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LEARNING TWO-TIERED DESCRIPTIONS
OF FLEXIBLE CONCEPTS

Part I: Principles and Methodology

ABSTRACT

A method for learning flexible concepts is described, that is concepts that are imprecise and
context dependent. The method is based on a two-tiered concept representation. In such a
representation the first tier, called the Base Concept Representation, describes typical properties
of a concept in an explicit, comprehensible, and efficient form. The second tier, called the
Inferential Concept Interpretation, contains inference rules and metaknowledge that define
allowable transformations of the concept under different contexts, and handle exceptional
instances.

In the method, the first tier is created in two stages. In the first stage, a complete and
consistent description of the concept is learned by applying the inductive learning methodology
(AQ and INDUCE) to examples of varying typicality. In the second stage, so obtained
description is optimized through a heuristic search, employing a description quality criterion.
The second tier is defined by an expert under the guidance from the system, which asks the
expert to explain the context-dependent meaning or special cases of the concept. Alternatively,
the second tier can be inherited from more general concepts. This part of the paper concentrates
on basic ideas behind the method, and gives illustrative examples. Part II of the paper describes
algorithms, their implementation, and experimental results.
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1. INTRODUCTION

Most methods of machine learning research assume that concepts are precise entities,
representable by a single symbolic description. In such a representation, the boundaries of a
concept are well-defined and context-independent. All instances of a concept are assumed to be
equally representative. If an instance satisfies the given concept description, then it belongs to
the concept, otherwise it does not. Some of these assumptions are relieved in works that
assume that the concepts are defined by a probability distribution (e.g., Cheeseman et al., 88)
or set membership function (Zadeh, 74). However, once such a probability distribution or a set
membership function is defined explicitly for a given concept, the concept again has a fixed
meaning, independent of the context in which is used. Moreover, such concept
representations remain inadequate for handling exceptional cases, or for capturing increases of
knowledge about the properties of the concept.

In contrast, most human concepts have a context-dependent meaning and lack precisely
defined boundaries. The imprecision of the boundaries seems to have a logical rather than
probabilistic character. That mean that the classification of instances of imprecise concepts
typically involves logical, rather than probabilistic inference. For example, a human trying to
resolve the problem if a given object is a desk or a table will evoke logical arguments rather

than a probability value.

Examples of human concepts are usually not all equivalent. They may have different degrees of
typicality in representing the concept. For example, a robin is conventionally viewed as a more
typical bird than a penguin or an ostrich. Also, under different contexts the "bird" concept may
apply to a live, flying bird, a picture or a sculpture, a chick hatching out of the egg, or even an
airplane. Thus human concepts are flexible, as they adapt to the context in which they are used.
Itis clear that in order to handle such flexible concepts, machine learning systems need to
employ richer concept representations than are currently used. Developing methods for
acquiring flexible concepts and reasoning with them is thus an important goal in the new phase

of machine learning research.

One problem that arises is how to represent such concepts. There have been a number of
attempts to deal with representing imprecise concepts. Multiple-valued logic (e.g. Rine, 77)
introduces additional truth-values, which represent different degrees of certainty with which an
instance is believed to belong to a given concept.



The fuzzy set approach (Zadeh, 74) introduces a numerical degree of membership for
examples in the concept. This set-membership function is described by people describing the
concept, and thus is subjective. The fuzzy set approach allows one to express varying degree
of membership of instances in the concept, for example, in the concept "tall person.” It does
not provide, however, appropriate mechanisms for expressing and handling the context-
dependence of the concept meaning.

When the knowledge is incomplete rather than imprecise, it may be appropriate to make default
assumptions about the world. In non-monotonic reasoning systems (e.g., Doyle, 79;
McCarthy, 80; deKleer 86; Reiter, 87) these assumptions are revised if they can be refuted,
i.e., if their negation can be proven. The non-monotonic approach to knowledge representation
usually adds significant complexity and computational cost to knowledge representation
system, and does not appropriately handle the context-dependency nor express degrees of

uncertainty.

The starting point of research presented here is the idea of the mwo-tiered concept representation
(Michalski et al. 86). In this representation the total meaning of a concept consists of two
components, the Base Concept Representation (BCR) and the Inferential Concept Interpretation
(ICI). The BCR defines the most typical or ideal properties of the concept. The ICI makes the
boundaries of the concept flexible by describing allowed modifications of the concept's
features in different contexts. Consequently, learning any concept requires constructing the

appropriate BCR and ICIL.

In many cases, the ICI is common for a class of concepts: e.g., a method for matching an
instance of a specific liver disease with descriptions of different liver diseases will usually be
the same for every liver disease. The ICI may also be inherited from more general concepts.
For example, many properties of trees are the same as those of plants. The process of
inferential matching goes beyond the standard partial matching based on the probability that an
instance covers a given concept. It may involve any type of reasoning: deductive, analogical,

or inductive inference.

Early ideas on learning two-tiered concept representations were presented in (Michalski, 88a)
and closely related earlier work (Michalski et al., 86; Michalski, 87). An intriguing result of
that research was that a substantial reduction of the description complexity can be achieved
using even a very simple version of such a representation, without affecting its performance.



This paper is an extension and continuation of these early ideas. Important advances are the
introduction of a very general description quality measure, the use of a rule base for
performing the ICI, and the development of a heuristic search procedure that explores the trade-
offs between the BCR and the ICI.

The general description quality (GDQ) measure takes into consideration the accuracy, the
simplicity of the total description (BCR+ICI), the computational cost and the
comprehensibility. The introduction of such a general evaluation measure allows us to redefine
the concept of learning (Bergadano et al., 88a). Namely the learning activity is seen as the
multistep process of improving the initial concept description (e.g., a set of instances of the
concept, or an incomplete or inconsistent description) in terms of the above rnen_tioned

description quality measure.

To demonstrate these ideas we have built a system and then applied it to selected problems.
Two problems in particular have been investigated: the problem of learning the concept of a
"chair" and the problem of learning the concept of a labor contract.

