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Abstract

COMMUNICATION AWARE ROBOTIC SENSOR DEPLOYMENT

Mohanad Ajina, PhD

George Mason University, 2020

Dissertation Director: Dr. Cameron Nowzari

Wireless sensor networks (WSNs) have been receiving a lot of interest in the last two

decades due to the variety of applications that can benefit from them. As the interest in

WSNs grows, addressing the physical constraints of these networks has become extremely

important to ensure their reliability and efficiency. It was noted in the US Military challenge

in 2016 that the wireless networks were already overcrowded and by 2030 the demands on

wireless networks will be 250 times greater. Taking this into account, reducing the amount of

messages exchanged (communication) between the sensors in the network while maintaining

an adequate level of performance has become a critical task, and this will be the focus of

this dissertation.

A trivial solution which can reduce the amount of communication over a wireless network

is by using a periodic communication model and specifying a long enough communication

period. In spite of this, this solution may not ensure the level of performance desired. For

a WSN to do its job the controller must have sufficient information to be updated. This

requires finding a communication strategy for the sensors to exchange messages and find

the conditions for the controllers to be updated. This dissertation addresses this problem

for different deployment approaches.



In this dissertation, we explore various existing and new methods to reduce the amount

of communication with sufficient autonomy that allows the sensors to determine when infor-

mation is needed and what kind of information is needed to perform a given task. The first

chapter of this dissertation focuses on the virtual force deployment approach, the second

chapter revisits the problem of the Voronoi diagram deployment approach to provide a more

practical solution, and the third chapter adapts the tools and concepts from chapter 2 to

any type of Voronoi diagram.



Chapter 1: An Event-Triggered Virtual Force Algorithm for

Multi-Agent Coverage Control with Obstacles

Abstract

In this work, we propose an event-triggered algorithm based on a virtual force deployment

approach to address the multi-agent coverage control problem in the presence of obstacles.

Unlike most works that consider this problem, we are mainly interested in reducing the

amount of communication and motion required by the agents to reach a configuration that

increases the coverage throughout an environment of interest. In particular, most works

that consider this problem assume agents are in constant communication with each other.

Instead, the event-triggered algorithm we propose allows agents to decide for themselves

when communication is necessary while still achieving the primary goal of covering the

environment and ensuring collisions are avoided. Several simulations illustrate the result

of our algorithm with and without the presence of an obstacle and compares it against a

similar algorithm that does not consider event-triggered communication.

1.1 Introduction

The topic of wireless sensor networks (WSN) is receiving close attention in many research

areas today with applications like sensors monitoring for temperature, traffic, health sta-

tus, and many others [4–7]. The number of sensors in the WSN varies depending on the

application. The WSN can be built with only a few sensors such as home security WSN [8]

or several thousand such as environmental monitoring WSN [9]. As the size of the networks

and number of possible applications increase, researchers have been working to improve

performance of WSN and to reduce their costs. To address these challenges, efforts have

1



been made to maximize sensor area coverage while reducing the amount of communication

between sensors. In this paper, we refer to sensors as agents, and to WSN as a multi-agent

system. Our work studies the trade-offs of the multi-agent system performing an area cover-

age control task when the communication between agents is controlled by an event-triggered

law. To achieve this goal, we designed an event-triggered law that allows agents to decide

autonomously when updated information about neighbors’ locations is needed to complete

the task. Our motivation comes from the need to reduce the performance cost by reducing

unnecessary communication.

Literature review There are two common strategies that have been utilized to address

the area coverage control problem. These strategies are computational geometry based and

force based [10]. An example of the computational geometry based strategy is a Voronoi

diagram or a Voronoi partition. This approach divides an environment into coverage regions

based on the distance between agents; more details can be found in [11]. The authors in [12]

successfully applied the Voronoi diagram strategy to achieve optimal deployment for mobile

sensing networks. However, they assumed that each agent has access to all the agents’

locations at all times. In [13, 14], the assumption was removed, and the Voronoi diagram

was implemented based on local information provided by the agent’s neighbors. In [15], the

Voronoi diagram with the theoretical techniques was used to calculate the best and worst

coverage cases. The above presented Voronoi diagram work assumed free environment. The

authors in [16] proposed extension to the Voronoi diagram strategy that addressed the issue

of area coverage with heterogeneous agents, and they generalized their approach for non-

convex environment. In [17], the authors developed a new approach for area coverage in

the presence of known obstacles of non-convex polygonal environments. In [18], obstacles

are unknown, and the Voronoi diagram strategy is applied to maximize area coverage.

The second common strategy is force based, that allows agents to move based on at-

tacked attractive and/or repulsive forces. An early work of the force based strategy is

proposed in [19] that ensures collision avoidance. In [20], the authors used a repulsive force

2



algorithm to deploy agents in a building. In [21], a target involved virtual force algorithm

is proposed to locate more agents closer to an area of interest and to keep agents far away

from obstacles. In [22], a virtual force algorithm (VFA) is proposed to increase the coverage

area after initially placing agents randomly in the environment in the presence of obstacles.

However, they assumed that each agent has access to all agent’s locations at all times. The

authors in [23] eliminate this assumption, and they proposed an improved VFA (IVFA) and

exponential VFA (VFA). Both algorithms performed better area coverage task than VFA

even when agents have limited communication ranges, but on paper, no results considered

the presence of obstacles. Recently, in [1], the obstacle avoidance virtual force algorithm

(OAVFA) proposed to maximize the area coverage and to minimize the average moving dis-

tance. The OAFVA performed better over IVFA and EVFA with and without the presence

of an obstacle. However, all the above work assume continuous or periodic communication

and/or continuous or periodic sensing among agents.

This brings us to the other area of relevance to this work which are distributed event- and

self-triggered coordination strategies. Both types of triggered laws have been proposed to

reduce the amount of communication between agents while maintaining some desired system

level properties. The authors in [2] propose a self-triggered algorithm to save communication

power for the optimal deployment problem without obstacles. In [24], an event-triggered

algorithm was able to reduce the amount of communication between agents when performing

the multi-agent rendezvous task. In [25], the proposed event-triggered algorithm saved a

significant communication power for the average consensus problem. In [26] and [27], the

event-triggered control lowered the number of communication between agents for a leader-

following consensus problem, and in [28], for a multi-agent systems consensus problem.

Thus, we are interested in combining the distributed triggering strategies with a force

based coverage control strategy in order to improve the performance of the system in terms

of reduced communication. More specifically, our work builds on the obstacle avoidance

virtual force algorithm (OAVFA) proposed in [1], where the agents are always aware of

their neighbors’ positions. Instead, we are interested in combining this motion control

3



algorithm with an event-triggered communication strategy to reduce communication while

achieving the same level of coverage as the OAVFA that requires perfect information at all

times.

Statement of contributions The main contribution of our work is the design of the

event-triggered virtual force algorithm that reduces communication while agents

still complete the primary coverage control task. We first design a motion control law

that allows agents to determine their control inputs based on a virtual force deployment ap-

proach. Second, we design a decision control law that allows agents to determine when

communication with neighbors is needed to complete the task. The event-triggered

virtual force algorithm combines both laws to allow agents to deploy in the environ-

ment with less communication performed. Our algorithm does not require periodic com-

munication as in [1] while still achieving the same level of coverage. Various simulations

illustrate the performance of the event-triggered virtual force algorithm with and

without the presence of obstacles.

1.2 Problem Statement

Consider a network of n agents moving in a rectangle environment S ∈ R
2 with some static

obstacles O ⊂ S. More specifically, we consider No distinct obstacles o1, . . . , oNo such that

∪m∈{1,...,No}om = O. We denote ∂S ⊂ S to be the of set environment’s boundaries, and

denote the position of agent i ∈ {1, . . . , n} at discrete time t ∈ Z≥0 to be pit. The collection

of all agent positions at time t is then given by Pt = (p1t , . . . , p
n
t ) ⊂ Sn.

We consider a simple kinematic model with bounded velocity Vmax,

pit+1 = pit + uit,

where
∥

∥uit
∥

∥ ≤ Vmax∆t is the control input of agent i at time t and ∆t is the actual time

between two discrete time steps.
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We assume that the agents are initially unaware of the positions and number of obstacles

in the environment S. Instead, the agents are able to sense obstacles up to a distance RS

away. We also assume the agents are only able to communicate with neighbors that are

agents RC distance away, RC = 2RS .

The goal of the agents is now to reach a configuration to cover as much of the unoccupied

environment S \O as possible, while keeping the total moving distance and communication

among agents as low as possible. More specifically, we consider a binary disk sensing model

(BSM) due to its simplicity and effectiveness in modeling covered area [1,29,30]. Given the

position of an agent pit, we say that an arbitrary point in the environment c ∈ S is covered

by agent i at time t if it is within the sensing range, i.e.,
∥

∥pit − c
∥

∥ ≤ RS . Formally, we define

the indicator function

BSM(pit, c) =















1, if
∥

∥pit − c
∥

∥ ≤ RS

0, otherwise.

which returns 1 if the point c is covered by the agent at pit, and 0 otherwise. Then, given

the vector of all agent positions Pt at some time t, we define the coverage ratio as the ratio

between areas of all points in the unoccupied domain S \O that are covered and the entire

area,

CRatio
t =

∫

S\O maxi∈{1,...,n}BSM(pit, c)dc

Area(S \O)
. (1.1)

We calculate the moving distance of agent i between its current and last locations, and the

average moving distance at time step t, DAve
t is averaging of all agents’ moving distances.

The DAve
t is defined formally:

DAve
t =

∑n
i=1

∥

∥(pit − pit−1)
∥

∥

n
(1.2)
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More specifically, our goal now is to maximize CRatio
t in (1.1) while keeping DAve

t in (1.2)

and the amount of communication required by the agents as small as possible. In particular,

our work builds on the work of [1], where an algorithm is proposed to solve this problem but

requires constant communication among the agents. Our main goal is to relax this assump-

tion to improve efficiency of the network while still achieving good overall performance in

terms of the metrics defined above.

1.3 Event-Triggered Algorithm Design

In this section, we design the event-triggered virtual force algorithm that allows

agents to decide for themselves when communication with neighbors is necessary to complete

the global task. The event-triggered virtual force algorithm has two components:

a motion control law that determines the control input of each agent, and a decision

control law that decides when communication is required.

1.3.1 Motion control law

We first design the motion control law that allows agents to determine how to move in

the environment based on a virtual force approach. Each agent is exposed to three type

of forces: 1. a neighbor force, ~F ij
t , that could be an attractive or a repulsive force, 2. an

obstacle force, ~F i,om
t , that is a repulsive force, 3. a boundary force, ~F i,b

t , that is a repulsive

force. These forces are heavily effected by the distance between an agent and neighbors,

obstacles, and boundaries, respectively. We adopt the following force equations from [1],

where the authors only consider deployment over a field of uniform density. Modifying the

algorithm to deploy over non-uniform fields will be reserved for future work. The neighbor

force ~F ij
t is defined as

6



~F ij
t =















































0, if dijt > RC ,

KA(d
ij
t − dthij )(

pjt−pit
dijt

), if RC > dijt > dthij ,

0, if dijt = dthij ,

KB(d
th
ij − dijt )(

pit−pjt
dijt

), if dijt < dthij ,

where dthi,j =
√
3RC/2 =

√
3RS , and KA and KB are constants. The di,jt is a distance

between an agent and a neighbor. Agent j is a neighbor of agent i if and only if
∥

∥

∥pit − pjt

∥

∥

∥ 6

RC . If agent i has a neighbor within its communication range, the agent communicate with

the neighbor to collect its current location. When the neighbor’s location is received, the

agent i calculates the distance to the neighbor di,jt .

In addition, the obstacle force ~F i,om
t is defined as

~F i,om
t =















0, if di,omt > dtho ,

(Kr1(d
th
o − di,omt ), αi,om + π), if di,omt < dtho ,

where dtho =
√
3RS/2, m ∈ {1, . . . , No}, and Kr1 is a constant. The di,omt is the shortest

distance between an agent and an obstacle that is within agent i’ sensing range. If agent i

senses an obstacle, om, the agent calculates the shortest distance to the obstacle di,omt .

Furthermore, The boundary force ~F i,b
t is defined as

7



~F i,b
t =















0, if di,bt > dthb ,

(Kr2(d
th
b − di,bt ), αi,b + π), if di,bt < dthb ,

where dthb =
√
3RS/2 and Kr2 is a constant. The di,bt is the perpendicular distance between

an agent and a boundary that is within the agent’s sensing range. Let b ∈ ∂S to be

a point on the environment’s boundary, and the closed segment [pit, b] ⊂ S to be a line

such that [pit, b]⊥∂S. If agent i senses an environment’s boundary, the agent calculates the

perpendicular distance to the boundary. In a rectangle environment, the ~F i,b
t is the total

sum of the four boundaries’ forces. Formally:

~F i,b
t = ~F i,bx+

t + ~F i,bx−
t + ~F i,by+

t + ~F i,by−
t

Therefore, the Net-Force that attacks an agent at time t, ~F i
t , is the sum of all forces. The

~F i
t defined as:

~F i
t =

∑

j∈N i
t

~F ij
t +

N0
∑

m=1

~F i,om
t + ~F i,b

t , (1.3)

where N i
t ⊂ Pt is the set of agent i’s neighbors at time t, and N0 is the number of obstacles

in the environment.

The Net-Force of an agent could be 0 if no neighbor is within the agent’s communication

range and no obstacle and boundary are within its sensing range. Also, ~F i
t could be weak

if the forces are contradictory or neighbors, obstacles and/or boundaries are far from an

agent but within its communication and sensing ranges. On the other hand, ~F i
t could be

8



strong if an agent has very close neighbors, obstacles and/or boundaries.

More specifically, ~F i
t is the desired displacement of agent i at position pit. Thus, it simply

moves with velocity vit towards this point by setting

uit =
~F i
t

∥

∥

∥

~F i
t

∥

∥

∥

vit, (1.4)

where its velocity vit is given by

vit = min



Vmax, α

∥

∥

∥

~F i
t

∥

∥

∥

∆t



 , (1.5)

where α ∈ (0, 1).

The motion control law in short, at every instant of time, each agent calculates its

~F i
t and moves in the direction as fast as possible if

∥

∥

∥

~F i
t

∥

∥

∥ > Vmax∆t. Otherwise, it moves

in ~F i
t direction at slower speed. The simple motion control law is described formally in

Algorithm 1

Algorithm 1 : motion control law

Agent i ∈ {1, . . . , n} performs at all times t ∈ Z≥0:

1: receives positions pjt from neighbors j within a distance RC

2: senses boundary ∂S and detects obstacles om within a distance RS

3: computes ~F i
t according to (1.3)

4: sets vit according to (1.5)

5: computes ui
t according to (1.4)

6: computes pit+1 = pit + ui
t

7: moves to pit+1 by vit

1.3.2 Decision control law

We are now interested in improving the motion control law which requires all agents to be

in communication each time a control signal is computed by relaxing the need for constant

communication. Let pievent be an intermediate goal that agent i can reach in multiple

9



timesteps and define it as pievent = pit +
~F i
t . We aim to allow agents to travel towards pievent

without constantly communicating with neighbors by designing the decision control law

that combines two event-trigger conditions.

