
 1

The LEM3 Implementation of Learnable Evolution Model
and Its Testing on Complex Function Optimization Problems

Janusz Wojtusiak and Ryszard S. Michalski*
George Mason University

4400 University Drive MSN 5B2
Fairfax, VA 22030 USA

(*) Also with Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

{jwojt, michalski}@mli.gmu.edu

ABSTRACT1
Learnable Evolution Model (LEM) is a form of non-Darwinian
evolutionary computation that employs machine learning to guide
evolutionary processes. Its main novelty are new type of operators
for creating new individuals, specifically, hypothesis generation,
which learns rules indicating subareas in the search space that
likely contain the optimum, and hypothesis instantiation, which
populates these subspaces with new individuals. This paper
briefly describes the newest and most advanced implementation of
learnable evolution, LEM3, its novel features, and results from its
comparison with a conventional, Darwinian-type evolutionary
computation program (EA), a cultural evolution algorithm (CA),
and the estimation of distribution algorithm (EDA) on selected
function optimization problems (with the number of variables
varying up to 1000). In every experiment, LEM3 outperformed
the compared programs in terms of the evolution length (the
number of fitness evaluations needed to achieved a desired
solution), sometimes more than by one order of magnitude.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Concept Learning,
Induction, G.1.6 [Optimization].

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords
Evolutionary Computation, Learnable Evolution Model, Function
Optimization, Machine Learning

1. INTRODUCTION
Research on non-Darwinian evolutionary computation is
concerned with developing algorithms in which the creation of
new individuals in the population is guided by an “intelligent
agent,” rather than done merely by random or semi-random
change operators, such as mutation and/or crossover, employed in
the “Darwinian-type” evolutionary methods. The selection of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO'06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

individuals for the new generation from among those generated by
the intelligent agent can be done using standard methods of
selection, or can also engage such an agent.

The Learnable Evolution Model (LEM), introduced in [9, 10],
and the topic of this paper, employs a learning program for
directing the process of creating new individuals. Specifically, at
each step of evolution, the method creates general hypotheses
indicating regions in the search space that likely contain the
optimal solution (or alternative optimal solutions), and then
instantiates these hypotheses to generate new individuals. Early
implementations of the model, LEM1 and LEM2, gave very
promising results on selected function problems (e.g., [9], [2]).
We have also developed domain-oriented implementations,
ISHED and ISCOD, that were tailored to problems of optimizing
heat exchanger designs. They also produced highly satisfactory
results, as they generated designs that matched or improved upon
human designs [3].

An implementation of Learnable Evolution Model for Multi-
objective Optimization, LEMMO, developed independently [5], is
based on rules derived from decision trees learned by the C4.5
program. LEMMO was recently applied to a water quality
optimization problem. The decision tree representation of the
hypotheses is, however, significantly more limited than the
attributional rule representation in LEM implementations, and is
also more difficult to instantiate.

Work related to LEM includes research on cultural algorithms
[15, 16], which use additional information about solutions to
guide mutation and recombination operators. The cultural
algorithms perform a constrained optimization process in which
constraints are created during the evolutionary computation. The
constraints, called beliefs, reside in a belief space that is updated
during the evolution process. Individuals that are stored in an
optimization space are modified so that they satisfy the beliefs.
The belief space is built based on statistical information about
individuals, which usually consists of intervals containing the
fittest individuals.

Other related work concerns Estimation of Distribution
Algorithms (EDAs), methods that use statistical inference, usually
Bayesian or Gaussian networks, to generate distributions of high-
performing individuals selected from one population [7, 8, 13,
14]. LEM significantly differs from EDAs, however, as it
employs symbolic learning rather than statistical methods, and
seeks rules for distinguishing between high- and low-performing
individuals, while EDAs seldom use contrast sets. It also uses the
fitness function not only for selecting individuals for learning but
also during the learning process itself, while most EDAs use it

 2

solely for selecting individuals; an exception is a method
described in [13]. LEM does this by learning significance-based
descriptions.

This paper describes briefly LEM3, the latest and most advanced
implementation, and its comparative evaluation on a range of
function optimization problems. LEM3 employs the most recent
AQ-type learning program, AQ21 [5], and includes several
significant improvements over earlier versions. These include the
abilities to represent solutions using a wide range of different
attribute types, to take into consideration these types in the
hypothesis formation process, to control this process according to
the problem at hand, as well as new methods for selecting
different actions (modes) in the process of evolutionary
computation, and to instantiate hypotheses in several new ways.

2. DESCRIPTION OF LEM3
This section describes the top-level structure of LEM3. It
contains several components that are also found in traditional
evolutionary algorithms, such as generation of an initial
population, selection of individuals for a new population, and
evaluation of individuals.

Components that are unique to LEM3 are concerned with guiding
evolutionary computation through machine learning. This is done
by selecting at each step of evolution the highest and lowest
performing individuals in the population, the H- group and L-
group, respectively, and then employing the AQ21 learning
program to generate a hypothesis that differentiates between the
two groups. The hypothesis is then instantiated in various ways to
generate new individuals. Figure 1 presents the top-level
algorithm underlying LEM3.