2. TWO-TIERED CONCEPT REPRESENTATION

Traditional work on concept representation assumes that the whole meaning of a concept
resides in a single stored structure, ¢.g. a semantic network that captures all relevant properties
of the concept. (e.g. Collins and Quinlan, 72, Minsky, 75, Sowa, 84). The process of
recognizing a concept involves simple matching of the stored representation with the perceived
facts. Such matching may include comparing features of concept descriptions, or tracing links
in networks of concepts, but has not been assumed to involve any complex inferential

Processes.

On the other hand, our knowledge can be viewed as a combination of two components,
recorded knowledge and inferential extension, i.e. knowledge that can be created from
recorded knowledge by conducting inference. This view leads us to the proposition that the
meaning we assign to a concept in any given situation is a result of an interplay between two
parts. The first part represents what the agent knows, or remembers. The second part
represents what the agent can infer from his knowledge, using rules of inference.

The same principle of two-tiered representation seems to apply to individual concepts. In order



to investigate the consequences of this conjecture, Michalski (87) has proposed a two-tiered
knowledge representation. A concept description is split into two-parts: a Base Concept
Representation (BCR) and an Inferential Concept Interpretation (ICI). The BCR defines the
concept explicitly, by giving a description of the concept in terms of either the attributes
observed in the example, or in terms constructively learned during concept formation. The
prototypical instances of the concept are classified by matching with the BCR. Characteristics
of the concept represented in the BCR tend to capture the principle, the ideal or the intention

behind the concept.

Anomalies, exceptions and context-dependencies are covered by a reasoning process that uses
information contained in the ICI. The ICI deals with exceptions by inferring that they are
instances of the concept (concept extending), or that they ought to be excluded from the
description supplied by the BCR (concept shrinking). The ICI is used in the process of
assigning the meaning to a concept using the BCR and the context. This process involves the
background knowledge and relevant inference methods that allow the recognition, extension,
or modification of the concept meaning according to context. When an unknown entity is
matched against the BCR, it may satisfy it directly, or it may satisfy some of its inferential
extensions. During the process of interpreting the ICI, one may use a probabilistic inference
based on a simple distance measure (so called flexible matching (Michalski et al. 86)),
analogical reasoning, inductive reasoning, or deductive reasoning to classify "special" uses of

concepts.

Let us illustrate the idea of two-tiered representation with the concept of chair. A two-tiered

representation of the chair concept could have the following form:

BCR: A piece of furniture.
Purpose: to seat one person.
Structure: seat, four legs, and a backrest.
(A picture of a typical chair, or a description of the relationship among the parts
may be included).

ICI:  no-of legs may vary from 1 to 4
the shape, the size, the color and the material of all components can vary as long
as the function defined in the BCR is preserved
(chair without the backrest) ---> (stool rather than chair)
(chair with arm-rests) ---> (chair specializes to armchair)



(context = museum exhibit) --> (chair is not used for seating any more)

(context = capital punishment) --> (specializes to electric_chair)

(context = toys) --> (dimensions can be much smaller, but other structural
properties are preserved. Does not serve for sitting by normal persons, but by
correspondingly small dolls)

(a part of the chair is broken) --> (a broken chair)

This simple example illustrates several important features of the two-tiered representation. If
recognition time is important, only BCR will be used to match an example. If more time can be
allocated, or if a more precise classification is required for a given event, ICI is used. When
interpreting the ICI, one relies on background and general knowledge, and on the context in
which the concept operates. Contexts can have hierarchical organization. Finally, ICI rules may
chain, although it is not shown in this simple example.

Some systems that generate and use two-tiered representations have been described in the
literature (Michalski et al., 86; Bergadano et al., 88b; Bergadano, Giordana, to appear). Also,
the work on pruning ID3 trees in order to avoid overfitting (e.g. Cestnik et al., 87) can be
viewed as related to this approach. However, pruning the trees results in the loss of coverage
of concept instances. The approach presented here does not experience this problem, since the
instances removed from the BCR are covered by the ICI.

Two-tiered concept descriptions are usually simpler, easier to understand and more efficient to
use than the conventional ones. They also exhibit performance improvement on a testing set.
In the systems developed so far, the ICI includes only a flexible matching function. More
importantly, in their quality evaluation measures, these systems do not take into account the
inferentially covered parts of concept descriptions. Improvement in quality is therefore
measured only by the improvement in the first tier.

3. THE LEARNING SYSTEM: A GENERAL OVERVIEW,
3.1. The General Architecture.
The learning system presented here produces two-tiered concept descriptions by performing

inference on examples obtained from the source. Fig. 1 presents the general architecture of

such a system.



BACKGROUND KNOWLEDGE

BCR — —> ICI

f

SOURCE

Fig. 1. General architecture of a system for learning two-tiered concept descriptions.

The core of the system is an inference engine that learns concept descriptions in a two-tiered
format, consisting of the Base Concept Representation (BCR) and the Inferential Concept
Interpretation (ICI). Different types of inference are involved in obtaining a two-tiered

representation.

The BCR describes typical and easy-to-define meaning of the concept. Inductive inference is
appropriate to perform this task. The inductive inference performed here is knowledge
intensive. First the background knowledge can be used as the semantic criterion to restrict the
search space. For example, we could determine that one attribute is more important than the
others through the deductive inference performed on the background knowledge. Second, the
background knowledge can be used to guide the constructive induction. The knowledge
intensive method can help the system to learn the BCR from a small set of typical examples.

The ICI is used mainly to handle the special and rare cases. It is obtained from exceptions and
nontypical events. Their number is usually limited, and therefore deductive or analogical
inference is used to acquire some of the deductive rules. One of the methods to deductively
obtain the rules can be outlined as follows: the background knowledge is used to produce the
explanations of those exceptions and the ICI rules are generated from the explanations. The

explanations can also be obtained from human experts.



