

Molecular Examination of the Evolution and Serotypes of Human Adenoviruses

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Michael P. Walsh

PhD, MS, BS

George Mason University, 2010

Director: Donald Seto, Professor

Bioinformatics and Computational Biology

Fall Semester 2010

George Mason University

Fairfax, VA

ii

Copyright: 2010, Michael P. Walsh

All Rights Reserved

iii

DEDICATION

This is dedicated to Irene K. Walsh, and Mary K. Kearney whose sacrifices made this

document possible.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Donald Seto and the members of his lab (Jason Seto, Liz Liu,

and Shoaleh Dehghan) for their help and support.

v

TABLE OF CONTENTS

 Page

List of Figures………………………………………………………………………….....vi

Abstract…………………………………………………………………………………..vii

CHAPTER 1: Introduction………………………………………………………………..1

CHAPTER 2: Sequence Analysis………………………………………………………..10

CHAPTER 3: Non-Recombinant Genomes……………………………………………...23

CHAPTER 4: Recombinant Genomes…………………………………………………...83

CHAPTER 5: A Necessary Paradigm Shift in HAdV Nomenclature………………….110

CHAPTER 6: Future Directions………………………………………………………..116

Appendices……..……………………………………………………………………….119

List of References..……………………………………………………………………..160

vi

LIST OF FIGURES

Figure Page

Figure 1. Arrangement of the genes of an adenovirus genome ..2

Figure 2. A cross-section of the adenovirus particle ...3

Figure 3. Penetration of an adenovirus particle into a host cell ..5

Figure 4. A phylogenomic examination of (SGN-1222) ..11

Figure 5. Whole genome alignment visualization ..12

Figure 6. HAdV DB Schema ..16

Figure 7. Bootscan example of “change in peaks” phenomenon....................................18

Figure 8. Recombination results for HAdV-A18 ..19

Figure 9. Bootscan of HAdV-D54 ..20

Figure 10. HAdV-D53 hexon recombination ...21

Figure 11. A whole genome phylogenetic tree of seventy HAdV genomes112

Figure 12. A phylogenetic examination of HAdV-B55 and HAdV-B55p1114

ABSTRACT

MOLECULAR EXAMINATION OF THE EVOLUTION AND SEROTYPES OF

HUMAN ADENOVIRUSES

Michael P. Walsh, PhD

George Mason University, 2010

Dissertation Director: Dr. Donald Seto

Human adenoviruses (HAdVs) are important human pathogens. Recent advances in

genome sequencing and sequence analysis have made it possible to study the evolution of

these viruses in new and interesting ways. These technologies have been used to study

recombinant and non-recombinant HAdVs. Data from studies of these genomes have also

revealed possibilities for improving the current methods for classifying HAdVs.

1

CHAPTER 1: Introduction

1.1. HAdV biology

1.1.1. AdV

 Adenoviruses (AdV) are DNA viruses that comprise the family Adenoviridae.

The first members of this family of viruses were simultaneously isolated as a non-specific

human respiratory infectious agent from the adenoid tissue of a child in 1953 [1] and also

simultaneously by the military [2]. Since their identification, many additional members of

the Adenoviridae family have been identified. These viruses have been shown to affect all

vertebrates, from birds and fishes to higher primates including chimpanzees and humans.

Members of this family are separated into five genera, with the taxonomy still undergoing

revision, particularly those based on new genome and molecular-based data [3]. Human

adenoviruses (HAdV) can cause pathologies or may have no apparent consequence to the

host. The symptoms of adenovirus infections vary, and are organ and tissue specific,

causing illnesses ranging from the common cold to severe gastrointestinal distress and

including death [4]. In spite of the diverse nature of the Adenoviridae family, the

members of this family share elements of a common morphology and similar genomic

organization.

 AdVs are non-enveloped or “naked” and have an icosahedral shape. Their genetic

information consists of a double-stranded linear DNA genome covalently linked to a

protein (all enclosed in a protein nucleocapsid). The diameter of the virus particles is

usually 60 to 90 nanometers. Adenovirus genomes have variable sizes ranging

approximately 30 to 38 kilobases in length. All adenovirus genomes produce a core set of

proteins, transcribed as “early” or “late” genes, that play essential roles in the virus'

replication, expression, structure and function [5].

 One of the polypeptides produced by AdVs is called “II”, based on a

transcriptional scheme (Figure 1). This protein is often referred to as the “hexon

monomer” because trimers of this polypeptide have a hexonal shape. These trimers

contribute the outer structure of the virus. Three other proteins, which are called “VI”,

“VIII”, and “IX”, are thought to associate with the hexon protein to provide structural

stability to the virus particles. AdVs also produce a polypeptide called “III”. This protein

forms a pentamer that is referred to as a penton base. The penton base associates with 5

molecules of polypeptide IIIa and the resulting complex is essential to the virus'

penetration into host cells. AdVs also produce protein IV that forms trimers called fiber

proteins. These fiber proteins are involved in host interaction and receptor binding

2

resulting in cell tropism. Polypeptides V and VII of the adenovirus are called core

proteins and are thought to associate with the virus DNA to serve a histone-like packing

function. Finally, the TP or terminal protein is cross linked to the genome DNA and

serves a function in adenovirus genome replication [5].

Figure 1. Arrangement of the genes of an adenovirus genome. The multiple elements

(lines) associated with each gene represent alternative splicing products [5].

The hexon, penton and fiber proteins are of great interest as they serve to define

the individual virus. As they are external, they serve as recognition site for interactions

with the host and are subject to evolutionary forces. They are useful for „typing‟ such as

with antibodies and serve as the first method for separating serotypes and species.

 The overall structure of the adenovirus particle contains 240 hexon complexes

and 12 pentons. In addition, each of the pentons has a fiber protein attached to it. A

schematic representation of a cross-section of the particle is contained in the Figure 2.

3

Figure 2. A cross-section of the adenovirus particle. The hexon proteins provide the

particle with structural stability. The penton and fiber proteins are involved in virus

penetration and host recognition. The core proteins provide a histone-like packing

capability for the DNA [5].

1.1.2. Transcriptional Circuitry

 The life cycle and genomic arrangement of AdVs are conserved from species to

species. The adenovirus life cycle is separated into three categories based on the

transcriptional pathways that these viruses use. The first portion of the cycle is often

referred to as the “immediate early” phase of virus replication. During this phase the

virus produces trans-acting regulatory factors that are responsible for activating the

4

downstream genes in its genome [5]. The second phase of the life cycle is the “early”

phase. The genes involved in this phase produce products that help the virus to evade the

host immune response, prevent host cell apoptosis, and activate other genes [6]. The

genes of the immediate early and early phases also alter the host cell so that its proteins

can be used to replicate the adenovirus genome. The last phase of the adenovirus cycle is

called the “late” phase. This phase is responsible for the production of the virus' structural

proteins and their assembly into finished virus particles. All of these phases express genes

that have alternatively spliced products. This allows the virus to produce proteins that can

easily interact with the host cells machinery [6].

 Each adenovirus genome contains complementary inverted terminal repeats

(ITRs) at each end. The ITRs allow single strands of the virus genome to form origins of

replication. These single strands are dissociated from the DNA duplex during the virus‟s

asymmetric strand synthesis [7]. AdV ITRs also provide transcriptional elements. These

elements have highly conserved sequences including core replication and host

transcription binding sites [8].

 Adjacent to the 5‟ ITR, the first portion of the adenovirus genome encodes the

E1A and E1B genes. These genes are part of the immediate early phase of the virus life

cycle and code for products that play a role in the transcriptional activation of genes that

are located later in the genome. Further along in the genome are the E2A and E2B genes.

These genes play a role in the early phase of virus replication. Finally, located at the end

of the genome, there is a cluster of L genes and E3 genes. Products from these genes are

responsible for the late phase of virus replication. L genes encode for structural proteins

and the E3 products have been shown to play a role in preventing host cell apoptosis [5].

Figure 1 shows a schematic representation of an adenovirus genomic arrangement.

 All adenovirus replication occurs inside the host cell nucleus. Prior to replication,

the virus particle must penetrate the cell. As shown in Figure 3, in the first step in this

process, a fiber (knob) molecule of the adenovirus particle binds to a specific host cell

receptor, hence cell tropism. Next, the virus particle is taken into the host cell vacuole

through phagocytosis. The pentons of the adenovirus particle have properties that are

toxic to host cells and this toxicity causes the vacuole to break open, releasing the virus

particle into the host cell cytoplasm. Finally, the virus particle migrates to the nuclear

membrane and injects its DNA into the nucleus through a nuclear pore [5].

Note, the mechanism(s) of virus binding is(are) still vastly unknown. The penton may also

serve as a recognition protein for cell binding.

5

Figure 3. Penetration of an adenovirus particle into a host cell [5].

1.1.3. HAdV

HAdVs are members of the genus Mastadenovirus [3]. There are currently 55

different types of HAdVs that are separated into 7 species based on biology, proteome,

immunochemistry and DNA homology. Three additional novel types are reported based

on genomics [9,10,11]. Both the type number and the species designations are still being

debated, based on changing definitions and genome and molecular data. For example,

Number 52 and species G are recent additions [12]. Species are noted by the letters A

through G. These species are of importance because they infect humans (and other

primates, depending on definitions) and many of them have been studied extensively,

from a biological and clinical point of view.

 Species HAdV-A contains three types (HAdV-A12, -A18, and -A31) [13]. The

most studied of these viruses is HAdV-A12. This serotype has been completely

sequenced and annotated. HAdV-A18 and -A31 have also been sequenced and the

analysis of HAdV-A18 will be discussed in Chapter 3 of this document [14]. The most

notable characteristic of this species is that it has been shown to cause the development of

sarcomas in experimentally infected hamsters [15].

6

 Viruses in species HAdV-B are divided into two sub-species labeled B1 and B2.

The types of the B1 subspecies are -B3, -B7, -B16, -B21, and -B50. The genomes of

these types are sequenced and, with the exception of HAdV-B50, have been shown to

cause upper respiratory infections. The members of the B2 species are types -B11, -B14,

-B34, -B35, and -B55. These genomes have also been sequenced and, with the exception

of HAdV-B14 and B55, have been shown to infect the human urinary tract and kidneys

[16]. HAdV-B14 and HAdV-B55 have been implicated in respiratory infections, a

clinical finding which has been explored further with genomics and bioinformatics

[17,11].

 Viruses in species HAdV-C include types -C1, -C2, -C5, and -C6. HAdV-C1, -C2

and -C5 have been sequenced. The members of this species have been implicated in a

large number of respiratory and asymptomatic infections. Infections caused by members

of the HAdV-C species may have latent effects that are not well-understood. The specific

cell types that host this species of adenovirus have not been identified [18]. In addition,

HAdV-C5 is a potential vaccine and vector candidate which will be discussed in greater

detail in Chapter 3 [19].

 Species HAdV-D contains approximately 32 types. Thirteen of these serotypes (8,

9, 17, 19, 22, 26, 28, 36, 37, 46, 48, 49 and 53) are sequenced. The types of this species

have been linked to a variety of symptoms. For example, HAdV-D36 has been suspected

as a cause of weight gain and obesity in other vertebrates [20]. Also, several members of

the HAdV-D species are known to cause severe eye infections, such as epidemic

keratoconjunctivitis (EKC) [21,10]. One recent isolate, HAdV-D53, is highly contagious,

causes EKC and is the result of molecular recombinations [10]. HAdV type 49 has been

explored as a possible genetic vector [22].

 The only virus in species HADV-E that infects humans is HAdV-E4. In addition,

there are also four chimpanzee-hosted AdVs that are contained in species HAdV-E4.

HAdV-E4 is one of the primary agents of an acute respiratory disease (ARD) that affects

a number of military recruits. Some reports suggest that HAdV-E4 is responsible for as

much as 99.9% of the adenovirus-caused ARD in the US military [23]. This particular

type is interesting as the recent versions appear to have a single recombination in the

Inverted Terminal Repeat (ITR) that appears to result in a more robust infection (personal

communication with Donald Seto).

As a result of the public health implications of HAdV-E4, it is one of the few

HAdVs for which there is a vaccine [4].

 Species HAdV-F contains two viruses, HAdV-F40 and HAdV-41, which are

linked to gastrointestinal ailments [24]. They are also described as fastidious because

they are difficult to culture in vitro [25]. Both of these HAdV have been fully sequenced.

 HAdV species G is the most recently reported and accepted HAdV species. The

sole human representative of this species, HAdV-G52, has been implicated in outbreaks

of gastroenteritis. This species is also the first to be characterized and identified using

bioinformatics techniques [12].

7

1.2. HAdV Evolution

 Molecular evolution is the study of evolution at the nucleic and amino acid level.

It is integral to the study of HAdV diversity. Changes at the genome level of HAdV have

led to an expanding number of new types [9,12,10,11]. These changes range from small

insertion/deletions (indels) and substitutions to homologous recombination events. The

study of the HAdV diversity is advancing quickly due to technological advancements in

whole genome sequencing and bioinformatics methods.

 HAdV genomes are relatively small and encode less than fifty proteins. As a

result of this, small indels and substitutions in HAdV genomes can have a large effect on

these viruses. Recent studies have been conducted on the consequences of mutations in

the fiber gene of HAdV-B11. These studies found that a substitution in a single codon,

which encodes for an arginine residue at position 279 of the protein, is capable of

changing the phenotype of the virus to that of HAdV-B7 [26]. Studies such as these help

to illustrate the importance that indel mutations play in HAdV diversity.

 Another important driving force in the molecular evolution in HAdV is

homologous recombination. Recombination events are emerging as a primary source of

HAdV diversity. Several recent studies have described recombination events that have

led to changes in cell tropism and phenotype of HAdV [27,10,11]. These events represent

an important source of new HAdV types and their study can help researchers to a greater

understanding of how HAdV evolve.

 In the past, the detailed study of HAdV evolution has been hindered by

technology. The limited number of available HAdV genome sequences limited high

resolution studies. Two examples of low resolution HAdV analyses are serum

neutralization (SN) and hemagglutination inhibition (HI) assays. Serum neutralization

assays have been used to explore epitopes contained within the HAdV hexon protein.

This type of assay has been used to classify fifty one distinct “serotypes” of HAdV

[21,28]. Hemagglutination inhibition assays have been used to examine the

characteristics of the HAdV fiber protein and further classify the viruses [21,28]. Until

recently, these assays were the only methods available to differentiate HAdVs.

 SN and HI assays possess inherent limitations that can interfere with the study of

HAdV. One of these limitations is that the assays are logistically difficult to perform. The

tests take time and reagents, such as the viruses themselves, can be difficult (or

impossible) to culture or manufacture. The difficulty in growing the reagents can slow

down research. Also, the results of the assays (like many antibody assays) can be

somewhat subjective. This can lead to incorrect or inconclusive results. Another

limitation of these assays is the proportion of the genome that they examine. SN targets

epitopes that are contained within two major loops of the hexon protein [29]. The portion

of the genome that encodes for these loops is less than three percent of the whole

genome. HI tests target the knob region of the fiber protein [30]. The fiber knob is

encoded for by less than two percent of the genome. Even when used together, these

assays provide only a narrow view of a HAdV genome which is only moderately useful

for describing the origins and evolution of the virus.