Start

Evaluate Individuals

Stop LEM3

Generate Initial Population

Select Parent Population

Select Action or Compatible Actions

Adjust

Representation

Learn &

Instantiate
RandomizeProbe

Figure 1: The top-level structure of LEM3.

The following sections describe algorithms underlying the major
LEM3 components.

2.1 Evaluate Individuals
This component determines the value of the fitness function for
every individual in the population. This may be a simple
operation if the fitness is defined by a mathematical formula. In
many applications, however, fitness evaluation may require a time

consuming or costly process of running a simulator, solving a set
of complex equations, or even performing an experiment. Such
situations occur, for example, when designing heat exchangers
[3], optimal non-linear filters, and aircraft wing shapes.

Due to the capabilities of the AQ21 learning program, LEM3
allows a user to describe individuals (problem solutions) and the
fitness function in terms of not only numeric attributes, but also in
terms of other attribute types, such as nominal, rank, cyclic (e.g.,
days of the week), structured (representing hierarchies), interval,
and ratio [11]. Thus, one does not need to design an ad-hoc
attribute encoding, as sometimes done, for example, in genetic
algorithms, but instead can directly use attributes as specified in
problem definition. This feature extends LEM3’s applicability to
domains in which individuals are characterized by a combination
of qualitative and qualitative properties. For example, when
optimizing the design of a physical device, attributes
characterizing it may include numerical ones that describe its
length, width, height, as well as symbolic ones that characterize
the material it is made of (structured) or modes of operations
(nominal).

2.2 Select Parent Population
Once individuals are evaluated, a new population is created by
combining new individuals and individuals from the old
population. In general, the creation of the new population
involves two steps: (1) creation of a (possibly large) temporary
population and (2) selection of individuals from it into the new
population.

The temporary population consists of all newly created
individuals and also, depending on parameters, individuals from
the old population. If the number of created individuals is smaller
than the desired population size, the program selects individuals
from the previous population to meet the target population size. It
is usually convenient to add all individuals from the previous
population into the temporary group. This way, there is no need
to keep track of past populations for more than one iteration,
because they were already represented in previous steps.

Individuals are selected from the temporary population into the
new population using methods developed in evolutionary
computation. LEM3 implemented three methods: selection of the
best individuals, also known as rank-based selection; tournament
selection; and proportional selection, also known as roulette
wheel selection. At the end of the selection process, a new
population is created that serves as the parent population for the
next steps. LEM3 also keeps an elite consisting of one or more
(depending on the elite-size parameter) individuals with the
highest score of the fitness function. Note that using rank-based
selection from the temporary population guarantees elitism.

2.3 Select One or More Actions
The next step is to choose and apply an action to create new
individuals from the parent population. As shown in Figure 1,
these actions include learn and instantiate, probe, adjust
representation and randomize. Which action or combination of
actions is performed is decided by the “Select Action or
Compatible Actions” module, which uses an Action Profiling
Function (APF) introduced in LEM3.

 3

How does the “Select Action or Compatible Actions” decide
which action to perform? Initially, by default, it selects the
“Learn and Instantiate” action. When after a number of iterations
no progress is observed, as defined by the learn-probe and learn-
threshold parameters, the program switches to the “Probe” action
which is applied once and program returns to “Learn and
Instantiate” mode. The learn-probe parameter defines the
maximum number of iterations the action is performed even if the
progress is unsatisfactory, as defined by learn-threshold
parameter, which specifies the minimal improvement of fitness
value of the best individual to accept progress as satisfactory. The
program counts how many times the “Probe” action was applied,
and if the number reaches mutation-probe, it switches to the
“adjust representation” action, which is applied once before
returning to “Learn and Instantiate”. Representation-probe sets a
limit on the number of times the representation is adjusted before
switching to the “Randomize” action and randomly generating
new individuals. Figure 2 presents pseudocode describing the
above process.

Increment learn-probe-counter
If learn-probe-counter >= learn-probe

Learn-probe-counter = 0
If mutation-probe-counter < mutation-probe

Increment mutation-probe-counter
Mutate individuals (Probe)

Else if representation-probe-counter < representation-probe
Increase representation-probe-counter
Mutation-probe-counter = 0
Adjust discretization
Mutate individuals

Else if randomize- counter < randomize-Probe
Increment randomize-probe-counter
Representation-probe-counter = 0
Mutation-probe-counter = 0
Rollback discretization
Add the best individuals to a list of local optima

 Randomize
Else

Stop LEM3
Figure 2: Pseudocode describing action selection in LEM3.

The chosen order of mutation, adjust representation, and
randomize operations is deliberate. Mutation is performed in
order to introduce diversity into a population and assure that the
program does not get stuck near a local or global optimum.

