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" Abstract

A system for learning concept descriptions incrementally is described and
illustrated by a series of experiments in the domains of insect classi-
fication, chess endgames and plant disease diagnosis. The system employs
a full-memory learning method that incrementally improves hypotheses,
but does not forget facts. The method is used to form both characteristic
descriptions, which describe a concept in detail, and discriminant
descriptions, which specify only properties needed to distinguish a given
concept from a given set of other concepts. Experimental results show
the advantages of inducing and maintaining only characteristic descrip-
tions during learning and creating discriminant descriptions from them
when a classification decision is necessary.

1. INTRODUCTION

Research in the area of concept learning from examples has been
concerned mainly with methods for single step, or non-incremental,
learning. Such methods can effectively and efficiently induce good
descriptions from a given set of examples and, optionally, induce
counter-examples (for example Michalski, 1975, 1980a; Quinlan, 1979;
Langley et al., 1983). These methods cannot modify concept descriptions
which are contradicted by new examples, but must re-learn the descrip-
tions from scratch. In contrast, incremental learning methods modify
concept descriptions to accommodate new learning events (Winston,
1975; Michalski and Larson, 1978). )

When we observe human learning we clearly see that it is incremental.
People learn concept descriptions from facts and incrementally refine-

* Current address: ¢/o George Mason University, 4400 University Drive, Fairfax, VA
22030. .
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those descriptions when new facts or observations become available.
Newly gained information is used to refine knowledge structures and
models, and rarely causes a reformulation of all the knowledge a person
has about the subject at hand.

There are two major reasons why humans must learn incrementally:

1. Sequential flow of information. A human typically receives infor-
mation in steps and must learn to deal with a situation long before all the
information about it is available. When new information does become
available, there is rarely time to reformulate everything known about all
the concepts involved.

2. Limited memory and processing power. People cannot store and
have easy access to all the information they have been exposed to. They
seem to store only the most prominent facts and generalizations, then
modify the generalizations when new facts are available.

This paper describes a method for automated learning of concept
descriptions from examples which is novel in its use of facts and of
concept descriptions. We assume that in practical -machine learning
systems, only the first of the above constraints is important and that the
second may be ignored. The fact that information arrives sequentially
cannot be changed, as it reflects the nature of the world. On the other
hand, storing and retrieving large amounts of information is not difficult
for modern computers, We therefore investigate a full-memory
incremental learning system which modifies concept descriptions to
accommodate new information, but does not forget facts.

A concept description can be assigned a fype based on two factors:
purpose and form. A description’s purpose is either to characterize or to
discriminate (Michalski, 1983). A characteristic description of a concept is
very specific and tries to capture all the known properties of the concept.
Such a description is useful for building a detailed model of the concept
and for teaching someone about the concept. On the other hand,
discriminant désériptions are used to distinguish,one concept from a given
set of other concepts and contain only those properties of the concept
which are necessary to make such distinctions. Characteristic descriptions

- attempt to distinguish a given concept not just from a known set of other

concepts but from any other concepts. Thus, discriminant descriptions
are dependent on the class of concepts under consideration while
characteristic descriptions are not. In short, characteristic descriptions are
used to describe and discriminant descriptions are used to discriminate.
Section 2 gives more details and presents a classification of different types
of descriptions.

The form of a concept description is directly dependent on the
description language used. In the variable-valued logic used in this paper
(see next section), a description may be either conjunctive or disjunctive.
We therefore distinguish between four types of description: characteristic
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conjunctive (CC), characteristic disjunctive (CD), discriminant con-
junctive (DC), and discriminant disjunctive (DD).

People are able to learn and use many different types of concept
descriptions. Further, the type of description a human uses may depend
on the situation. The learning method described here can also be used to
form several description types; these may be used in different ways when
learning incrementally. We describe experiments designed to test the
effectiveness of the new learning method over different description types
in different domains.

Section 2 describes the problem area and introduces the relevant
terminology. Section 3 describes the new learning methods as they are
currently implemented, and presents some possible extensions. Section 4
describes experiments designed to test the learning methods and Section
5 presents the results of these experiments. Finally, Section 6 discusses
the implications of the results and some directions for future research.