A trivial event-trigger condition, Condition1, to be that an agent moves to pievent in

multiple ∆t without communicating with others. When the agent reaches pievent, the agent

communicates with neighbors to update its F i
t , p

i
event and uit. However, this condition is

problematic in some scenarios such as there could an obstacle blocking the way to pievent in

2∆t.

To avoid collisions, we introduce an additional mechanism to trigger an event. Let

Xi ∈ R
2 be the union of neighbors, obstacles, and boundaries within agent i’s sensing

range, and define RT as the triggering radius. Then, given agent i’s current position pit at

time t, we let a triggering sensing model (TSM) to be

TSM(pit,Xi) =















1 if ∃x ∈ Xi s.t.
∥

∥pit − x
∥

∥ ≤ RT

0 otherwise.

(1.6)

which returns 1 if agent i detects an object x ∈ Xi within this triggering range RT of pit, and

0 otherwise. This triggering sensing model (TSM) does not guarantee no collisions unless

RT is bounded. In our analysis, the worst case scenario is that when two agents are traveling

in the opposite direction by Vmax. The distance that will guarantee no collision between

the agents must be more than 2Vmax∆t. Therefore, we lower bounded by RT > 2Vmax∆t.

For agents to move without a collision, Condition2, they are required to communicate with

neighbors to update their F i
t , p

i
event and uit if they sense an object within their triggering

sensing ranges. Note, the smaller the RT , the less communication performed. Thus, we

let RT as small as possible. The decision control law combines both conditions and is

described formally in Algorithm 2.
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Algorithm 2 : decision control law

Agent i ∈ {1, . . . , n} performs at every triggered event:

1: receives positions pjt from neighbors j within a distance RC

2: senses boundary ∂S and detects obstacles om within a distance RS

3: computes ~F i
t according to (1.3)

4: computes pievent = pit + ~F i
t

5: set TSM= 0
6: while (

∥

∥pit − pievent
∥

∥ 6= 0 & TSM 6= 1) do

7: computes pit+1

8: move to pit+1

9: set pit = pit+1

10: sense all objects Xi within triggering sensing range
11: compute TSM according to (1.6)
12: end while

1.3.3 The event-triggered virtual force algorithm

Here, we synthesize the event-triggered strategy that helps agents to determine at each

∆t when updated information is needed to complete the task. Our designed algorithm

is a combination of motion control law of Section 1.3.1 and decision control law of

Section 1.3.2 with a procedure to acquire communication when the conditions are met.

[Informal description]: Agent i communicates with neighbors to collect their

locations, and senses the surrounding to locate obstacles and boundaries that

are within its sensing range. When, the attractive and/or repulsive forces are

calculated, the agent computes its ~F i
t . When ~F i

t is computed, the agent calcu-

lates pievent, sets its vit = min
(

Vmax, α
∥

∥

∥

~F i
t

∥

∥

∥ /∆t
)

, and computes its uit. Then,

the agent calculates pit+1 and moves toward it. When pit+1 is reached, the agent

senses for an object within its triggering sensing range and updates TSM. If the

TSM returned 0, the agent calculates a new pit+1, moves to pit+1, senses for an

object at pit+1 until it reaches the p
i
event. If p

i
event is reached or the TSM returned

1, the agent communicates with neighbors to update its F i
t , p

i
event and uit.

The event-triggered virtual force

algorithm is described formally in Algorithm 3.
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Algorithm 3 : event-triggered virtual force algorithm

Agent i ∈ {1, . . . , n} performs at every triggered event:

1: receives positions pjt from neighbors j within a distance RC

2: senses boundary ∂S and detects obstacles om within a distance RS

3: computes ~F i
t according to (1.3)

4: computes pievent = pit + ~F i
t

5: sets vit according to (1.5)

6: computes ui
t according to (1.4)

7: sets TSM= 0
8: while (

∥

∥pit − pievent
∥

∥ 6= 0 & TSM 6= 1) do

9: if
∥

∥ui
t

∥

∥ ≤
∥

∥pit − pievent
∥

∥ then

10: computes pit+1 = pit + ui
t

11: moves to pit+1 by vit
12: updates pit = pit+1

13: sense all objects Xi within triggering sensing range
14: compute TSM according to (1.6)
15: else

16: sets pit+1 = pievent
17: moves to pit+1 by vit
18: updates pit = pit+1

19: end if

20: end while

1.4 Simulation

In this section, we provide simulations of the event-triggered virtual force algorithm.

All simulations are done in MATLAB with n = 40 agents moving in 100m by 100m square

environment and 300 time steps. All simulation are averaged over 100 runs, and only few

simulations are shown due too limited paper number. The parameters of the simulations

are given in Table 1.1.

Table 1.1: Simulation parameter of the event-triggered virtual force algorithm

grid size =100mX100m Vmax = 0.5m/s
KA = 0.001 KB = 0.2
Kr1 = 0.8 Kr2 = 0.8
RS = 10m RC = 20m
RT = 1.1m α = 0.5

We adopt a communication power model from [31]. Specifically, the total power Pi used

by agent i to communicate, in dBmW power units is defined as:
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Pi = 10 log10





n
∑

j∈{1,...,n},i 6=j

β110
0.1Pi→j+β2‖pi−pj‖





where β1 and β2 are positive real parameters that depend on the characteristics of the

wireless medium, and Pi→j is the power received by agent j of the signal transmitted by

agent i. In our simulations, all these values are set to 1.

We start by comparing the performance of event-triggered virtual force algorithm

with OAVFA in [1]. Our analysis on OAVFA showed that the maximum coverage area can-

not be always achieved because of a steady state condition. The a steady state condition

is that an agent stops updating its control input if it travels less than 0.001m for 10∆t.

Figure 1.1.(a) and .(b) show agents initialization and the final deployment where OAVFA

failed. We removed the steady state condition, and it allows agents to communicate with

others and sense the surroundings regardless of the amount they travel to avoid similar

scenarios. Figure 1.2 shows that our algorithm maximized coverage area when the OAVFA

did not.

The event-triggered virtual force algorithm achieves the final deployment as in

[1]. Figure 1.3 illustrate the initial and final deployment of the event-triggered virtual

force algorithm in the presence of an obstacle. Our algorithm achieves maximum coverage

area of the environment. This initialization of the agents is based on randomly placing ten

agents in each corner of the environment, and note that all further illustrated results assume

this initialization.

Figures 1.4.(a) and .(b) compare the CRatio
t in (1.1) performance of event-triggered

virtual force algorithm and OAVFA without and with an obstacle. The result shows

that both algorithms achieve maximum area coverage, but the OAVFA reaches the max-

imum slightly faster. Figures 1.5.(a) and .(b) compares the DAve
t in (1.2) performance
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(a)

(b)

Figure 1.1: (a) Initial deployment of 40 agents in the environment when OAVFA fails and
(b) final deployment of figure (a) using OAVFA in [1].
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Figure 1.2: Final deployment of Figure 1.1.(a) using the proposed event- triggered

virtual force algorithm.

without and with an obstacle. The results show that our algorithm has a better perfor-

mance. In case of no obstacles, our algorithm has slightly better DAve
t in (1.2), but in case

of the presence of an obstacle, our performance minimized DAve
t in (1.2) more than OAFVA.

Figures 1.6.(a) and .(b) illustrate the average communication power consumed without

and with an obstacle. The figures show the contribution of our work. The event-triggered

virtual force algorithm saved unnecessary communication between agents that resulted

in signification reduction of the communication power consumed. The average power saved

without obstacles is more than 50%, and the average power saved in the presents of an

obstacle is more than 54%.
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(a)

(b)

Figure 1.3: (a) Initial deployment of 40 agents in the environment with an obstacle and (b)
final deployment of figure (a) using event-triggered virtual force algorithm.
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Figure 1.4: A comparison of the CRatio
t in (1.1) between event-triggered virtual force

algorithm and OAVFA in [1] (a) without obstacles and (b) with an obstacle.
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Figure 1.5: A comparison of the DAve
t in (1.2) between event-triggered virtual force

algorithm and OAVFA in [1] (a) without obstacles and (b) with an obstacle.
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Figure 1.6: A comparison of the the average communication power consumed between
event-triggered virtual force algorithm and OAVFA in [1] (a) without obstacles and
(b) with an obstacle.
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1.5 Conclusions

In this paper we considered a multi-agent coverage control problem in the presence of ob-

stacles. To solve the problem, we have proposed the event-triggered virtual force

algorithm by combining the motion control law and the decision control law which

allows agents to autonomously decide for themselves when communication is required, in

addition to how to move. Our algorithm allows agents to travel in the environment without

the need to communicate with neighbors at every instant of time. An agent only needs

to communicate if it reaches its new location or if it senses an object within the triggering

sensing range. The main contribution of this work is reducing the amount of communication

between agents while maintaining the desired coverage control performance. Our simula-

tions illustrated that the event-triggered virtual force algorithm had reduced more

than 50% of communication power compared to the OAVFA in [1] with and without the

presence of obstacles, and also achieved maximum area coverage as if agents communicated

periodically. Future work will be devoted to include scenarios such as communication delays

and package drops with grantees on the level of performance and power saving. In addition,

we are interested in developing asynchronous implementation by identifying event trigger

condition that ensure the level of performance.
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Chapter 2: Asynchronous Distributed Event-Triggered

Coordination for Multi-Agent Coverage Control

Abstract

This paper re-visits a multi-agent deployment problem where agents are restricted from

requesting information from other agents as well as sending acknowledgments when infor-

mation is received. These communication constraints relax the assumptions of instantaneous

communication and synchronous actions by agents (request and response actions). In this

paper, we propose a fully asynchronous communication aware solution to the multi-agent

deployment problem that uses an event-triggered broadcasting strategy. Unlike all existing

triggered solutions, our event-triggered broadcasting algorithm relies on agents to decide

when to broadcast (push) information to others in the network without the need for a

response from other agents. In addition, the proposed strategy determines how best to

move when up-to-date information is unavailable and cannot be requested. The algorithm

is capable of achieving similar levels of performance to that of a continuous or periodic

strategy. Our solution is proven to achieve asymptotic convergence and simulation results

are provided to demonstrate that the proposed event-triggered broadcasting algorithm can

achieve an adequate level of performance under the communication constraints.

2.1 Introduction

Researchers have gained increasing interest in Wireless Sensor Networks (WSNs) due to the

variety of applications that can benefit from their exploitation. A WSN is a collection of

sensors that have the ability to communicate with one another through a shared wireless

spectrum (SWS), and the use of WSNs have been observed in a variety of indoor and outdoor
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monitoring, tracking and security applications [4–7]. They can be constructed with a small

number of sensors, such as in home security applications [8], or can be constructed with

several thousand sensors as in environmental monitoring applications [9]. Sensors can be

equipped with locomotion capabilities allowing them to reconfigure based on changes to

the environment as well as allowing them to be deployed to areas that would otherwise

be deemed infeasible for placement. This paper is interested in optimally deploying mobile

sensors with the use of a practical communication model that does not require instantaneous

communication and synchronous actions by mobile sensors while performing the deployment

task.

As the number of sensors in a WSN increases, the amount of communication between

sensors increases as well. This rise in communication comes with a cost where more messages

that are exchanged between sensors can create a bottleneck over the SWS. This can increase

the frequency of packet drops and can create transmission delays in the network. Current

data suggests that the SWS is already overcrowded and by 2030 the demands on SWS

applications will be 250 times greater than present day [32].

Previous efforts in [2, 33–35] have been made to reduce the amount of communication

between sensors while still maintaining an adequate level of performance. This is achieved

using event-, self- or team-trigger strategy to communicate with the requirement of instan-

taneous communication and synchronous actions by mobile sensors. In these works, when

a trigger has occurred, an mobile sensor must request information, and the neighboring

mobile sensors must respond to that request immediately. We investigate this problem by

relaxing the assumption that mobile sensors must communicate instantaneously and take

synchronous actions. In other words, the existing works rely on the fact that the mobile sen-

sor can obtain information when it deems necessary. In contrast, our work builds on mobile

sensors pushing (broadcasting) information to others, which means that mobile sensors can

no longer request information when they desire. Our solution is a fully asynchronous event-

based broadcasting communication strategy that further reduces the number of messages

exchanged between mobile sensors. For the remainder of this paper, we more generally refer
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to mobile sensors as agents.

Literature review Similar to previous works that study the multi-agent deployment

problem, we make use of Voronoi partitions in order for the agents to use distributed gra-

dient descent laws to converge to the set of locally optimal solutions [12]. Also, the authors

in [36] utilized Voronoi partitioning techniques to verify whether or not a set of sensors

sufficiently covers the environment. The authors assume that the agents always have access

to all other agents’ locations at all times. In [13, 14], the assumption of always having

access to other agent positions is relaxed whereby deployment to the set of critical points

is achieved based only on local information provided by an agents’ neighbors. However, all

of the above-mentioned works assume that continuous or periodic communication occurs

between agents. It is the desire of this paper to relax the requirement of continuous or pe-

riodic communication without the need for instantaneous communication and synchronous

actions by agents. To do so, we turn to the active research areas involving distributed

event-, self- [37] and team-triggered strategies [38].

The principal idea behind event-, self-, and team-triggered strategies is that they provide

a means for which agents are capable of only communicating when a designed triggering

criterion occurs. The usual consequence of these methods is that agents communicate

aperiodically and therefore less frequently than continuous or periodic strategies [2, 24, 25,

28, 38–40]. Consider an agent that continuously or periodically communicates its state

to neighboring agents. This may be considered a waste of resources. Instead, a more

efficient approach would be for the agent to only communicate its state information when

it anticipates something may have changed or when something may have gone wrong.

A brief explanation of the differences between the three mentioned triggering strategies

follows. An event-triggered strategy requires an agent to monitor its state until some

conditions are met to initiate communication between agents. A self-triggered strategy

requires an agent to determine when the next triggering time will occur given its current

information. Finally, a team-triggered strategy requires a group of agents to collectively
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determine when to initiate communication by using an event- and/or self-triggered strategy

[33]. Generally speaking, we would like to note that there is no clear advantage of one

strategy over the others, and depending on the problem or application, one strategy maybe

suitable where the others are not.

