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ABSTRACT1 
Learnable Evolution Model (LEM) is a form of non-Darwinian 
evolutionary computation that employs machine learning to guide 
evolutionary processes. Its main novelty are new type of operators 
for creating new individuals, specifically, hypothesis generation, 
which learns rules indicating subareas in the search space that 
likely contain the optimum, and hypothesis instantiation, which 
populates these subspaces with new individuals. This paper 
briefly describes the newest and most advanced implementation of 
learnable evolution, LEM3, its novel features, and results from its 
comparison with a conventional, Darwinian-type evolutionary 
computation program (EA), a cultural evolution algorithm (CA), 
and the estimation of distribution algorithm (EDA) on selected 
function optimization problems (with the number of variables 
varying up to 1000). In every experiment, LEM3 outperformed 
the compared programs in terms of the evolution length (the 
number of fitness evaluations needed to achieved a desired 
solution), sometimes more than by one order of magnitude.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Concept Learning, 
Induction, G.1.6 [Optimization]. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Evolutionary Computation, Learnable Evolution Model, Function 
Optimization, Machine Learning  

1. INTRODUCTION 
Research on non-Darwinian evolutionary computation is 
concerned with developing algorithms in which the creation of 
new individuals in the population is guided by an “intelligent 
agent,” rather than done merely by random or semi-random 
change operators, such as mutation and/or crossover, employed in 
the “Darwinian-type” evolutionary methods.  The selection of 
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individuals for the new generation from among those generated by 
the intelligent agent can be done using standard methods of 
selection, or can also engage such an agent.   

The Learnable Evolution Model (LEM), introduced in [9, 10], 
and the topic of this paper, employs a learning program for 
directing the process of creating new individuals. Specifically, at 
each step of evolution, the method creates general hypotheses 
indicating regions in the search space that likely contain the 
optimal solution (or alternative optimal solutions), and then 
instantiates these hypotheses to generate new individuals.  Early 
implementations of the model, LEM1 and LEM2, gave very 
promising results on selected function problems (e.g., [9], [2]).  
We have also developed domain-oriented implementations, 
ISHED and ISCOD, that were tailored to problems of optimizing 
heat exchanger designs. They also produced highly satisfactory 
results, as they generated designs that matched or improved upon 
human designs [3].  

An implementation of Learnable Evolution Model for Multi-
objective Optimization, LEMMO, developed independently [5], is 
based on rules derived from decision trees learned by the C4.5 
program.  LEMMO was recently applied to a water quality 
optimization problem.  The decision tree representation of the 
hypotheses is, however, significantly more limited than the 
attributional rule representation in LEM implementations, and is 
also more difficult to instantiate. 

Work related to LEM includes research on cultural algorithms 
[15, 16], which use additional information about solutions to 
guide mutation and recombination operators. The cultural 
algorithms perform a constrained optimization process in which 
constraints are created during the evolutionary computation.  The 
constraints, called beliefs, reside in a belief space that is updated 
during the evolution process.  Individuals that are stored in an 
optimization space are modified so that they satisfy the beliefs.  
The belief space is built based on statistical information about 
individuals, which usually consists of intervals containing the 
fittest individuals.   

Other related work concerns Estimation of Distribution 
Algorithms (EDAs), methods that use statistical inference, usually 
Bayesian or Gaussian networks, to generate distributions of high-
performing individuals selected from one population [7, 8, 13, 
14].  LEM significantly differs from EDAs, however, as it 
employs symbolic learning rather than statistical methods, and 
seeks rules for distinguishing between high- and low-performing 
individuals, while EDAs seldom use contrast sets.  It also uses the 
fitness function not only for selecting individuals for learning but 
also during the learning process itself, while most EDAs use it 
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solely for selecting individuals; an exception is a method 
described in [13].  LEM does this by learning significance-based 
descriptions.  

This paper describes briefly LEM3, the latest and most advanced 
implementation, and its comparative evaluation on a range of 
function optimization problems. LEM3 employs the most recent 
AQ-type learning program, AQ21 [5], and includes several 
significant improvements over earlier versions.  These include the 
abilities to represent solutions using a wide range of different 
attribute types, to take into consideration these types in the 
hypothesis formation process, to control this process according to 
the problem at hand, as well as new methods for selecting 
different actions (modes) in the process of evolutionary 
computation, and to instantiate hypotheses in several new ways.  

2. DESCRIPTION OF LEM3 
This section describes the top-level structure of LEM3.  It 
contains several components that are also found in traditional 
evolutionary algorithms, such as generation of an initial 
population, selection of individuals for a new population, and 
evaluation of individuals.   

