of my design decisions. The final concern is

potential storage overhead. Once again, this is considered out of scope of my

dissertation.

7

1.6. Organization of the Dissertation

Chapter 2 provides a brief background regarding service-oriented architectures

particularly in the case of web services. Instead of including a separate literature review

chapter, the “Related Work” sections of each chapter discuss and compare works relevant

to my dissertation in the context of each self-contained chapter. Because chapters 3, 4, 5,

and 6 are self-contained they detail their own problem statement as well. As an

introductory work, Chapter 3 describes a single-layered distributed approach for

generating and collecting evidences of web services behavior and shows its promise

through a case study. Conversely, Chapter 4 proposes a three-layered centralized

approach to detecting web service misuses and describes how business logic at endpoint

services can integrate with the bottom layer without altering in existing code.

Categorizing web service misuses into business and service level, Chapter 5 describes

how business misuses can be mined at the top level out of evidences previously generated

at the bottom level and stored at a central repository. Extending the work in previous

chapters, Chapter 6 describes an online detection for service that can detect service

misuses and alert about ongoing and business misuses. Chapter 7 reports my experiment

results of accuracy and performance tests. Finally, Chapter 8 concludes the dissertation

summarizing my contributions and discussing possible future research areas.

8

CHAPTER 2

BACKGROUND

2.1. Introduction

Two conceptual elements lie at the basis of the current web services: (1) Use of XML

(eXtensible Markup Language), SOAP (Simple Object Access Protocol) [3], and WSDL

(Web Service Definition Language) [4] as basic building material; and (2) Complex

applications built upon long-running, sometimes transactional executions created from

basic elements using choreography, orchestration and compositional methods.

2.2. Basic Paradigm

XML format underlies the entire web service architecture and its artifacts. All schemas,

definition files, and messages transmitted are formed with XML. WSDL, a XML based

definition file, defines the interface of a web service in order for the service to be invoked

by other services in accordance with the specifications of internal executions. SOAP, a

XML based protocol, defines the metadata of the messages to be exchanged between

services. Operations are defined in WSDL documents and they are the only mechanisms

that can be employed for web services to communicate with each other. SOAP messages

9

are defined and exchanged as incoming and outgoing messages through the operations.

WSDL proposes four types of operations:

Notification: One message is sent to many receivers, such as broadcasting.

One-Way: The message is sent and no response is expected, such as Fire-and-Forget.

Request-Response: A typical RPC (Remote Procedure Call) structure: The message

is sent from sender to receiver and response is pushed back to the sender.

Solicit-Response: Request is sent without any data and the response is expected.

Although there are four proposed operation types, the message exchanges can be defined

in two ways, in summary, One-Way and Request-Response—this is so because

notification and response-solicitation can both be represented by one-way and request-

response messages, respectively.

2.3. Composition Paradigm

The message exchange patterns (MEP) described above form the basis for the entire web

service paradigm. These simple MEPs construct collaboration scenarios using the

appropriate composition models. Two issues matter in defining a composition: (1) The

specification of the individual services (2), and the pattern of collaboration.

10

2.3.1. Design Types

Selecting the target provider services can be accomplished either statically or

dynamically, that is, at design-time or run-time. Design-time selections entail a priori

determination while run-time selections can introduce the opportunity to switch between

web services among those that provide the same service.

Static Composition: Static compositions propose web services to be selected and

determined through the business applications at design-time. Currently, most web service

implementations are static. A designer makes the selection manually based on description

files (WSDL) published on the web. The designed application logic is deployed into

either a business process engine as a process file or into any web service container in hard

code. Unless any changes are applied to the logic, the web services specified in the

application never change.

Dynamic Composition: Unlike static composition, a designer specifies a class of web

services using their exposed properties rather than selecting a particular collection of web

services. The logic itself selects specific web services at run-time by asking any filter

database residing at the site of the consumer or global Quality of Services provider

residing on the Internet.

11

Static web service composition introduces less anonymity than the dynamic counterpart,

thus taking less effort in forensic examination. Because dynamic composition imposes

more burden in terms of revealing service activities and its actual performance at run-

time, it increases the need to have a comprehensive platform that preserves evidence of

activities that occurs through an orchestration.

2.3.2. Patterns

Some authors [5] categorize web service composition from another perspective, that is,

its patterns. According to these patterns, web services can be composed either of their

typical pattern (hierarchical) or of a little more complex one (conversational).

Hierarchical Composition: Through this pattern, the consumer web service calls

another composite web service, passing the input parameter and receiving the result.

Other than this request-response activity no other call is employed to the same instance at

the target. The complexity of the composition is hidden in this pattern because the target

system never allows changing its internal state other than using atomic calls.

Conversational Composition: This pattern is mostly used when web services need to

interact with each other more than once in order to execute the same complex transaction.

In these scenarios, the target system, unavoidably, makes its internal state mutable,

thereby causing overlapping instances to be created within parties to the composition.

12

From the forensics point of view, representing and recreating the activities in the latter

pattern is more difficult than the former. Figure 2.1 illustrates the comparison between

the two patterns. In the hierarchical pattern, the nested instance of an external web service

completely finishes before returning the result while many interactions between instances

can survive in the conversational pattern. Although describing what happened exactly

during execution in the hierarchical pattern is reasonable, this may not be the case with

conversational patterns.

Figure 2.1. Hierarchical and Conversational Patterns (Adapted from [5]).

2.3.3. Composition Standards and Languages

Although there are many standards and specifications for web services, here, state-of-the-

art orchestration and choreography specifications are discussed specifically. BPEL

(Business Process Execution Language) is a language for business process modeling.

WS-BPEL and BPEL4WS are its two popular implementations for web service

architecture. They can define both abstract and executable processes. They are two tools

13

to realize orchestration of composite web services from a centralized service. Conversely,

WSCI (Web Service Choreography Interface) and WS-CDL (Web Services

Choreography Description Language) create a global view of multi-party choreographies

of web services from their individual description files. These languages enable

collaborative processes that are recruiting multiple web services, and facilitate

interactions between them from a global, high-level perspective rather than an individual

service’s request-respond perspective.

14

CHAPTER 3

FORENSIC WEB SERVICES: DISTRIBUTED APPROACH

3.1. Introduction

Web services are being used for many financial, government and military purposes. Their

application is performed through seamlessly integrating web services of different

organizations over the Internet using choreographies, orchestrations, dynamic

invocations, brokering etc. These service-level compositional techniques create complex

dependencies between web services belonging to different organizations and can be

exploited. When exploited, they can affect multiple servers and organizations, resulting in

financial loss or infrastructural damage. Investigating such incidents would require that

dependencies between service invocations be retained in a neutral and secure way so that

the alleged activity can be recreated in an undeniable way while preserving evidence that

could lead to and support appropriate prosecutorial activity. Material evidence currently

extractable from web servers such as log records, XML firewall alerts from end point

services, and the like, do not have forensic value because defendants can rightfully claim

that they did not send that message, and plaintiffs can fabricate or alter the log record to

deceive the court. In order to facilitate and base such investigations on reliable

15

infrastructure that can convince judicial systems, I propose designing Forensic Web

Services (FWS) that preserve appropriate evidence to recreate the composed web service

invocations independent of the parties with a vested interest. This would have a greater

chance of being accepted in a court of law. A non-repudiation argument with log entries

collected from many web servers has no forensic value. Forensics on web services could

never be treated as a bilateral problem between two web services while there are so many

standards and architectures composing multiple services and generating global activities.

Consequently, FWS provide on-line forensic capabilities to other web services as a web

service itself. To utilize them, FWS need to be integrated with web services that require

them – referred to as customer web services of FWS. In order to do so, FWS provide a

centralized service access point to its customer services. This information retained by

FWS acting as a trusted third party can be directly provided to forensic examiners.

Previous proposals to monitor web services [6] and generating evidence [7, 8, 9] have

been for business purposes, and to the best of my knowledge I am unaware of their usage

in forensic examinations.

Organizations that are tightly integrated with each other through web transactions and

processes can benefit from FWS in many ways. Firstly, organizations need to hold their

partner services accountable when their vulnerabilities affect transactional

confidentiality, availability, etc. Secondly, details of malicious activity may impact the

severity of punishments or collectible monetary compensation. I show that undeniable

16

logging of critical information exchanges are an effective way to meet these two needs.

Although not for forensics purposes, some logging and processing approaches exist for

web services [10, 11], such as WSLogA [6]. Work reported in [12] offers an approach for

online investigations for traditional digital forensic processes. However, none of them

employs a trusted third party to generate and preserve evidence and a framework, as well

as generate conclusive evidence as provided by the FWS framework.

The rest of the chapter is written as follows. Section 3.2 describes some web-service

exploits [13, 14, and 15], of which I use one as a case study. Section 3.3 describes the

structure and functionality of the Forensic Web Service Framework. Section 3.4

describes the FWS logging that occurs during service invocations. Section 3.5 describes

how an alleged transaction can be recreated in order to determine the guilty party. Section

3.6 illustrates the work described in Section 3.5 through a case study. Section 3.7

describes related work and Section 3.8 concludes the chapter.

3.2. Overview of Web Service Attacks

There are many attacks on web services, such as WSDL/UDDI scanning, parameter

tampering, replays, XML rewriting, man-in-the-middle, eavesdropping, routing detours

[15, 16, 17, 18, 19, 20, 21], and so on. In addition to web service attacks classified in [13,

14], dynamic service selection, choreography, orchestration, and composition increase

the ways of exploiting web services, such as application and dataflow attacks [22,23,24].

17

Now I show the details of a sample cross-site scripting (XSS) attack used to illustrate the

capabilities of FWS. A typical XSS [25] attack may inject a malicious script to harm a

web service that dynamically builds some of its information.

Figure 3.1. A Cross-Site Scripting (XSS) Attack Using Web Services

1. Attacker updates Meteorology Web Service (MET_WS) database with

“regionID=234;description=”Heavy Rain <script>document.write(’<img

src=http://attacker_IP:9999?c=’+ document.cookie + ’ >’); </script>””

18

2. According to the Choreography model, MET_WS fires regional messages to

update Weather Web Service (WEA_WS) updateRegion

(..ID=”234";Description=”..+mal-script+..”)

3. Portal Web Service (POR_WS) sends weatherRequest(ID=”234")

4. WEA_WS sends weatherRespond(ID=”234";Description=”..+mal-script+..”)

5. Portal Web Application emits the mal-script in html form to requesting browsers.

6. Vulnerable browsers run the mal-script and send cookie information to Attacker’s

Fish Net Application.

7. Attacker retrieves sensitive information from cookies.

Figure 3.1 shows an attacker with stolen credentials injecting some malicious data and

invoking an update operation on a meteorology service that stores this script (including

instructions to steal cookies from web browsers). MET_WS gets infected with malicious

data and delivers the data ignorantly to the WEA_WS, firing the updateRegion message.

WEA_WS, accordingly to their choreography, passes malicious data to POR_WS, among

other legal information. Then a web application, say Portal Web Application, invoking a

weatherRequest operation at WEA_WS retrieves this malicious data and publishes the

weather information to its subscribers in an html form, thereby making the subscribers

download the mal-script and send their personal information stored in cookies to the

attacker’s Fishing Net Application. Consequently, a Fishing Net Application managed by

the Attacker can obtain sensitive user information as shown in Figure 3.1. An attacker,

aware of choreography among web services, exploits this model and has Portal Web

19

Application delivered malicious data to its members using web services in this

choreography model.

The stated XSS attack shows how the business logic of a web service can be used to

attack a server that depends upon other web services. In this scenario, Portal Web Service

can claim that Weather Web Service sent the malicious content, whereas the actual source

was Meteorology Web Service. This illustrates the need to have a mechanism that

irrefutably points to the source of malice.

3.3. The Forensic Web Service Framework

The Forensic Web Service Framework provides two essential services:

1. Pair-wise evidence generation: Collect transactional evidence of transactions that

occur between pairs of services at service invocation times.

2. Comprehensive evidence generation: On demand, compose pairs of evidences

collected at services invocation times, and produce complex transactional scenarios

that occurred during specified periods, and provide them for forensic examiners.

In order to do so, FWS use Trusted Third Parties (TTP) that sits in between any two

transactions. To obtain the services of a FWS system, all web servers sign-up with a

forensic web service, as shown in Figure 3.2. In order to create comprehensive evidence

of an attack scenario, all relevant FWS agents must cooperate by providing relevant pair-

wise transactional evidences that are stored with them. To locate registered FWS servers,

20

there is a FWS registry of all FWS servers. Figure 3.2 illustrates typical message flows

earning forensics capabilities to web services. Ellipse boxes refer to the member domain

of any FWS. Every web service registered to any FWS utilizes its evidence modules to

route its messages over FWS stations to reach their ultimate goals (dashed lines); every

FWS can call each other’s services through some investigation algorithms such as

“collectDependents” (solid bold lines). Some central services for registry and security

purposes, for example, would inevitably be called through the framework at any time

(solid lines).

Figure 3.2. The FWS Framework and Message Flows

The following are necessary for FWS systems to function as required:

1. The web-service call stack must be enriched with a WS-Evidence layer.

21

2. A message format is needed for communicating WS-Evidence layer messages and

storing them in the FWS servers.

3. All web services must use a client agent (Evidence module) that re-routes their

transactional messages through FWS servers.

4. The underlying system must provide a trust base and cryptographic services.

3.3.1. Enhanced Web-Services Call Stack

The existing WS stack consists of a three layers, where the bottom layer is consisting of

SOAP messages, the middle layer of WS-Secure Conversations and the top layer of

WSDL specifications. I propose to add an evidences layer in between the middle layer

and the top layer to reroute transactions through the FWS servers, thereby allowing

Sender WS and Receiver WS communication using their WSDLs to remain independent

of the underlying WS-Evidence layer. Figure 3.3 shows how WS-Evidence is applied to a

message that flows through web services and their existing stacks. Flows 1 and 6 show

the activity performed by the agents; flows 2 and 5 show the communications occurring

at the SOAP level; and 3 and 4 represent inputs and outputs from FWS-TTPs.

Figure 3.3. WS-Evidence Stack

22

3.3.2. WS-Evidence Message Format

WS-Evidence uses the message format of <#session|#message|#signatureK(

#session|#message/sequence|#message/envelope))>, where # refers to the points in XML

format, | refers to concatenation of elements, and / points to the sub parts of elements, to

exchange between sending customer, FWS and receiving customer. Here the session

element identifies a WS-Evidence conversation, and message corresponds to an element

carrying the actual upper layer message along with its sequence number

(message/sequence) in the conversation, such as, for example, sequence number 2

corresponds to a response message if message exchange pattern (MEP) type is two-way

and the protocol is SELP (soon to be described). Each endpoint, either sender or receiver,

signs session, message/sequence, and message/envelope parts of the message in the

ds:Signature element [26] of the message. Figure 3.4 illustrates a sample WS-Evidence

message instance along with significant parts.

23

Figure 3.4. A Sample WS-Evidence Message

FWS store the messages in two formats; LogRecordIndex (LRI) and LogRecord

(LR). A LRI refers to the record of a single message within a WS-Evidence conversation.

LR stores entire WS-Evidence sessions including all messages delivered to and/or

generated by the FWS. LRI records are used for two reasons: the first for quick searches

and the second for pointing to the entire LR. Each LRI is stored at both FWSs (operator

and non-operator FWS -- soon to be described). LR, on the other hand, is stored only at

the operator FWS and can be reached using LRI’s that refer to it. As shown in Figure 3.5,

a FWS storing a LRI sets the value of its status field to that of the

<wse:deliverRequest ...>

 <wse:Session id="session">

 < wse:ttp>http://www.forensicsoa.org/DeliverService</fws:ttp>

 < wse:Sender>http://www.source.org</fws:Sender>

 < wse:Receiver>http://www.destination.org/services/EchoService</fws:Receiver>

 < wse:Identifier>uuid:88754b00-161a-11da-b6d6-198de3c47c5</fws:Identifier>

 < wse:Operation>echo

 < wse:MEP>Two-Way</fws:MEP>

 </ wse:Operation>

 </ wse:Session>

 < wse:Message>

 <wsu:Timestamp>

 <wsu:Created …>2005-09-08T10:05:27Z</wsu:Created>

 </wsu:Timestamp>

 < wse:MessageID>uuid:c3671020-15e0-11da-9b3a-f0439d4867bd</fws:MessageID>

 < wse:Sequence Id="sequence">1|2|4</fws:Sequence>

 < wse:Envelope Id="envelope">

PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGlc29hcGVudjpF…….. ……………

………………………. L3NvYXBlbnY6Qm9keT48L3NvYXBlbnY6RW52ZWxvcGU+

 </ wse:Envelope>

 </ wse:Message>

 < wse:Evidence>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:Reference URI="#session" >

 <ds:Reference URI="#sequence" >

 <ds:Reference URI="#envelope" >

 </ds:SignedInfo>

 <ds:SignatureValue/>

 <ds:KeyInfo/>

 </ds:Signature>

 </ wse:Evidence>
</ wse :deliverRequest>

24

message/sequence part of the message. The FWS also sets the timestamp

with the value of message/timestamp part of the message and the recordinfo

with the value of session part of the message. The envelope and ds:signature

parts are not represented in LRIs but in LRs. LR contains the recordIndex part that

has final timestamp and status values of the conversation referring to timestamp

and sequence values of the last message in the conversation respectively.

Figure 3.5. LRI and LR Formats

<logRecordIndex ..>

 <timestamp>05:00</timestamp>

 <status>1</status>

 <recordInfo protocol="URI"..>

 <sessionID algorithm="URI"/>

 <MEPType>string</MEPType>

 <agreement/>

 <partners>

 <sender/>

 <fwsttp/>

 <receiver/>

 </partners>

 </recordInfo>

</logRecordIndex>

<logRecordIndex ..>

 <timestamp>05:01</timestamp>
 <status>2</status>

 <recordInfo protocol="URI"/>
</logRecordIndex>

<logRecordIndex ..>

 <timestamp>05:02</timestamp>
 <status>3</status>

 <recordInfo protocol="URI"/>
</logRecordIndex>

<logRecord …>

 <recordIndex>

 <timestamp>05:02</timestamp>

 <status>3</status>

 <recordInfo protocol="URI"..>

 ...

 </recordInfo>

 <recordIndex>

 <wse:Message>

 <session/>

 <message/>

 <timestamp>05:00</timestamp>
 <sequence>1</sequence>

 <envelope>...</envelope>

 <message>

 <ds:signature/>

 </wse:Message>

 <wse:Message>

 <session/>

 <message/>

 <timestamp>05:01</timestamp>

 <sequence>2</sequence>

 <envelope>...</envelope>

 <message>

 <ds:signature/>

 </wse:Message>

 <wse:Message>

 <session/>

 <message/>

 <timestamp>05:02</timestamp>
 <sequence>3</sequence>

 <envelope>...</envelope>

 <message>

 <ds:signature/>

 </wse:Message>

 </logRecord>

LRI for wse:Message Seq.1

LRI for wse:Message Seq.2

LRI for wse:Message Seq.3

25

3.3.3. Evidence Module

Routing transactional information through FWS servers require that all transactions be

reliably intercepted and routed, as shown in Figure 3.6.

Figure 3.6. Evidence Module Brief Architecture (adapted from [30])

Although the next chapter describes the Evidence Module architecture in detail as a proof

of concept, here I briefly describe a sender process and a receiver process sitting in front

of each web service end point:

1. The Sender Process: The Evidence Module captures the SOAP message from the

upper layer (either from an upper handler in the handler chain or directly from sender

API) as shown in the first pillar of Figure 3.7; and encapsulates the message in WS-

Forensics message format (see the second pillar in Figure 3.7) by adding signatures,

routing the message to the operator FWS, etc., and submitting it to the lower layer—

that is, WS-SecureConversation/WS-Trust handler (soon to be described in Section

3.4).

26

2. The Receiver Process: The Evidence Module manages the WS-Evidence message

from the lower layer. After validating signature according to the WS-Evidence

session context it extracts the original SOAP message and either passes it to another

handler (if it exists) in the chain or dispatches it to the intended

service|portype|operation entity, provided the message is missing an upper handler in

the chain.

Many vendors [27, 28, 29, 30] support handler chains in front of their web application

interface. For example, Axis2 [31] allows dynamic module engagement in their web

services. My proposal attaches handler modules at both sides of the communication,

similar to that of [9].

3.3.4. Underlying Layer

WS-Evidence is designed to run over a secure layer with the following services:

Authentication: senders, receivers and FWS nodes.

Delegated Authentication: As a trusted third party, FWS nodes authenticate themselves

to the receiver on behalf of the sender.

Confidentiality and Integrity of the Channels: between senders or receiver and FWS

nodes must provide these.

Reliability: Messages in channels between FWS nodes and customer nodes must be

reliable.

27

Upper Layer WS-Evidence

(Evidence Module)

Receiver<->Sender

WS-SecConv/WS-Trust

(e.g. Rampart)

Sender/Receiver<->FWS

<soap:Envelope>

<soap:Body>

<GetCustomerInfo>

<CustID>1</CustID>

</GetCustomerInfo>

</soap:Body>

</soap:Envelope>

<soap:Envelope>

<soap:Body>

<deliverRequest ...>

<session>

<message >

<timestamp/>

<sequence>1</sequence>

<envelope>$Envelope$</envelope>

</message>

<ds:Signature>

<ds:SignedInfo>

<ds:Reference URI="#session" >

<ds:Reference URI="#sequence" >

<ds:Reference URI="#envelope" >

</ds:SignedInfo>

<ds:SignatureValue>

<ds:KeyInfo>

</ds:Signature>

</deliverRequest >
</soap:Body>
<soap:Envelope>

<soap:Envelope ……">

<soap:Header>

<wss:Security >

<wsc:SecurityContextToken Id='FWS-

SCT'/>

<wsc:DerivedKeyToken Id='DKS'/>

<ds:Signature>

<ds:SignedInfo>

<ds:Reference URI="#bodySignature"/>

</ds:SignedInfo>

<ds:KeyInfo>

<wss:SecurityTokenReference>

 <wss:Reference URI='#DKS' />

</wss:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

<wsc:DerivedKeyToken Id='DKE'/>

<xenc:ReferenceList>

<xenc:DataReference

URI='#bodyEncryption'/>

</xenc:ReferenceList>

</wsse:Security>

</soap:Header>

<soap:Body Id="#bodySignature">
<EncryptedData Id="#bodyEncryption"

<EncryptionMethod/>

<wss:SecurityTokenReference>

 <wss:Reference URI='#DKE' />

</wss:SecurityTokenReference>

<CipherData>

<CipherValue>7qH0……iA==</CipherValue>

</CipherData>

</EncryptedData>

</soap:Body>

</soap:Envelope>

Figure 3.7. SOAP Message Snapshots in Consecutive Layers

Two properly implemented standards, WS-Trust [32] and WS-SecureConversation [33]

satisfy these requirements. WS-Trust issues, renews and verifies tokens for security, and

WS-SecureConversation builds secure sessions using XML encryption and signature. The

processes described in Section 3.3 require secure channels between end-point web

services and FWS nodes. Following briefly show how WS-Evidence message flows

between a sender and a receiver through to a FWS using underlying security layer.

28

1- WS-SecureConversation/WS-Trust handler of the sender grabs the WS-Evidence

message (see the second pillar in Figure 3.7) and builds a secure conversation by the

means of Security Context Token (SCT) obtained from the Security Token Service

(STS). FWS nodes also may have this role. The WS-Evidence message is encrypted

by WS-SecureConversation (see the third pillar in Figure 3.7) and pushed into the

transport layer to be sent to the FWS node through the conversation

2- WS-SecureConversation/WS-Trust handler of the FWS node receives the encrypted

SOAP message, decrypts it, extracts the actual WS-Evidence message, and pushes

into the WS-Evidence layer to be processed as described in the next section.