All triggering strategies in [2, 24, 25, 28, 38–40] have been shown to reduce the amount

of message exchange and/or the amount of communication power consumed between the

agents in a number of different multi-agent coordination tasks. This is due to the fact that

agents only communicate when there is a need. In [24], an event-triggered algorithm for

a multi-agent rendezvous task was developed that reduces the communication between the

agents. For multi-agent average consensus tasks, self-triggered algorithms in [25, 28] and

an event-triggered broadcasting algorithm in [39] have been shown to reduce the amount

of communication and the amount of communication power consumed during the task.

In [26,41], the communication power consumed was shown to be reduced for a leader-follower

consensus problem using an event-triggered algorithm. The most relevant to this paper is the

work involving event-, self- or team-triggered strategies applied to the deployment problem.

In relation to multi-agent deployment, triggering strategies have been shown to reduce

the amount of communication as in [38, 40, 42]. More specifically, we are interested in al-

gorithms that use Voronoi partitions to solve the deployment problem. The authors in [2]

proposed a self-triggered Voronoi partitioning algorithm, the authors in [34, 35] proposed

an event-triggered Voronoi partitioning algorithm, and the authors in [33] proposed a team-

triggered Voronoi partitioning algorithm. The major drawback of these algorithms is the

fact that when a trigger occurs, the agents must make a request for the information they

require and other agents must respond to those requests i.e. instantaneous communica-

tion and synchronous actions by agents. We would like to note that the instantaneous

communication (immediate requests and immediate responce) can also be viewed in the

context of sensing capabilities as well. This is due to the fact that both methods obtain

information from neighbors instantaneously when needed. Thus, if the agents have sens-

ing capabilities, the agents can sense the surrounding environment to localize other agents
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rather than communicating with them via message transmissions. In this work, we propose

a one-way communication model that is fully asynchronous where agents decide when to

initiate communication by only broadcasting their information to others. This is similar to

the communication model proposed in [39] for multi-agent average consensus. The broad-

casting communication model can be considered a more practical strategy given that it

is an asynchronous model that reduces the amount of communication traffic seen over a

SWS by eliminating the need for response messages to occur. Additionally, since agents

are restricted from requesting information or sending acknowledgments, they are unable to

determine if their information has been sent to all intended recipients. This is in contrast

to [2,43] where agents communicate back-and-forth instantaneously to ensure sufficient in-

formation exchange. Also, the works in [34, 35] assume that the agents are aware of their

neighbors and can precisely determine the communication range required, which is not a

practical assumption. Instead, we will design our solution to allow agents to independently

determine the sufficient broadcasting range required to ensure that their information is

shared with the intended recipients.

Statement of contribution The main contribution of our work is the design of a

fully asynchronous communication event-triggered broadcasting algorithm that al-

lows agents to reach the set of locally optimal solutions to the deployment problem. Unlike

all existing triggered solutions, our event-triggered broadcasting algorithm relies on agents

to decide when to broadcast (push) information to others in the network without the need

for a response from other agents. As a result, our communication model relaxed the as-

sumptions of instantaneous communication and synchronous actions by agents (request and

response actions). In addition, given the challenges of the communication constrains, we

develop a distributed control algorithm such that the agents can determine the sufficient

communication range required to reach all intended recipients. Finally, our distributed al-

gorithm is shown to achieve a level of performance that is similar to that of a deployment

strategy that uses continuous or periodic communication methods.
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2.2 Preliminaries

Let R, R≥0, and Z≥0 denote the sets of real, non-negative real, and non-negative integer

numbers, respectively. Let | · | be the cardinality of a set. Also, we denote the Euclidean

distance between two points p, q ∈ R
2 by ‖p− q‖.

Let Q be a convex polygon in R
2 with a probability density function φ : Q → R≥0 that

maps the probability of a spatial action or event occurring at point q ∈ Q. The mass and

center of mass of Q with respect to the density function φ are

MQ =

∫

Q
φ(q)dq and CQ =

1

MQ

∫

Q
qφ(q)dq,

respectively. For a bounded set Q ⊂ R
2, the circumcenter, cc(Q) ∈ R

2, is the center of the

closed ball of a minimum radius contained in Q, and the circumradius, cr(Q) ∈ R≥0, is the

radius of the closed ball. Then, let the closed ball centered at q with a radius r be B(q, r).

2.2.1 Voronoi partition

In this subsection, we briefly present some concepts necessary for the development of the

event-triggered broadcasting algorithm; further details on Voronoi partitions can be

found in [11]. For a convex polygon, Q ⊂ R
2, let P = {p1, . . . , pN} denote the locations of N

agents in Q and let I = {1, . . . , N} denote the set of identification numbers corresponding

to the N agents with locations P . The set Q can be partitioned into N polygons V(P ) =

{V1, . . . , VN} such that the union of their disjoint interiors is Q. The Voronoi cell of agent i

is formally defined as

Vi = {q ∈ Q | ‖q − pi‖ 6 ‖q − pj‖ ∀ i 6= j}. (2.1)

When all agents are positioned at the centroids of their Voronoi cells, i.e., pi = CVi
, ∀i ∈ I,

the agents’ locations P = (p1, . . . , pN ) are said to be in a centroidal Voronoi configuration.
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Furthermore, when the intersection of two Voronoi cells Vi and Vj generated by the points

pi and pj is non-empty, Vi ∩ Vj 6= ∅, the agents i and j are Voronoi neighbors. The set of

Voronoi neighbors for the ith agent is denoted by Ni.

2.2.2 Space partition with uncertain information

In order to compute the Voronoi cells defined by (2.1), each agent requires the exact positions

of their neighboring agents. If agents do not continuously communicate and/or sense their

surroundings, the exact locations of neighbors may not be available. Then, the agents must

rely on inexact information to approximate their Voronoi cells. Here we discuss the concept

of space partitioning when an agent’s knowledge of its neighbors’ positions is uncertain.

Two methods for space partitioning under uncertain conditions are utilize, the guaranteed

and the dual-guaranteed Voronoi diagrams [2, 38,44,45].

Let X = {X1, . . . ,XN} ⊂ Q be a collection of compact sets containing the true positions

of agents with pi ∈ Xi, ∀i ∈ I. The set Xi is considered to be a region of uncertainty and

represents all the possible points in Q where agent i could potentially be located. If the

location of agent i does not contain uncertainty, then the set Xi is simply a singleton with

Xi = {pi}.

The guaranteed Voronoi diagram, also known as the fuzzy Voronoi diagram [45], is the

collection gV(X ) = {gV1, . . . , gVN} of guaranteed Voronoi cells generated by the uncertainty

regions of X . The guaranteed Voronoi cell gVi for agent i is the set of points that are

guaranteed to be closer to agent i than any other agents. Formally,

gVi = {q ∈ Q | max
xi∈Xi

‖q − xi‖ ≤ min
xj∈Xj

‖q − xj‖ ∀i 6= j}.

Note that in general, the guaranteed Voronoi cell is a subset of the Voronoi cell, i.e. gVi ⊂

Vi ∀i ∈ I, which implies that the guaranteed Voronoi diagram is not a partition of Q.

Fig. 2.1.(a). provides an example of a guaranteed Voronoi diagram consisting of five agents

with uncertainty regions represented by circles.
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Complementary to the guaranteed Voronoi diagram, the dual-guaranteed Voronoi dia-

gram, first introduced in [2], is the collection dgV(X ) = {dgV1, . . . , dgVN} of dual-guaranteed

Voronoi cells generated by the uncertainty regions of X . The dual-guaranteed cell dgVi for

agent i is the collection of points such that any point outside the cell is guaranteed to be

closer to all other agents than to agent i. Formally,

dgVi = {q ∈ Q | min
xi∈Xi

‖q − xi‖ ≤ max
xj∈Xj

‖q − xj‖ ∀i 6= j}.

Note that in general the Voronoi cell is a subset of the dual-guaranteed Voronoi cell, i.e.

Vi ⊂ dgVi ∀i ∈ I. Fig. 2.1.(b). shows the dual-guaranteed Voronoi diagram of five agents

and their uncertainty regions.

2.2.3 Facility location

In this subsection, the locational optimization function presented in [12] is discussed. The

function that quantifies the sensing performance of an agent located at point pi to a point

of interest q ∈ Q is given by,

f(‖q − pi‖) = ‖q − pi‖2 . (2.2)

This function measures the sensing quality of an agent based on its distance to a given

point q. As the distance from an agent position pi to the point of interest q decreases, the

sensing performance for agent i at point q increases. For a density function φ(q) : Q → R≥0

that captures the likelihood of an action occurring at q, the total network performance of

N agents at fixed positions P is given by,

H(P ) = Eφ

[

min
i∈I

‖q − pi‖2
]

. (2.3)

We assume φ(q) is provided to agents prior to deployment. The H function is beneficial

when the agents are the closest to the actions that they are responsible for, and it has
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Figure 2.1: (a) Guaranteed and (b) dual-guaranteed Voronoi diagrams.
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been used in a number of applications previously, such as in event detection and resource

allocation [46,47]. Given a Voronoi partition, each agent will be responsible for the points

that are closer to itself than to any other agent, and now, the objective function with respect

to a Voronoi partition as in [12] is written as

H(P ) =

N
∑

i=1

∫

Vi

‖q − pi‖2 φ(q)dq. (2.4)

For a distributed control algorithm where the agents have local or limited information, the

agents optimize the objective function by moving toward the centroid of their Voronoi cells.

For P ′ ∈ Q with ‖p′i − CVi
‖ ≤ ‖pi − CVi

‖ for all i ∈ I, then

H(P ′,V(P )) ≤ H(P,V(P )). (2.5)

In addition, when agents are located at the centroids of their Voronoi cells, (p1, . . . , pN ) =

(CV1
, . . . , CVN

), the objective function is considered to be in a locally optimized state [12].

In other words, when agents are located at the centroids of their Voronoi cells, the agents

cannot improve the objective function by moving in any direction. This is commonly referred

to as Nash equilibrium or a local minima result.

2.3 Problem Statement

Let P = {p1, . . . , pN} ∈ QN be the location of N agents moving in a convex polygon

Q ⊂ R
2. In this work we consider first-order dynamics for each agent,

ṗi = ui, (2.6)

where ui is the control input for agent i, which is constrained by ‖ui‖ ≤ smax with smax being

the maximum speed for all agents. We assume that all agents have knowledge of the density

function φ(q) before starting the deployment task. In such a case, the density function can
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be seen as a populated area or as a higher crime area in a city that require more surveillance

and monitoring. Similar to [2, 12], the φ(q) can be fixed during the deployment task. In

addition, in case the density function is unknown, there have been many works to proper

estimate a density function using, but not limited to, distributed Kriged Kalman filter

and neural network as in [48, 49]. The authors in these works consider the scenario where

the agents response to a dynamic change in an environment that is modeled by unknown

dynamic density function. Also, we assume that agents are capable of maintaining speeds

between 0 and smax for some duration of time. It is worth pointing out that many ground,

under water, and unmanned aerial vehicles have this capability.

Our objective is to achieve a locally optimal (local minimum) value of the objective

function H in (2.4) with a fully asynchronous communication model while also taking a

more communication-aware approach. More specifically, rather than requiring instanta-

neous communication and/or synchronous actions by agents, as in many similar triggered

deployment algorithms [2, 33–35], we consider a fully asynchronous broadcast model with-

out acknowledgment of or requests for information where the agents must actively choose a

broadcast radius to transmit their messages similar to [39]. Additionally, we want to reduce

the amount of communications across the SWS by having the agents only broadcast mes-

sages when necessary, rather than continuously or periodically. This means the agents will

need to determine exactly when to broadcast messages to one another, with what distance,

and how to move in the environment based on locally available information.

Formally, let {tiℓ}ℓ∈Z≥0
⊂ R≥0 be the sequence of times (to be determined on-line) at

which agent i broadcasts its position pi to other agents in the network. The radius at which

the message is broadcast is Ri
ℓ > 0, meaning any agent j that is within Ri

ℓ of pi(t
i
ℓ) will

receive the message.

Let pij(t) ∈ Q be the last known position of agent j by agent i at any given time t ∈ R≥0.

Note that if agent i has never received information from some agent j, then pij(t) = ∅.

Then, given a sequence of broadcast times {tjℓ}ℓ∈Z≥0
and broadcast radii {Rj

ℓ}ℓ∈Z≥0
for each
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agent j ∈ I \ {i}, the memory of each agent i is updated according to

pij(t) =















pj(t
j
ℓ) if pi(t

j
ℓ) ∈ B(pj(t

j
ℓ), R

j
ℓ),

pij(t
j
ℓ−1) otherwise,

(2.7)

for t ∈ [tjℓ, t
j
ℓ+1).

The goal is now to devise a distributed coordination strategy such that the agents

converge to a centroidal Voronoi configuration, which locally optimizes H in (2.4), as in

[12]. However, we do so with an asynchronous communication aware model. To this end

we are interested in broadcasting messages as minimally as possible, both in frequency and

space, by only broadcasting when necessary.

Problem 2.1. Given the dynamics (2.6) and the communication model (2.7), find a dis-

tributed communication and control strategy to find a sequence of broadcasting times {tiℓ}ℓ∈Z≥0
,

broadcasting ranges {Ri
ℓ}ℓ∈Z≥0

, and a control strategy ui(t) for all i ∈ I that drives the

agents to their Voronoi centroids in order to locally optimize the objective function H in

(2.4).

2.4 Event-Trigger Algorithm Design

When an agent has knowledge of the exact locations of its Voronoi neighbors, the agent can

compute its exact Voronoi cell and the exact location of the cell’s centroid. This allows the

agent to move directly toward the Voronoi cell centroid. This will monotonically optimize

the objective function H in (2.4) as in [12]. Unfortunately with a fully asynchronous event-

triggered broadcasting communication model, the agents do not know when they will receive

new information from other agents, nor can they request the information when they require

it as is done in [2, 33–35]. Instead, they must rely on the information that they possess

at each moment in time in order to determine exactly how to move and when to initiate

data transfers to others. Although, it is known from [2] that agents only need information
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from their Voronoi neighbors to move to their Voronoi centroids, the major challenge now

is that the agents do not necessarily know their actual Voronoi neighbors. This is due to

the continuously increasing uncertainty that exists with respect to the positions of other

agents when not communicating. This is combined with the fact that agents cannot gain

knowledge of other agent positions by requesting the information.

2.4.1 Information Required and Memory Structures

Since agents do not exchange information with each other on a continuous basis, each agent

must maintain the most current state information they have received from other agents, as

well as a method to model the uncertainty that evolves over time. The data structure that

allows the agents to compute the uncertainty regions of any other agent using the most

recently received information with respect to agent j ∈ I \ {i} is the following. One, the

time instance tij when agent i last successfully received information from agent j. Two, the

position pij = pj(t
i
j) of agent j received at time tij, and three, the speed promise sij = sj(t

i
j)

by agent j received at time tij . The notion of the promise is borrowed from [50]. The

speed promise sij made to agent i by agent j states that agent j promises not to exceed the

speed given by the promise sij . In other words, agent j’s dynamics will follow ‖uj(t)‖ ≤ sij,

and this will hold for agent j until it broadcasts again. For now, we consider agent j only

setting its speed to one of two values sj ∈ {0, smax}. This can be seen as two modes of

operation signaling either ‘active’ i.e. agent j is moving or ‘inactive’ i.e. agent j is not

moving by holding its current position. This assumption helps simplify the convergence

result in Section 2.6 and will be relaxed in Section 2.7 where agents can modify their speed

and promises to any sj ∈ [0, smax].

