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Abstract

DYNAMIC RESOURCE ALLOCATION IN OFDM-BASED COGNITIVE RADIO NET-
WORKS

Akram Baharlouei, PhD

George Mason University, 2013

Dissertation Director: Dr. Bijan Jabbari

This dissertation addresses two important issues in cooperative cognitive radio networks:

spectrum sensing in physical layer and dynamic resource allocation in MAC layer. The goal

of spectrum sensing is to find the vacant spectrum bands opportunistically and have them

accumulated in a spectrum pool. In the MAC layer the detected bands are allocated to the

Secondary Users (SUs) dynamically to take the best advantage of the temporarily granted

resources.

We first assume a general model of a multiuser OFDM cellular network with non-

cognitive users. Then, a dynamic resource allocation scheme is proposed based on Nash

Bargaining Solution (NBS) for the downlink of the network. Although NBS provides a

fair and optimum approach in order to maximize the total rate of the network, there is no

simple solution for the case of K users. Since NBS relates to maximizing the multiplication

of the users utilities rather than the summation it makes the optimization problem harder

to solve. Hence, by decomposing the NBS problem into two sub-problems, the power al-

location reduces to the well-known water-filling algorithm and the subchannel assignment

leads to a simple algorithm which takes the total channel gain of each user as the fairness

factor. The proposed algorithm satisfies the minimum rate requirement of each user first



and allocates the excess subchannels by searching over the K ×N subchannels to noise

ratio matrix based on the bargaining process happening between the base station and the

users. Hence, the complexity reduces from order O(KN ) to O(N ×K). Simulation results

show that the proposed algorithm keeps a balance between the Max-Min approach and the

Max-Sum where Max-Min aims at maximizing the worst user rate and Max-Sum maximizes

the sum of the rates by blocking the users in the poor channel conditions. We demonstrate

the application of this approach to LTE-Advanced systems as well.

In the ensuing work, we extend our system model to a cognitive radio network where

secondary users need to monitor the spectrum of the primary for possible idle bands. As the

sensing is the first step for the secondary operation we investigate the available centralized

and distributed spectrum sensing schemes. We propose a collaborative spectrum sensing

method based on Stackelberg game in order to improve the sensing performance of cognitive

radio users, especially when they are operating under severe channel fading. In this scheme

the users with acceptable received SNR are allowed to lead the network sensing process and

share their observations with the ones experiencing weak channel conditions. By defining a

new and more appropriate metric to evaluate the performance of the collaborative detection,

the proposed method addresses the drawbacks of the conventional centralized or distributed

spectrum sensing. Moreover, it does not require exchange of channel information among

nodes and only minimum reporting of local observations is needed. The simulation results

indicate that the proposed scheme improves the network sensing performance and reduces

the overhead as compared to the non-cooperative case and the conventional collaborative

schemes, respectively.

In order to allocate resources in a cognitive OFDM based network the availability of

subchannels are needed to be considered. Hence, the imperfect sensing information will

reflect in resource allocation procedure. We extend our proposed dynamic subchannel and

power allocation scheme based on Nash Bargaining Game for an ad hoc network of Sec-

ondary Users (SU) coexisting opportunistically with a Primary base station. Each SU is

equipped with an energy detector to sense the Primary User (PU) activity over N OFDM



sub-channels. We deploy Nash Bargaining Solution to model the power and subchannel

allocation of the SUs over the temporarily available transmission opportunities. Simulation

results show that the proposed dynamic power and subchannel assignment is simple, effec-

tive and fair. Moreover, the total throughput of the network is highly dependent on the

accuracy level of the sensing information and the percentage of PU silence. An acceptable

secondary network throughput is achievable if the probability of PU presence is limited to

less than 0.4.



Chapter 1: Introduction

The next generation wireless communication systems should be able to serve a large number

of users with flexibility in their quality of service (QoS) requirements. The challenges to

maintain such requirements originates from the limited availability of radio spectrum, the

total transmit power and the nature of wireless channel. In broadband applications, the

wireless channel suffers from frequency selective-multipath fading which results in severe

inter-symbol interference (ISI) both in time and frequency which affects the service quality

and data rates detrimentally. To overcome this issue, intelligent radio resource management

algorithms operating in both the physical and the media access control (MAC) layers are

needed to be designed.

Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation

which is developed into a popular scheme for wireless standards including 4G mobile com-

munications, Wireless Local Area Networks (WLANS), and Wireless Metropolitan Area

Networks (WMAN) which is later extended in IEEE802.16e (WiMAX). OFDM divides the

available bandwidth into N orthogonal subchannels each with a bandwidth much smaller

than the coherence bandwidth of the channel. The lower bandwidth of the subchannels con-

verts the frequency selective fading into flat fading and the orthogonality of the subchannels

makes multiple access possible.

In a single user system, the user can use the total power to transmit on all N subcarriers.

However, in a multiuser OFDM system, there is a need for a multiple access scheme to

allocate the subcarriers and the power to the users. Two classes of resource allocation

schemes exist:

1. Fixed resource allocation

1



Figure 1.1: OFDM block diagram

2. Dynamic resource allocation

Fixed resource allocation schemes, such as time division multiple access (TDMA) and

frequency division multiple access (FDMA), assign an independent dimension, e.g., time slot

or subchannel, to each user. A fixed resource allocation scheme is not optimal, since the

scheme is fixed regardless of the current channel condition. On the other hand, dynamic

resource allocation allocates a dimension adaptively to the users based on their channel

gains. Due to the time-varying nature of the wireless channel, dynamic resource allocation

makes full use of multiuser diversity to achieve higher performance.

Two classes of optimization techniques have been proposed in the dynamic multiuser

OFDM literature [1]:

• Margin adaptive (MA)

• Rate adaptive (RA)

The MA objective is to achieve the minimum overall transmit power given the constraints

on the users data rates or bit error rates (BER) [2]. The RA objective is to maximize

2



each users error-free capacity with a total transmit power constraint [3], [4]. These opti-

mization problems are nonlinear and, hence, computationally intensive to solve. In [5], the

nonlinear optimization problems were transformed into a linear optimization problem with

integer variables. The optimal solution can be achieved by integer programming. However,

even with integer programming, the complexity increases exponentially with the number of

constraints and variables.

On the other hand, the growing demand for high data rate communications and wider

bandwidth, spectrum scarcity is becoming an inevitable issue which reveals the inefficiency

of the current static spectrum access techniques. Cognitive radio technology as a potential

platform to implement the Dynamic Spectrum Access (DSA) has been captured the interest

of researchers in recent years [6]. The basic idea of cognitive radio is to allow some unlicensed

(Secondary) Users to utilize the spectrum of the licensed (Primary) users when it is idle.

Figure (1.2) shows a cognitive radio network [7]. Dynamic spectrum access techniques

allow the cognitive radio to operate in the best available channel. The main functions of a

cognitive radio technology are ([7]):

• Spectrum sensing: determine which portions of the spectrum is available and detect

the presence of licensed users when a user operates in a licensed band

• Spectrum management: select the best available channel

• Spectrum sharing: coordinate access to this channel with other users

• Spectrum mobility: vacate the channel when a licensed user is detected

As we can see spectrum sensing is the first and critical step for a cognitive radio device

to operate. A secondary user senses the spectrum of the Primary periodically, and uses it

when it is idle, and switch to other unused bands when primary system is present.

3



Figure 1.2: A cognitive radio network

1.1 Statement of the Problem

In this dissertation we consider a cellular network consists of a base station operating in

downlink with N OFDM subchannels and K users. The bandwidth of each subchannel is

w. The problem of resource allocation in this system is how to determine the elements of

matrix C = [ci,n]K×N specifying which subchannels should be assigned to which user and

vector P = [pi,n]K×N indicating how much power should be allocated to each subchannels.

An overview of the problem is depicted in 1.3.

To solve the above resource problem of resource allocation the first question is how

to define the objective function. There are three definition for objective function in the

available literature as follows:

1. Maximize sum of the rate of each (Max-Sum)

4



Figure 1.3: Overview of resource allocation problem in an OFDM system

2. Maximize the worst user rate (Max-Min)

3. Maximize product of the rates (Nash Bargaining Solution)

We borrow Nash Bargaining Solution from game theory. NBS is a cooperative game

that provides optimality and fairness at the same time. The resulting optimization problem

is an NP-hard problem and finding a closed form solution is not possible. Therefore, we

decompose the problem into two subproblems of subchannel allocation and power allocation

and propose a simple algorithm for resource allocation.