é. TERMINOLOGY AND DEFINITIONS

This "paper deals with that subset of learning from examples known
as symbolic concept acquisition. Givens are observational statements
which describe objects (situations, events, etc.) that have been pre-
classified by a teacher. From these, the learning system is to induce a
concept recognition rule. If an object satisfies this rule then it is
considered an instance of the corresponding concept (class).

Attribute

Throughout this paper, we assume that all objects and concepts are
described in terms of a finite number of discrete attributes (variables).
Each attribute is assigned a finite domain from which it draws values and
a type that characterizes the structure of the domain. In this study, we
distinguish only between two types of attributes: nominal and linear.
Nominal attributes have domajns where there is no ordering on the
values (e.g. ‘colour’) while linear attributes have domains in which the
values are linearly ordered (e.g. ‘length’).

Event

An event is a symbolic description of an object. In this work, an event is
represented as a vector of attribute values and is associated with a single
concept (class). We assume that each event specifies exactly one legal
value for every attribute. If an event is used in the learning phase, the
.event is called a training (learning) event. If it is used for testing, then it is
called a testing event.
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Selector

A selector is a relational statement of the form [x#R] where x is an
attribute, # is a relation (one of =, >, =, <, <) and R is a subset of the
domain of x. The selector [x#R] is said to be satisfied by the event e if
the value of the attribute x in e has relation # with at least one of the
values in R.

Complex

A complex is the logical product (conjunction) of selectors. A complex is
satisfied by an event if every selector in the complex is satisfied by the
event.

Concept description

A concept description is assumed to be a disjunction of compolexes. A
description is satisfied by (covers) an event if at-least one complex of the
disjunction is satisfied. -

a

Decision rule

A decision rule is an assertion of the form D ::> C. Here D is a concept

.description and C is a class (concept) and ::> denotes the class
assignment operator. D can therefore be viewed as an hypothesis
describing C. The rule above can be interpreted as ‘If an event satisfied
description D, then the event is an instance of concept C.’

Star

The star of an event e against the set of events F, denoted G(e | F), is the
set of all maximal under inclusion complexes satisfied by the event e and
not satisfied by any event in the set F. Informally, a star is the set of all

maximally general concepts which consistently characterize a given
example.

Completeness, consistency, and description types

A concept description learned from examples is complete if it'is satisfied
by all learning events which are known instances of that concept. A
description is consistent if it is not satisfied by any learning event which is
an instance of any other concept. Michalski (1983) defined a characteris-
tic description as an expression that satisfied the completeness condition
or the logical product of such expressions while a discriminant description
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is an expression that satisfies the completeness and consistency conditions
or the logical disjunction of such expressions. Ideally, a learning system
would learn the maximal characteristic description and the minimal
discriminant description. In this section we will make a further distinction
between conjunctive and disjunctive characteristic descriptions. A char-
acteristic concept description is either a single conjunct listing the
common properties of all learning instances of that concept or a
disjunction of conjuncts which splits the learning instances of the
concepts into subclasses. A characteristic disjunctive (CD) description
should contain the minimum number of disjuncts and each disjunct
should be as specialized (i.e. long) as possible. Note that the disjuncts in
a CD description may not be disjoint and that the completeness condition
still must hold.

3, METHODS AND IMPLEMENTATION

This section describes in detail the methods developed to learn descrip- -
tions incrementally from examples. Section 3.1 presents a very brief
sketch of the Aq algorithm (see Michalski, 1975), as it is the base on
which the method is built. Section 3.2 describes the modifications
necessary to make aQ work incrementally with full memory and
introduces an implementation of this method in the GeEm program.
Finally, Section 3.3 discusses a way to make GeM produce characteristic
type descriptions.

3.1. The aAa algorithm
The aqQ algonthm was conceived as a quasi-minimal solution to the
general covering problem (Michalski, 1969). It has subsequently been
recognized as applicable to the problem of inductive inference. This
problem can be characterized as follows:

Given: a set of positive events E* belonging to the class for which a
description is to be formed, and a set of negative events E~ belonging to
other classes.