8

 A more recently applied technique for the study of HAdV genomes employs

restriction endonuclease (RE) analysis [31]. In this method, a genome is digested with a

panel of defined REs. The resulting genome fragments are subjected to electrophoresis

which creates a “restriction map” from the unique sized fragments. Restriction maps from

different HAdVs are compared to explore the degree of similarity and differences

between genomes.

 RE analysis has advantages when compared to antibody-based methods such as

SN and HI. One advantage is that RE analysis explores the whole primary nucleotide

sequence that is ignored by antibody assays. Another advantage of RE maps is that they

can be used to examine the entire length of a genome rather than the smaller portions that

are covered by SN and HI assays.

 A disadvantage of RE analysis is the result of low resolution of RE maps. RE

analysis only examines RE sites, which constitute a small proportion of a genome. This

means that two genomes with identical RE maps are not necessarily identical. Also,

small differences in RE sites can lead to large differences in RE maps. Relationships

between genomes must be inferred from RE maps rather than identified from a base by

base examination of the genome sequences. Higher resolution techniques must be used to

characterize accurately HAdV sequences and their evolution.

 Advancements in whole genome sequencing are providing an abundance of data

for HAdV evolution research. Combined with bioinformatics tools, whole genome

sequences provide a high-resolution picture of how HAdVs change or evolve in time. It is

no longer necessary to infer relationships based on antibody or RE data. With sequence

alignments, recombination scans and other tools (discussed in Chapter 2 of this

document), the process and pathways by which HAdV species evolve can be

characterized in more accurate and meaningful ways.

 Whole genome studies of HAdV are currently providing data that are important in

several different ways. First, these data are important because they provide information

about human pathogens. HAdV-B14 is a recently emerging pathogen that has caused

fatal acute respiratory disease (ARD) outbreaks among civilian and military personnel in

the US [32,33,17]. The whole genome analysis of HAdV-B14 (described in Chapter 3 of

this document) may provide information that can help researchers to determine the

origins of this virus. Second, these data are important because they provide information

about potential human vaccines and vectors. HAdV-C5 is commonly used in vaccines

and genetic vectors because of the virus‟s stability over time [19,34,35]. Data from

bioinformatics studies of HAdV-C5 (Chapter 3) will help scientists to ascertain the

source of the virus‟s resistance to mutation/recombination and will aid in the search for

other HAdV vaccine/vector candidates. Third, these data are important because they

provide information about less commonly researched HAdVs. HAdV-A18 belongs to

HAdV species A which has been understudied in the past [14]. The data from

examinations of viruses such as HAdV-A18 can be useful as a reference in the

exploration of vaccines/vectors and in recombination studies.

 Whole genome studies have also led to a greater understanding of the role that

recombination plays in the evolution of HAdVs. Inconsistent SN and HI results have

9

caused researchers to suspect that certain HAdVs are recombinant [36,37,38]. Recently,

an emerging recombinant HAdV ocular pathogen was isolated in Germany [39]. The

resulting bioinformatics characterization of this virus, HAdV-D53 (discussed in Chapter

4 of this document), provided the first computational confirmation of recombination

events in HAdVs at this high-resolution genome level [10].

 Recombination studies have been informative as to the nature of re-emerging

HAdV pathogens. HAdV-B55 (discussed in Chapter 4) has been linked to sporadic

outbreaks of ARD in China and elsewhere [40,41]. Early sequenced based examinations

of the hexon of HAdV-B55 indicated that the virus was a variant of HAdV-B11 [41].

However, HAdV-B11 is a renal pathogen that is not associated with respiratory illnesses

[16]. Recombination studies have revealed that the majority (97%) of the genome of

HAdV-B55 comes directly from HAdV-B14, a respiratory pathogen. Furthermore, the

virus contains hexon a recombination with HAdV-B11 [11].

 Data from the examinations of HAdV-D53 and B55 demonstrate the potential of

recombination studies to resolve paradoxes and questions from early HAdV research.

Hexon sequence data indicated that both HAdV-D53 and B55 were variants of existing

HAdV types (HAdV-D22 and B11, respectively). However, these data were confusing

because neither virus shared symptoms or tropism with its supposed parents.

Recombination analysis data revealed that these viruses both contain hexon

recombinations that led to mischaracterizations of the viruses. HAdV-D53 and B55 do

not share the properties of their parent viruses because only a small portion of their

genomes are related to their parents. This small portion, the hexon gene, is the source of

the apparent paradox in identification.

10

CHAPTER 2: Sequence Analysis

2.1. Introduction

In the past, HAdV genome research has been hindered by a lack of sequence data

and bioinformatics tools. Without this data, the study of HAdVs has been limited to low

resolution data such as that gained from restriction enzyme digests and serology-based

interpretations of the genome [21,31]. Recently, advances in whole genome sequencing

technologies have changed this paradigm. As a result of the dramatic increase in the

availability of genome sequence data, the analysis of sequences has become a limiting

factor in HAdV genome research. To solve this problem, a systematic approach to the

analysis of annotated HAdV genomes, including software tools, has been developed.

2.2. Genome Analysis Process

The sequence analysis process developed begins with a newly sequenced HAdV

and includes annotation. In the first step in the analysis of a new sequence, a whole

genome multiple sequence alignment (MSA) is created that contains the new sequence

along with every other currently sequenced HAdV. As part of this step, percent identity

values are calculated from the MSA. Since HAdVs of the same species are similar to one

another, the percent identity calculations are informative as to the species of the newly

sequenced HAdV. The percent identity values also give researchers the ability to use data

from previous studies to elucidate properties of the new sequence. For example, if

HAdV-D37 shares a high identity with the new sequence, and HAdV-D37 causes eye

infections, it may be worthwhile to explore the possibility that the new sequence causes

eye infections as well. Establishing these types of relationships can increase the quality of

future studies and reduce the time needed to complete them by giving researchers a guide

to studying a new sequence.

Phlyogenomics can be defined as the phylogenetic examination of the molecular

data from a genome [42]. The phylogenomics of the newly sequenced HAdV are

explored in the next step of the analysis process. In this step, MSA‟s of the three

serological determinants (penton, hexon, and fiber) of the new virus are created. Next,

two sections of the hexon MSA are extracted, corresponding to previously published

studies and primers that isolate hexon loop 1, the variable and defining region [30], and a

portion of the hexon conserved region [43]. The fiber MSA is then analyzed in a similar

manner using primers [43] designed to extract the variable knob region of the fiber gene.

Finally, bootstrapped (one thousand replicates) neighbor joined phylogenetic trees and

11

distance matrices are created from the five resulting MSA‟s (whole genome, penton,

hexon loop1, hexon conserved 3 and fiber knob).

Phlyogenetic trees of the new sequence provide several different types of

information. The whole genome phylogenetic tree and distance matrix values reconfirm

data obtained from genome percent identity measurements. The hexon loop1 and fiber

knob trees mimic results from serum neutralization (SN) and hemagglutination (HI)

assays which are the classical HAdV typing methods. Using phylogenetic trees in lieu of

these assays greatly reduces the time and effort required to gain information pertaining to

the hexon and fiber of the new genome.

When examined as a whole, the five phylogenetic trees can be used to determine

if a new genome is a variant of an existing genome type or a novel, and perhaps even

recombinant, genome type. Figure 4 shows an excerpt from a phylogenomic examination

of a sequenced HAdV isolate called SGN-1222. SGN-1222 was originally designated as

a variant of HAdV-B11 but forms a clade with HAdV-B55 in all trees. This reveals that

SGN-1222 is a variant of HAdV-B55 rather than a novel HAdV or a variant of HAdV-

B11. The difference in the clades formed between the two hexon trees reveals that both

HAdV-B55 and SGN-1222 contain an intra-hexon recombination between HAdV-B11

and HAdB-B14. Finally, the branch lengths in the clade that contains HAdV-B55, SGN-

1222 and HAdV-B11 in the hexon loop1 tree indicates that these three HAdVs will

provide identical results in serum neutralization assays.

12

Figure 4. A phylogenomic examination of (SGN-1222) . Selected phylogenetic trees,

containing HAdV isolate SGN-1222, are pictured. Clades formed in the trees reveal that

the isolate is a variant of HAdV-B55 and that it contains an intra-hexon recombination.

In the third step in the process, the new genome is compared to its closest relative,

as established by percent identity and phylogenomic data, using pairwise whole genome

alignment visualization. Whole genome alignment visualization allows researchers to

examine regions of a new genome to determine relationships and indentify possible

recombination events. Figure 5 shows an example of an alignment visualization that

examines HAdV-B55 using zPicture software [44]. In the alignment, a close relationship

between HAdV-B55 and HAdV-B14 is visible (y-axis 90 – 100% identity). However,

HAdV-B55 shows higher identity to HAdV-B11 in the proximal 3rd of the hexon region.

This pattern indicates a potential recombination event.

Figure 5. Whole genome alignment visualization. Pairwise alignment visualization of

HAdV-B55 versus its closest relatives is shown. HAdV-B14 and HAdV-B55 show high

identity to each other throughout most of their genomes. HAdV-B55 shows higher

identity to HAdV-B11 in the proximal third of the hexon region indication a possible

recombination event in this region.

In the next step in the sequence analysis process, all of the genes and predicted

proteins in the newly sequenced HAdV are aligned with homologs from other HAdVs

and percent identity values are calculated. The percent identities from the genes are

useful in confirming recombination events or other relationships that have been observed

13

earlier in the sequence analysis process (data not shown). Amino acid percent identities

can be used to determine whether or not the relationships are translated as differences at

the proteome level.

In the final stage of the analysis, the new genome is formally examined for

recombination events using computational tools, such as Simplot [45]. In the first step of

this recombination analysis a whole genome alignment containing the new sequences and

several related sequences is examined for such events. When recombination events are

found in a region of the alignment, that region is excised so that it can be examined using

a scan with higher resolution. Finally, results from the recombination scans are combined

with whole genome percent identities, phylogenomic data, genome visualization results

and amino acid and genes. All of the resulting information is used conjunction with

whatever is known about the biological context of the virus to determine the potential for

a recombination event.

2.3. Computational Tools

The genome analyses described make use of a variety of computational tools.

Many of these are freely available in the public domain. However, some of the tools used

were not available and had to be designed and developed.

2.3.1. Genome Alignment and Percent Identity Calculation

Two tools were used to align genomes and calculate percent identities. An

internet accessible and relatively new alignment program, called Multiple Alignment via

Fast Fourier Transforms (MAFFT) [46], was used to align whole genomes. Percent

identity values were calculated, based on these alignments, using the percent identity tool

available as part of the UCSF Chimera program [47]. Both MAFFT and Chimera were

useful in reducing the time required to complete the genome alignment stage of the

sequence analysis process.

MAFFT is a sequence alignment program capable of aligning sequences quickly.

The speed of the program is the result of the algorithm‟s incorporation of Fast Fourier

Transforms (FFT), a mathematical formula, to align sequences.

The use of MAFFT to align sequences was convenient, and possibly necessary, due to the

size of the alignments used in this project. There a currently over fifty-five sequenced

HAdV genomes and the length of these genome ranges from 30 to 38 kilobases. Creating

an alignment of this size can take several hours using Clustal, the current standard tool.

The same alignment can be constructed in less than ten minutes using MAFFT.

Furthermore, MAFFT has been shown to be as, or more, accurate than Clustal [48]. The

combination of high speed and accuracy of MAFFT makes it the best option to create

HAdV whole genome alignments.

A program called UCSF Chimera was used to calculate percent identities between

HAdV genomes [47]. Chimera contains a tool that allows for the computation of percent

identities from a MSA. This is in contrast to commonly used software, such as EMBOSS

14

[49], which requires pairwise alignment of sequences for calculations. The ability to

compute genome percent identities from one MSA, rather than the several dozen pairwise

alignments that would be required by other programs, reduced the time and effort needed

to complete genome identity calculations.

2.3.2. Phylogenomic Analysis

 The primary tool used for phylogenomic analysis of HAdV genomes was

Molecular Evolutionary Genetics Analysis (MEGA) [50]. MEGA is an open source

alignment viewer/editor that provides options for creating phylogenetic distance matrices

and trees. All trees were constructed using the bootstrap, neighbor joining option

available within the program. Default parameters were used in all analysis.

 The distances, upon which the distance matrices and phylogenetic trees are based,

were calculated from MAFFT MSA‟s using the Maximum Composite Likelihood (MCL)

method [50,51]. This method maximizes the sum of the log likelihoods for all sequence

pairs according to a nucleotide substitution pattern. This method was chosen because it is

the default setting in MEGA, a widely used and well tested phylogenetic program.

2.3.3. Genome Alignment Visualization

 Whole genome pairwise alignment visualization was completed using a web

accessible alignment software suite called zPicture [44]. This program is similar to other

types of software, such as mLAGAN [52], in that it uses a BlastZ algorithm [53] to align

sequences. The resulting alignment can be visualized in two different ways. The first

visualization uses a sliding window (e.g., 100 bp with a 25 bp moving step) to create a

smoothed graph of the similarities between sequences. This method of visualization is

useful for examining sequences of high similarity because it allows for minute

differences between the sequences to be displayed. The second visualization method uses

blocks to show regions of similarity between sequences. The size of the blocks is

determined by gaps in the alignment, and the percent identity is determined and graphed

for each block. This visualization is useful for comparing regions of less similar

sequences and can be used to spot potential regions of recombination.

 zPicture and other programs (mLAGAN, PipMaker) use identical algorithms for

alignments. The choice to use zPicture, rather than other programs, was based on several

factors. One of these factors is that zPicture is available on the web

(http://zpicture.dcode.org/) which increases the ease with which it can be used. Also,

zPicture contains certain options that are not available with comparable programs. The

most notable of these options is the ability to visualize alignments using blocks. This

capability allowed for the visualization to be used as a further check for potential

recombination events.

2.3.4. Gene/Protein Alignment and Percent Identity Calculation

15

 Two tools were used to calculate percent identity values for individual

genes/proteins. The first of these tools was a local database (db) of annotated HAdV

genomes from GenBank. This db was used to facilitate the retrieval of gene/protein

sequences. The second tool was a Java-based protein alignment percent identity

calculation program. This program was used to compare homologs from different HAdV

genomes. Both tools were developed during this project and will be made available to the

general public via web server.

 Currently the majority of sequenced and annotated HAdV genomes are stored in

GenBank. GenBank, however, is not limited to HAdV and encompasses a large body of

all sequence data. Retrieving HAdV sequence data from GenBank is difficult because

users must circumvent many thousands of sequences. To alleviate this problem, a local

HAdV specific db was created for this project.

 The schema for the local HAdV-DB, shown in Figure 6, has four tables that store

information from HAdV genomes. The Adenovirus table houses reference information

relating to each genome. This table allows user to retrieve general information about the

HAdV including the species, serotype, strain, etc. The remaining tables store the

sequence information for the virus. The Genome table contains the genome sequences of

the viruses so that they can be easily accessed for genome alignments and recombination

studies. The NonCodingFtrs table stores sequence information for all of the non-coding

features of HAdV genomes. Non-coding sequences are beyond the scope of this

investigation but were included in the db in the event that they become useful for future

studies. Finally, CodingFtrs table contains nucleotide sequences and amino acid

translations of all of the coding sequences in HAdV genomes. This table allows for

retrieval of sequences by gene/protein name which is useful when aligning homologs

from different HAdV genomes.