Components that are unique to LEM3 are concerned with guiding 
evolutionary computation through machine learning.  This is done 
by selecting at each step of evolution the highest and lowest 
performing individuals in the population, the H- group and L-
group, respectively, and then employing the AQ21 learning 
program to generate a hypothesis that differentiates between the 
two groups.  The hypothesis is then instantiated in various ways to 
generate new individuals. Figure 1 presents the top-level 
algorithm underlying LEM3.  

Start

Evaluate Individuals

Stop LEM3

Generate Initial Population

Select Parent Population

Select Action or Compatible Actions

Adjust

Representation

Learn & 

Instantiate
RandomizeProbe

Figure 1: The top-level structure of LEM3. 

The following sections describe algorithms underlying the major 
LEM3 components.  

2.1 Evaluate Individuals 
This component determines the value of the fitness function for 
every individual in the population.  This may be a simple 
operation if the fitness is defined by a mathematical formula. In 
many applications, however, fitness evaluation may require a time 

consuming or costly process of running a simulator, solving a set 
of complex equations, or even performing an experiment.  Such 
situations occur, for example, when designing heat exchangers 
[3], optimal non-linear filters, and aircraft wing shapes. 

Due to the capabilities of the AQ21 learning program, LEM3 
allows a user to describe individuals (problem solutions) and the 
fitness function in terms of not only numeric attributes, but also in 
terms of other attribute types, such as nominal, rank, cyclic (e.g., 
days of the week), structured (representing hierarchies), interval, 
and ratio [11].  Thus, one does not need to design an ad-hoc 
attribute encoding, as sometimes done, for example, in genetic 
algorithms, but instead can directly use attributes as specified in 
problem definition.  This feature extends LEM3’s applicability to 
domains in which individuals are characterized by a combination 
of qualitative and qualitative properties.  For example, when 
optimizing the design of a physical device, attributes 
characterizing it may include numerical ones that describe its 
length, width, height, as well as symbolic ones that characterize 
the material it is made of (structured) or modes of operations 
(nominal). 

2.2 Select Parent Population  
Once individuals are evaluated, a new population is created by 
combining new individuals and individuals from the old 
population.  In general, the creation of the new population 
involves two steps: (1) creation of a (possibly large) temporary 
population and (2) selection of individuals from it into the new 
population. 

The temporary population consists of all newly created 
individuals and also, depending on parameters, individuals from 
the old population.  If the number of created individuals is smaller 
than the desired population size, the program selects individuals 
from the previous population to meet the target population size.  It 
is usually convenient to add all individuals from the previous 
population into the temporary group.  This way, there is no need 
to keep track of past populations for more than one iteration, 
because they were already represented in previous steps. 

Individuals are selected from the temporary population into the 
new population using methods developed in evolutionary 
computation.  LEM3 implemented three methods: selection of the 
best individuals, also known as rank-based selection; tournament 
selection; and proportional selection, also known as roulette 
wheel selection.  At the end of the selection process, a new 
population is created that serves as the parent population for the 
next steps. LEM3 also keeps an elite consisting of one or more 
(depending on the elite-size parameter) individuals with the 
highest score of the fitness function. Note that using rank-based 
selection from the temporary population guarantees elitism. 

2.3 Select One or More Actions  
The next step is to choose and apply an action to create new 
individuals from the parent population. As shown in Figure 1, 
these actions include learn and instantiate, probe, adjust 
representation and randomize. Which action or combination of 
actions is performed is decided by the “Select Action or 
Compatible Actions” module, which uses an Action Profiling 
Function (APF) introduced in LEM3. 
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How does the “Select Action or Compatible Actions” decide 
which action to perform?  Initially, by default, it selects the 
“Learn and Instantiate” action.  When after a number of iterations 
no progress is observed, as defined by the learn-probe and learn-
threshold parameters, the program switches to the “Probe” action 
which is applied once and program returns to “Learn and 
Instantiate” mode.  The learn-probe parameter defines the 
maximum number of iterations the action is performed even if the 
progress is unsatisfactory, as defined by learn-threshold 
parameter, which specifies the minimal improvement of fitness 
value of the best individual to accept progress as satisfactory.  The 
program counts how many times the “Probe” action was applied, 
and if the number reaches mutation-probe, it switches to the 
“adjust representation” action, which is applied once before 
returning to “Learn and Instantiate”.  Representation-probe sets a 
limit on the number of times the representation is adjusted before 
switching to the “Randomize” action and randomly generating 
new individuals.  Figure 2 presents pseudocode describing the 
above process.  

