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IEARNTNG BY INDUCTIVE INFERENCE

H. 5. Michalski

University of Illinois
Urbana, Illinois 61801

SUMMARY. The paper is addressed to learning processes which
employ inductive inference. A system of varishle-valued logie,
called VIp, is briefly described and its application to imple-
menting inductive learning processes is discussed. The VIio can
be characterized as a 'multi-valued first order predicate logic'.
An example is given of how & computer program learns the simplest
relative description of two classes of objects.

INTRODUCTION

Learning processes can be generally viewed as the processes
of determining and representing the relationships existing among
objects of the universe of discourse (whereby 'objects' are
meant physical cbjects or their parts, abstract concepts,
situations: e.g. positions in games, goals: e.g. 'win' in games,
etc). These relationships are determined and represented within
the system which learns { 1STUDENT') using & source of information
about the objects ('TEACHER'). It has been observed {e.g.,
Bongardl), that the smaller the degree of STUDENT-oriented organi-
zation of information which the TEACHER provides, the greater must
be the complexity of the STUDENT. Consequently, the learning
processes can be classified according to the degree of STUDENT-
oriented organization of information provided by the TEACHER.
Thus, we can distinguish, e.g., learning 'by being born' {innate
capabilities) or being designed (the greatest organization on the
part of the TEACHER), learning by being programmed, learning from
examples, fram cbservation ('without teacher'), learning by
*inspiration'. In this paper we are concerned with problems
which belong to the area of 'learning from examples®.
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Like physical processes which are governed by a law of
minimum energy, it seems that information processes, thus also
learning processes, are governed by a corresponding law of
'minimm-complexity' (or 'maximum-simplicity'). In other words,
information processes seem to have an overall tendency to achieve
given information processing goals by the simplest means (which,
in special cases, just means the minimum number of operations).
An evidence of the existence of such a tendency in the area of
human literary expression is the Zipf's law.2 Tt seems that all
human information processing activities, in particular scientific
activities, are oriented toward determining adeguate and, at the
same time, simple descriptions or explanations of surrcunding
environment and phenomena. The ability to create the simplest
descriptions, which use only the 'most significant' concepts, and
disregard the 'irrelevant details', is highly regarded and
cangidered an evidence of intelligence. But how can we formally
define such concepts as the 'simplest description'. How can we
create machines which have the ability of determining such
descriptions?

As Ban.er,ji3 pertinently observed, a simple concept for one
person may not be simple for another. His explanation of it is
that 'there is something in the human mind which, given constant
exposure to a concept, however complicated, makes it simple'.
This explanation can be deepened by saying that a seemingly
complex concept becomes simple if it is well understood, which,
in turn, means that its relationship to the well-knowm concepts
has been clearly established. Therefore, in order to be able to
define a measure of simplicity of descriptions, two requirements
have to be first satisfied:

(1) A langusge in which descriptions are expressed has to be
agsumed.

(2} A measure of 'semantic equivalence' of descripticns has to
be esgtablished. This condition is necessary hecause for
determining the 'simplest description' of whatever we
describe, we want to compare only deacriptions which convey

the same information (i.e., which are gsemantically eguivalent)

Having satisfied (1) and (2), a measure of simplicity of
descriptions can be easily formalized. It can be, e.g., a
monotonically decressing function of the length of a description
(measured, e.g., by the number of certain assumed construets of
the language which occur in the description). If there is given
a 'simplicity function' over the individual constructs, then one
can consider a weighted sum of constructs. If only a preference
order of constructs is assumed, then one could use the lexico-
graphic functional defined by Michalski.

In this paper we present seme recent results from our work
on the theory snd computer implementations of systems which can
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learn the 'simplest descriptions' by executing an inductive
inference process ('inductive learning').

LANGUAGE FOR EXPRESSING DESCRIPTICNS: SYSTEM Vim

The formal system which we are currently developing as a
tool for expressing descriptions and implementing inductive
learning is a variable-valued logic system VIp. This Eystgm is
an extension of the system VI described by Michalski. 29
The VL, system gives a sound formal basis for developing an
*algebra of descriptions' which would enable one, for example,
to build descriptions, to simplify them, generalize to various
degree, to compare descriptions of individual objects or classes
of cbjects, to infer a description of a class of cbjects from
examples of cbjects of this class, ete.