Produce: a description H that is satisfied by (covers) all the events in
E* and none of the events in E™,

A simplified version of the AqQ algorithm applied to this problem
randomly selects a seed event from a given class and generates the star
for this seed. During star generation, the seed is generalized against
different negative events. The results of these generalizations are
intersected together to form a partial star. For efficiency reasons (Hong
and Michalski, 1985), the partial star is reduced by selecting from it the
preferred complexes as determined by a user-generated preference
criterion. Once the reduced star is completed, the best complex in it is
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selected using the same criterion. The positive events covered by this
complex are removed from the list of events to be covered, a new seed is
selected from the remaining positive events and the process repeated.
Stars are generated until there are no positive events left to cover; the
disjunction of the generated complexes is a solution to the problem.

The preference criterion mentioned above is called the LEF
(lexicographical evaluation functional). A LEF consists of an ordered set
of criterion-tolerance pairs. A criterion specifies a metric to be used in
judging complexes and a tolerance specifies the estimated relative error
in that metric. When selecting the best complex from a list of complexes,
aqQ orders the complexes based on the first criterion. Complexes that are
within the first tolerance of the best complex are ordered by the second
criterion, and so on. The LEF provides a means of manipulating the types
of descriptions produced by aQ (see Section 3.3).

3.2. Incremental learning with aa
This section discusses extensions to the aqQ algorithm which permit it to
form descriptions incrementally (Becker, 1985). As shown in Figure 1,
the modified algorithm must be able to apply inference rules either to
trainin& examples alone or to training examples and rules. Figure 2 shows
. a 'schematic version of the rule-modification” process. The incremental
" method mpust be able to both specialize a rule so that it no longer covers a
negative event and generalize a rule so that it covers a new positive
event.

The incremental version of AQ begins by checking each old rule against
the new events. It first determines whether any complex in these rules
must be specialized. If some complex covers events which it should not, a
modified version of AqQ is invoked. The modified aqQ procedure is

TRAINING EVENTS ¢

RULES
OF
INFERENCE

INITIAL RULES
OLD EVENTS

NEW RULES
AND
ALL EVENTS

Figure 1. The initial steps in an incremental learning process.
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Figure 2.. A schematic view of rule modification.

characterized below:

Given: a set of positive events E*, a set of negative events E” and a
subset of the event space, SES.

Produce: A description H, logically contained in SES, such that H
covers all the events in E* and none of the events in E—.

- This is accomplished using the normal star generation technique, except
that the first partial star is intersected with SES.

So, to specialize a complex, incremental aQ calls the modified
algorithm. with the following arguments:

E*  all positive events (both old and new) covered by the old complex -

E™  the new negative events covered by the old complex,

SES the old complex.

The result is one or more new complexes, all contained in the original
complex, which cover all the positive events that the original did and
none of the new negative events. This is the desired specialization.

Once all rules have been specialized, they are re-generalized to cover
new positive events. This is done using the standard aq method, except
that the original rules are used as seeds. The result of this second step is a
rule which correctly covers both old and new events.
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The potential danger here is that the time spent finding every positive
event covered by a complex during the specialization step will negate any
time gain caused by the retention of old rules. Further, it is possible that
the specialization process will produce unduly complex rules by splitting
conjuncts into disjuncts. The experiments described in Section 4 were
designed to address these issues.

The incremental version of AQ has been implemented in Pascal for
efficiency reasons. The program, called Gem (Generalization of Examples
by Machine) consists of approximately 3500 lines of code. All input to
GeM is in the form of relational tables, allowing the program to interact
with the Quin relational data base system (Spackman, 1983).

