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ABSTRACT

MARKET-BASED DECISION GUIDANCE FRAMEWORK FOR POWER AND
ALTERNATIVE ENERGY COLLABORATION

Hesham Altaleb, PhD
George Mason University, 2015

Dissertation Director: Dr. Alexander Brodsky

With the introduction of power energy markets deregulation, innovations have transformed
once a static network into a more flexible grid. Microgrids have also been deployed to serve
various purposes (e.g., reliability, sustainability, etc.). With the rapid deployment of smart
grid technologies, it has become possible to measure and record both, the quantity and time
of the consumption of electrical power. In addition, capabilities for controlling distributed
supply and demand have resulted in complex systems where inefficiencies are possible and
where improvements can be made. Electric power like other volatile resources cannot be
stored efficiently, therefore, managing such resource requires considerable attention.

Such complex systems present a need for decisions that can streamline consumption, de-
lay infrastructure investments, and reduce costs. When renewable power resources and the
need for limiting harmful emissions are added to the equation, the search space for decisions
becomes increasingly complex. As a result, the need for a comprehensive decision guidance

system for electrical power resources consumption and productions becomes evident.



In this dissertation, I formulate and implement a comprehensive framework that ad-
dresses different aspect of the electrical power generation and consumption using opti-
mization models and utilizing collaboration concepts. Our solution presents a two-prong
approach: managing interaction in real-time for the short-term immediate consumption
of already allocated resources; and managing the operational planning for the long-run
consumption.

More specifically, in real-time, we present and implement a model of how to organize a
secondary market for peak-demand allocation and describe the properties of the market that
guarantees efficient execution and a method for the fair distribution of collaboration gains.
We also propose and implement a primary market for peak demand bounds determination
problem with the assumption that participants of this market have the ability to collaborate
in real-time. Moreover, proposed in this dissertation is an extensible framework to facilitate
C&lI entities forming a consortium to collaborate on their electric power supply and demand.
The collaborative framework includes the structure of market setting, bids, and market
resolution that produces a schedule of how power components are controlled as well as the
resulting payment. The market resolution must satisfy a number of desirable properties
(i.e., feasibility, Nash equilibrium, Pareto optimality, and equal collaboration profitability)
which are formally defined in the dissertation.

Furthermore, to support the extensible framework components library, power compo-
nents such as utility contract, back-up power generator, renewable resource, and power
consuming service are formally modeled. Finally, the validity of this framework is evalu-
ated by a case study using simulated load scenarios to examine the ability of the framework

to efficiently operate at the specified time intervals with minimal overhead cost.



CHAPTER 1: Introduction

1.1 The Problem: Motivation and Background

Energy consumption has been increasing steadily in the recent past and is also expected
to continue to increase furthermore in the future [1]. Moreover, distributed generation has
become a mainstream power generation source to provide localized power to areas where
more power is needed [2]. A large number of companies have already adopted cleaner energy
sources due to stricter regulations over carbon emissions and environmental pollutants [3].
Other companies are considering adopting similar measures (such as acquiring photovoltaic
(PV) systems, or wind turbines) in a trend toward being more sustainable enterprises [4].

The paradigm of energy consumption and production has also seen some vital shifts.
Previously power consumers are becoming power producers. Houses can be outfitted with
photovoltaic systems or wind turbines or any other type of alternative energy resource
[5]. These homes have been able to reduce their power consumption during peak-demand
periods and in certain instances are able to provide power back to the grid.

Moreover, with the introduction of deregulated energy markets [6], there has been an
increase in the number of entities that consume power and produce power, added to that,
the combination of alternative energy resources options and smart grid technologies. In this
dissertation, I develop methods where units which supply and demand power can collaborate
and interact among themselves in an optimal fashion by designing market-based decision
guidance frameworks and their associated mechanisms to enhance in the best ways possible
such collaboration. More specifically, I propose how to develop such methods for both the
run-time environment when units have certain resources which are about to be consumed
such as peak-demand bounds as well as the planning of various power components for future

consumption or generation of power.



Different Commercial and Industrial (C&I) organizations or units within these organiza-
tion may have some autonomy on power consumption or generation decisions. In addition,
power consuming services that are being operated by these units may vary in importance
and urgency (see Figure 1.1). For example, services like water heating may require large
amounts of electricity to run but it can also tolerate less than the maximum power and
its operation often can be delayed depending on factors set by energy managers. However,
services such as office lighting or computer servers may not tolerate shortages or delay in

the supply of power.

Typical C&l
Organization
eOther Resources:
Power Components Inclue: sBattery Storage
eBack-up Generator
ePhotovoltaic Arrays
eWind Turbines

lsPower Demand
sPower Utility Contract

eetc..

Figure 1.1: Typical Organization Structure

Some organizations may consider alternative energy sources to try to address their long
term power needs to deal with rising costs or consider other means of supplying power.
Certain units’ locations could be suitable for photovoltaic power systems installations, but
their consumption time-frame may not align well with their resources’ performance, time,
or variability. Other units, however, may need power more consistently forming a trend but
lack the ability to deploy such alternative energy sources.

With an increasingly complex environment, organizations are left with many alternatives
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as to how to satisfy their power demand. There are small consumers of electricity who
have little negotiation leverage over their power rates with power companies, and there are
large consumers with substantial leverage over the procurement prices of their electrical
power needs. To illustrate such complexity, consider an organization with multiple units
where units have bilateral contracts with electrical power providers over their peak-demand
energy requirements. To reduce the overall organization’s peak demand, units within the
organization may collaborate to share their peak-demand bounds using market mechanisms
instead of resorting to cost-prohibitive spot when unused peak-demand bounds or non-
critical loads may exist in other units. This can be enhanced by knowing the value that
units associate to running their services. Another example could be the formation of a
consortium between multiple organizations to reduce their peak-demand needs by utilizing
their loads variability and employing their volume negotiating power.

Considering all these complexities, it becomes obvious that there is a benefit and a room
for improvement that results from the interaction of power supply and demand entities.
The problem that is being addressed here is how to better manage the interaction of power
consuming and power producing units. There are mainly two aspects to this interaction:
real-time use of already allocated resource, and the operational planning of the use of
different power resources. In real-time interaction, an issue like how to best organize a
secondary market for participating units that is transparent and have a sustainable added
value to its participants is of great importance. The process of how to optimally operate
the market within different time-frame considerations that are applicable to the nature of
the market is also necessary for the effective operation of the market. Finally, the benefits
that result from such interaction need to be distributed among participants in a fair and
efficient fashion to motivate participants to better provide more accurate information that
would not affect their gains from the participation.

On the longer run, collaboration between entities is important for the optimal oper-

ational planning of the use of different resources. To achieve such collaboration, many



questions need to be addressed. For example, an efficient and transparent coalition for-
mation is required to the stability of a consortium. While units want to achieve maximum
benefit by joining a coalition, there is a decision of what is the best coalition given the units’
different available resources. Assuming the coalition is determined, there is also the question
of how to optimally plan such that every unit’s benefit is maximized. A primary market
mechanism needs to formalized where units can fairly and transparently participate in the
market without an extensive overhead management cost. Figure 1.2 provides a summary

of the taxonomy of the array of problems that are addressed in this dissertation.

How to Best Manage Interaction/Collaboration
of Power Demand and Supply Entities

In real-time Operational Planning

How to How to How to

Optimally plan

organize a optimally distribute How to form a ':lerxnﬂ?eril diverse power
secondary operate the collaboration coalition mechanism resources &
market market benefit

services

Figure 1.2: Summary of Contributions

1.2 Research Challenges

The deregulated energy market has transformed energy market and introduced the concept
of increased competitiveness in once a monopolistic utility companies environment. Smart
grid technologies also enabled accurate measurements of the quantity and time consump-

tion. There have been numerous efforts on how to best structure the market to increase
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competitiveness which consequently results in a more fair price discovery model and ul-
timately lower costs to the consumer. Demand Response (DR) techniques deal with the
reactions of energy customers to changes in supply and the cost of providing it. However,
the problem of how to create a secondary market to distribute already available resources
was not addressed. Moreover, these techniques may have addressed how to optimally react
to demand and price changes of getting power, the question of how to distribute the benefit
of collaboration among participating entities has not been explored. Moreover, the idea of
how units can collaborate to plan future consumption in a primary market while taking
into consideration the ability of collaboration in real-time to address changes in supply and
demand has not been previously explored. The concept of how gains or reductions in cost
from collaboration can be distributed among nits of a coalition is not a trivial problem as
the impact on a unit of the coalition differ according to its size and order of joining such
coalition.

While there has been many work on the operational planning of the power needs of an
organization, the idea of forming a consortium where some organizations power components
may complement other organizations while simultaneously improving the overall welfare of
the consortium without negatively affecting the benefit of any single organization as a result
of joining the consortium has not been explored. The literature covers many phases of the
power life cycle starting from power generation, transmission, and ending with the actual
consumption of electrical power. Various solutions aim to optimize individual parts of
the electric power life cycle while not taking into consideration the overall effects of such
decisions on the combined utility of all other decisions.

Energy markets use either historical data or inferred information about the utility of
running a specific service. Stakeholders are rarely consulted on the actual benefit (or utility)
or running a specific service. This process is either considered costly or infeasible especially
in large organizations or in a consortium of organizations. Such information are generally
abstracted as an overall benefit. Providing this information is vital to the determination of

the value of running such services. Our approach takes into consideration such hurdles and



tries to as easily as possible model such information and streamline the process of updating
it.

Furthermore, most existing models aim to either improve efficiency or simply just cut
demand as means of reducing cost. However, There haven been no comprehensive decision-
guided market-based models, up to our knowledge, that describe market design and reso-

lution from the macro and micro level.

1.2.1 Energy Management Decisions Complexity

To provide a perspective on the energy management decisions complexity, consider a typical
Commercial and Industrial (C&I) organization’s energy portfolio as depicted in Figure 1.3.
This organization have various options to satisfy its power demand. Utility contract with
a power company is usually a common part of any organization’s energy supply options
options. This utility power contract typically specifies the rate that the cost of power is to
be calculated which usually has two parts. The first part is the cost of total kWh quantity
that an organization consumes over the a certain billing period. The other part is the
cost of peak demand which, if exceeded, penalty rates apply which could affect the entire
contractual period. In other words, if the chosen peak demand is exceeded even for a very
short time (e.g., 30 minutes), it could affect the cost per kW over the entire term of the
contract. To reduce peak demand cost, an organization may adopt cleaner power resources
such as photovoltaic (PV) systems or wind turbines to either reduce their peak demand or be
more resilient from interruptions of the main grid. However, these resources are susceptible
to certain environmental conditions (e.g., the activity of wind, or sunshine). To mitigate
this variability, some organization may invest in resources such as local back-up generator or
battery storage unit. However, operating these resources may incur higher variable cost than
other types of resources. There is also the question of what is the optimal time to charge,
discharge, or keep the battery storage unit idle. Operating the back-up power generator can
be expensive but at certain times it could be a cost effective choice due to the higher cost of

using other resources. Some organizations also may have the the ability to form a microgrid



for different purposes (e.g., reducing peak demand, enhancing reliability, reducing capital
costs, etc.). It is also possible that certain power loads that these organizations operate
are not urgent or necessary in what is collectively termed as deferrable loads. This term
simply means that these loads can be deferred up to a certain extent without much effect
on the organization’s utility. There are also curtailment contracts which are signed with
the power company. These contracts involve reducing consumption when the overall grid is
experiencing heavy load upon receiving a signal from the power company. This agreement
entails, in return, reduced costs or rebates when power consuming organizations comply.
From all these alternatives, even a single organization has so many options when it comes
to making power supply and demand decisions. It is also not an easy task to determine the
effects of a single decision without a comprehensive framework that enables an organization

to manage its power supply and demand needs in an optimal fashion.

Utility power
contracts

Curtailment Renewahle/
alternative

contracts, resources

éi?(f:fe /,"J The (sol:rt,c\./\)/ind, ‘
~ Problem of /
C&l

Customer __ =

Deferrable
loads

generation &
Battery
storage

Forming
microgrid, to
try to reduce
peak demand

/

Figure 1.3: Power Energy Management Complexity



1.2.2 Need for Collaboration

To make the problem more concrete consider a scenario depicted in Figure 1.4. In this
example there are two units. Unit 1 has three power resources: a power contract, an
alternative energy resource, and a curtailment contract. Unit 2 has three power resources
as well: a power contract, a local backup generator, and supports deferrable loads. If each
unit was to act separately, It would evaluate its power demand and power supply then make
decision that keep its costs at minimum while satisfying its power needs. Now consider the
ability for these two units to collaborate. When unit 1 , for example, faces an excess demand,
it may use unit’s 2 resources if unit 2 is not experiencing high power demand during the
same time period. The opposite is also true if unit 2 , for example, would experience
excess demand, instead of curtailing important demand, it could use unit’s 1 local backup
generation temporarily until that demand is satisfied. This scenario poses an important
question: how can a unit decide and then manage such an exchange of resources and how

each unit is rewarded fairly for such collaboration.

Utility Utility
contract contract

Alternative Supporting Local
energy curtailment generation
sources . 4 contract unit

Supporting

deferrable

W loads

cal ¥ w c:
customer customer
1 2

Figure 1.4: Need for Collaboration

In another scenario, even within the same C&I organization, there maybe units that
have already acquired certain resources (e.e., peak demand bound)as depicted in Figure 1.5.
Such units may encounter the possibility for the need to shed some power when their peak
demand bounds are to be exceeded. Energy managers who are supposed to react usually

have no insight of what is an important power load and what is not. Moreover, units or
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department within the C&I organization have no incentive to reduce their peak demand
consumption because they typically don’t pay for it. A solution would involve setting a
peak demand bound for each unit. However, at certain times, units or departments may
not have that much demand to reach their pre-determined peak demand bound. It is also
possible that this unit can afford to shut down a service if another unit or department
needs to run a more important service in lieu of a payment instead of that unit incurring

significant peak demand overage costs or resorting to spot market.

Organization

Service 1

(lighting})

Figure 1.5: Peak-Load Demand Problem

1.3 Thesis Statement & Summary of Key Contributions

In order to support collaboration and interaction among power demand and supply entities,
it is possible to develop a decision guidance market-based framework to support optimal

collaboration among them:

e Peak demand operation and determination (i.e., secondary market for the opti-
mal collaboration on peak demand bounds, primary market for optimal determination

of peak demand, and fair distribution of collaboration benefits).
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e For operational planning (i.e., the formation of a coalition modeling various power

components, optimal planning of a coalition).
The main contributions of my dissertation are as follows:

1. T developed a secondary peak-load allocation market framework designed to incentivize
organizational units of Commercial and Industrial (C&I) customers to reduce their
peak demand. The market mechanism requires units’ bids to indicate the value they
associate with power consuming services, and the power requirement for these services.
The market resolution produces a service and payment allocation, i.e., determination
of power services operation schedule and the payments that the units need to make or
receive as part of exchange of peak demand bounds resulting of the market resolution.
The market mechanism is based on decision optimization, and guarantees the formally

defined properties of Pareto optimality, Nash equilibrium and fairness.

2. I proposed a primary market-based mechanism for organizational units of C&I power
consumers or organizations participating in a consortium to reduce their peak de-
mand power bounds. The market mechanism requires participants’ bids to indicate
the value they associate with power needed to run various services, and the power
quantity required for these services over a specified time horizon. The market resolu-
tion produces peak demand allocation, i.e., determination of the peak demand bounds
and the associated cost that the units need to pay as part of the market resolution.
The global peak-demand bound is then derived by optimizing individual participants’
peak demand bounds. The market mechanism is based on decision optimization, and
guarantees the formally defined properties of Pareto optimality, Nash equilibrium and

benefit distribution fairness.