We further extend our system model to the case when an ad-hoc network of Secondary

Users (SU) are coexisting opportunistically with the primary base station. Secondary users

sense the spectrum of the primary periodically for the idle spectrum holes. In this case, the

sensing parameters from physical layer such as the percentage of the PU activity and how

accurately the sensing process is done are determining factors which indicates that a cross

layer approach is needed to solve the resource allocation problem in MAC layer.

5



1.2 Related Work

1.2.1 Dynamic Resource Allocation in OFDM based Systems

The problem of dynamic spectrum allocation in OFDMA wireless networks has been widely

studied in the literatures [1, 4, 8, 9]. In [4] the dynamic channel assignment is modeled

as a convex optimization problem to maximize the minimum of the sum of all users rate

with respect to some constraints and a simple suboptimal algorithm is proposed. However,

maximizing the worst user (Max-Min) rate is at the cost of sacrificing the users with better

channel conditions which leads to a lower total rate. Another adaptive resource allocation

scheme is proposed in [1] with taking proportional fairness into account by adding a con-

straint on rate requirement of each user. Nevertheless, Proportional fairness is a special

case of NBS when the disagreement point is zero. Generally allocating subchannels in order

to maximize the sum throughput of the network is a linear optimization problem with in-

teger variables which could be solved using integer programming but it is computationally

complex. Hence, either suboptimum algorithms are proposed or the integer programming

problem relaxed to a standard convex optimization.

By widespread use of wireless devices the available dynamic resource allocation schemes

need to be even more flexible to be able to serve the unlicensed users while the primary users

are in idle mode. This dissertation addresses this issue by using Nash Bargaining Solution

(NBS) which provides optimality and fairness at the same time. NBS is a cooperative game

which optimizes the multiplication of the objective function rather than the aggregate sum

which results fair and optimal pay-off per user. In [10] a power control scheme is proposed

based on NBS and KSBS for cognitive radio networks. In [11] also a resource allocation

framework is presented for an ad hoc network of secondary users using two game theoretic

methods. However, in modeling the system there is no constrain for subchannel sharing

among users and each subchannel can be allocated to several users which is not practical for

OFDM networks and lowers the total throughput [12]. Moreover, solving and formulating

the Nash Bargaining game as a second approach is not complete. Another interesting

6



approach for dynamic resource allocation using NBS approach is proposed in [9]. The

problem is solved for two-user case in an iterative manner, but for the multiuser case the

authors involve another game tool, called coalition games, which adds more iteration to the

two-user case convergence. Furthermore, the convergence of the algorithm is not guaranteed.

The available literature applied NBS for only two user cases and the resulting opti-

mization problem is not solved generally. This dissertation proposes an optimum and fair

dynamic spectrum allocation schemes for the case of K users.

1.2.2 Cognitive Radio and Spectrum Sensing

There are several detectors to sense the spectrum of a primary user such as, matched filter,

energy detector, and feature detection [13]. Feature detection is able to distinguish between

the received signal energy and the noise energy but it requires long observation intervals of

the received signal which leads to high computational complexity. Matched filter detector

is the optimal option for the case of stationary Gaussian noise and when the primary signal

is known. However, when the primary signal is unknown or complexity is an issue, matched

filter and feature detection are ruled out, and energy detector appears to be the feasible

choice.

1.2.3 Cross Layer Spectrum Sensing and Allocation

In [14] the dynamic resource allocation in cognitive radio networks with Imperfect Chan-

nel Sensing is investigated and is solved using a discrete stochastic optimization method.

However, the imperfectness is assumed for the channel gain information. Basically, the

goal of spectrum sensing is to monitor the activity of the PU which is the case in this

dissertation. An interesting joint cross-layer scheduling and spectrum sensing for cognitive

radio networks is proposed in [15] based on what is called ’Raw Sensing Information’ and

the power and subchannel allocation is solved using primal-dual decomposition approach.

Their underlay spectrum sharing method with assuming some acceptable interference level

differs from our work where we adopt overlay method which does not allocate an OFDM
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sub-channel to more than one user simultaneously. Moreover, our problem solving method

is based on NBS which gives a fair and simple allocation scheme.

