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ABSTRACT

Learnable Evolution Model (LEM) is a form of non4®aénian
evolutionary computation that employs machine leyio guide
evolutionary processes. Its main novelty are ngpe ©yf operators
for creating new individuals, specificallijypothesis generation,
which learns rules indicating subareas in the $eapace that
likely contain the optimum, anbypothesis instantiationwhich
populates these subspaces with new individualss Tdaper
briefly describes the newest and most advancecemgtation of
learnable evolution, LEM3, its novel features, aesults from its
comparison with a conventional, Darwinian-type evioinary
computation program (EA), a cultural evolution altom (CA),
and the estimation of distribution algorithm (ED&) selected
function optimization problems (with the number driables
varying up to 1000). In every experiment, LEM3 arfprmed
the compared programs in terms of the evolutiorgtlen(the
number of fitness evaluations needed to achievedesired
solution), sometimes more than by one order of ritade.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning — Concept Learning,
Induction,G.1.6 Optimization].

General Terms
Algorithms, Performance, Design, Experimentationedry.

Keywords
Evolutionary Computation, Learnable Evolution Mqgdelinction
Optimization, Machine Learning

1. INTRODUCTION

Research on non-Darwinian evolutionary computati@s
concerned with developing algorithms in which theation of
new individuals in the population is guided by antélligent
agent,” rather than done merely by random or samitom
change operators, such as mutation and/or crossewgloyed in
the “Darwinian-type” evolutionary methods. The emtion of
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individuals for the new generation from among thgseerated by
the intelligent agent can be done using standarthads of
selection, or can also engage such an agent.

The Learnable Evolution Model (LEM), introduced [@, 10],
and the topic of this paper, employs a learninggmm for
directing the process of creating new individu&pecifically, at
each step of evolution, the method creates gergadtheses
indicating regions in the search space that liketytain the
optimal solution (or alternative optimal solutiongdnd then
instantiates these hypotheses to generate newidodlg. Early
implementations of the model, LEM1 and LEMZ2, gaveryv
promising results on selected function problemsg.(d9], [2]).
We have also developed domain-oriented implememsiti
ISHED and ISCOD, that were tailored to problem®tfimizing
heat exchanger designs. They also produced higtigfactory
results, as they generated designs that matchiedpooved upon
human designs [3].

An implementation of Learnable Evolution Model fdfulti-
objective Optimization, LEMMO, developed indepenitiefp], is
based on rules derived from decision trees leatnethe C4.5
program. LEMMO was recently applied to a water lipa
optimization problem. The decision tree repregenaof the
hypotheses is, however, significantly more limitddan the
attributional rule representation in LEM implemeitas, and is
also more difficult to instantiate.

Work related to LEM includes research oultural algorithms

[15, 16], which use additional information aboutiusions to

guide mutation and recombination operators. Theturall

algorithms perform a constrained optimization psscén which

constraints are created during the evolutionarymgation. The
constraints, called beliefs, reside in a beliefcepthat is updated
during the evolution process. Individuals that atered in an
optimization space are modified so that they satisé beliefs.

The belief space is built based on statistical rimftion about
individuals, which usually consists of intervalsntaining the
fittest individuals.

Other related work concernsEstimation of Distribution
Algorithms(EDAs), methods that use statistical inferenceallg
Bayesian or Gaussian networks, to generate disioi of high-
performing individuals selected from one populatign 8, 13,
14]. LEM significantly differs from EDAs, howeveras it
employs symbolic learning rather than statisticathods, and
seeks rules for distinguishing between high- anéperforming
individuals, while EDAs seldom use contrast sétslso uses the
fitness function not only for selecting individudts learning but
also during the learning process itself, while mBBtAs use it



solely for selecting individuals; an exception is naethod
described in [13]. LEM does this by learning sfipaince-based
descriptions.

This paper describes briefly LEM3, the latest arasinradvanced
implementation, and its comparative evaluation omamage of
function optimization problems. LEM3 employs the shoecent
AQ-type learning program, AQ21 [5], and includesvesal

significant improvements over earlier versions.e3éinclude the
abilities to represent solutions using a wide raofelifferent

attribute types, to take into consideration thegges in the
hypothesis formation process, to control this psscccording to
the problem at hand, as well as new methods foecsey

different actions (modes) in the process of evohdry

computation, and to instantiate hypotheses in séwew ways.