The full definition of the system VLo is not yet available.
For the purpose of this paper we will briefly and informally
describe some® of the concepts of the system, most relevant to
our subject.

To do it simply, we will relate our description of the
system to the presently widely used first order predicate logic
(FOPL):

1. 1In FOPL, the atomic formulas (k-ary predicate symbols
followed by k occurrences of variables, function forms and/or
constants) are assumed to be binary wvalued (true or folze).
In the VIp, these formulas (called atomic forms) are treated
as functions which, as well as their arguments, range over
independent domains. Thess domains are determined as most
appropriate for the interpretation of the atomic forms and
their arguments, or the problem at hand.

2. The atomic forms occur in a wff of VL, (a VIp formula) as
parts of a broader concept of a selector, and are not,
generally, the VIo formulas when standing alone (except
for the case when a VIo formula reduces to a FOPL formula).

3. VL, formulas range over an output domain, denoted D, which
iz & linearly ordered set having the smallest and the largest
element «

*+

In the full definition of VL. there are more operations than
those described here and the concept of selector has a broader
meaning.
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The selector is defined as a selector statement, 55,
enclosed in brackets:

[88] (1)

The selector statement is either a conditional statement:

L#R (2)
or a guantified statement
q(L # R) (3)
where

L - called the left part of the conditional statement or
the referee, is elther a VIp formula (see p. 5) or an
arithmetic sum of atomic forms, or a quantifier-free

FOPL formula over atcmic forms. It will be assumed
for the purpose of this paper that this FOFL formula
is in a disjunctive normal form, and that 'or' is denoted

by ',', 'and' by '.' and 'not' by a bar over the

predicate symbol. TFor example, a FOPL formula
Py (%, £(y))A ~p(y)V p5 (%75 ) (L)

where
pl(x,fiy)),peiy),pj[x,y,c) ~= atemic forms

X,y =-- varisbles, f(y) - a function of ¥y

¢ == 8 constant
iz written as

Py (6 2(y) ) B, (¥)s P57, ¢) (5)

# denotes '=' or '#!

R = called the right part of the conditional statement or
reference, iz & subset of the union of the domains of
stomie forms in L, or a VI, formula.

@ - a sequence of existential, Jxy, and/or universal, Vxi,
quantifier forms, where x; are variables in atcmic
forms of L.

Exemples of a selector:

[p(xy) = 3] (6)

[Pl{x:a}‘PE(?,Z} = 2,“‘] {TJ
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[3x%, vy(p, (3,0}, By(y,c) = 0,2)] (8)

The selector in which 55 is & conditional statement is
ealled a conditional selector (e.g., (6) and (7)), or else it
is ealled & guantified selector (e.g., (8)). A conditional
selector [L # R] in which the referee L is a single atomic
form Py and the reference R is a subset of its domaln, is
called a simple selector.

A simple selector [Py = R] ([Pj % R]) is said to be
satisfied, iff the value of the atomic form Py is (is not)
an element of R. If P, Py and P; are atomic forms then:

[T = R] is satisfied, iff [P # R] is satisfied
[F # R] is satisfied, iff [P = R] is satisfied

[P 8

A # R] is satisfied iff [Pl # R] and [Py # R] are

sabisfied

[Pl’ Py # R)] is satisfied iff [Py # R] or [Py # R] is
satisfied

[(3x) (P # R)] is satisfied iff, for given values of all
free variables in P (i.e., variables other
than x), there exists a walue of x which
satisfies the selector [P # R]

[{wx) (P#R)] 15 satisfied iff, for given values of free
variables, the selector [P # R] is satisfied
for all values of x.

A VIn formula 1s defined by the following rules:

(i) an element of the output domain D or a selsctor
standing alone is a VIp formula,

(41) 4f V, V4 and Vg are VIp formulas then so are:

(V) formula in parentheses
=V called the inverse of V

VNV, (written also VjVp) called the conjunction
or the minimum of V, and Vo
Vlu Ve called the disjuncticn or the maximum of
Vv, and Ve. I
A VIp formula in the form of a disjunction of terms,
where term is a conjunction of selectors and an element of

D, iz called a disjunctive simple VI formuls and denocted
as DVig.
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A VIp formula which includes only conditional selectors
ig called a conditienal or guantifier-free formula. In
what follows we will discuss only conditional VIp formulas.