16

Figure 6. HAdV DB Schema. An entity relationship diagram of the schema of a local

HAdV DB is displayed. Lines indicate foreign key relationships.

 A series of Java programs was used to populate the HAdV DB. A Java framework

called BioJava [54] was used to write a script that retrieves genomes from GenBank;

parses out the necessary information; and feeds that data into the appropriate tables of the

DB. Another Java framework, Hibernate [55], was used to communicate

programmatically with the DB. Hibernate has many functions that simplify the process of

ensuring that the information in the DB remains consistent and synchronized.

The majority of the programs available for alignment and calculation of percent identities

were insufficient for this project because they focus on determining relationships between

one set of homologs rather than all sets of homologs. For example, the percent identity

between all HAdV hexons can be easily calculated by isolating hexons from the genomes

of interest and running EMBOSS to determine percent identities. However, determining

the percent identities between all of the proteins in HAdV-D37 and their homologs in

HAdV-D19 would require more than thirty runs of EMBOSS. A Java-based program was

written to decrease the amount of time and effort required to compare homologs of

different HAdV.

The percent identity program has three main purposes. First, given two HAdV

genome annotation files (in GenBank format), the program can align homologs from the

17

two HAdV genomes and calculate percent identities. Second, the program can compare

homologs that are input as lists via fasta formatted files. Finally, the program is capable

of parsing coding sequences out of GenBank formatted files.

The results of the program are calculated from alignments constructed using a BioJava

implementation of a Needleman-Wunsch algorithm. The software was developed using

the Java Spring framework [56] so that it could be made available on the WWW.

2.3.5. Recombination Analysis

 There are many different types of recombination analysis software [45,57]. These

software use a variety of different algorithms to identify potential recombination events.

Among recombination detection programs, Simplot [45] stands out because of its ease of

use, logical/understandable algorithm and presentable results. For these reasons, it was

the primary program used in the recombination studies discussed in this document.

 The Simplot software is capable of producing two types of analyses that, in

complementation, can help researchers to identify putative recombination events. The

first type of scan is called a similarity plot. This scan examines a nucleotide MSA, using

a user-defined sliding window before calculating and graphing the percent identity

among the sequences in the alignment. The second type of scan is called a bootscan. A

bootscan uses a phylogenetic algorithm to determine which of the regions of a MSA are

most likely to contain recombination events.

 It is important to understand the bootscan algorithm because any unfamiliarity

with respect to the algorithm can lead to misinterpretation of the results from bootscans.

In the first step of the bootscan process, an alignment is input into the program and a

query sequence is chosen by the user. The query sequence is the sequence that will be

searched for recombination events. This alignment is then separated into overlapping

windows based on user input parameters. Next, a user defined number of bootstrapped

neighbor-joining trees are constructed for each of the resulting overlapping windows. The

percentage of the trees in which each sequence in the alignment forms a clade with the

query sequence is calculated for each window and graphed as colored lines.

 Potential recombination events are easily visible in bootscan graphs as “changes

in peaks”. Figure 7, is an example of a bootscan that illustrates this change in peaks. In

most of the first half of the bootscan (positions ~300 to 1400), the query sequence clades

with HAdV-E4 (the green line). However, the second half of the scan shows a strong

relationship between the query sequence and HAdV-B11, indicated by a high blue peak.

This change in peaks, from green to blue, suggests that a recombination event may have

taken place in the query sequence.

18

Figure 7. Bootscan example of “change in peaks” phenomenon. A bootscan graph shows

potential recombination between HAdV-B16 and HAdV-E4 at the hexon gene.

 Identification of potential recombination events in a bootscan is relatively easy

given the simple graph output. However, overreliance on bootscan output can lead to

misinterpretation of results. Bootscan output measures the (phylogenetic) relationships

between sequences on a relative scale. In order to identify correctly a recombination

event, constant (percent identity, similarity plot) measurements must also be taken into

account. Figure 8, shows an example that illustrates this point. This figure shows a

bootscan (top panel) and similarity plot (bottom panel) of HAdV-A18. If one were to

examine the bootscan alone, it would be easy to conclude that HAdV-A18 has a

recombination event with HAdV-A31 in the first half of the graph. However, the

similarity plot graph reveals that HAdV-A18 and HAdV-A31 are only ~85% identical in

the (potentially) recombinant region. This type of result could mean that not enough data

was included in the initial scan, or that the recombination is very old and that the

sequences have since diverged. Either way, the initial bootscan results, taken alone, are

misleading and could lead to confusion.

19

Figure 8. Recombination results for HAdV-A18. The top panel shows the bootscan result

for the hexon of HAdV-A18. The panel shows a similarity plot result for the same query.

The major loops of the hexon are noted at the top of the figure for reference purposes.

 Another potential source of confusion involved in recombination scan results

involves the amount of sequence data that is included in the scan. Problems in this area

can be caused by including either too much or too little sequence data. Too much

sequence data can be a problem if the sequence similarities interfere with the scan, e.g.,

compete with each other. For example, if two variants of HAdV-E4 are included in the

20

scan, any potential recombinations in HAdV-E4 will be masked. The extra HAdV-E4

will act as a de facto copy of the query and will always be more similar and more

potentially “recombinant” than the other sequences in the alignment. Too little sequence

data can become a problem because it forces researchers to draw conclusions based on

incomplete data. Figure 9 shows an example of the use of too little sequence data in a

bootscan. The figure shows two bootscans of HAdV-D54, a recently sequenced member

of the HAdV-D species where the top panel shows an early version of the bootscan that

contains the limited number of HAdV-D genomes that were available at the time. This

panel shows a potential recombination event with HAdV-D9 in the middle of the graph

(in the hexon region). The bottom panel shows a bootscan done on the same query, when

more HAdV-D sequences were available. The hexon recombination does not appear in

this scan, indicating that this recombination was an artifact caused by a lack of sequence

data.

Figure 9. Bootscan of HAdV-D54. The top panel shows a bootscan of the HAdV-D54

genome that contains limited sequence data. The bottom panel shows the same bootscan

after more sequence data was included.

21

 Finally, Figure 10 shows an ideal result (in terms of the number of sequences

queried and the clarity of the recombination evidence). The figure shows a bootscan (top

panel) and similarity plot (bottom panel) of the hexon of HAdV-D53. All available

sequences were included for analysis and both graphs show strong evidence of a

recombination event between HAdV-D53 and HAdV-D22. Furthermore, the recombinant

region has biological significance. This region is biologically significant because it

encodes for two major loops of the hexon protein. These loops contain the epitopes for

serum neutralization assays [29,30] and, presumably, for antibody binding. A change in

this region could give HAdV-D53 a selective advantage over other HAdVs in evading the

host immune response.

22

Figure 10. HAdV-D53 hexon recombination. The top panel shows bootscan result for the

hexon of HAdV-D53. The panel shows similarity plot results for the same query. The

major loops of the hexon are noted at the top of the figure for reference purposes.

 When determining whether or not a recombination event has taken place, it is

important not to rely too heavily on one type of data. Similarity plot/bootscan results

must be independently confirmed using phylogenomic, percent identity, and clinical data.

2.4. Conclusion

 The sequence analysis process described in this chapter allows researchers to

examine and characterize newly annotated genome quickly and thoroughly. However, the

true advantage to this method lies in the fact that every step of the process independently

confirms results from the other steps. These data and analyses complement each other.

Percent identity data confirms zPicture and Simplot data, Phylogenomic data confirms

bootscan and zPicture data, etc. This allows researchers to be more confident about

conclusions that are drawn based on the sequence analysis process.

23

CHAPTER 3: Non-Recombinant Genomes

The study of non-recombinant HAdV genomes is important for several different

reasons. First, many of these genomes are human pathogens that are capable of causing

severe or even fatal diseases. Exploration of HAdV genomes, such as these, can provide

information about the source of the pathogenecity which may be embedded in the

genome. Studies of these genomes may also lead to possible treatments or vaccines.

Second, HAdV genomes have been used in vaccine and vector development projects.

Analyses of genomes used in vaccines and vectors will provide information about the

stability of these genomes and their rate of molecular evolution. That data can be used to

improve the development process. Finally, many HAdV types are understudied because

they are relatively benign or they are difficult to culture. Studies of these genomes can

provide data that are useful as a reference in comparative genomic studies of other

HAdV. Parts 1-4 of this chapter contain publications that explore each of these aspects of

HAdV research.

 A detailed genomic and bioinformatics analysis of HAdV-B14 comprises Part 1

of this chapter [17]. HAdV-B14 is a member of subspecies B2, which has been

implicated in outbreaks of acute respiratory disease (ARD) throughout the world

[32,58,59]. The B2 subspecies is of interest because of the pathogenecity of many of its

members. However, unlike HAdV-B14, most B2 HAdVs cause renal ailments. The

publication describes the most detailed examination of the B2 subspecies to date and will

be useful in determining why HAdV-B14 causes respiratory rather than renal symptoms.

 Parts 2 and 3 of this chapter contain publications that examine the vaccine and

vector development potential of HAdV. The publication presented in Part 2 describes an

analysis of HAdV-C5 [19]. HAdV-C5 is a respiratory pathogen that is often

asymptomatic and has been studied for over fifty years. The fifty-year body of data

provided by HAdV-C5 analyses provided a unique opportunity to examine the stability of

the genome over time. The findings presented in the paper demonstrate the unusual

molecular stability of HAdV-C5 and its continued use as a vector or vaccine.

 The publication presented in Part 3 of this chapter provides a review of the current

data and tools used for HAdV vaccines and vector research [60]. This paper describes

detailed analyses of HAdV-B3, B7, HAdV-E4, and HAdV-C5 including recently isolated

field strains for comparison. All of the HAdV have been explored as possible genetic

vectors and HAdV-B7 and E4 have been used in vaccine development. The paper

explores the stability of these strains along with many other factors that may affect their

suitability as vaccine/vector candidates.

24

 Part 4 of this chapter contains a paper that describes analysis of HAdV-A18 [14].

HAdV-A18 is a member of species A. HAdV species A is less studied than other species

as a result of the limited effects of its members. However, HAdV-A12, another member

of species A, has been implicated in tumor formation in rodent models. The analysis of

HAdV-A18 reveals that it contains sequence similarity with HAdV-A12 in the regions

thought to be linked to the transformation of rodent cells [61,62,14].

 The analysis of HAdV-A18 also serves as a reference in present and future

comparative genomics studies. Comparative genomics studies, such as recombination and

in silico RE analyses, depend on having available reference genomes. For example, it is

not possible to study fully the recombination history of HAdV species A without data

from all of the members of that species. HAdV-A18 was the last member of species A to

be sequenced and data from its analysis made a recombination study of that species

possible. The results of the recombination study are presented in the publication.

25

Part 1

Genomic and bioinformatics analyses of HAdV-14p, reference strain of a re-emerging

respiratory pathogen and analysis of B1/B2

26

27

28

29

30

31

32

33

34

35

36

37

38

Part 2

Computational analysis of adenovirus serotype 5 (HAdV-C5) from an HAdV coinfection

shows genome stability after 45 years of circulation

39

40

41

42

43

44

45

46

Part 3

Applying Genomic and Bioinformatic Resources to Human Adenovirus Genomes for Use

in Vaccine Development and for Applications in Vector Development for Gene Delivery

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Part 4

Computational analysis of human adenovirus serotype 18

74

75

76

77

78

79

80

81

82

83

CHAPTER 4: Recombinant Genomes

 Recent genomics studies indicate that recombination may be a driving force in the

evolution of HAdV types [63,38,64,10,11]. Recombination events among HAdV have

been implicated in the genesis of novel types [5]. These recombinations have also been

linked to changes in virus tropism among re-emergent pathogens [6]. Parts 1-3 of this

chapter contain publications that describe three of the first recombination studies of

HAdVs that use genomics in attempt to understand molecular evolution at a fine

resolution.

 A genomics, bioinformatics and recombination analysis of HAdV-D53, a severe,

highly contagious, eye pathogen, is described in the publication that comprises Part 1 of

this chapter [5]. The paper describes the first computational and detailed examination of

recombination events among HAdV types. Data from this examination reveal that the

HAdV-D53 genome is the result of at multiple recombination events. Furthermore, each

of the genes that encode for the HAdV-D53‟s surface coat proteins (penton, hexon, and

fiber) originates from a different HAdV (HAdV-D37, HAdV-D22, and HAdV-D8,

respectively). The evidence presented in the paper suggests that recombinations among

the HAdV-D species have led to the emergence of a novel pathogen, in this instance,

HAdV-D53.

 Part 2 of this chapter contains a paper that describes a bioinformatics analysis of

HAdV-D22 [27]. The publication‟s major finding is the first description of a penton

recombination, between HAdV-D22, D37 and D19. The paper also explores the

possibility of events in other HAdV pentons and suggests that a possible “hot spot” for

recombinations exists within the gene. These data are interesting because it implies that

recombination events among HAdV types (especially in the D species) occur more

frequently than originally thought.

 The final part of this chapter contains a publication describing the computational

examination of HAdV-B55, a re-emergent and historically sporadic respiratory pathogen

[6]. HAdV-B55 was originally mis-identified as a variant of HAdV-B11 because of

molecular typing results discussed within this publication. Data from this publication

reveal that HAdV-B55 is most closely related to HAdV-B14. In retrospect and with

whole genome data, the molecular typing results were confounded by a recombination

event in the portion of the hexon (both variable loops) that was amplified and sequenced

as part of the typing process. The variable loops of the hexon constitute less than three

percent of the genome and are the only part of the virus that is closely related to HAdV-

B11.

 HAdV-B55 is an example that a small hexon recombination may have had

profound effects on the virus. This recombination event allows HAdV-B55 to disguise

itself as a renal pathogen and evade the host defenses.

84

Part 1

Evidence of Molecular Evolution Driven by Recombination Events Influencing Tropism

in a Novel Human Adenovirus that Causes Epidemic Keratoconjunctivitis

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Part 2

Computational Analysis of Human Adenovirus Type 22 Provides Evidence for

Recombination among Species D Human Adenoviruses in the Penton Base Gene

100

101

102

103

104

105

106

Part 3

Computational Analysis Identifies Human Adenovirus Type 55 as a Re-Emergent Acute

Respiratory Disease Pathogen

107

108

109

110

CHAPTER 5: A Necessary Paradigm Shift in HAdV Nomenclature

The current accepted taxonomy scheme of HAdV classifies the HAdVs into species

based on biological and clinical data [21]. Within each species, HAdVs are further

delineated into different “serotypes”. The serotype of a HAdV is determined using

specific properties of the hexon and fiber genes of the organism and was originally based

on antibody – antigen reactions or serology (hence, “sero” type)[21].

The properties used to ascertain the serotype of a HAdV can be measured using

antibody or molecular typing. Antibody typing uses serum neutralization (SN) and

hemagglutination inhibition (HI) assays to test whether or not the hexon and fiber

proteins of a query HAdV are similar to homologs in a previously established serotype

[1]. In molecular typing, portions of a query HAdV genome that encode for the epitopes

targeted in SN and HI assays (hexon and fiber genes) are amplified via PCR. The PCR

products are then sequenced and compared to established serotypes using sequence

homology software (Blast) [66,30,67,4]. In cases where data from the hexon and fiber

characterizations disagree, hexon data is given precedence and the virus is often referred

to as an intermediate strain [36].