3- After processing WS-Evidence message, the FWS node pushes the message to its

WS-SecureConversation/WS-Trust handler to build another secure conversation with

the receiver as described in the first step. Then, the message is encrypted by the

security handler, to be sent to the receiver through the conversation.

4- WS-SecureConversation/WS-Trust handler of the receiver receives the encrypted

SOAP message, decrypts it, extracts the actual WS-Evidence message, and pushes

into the WS-Evidence layer to be dispatched.

The reason for implementing two security contexts is to make message content

transparent to the FWS so that they can scan the contents for further investigation,

thereby allowing the possibility of isolating the ones used for forensic purposes. Having

one context would eliminate the initial phases, thus alleviating the performance problem.

However, I address such policy-specific decisions in my ongoing work.

29

3.4. Gathering Evidence at Service Invocation Time

As stated earlier, FWS servers gather pair-wise transactional evidence that flows between

sender and receiver web services, using the Simple Evidence Layer Protocol (SELP) [7].

There are four entities involved in the process: sender, receiver, operator FWS, and non-

operator FWS. Operator FWS refers to a FWS selected by either party to manage the

steps listed below, and the Non-operator FWS belongs to the other party. I omit a detailed

algorithm to select the operator FWS. Steps followed by the operator FWS are as follows,

visualized in Figures 3.8 and 3.9.

Assuming MsgSeq.1 is a request message coded as “1” through WS-Evidence

specification , MsgSeq.2 is a response coded as “2”, MsgSeq.-1 is a failure coded as “-1”,

and MsgSeq.3 is an acknowledgment coded as “3”, typical FWS TTP acts as below;

1- FWS receives MsgSeq.1 (<#session|#message|#signatureSender-K(#session|”1”|#

env)>).

2- Validates, stores the message, creates an LR and LRI for MsgSeq.1 and notifies

non-operator FWS.

3- MsgSeq.1 is forwarded to the Receiver and starts a timer.

4- If the response MsgSeq.2 cannot reach the FWS before timing out then, MsgSeq.-

1 (<#session|#message|#signatureFWS-K (#session|”-1”|# env)>) is signed by the

FWS; it is stored and sent back to the Sender and an LRI is created and sent to the

non-operator FWS. If MsgSeq.2 (<#session|#message|#signatureReceiver-

30

K(#session|”2”|# env)>) arrives on time then, it is forwarded to the sender and

stored in FWS along with notifying the non-operator FWS with its LRI.

5- FWS creates, signs and sends MsgSeq.3 (<#session|#message|#signatureFWS-K

(#session|”3” |#env)>) to the receiver. It also stores the message in the LR and

sends the LRI to the non-operator FWS.

Figure 3.8. An Operator FWS Managing the SELP Protocol (Adapted from [7])

The dependencies between stored data are maintained using LRIs sent from operator

FWS to non-operator FWS, thus allowing any further investigator-process to hop up

between FWS stations that store dependent records.

31

Figure 3.9. An Operator FWS Storing Messages

3.4.1. Pair-wise Evidences

The SELP protocol and FWS event logs retain the evidence to verify the following

claims:

Evidence of Origin (EOO): Sender’s claims of timely transmitting.

Evidence of Delivery (EOD): Receiver’s claims of timely delivery.

Evidence of Failure (EOF): Sender’s claims of receiver’s failures of timely receipt.

Evidence of Availability (EOA): Either party’s claim of non-availability of the other.

Evidence of Agreement Violation (EOV): Either party’s claim of contractual violation.

The next chapter shows their building blocks within WS-Evidence messages.

3.5. Creating Evidence for Scenarios

As stated earlier, the main objective of the FWS Framework is post-mortem

investigations on inter-dependent scenarios containing more than one party in a

32

comprehensive manner. In order to do so, as shown in Figure 3.2, the FWS Framework

utilizes FWS, FWS-Registry, and other services to generate comprehensive evidence by

retrieving and processing evidence of pair-wise transactions stored in FWS nodes. I first

describe data types used to represent the comprehensive evidence in the FWS framework,

and the scenario generation algorithm that uses a graph to model service inter-

dependencies that should exist between the involved parties. Two parameters used in the

process, node thresholds and time thresholds, demarcate the boundary of scenario

generation. The nodes of the graph are web services and log records create their inter-

dependencies.

3.5.1. Data Types Representing Scenarios

FWS store sender-receiver information between web services in LRI tables that I use to

generate the dependency graph. Nodes of the dependency graph are of the complex type

WebServiceNode, where each WebServiceNode has a unique ID and the field

nodeLevel represents the degree of adjacency of a web service node to the root web

service node of the dependency graph. For example, nodeLevel=1 means the web service

is directly adjacent to the root web service node. The field nodeThreshold is the

boundary of the dependency graph. For example, a graph of a web service node with

nodeLevel=3 and nodeThreshold=3 will not expand further over this specific web

service node but only over other nodes with a lesser nodeLevel than nodeThreshold.

The edges of the graph are represented using the complex data type LogRecordEdge with

33

components SenderID and ReceiverID attributes. Figure 3.10 and 3.11 shows a sample

node and a sample edge respectively.

Figure 3.10. An Instance of WebServiceNode

Figure 3.11. An Instance of LogRecordEdge

3.5.2. Building Digital Evidence Bag

All dependency decisions use the following:

WS-A sends WS-B in “one way”=> WS-B depends on WS-A

WS-A sends WS-B in “two way”=> WS-B depends on WS-A and WS-A depends on WS-B

<logRecordEdge id="uuid:#21323232323-11.12.2007:12:23:04"

senderID="www.geocoding.com" receiverID="www.weatherservices.com"

dependencyDirection="Two-Way">

 <logRecord>

 <recordIndex>

 <timestamp>2002-10-10T12:00:00-05:00</timestamp>

 <status>1</status>

 <recordInfo protocol="SELP">

 <sessionID>

 <MEP>Two-Way|One-Way</MEP>

 <agreement>

 <partners>

 </recordInfo>

 </recordIndex>

 <wse:Message> $MsgSeq.1 </wse:Message>

 <wse:Message> $MsgSeq.2 </wse:Message>

 <wse:Message> $MsgSeq.3 </wse:Message>

 </logRecord>

</logRecordEdge>

<webServiceNode id="www.geocoding.com" nodeLevel="2" nodeThreshold="3"

 <webService>

 <Location>http://www.geocoding.com/service</Location>

 <Port>LongitudePT</Port>

 <Service>#geosrv</Service>

 <Operation>getLongitude</Operation>

 <IPAddress>66.234.12.231</IPAddress>

 <InstanceID>

 </webService>

</webServiceNode>

34

FWS build a Digital Evidence Bag complying with the requirements in [34] by using the

algorithm written using pseudo BPEL in Figure 3.12. The algorithm works as follows:

Any Requestor, such as a plaintiff or a prosecutor participating in the FWS framework

can start building Digital Evidence Bags for an alleged attack by invoking the

generateEvidenceBag process—which is done by including the webServiceNode

(pointing to the suspected WS as root), startTime (time when suspected activity first

detected), timeThreshold (defines the scope of investigation in terms of time), and

nodeThreshold (defines the scope of investigation in terms of node depth) in the

EvidenceBagIn message in line 4. Between lines 5 and 7 the FWS first checks which

FWS (rootFWS) controls the web service node in question (rootWS), assigns the address

of the rootFWS partner link, and starts processing by invoking the collectDependents

process of that rootFWS with the DependentsBagIn message, which in turn runs in a

distributed-recursive manner. It is replied to with the DependentsBag message and

employs a set of refinement tasks on the logRecordEdges part of the message, such as

sorting, and grouping the records by the fwsttp field of LRI information in each

logRecordEdge in the logRecordEdges array as referred in line 8. Because the

collectDependents process only stores LRI information in LogRecordEdges there are

no actual log records contained at this step. In order to turn lightweight LogRecordEdges

(with LRI) into actual LogRecordEdges containing LRs, the generateEvidenceBag

process first extracts distinct fwsttp’s from logRecordEdges into an array as pointed in

line 9. Between lines 10 and 21, utilizing the flowN structure in BPEL [35], the algorithm

creates dynamic parallel execution scopes for each distinct fwsttp. For each distinct

35

fwsttp, it also creates dynamic partner links named OwnerFWSOfLogRecords and builds

LogRecordEdgesInput arrays. Then, getLogRecordsByValue operations are invoked

for each parallel scope and the results are combined in

logRecordEdgesForEvidenceGraph. evidenceBagOut is assigned with

logRecordEdgesForEvidenceGraph and constitutes the actual EvidenceGraph

document. Between lines 23 and 25, some other necessary procedures may be applied to

the document, such as scanning, signature matching, encrypting and signing, according to

the policy in an appropriate order. Finally the requester is replied to in line 26.

36

Figure 3.12. Pseudo BPEL for Generating Evidence Bags

1. partnerLinks: SecurityService; VirusScannerService;

SignatureDetectionSrv; RootFWS; Requestor; FWSRegistry

2. variables: EvidenceBagIn; EvidenceBagOut; LogRecordEdges;

DependentsBagIn; DependentsBag;

LogRecordEdgesForEvidenceGraph;

3. begin

4. receive EvidenceBagIn from Requestor

5. invoke getFWSs(RootWS) in FWSRegistry

6. assign RootFWS partnerLink

7. assign EvidenceBagIn to DependentsBagIn

8. invoke collectDependents(DependentsBagIn) in RootFWS

9. assign DependentsBag to LogRecordEdges

10. assign distinct ArrayOfFWSTTP from LogRecordEdges

←!– Invokes a set of FWSTTPs to get actual LREs by their LRIs →

←!– using flowN loop structure →

11. flowN N=‘countNodes(’ ArrayOfFWSTTP ‘...)’ indexVariable=’index’

12. partnerLink: OwnerFWSOfLogRecords

13. variables: LogRecordEdgesOutput

14. assign OwnerFWSOfLogRecords partnerLink

15. invoke getLogRecordsByValue in OwnerFWSOfLogRecords

16. receive LogRecordEdgesOutput as getLogRecordsByValue callback

←!—————– Stores the result ———————→

17. append LogRecordEdgesForEvidenceGraph

 from LogRecordEdgesOutput

18. end of flowN

19. assign LogRecordEdgesForEvidenceGraph to EvidenceBagOut

20. invoke scan(EvidenceBagOut) in VirusScannerService

21. invoke detect(EvidenceBagOut) in SignatureDetectionSrv

22. invoke signAndEncrypt(EvidenceBagOut) in SecurityService

23. reply EvidenceBagOut to Requestor

24. end

37

generateEvidenceBag is a wrapper process of the collectDependents process

(specified as a BPEL in my original design) that contains an algorithm that is inspired by

King’s dependency graph generation algorithm [36] and Wang’s evidence graph

generation study [37]. I use LogRecordIndex’s (LRI) and not LogRecord’s (LR) because

the latter reside only on one FWS, making the algorithm unusable. The process first

creates instances of WebServiceNodes and LogRecordEdges arrays using the schema

mentioned earlier. Then, it loads the dependentsBagIn message into these objects setting

the webServiceNode part as a root level node; all other values in the input message are

loaded into the corresponding variable. After the initialization phase, the algorithm listed

in Figure 3.13 is used. Created objects, webServiceNodes and logRecordEdges are the

nodes and edges of the dependency graph. The algorithm traverses the LRIs starting

from the decreasing order of time in search of dependent web service nodes among the

sender/receiver fields of the log records and inserts them into the logRecordEdges

setting senderID, receiverID, and dependencyDirection attributes (if their timestamp

is within the time threshold). When a new partner web service is found in the LRIs, it

adds this partner web service node into the webServiceNodes object only if the current

web service node’s nodeLevel is equal or less than the nodeThreshold.

When a partner web service node that does not belong to the operator FWS is found, the

neighbor FWS hosting this partner web service node is found by querying the FWS-

Registry. The same algorithm is executed in the chosen neighbor FWS by invoking the

collectDependents process of that FWS. This time, current web service nodes and

38

the log record edges added into the graph so far, are sent to initiate the same process in

neighbor FWS, along with a smaller start time and larger node level values in the web

service nodes. Because the start time and node level information are kept and transferred

to external FWSs, the gathering of unrelated log records and infinite loops is prevented.

The return message from the neighbor FWS is in the DependentsBag schema; therefore,

web service nodes and log record edges are added to the current DependentsBag.

Figure 3.13. Comprehensive Evidence Generation (collectDependents Algorithm)

←!– Starts extracting values (timeThreshold, nodeThreshold, etc.) →

←!– from DependentsBagIn and initializes creating the →

←!– WebServiceNodes and LogRecordEdges instances of GRAPH →

1. baseTime = startTime - timeThreshold

2. for each logRecordIndex LRI ∈ FWS {

3. timeThreshold=timeTreshold - (startTime - LRI.timeStamp)

4. startTime=LRI.timestamp

5. for each webServiceNode WS ∈ GRAPH {

6. if (SenderWS | ReceiverWS ∈ LRI & LRI ∉ GRAPH &

 R.timestamp ≥ baseTime & WS.nodeLevel ≤ WS.nodeThreshold) {

7. Add LRI as edge into GRAPH

8. if (LRI’s partner web service PWS ∈ GRAPH) {

9. PWS.nodeLevel=WS.nodeLevel+1

10. PWS.nodeThreshold=nodeThreshold

11. Add the PWS into GRAPH }

12. if (LRI’s PWS ∈ this.FWS & LRI’s PWS ∈ GRAPH) {

13. NeighbourFWS = getFWS(PWS)

14. NeighbourFWS.collectDependents(DependentsBagIn)

15. Merge DependentsBagOut into GRAPH}}}}

16. return GRAPH in DependentsBagOut format

39

The collectDependents process returns a dependentsBag output to the wrapper

process, generateEvidenceBag. Because logRecordEdges in dependentsBag only

contains LRI information, it is refined by the wrapper process, and building the

evidenceBag. In order to meet the requirements [38] on chain of custody for digital

forensics, the document is signed with the private key of the host FWS.

3.6. A Case Study: The XSS Attack

Now, I show how any agent can use FWS to create comprehensive evidence for the XSS

attack described earlier. Through the Case Study, I assume that FWS-1 owns POR_WS

(Portal Web Service), GEO_WS (Geocoding Web Service), and so many others, while

FWS-2 owns WEA_WS (Weather Web Service) and MET_WS (Meteorology Web

Service), along with other many services. Table 3.1 lists sample log records available at

FWS-1 and FWS-2 in LRI (Log Record Index) format. Arrows illustrate how the

collectDependents algorithm reveals activities dependent to each other spanning over

many web services and FWS stations. The bold records refer to log records linked to each

other and used to build the dependency graph as edges between web service nodes. Each

record applies the LRI format ({Timestamp| SessionID| status| fwsttp| Sender| Receiver}).

Assume that an official decides to generate a digital evidence bag of this incident using

the above parameters--please remember the “collectDependents” algorithm in Figure 3.13

and the parameters to draw the dependency scope in the examination: rootWS=POR_WS,

40

startTime=17, nodeThreshold=3, and timeThreshold=16. The examiner first defines the

rootFWS by querying from FWS-Registry and sets FWS-1 as the root, thereby invoking

the collectDependents process at FWS-1. I now apply the algorithm to this example

through the following steps.

 Table 3.1. Log Record Indexes in FWS-1 and FWS-2

LRIs in FWS-1 LRIs in FWS-2

... ...
1|234|Response|FWS-

1|TRE_WS|VRE_WS.vresPT.ReserveVehic

le

1|234|Response|FWS-

1|TRE_WS|VRE_WS.vresPT.ReserveVehic

le
2|2134|Request|FWS-2|WEA_WS|

GEO_WS..getLongtitute

2|2134|Request|FWS-2|WEA_WS|

GEO_WS..getLongtitute

3|2134|Response|FWS-2|WEA_WS|

GEO_WS..getLongtitute
3|2134|Response|FWS-2|WEA_WS|

GEO_WS..getLongtitute
4|2164|Response|FWS-1|TRE_WS|

HRE_WS.hresPT.ReserveHotel
4|2164|Response|FWS-1|TRE_WS|

HRE_WS.hresPT.ReserveHotel
6|21572|Request|FWS-1|TRE_WS|

ARE_WS.aresPT.ReserveAirline

5|2196|Request|FWS-2|MET_WS|

WEA_WS..updateRegion

9|21572|Response|FWS-1|TRE_WS|

ARE_WS.aresPT.ReserveAirline
7|34563|Request|FWS-2|VRE_WS|

HRE_WS.hresPT.HotelLocation

10|34534|Request|FWS-2|POR_WS|

WEA_WS..weatherRequest
8|34563|Response|FWS-2|VRE_WS|

HRE_WS.hresPT.HotelLocation

12|22534|Request|FWS-1|TRE_WS|

VRE_WS.vresPT.ReserveVehicle

10|34534|Request|FWS-2|POR_WS|

WEA_WS..weatherRequest

13|34534|Response|FWS-2|POR_WS|

WEA_WS..weatherRespond

11|34567|Response|FWS-2|VRE_WS|

HRE_WS.hresPT.HotelLocation
14|34523|Request|FWS-1|WEA_WS|

GEO_WS..getLongtitute
12|22534|Request|FWS-1|TRE_WS|

VRE_WS.vresPT.ReserveVehicle
17|34523|Response|FWS-1|WEA_WS|

GEO_WS..getLongtitute
13|34534|Response|FWS-2|POR_WS|

WEA_WS..weatherRespond

… 14|34523|Request|FWS-1|WEA_WS|

GEO_WS..getLongtitute

… ...

… 17|34523|Response|FWS-1|WEA_WS|

GEO_WS..getLongtitute

Step 1: FWS-1 first retrieves LRIs in Table 3.1, and starts traversing on LRIs in

decreasing time order. In this example, this order spans LRIs from time 17 to time 1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

41

because of timeThreshold value 16. The algorithm skips LRIs in times 17 and 14 because

they do not contain POR_WS as any other partner in their records. It finds an LRI with

time 13 related to POR_WS, adds the LRI as LogRecordEdge, and adds the partner web

service, WEA_WS, as the dependent WebServiceNode because it has yet to be included

in the graph created so far.

Step 2: Because WEA_WS is registered to another FWS, FWS-2, this process assigns the

FWS-2 as neighbor FWS and invokes the collectDependents process with

rootWS=WEA_WS, startTime=13, timeThreshold=12, logRecordEdges, and

webServiceNodes already in the graph.

Step 3: FWS-2 retrieves the LRIs and starts from the LRI with time 13. It ignores LRI 13

because it is already in the graph and LRIs with time 12 and 11 because of irrelevancy.

Step 4: FWS-2 adds the LRI in time 10 because the partners are already in the graph. The

records in 8 and 7 are ignored because of their irrelevancy to the graph. FWS-2 adds the

LRI in time 5 because one of its partners is included in the graph. The other partner

MET_WS is added to the graph with a higher node level 3. Because MET_WS is

registered to FWS-2 there is no need to call another FWS to collect its dependents.

Step 5: After ignoring 4, the records in time 3 and 2 are added because of their relevancy

to WEA-WS.

Step 6: FWS-2 returns to FWS-1 since there remains no record to traverse.

Step 7: FWS-1 continues to process from LRI with time 12. It ignores LRIs with time 10,

3, and 2 although they are relevant, but they are already in the graph. It also ignores other

records because they are unrelated to the graph.

42

Figure 3.14. The Instance of EvidenceBag for The Case Study

<EvidenceBag xmlns:p1="http://ite.gmu.edu/schema/FWSXmlSchema"

xmlns:p2="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<evidenceBagSynopsis>

 <OperatorFWS FWS-1>

 <RootWS POR_WS >

 <processStartTime>2002-10-10T12:00:00-05:00</processStartTime>

 <processEndTime>2002-10-10T12:00:00-05:00</processEndTime>

 <startTime>2002-10-10T12:00:00-05:00</startTime>

 <timeThreshold>16</timeThreshold>

 <nodeThreshold>3</nodeThreshold>

 <numberOfWebServiceNodes>4</numberOfWebServiceNodes>

 <numberOfLogRecordEdges>3</numberOfLogRecordEdges>

 <requestorPrincipal>www.justice.gov/#33332324242</requestorPrincipal>

</evidenceBagSynopsis>

<dependencyGraph>

 <webServiceNodes length="4">

 <webServiceNode id="POR_WS" nodeLevel="0"..>

 <webServiceNode id="WEA_WS" nodeLevel="1"..>//added at step 1

 <webServiceNode id="MET_WS" nodeLevel="2"..>//added at step 4

 <webServiceNode id="GEO_WS" nodeLevel="2"..>//added at step 5

 </webServiceNodes>

<logRecordEdges length="3">

 <logRecordEdge id="34534" senderID="POR-WS" receiverID="WEA_WS"

dependencyDirection="Two-Way"> //added at step 1

 ...

 <Message>MsgSeq.1</Message>//added at step 4

 <Message>MsgSeq.2</Message>//added at step 1

 ...

 </logRecordEdge>

 <logRecordEdge id="2196" senderID="MET_WS" receiverID="WEA_WS"

dependencyDirection="One-Way"> //added at step 4

 ...

 <Message>MsgSeq.1</Message>//added at step 4

 ...

 </logRecordEdge>

 <logRecordEdge id="2134" senderID="WEA_WS" receiverID="GEO_WS"

dependencyDirection="One-Way"> //added at step 4

 ...

 <Message>MsgSeq.1</Message>//added at step 5

 <Message>MsgSeq.2</Message>//added at step 5

 ...

 </logRecordEdge>

</logRecordEdges>

</dependencyGraph>

<ds:Signature>

<ds:SignedInfo>

<ds:Reference URI="#evidenceBagSynopsis" >

<ds:Reference URI="#dependencyGraph" >

</ds:SignedInfo>

<ds:SignatureValue>

<ds:KeyInfo>

</ds:Signature>

</EvidenceBag>

43

Figure 3.14 illustrates the GRAPH produced through the above steps, where

LogRecordsEdges is an array of LogRecordEdge’s and WebServiceNodes is

of WebServiceNode’s collected through the run. The output is signed (notice

ds:Signature) by the executer FWS of the generateEvidenceBag process.

Figure 3.15. The Dependency Graph for the Case Study

The case study described above shows how the FWS framework could be helpful for

revealing dependencies between web services through composition models and scenarios

as illustrated in Figure 3.2. Arrows refer to Log Records as edges in a graph; and circles

refer to Web Services as nodes. The figure depicts how the web service choreography

instance through the Case Study could be represented. This figure is also a result of a

typical digital evidence bag document that constitutes a graph which points to

dependencies among the source (MET_WS) and the victim (POR_WS) of malicious

44

activity/path, as well as a possible stepping stone (WEA_WS) through the incident. The

scenarios can be improved; and FWS could be applied to more complex attacks. For the

sake of clarity, a simple scenario has been implemented through this chapter.

3.7. Related Work

To the best of my knowledge, there is no distributed forensic framework for investigating

inter-related web services designed so far. However, the work cited in the rest of this

section shares some common features with my objectives or methods.

WS-NRExchange [9] influenced the model I employ for pair-wise evidence generation

with some differences. [9] provides a framework to support fair non-repudiable B2B

(Business to Business) communications on the basis of a trusted deliver agent notion. It

implements the coeffey-saidha [39] protocol to provide non-repudiation in their work.

