
Co-Simulation of Human and Machine Generated Drivers on a Single Test Track

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Raghavendra Somepalli
Bachelor of Technology

Anurag Group of Institutions, 2017

Director: Dr. Duminda Wijesekera, Professor
Department of Computer Science

Spring Semester 2019
George Mason University

Fairfax, VA

Copyright c© 2019 by Raghavendra Somepalli
All Rights Reserved

ii

Dedication

This is dedicated to my family.

iii

Acknowledgments

I would like to thank my family and friends who made this happen. My advisor, Duminda
Wijesekera, guided me at every step. My colleagues, Aarti Modani and Chaitanya Yavvari,
helped me whenever I needed any assistance. My friend, Jai Vora, was of invaluable support.
Finally, thanks to Dr. Zuric and Dr. Kan for being immensely encouraging.

iv

Table of Contents

Page

List of Tables . vi

List of Figures . vii

Abstract . viii

1 Introduction . 1

1.1 Microscopic Simulators . 1

2 Related Work . 2

3 SUMO . 3

3.1 Creating a Scenario . 3

3.1.1 OSM file . 4

3.1.2 Generating Traffic Network from OSM 4

3.1.3 Generating Machine Controlled Traffic in SUMO 5

3.1.4 Generating SUMOCFG . 5

3.1.5 Simulation in SUMO . 6

4 Implementation . 7

4.1 Basic Environment . 8

4.2 Creating Lanes . 8

4.3 Creating Vehicles . 9

4.4 Creating the Human Driven Vehicle . 9

5 Future Work . 11

6 Conclusion . 12

REFERENCES . 13

v

List of Tables

Table Page

3.1 SUMO reporting options . 3

vi

List of Figures

Figure Page

3.1 Exporting from OpenStreetMap . 4

3.2 Network in SUMO . 6

4.1 TraCI Protocol . 7

4.2 The Simulation in Unity . 10

4.3 Autonomous Traffic . 10

vii

Abstract

CO-SIMULATION OF HUMAN AND MACHINE GENERATED DRIVERS ON A SIN-
GLE TEST TRACK

Raghavendra Somepalli, M.S.

George Mason University, 2019

Thesis Director: Dr. Duminda Wijesekera

With autonomous vehicles in the early phases of road testing, we can surely expect them

on the road in a few years. But the existence of a mixed traffic with human-driven vehicles

will be inevitable for a long time after the introduction of autonomous vehicles and the

ramifications of such a traffic are hard to foresee. But by creating a simulation which

involves both kinds of vehicles, we can study their behavior and analyze the effect the

autonomous vehicles has on the human-driven vehicular traffic. Using SUMO, which is a

microscopic traffic simulator, the traffic of autonomous vehicles can be replicated by using

machine generated vehicles whose speed and position in each simulation step is controlled

by SUMO. This thesis tries to interface SUMO and Unity, a powerful cross-platform game

engine, by using the Traffic Control Interface (TraCI) protocol and in doing so, a car was

generated in Unity which can be human controlled and driven in the same track as the

machine generated vehicles. This paper reports the details of this co-simulation using a real

life test track which facilitates a comprehensive analysis of interactions between the vehicles

in the real world.

Chapter 1: Introduction

With the rapid increase in the volume of traffic and the regular changes in the road network,

traffic simulation is crucial since the alternative includes real-life setup & experimentation

of relevant solutions. This can involve many unexpected risks & can incur unnecessary

expenditure. Consequently, simulation is the best solution to study traffic before deployment

which allows us to tweak many variables in the environment all the while providing reliable

data.

Based on the number of parameters involved in the simulation, we have three different

models: Macroscopic models, Mesoscopic models and Microscopic models. Macroscopic

models have the least number of parameters of the three models as they inspect the relation

between aspects like speed, volume, density, etc. Mesoscopic models illustrate specific

vehicles but do not describe multiple other exact details like in a microscopic simulation.

In this thesis, for the purpose of traffic simulation, a microscopic simulator called SUMO

was used and the following subsection talks about microscopic simulators.

1.1 Microscopic Simulators

Microscopic simulation can be used to analyze specific elements in a transportation system

such as changes in the individual vehicles and behavior of individual passengers. These

changes can be tracked on a step-by-step basis in the simulation.

The modeling to focus on an individualistic elements means we require a large amount of

computation power. This is because each of the elements’ behavior is to be tracked in each

step every second or sub-second. But this might have been a complication in the earlier

days when simulation was just being developed. With the computing power we have in the

current time, it is easy to achieve such a microscopic simulation even for large areas.

1

Chapter 2: Related Work

With car manufacturers, among others, in the race to develop autonomous vehicles have

led to the creation of several tools aimed at microscopic simulation. The following part of

this section mentions some related tools.

monoDrive[1] consists of a Ultra High Fidelity (UHF) simulator which can help analyze

hard to predict edge cases. This can also simulate virtual vehicles for long distances in

virtually created maps. This simulator does not provide a human controlled vehicle and

also uses virtual environments.