6. Each VIp formula V is assigned a value v(V)eD depending on
the wvalues of atomic forms in it:

(1) The value of an element of D standing alone is
this element itself.

(41) The value of & selector is the largest element of
D, if the selector is satisfied, otherwise the
smallest element of D.

(iii) If the value V is the k-th smallest element of
D, then the value of the inverse (V) is the
k=th largest element of D.
ViVo is assigned the smaller of the values of
ViV V, is assigned the larger of the values of

For illustration, below is an exsmple of a VIp formula
and its interpretation:

4y (%1, %)+ P, (%p, x5 ) fmedium] [pz=true] v 3[py=unknown] v
l[P]_I_(xgs 24!+)=:I,!'El10‘w, red] (9)

Suppose that the domains of atomic forms py(x),%p), Pa(%s,xs),
p3,p]_|_{x2,:q+) are, respectively, Dy=Do={small,medium, large],

D7 ={unknown, false, true] and Dy=(white,yellow,blue,red,black].
And that the output domein of the formula (9) is D={0,1,2,3,4},
ordered as indicated by numbers.

The formula (9) is assigned value (has value) 4, iff atomic
forms py(x1,%2) and palxp,xs), for given values of x3, Xp and x3
take value not equal 'medium', and ps takes value 'true'. If
the above condition is not satisfied, and pz takes value 'unkmown’,
then (%) has value 3. If both of the above conditions do not hold
and pl(x2,x,), for given values Xp,x,, takes value 'yellow' or
'red', then (9) has value l. If none of the above conditions

hold, (9) has value O.
BASTC COWCEPTS UNDERLYING INDUCTIVE INFERENCE BY MEANWS OF VLE
The subject of inductive inference by means of the VL, system

is very broad., For the limitation of space, we will only
delineate some of its major concepts.
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Suppose that the domains of all atomic forms in a Vip
formula are Dq,Do,...,0y. The set of all possible sequences
of values of atamic forms, that is set Dy xDpx ...xDy, is called
an event space of the formula, and its elements are called events.
The event space of a formula V is denoted by E(V). If the output
domein of V is set D, then V expresses a function

f: E[(V)-»D (10)

The atomic forms in a VI formula denote functions of the
similar type, namely an atomic form py(x;,X,) denotes a function

Pyi  Dyg X Dyp =Dy (11)

where Dy is the domain of pi(xl,xej and Dil and DiE domains of
x1 and xp, respectively.

The atomic forms, however, do not express the functioms (11),
they only denote their names and arguments. For further
considerations we will meke 2 simplifying assumption, that these
functions are fixed and can be computed for any given wvalues of
their input varisbles.

Let V1 and Vo be two VIp formulas having comparasble sets of
atomic forms* (i.e., one set includes or is equal to another set),
And let E be a subset of the event space E, specified by domains
of the larger of the two sets of atomic forms. Formulas Vi and Vo
are called semantically E-equivalent, which we write -

E

= 3
i <= WL (12)

iff for every ecE

v(vy) = v(Vp) (13)
If E = E, then V; and Vo are called semantically equivalent

and we write V3 = Vo. A rule which transforms one formula into
another, semantically equivalent formula, is called an equivalence-
reservi transformation rule. Below are given examples of such
rules (read '=' as: 'the formula on the left side mey be replaced
by the formula on the right side'). Assume that V is an arbitrary
VIp formula; P Pp, Py areatomic forms; Ry, Ro = D3 (D4 iz the
domain of P ), and R D = D, (D;,D, are domains of P, and F,,
respectively).