However, the framework is designed to run with other protocols as well. Reference [9]

only proposes delivering evidences to the related parties, but not preserving them in

trusted agents. Furthermore, choreographed, composed services are ignored. Although [9]

was not designed for forensics, I use relevant parts in my pair-wise evidence generation.

Herzberg et al. [7] introduces the notion of having an Evidences Layer for e-commerce

transactions. They propose this layer to be at the bottom of the e-commerce stack and on

top of a transport layer (such as TLS/SSL, or TCP/IP). They introduce two protocols to

45

generate and deliver evidences to involved parties in message exchange; the first is the

Simple Evidence Layer Protocol and the second is the optimistic one. They employ

notaries in the first protocol while generating and delivering evidences. I use the layering

approach of Herzberg [7] in the web service stack with minor changes, such as adding the

time stamping point, and the use of their SELP as my pair-wise evidence generation

protocol. Like others, Herzberg et al [7] was not designed for forensics.

I use trusted third parties for pair-wise evidence generation as did Coffey-Saidha et al

[39]. Certified email protocols [44] have also used them, although there are mail

certification protocols without TTP [8]. Although inline TTPs are immature for business

transactions, they add value to forensics evidence. Onieva [40] gives the intermediary

usage perspective in the implementation of inline TTPs for e-commerce transactions.

Onieva also supports multi-recipient cases through these intermediaries, but not for

forensics. Bilal [41] uses BPEL for non-repudiation protocol implementation in web

services, but does not use TTP, his method thereby lacking the capability to handle

message content.

WSLogA [11] tracks web service invocations by logging service invocations using SOAP

intermediaries. Therefore, it captures the external behavior of service invocations. The

main purpose of WSLogA is to provide feedback to business organizations by

comprehensively logging services usage records. However, it does not address any

46

distributed collection mechanism necessary to gather comprehensive forensic evidence

over services sharing multiple servers.

My work has been influenced by many papers on network forensics, of which I describe

two. Wang uses IDS (Intrusion Detection System) alerts [37] to generate an evidence

graph for network forensic analysis. Local reasoning and global reasoning helps them in

defining malicious activity in individual hosts and networks respectively. Unlike Web

Server Nodes in my study, they use hosts as nodes in their graphs.

ForNet [43] is another distributed forensic framework that uses logs from routers in a

network to run agents that provide their log records to ForNet servers. Unlike Wang [37],

ForNet use succinct information of every regular network packets adequate to trace the

actual source of packets even when they are spoofed. Although ForNet was not designed

for Web Services, my work has been inspired by the design of it.

[45] introduces web services collecting log records. Instead of neutral observation of

interactions, it, rather, focuses on providing PKI-based secure audit trails that can be

stored any un-trusted hosts so that any modification, alteration on audit trail cannot go

undetected. Similar mechanism is designed partially for my digital evidence bag

documents, since the evidences should have integrity.

47

3.8. Conclusions

Composed, choreographed or stand-alone web services span many applications and legal

domains. Consequently, any vulnerability in one service can be exploited to affect more

than one service. Once a complaint of an alleged attack is launched, it is necessary to

investigate the nature and source of the attack and assign blame for it. I proposed a

framework referred to as Forensic Web Services that provides this capability as a service

to other web services by logging service invocations. I have shown my preliminary

design and stated how collected logs can provide the capability to produce a bag of

digital evidence to re-create the attack from its logs.

48

CHAPTER 4

EVIDENCE GENERATION MODEL FOR WEB SERVICES

4.1. Introduction

Many multi-party businesses are in the process of being transferred to web services. In

addition, due to the open nature of the Internet, despite best efforts, imposters and even

legitimate actors may not adhere to their obligations within a complex business

transaction. In such scenarios, it may be necessary to examine exchanged information,

and re-create the business process in order to find the incorrect or inappropriate

components, and possibly correct them. The success of such an effort depends upon

being able to preserve the data obtained from the transaction, a.k.a. evidence, in their

original form so that the parties to a dispute or an external entity - such as a jurist - could

be convinced of the true nature of the transaction that took place. Because most complex

web transactions are constructed by a synchronized collection of two-party data

exchanges, if exchanges can be preserved in their original form and provide convincing

arguments as to their synchronized exchange, or lack thereof, I can convincingly

construct the instance of the transaction that took place. The objective of this chapter is to

provide a systematic methodology for this proposed process. In this chapter I concentrate

on the breaches that violate security related properties, and I concentrate on a

49

methodology that addresses preserving evidence of three main security properties:

namely, confidentiality, integrity and availability. With respect to these issues, I describe

a methodology that promotes some software engineering issues that arise in the process:

namely, separation of concerns, reusability, and interoperability. Integrating an evidence

generation mechanism with existing systems is a burden while using current approaches

[9, 6]. It requires some level of control over communicating parties, such as retaining

complete records of exchanged messages, etc. It may also force senders/receivers to

engage in additional activities such as signing and joining sessions. The question is: how

can the evidence layer achieve this in a way that is transparent to the business logic?

As a solution, I propose enhancing the notion of Evidences Layer proposed by Herzberg

[7] for networks into a three-layered framework, and show a modular design of my

framework. I achieve this modularity by using the principle referred to as Inversion of

Control (IoC) for web services, where IoC [46] is a style of software construction

whereby generic code controls the execution of problem-specific code. The generic code

is developed independently and reused on demand in different contexts. IoC provides

sufficient control over communicating parties while maintaining separation of evidence

generation logic. Using runtime interception, the proposed evidence layer can record

messages exchanged among parties, check session invariants, and verify the existence of

signatures on the fly without polluting the business logic.

50

The rest of the chapter is written as follows. Section 4.2 describes my overall design

approach. Section 4.3 describes the three layers of the framework. Section 4.4 presents

my prototype architecture. Section 4.5 describes the process of creating evidence of

global behavior from local behaviors. Section 4.6 describes related work and Section 4.7

concludes the chapter.

4.2. Approach

Figure 4.1 shows a high-level view of my three-layered evidence generation model, with

three parties transacting with each other. If all of them subscribe to proposed service, the

evidence layer establishes communication channels transparent to the three parties to

collect and preserve communications at the lowest layer of the framework. This is done

by storing them in cryptographically secure repositories. I use IoC to weave these

evidence generation modules that intercept invocation from/to the services and forward

them to the evidence framework. I show a prototype implementation of the pair-wise

model using Axis2, and present many protocols that can be used at this layer.

The second layer can use a rule engine or a mining system to derive additional facts from

them, thereby being able to reveal violations that are not directly evident in pair-wise

message records. Although I do not provide details of rules and their utility at this layer, I

briefly demonstrate how evidences of complex scenarios can be derived from stored

instances of pair-wise communications. The next chapter shows the details.

51

Figure 4.1. The Evidence Generation Framework

4.3. Evidence Generation and Retrieval

4.3.1. Pair-wise Evidence Generation

I provide non-repudiation, fairness, and timeliness in my pair-wise evidence generation. I

use digital signatures to provide proof of receipt and delivery, link a message to its

creator/sender and provide message integrity. In web services architecture, URLs may

define identities and some organizational information as may appear in a digital

certificate. Fair message exchange and non-repudiation evidences may be problematic

because a sender may always prefer to get a proof or receipt.

52

For accountability, I use fair non-repudiation mechanisms that utilize Trusted Third

Parties (TTP). I do so because, although there are fair exchange protocols for two

participants (for e.g. Markowitch [8]), these assume that the participants have a-priori

knowledge of the message contents; I do not use them because web services may not

always know the contents.

I require timeliness because of the time sensitive nature of most business transactions.

Due to communication delays and the possibility of the endpoint’s malicious intent, many

previous studies suggest using time-stamp authorities—but these take additional

messages. Although the framework has endpoints signed the time-stamps at their sites it

bases evidence records on time observed at TTPs.

Evidence servers gather pair-wise transactional evidence that flows between sender and

receiver web services, employing inline TTPs using the Simple Evidence Layer Protocol

(SELP) or offline TTPs using Optimistic Evidence Layer Protocol (OELP). Herzberg’s

[7] SELP and OELP are two protocols used by end-points to obtain non-repudiable

evidence by using a specific message format and digital signatures. Because the messages

are XML and SOAP based I use the message format of

<#session|#message|#signatureK(#session|#message/sequence|

#message/envelope))> of which I described the parts in previous chapter.

53

4.3.2. Evidence Strata

The evidence repositories created using any of the stated protocols can be used to

retrieving (1) pair-wise evidence, (2) derived evidence, and (3) comprehensive evidence.

Pair-wise evidence refers to evidences that are part of a particular interaction that may be

one-way, two-way, complete, or incomplete. Pair-wise evidences are mostly of interest to

one party and exchanged at service invocation time. They are also used to construct

derived and comprehensive evidence. Evidence of origin would help the receiver to hold

the sender accountable of the incoming message and evidence of delivery would help a

sender in the same way. Conversely, an evidence of failure of either of these reveals the

non-availability of the other party for service.

Derived evidence helps revealing violations against one web service’s security property

or violations regarding a service level agreement, such as evidence of availability or

evidence of violation, respectively.

Comprehensive evidence refers to evidences that help in revealing multi-party

executions of global compositions.

54

4.4. Prototype Architecture

4.4.1. Reference Architecture

It is essential to know little about Axis2 [30, 31] architecture in order to comprehend how

evidence layer model is realized through a selected endpoint framework.

Message Exchanges in Axis2: Four main types of message exchange occur in Axis2

architecture; In-Only, Out-Only, In-Out, and Out-In. In-Only and Out-Only messages

represent incoming or outgoing messages that are one way and not responded. Through

the chapter, I, uniquely, call these messages OneWay for that In-Only and Out-Only

messages refer to the same thing in the wire. In server side, typically, for one way

operations an operation context that features in-only message exchange pattern is created.

The client side, on the other hand creates an operation context featuring out-only pattern.

Client side calls fireAndForget() method to push out-only messages into out-flow, thus

sending it to the ultimate goal as a one way message. In-Out and Out-In messages

represent incoming or outgoing messages that are two way and are to be responded. This

pattern introduces two messages at least; and I call the first one, TwoWay1st and

TwoWay2nd for the second. In server side, typically, for two way operations an operation

context that features in-out message exchange pattern is created. The client side, on the

other hand creates an operation context featuring out-in pattern. Client side calls

sendReceive() method to push first message into out-flow, thus sending it to the ultimate

55

goal as a request message. After application logic prepares the response message the

message is pushed into out-flow and sent back to the sender client.

Figure 4.2. Context-based Message Exchange in Axis2

Context-based management: A typical message to be sent or received has a lifecycle in

Axis2 architecture. Business logic, for instance, creates a request message with

appropriate parameters, such as Endpoint reference, target service name, operation or

action name for the service. A Message Context through the out flow has been created for

that request. The system preserves all necessary properties of the message and builds the

basic request as a SOAP message upon the configuration of the system. Through the out

flow, the system, as the case may access and alter Message Context.

Axis2 manages WSDL message exchange patterns by the means of mutually created

Operation Contexts. In accordance with the role (client or server) it features, any

endpoint send and receive messages through an Operation Context which contain

message contexts, as illustrated in Figure 4.2.

56

Extensible Message Handling: Axis2 architecture provides a phased handling

mechanism in both inflow and outflow pipes. The message context mentioned above

drops by each handler registered for related service. A handler chain mechanism

regulates the order of handler execution by the means of phases defined in configuration

context, that is, from the very beginning of Axis2 web service framework. Axis2 allows

user defined phases, thus leading handlers to run in a layered behavior.

4.4.2. Evidence Module Architecture

The prototype implementation is simply designed over the above architecture, where

Axis2 allows modules to place their own handlers to retain their own control over

messages. A module can utilize the extensible message handling mechanism of Axis2 to

craft and process messages through In-Flow and Out-Flow pipes towards Axis2 channels

– all business layer messages on their way to the transport layer and all transport layer

messages in the opposite direction. As shown in Figure 4.3, I employ

EvidenceOutHandler and EvidenceInHandler to handle application messages that are

originating from the services engaged to the module and WS-Evidence messages

targeting evidence-mindful services. To successfully realize pair-wise evidence

generation, there is need for additional messages shuttling between parties (endpoints and

TTPs), such as control and acknowledgment messages which entail the module to have

evidence context that will last longer than regular Axis2 operation contexts. Therefore,

my evidence module proposes evidence sessions that squeeze in existing context-based

57

sessions that are inevitably retarded because of the delays employed by additional

messages and evidence processing. I however map evidence context to operation context

using Internal Message Handling to successfully abstract pair-wise evidence generation

from existing contexts. Evidence context includes information such as protocol type (e.g.

SELP or OELP etc), time-out value, TTP address, etc. My module employs control

messages in order for participants to negotiate on evidence context information and to

start an evidence session. Through the first design I introduce three control messages;

CreateSession, CreateSessionResponse, and TerminateSession.

Once the session is established, the module performs internal message handling that

refers to a set of message transformation activities (building and processing respectively

outgoing and incoming messages) between transport, WS-Evidence, and upper layers.

Internal component calls facilitate the transformation process leading to the use of

custom components, such as MessageBuilder, MessageSender, MessageValidator, and

MessageProcessor. As shown in Figure 4.3, a typical pair-wise evidence generation

session is maintained by means of the software artifacts described below.

EvidenceInHandler captures incoming messages before releasing them to the use of the

upper phases’ handlers and the targeted message receiver. This handler looks up the

related evidence session using session ID value in the incoming message. According to

the state of the session and the type of the message, it calls the required component to

process the message.

58

Figure 4.3. Evidence Module Architecture

59

EvidenceOutHandler captures outgoing messages before being sent by transport sender.

It may either create a new evidence session related to the application message if there is

none yet, or call the relevant component to craft the message.

EvidenceMessageReceiver obtains control and acknowledgement messages and

responds with the appropriate message using components in charge. However,

applications messages are processed, extracted here, and released to business logic in a

form in which they are expected from the actual endpoint.

MessageSender pushes additional messages into out flow. Message processors call it

when an outgoing message is to be sent.

MessageBuilder builds messages either from scratch (e.g. additional messages) or

extends existing ones with new parts. EvidenceOutHandler and MessageSender mostly

call this component through a builder factory to instantiate correct message builders

according to message type to be sent out. Builders utilize a set of Axiom API to

create/alter SOAP parts and messages. They also employ signing mechanism using xml-

dsig specification.

MessageProcesssor processes the incoming messages, such as extracting the inner

application envelope, to invoke the actual receiver application operation.

EvidenceInHandler and MessageReceiver mostly utilize this component. Like message

60

builders, every message type has its own processor instance obtained from a factory

object. Very similar to message builders, processors also use Axiom API to parse and

modify the SOAP messages

MessageValidator is in use for verifying digital signatures that are underpinning the

evidence mechanism proposed by WS-Evidence. Like message builders, it implements

this mechanism by pursuing the xml-dsig specification [26].

Having taken control, my module sends and receives WS-Evidence messages via TTP or

directly from/to other endpoints in accordance with the protocol selected for the session.

Here, I describe how this architecture takes part in generating evidences, as a layer

mapping critical activities in the architecture to protocol runs by implementing In-line

and Off-line TTPs.

4.4.2.1. Inline TTP

Three entities involved in inline TTPs are sender, receiver, and a TTP. Sender and

receiver sides have evidence modules that act as agents that generate evidence messages

at endpoints. Figures 4.4 and 4.5 show the relevant steps in a UML (Unified Modeling

Language) sequence diagram [47].

61

Two Way Implementation:

1. The evidence module in the Sender side intercepts (in EvidenceOutHandler) the

request of an envelope and pauses the message context.

2. Creates (using MessageBuilder) and sends (using MessageSender) a

CreateSessionRequest to the receiver web service for the target operation.

3. The evidence module in the receiver side receives (in EvidenceMessageReceiver) the

message and creates and sends a response message back to the sender. It also creates a

session.

4. Sender’s evidence module builds TwoWay1st (<#session|#message|#signatureSender-

K(#session|”1”|# env)>) from the message context paused and sends it to TTP.

5. The TTP recieves TwoWay1st, stores the message, forwards it to the receiver, and

starts a timer.

6. Receiver’s evidence module intercepts (in EvidenceInHandler) the message, processes

(e.g. validates using MessageProcessor and MessageValidator) and extracts the actual

envelope to release it to the expected receiver operation.

7. Receiver application prepares a response message and sends it back to the sender.

8. Receiver’s evidence module intercepts the response envelope, builds a TwoWay2nd

(<#session |#message |#signatureReceiver-K(#session|”2”|# env)>) message and sends it

back to the TTP. If the response TwoWay2nd cannot reach the TTP before timing out,

then, Failure (<#session|#message |#signatureTTP-K (#session|”-1”|# env)>) is signed by

the TTP; it is stored and sent back to the Sender.

62

9. The TTP forwards TwoWay2nd to the sender; it also creates, signs, stores, and sends

TwoWayAck (<#session|#message|#signatureTTP-K (#session|”3” |#env)>) to the

receiver.

10. Sender’s evidence module intercepts the message, processes (e.g. validates) and

extracts the actual envelope releasing it to the expected application. It also creates and

sends a TerminateSession to the receiver web service for related session, thus,

terminating the session.

Figure 4.4. Inline TTP – Two Way

One Way Implementation:

The protocol run is similar with two way implementation in the first three steps. Starting

at the fourth step, the protocol follows the steps below:

4. Sender sends a OneWay (<#session| #message |#signatureSender-K (#session|”4”|# env

)>) message to the TTP.

63

5. The TTP receives the OneWay message, stores the message, and forwards it to the

Receiver. It also creates, signs, stores, and sends OneWayAck

(<#session|#message|#signatureTTP-K (#session|”5” |#env)>) to the sender.

6. Receiver’s evidence module intercepts the message, processes (e.g. validates) and

extracts the actual envelope to release it to the expected receiver operation.

7. Sender’s evidence module creates and sends a TerminateSession to the receiver web

service for the related session, thus, terminating the session.

Figure 4.5. Inline TTP - One Way

4.4.2.2. Offline TTP

There are normally two entities involved in protocol run: sender, and receiver. [7]

Proposes TTP involvement when any acknowledgments are not generated. This protocol

may be chosen when there is a risk of performance bottleneck or man-in-the-middle

attack on TTPs. In this case TTPs do not monitor the activity online, but knows the

64

session ID to collect evidence after the exchange. The corresponding one way and two

way protocols are as follows. Figures 4.6 and 4.7 show the relevant steps in a UML

sequence diagram [47].

Two Way Implementation:

1. Sender’s evidence module intercepts the request envelope and pauses the message

context.

2. Creates and sends a CreateSessionRequest to the receiver web service for the related

operation.

3. Receiver’s evidence module intercepts the message and creates and sends a response

message back to the sender. It also creates a session and informs TTP with session

information (CreateSession message).

4. Sender’s evidence module builds TwoWay1st (<#session|#message|#signatureSender-

K(#session|”1” |# env)>) from the message context paused and sends it to the receiver

directly.

5. Receiver’s evidence module intercepts the message, processes (e.g. validates) and

extracts the actual envelope to release it to the expected receiver operation.

6. Receiver application prepares a response message and sends it back to the sender.

7. Receiver’s evidence module intercepts the response envelope, builds a TwoWay2nd

(<#session |#message |#signatureReceiver-K(#session|”2”|# env)>) message and sends it

back to the sender.

65

8. Sender’s evidence module creates, signs, stores, and sends TwoWayAck (<#session

|#message| #signatureSender-K (#session|”3” |#env)>) to the receiver.

9. Both endpoints’ evidence modules send evidence messages (TwoWay2nd for receiver

and TwoWay1st|TwoWayAck for sender) they collected during the session run to the

TTP.

10. Sender’s evidence module creates and sends a TerminateSession to the receiver

web service for the related session, thus, terminating the session.

Figure 4.6. Offline TTP - Two Way

One Way Implementation:

The protocol run is similar to the two way implementation in the first three steps. Starting

at the fourth step, the protocol follows the steps below:

66

4. Sender sends OneWay (<#session|#message| #signatureSender-K(#session|”4”|# env)>)

message to Receiver.

5. Receiver’s evidence module intercepts the message, processes (e.g. validates) and

extracts the actual envelope to release it to the expected receiver operation.

6. Receiver creates, signs, stores, and sends OneWayAck

(<#session|#message|#signatureReceiver-K (#session|”5” |#env)>) to the sender.

7. Both sender and receiver send the evidences (OneWayAck by Sender and OneWay by

Receiver) they gathered during the invocation time to TTP.

8. The evidence module in the Sender side creates and sends a TerminateSession to the

receiver web service for the related session, thus, terminating the session.

Figure 4.7. Offline TTP - One Way

67

4.5. Building Evidences

4.5.1. Pair-wise Evidence

Figure 4.8. Building Blocks of Pair-wise Evidence

As detailed through the protocol runs above, WS-Evidence messages contain signatures

as evidence, thereby constituting various pair-wise evidences that may be of interest to

endpoints. Figure 4.8 illustrates how WS-Evidence messages constitute pair-wise

evidences through a UML class diagram [47].

68

4.5.2. Derived Evidence

In this case, endpoints can gather evidences from TTPs at any time rather than service

invocation time. In order to generate evidences from TTPs for specific time intervals I

rely on the evidences stored at TTPs. Evidences gathered this way can be used by a web

service to exculpate from accusations. Depending upon the service level agreements, the

number of evidences would increase. I here give two examples assuming endpoints have

a time-out agreement in the first case and scheduled invocations in the second.

Evidence of Availability (EOA) [7]: Availability of a web service for a certain time

interval refers to the fact that TTP has not produced any Failure (refer to step 8 in the

Two Way implementation) message in that period. Either against counterfeit Failure

evidence or for no specific reason, any web service may request availability evidence in

order to exculpate itself at various stages. To do so, it prepares an EOARequest

containing a start time and an end time and sends it to the FWS. FWS checks the records

for Failure evidences which prove that the web service did not respond to some requests

where it meets the time criteria in EOARequest. If FWS encounters no evidence then it

produces new evidence of availability proving that the service was available at that time

interval, signs it and sends to the requester service in EOAResponse message.

Evidence of Violation (EOV): Web services make agreements at the service level. For

example, some services may need to be updated at certain times with one way messages.

69

They define this requirement in an agreement. Services that are not invoked at the

scheduled time interval may request an evidence of violation in order to exculpate

themselves if any incident occurs that stems from the absence of this invocation. The web

service in question prepares an EOVRequest message including the start time and end

time values defining time interval and also sender web service’s identity. FWS checks its

records for submissions originating from that sender and targeted at the web service in

question where the time criteria are met in the request. If FWS encounters no records of

submission while meeting the criteria then it produces an evidence of violation message,

signs it and sends to the requester service.

4.6. Related Work

Rather than applying inline or offline TTP notion, [48] propose a novel language, BP-

Mon, for observing business processes in BPEL. One can translate BP-Mon queries into

BPEL processes so that they can run those monitor processes on the same execution

environment. While this provides capability of observing the details of internal runs, this

however, lacks non-repudiation, thereby introducing less sound evidences from forensic

perspective.

Ardissono [49] proposed a framework to support monitoring choreographed services and

detection of faults along with notification of affected parties. The framework is based on

WS-Coordination. There are similarities between the framework and WS-

70

BusinessActivity: (1) The framework notifies the monitor about the choreography paths

traversed during the execution of overall choreography model. (2) The monitor uses

choreography specs to inference the possibility of how successful the execution of

choreography model through the states of web services involved in the choreography. It

measures the portion of the choreography that has been completed at a given time. While

neutrality can be reached at some level the framework lacks non-repudiation; and

endpoints can always act unlike their notifications which cannot cryptographically be

detected.