We define Di
j = (tij, p

i
j , s

i
j) ∈ (R≥0 ×Q× {0, smax}) as the information that agent i last

received about any given agent j, and Di
j = (∅) if agent i has not received information from

agent j. This information allows agent i to construct a closed ball that guarantees to contain

the jth agents’ real location. For any time t ≥ tij, agent i knows that the jth agent did not
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move farther than sij(t− tij) away from pij. Given the promise and the dynamics (2.6), the

uncertainty region of the jth agent with respect to the information agent i has is formally

defined as

Xi
j(t) = B(pij, s

i
j(t− tij)). (2.8)

We denote by Di
i = (tii, p

i
i, s

i
i) the ith agent’s information at its latest broadcast time tii and

by Di = (t, pi, si) the ith agent’s current information. The ith agent’s full memory at any

given time is collected in

Di = (Di
1, . . . ,D

i
N ) ∈ (R≥0 ×Q× {0, smax})N .

Additionally, the memory for all agents in the entire network is defined by

D = {D1, . . . ,DN} ∈ (R≥0 ×Q× {0, smax})N
2

. (2.9)

With the memory structure defined, we are now ready to begin solving Problem 2.1. We

begin by determining exactly which agents in the network should a particular agent broad-

cast to in order to complete the deployment task. Since it is known from [2] that an agent’s

knowledge of its Voronoi neighbors is useful in solving a similar self-triggered deployment

problem, we determine a method for agents to keep track of their Voronoi neighbors for the

event-triggered broadcasting problem given the uncertainty regions. For a given agent i and

its memory Di, we propose the notion of dual-guaranteed neighbors next. Then, as long as

agent i maintains some type of communication with its dual-guaranteed neighbors j ∈ Ndgi ,

we conclude that the agents will have a sufficient amount of information to allow them to

move toward their Voronoi centroids effectively locally optimizing the objective function H

in (2.4).

Definition 2.2 (Dual-Guaranteed Neighbors). Given a set of uncertainty regions X =

(X1, . . . ,XN ) such that pj ∈ Xj for all j ∈ I, a dual-guaranteed neighbor of agent i is any
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agent j that can be made a Voronoi neighbor for at least one configuration of positions P ⊂

X . Formally, the set of dual-guaranteed neighbors of agent i is

Ndgi = {j ∈ I | ∃P ⊂ X s.t. j ∈ Ni}.

The dual-guaranteed neighbors are defined such that Ni ⊂ Ndgi which is formalized in

Lemmas 2.3 below.

Lemma 2.3 (Dual-Guaranteed Neighbors). Given a set of uncertainty regions X = (X1, . . . ,XN )

such that pj ∈ Xj for all j ∈ I \ {i}, if

dgVi(X ) ∩ dgVj(X ) 6= ∅,

then ∃P ⊂ X such that agent j ∈ Ndgi can be a Voronoi neighbor of agent i.

Proof. In appendix A.

Moreover, an agent i might not have any information about some agents in the network

if they have not communicated yet. This is troublesome since the computation of gVi and

dgVi are based on the availability of the uncertainty regions that guarantee pj ∈ Xi
j for all

times. An even bigger challenge given the setup of our problem is the possibility that some

agents are in communication for some period of time before stopping altogether, since it

is no longer necessary. In case that agents do not communicate with all other agents, we

need to determine additional conditions to ensure that, with partial information from Di,

Ni ⊂ Ndgi is guaranteed. To address this, we define a map πJ : (R≥0 ×Q× {0, smax})N →

(R≥0 × Q × {0, smax})|J | for any J ⊂ I that extracts information corresponding only to

agents j ∈ J from Di. Formally,

πJ (Di) = ∪j∈J {Di
j}.

Furthermore, we require πJ (Di) to be sufficient to guarantee Ni ⊂ Ndgi . Intuitively,
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this means that all k 6∈ J agents should be sufficiently far away from agent i that agent k is

not a Voronoi neighbor of agent i given it pk(t). This is formalized in Corollary 2.4 below.

Corollary 2.4 (Condition on Voronoi Neighbors Sets). Given a set of uncertainty re-

gions X = (Xi ∪ {Xi
j}j∈J ) such that Xi = B(pi, 0) and pj ∈ Xi

j for all j ∈ J , if

pk 6∈ B

(

pi, 2 · max
q∈dgVi(X )

(‖q − pi‖)
)

∀k ∈ I \ J \ {i},

then Ni ⊂ Ndgi is guaranteed.

Proof. In appendix B.

It is important to emphasize that for any j ∈ Ndgi , if agent j is a dual-guaranteed

neighbor of agent i, it does not imply that agent i is a dual-guaranteed neighbor of agent j

since Di 6= Dj . It is worth noting that agents do not need to have knowledge of the number

of agents in the network. In order to describe the algorithm in a simpler manner, Di contains

a place holder for each agent in the network (even if the actual execution of the algorithm

will never need to access all of this information), and as further explained, the agents only

need information from the dual-guaranteed neighbors. For convenience, we let

gV i
j (J ) = gVj({Xi

j}j∈J ∪Xi),

dgV i
j (J ) = gVj({Xi

j}j∈J ∪Xi).

The objects in this subsection are summarized in Table 2.1 for agent i, j ∈ I.

2.4.2 Motion Control Law

The motion control law defines a method to generate trajectories for the agents that al-

lows them to contribute positively to the deployment task. This is accomplished by having

agents move towards the midpoint between the centroids of their guaranteed and dual-

guaranteed Voronoi cells. Due to uncertainties, agents must use the information pertaining
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Table 2.1: Agent i model definitions

pi ∈ R
2 agent i’s location

pij ∈ R
2 agent j broadcasted location to agent i

si ∈ {0, smax} agent i’s speed
sij ∈ {0, smax} agent j promised speed to agent i

tij ∈ R≥0 agent j broadcasting time to agent i

Ni ⊂ I agent i’s Voronoi neighbors
Ndgi ⊂ I agent i’s dual-guaranteed neighbors
Di ∈ D agent i’s full memory
Di

j ∈ Di agent j’s information in the ith agent’s memory

Xi
j ⊂ Q agent j’s uncertainty region given Di

j

gV i
j (J ) ⊂ Q agent j’s guaranteed Voronoi cell with respect to πJ (Di) ∪Di information

dgV i
j (J ) ⊂ Q agent j’s dual-guaranteed Voronoi cell with respect to πJ (Di) ∪Di infor-

mation

to their dual-guaranteed neighbors, which is guaranteed to contain all their Voronoi neigh-

bors. Since Ni ⊂ Ndgi by Lemma 2.3, the agents guarantee computing the guaranteed

and dual-guaranteed Voronoi cells such that gV i
i (Ndgi) ⊂ Vi ⊂ dgV i

i (Ndgi). Now let us

informally describe the idea behind it here.

At each time-step, agent i uses partial information, its dual-guaranteed neighbors’ infor-

mation, to determine if it can move in a manner to optimize H in (2.4). If so, it computes

the centroids of the guaranteed and dual-guaranteed Voronoi cell and then moves toward the

midpoint between them. Otherwise, it does not move and waits until it receives sufficient

information to initiate the continuation of motion.

In general, it is preferable that agents move toward their Voronoi centroids directly.

However, this requires perfect information at all times. Instead, we establish a convex

set Ci(Ndgi) that is guaranteed to contain the true centroid CVi
based on the informa-

tion Ndgi available to agent i. This set can then be used not only to determine how to

move but also exactly when updated information is needed. This is formalized next in

Proposition 2.5.
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Proposition 2.5. Given Di
j = (tij , p

i
j , s

i
j) for all j ∈ Ndgi , let

Ci(Ndgi) = B(CgV i
i (Ndgi

),bndi) ∩B(CdgV i
i (Ndgi

),bndi), (2.10)

where

bndi = 2crdgV i
i (Ndgi

)

(

1−
MgV i

i (Ndgi
)

MdgV i
i (Ndgi

)

)

,

then CVi
∈ Ci(Ndgi).

Proposition 2.5 says that although based on uncertain information the exact location

of CVi
cannot be determined, its distance from the centroids of the guaranteed CgV i

i (Ndgi
)

and dual guaranteed CdgV i
i (Ndgi

) can be upper-bounded by the same quantity bndi. The

set Ci is then just the intersection of the two balls centered at CgV i
i (Ndgi

) and CdgV i
i (Ndgi

)

with radii bndi. It is then easy to see that the set Ci is convex, and thus while agent i is

outside of this set, it can guarantee to be getting closer to the true centroid CVi
by simplify

moving towards Ci. With that being said, we define mi as the closest point on Ci(Ndgi) to

agent i. Formally,

mi = argmin
q∈Ci(Ndgi

)
‖q − pi‖, (2.11)

and as long as

pi 6= mi, (2.12)

the agent has good information to move. Then, our motion control becomes

ui = si
mi − pi

‖mi − pi‖
, ∀ i ∈ I, (2.13)
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pi p′i C1 C2

CVi

B(CgV i
i (Ndgi

),bndi)

B(CdgV i
i (Ndgi

),bndi)

Figure 2.2: Example of a point p′i that an agent can move to given C1 = CgV i
i (Ndgi

),

C2 = CdgV i
i (Ndgi

) and bndi.

where

si =















smax if condition (2.12) is true,

0 otherwise .

Fig.2.2 show an example of a point an agent can move to given the uncertainties, and

Algorithm 4 formalizes the Motion control law.

Algorithm 4 : Motion Control Law

At any time t > 0, agent i ∈ I performs:

1: sets D = πNdgi
(Di) ∪Di

2: computes X (D) as in (2.8)

3: computes L = gVi(X ) and CL

4: computes U = dgVi(X ) and CU

5: computes mi as in (2.11)

6: computes ui as in (2.13)
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2.4.3 Decision Control Law

Equipped with a motion control law, we now need to design a communication protocol

that provides sufficient information to the motion control law to properly do its job. This

is nontrivial because the agents do not have control over when they will receive updated

information from others, but instead can only choose when they send information. Thus,

rather than designing the decision control law for agent i based on when it needs information,

our decision control law would ideally be designing in terms of when its neighbors need

information. However, since agents in general may not know exactly what their neighbors

need (due to distributed information), we instead propose a law that broadcasts messages

as minimally as possible while still ensuring the entire network converges to the desired set

of states.

Starting with the case when agent i increases its speed from 0 to smax without broad-

casting, the neighbors j ∈ Ndgi will not be able to capture the correct uncertainty region of

agent i. This can lead to failure of achieving the deployment task if the case is not handled

appropriately. To handle this situation, the dual-guaranteed neighbors must be informed

about the new change in speed as soon as it increases. This makes it possible for other

agents to appropriately manage the uncertainty that they possess for agent i’s location

by modifying the rate of change at which the uncertainty evolves. Therefore, agents shall

broadcast their information when their speed increases i.e. change from 0 to smax.

For the case when agent i changes its speed to 0 without broadcasting, the uncertainty

about its location held by other agents will increase. As a result, its uncertainty will

eventually become larger than necessary. Consequently, the dual-guaranteed neighbors will

no longer have enough reliable information to continue to move. To prevent this scenario,

the ith agent’s dual-guaranteed neighbors need to know when the agent’s speed has been set

to 0. This allows the neighbors to halt the expansion of the uncertainty region for agent i.

Therefore, agents shall broadcast their state information when they change their speeds to

0.

For the case when agent i realizes that it has a new dual-guaranteed neighbor j ∈ Ndgi ,
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both agents i and j must know about each other because they can be Voronoi neighbors.

Thus, agent i must broadcast as soon as it gets information from the new dual-guaranteed

neighbor to ensure agent j has its information. Furthermore, we would like to note that for

a deployment problem, as the agents move away from each other, the set Ndgi gets smaller,

and if this case happens, it only occurs finite times during the deployment task.

Algorithm 5 formalizes the decision control law.

Algorithm 5 : Decision Control Law

At any time t > 0, agent i ∈ I performs:

1: if si > sii then
2: broadcasts Di

3: else if si = 0 then

4: broadcasts Di

5: else if agent i has a new dual-guaranteed neighbor then
6: broadcasts Di

7: end if

2.4.4 Broadcasting Range

Equipped with a motion control law and a method for determining exactly when broad-

casting new information is necessary, we are interested in determining the minimum broad-

casting range required. Since Ni ⊂ Ndgi by Lemma 2.3, we would like to broadcast to all

agents j ∈ Ndgi . This guarantees to send the information to all agents j ∈ Ni.

Thus, we aim to find the minimum radius for an agent to broadcast in order to guarantee

that all j ∈ Ndgi are reached. This can be achieved by finding the distance from an agent i

at pi to its farthest dual-guaranteed neighbor. By Corollary 2.4, any agent j s.t.

pj 6∈ B

(

pi, 2 · max
q∈dgV i

i (Ndgi
)
(‖q − pi‖)

)

is guaranteed not to be a dual-guaranteed neighbor. Therefore, the agent can broadcast

with a distance of (2 · max
q∈dgV i

i (Ndgi
)
(‖q − pi‖)), which is sufficient to transmit information

to all j ∈ Ndgi . By Lemma 2.3, this guarantees that all the Voronoi neighbors of agent i

receive agent i’s information while agent i only uses the information provided by the data
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in dgV i
i (Ndgi) to achieve this result. The computation of the broadcasting range by agent i

is formally defined as

Ri
ℓ(Ndgi) = 2 · max

q∈dgV i
i
(Ndgi

)
(
∥

∥q − pi(t
i
ℓ)
∥

∥). (2.14)

2.5 Event Triggered Broadcasting Algorithm

In this section, we combine the motion control law, decision control law and broadcasting

range assignment to synthesize the fully asynchronous communication event-triggered

broadcasting algorithm. The goal is for the agents to converge to to the set of centroidal

Voronoi configurations in order to locally optimize H(P ) given the communication model

presented thus far.