Increment learn-probe-counter 
If learn-probe-counter >= learn-probe 

Learn-probe-counter = 0 
If mutation-probe-counter < mutation-probe 

Increment mutation-probe-counter 
Mutate individuals (Probe) 

Else if representation-probe-counter < representation-probe 
Increase representation-probe-counter 
Mutation-probe-counter = 0 
Adjust discretization 
Mutate individuals 

Else if randomize- counter < randomize-Probe 
Increment randomize-probe-counter 
Representation-probe-counter = 0 
Mutation-probe-counter = 0 
Rollback discretization 
Add the best individuals to a list of local optima 

        Randomize 
Else 

Stop LEM3 
Figure 2: Pseudocode describing action selection in LEM3. 

The chosen order of mutation, adjust representation, and 
randomize operations is deliberate.  Mutation is performed in 
order to introduce diversity into a population and assure that the 
program does not get stuck near a local or global optimum.  

The latter situation may occur when the learning program cannot 
learn hypotheses because the training set is uniform, and thus can 
not create different H- and L-groups.  Next, the precision of the 
representation of individuals is increased by adjusting 
discretization.  If the increase in precision not does help, it may 
mean that the program has found an optimum.  However, the 
optimum may be local, so it is desirable to perform additional 
iterations with new, randomly generated populations in order to 
explore different parts of the search space and test the found best 
solution for optimality.  The above four actions are explained in 
greater detail in the following sections. 

2.3 Learn and Instantiate Action 
The “Learn and Instantiate” action is the most important 
component of the Learnable Evolution Model.  This action creates 

new individuals by performing three steps: (1) selecting the 
training set for the learning program (2) learning a hypothesis 
characterizing subspaces that likely contain the optimum, and (3) 
instantiating the hypothesis in various ways to create new 
individuals. 

Step (1) selects high-performing (H-group) and low-performing 
(L-group) individuals from the population, according to the given 
fitness function.  These individuals serve as positive and negative 
examples, respectively, for the AQ21 learning program. There are 
two methods of creating these groups.  The first one, Fitness-
Based Selection, employs high and low fitness thresholds in the 
range from the highest to the lowest fitness value observed in the 
current population.  For example, if High and Low Fitness 
Thresholds (HFT and LFT) are chosen to be 25%, then 
individuals whose fitnesses are in the highest 25% of the range 
and the lowest 25% of the range are included in the H-group and 
L-group, respectively.  The second method, Population-Based 
Selection, selects a specified percentage of individuals from the 
population for each group, regardless of the distribution of fitness 
values.  These percentages are defined by the High Population 
Threshold (HPT) and Low Population Threshold (LPT).  For 
example, if HPT and LPT are both 30%, then the 30% of the 
individuals with the highest fitness and the 30% with the lowest 
fitness are included in the H- and L-group, respectively. 

The H- and L-groups are then passed as positive and negatives 
examples to a learning program, which in LEM3 is AQ21.  This 
program is the newest implementation of the AQ learning, an 
inductive learning method that produces hypotheses in the form of 
sets of attributional rules[13]. The simplest form of such a rule is: 

CONSEQUENT � PREMISE 
where CONSEQUENT and PREMISE are conjunctions of 
attributional conditions (a.k.a. selectors). An attributional 
condition defines a relation between an attribute and attribute 
values that satisfy that condition.  Here is an example of an 
attributional rule: 

[design = acceptable] � [weight = 2..5] &  
[shape= rhombus v triangle] &  
[height <  3 ] 

The rule states that a design is classified as acceptable if its weight 
is between 2 and 5, its shape is rhombus or triangle, and its height 
is less than 3 (units of weight and height are defined in the 
attribute domain).   

A hypotheses learned by AQ21 usually consist of a number of 
such rules. This representation of a hypothesis is very useful for 
LEM, because such individual rules can be easily instantiated. 
They are also have high expressive power and are easy to interpret 
and understand. 

The main operator used for generating rules in AQ is extension-
against.  Provided with a positive example, called a seed, and a 
negative example, this operator generates a partial star, which is 
defined as the set of maximal generalizations of the seed that do 
not cover the negative example.  The intersection of all partial 
stars of the seed against every negative example is called a star, 
which is a set of maximal generalizations of the seed that do not 
cover any negative example.  In order to prevent the exponential 
growth to the size of the star, AQ employs a beam search that 
limits the number of generalizations (single attributional rules) 
that are retained for the next step from each extension-against and 
intersection operation. AQ selects the best rule from the generated 
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star, and selects a new seed from positive examples uncovered by 
the previously selected rules. This process continues until all 
positive examples are covered.  Such an algorithm guarantees that 
the learned ruleset is complete and consistent with regard to the 
training data, provided that training examples are consistent (do 
not represent more than one class simultaneously). Figure 3 
presents the basic AQ algorithm in pseudocode.  