3. I proposed an extensible decision guidance framework to facilitate Commercial and
Industrial entities forming a consortium to collaborate on their electric power supply
and demand in order to streamline their consumption and reduce their costs. The col-

laborative market framework includes the structure of market setting, participants’

10



bids, and a market resolution which produces a schedule of how power components
are controlled as well as the resulting payment to be made by market participants.
I also defined four properties that the market resolution must satisfy, namely, feasi-
bility, Pareto-optimality, Nash equilibrium, and equal collaboration profitability. Fur-
thermore, we develop a market resolution algorithm, based on a formal optimization

model and prove that it satisfies the desirable market properties.

4. To support the extensible framework, I formally modeled various classes of commonly
utilized power components (e.g., power contract, back-up power generator, renewable
resource, battery storage unit, and power consuming service). The modeling of the
components formally defines the cost, revenue, intrinsic value, constraints, and control

actions for every component class.

5. T implemented the extensible decision guided framework to facilitate Commercial and
Industrial entities forming a microgrid consortium to collaborate on their electric
power supply and demand. I developed the optimization models using OPL and
Java. Furthermore, I conducted a case study experiments using simulated loads which
conforms to typical consumption patterns and random input parameters to validate
that the implemented system is feasible to operate efficiently within required time

constraints.

1.4 Dissertation Organization
This dissertation is organized as follow:

e Chapter 2: Related work

e Chapter 3: Secondary market design for peak-demand allocation

e Chapter 4: Primary market design for peak-demand bounds

e Chapter 5: Electrical power consortia: decision support based on market optimization

11



e Chapter 6: Power demand and supply components

e Chapter 7: Consortia market optimization implementation and case study

e Chapter 8: Conclusions and future work

12



CHAPTER 2: Literature Review

This chapter provides a related work overview of the state of art in the areas necessary
to develop a decision guidance framework that studies power resources, markets, and col-
laboration. The first section present an overview of the deregulated power markets. The
second section describes microgrids and decision guidance management systems (DGMS).
The third section provides an overview of the coalitional games and the surplus value dis-

tribution methods.

2.1 Deregulated Power Markets

There has been an extensive work on deregulated electricity markets and their competitive
characteristics [7]. Most of the work is concerned with different parts of market design,
mainly, the relationship between power generation companies and wholesale companies.
Different approaches to the use of auctions in electric markets has been investigated, e.g.,in
[8-13]. They discuss in detail how such markets should be designed to account for buyers
and sellers of electric power. Although there has been some work that tries to address large
consumers power procurement optimization by evaluating different procurement options
[14], they fall short from addressing internal power distribution optimization. There is also
some effort to control peak demand and reduce overall consumption by using physical im-
provements [15] and load scheduling [16], however, the idea of designing a decision guidance
framework for the power components modeling and collaboration has not been addressed.
Furthermore, such concepts have been employed in other fields like computational sys-
tems resource distribution and wireless spectrum allocation (i.e., [17-21]). Solutions of
micro-economic equilibrium have been implemented with promising results. However, the

notion of using such methods to share load consumption and allocate electric power among
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multiple participants such as units of the same organization has not been explored. More-
over, studied electricity markets are akin to commodity markets with special characteristics,
whereas our study, we need to consider the market of power components with right of use,
which is more akin to options markets.

Renewable resources are becoming a significant part of the energy for a growing number
of organizations. According to data from U.S Energy Information Administration [22],
energy sources like wind and solar are becoming increasingly utilized as clean energy resource
in recent years. If the current trend continues, which is predicted as oil prices rise, and
stricter environmental standards are adopted, distributed renewable resources are expected
to be a significant part of energy portfolio.

However, there is a characteristic that is shared between wind and solar based energy
sources which is that it is difficult to predict their throughput over a long time horizon
because they depend on either clear skies or wind activity. However, the performance of
these resources can be fairly predicted over a short period of time. Hence, the need to
incorporate that knowledge becomes vital for the decisions on the limit of energy consumed
by a certain organization.

Power markets has been the focus of a great deal of research. There have been numerous
efforts to deal with reducing power consumption costs either through improving technolog-
ical efficiency or through market supply and demand mechanisms. An extensive body of
work was directed to dealing with the reduction of power consumption from the demand
side by changes in prices in an area that is termed as Demand Response (DR) [23]. This
approach has been used broadly with large power consumers to cut or curtail demand when
power generation and transmission networks are about to be overloaded. The participants
are motivated by being promised financial incentives if they comply. Demand response en-
tails changing the consumers normal consumption patterns in response to changes in prices,
or in order to qualify for a certain incentive payment. Such DR programs are categorized
into two broad groups: Price-based, and Incentive-based. Price-based methods include the

use of time-of-use (TOU) rates, real-time pricing (RTP), and critical peak pricing (CPP).
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Whereas, Incentive-based methods uses techniques such as: direct load control (DLC), in-
terruptible/curtailable (I/C) service, demand bidding/buyback (DB), emergency demand
response programs (EDRP), capacity market programs (CMP), and ancillary services mar-
ket programs (ASMP). These methods are summarized in [24].

There has been attempts to create a real-time pricing market where participant place
bids at every considered time slot. The idea proposes a model for collaboration between
customers of a power company where participants place bids that correspond to benefits
gained from running household appliances. It also considers a mix auxiliary power sources
such as batteries and plug-in hybrid electric vehicles (PHEV). Through simulated loads, the
results indicated an overall stabilization of power consumption curve over the considered
time span compared to flat-rate and other schemes and resulted in the reductions of peak-
demand consumption. While such solution is promising, it does not consider the dynamics
and the cascading effects of power components planning for units of an organization or
a consortium of organizations where certain resolution and payment exchange must be
determined at each time interval while optimizing for the entire time horizon. It also doesn’t
propose a fair mechanism to sharing the extra benefit of collaboration versus working alone
[25].

Optimizing the planning of the utilization of resources has been extensively studied
in an area collectively named Unit Commitment Problem [26-31]. This area addresses
the problem of finding the most optimal and cost effective operational planning of power
resources (e.g., nuclear, thermal, renewable). While this approach is very effective for the
day-ahead planning of power supply procurement given a predicted demand, it doesn’t

address the demand side aspect of the of the power generation and consumption.

2.2 Microgrids and Decision Guidance Systems

Microgrids [32,33] has been gradually introduced to the traditional grid. Microgrids provide

localized power and can operate autonomously from the traditional grid which provides more
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reliability and reduces the risks of disruptions of the traditional grids. It also help reduce
the loss from transmission networks and can adapt to various power resource types. It also
provides the capability of responding to changes in demand dynamically. Figure 2.2 provides
an overview of a typical microgrid installation. As can be seen in the figure, microgrids
can adopt a wide variety of power resources such as, wind, photovoltaics, conventional

generation, energy storage, and other services that consume or produces power.

. . Conventional
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Treatment

-------------
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: !, R Control Network

: ™ A Storage * Thermal Network

E Electrolyzer Hp - = = Electrical Network

: Storage 5 . Local Protection

Elements

Figure 2.1: Typical Microgrid Power Components (source: GE Global Research)

In a microgrid, power loads usually vary in sensitivity and urgency. There are loads
can afford reduction in power and there also loads that can delayed or rescheduled. Smart

microgrids provide the means to control loads which optimize their operation. This is

16



usually achieved by the help of an energy manager.
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Figure 2.2: Example of Power Loads in a Microgrid (source: CERTS)

Decision support system can be defined as a computer application that support complex
decision making and problem solving [34]. Model-based support systems usually consist of
three components: formulation, solutions, and analysis. Mixed Integer Programming (MIP)
has greatly contributed to widespread use of these types of decision support systems. A
recent iteration which provides a comprehensive framework for data acquisition, learning,
simulation and prediction, and decision optimization was proposed by Brodsky and Wang
n [35]. This DGMS describes what such a system would intuitively consist of. The data
acquisition process gathers data from data sources such as a database. The data is then
analyzed for learning and certain useful views are created. The DGMS may also rely a do-
main knowledge that help enhance the learning. The simulation and prediction component
facilitate scenarios such as what-if analysis. The decision optimization then gives actionable
recommendation based on specific optimization models [36-38].
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2.3 Coalitional Games & Surplus Value Distribution

In game theory , players usually form coalition for its perceived added value compared to
working to acting individually [39]. A common method to calculate the marginal contri-
bution of a player to a coalition is called Shapley Value [40]. Given a set of players, N of

coalition, and a value function v, the Shapley Value is defined as:

Gi(N.v) = [SIEANT = 15] = D! (S U {i}) — o(5)]

[N! .
SCN\{i}
Shapley value also defines a number of axioms and provides proves a proof that these

axioms are satisfied. The axioms include:

1. Efficiency: This axiom simply means that the sum of all players Shapley values should
be exactly equal to the added collaboration value that the coalition get by collabo-

rating.

2. Symmetry: If players ¢ and j are interchangeable with respect to a game v, then
¢i(v) = ¢;(v). It means that if two players give the same value to the coalition across

all possible coalition orders, then they should get the same Shapley value distribution.

3. Additivity: Additivity means if there are two independent v, and w games, then the
Shapley value of the two games combined must be equal to the sum their separate

Shapley values, i.e., ¢(v+w) = p(v) + H(w)

4. Dummy Player: This concept means if a player ¢ has no added value to any sucoalition
of grand coalition then its Shapley value must be equal to zero, i.e., if v(SUi)—v(s) = 0

for all S C N, then ¢;(v) = 0.

Shapley Value requires determining the value of all possible orders of subcoalitions not con-
taining payer ¢ then comparing it with the value with palyer ¢ added to the subcoalition.

Clearly, this methods is computationally very expensive (NP-Complete) especially when
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the underlying value function v is based on a MILP optimization problem. There has been
attempts for a linear approximation of the Shapley Value [41-45], however such approxi-
mations include randomness and require a big computational budget of MILP optimization
when considering the feasibility of executing a market at short time intervals.

Another important concept in cooperative games is called the Core which measures the
willingness of and stability of participants to form a grand coalition as opposed to forming
smaller subcoalitions that maximizes their value. A payoff vector x of a coalitional game of

N players and a value function v is considered to be in the core if and only if:

VSCN, Y x> v(S)
€S
Determining the core of a reasonably sized coalition is also computationally expensive (NP-
Complete). A value function of an MILP type would make calculating possible payoffs for all
possible coalitions values computationally infeasible. Due to the computational complexity
of determining both the Shapley value and the core membership (NP-Complete), some
authors suggested these complexities serve as a barrier to participants manipulating their

bids’ orders, or breaking away from the grand coalition [46].
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CHAPTER 3: Secondary Market Design for Peak-Demand

Allocation

In this chapter, we propose a Peak-Demand Allocation Market framework designed to in-
centivize organizational units of Commercial and Industrial (C&I) organizations to reduce
their peak demand consumption. The market mechanism requires units’ bids to indicate the
value they associate with power services, and the power requirement for these services. The
market resolution produces a service and payment allocation, i.e., determination of power
services that are to be running and the payments that the units need to make or receive
as part of the exchange of the peak demand bounds. The market mechanism is based on
decision optimization, and guarantees the formally defined properties of Pareto optimality,

Nash equilibrium and fairness.

3.1 Introduction

Power demand is increasing and so is the cost of procuring it. Power generation companies
are reluctant of making large capital investments that expand the capacity which could
even make future costs to customers greater. Power companies prefer consistent streamlined
consumption which help maximize their returns. Short spikes in power consumption affects
their bottom line by requiring higher capital investment and making it more costly to
generate and distribute power.

Typically, the cost of electric consumption of Commercial and Industrial (C&I) cus-
tomers comprises of two factors: amount of kWh of power consumed; and the maximum
peak-demand (kW) that an organization reaches during a specific contractual consumption
period. This peak-demand constitutes a significant part of the electric consumption cost

because exceeding this peak limit even for a short period in the past could cause the cost
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of electricity to increase significantly. Therefore, C&I customers are motivated to reduce
their peak demand.

However, individual units within the C&I organization usually have little to no moti-
vation to reduce their peak-demand. To address this problem, the focus of this chapter is
to develop an optimization-based market mechanism that would incentivize organizational
units to reduce their peak demand.

Consider George Mason University (GMU) as an example of such a C&I customer. GMU
comprises of different units (e.g. schools, departments, centers, etc.). These units need
to operate certain services (e.g. water heating, lighting, ventilation and air-conditioning
(HVAC), etc.) which require electric power. The electric supplier (Dominion Virginia
Power) provides power to GMU according to an agreed upon contract which specifies the
terms on which Dominion provides power. More specifically, it states the price per kWh
of consumption and an additional cost component for each peak-demand bracket reached
during the contractual consumption period. As a result, the higher peak-demand is, the
higher the cost will be. GMU has an energy manager who is responsible for predicting
and setting the maximum consumption anticipated at any given time interval. In normal
conditions, the energy manager tries to predict the demand for each time interval and
account for contingencies when setting the peak-demand for a building or a service. Once
these limits are set, GMU’s energy management system (EMS) takes over the control of its
power consumption. When the overall maximum peak-demand load is about to be exceeded,
the energy manager faces the responsibility of ”load shedding”, i.e, shutting down some
services to avoid exceeding the preset peak demand bound. Therefore, little evaluation of
the services to be shut down is made. Moreover, units benefiting from the services are rarely
consulted to determine the real value of the services being shut down.

The question that is addressed here is whether we can deploy a market based mecha-
nism in which units have an incentive to reduce their peak-demand consumption, thereby,
minimizing the overall peak-demand load of a C&I customer and associated costs.

The idea of our proposed market framework is that each organization unit of a C &I
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customer can separately run its services by utilizing its pre-assigned peak-demand budget
which will result in the total value for each unit and the entire organization. Alternatively,
units can exchange their pre-assigned peak-demand budget, in lieu of monetary compen-
sation, which also results in the total value ( of acquired value of running services plus or
minus the monetary compensation). The idea is that the exchange of the peak demand
budget may result in a higher total organizational value than what could be achieved in the
original allocation. The question our framework resolves is (1) how to maximize the overall
organizational added value (A) by exchanging the peak peak demand budget, and (2) how
to fairly distribute this A among organizational units. More specifically, the contributions
are as follows:

First, we propose and formally define a Peak Load Allocation Market (PLAM) frame-
work. The idea is to divide an organization into units where each unit has a fixed peak
demand budget. The demand budget represents the right which a unit has to consume
up to the specified demand budget. For every power consumption time interval, the unit
automatically submits a bid, which indicates the services it needs to run, the benefit value
of each service and its power requirements. The market resolution mechanism produces a
Service and Payment Allocation (SPA) for each unit, indicating which of its services will
be running, and the payment that the unit needs to make or receive depending on whether
it consumes additional power or contributes a portion of its peak demand. We also identify
desirable properties of market, namely Pareto optimality, Nash equilibrium and fairness
which are defined formally in this next section.

Second, we develop a formal optimization model to decide on the selection of services to
run that maximizes the global organization benefit while ensuring feasibility, i.e., that the
total power consumption will not exceed the total peak demand budget. We also implement
a prototype optimization system using the CPLEX’s Mixed Integer Linear Programming
(MILP) solver.

Third, we propose a method to fairly distribute the added collaboration organization

benefit A among the units. To design the method, we propose and advocate an underlying
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principle of equal profitability as a proxy of fairness, and show how to determine the pay-
ments that the units need to make or receive as part of the exchange, in order to satisfy
the equal profitability principle. The resulting market resolution method is also guaranteed
to satisfy the Pareto optimality and Nash equilibrium properties.