As mentioned earlier WS-NRExchange [9] influenced the model I employ for pair-wise

evidence generation with some differences. Their framework is designed to run with

many non-repudiation protocols [8]. Their work, however, reveals that they had little

success in separating WS-NRExchange from lower layers; they are bound to Java RMI.

Axis2-based services, however, successfully separates the lower layer (HTTP, SMTP,

TCP, etc) from the SOAP layer. Reference [9] only proposes delivering evidences to the

related parties, but not using stored evidences in trusted agents for further evidence

derivation as described in Section 4.5.2 Furthermore, they do not address choreographed,

composed services.

Although Herzberg et al. [7] introduced the notion of an Evidences Layer for e-commerce

transactions; they never mention how endpoints run such protocols. Their work seems

sound in separating evidences layer from business logic, however, it lacks explaining

71

how such layer could be attractive for e-commerce systems in terms of integration costs,

such as alteration in their existing code.

I use trusted third parties for pair-wise evidence generation as did others [40, 41] through

their studies. Onieva [40] gives the intermediary usage perspective in the implementation

of inline TTPs for e-commerce transactions, and supports multi-recipient cases through

these intermediaries, but not as a complete separate layer. Bilal [41] uses BPEL for non-

repudiation protocol implementation in web services, but does not use TTP; his method

thereby lacks the capability of producing derived evidences based on log records.

I employed handlers over existing web service architecture in order to design Evidence

Module. Although there are many vendors or platforms [27,28,29,30] that provide

infrastructure for chaining handlers in their web service stack, with Axis2, Apache et al.

[31] have implemented some ws-* standards, such as Rampart for WS-

SecureConversation, Rahas for WS-Trust, Sandesha2 for WS-RM, and Kandula for WS-

Coordination [42].

As mentioned earlier WSLogA [6] tracks web service invocations by logging service

invocations using SOAP intermediaries. Therefore, it captures the external behavior of

service invocations. The main purpose of WSLogA is to provide feedback to business

organizations by comprehensively logging services usage records. However, they never

produce non-refutable evidences.

72

4.7. Conclusions

Previous Chapter showed that neutral, tamper resistant evidences can be used for dispute

resolution and mal-actor participation among web services. In this chapter, I showed how

web services can use such an evidence resolution framework. This can be introduced to

web services in a systematic way that would eliminate custom re-engineering web

services.

73

CHAPTER 5

DETECTING ILLEGAL BUSINESS SCHEMES IN

CHOREOGRAPHED WEB SERVICES:

THE PONZI/PYRAMIDAL CASE

5.1. Introduction

Dynamic service invocations and generating content specific operations among

choreographed web services are being deployed across many industries, creating service

inter-dependencies between web services. These dynamic service inter-dependencies can

be exploited to create a new class of misuses. Some of them exploit the infrastructural

dependencies of the services themselves and others use them to create illegal business

schemes. This chapter focuses on detecting a special type of the second kind: namely

Ponzi/Pyramidal investment schemes created to defraud unsuspecting investors.

Implemented illegal business schemas are difficult to detect because most of them are

similar to legal business schemas for a microscopic observer, and become apparent only

through a macroscopic view. Thus, they can elude local monitoring of web transactions.

Among the plethora of possible illegal business schemes, I choose to study two popular

ones: namely, pyramidal and Ponzi schemes. These are difficult to differentiate from

74

Multi Level Marketing schemes that either run their own business or invest in others.

However, the basic dynamics of Ponzi/pyramidal schemes is rob Paul to pay George

[50]. Charles Ponzi [51] was the first to run such a scheme. For many years, he collected

money that promised return on investment within 90 days for customers who enrolled

others in the scheme. He returned the money to the early investors using the money

invested by late joiners. Other than running this scheme, he never ran any business nor

invested in other businesses and, consequently, did not produce any profit nor incurred

any loss. Charles Ponzi was the first, but not the last, to run such a scheme. Even today,

many incidents, including those that conduct Internet based Ponzi schemes, are being

investigated [52, 53]. In 2006, 25,000 web sites suspected of promoting a pyramid

scheme were investigated to shut down by the Securities Exchange Commission (SEC)

[54].

Table 5.1. Pyramid Scheme (Adapted from [55])

 # Payment of $400

Level 1 $100 x 3 =
$300

Level 2 $30 x 9 =
$270

Level 3 $30 x 27 =
$810

Level 4 $30 x 81 =
$2430

#... # # # # # # # # #... # # # # # # # # #...

……

Level 21
10460353203 #s

Even Larger than World Population

Classic pyramidal schemes also use the same principle, and are shown in Table 5.1. A

smart con-artist, or orchestrator, that originates the scheme convinces the top-level

75

investors by promising them large returns on investment, as do subsequently recruited

investors to their potential customers. Table 5.1 shows the activities of an investor and his

recruits. My example is organized as a 4-level payment scheme with a span of 3: that is,

only up to 4 levels of ancestral recruiters will gain a profit from investments, and every

recruit at any level recruits 3 others. The first level investor recruits 3 others and gets paid

$100 per recruit. These recruits are in-turn expected to recruits 3 others ad infinitum,

thereby building a recruit tree. The original investor will be paid $30 (not $100 this time)

per sub-recruits at levels 2, 3 and 4. The original investor does not get involved with sub-

recruits at levels 2, 3, and 4 and does not profit from investors beyond level 4. The

orchestrator considers recruit activity to be complete when he receives an investment of

$400 from an investor. And, therefore, the orchestrator pays his recruiters $100 for 1st

parent or $30 for the 3 immediate ancestral recruiters, thus paying only $190 at most in

return on one investment of $400. Consequently, any investor makes $3810

(2430+810+270+300) as return on investment (ROI) to a promoter if s/he successfully

recruits 3 other promoters and they subsequently become successful in recruiting a

minimum specified number of other investors (3 in this scheme) all the way down to the

4th level. However, because of active promotions, the scheme disperses fast; but, it

becomes unsustainable at some later time. Then, many promoters are unpaid due to the

lack of new investors [55].

As financial institutions and their business partners are moving to service oriented

architectures such as dynamic brokering over investment firms or stock markets that are

76

using semantic web services are holding more promise. Nevertheless, these techniques

provide a way to orchestrate illegal and unfair business practices. Therefore, in order to

detect such illegal schemes, one needs to have a comprehensive non-repudiable

perspective of complex multi party transaction models. A multi party communication can

arise in two possible ways among dynamic web services. In the first, a static

communication pattern is specified, and all participants follow this prior-known pattern.

In the second, web services discover and transact with other services, thereby

dynamically creating choreographies that were unknown a-priori. Consequently, in order

to discover illegal activity, one has to seek illegal business transactions using both kinds

of choreographies.

The rest of the chapter is written as follows. Section 5.2 shows how web choreographies

can be misused. Section 5.3 explains the framework to collect evidences of pair-wise web

communications in order to detect web choreographies. Section 5.4 defines the objectives

satisfiable from collected evidence. Section 5.5 describes how choreographed global

behavior can be derived from local observations. Section 5.6 formally defines Ponzi

schemas. Section 5.7 describes how global misbehavior can be mined from a collection

of local evidence of business transactions. Section 5.8 describes how to estimate damages

resulting from a Ponzi Schema. Section 5.9 describes related work and Section 5.10 has

my concluding comments.

77

5.2. Misusing Choreographies

5.2.1. Business Misuses

In business misuses, an orchestrator creates a large business scheme that abuses legal

constraints in producing profits, without abusing the underlying choreography or

attacking the infrastructure. Sometimes, a business level mal-actor is a partner in a

choreography that deviates from the originally specified choreography. A choreography

is said to deviate from its specification if one of the participants of the transaction does

not behave as specified. Such deviations may provide an undue advantage to one partner

over others. For example, a travel agency may favor recommending certain hotels or car-

rentals over others that provide comparable or better value to tourists.

5.2.2. Service Misuses

These attacks exploit design flaws on static choreography models, where mal-actors

abuse visible syntactic inter-dependencies of choreographed services.

A dataflow attack can be used to leak mal-code into partner services among regular data.

Unless the recipient service checks for content, malicious data can pass between the

systems. Chapter 3 describes a cross site scripting attack scenario that may leave

evidence that can be used to identify a stepping stone as the attacker.

78

Instantiation flooding [56] generates a typical DoS attack on composed web service when

a mal-actor repeatedly invokes a receiver process at a target web service. Such attacks

affect mostly hierarchically composed web services where the flood of requests can

deviate the state of the choreography engine (for e.g. BPEL runtime). Alternatively, an

attacker can target a specific web service by using a partner in choreography as a

steppingstone; where, on request, a process of the steppingstone may invoke a process at

the target service. Flooding may crash the steppingstone and the target for which the

attacker can blame the steppingstone.

5.3. The Evidence Generation Framework

This section briefly reviews an evidence generation framework proposed in previous

chapter, and will be used to track business level choreographic misuses. This Evidence

Generation Framework (EGF) shown in Figure 4.1, consist of three layers. The bottom

layer (Pair-wise Evidence Generation Service – FWS-TTP) generates evidence for pair-

wise interactions between web services. The middle layer (Evidence Derivation Service -

EDWS) derives facts from available pair-wise evidence in order to refute or justify

claims of agreement violations between communicating partner services. The highest

layer (Comprehensive Evidence Generation Service - CEGWS) generates instances of

requested choreographies from layer 2 and layer 3 data. The EGF provides on-line

evidence generation and management capabilities to other web services as a web service

itself. In order to use the services of EGF, other web services (referred to as member

79

services of the EGF) should integrate EGF with themselves using a centralized service

access point. Thereafter, EGF acts as a trusted third party.

The EGF as a service receives and retains service requests and responds in a

cryptographically secure manner, retains these correspondences in secure repositories,

and provides them for dispute resolution and forensic investigations. EGF provides so

called evidence adapters for all requests.

The previous chapter shows a prototype implementation of EGF layer 1, and presents

many protocols based on One-Way and Request-Response message exchange patterns

(MEP). Currently, EGFs provide evidence for non-repudiation, fairness, and timeliness

using digital signatures to provide proof of receipt and delivery, link a message to its

creator/sender, and provide message integrity. For accountability, EGF uses fair non-

repudiation mechanisms that utilize Trusted Third Parties (TTP). Because, although there

are fair exchange protocols for two participants that do not use TTPs (for e.g.

Markowitch [8]), these protocols assume that the participants have prior knowledge of

the message contents. I do not use them because web services may not always know

expected message content. I require timeliness because of the time sensitive nature of

most business transactions. I base evidence records on time observed at TTPs. EGF

servers gather pair-wise transactional evidence that flows between sender and receiver

web services, employing inline TTPs that use the Simple Evidence Layer Protocol

(SELP) or offline TTPs using Optimistic Evidence Layer Protocol (OELP) of Herzberg’s

80

[7]. SELP and OELP are two protocols used by end-points to obtain non-repudiable

evidence by using a specific message format and digital signatures.

5.4. Evidence of Observed Interactions

Web services use many kinds of messages, such as one-way or request-response, in order

to choreograph business processes among themselves that correspond to the four

proposed WSDL operation types (in-only, out-only, in-out, out-in). Nevertheless, an

external observer that is ignorant of the business processes can observe only One-Way

and Request-Response MEPs, formalized in Definition 5.1.

Definition 5.1 (messages): A web-services message consists of the following

components:

1. Mandatory Fields: of Sender and Receiver Time, where the first two are chosen from

URLs and the last chosen from T.

2. Optional Fields: a finite set of attributes from a set A.

3. Message content: consists of strings from an alphanumeric set C. I use | to denote

string concatenation and sigA(r) to denote the string obtained from signing r with A’s

key.

4. Notation: If m is a message, I denote “m.a” to be the value of the attribute “a” in

message “m”. For example, m.time is the value of the timestamp on m.

81

Definition 5.1 establishes notation to be used in describing the messages used to extract

knowledge about externally observable facts about choreographies. Because different

choreography specifications may select different labels for their identifier fields in order

to bypass naming convention problems, I use XPATH expressions to specify ID values.

Secondly, because any fabricator can produce messages, I rely on cryptographically

secure messages to ascertain reliable evidence. The messages are collected to derive so

called evidence objectives - claims that are to be substantiated or refuted using the

collected evidence, such as the origin of generation, properties of messages, or intended

recipient. Such evidence is generated from cryptographically secure messages.

Sometimes objectives such as evidence of delivery or evidence of non-availability may

require messages to be signed by a TTP.

Definition 5.2 (Primitive Evidence Objectives):

1. Evidence of Origin: A message m with origin A and content r|sigA(r) from A to B is

said to provide evidence of origin.

2. Evidence of Delivery: A message m with content ack|sigTTP(ack|m), where TTP is a

trusted third party or content ack|sigB(ack|m), and where B is m.recipient is said to

provide evidence of delivery.

3. Message Evidence: An evidence of a message m is said to be a pair (m1, m2), where

m1 is an evidence of origin and m2 is an evidence of delivery of m.

As definition 5.2 says, I require cryptographic evidences from a web service of a trusted

third party for claims of origin and delivery. Previous chapter shows how Evidence of

82

Origin and Evidence of Delivery can be collected at TTPs using the WS-Evidence

messages that are generated using non-repudiation protocols. These message evidences

(MEs) are stored as Log Records (LRs) throughout the Evidence Generation Framework

as described in Chapter 4. Because LRs may contain large volumes of data, I use

Message Evidence Indexes (MEI) that refers to messages. Table 5.2 shows a sample

index table, where the first column is an index for stored packets that have attributes of

time, sender, message string, and content in subsequent columns. As shown, index 1

refers to a message with content <..invID..> sent by A to B.

Table 5.2. MEI Table

ID Time Sender Receiver Msg Content

63.. 21 A B r <..invID..>
67.. 22 B C m ”..”
68.. 23 C B k <..payID..>

5.5. Evidence of Choreography

Although there are many choreography specification languages, my objective is to

recognize choreographies from externally observed messages. Hence, I need to develop a

method to abstract the relevant properties of these messages. This section develops the

basic notation used to specify potential relationships between messages.

Authors [57, 58] describe three different artifacts to correlate messages among web

services, keys, properties, and time intervals, listed from the strongest to the weakest with

respect to relating messages. Time intervals use message time stamps and attribute values

83

to relate messages. A key is a pre-chosen attribute of a message that can uniquely identify

a scenario in the given application domain. I use all three forms of message correlation.

Consequently, I define three kinds of choreography patterns. I use the following notations

in order to define my notion of choreography patterns.

Definition 5.3 (Message Attribute Equations): Suppose that (a1,…,an) is a vector of

message attributes and m, m’ are messages. Then an equation of the form m.ai=m’.aj is

said to be a message attribute equation. A finite collection of such equations where all

equations are chosen from (a1,…,an) is said to be a set of attribute equations. If comparing

only one attribute value between any two chosen messages can uniquely relate them, then

the set of equations is said to be set of key equations.

For example, m1.sender = m2.reciver and m1.domain = m2.domain are two message

attribute equations. But m1 and m2 are compared using two attributes from every

message. Thus, they do not form a set of key equations. Assume that an investor can be

identified from a field, say id issued by an investment company instead of using a global

identifier. For example, it can use 3 as an investment id for two different investments sent

to different investment companies, such as company A and B, yet cannot use 3 for other

investments sent to the same company, say A. To define a set of key equations for this

case, I assume there is an invest message sent to a company that has only the id attribute

and the authorization message sent to the bank has attributes invComp and invID. Hence

84

invest.receiver == authorization and invComp and invest.id ==authorization.invID are

key equations.

Definition 5.4 (Time-based Choreography Patterns): I recursively define the set of

time-based choreography patterns ℙtime as follows:

1. If m is a message, then {m}∈ℙtime. That is, a set consisting of a message is considered

a time-based message pattern.

2. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x⊗ty∈ℙ is said to be

a time based concurrency pattern whose members are {(a,b)| a∈x and b∈y}.

3. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x∪ty∈ℙtime is said to

be a time-based choice pattern whose members are x∪ty. That is, the pattern x∪ty has

members of x or members of y.

4. Suppose that x∈ℙtime and y∈ℙtime are time-based patterns. Then, x;ty∈ℙ is said to be a

time-based sequencing pattern whose members are {(a,b)| a∈x, b∈y, a.time <

b.time}. That is, the pattern x must appear before the pattern y.

5. Suppose that x∈ℙtime is a time-based pattern. Then recursively define the time-based

recursive patterns x1,t=x, x(n+1),t=f(xn,t,x), where the function f defines a choreography

85

for x(n+1),t from xn,t and x using the operators ⊗t, ∪t and ;t. Then define x*,t to be

LFP(f,x). That is, x*,t is the least fixed point of the inductive definition.

Definition 5.5 (Property-based Choreography Patterns): I recursively define the set of

property-based choreography patterns ℙprop as follows:

1. If m is a message, then {m}∈ℙprop. That is, a set consisting of a message is considered

a property-based pattern.

2. Suppose that x∈ℙprop and y∈ℙprop are property-based patterns, and (a1,…,an) is a

vector of message attributes. Then, one can say that x⊗py∈ℙprop is a property based

concurrency pattern whose members are {(a,b)| a∈x, b∈y, a.ai1=b.aj1, … a.aim=b.ajm}.

That is, the pair of messages (a,b) are chosen from patterns x and y satisfying the

condition that satisfy a set of attribute equations chose from a vector (a1,…an) of

attributes.

Suppose that x∈ℙprop and y∈ℙprop are property-based patterns. Then, x∪py∈ℙprop is a

property-based choice pattern whose members are chosen from the set x∪py. That is,

a property-based pattern x∪py has members of x or members of y.

86

3. Suppose that x∈ℙprop and y∈ℙprop are patterns and (a1,…an) is a vector of message

attributes. Then, x;py∈ℙprop is a property-based sequencing pattern whose members

are {(a,b)| a∈x, b∈y, a.time < b.time,a.ai1=b.aj1, … a.aim=b.ajm. That is, the pattern x

must appear before the pattern y and the patterns must satisfy the specified set of

attribute equations a.ai1=b.aj1, … a.aim=b.ajm.

4. Suppose that x∈ℙprop is a pattern and (a1,…,an) is a vector of message attributes.

Then, recursively define the time-based recursive patterns using the equations x1,t=x,

x(n+1),p=f(xn,p,x) where the function f defines a choreography for x(n+1),p from xn,p and x

and a set of message equations, say E using the operators ⊗p, ∪p and ;p. Then, define

x*,p to be LFP(f,x,E). That is, x*,p is the least fixed point of the inductive definition.

Definition 5.6 (Key-based Patterns): Replacing “property-based equations” with “key-

based equations” in definition 5.5 gives key-based choreography patterns.

Definition 5.7 (State of a Pattern): If S=S1;xS2, where x could refer to t (i.e. time based)

or prop (i.e. property based), then S1 is said to be a state of a choreography.

For example, (m1⊗pm2) is s state of the choreography patterns ((m1⊗pm2);pm3);pm4 and it

represents a partial computation of the complete choreography pattern.

87

Figure 5.1 illustrates the choreographies of invest and pay transactions. In state 1, the

Invest message (1) has been sent to the Investment Company and the Authorize message

(2) has been sent to the Bank. When the Bank sends the Confirmation message (3) to the

Investment Company, then the state of the choreography becomes 2. The Deliver

message (4) is the last observed message of this choreography, and its receipt represents

state 3. The messages of choreographies are defined as follows:

invest.sender = Investor, invest.recivever=InvComp, invest.content =

invest|sigInvestor(Invest)

authorize.sender=Investor, authorize.reciever=Bank,

authorize.content=authorize|sigInvestor(authorize)

confirm.sender=Bank, confirm.reciever=InvComp,

confirm.content=confirm|sigBank(confirm)

deliver.sender=InvCompany, deliver.reciever=Investor,

deliver.content=deliver|sigInvCompany(deliver)

Then define choreographies for investing and paying (shown in Figure 5.1) as:

1. Investing = (invest⊗pauthorize);p confirm;p deliver where the message attribute

equations are given as:

invest.sender=authorize.sender and

authorize.reciever=confirm.sender and

confirm.reciever=invest.sender

88

2. Paying = (pay⊗pauthorize);p confirm;p acknowledge where the message attribute

equations are given as:

pay.sender=authorize.sender and

authorize.reciever=confirm.sender and

confirm.reciever=invest.sender

Figure 5.1. Sample Invest and Pay Choreographies

Deriving such choreographies from external observations can reveal some illegal

business transactions or reveal some illegal parts of large financial businesses.

Additionally, members of a transaction can derive the actual instance of the transaction

that they participate in and observer the behavior of their partners. For example, a party B

authorizes the Bank to release some amount of money to party A. The Bank, however,

releases the money with some additional fees each time, thereby reducing the money

89

deposited in A’s account. In order to avoid being a party to such deceptions, any service

provider should be able to obtain all instances of participating choreographies.

5.5.1. Pattern Directed Choreography Mining

In this section I show how to mine choreography instances of given patterns from log

records of all observed web transactions using streamSQL [59] and a StreamBase

platform [60]. StreamSQL is an event pattern language that can be used to define queries

over streams of data and StreamBase is an event processing platform that can run those

queries over input source from a file or a database and produce outputs. StreamSQL has

several commands, of which I describe a few that I used. CREATE INPUT STREAM

creates data streams from a named file pre-configured in a known schema. CREATE

OUTPUT STREAM creates an output stream pre-configured according to a schema. The

PATTERN phrase is used to define the search criteria from multiple input streams. A

WITHIN phrase is used to create the maximum size of a window that moves along a

collection of aligned streams searching for a pattern.

90

 GenereateCHOR-Investing
Description: Given the MEI table and the pattern, emits the appropriate messages pertaining
to instances of the pattern.
Input: MEIs are processed as multiple (four for this pattern) inputs

Output: CHOR Investing

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19

20

CREATE INPUT STREAM MEI ($MEI schema);
CREATE OUTPUT STREAM InvestsOut;
CREATE STREAM InvestOut ;
CREATE STREAM AuthorizeOut ;
CREATE STREAM ConfirmOut ;
CREATE STREAM DeliverOut ;
SELECT * FROM MEI
 WHERE msg=="invest" AND receiver=="B"
 INTO InvestOut
 WHERE msg=="authorize"AND receiver=="Bank"
 INTO AuthorizeOut
 WHERE msg=="confirm" AND sender=="Bank" AND receiver=="B"
 INTO ConfirmOut
 WHERE msg=="deliver" AND sender=="B"
 INTO DeliverOut;
SELECT AinvestB.*, AauthorizeBank.*, BankconfirmB.*, BdeliverA.*
 FROM PATTERN (((InvestOut AS AinvestB AND AuthorizeOut AS AauthorizeBank)
 THEN ConfirmOut AS BankconfirmB) THEN DeliverOut AS BdeliverA)
 WITHIN 8 ON time
 WHERE AinvestB.sender=BdeliverA.receiver AND AauthorizeBank.sender=AinvestB.sender
 AND AauthorizeBank.sender=BdeliverA.receiver
 INTO InvestsOut;

Figure 5.2. Generate Evidence of Invest Choreography

The query in Figure 5.2 accepts MEI records in ascending order of their timestamp fields.

In order to successfully process the pattern query, it produces four streams to process

different message patterns such as invest, deliver. Appropriate predicates in each

WHERE clause provide message pattern features, such as sender and receiver

information. The WITHIN phrase uses a window of size 8 in the time filed of records in

search of the specified pattern. The SELECT part gathers the required information about

the detected pattern and emits the result to InvestsOut table specified as the output form

91

as a parameter to the INTO phrase. Figure 5.3 shows how an Investing choreography is

mined from the 12 MEI records of Table 5.3.