Concepts in a given domain usually form a hierarchy, ordered by the relation of one concept
being a specialization of another concept. Some ICI rules of a concept may then be inherited
from a higher-level concept.

Moreover, as indicated with the arrows in Fig. 1, both parts of the two-tiered description
obtained by the system can contribute to the improvement and enrichment of the background
knowledge.

3.2. Architecture of the Experimental System.

An experimental version of the system implements the architecture presented in Fig. 1. Table
1 specifies the input, output, and the function of the system.

Input:
Examples obtained from the source.

Output
BCR and ICI for the concept.

(The BCR is an efficient and comprehensible representation of typical instances of the
concept. The ICI provides inferential means for assigning instances to classes, and
interpreting concept exceptions.)

Function;
Initial concept description is provided by an inductive learner
This description becomes the root of a tree-like search space
Non-root nodes of the search space are obtained by simplification of the ancestor nodes
Search is guided by the General Description Quality measure.

Table 1. A specification of the input, output and the function of the system

Fig. 2 shows the design of the experimental version of the system. There are two differences
between the general architecture presented in Fig. 1, and the specific experimental system
presented in Fig. 2 that implements it. First, the experimental system relies on an inductive
learning system, such as AQ15 (Michalski et al., 86) or INDUCE (Hoff et al., 82), to learn a



concept description from examples. This description is treated as the BCR of the initial two-
tiered representation, whose ICI is empty. Second, the experimental system relies on the

expert to provide rules that explain special events.
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Fig. 2. Design of the experimental version of the system

The BCR is represented in disjunctive normal form described in VL] or VL2 notation
(Michalski, 83). The ICI consists of two parts: a flexible matching function and deductive
rules. The system learns the BCR and the deductive rules. The flexible matching function is
predefined. Corresponding to the three kinds of knowledge, three types of matching are
defined:

1. Strict matching: the event matches the BCR exactly,
2. Flexible matching: the event matches the BCR through a flexible matching function and
3. Deductive matching: the event matches the concept through deductive reasoning by

using the deductive rules.



The system attempts to build a better quality two-tiered representation of the concept under
consideration, using a heuristic search procedure. The search space is a potentially infinite set
of all possible two-tiered descriptions of a given concept. The search procedure searches only a
finite fragment of the space. Only those descriptions that can be obtained from the initial
description by applying search operations are involved in the search. The search process is
driven by the General Description Quality (GDQ) of the descriptions obtained at each step of
the search.

3.3. General Description Quality.

The notion of general description quality of concepts (Bergadano et. al. 88a) is formalized and
discussed in more detail in Part II. In order to understand how it influences the search, it
suffices to say here that the quality of a concept description depends on the accuracy, the
comprehensibility, and the cost of the description. Covering the typical instances of the
concept by the BCR, and the less typical ones by the ICI, also improves the quality of a
description.

The accuracy of a concept description reflects the degree to which the description relates to the
concept it describes. In the case of concept learning form examples, accuracy depends on the
completeness and consistency of the description with regard to learning examples. It also
depends on the typicality of the examples it covers, and the justification that can be constructed
for the description. If the description can be plausibly justified in terms of the domain
knowledge, the confidence in its correctness will increase.

The comprehensibility of the acquired knowledge is related to subjective and domain dependent
criteria. An important requirement of an Al system is that knowledge has to be explicit and
easily understandable by human experts. This is important for improving or modifying the
knowledge, and for communicating with experts. Therefore knowledge acquired automatically
should be easy to understand, should contain the descriptors most frequently used by experts,
and should not be syntactically too complex. In practice, only the last feature is easy to ensure.

The cost captures the properties of a description related to its storage and use. Other things
being equal, descriptions which are easier to store and easier to use for recognizing new
examples are preferred. When considering the cost of a description, two characteristics are of
primary importance. The first one is the cost of measuring the values of variables occurring in



the description. In some application domains, e.g. in medicine, this may be a very important
consideration. The second one is the computational cost of evaluating the description. Again,
certain applications in real-time environment, e.g speech or image recognition, may impose

constraints on the evaluation time of a description.

Both the BCR and the ICI are parts of the concept description and they are used together in
concept recognition. They influence each other. It is not necessarily true that if a BCR performs
well with one ICI, then it also performs well with a different ICI. For example, the experiment
described in Part IT showed that a BCR performed poorly with an empty ICI, but it performed
well with a flexible matching function. Furthermore, in order to learn a better two-tiered
concept description, the distribution between the BCR and the ICI should be adjusted during
learning. Therefore they should not be learned separately and they should be related in some
way during learning. Most of the current learning systems learned the BCR and the ICI
independently, and flexible matching is only applied in the performance element. In our
approach, when computing GDQ of a concept description, both the BCR and the ICI are
considered. When we compute the completeness and consistency, the type of matching (strict
matching, deductive matching and flexible matching) of an event is taken into account. The
comprehensibility and cost of the ICI are also considered.

3.4. Learning the Base Concept Representation.
An elementary search operation may either specialize or generalize a description. The heuristics
used at a given step of the search (Part II) decide which operation is applied. In the
experimental version of the system, generalization is implemented as selector truncation, and
specialization is implemented as complex truncation. Another operation, referent modification,
simplifies the range of a selector, and may behave either as a generalization, or a specialization,
depending on the selector relation (see table II). For instance, if the selector is

[size = 1..5, 7]
then referent modification giving

[size = 1..7]

is a generalization, since the cover is extended. On the other hand, if the selector is

10



[size <> 1..5, 7]

then the same referent modification represents a specialization, since the cover shrinks. Table II
summarizes the implementation of generalization and specialization operators in the existing

system.
generalization: selector truncation  referent modification
specialization: complex truncation  referent modification

Table 2. Implementation of the search operators

3.5. Learning the Inferential Concept Interpretation.

After a search operation is applied on the BCR of a description d, referred to as BCRd, a new
BCR may be either more specialized or more general than BCRd. If the description is more
specialized, some positive events previously covered by BCRd may not be covered any more.
The coverage by the concept description is arranged by building ICI rules that will cover them.