2. DESCRIPTION OF LEM3

This section describes the top-level structure &MB. It
contains several components that are also founttaiitional
evolutionary algorithms, such as generation of anitial
population, selection of individuals for a new plion, and
evaluation of individuals.

Components that are unique to LEM3 are concernéd guiiding
evolutionary computation through machine learnifiyis is done
by selecting at each step of evolution the higteesd lowest
performing individuals in the population, the H-ogp and L-
group, respectively, and then employing the AQZ2arreng
program to generate a hypothesis that differergtiattween the
two groups. The hypothesis is then instantiatedhiious ways to
generate new individuals. Figure 1 presents the-laegl
algorithm underlying LEM3.
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Figure 1: Thetop-level structureof LEM3.

The following sections describe algorithms undedythe major
LEM3 components.

2.1 EvaluateIndividuals

This component determines the value of the fitrfeastion for
every individual in the population. This may besanple
operation if the fitness is defined by a mathenadtformula. In
many applications, however, fitness evaluation negyire a time

consuming or costly process of running a simulaolying a set
of complex equations, or even performing an expenim Such
situations occur, for example, when designing reathangers
[3], optimal non-linear filters, and aircraft wirshapes.

Due to the capabilities of the AQ21 learning progrd EM3

allows a user to describe individuals (problem sohs) and the
fitness function in terms of not only numeric dttries, but also in
terms of other attribute types, such as nominalk rayclic (e.g.,
days of the week), structured (representing hibresy, interval,
and ratio [11]. Thus, one does not need to deaigrad-hoc
attribute encoding, as sometimes done, for exaniplgenetic
algorithms, but instead can directly use attribitesspecified in
problem definition. This feature extends LEM3'phgability to

domains in which individuals are characterized kgombination
of qualitative and qualitative properties. For repde, when
optimizing the design of a physical device, attrésu
characterizing it may include numerical ones thascdibe its
length, width, height, as well as symbolic oneg tttearacterize
the material it is made of (structured) or modesopérations
(nominal).

2.2 Select Parent Population

Once individuals are evaluated, a new populatiooréated by
combining new individuals and individuals from theld

population. In general, the creation of the newpiation

involves two steps: (1) creation of a (possiblyg&rtemporary
population and (2) selection of individuals fromirito the new
population.

The temporary population consists of all newly teda
individuals and also, depending on parametersyiddals from

the old population. If the number of created idiinals is smaller
than the desired population size, the program teiaedividuals

from the previous population to meet the targetytaton size. It
is usually convenient to add all individuals frometprevious
population into the temporary group. This way ré¢his no need
to keep track of past populations for more than @aration,

because they were already represented in previeps.s

Individuals are selected from the temporary pojpafainto the

new population using methods developed in evolatipn
computation. LEM3 implemented three methods: sele®f the

best individuals, also known as rank-based selectmurnament
selection; and proportional selection, also knove raulette
wheel selection. At the end of the selection psecea new
population is created that serves as the parenilgiign for the
next steps. LEM3 also keeps an elite consistingraf or more
(depending on the elite-size parameter) individuaith the

highest score of the fithess function. Note thahgisank-based
selection from the temporary population guaranédigsm.

2.3 Select Oneor More Actions

The next step is to choose and apply an actionr¢ate new
individuals from the parent population. As shownFigure 1,
these actions include learn and instantiate, prohejust
representation and randomize. Which action or coatlin of
actions is performed is decided by the “Select dkctior
Compatible Actions” module, which uses @ttion Profiling
Function(APF) introduced in LEM3.



How does the “Select Action or Compatible Actiondécide
which action to perform? Initially, by default, gelects the
“Learn and Instantiate” action. When after a numifdterations
no progress is observed, as defined bylehen-probeandlearn-
thresholdparameters, the program switches to the “Probgdrac
which is applied once and program returns to “Leannd
Instantiate” mode. Thdearn-probe parameter defines the
maximum number of iterations the action is perfairegen if the
progress is unsatisfactory, as defined Ibgarn-threshold
parameter, which specifies the minimal improvemehfitness
value of the best individual to accept progressagisfactory. The
program counts how many times the “Probe” actios wpplied,
and if the number reachenutation-probe it switches to the
“adjust representation” action, which is appliedcenbefore
returning to “Learn and InstantiateRepresentation-probsets a
limit on the number of times the representatioadgisted before
switching to the “Randomize” action and randomhyngmating
new individuals. Figure 2 presents pseudocoderib@sg the
above process.