Given the nature of our problem, agent i and j may communicate for some duration of

time and then stop when it is no longer necessary. However, the setsXj
i andXi

j will continue

to expand even if communication is discontinued that effect the motion of both agents. To

address this issue, we introduce a new set of neighbors called the potential neighbor set Pi of

agent i that exclude the dual-guaranteed neighbors of the ith agents which are guaranteed

not to be Voronoi neighbors due to discontinuation of communication. In addition, the

potential neighbor set satisfies Ni ⊂ Pi ⊂ Ndgi . Now, let us introduce the mechanism to

update the potential neighbor set when an agent receives new information as following:

P+
i ={{k}k∈P ′

i
| dgVi(X ) ∩ dgVk(X ) 6= ∅}, (2.15)

where X = Xi ∪ {Xi
j}j∈Pi

and P ′
i = (Pi ∪ j) if j 6∈ Pi and X = Xi

i ∪ {Xi
j}j∈Pi

and P ′
i = Pi

otherwise. Note, if an agent does not receive new information, Pi does not change.

Lemma 2.6 (Potential Neighbors Properties). Under the decision control law, broadcast-

ing range assignment and updating potential neighbors mechanism in (2.15), Ni ⊂ Pi is

guaranteed at every event-time tiℓ.
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Proof. In appendix D.

Proposition 2.7. Under the event-triggered broadcasting algorithm, gV i
i (Pi) ⊂

Vi ⊂ dgV i
i (Pi) is guaranteed at all times.

Proof. In appendix E.

Thus far, by Proposition 2.7, the algorithm ensures that the requirement for the motion

control law is satisfied, and the analysis of the asymptotic convergence properties is provided

in the following section.

Now, we proceed with an informal description of the proposed algorithm. Note that it

is assumed that each agent knows their potential neighbors at time t = 0 and consequently

Ni ⊂ Pi. Also, we assume that the agents are provided with the density function φ(q). Let

us start with when the agent’s speed is 0. This implies agent i cannot contribute positively

to the task. Therefore, it waits until it has a sufficient amount of information such that

condition (2.12) holds where the uncertainties of the potential neighbors are computed

using (2.8). When agent i receives enough information to move, it sets its speed to smax

and broadcasts its state information at a distance Ri
ℓ(Pi) from its current position pi.

Furthermore, when agent i is able to contribute positively i.e. si = smax, it expands the

uncertainties of its potential neighbors by the maximum rate of change, as in (2.16), and

hold on the new received information until it broadcasts again. Then, the agent follows

the motion control law (2.13) until condition (2.12) is not satisfied. We would like to

note that an agent holds on the new information when it is in motion to allow it-self to

follow the motion control law without the need to information from any agent j 6∈ Pi as

explained in the proof of Proposition2.7. Then, when condition (2.12) becomes invalid, the

agent computes the uncertainties of its potential neighbors using (2.8) and checks for the

condition (2.12). If it is valid, the agent broadcasts its state information to a distance of

Ri
ℓ(Pi) to ensure Ni ⊂ Pi and repeats this until condition (2.12) is no longer valid. Next,

the agent sets its speed to zero and broadcasts its state information to a distance of Ri
ℓ(Pi).
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Then, the agent waits until it gets sufficient information such that condition (2.12) is valid.

Xi
j(t) = B

(

pij,
(

smax(t− tii) + sij(t
i
i − tij)

))

. (2.16)

Algorithm 6 formally describes the event-triggered broadcasting control law.

Algorithm 6 : event-triggered broadcasting algorithm

Initialization at time t = 0, agent i ∈ I performs:

1: sets D = πPi
(Di) ∪Di

At any time t > 0, agent i ∈ I performs:

1: updates Pi using (2.15)
2: if si = 0 then

3: update D = πPi
(Di) ∪Di

4: computes X (D) as in (2.8)
5: else

6: computes X (D) as in (2.16)
7: end if

8: if si = 0 and condition (2.12) is valid then

9: sets si = smax

10: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

11: else if si 6= 0 and condition (2.12) is invalid then

12: update D = πPi
(Di) ∪Di

13: computes X (D) as in (2.8)

14: if condition (2.12) is valid then

15: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

16: else

17: sets si = 0
18: broadcasts Di using (2.14) Ri

ℓ(Ji) distance away
19: end if

20: end if

21: if t 6= tii and agent i has new potential neighbor then

22: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

23: end if

24: compute ui as in (2.13)

2.6 Convergence Analysis of the Event-Triggered Broadcast-

ing Algorithm

In this section, we analyze the asymptotic convergence properties of the event-triggered

broadcasting algorithm. Recall that our objective is to drive the agents to their Voronoi

centroids because if the agents converges to the set of centroidal Voronoi configurations,

the agents are locally optimized H(P ) [12], which also means reaching a local optimal with
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respect to H(P ), where

H(P ) =

N
∑

i=1

∫

Vi

‖q − pi‖2 φ(q)dq. (2.17)

Proposition 2.8. The agents’ location evolving under the event-triggered broadcasting

algorithm from any initial location configuration in QN converges to the set of centroidal

Voronoi configurations

Proof. We know from [12] that

Ḣ(P ) =

N
∑

i=1

(2MVi
(pi − CVi

)ṗi) , (2.18)

and now we want to show that Ḣ ≤ 0 under event-triggered broadcasting algorithm

Ḣ(P ) =

N
∑

i=1

(

2MVi
(pi − CVi

)
−si

‖pi −mi‖
(pi −mi)

)

,

=

N
∑

i=1

( −2MVi
si

‖pi −mi‖
(pi − CVi

) · (pi −mi)

)

.

Under the motion control law if pi 6= mi, the (pi − CVi
) · (pi − mi) ≥ 0. This implies

Ḣ(P ) < 0. In fact, Ḣ(P ) is strictly negative if there is at least one agent moving toward

its Voronoi centroid [12]. In case all agents are stationary such that si = 0 ∀ i ∈ I,

Ḣ(P ) = 0. In addition, if the agents are stationary and stay stationary, it means that the

agents know the exact location of their neighbors since sj = 0 ∀ j ∈ Pi, and it means

that bndi = 0, B(CgV i
i (Ndgi

),bndi) = CgV i
i (Ndgi

), and B(CdgV i
i (Ndgi

),bndi) = CdgV i
i (Ndgi

)

∀ i ∈ I. If condition 2.12 is invalid for all agents, due to ‖pi −mi‖ = 0, this implies

∀i ∈ I, pi = CVi
= mi = CgV i

i (Ndgi
) = CdgV i

i (Ndgi
). Since pi = CVi

∀ i ∈ I, the agents

converged to the set of centroidal Voronoi configurations. This conclude the proof.
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2.7 Varying Speed Extensions

In this section, we consider an extension to the event-triggered broadcasting algorithmwhere

agents can adjust their speeds to values other than zero or maximum. In other words we

consider the case where agent i may take on a speed si ∈ [0, smax]. The main advantage

of adjusting the speed of agents is to reduce the amount of communication between agents

when an agent approaches its cell centroid while not effecting the asymptotic convergence.

As the agents get closer to their Voronoi centroids, the agents start to communicate more

frequently when they are moving at smax. Rather than allowing the agents to move with

smax all the time, an alternative approach is for agents to determine the appropriate speed

to travel as they become close to their Voronoi centroids. For a variable speed adjustment

approach, an agent’s speed at any given instance in time can be described by the following,

si = βismax, (2.19)

where 0 < βi ≤ 1 is determined online by the agents. Each agent updates βi based on a de-

sign parameter ∆TB, where ∆TB represents a target time duration for agents to attempt to

maintain movement prior to switching states and broadcasting information. The parameter

∆TB is chosen prior to the start of the deployment task and the value chosen can depend on

the anticipated communication traffic that will occur over the wireless network. If agent i

finds itself in a scenario where it stays in a moving state for less time than ∆TB , then this

would imply that agent i is moving with a greater speed than desired. Thus, agent i will

decrease it’s speed by decreasing βi. On the other hand, if the agent stayed in moving

state greater than ∆TB, this would imply that agent i is moving with a speed that is slower

than desired. Thus, agent i will increase its speed by increasing βi. It is important to note

that when agent i needs to increase the value of βi, it must broadcast the new speed to its

neighbors so that they can correctly capture the uncertainty region associated with agent i

as explained in the first case in Section 2.4.3.
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In addition, by using the maximum speed smax to capture the uncertainty of the neigh-

boring agents in (2.16), a triggered event may occur faster than desired. Instead, the agents

assume their neighbors are moving with a constant speed sPi
when they are in motion. Let

sPi
be the maximum speed of the ith agent and its potential neighbors such that

sPi
= max{si,max(sij)

j∈Pi

}, (2.20)

and let us rewrite (2.16) in terms of sPi
as following:

Xi
j = B

(

pij,
(

sPi
(t− tii) + sij(t

i
i − tij)

))

. (2.21)

Remark 2.9. The asymptotic convergence properties of the event-triggered broadcasting

algorithm holds for any speed policy since the speed only effects the convergence time and

nothing else.

Algorithm 7 summarizes the event-triggered broadcasting control algorithm with vari-

able speed.

2.8 Simulation

In this section, we provide simulation results for the event-triggered broadcasting

algorithm. The simulations were developed using MATLAB 2019a. For all simulations,

a time-step of ∆t = 1/60s was chosen as if agents operating frequency is 60Hz and all

simulations were performed with eight agents N = 8 in a 40m × 40m square environment.

Agents were initialized with the locations,

P =
{

(11.8, 36.3), (1.1, 6.0), (11.7, 20.1), (15.3, 5.5),

(11.6, 1.0), (7.5, 9.1), (17.0, 15.3), (13.5, 6.3)
}

.
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Algorithm 7 : event-triggered broadcasting algorithm with variable speed

Initialization at time t = 0, agent i ∈ I performs:

1: sets D = πPi
(Di) ∪Di

2: sets βi = 1

At any time t > 0, agent i ∈ I performs:

1: updates Pi using (2.15)
2: if si = 0 then

3: update D = πPi
(Di) ∪Di

4: computes X (D) as in (2.8)
5: else

6: computes X (D) as in (2.21)
7: end if

8: if si = 0 and condition (2.12) is valid then

9: sets si = βismax

10: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

11: else if si 6= 0 and condition (2.12) is invalid then

12: update D = πPi
(Di) ∪Di

13: computes X (D) as in (2.8)

14: if t− tii < ∆TB then

15: sets βi = βi/2
16: end if

17: if condition (2.12) is valid then

18: sets si = βismax

19: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

20: else

21: sets si = 0
22: broadcasts Di using (2.14) Ri

ℓ(Ji) distance away
23: waits for a time duration τd
24: end if

25: end if

26: if
(

t 6= tii
)

and
(

agent i has new potential neighbor or si > sii
)

then

27: broadcasts Di using (2.14) Ri
ℓ(Ji) distance away

28: end if

29: compute ui as in (2.13)

30: if t− tii > ∆TB and si 6= 0 then

31: sets βi = min(2βi, 1)
32: sets si = βismax

33: end if

In addition, the initial value of the speed adjustment parameter βi and the maximum speed

smax were set to βi = 1 and smax = 0.1m/s for all agents, respectively. The density function

φ(q), is provided to all agents and was chosen to be φ(q) = e−‖x−q1‖/100+e−‖x−q2‖/100 where

q1 = (20, 30) and q2 = (30, 10).

48



(a) (b)

(c) (d)

Figure 2.3: Network trajectories of (a) periodic broadcasting algorithm, (b) self-trigger
algorithm in [2], (c) event-triggered broadcasting algorithm constant smax speed, and
(d) event-triggered broadcasting algorithm with variable speed and ∆TB = 45/60s.
The green and red dots correspond to the initial and final agent positions, respectively.

2.8.1 Simulation results

The simulation results presented here demonstrate the effectiveness of the event-triggered

broadcasting algorithm when compared to a periodic broadcasting algorithm where the

agents broadcast at every time-step and compared to the self-triggered algorithm in [2].

According to Table 4, in [2] the self-triggered algorithm may require the agents to commu-

nicate more than once in the same time instance to ensure the sufficiency of the information.

Instead for the self-triggered algorithm, we will assume the agents know their exact Voronoi

neighbors at all times and only communicate once when a trigger is occurred. Fig. 2.3
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shows the initial and final locations of the agents with their trajectories under periodic

broadcasting algorithm, self-triggered algorithm in [2] and our algorithms.

Let us start with Fig. 2.4. This figure shows the algorithms comparison for the conver-

gence of the objective function. It can be seen in Fig. 4 that all algorithms including our

algorithm with constant speed smax, with variable speed and ∆TB = 45/60s, the self-trigger

algorithm, and the periodic broadcasting algorithm reach similar objective function values.

This implies that the reduced communication by our algorithm does not affect the conver-

gence to the set of centroidal Voronoi configurations. In other words, our event-triggered

broadcasting algorithm preforms as good as the periodic broadcasting algorithm with

respect to H.

Additionally, Fig. 2.5 shows the algorithms comparison for the amount of communica-

tion between agents. It is clear that our algorithm with constant speed of smax and our

algorithm with variable speed with ∆TB = 45/60s both significantly reduced the amount

of communication between the agents. It is clear that the self-triggered algorithm performs

worse than the periodic broadcasting algorithm due to the fact that the self-triggered al-

gorithm requires agents to both request and respond. The amount of communication is

greater than the periodic broadcasting algorithm at the 300s mark. We would like to note

that a request for information is counted as a single communication and each response

is counted as a single communication as well. For example, if an agent sent a request

and 5 agents respond, this becomes a total of 6 communicated messages. Now the advan-

tage of relaxing the assumption of instantaneous communication and synchronous actions

by agents is shown clearly in the comparison between the self-trigger algorithm and our

event-triggered broadcasting algorithm. To quantify our results, it is noted that for

our algorithm with constant speed of smax, the amount of communication between agents is

reduced by 63.0% and 78.2% when compared to the periodic broadcasting and self-triggered

algorithms, respectively. For our algorithm with variable speed and with ∆TB = 45/60s, the

amount of communication between agents is reduced by 97.3% and 98.4% when compared

to the periodic broadcasting and self-triggered algorithms, respectively.
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Last but not least, our algorithm with constant smax speed (around the 230s mark) will

require periodic communication since condition (2.12) becomes invalid after a time-step for

all agents. In addition, our algorithm with variable speed can be seen to address the issue

of eventual constant communication as shown in Fig. 2.6 and was able to further reduce

the amount of communication as shown in Fig. 2.5. It is notable that in order to see the

effectiveness of the event-triggered broadcasting algorithm with variable speed, the

target time duration ∆TB must be greater than or equal to twice the time-step, ∆TB ≥ 2∆t.

In other words, when ∆TB ≥ 2∆t, the agents find the appropriate speeds such that they

can move at least for 2∆t without broadcasting. Also as ∆TB increases, the amount of

communication is further reduced with a small delay in convergence speed as is seen in

Fig. 2.5 and Fig. 2.4 for ∆TB = 45/60s.