1\LI‘hte atomic formulas are here considered equal if they represent
functicns which differ only in that some of their arguments are
substituted by 2 value from the domagins of the arguments.
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V[P, = Ry JVVIR, = Ry = V[P = R UR,] (1k)

VP, 4 R IVVIP, £ By) = V[EB # R NR,) (15)
If RUR, = Dy and RyMRy = @ (empty set) then (14) and (15) reduce

to (16) and (17):

ngi = RI}UV[Pi = RE] =V {16)

ViE, # BJvVlE # R =V (17)

V(P = R]U‘J’[PE = R] = V[Pl,PE = R] (18)

V[P, = R][P, = R] = V[P, 'F; = K] (19)

V[P, = RI[E, AR] = V[Pl'FE = ] (20)

Suppose now that the output domain of a IVIp formula V is &
set D whose smallest element is *, Suppose further that all
elements of D, except ¥, denote certain 'specified decisicns'
sbout events, and element * denotes an 'unspecified decision',
Let E+ and E* denote subsets of E(V) for which V takes specified
and unspecified decisions, respectively.

Events of E+ are those which satisfy at least one term in V
(i.e., satisfy all selectors in the term), while E* are the
remaining events in E, i.e., E*=E(V)\ E*. We will call the set et
a set of recognizable events of V and E¥ a set of not-recognizable
events of V. Elementsof E¥ will be called *-events.

Let V; be a VIp formula and E{ its set of recognizable
events.

A rule which transzforms the formula V, into & new formula
Vo with a set, %, of recognizeble events, is called a deductive
R)

inference rule if
£}
v, = V, end EEEE{ {21)
and is called an inductive inference rule (IR) if
E] 4
v, = V, and E, 2 E] (22)

According to (22), a rule is an IR, iff Vo makes the same
specified decisions as Vy for events of Ef, but, also, makes
specified decisions for some other events than Ef. A question
arises of how these 'other' events should be selected and what
decislons should be made about them. To answer this question, a
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criterion governing an inductive rule is needed. We accept 2
criterion which can be characterized as a 'criterion of
gimplicity'. That is, we design a ‘'simplicity functicnal' for
Tig formulas (which can be modified according to application) and
employ inductive rules which maximize the assumed functional.

An important inductive rule of this type is the one which
azsigns to *-events such decisions which permit one to apply to =&
given formula rules {14)=(20) whenever it could lead to the
simplification of the formula according to the accepted measure
of simplicity (it can easily be seen that for intuiltively acceptable
measures of simplicity a simpler formula will also be more general).

An inductive program, called AQVAL/1, which operates on such
prineiples, has been developed at the University of Illincis and
already experimentally applied to selected learning and recognition
problems from the area of medicine and plant pathology (the
current version of AQVAL/l implements a subset of VIg called VIp).
Tt should be mentioned that problems of inductive learning by
means of varisble-valued logic have a strong relationship to the
problems of grammatical inference.

DESCRIBING OBJECTS IN TERMS OF VIp

Tn the epplication of VLo to describing objects, abtomic forms
are used to represent certain functions celled descriptors.
Descriptors are funetions which a learning system uses to describe
chjects.

Let pj denote a descriptor:

: X D,,-D (23)
Py jeT ij i
where
denotes the cartesian product
J = [{L,2,.es,k}
Dy = input domains of the descriptor
Dy - the output domain of the descriptor

Special cases of a descriptor:

1. J = (1}, i.e., p; is & unary function. If D;; denotes a set
of objects, and ﬁi a set of the values of = specific
characteristic of the objects, then pjy is called a feature.

= JE{l,E, '--,k]’, k=2,.3,id|, Dil=ni2=-¢-:'j_k, Diﬂitme,ﬁlsﬁl
Ir Diﬂ denotes & set of objects, then pi can be interpreted
as a k-ary relation among these objects. If pj(0iy,0i,,.¢+,
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04, )=true, then we say that the relation among 04150855+ +5 08y
hu&ds, otherwise does not hold. If I4 is not a binary-valued
set, but has & finite number of wvalues, then we will say that
pi is & multi-valued k-ary relation.