Increment learn-probe-counter
If learn-probe-counter >= learn-probe

Learn-probe-counter = 0

If mutation-probe-counter < mutation-probe
Increment mutation-probe-counter
Mutate individuals (Probe)

Else if representation-probe-counter < represermatprobe
Increase representation-probe-counter
Mutation-probe-counter = 0
Adjust discretization
Mutate individuals

Else if randomize- counter < randomize-Probe
Increment randomize-probe-counter
Representation-probe-counter = 0
Mutation-probe-counter = 0
Rollback discretization
Add the best individuals to a list of local optima
Randomize

Else
Stop LEM3

Figure 2: Pseudocode describing action selection in LEM 3.

The chosen order ofnutation adjust representatign and
randomizeoperations is deliberate. Mutation is performed i
order to introduce diversity into a population assure that the
program does not get stuck near a local or gloptimum.

The latter situation may occur when the learninggpam cannot
learn hypotheses because the training set is umjfand thus can
not create different H- and L-groups. Next, thegsion of the
representation of individuals is increased by &ijgs
discretization. If the increase in precision nots help, it may
mean that the program has found an optimum. Honyehe

optimum may be local, so it is desirable to perfadditional

iterations with new, randomly generated populationsrder to

explore different parts of the search space artdhesfound best
solution for optimality. The above four action® axplained in
greater detail in the following sections.

2.3 Learn and Instantiate Action

The “Learn and Instantiate” action is the most intpot
component of the Learnable Evolution Model. ThiSan creates

new individuals by performing three steps: (1) cttg the
training set for the learning program (2) learnimdhypothesis
characterizing subspaces that likely contain th@mapn, and (3)
instantiating the hypothesis in various ways toat¥enew
individuals.

Step (1) selects high-performing (H-group) and fmevforming
(L-group) individuals from the population, accorgito the given
fitness function. These individuals serve as pas#nd negative
examples, respectively, for the AQ21 learning paogrThere are
two methods of creating these groups. The firs, Giitness-

Based Selectigremploys high and low fitness thresholds in the

range from the highest to the lowest fithess valbserved in the
current population. For example, if High and LovitnEss
Thresholds (HFT and LFT) are chosen to be 25%, th
individuals whose fitnesses are in the highest 28%he range
and the lowest 25% of the range are included irHfgroup and
L-group, respectively. The second meth&hpulation-Based
Selection selects a specified percentage of individualsnftbe
population for each group, regardless of the distion of fitness
values. These percentages are defined by the Paghulation
Threshold (HPT) and Low Population Threshold (LPTor
example, if HPT and LPT are both 30%, then the 3ff%he
individuals with the highest fitness and the 30%hwvthe lowest
fitness are included in the H- and L-group, respebt.

The H- and L-groups are then passed as positivenagdtives
examples to a learning program, which in LEM3 is24Q This
program is the newest implementation of the AQ rigsy, an
inductive learning method that produces hypothesése form of
sets ofattributional ruleg13]. The simplest form of such a rule is:

CONSEQUENT¢ PREMISE
where CONSEQUENT and PREMISE are conjunctions
attributional conditions (a.k.a. selectory. An attributional
condition defines a relation between an attribute attribute
values that satisfy that condition. Here is anngxa of an
attributional rule:

[design = acceptabled- [weight = 2..5] &

[shape= rhombus v triangle] &
[height < 3]

The rule states that a design is classified agpsabke if its weight
is between 2 and 5, its shape is rhombus or tréaregld its height
is less than 3 (units of weight and height are raefi in the

attribute domain).

A hypotheses learned by AQ21 usually consist ofumber of
such rules. This representation of a hypothesigig useful for
LEM, because such individual rules can be easibfamtiated.
They are also have high expressive power and aseteanterpret
and understand.

The main operator used for generating rules in A@xtension-
against Provided with a positive example, calledeed and a
negative example, this operator generatparéial star, which is
defined as the set of maximal generalizations efdbed that do
not cover the negative example. The intersectiballopartial
stars of the seed against every negative examplalld astar,
which is a set of maximal generalizations of thedsthat do not
cover any negative example. In order to preveatekponential
growth to the size of the star, AQ employbeam searchthat
limits the number of generalizations (single atttibnal rules)
that are retained for the next step from each siteragainst and
intersection operation. AQ selects the best rdmfthe generated

en

of



star, and selects a new seed from positive exarplesvered by
the previously selected rules. This process coasinuntil all
positive examples are covered. Such an algorithanagtees that
the learned ruleset is complete and consistent reiglard to the
training data, provided that training examples eoasistent (do
not represent more than one class simultaneouBigure 3
presents the basic AQ algorithm in pseudocode.