3.3. Producing characteristic descriptions with Gem

The LEF (Section 3.1) used by GeMm to choose the best complex in a star
can be used to manipulate the type of description learned. Typically, the
first criterion in the LEF is based on the number of positive events-covered
by the complex. The second criterion (used to break ties in the first) may
be based on the length of the complexes. If the criterion requires that the
best complex is the shortest, then Gem will produce discriminant .
descriptions. If the criterion requires that the best complex is the longest,
the result is a more detailed, characteristic type of description. Since the
program must sometimes create disjunctions in order to cover all positive
events, the result of learning is a CD or DD description (although -
conjunctive descriptions can result). Two issues must be addressed: how
good are these descriptions and what is the best way to use each type in
learning?

The quality of a concept description depends on its performance and its
comprehensibility. Both characteristic and discriminant descriptions
should perform well when tested on previously unobserved events. A
good discriminant description will also be easy to use (i.e. brief) while a
good characteristic description will be detailed yet easy to understand.
The comprehensibility of a description is obviously a subjective matter,
but it is very important. If, for example, the descriptions are to be used
in an expert system, the domain expert must be able to understand the
results of learning. ) ‘

There are many ways to use different concept description types in
learning. The most obvious way is to simply form the type of description
desired at whatever time it is needed. Another possibility is to learn
incrementally only characteristic descriptions. This method is attractive
for two reasons. First, characteristic descriptions are more specific than
discriminant descriptions; a specific description contains more informa-
tion about what is being learned and is less likely to be over-generalized.
Second, since Gem can induce over descriptions as well as over events, it
may be possible to induce good discriminant descriptions from charac-
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teristic descriptions. This second induction step should be very fast, and
will allow us to use whichever description type is most appropriate. The
question remains as to the quality of discriminant descriptions produced
in this way.

4. EXPERIMENTS

In order to test the new incremental learning methodology, three
application domains with differing properties were chosen._These doma-
ins (described in Section 4.1) varied in size, in type of attributes, and in
" the degree to which events represented real world objects or situations.
This range of problems provides a basis for our tentative conclusions
about the effectiveness of the learning methodology. An experiment, to
be repeated in all three problenr areas, was designed with the following
goals in mind:

1. To compare the usefulness of different description types produced

" by the new incremental learning method.

2. To discover whether the method of inducing discriminant descrip-
tions from characteristic ones produces simple discriminant de-
scriptions that will perform well.

3. To see whether the incrémental learning algorithm described in
section 3.2 avoids the ‘potential problems in learning with full
memory.

4.1. Problems
The first problem was the classification of different species of Stenonema
mayfly nymphs (Lewis, 1974) based on the use of attributes for describing
an individual insect’s appearance. Seven species of Interpunctatum
group nymphs were described in terms of seven attributes, giving a total
event space size on the order of 10° possible descriptions. Ten different
~ examples of each species were available. A

The second application area was the King-Pawn-King black-to-move
chess endgame, where the pawn’s side is white. Here, examples were
described in ternis of 31 boolean attributes (Niblett, 1982); each example
actually covered several legal KPK positions. That is, the input examples
are generalized representations of the actual board positions. The
examples were correctly classified (by a search program) into Won for the
pawn’s side or Drawn. A total of 1901 attribute vectors sufficed to
represent the entire event space (which has on the order of 10° positions)
since one attribute vector represents many positions and a large portion
of the attribute space consists of illegal, impossible, or symmetrical
positions.

The largest application area was the soybean disease diagnosis domain.
Diseased soybean crops were described in terms of 50 attributes.
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Attribute domains ranged in size from two to 11 values, meaning that
approximately 10* attribute vectors were possible. The event set
consisted of examples of 17 different soybean diseases common in
Illinois; there were 17 different examples of each disease. The data used
for these experiments differed from that described by Michalski and
Chilausky (1980). For the current experiments, 15 more attributes were
used and two new diseases were added to the data. The entire example
set was also revised and updated.

4.2, Experimental method

To determine the quality and the usefulness of the full memory
incremental learning method, an experiment was devised to simulate rule
base development. In each problem area, all the available events were
split randomly into two groups, training events and testing events. The
basic learning method was to provide GEm with successive sets of new
training events, so as to simulate rule base refinement. At each step of
the process, the induced rules were tested on available testing events.