The latter situation may occur when the learning program cannot
learn hypotheses because the training set is uniform, and thus can
not create different H- and L-groups. Next, the precision of the
representation of individuals is increased by adjusting
discretization. If the increase in precision not does help, it may
mean that the program has found an optimum. However, the
optimum may be local, so it is desirable to perform additional
iterations with new, randomly generated populations in order to
explore different parts of the search space and test the found best
solution for optimality. The above four actions are explained in
greater detail in the following sections.

2.3 Learn and Instantiate Action
The “Learn and Instantiate” action is the most important
component of the Learnable Evolution Model. This action creates

new individuals by performing three steps: (1) selecting the
training set for the learning program (2) learning a hypothesis
characterizing subspaces that likely contain the optimum, and (3)
instantiating the hypothesis in various ways to create new
individuals.

Step (1) selects high-performing (H-group) and low-performing
(L-group) individuals from the population, according to the given
fitness function. These individuals serve as positive and negative
examples, respectively, for the AQ21 learning program. There are
two methods of creating these groups. The first one, Fitness-
Based Selection, employs high and low fitness thresholds in the
range from the highest to the lowest fitness value observed in the
current population. For example, if High and Low Fitness
Thresholds (HFT and LFT) are chosen to be 25%, then
individuals whose fitnesses are in the highest 25% of the range
and the lowest 25% of the range are included in the H-group and
L-group, respectively. The second method, Population-Based
Selection, selects a specified percentage of individuals from the
population for each group, regardless of the distribution of fitness
values. These percentages are defined by the High Population
Threshold (HPT) and Low Population Threshold (LPT). For
example, if HPT and LPT are both 30%, then the 30% of the
individuals with the highest fitness and the 30% with the lowest
fitness are included in the H- and L-group, respectively.

The H- and L-groups are then passed as positive and negatives
examples to a learning program, which in LEM3 is AQ21. This
program is the newest implementation of the AQ learning, an
inductive learning method that produces hypotheses in the form of
sets of attributional rules[13]. The simplest form of such a rule is:

CONSEQUENT � PREMISE
where CONSEQUENT and PREMISE are conjunctions of
attributional conditions (a.k.a. selectors). An attributional
condition defines a relation between an attribute and attribute
values that satisfy that condition. Here is an example of an
attributional rule:

[design = acceptable] � [weight = 2..5] &
[shape= rhombus v triangle] &
[height < 3]

The rule states that a design is classified as acceptable if its weight
is between 2 and 5, its shape is rhombus or triangle, and its height
is less than 3 (units of weight and height are defined in the
attribute domain).

A hypotheses learned by AQ21 usually consist of a number of
such rules. This representation of a hypothesis is very useful for
LEM, because such individual rules can be easily instantiated.
They are also have high expressive power and are easy to interpret
and understand.

The main operator used for generating rules in AQ is extension-
against. Provided with a positive example, called a seed, and a
negative example, this operator generates a partial star, which is
defined as the set of maximal generalizations of the seed that do
not cover the negative example. The intersection of all partial
stars of the seed against every negative example is called a star,
which is a set of maximal generalizations of the seed that do not
cover any negative example. In order to prevent the exponential
growth to the size of the star, AQ employs a beam search that
limits the number of generalizations (single attributional rules)
that are retained for the next step from each extension-against and
intersection operation. AQ selects the best rule from the generated

 4

star, and selects a new seed from positive examples uncovered by
the previously selected rules. This process continues until all
positive examples are covered. Such an algorithm guarantees that
the learned ruleset is complete and consistent with regard to the
training data, provided that training examples are consistent (do
not represent more than one class simultaneously). Figure 3
presents the basic AQ algorithm in pseudocode.

HYPOTHESIS = null
While not all H-group examples are covered
 Select uncovered positive example e+ and use it as a seed
 Generate star G(e+, L-group)
 Select the best rule, R, from the star according to a given

criterion of optimality, and add it to HYPOTHESIS
 Remove examples covered by R from H-group
Figure 3: Pseudocode of the basic form of the AQ algorithm.

The best rule is selected from a star using a Lexicographical
Evaluation Function (LEF) that combines several elementary
criteria, as specified by the user [18]. For further details on AQ
learning and some of its more extended forms, see, e.g. [6].

The instantiation process (Step 3) generates new individuals that
satisfy the learned hypothesis. When instantiating a rule to create
an individual for the new population, the program faces two
problems: (a) which values to assign to attributes that are
specified in the rule (b) which values to assign to attributes not
present in the rule. Depending on the attribute type and user-
defined parameters, different probability distributions can be used
to select values for the attributes specified in the rule. This can be
done, for example, using uniform distribution over ranges of
values in the rules, a normal distribution for numerical attributes
with the mean in the middle of the range and the variance defined
by the user, or a distribution that rewards individuals maximally
distant from the closest negative example.