Antibody and molecular typing techniques were the best and only available

HAdV classification mechanisms for many years. However, these methods are limited in

the proportion of the genome and virus they explore. SN and hexon molecular typing

examine a portion of the hexon that constitutes approximately a third of the gene and less

than three percent of the genome each. HI and fiber molecular typing explore less than a

third of the fiber gene which accounts for approximately two percent of the genome. The

ninety-five percent of the genome that is ignored by the assays certainly holds data that

would be useful in the classification of HAdV.

The limitations of the current typing techniques have led to contradictions in the

study of some HAdV. For example, early molecular typing results indicated that HAdV-

D53 (discussed in Chapter 4) was a variant of HAdV-D22 [39]. However, the fact that

HAdV-D53 had been implicated in outbreaks of severe epidemic keratoconjunctivitus

(EKC) distinguished it from HAdV-D22 which is not normally pathogenic [39,27]. This

apparent paradox was not resolved until whole genome analysis of HAdV-D53 revealed

that the majority of its genome was similar to HAdV-D37, a known causal agent of EKC

[65,10]. The data from the HAdV-D53 analysis led to its designation as a novel HAdV

type. HAdV-D53 is referred to as a novel “type” as opposed to “serotype” to distinguish

it from HAdVs that have been classified using serological methods.

Advancements in genome sequencing and bioinformatics methods allow for the

development of a more “comprehensive typing algorithm” (CTA). This algorithm makes

111

use of all available genome analysis data from phylogenomics (as defined in Chapter 2)

and recombination analysis to clinical data. The method also incorporates the principles

of the current typing conventions (which make use of the virus capsid proteins: penton,

hexon, fiber) so that the contradictions with past HAdV literature can be avoided. The

sum of the information from all parts of the CTA is combined to determine the degree of

novelty of a query HAdV sequence and its place in the HAdV taxonomy.

The phylogenomic examination of a HAdV begins with a whole genome

phylogenetic tree. The whole genome tree is based on a sequence alignment of all

available HAdV genomes. This tree can be used to determine the species of a query

HAdV. Phylogenomic species determination is an improvement over earlier methods

because it uses the molecular relationship between HAdVs, rather than clinical data that

can be incomplete or misinterpreted, to discern the species of a HAdV. Furthermore, and

perhaps surprisingly, data from this method reflects the findings of past literature. Figure

11 shows a whole genome phylogenetic tree that demonstrates this fact. In the tree, all

taxa form clades based on the species determinations made by the original authors of the

reference publication for each HAdV.

112

Figure 11. A whole genome phylogenetic tree of seventy HAdV genomes. The

name of each taxa has a format that list the GenBank accession number for the genome,

followed by a “|”, followed by the species of the genome and followed by the serotype of

the HAdV. The neighbor joining, bootstrapped tree (1000 replicates) was constructed

using Mega 4. Phylogenetic distances for the tree were calculated using the Maximum

113

Composite Likelihood method (MCL). Taxa from the same species form distinct clades

within the tree.

It would be convenient, and therefore tempting, to use some metric of the whole

genome phylogeny (percent identity or phylogenetic distance values) to determine the

type of a query HAdV. In this type of method, the shortest distance between any two

different established HAdV types could be measured and used as a sort of “low bar”.

Then any query HAdV with a distance from its nearest relative that is larger than the

“low bar” would be called novel.

The “low bar” method was explored and inconsistencies in the current genome

versus type data made it impossible to employ it as a comprehensive typing strategy. The

most common types of inconsistencies found were cases in which the distance between

two established HAdVs of the same type was larger than the distance between HAdVs of

different types. For example, the Maximum Composite Likelihood (MCL) [50,51]

calculated distance between the reference and field strains of HAdV-B7 is 0.0176, which

is larger than the distance of 0.0139 between HAdV-B35 and HAdV-B11. Percent

identity values of these HAdVs show the same relationships indicating that the

inconsistencies observed are not artifacts of the method of distance calculation. The

source of the contradictions in the distance values is not yet known but may be related to

different evolutionary rates among disparate species of HAdVs. Nonetheless, a more

refined method must be used to determine HAdV types.

To determine the type of query HAdVs, the phylogenomics of individual genes

must be examined. The hexon, fiber and penton genes are explored in this step of the

CTA. These genes encode the surface proteins of the virus. Their role in determining the

cell tropism of the virus makes them a logical choice for HAdV typing. Furthermore, the

genes are well studied and information from previous examinations can be incorporated

into the CTA so that its results remain consistent with past research.

The HAdV hexon protein contains two major loops (referred to as L1 and L2) that

hold the epitope targeted by SN assays. Primers that are capable of isolating the portion

of the hexon gene that encodes for these loops have been developed as part of a

molecular typing strategy [30]. Only one of the hexon loops is necessary to mimic SN

results (personal communication). Given the choice of using either loop, it is logical to

select L1 because it is larger and any phylogeny based on L1 will be less likely to be

affected by small differences in alignment methods. For these reasons, the

phylogenomics of the L1 region of the hexon gene have been included in the CTA.

Recombination studies have revealed that the all of the known HAdV hexon

recombination events bracket the L1 and L2 regions [10,11]. Downstream of L1 and L2

is a conserved region (referred to as C4) that constitutes approximately half of the gene

and shows very little recombination potential. Incorporating phylogenomics data from

this region into the CTA allows for the identification of potential recombination events.

Primers that isolate a portion of the C4 region have been developed previously [43] and

were integrated in to the analysis.

114

The HAdV fiber protein contains a variable region, called the knob. This contains

the epitope that is targeted in HI assays. This region also contains the determinants for

cell entry and cell tropism. Primers bracketing the knob region of the fiber gene have

been published [30] and so the phylogenomics of this region is included as part of the

CTA in order to mimic HI results.

The penton protein and gene are often overlooked by antibody and molecular

typing methods. As a result of this, primers for important portions of the penton gene

have not been developed. The phylogenetics of the entire penton gene is incorporated into

the CTA representing this portion of the genome.

Figure 12 shows a phylogenomic examination of HAdV-B55 and HAdV-B55p1.

Both of these isolates are members of the HAdV-B2 subspecies, as indicated by the

whole genome tree. The fact that HAdV-B55 and B55p1 form clades with one another in

all trees suggests that they are variants of the same HAdV type.

Figure 12. A phylogenetic examination of HAdV-B55 and HAdV-B55p1. The

genome, penton, hexon conserved, and fiber knob trees reveal a close relationship

between HAdV-B55, B55p1, HAdV-B14, and HAdV-B14a. The hexon loop 1 tree shows

a close relationship with HAdV-B11, indicating a recombination event. HAdV-B55 and

HAdV-B55p1 form clades together in all trees, demonstrating that they are variants of the

same type.

115

The HAdV-B55 isolates were originally mis-identified as variants of HAdV-B11

(HAdV-B11a) based on molecular typing data. However, phylogenetic analysis of the

whole genome, penton, hexon conserved region and fiber knob region clearly indicate

that HAdV-B55 and HAdV-B55p1 are most closely related to HAdV-B14. Furthermore,

the discrepancy between the hexon loop 1 and conserved region trees shows a hexon

recombination (discussed in Chapter 4) that led to the misleading molecular typing

results.

Only two logical conclusions can be drawn from the phylogenomic examination

of the HAdV-B55 isolates. The first conclusion is that HAdV-B55 and B55p1 are

variants of HAdV-B14. The second conclusion is that the HAdV-B55 isolates are

variants of a novel HAdV type due to changes in pathology.

To determine whether or not the isolates of HAdV-B55 represent a novel HAdV

type, the CTA incorporates biological or clinical data. The phylogenetic trees of both

hexon regions indicate that the HAdV-B55 variants contain a hexon recombination. This

data is confirmed by a formal recombination analysis (Figure 5 in chapter 2, also

discussed in Chapter 4) [11]. However, a recombination event alone is not enough to

designate a novel HAdV type. Otherwise, biologically insignificant recombination events

could be used as a basis to name novel types which could lead to confusion in the

literature. In order for a new type to be defined based on a recombination event, that

event must have some biological or clinical relevance. It is this relevance that makes the

claim of a novel type scientifically defensible.

The recombination event within the genome of HAdV-B55 causes it (and its

variants) to have a hexon that resembles HAdV-B11, a renal pathogen. However, the rest

of the HAdV-B55 genome is similar to HAdV-B14 which, like HAdV-B55, causes

respiratory symptoms. The renal hexon of HAdV-B55 could allow the virus to evade a

host immune system that is primed to fight respiratory pathogens that are similar to

HAdV-B14. The biological implications of this evasion are intriguing and lead to the

conclusion that HAdV-B55 and its variants represent a novel type of HAdV.

The analysis of HAdV-B55 demonstrates how a new CTA can be used to

combine phylogenomic, recombination, biological and clinical data to designate a novel

HAdV type. Furthermore, the analysis of HAdV-B55p1 shows that variants of existing

types can also be identified using the CTA. This new algorithm makes use of existing

typing methods and augments them with whole genome analysis to create an exact and

thorough typing strategy.

116

CHAPTER 6: Future Directions

The previous chapters of this document discuss a new algorithm to study

comprehensively HAdV genomes and their evolutionary history. This method has been

useful in the examination of HAdVs with pathogenic or vaccine/vector development

potential and viruses from species that have been understudied in the past. The algorithm

has also been used to examine the growing number of newly isolated recombinant HAdV

genomes. Furthermore, recombination studies have revealed the need for a new

comprehensive typing method for HAdV which has been developed and incorporated

into the genome analysis process.

Each aspect of this new analysis algorithm can be improved with future research.

First, the study of non-recombinant genomes can be enhanced by standardizing the

annotation of HAdV genomes. Second, the study of recombinant genomes can be

improved by more accurately defining the amount of data required to identify a

recombination event and the best way to deal with the growing amount of data being

produced by recombination studies. Finally, the comprehensive typing algorithm (CTA)

discussed in this document can be improved thorough the development of a standardized

nomenclature for HAdV variants.

 The non-recombinant aspects of HAdV genome analysis can be greatly improved

with the development of standardized annotation for genes and proteins. An annotation of

HAdV sequences varies widely from genome to genome. Products from the E1A gene,

for example, can be named according to their size in kilodaltons (eg. E1A 21K in HAdV-

D53), length in residues (eg. E1A 253R in HAdV-D46), or rate of centrifugal

sedimentation rate (eg. E1A 13S in HAdV-B3). The disparate naming conventions hinder

homology (and other) studies because they make it more difficult to determine whether or

not genes or products are, in fact, homologs of one another.

 The diverse HAdV research community will have to play a large role in any effort

to standardize the annotations process. One possible method of involving this community

in an annotation review is to create a publicly available and editable database of HAdV

sequence data. This Wikipedia-like resource could create an environment where the

annotation of specific HAdV sequences is standardized by the researchers who are most

familiar with these sequences. The first step toward developing this type of HAdV

catalog is the creation of a sequence database similar to the one that is described in

Chapter 2 of this document.

 Answering two important questions will improve HAdV recombination studies in

the future. The first question is “How convincing must data be to support adequately a

117

claim of recombination?” The second question is “What is the best way to undertake

recombination studies that contain a large number of reference sequences?”

 The recombination studies discussed in this document describe HAdVs that

contain clear, almost undeniable recombination events. In all cases, the recombinant

sequences have a very high degree of similarity (>95%) and bootscan analysis graphs

show prolonged plateaus at the maximum possible level (100%). In short, these

recombination claims are very easy to defend scientifically. However, it may be the case

that these recombination events represent the so called “low fruit” that has been picked

from the tree. Future recombination studies may have to rely on data that supports a claim

of recombination in a less convincing manner. For example, the analysis of HAdV-A18

(discussed in Chapter 3) presents bootscan evidence that indicates the presence of hexon

recombination. This bootscan data is contradicted by the similarity plot graphs, showing

only eighty-five percent (85%) similarity in the recombinant region. This contradiction

raises a question as to what degree of homology is necessary for a defensible claim of

recombination. Questions, such as these, are likely to become more common as the

number of HAdV recombination studies increases.

 The question of how convincing data must be to support a claim of recombination

will ultimately have to be answered by the HAdV research community through the

process of peer review. However, it may be logical to incorporate clinical and biological

data into recombination studies to aid in answering this question. The recombination

events in HAdV-D53 and HAdV-B55 changed the tropism of these viruses, which has

biological and clinical implications. These implications make a claim of recombination

more scientifically convincing.

 The number of HAdV genomes that are fully sequenced is growing rapidly. The

large number of sequences available can make recombination studies more difficult. The

problem with using a high number of sequences in a recombination study is that it

becomes more difficult to differentiate those sequences in graphs, such as bootscans or

similarity plots. However, eliminating sequences from the analysis could decrease the

quality of the analysis. Answering the question of how to deal with numerous sequences

will be an important part of future recombination studies.

 One strategy for dealing with a large number of sequences in a recombination

study is to “pare down” the data in a step-wise fashion. In this method, a first-pass

recombination analysis is run that contains every possible sequence. Next, the sequences

that contribute little or nothing to the analysis are removed from the sequence group and

the recombination scan is run again. This process is repeated until the recombination

plots are sufficiently clarified. The “pare-down” strategy was employed, to great effect,

in the recombination studies that are discussed in this document. As the body of HAdV

sequences grows, this strategy will, most likely, have to be refined in some manner.

 The comprehensive typing algorithm (CTA) that is discussed in Chapter 5 of this

document can be improved by standardizing the nomenclature that will be used for

variants of existing HAdV types. The CTA has been shown to be capable of determining

the novelty of a query HAdV. The current convention on naming novel HAdVs is to

name them in sequential order. Since there are currently fifty-five HAdV types, the next

118

novel HAdV to be characterized will be named HAdV-56. This convention is suitable for

most purposes and is accepted among the HAdV community. However, the typing

convention for variants of HAdVs is not standardized. This variability of variant names

could lead to confusion with regard to the identity of HAdVs in the future.

 It may be possible to standardize variant names in the future, by using less

variable methods to measure the differences between variants. A popular typing

convention for variant names that has been used in the past is based on restriction enzyme

(RE) map differences [Heim ref]. Variants that differ significantly from another strain are

given letters. This is the case for HAdV-B14a which is a variant of HAdV-B14. Variants

that differ only slightly from another strain are given numbers. This is the case with

HAdV-B55p1 which is a variant of HAdV-B55p (the “p” stands for prototype and is

commonly omitted from the name).

A major problem with using the RE typing convention is that the degree of

difference which is required to give a variant a letter name, rather than a number, is ill-

defined. The primary reason that this degree of difference is not defined is that RE maps

measure sequence identity in a variable way. In a RE analysis, the restriction maps of two

sequences may be more or less similar, depending upon which enzymes are used to

construct the maps.

A less variable method of measuring the difference between sequences could be

used to overcome the limitations of RE analysis. Percent identity and phylogenetic

distance measurements between sequences remain relatively constant even when

different alignment methods are used or extra sequences are added to the analysis. These

measurements could be used to define a metric that is required to name a variant with a

letter. This technique would be similar to the “low bar” method discussed in Chapter 5. It

is possible that using “low bar” measurements to define variants will prove to be

impossible, just as they cannot be used to define novel HAdV types. However, the use of

these measurements is a logical approach that should be explored.