Finally, we conduct an initial experimental study on the time complexity of the proposed
algorithms which demonstrates that it is feasible to resolve the market fast enough for each
power consumption time interval, and that the algorithms scale well with the increase in
the number of units and services supported, and combinations of both small and large peak
demand budgets.

This chapter is organized as follows: In the second section, we describe our framework
named Peak Load Allocation Market (PLAM). We also formally define the problem, and
describe some desirable properties that our market must satisfy. In section three, we explain
how we arrive at global optimal solution to our proposed market. In section four, We
describe the market resolution and the different conditions in which the added A benefit
is distributed fairly according to different units’ contributions. In the fourth section, We
implement our solution and show time and space complexity of implementing our market

along with some initial experimentation. Finally, we briefly discuss our conclusions.

3.2 Peak Load Market Framework

In this section we describe the formal model and explain the major parts of our solution.
We also formulate the optimization problem. We begin by describing the model formally.

To facilitate market mechanisms, we divide continuous time into operational time inter-
vals, e.g., of 30 minutes each, and assign kilowatts (kW) an integer number to each interval.
We denote by 7' = {1,--- , N} a set of time intervals in the time horizon considered. We
assume that units of the organization have the ability add, delete, or update service details
up until the market executes.

We denote by U = {uy,...,u;} that set of organizational units (e.g., departments) that
are autonomous in decisions on power usage and budget. Every unit has a set of power
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consuming services. Every service s consumes a certain amount kw[s] of electrical power
measured in kilowatt (kW). Each service s that needs to run have a measurable amount
of benefit B[s] which indicates the value added to the unit by running that service. In
monetary terms, By, [s] can be viewed as the amount of money that the unit running service
s is willing to receive in lieu of service s (i.e., to not have service s running for a given time
interval). Each unit consumption is bound by a peak-demand budget limit PD [u] measured
in kilowatt (kW).

Consider the Peak Load Allocation Market (PLAM) diagram depicted in Figure 3.1.

[
V\SPM\ bicl B2 SFiAZ /

Unit _
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bid B1

Peak Load Allocation
Market

Power Allocation
Setting

Figure 3.1: Peak Load Allocation Market Framework

Every unit « submits to the market its bid B,,, which indicates, for each of its services
s, the benefit By[s] of s, as well as the amount of power kw[s] necessary to run s.
More formally, we define Power Allocation Setting (PAS) as a tuple:
P =(U,S,s,kw,PD)
where:
o U={1,---,n}: is a set of units.
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S: is a set of (power consuming) services.

e 5: U — 2% is a function that associates a set of services s(u) with each unit v € U.

e kw: S — R, is a function that gives the amount of power kw(s) required to run service
ses.
e PD: U — R, is a function that gives the peak-demand bound PD(u) ”owned” by unit

ueU.

We assume that at every time interval, the Peak Load Allocation Market (PLAM) stores
the associated Power Allocation Setting (PAS) as depicted in Figure 3.1.

At every interval, every unit v € U submits a bid B,, for power allocation, and receives
back the Service & Payment Allocation SPA,, from the market. We now formally define the
bids and the Service & Payment Allocation (SPA).

A bid By, for unit v € U is a function B, : s(u) — R where B, (s) is the benefit for unit
u received by running service s € s(u)

A Service Payment Allocation (SPA) for unit w € U is a pair:

(ON,, PAY,)
where:

e PAY, is the payment that is to be received by unit u (note that PAY, < 0 means the

unit « pays to the market).

e ON, : s(u) — {0,1} is a function that indicates, for every service s € s(u), whether

it will be on, ie., (1) or off, i.c., (0).

Given Power Allocation Setting PAS P, a set of bids {By, -, By}, and a set of Service

& Payment Allocations {SPAq,---,SPA,}, we define the following:
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e ServiceBenefit[u] = ) sesuyn Bu(s) is the service benefit achieved by unit w.
ON,(s)=1

o TotalBenefit[u] = ServiceBenefit[u] — PAY,, is the total benefit achieved by unit u € U

by participating in the market.

e TotalBenefit = >  TotalBenefit[u] is the total organizational benefit achieved by all
uclU

units in U.

We now define a number of desirable properties of the Peak Load Allocation Market

framework.
Property 1: Feasibility.

Given PAS P and bids{By, -, By}, we say that {SPAy,---,SPA,} is feasible if:

> kw(s) <Y PD(u)

SES A uelU
ON(s)=1

i.e., the Peak Load Allocation Framework is feasible, if it always returns a feasible
{SPA;,--- ,SPA,}

for any given PAS P and bids {By,---,By}.
Property 2: Pareto Optimality.

Given a PAS P and bids{Bj, - - , B, }, we say that {SPA;,--- ,SPA,} is Pareto optimal
if:

1. it is feasible
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2. there does not exist a feasible {SPA/,---,SPA/ } such that

(Vu € U) TotalBenefit'[u] > TotalBenefit|u]

and

(Ju € U) TotalBenefit'[u] > TotalBenefit|u]

where TotalBenefit'[u] is the total benefit under SPA!,. In other words, no other Service &
Payment Allocation can increase the the benefit of a unit without reducing the benefit of
another unit.

Similarly, we say that Peak Load Allocation Market framework is Pareto-optimal if it al-
ways returns a Pareto-optimal {SPA4,--- ,SPA,}, i.e., for any PAS P and bids { By, --- , B, }.

Property 3: Nash Equilibrium.

We say that Peak Load Allocation Market satisfies the Nash Equilibrium property if for
every PAS P and bids {By,- - , By}, the Peak Load Allocation Market returns allocations
{SPAy,---,SPA,} such that no unit can get a higher total benefit by quitting the coalition.

That is, for every u € U:

StandAloneBenefit[u] < TotalBenefit[u]

where StandAloneBenefit[u] is the maximum benefit that can be achieved by unit u by

running its services within its peak demand budget. That is,

StandAloneBenefit[u] = max B, (s
[u] ONe(s[u]—{0,1}) SEZS:(H) (5)
subject to Z kw(s) < PD(u)
ses(u)A
ON(s)=1
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In the next sections, we propose a Peak Load Allocation Market (PLAM) framework
that satisfies the previously mentioned properties, as well as, the property of fairness to be

defined.

3.3 Optimizing Global Benefit

Here we will be using a service configuration function

ON:S - {0,1}

to denote, for each service s € S, whether it will be on (1) or off (0). To implement
the Peak Load Allocation Market, we need to be able to allocate peak demand bounds

optimally among any subset W of units U. We formulate this optimization problem here.
Given
1. PAS A= (U, S, s, kw,PD)
2. bids {By, -+, By}
3. asubset W of U
4. a service configuration ON

the service configuration value V/(A, W, ON) for W C U is defined as the total benefit

achieved by running all services of W that are on, that is,

V(A,W,0N) = )~ SerivceBenefit[u]
ueW
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where

ServiceBenefit[u] = B(s)

Given PAS A, we say that a service configuration ON is feasible if the total kW con-

sumption of all turned on services is bound by the total peak-demand, that is,

Z kw(s) < Z PD(u)

ON(s)=1 ueW

Given (1) Power Allocation Setting A and (2) a subset W of U, Optimal Service Value
O(A, W) is the maximum value V (A, W, ON) among all feasible service configurations ON,

that is,

O(A,W) = max V (A, W,0ON)
ONE(s11—{0,1})

subject to Z kw(s) < Z PD(u)
SESw A ueEW
ON(s)=1

where Sy = {s € S| (Ju € W) s € s(u)}. An optimal ON configuration is a solution to

the above.

3.4 Resolving Peak Load Allocation Market (PLAM)

Given the Power Allocation Setting A and bids {Bi,---, By}, the resulting consortium

collaboration benefit A is as follows:

A=0(AU) =Y O(A{u})

uelU
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We are faced with the question of how to fairly distribute the added consortium collab-
oration benefit A among the consortium’s participants. We propose a equal profitability of
Peak Load Allocation Market mechanism as follows. Given the consortium’s collaboration

benefit A, we decide on its distribution Ay, ---, A, among n units, i.e.,

(VueU) Ay >0 and > A, =A
uelU

In this section we discuss how to fairly distribute the collaboration benefit A. Given
a distribution Aq, .-, A, of A, the Peak Demand Allocation Market resolution gives the
Service & Payment Allocation (ONy, PAY,),---,(ON,,PAY,) as follows. Let service con-
figuration ON be the result of the Service Value optimization discussed in Section 2. Then:
For every

welU={1,---,n},

ON, : s[u] — {0,1}

is defined by ON,(s) = ON(s) Vs € s[u].

To decide on PAY,,, note that the collaboration benefit increase A, for w is:

A, = ServiceBenefitIncrease[u] — PAY[u] ,

where
ServiceBenefitIncrease[u] = Z By (s) — O(P, {u})
s€s(u) A
ON(s)=1
Therefore,

PAY, = > Bu(s) = O(A {u}) — A,

ses(u) A
ON(s)=1

30



The only remaining part to complete the Peak Load Allocation Market framework is to
design a mechanism for a fair distribution Aq, -+, A, of the Total Benefit A. We propose
the following distribution based on the principle of equal profitability for each unit as follows.

Given a distribution Aq,--- , A, of A, we define the profit of unit u as

Profit[u] = m

Equal profitability means

Profit[1] = Profit[2] = - - - = Profit[n] = p
that is,
D= A1 _ _ An
O(4,{1}) O(A,{n})
Therefore,

Ay =p- O(Av{l})> aAn =p- O(Av {n})

Because Aj+---+ A, = A,
p(O(AA{1}) + -+ O(4,{n})) = A
and thus p can be computed by:

_ A
p= O(A, {1})a e >O(Aa {’I’L})

Finally, Ay, -, A, can be computed by:

A1=p'A,"',An=p'A
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3.5 Implementation & Initial Experimental Study

For the purposes of evaluation, we implemented the model using OPL (see Listing 3.1 and
generated four sets of an increasing number of units and services using Java. The main
objects of our model are units and services, and their attributes are illustrated in Figure

3.2.

tuple unit{
key string unitId;
float unitBudget;

}i

tuple service{
key string serviceld;
key string serviceUnitId;

float serviceBenefit;

float kw;
}i
{unit} Units=...;
{service} Services=...;

dvar boolean serviceRun[Services];

float totalUnitsBudget = sum(u in Units) u.unitBudget;

dexpr float unitUtility [ u in Units]= sum (s in Services: u.unitId ==
serviceUnitId) s.serviceBenefit * serviceRun[s];

dexpr float totalUtility= sum (s in Services)s.serviceBenefit * serviceRun|s];

dexpr float unitKw [u in Units]= sum(s in Services: u.unitId == s.serviceUnitId)
s.kw * serviceRun([s];

dexpr float totalKw = sum(s in Services)s.kw * serviceRun(s];

maximize totalUtility;
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constraints {
forall (u in Units) u.unitBudget >= unitKw(lul];
totalKw <= totalUnitsBudget;

bi

Listing 3.1: Peak Load Allocation Market OPL Implementation

Unit belongsTo Service

unitiD servicelD
unitDescription > serviceDescription
unitBudget kw

servicelD[ ] contains | serviceBenefit

Figure 3.2: Class Diagram

We use IBM’s ILOG CPLEX Mixed Integer Linear Programming (MILP) solver . The
model communicates with CPLEX through IBM’s Concert Application Program Interface
(API). The execution flow of the program is shown in the flowchart depicted in Figure 3.3.

We start the execution of the model by generating units and services data. For each
unit, we calculate the base benefit bound by each unit’s individual peak demand budget
and add all units’ base benefits together to determine the overall base benefit. After that,
we compute the overall optimal peak demand distribution and determine the overall benefit
and each optimal unit’s power allocation. The A benefit can be easily computed as the
difference between the total optimal individual unit’s benefits bound by their respective
peak demand budget and the overall optimal benefit of all unit combined. Finally, we
determine each unit’s contribution to the A and distribute payments accordingly.

To test our market framework, we populate our model with four data sets of sample
units and services with varying peak-demand budgets, benefits and service power needs.
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Figure 3.3: Execution Flow Chart

The first data set consists of ten units and each unit contains six services. The second,
third, and fourth, sets consist of a hundred, five hundred, and a thousand units respectively
while each unit contained ten services. We assume that the benefit of running each service
is consistent by normalizing that benefit into monetary value. Sample unit’s data are shown

in Table 3.1.
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Table 3.1: Sample Unit Data

Service ID | Unit ID | Benefit | Consumption in (kw)
0 0 6 25
1 0 ) 20
2 0 4 20
3 0 3 15
4 0 2 15
) 0 1 10

The initial calculation of individual optimization against the overall optimal optimiza-
tion is presented in Figure 3.4. As can be seen from the figure, some units had to give up
some of their peak-demand budget to other units that presented higher benefit demand for

it.

25

20
Individual Optimal
I M Overall Optimal
0 I
0 1 2 3 4 5 6 7 8 9

Unit

o

[S)

o

Figure 3.4: Individual Vs. Optimal Power Allocation

We can also notice from the chart that there are units that were assigned more power
than their initial demand budget allowed while others had part of their demand budget

assigned to other units. The total budget is allocated such that the highest benefit yielding
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services are given priority.
After both individual and the overall benefits are determined. We compute each unit

collaboration to the consortium. Each unit’s contribution is captured in Table 3.2.

Table 3.2: Individual Units’ Collaboration
Unit | Contribution

e

© 00 N O Ot s W N
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As can be seen from the table, all the units have a positive contribution value (greater
than zero) which means that these units will receive part of the added A benefit according
to the equal profitability principle described in Section 4. Since the A gain in this set was
(20.0), the corresponding A distribution for each unit is captured in Table 3.3.

After the A distribution is derived, each unit’s payment can be easily calculated using
the payment function explained in Section 4 which is depicted in Table 3.4. Negative
payment indicates the unit is receiving monetary compensation, while positive payment
indicates that the unit is giving out payment.

After conducting the experiments using the data sets mentioned earlier, we found that
our implementation performed well above expectations despite the fact that the optimiza-

tion variables were boolean (see Table 3.5). In addition, we noticed that A benefit increased
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Table 3.3: Units’ A Distribution
Unit | A Share
1.19
1.25
1.32
1.58
1.83
4.75
1.83
1.13
3.95
1.19

e
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Table 3.4: Units’ Payment
Unit | Payment

-0.19
0.75
0.68
3.42
1.17

10.25

-5.83

-2.13
0.05

-8.19

(e}

© 00 N O Ot ks W N -

as the number of units and services increased which further demonstrate the value of such
collaboration market framework.
The tests were performed on a moderate specification workstation (2.0 GHz dual core

processor, and 4 GB RAM). The maximum optimization run-time for a test of 1,000 units
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and 10,000 services took a little more than a minute which is quite reasonable if we expect

the market to execute over short intervals (30 minutes).

Table 3.5: Test Data Showing A Benefit Obtained and Optimization Time

# Units | # Services | A Benefit | Optimization Time(in seconds)
10 60 20 0.29
100 10,00 449 5.23
500 5,000 2,214 32.19
1,000 10,000 4,471 66.34

3.6 Conclusions

We proposed Peak Load Allocation Market framework that incentivizes organizational units
of Commercial and Industrial customers to reduce their peak demand consumption. The
market described units’ bids elicitation as well as the resolution of the market as well as the
service and payment allocation. Moreover, we formally defined the market and constructed
an optimization model that satisfies desirable properties, i.e, Nash equilibrium, Pareto
optimality and equal profitability. After running multiple experiments, the proposed market
resulted in an increase in the overall benefit of an organization based on the generated test
data sets.