Selection of values of attributes not specified in the rule is a more
intricate problem that can have many different solutions. One
way is to select a random value from the entire attribute domain,
which will result in individuals consistent with the rule; however,
it is easy to show cases in which this method will lead to poor
results. For instance, assume that we are optimizing a function
with two attributes x and y. Both attributes are continuous and
defined on the range -5 to 5. Suppose that the function optimum is
at the point (0, 0), and that AQ21 learned a rule [x = 0]. The
method will generate individuals with x = 0, and with y
distributed over the range [-5, 5]. In the next iteration, AQ21 will
learn rules containing only the attribute y, since there is no longer
any differentiation among the x-values. During the instantiation
phase, the program will now assign values of the attribute x
randomly, which means that the information from the previous
iteration is lost. Such a process will thus not converge to the
optimal solution.

Another method is to select a value from a randomly selected
existing individual. The individual can be selected from the H-
group only, from non-L-group individuals, or from the entire past
population. Experiments have shown that when selecting values
from the H-group, the program tends to lose diversity of
individuals, and may converge very quickly to a point that may
not the globally optimal solution. The default method used by
LEM3 selects individuals from the whole population
probabilistically, in proportion to their fitness levels. A

pseudocode of the instantiation algorithm used in LEM3 is
presented in Figure 4.

For each rule in a ruleset (hypothesis) to be instantiated
Compute the number of individuals to be created
For each individual to be created

Create the individual
For each attribute

If the attribute is specified in the rule
Select a random value satisfying the rule

 Else Select a random individual from the previous
population and use its value
Figure 4: Basic instantiation algorithm.

2.4 The Probe Action
The probe action executes Darwinian-type operators in order to
generate new individuals. Two probing operators are implemented
in LEM3, namely, mutation and crossover. Because in LEM3
representation of variables depends on their type, and individuals
may be built of variables of many types, the crossover operator is
based on selection of whole attributes’ values. After selecting two
parents, two new individuals are created by taking values from the
parents. The mutation operator in LEM3 is more complex.
LEM3 effectively uses the semantics of different variable types,
which are also used by the mutation operator. For example, a
random change of structured variables reflects represented
hierarchies.

2.5 The Representation Change Action
Adjusting the representation space of solutions may include
removing irrelevant variables, adjusting domains of variables, and
creating new variables that are more relevant to the optimization
problem. Although all three types of operations are being
investigated in the LEM methodology, LEM3 currently
implements only adjustment of attribute discretization.

The program uses an adaptive discretization method that changes
the attribute precision when it is required. The method that is
used by default is a version of Adaptive Anchoring Discretization
(ANCHOR) [12], which discretizes continuous attributes with a
granularity size changing in the process of evolution. The method
starts with an initial very rough discretization. Once it starts
converging toward a possible solution, the precision of numeric
attributes is increased in the intervals suggested by the learned
hypothesis.

2.6 The Randomize Action
This action adds randomly generated individuals to the new
population, or replaces the entire population by a new, randomly
generated population. The randomize action aims at adding
diversity to the current population or to start the evolution from
scratch. It is applied when the program appears to be stuck at a
local optimum, and needs to explore other parts of the search
space. Such a situation is detected by the no-progress condition,
when learn & instantiate, mutation, cross-over, and discretization
adjustments do not lead to the improvement of the current
solution, and the solution need to be tested further before the
evolutionary process ends. New individuals are created either (1)
randomly in the entire space, (2) randomly in the parts of the
space that were not explored so far, or (3) randomly by

 5

maximizing distance from the local optima found so far. The first
method is the simplest one, and is equivalent to a full restart of the
LEM3 algorithm. The second method requires keeping track of
all values of attributes that appeared in past individuals, in order
to distribute individuals over the parts of the space not yet
explored. The third method builds distributions based on a list of
optima found so far. Individuals that are farther from the found
best solutions have a higher probability of being selected.

3. EXPERIMENTAL RESULTS
The goal of these experiments was to test the performance of
LEM3, and compare its results with those obtained by other
evolutionary computation methods, including the previous LEM
implementation (LEM2), a conventional evolutionary algorithm
(EA), cultural algorithms (CAs), and Estimation of Distribution
Algorithms (EDAs). In these experiments, LEM3, LEM2 and EA
were applied to a group of benchmark function optimization
problems. To compare LEM3 with CAs and EDAs, LEM3 was
applied to problems for which results from CAs and EDAs are
available in the literature. The problems involved optimization of
the Rastrigin, Griewangk, and Rosenbrock functions of different
numbers of variables, ranging from 2 to 1000, depending on
compared programs. These functions were chosen because they
are frequently used for testing evolutionary algorithms. They are
described, for example, in [17].

EA is an implementation of a conventional, Darwinian-type
evolutionary algorithm taken from library EO (Evolutionary
Objects) 0.9.3a that can be downloaded from URL:
http://eodev.sourceforge.net [4]. The EO library was selected
because it contains an implementation of a Darwinian-type
evolutionary algorithm that can work with large numbers of
variables (we tried other programs, but they support far fewer
variables), is well described in the available tutorial, and is easily
downloadable from the internet.

LEM3 and EA were applied to optimizing functions of between
10 and 1000 variables. LEM2 was applied to optimizing functions
of 10 and 100 variables (it does not work with 200 or more
variables). Each experiment involving LEM3, LEM2 and EA on
optimizing a function of a given number of variables was repeated
10 times with a different starting population. To make a fair
comparison, the same starting populations were used by each
program.