LG Silicon Valley Lab created the LGSVL Simulator[2] which is based on Unity and can be

integrated with Apollo[3], Autoware[4], DuckieTown[5]. It includes an ego vehicle which can

autonomously drive in a simulated real life environment along with other machine controlled

vehicles.

AirSim[6] was developed for AI research with an objective to gather data for deep learning,

computer vision and reinforced learning algorithms for autonomous vehicles. It is built on

both Unreal Engine and Unity, with the Unity release still in the experimental phase. It

allows the extraction of training data while driving around a drone or a car in a virtual

environment.

Along with the aforementioned tools, other Advanced Driver Assisted Systems (ADAS) exist

such as SimDriver[7], ANSYS[8], Opal-RT’s RT-Lab[9], cognata[10]. Some of these include

human controlled vehicles but they include ADAS, while this research aims to co-simulate

human driven vehicles and autonomous vehicles.

2

Chapter 3: SUMO

This thesis used SUMO, short for Simulation of Urban MObility, which is an open-source

microscopic simulator that was introduced in 2001 and being developed by the employees of

the Institute of Transportation Systems in the German Aerospace Center. The presence of

Traffic Control Interface (TraCI) protocol in SUMO was the imperative reason this particu-

lar simulator was chosen. This enables us to make use of the TCP server/client architecture

to exchange data with SUMO through external applications. SUMO provides the following

basic command line options:

Table 3.1: SUMO reporting options

Option Description

-v Verbose Output

−−print-options Print options before processing

-help Prints the help screen

-V Prints the current version

-X et schema validation scheme of XML inputs

-W Disables output of warnings

-l Writes all messages to FILE

−−message-log Writes all non-error messages to FILE

−−error-log Writes all warnings and errors to FILE

3.1 Creating a Scenario

To obtain a realistic environment, the geographical data was obtained from OpenStreetMap

(OSM)[11] which is an open-source collaborative project that contains free geographical data

of the world. The following steps explain the creation of a scenario for the data extracted

from OSM.

3

3.1.1 OSM file

An area of the map is selected and exported from the OpenStreetMap website. The area

selected is shown in Figure 3.1 and the extracted data is in a .osm format. The OSM data

was saved under the filename map.osm.

Figure 3.1: Exporting from OpenStreetMap

3.1.2 Generating Traffic Network from OSM

A SUMO network file has the .net.xml format and can be generated by using the NET-

CONVERT tool that is part of the SUMO package. This file consists of the network which

has (0,0) as origin of the system. The network can be specified by using XML to create the

whole structure which is a long and unnecessary process. But since we are using OSM data

which also involves creating a significantly large scenario for our simulation, it is tiresome

to create the whole network from scratch. The following command was used to convert the

downloaded OSM data to a .net.xml format.

netconvert --osm-files map.osm -o map.net.xml

4

3.1.3 Generating Machine Controlled Traffic in SUMO

We can use the python script randomtrips.py provided in the SUMO package to generate

the traffic of machine controlled vehicles. It does this by choosing a random source edge

and a destination edge and creating a route between them. A file generated like this has

the .rou.xml extension.

python randomTrips.py -n map.net.xml -r gmu.rou.xml -e 100 -l

3.1.4 Generating SUMOCFG

By using the network file map.net.xml and the route file map.rou.xml generated earlier,

we can manually create the map.sumocfg by just indicating the network and route files in

the .sumocfg file. It’s structure is as shown below.

<con f i gu ra t i on>

<input>

<net− f i l e va lue=”gmu . net . xml”/>

<route− f i l e s va lue=”gmu . rou . xml”/>

</input>

<time>

<begin value=”0”/>

<end value =”300”/>

</time>

</con f i gu ra t i on>

5

3.1.5 Simulation in SUMO

The .sumocfg generated in the earlier steps can be opened in SUMO and a simulation can

be started. The traffic network and the simulation in SUMO can be seen in the Figure 3.2.

Figure 3.2: Network in SUMO

6

Chapter 4: Implementation

This implementation was achieved with interfacing SUMO which is a traffic simulator and

Unity which is a powerful game engine through TraCI. If using TraCI, SUMO is started with

the −−remote-port option which starts it in a server mode and looks for any connections.

An external application, viz. Unity in this case, can connect to the port specified with

the −−remote-port option and gather simulation data or control the simulation[12]. The

following figure shows the interaction between SUMO which works like a server and a client

through TraCI.

Figure 4.1: TraCI Protocol

TraCI protocol was implemented as a TraCI as a Service (TraaS) library and was provided

as a Java Archive (JAR) file with the SUMO package. As there was no implementation

of TraCI in C#, a tool called IKVM.NET[13] was used to generate a .NET library in the

7

form of a Dynamic-link Library (.dll) file from the given .jar file. After downloading

traci.jar, the following command was used to convert it into a traci.dll file.

ikvmc traci.jar

This file is placed in the Assets directory of the Unity project along with the other files

from the IKVM.NET package. A scenario was created in Unity by using the data retrieved

from SUMO through TraCI which is described in the following sections.