Our approach is designed for organization where operation of different units is greatly
independent. Whereas in an organization where units’ consumption is interrelated, a global

scheduling optimization to achieve the global benefit may work better.
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CHAPTER 4: Primary Market Design for Determining
Peak-Demand Bounds

In this chapter, we propose a market-based mechanism for organizational units of Com-
mercial and Industrial power consumers or companies in a consortium to reduce their peak
power demand. The market mechanism requires participants’ bids to indicate the value
they associate with power needed to run various services, and the power quantity require-
ment for these services over a time horizon. The market resolution produces peak demand
allocation, i.e., determination of the optimal peak demand bound and the associated cost
that the units need to pay for the that bound. The global peak-demand is then derived
by optimizing individual participants’ peak demand. The market mechanism is based on
decision optimization, and guarantees the formally defined properties of Pareto optimality,

Nash equilibrium and benefit distribution fairness.

4.1 Introduction

In the previous chapter, we investigated the optimal distribution of an already chosen peak
demand (PD) among participating organization’s units. In this chapter, we focus on the
problem of the determination of the PD of all units for a primary market purposes apriori.
We try to determine the optimal PD to be contracted based on the projected costs and
benefits of such a decision.

Typically, the cost of electric consumption by Commercial and Industrial (C&I) cus-
tomers comprises of two factors: amount of kWh of power consumed; and the maximum
peak-demand (kW) that an organization reaches during a specific contractual consumption
period. This peak-demand constitutes a significant part of the electric power consumption

cost because exceeding this peak even for a short period in the past could cause the cost of
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electricity to increase significantly. Therefore, C&I customers are motivated to reduce their
peak demand.

However, individual units within the C&I organization, which often have autonomy on
cost decisions, have little to no motivation to reduce their peak-demand. Therefore, many
advantages such as purchasing power collaboratively that could reduce the cost due to
economies of scales may not be realized. It could also be more beneficial to individual units
to decide on their short term peak demand power internally instead of resorting to exceeding
a peak demand limits set by a power company and incur higher penalties. To address this
problem, the focus of this paper is to develop an optimization based market mechanism
that would incentivize participating units to decide on peak demand limits which maximize
their benefit by increasing their overall utility and reducing their cost.

Consider George Mason University (GMU) as an example of such a C&I customer. A
university usually comprises of different units (e.g. schools, departments, centers, etc.).
These units require some services (e.g. lighting, heating, ventilation and air-conditioning
(HVAC), etc.) which require electric power to operate. An electric utility company, Domin-
ion Virginia Power, supplies power to the university according to a signed contract which
specifies its terms. More specifically, it states the price per kWh of consumption and an
additional cost component for each peak-demand bracket reached during the contractual
consumption period. As a result, the higher peak-demand is, the higher the cost will be.
The university has an energy manager who is responsible for predicting and setting the
maximum consumption anticipated at any given time interval. In normal conditions, the
energy manager tries to predict the demand for each time period and account for contin-
gencies when setting the peak-demand for a building or a service. Once these limits are
set, the university’s energy management system (EMS) takes over the control of its power
consumption. When the overall maximum peak-load is about to be exceeded, the energy
manager faces the responsibility of ”load shedding”, i.e., shutting down some services as to
not exceed the preset peak demand bound. However, little evaluation of the services to be

shut down is made. Moreover, the units benefiting from the services are rarely consulted to
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determine the real value of the services being shut down.

Therefore, unit can choose higher peak-demand bound to avoid exceeding the peak-
demand bound, but effectively it will paying for a peak-demand that it rarely reaches. On
the other hand, a unit can choose a lower peak-demand bound and then will continuously
be exceeding this peak-demand and will be paying higher fees. The purpose of our proposed
market framework is that each unit of a C&I organization or any member of a consortium
can separately run its services by choosing its own peak-demand budget, which will result
in the total value for each unit. Alternatively, units can collaboratively determine their
collective peak-demand budget, in lieu of monetary benefit, which also results in the total
value (of services plus an extra benefit). The idea is that the exchange of the peak demand
budget may result in a higher total value than what could be achieved in the original
allocation. The question our framework resolves is (1) how to determine the peak-demand
for each participating member, then (2) how to maximize the overall organizational value by
collaboratively selecting the peak demand limit, and (3) how to fairly distribute A among
organizational units. More specifically, the contributions of this paper are as follows:

First, we propose and formally define a Peak-Load Demand Market framework. The
idea is to create a market or a consortium of players where units of an organization or other
organizations who have autonomy on decisions pertaining to power. The demand budget
represents the right which a unit has to consume up to the specified power bound. Each
unit submits a bid, which indicates the services it would like to run, the utility value of each
service and the power requirements over a fixed time horizon, e.g., one year. The market
resolution mechanism produces a Peak Demand Allocation for each unit, and the payment
that each unit needs to make. We also define a set of desirable properties of the peak
demand market, namely Pareto optimality, Nash equilibrium and the benefit distribution
fairness defined formally in the paper.

Second, in order to support market resolution, we develop and implement a formal
optimization models to decide on the selection of services to run that maximizes the global

organization benefit while ensuring feasibility, i.e., that the total power consumption for
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each unit does not exceed the peak demand limit.

Third, based on the optimization model, we develop a market resolution algorithm that
guarantee that the satisfaction of the properties of Pareto optimality and Nash equilibrium
as well as the property of fair benefit distribution, defined formally in the paper.

Finally, we conduct an initial experimental study on the time and space complexity of
the proposed algorithms which demonstrate that it is feasible to resolve the market fast
enough for a potentially large pool of participants, and that the algorithms scale well with
the increase in number of units and services supported.

This chapter is organized as follows: In the second section, we describe our framework
named Peak-Load Demand Market. We also formally define the problem, and describe
some desirable properties that our market must satisfy. In section three, we explain how
we arrive at global optimal solution to our proposed market. In section four, we describe
the market resolution and a methodology in which the added A benefit of collaboration
is distributed fairly proportional to different units’ contributions. In the fifth section, we
implement our solution using IBMs Optimization Programming Language (OPL) and show
time and space complexity of implementing this market along with initial experimentation.

Finally, we briefly discuss our conclusions and results.

4.2 Primary Peak-Load Demand Market Framework

In this section, we describe a formal model and explain the major components of our so-
lutions. We also formulate the optimization problem. We begin by describing the model
formally. To facilitate market analysis, continuous time is divided into discrete time in-
tervals i.e., T = {1,---,N} (e.g., hourly time intervals for 1 month). We denote by
U = {u1,...,u;} a set of units (e.g., departments in an organization or companies in a
consortium) that have the ability to make decisions of power usage and budget. Every unit
u has a set of power consuming services. At each time interval t € T', every service s of every

unit u consumes a certain amount kw,(t, s) of electrical power measured in kilowatts (kW).
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Every one of these services also has measurable amount of utility or benefit v, (¢, s) to its
corresponding unit v which indicates the value added to the unit by turning on that service.
In monetary terms, v, (¢,s) can be viewed as the amount of money that the unit running
the service s is willing to receive in lieu of service s (i.e., to not have service s running
for a given time interval). Every unit’s consumption is bound by a peak-demand budget
limit PD,, measured in kilowatts (kW). For every peak-demand power level (PD ) there is
a corresponding peak-demand cost (P(PD)) function which is set the by the electric power
providers as part of the contract price schedule. Consider the Peak-Load Demand Market
(PLDM) framework, depicted in Figure 4.2. Every unit u € U submits to the market its bid
dy, which indicates, for every service which the unit operate, the value of turning on that
service as well as the amount of power necessary to run the service at every time interval.

More formally, we define a Power Allocation Setting (PAS ) as a tuple:

PAS = (U, S, s, P)

where:

e U={1,---,n} is a set of units.

e S is a set of (power consuming) services.

e s: U — 2% is a function that associates services to their respective units such that

(V ur,u2) (u1 # uz) — s(ur) Ns(ug) = 0.

e P:R — Ris the peak demand price function (i.e., P(PD) is the price of peak demand

allocation PD.
A bid d,, = (kw,,v,) is pair for every u € U , where:

e kw, : T x s(u) — R is a function that gives at each time interval ¢ € T' the power

needed to run service s € s(u) .
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e v, : T x s(u) — R is a function that gives at each time interval ¢ € T the value or

benefit received from running service s € s(u) .

A market resolution produces a Peak Demand Allocation (PDA) for unit v € U which
is a pair

(PDy,Cy)

where PD,, € R is the bound on power demand allocated to u , and C,, € R is the cost (in
dollars) that u needs to pay for PD,, . Given PD,, for unit u, the unit can use the power

to accommodate its services within its own PD,, and decide on function:

ON, : T x s(u) — {0,1}

which indicates, for each time interval ¢ € T and service s € s(u), whether the service runs,
i.e., ON,(t,s) =1, or not, i.e., ON,(t,s) = 0.

Given PDA (PD,,,C,) for unit u € U , the unit’s total value V,, is defined by:

V., = 1(1)11%2( Z 'Uu(t, S)
teTN
ses(u)A
ONy(t,s)=1

subject to:

(VteT) > kwy(t,s) < PDy

ses(u)A
ONy(t,s)=1

The total benefit for u, denoted B, is defined as its optimal value minus its cost, i.e.,

We say that a function ON,, is feasible with respect to PDA (PD,,, C,) if the constraint

that total power at every time interval is less than the peak demand bound is satisfied.
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We assume that for the time interval in the horizon under consideration, the Peak-Load
Demand Market (PLDM) stores the associated Power Allocation Setting (PAS) as depicted
in Figure 4.1. We now define a number of desirable properties of the Peak-Load Demand

Market (PLDM).

Bid: Resolution:
e Value of running services e Optimal peak demand limit
e Power needed to run these e The cost paid for PD
services
bidd; PDA,
—bidd—>» Peak-Load Demand [« biddr—
Market (PLDM
<«—PDA— ( ) ——PDA—>>
PDA; bid ds

Figure 4.1: Peak-Load Demand Market

Property 1: Pareto Optimality.
Given a PAS P and bids {di,---,d,} , we say that {PDA;,---,PDA,} are Pareto

optimal if there does not exist a set of PDA allocations { PDA!,--- , PDA] } such that

(VueU) B, > B,
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and

(JueU) B, > B,

where B, is the total benefit under PDA!, . In other words, no other peak demand allocation
can increase the benefit of a single unit without reducing the benefit of other units. Similarly,
we say that Peak-Load Demand Market framework is Pareto optimal if, for every PAS P
and bids {dy,--- ,d,}, it always returns a Pareto optimal {PDA;,--- ,PDA,}.
Property 2: Nash Equilibrium.

We say that Peak-Load Demand Market satisfies the Nash equilibrium property if for
every PAS P and bids {di,---,d,}, the Peak Load Demand Market returns allocations
{PDA,,--- , PDA,} such that no unit can get a higher total benefit by quitting the coalition.

That is, for every v € U :

B, < B,

where B/, is the maximum benefit that can be achieved by unit u by running its own services

within its optimal peak demand budget. That is,

Bl = ofhex Z vy(t,s) — P(PD,)
teTA

ses(u)A
ON,(t,s)=1

subject to:

(VteT) > kwu(t,s) < PDy

ses(u)A
ONy(t,s)=1

4.3 Optimizing Consortium’s Utility

Here we use a service configuration function
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ON :T x S — {0,1}

to denote, for each service s € S and time point ¢t € T, whether it will be on (i.e., ON (¢, s) =
1) or off (i.e., ON(t,s) =0 ). To implement the Peak-Load Demand Market, we need to
allocate peak demand bounds optimally among any subset W of units U. We formulate
this optimization problem as the following:

Given:
e Power Allocation Setting (PAS) A = (U, S, s, P).
e aset D={dy, - ,d,} of bids.
e a subset W of units U, and
e a service configuration ON.

The service configuration value X (A, D,W,ON) is defined as the total utility achieved by

running all services of W that are on. That is,

X(A,D,W,0N) =Y Vion
ueWw

where

Vu,ON = Z Uu(ta 3)
teT A
ses(u)A
ON(t,s)=1

Given (1) Power Allocation Setting A, (2) a set of bids D = {dy,--- ,d,} , and (3) a
subset W of U, the optimal peak demand for each unit is optimal value that this subset of

unit can achieve, i.e.,
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(Vu e W) PD, € argmax  X(A,D,W,0ON)—P()_ PD,)
ON€e(TxS—{0,1}), weW
(YueW)(PD€R)

subject to:

(VteT) (VueW) > kwy(ts) < PD,

ses(u)A
ON y(t,s)=1

The optimal service value O(A, D, W) is defined as the maximum value X (A, D, W,ON)

among all feasible service configurations ON, that is,

O(A,D, W) = max X(A,D,W, ON)
ON€e(TxS—{0,1})

subject to:

(VteT) (VueW) > kwy(t,s) < PD,

ses(u)A
ON(t,s)=1

We say that a service configuration function ON, and peak-demand bounds PD,, , for
every u € W , are optimal, if they are a solution to the above optimization problem. Using
this modular representation, we can derive the optimal benefit value for any subset W of

U.

4.4 Resolving Peak-Load Demand Market

By resolving a peak-load demand market we mean coming up with power demand allocations
which are the the optimal peak-demand bounds that should be selected by each unit and

their associated costs that needs to be paid, i.e.,
PDA = {(PDy,C4),...,(PD,,Cy)}
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Given the Power Allocation Setting A and bids D = {dy,--- ,d,}, the global collaborative

optimal value is

V =0(A,D,U)

The optimization problem for finding O(A, D, U) gives optimal peak demand bounds PD,,,

for every u € U . The cost of procuring these peak-demand bounds is

C=P()_ PD,)

uelU

Thus, The benefit achieved by the collaboration is the total value of the optimal solution

minus the cost of the peak demand, i.e.,
B=V-C
Whereas, the optimal value for each u € U operating individually, i.e., without collaboration

is

Vzi =0(A, D, {u})

The cost of peak demand to each unit u € U operating individually is
C! = P(PD))

where PD/, is an optimal peak demand for u . Therefore the benefit B/, for each unit u € U
is given by:

Blzvl_cl

Therefore, if the units do not collaborate, their combined benefit B’ is the sum of their
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individual benefits, i.e.,

B'=) B,

uelU

Note that the collaborative benefit B achieved when units work together can only improve

the non-collaborative benefit B’, when each unit acquires its own peak demand separately:
B> B

The difference
A=B-PB

is the collaboration added benefit. We now need to fairly distribute the added collaboration
benefit A among participating units into (Aq,...,A,), where A, > 0 for every u € U.

We say that(Aq,...,A,) is a fair distribution of collaboration benefit of A if, for each
unit v € U, all units make equal profit margin on their non-collaborative benefit, i.e.

L S A=A

uelU

.. AVEAY
2. (Vi,jeU) Fé—gj
To achieve this fair distribution (Aq,...,A,), we must satisfy

Aq Ay,
E:...:—:p

/
Where p is the Equal Profit Margin. Then,

(VueU) A,=p B,
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Therefore,

A=Y Ay=) pB,=p) B,=p B

uelU uelU uelU

Thus,

Finally,

VuelU) A,=p- B,

To resolve the market, we need to find the peak demand allocation PDA, = (PD,,C,)
for every u € U. PD,, for every u € U is obtained by solving O(P, D,U) optimization
problem. Therefor, we only need to compute C,,, for every u € U.

From the collaboration added benefit A, for every u € U, we can compute its benefit
By,:

By, = Bl + A,

We also have the utility value of every unit V,, given which services to run from the optimal

solution value of O(A, D,U) optimization problem. Thus,

and so

This concludes the market resolution.

Claim: Peak-Load Demand Market guarantees the following aforementioned properties:
e Pareto Optimality.
e Nash Equilibrium.

e Fqual Profit Margin.
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Proof:

Pareto Optimality follows from the fact, By + ... + B, = B, where B is the global
maximum of the consortium benefit. Nash Equilibrium property follows from the fact that
A, and thus A, > 0, for each w € U. Equal Profit Margin follows directly from the way the

cost of peak demand bound is distributed.