HYPOTHESIS = null 
While not all H-group examples are covered 
  Select uncovered positive example e+ and use it as a seed 
  Generate star G(e+, L-group) 
  Select the best rule, R, from the star according to a given 

criterion of optimality, and add it to HYPOTHESIS 
  Remove examples covered by R from H-group 
Figure 3:  Pseudocode of the basic form of the AQ algorithm. 

The best rule is selected from a star using a Lexicographical 
Evaluation Function (LEF) that combines several elementary 
criteria, as specified by the user [18]. For further details on AQ 
learning and some of its more extended forms, see, e.g. [6]. 

The instantiation process (Step 3) generates new individuals that 
satisfy the learned hypothesis. When instantiating a rule to create 
an individual for the new population, the program faces two 
problems: (a) which values to assign to attributes that are 
specified in the rule (b) which values to assign to attributes not 
present in the rule.  Depending on the attribute type and user-
defined parameters, different probability distributions can be used 
to select values for the attributes specified in the rule. This can be 
done, for example, using uniform distribution over ranges of 
values in the rules, a normal distribution for numerical attributes 
with the mean in the middle of the range and the variance defined 
by the user, or a distribution that rewards individuals maximally 
distant from the closest negative example. 

Selection of values of attributes not specified in the rule is a more 
intricate problem that can have many different solutions.  One 
way is to select a random value from the entire attribute domain,  
which will result in individuals consistent with the rule; however, 
it is easy to show cases in which this method will lead to poor 
results.  For instance, assume that we are optimizing a function 
with two attributes x and y.  Both attributes are continuous and 
defined on the range -5 to 5. Suppose that the function optimum is 
at the point (0, 0), and that AQ21 learned a rule [x = 0]. The 
method will generate individuals with x = 0, and with y 
distributed over the range [-5, 5]. In the next iteration, AQ21 will 
learn rules containing only the attribute y, since there is no longer 
any differentiation among the x-values.  During the instantiation 
phase, the program will now assign values of the attribute x 
randomly, which means that the information from the previous 
iteration is lost.  Such a process will thus not converge to the 
optimal solution.  

Another method is to select a value from a randomly selected 
existing individual.  The individual can be selected from the H-
group only, from non-L-group individuals, or from the entire past 
population.  Experiments have shown that when selecting values 
from the H-group, the program tends to lose diversity of 
individuals, and may converge very quickly to a point that may 
not the globally optimal solution.  The default method used by 
LEM3 selects individuals from the whole population 
probabilistically, in proportion to their fitness levels. A 

pseudocode of the instantiation algorithm used in LEM3 is 
presented in Figure 4. 

For each rule in a ruleset (hypothesis) to be instantiated  
Compute the number of individuals to be created 
For each individual to be created 

Create the individual 
For each attribute 

If the attribute is specified in the rule 
Select a random value satisfying the rule 

           Else Select a random individual from the previous 
population and use its value 
Figure 4: Basic instantiation algorithm. 

2.4 The Probe Action 
The probe action executes Darwinian-type operators in order to 
generate new individuals. Two probing operators are implemented 
in LEM3, namely, mutation and crossover.   Because in LEM3 
representation of variables depends on their type, and individuals 
may be built of variables of many types, the crossover operator is 
based on selection of whole attributes’ values.  After selecting two 
parents, two new individuals are created by taking values from the 
parents.  The mutation operator in LEM3 is more complex.  
LEM3 effectively uses the semantics of different variable types, 
which are also used by the mutation operator.  For example, a 
random change of structured variables reflects represented 
hierarchies. 

2.5 The Representation Change Action 
Adjusting the representation space of solutions may include 
removing irrelevant variables, adjusting domains of variables, and 
creating new variables that are more relevant to the optimization 
problem. Although all three types of operations are being 
investigated in the LEM methodology, LEM3 currently 
implements only adjustment of attribute discretization. 

The program uses an adaptive discretization method that changes 
the attribute precision when it is required.  The method that is 
used by default is a version of Adaptive Anchoring Discretization 
(ANCHOR) [12], which discretizes continuous attributes with a 
granularity size changing in the process of evolution. The method 
starts with an initial very rough discretization. Once it starts 
converging toward a possible solution, the precision of numeric 
attributes is increased in the intervals suggested by the learned 
hypothesis. 