On the other hand, when a description obtained from BCRd is more general than BCRd, some
new events, previously not covered by BCRd, may have been added. These events could be
positive as well as negative. If negative events have been added as a result of generalization,
they will have to be excluded from the set of events covered by the concept description by
means of the ICI rules. There are two types of rules: rules that cover a positive example
otherwise left out of the BCR, and rules that eliminate a negative example from the BCR.
Rules of the first type are referred to as extending rules, and rules of the second type are
called shrinking rules.

In order to exclude or cover an event by the ICI part of a concept description, one has to obtain
rules that will match the event, and perform the action necessary for the exclusion or coverage
of the event. These rules, or their chains that ultimately lead to a conclusion regarding the
membership of an event in the concept, are treated as an explanation of the event. The rules

11



used in an explanation can be obtained in several ways.

First, suppose that the system is given an instance of a broken chair. More precisely, the
description of the instance matches neither the BCR nor the ICI of the chair, because one of
the four legs is shorter than the other three. Suppose that the ICI of the leg concept will deduce
from this description that the shorter leg is broken. The chair concept is a specialization of the
higher level concept furniture. Suppose further that the ICI for furniture has the following
rule: if some part of an object that otherwise is an instance of furniture is broken, then the
object still is an instance of furniture. The following rule may now be inherited by the ICI of
the chair concept: if some part of an object, that otherwise matches the BCR of chair, is
broken, than the object is a chair.

Second, an analytic learning system, such as described in (Mitchell et al., 86; DeJong 86), can
be applied to obtain an explanation. In these systems, a typical event is explained by
deductively inferring it from the underlying background theory. The result is an operational
rule for the concept. This rule is then generalized, e.g. using techniques described in (Mitchell
et al. 86; Prieditis and Mostow 87). In our approach, only nontypical events will be subject to
explanation. The purpose of the explanation here is to justify the special character of the event
explained, rather that to operationalize the proof of its membership in the concept.

Finally, explanation of an event may be obtained from an expert, as is the case in knowledge
acquisition for expert systems. The experimental system described here uses this method in its
initial version.

3.6. A Summary of the Design of the Experimental System.

Once the ICI rules associated with the new description are known, its GDQ is computed. The
GDQ value directs the best-first search. A heuristic, described in sec. 5, stops the search
process. When the search process stops, the selected node defines the BCR and the ICI of a
good concept description. As in the general architecture of Fig. 1, if these give rise to
interesting generalizations that impact the general knowledge of the system, this knowledge
will be modified. On the other hand, the general knowledge is used in the process of explaining
the special cases to be covered by the ICI. Moreover, the general knowledge is necessary to
perform constructive induction in the inductive learning phase that produces the initial

description.

12



The architecture presented above involves both analytic and empirical learning, and may
support learning in a multi-concept environment. Moreover, its constructive induction feature
implements a feedback between the previously learned knowledge and the future learning.
Such an architecture satisfies therefore the basic tenets of the constructive learning approach as
understood in (Michalski and Ko, 88). Given the encouraging results with the experimental
version of the system, a more complex design of an integrated learning system, that does not

rely on an inductive learner for its input, is considered.

4. EXAMPLES

This section presents some examples of two-tiered representations obtained using the
experimental system. Learning the concept of a labor-management contract provides a suitable
and interesting application of learning a two-tiered concept representation. The nature of the
domain is such that the example can be described using an attribute-based language, such as
VL. Consequently, the learning program AQ15 is used to obtain the initial concept

description. The application, discussed in Part II, is the natural extension of this example.

The second example, learning the concept of a chair from structural examples, requires the use
of structure-based language, such as VL), since relations between objects of given types have
to be represented. Consequently, the learning program INDUCE is used to produce the initial

concept description.
4.1. Learning two-tiered Description of Labor-management Contracts.

Labor-management contracts usually show a number of typical characteristics. Among those
are: general wage increase, job security, and pensions. Meeting all those demands by the
management would result in an "ideal" contract, from the labor point of view. In practice, labor

demands are usually scaled down during negotiation, which results in a contract.

It is not uncommon, however, to see contracts that exhibit very nontypical characteristics.
These exceptional contracts may be explained by the context and background knowledge. For
instance, a contract which is highly unsatisfactory in both wages and pension areas, but offers
some job security, may be accepted during a deep recession. On the other hand, given an
exceptionally good economic environment in an industry where labor supply is scarce, any
contract proposal that is not highly satisfactory in all three areas may be unacceptable.

13



Furthermore, a contract that is recognized as acceptable by the first tier representation may
actually be evaluated negatively in the second tier: it may imply micro-economic consequences
overwriting initial values of its attributes. For all these reasons, a two-tiered representation

seems appropriate when learning the concept of a contract.

The example space is divided, from the labor point of view, into acceptable and unacceptable
contracts. Both are agreements negotiated between a trade union and the management of an
organization. The former have furthermore been ratified by the general union membership,
while the latter have been rejected.

In sequel we present a set of simple examples: they describe specific contracts, where only
some selected characteristics of a contract are given. Those characteristics pertain to seven
chosen attributes of a contract: general wage increase (gwi), cost of living allowance (cola), job
security (job_sec), retirement age (ret_age), extent of pension (p_ext), pension for overtime
work (p_ovt), and fringe benefits. The following is therefore an example of an acceptable

contract:
gwi cola job_sec ret_age p_ext p_ovt fringes
2% inflation+.5%  some 60 part false maintained

A number of other examples have been described in the same way, and are shown in Table. 3.
The typicality of the last two positive and the last two negative examples was 0.5; the typicality
of all the remaining examples was 1.0 (the highest value of typicality).