HYPOTHESIS = null
While not all H-group examples are covered
Select uncovered positive examglered use it as a seed
Generate star G{e L-group)
Select the best rule, R, from the star accordiaga given
criterion of optimality, and add it to HYPOTHESIS
Remove examples covered by R from H-group

Figure 3: Pseudocode of the basic form of the AQ algorithm.
The best rule is selected from a star usingeaicographical

Evaluation Function(LEF) that combines several elementary

criteria, as specified by the user [18]. For furtdetails on AQ
learning and some of its more extended forms,esge[6].

The instantiation process (Step 3) generates nédividuals that

satisfy the learned hypothesis. When instantiasingle to create
an individual for the new population, the prograatds two

problems: (a) which values to assign to attributeat are

specified in the rule (b) which values to assigratwibutes not
present in the rule. Depending on the attribufge tand user-
defined parameters, different probability distribos can be used
to select values for the attributes specified mle. This can be
done, for example, using uniform distribution ovanges of

values in the rules, a normal distribution for nuice attributes

with the mean in the middle of the range and th@wae defined

by the user, or a distribution that rewards indiritd maximally

distant from the closest negative example.

Selection of values of attributes not specifiedhie rule is a more
intricate problem that can have many different sohs. One
way is to select a random value from the entirgbatte domain,
which will result in individuals consistent withdtrule; however,
it is easy to show cases in which this method ie#ld to poor
results. For instance, assume that we are optimiai function
with two attributes x and y. Both attributes amntinuous and
defined on the range -5 to 5. Suppose that theiimoptimum is
at the point (0, 0), and that AQ21 learned a rule=[0]. The

method will generate individuals with x = 0, and ttwiy

distributed over the range [-5, 5]. In the nextatmn, AQ21 will

learn rules containing only the attribute y, sitioere is no longer
any differentiation among the x-values. During thstantiation
phase, the program will now assign values of thebate x

randomly, which means that the information from pirevious
iteration is lost. Such a process will thus nobwarge to the
optimal solution.

Another method is to select a value from a randosgiected
existing individual. The individual can be seletfeom the H-
group only, from non-L-group individuals, or froimet entire past
population. Experiments have shown that when 8etpwalues
from the H-group, the program tends to lose diveraf
individuals, and may converge very quickly to ampdhat may
not the globally optimal solution. The default hmd used by
LEM3 selects individuals from the whole population
probabilistically, in proportion to their fitnessevels. A

pseudocode of the instantiation algorithm used BMB is
presented in Figure 4.

For each rule in a ruleset (hypothesis) to be intitgted
Compute the number of individuals to be created
For each individual to be created
Create the individual
For each attribute
If the attribute is specified in the rule
Select a random value satisfying the rule
Else Select a random individual from tpeevious
population and use its value

Figure 4: Basic instantiation algorithm.

2.4 TheProbeAction

The probe action executes Darwinian-type operatorsrder to
generate new individuals. Two probing operatorsragemented
in LEM3, namely, mutation and crossover. BecaunseEM3

representation of variables depends on their tgpd,individuals
may be built of variables of many types, the cruss@perator is
based on selection of whole attributes’ valuester*electing two
parents, two new individuals are created by takiges from the
parents. The mutation operator in LEM3 is more glem

LEM3 effectively uses the semantics of differentiafle types,
which are also used by the mutation operator. é&@mple, a
random change of structured variables reflects esspted
hierarchies.

2.5 The Representation Change Action

Adjusting the representation space of solutions nragiude
removing irrelevant variables, adjusting domainsariables, and
creating new variables that are more relevant ¢oagtimization
problem. Although all three types of operations dreing
investigated in the LEM methodology, LEM3 currently
implements only adjustment of attribute discretmat

The program uses an adaptive discretization methaidchanges
the attribute precision when it is required. Thetmod that is
used by default is a version Aflaptive Anchoring Discretization
(ANCHOR) [12], which discretizes continuous attiiési with a

granularity size changing in the process of evohutiThe method
starts with an initial very rough discretizationn&® it starts
converging toward a possible solution, the preaisi® numeric

attributes is increased in the intervals suggestedhe learned
hypothesis.