4.5 Implementation

To evaluate our model, we implemented the optimization problem using IBM’s Optimiza-
tion Programming Language (OPL) which is part of IBM’s ILOG CPLEX Optimization
Studio. OPL is a language that is tailored to write mathematical programming (MP) and
constrained programming (CP) problems. We primarily take advantage of its Mixed Integer
Linear Programming (MILP) solver to provide the solution of our optimization. To better
simulate this market, we created multiple units which in turn consist of multiple services
4.2. We simulate the demand of multiple services over the time horizon under study and
store their kW demand and the associated utility of running the services as depicted in

Table 4.1.

Table 4.1: Sample Services
| Service ID | Unit 1D | KW | Utility | Time Slot |

1 1 100 40 1
2 1 150 50 1
3 2 400 90 1
4 2 200 45 1
) 3 300 70 1
6 3 500 95 1
7 4 100 25 1
8 4 350 30 1
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Figure 4.2: Peak-Load Demand Market Implementation

After the services data for all time intervals under consideration are acquired, optimiza-
tion is conducted on each unit individually to determine their separate optimal values as if
they are working alone. Table 4.2 show piece wise step function for the peak demand power

price for the considered contractual time period.

Table 4.2: Peak Demand Price Function
| Peak Demand in KW | Price |

0-1000 KW*(0.20)
1,001-2,000 KW*(0.15)
2,001-3,000 KW*(0.13)

5
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After the individual optimization is performed, we conduct an overall optimization as-
suming all units are working collaboratively. The resulting allocation specifies which services

to run and at which time interval as shown in Table 4.3.

Table 4.3: Optimized Services Run Schedule
| Service ID | ON | Time Slot |

1 1 1
2 1 1
3 1 1
4 0 1
5 1 1
6 1 1
7 0 1
8 1 1

The benefits of working collaboratively versus working individually are compared. Then,
the resulting added benefit (A) is calculated. Using the Equal Profit Margin described in
resolution of peak-load demand market section, the added benefit is distributed fairly among

participating units as depicted in Table 4.4.

Table 4.4: Added Benefit Distribution
(Guit 1D | B, | A, |

1 24 | 3
2 64 | 6
3 135 | 15
4 52 )

Finally, the cost for each unit is calculated by determining the benefit to each unit and
finding out the cost that each unit has to make part of the market resolution. A sample of

o4



peak demand distribution and its cost to each unit is shown Table 4.5.

Table 4.5: Peak Demand Allocation
| Unit ID | Peak Demand in KW | Cost |

1 250 45
2 400 70
3 800 136
4 350 63

To verify the applicability of such solution to real world setting, we populated three
data sets with an increasing number of participating units and their corresponding services.
Although the optimization model consisted mainly of a large number of boolean decision
variables, we found that the execution time was relatively fast using the multiple data sets
as shown in Table 4.6. The machine used was a dual-core processor workstation, with an 8
GB RAM. ILOG CPLEX Studio was installed on the same machine where the experiments
were performed. Since the market is run less frequently for specific peak demand contractual
period, the emphasis to converge to an optimal solution in a very short time is not of high
significance. As can be seen from the table, the largest test set of 1,000 units and 10,000
services required around 1 minute and 30 seconds to arrive at a solution. Comparing this
result with previous data sets’ execution time, it can be stated the time complexity is linear
to the test data set size. This result is very reasonable considering the consortium’s size

and the overhead of managing bids.

4.6 Conclusions

We presented Peak-Load Demand Market framework which aims to make units of a power

consumption consortium collaborate to reduce the cost of procuring their electricity. We
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Table 4.6: Test Data Sets Size and Optimization Time
| Number of Units | Number of Services | Optimization Time (in seconds) |

10 60 0.32
100 1,000 8.62
500 5,000 52.91
1,000 10,000 93.11

proposed Peak-Load Demand Market framework to incentivize organizational units of Com-
mercial and Industrial customers or units of a consortium to reduce their peak demand cost
by collaboratively deciding their peak demand bound limits. The market described units
bids elicitation as well as the resolution of the market and the service and peak demand
allocation as well as the cost. We formally defined the market and constructed an optimiza-
tion model that satisfies desirable properties, i.e, Nash Equilibrium, Pareto Optimality and
Equal Profit Margin. After experimentation, the proposed market resulted in an increase in
the overall benefit of participating organizations and reduced their cost based on randomly
generated data test sets. Our approach assumes certain independence on the power loads of
participating units. However, there still remain some open questions about the possibility of
introducing some scheduling constraints to address issues of interrelated power loads across

multiple participating units.
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CHAPTER 5: Electric Power Consortia: Decision Guidance
Based on Market Optimization

Proposed in this chapter is an extensible decision guidance system framework to facilitate
Commercial and Industrial entities forming a consortium to collaborate on their electric
power supply and demand in order to streamline their consumption and reduce their costs.
The collaborative framework includes the structure of market setting, participants’ bids,
and a market resolution which produces a schedule of how power components are controlled
as well as the resulting payment by market participants. We also define four properties
that the market resolution must satisfy, namely, feasibility, Pareto-optimality, Nash equi-
librium, and equal collaboration profitability. Furthermore, we develop a market resolution
algorithm, based on a formal optimization model and prove that it satisfies the desirable

market properties.

5.1 Introduction

There has been an ongoing trend of moving toward less reliance on conventional hydrocarbon
energy resources and more adoption of cleaner alternative energy due to increased fuel
costs or for organization’s strive be more sustainable. This trend created a plethora of
alternatives that promise to cut carbon emissions and pollutants. Commercial & Industrial
(C&I) organization have a variety of power enabled services. Furthermore, they add a
variety of energy and power resources including Photovoltaics, wind, storage, local back-up
generation, and commercial contracts on supply of power and load curtailment.

In this context two complex questions arise: (1) how to optimaly operate available
resources over time, and (2) how multiple C&I organizations can collaborate on sharing
resources to minimize their costs. This chapter focuses on decision support and guidance
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for C&I organizations to address these two problems.

To better understand interaction and collaboration between different units, consider
an illustrative scenario depicted in Figure 5.1. In this scenario multiple units (e.g., C&I
organizations) have a diverse set of resources that supply power and provide multiple services

that consume power at any operation time interval.

Fossil-Fired Powerplant Wind Turbines with

Solar Panels Battery Storage

Utility Contract
leighborhood-Scale Grid with
Battery Storage

Commercial Campus with utility Contract

Thermal Storage

Figure 5.1: Power Loads & Resources Collaboration Example

While a utility contract with electrical power company is common, an organization can
have other energy resources (e.g., photovoltaic power systems, storage batteries, backup
engine generators, etc.) at its disposal. With so many alternatives, finding the optimal
operation of such resources while taking into consideration the possibility of collaborating
with others becomes an increasingly complex problem.

In order to model such a scenario, we must define how electrical power components (i.e.,
electrical power resources, or electrical power consuming services) are modeled. Further-
more, we need to describe how they behave under various conditions. In general, power
components of the electrical power infrastructure can either produce power, consume power,
store power, or remain idle at any given time interval over the time horizon under consid-
eration. While power components’ internal workings can be unique, we try to find common
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characteristics that these components share in order to generalize their modeling.

In previous chapters, we explored the idea of how units of an organization can optimally
share their peak-demand bounds to achieve an overall better operational utility while fairly
compensating participating units. We also optimally planned the selection of peak-demand
of collaborating entities based on the projected demand over a time-horizon with the con-
dition that units can share their peak-demand bounds during operation. Both approaches
resulted in a better overall optimal value than if each player acted separately. However,
this approach does not consider a range of power resources and services (e.g., photovoltaics,
battery storage, backup generator, etc.), and is not extensible. Bridging this gap is the
focus of this chapter.

Making decisions in an environment where the the benefit received from the operation
of power consuming services and the costs of power supply and acquisition coupled with
the possibility of collaboration in real-time and for future planning with other C&I units
presents a complex problem. The purpose of this chapter is to introduce a decision guidance
and support framework (see Figure 7.1) where C&I units that demand power, supply power,
or both can collaborate to optimize the operation, supply, and acquisition of electrical power
components so that they achieve a better financial and operational level.

In this chapter, we propose an extensible decision guidance system framework for market-
based collaboration of power resources and services. In doing so, we create an extensible
model where resources & services can be added or removed by minimally describing their
attributes. More specifically, the contributions of this chapter are as follows:

First, we propose and formally define a collaborative market framework. The basic
idea of this market is to create a consortium of organizational units where each unit has the
freedom to make decisions related to power consumption, generation, and storage. Members
of this consortium have multiple services that they need to run (e.g., lighting, HVAC, water
heating, etc.) and also have various power resources (e.g., utility contract, photovoltaics,
backup power generator, etc.). The members also have some expectation of the intrinsic

value of running services at different levels of operation over a time horizon represented
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Figure 5.2: Electric Power Collaboration Decision Support Framework

as a bid that each member of this consortium submits to market. The market resolution
produces a power resource allocation for each unit, and the payment that each member
has to pay or receive at every time interval when the market executes. We also define four
desirable properties that our market must satisfy, namely, feasibility, Pareto-optimality,
Nash equilibrium, and equal collaboration profitability.

Second, in order to support market resolution, we develop and implement a formal
optimization model to decide on the operation of resources to be used, and the services
that are run while maintaining feasibility, i.e, the power consumed by all members of the
consortium does not exceed the total power supply.

Third, we develop a market resolution mechanism based on the optimization models that
guarantees the satisfaction of the defined properties of market, namely, Pareto optimality,
Nash equilibrium, as well as the property of equal collaboration profitability which will be
defined formally in the next sections.

This chapter is organized as follows: In the section two, we present a small example of

the collaboration problem. In section three, we describe our collaborative market framework
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where we formally define the power market setting, market bids, market resolution and the
desirable properties that our market must satisfy. In section four, we describe the market
resolution algorithm and how the extra benefit that resulted from the collaboration is fairly

distributed among the participants. Finally, we briefly discuss our conclusions.

5.2 Problem Example

To make the problem more concrete consider an example depicted in Figure 5.3 which has
tow units. Unit 1 runs two power consuming services, water heating, and HVAC. These two
services have value to their respective unit which we call intrinsic value (measured in dollar
amount). By intrinsic value we mean the amount in dollars that a unit is willing to accept
in lieu of shutting that service off. Unit 1 also has two types of power resources. Each
power consuming service needs power to operate measured which is measured in kW. The
first resource of unit 1 is a is a utility contract with a power company. This is not a power
resource in itself but a right to use power based on an agreed upon terms. Utility contract
typically states the rate per kWh in dollars and a maximum peak demand consumption
level before incurring a penalty rate. The other resource type is a back-up power generator.
Unit 2, on the other hand, has two other power consuming services: lighting, and Plug-in
Electric Vehicle (PEV) charging . Unit 2 resources are Photovoltaic (PV) unit and battery
power storage unit. The battery unit has controls that can be instructed at any given time
interval to store power (charge), provide power (discharge), or remain idle.

Using a power resource typically incurs certain cost which can be either variable, fixed
or both (e.g., acquisition cost, fuel cost, maintenance cost, etc.). If these resources are
dispatched to third parties, they can generate revenue. These resources usually have certain
status indicators (e.g., charge level, efficiency, etc.) which vary depending on the type of
resource. Resources also have constraints that determine the feasible operation parameters
depending on multiple factors including the status of the power resource. Most power
consuming and producing components allow for control that affect their operation.

In a typical environment, units operate independently to satisfy their power loads. Now
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let’s consider a scenario where unit 1 has a previously unanticipated surge in demand. Unit
1 now has many alternatives to consider. It can exceed its peak demand and incur penalty
which could affect the entire contractual period. It can also arbitrarily curtail demand
without giving much thought to the lost intrinsic value of the service being turned off. Unit
1 can also dispatch the battery to satisfy excess demand without considering the dimin-
ished ability of the battery to satisfy possible future demand. Now add to that the ability
for multiple units to collaborate. That means if units 2 would agree to a certain compen-
sation, unit 1 could use unit 2’s back-up power generator. Choosing an alternative that
maximizes the units’ value becomes increasingly complex problem without a collaborative
market framework.

The proposed formal market framework described in the next Section (5.3) is designed
to address the problems of (1) how combined resource and service operate in an optimal

fashion, and (2) How to fairly compensate each unit for enabling the usage of its resources.

Unit 1 Unit 2

Utility Local Water Solar
HVAC Lightin
Contract || Generator Panel Y ghting Charglng

Figure 5.3: Example Problem Units’ Power Components

5.3 Collaborative Market Framework

In this section we define the power market setting, market bids, and the market resolution

and its desired properties. We begin by describing the power market setting (see 5.4 for an
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overview of the decision guided market).

Resolution: commitment on actions
(for the upcoming time interval
t=1), Payment (given, or received)

Bid: value functions (e.g., cost,
revenue, intrinsic value), power,
constraints

Figure 5.4: Decision Guidance Framework Overview

5.3.1 Power Market Setting

To facilitate market mechanisms, we assume that the market consist of a set of components
C = {1,---,n}. Power components can be in the form power producing resources such as
back-up power generators, Photovotiac units, etc. They can also be in the form of power
consuming services such as lighting, air conditioning, water heating, etc. The time horizon
is a set of time intervals T'= {1,--- , N}, i.e., we assume that time is divided into discrete

time intervals which determine the market execution frequency. For example, a day of
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operation can be divided into 24 hours, i.e., N = 24.

A control vector a;; , 1 < ¢ <n, 1 <t < N represents the control actions that
component i takes at time interval ¢. Let dom(7) indicate the domain of all possible control
action values for component i. A vector of controls a; = (a;1, - ,ain) , 1 < i < n,
represents the control actions that component i takes over the time horizon N. The control

actions for all components over the time horizon N is represented as a matrix

ay a1 - AN
A = =
anp Gp1 -+ QapN
We assume that the market consists of a set of units U = {1,--- ,k}. Each unit u € U has

number of components and each component belongs to only one unit. We further assume
without loss of generality that unit 1’s components are {1,---,n1}, unit 2’s components
are {n1+1, -+ ,na}, and so on and finally unit k’s components are {ny_1+1,--- ,n}. For

a general notation, unit u’s components are {n,—; + 1,--- ,n,} where ng = 0 and nj = n.
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The matrix of actions A can then be segmented by the participating units, i.e.,

a
an,
Ay H
anu—1+1
A= A, | =
anp,,
Ak .
Anj_1+1
Gn
where A,, 1 <wu <k, is given by
Aul
_ anu_1+1,1 anu—l"‘l,N
anu—1+1
Au = =
n,, anu71 anu,N

We will denote by A,; the first column of matrix A,, i.e., the actions for the components

of unit w at time interval ¢ = 1 (upcoming time interval). That is,
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anu_1+1,1

Aul =

anu,l

5.3.2 Market Bids

Every unit u € U submits a bid to the market

{{cost;, rev;, intrinsic Val;, power;, constr;) | ny—1 +1 <1i < ny}

which gives a tuple (cost;, rev;, intrinsic Val;, power;, constr;) for every component i of u

where:

e cost; : dom(i)Y — RT is a function that gives total cost of component of operating
component % associated with actions a; over the time horizon. For example, a cost
of a pack-up power generator consists of the acquisition cost, fuel cost, maintenance

cost, etc.

e rev; : dom(i)V — R¥ is a functions that gives the revenue of operation received (in
dollars) of component i associated with control actions a@; over the time horizon, for

example, dispatching the battery to a another unit in return for compensation.

e intrinsicVal; : dom(i)N — RT is a function that gives the intrinsic value (or utility
received) of operating component 4 (in dollars) given control actions a@; over the time
horizon. In other words, this is the value that unit v is willing to get in lieu of not

operating component 1.

e power; : dom(i) — R is a function that gives the power in kW that component i
produces (or consumes) given the control actions a; at any time interval. A positive
value means that the component gives power while a negative value means that the

component receives power.
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e constr;(a;) is the operational constraints of component ¢ in terms of control actions
a;. For example, maximum charge rate (in kW) and maximum discharge rate (in
KW) are constraints that affect the power given or received from a battery resource

component.