2.6 The Randomize Action 
This action adds randomly generated individuals to the new 
population, or replaces the entire population by a new, randomly 
generated population. The randomize action aims at adding 
diversity to the current population or to start the evolution from 
scratch.  It is applied when the program appears to be stuck at a 
local optimum, and needs to explore other parts of the search 
space.  Such a situation is detected by the no-progress condition, 
when learn & instantiate, mutation, cross-over, and discretization 
adjustments do not lead to the improvement of the current 
solution, and the solution need to be tested further before the 
evolutionary process ends.   New individuals are created either (1) 
randomly in the entire space, (2) randomly in the parts of the 
space that were not explored so far, or (3) randomly by 
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maximizing distance from the local optima found so far.  The first 
method is the simplest one, and is equivalent to a full restart of the 
LEM3 algorithm.  The second method requires keeping track of 
all values of attributes that appeared in past individuals, in order 
to distribute individuals over the parts of the space not yet 
explored.  The third method builds distributions based on a list of 
optima found so far.  Individuals that are farther from the found 
best solutions have a higher probability of being selected.  

3. EXPERIMENTAL RESULTS  
The goal of these experiments was to test the performance of 
LEM3, and compare its results with those obtained by other 
evolutionary computation methods, including the previous LEM 
implementation (LEM2), a conventional evolutionary algorithm 
(EA), cultural algorithms (CAs), and Estimation of Distribution 
Algorithms (EDAs).  In these experiments, LEM3, LEM2 and EA 
were applied to a group of benchmark function optimization 
problems.  To compare LEM3 with CAs and EDAs, LEM3 was 
applied to problems for which results from CAs and EDAs are 
available in the literature.  The problems involved optimization of 
the Rastrigin, Griewangk, and Rosenbrock functions of different 
numbers of variables, ranging from 2 to 1000, depending on 
compared programs.  These functions were chosen because they 
are frequently used for testing evolutionary algorithms.  They are 
described, for example, in [17]. 

EA is an implementation of a conventional, Darwinian-type 
evolutionary algorithm taken from library EO (Evolutionary 
Objects) 0.9.3a that can be downloaded from URL: 
http://eodev.sourceforge.net [4].  The EO library was selected 
because it contains an implementation of a Darwinian-type 
evolutionary algorithm that can work with large numbers of 
variables (we tried other programs, but they support far fewer 
variables), is well described in the available tutorial, and is easily 
downloadable from the internet. 

LEM3 and EA were applied to optimizing functions of between 
10 and 1000 variables. LEM2 was applied to optimizing functions 
of 10 and 100 variables (it does not work with 200 or more 
variables).  Each experiment involving LEM3, LEM2 and EA on 
optimizing a function of a given number of variables was repeated 
10 times with a different starting population.  To make a fair 
comparison, the same starting populations were used by each 
program. 

The LEM3, LEM2 and EA results are reported for 
δ
-close 

solutions, which are at a normalized distance from the optimal 
solution.  A δ -close solution, s, is a solution for which function δ
(s), defined as:  
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reaches an assumed δ -target value.  In this equation, init is the 
evaluation (“fitness value”) of the best solution in the initial 
population, opt is the globally optimal value, and v(s) is the 
evaluation of the found solution s.  Such a measure works for both 
maximization and minimization problems, that is, for problems in 
which the optimal solution reaches the maximal or the minimal 
value of performance evaluating function (the “fitness function). 

This definition of a δ -close solution suggests two possible ways of 
analyzing performance of evolutionary computation methods.  
One is to determine the evolution length, denoted FE(δ <=k), and 
defined as the smallest number of fitness function evaluations 

needed to achieve a solution, s for which δ (s) <= k, by the best 
individual in the population, where k is a number between 0 and 
1.  This is the main measure used to report results in this paper.  
The second way is to determine δ (s) for the best solution, s, found 
after a specified number of fitness evaluations.   

For example, if the fitness value of the best individual in the 
initial population is 10 and during the process of minimization the 
program achieved value 0.1, while the optimal value is 0, δ  is  
0.01, indicating that the program found a solution within 1% 
distance from the optimal solution, normalized by the fitness 
value of the best individual in the initial population.  Figure 5 
illustrates the concept of a δ -close solution.  
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Figure 5: Illustration of a δ -close solution. 