Following to our collaborative spectrum sensing work in [16], here, we use the sensing

information of the energy detector of each SU to design an optimum power and subchannel

allocation for SUs. First, we show that how the sensing bits of the PHY layer can affect

the allocation process in MAC layer. Then, we propose a sub-optimum resource allocation

algorithm in order to increase the network total throughput while maintaining fairness

among users.

1.3 Outline and Contribution of Dissertation

In short, the contribution of this dissertation is as follows:

• We present an efficient and fair scheme for allocating resources in the downlink of

multiuser OFDMA cellular networks based on Nash Bargaining. By decomposing the

NBS problem into two sub-problems, the power allocation reduces to the well-known

water-filling algorithm and the subchannel assignment leads to a simple algorithm

which takes the total channel gain of each user as the fairness factor. The results are

presented in [17] and [18] as well.

• A distributed spectrum sensing scheme is proposed based on Stackelberg game [16].

• A cross layer dynamic resource allocation scheme is presented for OFDM-based cog-

nitive radio networks based on Nash bargaining game with the imperfect sensing

information [19], [20] and [21].

The remaining of this dissertation is organized as follows. In Chapter 2 we discuss dy-

namic resource allocation for OFDM based networks and a dynamic power and subchannel

allocation scheme is proposed. Chapter 3 addresses spectrum sensing in cognitive radio net-

works and a distributed spectrum sensing algorithm is proposed. In Chapter 4 we extend

the proposed dynamic resource allocation for cognitive radio networks. In the end, Chapter

8



5 summarizes the contributions of this dissertation and some remarks are made for possible

future research.
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Chapter 2: Dynamic Resource Allocation

2.1 Introduction

With the growing demand for wireless services of higher Quality of Service (QOS) (data

rate, latency, coverage, etc), the need for more efficient schemes to provide better utilization

of the limited available resources such as spectrum becomes inevitable. The wireless service

providers need to support large number of users with flexibility in their QOS requirements.

In an Orthogonal Frequency Devision Multiplexing (OFDM) Access the total bandwidth

is divided into some orthogonal subchannels which converts frequency selective multipath

fading into flat fading to combat ISI. In a static channel allocation scheme the predetermined

subchannels are assigned to different users regardless of their channel gain, while in an

adaptive scheme each subchannel is allocated to the user with the best channel gain on that

subchannel which improves the network capacity significantly [4].

The problem of dynamic spectrum allocation in OFDMA wireless networks has been

widely studied in the literatures [1, 4, 8, 9]. In [4] the dynamic channel assignment is

modeled as a convex optimization problem to maximize the minimum of the sum of all

users rate with respect to some constraint and a simple suboptimal algorithm is proposed.

However, maximizing the worst user (Max-Min) rate is at the cost of sacrificing the users

with better channel conditions which leads to a lower total rate. Another adaptive resource

allocation scheme is proposed in [1] with taking proportional fairness into account by adding

a constraint on rate requirement of each user. Nevertheless, Proportional fairness is a special

case of NBS when the disagreement point is zero. Generally allocating subchannels in order

to maximize the sum throughput of the network is a linear optimization problem with

integer variables which could be solved using integer programming which is computationally

complex. Hence, either sub-optimum algorithms are proposed or the integer programming
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problem relaxed to a standard convex optimization. A good survey of dynamic resource

allocation schemes for OFDM networks is presented in [22].

This chapter addresses the issue of adaptive resource allocation by applying NBS which

provides optimality while keeping fairness. NBS is a cooperative game where optimizes

the multiplication of the objective functions rather than the aggregate sum which results

in higher pay-off per user. In [10] a power control scheme is proposed based on NBS for

cognitive radio networks. [11] also proposes a resource allocation framework for an ad hoc

network of cognitive radio users using two game theoretic methods. However, in modeling

the system there is no constrain for subchannel sharing among users and each subchannel

can be allocated to several users which is not practical for OFDM networks and lowers the

total throughput [12]. Moreover, NBS is used as a second approach to verify the performance

of the Cognitive Radio Game for the case of two user. Another interesting approach for

dynamic resource allocation using NBS approach is proposed in [9]. The problem is solved

for two-user case in an iterative manner, but for the multiuser case the authors involve

another game tool called coalition games which adds more iterations to the two-user case

convergence. Furthermore, the convergence of the algorithm is not guaranteed.