The examples were submitted to AQ15, which produced a discriminant description of a
concept of an acceptable contract (see Fig. 3). The quality of this description, according to the
specific quality measure defined in Part II, is 0.989. This description is modified by the
system in the following way:

1. Referent modification is performed on selectors. Close interval operation is applied on the
first selector of the first two complexes, so that the complex [gwi <> 0..4 v 6] becomes [gwi
> 6], and the complex [gwi <> 0 v 2..7] becomes [gwi > 7]. In this example, completeness
and inconsistency are left unchanged by range modification, and simplicity and
comprehensibility are improved.

14



acceptable-events

# gwi cola job_sec p_age p_ext p_ovt fringes
1 2 ilpos some 60 part false main
2 10 inf good 65 none false main
3 2 inf some 60 part false main
4 1 Ze10 good 65 full false main
5 10 ZEro good 65 full true inc

6 3 inf good 64 part true loss
7 6 Zero good 65 full true loss
8 14 ilpos good 62 part false inc

9 4 ilpos good 64 full false main
10 3 Zero some 58 full false inc
1 5 Ze1r0 some 60 full true loss
12 2 inf good 61 part false main
13 il 2610 good 65 none false main
14 14 ZE1o good 65 none false main
15 1 ilpos good 65 none false main
16 15 ZE1o some 65 none false loss
17 15 Ze1o some 65 none false inc
18 12 Ze10 some 61 part false loss
19 10 ZE10 none 65 full false loss
20 1 Zero none 65 full false loss
21 15 ilneg none 58 part false inc
22 14 inf none 61 part true loss
23 10 inf none 60 full false main
24 7 ilpos none 55 full true loss
25 6 ilpos none 55 full true main

unacceptable-events

# gwi cola job_sec p_age p_ext p_ovt fringes
1 1..8 Zero none 60..65 none false loss
2 14 ZE10 none 58..65 none false loss
3 11 ZE10 none 65 none false loss
4 10 inf none 64 none true main
5 2 inf some 62 none false loss
6 0.4 Z€10 some 65 none false main
7 4 ZE10 good 60 none false inc

8 6 inf some 65 none false inc

9 2 Ze10 good 65 none false main
10 14 Ze10 none 65 none false main
11 2...7 inf none 60..65 full false main
12 0 ilneg none 60 part false main
13 0 Ze10 none 65 part false main
14 3 Ze10 none 65 full false loss
15 2 Ze10 some 64..65 part false loss

Table 3. Cases of acceptable and unacceptable contracts.

2. The algorithm, described above, gives a modified description, shown in Fig. 5. The quality
of this description is 0.976. This represents a small deterioration of quality, since two negative
examples are covered by the modified description. Moreover, two positive examples are lost
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because the last complex of the description shown in Fig.3 is truncated. The two negative
examples are explained as exceptions. The reasoning about this exception is the following:

[gwi <> 0..4 v 6] & [job_sec = some v good] v

[gwi<>0.2v 7] & [p_ext = full v part] v

[job_sec = some v good] & [p_ext = full v part] & [fringes = incr v maint] v
[gwi <> 10] & [p_ovt = true]

Fig. 3. The initial concept description for the labor-management contract

[gwi > 6] & [job_sec =some v good] v
[gwi > 7] & [p_ext = full v part] v
[job_sec = some v good] & [p_ext = full v part]

Fig. 4. The improved concept description obtained by the system (BCR only)

even if the three attributes occurring in the rule of Fig. 4 (gwi, job_sec, p_ext) have acceptable
values, when all the other attributes have the worst values possible, the contract is not
acceptable. This shrinking rule may be expressed as follows:

[gwi = very_low] & [cola = zero] & [p_age = very_high] & [p_ovt = false] & [fringes = loss]
--> unacceptable_contract

Is there a good extending explanation rule for the two events e,4+, €25+ covered uniquely by
complex 47 These events may be covered by applying the following reasoning: if the pension
offer is extremely good, and the state of the economy is good, the value of the gwi attribute
does not matter anymore. The following rules convey this reasoning:

[p_age = very_low] [p_ext = full] & [p_ovt =true] --> exceptional(pension)
exceptional(pension) * good_economy --> irrelevant(gwi).



Therefore, complex 4 is truncated and the above rules are added to the ICL The final BCR
obtained in this example is shown in Fig.4. The BCR obtained represents a concept of
acceptable contract which has high values of two of the three areas important for the union.
The quality of this description is 1.0: it is complete and consistent, and the partition of events
between the BCR and the ICI corresponds to the typicality of these events.

4.2. Learning a two-tiered description of the chair concept.

The instances of visual concepts present a high degree of variability, are affected by noise and
are subject to modifications related to context. For this reason visual concepts can be better
represented through a two-tiered scheme, allowing the system to capture the stable
characteristics and reason about the special cases in a unified framework.

As in other pattern analysis problems, instances of visual concepts can be segmented into
elementary components, and each component can be described by a list of attributes.
Moreover, there can be spatial or functional relationships among the components, and attributes
related to the whole instance can be present. It is important to point out that functional attributes
have an important role in the representation of the instances, since they are the basis for the
learning of a classification knowledge which is truly meaningful and understandable in a given
domain. Human learning also seems to interleave the acquisition of concept descriptions and
the detection of functional elements in the examples, without a well-defined separation or a
clear ordering of the two activities in time.

Below we will give a simple example, where a two-tiered representation of the concept of
"chair" is learned from examples in a partially automated way. Fig. 5 gives an example of how
a concept instance is described to the system. First of all, the example is divided into
components (b1-b6) and the instance is said to contain them. Then every component is
described through its shape attribute and its space relationships to the other components (ontop,
attached from above). Moreover the predicate person_can_sit_on is used to specify a
functional property of the component b5.