The LEM3, LEM2 and EA results are reported for
δ
-close

solutions, which are at a normalized distance from the optimal
solution. A δ -close solution, s, is a solution for which function δ
(s), defined as:

initopt

svopt
s

−
−

=
)(

)(δ

reaches an assumed δ -target value. In this equation, init is the
evaluation (“fitness value”) of the best solution in the initial
population, opt is the globally optimal value, and v(s) is the
evaluation of the found solution s. Such a measure works for both
maximization and minimization problems, that is, for problems in
which the optimal solution reaches the maximal or the minimal
value of performance evaluating function (the “fitness function).

This definition of a δ -close solution suggests two possible ways of
analyzing performance of evolutionary computation methods.
One is to determine the evolution length, denoted FE(δ <=k), and
defined as the smallest number of fitness function evaluations

needed to achieve a solution, s for which δ (s) <= k, by the best
individual in the population, where k is a number between 0 and
1. This is the main measure used to report results in this paper.
The second way is to determine δ (s) for the best solution, s, found
after a specified number of fitness evaluations.

For example, if the fitness value of the best individual in the
initial population is 10 and during the process of minimization the
program achieved value 0.1, while the optimal value is 0, δ is
0.01, indicating that the program found a solution within 1%
distance from the optimal solution, normalized by the fitness
value of the best individual in the initial population. Figure 5
illustrates the concept of a δ -close solution.

opt

init

v| i
ni

t –
op

t |

| v
 –

op
t |

n0

k
optinit

optv
v =

−
−

=)(δ

nkFE ==)(δ

Value of the fitness
function of the best
individual

Number of fitness function evaluations

Program reached δ
=k-close solution

Figure 5: Illustration of a δ -close solution.

In the experiments, tested programs were compared using their
default parameters. This reflects real-world situations in which
only one run of the optimization method is done, because the
evaluation of the fitness function is very difficult. LEM3, LEM2
and EA were executed with population size 100. Both LEM3 and
LEM2 used the ANCHOR adaptive discretization method. An
evolutionary speedup is defined as a ratio of evolution lengths of
two programs for a given value of δ .

EA was executed with the following parameters: the probability of
mutation was 0.1, the probability of crossover was 0.6, and the
selection method was tournament. It used two types of crossover,
standard, which creates new individuals by taking values form
two parents, and hypercube crossover, which uniformly selects a
point in the hypercube spanned by the two parent individuals (for
details see website http://eodev.sourceforge.net).

The authors will be glad to provide actual starting populations,
programs, scripts used to run experiments, actual result files, and
all other relevant information to those interested in reproducing
the presented results or trying other methods.

3.1 Function Optimization Problems
Three well-known benchmark function optimization problems
were used for testing LEM3 and comparing its performance with
that of other methods. The first problem was to minimize the
Rastrigin function defined by the following formula:

))**2cos(*10(*10),...,(
1

2
1 i

n

i
in xxnxxf ∑

=

−+= π

The function has a large number of local optima, and one global
optimum equal to zero. It is reached when all the variables equal
zero.

The second problem was to minimize the Griewangk function,
defined by the following formula:

 6

∏∑
==

−+=
n

i

n

i

i
n ix

x
xxf

1
1

1
1)/cos(

4000
1),...,(

Similarly, this function has a large number of local optima, and
one global minimum equal to zero, which is reached when all the
variables equal zero.

The third benchmark problem was to minimize the generalized
Rosenbrock function, which is defined by the following formula:

∑
−

=
+ −+−=

1

1

222
11))1()(*100(),...,(

n

i
iiin xxxxxf

The function has one global optimum equal to zero. It is reached
when all the variables equal one. The function has a ridge along
the line for which values of all attributes are equal.

We selected the three problems because they are well-known
benchmark problems that are hard and scalable [17].

3.2 Comparing LEM3 with CA
This section presents results from comparing results from LEM3
with results from Cultural Algorithm, CA, on the Rastrigin,
Griewangk, and Rosenbrock functions of 2, 3, and 5 variables.
The comparison was limited to only such a small number of
variables because only for these numbers were results from CAs
reported in the literature [15]. Results are presented in Table 1.
They are means of the results from 40 runs.

To compute speedup, whose definition is based on the value of δ ,
we assumed that the best individuals in the initial populations
used by the programs were the same, and to stopped LEM3 when
it found any fitness value better than one found by CA. The same
assumptions were used when computing speedups for EDA in the
next section. The programs converged to very close fitness
values, thus comparison of evolution lengths is meaningful.

Table 1: Comparison of LEM3 with CA on the Rastrigin,
Griewangk, and Rosenbrock functions.

Function
vars.