The available literature applied NBS for only two user cases and the resulting opti-

mization problem is not solved generally. This dissertation proposes an optimum and fair

dynamic spectrum allocation schemes for the case of K users. First, we solve the problem

for the case of K user. Then, we reduce the nonlinear logarithmic objective function to a

linear Knapsack approach which is easier to handle. A direct benefit of applying NBS is

that the fairness is guaranteed and the total achievable rate is higher than that of Max-Min

approach.

The remaining of this chapter is organized as follows. Section II describes the system

model. In section III the proposed method is elaborated. Simulation results are given in

section IV and V concludes the chapter.
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2.2 Wireless Channel Characteristics

In a wireless channel the transmitted radio waves arrive at the receiver after refection,

diffraction and scattering from the natural and man-made objects. The incoming radio

waves arriving from different paths have different propagation delays, amplitudes, and an-

gles of arrival, causing the superposed received signal to distort or fade. As a result, the

wireless channel is assumed to be wideband time-varying frequency-selective multipath fad-

ing. Figure (2.1) depicts the effect of a frequency selective channel on subcarriers of an

OFDM signal. As seen some of the subcarriers are about to be completely nullified by

the frequency selective fading. An overview on information-theoretic and communications

features of fading channels has been studied in [23].

The coherence bandwidth measures the separation in frequency after which two signals

will experience uncorrelated fading [24]. In flat fading, the coherence bandwidth of the

channel is larger than the bandwidth of the signal. Therefore, all frequency components

of the signal will experience the same magnitude of fading. In frequency-selective fading,

the coherence bandwidth of the channel is smaller than the bandwidth of the signal. Dif-

ferent frequency components of the signal therefore experience uncorrelated fading. By

choosing the bandwidth of the subchannels much smaller than the coherence bandwidth of

the channel, each subchannel can be assumed to undergo flat fading. Figure (2.2) compares

single wideband transmission versus multi-carrier signaling over a frequency selective fading

channel.

One of the widely used models to explain the statistical nature of flat fading channels

is Clarks model [24]. According to this model, the fading parameter of the channel is

considered to be a random variable with Rayleigh distribution. In modeling the channel, it

is also assumed that additive white Gaussian noise (AWGN) is present for all subcarriers

of all users.

The advantages of adaptive resource allocation in multiuser OFDM systems are partially

due to multiuser diversity which is based on assigning each subchannel to the user with good

channel gain on it [22]. To this purpose, it is assumed that users perfectly estimate and
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Figure 2.1: The effect of a frequency selective channel on subcarriers of an OFDM signal

feedback their channel information to the base station and the channel condition is always

available to the base station in the beginning of each transmission frame. Also, it is assumed

that the fading rate of the channel is slow enough such that the time-varying channel can

be considered quasi-static where the channel condition does not change within each OFDM

transmission frame.

In this dissertation we assume that channel information is perfect at both the transmitter

and the receiver. While this is a reasonable assumption in wireline systems where the

channel remains invariant, in wireless transmission, it is rarely possible for the transmitter to

acquire perfect channel state information (CSI). This inaccuracy is due to channel estimation

errors and channel feedback delay also referred to as channel mismatch errors. The latter

is due to the variations of the wireless channel once it has been estimated.

Channel estimation methods for OFDM based systems have been studied [25], [26].

The effect of imperfect CSI on rate maximization of a single-user OFDM wireless system

has been well studied in [27], [28]. Adaptive resource allocation in a multiuser system with

imperfect or partial CSI was addressed in [29], [30].
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Figure 2.2: Transmission of a wideband single carrier signal vs multi-carrier (OFDM) over
a frequency selective

2.3 System Model

Consider a single-cell multiuser OFDM network with K users and N OFDM sub-channels,

each with bandwidth w. The rate for i-th user is expressed as:

Ri =
N∑
n=1

wbi,n (2.1)

where bi,n is the number of bits per symbol for the i-th user in subchannel n. Assuming

bi,n ≥ 2 and BERi ≤ 10−3, the following approximation will hold [31]:

bi,n ≈ log2(1 + c2γi,n ln(
BERi

c1
)) (2.2)
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where c1 = 0.2, c2 = 1.5. BERi is the i-th user bit error rate, and γi,n is the SNR in

subchannel n. Hence, the rate for user i can be formulated as:

Ri =

N∑
n=1

ci,nw log2(1 + c3

pi,nh
2
i,n

σ2
i

) i = 1, ...,K;n = 1, ..., N. (2.3)

where c3 = c2/ ln(c1/BERi), σ
2
i is the noise power, and hi,n and pi,n are the channel gain and

transmitted power of the i-th user on subchannel n respectively. Moreover, the subchannel

assignment coefficient ci,n is given as:

ci,n =


1, subchannel n is allocated to user i

0, Otherwise.