We denote the net value of operating component ¢ given control actions @; by the function
value; : dom(i) — R
which is defined by
value;(a;) & intrinsic Val;i(a;) + revi(a;) — cost;(a;).

The total value of all components given their control actions matrix

is defined as

k
total Value(A) = Z value; (a;).
i=1

5.3.3 Market Resolution and Its Desired Properties

Definition. A market resolution is a set

{(Aurs Pu) [ 1 <u <k}

uly
where, for every 1 < u < k:

o A%, is the actions control matriz at time interval 1 (upcoming time interval) for all
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components of unit u .

e P, is the payment amount (in dollars) by unit u. A positive value indicates that unit

u makes a payment while a negative value means that the unit receives a payment.
We propose the following desired properties of a market resolution:
o Feasibility
e Pareto-optimality
o Nash equilibrium
e Fqual collaboration profitability

which we describe next.
Intuitively, a market resolution is feasible if the actions control vector for every unit w
at time interval 1 can be extended for the entire time horizon without violating unit u’s

constraints. More Formally,

Definition. We say that a market resolution {(Ay1,P,) | 1 < u < k} is feasible if, for

every unit u, 1 < u <k, there exists a unit’s actions control matrix

Ony_q+1 Ony_141,1 *°° Qpy_1+1,N
Au = =
dnu an,,1 Tt Qn,,,N
anu_l—‘rl,l
where : = A,
anu,l

In the definition, note that the control actions for time interval 1 are exactly those of A%, so

that each component ¢ of u, n,—1+1 < i < n, satisfies its constraints constr;(a; 1, - - - ,az-7N).
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To define the properties of Pareto optimality and Nash equilibrium, we need to define
the notions of selfValue and collabValue for unit u , associated with the market resolution.
Intuitively, a selfValue of u is the value u can optimally achieve without collaborating

with other units. More formally,

Definition. selfValue, =

max  totalValue(A,,)

u

subject to

(Vi, ny—1 +1<i<ny) constri(a;) A

Yz
(Vt, 1<t<N) Y power;(ais) =0

1=Nqy—1+1

The optimal actions matriz AS is the actions matriz that gives the maximum self value

under the the same constraints. That is,

A; € argmax totalValue(A,)
Au

subject to
(Vi, ny—1 +1 <1i<ny) constr;(a;) A
zn

(Vt, 1<t<N) Z power;(a;¢) =0

i=ny—1+1

Intuitively, given a market resolution, a collaborative value of u is the value that w can

optimally achieve by extending its actions A}, from the market resolution. More formally,
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Definition. collabValue, =

max totalValue(A,,)

w

subject to

(Vi, ny—1 +1<i<ny) (constm(&i) A (ain = azl))/\

om Ny
*
E power;(a;1) = E power;(a;;)A
1=Nqy_1+1 1=Nqy_1+1

(Vt, 2<t<N) Z power;(a;t) =0

i=ny—1+1

where aj | is a component of Ay, from the market resolution.

The optimal control actions matrix AS is the actions matrix that gives the maximum col-

laborative value for each unit under the same constraints. That is,

AS € argmax  totalValue(Ay)
Ay

subject to
(Vi, ny—1 +1<i<ny) (constm(c‘zi) A

(a1 =ajy)) A

Ny, Ny
Z power;(a; 1) = Z power;(a; ;)

i=ny—1+1 i=nqy—1+1

(Vt, 2<t<N) Z power;(a;¢) =0

i=nqy—1+1
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Intuitively, a market resolution is Pareto optimal if no other market resolution can

increase the value of a unit without decreasing the value of another unit. More specifically,

Definition. Pareto-ptimality: We say that a market resolution {(A3 ,Py) | 1 <u < k} is

Pareto-optimal if there does not exist a market resolution {(Al, ,P.) |1 <wu <k} such that

up?
(Vu e U) (collabValue, + P,) > (collabValue, + P,)

and

(JueU) (collabValue, + P,) > (collabValue, + P,)

Definition. Nash equilibrium: We say that a market resolution satisfies the Nash equilib-

rium property if no unit can get a higher value by quitting the coalition, i.e.,

(collabValue, + P,) > selfValue,,
Nash Equilibrium guarantees that each unit can only do better by joining the consortium.

Definition. Equal collaboration profitability of market resolution (fairness): We say that
a market resolution satisfies the equal collaboration profitability property if every unit u has

the same profit margin r,, defined as

s (collabValue, — P,) — selfValue,,

fu = selfValue,,

Note that collabValue, — P, reflects the total value that unit u receives from the market

(collabValue minus the payment).

Definition. Market-Resolution Algorithm properties: We say that a market resolution algo-
rithm satisfies the properties of (1) Feasibility, (2) Pareto-optimality, (3) Nash equilibrium,
and (4) Equal collaboration profitability, if for every market setting and market bids, it

returns a market resolution that satisfies the corresponding properties.
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5.4 Market Resolution Algorithm

After we have formally defined the market resolution and its desired properties, we now
present how our market resolution algorithm. We first define the global optimization

upon which the control actions of the market resolution for the upcoming time interval

*

*1)- We then optimally extend control actions for all the units for remaining

are based(
time intervals to find their collaborative value and then compare it to their non-collaborative
value and calculate the added benefit of collaboration (A). Finally we define how this added
benefit is distributed in order to determine the payment (P,) that each unit has to give or

receive as part of the market resolution.

5.4.1 Global Optimization

The optimal value that the coalition can achieve which maximizes the welfare is given by

the maximization

globalValue = max totalValue(A)
subject to

(Vi, 1 <i<n)constri(a;) A

n
(Vt, 1<t < N) Zpoweri(ai7t) =0
i=1
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The control actions matrix that produces the optimal maximum total value for all compo-

nents is the global control actions matrix A9, i.e.,

A9 € argmax totalValue(A)
A

subject to

(Vi, 1 <i<n)constri(a;) A

n
(Vt, 1<t < N) Zpoweri(am) =0

i=1
The matrix
g g g
ay ajy a1 N
Ag g g .
an afL,l ai,N

represents the control actions that all units combined need to make in order to achieve the
optimal value over the entire time horizon. However, since our market lets units commits
on at the first time interval, we are only interested in the upcoming time interval (¢t = 1)

control actions. The control actions matrix Ay, for every unit 1 < u < k, is given by

=9
anu— 1+1

=9
anu

The market resolution control actions are therefore adopted from the this global optimiza-

tion, i.e.,
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g
Ap14+1,1

¥ __ A9 _
ul_Aul—

N, 1

5.4.2 Added Collaboration Benefit (A)

After determining the optimal market resolution control actions, the impact on units’ values
for choosing this market resolution must be measured in order to compensate the units
appropriately. The additional value the units collectively get by collaborating is the sum of

the their collaborative values minus the sum of their non-collaborative values, i.e.,

k k
A= Z collabValue, — Z selfValue,,

u=1 u=1

We assume that each unit u has a non-negative share of this A, i.e.,

Value difference is the value that each unit u gets by participating versus working alone,
ie.,

Vi = collabValue,, — selfValue,,

P, is the payment that unit v makes (P, < 0 means that u receives payment)

Therefore,
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5.4.3 Added Benefit Distribution

The only remaining part is to find a fair methods to calculate A, for each unit. We recall
our defined principle of equal collaboration profitability which means that each unit gets a
portion of the resulting added value of collaboration proportional to its standalone value,
ie.,

A A

- selfValue, T selfValue,,

where r is the ratio of the equal collaboration profitability margin. That is,

(Vu e U) A, =1 - selfValue,

Since,
k
A=) Au
u=1
Therefore,
k
A= Zr - selfValue,,
u=1
Thus,
k
A=r - Z selfValue,,
u=1
Finally,
B A
=%
> selfValue,,
u=1

(0]



The market resolution algorithm is summarized in Algorithm 1.

Algorithm 1 Market Resolution
Input: Market setting, Market bids
Output: Market resolution {(A},, Py) |1 <u < k}
Let optContlu] =0, pay[u] =0, V{u] =10
Let totalSelfValue = ), totalCollabValue = ()
Let A=0, r=0, Alu] =0
Solve globalValue
foru<1tok do
optCont[u] + Af,
end for

for u+1tok do
Solve selfValue,,

Solve collabValue,,

Vi < collabValue,, — selfValue,,

totalSelfValue < totalSelfValue + selfValue,,
totalCollab Value < totalCollabValue + collabValue,,

: end for
. A <+ totalCollabValue — totalSelfValue

. 1 A/totalSelfValue

:foru<+1tok do
A, < r x selfValue,,

pay[u] <~ Vu - Au
: end for
: return (optCont, pay)

— = = e
L P

— =
SRS

—_
(@]

— =
o

—
©

[\OR )
= O

Theorem. The Market Resolution algorithm guarantees the desired market properties which

are:
o Feasibility
e Pareto optimality
e Nash equilibrium
e FEqual collaboration profitability

Proof. Feasibility follows directly from AS where actions of the global optimization are

extended to satisfy the constraints of individual units. Pareto optimality follows from
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the fact of the collaborative maximization of the consortium value (collabValue,). Nash
equilibrium follows from the fact that A > 0, and thus A, > 0 for every u € U. Equal
collaboration profitability of the added value of collaboration follows directly from the way

the payment P, and thus A, is distributed. O

5.5 Conclusions

This chapter introduced an extensible decision guided market-based framework where units
that contain power producing and power consuming components can collaborate to increase
their value and reduce their cost. This market described the market setting, market bids,
and market resolution. This framework also described a number of desired properties that
the market resolution algorithm must satisfy.

This up to our knowledge is the first attempt to model a generic electric power collabo-
ration market framework with multiple players that is also extensible. In the next chapter,
we formally model commonly used power components which has been briefly discussed in

this chapter.
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CHAPTER 6: Power Demand and Supply Components

In the previous chapter we proposed an extensible decision support system framework to
facilitate Commercial and Industrial (C&I) entities forming a consortium to collaborate
on their electric power supply and demand. In this chapter, we model common power

components and provide their mapping to the concepts explained in the previous chapter.

6.1 Introduction

In the previous chapter, we presented a general market framework. Defined in the market
framework were market setting, market bids, and market resolution. More specifically, The
bids included the definitions of the functions of cost, revenue, intrinsic value, and power,
ie.,

a;, costy, rev,, intrinsicVal;, power;, constr;

In the following sections, commonly utilized power components such as renewable re-
sources, battery storage units, backup generators, utility contracts, and power consuming
services are discussed in details where the functions of the general model are mapped to
specific classes of resources and the actions that units may take depending on the type of

power component is also formally modeled.

6.2 Power Components Modeling

The controls actions that each power component take vary based on its type. In this
section, a mapping between the general framework and specific types of commonly used
power components is explained. To begin, the market consists of a set of units U and a set
of components C' such that each component i belong to exactly one unit w. The time horizon
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T under consideration is a set of discrete time intervals (in hours) that a typical operational
day has, i.e., T = {1,--- , N} where N = 24 which means 24 hours a day with interval
length. intervalLenght = 1 means that each time interval and an hour long. Although
the planning of operation is modeled over the entire time horizon. The market resolution
occurs only for the upcoming time interval, i.e., t = 1. For every power component, there are
only two possible ways in which power flows. kw[i][¢t] value can be positive which indicates
that the component is supplying power or negative which indicates that the component is
receiving power. It also can be equal to zero which indicates an idle and a turned off power

component.

6.2.1 Utility Power Contract

Utility contract represents the most commonly used resource in C&I organizations. The
utility contract is not a resource in itself but a right to use power at an agreed upon terms.
These terms of use (TOU) usually state the cost of using drawing power from power company
utility which typically consist of two components: The quantity of kWh consumption at
specific billing period, and the peak demand charge which measure the maximum rate of
power consumption at any giver time interval.

Controls:

The control of the contract is typically handled through the energy management system at
every time interval ¢ € T for every contract component 7, of how much power should be

used from the contract, i.e.,

a; = (a1, -+ ,a;n), where a;; = kwli,?] and dom(i) = RT
Cost:

For every contract power component ¢, the cost composition is as follows:

N
cost; = Z conCost|i, t] where,
t=1
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e conCost[i, t] = quantityCost[i, t] + demandCost][i, ¢]
e quantityCostl[i, t| = kw[i, t] x quantityCostPerKw(kw|i, t])
e demandCost[i, t] = kw[i, t] * demandCostPerKw (kwlz, t])

The quantityCost and demandCost can be any type of function that returns the rate
per kW of consumption. Typically these function are represented as piece-wise or step-wise

linear functions. For example, the quantity kWh consumption cost per kW can be as follow:

12¢ 0 <z <3000
quantityCostPerKw(z) = ¢ 10¢ : 3000 < z < 6000
8¢ - > 6000

Whereas, the peak demand cost per kW can be:

1.50% 0 <z <1000
demandCostPerKw(z) = ¢ 3.00$ : 1000 < z < 2000
6.00% :x > 2000

Constraints:

The only operational constraint on the contract power component is that the total kW
consumption at any time interval ¢ must not exceed the that contract peak demand bound,
i.e., constri(a;) : (V i,t) kw[i,t] < peakDemand[i]. The other constraint is an integrity

constraint which limits the power used from the contract to a positive or zero value, i.e.,

constr;(a;) : (Vi,t) kwli,t] >0

which mean we can only draw power from the contract and cannot supply power back using

the contract power component.
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Revenue:
Since this resource cannot be committed to third party, the revenue of this component is
always equal to zero, i.,e.,

revi(c'zi) =0

Intrinsic Value:
The organization typically does not get any direct value from using the utility power,

therefore, the intrinsic value of this component is always equal to zero, i.e.,

intrinsicVal;(a;) = 0

Power:
The power at every time interval for this type of components is the identity matrix of
controls, i.e.,

power;(a; ) = kw(i, t]

6.2.2 Battery Storage Unit

The battery storage is a special type of power component because it can consume power,
supply power, or remain idle, i.e., for every battery power component ¢ and any time interval
t, ie., kwli,t] = +,—, or 0.