2.6 The Randomize Action

This action adds randomly generated individualstie new
population, or replaces the entire population ew, randomly
generated population. The randomize action aimsadiing

diversity to the current population or to start gelution from
scratch. It is applied when the program appeatsetatuck at a
local optimum, and needs to explore other partshef search
space. Such a situation is detected by the norgsegeondition,
when learn & instantiate, mutation, cross-over, distretization
adjustments do not lead to the improvement of thereot

solution, and the solution need to be tested furtiefore the
evolutionary process ends. New individuals aeated either (1)
randomly in the entire space, (2) randomly in tletp of the
space that were not explored so far, or (3) rangoly



maximizing distance from the local optima foundfao The first
method is the simplest one, and is equivalentftdl aestart of the
LEM3 algorithm. The second method requires keepiagk of
all values of attributes that appeared in pastviddals, in order
to distribute individuals over the parts of the panot yet
explored. The third method builds distributionsdxon a list of
optima found so far. Individuals that are fartfrem the found
best solutions have a higher probability of beielgsted.

3. EXPERIMENTAL RESULTS

The goal of these experiments was to test the pedioce of
LEM3, and compare its results with those obtaingdokher
evolutionary computation methods, including thevjimes LEM

implementation (LEM2), a conventional evolutionalgorithm

(EA), cultural algorithms (CAs), and Estimation Dfstribution

Algorithms (EDASs). In these experiments, LEM3, LEMINd EA
were applied to a group of benchmark function ojatition

problems. To compare LEM3 with CAs and EDAs, LEMas

applied to problems for which results from CAs dldAs are
available in the literature. The problems involhagatimization of
the Rastrigin Griewangk andRosenbrocKunctions of different
numbers of variables, ranging from 2 to 1000, depen on

compared programs. These functions were chosesubedhey
are frequently used for testing evolutionary altjoris. They are
described, for example, in [17].

EA is an implementation of a conventional, Darwmispe
evolutionary algorithm taken from librarfO (Evolutionary
Objecty 0.9.3a that can be downloaded from URL:
http://eodev.sourceforge.net [4]. The EO librargswselected
because it contains an implementation of a Darmitype
evolutionary algorithm that can work with large rhers of
variables (we tried other programs, but they suppar fewer
variables), is well described in the available tiaio and is easily
downloadable from the internet.

LEM3 and EA were applied to optimizing functions ludtween

10 and 1000 variables. LEM2 was applied to optingZunctions

of 10 and 100 variables (it does not work with 280 more

variables). Each experiment involving LEM3, LEM&daEA on

optimizing a function of a given number of variabieas repeated
10 times with a different starting population. Twke a fair
comparison, the same starting populations were use@ach

program.

The LEM3, LEM2 and EA results are reported féiclose

solutions,which are at a normalized distance from the optimal

solution. Ad-close solutions, is a solution for which function
4(s), defined as:
lopt - v(s)]

o =
(s) lopt - init |

reaches an assumeéedarget value. In this equatiomit is the
evaluation (“fithess value”) of the best solutiom the initial
population, opt is the globally optimal value, and v(s) is the
evaluation of the found solution s. Such a measris for both
maximization and minimization problems, that is, fwoblems in
which the optimal solution reaches the maximal e minimal
value of performance evaluating function (the ‘éi¢s function).

This definition of a-close solution suggests two possible ways of

analyzing performance of evolutionary computatiorthods.
One is to determine thevolution lengthdenoted FE<=k), and
defined as the smallest number of fithess funceealuations

needed to achieve a solutiahfor which 3(s) <= k, by the best
individual in the population, where k is a numbetvizeen 0 and
1. This is the main measure used to report regultkis paper.
The second way is to determids) for the best solution, s, found
after a specified number of fithess evaluations.

For example, if the fitness value of the best imtial in the
initial population is 10 and during the processnifimization the
program achieved value 0.1, while the optimal vaké®, § is
0.01, indicating that the program found a solutisithin 1%
distance from the optimal solution, normalized Ilme tfitness
value of the best individual in the initial popudat. Figure 5
illustrates the concept oféaclose solution.