(2.4)

A resource allocation problem is how to allocate the N subchannels and subsequently the

transmitted power among K users so that the maximum throughput is achieved. To define

the total throughput we take the product of the rates from Nash Bargaining game. We

assume that channel state information of all users are known.

2.4 Resource Allocation for a single user OFDM

In this part we assume that there is only one user and of course all N subchannels are

allocated to this user. The goal is to find out how much power the user should put in each

subchannel so that the rate is maximized. The rate for the case of single user could be

re-written as:

R =
N∑
n=1

w log2(1 + c3pnGn) (2.5)
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where Gn = h2
n/σ

2, and pn is the power amount in subchannel n. The optimization would

be over power vector (p1, p2, ..., pN ) as follows:

arg max
p1,p2,...,pN

N∑
n=1

w log2(1 + c3
pnh

2
n

σ2
) (2.6)

subject to:

N∑
n=1

pn ≤ Pmax (2.7)

Applying the method of Lagrange multiplier we obtain:

pn +
1

Gn
=
w

λ
(2.8)

where λ is the Lagrange multiplier, and 1
Gn

is called noise to carrier ratio. looking at

equation (2.8) we observe that the power plus noise to carrier (subchannel) ratio is a constant

value. This is the well-known water filling algorithm [32] and has a unique optimal solution.

1/λ is called the water level and is obtained by solving the above optimization problem:

1

λ
=
Pmax +

∑N
n=1

1
Gn

Nw
(2.9)

Substituting (2.9) in (2.8), the power per subchannel becomes:

pn =

[
Pmax +

∑N
n=1

1
Gn

N
− 1

Gn

]+

(2.10)

where x+ = max(x, 0).

Let’s illustrate water filling algorithm by an example. Assume that we are supposed
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Figure 2.3: Power water filling for the case of single user, N = 16 subchannels, and Pmax =
0.01 mW

to allocate a power amount of Pmax = 0.01 mW among N = 16 OFDM subchannels.

Subcchannel gains are assumed to be i.i.d Rayleigh random variables, and noise density is

−80 dBm, and w = 1 MHz.

Figure (2.3) shows how water fills in each subchannel. The poured power into each

subchannel is depicted by blue color and noise to carrier ratio is in red. We see that the

lower the noise to carrier ratio the more power is assigned to that subchannel. Moreover,

the power is allocated in a way that we have an even level of water for all subchannels.

However, no power is poured into subchannel 4 since its noise to carrier ratio is very high.

The simulation is repeated for the same parameter except for a higher value of Pmax =

0.1 mW. It is seen that the power level is increased compare to the case of Pmax = 0.01

mW. Besides, power has filled all the subchannels.
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Figure 2.4: Power water filling for the case of single user, N = 16 subchannels, and Pmax =
0.1 mW

2.5 Resource Allocation for Multi-user OFDM

We perceived that water filling is the optimum way to allocate power for a single-user OFDM

system. However, when multiple users are sharing OFDM subchannels, for example a base

station that is transmitting to couple of mobile users in downlink, the optimization problem

will not be simple as in (2.6). Other than power per subchannel per user, subchannel

coefficients need to be determined. The first question is how we define the objective function

which is the subject of the next subsection.

2.5.1 Objective Function Definitions

There are three ways in literature to define the objective function for the multi-user OFDM

case as follows:

1. Maximize sum of the rate (Max-Sum)

• max
∑K

i=1Ri

2. Maximize the worst user rate (Max-min)
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• max minRi

3. Maximize product of rates (Nash Bargaining Solution)

• max
∏K
i=1Ri

2.5.2 Max-Min Approach

This approach aims at finding the worst users (mini) and maximizing their capacity [4]:

max
{P,C}

min
i

Ri (2.11)

where P = [pi,n]K×N is power allocation matrix and C = [ci,n]K×N is subchannel allo-

cation matrix. Figure (2.5) illustrates how Max-Min approach allocates N = 8 subchannels

among K = 3 users. From the top plot we know that User 2 (green) is the worst user with

the lowest channel gain. As it is seen, Max-Min allocates three subchannels to this user.