In each domain, the incremental learning process started with about
20% of the available learning events. Using this learning set, decisions
rules were formed. An enhanced set of learning events was created by
adding a random number of learning events of each class to the original
learning set. The enhanced event and the rules induced during the first
step were input to GeMm, which then produced refined rules. The learning
set was again enhanced, and new rules produced. This process was
repeated until no learning events remained.

In the mayfly nymph domain, for example, there are seven classes and
a total of five available learning events per class. The initial learning set
was seven events, one per class.. From these seven events, rules were
induced. Then, seven random numbers were generated, one for each
class. The results of this process are shown in Figure 3. For class
Stenonema carolina the random number was 0.32. There were four events
remaining in this class, so one example (4 X 0.32 = 1.28, rounded to 1.0)
of a Stenonema carolina mayfly nymph was added to the learning set. For
this second learning step, a total of seven events were added. So, 14
events were available to GeM for this step, seven old events and seven
new ones. These events and the seven rules induced during the first step
were used to form new rules. _

At each step in the incremental learning process four rule types were
formed:

1. A control set of discriminant rules formed using the single-step
version of aQ.

2. A set of discriminant rules formed incrementally.

3. A set of characteristic rules formed incrementally.
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Closs Generated Avoilable Events 1o be Total Eve‘nts for this
Number Events Added learning step
Stenonems 0% | 4 | 2
Stecantma o |« 2 .
Poridense. 0.21 4 0 ’
gf;—:jnef;gfgg/ o 0.06 4 ] 0 1
A 0.89 a 3 a
enionka 0.43 4 1 2
sierorens | o : o «
Total - 28 . 7 | 14

" All'three discriminant rule sets were teste

Figure 3. Event selection for the second learning step in the Stenonema mayfly nymph
domain. .

4. A set of discriminant rules induced from the characteristic rules,
above. co :

< o . . ¢

d against all available testing
events. In each domain, the entire experiment was repeated with
different combinations of learning and testing events. The results of these
experiments are summarized in the next section.

5. EXPERIMENTAL RESULTS

Three facets of rule induction were measured. First, the rule induction
time was estimated based on the c.p.u. time. used by Gem in forming the
rules. All results are for a Pascal version of the GEM program running
under the 4.2 bsd version of the Unix operating system on a vax 11/780.
Second, rule comprehensibility was measured. A rule’s complexity,
assumed to be the inverse of its comprehensibility, was defined as the
sum of the number of selectors, number of different attributes and
number of complexes in the rule. The complexity of a set of rules is the
average of the complexities of the members. Third, the performance of
the rules was estimated. Rules were tested using the ATEsT program and
testing examples set aside for the purpose [see Reinke (1984) for a
description of ATest and a discussion of the issues involved in rule

- evaluation].
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5.1. Mayfly nymph extension

Figure 4 shows the c.p.u. time used by Gem to induce three different
types of discriminant rules for identifying Stenonema mayfly nymphs. As
expected, inducing DD descriptions from CD descriptions took very little
time (less than 1s of c.p.u. time in every case). The incremental method
created descriptions in considerably less time than the single-step
method.

Figure 5 shows the complexity of all four rule types at each stage of the
learning process. The complexity of the discriminant rules induced
incrementally rose at every step, undoubtedly due to the specialization of
complexes. There was little difference between the characteristic rules
and the discriminant rules induced from them. The second repetition of
the experiment, using different learning events, produced more complex
characteristic rules and simpler discriminant ones.

The performance of the three discriminant rule types is compared in
Figure 6. In this domain, almost all misclassifications took place because
several descriptions were satisfied by a testing event. Therefore, the pp
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= ——— discriminant descriptions induced incrementally from examples
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— -~ characteristic descriptions induced incrementally from examples

Figure 4. c.p.u. time to induce four description types for identification of mayfly nymphs.
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Figure 5. Complexity of four description types for identification of mayfly nymphs.

descriptions induced from CD descriptions were too general in the tests
shown in Figure 6. A repetition of the experiment produced CD
descriptions from which better DD descriptions were induced. Typical
descriptions in this domain are shown in Figure 7.