 The genome analysis method described in this document represents a

comprehensive way to characterize HAdVs quickly and accurately. This system has

already produced a wealth of valuable data. As HAdV research progresses, the genome

analysis algorithm will undoubtedly, evolve and improve.

Note: All references to HAdV-B14a, in this manuscript, describe HAdV-B14p1. The virus

was originally incorrectly named.

119

APPENDIX

Java code for the Protein Percent Identities program that is discussed in this Dissertation:

dispacter-servelet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xmlns:aop="http://www.springframework.org/schema/aop"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

 <bean

class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapp

ing"/>

 <!--

 Most controllers will use the ControllerClassNameHandlerMapping above, but

 for the index controller we are using ParameterizableViewController, so we must

 define an explicit mapping for it.

 -->

 <bean id="urlMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

 <property name="mappings">

 <props>

 <prop key="FastaUploadForm.htm">fastaAlign</prop>

 <prop key="FastaConvertForm.htm">fastaConvert</prop>

 <prop key="FileUploadForm.htm">seqAlign</prop>

 <prop key="index.htm">indexController</prop>

 </props>

 </property>

 </bean>

 <bean id="multipartResolver"

class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/>

120

 <bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

 p:prefix="/WEB-INF/jsp/"

 p:suffix=".jsp" />

 <!--

 The index controller.

 -->

 <bean name="indexController"

 class="org.springframework.web.servlet.mvc.ParameterizableViewController"

 p:viewName="index" />

 <bean id="seqAlign" class="controller.SeqAlignController" p:seqAlignService-

ref="seqAlignService">

 <property name="commandName" value="seqAlignForm"/>

 <property name="pages">

 <list>

 <value>FileUploadForm</value>

 <value>SeqSelectForm</value>

 <value>SeqConfirmationForm</value>

 </list>

 </property>

 </bean>

 <bean id="fastaAlign" class="controller.FastaAlignController" p:seqAlignService-

ref="seqAlignService">

 <property name="commandName" value="fastaAlignForm"/>

 <property name="pages">

 <list>

 <value>FastaUploadForm</value>

 <value>FastaSeqSelectForm</value>

 <value>FastaSeqConfirmationForm</value>

 </list>

 </property>

 </bean>

 <bean id="fastaConvert" class="controller.FastaConvertFormController"

 p:seqAlignService-ref="seqAlignService">

 <property name="commandName" value="fastaForm"/>

 <property name="commandClass" value="controller.FastaConvertBean"/>

 <property name="formView" value="FastaConvertForm"/>

 <property name="successView" value="FastaConvertConfirmation"/>

121

 </bean>

</beans>

applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xmlns:aop="http://www.springframework.org/schema/aop"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd

 http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

 <!--bean id="propertyConfigurer"

 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"

 p:location="/WEB-INF/jdbc.properties" />

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.DriverManagerDataSource"

 p:driverClassName="${jdbc.driverClassName}"

 p:url="${jdbc.url}"

 p:username="${jdbc.username}"

 p:password="${jdbc.password}" /-->

 <bean name="seqAlignService" class="service.SeqAlignService">

 <constructor-arg value="/WEB-INF/Res/BLOSUM62.txt"/>

 </bean>

 <!-- ADD PERSISTENCE SUPPORT HERE (jpa, hibernate, etc) -->

</beans>

AlignConf.jsp

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xmlns:aop="http://www.springframework.org/schema/aop"

122

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.5.xsd

 http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

 <!--bean id="propertyConfigurer"

 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"

 p:location="/WEB-INF/jdbc.properties" />

 <bean id="dataSource"

 class="org.springframework.jdbc.datasource.DriverManagerDataSource"

 p:driverClassName="${jdbc.driverClassName}"

 p:url="${jdbc.url}"

 p:username="${jdbc.username}"

 p:password="${jdbc.password}" /-->

 <bean name="seqAlignService" class="service.SeqAlignService">

 <constructor-arg value="/WEB-INF/Res/BLOSUM62.txt"/>

 </bean>

 <!-- ADD PERSISTENCE SUPPORT HERE (jpa, hibernate, etc) -->

</beans>

FastaConvertConfirmation.jsp

<%--

 Document : FastaConvertConfirmation

 Created on : May 7, 2009, 12:53:03 PM

 Author : Michael

--%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Fasta Conversion Confirmation</title>

 </head>

123

 <body>

 <h1>Fasta Conversion Confirmation</h1>

 <p>

 Sequence Type: ${fastaForm.seqType}

 </p>

 The results are presented in tablular format so that they can easily be

 "screen scraped" into a text file

 <c:if test="${fastaForm.seqType == 'proteins'}">

 <table border="1">

 <thead>

 <tr>

 <th align="left">Protein Seqs</th>

 </tr>

 </thead>

 <tbody>

 <c:forEach items="${fastaForm.seqList}" var="seq">

 <tr>

 <td>>${seq.geneProd}
</td>

 </tr>

 <tr>

 <td>${seq.cdsTransltn}</td>

 </tr>

 </c:forEach>

 </tbody>

 </table>

 </c:if>

 <c:if test="${fastaForm.seqType == 'nucleotides'}">

 <table border="1">

 <thead>

 <tr>

 <th align="left">Nucleotide Seqs</th>

 </tr>

 </thead>

 <tbody>

 <c:forEach items="${fastaForm.seqList}" var="seq">

 <tr>

 <td>>${seq.geneProd}
</td>

 </tr>

 <tr>

 <td>${seq.cdsSeq}</td>

 </tr>

 </c:forEach>

124

 </tbody>

 </table>

 </c:if>

 </body>

</html>

FastaConvertForm.jsp

<%--

 Document : FastaConvertForm

 Created on : May 7, 2009, 12:52:27 PM

 Author : Michael

--%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Fasta Convert</title>

 </head>

 <body>

 <h1>Input GenBank Files and Output Features in Fasta Format.</h1>

 <form:form commandName="fastaForm" action="FastaConvertForm.htm"

 enctype="multipart/form-data">

 <input type="file" name="file"/>

 <form:checkbox path="seqType" label="get protein seqs" value="proteins"/>

 <form:checkbox path="seqType" label="get nuleotide seqs"

value="nucleotides"/>

 <input type="submit" value="submit"/>

 </form:form>

 </body>

</html>

FastaSeqConfirmation.jsp

<%--

 Document : FastaSeqConfirmationForm

 Created on : May 10, 2009, 3:44:11 PM

 Author : Michael

125

--%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World!Page3</h1>

 <form:form commandName="fastaAlignForm" action="FastaUploadForm.htm">

 <table border="1">

 <thead>

 <tr>

 <th></th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td valign="top"><c:forEach items="${fastaAlignForm.alteredSeqList}"

var="seq">

 ${seq.fastaLabel}

 Will be compared to->

 <hr/>

 </c:forEach></td>

 <td valign="top"><c:forEach

items="${fastaAlignForm.alteredSeqList2}" var="seq1">

 ${seq1.fastaLabel}
 <hr/>

 </c:forEach></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_finish"/>

126

 <!--</form>-->

 </form:form>

 </body>

</html>

FastaSeqSelectForm.jsp

<%--

 Document : FastaSeqSelectForm

 Created on : May 10, 2009, 3:41:33 PM

 Author : Michael

--%>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World!FastaSeqselect</h1>

 <form:form commandName="fastaAlignForm" action="FastaUploadForm.htm">

 <form:errors path="*"

delimiter="
"></form:errors>

 <table border="1">

 <thead>

 <tr>

 <th>seq1</th>

 <th>seq2</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td valign="top">

 <form:checkboxes path="alteredIds"

items="${fastaAlignForm.seqList}"

 itemLabel="fastaLabel" itemValue="id" delimiter="
<hr/>"/></td>

 <td valign="top"><form:checkboxes path="alteredIds2"

items="${fastaAlignForm.seqList2}"

127

 itemLabel="fastaLabel" itemValue="id" delimiter="
<hr/>"/></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_target2"/>

 </form:form>

 </body>

</html>

FastaUploadForm.jsp

<%--

 Document : FastaUploadForm

 Created on : May 10, 2009, 3:39:31 PM

 Author : Michael

--%>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World! This is the fastaUpload</h1>

 <form:form commandName="fastaAlignForm" action="FastaUploadForm.htm"

 enctype="multipart/form-data">

 <!--<form action="" method="POST">-->

 <table border="1">

 <thead>

 <tr>

 <th>1st GenBank File</th>

 <th>2nd GenBank File</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td><input type="file" name="file"/></td>

128

 <td><input type="file" name="file2"/></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_target1"/>

 <form:errors path="*"

delimiter="
"></form:errors>

 <!--</form>-->

 </form:form>

 </body>

</html>

FileUploadForm.jsp

<%--

 Document : FileUploadForm

 Created on : Apr 29, 2009, 3:51:55 PM

 Author : Michael

--%>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World! This is the fileupload</h1>

 <form:form commandName="seqAlignForm" action="FileUploadForm.htm"

 enctype="multipart/form-data">

 <!--<form action="" method="POST">-->

 <table border="1">

 <thead>

 <tr>

 <th>1st GenBank File</th>

 <th>2nd GenBank File</th>

 </tr>

 </thead>

 <tbody>

 <tr>

129

 <td><input type="file" name="file"/></td>

 <td><input type="file" name="file2"/></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_target1"/>

 <form:errors path="*"

delimiter="
"></form:errors>

 <!-- <c:forEach items="${errors}" var="e">

 <strong font="red">${e}

 </c:forEach>-->

 <!--</form>-->

 </form:form>

 </body>

</html>

SeqConfirmationForm.jsp

<%--

 Document : Page3

 Created on : Apr 30, 2009, 12:15:57 PM

 Author : Michael

--%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World!Page3</h1>

 <form:form commandName="seqAlignForm" action="FileUploadForm.htm">

 <table border="1">

 <thead>

 <tr>

 <th></th>

 <th></th>

 </tr>

130

 </thead>

 <tbody>

 <tr>

 <td valign="top"><c:forEach items="${seqAlignForm.alteredSeqList}"

var="seq">

 ${seq.geneProdTrans}

 Will be compared to->

 <hr/>

 </c:forEach></td>

 <td valign="top"><c:forEach items="${seqAlignForm.alteredSeqList2}"

var="seq1">

 ${seq1.geneProdTrans}
 <hr/>

 </c:forEach></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_finish"/>

 <!--</form>-->

 </form:form>

 </body>

</html>

SeqSelectForm.jsp

<%--

 Document : SeqSelectForm

 Created on : Apr 29, 2009, 3:57:01 PM

 Author : Michael

--%>

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World!Seqselect</h1>

131

 <form:form commandName="seqAlignForm" action="FileUploadForm.htm">

 <form:errors path="*"

delimiter="
"></form:errors>

 <table border="1">

 <thead>

 <tr>

 <th>seq1</th>

 <th>seq2</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td valign="top">

 <form:checkboxes path="alteredIds" items="${seqAlignForm.seqList}"

 itemLabel="geneProdTrans" itemValue="id"

delimiter="
<hr/>"/></td>

 <td valign="top"><form:checkboxes path="alteredIds2"

items="${seqAlignForm.seqList2}"

 itemLabel="geneProdTrans" itemValue="id"

delimiter="
<hr/>"/></td>

 </tr>

 </tbody>

 </table>

 <input type="submit" value="submit" name="_target2"/>

 </form:form>

 </body>

</html>

redirect.jsp

<%--

Views should be stored under the WEB-INF folder so that

they are not accessible except through controller process.

This JSP is here to provide a redirect to the dispatcher

servlet but should be the only JSP outside of WEB-INF.

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<% response.sendRedirect("index.htm"); %>

FastaAlignController

/*

 * To change this template, choose Tools | Templates

132

 * and open the template in the editor.

 */

package controller;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.springframework.beans.propertyeditors.CustomCollectionEditor;

import org.springframework.validation.BindException;

import org.springframework.validation.Errors;

import org.springframework.web.bind.ServletRequestDataBinder;

import org.springframework.web.servlet.ModelAndView;

import org.springframework.web.servlet.mvc.AbstractWizardFormController;

import service.Featr;

import service.SeqAlignService;

/**

 *

 * @author Michael

 */

public class FastaAlignController extends AbstractWizardFormController {

 private SeqAlignService seqAlignService;

 public void setSeqAlignService(SeqAlignService seqAlignService) {

 this.seqAlignService = seqAlignService;

 }

 public FastaAlignController() {

 //Initialize controller properties here or

 //in the Web Application Context

 //setCommandClass(controller.SeqAlignBean.class);

 //setCommandName("MyCommandName");

 //setSuccessView("successView");

 //setFormView("formView");

 //setCommandName("seqAlignForm");

 //setPages(new String[] {"FileUploadForm", "SeqSelectForm", "Page3"});

 System.out.println("Constructor:::::::");

 }

133

 @Override

 protected Object formBackingObject(HttpServletRequest request) throws Exception {

 SeqAlignBean fastaAlignForm = new SeqAlignBean();

 //seqAlignForm.setDum("dum");

 System.out.println("FBO:::::::: "+ fastaAlignForm.toString());

 return fastaAlignForm;

 }

 @Override

 protected Map referenceData(HttpServletRequest request, Object command, Errors

errors, int page) throws Exception {

 SeqAlignBean bean = (SeqAlignBean) command;

 if (getCurrentPage(request)==1){

 Map<Object, Object> dataMap = new HashMap<Object, Object>();

 bean.setSeqList(seqAlignService.makeFeatureListFromFastaFile(bean.getFile()));

bean.setSeqList2(seqAlignService.makeFeatureListFromFastaFile(bean.getFile2()));

 //seqAlignService.getProtAlignmentsAndIds("MMMPPVVVM",

"MMMVVVM");

 //bean.setDum(Integer.toString(bean.getSeqList().size()));

 //dataMap.put("seqList", bean.getSeqList());

 System.out.println("RefDataIF0:::::::::::::"+getCurrentPage(request));

 return dataMap;

 }

 if (getCurrentPage(request)==2){

 Map<Object, Object> dataMap = new HashMap<Object, Object>();

 bean.setAlteredSeqList();

 bean.setAlteredSeqList2();

 //bean.setDum(Integer.toString(bean.getAlteredSeqList().size()));

 //dataMap.put("seqList", bean.getSeqList());

 System.out.println("RefDataIF2:::::::::::::"+getCurrentPage(request));

 return dataMap;

 }

 System.out.println("RefData:::::::::::::"+getCurrentPage(request));

 return super.referenceData(request, command, errors, page);

 }

 @Override

134

 protected void onBind(HttpServletRequest request, Object command, BindException

errors) throws Exception {

 SeqAlignBean fastaAlignForm = (SeqAlignBean) command;

 if (getCurrentPage(request)==0){

//fastaAlignForm.setSeqList(seqAlignService.makeFeatureListFromFastaFile(fastaAlign

Form.getFile()));

//fastaAlignForm.setSeqList2(seqAlignService.makeFeatureListFromFastaFile(fastaAlig

nForm.getFile2()));

 //seqAlignService.getProtAlignmentsAndIds("MMMPPVVVM",

"MMMVVVM");

 //fastaAlignForm.setDum(Integer.toString(fastaAlignForm.getSeqList().size()));