In summary, these figures illustrate how the event-triggered broadcasting algorithm is

able to achieve similar convergence performance to both the periodic broadcasting and self-

triggered algorithm while also requiring much less communication between agents. As the

figures show, there is a trade-off between the convergence speed and the amount of commu-

nication that occurs between agents. With slightly slower convergence speed, our algorithm

significantly reduced the amount of communication compared to the periodic broadcasting

and the self-triggered cases. The reader may note that given the communication range

assignment for the sefl-triggered algorithm in [2], the algorithm will require much more

communication than showing in Fig. 2.5.
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Figure 2.4: A comparison of the objective function value.

Periodic broadcasting algo

Our algo with constant speed

Self-trigger algo

Our algo with variable speed

A
m
ou

n
t
of

co
m
m
u
n
ic
at
io
n

Time (s)

10
3

0

20

40

60

80

100

120

140

160

180

0 100 200 30050 150 250

Figure 2.5: A comparison of the amount of communications between the agents.
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Figure 2.6: The amount of communications per time step under the event-triggered

broadcasting algorithm with variable speed and ∆TB = 45/60.

2.9 Conclusion and Future Work

This paper proposed a distributed event-triggered broadcasting algorithm implemented

with a more practical and fully asynchronous broadcasting communication model. The

broadcasting communication model relaxes the assumptions of instantaneous communica-

tion and synchronous actions by agents. In other words, this means that the communication

model does not allow agents to request information from other agents nor acknowledge the

reception of messages. Instead, agents must strictly broadcast their information when they

decide that it is appropriate. In addition, the agents are capable of determining, prior to

transmission, the sufficient broadcasting range to share their information with their po-

tential neighbors i.e. all Voronoi neighbors. Through analysis, the proposed algorithm

was shown to provide guaranteed asymptotic convergence. Also, the algorithm was shown

to significantly reduce the amount of communication between agents when compared with
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both a periodic broadcasting strategy and a self-triggered request-response strategy. Future

work will focus on a modification of the broadcast deployment problem where the possi-

bility of packet drops may occur. We aim to use the possible and potential neighbors and

the communication range assignment method presented here to allow agents to not only

determine when to communicate, but also how to select a channel to communicate over in

order to minimize packet loss.
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Chapter 3: Voronoi Partitioning with Uncertainty: Theory

and Applications

Abstract

Voronoi tessellations or Voronoi diagrams have been used in a variety of applications for

decades now, and in many applications, it is assumed that the locations of the generator

points’ are precisely known. This assumption might be acceptable for some applications,

but for sure not for all. Our goal is to establish generalized definitions and concepts of

when the locations of the cells’ generator points are imprecise for N-dimensional Voronoi

diagrams, which will be applicable to all types such as, but not limited to, multiplicatively

weighted Voronoi and power diagrams. Our definitions and concepts will be useful to define

the lower- and upper-bound of the true Voronoi cell, and also determine what information

is required to compute the bounds, and establish a guaranteed set that contains the true

Voronoi centroid given the bounds. Finally, we illustrate, with a case study, how our work

can be adapted to improve existing works using Voronoi diagrams with imperfect generator

point locations.

3.1 Introduction

A few hundred years ago, in 1644, the first Voronoi like diagram was observed in literature

by the work of René Descartes to show the disposition of matter in the solar system [11].

Almost two centuries later, the mathematician Gustav Lejeune Dirichlet formally introduced

the Dirichlet tessellation [51], which is another name for the Voronoi tessellation, for second

and third dimensional space. Then, a few decades later, the mathematician Georgy Voronoi

introduced the Voronoi tessellation for higher order dimensional space [52], and since then,
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it has been widely known as the Voronoi diagram or Voronoi partition [11]. In addition,

during the 19th century, the Voronoi tessellation was re-discovered several times and was

used in a variety of disciplines by different scientists, which established new names. These

names are presented in the Table 3.3 and Table 3.4 in Section 3.2, and we hope that we

have included all the names.

A Voronoi diagram is a collection of Voronoi cells, where each Voronoi cell is generated

by a given Voronoi generation distance function with respect to the generator points. From

the early 80s, the Voronoi diagram has been applied and observed in a vast number of

different disciplines all the way from Anthropology to Zoology [11, 53]. In Anthropology,

the Voronoi diagram is used to describe different cultures’ influence on a region [54]. In

Zoology, the Voronoi diagram is used to model and analyze the territories of animals [55].

A common question among researchers is often how to deal with uncertainty. Unfortu-

nately, given the extremely wide applicability of Voronoi partitions, there are many similar

results and methods that appear in different contexts with different terminology, although

they are ultimately the exact same thing. For example, when there is uncertainty in the

locations of the generator points a common desire is to determine the subsets or supersets

of the true Voronoi cells. Table 3.1 presents the names of the Voronoi cell subsets used

across different disciplines, and Table 3.2 presents the names of the Voronoi cell supersets

used across different disciplines. In this paper, we will use the term guaranteed Voronoi cell

for the subset of the Voronoi cell and use the term possible Voronoi cell for the superset of

the Voronoi cell.

The two tables focus on the type of Voronoi diagram used and the general class of prob-

lem solved, and each cited paper might consider different assumptions and/or constraints.

As the reader may notice that the problems solved with the guaranteed and possible cells

are few. However, this does not mean that it is not useful to solve other problems. In fact,

in the field of bioinformatics or system biology, one computational geometry approach to

protein structure is implemented using a Voronoi diagram [82–85]. In this approach, it is

assumed that the location of the generator points is precise. According to the protein data
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Table 3.1: Guaranteed Voronoi diagrams summary

Type of Voronoi
Diagram

Subset Name Problem Solved? Citation

Ordinary Voronoi Fuzzy Voronoi cell Efficient cell computation [45,56]

Ordinary Voronoi Guaranteed Voronoi cell Efficient cell computation [44]

Ordinary Voronoi Guaranteed Voronoi cell Facility static location [2,57–60]

Ordinary Voronoi Guaranteed Voronoi cell Maximum area coverage [61,62]

Additively
weighted Voronoi

Guaranteed Voronoi cell Maximum area coverage [63–68]

Multiplicatively
weighted Voronoi

Guaranteed Voronoi cell Facility static location [3]

Multiplicatively
weighted Voronoi

Guaranteed Voronoi cell Maximum area coverage [65,69]

Power diagram Guaranteed Voronoi cell Facility static location [70–72]

Power diagram Guaranteed Voronoi cell Maximum area coverage [69,73]

bank, the generator points are bounded inside a sphere, where the Voronoi uncertainties

are referred to as ”resolutions”. We believe that considering the uncertainties in the protein

computational geometry may establish new structures.

Statement of Contributions: In this paper, we formalize and compile various scattered

notions and tools for Voronoi partitioning with uncertain information about the locations

of the generators points. By doing so, we extend various ideas developed in isolated areas

not only to different application areas, but also to generalized Voronoi diagrams. More

specifically, we introduce the notion of a guaranteed Voronoi diagram, possible Voronoi

diagram, possible neighbors and guaranteed Voronoi Centroid sets in N-dimensional space.

We also, present a novel notion that is the guaranteed neighbor. Finally, we show how the

results of the paper can be used across various application domains through the use of a

case study and examples.
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Table 3.2: Possible Voronoi diagrams summary

Type of Voronoi
Diagram

Superset Name Problem Solved? Citation

Ordinary Voronoi Dual-guaranteed Voronoi
cell

Facility static location [2, 59]

Ordinary Voronoi Nonzero Voronoi cell K-Nearest-neighbor query [74]

Ordinary Voronoi Possible Voronoi cell Efficient cell computation [75,76]

Ordinary Voronoi Possible Voronoi cell K-Nearest-neighbor query
in multi-dimensional space

[77]

Ordinary Voronoi Uncertain Voronoi cell Efficient cell computation [78]

Ordinary Voronoi Uncertain Voronoi cell K-Nearest-neighbor query [79,80]

Compoundly
weighted Voronoi

Weighted imprecise
Voronoi cell

K-Nearest-neighbor query
and Efficient cell
computation

[81]

3.2 Preliminaries

In this section, we start by presenting the names of the Voronoi diagrams, and we hope to

have obtained them all in Table 3.3. Also, in Table 3.4, we present other known names of

specific types of Voronoi diagram which will be introduced formally in Section 3.2.2.

3.2.1 Notation

Let R, R≥0 and Z≥0 denote the sets of real, non-negative real and non-negative integer

numbers, respectively, and | · | and ‖·‖ denote the cardinality of a set and the Euclidean

distance of a vector, respectively. We let Q to be the space of the Voronoi diagram in R
n.

Also, we let φ : Q → R≥0 to be a probability density function that maps the probability of

an action taking place at each point in Q. The mass and center of mass of Q are defined

with respect to φ as

MQ =

∫

Q
φ(q)dq and CQ =

1

MQ

∫

Q
qφ(q)dq,

respectively. Also, we let a closed set centered at q with a radius r be B(q, r).
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Table 3.3: Other known names of the Voronoi diagram

Voronoi’s Name Citation

Voronoi diagram
[11]

Voronoi partition

Voronoi honeycomb [86]

Voronoi foam [87]

Voronoi medial axis [88]

Thiessen polygons [89,90]

Wigner-Seitz cells [90, 91]

Capillary domains [92,93]

Voronoi decomposition [94]

Wirkungsbereich which means
(domain of action, field of activity,

area of influence)
[11]Domain of an atom

Area potentially available
Plant polygons

3.2.2 Spatial Partitioning without Uncertainties

Here, we review all the spatial partitioning techniques we are interested in with perfect

information. Let Q ⊂ R
N be a space that we wish to partition based on the generator

points locations P = {p1, . . . , pN} ∈ QN , with identification numbers I = {1, . . . , N}, and

weights W = {w1, . . . , wN} ∈ (R≥0×R≥0×R)N . Based on this data, we present the Voronoi

generation assignment rule, Voronoi generation distance function or node function similar

to [11,97,98] as

f(q, p, wi) =
1

αi
‖q − p‖βi − γi. (3.1)

Based on the different parameters αi, βi, and γi, different types of Voronoi diagrams can be

constructed. Table 3.5 presents the well known types of Voronoi diagram.

Definition 3.1 (Voronoi cell). Given the set of generator points P and weights W , the
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Table 3.4: Other names of the weighted Voronoi diagram

Voronoi’s Type Name Another Voronoi Name Citation

Additively weighted power distance
Voronoi diagram

Power diagram and Radical
tessellation and Laguerre diagram

[11]

Dirichlet cell complex [95]
Sectional Dirichlet tessellation [96]

Additively weighted Voronoi
diagram

Hyperbolic Dirichlet tessellation [11]

Multiplicatively weighted Voronoi
diagram

Circular Dirichlet tessellation and
Apollonius model

[11]

Voronoi cell for site i is given by

Vi(P,W ) = {q ∈ Q | f(q, pi, wi) ≤ f(q, pj, wj) ∀ j ∈ I \ {i}},

Now, we present a Voronoi diagram similar to [11].

Definition 3.2 (Voronoi diagram). The Voronoi diagram is a collection of Voronoi cells

such as

V(P,W ) =
⋃

i∈I

Vi(P,W ), (3.2)

In addition, according to [99], the agents at pi and pj are called Voronoi neighbors if

their cell intersections satisfy Vi ∩ Vj 6= ∅. Also, it is known that the Voronoi neighbors’

information of generator point i is sufficient to compute the ith Voronoi cell. In this paper,

we define the neighbor identification number set for agent i as Ni.
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Table 3.5: Types of the Voronoi diagrams for different weight constraints

αi βi γi Type of Diagram

1 1 0 Ordinary Voronoi diagram

1 1 ∈ R Additively weighted Voronoi diagram

> 0 1 0 Multiplicatively weighted Voronoi diagram

> 0 1 ∈ R Compoundly weighted Voronoi diagram

1 > 1 ∈ R Additively weighted power distance

Voronoi diagram

3.3 Problem Statement

We are now interested in techniques for dealing with uncertainty about a generator points

or agents location. As before, let P = {p1, . . . , pN} ∈ QN , I = {1, . . . , N} and W =

{w1, . . . , wN} ∈ (R≥0×R≥0×R)N be the sets of N agent’s locations, identification numbers

and weights, respectively. Also, let N = {N1, . . . ,NN} ⊂ IN be the neighboring agents

sets of each agent. However, the true positions P are no longer known, instead, let P̂ =

{p̂1, . . . , p̂N} ∈ QN be the estimated generator locations satisfying ‖pi − p̂i‖ ≤ ri ∀ i ∈ I,

and let the set of errors be R = {r1, . . . , rN} ∈ R
N
≥0. Given the estimated positions P̂ and

errors R, we define an uncertainty region for each agent i as Xi = B(p̂i, ri) that is a closed

set centered at p̂i with radius ri. In case Q ⊂ R
2, the closed set is a closed ball and in

case Q ⊂ R
3, the closed set is a closed sphere. Now, we define the set of all uncertainty

regions X = {X1, . . . ,XN} ⊂ QN .

The first objective of this work is to define the biggest set of points in Q, that is

guaranteed to be within the true Voronoi cell given the uncertainties and define the smallest

set of points that is guaranteed to contain the true Voronoi cell given the uncertainties. In

other words, we aim to determine the lower- and upper-bound of the true Voronoi cell given
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the uncertainties presented in X . Let the lower-bound set be the guaranteed Voronoi cell

gVi, and let the upper-bound set be the possible Voronoi cell pVi. Our goal is to determine

the guaranteed and possible cells such as

gVi(X ,W ) ⊂ Vi(P,W ) ⊂ pVi(X ,W ), (3.3)

The second objective of this work is to formally define the set of guaranteed neigh-

bors gNi and the set of possible neighbors pNi for all i ∈ I given the uncertainty sets.

The guaranteed neighbors of agent i are the neighboring agents that are guaranteed to

be Voronoi neighbors regardless of the uncertainties, and the possible neighbors of agent i

are the neighboring agents that can be Voronoi neighbors due to the uncertainties. These

neighboring agents are known when the uncertainties are singletons. For instance, in an

ordinary Voronoi diagram, these points are called Voronoi neighboring points. For this

problem, determining these points is challenging. Our goal is to determine the guaranteed

and possible neighbors such as

gNi ⊂ Ni ⊂ pNi, (3.4)

Additionally, we are looking to establish a condition on pNi so that any agent j 6∈ pNi will

be sufficiently far away from point i so that the computation of gVi(X ,W ) and pVi(X ,W )

will not be impacted.

The last objective of this work, given the guaranteed and possible Voronoi cells, is to

establish a guaranteed set for the centroid of the true Voronoi cell. Let the possible centroid

set be CVi
so that the true Voronoi centroid CVi

must be contained in CVi
. Formally,

CVi(P,W ) ∈ CVi(X ,W ) (3.5)

Problem 3.3. Given the sets P̂ and R, we determine a lower- and upper-bound on the
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Voronoi cell so that gVi(X ,W ) ⊂ Vi(P,W ) ⊂ pVi(X ,W ); and we determine the set of guar-

anteed and possible neighbors so that gNi ⊂ Ni ⊂ pNi; we also determine the guaranteed

set for the centroid of the Voronoi cell so that CVi(P,W ) ∈ CVi(X ,W ).