Controls:

Fach unit needs to decide how to control their batteries at every time interval t. The
controls for the battery can be either discharge, charge, or keep the battery idle. It also

needs to decide how much kW should supplied from the battery or drawn from it, i.e.,

a; = (a1, -+ ,a;N), where,

a;; = (batFlagli, t], kwl[i, t])
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where batFlag[i, t] € {“charge”, “discharge”, “idle”, “commitToMarket” } and kwl[i,t] €
R.
Cost:
The cost of operating a battery storage unit is the sum of the cost of depreciation and

maintenance cost, i.e.,
cost; = batDeprCost[i] + batMaintCost[i] where,

e Depreciation cost is the cost of using the battery by cause of wear. Typical battery
storage units have a number design charge/discharge cycles, i.e., battCycles[i] be-
fore they are considered inefficient and need to be replaced by new battery storage
unit. The depreciation cost of a battery is result of multiplying the used cumula-
tive charge/discharge cycles of the battery, i.e., battCummulative[i] = Zi\i 1 [kwli]|
divided by kW power for a cycle, i.e, battCycleKw[i] to get the number of cycles
used. This result is also divided by the number of battery design cycles times the
new battery cost, that is batDeprCost[i| = (battCummulative[i] =+ battCycleKw|o]) +

battCycles[i] x newBatCost/[i].

e Maintenance cost is the cost of the part of annual maintenance cost of the bat-
tery batAnnualMaintCost[i] times the duration of operation as part of the year, i.e.,

batMaintCost[i] = (batAnnualMaintCost[i] < 365 + 24) * (N x intervalLength)

Revenue:
If the unit actions controls decides to commit this resource to a third party, the revenue is

the total revenue of a component over the time horizon, i.e.,

N
rev;(a;) = Z rev[i, t], where
t=1
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mktPmt|z, ¢] batFlag =
rev(i, t] = “cmmitToMarket”

0 otherwise

Intrinsic Value:
An organization typically does not gain from the operation of the battery storage unit in

itself and therefore its intrinsic value is zero, i.e.,

intrinsicVal;(a;) = 0

Constraints:
The constraints of the battery storage that guarantees operational integrity include the

following;:

constr;(a;) : (V i,t) maxDisRt[i] < kwl[i, t] < maxChgRt[i]A
kwli, t] < currentChg|i, t] A currentChgli, t] < batCap[i] where,

e The discharge power amount must not exceed the maximum discharge rate, i.e., (Vt €

T) kwl[i, t] > maxDisRt][i]

e The charging power amount must not exceed the maximum charge rate, i.e., (Vt €

T) kwl[i, t] < maxChgeRt[d].

e For the first time interval, ¢ = 1, The discharge amount cannot exceed the battery ini-
tial charge at the beginning of the first time interval, i.e., kw[i, 1] < batInitialCharge[i].
For the remaining time intervals, {2,---, N}, the discharge amount cannot exceed
the current charge, i.e., (Vt € {2,---,N)} kw[i,t] < currentChgli, (¢t — 1)], where,

(Vt € T)) currentChgli, (t + 1)]currentChgli, t] — kw[i, t].
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e The battery current charge must not exceed the battery capacity, i.e.,

(Vt € T') currentChg]li, t| < batCapli]

Power:
The power at every time interval for the battery is the power that the battery produces as
a result of committing the battery or the power consumed to charge the battery. Therefore,

the power for the battery is the identity matrix of the power part of the controls, i.e.,

power;(a; ) = kw(i, t]

6.2.3 Renewable Resource

Renewable resources (e.g., Photovoltaic systems, and wind turbines) has been increasingly
adopted recently as part of organization move to be more energy sustainable. The output
power of these components cannot be controlled. However, their performance depends of on
environmental factors such as sunshine or wind activity. The output from these component
is represented as the predicted power generated over a time horizon, i.e., predOutli, t] in
kW.

Controls:

Renewable resources typically do not receive control actions except for emergency shut off.

Therefore renewable power components control actions are null, i.e.,

a; = (ai1, - ,a;,n) =10

Cost:
Since renewable resources typically do not use fuel to produces power, their operational cost
consist of the depreciation cost and maintenance cost, i.e.,

cost; = renCost where,
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e renCost[i] = renMaintCost[i] + renDeprCost[i] where,
e renMaintCost[i] = (renAnnualMaintCost[i] < 365 < 24) x (N x intervalLength)

e renDeprCost[i] = (renNewCost|[i] + 365 + 24) * (N X intervalLength)

Revenue:
The renewable power component is not usually committed to third party therefore the

revenue generated from this resource equal to zero, i.e.,

rev;(a;) =0

Intrinsic Value:
The operation of this type of component does not yield any intrinsic value for the respective

unit, therefore, the intrinsic value is equal to zero, i.e.,

intrinsicVal;(a;) = 0

Power:
The power generated from this component can only be the predicted output from this
resource, i.e.,

power;(a;+) = kwli, t] = predOut[i, t]

Constraints:
The only operation constraint that this component have is that the power used cannot

exceed the power generated, i.e.,

constr;(a;) : (V i,t) kw(i, t] < predOutl[i, t]
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6.2.4 Back-up Power Generator

Backup power generators differs from other power resources in terms of cost and availability.
Certain large power generator may require time to ramp up and usually require a minimum
output power. These generators require fuel for their operation. They typically have an
efficiency function of fuel consumption depending the amount of power drawn from these
back-up power resources. This function can be usually defined as piece-wise linear function
or step function which gives the the fuel needed per kW of output power, i.e., for every
back-up power generator component i, genEff[i] : R — R.

Controls:

Units can decide whether to use the back-up power generator or not at every time interval

t. They also need to determine at which kW level this resource should operate, i.e.,
a; = (a1, ,a;N), where,

Qi t = (genFlag[i7 t]a kw [Z7 t])

where genFlag[i, t] € {“turnOn”, “turnOff”, “cmmitToMarket” } and kw(i, t] € R.
Cost:
The cost of operating back-up generator component includes the cost of fuel, depreciation

cost, and maintenance cost, i.e.,
cost; = genTotalFuelCost|[i] + genDeprCost|i] + genMaintCost[i], where,

e The fuel cost per component per time interval is calculated by the total kW generated
times the efficiency times the fuel cost, i.e., genTotalFuelCost[i] = Zi\i , genFuelCost|i, t],

where, genFuelCost|[i, t] = kwl[i, t] x fuelCost[i, t] x genEf f[i](kwl[i, t]) x kwl[i, ]

e The depreciation cost is the result of sum of the kW generated divided by mean time

to failure times the price to replace it with a new generator, i.e., genDeprCost[i] =
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SN kwli, t] <+ genMTTF[i] x genNewCost[i]

e The maintenance cost is the portion of the annual maintenance cost that covers the
market intervals optimized, i.e., genMaintCost[i] = (RenAnnualMaintCost[i] + 365 +

24) * (N x intervalLength)

Revenue:
If the unit actions controls commit this resource to a third party, the revenue is the total

revenue of this component over the time horizon, i.e.,

rev;(a;) = Z rev[i, t], where

t=1
mktPmt|z, ¢] genFlag =
rev[i,t] = “cmmitToMarket”
0 otherwise

Intrinsic Value:

The unit may get utility value from using the power generated by the back-up power gen-
erator to run a service, but the intrinsic value of operating the back-up generator is equal
to zero, i.e.,

intrinsicVal;(a;) = 0

Power:
The power generated from the back-up power generator is precisely the identity matrix of

the kW part of the controls, i.e.,

power;(a; ) = kw(i, t]

Constraints:
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The operational constraint of the back-up power generator is that the output power must

not exceed the generator’s capacity, i.e.,

constr;(a;) : (Vi,t) kwli, t] < genCapli]

6.2.5 Power Consuming Service

Power consuming components are the services that units operate as part of the demand
for power (e.g., HVAC, lighting, or heating). The bids for these power consuming services
consist of two parts: the amount of power required to run a service at any time inter-
val, i.e., predKWT[i, t], and the value received by the unit if this service is turned on, i.e.,
predValueli, t]

Controls:

Units typically can decide to turn on or turn off a power consuming service, i.e.,

a; = (a1, - ,ain), where,
a; ¢ = serFlagli, t]

where serFlag[i, ] € {“turnOn”, “turnOff”}. Although some power services can have
other controls besides turning on or off a service, we consider these as discrete parts of the
load where the unit can satisfy any part of that service loads.
Cost:
In typical scenario, there is no power related cost that results from the operation of services

other than the cost supplying power, i.e.,

cost; =0

Revenue:
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The operation of a power service does not yield any power related revenues, i.e.,

revi(a;) =0

Power:

The power for each power consuming service is the kW required to run that service it is

turned on, i.e.,

predKW(i,t] serFlag =
“turnOn”
power;(a; ) =
0 serFlag =
“turnOff”

Intrinsic Value:
The intrinsic value of a consuming service is the sum of the utility received from turning

on that service (in dollars amount), i.e.,

N
intrinsicVal;(a;) = Z intrinsicVal[i, ], where
t=1

predValue[i, t] serFlag =
“turnOn”
intrinsicValli, t] =
0 serFlag =
{ “turnOff”

Constraints:
The only operational constraint that services have is that the power supplied must be equal
to the power needed if the service is turned on, otherwise it should be zero. This is controlled

by the action controls taken by the respective unit. Therefor, there are no constraints on
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the power consuming services level, i.e.,

contr(a); =0

6.3 Common Modeling

In order to maintain a stable power supply. There is a balance constraint which guarantees

that the sum of supply and demand at any give time intervals equals to zero, i.e., (V¢ €

T) Zfi L kwl[i,t] = 0. This constraint is required to maintain the integrity of the grid and

provide stable operation.

6.4 Conclusions

This chapter provided the formal modeling of commonly used power components and their
mapping to the extensible framework. The modeling included the definition of the action
controls, cost, revenue, intrinsic value, power, and constraints. The modeled component
types are utility power contract, battery storage unit, renewable resource, back-up power
generator, and power consuming service.

In the next chapter, an implementation of these types of power components is provided
using and optimization language and case study analysis is conducted to verify the viability

of the modeling with reasonable problem size that simulates a real-world scenario.
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CHAPTER 7: Consortia Market Optimization
Implementation & Case Study

In this chapter, we implement the extensible decision guided framework. We also implement
the optimization models using an optimization programming language. Furthermore, we
conduct case study experiments using randomly generated simulated data to validate that
the implemented system is feasible and is able to operate efficiently within required time

constraints.

7.1 Introduction

In the previous chapter, we proposed a decision guided framework (depicted again in Figure
7.1) where we described generic power components and discussed how collaboration opti-
mization can be achieved. We also formally defined a number of power components bids.
In this chapter however, we implement this extensible framework with common classes
of power components (e.g., renewable resource, battery storage, backup power generator,
power contract, and power consuming service). The aim is to implement a decision guided
system where C&I units that demand power, supply power, or both can collaborate to
optimize the operation, generation, and acquisition of electrical power components so that
they achieve a better financial and operational level.

In the next sections, we implement an extensible decision guided system framework
for market-based collaboration of power resources and services. In doing so, we create a
library of power components which can be power producing resources or or power consuming
services that can be added or removed by minimally describing their parameters. More

specifically, the contributions of this chapter are as follows:
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Figure 7.1: Electric Power Collaboration Decision Guidance Framework

First, we implement a collaborative market framework. The basic idea of this market
is to create a consortium of organizational units where each unit has the freedom to make
decisions related to power consumption, generation, and storage. Members of this consor-
tium have some services that they need to run (e.g., lighting, HVAC, water heating, etc.)
and also have some power resources (e.g., utility contract, photovoltaic array, backup power
generator, etc.). The members also have some expectation of the intrinsic value of running
services at different levels of operation over a time horizon represented as a bid that each
member of this consortium submits to market. The market resolution produces a power
resource allocation for each unit, and the payment that each member has to pay or receive.

Second, in order to support market resolution, we implement formal optimization models
using Optimal Programming Languages (OPL) to decide on the operation of resources to
be used, and the services that are run while maintaining feasibility, i.e, the power consumed
by all members of the consortium does not exceed the total power supply.

Third, we implement a library of power components (e.g., power contract, back-up
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power generator, renewable resource, battery storage unit, and power consuming service)
using OPL and Java. We also describe the parameters, cost and intrinsic value calculations,
and the operational constraints of these components.We guarantee the implemented opti-
mization models guarantee the satisfaction of the properties of: Pareto optimality, Nash
equilibrium, as well as the property of equal collaboration profitability.

Fourth, we conduct a case study experiments with multiple randomly simulated data set
sizes and show that this market has a computational and time complexity that is reasonable
for the purpose of executing this market at the predetermined time intervals.

This chapter is organized as follows: In the second section, we describe our implemen-
tation of the collaborative market framework and its components. In section three, we
conduct case study experiments and show our results of the market resolution. Finally, we

give a brief conclusion.

7.2 Microgrid Consortia Market Design

As depicted in implementation design overview Figure 7.2, the system consists of a database
which stores historical consumption patterns and future predicted supply and demand. This
data can be used to generate appropriate bids for the participating units. It also consist
of a JAVA application which abstract the design of the various components which were
formally explained the previous chapter and also facilitate the communication between the
optimization models and the communication with ILOG CPLEX Solver engine.

We first describe the general components variables and parameters. Then, we describes
how the cost of operating resources is derived. Furthermore, we describe the components
constraints based on their types.

In this section, we describe the implementation details of five power components:
e Back-up generator
e Battery storage unit

e Utility power contract

93



AN

OPL [€——Pupulate Models—{
Optimization

OptimizeMarket Unit Historical Data

& Future

Run

Models Optimization optimizeGlobal Supply and
Models optimizelndividual Demand
j Predictions
Get
Optimization
= Results
<<Abstract>>
Generator Component Contract
ILOG CPLEX Solver Engine / T <=

Service Renewable Battery

Figure 7.2: Microgird Collaboraiton Optimization Market Implementation

e Renewable resource

e Power consuming service

7.2.1 Back-up Power Generator

Backup power generators are commonly used in large organizations. Their main purpose
is usually to provide power to essential services in case of a power outage. Backup power
generators are generally more expensive to operate over extended periods of time due to
their higher relative cost variable compared to other power sources. However, at certain
situations, backup power generators can provide power at a competitive cost even when there
are no power outages at peak demand times. Generators share common parameters such
maximum capacity, generator efficiency function, new generator cost, generator’s annual
maintenance cost, and the generator’s mean time to failure. These parameters are modeled

in Listing 7.1
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Figure 7.3: Collaborative Power Market Optimization Class Diagram

{unitComp} GenerationUnitCompPairs = ...;

float genCapacity[GenerationUnitCompPairs] = ...;

float fuelPrice[GenerationUnitCompPairs] [timeHorizon] = ...;

float genEfficiency[GenerationUnitCompPairs]=...;

float newGenCost [GenerationUnitCompPairs]=...;

float genAnnualMaintCost [GenerationUnitCompPairs]=...;

float genMTTF [GenerationUnitCompPairs] = ...; // Generator Mean Time To Failure

in hours
dvar float+ genKW|[GenerationUnitCompPairs] [timeHorizon];

dvar boolean genUseFlag[GenerationUnitCompPairs] [timeHorizon];
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Listing 7.1: Back-up Generator Parameters and Decision Variables

There is the fixed cost of acquiring a generator. In addition, there is the cost of fuel
given the amount of power being drawn multiplied the efficiency factor for the specific
generator. The last part of the cost is the variable cost of operating the generator which
includes maintenance cost is given by a function. These cost parts calculations are captured

in Listing 7.2.

dexpr int genUsedIntervals[uc in GenerationUnitCompPairs]= sum (t in timeHorizon
) genUseFlaguc] [t];

dexpr float genFuelCost[uc in GenerationUnitCompPairs] [t in timeHorizon]=
fuelPriceluc] [t] * genEfficiency[uc] * genKW [uc][t];

dexpr float genTotalFuelCost[uc in GenerationUnitCompPairs] = sum(t in
timeHorizon) genFuelCost [uc][t];

dexpr float genMaintCost[uc in GenerationUnitCompPairs] = genAnnualMaintCost [uc]

* intervallength * noTimelIntervals / (365x24);

dexpr float genDeprCost [ uc in GenerationUnitCompPairs]= newGenCost[uc] =*
genUsedIntervals[uc] * noTimeIntervals / genMTTF[uc]; // Running Intervals
dexpr float genTotalCost[uc in GenerationUnitCompPairs] = genTotalFuelCost[uc] +

genMaintCost [uc] + genDeprCost[uc];

Listing 7.2: Back-up Generator Cost Calculation

Back-up power generator Constraints as depicted in 7.3 which include the constraint that
the power being generated at any time interval must be less than the maximum generation
capacity of the back-up generator. It also sets the flag of whether the generator is used at

any time interval or not for the purpose of determining the operating generator intervals
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for the calculation of the depreciation cost.

forall (uc in GenerationUnitCompPairs, t in timeHorizon) genKW[uc][t] <=

genCapacity[uc];

forall (uc in GenerationUnitCompPairs, t in timeHorizon) {
(genUseFlag[uc] [t] == 0) => (genKW[uc][t] == 0.0);

(genKW[uc] [t] >= m) => genUseFlag[uc][t] == 1;

Listing 7.3: Back-up Generator Operational Constraints

7.2.2 Battery Storage Unit

A battery storage unit typically holds a maximum charge measured in kW as depicted in
Listing 7.4. It also has an initial starting charge measured in kW. The is initial charge
that battery contain at before the first time interval starts. The battery also has other
parameters which determines its performance such as the maximum discharge rate and the

maximum charge rate.