In the experiments, tested programs were compared using their 
default parameters.  This reflects real-world situations in which 
only one run of the optimization method is done, because the 
evaluation of the fitness function is very difficult. LEM3, LEM2 
and EA were executed with population size 100.  Both LEM3 and 
LEM2 used the ANCHOR adaptive discretization method.  An 
evolutionary speedup is defined as a ratio of evolution lengths of 
two programs for a given value of δ . 

EA was executed with the following parameters: the probability of 
mutation was 0.1, the probability of crossover was 0.6, and the 
selection method was tournament.  It used two types of crossover, 
standard, which creates new individuals by taking values form 
two parents, and hypercube crossover, which uniformly selects a 
point in the hypercube spanned by the two parent individuals (for 
details see website http://eodev.sourceforge.net). 

The authors will be glad to provide actual starting populations, 
programs, scripts used to run experiments, actual result files, and 
all other relevant information to those interested in reproducing 
the presented results or trying other methods. 

3.1 Function Optimization Problems 
Three well-known benchmark function optimization problems 
were used for testing LEM3 and comparing its performance with 
that of other methods. The first problem was to minimize the 
Rastrigin function defined by the following formula: 
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The function has a large number of local optima, and one global 
optimum equal to zero.  It is reached when all the variables equal 
zero.   

The second problem was to minimize the Griewangk function,  
defined by the following formula: 
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Similarly, this function has a large number of local optima, and 
one global minimum equal to zero, which is reached when all the 
variables equal zero.   

The third benchmark problem was to minimize the generalized 
Rosenbrock function, which is defined by the following formula: 

∑
−

=
+ −+−=

1

1

222
11 ))1()(*100(),...,(

n

i
iiin xxxxxf  

The function has one global optimum equal to zero.  It is reached 
when all the variables equal one.  The function has a ridge along 
the line for which values of all attributes are equal. 

We selected the three problems because they are well-known 
benchmark problems that are hard and scalable [17]. 

3.2 Comparing LEM3 with CA 
This section presents results from comparing results from LEM3 
with results from Cultural Algorithm, CA, on the Rastrigin, 
Griewangk, and Rosenbrock functions of 2, 3, and 5 variables. 
The comparison was limited to only such a small number of 
variables because only for these numbers were results from CAs 
reported in the literature [15].  Results are presented in Table 1. 
They are means of the results from 40 runs. 

To compute speedup, whose definition is based on the value of δ , 
we assumed that the best individuals in the initial populations 
used by the programs were the same, and to stopped LEM3 when 
it found any fitness value better than one found by CA.  The same 
assumptions were used when computing speedups for EDA in the 
next section.  The programs converged to very close fitness 
values, thus comparison of evolution lengths is meaningful. 

Table 1: Comparison of LEM3 with CA on the Rastrigin, 
Griewangk, and Rosenbrock functions. 

Function  
# vars. 

Method Best fitness 
Value 

Evolution 
Length 

LEM3/CA 
Speedup 

LEM3 0 687 Rastrigin 
5 vars. CA 5.4532e-05 ~500,000 

~728 

LEM3 0 1,521 Griewangk 
3 vars. CA 1.0E-10 ~79,900 

~53 

LEM3 0 219 Rosenbrock 
2 vars. CA 1.0e-10 ~53,200 

~243 

Table 1 presents the best results obtained by different variants of 
cultural algorithms, as reported in [15].  As can been seen, LEM3 
very significantly outperformed CA: over 700 times for the 
Rastrigin function, almost 250 times for the Rosenbrock function, 
and over 50 times for the Griewangk function.  Moreover, in all 
cases, LEM3 found exact solutions (δ =0), while CAs found only 
approximate solutions, as reported in [15].  

3.3 Comparing LEM3 with EDA 
This section presents a comparison of LEM3 with different 
implementations of Estimation of Distribution Algorithm (EDA) 
reported in [1]. Only the best result from different version of EDA 
is presented.  The result was obtained using EMNAglobal, an EDA 
method based on multivariate normal distribution.  For a detailed 
description of the method, refer to [7]. We used reported results 
on the Griewangk and Rosenbrock functions of 10 and 50 
variables.  The presented values are mean for 10 runs.  

Table 2: Comparison of LEM3 with EDA on the Rastrigin, 
Griewangk, and Rosenbrock functions. 

Function  
# vars. 