3.4 Space Partition with Uncertainties

In this section, we aim to establish the generalized guaranteed and generalized possible

Voronoi cells and diagrams given the uncertainty set X . To do so, we start by presenting

the bisector (boundary) between two agents estimated locations p̂i and p̂j. The guaranteed

Voronoi bisector between two agents estimated locations p̂i and p̂j is defined as

gVi,j = {q ∈ Q | max
xi∈Xi

f(q, xi, wi) ≤ min
xj∈Xj

fj(q, xj , wj)},

and the possible Voronoi bisector between between two agents estimated locations p̂i and

p̂j is defined as

pVi,j = gVj,i = {q ∈ Q | min
xi∈Xi

f(q, xi, wi) ≤ max
xj∈Xj

fj(q, xj , wj)}.

Now, we can formally define gVi(X ,W ) and pVi(X ,W ) given the uncertainties of all

agents.

Definition 3.4 (Generalized guaranteed Voronoi cell). The guaranteed Voronoi cell is for-

mally defined as

gVi(X ,W ) =
⋂

i∈I

gVi,j . (3.6)

Definition 3.5 (Generalized possible Voronoi cell). The possible Voronoi cell is formally

defined as

pVi(X ,W ) =
⋂

i∈I

pVi,j. (3.7)
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The definitions of the Guaranteed and Possible Voronoi cells proposed above serve all

types of Voronoi diagrams in N-dimensional space which allow us to establish the generalized

notion and tools for all diagrams. Also, to the best of our knowledge, none of the cited

papers have proposed a generalized definition for these cells.

By Definition 3.4 and 3.5, the guaranteed and possible Voronoi diagrams are defined as

the following.

Definition 3.6 (Guaranteed Voronoi diagram). The guaranteed Voronoi diagram is the

collection of all guaranteed Voronoi cells such as

gV(X ,W ) =
⋃

i∈I

gVi(X ,W ). (3.8)

Definition 3.7 (Possible Voronoi diagram). The possible Voronoi diagram is the collection

of all possible Voronoi cells such as

pV(X ,W ) =
⋃

i∈I

pVi(X ,W ). (3.9)

Every point inside the guaranteed cell gVi(X ,W ) is closer to agent i given the Voronoi

generation distance function in (3.1) than the other agents in I \ {i}. Because of this, as

can be seen in Figure3.1.(a), there are points that are not assigned to any agents (neutral

points) in Q due to the uncertainties presented in set X , which conclude that these points

are not guaranteed to be closer to any agent than the others. Also, it is obvious from the

figure that gV(X ,W ) is not a partition of Q. Moreover, given the nature of the guaranteed

cells, the bigger the uncertainty regions, the smaller the guaranteed Voronoi cell, and the

guaranteed Voronoi cell can be an empty set if Xi ∩Xj 6= ∅ for any j ∈ I \ {i}.

On the other hand, every point outside the possible cell pVi(X ,W ) is guaranteed to be

closer to one of the other agents in I \ {i} than i, given the Voronoi generation distance

function in (3.1). In addition, as it can be seen in Figure 3.1.(b), the union of the collection

of pVi(X ,W ) ∀ i ∈ I is Q but it does not necessarily have a disjointed interior. With that

64



being said, the points in set [pVi(X ,W ) \ gVi(X ,W )] ∀ i ∈ I are the neutral points, and

for agent i, each point in the set [pVi(X ,W ) \ gVi(X ,W )] can be closer to itself than the

others for a configuration of the agents’ positions in their respective uncertainty regions.

In addition, given the nature of the possible cells, the bigger the uncertainty regions, the

bigger the possible Voronoi cell.

Remark 3.8. Interestingly, [66,74] noted that the guaranteed and possible ordinary Voronoi

bisector between point i and j can be computed as an additively weighted Voronoi bisector

where γi = ±ri.

3.5 Guaranteed and Possible Neighbors

In this section, we aim to formally define the set of guaranteed neighbors gNi and possible

neighbors pNi for the ith agent given the uncertainties presented by X . Let us start by

intuitively defining the sets. The set gNi contains the identification numbers of all agents

that are Voronoi neighbors for any configuration of pj ∈ Xj ∀ j ∈ I. In other words, we are

looking to determine all agents that are always affecting guaranteed and possible Voronoi

cells. On the other hand, the set pNi contains the identification number of all agents that

can be Voronoi neighbors for at least one configuration of pj ∈ Xj ∀ j ∈ I. In other words,

we are looking to determine any agent that may shrink or expand the guaranteed and

possible Voronoi cells. We define the guaranteed and possible neighbors as the following.

Definition 3.9 (Guaranteed neighbor). Given uncertainty set X = {X1, . . . ,XN} so that

pj ∈ Xj for all j ∈ I, any two agents that are Voronoi neighbors for all configuration of

pj ∈ Xj ∀ j ∈ I are guaranteed neighbors.

The definition is formally presented by the following lemma.

Lemma 3.10 (Guaranteed neighbors). Given uncertainties set X so that pj ∈ Xj for all
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(a)

(b)

Figure 3.1: (a) Guaranteed and (b) possible multiplicatively weighted Voronoi digrams in

R
2.
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j ∈ I, if

(

(

pVi(X ,W ) ∩ pVj(X ,W )
)

\
⋃

k∈I\{i,j}

pVk(X ,W )

)

⋃

(

gVi(X ,W ) ∪ gVj(X ,W )

)

is simply connected, then agent j is a guaranteed Voronoi neighbor of agent i.

Proof. In Appendix F

Definition 3.11 (Possible neighbor). Given an uncertainty set X = {X1, . . . ,XN} so that

pj ∈ Xj for all j ∈ I, any two agents that can be Voronoi neighbors for at least one

configuration of pj ∈ Xj ∀ j ∈ I are possible neighbors.

The definition is formally presented by the following lemma.

Lemma 3.12 (possible neighbors). Given uncertainties set X so that pj ∈ Xj for all j ∈ I,

if

pVi(X ,W ) ∩ pVj(X ,W ) 6= ∅,

then agent j is a possible neighbor of agent i.

Proof. In Appendix G

Now, we can redefine the guaranteed and possible Voronoi cells given pNi since any

j 6∈ pNi will not impact the structure of gVi(X ,W ) and pVi(X ,W ) as

gV pNi

i =
⋂

i∈pNi

gVi,j , (3.10a)

pV pNi

i =
⋂

i∈pNi

pVi,j, (3.10b)

Furthermore, given Lemma 3.12, we aim to establish a condition for the possible neigh-

bors such that any agent outside a closed set centered at p̂i cannot be a possible neighbor

to agent i.
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Corollary 3.13 (Condition on possible neighbors ). Given the uncertainties Xj ∀ j ∈

{i, pNi} where pNi ⊂ pNi, if

pk 6∈ B(p̂i, Ni),

then k 6∈ pNi is guaranteed, where

Ni = max
j∈pNi

(

max
xi∈Xi

∥

∥q′ − xi
∥

∥+ βj

√

αj

(

1

αi
min
xi∈Xi

‖q′ − xi‖βi − γi + γj

)

)

, (3.11)

for q′ = max
xi∈Xi,

q∈pV
pNi
i

(‖q − xi‖).

Proof. In Appendix H

Remark 3.14. If agent j is not a possible neighbor of agent i, it cannot be a Voronoi

neighbor of the agent i due that the fact that pV pNi

i ∩pV pNi

j = ∅ ⇒ Vi(P,W )∩Vj(P,W ) = ∅.

3.6 Possible Voronoi Centroid Set

In this section, we are looking to provide a generalized form for the Possible Voronoi Centroid

set. Let us start by defining the set.

Definition 3.15 (Possible Voronoi centroid set). Given the uncertainty set X = {X1, . . . ,XN}

so that pj ∈ Xj for all j ∈ I, the possible Voronoi centroid set for agent i is all possible

Voronoi centroids for any configuration of pj ∈ Xj ∀ j ∈ I.

This is not trivial to accomplish, but we can establish an upper-bound to guarantee that

the true Voronoi centroid is within the set. Our earlier work presented in [59] formalized

the Possible Voronoi Centroid set for ordinary Voronoi diagrams. In fact, the result can be

used in this work.
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Proposition 3.16. [59, Proposition 4.4] Let L ⊂ V ⊂ U . Then, for any density function

φ,

CV ∈ CV = B(CL,B) ∩B(CU ,B),

where B = 2crU

(

1− ML

MU

)

and crU is the radius of the smallest closed ball that contains

the set U .

Let L = gV pNi

i and U = pV pNi

i in Proposition 3.16. The Possible Voronoi Centroid

set is properly defined. Figure 3.2 demonstrates the proposition in R
2 space. Finally, from

Proposition 3.16, we establish the following bound

‖p− CV ‖ ≤ argmax
q∈CV

‖p− q‖.

3.7 Case study

In this section, our goal is to demonstrate the use of the developed concepts in this paper

in an established work. For the case study, we adapt our concepts to re-do the problem in

[3]. The authors used the guaranteed multiplicatively weighted Voronoi diagram to solve

the problem of deploying N mobile sensors with different health conditions and communica-

tion delays. In this problem, the communication delays generate fixed uncertainty regions

regarding the actual positions of the sensors. Given a maximum velocity vmax and the

communication delays τi, each mobile sensor is represented by a closed ball X=
i B(p̂i, ri)

centered at its last known location p̂i with a radius ri = vmaxτi. Additionally, the goal is to

minimize the cost function

H(P,W ) =
N
∑

i=1

∫

Vi

Fi(q, αi) φ(q) dq,
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CL CU

CV

B(CL,B)

B(CU ,B)

Figure 3.2: Example of possible Voronoi centroid set colored in blue in R
2 space.

where Fi(q, αi) = ‖pi − q‖2 is a measure of the performance function.

Given the performance function, the health condition is represented by αi ∈ wi for all

sensors where βi = 1, γi = 0. The the cost function using the multiplicatively weighted

Voronoi diagram becomes

H(P,W ) =

N
∑

i=1

∫

V m
i

1

αi
‖pi − q‖2 φ(q) dq,

where V m
i is the multiplicatively weighted Voronoi (MWV) cell. The authors drove the

mobile sensor to the centroid of the guaranteed MWV cell since the Voronoi cell is unknown.

Also, we would like to note that, even though the authors required the sensors to find their

Voronoi neighbors, they did not provide a method to determine or establish them, which is
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lacking in the original work.

Before we adapt our work to resolve the problem, we would like to note that this is

a special case where the mobile sensor knows its exact location, Xi = {pi}, and a closed

form equation for the guaranteed and possible MWV bisectors are provided in Appendix I.

We start by letting the possible neighbor of agent i set be pNm
i . The possible neighbors

are sensors that sensor i needs information from to compute the guaranteed and possible

MWV cells denoted by gV m
i and pV m

i respectively. In addition, the condition established in

Corollary 3.13 helps determining a communication range on-line for a distributed algorithm,

which is lacking in the original work. Knowing that the all the possible neighbors must be

in a closed ball centered at p̂i with a radius of Ni allows us to set the communication range

to Ni. The Ni in (3.11) can be upper-bounded and simplified for the MWV diagram as

Nm
i ≤ max

q∈pV m
i

(‖q − pi‖)
(

max
j∈pNm

i

(

αj

αi

)

+ 1

)

. (3.12)

Furthermore, it is known from [97] that a local minima of H can be reached by driving

the agents to the centroid of MWV cell. Therefore, we developed a motion control law that

drives the agents as close as possible to the centroid of MWV. The motion control drives

the sensor to the centroid of CVi(X ,W ). Formally,

ui = vmax
pi −mi

‖pi −mi‖
, (3.13)

where mi =
(

CgV m
i

+ CpV m
i

)

/2.

Figure 3.4 compare the mobile sensors’ trajectories without communication delays, with

communication delays as in [3], and with communication delays and motion control law ui

in (3.13), and Figure 3.3 compare the objective function H values of the three trajectories.

As it can be seen from Figure 3.3, both solutions achieve similar cost values. Our algorithm

slightly reduces the cost function due to the fact that the agents move as close as possible to

the centroids of the true Voronoi cells. Finally, without the possible neighbors, the mobile
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sensors would not know their neighbors and their communication range; this makes our

algorithm fully decentralized and distributed.
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Figure 3.3: A comparison of the objective function value between algo1: without communi-
cation delays, algo2: with communication delays as in [3] and algo3: with communication
delays and motion control law ui in (3.13).
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(a)

(b)

(c)

Figure 3.4: Mobile sensors trajectories of (a) without communication delays, (b) with com-
munication delays as in [3], and (c) with communication delays and motion control law
ui in (3.13). The green and red dots correspond to the initial and final agent positions,
respectively.
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3.8 Extended Example

In this section, our goal is to show how the developed concepts in this paper can be useful

for established work. The first example relates to the preservation of privacy,and the second

example relates to the computational geometry of a protein.

3.8.1 Example 1

In this subsection, we will demonstrate how possible Voronoi cells improve on the solution

provided by [100] for the privacy preserving problem. The problem presented in the cited

paper has three components: 1) a rider who requests a ride; 2) a driver who responds to a

request; 3) a service provider (SP) that manages the requests and responses.

The problem addressed and solution proposed are briefly presented as follows. The SP

has continued access to the drivers’ locations and computes the Voronoi diagram using the

drivers’ locations as generator points. When a rider makes a request for a ride, it will

appear in one of the drivers Voronoi cells. If the rider requests the closest driver, it is clear

that the rider’s location is within the requested driver’s Voronoi cell (no privacy preserving).

Instead, the rider specifies a privacy preference so that it requests a driver within a S region.

Therefore, the goal is to match the rider with a driver inside the S region that minimizes

the waiting time for a specified weight factor w on the ride matching accuracy.

We would like to note two observations on the proposed algorithm. 1) In November

2014, Uber opened an internal investigation regarding an employee who was tracking a

rider without permission [101]. This raises privacy concerns for drivers sharing their precise

locations with a SP when they do not have a rider. 2) If we consider a case where the drives

are moving, the Voronoi diagram will continually change, which will impact the solution

proposed.

These two observations can be addressed by constructing closed balls (uncertainties) that

guarantee to contain the drivers’ locations. Then, the solution will use possible Voronoi cells

instead of Voronoi cells. In addition, we would like to note that the work in [74] may be
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useful to compute the probability of the nearest drivers with uncertainties about a rider’s

location.

3.8.2 Example 2

In this subsection, we will show how guaranteed and possible neighbors may be useful for

the computational geometry of protein structures. According to the authors in [82–85],

the relation between agents (particles) is established based on whether they are Voronoi

neighbors or not, and it is assumed that they know the exact locations of the generator

points used to create the diagram. As noted earlier, according to the protein data bank, the

generator points are bounded inside a sphere where the Voronoi uncertainties are referred to

as ”resolutions”, thus, given the uncertainties of the generator points, new relations between

the agents can be discovered.