{unitComp} BatteryUnitCompPairs = ...;

float batCapacity[BatteryUnitCompPairs] = ...;

float batInitialEnergy [BatteryUnitCompPairs]=...;

float batMinDischargeRateKW[BatteryUnitCompPairs]= ...;

float batMaxChargeRateKW[BatteryUnitCompPairs]=...;

dvar float+ batCurrentCharge [BatteryUnitCompPairs][l..noTimeIntervals+l];
dvar float batKW[BatteryUnitCompPairs] [timeHorizon];

float cycleEnergy[BatteryUnitCompPairs] = ...; // single cycle life energy

Listing 7.4: Battery Storage Unit Parameters and Decision Variables
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Furthermore, the battery unit has other information related to cost such as the battery
annual maintenance cost, new battery replacement cost and maximum energy charge/dis-
charge cycles before the battery is considered unreliable and needs to be replaced. This
involves measuring the cumulative charge and discharge over all time intervals under con-

sideration as depicted in Listing 7.5.

float batAnnualMaintCost [BatteryUnitCompPairs] = ...;

float newBatCost[BatteryUnitCompPairs] = ...;

float batLifeCycles|[BatteryUnitCompPairs] = ...; // battery design number of
lifecycles

dvar float+ cumChargeDischarge[BatteryUnitCompPairs][l..noTimeIntervals+1];

dexpr float cumCycles[uc in BatteryUnitCompPairs] [t in 1l..noTimelIntervals+l] =
cumChargeDischarge[uc] [t] / cycleEnergy[uc];

dexpr float batMaintCost[uc in BatteryUnitCompPairs] = batAnnualMaintCost [uc] =
intervallength * noTimeIntervals / (365%x24);

dexpr float batDeprCost [ uc in BatteryUnitCompPairs]= newBatCost[uc] =
cumCycles[uc] [noTimeIntervals+1l] / batLifeCycles[uc];

dexpr float batCost[uc in BatteryUnitCompPairs] = batMaintCost[uc] + batDeprCost

[ucl;

Listing 7.5: Battery Storage Unit Cost Related Calculation

The battery storage unit operational constraints include constraint that the charge or
discharge amount at any time interval should not exceed the the maximum or the minimum
charge/discharge specification rates. It also sets the current battery charge for the first
time intervals to initial battery charge at the beginning of the time horizon. It also sets the
charge current charge for the next interval as the existing current charge plus or minus the

power taken or supplied by the battery from the previous interval.
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forall (uc in BatteryUnitCompPairs, t in timeHorizon) batKW[uc][t] >=
batMinDischargeRateKW[uc];

forall (uc in BatteryUnitCompPairs, t in timeHorizon) batKWluc] [t] <=
batMaxChargeRateKW/[uc];

forall (uc in BatteryUnitCompPairs) batCurrentCharge [uc][l] == batInitialEnergy

[ucl;

forall (uc in BatteryUnitCompPairs, t in timeHorizon) batCurrentCharge[uc] [t
+1]== batCurrentChargeluc] [t]- batKW[uc] [t];

forall (uc in BatteryUnitCompPairs, t in timeHorizon) batCurrentCharge[uc] [t+1]
<= batCapacityluc];

forall (uc in BatteryUnitCompPairs) {cumChargeDischargeluc][1l] == 0.0;

forall (t in timeHorizon) {
cumChargeDischarge[uc] [t+1] == cumChargeDischarge[uc] [t] +

abs (batKW[uc] [t]) * intervallLength;}}

Listing 7.6: Battery Storage Unit Operational Constraints

7.2.3 Electrical Power Utility Contract

The third type of power components to be modeled is a utility power contract. This
contract is not a resource in itself but a right to use a resource at an agreed upon terms.
The terms usually specifies the price per kW of consumption and the cost of the maximum
peak demand bound measured in kW. It also details the penalty charge for exceeding the
peak demand bound and the price per kW above the peak demand. The power contract
operational constraint simply states the power used from the contract power component
must be less than the peak demand bound at each time interval. These information are

detailed in Listing 7.7.

{unitComp} ContractUnitCompPairs = ...;
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float conPeakDemandBound[ContractUnitCompPairs]=...;

float conPricePerKW [ContractUnitCompPairs]= ...;

float conOveragePerKW [ContractUnitCompPairs]= ...;

dvar float+ conKW [ContractUnitCompPairs] [timeHorizon];

dexpr float conCost[uc in ContractUnitCompPairs] [t in timeHorizon]= conKW[uc] [t]

* conPricePerKW [uc];

dexpr float conTotalCost [uc in ContractUnitCompPairs] = sum (t in timeHorizon)
conCost [uc] [t];

forall (uc in ContractUnitCompPairs, t in timeHorizon)conKW[uc][t] <=

conPeakDemandBound[uc];

Listing 7.7: Power Utility Contract Parameters, Costs, and Constraints

7.2.4 Renewable Resource

The fourth type of power components is a renewable resource. The renewable resource does
not have to provide a constant current of electricity and its performance depends on outside
environmental factor (e.g., sunshine or wind activity). Therefore, the predicted output over
the time horizon is provided and can also be updated at each time interval before the market
execution. Although most renewable resources do not need fuel, their operation incurs cost
(i.e., fixed cost, maintenance cost). The renewable resource’s only operational constraint
is that the power used from it cannot exceed the power being produced by the renewable

resource. The modeling of the renewable resource is captured in Listing 7.8.

{unitComp} RenewableUnitCompPairs = ...;

float predictedOutput [RenewableUnitCompPairs] [timeHorizon]=...;

float newRenCost [RenewableUnitCompPairs]=...;

float renMTTF [RenewableUnitCompPairs] = ...; // Renewable Mean Time To Failure
in hours

dvar float+ renKW [RenewableUnitCompPairs] [timeHorizon];
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float renAnnualMaintCost [RenewableUnitCompPairs] = ...;

dexpr float renMaintCost [uc in RenewableUnitCompPairs]= renAnnualMaintCost [uc]
* intervallength *noTimeIntervals / (365%24);

dexpr float renDeprCost [ uc in RenewableUnitCompPairs]= newRenCost [uc] =*
intervallength % noTimelIntervals / renMTTF [uc];

dexpr float renTotalCost [ uc in RenewableUnitCompPairs]= renMaintCost[uc] +
renDeprCost [uc];

float renAnnualMaintCost [RenewableUnitCompPairs] = ...;

dexpr float renMaintCost [uc in RenewableUnitCompPairs]= renAnnualMaintCost [uc]
* intervallength *noTimeIntervals / (365%24);

dexpr float renDeprCost [ uc in RenewableUnitCompPairs]= newRenCost [uc] =*
intervallength * noTimeIntervals / renMTTF [uc];

dexpr float renTotalCost [ uc in RenewableUnitCompPairs]= renMaintCost[uc] +

renDeprCost [uc];

forall (uc in RenewableUnitCompPairs, t in timeHorizon) renKW [uc][t] <=

predictedOutput [uc] [t];

Listing 7.8: Renewable Resource Parameters, Cost, and Constraints

7.2.5 Power Consuming Service

The last type of power components is a power consuming service. Participants of the market
submit their power needs for the power consuming services that requires electrical power
to run and the value that they associate with running these services. This intrinsic value
indicates the monetary payment that a unit is willing to take in lieu of turning off that
service assuming that the unit has enough electricity to power it. Typically, running a
service does not incur any power related costs besides the cost of the power needed to
operate it. The owners of the power service have the ability to revise their services power

needs and their respective values before each market execution. The modeling details of
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the service power component is captured in listing 7.9.

{unitComp} ServiceUnitCompPairs = ...;
dvar boolean serFlag [ServiceUnitCompPairs] [timeHorizon];
float serPredictedDemand[ServiceUnitCompPairs] [timeHorizon]=...;

float serPredictedValue[ServiceUnitCompPairs] [timeHorizon]=...;

dexpr float serIntrinsicValue[uc in ServiceUnitCompPairs] [t in timeHorizon]=
serPredictedValue[uc] [t] * serFlagluc][t];

dexpr float serTotalIntrinsicValue [uc in ServiceUnitCompPairs]= sum (t in
timeHorizon) serIntrinsicValue[uc] [t];

dexpr float serKW [uc in ServiceUnitCompPairs] [t in timeHorizon]=

serPredictedDemand[uc] [t] * serFlagluc][t];

Listing 7.9: Power Consuming Service Parameters, Intrinsic Values, and Constraints

7.3 Case Study

To ensure the validity of our proposed framework. We constructed multiple data sets with

randomly generated instantiations of the classes of components listed in the previous section.

The purpose of this study is to test whether the system with a reasonable size is able to arrive

at resolution within the market resolution time constraints. These data sets vary in size

with in terms of the number of participating units and the number of power components

within each unit. To accurately model the operational setting. The data was randomly

generated following a typical daily consumption profile as depicted in Figure 7.4. This is a

typical profile for residential and office consumption pattern. Figure 7.5 provides a sample

of the value differences that each unit get under the different optimization models (i.e.,

global, standalone, and collaborative) after conducting the simulation. Note that market
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global value does not reflect the market resolution and does not include the payment. The
global value is a result of an optimization that produces the maximum value of all units

components combined.

< Peak Period

Minimum Load

< Off-Peak >< Shoulder Peak >< Priority Peak ><0ff-Peak>

Midnight Midnight

Peak Load

Figure 7.4: Typical Daily Consumption Pattern

Prepared randomly generated test data sets were successively run to test the system
feasibility of operating the market under realistic time constraints. The number in intervals
in the prepared data sets was 24 with an interval length of 1 which corresponds to normal
24 hours a day with the market executing at one hour intervals. The run time of the test
data was within acceptable operation time constraint. Summary of the average run time of
the market is depicted in Figure 7.6.

Throughout the simulation over 24 intervals, the market produced a resolution with
payment allocations for all participating unit that resulted in a better collaborative value
than the standalone value. Figure 7.7 shows the market resolution’s collaborative value
minus the payment versus the standalone value over a 24 hours interval simulation. The
market always produces a resolution that is better than or equal the standalone value over

all time intervals.
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Simulation Values Comparison
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Figure 7.5: Units Value Comparison

To validate that the consortium market implementation is feasible to execute at the
market time constraints, two testing cases were constructed. The first test case involved
randomly generated loads that conforms to a typical day load profile for residential and
office setting with a probability distribution functions that introduces variation within that
profile. This typical daily load profile hand a peak and an off-peak periods. The off-peak
period starts from 9 am to 7 pm in the morning. The peak periods ranges from 7 am to
9 pm with the highest demand occurring between 5 pm and 9 pm. A total of 12 data
set sizes ranging from the lowest configuration with 10 units and a 100 components up to
1000 units and 10000 components where each test configuration has a sample size of 10
randomly generated data sets. The maximum data set of 1000 units and 10000 components
had around 44,000 binary decision variables and close to 100,000 real and integer decision
variables. The same size configuration was used to generate completely random data that
didn’t conform to the daily consumption profile to measure the efficiency of the branch and
bound and branch and cut of the Mixed Integer Linear Program (MILP) Solver. These

experiments were conducted using IBM’s ILOG CPLEX Solver. The testing was performed
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on 2.5 GHz workstation with a dual core processor and 16 GB RAM. The total resolution
time which included the total of global optimization, sum of individual units’ self value
optimization, and sum of individual collaboration optimization was measured. The mean
resolution time for the maximum data set was around 157 seconds with an upper and lower
bounds of 2 seconds which proves that this market is in fact feasible to run in short interval
periods. The experiment results are captured in Table 7.1 for the typical daily profile and
in Table 7.2 for the random daily profile. Depicted in Figure 7.8, the mean resolution time
of the typical daily profile versus the random load are compared. Both showed very close
resolution mean time as the number of units and components increased. It can also be
noticed from the graph that mean resolution time increased linearly as the the number of

units and components increased which indicates a scalable solutions.

Time (in seconds)
= . . = .
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o o o o o o o o
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Figure 7.8: Simulation Mean Time - Typical Load Profile vs. Random Load
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7.4 Conclusions

We presented an implementation of the extensible decision guided microgrid collaborative
framework. Moreover, to support the extensible framework components library, power
components such as utility contract, back-up power generator, renewable resource, and
power consuming service have been implemented. Finally, the validity of this framework
is evaluated by a case study using simulated load scenarios to examine the ability of the

framework to efficiently operate at the specified time intervals with minimal overhead cost.
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CHAPTER 8: Conclusions and Future Work

This chapter presents a summary of the research accomplished in this dissertation and also

provides possible directions for future work.

8.1 Conclusions

We have highlighted the decision challenges faced by energy mangers in Commercial and
Industrial (C&I) organizations in general and proposed an extensible decision guided frame-
work for C&I organizations to collaborate on their power needs and resources. We first
proposed a secondary market framework where participants can collaborate to share their
resources in real-time. We defined the the market setting, participant’s bids, a market res-
olution and described the market’s resolution desirable properties. We also proposed a fair
mechanism of distributing collaboration gains.

Then, we proposed a primary market where participants can decide on the acquisition of
peak-demand bound with the assumption that they have the ability to collaborate later in
real-time. We also, defined the market resolution, execution intervals, schedule of resources
operation at every time interval, and the cost of the peak demand that result from the
market resolution.

After that, an extensible decision guided framework was proposed to address different
types of power components that C&I organization typically have a part of their power port-
folio options. The proposed framework allowed for addition of any type of power component
by minimally describing its attributes. Then, we proposed a generalized market setting, par-
ticipants’ bids, and a market resolution. We also defined the market properties the must
satisfied and proposed a market resolution algorithm that guarantees these properties.

Finally, we implemented the decision guided system by modeling classes of commonly
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used power components such as power contract, renewable resource, back-up power gen-
erator, and power consuming service. We also conducted a case study experiments. The
randomly generated data sets instantiated a number of power components with varying
data sets sizes and simulated power demand using a typical daily consumption profile and
randomly generated loads. We found that our framework operated within the time con-
straints proposed and produced a significant coalition gains as opposed to C&I participants

working alone.

8.2 Future Work Directions

As future work, there are several aspects our framework that deserve further investigation.

Examples are listed below:

e Designing framework that allows for the optimal investment of power resources given
their projected demand and the projected value functions of the existing power com-
ponents. This framework may account for budgeting constraint of participating orga-

nizations. I can also allow the joint investment and operation of resources.

e A more efficient and fair value distribution that takes into consideration the complexity

of underlying value function and resolution time constraints.

e Gaming the market or and the possibility of the participant’s collusion [47-50] can
be further studied to determine if manipulating the market bids has an effect on the

outcome of the market resolution or it can unfairly benefit colluding parties.

e Expanding this framework to a multi-agent system framework while taking advantage
of the the concepts covered in the area of the internet of things and proposing a method
of an efficient communication with a very large pool of participant, and a central
market execution and settlement authority that manages the interaction (independent
system operator) while taking into consideration the scalability issues of the proposed

System.
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