Table 5.3. Sample MEI Records

ID Time Sender Receiver Msg Content

23 1 D A purchase productID=3
34 2 A Bank authorize ..invID=23…
45 3 G F book Room=56
47 4 A B invest invID=23
78 5 Q O invest L1Promoter
79 6 P O pay 150
83 7 Bank B confirm invID=23
91 8 H L invest L2Promoter
93 9 B A deliver ..invID=23
96 10 K L pay 30
97 11 G F book Room=57
98 12 V X pay 30

Figure 5.3. Generating Evidence for Investing

The query collects evidences for a specified choreograph pattern. Although the sliding

window helps prevent the same record being counted to create scenario instances for

more than one episode, I can use other message attributes to prevent this double counting.

For example, I can do so by using relations definable using XPATH based functions as

shown below right after line 20 of the query.

92

WHERE GetXPATHValue(AinvestB.content,”../invID/”) ==
GetXPATHValue(AauthorizeBank.content,”../invID/”) &&
GetXPATHValue(AinvestB.content,”../invID/”) ==
GetXPATHValue(BankconfirmB.content,”../invID/”) &&
GetXPATHValue(AinvestB.content,”../invID/”) ==
GetXPATHValue(BdeliverA.content,”../invID/”)

In addition, if I knew a key set of attributes (that is a set of attributes that uniquely

identify a choreography pattern), those can be passed in order to identify the instances

easily. Investor ID=23 would be an example of such a key attribute. Then, the query finds

all evidence related to investor 23, as opposed to finding invest instances for all investors.

5.6. Evidence of Global Misuse

Mining choreographies that are created due to message contents from external

observations requires linkage parameters, which can be derived from some externally

invisible message content making them not very helpful for external monitors and

auditors. One opportunity to obtain them arises when one of the unhappy participants,

say, a victim, makes a complaint mostly about a financial loss. In that case, I use the

following method to detect a spreading Ponzi like scheme.

1. Accept the complaints from victims.

2. Examine the content of specimen records such as a promoting or invest message

provided by the potential victim.

3. Determine the parameters in evidence that can be linked together.

4. Detect choreographies and design them as (e.g. or pattern CHOR) dynamics of the

algorithms.

5. Create the algorithms/queries.

93

6. Run the algorithms/queries in appropriate order and more than one when required.

7. Collect a set of comprehensive evidences and determine if the scheme is illegal and

its effect over the network.

8. Broadcast an alert to current and potential future victims.

The method described above works for hierarchical schemes. Different methods could be

applied for other types of schemes. I apply my heuristic method to generate the

algorithms for a Ponzi-like scheme.

5.6.1. Ponzi Schemes over Web Services

Typical Ponzi-like schemes have three types of actors: a malicious investment service

acting as the orchestrator (a.k.a. con-artist) and many investor services acting as

promoters or victims (depending upon their investment and return rates). Figure 5

illustrates how such actors collaborate with each other to spread the financial scheme

over a network of web services. The Investment Company, InvComp (a.k.a Orchestrator),

promotes A (Promoter) to recruit B into its scheme (by promising a quick return on

investment) and encourages it to promote other potential investors. This promoting

activity (using Promote messages) may not necessarily be observed through the records

because promoters may choose other means to convince investors. After being promoted,

if A invests (Invest messages) in InvComp, then one can say that A has been recruited.

Then A starts promoting InvComp to other investors in order to get a quick return on

94

his/her investment, and in the process recruits B. I recognize that B has been promoted by

A because of the reference value in the content field of the invest message sent by B to

InvComp. In accordance with the return policy of the scheme, InvComp awards A with a

payment (evidenced in the Pay message from InvComp to A). The choreographies

between Investment Company, Recruiters, and Recruitees spread in an investor web

service network. When a recruitee cannot recruit enough investors, then it loses the

money invested, thus being treated as victim (Victim). Figure 5.4 illustrates those

complete and incomplete recruit choreographies.

Figure 5.4. Ponzi-like Recruits over Web Services

However, I do not assume that I know the global scheme when mining, and instead

assume that either a promoter web service identity or an invest message is submitted to a

law enforcement agency by a victim. Following the heuristic algorithm presented above,

95

I can find invest, pay, and promote messages that contain attributes that refer to each

other, thus collaborating with each other in a pervasive manner.

5.6.2. Pattern Discovery

Here I describe how to discover the patterns that will help in creating comprehensive

evidence of illegal business schemes. Following the heuristic algorithm above, let us

assume that a victim brings an invest message that contains a promoter web service. A

query on evidence repository could show that it receives pay messages from other web

services and also have sent an invest message to the same alleged investment company’s

web service. A set of sample records of invest and pay method are shown in Table 5.4.

Table 5.4. MEI Tuples Featuring a Misuse Scheme

ID Time Sender Receiver Msg Content

…
 45 B InvComp invest Promoter=A
 55 InvComp A pay 150
…
 67 C InvComp invest Promoter=B
 76 InvComp B pay 150
 78 InvComp A pay 30
…
 87 Victim InvComp invest Promoter=C
 89 InvComp C pay 150
 92 InvComp B pay 30
 104 InvComp A pay 30

Given the records in Table 5.4, anyone can observe the pattern that keeps the fraudulent

activity alive, where the invest messages are linked by sender header fields and promoter

content fields. That is, every promoter web service in an invest message is being paid

96

right after this invest message. Now, it is time to correlate MEs to conclude that the

promoter, victim, and the orchestrator may be involved in a hidden recruit choreography.

In cases where the promoting activity does not involve a web service message, I can

include those message or choreography patterns as part of the recruit activity. I name this

content-based choreography as recruit. The pattern I as the signature of “rob Paul to pay

George” activity and pattern II as the link between the recruiter and recruitee, thereby

enabling the mining of recruit paths to create recruit trees from MEI records. For

simplicity, I define patterns succinctly; but, more complex patterns may include pay

messages, adding complexity to queries.

Table 5.5. Ponzi Scheme of Fan 1 and Depth 1

I

invest;p pay where
invest.sender=A and
invest.reciever=B and pay.sender=B
and pay.reciever=C and
invest.prometer=pay.reciever

II

invest1;p invest2 where
invest1.sender=C and invest1.
receiver=B and invest2.sender=A and
invest2.reciever=B and
invest2.promoter= invest1.sender

Table 5.4 shows that investors subsequently play a promoter’s role within a subsequent

recruit choreography pattern making a recursive investment scheme. For example, notice

that investor B sends an invest message to the InvComp at time 45. At time 67 another

investor, C, makes a reference to B through its investment message and B gets a payment

(see the pay message at time 76) from InvComp afterwards. The same choreography can

be observed between C and other subsequent investors, revealing that they recruited other

97

investors as shown in later records. Thus, in order to detect such a scheme, I need to

recognize these recursive investment and payback schemes. The recursive scheme creates

a recruit-tree that joins a recruiter to all of its recruitees. By traversing a path in a recruit

tree from a chosen (victim) node to the root of the tree (say recruit-paths), one could find

the orchestrator. The path Victim-C-B-A in Figure 5.4 is such a recruit path.

I use the following notation to specify recruit trees formally. Choose any integer k (to be

used as the fan out of the recruit tree). Then, all finite sequences of {0,1,…,k-1} are used

as identifiers for web service nodes. I use the notation k
<ω to denote the set of finite

subsequences of {0,1,…,k-1}. For example, all binary sequences can be used to index

trees with fan out 2, where the left child of node xp is xpo and the right child is xp1, where

p is a finite sequence of integers {0,1}, i.e. 2<ω. I also use the notation p<q to denote that

p is a subsequence of q where p,q∈k
<ω. I denote the length of any p∈ k

<ω by |p|. Now

suppose p∈k
<ω where |p|=m and p=<p0,..,pm-1>. Then, define the ith ancestors of p for i≥1

as ancestor(i) =<p0,..,pm-i>. Ø represents the empty string in k<ω.

Definition 5.8 (Recruit Trees of fan out k and depth m): Suppose I is an investment

company web service. Inductively define active(n) for every integer n as follows:

1. active(0)={m} where m is defined as a message where m.sender=PØ, m.receiver=I

(say Eq 1)

98

2. Suppose active(n) has been defined and p∈ k
<ω with |p|=n. Then, for each i∈{0,1,…k-

1} define active(p^i)=msg;pPayBack(p^i) (say Eq 2) where msg satisfies the

property msg.sender=Pp^i msg.reciever=I and msg.content=invest (say Eq 3) and

PayBack(p^i) is of the form

PayBack(p^i)=msg1∩pmsg2,…,∩pmsgm where every msgi is of the form

msgi.content=pay, msgi.sender=I, msgi.receiver=Pancestor(p,i) (say Eq 4) for i≤l.

3. Let active(n+1)=active(p^0)∪p,..,∪pactive(p^(n-1))

4. Define a recruit tree to be active* =LFP(f,m,E) where the function f is defined in (1)

and (2), the set of message equations E are defined in (1) and (2), and the message m

is defined in (1).

Notation: I denote the class of Ponzi schemes of fan k and depth l and attribute equations

E as Ponzi(k,l,E), where E is the collection of equations Eq 1, Eq 2 Eq 2 and Eq4.

Definition 5.8 provides a generic definition for Ponzi-like schemes where the number of

recruits employed by any recruiter is limited to an integer k and the number of ancestors

deriving a payback from the recruitment is at most an integer value l. As an explanation,

the web service nodes are numbered by strings chosen from {0,1,…,k-1}, resulting in

trees where every node has at most n. Thus, the parameter p in Definition 8 is used to

denote a path with |p| elements in such a tree. Thus, step 0, with the empty string Ø,

represents the recruiter in item (1) of the definition. Item (2) of the definition assumes

that the tree has been defined up to a path p of length n and finds its next level. This step

consists of a sequential composition of two steps. In the first part, Pp sends messages to

99

each of its children to invest. Then, the second part of the choreography shows each of

these children investing in I, followed by the investor I paying ancestors of these

children. The ancestors that are being paid back are limited to at most l generations. Item

(3) of definition 8 collects all possible paths that extend the tree to the next level n+1;

and, Item (4) collects all sub trees with depth n+1. Thus, the pattern I in Table 5.5 is a

Ponzi scheme where n=2 and l=1. That is, every recruiter recruits only two investors, and

the only person that benefits from these recruits’ investments are their recruiter.

5.7. Detecting Global Misuses

Here I introduce a special query based on StreamSQL that discovers the pattern I defined

in Table 5.5.

 DetectRecruits

Description: Glides over MEIs using window size 3 to detect pattern I along with the predicates
specified in WHERE clause.
Input:MEI tuples
Output:Ponzi-like recruit MEI pairs

1
2
3
4
5
6
7
8

9
10
11

12

CREATE INPUT STREAM MEI ($MEI schema);
CREATE OUTPUT STREAM PonziDetectOut ;
CREATE STREAM InvestFilterOut ;
CREATE STREAM PayFilterOut ;
SELECT * FROM MEI
 WHERE msg=="invest" INTO InvestFilterOut
 WHERE msg=="pay" INTO PayFilterOut;
SELECT "Ponzi-like recruit" AS detected, invest.time AS investTime, pay.time AS payTime,
 pay.receiver AS recruiter, invest.sender AS recruitee
 FROM PATTERN (InvestFilterOut AS invest THEN PayFilterOut AS pay)
 WITHIN 3 (days) ON time
 WHERE invest.receiver==pay.sender AND
 regexmatch(".*"+"promoter="+pay.receiver+".*", invest.content)
INTO PonziDetectOut;

Figure 5.5. Detecting Recruits of Ponzi Schemes

100

DetectRecruits query in Figure 5.5 accepts MEI records in ascending order of

timestamps. In order to successfully process the pattern query, it filters the records into

two, invest and pay employing the predicates defined in line 6 and 7. This will allow the

pattern to employ the appropriate template (see THEN phrase) in line 9. That is, invest

messages are expected before pay messages. Predicates defined in line 11 say that the

receiver of the invest message should be equal to the sender of the following pay message

and the promoter value in the content of the invest message should be the receiver of the

following pay message. The window size is set to 3 in line 10. The SELECT part gathers

the required information about the detected pattern and emits the result to the

PonziDetectOut table. Figure 5.6 shows how two Ponzi-like recruits are detected using

a window of size 3 from a collection of 9 MEIs. Figure 5.6 shows how messages in a

MEI table come into the query and are processed as two separate streams shown as pipes,

where transparent rectangles represent two different snapshots of the query window, one

that arrived at time 5 and the other that arrived at time 8.

Figure 5.6. Detecting Ponzi-like Patterns

101

Detecting few Ponzi-like recruits may give little confidence in declaring that a Ponzi

scheme was detected. In order to increase the confidence, I can define some minimum

support value as threshold, thus alerting only when the threshold is met. The query below

can be added to strengthen the previous detecting query along with a predefined

minimum support value. AlertRecruits query alerts each time at least 6 Ponzi-like

recruits are detected over the output of the previous query. AlertRecruits can be added to

DetectRecruits query to decrease the number of false positives.

 AlertRecruits
Description: Counts over detected Ponzi-like recruits using window size 6 as minimum support.
Emits Ponzi alerts when minimum support is reached
Input:PonziDetectOut from DetectRecruits
Output:Ponzi alerts

1
2
3

SELECT ”Ponzi Alerts”, count() AS minSup
FROM PonziDetectOut [SIZE 6 TUPLES]
INTO PonziAlerts;

Figure 5.7. Enhancing Ponzi Detection

5.8. Generating Comprehensive Evidence

This section shows how to detect the orchestrator, or the earliest known recruiter, of a

Ponzi schema by climbing any recruit path towards its beginning. Then one can follow all

possible paths that originate at the detected recruiter and discover all others that invested

in the Ponzi scheme. This can be found by creating a choreography defined as follows:

Suppose the complaint brings the invest message msg and it is known that the investment

company used by all participants is I, then define ancestorChain(n) as follows:

102

ancestorChain(0)=msg,

ancestorChain(n+1)=ml;p(m1;pk1∪p,.., ∪p ml-1;pkl-1);p ancestor(ancestorChain(n),n)

satisfying the equations E :

m1.content=pay and k1.content=invest,…,ml-1.content=pay and kl-1.content=invest and

ml.content=invest and ml.time < m1.time < k1.time and ,…, ml.time < ml-1.time > kl-

1.time and ml.reciever=I.

Define Earliest(msg) as lfp(f,msg,E).

As a special case, I show how to compute the ancestor chain of the pattern II in Table 5.5

using StreamSQL below in Figure 5.8.

. ClimbRecruitPath
Description: Given the promoter traces back the MEI records and finds the path and the
distance to/from Orchestrator using pattern II.
Input: Promoter $P, MEI tuples

Output: Ancestor Chain of Promoters as RecruitPathOut

1
2

3
4
5
6
7
8
9

10
11

CREATE INPUT STREAM MEI ($MEI schema);
CREATE OUTPUT STREAM RecruitPathOut(
 $MEI schema , newPromoter string);
CREATE STREAM LocalStream ;
DECLARE pointerPromoter string DEFAULT$PUPDATE FROM (SELECT newPromoter AS
pointerPromoter FROM RecruitPathOut);
SELECT * FROM MEI
 WHERE msg=="invest" AND receiver=="O" AND sender==pointerPromoter
 INTO LocalStream;
SELECT time, sender, receiver, msg, content,
 GetXPATHValue(content,”../promoter/”) AS newPromoter
 FROM LocalStream
 INTO RecruitPathOut;

Figure 5.8. Computing the Orchestrator

ClimbRecruitPath is a trace-back query. Given a recruiter, it traces back recruiters

upwards to find the orchestrator. Therefore, it can derive the start time of the scheme and

traverses every record in descending order of timestamps looking for the sender of invest

103

messages. In order to do so, my query declares a dynamic variable (see DECLARE)

called pointerPromoter in line 4 and the suspected promoter is passed as a default

value (see DEFAULT) as the orchestrator. Each time the output emits a hop meeting the

criteria in line 7, the promoter value is picked out from the content of the invest message

by XPATH function (SELECT clause in line 9). It is then written to the output stream

(line 2), and assigned to the dynamic variable pointerPromoter in line 5. The newly

assigned value is used as the predicate in line 7 for locating the next message if it

matches the sender value.

Figure 5.9. Climbing the Recruit Path

Figure 5.9 illustrates how the query traverses back through sample MEI tuples. The query

emits tuples at times 11, 9, 3 and 1. Such a query reveals the distance between a specified

recruiter and the orchestrator. Because long paths imply the un-sustainability of the

scheme, one could get the likelihood of a recruiter becoming a victim of the scheme (that

is not being able to recover the investment and the predicted profits). One other benefit of

this algorithm is that it locates one of the oldest message records to start my trace-

forward algorithms and to create the maximal comprehensive evidence of the scheme.

104

Having discovered the earliest recruits or the orchestrator of the schema, one can start

tracing forward and generating the evidence. The next query compiles the evidence, using

pattern II. The output is a table partially shown in Figure 5.11.

 GenerateRecruitTree
Description: Tracing forward the MEIs, outputs an appropriate table to create tree-view of the
scheme using the pattern II.
Input:MEI tuples

Output: RecruitsOut table leading to recruiter->recruitee tree structure

1
2
3
4
5
6

7

8
9

CREATE INPUT STREAM MEI ($MEI schema);
CREATE OUTPUT STREAM RecruitsOut ;
CREATE STREAM InvestFilterOut ;
SELECT * FROM MEI
 WHERE msg=="invest" AND receiver=="O" INTO InvestFilterOut;
SELECT recruitee.time AS recruitTime,
 recruiter.sender AS recruiter, recruitee.sender AS recruitee
 FROM PATTERN (InvestFilterOut AS recruiter THEN InvestFilterOut AS recruitee)
 WITHIN 6 (days) ON time
 WHERE recruiter.sender== GetXPATHValue(recruitee .content,”../promoter/”)
 INTO RecruitsOut;

Figure 5.10. Generate Recruit Tree

The query in Figure 5.10 accepts MEI tuples. The first SELECT clause in line 4 is a

typical filter with predicates addressing invest messages that are sent to the suspected

orchestrator “O”. Pattern II is defined through the query after PATTERN clause. The

PATTERN clause duplicates the invest MEIs so that it can apply the appropriate template

(see THEN clause) and predicates (see WHERE clause in line 8) between messages. The

query uses a window of size 6, limiting the query in finding the patterns only within the

specified period. Small size windows may lead the query to miss more correlations than

do big size windowed queries. Figure 5.11 shows how the query progresses and when it

emits its findings.

Figure 5.11 illustrates how the query advances through the records. At time 3, th

emits the first recruit; and

5, another recruit is discovered. By time 20, a window of size 6 do

consecutive messages that

window size impacts the outputs of the query. Right next to

trees reveal the promoting architecture of the scheme at various levels.

5.9. Damage Estimation

Finally, I show how to estimate the damage caused by such schemes and the profits made

by the promoters. Based on the findings above

3-Window

3 A B
4 A K

3
4

5

20

105

how the query advances through the records. At time 3, th

and, at time 4, the second. When the query processing reaches time

another recruit is discovered. By time 20, a window of size 6 do

ges that create a specified pattern. Tables in Figure 5.11

window size impacts the outputs of the query. Right next to the tables

trees reveal the promoting architecture of the scheme at various levels.

stimation

to estimate the damage caused by such schemes and the profits made

by the promoters. Based on the findings above, collecting the messages

6-Window 10-Window

A B

A K

B P

20 R J

3 A B
4 A K

5 B P

7 A L

9 B Q

11 B C

20 R J

3
4

5

7

9

11

13

15

17

20

Figure 5.11. Generating Recruit Tree

how the query advances through the records. At time 3, the query

When the query processing reaches time

another recruit is discovered. By time 20, a window of size 6 does not find 6

5.11 show how the

tables, corresponding

to estimate the damage caused by such schemes and the profits made

collecting the messages exchanged

14-Window

 A B
 A K

 B P

 A L

 B Q

11 B C

13 A M

15 B R

17 K H

20 R J

106

between endpoints can be used to measure the damage. RenderWinLossTable query in

Figure 5.12 creates and renders a WinLossTable that contains promoter web services

found by previous query and their earnings and losses through the scheme run.

The query in Figure 5.12 accepts MEIs in ascending order of time and promoter web

services (see line 2) found by the GenerateRecruitTree. After creating the table in line

4, it loads the table with the incoming promoter web service list (see INSERT in line 5).

Because I assume that there are homogenous invest and pay choreographies as described

earlier—not an unrealistic assumption compared to real scenarios, one can access amount

values from deliver and acknowledgment messages respectively using invID and payID

values in first invest and pay messages of both choreography instances (remember Figure

3). This is done by using the patterns in lines 13 and 17 that locate correct amounts for

each invest and pay choreography instances. Collecting invest and pay amounts would

lead us to computing the amount of money flows between web services involved in the

scheme, thus revealing who has what role through the incident, such as victim, promoter,

or orchestrator. Notice the UPDATE clauses in lines 19 and 20, previously collected

amounts of gain and paid are set correctly in the table when they meet the criteria in

WHERE clause. That is, each correspondent promoter web service is updated in gain and

paid fields when the query encounters invest and pay message related to them.

107

 RenderWinLossTable
Description: Tracing forward the MEIs, renders an appropriate table showing how web
services took part in the scheme.
Input:MEI tuples, promoters from GenerateRecruitTree query as RecruitTreeResultsIn

1
2

4

5

6
7
8
9

10

11
12

13

14

15
16

17

18

19

20

CREATE INPUT STREAM MEI ($MEI schema);
CREATE INPUT STREAM RecruitTreeResultsIn (
 ID int, promoter string);
CREATE MEMORY TABLE WinLossTable (
 ID int, promoter string, paid double, gain double
) PRIMARY KEY(ID) USING btree;
INSERT INTO WinLossTable (ID, promoter, paid, gain)
 SELECT ID,promoter,0.0 AS paid ,0.0 AS gain
 FROM RecruitTreeResultsIn;
CREATE STREAM InvestDeliverOut ;
CREATE STREAM PayAckOut ;
SELECT * FROM MEI
 WHERE (msg=="invest" AND receiver=="O") OR (msg=="deliver" AND sender=="O")
 INTO InvestDeliverOut
 WHERE (msg=="pay" AND sender=="O") OR (msg=="acknowledge" AND receiver=="O")
 INTO PayAckOut;
CREATE STREAM InvestOut ;
SELECT
 double(GetXPATHValue(deliver.content,”./amount/”))AS amount,
 invest.sender AS sender,
 invest.receiver AS receiver
 FROM PATTERN (InvestDeliverOut AS invest THEN InvestDeliverOut AS deliver)
 WITHIN 3 ON time
 WHERE invest.msg=="invest" AND deliver.msg=="deliver" AND
 GetXPATHValue(invest.content,”../invID/”) == GetXPATHValue(deliver.content,”../invID/”)
 INTO InvestOut;
CREATE STREAM PayOut ;
SELECT
 double(GetXPATHValue(ack.content,”./amount/”)) AS amount,
 pay.sender AS sender,
 pay.receiver AS receiver
 FROM PATTERN (PayAckOut AS pay THEN PayAckOut AS ack)
 WITHIN 3 ON time
 WHERE pay.msg=="pay" AND ack.msg=="acknowledgment" AND
 GetXPATHValue(pay.content,”./payID/”)== GetXPATHValue(ack.content,”./payID/”)
 INTO PayOut;
UPDATE WinLossTable USING InvestOut AS i
 SET paid = paid + i.amount
 WHERE promoter == i.sender;
UPDATE WinLossTable USING PayOut AS p
 SET gain = gain + i.amount
 WHERE promoter == p.receiver;

Figure 5.12. Rendering a Damage Table for Recruit Tree

108

5.10. Related Work

Luckham [61] proposes Rapide, an event pattern language that defines complex patterns,

that has been implemented in some service oriented architectures. To my knowledge,

none of them provide non-repudiable messages. Luckham [61] also provides rules to

specify business collaborations compliant with the ISO 15022 standard. Although

complex event processing (CEP) is a wide application area, most of the efforts do not

derive global behavior from external observations.