From our work, the following can be accomplished; The guaranteed neighbor set of

agent i will guarantee that there is always a relation between agent i and its guaranteed

neighbors, and the possible neighbor set of agent i may establish a possible relation between

two agents that had not been considered before. The new relations between the agents may

result in new protein structures to cure diseases or alleviate symptoms.

3.9 Conclusion and Future Work

This work has generalized the definitions and concepts related to subsets and supersets of

Voronoi cells when the locations of cells’ generator points are imprecise. The guaranteed

(subset) and possible (superset) cells proposed in this paper are formally defined for gener-

alized Voronoi diagrams (any type of Voronoi diagram) in N-dimensional space. Also, we

introduced the guaranteed and possible neighbors whose information is required to compute

guaranteed and possible cells. Moreover, we have developed a concept of possible Voronoi

centroid sets that guarantees to contain the true Voronoi centroid for any configuration of

generator points inside their respective uncertainty regions. Finally, our future work will

be an extension of this work for higher order Voronoi diagrams.
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Appendix A: Proof of Lemma 2.3

Proof. For convenience, let dgVi,j = (dgVi(X ) ∩ dgVj(X )) and let Idg be the set of agents

such that dgVi,j ∩ dgVk 6= ∅. Now, if dgVi,j 6= ∅, we know

dgVi,j = dgVi,j \ ∪k∈IdggVk(X ) 6= ∅

since gVi(X ) ⊂ dgVi(X ) ∀i ∈ Idg. The point in dgVi,j are not guaranteed to be closer to any

agent in Idg than the others, and they are guaranteed to be closer these agents than agents

k ∈ I \ Idg since it is outside all the others’ dual-guaranteed cells. Therefore, ∃P ⊂ X such

that agent i and j share at least one point in dgVi,j such that Vi∩Vj = {q} | q ∈ dgVi,j .

Appendix B: Proof of Corollary 2.4

Proof. Let us consider the worst case for dgVi(X ) ∩ dgVj(X ) 6= ∅ to be true that is

dgVi(X ) ∩ dgVj(X ) = {q′} | q′ = max
q∈dgVi(X )

(‖q − pi‖).

Given the definition of the dual-guaranteed Voronoi cell, this implies that min ‖q′ − xi‖ =

max ‖q′ − xj‖ ∀xi ∈ Xi
i , xj ∈ Xi

j. Since agent i knows its exact location, we can rewrite

the previous equation as

∥

∥q′ − pi
∥

∥ = max
xj∈Xi

j

∥

∥q′ − xj
∥

∥ .

By rearranging the previous equation, we get

max
xj∈Xi

j

‖pi − xj‖ ≤ 2
∥

∥q′ − pi
∥

∥ .

Thus, any agent j s.t. pj 6∈ B(pi, 2 ‖q′ − pi‖) is guaranteed not to be a dual-guaranteed

neighbor since the dual-guaranteed Voronoi cells will not intersect and is guaranteed not to
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be a Voronoi neighbor by Lemma 2.3.

Appendix C: Proof of Proposition 2.5

Proof. To prove the claim we must show that both

∥

∥

∥CgV i
i
(Ndgi

) − CVi

∥

∥

∥ ≤ bndi (C.1)

and

∥

∥

∥CdgV i
i (Ndgi

) −CVi

∥

∥

∥ ≤ bndi (C.2)

hold. By [2, Proposition 5.2], we know that for any sets L ⊂ V ⊂ U ,

‖CV − CL‖ ≤ 2crU

(

1− ML

MU

)

.

Since gV i
i (Ndgi) ⊂ Vi ⊂ dgV i

i (Ndgi), the first condition (C.1) follows immediately with L =

gV i
i , V = Vi, and U = dgV i

i . To show (C.2), let L = Vi, and V = U = dgV i
i , then

∥

∥

∥CdgV i
i
(Ndgi

) − CVi

∥

∥

∥ ≤ 2crdgV i
i

(

1− MVi

MdgV i
i

)

≤ 2crdgV i
i

(

1−
MgV i

i

MdgV i
i

)

= bndi,

which concludes the proof.

Appendix D: Proof of Lemma 2.6

Proof. We start by proving j ∈ Pi ⇔ i ∈ Pj at all times. For j ∈ Pi ⇔ i ∈ Pj to holds, agent

i and j to must have the same last broadcasted information from their common potential

neighbors and their-self. The reason begin that any agent that is not a common neighbor
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cannot be closer to any point in dgVi(X ) ∩ dgVj(X ) than agent i, j and their common

neighbors. Under the broadcasting range assignment, each common potential neighbor’s

information is guaranteed to reach agent i and j. In addition, by (2.15), if j ∈ Pi, agent i

uses to the same information agent j has about it-self Xi
i and agent j will do the same as

well. In case j 6∈ Pi, agent i uses its prefect information since it will broadcast to agent j

by the decision control law in Section 2.4.3 if they becomes new neighbor, and when agent

j receives agent i’s information, agent j will have agent i’s prefect information. Therefore,

agent i and j will always have the same information required to determine if they are or

they are not potential neighbor that guarantees j ∈ Pi ⇔ i ∈ Pj at all times.

Now, we want to show Ni ⊂ Pi is guaranteed at event-times. By Corollary 1, If agent i

broadcasts a distance Ri
ℓ(Pi) away, then all its potential neighbors will receive this broad-

cast. Since j ∈ Pi ⇔ i ∈ Pj and by the decision control law in Section 2.4.3, any agent

k 6∈ Pi will broadcast its information as soon as it gets agent i information if they become

potential neighbors. Thus, when agent i broadcast, it will receive the new potential neigh-

bors’ information immediately. In case the ith agent did not receive any information when

it broadcast, it implies that the agent does not have any new neighbor. Therefore, Ni ⊂ Pi

is guaranteed at event-times.

Appendix E: Proof of Proposition 2.7

Proof. In this proof, we want to guarantee that

gV i
i (Pi) ⊂ Vi ⊂ dgV i

i (Pi) (E.1)

at all times under the the event-triggered broadcasting algorithm. Let us start by

saying that as the potential neighbors’ uncertainties increase, the guaranteed Voronoi cell

shrinks and the dual-guaranteed Voronoi cell expands, and when the agent computes the un-

certainties using (2.16), the guaranteed and dual-guaranteed Voronoi cells change faster than

when the uncertainties computed by (2.8). By [2, Lemma 4.1 and 4.2], the ith agent’ cells
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given the agent’s and πPi
(Di) information satisfies gV i

i (X ) ⊂ gV i
i (X ) ⊂ Vi ⊂ dgV i

i (X ) ⊂

dgV i
i (X ), where X = {Xi

j}j∈Pi
computed using (2.16) and X = {Xi

j}j∈Pi
computed using

(2.8). Let us start by proving (E.1) is guaranteed at every event-time. By Lemma 2.6, at

every event-time, Ni ⊂ Pi is guaranteed, and as a result (E.1) is guaranteed as well since

the ith agent has all Voronoi neighbors’ information.

Now, we will prove that (E.1) is guaranteed between event-times. Ideally, the ith agent

can move and compute the uncertainties using (2.8) until condition (2.12) is invalid. How-

ever, this requiresNi ⊂ Pi to be true at all times. This is challenging to ensure because agent

i will not know about a new potential neighbor until it broadcast. Instead, we let the agents

compute the uncertainties using (2.16) when they are in motion. [2, Lemma 4.1] state that

if Ni ⊂ Pi it satisfied and the agent expands the uncertainties using (2.16), gV i
i (Pi) ⊂ Vi is

guaranteed without using any additional information. In addition, [2, Lemma 4.2 and 4.3]

state that by expanding {Xi
j}j∈Pi

using (2.16), the dual-guaranteed Voronoi cell cannot be

bigger given any agent k ∈ I perfect information. In fact [2, Lemma 4.2 and 4.3] guarantee

Vi ⊂ dgV i
i (Pi) at all times even if Ni 6⊂ Pi. Since Ni ⊂ Pi is guaranteed at event-time, by

Lemma 2.6, under the event-triggered broadcasting algorithm, (E.1) is guaranteed

while the agents are in motion.

Furthermore, when the ith agent is waiting for new/updated information, the agent will

not affect any agent k ∈ I because it is not moving. Also, since (E.1) is guaranteed while

the other agents are moving, the moving agents will not affect agent i. Therefore, agent i

cannot affect or be affected by any other agent. Thus, the agent expands the uncertainties

as necessary using (2.8), and the event-triggered broadcasting algorithm guaranteed

(E.1) while the agents are waiting.

Since (E.1) is guaranteed at event-times and between event-times, (E.1) is guaranteed

at all-times.

Appendix F: Proof of Lemma 3.10
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Proof. Given the definition of possible Voronoi cell, any point inside the set



(pVi(X ,W ) ∩ pVj(X ,W )) \
⋃

k∈I\{i,j}

pVk(X ,W )





is guaranteed to be closer to agent i and j only since they are outside all the other possible

Voronoi cells. In addition, if the set connects the the guaranteed Voronoi cells of agent i

and j, agents i and j must share at least one point in Q that ensure them to be Voronoi

neighbors.

Appendix G: Proof of Lemma 3.12

Proof. Given the definition of possible Voronoi cell, any point inside pVi(X ,W ) can be a

point in Vi(P,W ) for at least one configuration of pj ∈ Xj ∀ j ∈ I. With that being said,

if pVi(X ,W ) ∩ pVj(X ,W ) 6= ∅, there is a q ∈ Q such that q ∈ Vi(P,W ) and q ∈ Vj(P,W )

for at least one configuration of pj ∈ Xj ∀ j ∈ I. Thus, the agents i and j can be Voronoi

neighbors for at least one configuration of their Voronoi cell will intersect.

Appendix H: Proof of Corollary 3.13

Proof. Let us consider the worst case for pVi(X ,W ) ∩ pVj(X ,W ) 6= ∅ to be true that is

pVi(X ,W ) ∩ pVj(X ,W ) = {q′} s.t.

q′ = max
xi∈Xi,

q∈pVi(X ,W )

(‖q − xi‖) .

Given the definition of the possible Voronoi cell in (3.6), this implies that

1

αi
min
xi∈Xi

∥

∥q′ − xi
∥

∥

βi − γi =
1

αj
max
xj∈Xj

∥

∥q′ − xj
∥

∥

βj − γj.
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By rearranging the previous equation, we get

max
xj∈Xj

∥

∥q′ − xj
∥

∥ = βj

√

αj

(

1

αi
min
xi∈Xi

‖q′ − xi‖βi − γi + γj

)

.

Let

Ni = max
j∈pNi

(

max
xi∈Xi

∥

∥q′ − xi
∥

∥+ βj

√

αj

(

1

αi
min
xi∈Xi

‖q′ − xi‖βi − γi + γj

)

)

,

where q′ = max
xi∈Xi,

q∈pVi(X ,W )

(‖q − xi‖), Thus, any agent k s.t. pk 6∈ B(p̂i, Ni) is guaranteed not to

be a possible neighbor since the possible Voronoi cells will not intersect.

Appendix I: Closed Form Equation for the guaranteed and

Possible MWV Bisector

The closed form expression for the bisectors are a long expression, and they can be simplified

if the agents at p̂i and p̂j are on the x-axis. Assume that the agents are on the x-axis is very

useful because it allows us to use the symmetric property which does not require a horizontal

and vertical transverse axis equations. Moreover, this assumption can be interpreted as

shifting the points and then rotating them, and when the bisector is determined, a rotation

back then shifting will provide the exact bisector. Now, we will present the steps to define

the bisectors gV m
i,j and pV m

i,j .

Let us start with the shifting step. The agent associated with the higher weights gets

shifted to [rj, 0] coordination, and the other point must be shifted by the same amount.

Then, the agent associated with the lower weights gets rotated such as it leis on the right
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to the other point. Now, let

q1y =

(

(

− (p̂jx + rj − x1)(rj − p̂jx + x1)(α
4
i q

2
x − 2α4

i qxx1 + α4
i x

2
1 + α2

iα
2
j p̂j

2
x

− 2α2
iα

2
j p̂jxx1 − 2α2

iα
2
jq

2
x + 2α2

iα
2
jqxp̂ix + 2α2

iα
2
jqxx1 − α2

iα
2
jr

2
j

− α2
iα

2
j p̂i

2
x + α4

jq
2
x − 2α4

j qxp̂ix + α4
j p̂i

2
x)
)1/2

− α2
i p̂j

2
x + α2

i r
2
j

− α2
i x

2
1 + 2α2

i p̂jxx1

)

/

(

(α2
i − α2

j )
(

− p̂j
2
x + 2p̂jxx1 + r2j − x21

)1/2
)

,

and

q2y = −
(

(

− (p̂jx + rj − x2)(rj − p̂jx + x2)(α
4
i q

2
x − 2α4

i qxx2 + α4
i x

2
2

− α2
iα

2
j p̂i

2
x + 2α2

iα
2
j p̂ixqx + α2

iα
2
j p̂j

2
x − 2α2

iα
2
j p̂jxx2 − 2α2

iα
2
jq

2
x

+ 2α2
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2
jqxx2 − α2
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2
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2 + α4
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2
x − 2α4
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2
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+ α2
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2
x

− α2
i rj

2 + α2
i x

2
2 − 2α2
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)

/

(

(α2
i − α2

j )
(

− p̂j
2
x + 2p̂jxx2 + rj2 − x22

)1/2
)

,
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where

x1 =

(

α2
j p̂j

3
x − 2α2

j p̂j
2
xqx + α2

i qxr
2
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x
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2
x
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2
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and
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are evaluated on

min(gV m
1 , gV m

2 ) < qx < max(gV m
1 , gV m

2 ),
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where

gV m
1 = (αi(p̂jx + rj)− αj p̂ix)/(αi − αj)

gV m
2 = (αi(p̂jx − rj) + αj p̂ix)/(αi + αj)

and where

q1y(min(gV m
1 , gV m

2 )) = q2y(min(gV m
1 , gV m

2 )) = 0

q1y(max(gV m
1 , gV m

2 )) = q2y(max(gV m
1 , gV m

2 )) = 0

Note that p̂ix and p̂jx are the x-coordinate of p̂i and p̂j.

Now, we provide the closed form equations when p̂i and p̂j on the x-axis as

gV m
i,j =















Q \ {±q1y} if wi > wj

{±q2y} if wi < wj

and

pV m
i,j =















Q \ {±q2y} if wi > wj

{±q1y} if wi < wj

In case, wi = wj , the multiplicatively guaranteed and possible Voronoi cells are computed

as ordinary guaranteed and possible Voronoi cells respectively.
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