The main advantage of this scheme is its fairness to the users in poor channel conditions.

However, the method penalizes users with better channels and reduces the total rate (lower

efficiency).

The details of the Max-Min algorithm is given in table 2.1.

2.5.3 Max-Sum Approach

This approach finds the subchannels with maximum gain and allocates them [33] [1]:

max
{P,C}

K∑
i=1

Ri (2.12)

where P = [pi,n]K×N is power allocation matrix and C = [ci,n]K×N is subchannel
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Figure 2.5: Allocation of N = 8 subchannels among K = 3 users

allocation matrix. An example of how Max-Sum works is depicted in Figure (2.6). It is

seen that Max-Sum has done a good job in handpicking the best subchannels. However,

User 2 (green) is the worst user and is totally ignored which increases user 2 blocking

probability. Therefore, although Max-Sum maximizes the total network rate (Efficiency) it

does not apply any fairness to the users far from base station or with lower power capability.

The details of the Max-Min algorithm is given in table 2.2.

In order to cover the drawbacks of Max-Sum and Max-Min we leverage Nash bargain-

ing game for the power and subchannel allocation purpose since it provides efficiency and

fairness at the same time.
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Table 2.1: Subchannel allocation in Max-Min algorithm

1. Initialization:

Set Ri = 0 for all i = 1, 2, ...,K, A = {1, 2, ..., N}.

2. For i = 1 to K

a) Find n satisfying |Gi,n| ≥ Gi,j for all j ∈ A.

b) Update Ri and A with n from a):
Ri = C(Gi,n), A = A− n.

3. While A 6= ∅

a) Find i satisfying Ri ≤ Rk for all k, 0 ≤ k ≤ K.

b) For the found k, find n satisfying |Gi,n| ≥ Gi,j
for all j ∈ A.

c) Update Ri and A with the i and n:
Ri = Ri + C(Gi,n), A = A− n.

Table 2.2: Subchannel allocation in Max-Sum algorithm

1. Initialization:

Set Ri = 0 for all i = 1, 2, ...,K, A = {1, 2, ..., N}.

2. While A 6= ∅

a) Find n satisfying |Gi,n| ≥ Gi,j for all j ∈ A.

b) Update Ri and A with n from a):
Ri = Ri + C(Gi,n), A = A− n.

2.6 Nash Bargaining Game

Nash Bargaining game [34] is a class of cooperative games where there is a mutual agreement

among users for cooperation in order to achieve a higher utility comparing to the non-

cooperative case. Let’s define u = (u1, u2, ..., uK) as the utility vector. The minimum

attainable utility for the users without cooperation is called the disagreement point, and is

expressed as u0 = (u0
1, u

0
2, ..., u

0
K), and U ⊂ RK is the feasible utility set.
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Figure 2.6: Allocation of N = 8 subchannels among K = 3 users

Definition 2.1. A K player bargaining problem is a pair
〈
U,u0

〉
, where U is a compact,

bounded, and convex set, and there exists at least one utility vector (u1, u2, ..., uK) ∈ U

such that u1 ≥ u0
1, u2 ≥ u0

2, ..., uK ≥ u0
K .

Theorem 2.1. A bargaining solution is a function u∗ = (u∗1, u
∗
2, ..., u

∗
K) = F (U,u0) that

assigns a unique element of U to the bargaining problem
〈
U,u0

〉
. This solution is given by:

u∗ = arg max
u∈U,u1≥u0

1,u2≥u0
2,...,uK≥u0

K

K∏
k=1

(uk − u0
k) (2.13)

The NBS should satisfy the following set of axioms (for simplicity we assume the two

user case) [35]:

• Individual Rationality : u∗1 > u0
1 and u∗2 > u0

2.

• Feasibility : (u∗1, u
∗
2) ∈ U .
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• Pareto Efficiency : If (u1, u2), (ú1, ú2) ∈ U, u1 < ú1 and u2 < ú2, then f(U, u0
1, u

0
2) 6=

(u1, u2).