 }

 if (getCurrentPage(request)==1){

 System.out.println("errors:::"+errors.getAllErrors().toString());

//seqAlignForm.setSeqList(seqAlignService.makeCodingFeatureListFromFile(seqAlignF

orm.getFile()));

// fastaAlignForm.setAlteredSeqList();

// fastaAlignForm.setAlteredSeqList2();

//

fastaAlignForm.setDum(Integer.toString(fastaAlignForm.getAlteredSeqList().size()));

 }

 //seqAlignForm.setDum(Integer.toString(seqAlignForm.getPst().length));

 System.out.println("OnBind::::::"+ getCurrentPage(request));

 }

 @Override

 protected void validatePage(Object command, Errors errors, int page) {

 SeqAlignBean seqAlignForm = (SeqAlignBean) command;

 System.out.println("Validate::::::::");

 if (page==0){

 System.out.println("Validate::::::::0" + errors.getErrorCount());

// ValidationUtils.rejectIfEmpty(errors, "file", "2 genbank files must be included");

 if(seqAlignForm.getFile().getOriginalFilename().isEmpty()){

 System.out.println("Validate::::::::File");

 errors.rejectValue("file", "2 genbank files must be included", "The 1st fasta file

must be included");

 }if(seqAlignForm.getFile2().getOriginalFilename().isEmpty()){

 System.out.println("Validate::::::::File");

 errors.rejectValue("file2", "2 genbank files must be included", "The 2nd fasta

file must be included");

135

 }

 System.out.println("Validate::::::::0afte" + errors.getErrorCount());

 }

 if (page==1){

 if(seqAlignForm.getSeqList().size() -

 seqAlignForm.getAlteredIds().length!=

 seqAlignForm.getSeqList2().size() -

 seqAlignForm.getAlteredIds2().length){

 System.out.println("Validate::::::::page1");

 errors.reject("", "Both columns of the table must contain the same number of

seqs!");

 }

 }

 //super.validatePage(command, errors, page);

 }

 @Override

 protected ModelAndView processFinish(HttpServletRequest request,

HttpServletResponse response, Object command, BindException errors) throws

Exception {

 //throw new UnsupportedOperationException("Not supported yet.");

 SeqAlignBean seqAlignForm = (SeqAlignBean) command;

 seqAlignForm.setAligns(

 seqAlignService.getProtAlignsFromFastaFeatrLists(

 seqAlignForm.getAlteredSeqList(),

 seqAlignForm.getAlteredSeqList2()));

 System.out.println("Finish::::::");

 return new ModelAndView("AlignConf", "seqAlignForm", seqAlignForm);

 }

}

FastaCovertBean.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package controller;

136

import java.util.ArrayList;

import org.springframework.web.multipart.MultipartFile;

import service.Featr;

/**

 *

 * @author Michael

 */

public class FastaConvertBean {

 private MultipartFile file;

 private ArrayList<Featr> seqList;

 private String seqType;

 public String getSeqType() {

 return seqType;

 }

 public void setSeqType(String seqType) {

 this.seqType = seqType;

 }

 public MultipartFile getFile() {

 return file;

 }

 public void setFile(MultipartFile file) {

 this.file = file;

 }

 public ArrayList<Featr> getSeqList() {

 return seqList;

 }

 public void setSeqList(ArrayList<Featr> seqList) {

 this.seqList = seqList;

 }

}

137

FastaConvertFormController.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package controller;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.springframework.validation.BindException;

import org.springframework.web.multipart.MultipartFile;

import org.springframework.web.servlet.ModelAndView;

import org.springframework.web.servlet.mvc.SimpleFormController;

import service.SeqAlignService;

/**

 *

 * @author Michael

 */

public class FastaConvertFormController extends SimpleFormController {

 private SeqAlignService seqAlignService;

 public void setSeqAlignService(SeqAlignService seqAlignService) {

 this.seqAlignService = seqAlignService;

 }

 public FastaConvertFormController() {

 //Initialize controller properties here or

 //in the Web Application Context

 //setCommandClass(MyCommand.class);

 //setCommandName("MyCommandName");

 //setSuccessView("successView");

 //setFormView("formView");

 }

// @Override

// protected void doSubmitAction(Object command) throws Exception {

// throw new UnsupportedOperationException("Not yet implemented");

// }

 //Use onSubmit instead of doSubmitAction

138

 //when you need access to the Request, Response, or BindException objects

 @Override

 protected ModelAndView onSubmit(

 HttpServletRequest request,

 HttpServletResponse response,

 Object command,

 BindException errors) throws Exception {

 FastaConvertBean fastaForm = (FastaConvertBean) command;

 MultipartFile file = fastaForm.getFile();

 fastaForm.setSeqList(seqAlignService.makeCodingFeatureListFromFile(file));

 ModelAndView mv = new ModelAndView(getSuccessView(),"fastaForm",

fastaForm);

 //Do something...

 return mv;

 }

}

SeqAlignBean.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package controller;

import java.util.ArrayList;

import org.springframework.web.multipart.MultipartFile;

import service.Align;

import service.Featr;

/**

 *

 * @author Michael

 */

public class SeqAlignBean {

 private MultipartFile file;

 private MultipartFile file2;

 private ArrayList<Featr> seqList;

 private ArrayList<Featr> seqList2;

 private String[] alteredIds;

139

 private String[] alteredIds2;

 private ArrayList<Featr> alteredSeqList;

 private ArrayList<Featr> alteredSeqList2;

 private ArrayList<Align> aligns;

 private String dum;

 public ArrayList<Align> getAligns() {

 return aligns;

 }

 public void setAligns(ArrayList<Align> aligns) {

 this.aligns = aligns;

 }

 public String[] getAlteredIds2() {

 return alteredIds2;

 }

 public void setAlteredIds2(String[] alteredIds2) {

 this.alteredIds2 = alteredIds2;

 }

 public ArrayList<Featr> getAlteredSeqList2() {

 return alteredSeqList2;

 }

 public void setAlteredSeqList2() {

 ArrayList<Featr> alteredSeqLists= new ArrayList<Featr>();

 for(Featr f: this.seqList2){

 String go = "go";

 for(String id:this.alteredIds2){

 if(f.getId().equals(id)){

 go = "nogo";

 }

 }

 if(go.equals("go")){

 alteredSeqLists.add(f);

 }

 }

 this.alteredSeqList2 = alteredSeqLists;

 }

140

 public ArrayList<Featr> getSeqList2() {

 return seqList2;

 }

 public void setSeqList2(ArrayList<Featr> seqList2) {

 this.seqList2 = seqList2;

 }

 public String[] getAlteredIds() {

 return alteredIds;

 }

 public void setAlteredIds(String[] alteredIds) {

 this.alteredIds = alteredIds;

 }

 public String getDum() {

 return dum;

 }

 public void setDum(String dum) {

 this.dum = dum;

 }

 public ArrayList<Featr> getAlteredSeqList() {

 return alteredSeqList;

 }

 public void setAlteredSeqList() {

 ArrayList<Featr> alteredSeqLists= new ArrayList<Featr>();

 for(Featr f: this.seqList){

 String go = "go";

 for(String id:this.alteredIds){

 if(f.getId().equals(id)){

 go = "nogo";

 }

 }

 if(go.equals("go")){

 alteredSeqLists.add(f);

 }

 }

 this.alteredSeqList = alteredSeqLists;

141

 }

 public MultipartFile getFile() {

 return file;

 }

 public void setFile(MultipartFile file) {

 this.file = file;

 }

 public MultipartFile getFile2() {

 return file2;

 }

 public void setFile2(MultipartFile file2) {

 this.file2 = file2;

 }

 public ArrayList<Featr> getSeqList() {

 return seqList;

 }

 public void setSeqList(ArrayList<Featr> seqList) {

 this.seqList = seqList;

 }

}

SeqAlignController.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package controller;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.springframework.beans.propertyeditors.CustomCollectionEditor;

142

import org.springframework.validation.BindException;

import org.springframework.validation.Errors;

import org.springframework.validation.ValidationUtils;

import org.springframework.web.bind.ServletRequestDataBinder;

import org.springframework.web.servlet.ModelAndView;

import org.springframework.web.servlet.mvc.AbstractWizardFormController;

import service.Featr;

import service.SeqAlignService;

/**

 *

 * @author Michael

 */

public class SeqAlignController extends AbstractWizardFormController {

 private SeqAlignService seqAlignService;

 public void setSeqAlignService(SeqAlignService seqAlignService) {

 this.seqAlignService = seqAlignService;

 }

 public SeqAlignController() {

 //Initialize controller properties here or

 //in the Web Application Context

 //setCommandClass(controller.SeqAlignBean.class);

 //setCommandName("MyCommandName");

 //setSuccessView("successView");

 //setFormView("formView");

 //setCommandName("seqAlignForm");

 //setPages(new String[] {"FileUploadForm", "SeqSelectForm", "Page3"});

 System.out.println("Constructor:::::::");

 }

 @Override

 protected Object formBackingObject(HttpServletRequest request) throws Exception {

 SeqAlignBean seqAlignForm = new SeqAlignBean();

 //seqAlignForm.setDum("dum");

 System.out.println("FBO:::::::: "+ seqAlignForm.toString());

 return seqAlignForm;

 }

 @Override

143

 protected Map referenceData(HttpServletRequest request, Object command, Errors

errors, int page) throws Exception {

 SeqAlignBean bean = (SeqAlignBean) command;

 System.out.println("Ref::::");

 if (getCurrentPage(request)==1){

 System.out.println("RefDataIF0:::::::::::::"+getCurrentPage(request));

 Map<Object, Object> dataMap = new HashMap<Object, Object>();

bean.setSeqList(seqAlignService.makeCodingFeatureListFromFile(bean.getFile()));

bean.setSeqList2(seqAlignService.makeCodingFeatureListFromFile(bean.getFile2()));

 //seqAlignService.getProtAlignmentsAndIds("MMMPPVVVM",

"MMMVVVM");

 //bean.setDum(Integer.toString(bean.getSeqList().size()));

 //dataMap.put("seqList", bean.getSeqList());

 return dataMap;

 }

 if (getCurrentPage(request)==2){

 Map<Object, Object> dataMap = new HashMap<Object, Object>();

 bean.setAlteredSeqList();

 bean.setAlteredSeqList2();

 //bean.setDum(Integer.toString(bean.getAlteredSeqList().size()));

 //dataMap.put("seqList", bean.getSeqList());

 System.out.println("RefDataIF2:::::::::::::"+getCurrentPage(request));

 return dataMap;

 }

 System.out.println("RefData:::::::::::::"+getCurrentPage(request));

 return super.referenceData(request, command, errors, page);

 }

 @Override

 protected void validatePage(Object command, Errors errors, int page) {

 SeqAlignBean seqAlignForm = (SeqAlignBean) command;

 System.out.println("Validate::::::::");

 if (page==0){

 System.out.println("Validate::::::::0" + errors.getErrorCount());

// ValidationUtils.rejectIfEmpty(errors, "file", "2 genbank files must be included");

 if(seqAlignForm.getFile().getOriginalFilename().isEmpty()){

 System.out.println("Validate::::::::File");

 errors.rejectValue("file", "2 genbank files must be included", "The 1st genbank

files must be included");

144

 }if(seqAlignForm.getFile2().getOriginalFilename().isEmpty()){

 System.out.println("Validate::::::::File");

 errors.rejectValue("file2", "2 genbank files must be included", "The 2nd

genbank files must be included");

 }

 System.out.println("Validate::::::::0afte" + errors.getErrorCount());

 }

 if (page==1){

 if(seqAlignForm.getSeqList().size() -

 seqAlignForm.getAlteredIds().length!=

 seqAlignForm.getSeqList2().size() -

 seqAlignForm.getAlteredIds2().length){

 System.out.println(seqAlignForm.getAlteredIds().length+

 ", "+ seqAlignForm.getAlteredIds2().length);

 System.out.println("Validate::::::::page1");

 errors.reject("", "Both columns of the table must contain the same number of

seqs!");

 }

 }

 //super.validatePage(command, errors, page);

 }

 @Override

 protected void onBind(HttpServletRequest request, Object command, BindException

errors) throws Exception {

 SeqAlignBean seqAlignForm = (SeqAlignBean) command;

 if (getCurrentPage(request)==0){

//seqAlignForm.setSeqList(seqAlignService.makeCodingFeatureListFromFile(seqAlignF

orm.getFile()));

//seqAlignForm.setSeqList2(seqAlignService.makeCodingFeatureListFromFile(seqAlign

Form.getFile2()));

 ////seqAlignService.getProtAlignmentsAndIds("MMMPPVVVM",

"MMMVVVM");

 //seqAlignForm.setDum(Integer.toString(seqAlignForm.getSeqList().size()));

 }

 if (getCurrentPage(request)==1){

 System.out.println("errors:::"+errors.getAllErrors().toString());

145

//seqAlignForm.setSeqList(seqAlignService.makeCodingFeatureListFromFile(seqAlignF

orm.getFile()));

// seqAlignForm.setAlteredSeqList();

// seqAlignForm.setAlteredSeqList2();

//

seqAlignForm.setDum(Integer.toString(seqAlignForm.getAlteredSeqList().size()));

 }

 //seqAlignForm.setDum(Integer.toString(seqAlignForm.getPst().length));

 System.out.println("OnBind::::::"+ getCurrentPage(request));

 }

 @Override

 protected ModelAndView processFinish(HttpServletRequest request,

HttpServletResponse response, Object command, BindException errors) throws

Exception {

 //throw new UnsupportedOperationException("Not supported yet.");

 SeqAlignBean seqAlignForm = (SeqAlignBean) command;

 seqAlignForm.setAligns(

 seqAlignService.getProtAlignsFromFeatrLists(

 seqAlignForm.getAlteredSeqList(),

 seqAlignForm.getAlteredSeqList2()));

 System.out.println("Finish::::::");

 return new ModelAndView("AlignConf", "seqAlignForm", seqAlignForm);

 }

}

Align.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package service;

/**

 *

 * @author Michael

146

 */

public class Align {

 private String queryLabel;

 private String targetLabel;

 private String queryAligned;

 private String targetAligned;

 private double percentId;

 public double getPercentId() {

 return percentId;

 }

 public void setPercentId(double percentId) {

 this.percentId = percentId;

 }

 public String getQueryAligned() {

 return queryAligned;

 }

 public void setQueryAligned(String queryAligned) {

 this.queryAligned = queryAligned;

 }

 public String getQueryLabel() {

 return queryLabel;

 }

 public void setQueryLabel(String queryLabel) {

 this.queryLabel = queryLabel;

 }

 public String getTargetAligned() {

 return targetAligned;

 }

 public void setTargetAligned(String targetAligned) {

 this.targetAligned = targetAligned;

 }

 public String getTargetLabel() {

 return targetLabel;

 }

147

 public void setTargetLabel(String targetLabel) {

 this.targetLabel = targetLabel;

 }

}

Featr.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package service;

/**

 *

 * @author Michael

 */

public class Featr {

 private String srcAccNum;

 private String id;

 private String cdsGene = null;

 private String cdsProduct;

 private String cdsLoc = null;

 private int ftrStart;

 private String cdsNote = null;

 private String cdsProtID = null;

 private String cdsSeq = null;

 private String cdsTransltn = null;

 private String ftrName = null;

 private String ftrNote = null;

 private String ftrGene = null;

 private String ftrLoc = null;

 private String ftrProduct = null;

 private String ftrSeq = null;

 private String geneProdTrans = null;

 private String geneProd = null;

 private String fastaLabel = null;

 public Featr(){

148

 }

 public String getFastaLabel() {

 fastaLabel = this.cdsGene + "
"+

 formatLongStr(this.cdsSeq);

 return fastaLabel;