Method Best fitness
Value

Evolution
Length

LEM3/CA
Speedup

LEM3 0 687 Rastrigin
5 vars. CA 5.4532e-05 ~500,000

~728

LEM3 0 1,521 Griewangk
3 vars. CA 1.0E-10 ~79,900

~53

LEM3 0 219 Rosenbrock
2 vars. CA 1.0e-10 ~53,200

~243

Table 1 presents the best results obtained by different variants of
cultural algorithms, as reported in [15]. As can been seen, LEM3
very significantly outperformed CA: over 700 times for the
Rastrigin function, almost 250 times for the Rosenbrock function,
and over 50 times for the Griewangk function. Moreover, in all
cases, LEM3 found exact solutions (δ =0), while CAs found only
approximate solutions, as reported in [15].

3.3 Comparing LEM3 with EDA
This section presents a comparison of LEM3 with different
implementations of Estimation of Distribution Algorithm (EDA)
reported in [1]. Only the best result from different version of EDA
is presented. The result was obtained using EMNAglobal, an EDA
method based on multivariate normal distribution. For a detailed
description of the method, refer to [7]. We used reported results
on the Griewangk and Rosenbrock functions of 10 and 50
variables. The presented values are mean for 10 runs.

Table 2: Comparison of LEM3 with EDA on the Rastrigin,
Griewangk, and Rosenbrock functions.

Function
vars.

Method Best fitness
Value

Evolution
Length

LEM3/EDA
Speedup

LEM3 0 1,305 Griewangk
10 vars. EDA 0.051166 301,850

~ 231

LEM3 0 4,005 Griewangk
50 vars. EDA 8.7673E-6 216,292

~ 54

LEM3 1.2 1,389 Rosenbrock
10 vars. EDA 8.6807 164,519

~ 118

LEM3 46.74 7,875 Rosenbrock
50 vars. EDS 48.8234 275,663

~ 15

LEM3 outperformed the compared EDA for both functions of 10
and 50 variables, LEM3 was in average about 174.5 times faster
for 10 variables, and about 34.5 times faster for 50 variables when
compared with results reported [1]. The presented results are
preliminary and further investigation is needed to fully compare
the methods especially for larger numbers of variables.

3.4 Comparing LEM3 with LEM2 and EA
This section presents results from comparing LEM3 with LEM2,
the previous implementation of Learnable Evolution Model, and
EA representing Darwinian-type method on the above three
function optimization problems. It is important to note that in all
experiments with LEM3, LEM2 and EA, the default parameter
settings were used and none of the program parameters were fine-
tuned to achieve better results. In real world problems, especially
in solving hard optimization problems, there is frequently only
one run of the method made, because of the high cost (time or
difficulty) of evaluating fitness. In such cases the users cannot
change parameters and try again. For comparison purposes all
experiments were repeated 10 times with different starting
populations which were the same for all programs.

The comparative results of LEM3, LEM2 and EA for the
Rastrigin, Griewangk, and Rosenbrock functions for δ =0.1- and δ =0.01-close solutions are presented in Tables 3 - 8. The
presented results show the superiority of LEM3 over other
compared programs in terms of the evolution length (the number
of fitness function evaluations needed to achieve a δ -close
solution). The speedup LEM3/EA varied for different problems.
The average speedup LEM3/EA was about 16.5 times for
functions of 100 or more variables for δ =0.1 and δ =0.01.

A very important result of the experiments was that the
evolutionary speedup of LEM3 over the Darwinian-type method,
EA, usually grew with the number of variables of the tested
functions up to about 500-1000 variables, depending on the type
of function being optimized, and then tended to stabilize. This
feature makes LEM3 particularly attractive for optimizing
complex systems with large number of controllable variables
when the fitness evaluation is non-trivial, time consuming or
costly. The reason for speedup stabilization at very high numbers
of variables is hypothesized in the Summary.
A question arises as to whether LEM3 has advantage over EA and
other programs also in terms of execution time. A simple
experiment demonstrated that whenever evaluation of fitness
function takes longer than a small fraction of second, the
increased computational time of hypothesis formulation and
instantiation is compensated by the shorter evolutionary length,
and LEM3 wins also in terms of execution time [20].

 7

Table 3: LEM3. LEM2 and EA evolution length and speedup
on optimizing Rastrigin function for δ =0.1.

 Evolution Length for δ =0.1 # of
Variables LEM2 EA LEM3

LEM3/EA
Speedup

10 374 2,673 415 ~4
100 2,451 28,402 2,270 ~13
200 -- 56,465 3,302 ~17
300 -- 82,809 4,113 ~20
400 -- 106,687 4,820 ~22
500 -- 128,184 5,252 ~24
600 -- 152,291 5,652 ~27
700 -- 184,172 6,053 ~28
800 -- 191,768 6,440 ~30
900 -- 208,246 7,491 ~28

1000 -- 244,408 7,481 ~33

Table 4: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rastrigin function for δ =0.01.