5.2. Chess endgame position classification

In the chess endgame problem area, it was not possible to generalize the
characteristic descriptions produced by Gem. For this reason, Figures
* 8-10 compare the two types of discriminant rules and the characteristic
rules. Figure 8 shows that the incremental method saved a considerable
amount of induction time in this domain.

Figure 9 compares the complexity of the three rule types over the
" cotirse of the learning process. Characteristic and discriminant descrip-
tions differed very little overall. This, and Gem’s inability to generalize
the long descriptions, is probably due to the nature of the attributes used
to describe events. Since each input vector is really a generalization of
several actual chess positions, one event may not generalize easily to
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Figure 6. Performance of three description types for identification of mayfly nymphs.

cover another. This hypothesis is partially borne ‘out by the fact that the
descriptions produced were very disjunctive, containing an average of 20
complexes each. Each of these complexes would be highly specialized
(i.e. characteristic) by nature, and therefore impossible to generalize.
Figure 10 shows. the. performance of all three description types.
Unsurprisingly, the choice of learning events was very important in this
domain. Two rules sets were produced by induction over two learning
sets of exactly the same size, yet the rules were more than 90 per cent
correct during the run shown and about 50 per cent correct during the
other. This suggests that events of a given class appear in many distinct
regions of the event space, and explains the highly disjunctive nature of
descriptions in this domain. If learning events are taken from only a few
of the regions, then rule performance will be poor. If, however, the
learning events contain elements from almost all the regions, the rules
should have relatively good performance. This hypothesis suggests that
the better rules should have a larger number of complexes than the
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Figure 8. c.p.u. time to induce three description types for classification of KPK endgame
positions. :

poorer. This was indeed the case—the good rules had, on the average,
almost twice as many complexes as the poorer rules. It should be noted
. that this effect would probably not have been observed if a chess expert

had chosen the examples. Typical descriptions for this domain are shown
in Figures 11 and 12. :

5.3. Soybean disease diagnosis

three, so rule induction took considerably longer. The time saved by
using the incremental method was considerable. Again, inducing DD
descriptions from CD descriptions took very little time.

Figure 14 shows the complexity of the four description types over the
learning process. As expected, the characteristic descriptions were the
most complex. The DD descriptions induced from CD descriptions were
more complex than DD descriptions induced directly from examples.

Al of the discriminant rules performed well, as shown in Figure 13. In
comparison, the most recent rules written by plant pathologists were
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about 80% correct for these testing events. These results are similar to
earlier results in the same domain (Michalski, 1980b; Niblett, 1982).
Typical descriptions for this domain are shown in Figure 16.

6. SUMMARY

The experimental results are summarized below in terms of the goals sets
‘forth in Section 4: :

1. The relative quality of the various description types varied widely
with the domain. In the mayfly nymph recognition domain, the in-
crementally learned descriptions performed poorly compared to the
single step descriptions (83% correct compared to 60%). In the chess
endgame domain ‘they performed at about the same level (98-96 per
cent) and in the soybean disease diagnosis domain’ the incrementally
learned rules performed slightly better (88-82 per cent). Overall,
incrementally learned discriminant disjunctive descriptions were slightly
more complex than descriptions formed in a single step. Characteristic
disjunctive descriptions were even more complex, as expected, but were
unfortunately also more disjunctive (averaging six complexes per descrip-
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tion over the three domains compared to four complexes per description
for discriminant disjunctive).

2. The discriminant disjunctive descriptions formed from characteristic
disjunctive descriptions performed better than the discriminant disjunc-
tive descriptions learned from examples in two of the three domains.
Overall, the performance of these descriptions was about four per- cent
better than that of the discriminant dlS]unctnve descriptions induced from
examples. Unfortunately, inducing discriminant disjunctive descriptions
from characteristic disjunctive makes thé discriminant disjunctive de-
scription more complex (the average complexity of indirectly induced
descriptions was 58, compared to 41 for descriptions induced directly
from examples).