Method Best fitness 
Value 

Evolution 
Length 

LEM3/EDA 
Speedup 

LEM3 0 1,305 Griewangk 
10 vars. EDA 0.051166 301,850 

~ 231 

LEM3 0 4,005 Griewangk 
50 vars. EDA 8.7673E-6 216,292 

~ 54 

LEM3 1.2 1,389 Rosenbrock 
10 vars. EDA 8.6807 164,519 

~ 118 

LEM3 46.74 7,875 Rosenbrock 
50 vars. EDS 48.8234 275,663 

~ 15 

LEM3 outperformed the compared EDA for both functions of 10 
and 50 variables,  LEM3 was in average about 174.5 times faster 
for 10 variables, and about 34.5 times faster for 50 variables when 
compared with results reported [1].  The presented results are 
preliminary and further investigation is needed to fully compare 
the methods especially for larger numbers of variables. 

3.4 Comparing LEM3 with LEM2 and EA 
This section presents results from comparing LEM3 with LEM2, 
the previous implementation of Learnable Evolution Model, and 
EA representing Darwinian-type method on the above three 
function optimization problems.  It is important to note that in all 
experiments with LEM3, LEM2 and EA, the default parameter 
settings were used and none of the program parameters were fine-
tuned to achieve better results.  In real world problems, especially 
in solving hard optimization problems, there is frequently only 
one run of the method made, because of the high cost (time or 
difficulty) of evaluating fitness.  In such cases the users cannot 
change parameters and try again.  For comparison purposes all 
experiments were repeated 10 times with different starting 
populations which were the same for all programs. 

The comparative results of LEM3, LEM2 and EA for the 
Rastrigin, Griewangk, and Rosenbrock functions for δ =0.1- and δ =0.01-close solutions are presented in Tables 3 - 8.  The 
presented results show the superiority of LEM3 over other 
compared programs in terms of the evolution length (the number 
of fitness function evaluations needed to achieve a δ -close 
solution).  The speedup LEM3/EA varied for different problems. 
The average speedup LEM3/EA was about 16.5 times for 
functions of 100 or more variables for δ =0.1 and δ =0.01. 

A very important result of the experiments was that the 
evolutionary speedup of LEM3 over the Darwinian-type method, 
EA, usually grew with the number of variables of the tested 
functions up to about 500-1000 variables, depending on the type 
of function being optimized, and then tended to stabilize. This 
feature makes LEM3 particularly attractive for optimizing 
complex systems with large number of controllable variables 
when the fitness evaluation is non-trivial, time consuming or 
costly.  The reason for speedup stabilization at very high numbers 
of variables is hypothesized in the Summary.   
A question arises as to whether LEM3 has advantage over EA and 
other programs also in terms of execution time. A simple 
experiment demonstrated that whenever evaluation of fitness 
function takes longer than a small fraction of second, the 
increased computational time of hypothesis formulation and 
instantiation is compensated by the shorter evolutionary length, 
and LEM3 wins also in terms of execution time [20]. 
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Table 3: LEM3. LEM2 and EA evolution length and speedup 
on optimizing Rastrigin function for δ =0.1. 

   Evolution Length for δ =0.1 # of 
Variables LEM2 EA LEM3 

LEM3/EA 
Speedup 

10 374 2,673 415 ~4 
100 2,451 28,402 2,270 ~13 
200 -- 56,465 3,302 ~17 
300 -- 82,809 4,113 ~20 
400 -- 106,687 4,820 ~22 
500 -- 128,184 5,252 ~24 
600 -- 152,291 5,652 ~27 
700 -- 184,172 6,053 ~28 
800 -- 191,768 6,440 ~30 
900 -- 208,246 7,491 ~28 

1000 -- 244,408 7,481 ~33 

Table 4: LEM3, LEM2 and EA evolution length and speedup 
on optimizing Rastrigin function for δ =0.01. 

Evolution Length for δ =0.01 # of 
Variables LEM2 EA LEM3 

LEM3/EA 
Speedup 

10 8,59 12,419 1,000 ~12 
100 6,723 114,445 5,298 ~22 
200 -- 283,523  7,705 ~37 
300 -- 409,591 10,471 ~39 
400 -- 584,363 12,708 ~46 
500 -- 631,218 16,195 ~40 
600 -- 727,158 22,173 ~33 
700 -- 1,134,610 26,375 ~43 
800 -- 884,545 30,124 ~29 
900 -- 1,214,476 37,026 ~33 

1000 -- 1,418,323 43,090 ~33 

Table 5: LEM3 and EA evolution length and speedup on 
optimizing Griewangk function, δ =0.1. 