4.1 Basic Environment

The simulation starts in Unity by launching SUMO using the map.sumocfg file gener-

ated earlier with −−remote-port option. The paths to the SUMO executable and the

map.sumocfg file can be specified in Unity. Unity tries to connect to SUMO on the same

port that SUMO was started on through Unity and since SUMO is waiting for any incoming

connections, when Unity sends a request, SUMO connects though TraCI. Once the connec-

tion is established, we can initialize the GameObjects in SUMO for the vehicles and lanes

using the prespecified prefabs.

4.2 Creating Lanes

We start this phase by reading information related to each lane from SUMO and subse-

quently create the respective lanes in Unity. The lane IDs are obtained using the do job get()

method and the data is saved in a list as individual entries. These entries can be parsed

and the coordinates can be obtained using which we can build the lanes in Unity. The

positions of the lanes obtained follow the (x, y) coordinate system that is in two dimension

which needs to converted to a three dimension system with the (x, y, z) coordinates. Using

the Vector3 structure provided by Unity, we can correlate x and y coordinates to x and z

coordinates while using a null value for the y coordinate. By using this edge-to-edge data

in the 3D environment, we can repeat the lane prefab to create a lane.

8

4.3 Creating Vehicles

This phase involves reading data regarding the machine controlled traffic generated and

controlled in SUMO and creating the respective vehicles in Unity. Each vehicle ID is saved

in a list as separate entries by using the do job get method. Once the IDs are in a list, it can

be traversed and each vehicle data such as position, speed, etc. can be obtained. The vehicle

positions are in the form of 2d vertices which can be converted to 3D by using a similar

methodology to the one used to create lanes in Unity. Once the vehicles are initialized using

the Start() method in Unity, we can regularly update the positions of vehicles by obtaining

the required data in each simulation step from SUMO.

4.4 Creating the Human Driven Vehicle

Using the prespecified prefab, a GameObject was created in Unity and initialized at a

random position in the scenario. This vehicle can be human controlled and driven around

in the environment. By using TraCI, we can add a vehicle to the corresponding simulation

in Unity and update it’s position to reflect it in SUMO.

9

Figure 4.2: The Simulation in Unity

Figure 4.3: Autonomous traffic

10

Chapter 5: Future Work

This simulator could include many other kinds of traffic like pedestrians or other vehicular

traffic like bicycles, emergency vehicles, etc. This would bring it even closer to a real-life

simulation.

The TraaS library used to interface SUMO and TraCI could be replaced with a C# port

or C# implementation of TraCI. This would reduce some cumbersome errors and might

improve the simulation speed.

11

Chapter 6: Conclusion

The aim of this thesis was to create an environment in which both machine controlled

vehicles and human driven vehicles could be co-simulated in the same track. This was

achieved by using SUMO which is a traffic simulator and Unity which is a game engine

that were interfaced using the TraCI protocol. The TraCI protocol which was available as

a Java library was converted to a .Net library by using IKVM.NET so that it can be used

in Unity. Along with describing the means of achieving this simulation, previous work has

been described where most of them involve using virtually created environments for the

simulation. And some of them, do not involve a human driven vehicle in the simulation.

Hence by using the geographical data retrieved from OSM, it was possible to create a real-life

environment in Unity through TraCI.

12

REFERENCES

[1] “monodrive: Autonomous vehicle simulator.” [Online]. Available:
https://www.monodrive.io/

[2] L. Simulator, “Lgsvl simulator.” [Online]. Available: https://www.lgsvlsimulator.com/

[3] LGSVL, “Apollo,” Apr 2019. [Online]. Available: https://github.com/lgsvl/apollo

[4] “Autoware,” Mar 2019. [Online]. Available: https://github.com/lgsvl/Autoware

[5] “Duckietown,” Sep 2018. [Online]. Available: https://github.com/lgsvl/duckietown2

[6] Microsoft, “Airsim,” Apr 2019. [Online]. Available:
https://github.com/Microsoft/AirSim

[7] “Adas autonomous vehicle simulation — realtime technologies.” [On-
line]. Available: https://www.faac.com/realtime-technologies/solutions/research-
simulation-adas-autonomous-vehicles/

[8] “Autonomous vehicle radar: Improving radar performance with simulation.” [On-
line]. Available: https://www.ansys.com/about-ansys/advantage-magazine/volume-
xii-issue-1-2018/autonomous-vehicle-radar

[9] “Autonomous vehicle intelligent vehicle simulation software — co-simulation.”
[Online]. Available: https://www.opal-rt.com/autonomous-vehicle/

[10] “Autonomous and adas simulation platform.” [Online]. Available:
https://www.cognata.com/

[11] “Openstreetmap.” [Online]. Available: https://www.openstreetmap.org/export

[12] “Traci.” [Online]. Available: https://sumo.dlr.de/wiki/TraCI

[13] “Ikvm.net home page.” [Online]. Available: https://www.ikvm.net/

13

Biography

Raghavendra Somepalli received his Bachelor of Technology from Anurag Group of Institu-
tions, India in 2017.

14