Value of the fitness

function of the best
individual

_ |v - opt | _
o) [init -~ opt |

N FE (6 =k)=n
init 4 Program reached
5=k-close solution

| init— opt |

|v—opt|
—r
o
<

pt

0 n
Number of fitness function evaluations

Figure5: Illustration of a é-close solution.

In the experiments, tested programs were compasedj their
default parameters. This reflects real-world ditwes in which
only one run of the optimization method is donecéhse the
evaluation of the fitness function is very diffituLEM3, LEM2

and EA were executed with population size 100.hB&M3 and
LEM2 used the ANCHOR adaptive discretization metho#in

evolutionary speedup is defined as a ratio of eumhulengths of
two programs for a given value &f

EA was executed with the following parameters:ghabability of
mutation was 0.1, the probability of crossover W& and the
selection method wasurnament It used two types of crossover,
standard, which creates new individuals by takiadues form
two parents, and hypercube crossover, which unlfosalects a
point in the hypercube spanned by the two paratividuals (for
details see website http://eodev.sourceforge.net).

The authors will be glad to provide actual startpmpulations,
programs, scripts used to run experiments, acasllt files, and
all other relevant information to those interestedeproducing
the presented results or trying other methods.

3.1 Function Optimization Problems

Three well-known benchmark function optimizationolplems
were used for testing LEM3 and comparing its penfmmce with
that of other methods. The first problem was to imire the
Rastrigin function defined by the following formula

X,) =10 * n+ Y (x> =10 * cos( 2* 7 *x,))
i=1

The function has a large number of local optimal ane global
optimum equal to zero. It is reached when alltheables equal
zero.

The second problem was to minimize the Griewangiction,
defined by the following formula:



n Xi _
=1 4000
Similarly, this function has a large number of looatima, and

one global minimum equal to zero, which is reacivben all the
variables equal zero.

f Xy X,) =14

ﬁ cos( X, / /i)

The third benchmark problem was to minimize theegalized
Rosenbrock function, which is defined by the foliogvformula:

f(XpeX,) = nZ_I:(:LOO* (X, = X*)? +(x —1)?)

i=1
The function has one global optimum equal to zdtds reached
when all the variables equal one. The function daisige along
the line for which values of all attributes are alqu

We selected the three problems because they arekeain
benchmark problems that are hard and scalable [17].

3.2 Comparing LEM3 with CA

This section presents results from comparing reduim LEM3
with results from Cultural Algorithm, CA, on the &a&gin,
Griewangk, and Rosenbrock functions of 2, 3, andaBables.
The comparison was limited to only such a small bemof
variables because only for these numbers weretsesam CAs
reported in the literature [15]. Results are pnésé in Table 1.
They are means of the results from 40 runs.

To compute speedup, whose definition is based ewvatue of5,
we assumed that the best individuals in the injti@pulations
used by the programs were the same, and to stdgpe@ when
it found any fitness value better than one foundCBy The same
assumptions were used when computing speedupdfarifthe
next section. The programs converged to very cliittess
values, thus comparison of evolution lengths isniregiul.

Table 1: Comparison of LEM 3 with CA on the Rastrigin,
Griewangk, and Rosenbrock functions.

Table 2: Comparison of LEM 3 with EDA on the Rastrigin,

Griewangk, and Rosenbrock functions.

Function Method Best fitnesg Evolution | LEM3/EDA
# vars. Value Length Speedup

Griewangk | LEM3 0 1,305 —231
10 vars. EDA 0.051166 301,85(

Griewangk | LEM3 0 4,005 _54
50 vars. EDA 8.7673E-6 216,294

Rosenbrock| LEM3 1.2 1,389 - 118
10 vars. EDA 8.6807 164,519

Rosenbrock| LEM3 46.74 7,875 15
50 vars. EDS 48.8234 275,66

Function Method Best fitnesg Evolution LEM3/CA

# vars. Value Length Speedup

Rastrigin | LEM3 0 687 728
5 vars. CA 5.4532e-05 ~500,00

Griewangk | LEM3 0 1,521 53
3 vars. CA 1.0E-10 ~79,900

Rosenbrock| LEM3 0 219 243
2 vars. CA 1.0e-10 ~53,200

Table 1 presents the best results obtained byreliffevariants of
cultural algorithms, as reported in [15]. As caeb seen, LEM3
very significantly outperformed CA: over 700 timdsr the

Rastrigin function, almost 250 times for the Roseck function,

and over 50 times for the Griewangk function. Muwer, in all

cases, LEM3 found exact solutioris=Q), while CAs found only
approximate solutions, as reported in [15].