Evolution Length for δ =0.1 # of 
Variables EA LEM3 

LEM3/EA
Speedup 

10 2,579 268 ~10 
100 24,611 1,797 ~14 
200 50,145 2,985 ~17 
300 75,345 4,370 ~17 
400 101,810 5,401 ~19 
500 126,057 6,547 ~19 
600 151,382 7,227 ~21 
700 177,221 8,161 ~22 
800 202,317 9,001 ~22 
900 226,499 9,959 ~23 

1000 251,233 10,780 ~23 

Table 6: LEM3, and EA evolution length and speedup on 
optimizing Griewangk function, δ =0.01. 

Evolution Length for δ =0.01 # of   
EA LEM3 

LEM3/EA 

10 7,367 3,223 ~2 
100 52,632 10,486 ~5 
200 105,453 20,003 ~5 
300 157,320 29,799 ~5 
400 211,341 40,215 ~5 
500 263,801 51,564 ~5 
600 314,888 59,881 ~5 
700 369,915 72,437 ~5 
800 422,357 86,017 ~5 
900 473,310 97,606 ~5 

1000 525,096 112,600 ~5 

Table 7: LEM3, LEM2 and EA evolution length and speedup 
on optimizing Rosenbrock function for δ =0.1. 

Evolution Length for δ =0.1 # of 
Variables LEM2 EA LEM3 

LEM3/EA 
Speedup 

10 275 541 325 ~2 
100 918 3,367 1,906 ~2 
200 -- 5,699 2,625 ~2 
300 -- 8,547 3,518 ~2 
400 -- 11,690 4,038 ~3 
500 -- 14,960 4,519 ~3 
600 -- 15,606 5,013 ~3 
700 -- 19,448 5,491 ~4 
800 -- 22,731 5,710 ~4 
900 -- 25,216 6,835 ~4 

1000 -- 28,468 6,851 ~4 

Table 8: LEM3, LEM2 and EA evolution length and speedup 
on optimizing Rosenbrock function for δ =0.01. 

Evolution Length for δ =0.01 # of 
Variables LEM2 EA LEM3 

LEM3/EA 
Speedup 

10 492 2,027 682 ~3 
100 2,348 26,944 3,495 ~8 
200 -- 57,588 4,922 ~12 
300 -- 89,280 6,158 ~18 
400 -- 120,056 9,872 ~12 
500 -- 145,984 12,655 ~12 
600 -- 178,358 15,951 ~11 
700 -- 209,274 16,931 ~12 
800 -- 234,348 22,843 ~10 
900 -- 259,168 25,065 ~10 

1000 -- 296,879 29,691 ~10 
 

4. SUMMARY 
The presented LEM3 system is the most advanced implementation 
of the Learnable Evolution Model to date and it employs the most 
recent AQ-type learning program.  In some aspects, the algorithms 
implemented in LEM3 go beyond the methodology described in 
[10]. For example, LEM3 introduces the Action Profiling 
Function and new instantiation algorithms.  

An experimental application of LEM3 to very complex function 
optimization problems (with up to 1000 variables) achieved a 
superior performance over EA, a standard Darwinian-type 

method.  Comparisons with published results on Estimation of 
Distribution Algorithms, and Cultural Algorithms also show a 
clear superiority of LEM3.  LEM3 showed a high scalability that 
could not be achieved with previous implementations.  Extensive 
experiments with LEM3 thus have confirmed that it is a powerful 
new optimization system that outperforms other evolutionary 
computation systems  in terms of evolution length (number of 
fitness evaluations) and in terms of the expressiveness of the 
language it offers for describing individuals in a population  (due 
to a wide range of attribute types individually handled by LEM3). 
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Our research also revealed a weakness of the current LEM3 
implementation in the case of optimizing functions with very large 
numbers of variables.  When the number of variables is very large 
(usually above 500-1000, depending on the optimized function) 
the speed up of LEM3 over EA starts to level out or even 
decrease.  While a conclusive explanation of this phenomenon 
awaits more research, we believe that it is due to the fact that at 
the end-phase of the LEM3 process in problems with the 
increasing number of variables, the number of variables that are 
instantiated semi-randomly, rather than from rules, is also 
increasing.  This means that at that phase, the role of learning is 
strongly diminishing and LEM3 is increasingly behaving like a 
Darwinian-type algorithm.  While the above problem is a worthy 
challenge for further research on the LEM methodology, it should 
be mentioned that most practical problems have fewer variables 
than 500. Future research will investigate theoretical aspects of 
the LEM methodology, such as its complexity, convergence 
speed, and areas of applicability for which it is the most suitable.   

Based on many experiments performed, one can draw one general 
conclusion that the LEM methodology can be particularly 
advantageous in the application areas in which fitness evaluation 
is time consuming or costly.   
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