 }

 public String getGeneProd() {

 geneProd = this.cdsGene + "|"+

 this.cdsProduct;

 return geneProd;

 }

 public String getGeneProdTrans() {

 geneProdTrans = this.cdsGene + "|"+

 this.cdsProduct+"
"+

 formatLongStr(this.cdsTransltn);

 return geneProdTrans;

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getCdsGene() {

 return cdsGene;

 }

 public void setCdsGene(String cdsGene) {

 this.cdsGene = cdsGene;

 }

 public String getCdsLoc() {

 return cdsLoc;

149

 }

 public void setCdsLoc(String cdsLoc) {

 this.cdsLoc = cdsLoc;

 }

 public String getCdsNote() {

 return cdsNote;

 }

 public void setCdsNote(String cdsNote) {

 this.cdsNote = cdsNote;

 }

 public String getCdsProduct() {

 return cdsProduct;

 }

 public void setCdsProduct(String cdsProduct) {

 this.cdsProduct = cdsProduct;

 }

 public String getCdsProtID() {

 return cdsProtID;

 }

 public void setCdsProtID(String cdsProtID) {

 this.cdsProtID = cdsProtID;

 }

 public String getCdsSeq() {

 return cdsSeq;

 }

 public void setCdsSeq(String cdsSeq) {

 this.cdsSeq = cdsSeq;

 }

 public String getCdsTransltn() {

 return cdsTransltn;

 }

 public void setCdsTransltn(String cdsTransltn) {

150

 this.cdsTransltn = cdsTransltn;

 }

 public String getFtrGene() {

 return ftrGene;

 }

 public void setFtrGene(String ftrGene) {

 this.ftrGene = ftrGene;

 }

 public String getFtrLoc() {

 return ftrLoc;

 }

 public void setFtrLoc(String ftrLoc) {

 this.ftrLoc = ftrLoc;

 }

 public String getFtrName() {

 return ftrName;

 }

 public void setFtrName(String ftrName) {

 this.ftrName = ftrName;

 }

 public String getFtrNote() {

 return ftrNote;

 }

 public void setFtrNote(String ftrNote) {

 this.ftrNote = ftrNote;

 }

 public String getFtrProduct() {

 return ftrProduct;

 }

 public void setFtrProduct(String ftrProduct) {

 this.ftrProduct = ftrProduct;

 }

151

 public String getFtrSeq() {

 return ftrSeq;

 }

 public void setFtrSeq(String ftrSeq) {

 this.ftrSeq = ftrSeq;

 }

 public int getFtrStart() {

 return ftrStart;

 }

 public void setFtrStart(int ftrStart) {

 this.ftrStart = ftrStart;

 }

 public String getSrcAccNum() {

 return srcAccNum;

 }

 public void setSrcAccNum(String srcAccNum) {

 this.srcAccNum = srcAccNum;

 }

 public String formatLongStr(String lonstr){

 String shrt = null;

 shrt = lonstr.substring(0,10) + ".....";

 shrt = shrt + lonstr.substring(lonstr.length() - 10);

 return shrt;

 }

}

SeqAlignService.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package service;

import java.io.BufferedReader;

152

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.NoSuchElementException;

import org.biojava.bio.BioException;

import org.biojava.bio.alignment.NeedlemanWunsch;

import org.biojava.bio.alignment.SequenceAlignment;

import org.biojava.bio.alignment.SubstitutionMatrix;

import org.biojava.bio.seq.FeatureFilter;

import org.biojava.bio.seq.FeatureHolder;

import org.biojava.bio.seq.ProteinTools;

import org.biojava.bio.seq.Sequence;

import org.biojava.bio.seq.SequenceTools;

import org.biojava.bio.seq.io.SubIntegerTokenization;

import org.biojava.bio.seq.io.SymbolTokenization;

import org.biojava.bio.symbol.Alignment;

import org.biojava.bio.symbol.AlphabetManager;

import org.biojava.bio.symbol.FiniteAlphabet;

import org.biojava.bio.symbol.IllegalAlphabetException;

import org.biojava.bio.symbol.IllegalSymbolException;

import org.biojava.bio.symbol.Symbol;

import org.biojavax.RichAnnotation;

import org.biojavax.bio.seq.RichFeature;

import org.biojavax.bio.seq.RichLocation;

import org.biojavax.bio.seq.RichSequence;

import org.biojavax.bio.seq.RichSequenceIterator;

import org.springframework.core.io.Resource;

import org.springframework.web.context.WebApplicationContext;

import org.springframework.web.multipart.MultipartFile;

/**

 *

 * @author Michael

 */

public class SeqAlignService {

 public SeqAlignService(Resource protMat) throws IOException {

 setProtMat(protMat);

 System.out.println("file:::::"+getProtMat().getFile().length());

 //resource.getInputStream();

 //resource.exists();

153

 }

 private Resource protMat;

 public Resource getProtMat() {

 return protMat;

 }

 public void setProtMat(Resource protMat) {

 this.protMat = protMat;

 }

 public ArrayList<Featr> makeFeatureListFromFastaFile(MultipartFile file) throws

IOException, NoSuchElementException, BioException{

 BufferedReader b = new BufferedReader (new InputStreamReader (

file.getInputStream()));

 RichSequenceIterator seqIt =

org.biojavax.bio.seq.RichSequence.IOTools.readFastaProtein(b, null);

 ArrayList<Featr> list = new ArrayList<Featr>();

 int id = 0;

 while(seqIt.hasNext()){

 Featr f = new Featr();

 RichSequence seq = seqIt.nextRichSequence();

 f.setCdsGene(seq.getURN());

 f.setCdsSeq(seq.seqString());

 f.setId(Integer.toString(id));

 id = id + 1;

 list.add(f);

 }

 return list;

 }

 public ArrayList<Featr> makeCodingFeatureListFromFile(MultipartFile file)

 throws IllegalAlphabetException, IllegalSymbolException, IOException,

BioException{

 //make a holder for the coding filter

 RichSequenceIterator seqIt = getSeqIterFromMultipartFile(file);

 //FeatureHolder ftrHld = getCdFtrHld(seqIt);

 FtrHldAndSeq fHS = getCdFtrHldandSeq(seqIt);

// RichSequence seq = seqIt.nextRichSequence();

154

 //FeatureFilter src = new FeatureFilter.ByType("source");

 //FeatureHolder s = seq.filter(src);

 ArrayList<Featr> l = new ArrayList<Featr>();

 //iterate over the Features in fh

 int id = 0;

 for (Iterator i = fHS.getHld().features(); i.hasNext();){

 Featr ftr = populateCdFeatr(fHS.getSeq(), (RichFeature)i.next());

 ftr.setId(Integer.toString(id));

 id = id + 1;

 l.add(ftr);

 }

 return l;

 }

 public RichSequenceIterator getSeqIterFromMultipartFile(MultipartFile file) throws

IOException{

 BufferedReader b = new BufferedReader (new InputStreamReader (

file.getInputStream()));

 RichSequenceIterator seqIt =

org.biojavax.bio.seq.RichSequence.IOTools.readGenbankDNA(b, null);

 return seqIt;

 }

 public FeatureFilter getCodingFilter(){

 FeatureFilter fCode = new FeatureFilter.ByType("CDS");

 return fCode;

 }

 public FtrHldAndSeq getCdFtrHldandSeq(RichSequenceIterator seqIt)

 throws BioException, NoSuchElementException{

 FtrHldAndSeq ftrHldSeq = new FtrHldAndSeq();

 FeatureFilter codeFltr = getCodingFilter();

 RichSequence seq = seqIt.nextRichSequence();

 ftrHldSeq.setSeq(seq);

 ftrHldSeq.setHld(seq.filter(codeFltr));

 return ftrHldSeq;

 }

 public Featr populateCdFeatr(RichSequence seq, RichFeature f

) throws IllegalAlphabetException, IllegalSymbolException{

 Featr ftr = new Featr();

 ftr.setSrcAccNum(seq.getAccession());

 //parseSrcInfo(fh, ftr);

155

 String gn = "";

 String prd = "";

 //ftr.setCdsSeq(getSequenceMotifNoSplice(f));

 ftr.setCdsSeq(getSequenceMotif(f));

 ftr.setCdsLoc(formatLocation(f, ftr));

 RichAnnotation an = (RichAnnotation) f.getAnnotation();

 if(an.containsProperty("protein_id")){

 ftr.setCdsProtID(an.getProperty("protein_id").toString());

 }

 if(an.containsProperty("gene")){

 //gn = an.getProperty("gene").toString();

 ftr.setCdsGene(an.getProperty("gene").toString());

 }

 if(an.containsProperty("product")){

 //prd = an.getProperty("product").toString();

 ftr.setCdsProduct(an.getProperty("product").toString());

 }

 if(an.containsProperty("translation")){

 ftr.setCdsTransltn(an.getProperty("translation").toString());

 }

 if(an.containsProperty("note")){

 ftr.setCdsNote(an.getProperty("note").toString());

 }

 //ftr.setCdsGeneProduct(gn+" "+prd);

 return ftr;

 }

 private String formatLocation(RichFeature ftr, Featr ft){

 String loc = null;

 ft.setFtrStart(ftr.getLocation().getMin());

 if (ftr.getLocation().toString().contains(":")){

 loc = ftr.getLocation().toString();

 loc = loc.substring(loc.lastIndexOf(":")+2,loc.lastIndexOf("]"));

 }

 else{

 loc = ftr.getLocation().toString();

 }

 if (ftr.getStrand().getValue() < 0){

 loc = "(" + loc + ")c";

 }

 if (loc.contains(",")){

 loc = loc.replaceAll(",", ", ");

 }

156

 return loc;

 }

 private String getSequenceMotif(RichFeature rf) throws IllegalAlphabetException,

IllegalSymbolException{

 Sequence sq = rf.getSequence();

 RichLocation l = (RichLocation) rf.getLocation();

 Sequence s = null;

 String sb = "";

 for (Iterator i = l.blockIterator(); i.hasNext();){

 RichLocation blk = (RichLocation) i.next();

 if (rf.getStrand().getValue() < 0){

 s = SequenceTools.subSequence(sq, blk.getMin(), blk.getMax());

 sb = sb + SequenceTools.reverseComplement(s).seqString();

 }

 else{

 s = SequenceTools.subSequence(sq, blk.getMin(), blk.getMax());

 sb = sb + s.seqString();

 }

 }

 //System.out.println(sb);

 return sb;

 }

 public Align getProtAlignmentsAndIds(String queryStr, String targetStr) throws

BioException, NumberFormatException, IOException, Exception{

 Align protAlign = new Align();

 // The alphabet of the sequences. For this example DNA is choosen.

 FiniteAlphabet alphabet =

 (FiniteAlphabet) AlphabetManager.alphabetForName("PROTEIN-TERM");

 // Read the substitution matrix file.

 // For this example the matrix NUC.4.4 is good.

 SubstitutionMatrix matrix =

 new SubstitutionMatrix(alphabet, protMat.getFile());

 // Define the default costs for sequence manipulation for the global alignment.

 SequenceAlignment aligner = new NeedlemanWunsch(

 (short)0, // match

 (short)3, // replace

 (short)2, // insert

 (short)2, // delete

 (short)1, // gapExtend

 matrix // SubstitutionMatrix

);

157

 Sequence query = ProteinTools.createProteinSequence(queryStr, "query");

 Sequence target = ProteinTools.createProteinSequence(targetStr, "target");

// Sequence query = DNATools.createDNASequence(queryStr, "query");

// Sequence target = DNATools.createDNASequence(targetStr, "target");

// // Perform an alignment and save the results.

 aligner.pairwiseAlignment(

 query, // first sequence

 target // second one

);

// // Print the alignment to the screen

// System.out.println("Global alignment with Needleman-Wunsch:\n" +

// aligner.getAlignmentString()+

// aligner.getAlignment(query,

target).symbolListForLabel(target.getName()).seqString());

 //Save the info to the Aign object

 protAlign.setQueryAligned(aligner.getAlignment(

 query, target).symbolListForLabel(

 query.getName()).seqString());

 protAlign.setTargetAligned(aligner.getAlignment(

 query, target).symbolListForLabel(

 target.getName()).seqString());

 Alignment alignment = aligner.getAlignment(query, target);

 int matches = 0;

 for (int i = 1; i <= alignment.length(); i++) {

 Symbol querySym = alignment.symbolAt(query.getName(), i);

 Symbol subjectSym = alignment.symbolAt(target.getName(), i);

 if (querySym!=null && querySym.equals(subjectSym)) matches++;

 }

 protAlign.setPercentId((double)matches/(double)alignment.length());

 //identity = (double)matches/(double)alignment.length();

 //System.out.println(protAlign.getPercentId());

 return protAlign;

 }

 public ArrayList<Align> getProtAlignsFromFeatrLists(ArrayList<Featr> queryList,

 ArrayList<Featr> targetList) throws BioException, NumberFormatException,

IOException, Exception{

 ArrayList<Align> alignList = new ArrayList<Align>();

 int i = 0;

 for(Featr qF: queryList){

 Featr tF = targetList.get(i);

 i = i+1;

 Align al = getProtAlignmentsAndIds(qF.getCdsTransltn(), tF.getCdsTransltn());

158

 al.setQueryLabel(qF.getGeneProd()); al.setTargetLabel(tF.getGeneProd());

 alignList.add(al);

 }

 return alignList;

 }

 public ArrayList<Align> getProtAlignsFromFastaFeatrLists(ArrayList<Featr>

queryList,

 ArrayList<Featr> targetList) throws BioException, NumberFormatException,

IOException, Exception{

 ArrayList<Align> alignList = new ArrayList<Align>();

 int i = 0;

 for(Featr qF: queryList){

 Featr tF = targetList.get(i);

 i = i+1;

 Align al = getProtAlignmentsAndIds(qF.getCdsSeq(), tF.getCdsSeq());

 al.setQueryLabel(qF.getCdsGene()); al.setTargetLabel(tF.getCdsGene());

 alignList.add(al);

 }

 return alignList;

 }

 public class FtrHldAndSeq{

 private FeatureHolder hld;

 private RichSequence seq;

 public FeatureHolder getHld() {

 return hld;

 }

 public void setHld(FeatureHolder hld) {

 this.hld = hld;

 }

 public RichSequence getSeq() {

 return seq;

 }

 public void setSeq(RichSequence seq) {

 this.seq = seq;

159

 }

 }

}

160

REFERENCES

161

REFERENCES

1. Rowe, W.P., Huebner, R.J., Gilmore, L.K., Parrott, R.H., and Ward, T.G. Isolation of

a cytopathogenic agent from human adenoids undergoing spontaneous degeneration

in tissue culture. Proceedings of the Society for Experimental Biology and Medicine.

Society for Experimental Biology and Medicine (New York, N.Y 84, 3 (1953), 570-3.