As we can see a descriptor has & very broad meaning.
Example

Suppose L4, = Do denote a set of parts of a certain physical

object. To express a fact that, e.g., & relation 'above' holds
between certain parts of the cbject, we can use a function:

. - 1
ABOVE: 1Dy, X IEE [true, false} =y

If the relation 'sbove' holds between 07 and O we write
[ABOVE(01,0p) = true], or, since the output domain is just binary,
gimply ABOVE(01,02). Suppose, however, that we want to distinguish
petween 3 possibilities: not above, little above, mucH above. In
this case we assume that

Dy = {not,little,much] (25)

To express the fact that 01 is much above Oz, we use a
selector

[ABOVE(0q,0,) = much] (26)

If in describing a class of objects we observe that the part Oy is
either much above or not shove the part 0o, we would write:

[ABOVE(01,0,) = not, much] (27)

or
[ABOVE(0q,05) # little]

In describing individual objects we can distinguish the
following classes of descriptors:

1. Global, 0-level, descriptora.
These are features which characterize objects
as a whole (e.g., color, size, texture, length,
ete. )

s, Local l=level deseriptors which characterize
pasic (l-level) parts and k-ary, k=2,3,...
relationships among them.

%, Local P-level, P=2,3,..., descriptors which
characterize P-level parts and relationships
among parts of the P-1 level parts.
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AN EXAMPIE OF LEARNING THE SIMPLEST DESCRIPTION OF THE
DIFFERENCE BETWEEN TWO CLASSES OF OBJECTS

Suppose we want to develop s machine which, given examples
of cbjects from certain classes, could learn the simplest
(according to some defined criteria) description of theseclasses
of objects or the differences between classes. Let us assume that
the machine has already built-in certain elementary abilities,
such as the ability to recognize & triangle or rectangle, to
measure their size and orientation, to determine various relation-
ships between the recognized cbjects, e.g., & relation 'on top of’,
'in between', etc. The problem of implementing the abilities of
this type is quite difficult by itself. Though, there have
already been developed computer programs which can, to a limited
degree, measure the descripbors of the kind described above (see,
e.g., Winston8). It is important to observe, however, that the
number of such elementary descriptors which potentially may be
needed is not very large, and therefore each of them could be
implemented by a specially designed software or hardware device.
On the other hand, the number of potential combinations of these
descriptors, which may occeur in descriptions of real objects, is
prohivitively large. Therefore, an important problem, to which
we are addressing ourselves is how to ilmplement very efficient
inference and learning processes which create goal orlented
descriptions of cbjects or cbject classes, assuming that these
elementary descriptors are available. A problem of this type is
illustrated by the following example.

Pig. 1 presents two classes of 'TABIES'. The cbjective is
to implement a learning process which would produce the simplest
{with regard to an assumed simplicity functional) relative
description of these two classes of TABLES.

Suppose that the following descriptors and their domains are
used to describe the TABLES:

1. global descriptors: length; domain = {short,leng]
# parts; domein = (3,4]

2, a) features of individusl parts Py, i=1,2,3,4, (table-top,
left leg , right leg , and bar, respectively):

part-type(Py); (8, (3,V,Y,=)

part-length(P;); {8, short, long)

part-texture (P ); (8, @D, 0.V, M)

(6 means 'not relevant' - when a part does not exist)

b) binary relatiomns among parts on-top:
om-tnp{Pi,Fj}; {above-middle, above-left, above-right)]
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¢) ternary relations among parts:
in-between(P;, Py, B )3 (low,high) (part P; is between Fy
and Psand locaged low or high)

Using these descriptors, the machine degeribes each object
in terms of the VIp system, as & conjunction of selectors. For
example, object 1 in olass 1 would be described as:

[length=short][#Parts:lH[y&rt-twel.'Pl}=E:l]Epart-twe{Pg)= Zin
[part-type(P})= N 1[part-type{Eh)==:==}[part-length{F1}=short] A
«evo - [ on=top(Py, Pp)=above-right] [in-between(Py, Py, P3)=high] (28)

Suppose that Tilf Tims Ii3 and Tih denote the descriptions of
objects 1,2,3,4 in ciass i, i=1,2, respectively. A description
of the class 1l (which is the 'least general') could then be:

CLASSL(T13V oV Ty3V Tyy) (29)

and of class 2:
cLass2(Tyy VT M ngv T:_.,_h} (30)

where [*,CIASS1] and (¥,CIASS2] are the output demains of
formalas (29) and (30), respectively.

(Events which satisfy none of these formulas are swgyvents. )
Suppose now that as & simplicity eriterion we accept a criterion
depanding that a formule has the minimm number of terms, and,
with the secondary pricrity, the minimum number of selectors.