Evolution Length for δ =0.01 # of
Variables LEM2 EA LEM3

LEM3/EA
Speedup

10 8,59 12,419 1,000 ~12
100 6,723 114,445 5,298 ~22
200 -- 283,523 7,705 ~37
300 -- 409,591 10,471 ~39
400 -- 584,363 12,708 ~46
500 -- 631,218 16,195 ~40
600 -- 727,158 22,173 ~33
700 -- 1,134,610 26,375 ~43
800 -- 884,545 30,124 ~29
900 -- 1,214,476 37,026 ~33

1000 -- 1,418,323 43,090 ~33

Table 5: LEM3 and EA evolution length and speedup on
optimizing Griewangk function, δ =0.1.

Evolution Length for δ =0.1 # of
Variables EA LEM3

LEM3/EA
Speedup

10 2,579 268 ~10
100 24,611 1,797 ~14
200 50,145 2,985 ~17
300 75,345 4,370 ~17
400 101,810 5,401 ~19
500 126,057 6,547 ~19
600 151,382 7,227 ~21
700 177,221 8,161 ~22
800 202,317 9,001 ~22
900 226,499 9,959 ~23

1000 251,233 10,780 ~23

Table 6: LEM3, and EA evolution length and speedup on
optimizing Griewangk function, δ =0.01.

Evolution Length for δ =0.01 # of
EA LEM3

LEM3/EA

10 7,367 3,223 ~2
100 52,632 10,486 ~5
200 105,453 20,003 ~5
300 157,320 29,799 ~5
400 211,341 40,215 ~5
500 263,801 51,564 ~5
600 314,888 59,881 ~5
700 369,915 72,437 ~5
800 422,357 86,017 ~5
900 473,310 97,606 ~5

1000 525,096 112,600 ~5

Table 7: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rosenbrock function for δ =0.1.

Evolution Length for δ =0.1 # of
Variables LEM2 EA LEM3

LEM3/EA
Speedup

10 275 541 325 ~2
100 918 3,367 1,906 ~2
200 -- 5,699 2,625 ~2
300 -- 8,547 3,518 ~2
400 -- 11,690 4,038 ~3
500 -- 14,960 4,519 ~3
600 -- 15,606 5,013 ~3
700 -- 19,448 5,491 ~4
800 -- 22,731 5,710 ~4
900 -- 25,216 6,835 ~4

1000 -- 28,468 6,851 ~4

Table 8: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rosenbrock function for δ =0.01.

Evolution Length for δ =0.01 # of
Variables LEM2 EA LEM3

LEM3/EA
Speedup

10 492 2,027 682 ~3
100 2,348 26,944 3,495 ~8
200 -- 57,588 4,922 ~12
300 -- 89,280 6,158 ~18
400 -- 120,056 9,872 ~12
500 -- 145,984 12,655 ~12
600 -- 178,358 15,951 ~11
700 -- 209,274 16,931 ~12
800 -- 234,348 22,843 ~10
900 -- 259,168 25,065 ~10

1000 -- 296,879 29,691 ~10

4. SUMMARY
The presented LEM3 system is the most advanced implementation
of the Learnable Evolution Model to date and it employs the most
recent AQ-type learning program. In some aspects, the algorithms
implemented in LEM3 go beyond the methodology described in
[10]. For example, LEM3 introduces the Action Profiling
Function and new instantiation algorithms.

An experimental application of LEM3 to very complex function
optimization problems (with up to 1000 variables) achieved a
superior performance over EA, a standard Darwinian-type

method. Comparisons with published results on Estimation of
Distribution Algorithms, and Cultural Algorithms also show a
clear superiority of LEM3. LEM3 showed a high scalability that
could not be achieved with previous implementations. Extensive
experiments with LEM3 thus have confirmed that it is a powerful
new optimization system that outperforms other evolutionary
computation systems in terms of evolution length (number of
fitness evaluations) and in terms of the expressiveness of the
language it offers for describing individuals in a population (due
to a wide range of attribute types individually handled by LEM3).

 8

Our research also revealed a weakness of the current LEM3
implementation in the case of optimizing functions with very large
numbers of variables. When the number of variables is very large
(usually above 500-1000, depending on the optimized function)
the speed up of LEM3 over EA starts to level out or even
decrease. While a conclusive explanation of this phenomenon
awaits more research, we believe that it is due to the fact that at
the end-phase of the LEM3 process in problems with the
increasing number of variables, the number of variables that are
instantiated semi-randomly, rather than from rules, is also
increasing. This means that at that phase, the role of learning is
strongly diminishing and LEM3 is increasingly behaving like a
Darwinian-type algorithm. While the above problem is a worthy
challenge for further research on the LEM methodology, it should
be mentioned that most practical problems have fewer variables
than 500. Future research will investigate theoretical aspects of
the LEM methodology, such as its complexity, convergence
speed, and areas of applicability for which it is the most suitable.

Based on many experiments performed, one can draw one general
conclusion that the LEM methodology can be particularly
advantageous in the application areas in which fitness evaluation
is time consuming or costly.

5. ACKNOWLEDGEMENTS
Authors express their gratitude to Ken Kaufman and Jarek
Pietrzykowski for their valuable comments on the earlier version
of this paper.