3. Both incremental methods were significantly faster than single step
learning (between two and five times as fast overall). Summing over all
experiments in all domains, the single step method took approximately
4.2 x 10*c.p.u. minutes, the incremental method took 0.7 X 10* c.p.u.
min and the characteristic disjunctive to discriminant disjunctive in-
cremental method took 2.6 X 10° ¢.p.u. min.
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Figure 13. c.p.u. time to induce three description types for soybean disease diagnosis.

The success of the full memory incremental learning method was
obvious. In all the application areas, GEM took considerably less time to
form rules when it had old rules to modify. The rules produced using the
incremental method were slightly more complex and performed slightly
less well than those produced in a single step, but the time saved was
large and the differences in performance and complexity were small. The
method of inducing discriminant disjunctive descriptions from charac-
teristic disjunctive descriptions proved workable, but produced more
complex rules. This may have been due to the nature of the characteristic
descriptions produced by GeMm.

The incremental method could be further enhanced by simplifying both
the specialization and generalization steps using the reunion operator.
That is, a complex could be simplified by taking the union of the events it
covers. New positive events could be covered by taking the union of the
events and some complex. The method currently used could serve as a
back-up, invoked only when reunion produces a complex which does not
satiéfy specified constraints.

The characteristic descriptions produced by GeM were sometimes
unattractive because they were 16ng and «disjunctive. A combination of

283



INCREMENTAL LEARNING OF CONCEPT DESCRIPTIONS

A
50
- )
’
: SR,
B o \
40p - .‘
= /'/ . d
§ | '/. /’/a’ \\
g 30 -’ Sead
o L P
(8] PR
2 B -~
3 » -
* 20 -7
— -
-/,/’ e e @ — G940
¢ e
'—___—s_—__::________:__——________.\'_____.._.
109
i TR N N N T I [ | >

/I T NS T B | 1
‘ O70 80 90 100 110 120 130 140 150 160 170
No. Learning Events

discriminant descriptions induced in one step from examples

— — — discriminant descriptions induced incrementally from examples
==-—~ discriminant descriptions induced from characteristic descriptions
— = — characteristic descriptions induced incrementally from examples

Figure 14. Complexity of four description types for soybean disease diagnosis.

two factors was responsible: the individual concepts in_each domain
tended to be divided into subparts and Gem always produces consistent
and complete descriptions. Formally (see Section 2), characteristic
descriptions are not necessarily consistent. Nevertheless, discriminant
descriptions induced from these characteristic descriptions were often
quite good..

A simple method could be used to produce conjunctive descriptions. If
the disjuncts in a characteristic disjunctive concept description produced
by Gem correspond to subclasses, a tree-structured concept description
could be formed in the following way:

1. Induce a characteristic disjunctive description incrementally from
examples.

2. Treat each disjunct as a separate class within the concept and induce
a description to characterize each subclass.

Another possibility is to use a conceptual clustering method such as that

described by Michalski and Stepp (1983) to divide each class into
subclasses.
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A more difficult extension to the method would use partial memory and
exceptions (Michalski and Winston, in press). A partial memory in-
cremental learning system would have to be able to recognize and
remember ‘important’ events. Something like this is done by 3
(Quinlan, 1979), which remembers ong event in each parcel of events
that contributed to rule formation. A true partial memory incremental
learning system will need some e¢riteria recognizing importance. Excep-
tion events which violate the consistency of conjunctive characteristic
descriptions are interesting candidates. The method would have to form a .
characteristic conjunctive description while creating as few exception
events as possible.

Unless a data base of examples is excessively large, the full memory
incremental learning method provides the best way to induce reliable
concept descriptions. For three real world problems, the full memory
method took considerably less time and no more memory than the single
step method (which must have all the events in memory anyway).
Further, it appears that the best way to learn incrementally is to maintain
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characteristic descriptions of classes. Such descriptions are more appeal-
ing to humans than terse, disjunctive descriptions. The results here show
that characteristic type descriptions also contain enough information that
good discriminant descriptions may be induced from them in a very short
amount of time.
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