A wey to attain the simplest, in the above sense, relative
degcription of the two classes, is to maximally simplify
and generalize the formulas {20) and (30) under the restriction
that the resulting formulas will have the empby interzection.
(The 'empty intersection' means that there will be no events which
satisfy both formulas.) This is done by assigning te *-gvents such
decisions which lead to the maximal simplification and generalization
of formulas (29) and (30) by using rules (14)=(20) (without
+iolating the sbove-mentioned yestrietion)., Such an inductive
process can be very efficiently executed by the previocusly mentioned
computer program AQVAL/l. The simplest formulas, according to our
eriterion, obtained from the program AQVAL/L were:

CLASS1[ length=short][part-texture (By )= @, @ ] (31)
cLARS2[ length=1long ] V/ [pa.rt-terture(PL}z 8,1 (32)

(the execution time was less than 3 sec. on the IBM 360/75;
AQVAL/1 is written in PL/1).



333

These formulas state that TABLES of class 1 ere 'short' and
the texture of the bar is ([J) or , and that TABLES of class 2
are either long or the texture of the bar is @ or there is no
bar.

This deseription of the classes seem to agree with what
a human might accept as & 'most simple' relative descriptiom of
the two classes.
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MICHALSKI : Discussion

SIKLOSSY

Most good languages (natural or programming languages) are highly redundant.
And you take an extreme step in your presentation saying that you look for
a maximum of non-redundancy.

MICHALSKI

I am looking for goal oriented descriptions which disregard what is not impor-
tant for this goal, descriptions that are just sufficient, e.g., to recognize an
object among other objects without measuring or checking unnecessary or
irrelevant information.

SIKLOSSY

I have two more remarks. You did not mention studies by Hunt. Then in the
example you give in your paper, Pitrat just proposed another descripiion which
I find more natural ﬂ; is defined by . table not centered or bar is high.

MICHALSKI

Hunt uses only elementary selectors, i.e., selectors in which left part is a single
varighle and right part is a single element of the variable domain. Thus, he
considers only a simple special case of the system VL, falso of the carlier

system FL 7 ). Yes, the description you mentioned is an alternative description.
The program could also discover it ie., would give a description :

CLASSI ([on-top(P,.P,) # above-middle ]
V[ in-between(P, =P2 .Pj) = high)

if the criterion of the simplicity, specified as input data to the program, would
be such that the above two single-selector conjunctions are preferable over one
two-selector conjunction chosen by the program (the latter was preferable accor-
ding to the criterion used by the program).
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COULON

You have a simplicity criterion. ROSENFELD did use also a diserepancy crite-
rion as well. Don't you need it ?

MICHALSKI

Yes [ have a condition of computational efficiency or simplicity, Discrepancy
is taken care of by the covering algorithm which finds a cover of the given set
against another set or sets, e.g., it covers all “positive™ examples but doesn't
cover any 'negative’’ examples.

HUET

What are the relations with classical algorithms to minimize boolean functions ?

MICHALSKI

There is a relation : the classical algorithms are not useful, they are much too
inefficient to be used for problems we are interested in, eg, when we have,
say, 50 or 80 multivalued variables. In the algorithm A9 which we use, not all
complexes are generated (ie., all prime implicants in the binary case} but only
very small subsets of them in each step of the algorithm. We also have certain
parameters which control the search space, reducing it more or less depending
on the difficulty of the problem. The price for reducing the search space is
that the chance of obtaining an optimal or very-close-to-optimal solution is
decreasing, though we still may obtain an optimal solution.

HUET
The language you propose seems to be a first order language.
MICHALSKI

Yes, it can be characterized as a “multivalued first order predicate calculus”
with some additional operators which seem to be wseful for our purpose.

ADRIEN

Your principle to select your criteria (the minimum number of terms) is not
semantic. So you have no proper basis for generalization, which is however a
final goal of the classification.

MICHALSKI

Yes, we look for the “simplest” explanation of the known facts. Thus, the
generalization the system is making is governed by the "simplicity or
efficiency” criterion. Therefore, obviously, the system may make errors in
explaining "new facts”. If this happens, the formulas should be properly
corrected. Similarly as we correct our hypotheses when they do not explain
new facts. This is not difficult to do in our "VL algebra”