Some other examples have been described in a similar way. These examples are given, in a
pictorial form, in Fig. 5. There are 7 positive (1 thru 7) and 8 negative examples (8 thru 15) of
the "chair" concept. The reader should realize that some of the information contained in the
drawings is actually lost in the symbolic description and cannot possibly be obtained in the
learned knowledge.
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contains(e,b1,b2,b3,b4,b5,b6),
type(b1)=line, type(b2)=line,
type(b3)=line, type(b4)=line,
ontop(b1 & b2 & b3 & b4, floor),
type(b5)=rectangle,
person_can_sit_on(b5),
ontop(b5, b1 & b2 & b3 & b4),
type(b6)=rectangle,
attached_from_above(b6,b5)

Fig. 5 Symbolic representation of a chair

These examples were given as input to INDUCE, together with the following constructive rule,
as part of the background knowledge:

[type(x)=line] & [ontop(x,floor)] => [type(x)=leg]
and the following discriminant descriptions were obtained, for the "chair" concept:

1: [type(bl)=leg] & [type(b2)=leg] & [type(b3)=leg] &
[person_can_sit_on(b4)]&[ontop(b4,b1Yb2Yb3)]1&
attached_from_above(b5,b4)] & [type(b4)rcircle]

events covered: 1,3,5,6 - events uniquely covered: 1,5,6
2: [person_can_sit_on(b2)] & [ontop(b2,b1)] &
[type(bl)xline] & [type(b2)=square]
events covered: 7 - events uniquely covered: 7
3: [type(bl)=semicircle]
events covered: 3.4 - events uniquely covered: 4
4: [attached_from_above(b2,b1)]&[ontop(b3,b2)]&[type(b3)=rectangle]
events covered: 2 - events uniquely covered: 2

These four conjunctive descriptions (or complexes) form a disjunctive normal form expression
(or cover), that is consistent and complete with respect to the examples given in Fig. 6. In

particular, complex 1 covers the positive examples 1,3,5 and 6, among which examples 1,5
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Fig. 6. Visual representation of examples used to obtain a two-tiered
description of the chair concept.

and 6 are uniquely covered by this complex; complex 2 covers uniquely positive example 7;
complex 3 covers positive examples 3 and 4, and covers uniquely example 4; complex 4 covers
uniquely positive example 2. The induction process has effectively used the available
background knowledge and the complexes that were produced also contain some functional
description, but they still do not capture the most relevant characteristics of the concept of a



chair. The reason is that the given examples contain a lot of information which was not really
important, and an inductive learning system uses this information if it helps discriminating
among the concepts. For example the presence of a component whose shape is semicircle
actually covers examples 3 and 4 and no counterexamples in Fig. 6, but is by no means a
plausible description of a chair. This is a fundamental problem in many applications of
inductive learning, because the acquired knowledge will cover the given events but sometimes
will not be understood and accepted by experts. This is often the case when only a limited
number of examples is available.

In the following we will show how a two-tiered description of the concept "chair" can be
automatically acquired from the description generated by INDUCE in the system described in
sec. 3. The obtained concept description will then have two parts: the BCR and the ICL The
BCR for the "chair" concept will not necessarily be consistent nor complete, and some
exceptional examples and counterexamples will need to be taken into account by a set of rules
in the ICL

Complex 1 is the most important one, since it covers four positive examples out of seven, and
covers uniquely three of them. Since INDUCE only generates perfectly consistent complexes,
complex 1 does not cover any negative examples, but this may change when the two-tiered
description is constructed, since some inconsistency might be introduced during the truncation
procedure. The other complexes cover uniquely only one example each. Moreover if a semantic
measure of comprehensibility is available, complex 1 could be evaluated as closer to our
intuitive idea of what a chair is, since it contains the requirement that there have to be at least
three legs, on top of which there is something a person can sit on.

The description generated by INDUCE, with an empty ICI is then used as a root node in the
search process. The system will try to build a better quality two-tiered description of the
concept "chair" from the initial description through the heuristic search discussed in sec. 3. The
two-tiered description obtained by the system is shown in Fig. 7. It is obtained as follows.
First, the last selector [type(b4)rcircle] of the complex 1 is truncated since it will improve the
GDQ of the description most. In this way examples 2 and 4 will also be covered by the
complex, which will now cover all the positive examples except for example 7, but one
counterexample (event 13) will also be covered. Nevertheless, the overall quality of the
complex is increased, after truncation of its last selector, also because it will then be possible to
truncate complexes 3 and 4, since they will not uniquely cover any positive example. This will
improve the simplicity of the description. Event 13 is then taken into account by the following
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ICI rules, that are introduced by a human user:

3y [person_can_sit_on(y)] & [attached_from_above(x,y)] & [big(x)] => [backrest(x)]
73x [backrest(x)] => * chair

these rules will allow the system to reason about "special" counterexamples such as event 13,
by understanding that, in a chair, the backrest has to be sufficiently large. At this point,
complex 2 can also be truncated, since it only covers one example, and the following two-
tiered representation for the "chair" concept will be produced:

BCR: 3x,z 3(23)y [person_can_sit_on(x)] &
[type(y)=leg] & [ontop(x,y)] & [attached_from_above(z,x)]

ICI: 3Ty [person_can_sit_on(y)] & [attached_from_above(x,y)] &
[big(x)] => [type(x)=backrest]
T3x [type(x)=backrest] => 1 chair
3(2)x [type(x)=wheel] => Irrelevant(3(23)y [type(y)=leg])

Fig 8. Two-tiered representation of the "chair" concept

The last rule in the ICI has been introduced in order to cover the positive example that was
covered by complex 2, before the truncation. In fact example 7 represents an exceptional
condition and should not be included in the BCR; on the contrary, the rule in the ICI captures
the relevant information that was present in the example. Event 7 is still a chair, but it is a
special kind of chair, where legs have been replaced by two wheels. By using this rule as a
rewriting rule, in conjunction with the BCR, event 7 will be covered as a positive example.
BCR and ICI, if taken together, are a complete and consistent representation of the concept.