3.3 Comparing LEM 3 with EDA

This section presents a comparison of LEM3 withfedént
implementations of Estimation of Distribution Aldgiym (EDA)

reported in [1]. Only the best result from diffeteersion of EDA
is presented. The result was obtained using EjihAan EDA
method based on multivariate normal distributidfor a detailed
description of the method, refer to [7]. We useploréed results
on the Griewangk and Rosenbrock functions of 10 &Qd
variables. The presented values are mean forris ru

LEM3 outperformed the compared EDA for both funeticof 10
and 50 variables, LEM3 was in average about 1#imé&s faster
for 10 variables, and about 34.5 times faster fbvériables when
compared with results reported [1]. The presemt=iilts are
preliminary and further investigation is neededfullty compare
the methods especially for larger numbers of viegmb

3.4 Comparing LEM3with LEM2 and EA

This section presents results from comparing LEMB WEM2,
the previous implementation of Learnable Evolutdodel, and
EA representing Darwinian-type method on the abtiwee
function optimization problems. It is importantriote that in all
experiments with LEM3, LEM2 and EA, the default qaeter
settings were used and none of the program paresneéze fine-
tuned to achieve better results. In real worldbpgms, especially
in solving hard optimization problems, there isqgfrently only
one run of the method made, because of the high(tio® or
difficulty) of evaluating fitness. In such casée tusers cannot
change parameters and try again. For comparisopopes all
experiments were repeated 10 times with differefartiag
populations which were the same for all programs.

The comparative results of LEM3, LEM2 and EA foreth
Rastrigin, Griewangk, and Rosenbrock functions &s0.1- and

8=0.01-close solutions are presented in Tables 3 - Bhe

presented results show the superiority of LEM3 owther

compared programs in terms of the evolution ler{gte number
of fitness function evaluations needed to achieve-aose

solution). The speedup LEM3/EA varied for differgmoblems.

The average speedup LEM3/EA was about 16.5 times

functions of 100 or more variables ©%0.1 and5=0.01.

A very important result of the experiments was thhe
evolutionary speedup of LEM3 over the Darwinianetypethod,
EA, usually grew with the number of variables ot tkested
functions up to about 500-1000 variables, dependmghe type
of function being optimized, and then tended tdititwe. This
feature makes LEMS3 particularly attractive for opting
complex systems with large number of controllabkriables
when the fitness evaluation is non-trivial, timensoming or
costly. The reason for speedup stabilization a iggh numbers
of variables is hypothesized in the Summary.

A question arises as to whether LEM3 has advardageEA and
other programs also in terms of execution time. ifpte
experiment demonstrated that whenever evaluatiorfitoéss
function takes longer than a small fraction of sehothe
increased computational time of hypothesis fornmatand
instantiation is compensated by the shorter evahatiy length,
and LEM3 wins also in terms of execution time [20].

fo



Table3: LEM3. LEM2 and EA evolution length and speedup
on optimizing Rastrigin function for $=0.1.

Table6: LEM 3, and EA evolution length and speedup on
optimizing Griewangk function, $=0.01.

# of Evolution Length for $=0.1 LEM3/EA # of Evolution Length for $=0.01 LEM3/EA
Variables | LEM2 EA LEM3 Speedup EA LEM3
10 374 2,673 415 ~4 10 7,367 3,223 ~2
100 2,451 28,407 2,270 ~13 100 52,632 10,48¢ ~5
200 - 56,465 3,307 ~17 200 105,453 20,003 ~5
300 - 82,809 4,113 ~20 300 157,320 29,799 ~5
400 - 106,687 4,82 ~22 400 211,341 40,215 ~5
500 - 128,184 5,252 ~24 500 263,801 51,564 ~5
600 - 152,291 5,652 ~27 600 314,888 59,881 ~5
700 -- 184,172 6,053 ~28 700 369,915 72,437 ~5
800 - 191,768 6,440 ~30 800 422,357 86,017 ~5
900 - 208,246 7,491 ~28 900 473,310 97,606 ~5
1000 - 244,408 7,481 ~33 1000 525,096 112,600 ~5

Table4: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rastrigin function for $=0.01.

Table7: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rosenbrock function for $=0.1.