This research has been conducted in the Machine Learning and
Inference Laboratory at George Mason University. The
Laboratory’s research has been supported in part by the National
Science Foundation under Grants No. IIS-0097476 and IIS-
9906858, and in part by the UMBC/LUCITE #32 grant.

6. REFERENCES
[1] Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano,

J.A., “Experimental Results in Function Optimization with
EDAs in Continuous Domain,” In Pedro Larranaga and
Jose A. Lozano Estimation of Distribution Algorithms,
Kluwer Academic Publishers, 2002.

[2] Cervone, G., Kaufman, K. and Michalski, R. S., "Recent
Results from the Experimental Evaluation of the Learnable
Evolution Model," Proc. of the Genetic and Evolutionary
Computation Conference, GECCO-2002, 2002.

[3] Domanski, P.A., Yashar, D., Kaufman K. and Michalski
R.S., "An Optimized Design of Finned-Tube Evaporators
Using the Learnable Evolution Model," International
Journal of Heating, Ventilating, Air-Conditioning and
Refrigerating Research, 10, April, 2004, pp 201-211.

[4] Evolutionary Objects Library, downloadable from the
website: http://eodev.sourceforge.net

[5] Jourdan, L.; Corne, D.; Savic, D.; and Walters, G.,
“Preliminary Investigation of the ‘Learnable Evolution
Model’ for Faster/Better Multiobjective Water Systems
Design,” Proceedings of The Third Int. Conference on
Evolutionary Multi-Criterion Optimization, EMO’05, 2005.

[6] Michalski, R. S. and Kaufman, K., "The AQ19 System for
Machine Learning and Pattern Discovery: A General
Description and User's Guide," Reports of the Machine

Learning and Inference Laboratory, MLI 01-2, George
Mason University, Fairfax, VA, 2001.

[7] Larranaga, P., Lozano, J. A., and Bengoetxea, E.,
“Estimation of Distribution Algorithms Based on
Multivariate Normal and Gaussian Networks,” Technical
Report KZZA-IK-1-01, Dept. of Computer Science and
Artificial Intelligence, University of Basque Country, 2001.

[8] Larrañaga, P. and Lozano, J. (eds.), Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation, Kluwer Academic Publishers, 2002.

[9] Michalski, R.S., "Learnable Evolution: Combining
Symbolic and Evolutionary Learning," Proceedings of the
Fourth International Workshop on Multistrategy Learning
(MSL'98), Italy, June 11-13, 1998.

[10] Michalski, R.S., "LEARNABLE EVOLUTION MODEL
Evolutionary Processes Guided by Machine Learning,"
Machine Learning, Vol. 38, 2000, pp. 9-40.

[11] Michalski, R.S., "ATTRIBUTIONAL CALCULUS: A
Logic and Representation Language for Natural Induction,"
Reports of the Machine Learning and Inference
Laboratory, MLI 04-2, George Mason University, Fairfax,
VA, April, 2004.

[12] Michalski, R.S. and Cervone, G., “Adaptive Anchoring
Discretization for Learnable Evolution Model,” Reports of
the Machine Learning and Inference Laboratory, MLI 01-
3, George Mason University, Fairfax, VA, 2001.

[13] Miquelez, T., Bengoetxea, E., and Larranaga, P.,
“Evolutionary Computation Based on Bayesian Classifiers,”
International Journal of Applied Mathematics and
Computer Science, 14, 2004.

[14] Mühlenbein, H and Paaß, G., “From Recombination of
Genes to the Estimation of Distributions I. Binary
Parameters,” Proceedings of The 4th International
Conference on Parallel Problem Solving from Nature,
Berlin, Germany, September 22-26, 1996.

[15] Reynolds, R. G. and Zhu, S., “Knowledge-Based Function
Optimization Using Fuzzy Cultural Algorithms with
Evolutionary Programming,” IEEE Transactions on
Systems, Man, and Cybernetics, 31, 2001.

[16] Reynolds, R. G., Peng, B., “Cultural Algorithms: Modeling
of How Cultures Learn to Solve Problems,” 16th IEEE
International Conference on Tools for Artificial
Intelligence (ICTAI'04), Florida, 2004.

 [17] Whitley, D., Soraya, R., Dzubera, J., Mathias, K. E.,
“Evaluating Evolutionary Algorithms,” Artificial
Intelligence, 85, 1996.

[18] Wojtusiak, J., “AQ21 User’s Guide, ” Reports of the
Machine Learning and Inference Laboratory, George
Mason University, MLI 04-3, Fairfax, VA, 2004.

[19] Wojtusiak, J., “The LEM3 Implementation of Learnable
Evolution Model: User’s Guide, ” Reports of the Machine
Learning and Inference Laboratory, George Mason
University, MLI 04-5, Fairfax, VA, 2004.

[20] Wojtusiak, J., and Michalski R.S., “The LEM3 System for
Non-Darwinian Evolutionary Computation and its
Application to Complex Function Optimization,” Reports of
the Machine Learning and Inference Laboratory, George
Mason University, MLI 05-2, Fairfax, VA, 2005.