The description is now more intuitive, and the BCR seems to capture our natural understanding
of the concept of a chair, while the ICI deals with special cases in an explicit way. The quality
of the two tiered description would be higher because its accuracy is the same as the one of the
description generated by INDUCE, but its comprehensibility is significantly better. This
learning method seems to be appropriate in applications where a limited number of examples is
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available, and general and domain knowledge is needed in order to capture the most relevant
aspects of the learning events.

5. RELATED WORK.

The research presented here is different in several ways from the recent work in machine
learning that investigates the effects of simplifying concept descriptions, e..g. (Fisher and
Schlimmer, 88; Iba et al., 88). First, the method described here does not experience any loss
of coverage as a result of description modification. This is a major difference between
experimental results reported in Part I, and the findings of both (Iba et al., 88) and (Fisher and
Schlimmer, 88). The reason is that in our approach events that lose their strict cover as the
result of BCR simplification, become then covered by the ICI. Moreover, unlike (Fisher and
Schlimmer, 88) and (Iba et al., 88), this approach to concept description simplification takes
into account the typicality of events covered by the simplified description, thus preventing loss

of coverage of typical events.

The experiments of (Fisher and Schlimmer, 88) in truncating the ID3's decision trees are based
on a statistical attribute dependence measure that determines the attributes to be pruned.
Because of its statistical character, there is a loss of predictive power when simplifying
descriptions learned on small training sets. As the experiments described in Part II indicate, the
approach presented here does not seem to suffer from this problem.

The system developed by (Iba et al. 88) uses a trade-off measure that is similar to the GDQ
measure proposed in this paper. The GDQ measure, defined in detail in Part II, considers more
factors. Besides taking into account the typicality of the instances covered by the description, it
considers the type of matching between an instance and a description. Moreover, the simplicity
measured by the GDQ depends not only on the number of disjuncts in the description, as in
(Iba et al. 88), but also on the different syntactic features of the terms in the description.

An important difference between the approach presented here and pruning of decision trees
(Cestnik et al., 87) is lack of constraints on the part of the representation that is truncated when
learning a two-tiered concept description. In post-pruning of decision trees, only paths ending
in leaves may be truncated, which may improve the efficiency at the expense of the description
quality. Moreover, pruning decision trees involves only generalization of the concept
description, while the above method performs both generalization and specialization of the

22



description.

Truncation of the BCR, obtained inductively from a small learning set does not affect predictive
power if an adequate typicality measure is available. The existence of an adequate ICI further

alleviates the problems resulting from induction with few examples.

The problem of defining and using the typicality of examples has been considered in the past
both in machine learning and cognitive science. Negative examples of low typicality are
referred to as near misses in Winston's system (Winston, 1975). Such examples, labeled by
the user as near misses, are used in Winston's system to delineate the borders of a concept.
Michalski and Larson, (78) introduced the idea of an outstanding representative of a concept.
The concept of prototypical examples has been also studied by Smith and Medin (81) and by
Roch and Mervis (75). Prototypical examples are fully specified instantiations of a given
concept. In the method described here such prototypical examples do not need to exist,
prototypical properties of a concept are learned automatically from examples of different

typicality.

To summarize, there are four major differences between the work presented here and related
research described in the literature. First, the above method does not experience a loss of
coverage although it still yields a simpler description with improved predictive power. Second,
it simplifies the description by performing both generalization and specialization. Third, any
part of the description may be truncated in the simplification process. Finally, the method takes
into account the typicality of the examples.

6. CONCLUSIONS AND FUTURE WORK.

The paper describes a method of learning two-tiered concept descriptions. The method is based
on transforming an initial Base Concept Representation. The transformed BCR covers groups
of events characterized by high typicality. It is also syntactically simpler, and therefore more
comprehensible. A more complete coverage of the events from the learning set by the whole
two-tiered description is achieved through inference. The method presented in this paper relies
not only on the probabilistic inference, implemented as flexible matching in (Michalski et al.,
86). It uses also a rule base for deductive inference. Deductive inference has the additional
advantage of explaining why a given event is to be included (or excluded) from the cover.
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In order to achieve this objective, transformations of BCR are implemented as truncations of
the cover. The cover is provided by AQ15 in a standard, disjunctive normal form. The
truncations either specialize the description (complex truncation), or generalize it (selector
truncation). A search process, guided by a heuristic quality measure, is used to obtain a "good"
description. The measure takes into account not only the explicit part of the description, but
also the implicit one. The algorithms and heuristics are discussed in more detail in Part II of
this paper.

The experiments that we have performed on real data indicate that the system is capable of
learning good quality descriptions that are easy to comprehend and efficient to evaluate. In Part
II, we describe an application in which a two-tiered description of a labor-management example
has been learned from real data. The results indicate that recognition rate of two-tiered concept
descriptions on the testing set is better than the performance of the normal, inductively learned
descriptions on this set. This provides the evidence about the adequate predictive power of a
two-tiered concept description of good quality. On the other hand, the BCR of the two-tiered
description is much simpler than the cover learned by AQ15.

A number of problems remain to be addressed in the future. First, an integrated system that
learns two-tiered descriptions needs to be designed and build. Such a system will have to
satisfy a number of design goals: it will have to be incremental, learn descriptions of good
quality, exhibit good predictive power, and be efficient. The incremental behavior of the
system would involve remembering examples that are neither strictly matched nor close (in the
sense of the measure used by flexible matching) to the BCR. Then an explanation of such an
example using the existing background and context knowledge, and the existing deductive ICI
rules, is attempted. If no explanation is obtained automatically or from an expert, the example
is stored. When the ICI grows significantly, there will be a repeated attempt to explain such an

example.

Second, the problem of automatic acquisition of the ICI has to be investigated and tackled. The
methods developed in Explanation-Based Learning will provide a good starting point. It has to
be observed, however, that since the events to be explained are usually exceptions, the
knowledge necessary to explain them may be lacking from the system.