Widder et.al. [62] propose a new approach based on discriminant analysis of events,

grouping them if they represent an unknown pattern. They envision using their method in

recognizing new patterns of credit card use and fraud related to them. Their approach,

however, strongly depended on having complete knowledge of events to accurately

derive behavior. Thus, maliciously created events may raise difficulties in to-be-

developed detection algorithms. They implement the experiment environment based on a

CEP [61] engine.

Semantic correlation of message exchanges allows recreating the exact instances of the

choreographies. DePauw et al. [63] present a heuristic algorithm to find the correlations

between messages. They employed a set of refinement efforts on tables to achieve the

correlations. Barros et al. [57] list other possible opportunities for correlation as described

earlier. However, they offer no algorithm to employ them.

109

5.11. Conclusions

I have precisely specified choreographies that could be used to detect Ponzi and other

illegal schemas occurring among web services. I have shown how to specify these

choreographies using StreamSQL, a language and a run-time that can process queries

over streams of data. Although my choreographies only specify some Ponzi schemas, the

method holds promise in specifying and detecting other illegal business schemes [64] that

can be mined from repositories of financial transactions. The next chapter addresses

extending my method in developing an online warning system that detects business

schemas that appear legal from a microscopic view, but are macroscopically illegal.

110

CHAPTER 6

ONLINE DETECTION AND ALERT MODEL AGAINST MISUSES

OVER WEB SERVICES

6.1. Introduction

Financial institutions and their business partners are moving to service oriented

architecture; and semantic web services are building much more promise such as

dynamic brokerage over investment firms or the stock market. The previous chapter

introduced queries that generate evidence of web services behavior such as legal

choreographies or misusing choreographies in the case of Ponzi/Pyramidal schemes.

Those pattern queries generate evidence out of messages stored at repositories.

Especially, illegal business schemes may keep running and dispersing over new web

services as time passes. Rather than post mortem or late detection there is need to have an

online detection and alert mechanism for immediate responses, such as informing

potential victim services regarding the spreading of illegal business activity.

In addition to business misuses, mentioned above, there are exploits at service level as

well. Mal-actors in those cases abuse the inter-dependency spanning over the web

services employed by static choreography models. Dataflow attack, for example, is a

111

special type of service level exploits that is most difficult to detect since the malicious

code leaks into services among regular data. Chapter 3 described a XSS (cross site

scripting) attack scenario in detail; web services, would definitely consider online

detection, prevention, or alert mechanism on demand against those. Instantiation flooding

[56] is another service misuse of denial of service (DoS) type on web service

compositions. Briefly, the attacker repeatedly invokes the receiver operation of the

process at the target web service. The target engine tries to instantiate every request, thus

reaching DoS. The web services that are confident on maximum throughput values would

consider a detection and prevention model against such kind of misuses.

Through the chapter, I give brief explanation of my framework which I enhance for it can

help online detection of web choreography misuses in section 6.2. Section 6.3 describes

my online detection model and sample queries than can detect different types of misuses

in real time. Section 6.4 describes an alert model that can warn potential intended

endpoints, such as potential dependent web services. Section 6.5 describes the online

detection architecture that is designed for the EGF framework. Section 6.6 discusses

related work; and Section 6.7 concludes the chapter.

6.2. The EGF in Online Mode

In order to facilitate and base evidence generation on a reliable infrastructure that can

convince the services who wants accountability on their transactions and fast detection

112

when misused, I proposed designing an Evidence Generation Framework (EGF) that

preserve appropriate evidence to recreate the composed web service invocations

independently of the partners of the transaction in Chapter 4. While evidence derivation

and comprehensive evidence generation is done by storing/retrieving evidences in

cryptographically secure repositories in Chapter 5, I here propose upgrading those layers

to function in online mode by caching evidence streams and querying from those. To do

so, bottom layer passes evidence indexes into upper layers at service invocation time,

thus feeding these services with live evidences for mining complex ones out of them.

Having employed cache based live queries onto those layers I propose a twofold response

model; alert and prevent as illustrated in Figure 6.1.

Figure 6.1. The EGF in Online Mode

113

6.2.1. Enhanced Pair-wise Evidence Generation

The EGF provides online detection by means of two services: CEGWS (Comprehensive

Evidence Generation Web Service) and EDWS (Evidence Derivation Web Service) as

illustrated in Figure 6.1. The former generates evidence against global and complex

misuses and the latter generates evidence against service misuses.

As I explained pair-wise evidence generation process in detail through previous chapters,

WS-Evidence messages flow between endpoint web services (notice double sided arrows

in Figure 6.1) through FWS-TTPs in a specific message structure as below:

<#session| #message |#signatureSender-K (#session|”4”|# env)>

In order to enrich the EGF with online capability, I propose enhancing the pair-wise

evidence generation process at TTPs. Below, the pseudo BPEL diagram shows a typical

delivery process connecting to online services at service invocation time, thus leading to

online detection, prevention, or alert mechanisms on demand.

114

Figure 6.2. Deliver Process for Online EGF

The pseudo process above shows sender-receiver interactions and live detection

invocations rather than detailed activities through the process. The deliver process at

TTPs extracts each message received (notice the first Receive in Figure 6.2) in MEI

format defined in previous chapter where sender and receiver fields extracted from

#session—msg and content fields from the #message parts of a WS-Evidence application

message (e.g. OneWay in Figure 2); and ID and time fields are assigned by the process

itself—and stores them at stations. In order to glue the process to online services for

detection, prevention, and alerting I enrich the process as described above. That is, the

process forwards MEIs into EDWS (notice the Invoke after first Receive) and CEGWS

(notice the Invoke before Reply) thus earning the EGF framework live detection

capabilities.

115

6.2.2. Evidence Derivation

In the second layer, endpoints can gather evidences from TTPs at any time rather than

service invocation time. In order to generate evidences from TTPs for specific time

intervals I rely on the evidences stored at TTPs. Evidences gathered this way can be used

by a web service to exculpate from accusations. Depending upon the service level

agreements, the number of evidences would increase. Chapter 4 explains samples for

evidence of violations against time-out agreements and scheduled invocations between

two endpoints. I here demonstrate how Evidence Derivation services (EDWS) can derive

evidences regarding service misuses online, thus leading to immediate feedbacks to the

bottom layer for probable prevention.

6.2.3. Comprehensive Evidence Generation

The top layer can use a rule engine or a mining system to generate global (multi-party)

facts, thereby being able to reveal misuses that are not directly evident in pair-wise

message records (first layer) and cannot be revealed deriving the evidences at the second

layer. Through the chapter, I demonstrate how live evidences of complex scenarios can

be mined from evidence of observed interactions of pair-wise communications. The

framework generates alerts for potential victims, investigators, or arbiters of such global

misuses so that they can take immediate actions.

116

6.3. Online Detection Model

Any intrusion detection approach today mentions two types of detection model; one is

anomaly detection and the other is misuse based. For my work, I follow the misuse based

approach.

Figure 6.3. Business Misuse Case

Through the misuse based approach, I categorize the misuses over web services. Low

level security implementations (e.g. WS-Security, WS-Trust) eliminate most

vulnerability and prevent exploits over them such as identity impersonation,

confidentiality violations. Through the layer, WS-Evidence, that I proposed earlier, I

claim that more complex, misuses over web services can be detected. I classify them as

117

service misuses that are targeting services directly. Denial of service is the most common

technique to misuse any services, thus very likely to target web services. Dataflow attack

is another way of employing a misuse mostly exploiting vulnerability at endpoint web

services. The most complex misuses over web services would be business misuses as

illustrated in a misuse case diagram in Figure 6.3.

6.3.1. Online Detection of Business Misuses

Web services build choreographies and perform illegal business activities such as Ponzi

schemes, pyramid schemes, or money-laundering global models. My detection model

looks for specific misuse pattern featuring this activity. Rule generators of the EGF

framework either heuristically figure out what the pattern exactly is or they may employ

more abstract misuse patterns which more likely tends to produce false positives. I

proposed a heuristic algorithm for discovering Ponzi-like misuse of choreographies in

Chapter 5. However, I need more abstract patterns to detect business misuses without

being dependent on any specific scenario case.

6.3.1.1. Abstracting Misuse Patterns

The query proposed in previous chapter is concrete and can be strictly applied to a

specific domain of misuse emergences. For example, my heuristically discovered patterns

would apply to only one specific orchestrator of the scheme. Here, I propose abstracting

those concrete patterns to address more misuses that may have occurred than those based

on one orchestrator. To achieve this, I use role based abstraction to generalize the

118

endpoint web services’ involvement in the service choreography. I also use type based

abstraction to generalize messages flowing between endpoints. In order to determine to

what roles and types the web services and messages pertain, I propose using two

methods; the first is to mine past data and learn their classes and the second is to get their

roles at registration. Using these techniques I believe I can create type and role tables for

messages and web services respectively. Through this chapter, I assume I already have

those classification tables and PEG services having access those tables.

6.3.1.2. Mapping Messages to Types

Web services carry message names through the body parts of SOAP envelopes

corresponding to the content of the messages. Different XML schemas may use different

names for the same entity. For example, a pay activity may be represented by either

“payInput” or “sendPay” through their SOAP envelopes. Hence, a typical type table

should be able to address one-to-many activity-to-messages relations as illustrated in

Table 6.1.

Table 6.1. Message Type Table (MTT)

ID Message Type

1 PayInput Pay
2 SendPay Pay
3 PayRequest Pay
4 Investment Invest
5 InvInput Invest

119

Given the above table and a MEI record, instead of MEI.msg==”invest” or

MEI.msg==”pay”, I achieve abstracting as below for invest and pay types of messages

through my pattern queries:

MTT.message==MEI.msg AND MTT.type=="Invest"
MTT.message==MEI.msg AND MTT.type=="Pay"

6.3.1.3. Mapping Web Services to Roles

As a reminder of the restriction to external observations of messages, I only have web

service endpoints’ identities as sender and receiver. Because I base my signature

verification on PKI, that is, only the public keys registered in the system; I, however, now

need role information. For example, a web service would act as an investment company

accepting investing messages from investors and would act as an investor investing on

other companies. A typical role table should be able to address many-to-many web

services to roles relations as illustrated in Table 6.2.

Table 6.2. Web Service Role Table (WSRT)

ID Service Role

1 A Investee
2 A Investor
3 C Investor
4 D Bank
5 A BankCustomer

Given the above table and a MEI record, for both receiver and sender of a message, I

achieve abstracting as below for invest type of message through my pattern queries:

WSRT.service==MEI.receiver AND WSRT.role=="Investee"
WSRT.service==MEI.sender AND WSRT.role=="Investor"

120

 DetectRecruits
Description: Glides over MEIs using window size 3 to detect pattern I in previous chapter
along with the predicates specified in WHERE clause.
Input:MEI tuples
Output:Ponzi-like recruit MEI pairs

1
2

3

4
5

6

7
8
9
10
11
12
13

14

15
16

17
16

17

18
19

20

CREATE INPUT STREAM MEI ($MEI schema);
 CREATE INPUT STREAM MessageTypesIn (
 ID int, message string, type string);
 CREATE INPUT STREAM WSRolesIn (
 ID int, service string, role string);

CREATE OUTPUT STREAM PonziDetectOut ;
 CREATE MEMORY TABLE MessageTypesTable (
 ID int, message string, type string) PRIMARY KEY(ID) USING btree;
 CREATE MEMORY TABLE WSRolesTable (
 ID int, service string, role string) PRIMARY KEY(ID) USING btree;
 INSERT INTO MessageTypesTable (ID, message, type)
 SELECT ID, message, type FROM MessageTypesIn;
 INSERT INTO WSRolesTable (ID, service, role)
 SELECT ID, service, role FROM WSRolesIn;

CREATE STREAM InvestFilterOut ;
CREATE STREAM PayFilterOut ;
SELECT * FROM MEI, MessageTypesTable AS MTT,
 WSRolesTable AS WSRTInvestee, WSRolesTable AS WSRTInvestor
 WHERE MTT.message==MEI.msg AND MTT.type=="invest" AND
 WSRTInvestee.service == MEI.receiver AND
 WSRTInvestee.role==”Investee”
 INTO InvestFilterOut
 WHERE MTT.message==MEI.msg AND MTT.type=="pay" AND
 WSRTInvestor.service == MEI.receiver AND
 WSRTInvestor.role==”Investor”
 INTO PayFilterOut;
SELECT "Ponzi-like recruit" AS detected, invest.time AS investTime,
 pay.time AS payTime, pay.receiver AS recruiter,
 invest.sender AS recruitee
 FROM PATTERN (InvestFilterOut AS invest THEN
 PayFilterOut AS pay)
 WITHIN 3 (days) ON time
 WHERE invest.receiver==pay.sender AND
 regexmatch(".*"+pay.receiver +".*", invest.content)
 INTO PonziDetectOut;

Figure 6.4. Live Detection of Ponzi-like Recruits

6.3.1.4. Using More Abstract Content Linkage

Previous chapter used exact XPaths of linkage parameters through the message. Here I

generalize this as well. Therefore, for my abstract detection queries I propose regular

121

expression matching through the entire content of messages. Below is an example of

looking for a promoter reference through an invest message without binding it to a

specific path of a specific schema.

regexmatch(".*"+payMEI.receiver +".*", investMEI.content)

Hereafter I show how to mine business misuse instances of given patterns over live MEIs

of all observed web transactions using streamSQL [59] and a StreamBase platform [60]

that I explained in previous chapter.

The query in Figure 6.4 is in streamSQL and can detect an abstract misuse pattern, say, of

what happens in real time. DetectRecruits accepts live MEI records sorted in ascending

order of timestamp by a sort operator. It also accepts message type table in line 2 and web

service role table in line 3 from the local source and loads them into memory tables in

lines 7-10. In order to successfully process the abstracted pattern query, it filters the

records into two: invest and pay employing the predicates defined in lines 14 and 16.

Notice the WHERE clauses in these predicates employ abstractions by looking up type

and role tables as described earlier. Having invest and pay streams separate, the query,

now, employs the appropriate template (see THEN phrase) in line 17. That is, invest

messages are expected before pay messages. Predicates defined in line 19 say that the

receiver of the invest message should be equal to the sender of the following pay message

and the promoter value in the content of the invest message should be the receiver of the

122

following pay message. The window size is arbitrarily set to 3 in line 18. The SELECT

part gathers the required information about the detected pattern and emits the result to the

PonziDetectOut table. Figure 6.5 shows how two Ponzi-like recruits are detected using

the window of size 3 from a collection of 9 MEIs. Figure 6.5 shows how messages in a

MEI table come into the query and are processed as two separate streams shown as pipes,

where transparent rectangles represent two different snapshots of the query window; one

that arrived at time 5 and the other that arrived at time 8.

Figure 6.5. Detected Ponzi-like Patterns

Detecting few Ponzi-like recruits may give little confidence in declaring that a Ponzi

scheme was detected. In order to increase the confidence one can define some minimum

support value as threshold thus alerting only when it meets. The AlertRecruits query

presented in previous chapter (see Figure 5.7) can be appended to above query as it is to

achieve this.

123

6.3.2. Online Detection of Service Misuses

Unlike business misuses, service misuses do not need a global perspective to indicate

illegal intent. Even only one malicious message can launch an attack or exploit some

vulnerability at a target web service. Or a specifically designed set of messages can

employ exploits at a target web service. For both cases below I briefly describe malicious

content and instantiation of flooding techniques and propose detection queries for them.

6.3.2.1. Malicious Content

Here the signature of the misuse would be malicious content carried inside the messages.

A typical example would be XSS attack described in Chapter 3. Detecting such attacks

needs less complicated queries that require scanning the content and a well built library

of malicious scripts. Assuming already having such a library as illustrated in Table 6.3,

the query in Figure 6.6 detects messages that contain those signatures of malicious

scripts. Those script signatures might be derived some prevention cheat sheets such as

OWASP’s (Open Web Application Security Project) [65].

Table 6.3. Signature Table (ST)

ID Misuse Signature

1 XSS <script>
2 BufferOverFlow /sh
3 BufferOverFlow /bash

124

 DetectMalicousContent
Description: Checks every message content if there is a malicious content.
Input: MEI tuples
Output: Matched attacks

1
2

3
4

5
6
7
8
9

CREATE INPUT STREAM MEI ($MEI schema);
CREATE INPUT STREAM AttackSignaturesIn (
 ID int, name string, signature string);
CREATE OUTPUT STREAM AttacksOut;
CREATE MEMORY TABLE SignatureTable (
 ID int, name string, signature string

) PRIMARY KEY(ID) USING btree;
INSERT INTO SignatureTable (ID, name, signature)
 SELECT ID, name, signature FROM AttackSignaturesIn;
SELECT SIG.name AS misuse FROM SignatureTable AS SIG, MEI
 WHERE regexmatch(".*"+SIG.signature+".*", MEI.content)
 INTO AttacksOut;

Figure 6.6. Detecting Malicious Content

DetectMalicousContent accepts live messages in MEI tuples and loads attack signatures

prior to their run in lines 5-6. Attack signatures may reside in a database table or a regular

expression file. In either case, there are readers and database clients to pass tuples into the

input adapter, thus allowing them to be used in expression matches at line 8.

6.3.2.2. Instantiation of Flooding

Another service misuse type would be denial of service that is very common for every

type of service application. Below the SOAP layer the problem is the same with typical

DoS over HTTP services; however, in the web services case, the transport layer may

vary, thus a SOAP layer solution would helpful. Assuming that TTP processes run over

hardware with high computation power, I address instantiation floods targeting receiver

services. Each receiver web service may declare different thresholds for its processes

125

depending upon their business logic or memory usage. Therefore, as shown in Table 6.4,

there is need to have a table at TTP stations storing web services, and relevant threshold

values of maximum throughput, say, per second, against probable instantiation flooding

attacks.

Table 6.4. Web Service Threshold Table (WSTT)

ID Service Threshold

1 A 4
2 B 19
3 C 99

 DetectInstantiationFlooding

Description: Using time based window checks if there is a set of messages targeting at same
receiver exceeding its threshold in number.
Input:MEI tuples
Output:“Instantiation Flooding” alerts containing attacker, victim, count and time interval
information

1
2

3
4

5
6
7
8

9
10
11

12
13
14

CREATE INPUT STREAM MEI ($MEI schema);
CREATE INPUT STREAM ThresholdsIn (
 ID int, service string, threshold int);
CREATE OUTPUT STREAM DoSsOut ;
CREATE MEMORY TABLE ThresholdTable (
 ID int, receiver string, threshold int
) PRIMARY KEY(ID) USING btree;
INSERT INTO ThresholdTable (ID, receiver, threshold)
 SELECT ID, service, threshold FROM ThresholdsIn;
CREATE STREAM AggregateByTimeOut ;
SELECT sender, receiver, count() AS count,
 firstval(time) AS startTime, lastval(time) AS endTime
 FROM MEI [SIZE 8 ADVANCE 1 TIME OFFSET 0]
 GROUP BY receiver, sender INTO AggregateByTimeOut;
SELECT “Instantiation Flooding” AS misuse, a.sender AS attacker,
 a.receiver AS victim, count, a.startTime, a.endTime
 FROM AggregateByTimeOut a, ThresholdTable t
 WHERE count>t.threshold AND a.receiver==t.receiver
 INTO DoSsOut;

Figure 6.7. Detecting Instantiation Flooding

126

The query in Figure 6.7 accepts live messages in MEI tuples and loads service thresholds

prior to its run in lines 5-6. Service thresholds may reside in a database table or a regular

expression file. In either case there exist readers and database clients to pass tuples into

the input adapter, thus allowing them to be used in threshold matches. Since the actual

frequency of the messages determines whether a set of messages is malicious or not, the

above query uses the time window rather than using timestamp values inside records.

That is, messages incoming every 8 seconds are processed by the query. And the window

shifts every second as coded in line 9. For every 8-second sets of messages the query

groups the messages in sender and receiver fields in line 10 and selects the count values

for each group in line 8. The WHERE clause in line 13 detects if there is an

“Instantiation Flooding” attempt from a certain “sender” (called attacker) based on

“receiver” (called victim) services’ threshold criteria in a 8-second window of live MEI

records. Finally the matching result is emitted in line 14.

6.4. Alert Model

Having generated enough evidences regarding a misuse, my framework sends targeted

alerts. As described above I categorize misuses and define their types. In order to

introduce a stable and robust alerting framework I have to address two issues: First, I

need to define an effective domain of web services to alert. Based on types of alerts the

scope of the web service network to be alerted is determined. Second, I need to tune the

queries to produce unique alerts per misuse detection, thus denying false positives. Here I

describe how to scale down the alert domain.

127

6.4.1. Scaling Down the Alert Domain

The alert model described above has to scope the alerting domain. One important reason

for that is to deny the framework producing so many unnecessary alert messages, thus

causing network congestions, waste of computation at endpoints, and triggering

endpoints to take actions mistakenly. I describe three ways to narrow the alert recipient

domain. First, depending upon misuses I consider alerting only dependent web services

given a message, thus creating a dependency tree starting from the message as root.

Second, for some misuses one may need to know the types of web services that have the

potential to take part in the misuse as victim. As described earlier, Ponzi schemes target

web services that are the type of investor, that is, web services that are likely to make

investments through web services architectures. As third, not only for predefined misuses

but also for use cases there is need to warn potential members. Mostly for anomaly based

scenarios the framework alerts the potential domain of a choreography model regarding a

suspicious unknown misuse of the model. Hereafter, I describe how I can draw the

intended domain regarding those methods.

6.4.1.1. Dependency Tree Generation

When a suspected activity occurs and is detected relating to a message then there is need

to alert other services upon this activity. One of the essential issues in an alert model is to

scale down the alert domain for fast access to intended endpoints and not spending time

trying to access/disturb irrelevant services. Learning dependencies over past message

128

interactions becomes vital at this point and is twofold: First, one can trace back to learn

possible web service invocations causing the root activity; and second, tracing forward

could allow one to learn downstream invocations possibly caused by the root. However,

the observed two messages may not necessarily be linked to each other. For example,

when A sends a message to B and B sends a message to C, the first message may not

have to be the cause of the second. Authors [57, 58, 63] work mostly on exact correlation

of messages. Basu et. al. [66] proposes a probabilistic work that is trying to understand

the message correlations with various probabilities. Here I, however, do not need exact

causal correlations to obtain the downstream dependents of a message. The query below

learns downstream dependencies for a web service as root. The query expects to start

from a record in the past and traverses the records forward generating a dependents table.