# of Evolution Length for 6=0.01 LEM3/EA # of Evolution Length for $=0.1 LEM3/EA
Variables | LEM2 EA LEM3 Speedup Variables LEM2 EA LEM3 Speedup
10 8,59 12,419 1,000 ~12 10 275 541 325 ~2
100 | 6,723 114,445 5,298 ~22 100 918 3,367 1,906 ~2
200 -- 283,523 7,705 ~37 200 -- 5,699 2,621 ~2
300 -- 409,591 10,471 ~39 300 -- 8,647 3,518 ~2
400 -- 584,363 12,708 ~46 400 -- 11,690 4,039 ~3
500 -- 631,218 16,195 ~40 500 -- 14,960 4,514 ~3
600 -- 727,158 22,1738 ~33 600 -- 15,606 5,013 ~3
700 -- 1,134,610 26,37H ~43 700 -- 19,448 5,491 ~4
800 -- 884,545 30,124 ~29 800 -- 22,731 5,71( ~4
900 -- 1,214,476 37,026 ~33 900 -- 25,216 6,835 ~4
1000 -- 1,418,323 43,090 ~33 1000 -- 28,468 6,851 ~4

Table5: LEM 3 and EA evolution length and speedup on
optimizing Griewangk function, =0.1.

Table8: LEM3, LEM2 and EA evolution length and speedup
on optimizing Rosenbrock function for $=0.01.

# of Evolution Length for $=0.1 LEM3/EA # of Evolution Length for §=0.01 LEM3/EA
Variables EA LEM3 Speedup Variables LEM2 EA LEM3 Speedup

10 2,579 268 ~10 10 492 2,027, 687 ~3

100 24,611 1,797 ~14 100 2,348 26,944 3,496 ~8

200 50,145 2,984 ~17 200 - 57,588 4,927 ~12

300 75,345 4,37( ~17 300 -- 89,280 6,158 ~18

400 101,810 5,401 ~19 400 - 120,056 9,872 ~12

500 126,057 6,547 ~19 500 -- 145,984 12,655 ~12

600 151,382 7,227 ~21 600 -- 178,358 15,951 ~11

700 177,221 8,161 ~22 700 -- 209,274 16,931 ~12

800 202,317 9,001 ~22 800 -- 234,348 22,843 ~10

900 226,499 9,959 ~23 900 - 259,168 25,06% ~10

1000 251,233 10,780 ~23 1000 - 296,879 29,691 ~10

4. SUMMARY method. Comparisons with published results onnigton of

The presented LEM3 system is the most advancecmgaitation
of the Learnable Evolution Model to date and it &ayip the most
recent AQ-type learning program. In some aspé#utsalgorithms
implemented in LEM3 go beyond the methodology dbscr in

[10]. For example, LEM3 introduces the Action Pliofi

Function and new instantiation algorithms.

An experimental application of LEM3 to very complimction
optimization problems (with up to 1000 variableghieved a
superior performance over EA, a standard Darwitygpe-

Distribution Algorithms, and Cultural Algorithms sal show a
clear superiority of LEM3. LEMS3 showed a high sdality that
could not be achieved with previous implementatioExtensive
experiments with LEM3 thus have confirmed thasitipowerful
new optimization system that outperforms other etiohary
computation systems in terms of evolution lengibnfber of
fitness evaluations) and in terms of the expressise of the
language it offers for describing individuals ipapulation (due
to a wide range of attribute types individually teed by LEM3).




Our research also revealed a weakness of the ¢ubeM3
implementation in the case of optimizing functiovith very large
numbers of variables. When the number of variaisle®ry large
(usually above 500-1000, depending on the optimizedtion)
the speed up of LEM3 over EA starts to level outewen
decrease. While a conclusive explanation of thisnemenon
awaits more research, we believe that it is duthéofact that at
the end-phase of the LEM3 process in problems with
increasing number of variables, the number of e that are
instantiated semi-randomly, rather than from rulés, also
increasing. This means that at that phase, treeablearning is
strongly diminishing and LEM3 is increasingly behmay like a
Darwinian-type algorithm. While the above problesra worthy
challenge for further research on the LEM methogg|dt should
be mentioned that most practical problems have feiggables
than 500. Future research will investigate theoaétaspects of
the LEM methodology, such as its complexity, cogeece
speed, and areas of applicability for which itis thost suitable.

Based on many experiments performed, one can dnavgeneral
conclusion that the LEM methodology can be paréidyl
advantageous in the application areas in whictedgnevaluation
is time consuming or costly.
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