Third, the system does not address the problems of dynamically emerging hierarchies of
concepts. In the existing version the system only learns one concept at a time, and concepts do
not change or split as new examples become available.
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Finally, the system should be able to self-reorganize. The distribution of knowledge between
the BCR and the ICI will be determined by the performance of the system on large testing
sets. If it turns out, e.g., that some ICI rules are used very often, then these rules could be
compiled into explicit BCR assertions. The representation obtained in this manner will be
faster, but it will occupy more memory. It seems, therefore, that in concept representation one
can trade one parameter against the other, within certain limits. This interesting research
problem merits further investigation.

25



REFERENCES

Bergadano, F., Matwin, S., Michalski, R. S., Zhang, J., "Measuring Quality of Concept
Descriptions”, Proc. Third European Working Sessions on Learning, pp. 1-14, Glasgow,
1988a.

Bergadano, F. , Giordana, A. , Saitta, L., "Automated Concept Acquisition in Noisy
Environments", IEEE Transactions on PAMI, Vol 10, NO. 4, pp. 555-578, July1988.

Bergadano, F., Giordana, A., "Pattern Classification: An Approximate Reasoning
Framework", International Journal of Intelligent Systems, (To appear).

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., Freeman, D., "AutoClass: A
Bayesian Classification System", Procs. of the Fifth Int'l. Conf. On Machine Learning, Ann
Arbor, pp. 54-64 (1988).

Cestnik, B., Kononenko, 1., Bratko, 1., "ASSISTANT 86: A Knowledge-elicitation Tool for
Sophisticated Users", Procs. of the 2nd European Workshop on Learning, pp. 31-45 (1987).

Clark, K., "Negation as Failure", pp. 293-322 in Logic and Data Bases, ed. Gallaire, H. and
Minker, J., Plenum Press, New York (1978).

Collins, A. M. and Quillian, M. R., "Experiments on Semantic Memory and Language
Comprehension” in Cognition, Learning and Memory, L. W. Gregg ed., John Wiley, 1972.

de Kleer, J., "An Assumption Based TMS", Artificial Intelligence 28, pp. 127-162 (1986).

Delong, G., Mooney, R., "Explanation-based Learning: An Alternative View", Machine
Learning, vol. 1, No. 2, 1986.

Doyle, J., "A Truth Maintenance System", Artificial Intelligence 12, pp. 231-272 (1979).

Fisher, D. H., Schlimmer, J. C., "Concept Simplification and Prediction Accuracy", Procs. of
the Fifth Int'l. Conf. On Machine Learning, Ann Arbor, pp. 22-28 (1988).

26



Hoff, B., Michalski, R. S., Stepp, R., "INDUCE-2 - A Program for Learning Structural
Descriptions from Examples”, TR 82-5, ISG, University of Illinois, 1982.

Iba, W., Wogulis, J., Langley, P., "Trading off Simplicity and Coverage in Incremental
Concept Learning", Procs. of the Fifth Int'l. Conf. On Machine Learning, Ann Arbor, pp. 73-
79 (1988).

McCarthy, J., "Circumscription: a form of Non-monotonic Reasoning", Artificial Intelligence
13, 27-39 (1980).

Michalski, R.S., Larson, J. B., "Selection of Most Representative Training Examples and
Incremental Generation of VL1 Hypotheses: the Underlying Methodology and the Description

of Programs ESEL and AQ11", TR 867, Dept. of Computer Sci., UIUC, 1978.

Michalski, R.S., "A Theory and Methodology of Inductive Learning”, Chapter in the book
"Machine Learning, an Artificial Intelligence Approach", Michalski, R. S., Carbonell,
J. G., Mitchell, T. M. (Eds.), Tioga Pub. Co., Palo Alto, Ca, 1983.

Michalski, R. S., Mozetic, Hong, J.,I., Lavrac, "The Multi-purpose Incremental Learning
System AQ1S5 and its Testing Application to Three Medical Domains"”, Proc. 5th AAAI pp.
1041-1045 1986.

Michalski, R. S., "Two-Tiered Concept Meaning, Inferential Matching and Conceptual
Cohesiveness” , Chapter in the Book "Similarity and Analogy", Stella Vosniadou and A.
Orton, (Eds), 1988.

Michalski, R. S. and Ko, H., "On the Nature of Explanation, or Why Dod the Wine Bottle
Shatter", AAAI Symposium: Explanation-Based Learning, Stanford University, pp. 12-16,
1988a.

Michalski, R. S., "How to Learn Imprecise Cocepts: A Method Employing a Two-Tiered
Representation for Learning”, Procs. of the Fourth International Workshop on Machine
Learning, Irvine, CA, pp. 50-58,1987.

Minsky, M., "A Framework for Representing Knowledge", in The Psychology of Computer
Vision, ed. P. Winston, (1975)

27



28

Mitchell, T. M., Keller, R. & Kedar-Cabelli, S., "Explanation-based Generalization: a
unifying view,” Machine Learning Journal, 1, 11-46 1986.

Prieditis, A. E. and Mostow, J., "PROLEARN: Towards A Prolog Interpreter that Learns,"
Proc. of IJCAI 87, Milan, pp 494-498 1987.

Reiter, R., "Non-monotonic Reasoning”, pp. 147-186 in Annual Review of Computer
Science, (1987).

Rine, D. C,, ed., "Computer Science and Multiple-valued Logic. Theory and Applications”,
North Holland, 1977.

Smith, E. E., Medin, D. L., "Categories and Concepts", Harvard University Press, 1981.

Rosch, E., and Mervis, C. B., "Family Resemblances: Studies in the Internal Structure of
Categories", Cognitive Psychology, vol. 7, pp. 573-605, 1975.

Sowa, J. F., "Conceptual Structures”, Addison Wesley, 1984,

Zadeh, L. A., "Fuzzy Logic and its Applications to Approximate Reasoning", Information
Processing, North Holland, pp. 591-594, 1974.