 GenerateDependencyTree
Description: Tracing forward the MEIs, outputs a table to create tree-view of dependents.
Input: MEI tuples

Output: DependentsOut table leading to invoker->dependent tree structure

1
2
3

4

5
6
7
8
9
10
11
12
13

14
15
16

CREATE INPUT STREAM MEI ($MEI schema);
CREATE INPUT STREAM DependentsIn (service string);
CREATE OUTPUT STREAM DependentsOut (
 time timestamp, invoker string, dependent string);
CREATE MEMORY TABLE DependencyTable (service string)
 PRIMARY KEY(service) USING btree;
INSERT INTO DependencyTable (service)
 SELECT service FROM DependentsIn;
INSERT INTO DependencyTable (service)
 SELECT dependent FROM DependentsOut;
CREATE STREAM NotInTreeOut;
SELECT MEI.*, dt_out.service AS inTree
 FROM MEI OUTER JOIN DependencyTable AS dt_out
 WHERE MEI.receiver == dt_out.service INTO NotInTreeOut;
SELECT NITO.time AS time, NITO.sender AS invoker,
 NITO.receiver AS dependent
 FROM NotInTreeOut AS NITO, DependencyTable AS dt
 WHERE NITO.sender==dt.service AND isnull(NITO.inTree)
 INTO DependentsOut;

Figure 6.8. Generating Dependency Tree (Forward)

129

The query in Figure 6.8 accepts MEI records and a root service as shown in line 2. The

query loads (lines 5-6) the root service into the DependencyTable which is created on

memory and is appended each time the new dependent services are found. The SELECT

in lines 10-12 retrieves the MEI even if the receiver of the MEI is not in the table and

adds a new field, inTree , as null. The next SELECT checks if the inTree value is null

and the sender is in the DependencyTable. If the criteria meet in line 15 the output

stream (notice “FROM DependentsOut”) inserts a new dependent service into the table

in lines 7-8, thus building a downstream dependency table.

Figure 6.9. Generated Dependency Trees

Figure 6.9 illustrates the actions that GenerateDependencyTree takes traversing over a

set of MEI tuples listed at the top in ascending order of time. Tuples at times 1,2,3,5, and

7 meet the criteria that the query looks for. It emits outputs including invoker and

dependent fields. These two fields lead to building dependencies in tree form.

130

6.4.1.2. Web Service Types

The EGF requires web services to register under specific role types, such as “investor”,

“investee” or “bank”. This could be associated with related misuse types. That is, an

investor web service might be a victim, promoter, or a prospective victim for a Ponzi-like

misuse as defined earlier. This could help the EGF to alert the exact web services when a

specific misuse is detected by looking up the potential web services of the associated

type. For example, only investor web services would be alerted for a detected Ponzi-like

misuse.

6.4.1.3. Potential Members

When a suspicious activity is observed regarding a global model all possible web services

that can get involved in the model are to be alerted. This might be achieved in two ways:

First, early association with global models (use patterns) and second extracting the global

models along with all possible branches that it may climb up at any probability. The first

can be performed during the first registration of use pattern. The latter requires that

global patterns be examined in detail along with all logical splits, choices, loops, etc.

6.5. Online EGF Architecture

The EGF introduces two different online architectures for detection, prevention, and

alerting. The first is for business misuses, thereby employed remotely on a central system

that gathers all messages. The second is for service misuses, thus employed at TTP

131

stations mostly for prevention purposes or marking the malicious activity for detection

purposes.

6.5.1. Business Level Design

A central online web service called CEGWS generates business level comprehensive

evidences. As shown in Figure 6.10, collecting the Message Evidence Index records from

TTPs at their service invocation times when it produces and stores alerts. CEG Alert

clients send alerts to relevant web services that might be threatened by the misuse.

Figure 6.10. Online CEGWS Architecture

The CEG (Comprehensive Evidence Generation) Web Service collects MEI records

from other FWS-TTP stations. The records are stored on one hand and directed to the

132

StreamBase MEI input adapters to be processed for evidence of business misuses or other

comprehensive evidences. The web service accepts one way WS-Evidence messages

including MEIs from TTP stations and lower level security mechanisms are performed

for confidentiality and authentication purposes.

The MEI Input Adapter is a live input adapter accepting SOAP messages and

outputting MEI tuples in real time into online detection event applications. As the

StreamBase input adapter API empowers such live adapters (e.g. JMS, IBM MQ) I

propose designing a real time adapter which is extracting index records from WS-

Evidence SOAP messages and passing MEI records into StreamSQL process engines for

query runs.

MEI Tuples are produced by MEI input adapters. They all enter StreamBase processors

and related StreamBase event application. They, at this early phase, are inevitably

unsorted on the time field.

The Sort Operator, using an on-demand window size, sorts incoming records because

MEI records are assumed unordered when they first arrived from several TTP stations.

Therefore, patterns that need time based dependencies among the messages coming from

a variety of stations could even be detected.

133

Misuse Pattern Queries are based on a particular pattern query language, streamSQL,

and as shown earlier, discovered misuse patterns are queried using those streamSQLs.

StreamBase’s modular event application structure would introduce the capability of

mining many patterns consecutively. In accordance with the pattern streaming MEIs

might be ordered in ascending or descending timestamps. Each query is supposed to emit

different outputs as alerts, thus requiring calling output adapter simultaneously for several

times.

Alert Outputs are mostly designed in SELECT parts of streamSQLs of misuse patterns.

The type of detected misuse is the essential part for any alert output so that the alert

output adapter can take appropriate action and the Alert Client can invoke web services

that might get affected. The schema below shows the essential fields for a typical alert

output.

The Alert Output Adapter processes over the alert outputs and based on the type of

misuse it calls Alert WS-Client to send alert messages.

The Alert Client is a typical WS client called by the Alert Output Adapter when misuse

is detected. It creates SOAP communications with endpoint web services through WS-

Evidence alert message specification. It fires one way alert messages as including the

details described below.

134

Alert Messages contain information related to a business misuse incident. Business

misuses may be in several types (#misuse_type) and each types of misuse may feature

various schemes (#misuse_code). I, therefore, propose coding each scheme distinctly.

Each misuse scheme consists of one or more malicious actors (#mal_actors{actor1,

actor2…actorN}), thereby alert messages having a series of mal-actors.

{#misuse_type, #misuse_code, #mal_actors{actor1, actor2…actorN}}

Evidence modules at endpoints or specifically designed XML firewalls can absorb the

alert messages in above format. They can take immediate actions such as creating a rule

ignoring messages coming from suspected malicious actors or creating a black list for not

being involved in any activity with them.

6.5.2. Service Level Design

A local online evidence derivation web service called EDWS generates service level

evidences. As shown in Figure 6.11, it receives the envelopes from the deliver process at

TTPs prior to their service invocations it produces, and prevents or marks relevant

messages. EDWS Alert clients send alerts to CEG web services so that they might help

through some further investigations. EDWS Message clients invoke the deliver process

back to continue their actual invocations.

135

I propose an application level prevention model, that is, the Deliver process conducts

early detection by invoking the EDWS. The process pushes the deliver messages into

locally implemented EDWS that runs queries defined in streamSQL earlier. First, the

receive activity initiates instances for each request and pushes the messages into local

detection service that checks the messages using reasonable window sizes to look for

misuse patterns. The detected messages are marked and all messages are sent back to the

process.

In accordance with the policies employed by the service logical operator in Figure 6.2,

one option is that a termination is performed over the instance or branches other way and

continues as the rest of the process instructs. However, in any case, the alert message is

produced and sent to CEGWS for further investigation. This is done by the alert client as

illustrated below.

Figure 6.11. Online EDWS Architecture

136

EDWS is invoked by the Deliver processes at TTPs at service invocation times. The

records are processed by the StreamSQL pattern queries for service misuses such as

instantiation flooding or malicious content. The tuples are marked if they feature the

misuse pattern and in accordance with the policies, the deliver process either terminates

those sessions or lets them run.

The architecture employs Regex readers to read malicious signatures from a signature file

and the related query loads them into a memory table for further lookups through the

detection process.

Other types of readers or local input adapters parse other service level agreement (SLA)

files in order to load significant threshold values into lookup tables queried during

detection.

The EDWS Message Client marks the messages involved in any misuse. As a typical

web service client invokes the deliver process back addressing the second receive activity

(remember Figure 6.2) in the process.

The EDWS Alert Client is different from the CEG alert client because it connects to

only CEG web services rather than endpoint web services. It creates store messages in

MEI format with a specific msg value “alert” and content value as defined in alert

137

message definition above. On the contrary of TTP stations, EDWS clients send alert

messages in MEI format inside store messages.

6.6. Related Work

As mentioned in previous chapter, Widder et.al. [14] propose a new approach based on

the discriminant analysis of events grouping them if they represent an unknown pattern.

They envision their approach would help recognizing new patterns of credit card

transaction use case scenarios and the fraud activities related to them. Their approach,

however, does not promise any live detection and alert mechanism.

Sense & response service architecture (SARESA) of [66] provides real time business

intelligence (BI) unlike traditional BIs. SARESA introduces a complete process of

detecting, interpreting, automation, and response to business partners. Rather than my

live external observations of communications it proposes an event-driven architecture

that is collecting the events from members. Therefore, it is incapable of prevention. On

the other hand, leaving the partners free to send events to the system would deny it being

more sensitive in detection which is not the case through my model. However, SARESA

has the advantage of serving diverse IT architectures and is not bound to only web

services.

138

Ari [67] describes a data mining model management system that addresses model

outdates, scalable management, semantic differences between models, and business

process integration for real time BI over SOA. Although the work in [67] does not

propose or address specific real time architecture it helps those systems to be multi

dimensional in time, syntax, or semantics regarding the models they can use. Such

technique is similar to my abstraction method only in one dimension, which is, bridging

the syntax gap.

6.7. Conclusions

To abstract detection queries I generalized them based on web service roles and message

types. Using such queries I introduced a more promising online detection model for web

services. Proposing a dependency tree generation query I narrowed the domain of

potential web services to be effected and should be alerted based on detection query

outputs. Categorizing misuses at the service and business level I briefly designed a

prevention model for service misuses and an alert model for the business level.

139

CHAPTER 7

EVALUATION OF EXPERIMENT RESULTS AND

VALIDATION STATEMENT

7.1. Introduction

Through my dissertation, I introduced a three layered platform to generate evidences of

web services misuses. The services at the bottom and middle layers have been studied by

others with a narrower scope [9, 41, 69, and 70]. Therefore, I tended to validate the third

layer of my evidence generation framework in which I introduced novel queries in

Chapter 5. I summarized those queries and the patterns they follow along with the names

I used through the chapter in Table 7.1 below.

Table 7.1. Query-Pattern Mapping

Query Name Pattern Pattern Name

GenereateCHOR-Investing (invest⊗pauthorize);p confirm;p deliver invest-chor

DetectRecruits invest;p pay invest-pay

ClimbRecruitPath invest1;p invest2 invest-invest

GenerateRecruitTree invest1;p invest2 invest-invest

 In order to test their accuracy and performance rates. I generated synthetic data and used

a special simulation platform as my test environment.

140

7.2. Data Characteristics

I introduced an illegal business scheme, which is novel to the best of my knowledge.

Therefore, I was unable to access real data featuring such scheme. However, I generated

special synthetic data in MEI format called MEI-I that reflect Ponzi/Pyramid Schemes,

which I introduced in Chapter 5. The MEI-I, having 1 record per second, contains 193827

records in total spreading over three days (January 19, 2006 – January 21, 2006). The

MEI-I is a file in CSV (Comma Separated Values) format. I focused on four aspects

which one can observe through real life records of a potential Ponzi scheme while

generating the MEI-I that are defined and explained shortly. The first is the density of

messages over the course of the entire life cycle of the scheme. The second is the

proximity rates between selected messages. The third is the overlapping rate of

overlapping transactions and choreographies. And finally the capacity rate of data that

hides such a complex scheme among its records.

Density: Typical Ponzi records reflect a tree structure which builds on hierarchical

recruits in depth and horizontal recruits in breadth (fan). Through the infant phase, that is

early levels, the tree has few recruits and grows extremely fast in its mid way; and

towards the end of tree, it starts being unsustainable, and therefore fewer recruits start to

appear and consequently lower the spread. The chart in Figure 7.1 illustrates how Ponzi

records scatter over the synthetic data. In order to measure the spread, I define density as

141

the number of records obtained per time interval. In my study, I used 12 hour time

intervals to compute density.

Figure 7.1. Density of Ponzi Records over MEI-I

Overlapping: As mentioned, Ponzi records scatter based on fan and depth. While one

can observe overlapping recruits in fan, it is impossible to see overlapping recruits over

the same recruit paths in depth, because the records are time sequentialized within a path.

Assuming R1, R11, and R12 are recruiters; and R1 recruits both R11 and R12, thus

constituting a recruit tree of fan 2 and depth 1. For such a recruit tree, while invest-

chorR11 and invest-chorR12 choreography instances can overlap each other, neither invest-

chorR11 nor invest-chorR12 can overlap invest-chorR1 choreography instance over MEI

records. I measure overlaps simply counting pairs of choreography instances of which

0

5

10

15

20

25
2

0
0

6
-0

1
-1

8
 1

2
:0

0

2
0

0
6

-0
1

-1
9

 0
0

:0
0

2
0

0
6

-0
1

-1
9

 1
2

:0
0

2
0

0
6

-0
1

-2
0

 0
0

:0
0

2
0

0
6

-0
1

-2
0

 1
2

:0
0

2
0

0
6

-0
1

-2
1

 0
0

:0
0

2
0

0
6

-0
1

-2
1

 1
2

:0
0

N
u

m
b

e
r

o
f

R
e

co
rd

s

Record Timestamps

Density

Ponzi Records

142

message records cannot be isolated from one another when they are sorted based on their

timestamps. The sample overlapping records are shown in Table 7.2. According to the

table, while invest-chorO31 - invest-chorO33 and invest-chorO32 - invest-chorO33 are

overlapping, invest-chorO31 - invest-chorO33 is an example for totally isolated instances.

Therefore, given the table below, I count 2 overlaps. Based on this measurement, I

counted the overlaps through MEI-I and obtained the numbers listed in Figure 7.2 for

invest-chor and invest-pay choreographies.

Table 7.2. Overlapping Invest Choreography Instances

Time Sender Receiver Msg Content

2006-01-19 01:28:26 O31 Bank authorize invID=31

2006-01-19 01:30:08 O31 O invest promoter=O3 invID=31

2006-01-19 01:31:47 Bank O confirm invID=31

2006-01-19 01:32:03 O32 Bank authorize invID=32

2006-01-19 01:33:04 O O31 deliver invID=31

2006-01-19 01:34:41 O32 O invest promoter=O3 invID=32

2006-01-19 01:34:54 Bank O confirm invID=32

2006-01-19 01:35:03 O33 O invest promoter=O3 invID=33

2006-01-19 01:35:06 O33 Bank authorize invID=33

2006-01-19 01:35:10 Bank O confirm invID=33

2006-01-19 01:35:13 O O33 deliver invID=33

2006-01-19 01:35:17 O O32 deliver invID=32

Towards the mid life of a Ponzi scheme, when the scheme spreads rapidly the number of

overlapping records, are expected to be high. Figure 7.2 shows that recruit levels from 2

to 5 records are so dense and so are their overlapping rates. Notice that the numbers of

overlapping records for invest-chor and invest-pay patterns are variables of my detection

queries.

143

Figure 7.2. Overlapping Ponzi Records over MEI-I

Proximity: I define proximity as distance (seconds) in time between the first message

and the last message of related pattern (choreography) instance through MEI records. As

I employed previously defined patterns for dynamics of my queries, one essential criteria

for their success would be the proximity of pattern instances. For example, if an invest

message is unexpectedly further away from a pay message, then this pattern may go

undetected, thus leading to higher false negative rates subsequently. Figure 7.3 shows

proximity values for each pattern regarding their message evidence indexes over my test

data. I show minimum, average, and maximum values in seconds that may further help in

determining query parameters in general and window sizes in particular.

Level-1 Level-2 Level-3 Level-4 Level-5 Level-6 Level-7 Level-8

Number of Recruits (N) 3 9 27 9 9 3 3 3

invest-chor 0 3 3 3 1 0 0 0

invest-pay 0 2 5 4 1 0 0 0

0

5

10

15

20

25

30
R

e
cr

u
it

s

Overlapping

Figure 7.3. Proximity Values of Records over MEI

Capacity: The properties I described so far could be helpful in evaluating the accuracy

and performance of queries, because they directly effect how those patterns spread over

my test records. They, however, have

performance evaluation, developing a simple data generation code and created three more

data sets using the seed data (MEI

contains the same Ponzi malicious activi

number of records. MEI

bigger respectively as shown in Figure 7.4.

0

10000

20000

30000

40000

50000

60000

invest-chor

invest-pay

invest-invest

T
im

e
 D

is
ta

n
ce

 (
se

c)

144

7.3. Proximity Values of Records over MEI-I

The properties I described so far could be helpful in evaluating the accuracy

and performance of queries, because they directly effect how those patterns spread over

my test records. They, however, have little use in performance evaluation. For

performance evaluation, developing a simple data generation code and created three more

data sets using the seed data (MEI-I) I originally created. MEI-X is a data set that

contains the same Ponzi malicious activity. However it is 10 times bigger than MEI

number of records. MEI-XX and MEI-L are other two sets that are 20 and 50 times

bigger respectively as shown in Figure 7.4.

min avg max

9 92.83 1202

17 109.31 1220

17 31795.2 53226

Proximity

The properties I described so far could be helpful in evaluating the accuracy

and performance of queries, because they directly effect how those patterns spread over

little use in performance evaluation. For

performance evaluation, developing a simple data generation code and created three more

X is a data set that

ty. However it is 10 times bigger than MEI-I in

L are other two sets that are 20 and 50 times

Figure 7.4. Capacity Values of Test Data

7.3. Test Environment

As I mentioned earlier, I defined use/misuse patterns using StreamSQL and subsequently

employed StreamBase platform to detect those patterns. I used specially generated data

described above in MEI structure. I implemented StreamBase’s feed simulation platform

accepting those data in CSV files. The platform empowers users to run their StreamSQLs

over any user-defined file satisfying the data schema expected by the query. The platform

also provides observing outputs of query runs. Using the StreamBase Manager, one can

also observe CPU and Memory usage during the course of query executions. Although

StreamBase encourages using their enterprise servers for benchmarking and better

performance, I observed that their feed simulation platform was adequate to test my

queries even over vast amount of data at reasonable resource allocation rate. Table 7.3

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Number of Records

Size on Disk (kb)

S
iz

e

145

Figure 7.4. Capacity Values of Test Data

, I defined use/misuse patterns using StreamSQL and subsequently

employed StreamBase platform to detect those patterns. I used specially generated data

described above in MEI structure. I implemented StreamBase’s feed simulation platform

ta in CSV files. The platform empowers users to run their StreamSQLs

defined file satisfying the data schema expected by the query. The platform

also provides observing outputs of query runs. Using the StreamBase Manager, one can

CPU and Memory usage during the course of query executions. Although

StreamBase encourages using their enterprise servers for benchmarking and better

performance, I observed that their feed simulation platform was adequate to test my

t amount of data at reasonable resource allocation rate. Table 7.3

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

MEI-I MEI-X MEI-XX MEI-L

Number of Records 193827 1937676 3875286 9688116

Size on Disk (kb) 11,827 112,069 224,117 560,260

Capacity

, I defined use/misuse patterns using StreamSQL and subsequently

employed StreamBase platform to detect those patterns. I used specially generated data

described above in MEI structure. I implemented StreamBase’s feed simulation platform

ta in CSV files. The platform empowers users to run their StreamSQLs

defined file satisfying the data schema expected by the query. The platform

also provides observing outputs of query runs. Using the StreamBase Manager, one can

CPU and Memory usage during the course of query executions. Although

StreamBase encourages using their enterprise servers for benchmarking and better

performance, I observed that their feed simulation platform was adequate to test my

t amount of data at reasonable resource allocation rate. Table 7.3

L

9688116

560,260

146

shows the details of my test environment, which is identically, used for all further

experiments.

Table 7.3. Test Environment

 Hardware

CPU :Intel Core2 T7400
 2.16 GHz, 4MB L2 Cache,
667 MHz FSB

Physical

Memory

:2 Gigabyte, 995 MHz

Harddisk :250 GB, 7200 rpm

 Software

Operating

System

:Windows XP SP2

JVM :SUN JDK 1.5.0.15
StreamBase

Studio

:6.4 Version

Max Heap

Size

:1024 MB

7.4. Accuracy and Performance

In order to test accuracy and performance using the environment described above, I tested

four major queries listed in introduction section over appropriate data set/s.

7.4.1. Testing Accuracy

Effective tuning on queries would lead to more reasonable accuracy rates, such as

optimization on window sizes or adding/reducing message attribute equations for

approximating queries from property-based patterns to key-based patterns.

Generating Evidence for Invest Choreography: Through the records in MEI-I, I have

hidden 66 invest choreography instances of which proximity and overlapping rates have

been given earlier in this chapter. After running the GenereateCHOR-Investing

147

streamSQL given in Chapter 5 for generating evidence of invest choreographies,

observed accuracy values were invariant based on the window size used. Figure 7.5

shows those True Positive, False Negative, and False Positive values, which show that

bigger window sizes decrease False Negatives while increasing True Positives. I

observed that I cannot avoid false positives as long as the number of overlapping invest-

chor instances is above 0 with bigger window sizes. False positives were based on

overlapping invest choreography instances. Because the query is property based, it is not

resistant to overlapping records. When I employed records that are key based and slightly

changed the query to detect based on key attributes over records then I observed 0 false

positives. This, however, may not be the case in real life all the time.

Figure 7.5. Accuracy Rates for GenereateCHOR-Investing

1-size
10-

size

20-

size

40-

size

80-

size

93-

size

160-

size

320-

size

640-

size

1203-

size

1938

27-

size

True Positive 0 1 5 20 50 54 60 63 65 66 66

False Negative 66 65 61 46 16 12 6 3 1 0 0

False Positive 0 0 0 0 3 3 4 5 5 5 5

0

10

20

30

40

50

60

70

N
u

m
b

e
rs

Generating Invest Choreography
(GenereateCHOR-Investing)

148

Generating Evidence for Ponzi-like recruits: Through the records in MEI-I, I have

hidden 63 invest-pay hidden choreographies of which proximity and overlapping rates

have been given earlier (notice the values for invest-pay patterns in Figures 7.2 and 7.3)

in this chapter. After running the DetectRecruits streamSQL given in Chapter 5 for

generating evidence of Ponzi-like choreographies observed accuracy values were

invariant based on the window size used. Figure 7.6 shows those True Positive, False

Negative, and False Positive values, which show that bigger window sizes decrease False

Negatives while increasing True Positives. I observed that I cannot avoid false positives

as long as the number of overlapping invest-pay instances is above 0 when bigger

window sizes are used. False positives were based on overlapping invest choreography

instances. Because the query is property based, it is not resistant to overlapping records.

Figure 7.6. Accuracy Rates for DetectRecruits

1-size
18-

size

40-

size

80-

size

110-

size

160-

size

320-

size

640-

size

1222-

size

19382

7-size

True Positive 0 2 10 33 48 54 60 62 63 63

False Negative 63 61 53 30 15 9 3 1 0 0

False Positive 0 2 6 10 13 15 20 32 45 45

0
10
20
30
40
50
60
70

P
o

n
zi

 R
e

co
rd

s

Ponzi Detection (Property based)
DetectRecruits

149

When I employed records that are key based and slightly changed the query to detect

based on key attributes over records then, I observed 0 false positives. To upgrade Ponzi

detection query to a key-based query, DetectRecruitsK, I added below clause and the

results showed as in Figure 7.7. While the original query only matches a receiver of a

pay message of the preceding invest message content, this new predicate looks to match a

sender of an invest message with subsequent pay message content, thus mutually

correlating invest-pay message pair based on a key property. However, this may not be

the case in real life all the time.