2. Hilleman, M.R. and Werner, J.H. Recovery of new agent from patients with acute

respiratory illness. Proceedings of the Society for Experimental Biology and

Medicine. Society for Experimental Biology and Medicine (New York, N.Y 85, 1

(1954), 183-8.

3. Davison, A.J., Benko, M., and Harrach, B. Genetic content and evolution of

adenoviruses. The Journal of general virology 84, Pt 11 (2003), 2895-908.

4. Purkayastha, A., Ditty, S.E., Su, J., et al. Genomic and bioinformatics analysis of

HAdV-4, a human adenovirus causing acute respiratory disease: implications for

gene therapy and vaccine vector development. Journal of virology 79, 4 (2005),

2559-72.

5. Adenoviruses. http://www.microbiologybytes.com/virology/Adenoviruses.html.

6. Adenoviridae - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Adenovirus.

7. Shenk, T.E. Adenoviridae: The Viruses and Thier Replication. In B.N. Fields, D.M.

Knipe and P.M. Howley, eds., Fields' Virology. Wolters Kluwer Health/Lippincott

Williams & Wilkins, Philadelphia, 2007.

8. Dán, Á., Élő, P., Harrach, B., Zádori, Z., and Benkő, M. Four New Inverted Terminal

Repeat Sequences from Bovine Adenoviruses Reveal Striking Differences in the

Length and Content of the ITRs. Virus Genes 22, 2 (2001), 175-179.

9. Ishiko, H., Shimada, Y., Konno, T., et al. Novel human adenovirus causing

nosocomial epidemic keratoconjunctivitis. Journal of Clinical Microbiology 46, 6

(2008), 2002-2008.

10. Walsh, M.P., Chintakuntlawar, A., Robinson, C.M., et al. Evidence of molecular

evolution driven by recombination events influencing tropism in a novel human

adenovirus that causes epidemic keratoconjunctivitis. PloS one 4, 6 (2009), e5635.

11. Walsh, M.P., Seto, J., Jones, M.S., Chodosh, J., Xu, W., and Seto, D. Computational

Analysis Identifies Human Adenovirus Type 55 as a Re-emergent Acute Respiratory

Disease Pathogen. Journal of Clinical Microbiology, (2009).

12. Jones, M.S., Harrach, B., Ganac, R.D., et al. New adenovirus species found in a

patient presenting with gastroenteritis. Journal of Virology 81, 11 (2007), 5978-5984.

13. Harrach. http://www.vmri.hu/~harrach/ADENOSEQ.HTM.

162

14. Walsh, M.P., Seto, J., Tirado, D., et al. Computational analysis of human adenovirus

serotype 18. Virology, (2010).

15. Zock, C., Iselt, A., and Doerfler, W. A unique mitigator sequence determines the

species specificity of the major late promoter in adenovirus type 12 DNA. Journal of

virology 67, 2 (1993), 682-93.

16. Mei, Y., Skog, J., Lindman, K., and Wadell, G. Comparative analysis of the genome

organization of human adenovirus 11, a member of the human adenovirus species B,

and the commonly used human adenovirus 5 vector, a member of species C. J Gen

Virol 84, 8 (2003), 2061-2071.

17. Seto, J., Walsh, M.P., Mahadevan, P., et al. Genomic and bioinformatics analyses of

HAdV-14p, reference strain of a re-emerging respiratory pathogen and analysis of

B1/B2. Virus Research 143, 1 (2009), 94-105.

18. Garnett, C.T., Erdman, D., Xu, W., and Gooding, L.R. Prevalence and Quantitation

of Species C Adenovirus DNA in Human Mucosal Lymphocytes. J. Virol. 76, 21

(2002), 10608-10616.

19. Seto, J., Walsh, M.P., Metzgar, D., and Seto, D. Computational analysis of

adenovirus serotype 5 (HAdV-C5) from an HAdV coinfection shows genome

stability after 45 years of circulation. Virology 404, 2 (2010), 180-186.

20. Atkinson, R.L., Dhurandhar, N.V., Allison, D.B., et al. Human adenovirus-36 is

associated with increased body weight and paradoxical reduction of serum lipids.

International journal of obesity (2005) 29, 3 (2005), 281-6.

21. Echavarria, M. Adenovirus. In A.J. Zuckerman, J.E. Banatvala, B.D. Schoub, P.D.

Griffiths and Mortimer, eds., Principles and Practice of Clinical Virology. John

Wiley and Sons, San Diego, CA, USA, 2009, 463-488.

22. Lemckert, A.A.C., Grimbergen, J., Smits, S., et al. Generation of a novel replication-

incompetent adenoviral vector derived from human adenovirus type 49: manufacture

on PER.C6 cells, tropism and immunogenicity. J Gen Virol 87, 10 (2006), 2891-

2899.

23. Kajon, A.E., Moseley, J.M., Metzgar, D., et al. Molecular epidemiology of

adenovirus type 4 infections in US military recruits in the postvaccination era (1997-

2003). The Journal of Infectious Diseases 196, 1 (2007), 67-75.

24. Steinthorsdottir, V. and Mautner, V. Enteric adenovirus type 40:E1B transcription

map and identification of novel E1A-E1B cotranscripts in lytically infected cells.

Virology 181, 1 (1991), 139-49.

25. Han, B., Guo, L., Qu, J., et al. Improved replication of enteric adenovirus type 41 in

Hep2 cell line expressing E1B55K. Bing du xue bao = Chinese journal of virology /

[bian ji, Bing du xue bao bian ji wei yuan hui 23, 4 (2007), 258-64.

26. Gustafsson, D.J., Segerman, A., Lindman, K., Mei, Y., and Wadell, G. The

Arg279Glu Substitution in the Adenovirus Type 11p (Ad11p) Fiber Knob Abolishes

EDTA-Resistant Binding to A549 and CHO-CD46 Cells, Converting the Phenotype

to That of Ad7p. J. Virol. 80, 4 (2006), 1897-1905.

27. Robinson, C.M., Rajaiya, J., Walsh, M.P., et al. Computational analysis of human

adenovirus type 22 provides evidence for recombination between human

163

adenoviruses species D in the penton base gene. Journal of Virology, (2009).

28. Hierholzer, C.J. Adenoviruses. In N.J. Schmidt, D.A. Lennette, E.T. Lennette, E.H.

Lennette and R.W. Emmons, eds., Diagnostic Procedures for Viral, Rickettsial and

Chlamydial Infections. American Public Health Association, 1995.

29. Crawford-Miksza, L. and Schnurr, D.P. Analysis of 15 adenovirus hexon proteins

reveals the location and structure of seven hypervariable regions containing serotype-

specific residues. Journal of virology 70, 3 (1996), 1836-44.

30. Madisch, I., Harste, G., Pommer, H., and Heim, A. Phylogenetic Analysis of the

Main Neutralization and Hemagglutination Determinants of All Human Adenovirus

Prototypes as a Basis for Molecular Classification and Taxonomy. J. Virol. 79, 24

(2005), 15265-15276.

31. Li, Q.G., Hambraeus, J., and Wadell, G. Genetic relationship between thirteen

genome types of adenovirus 11, 34, and 35 with different tropisms. Intervirology 32,

6 (1991), 338-50.

32. Acute Respiratory Disease Associated with Adenovirus Serotype 14 --- Four States,

2006--2007. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5645a1.htm.

33. Metzgar, D., Osuna, M., Kajon, A.E., Hawksworth, A.W., Irvine, M., and Russell,

K.L. Abrupt emergence of diverse species B adenoviruses at US military recruit

training centers. The Journal of infectious diseases 196, 10 (2007), 1465-73.

34. Shott, J.P., McGrath, S.M., Pau, M.G., et al. Adenovirus 5 and 35 vectors expressing

Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-

specific cellular IFN-gamma and antibody responses in mice. Vaccine 26, 23 (2008),

2818-23.

35. Wesley, R.D. and Lager, K.M. Evaluation of a recombinant human adenovirus-5

vaccine administered via needle-free device and intramuscular injection for

vaccination of pigs against swine influenza virus. American Journal of Veterinary

Research 66, 11 (2005), 1943-1947.

36. Hierholzer, J.C. and Pumarola, A. Antigenic characterization of intermediate

adenovirus 14-11 strains associated with upper respiratory illness in a military camp.

Infection and immunity 13, 2 (1976), 354-9.

37. Hierholzer, J.C., Pumarola, A., Rodriguez-Torres, A., and Beltran, M. Occurrence of

respiratory illness due to an atypical strain of adenovirus type 11 during a large

outbreak in Spanish military recruits. American journal of epidemiology 99, 6 (1974),

434-42.

38. Lukashev, A.N., Ivanova, O.E., Eremeeva, T.P., and Iggo, R.D. Evidence of frequent

recombination among human adenoviruses. J Gen Virol 89, 2 (2008), 380-388.

39. Engelmann, I., Madisch, I., Pommer, H., and Heim, A. An outbreak of epidemic

keratoconjunctivitis caused by a new intermediate adenovirus 22/H8 identified by

molecular typing. Clin Infect Dis 43, 7 (2006), e64-6.

40. Yang, Z., Zhu, Z., Tang, L., et al. Genomic analyses of recombinant adenovirus type

11a in China. Journal of Clinical Microbiology 47, 10 (2009), 3082-3090.

41. Zhu, Z., Zhang, Y., Xu, S., et al. Outbreak of acute respiratory disease in China

caused by B2 species of adenovirus type 11. Journal of clinical microbiology 47, 3

164

(2009), 697-703.

42. Delsuc, F., Brinkmann, H., and Philippe, H. Phylogenomics and the reconstruction of

the tree of life. Nature Reviews. Genetics 6, 5 (2005), 361-375.

43. Xu, W., McDonough, M.C., and Erdman, D.D. Species-specific identification of

human adenoviruses by a multiplex PCR assay. Journal of Clinical Microbiology 38,

11 (2000), 4114-4120.

44. Ovcharenko, I., Loots, G.G., Hardison, R.C., Miller, W., and Stubbs, L. zPicture:

Dynamic Alignment and Visualization Tool for Analyzing Conservation Profiles.

Genome Res. 14, 3 (2004), 472-477.

45. Lole, K.S., Bollinger, R.C., Paranjape, R.S., et al. Full-length human

immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in

India, with evidence of intersubtype recombination. Journal of Virology 73, 1 (1999),

152-60.

46. Katoh, K. and Toh, H. Recent developments in the MAFFT multiple sequence

alignment program. Brief Bioinform 9, 4 (2008), 286-298.

47. Pettersen, E.F., Goddard, T.D., Huang, C.C., et al. UCSF Chimera--a visualization

system for exploratory research and analysis. Journal of Computational Chemistry

25, 13 (2004), 1605-1612.

48. Nuin, P., Wang, Z., and Tillier, E. The accuracy of several multiple sequence

alignment programs for proteins. BMC Bioinformatics 7, 1 (2006), 471.

49. Rice, P., Longden, I., and Bleasby, A. EMBOSS: The European Molecular Biology

Open Software Suite. Trends in Genetics 16, 6 (2000), 276-277.

50. Tamura, K., Dudley, J., Nei, M., and Kumar, S. MEGA4: Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution

24, 8 (2007), 1596-9.

51. Tamura, K., Nei, M., and Kumar, S. Prospects for inferring very large phylogenies by

using the neighbor-joining method. Proceedings of the National Academy of Sciences

of the United States of America 101, 30 (2004), 11030-11035.

52. Brudno, M., Do, C.B., Cooper, G.M., et al. LAGAN and Multi-LAGAN: efficient

tools for large-scale multiple alignment of genomic DNA. Genome Research 13, 4

(2003), 721-731.

53. Scott Schwartz, Zheng Zhang, Kelly A. Frazer, Arian Smit, Cathy Riemer, John

Bouck, Richard Gibbs, Ross Hardison, and Webb Miller. PipMaker---A Web Server

for Aligning Two Genomic DNA Sequences. Genome Res. 10, 4 (2000), 577-586.

54. Holland, R.C.G., Down, T.A., Pocock, M., et al. BioJava: an open-source framework

for bioinformatics. 24, 18 (2008), 2096–2097.

55. hibernate.org - Hibernate. http://www.hibernate.org/.

56. Springframework.org. http://www.springframework.org/.

57. Martin, D. and Rybicki, E. RDP: detection of recombination amongst aligned

sequences. Bioinformatics 16, 6 (2000), 562-563.

58. Kendall, E.J., Riddle, R.W., Tuck, H.A., Rodan, K.S., Andrews, B.E., and

McDonald, J.C. Pharyngo-conjunctival fever; school outbreaks in England during the

summer of 1955 associated with adenovirus types 3, 7, and 14. British medical

165

journal 2, 5037 (1957), 131-6.

59. Van Der Veen, J. and Kok, G. Isolation and typing of adenoviruses recovered from

military recruits with acute respiratory disease in The Netherlands. American journal

of hygiene 65, 2 (1957), 119-29.

60. Seto, J., Walsh, M.P., Mahadevan, P., Zhang, Q., and Seto, D. Applying Genomic

and Bioinformatic Resources to Human Adenovirus Genomes for Use in Vaccine

Development and for Applications in Vector Development for Gene Delivery.

Viruses 2, 1 (2010), 1-26.

61. Graham, F.L., van der Eb, A.J., and Heijneker, H.L. Size and location of the

transforming region in human adenovirus type 5 DNA. Nature 251, 5477 (1974),

687-691.

62. Huebner, R.J., Rowe, W.P., and Lane, W.T. Oncogenic effects in hamsters of human

adenovirus types 12 and 18. Proceedings of the National Academy of Sciences of the

United States of America 48, 12 (1962), 2051–2058.

63. Crawford-Miksza, L.K. and Schnurr, D.P. Adenovirus serotype evolution is driven by

illegitimate recombination in the hypervariable regions of the hexon protein. Virology

224, 2 (1996), 357-67.

64. Robinson, C.M., Rajaiya, J., Walsh, M.P., et al. Computational analysis of human

adenovirus type 22 provides evidence for recombination between human

adenoviruses species D in the penton base gene. Journal of virology 83, (2009),

8980-85.

65. Robinson, C.M., Shariati, F., Gillaspy, A.F., Dyer, D.W., and Chodosh, J. Genomic

and bioinformatics analysis of human adenovirus type 37: new insights into corneal

tropism. BMC genomics 9, (2008), 213.

66. Madisch, I., Wolfel, R., Harste, G., Pommer, H., and Heim, A. Molecular

identification of adenovirus sequences: a rapid scheme for early typing of human

adenoviruses in diagnostic samples of immunocompetent and immunodeficient

patients. Journal of medical virology 78, 9 (2006), 1210-7.

67. Miura-Ochiai, R., Shimada, Y., Konno, T., et al. Quantitative Detection and Rapid

Identification of Human Adenoviruses. J. Clin. Microbiol. 45, 3 (2007), 958-967.

166

CURRICULUM VITAE

Michael Patrick Walsh is the grateful son of Irene Kearney Walsh, the proud brother of

Major Kevin Collin Walsh USMC and the beloved nephew of both Mary Kathleen

Kearney and John Francis Kearney. He received a Bachelor of Science degree from

Virginia Polytechnic Institute and State University in 2001, a Master of Science degree

from George Mason University in 2006 and a Doctor of Philosophy degree from George

Mason University in 2010. He is godfather to John Richmond Long and Alexander

Mathew Cetta and he is a practicing Roman Catholic.