AND regexmatch(".*"+"recruit="+invest.sender+".*", pay.content)

Figure 7.7. Accuracy Rates for DetectRecruitsK

Climbing Recruit Path: Starting from any promoter (a.k.a. recruiter), the

ClimbRecruitPath query climbs up to the early records of the scheme using invest-

invest pattern, thus pointing out the orchestrator’s first activation. To my observation,

1-size
18-

size

40-

size

80-

size

110-

size

160-

size

320-

size

640-

size

1222-

size

19382

7-size

True Positive 0 2 10 33 48 54 60 62 63 63

False Negative 63 61 53 30 15 9 3 1 0 0

False Positive 0 0 0 0 0 0 0 0 0 0

0
10
20
30
40
50
60
70

P
o

n
zi

 R
e

co
rd

s

Ponzi Detection (Key based)
DetectRecruitsK

150

unlike other queries, a missing record through the path prevents the query from

computing the path although it is still runs and wastes CPU time.

Generating Recruit Trees: The GenerateRecruitTree uses invest-invest pattern as

well. The proximity values for this pattern have been shown earlier in this chapter.

Because invest-invest records defined in this pattern can never overlap due to its

hierarchical (recall investR1; investR12 described earlier) structure. Consequently the false

positives are non-existent due to zero overlaps. Running the GenerateRecruitTree

streamSQL given in Chapter 5 for generating recruit trees there are three properties one

can observe regarding the success of such query, number of recruits in fan 1 and depth 1

(e.g. a recruiter->recruitee pair) detected, number of distinct sub trees varying in fan and

depth, detected recruit rate, and the completeness rate of the tree revealed. Detected

recruits are expected to constitute a tree structure. However, missing branches due to

partial outputs might create distinct sub trees without creating the main recruit tree.

Queries running within small window sizes may generate a large number of unconnected

sub recruit trees thereby decreasing the chance to compute the main recruit tree. For

example, the query may generate R1->R11, R1->R12, R1->13, R12->R121, and R122-

>R1222 recruiter->recruitee pairs, where while one can observe first four pairs constitute

a tree with four branches in fan 3 and depth 2. The R122->R1222 pair, however, cannot

link to the previous tree because of missing R12->R122 recruit, thus constituting an

independent tree in fan 1 and depth 1. Therefore, the number of distinct sub trees is 2 for

this output. Using number of detected recruits (R) and the total number of recruits (N) of

151

the main tree, I compute the detected recruit rates (RR=R/N*100) dividing the number of

detected recruits by the total number of recruits. I also compute the completeness rate

(CR=RR/T) by dividing the detected recruit rate by the number of distinct sub trees (T). I

introduce the Completeness Rate formula, because neither the detected recruit rate nor

the number of distinct sub trees is adequate to measure the ability to completely

determine the recruit tree. I observed high rates in detected recruits where the number of

distinct and unconnected sub trees were higher as well, thus decreasing the completeness

of the generated tree. Table 7.4 shows the results within various window sizes and their

corresponding outcomes. The graph in Figure 7.8 also illustrates how completeness rate

deviates from detected recruit rate within various window sizes.

Table 7.4. Test Results for GenerateRecruitTree

Recruit
Tree

(N=63)

Detected
Recruits

(R)

Distinct
Sub-Trees

(T)

Detected
Recruit Rate

(RR=R/N*100)

Completeness
Rate

(CR=RR/T)

18-size 1 1 1.59 1.59

500-size 4 1 6.35 6.35

5000-size 7 1 11.11 11.11

10000-size 9 1 14.29 14.29

20000-size 14 4 22.22 5.56

31796-size 30 5 47.62 9.52

45000-size 47 4 74.60 18.65

53227-size 63 1 100.00 100.00

100000-size 63 1 100.00 100.00

193827-size 63 1 100.00 100.00

152

Figure 7.8. Accuracy Rates for GenerateRecruitTree

In terms of optimizations based on window sizes, I observed using a value slightly bigger

than maximum proximity value of a pattern gives the best value. During my tests, using

window sizes at maximum proximity values gave best results in terms of True Positive

and Completeness Rates. However, this is valid when I can correctly estimate this

maximum value and when this value is not an outlier.

7.4.2. Testing Performance

As mentioned earlier, I observed maximum proximity rates give the best decision during

my tests. Therefore, I built my performance tests upon those values per query. I used the

environment described earlier over data sets in different sizes listed in Figure 7.4.

According to my tests, queries for generating invest choreographies and recruit trees

showed similar results as illustrated in Figure 7.9. The query execution times for

detecting Ponzi-like recruits are more than others over the largest data set, MEI-L.

.00

20.00

40.00

60.00

80.00

100.00

120.00
R

a
te

s
(p

e
rc

e
n

t)

Generating Recruit Tree (N=63)

Detected Recruit Rate

(RR=R/N*100)

Completeness Rate

(CR=RR/T)

153

Recruit path climbing algorithm which traverses backward over records showed best

performance where there is no need to use larger window sizes.

Figure 7.9. Performance Test Results

7.5. Validation Statement

I used StreamBase Studio Feed Simulation platform for performing my tests during the

validation. Although there is still higher performance opportunities promised by vendors,

StreamBase in particular, I observed my queries reveal reasonable outcomes in terms of

performances tests even using this IDE based test environment rather than an enterprise

environment. I also observed the queries result in reasonable accuracy values given the

specially crafted synthetic data sets. Given the data set, I successfully determined a

reasonable window size for window based queries. Using attributes, I also successfully

MEI-I MEI-X MEI-XX MEI-L

GenereateCHOR-Investing 3 22 46 191

DetectRecruits 3 23 46 225

ClimbRecruitPath 3 19 37 97

GenerateRecruitTree 3 23 42 193

0

50

100

150

200

250

E
la

p
se

d
 T

im
e

 (
se

c)

Performance

154

could converge the evidence outcomes tuning the force of time, property, and key-based

patterns directing those queries.

155

CHAPTER 8

CONCLUSION

8.1. Conclusions

Critical applications, such as those used by business, crave for accountability, which can

only be achieved by having of forensically sound evidence. As a successor to business

implementations, existing implementations of service-oriented architectures have little

promise in providing sound evidences. As I mentioned earlier, for service-oriented

architectures I consider evidences as sound only if they are neutral, comprehensive, and

reliable because of interdependencies between services and the ability to build global

services using composed services.

I extended the existing evidences layer notion of Herzberg et al. to the web services

paradigm as a state-of-the-art technology in SOA. The evidences layer proposed by me

includes non-repudiation protocols implementing Trusted Third Parties (TTPs) which is

unavoidable in achieving neutrality of interactive evidence. They also promise reliability

because of the cryptographic backing used during the process. I enhanced the existing

notion of evidence collection with the distributed collection of evidences residing in

156

many TTPs that I refer to as FWS-TTP in order to reach comprehensive evidence to

address the need to reveal global views of composed service executions. Through this

work, I based the collection process on actual log records (LR) and their indexes (LRI)

residing on FWS-TTPs rather than on a central repository. Although I was unable to test

my distributed collection algorithm, it holds promise in narrowing the scope of

examination regarding any incident.

Placing the FWS-TTPs at the bottom I upgraded my evidence management model into a

three-layered Evidence Generation Framework (EGF). The new model proposed a central

approach in storing and collecting evidences regarding global model executions. I

designed endpoint modules that can be used to integrate existing web services without

any custom re-engineering and without polluting the existing business logic at endpoints.

Although I explained how my framework can generate pair-wise evidences through

prototype architecture, this would have no promise with respect to generating evidences

against global models for either use or misuse cases. To generate comprehensive

evidences, at the top layer of my framework, I designed queries mining use and misuse

case patterns of web service choreographies out of message evidence indexes (MEI)

stored at a central repository. I precisely defined the Ponzi/Pyramidal business scheme as

a misuse pattern along with corresponding queries. Because it was not possible to obtain

real data, I tested queries using a set of synthetic data specifically prepared for revealing

the success of queries.

157

Finally, in order to respond to the detected misuses, as they occurred, I introduced a live

detection/prevention/alert model. I first generalized the queries to run in a live

environment and address a larger set of misuses. Categorizing the architecture for service

and business level designs: I explained how FWS-TTPs should feed upper layers while

generating pair-wise evidences at service invocation times, how feedback results are used

from service level for prevention, and how business level generates alerts based on live

MEIs.

In my opinion, such a framework would help its member web services in many ways,

such as providing the basis for many global model specifications and solving disputes

among partners. In addition, it might also be an effective platform for revealing ongoing

global business misuses and alerting members of their occurrence.

8.2. Future Work

As mentioned during the case study in Chapter 3, the collection of dependent messages

and services might traverse over multiple-TTPs, that is, the need may arise to make the

EGF scalable all over the Internet. In order to achieve similar tasks, WS-Trust and SAML

based federation and delegation mechanisms should be reified over the framework.

158

I have already mentioned two types of basic evidence based on service level agreements

(SLA) in Chapter 4: (1) Evidence of Violation and (2) Evidence of Availability. In

addition, many different types of Evidence of Violations could be generated from SLAs

and EGFs. Using a predefined format for SLAs, such as WSLA (Web Service Level

Agreement) [69], a generic algorithm would be helpful to create evidence of violations in

the case of an unexpected behavior of one or more of the endpoints. Some SLA

monitor/detection mechanisms [70] could also evidently run over the framework.

Although I have designed an agent using Axis2’s extensible handling mechanism, as of

the time of this writing, there is no actively running adapter module working for

evidence-mindful web services. An industrial effort in creating an “Evidence as Service”

concept would reduce the effort in enhancing the reliability of business logic at endpoint

services.

159

APPENDIX

Publications

The contributions of my dissertation have been published/submitted in international
venues as listed below:

[1] M. Gunestas, D. Wijesekera, and A. Singhal, "Forensic Web Services," presented

in Fourth Annual IFIP WG 11.9 International Conference on Digital Forensics
Kyoto, Japan, 2008.

[2] M. Gunestas, D. Wijesekera, and A. Elkhodary, "An Evidence Generation Model

for Web Services," presented in The IEEE International Conference on System of

Systems Engineering (SoSE '09), 2009.

[3] M. Gunestas, D. Wijesekera, and A. Singhal, “Forensics over Web Services: The

FWS”, Accepted for Web Services Security Development and Architecture:

Theoretical and Practical Issues, IGI Global, 2009.

[4] M. Gunestas and D. Wijesekera, "Detecting Illegal Business Schemes in

Choreographed Web Services: The Ponzi/Pyramidal Case," To-be-submitted to

Sixth Annual IFIP WG 11.9 International Conference on Digital Forensics Hong
Kong, 2010.

[5] M. Gunestas and D. Wijesekera, "Online Detection and Alert Model for Misuses

over Web Services," Under review in CollaborateCom 2009 - The 5th

International Conference on Collaborative Computing: Networking, Applications

and Worksharing, 11-14 November, Crystal City, Washington D.C., USA, 2009.

160

REFERENCES

161

REFERENCES

[1] K. Mandia, and C. Prosise, Incident Response: Investigating Computer Crime:

McGraw-Hill, Inc. 2001

[2] D. A. Schum, The evidential foundations of probabilistic reasoning. New York:

Wiley. 1994

[3] “SOAP Specifications,” available at www.w3.org/TR/soap/

[4] “Web Service Definition Language,” available at www.w3.org/TR/wsdl

[5] R. Khalaf, N. Mukhi, and S. Weerawarana, "Service-Oriented Composition in

BPEL4WS," in Twelfth International World Wide Web Conference, Budapest,
Hungary, 2003.

[6] S. M. S. Cruz, M. L. M. Campos, P. F. Pires, and L. M. Campos, "Monitoring e-

business Web services usage through a log based architecture," in IEEE

International Conference on Web Services Proceedings, 2004. 2004, pp. 61-69.

[7] A. Herzberg and I. Yoffe, "The Delivery and Evidences Layer," Cryptology ePrint

Archive Report 2007/139, 2007.

[8] S. Kremer, O. Markowitch, and J. Zhou, "An Intensive Survey of Non-repudiation

protocols," Computer Communications, vol. 25, pp. 1606-1621, 2002.

[9] P. Robinson, N. Cook, and S. Shrivastava, "Implementing fair non-repudiable

interactions with Web services," in EDOC Enterprise Computing Conference,

2005 Ninth IEEE International, 2005, pp. 195-206.

[10] M. Rouached and C. Godart, "Analysis of Composite Web Services Using

Logging Facilities," in Second International Workshop on Engineering Service-

Oriented Applications: Design and Composition (WESOA'06) Chicago, USA,
2006.

[11] S. M. S. Cruz, L. M. Campos, M. L. M. Campos, P. F. Pires, “A Data Mart

Approach for Monitoring Web Services Usage and Evaluating Quality of
Services,” in XVIII Brazilian Symposium of Data Bases, Brazil, October 2003.

162

[12] J. C. Sremack, "Investigating real-time system forensics," 2005, pp. 25-32.

[13] W. D. Yu, P. Supthaweesuk, and D. Aravind, "Trustworthy Web services based

on testing," in IEEE International Workshop on Service-Oriented System

Engineering, 2005. SOSE 2005. 2005, pp. 159-169.

[14] A. Vorobiev and H. Jun, "Security Attack Ontology for Web Services," in Second

International Conference on Semantics, Knowledge and Grid, 2006. SKG '06.
2006, pp. 42-42.

[15] Y. Demchenko, L. Gommans, C. de Laat, and B. Oudenaarde, "Web services and

grid security vulnerabilities and threats analysis and model," in The 6th

IEEE/ACM International Workshop on Grid Computing, 2005. 2005, p. 6 pp.

[16] D. W. Green, "Attacking and Defending Web Services," in The NEbraskaCERT

Conference, Omaha, NE USA, 2006.

[17] S. Faust, "SOAP Web Services Attacks," SPI Dynamics, 2005.

[18] W. Negm, "Anatomy of a Web Services Attack," Forum Systems, Inc. 2004.

[19] J. Rosenberg and D. L. Remy, Securing Web Services with WS-Security: Sams

Publishing, 2004.

[20] M. McIntosh and P. Austel, "XML signature element wrapping attacks and

countermeasures," in Proceedings of the 2005 workshop on Secure web services
Fairfax, VA, USA: ACM Press, 2005.

[21] M. O’Neill, "Hardening Web Services," in Hardening Network Security McGraw-

Hill Professional, 2005.

[22] R. Dwibedi, "XPath injection in XML databases," 2005.

[23] A. Singhal and T. Winograd, "Guide to Web Services Security," National Institute

of Standarts and Technology 2009.

[24] Z. Jianyin, S. Sen, and Y. Fangchun, "Detecting Race Conditions in Web

Services," in International Conference on Internet and Web Applications and

Services/Advanced International Conference on Telecommunications, 2006.

AICT-ICIW '06. 2006, pp. 184-184.

[25] W. Du, Cross-Site Scripting (XSS) Attack Lab: Laboratory for Computer Security

Education, Syracuse University. 2006

163

[26] R. Salz, “Understanding XML Digital Signature,” available at
http://msdn.microsoft.com/en-us/library/ms996502.aspx, 2003

[27] IBM, "JAX-RPC handlers collection," WebSphere Application Server

Information Center 2007.

[28] ORACLE, "Using JAX-RPC Handlers," Oracle® Application Server Web

Services Developer's Guide B28974-01, 2006.

[29] BEA, "Specifying SOAP Handlers for a Web Service," BEA WEBLOGIC

WORKSHOP HELP.

[30] "Apache Axis2 Architecture Guide," The Apache Software Foundation 2006.

[31] P. Srinath, H. Chathura, E. Jaliya, C. Eran, R. Ajith, J. Deepal, W. Sanjiva, and D.

Glen, "Axis2, Middleware for Next Generation Web Services," in International

Conference on Web Services, 2006. ICWS '06. 2006, pp. 833-840.

[32] WS-Trust V1.0 Working Draft, OASIS Web Services Secure Exchange TC,

http://www.oasisopen.org/committees/download.php/16138/oasis-wssx-ws-trust-
1.0.pdf, 2006

[33] OASIS, "WS-SecureConversation 1.3," 2007.

[34] H. Chet, "Digital evidence bag." vol. 49: ACM Press, 2006, pp. 69-70. 28

[35] M. B. Juric, Business Process Execution Language for Web Services, Second

Edition ed. Birmingham, UK: Packt Publishing, 2006.

[36] S. T. King and P. M. Chen. “Backtracking Intrusions,” in Proceedings of the 2003

Symposium on Operating Systems Principles (SOSP), pages 223-236, October
2003.

[37] W. Wang and T. E. Daniels, "Building evidence graphs for network forensics

analysis," in Computer Security Applications Conference, 21st Annual, 2005, p.
11 pp.

[38] US Department of Justice, “Digital Evidence: Standards and Principles,” Forensic

Science Communications, available at http://www.fbi.gov/hq/lab/fsc/backissu
/april2000 /swgde.htm

[39] T. Coffey, P. Saidha, “Non-repudiation with mandatory proof of receipt,”
ACMCCR: Computer Communication Review 26.

164

[40] J. A. Onieva, Z. Jianying, M. Carbonell, and J. Lopez, "Intermediary non-
repudiation protocols," in IEEE International Conference on E-Commerce, 2003.

CEC 2003. 2003, pp. 207-214.

[41] M. Bilal, J. P. Thomas, M. Thomas, and S. Abraham, "Fair BPEL processes

transaction using non-repudiation protocols," in 2005 IEEE International

Conference on Services Computing, 2005, pp. 337-340 vol.1.

[42] C. M. Jayalath and R. U. Fernando, "A Modular Architecture for Secure and

Reliable Distributed Communication," in The Second International Conference on

Availability, Reliability and Security, 2007. ARES 2007. 2007, pp. 621-628.

[43] K. Shanmugasundaram, N. Memon, A. Savant, and H. Bronnimann, “ForNet: A

Distributed Forensics Network,” in Proceedings of the Second International

Workshop on Mathematical Methods, Models and Architectures for Computer

Networks Security, St. Petersburg, Russia, 2003.

[44] S. Micali, “Certified E-mail with invisible post offices,” presented at the RSA '97

conference (1997).

[45] W. Xu, D. Chadwick, and S. Otenko, “A PKI Based Secure Audit Web Service”

in IASTED Communications, Network and Information and CNIS, Phoenix, USA,
November 2005

[46] R.E. Johnson, and B. Foote, “Designing reusable classes,” in Journal of Object-

Oriented Programming 1, 5 (June/July 1988), 22-35.

[47] M. Fowler and K. Scott, UML distilled: applying the standard object modeling

language: Addison-Wesley Longman Ltd., 1997.

[48] B. Catriel, E. Anat, M. Tova, and P. Alon, "BP-Mon: query-based monitoring of

BPEL business processes." vol. 37: ACM, 2008, pp. 21-24.

[49] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, "Monitoring

Choreographed Services," in Innovations and Advanced Techniques in Computer

and Information Sciences and Engineering, 2007, pp. 283-288.

[50] M. Zuckoff, Ponzi's scheme : the true story of a financial legend. New York:

Random House, 2005.

[51] U.S. Security and Exchange Commission, "’Ponzi’ Schemes," available at

http://www.sec.gov/answers/ponzi.htm

165

[52] SavvySugar. “Help! My Friend Is Part of a Pyramid Scheme,” in MainStreet,
available at http://www. mainstreet.com/article/smart-spending/help-my-friend-
part-pyramid-scheme, 2009.

[53] R. M. Steward, “South Africa investigates alleged pyramid scheme,” in The Wall

Street Journal, available at http://online.wsj.com/article/SB12450772607
9615295.html, 2009.

[54] Los Angeles Times, “Internet Pyramid Scheme Alleged,” available at

http://articles.latimes.com/2006/sep/28/ business/fi-wrap28.3, 2006.

[55] D. A. Valentine, "Pyramid Schemes," in International Monetary Fund’s Seminar

on Current Legal Issues Affecting Central Banks, 1998

[56] M. Jensen, N. Gruschka, and N. Luttenberger, "The Impact of Flooding Attacks

on Network-based Services," in Third International Conference on Availability,

Reliability and Security, 2008. ARES 08. 2008, pp. 509-513.

[57] A. Barros, G. Decker, M. Dumas, and F. Weber, "Correlation Patterns in Service-

Oriented Architectures," in Fundamental Approaches to Software Engineering,
2007, pp. 245-259.

[58] J. M. Zaha, M. A. Dumas, H. M. ter Hofstede, A. Barros, and G. Decker,

“Bridging Global and Local Models of Service-Oriented Systems,” IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 38, pp. 302-318, 2008

[59] StreamSQL, available at http://blogs.streamsql.org/

[60] StreamBase Technical Documentation, available at http://www.streambase.com

[61] D. Luckham, The Power of Events: An Introduction to Complex Event Processing

in Distributed Enterprise Systems. Addison–Wesley Publishing Company,
Reading, MA, 2002.

[62] A. Widder, R. v. Ammon, P. Schaeffer, and C. Wolff, "Identification of

suspicious, unknown event patterns in an event cloud," in Proceedings of the

2007 inaugural international conference on Distributed event-based systems
Toronto, Ontario, Canada: ACM, 2007.

166

[63] W. De Pauw, R. Hoch, and Y. Huang, "Discovering Conversations in Web
Services Using Semantic Correlation Analysis," in IEEE International

Conference on Web Services, 2007. ICWS 2007. 2007, pp. 639-646.

[64] C. Westphal, Data Mining for Intelligence, Fraud & Criminal Detection:

Advanced Analytics & Information Sharing Technologies. Frederick, Maryland,
USA: CRC Press. 2008.

[65] Open Web Application Security Project, “Cross Site Scripting Prevention Cheat

Sheet,” available at http://www.owasp.org/index.php/XSS_Cross_Site_Scripting_
Prevention_Cheat_Sheet

[66] S. Basu, F. Casati, and F. Daniel, "Toward Web Service Dependency Discovery

for SOA Management," in Proceedings of the 2008 IEEE International

Conference on Services Computing - Volume 2: IEEE Computer Society, 2008.

[67] N. Tho Manh, S. Josef, and A. M. Tjoa, "Sense \& response service architecture

(SARESA): an approach towards a real-time business intelligence solution and its
use for a fraud detection application," in Proceedings of the 8th ACM

international workshop on Data warehousing and OLAP Bremen, Germany:
ACM, 2005.

[68] I. Ari, J. Li, A. Kozlov, and M. Dekhil, “Data Mining Model Management to

Support Real-Time Business Intelligence in Service-Oriented Architectures” in
HP Software University Association Workshop, Morocco, June 2008.

[69] A. Keller and H. Ludwig, "The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services," Journal of Network and Systems

Management, vol. 11, pp. 57-81, 2003.

[70] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F. Casati, "Automated

SLA Monitoring for Web Services," in Management Technologies for E-

Commerce and E-Business Applications: 13th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management, DSOM 2002, Montreal,

Canada, October 21-23, 2002. Proceedings, 2002, pp. 28-41.

167

CURRICULUM VITAE

Murat Gunestas is a major at General Directorate of Security in Ankara, Turkey. He has
eleven years of experience in the field of computer and information systems. His general
research interests include web services security, computer and network forensics, and
component-based software engineering. In addition to the PhD from George Mason
University, he has Bachelor of Science degree in Security Science and Master of Science
degree in Software Engineering. He developed software for General Directorate of
Security by 2003 and lead software teams afterwards. He currently holds software project
lead position at the same department along with appointments of deploying appropriate
security policies.