• Symmetry : If (u1, u2) ∈ U ⇔ (u2, u1) ∈ U and u0
1 = u0

2. Then, u∗1 = u∗2.

• Independence of Irrelevant Alternatives: If (u∗1, u
∗
2) ∈ Ú ⊂ U , then f(Ú , u0

1, u
0
2) =

f(U, u0
1, u

0
2) = (u∗1, u

∗
2).

• Independence of Linear Transformation: Assume that Ú is obtained from U by linear

transformation ú1 = a1u1 +a2 and ú2 = a3u2 +a4 with a1, a3 > 0. Then, f(Ú , a1u
0
1 +

a2, a3u
0
2 + a4) = (a1u

∗
1 + a2, a3u

∗
2 + a4).

Figure 2.7: An illustration of a two-user bargaining problem

Figure 2.7 shows an illustration of bargaining problem for the case of two-user [36].

The shaded area in green is the feasible utility set, and Cmax is the maximum value of the

(u1−u0
1)(u2−u0

2) product within the feasible utility set. As it is seen the NBS corresponds

to the point (u∗1, u
∗
2).

In order to illustrate how the difference between the multiplication and summation as

the utility function we consider a very simple example. We assume that N = 4 subchannels
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Figure 2.8: An illustration of a two-user and 4 subchannels problem

are to be allocated between two users while the power is constant. The disagreement

point is set to zero for both users. The sample space, U consists of pair of (R1, R2) which is

evaluated under all possible 24 = 16 subchannel combinations and is depicted by blue points

in Figure 2.8. Obviously the maximum rate for each user, R1,max, and R2,max is achieve

when all 4 subchannles are assigned to that particular user. The red curve is correspond to

the multiplication of rates, i.e. R1 ×R2 and the green line shows the summation, R1 +R2.

NBS is the intersection of the maximum value of R1 × R2 curve with the sample space.

The total rate of NBS is a little smaller than that of Max-Sum. However, the ratio of rates

are smaller in NBS which indicates as the fairness ratio and will be explained in following

sections.

2.7 Proposed resource allocation scheme using Nash Bar-

gaining Game

In order to model the resource allocation problem we set each user rate Ri as its utility

function and the minimum rate Ri,min as the disagreement point.

Hence, F (S, (R1,min, R2,min, ..., RK,min)) is a bargaining problem where the set S contains
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all the feasible rates, and its solution satisfies:

arg max
{P,C},Ri≥Ri,min

K∏
i=1

(Ri −Ri,min) (2.14)

subject to:

C1 :
K∑
i=1

N∑
n=1

pi,n ≤ Pmax

C2 : Ri ≥ Ri,min

C3 : ci,n ∈ {0, 1}

C4 :
K∑
i=1

ci,n = 1

C5 : pi,n ≥ 0

where Pmax is the maximum power budget of the base station. Constraint C4 ensures

that each subchannel is assigned to one user only. This optimization problem is hard to

solve as it is dealt with both continuous and binary variables. Therefore, we relax the

condition in C4 by letting ci,n take values between [0 1].

Lemma 1. The utility set S defined in (2.14) is bounded, nonempty, and convex.

Proof: Since the constraints in the above optimization problem are linear, the set is

convex. The set is bounded because the maximum achievable rate is limited. As far as,

N 6= 0, and K 6= 0, the set is nonempty.

Lemma 2. The utility function Ri is concave and injective.

Proof: For a two-variable function Ri(ci,n, pi,n) to be concave it suffices to show that its

Hessian matrix H(ci,n, pi,n) is negative semidefinite.
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Let’s define Ri =
∑N

n=1 ri,n where:

ri,n = ci,nw log2(1 + c3

pi,nh
2
i,n

σ2
i

) (2.15)

The Hessian matrix of Ri(ci,n, pi,n) becomes:

H(ci,n, pi,n) =

 ∂2ri
∂p2
i,n

∂2ri
∂pi,n∂ci,n

∂2ri
∂pi,n∂ci,n

∂2ri
∂c2i,n



=


−ci,nw

ln 2(1+c3
pi,nh

2
i,n

σ2
i

)

0

0 0

 (2.16)

As the first element of H(ci,n, pi,n) is non-positive, it is concluded that H(ci,n, pi,n) is

negative semidefinite. Hence, the lemma is proved.

Lemmas 1 and 2 reduces the problem in (2.14) to a concave optimization over a convex

set, and makes the NBS applicable to the problem as well.

2.7.1 KKT conditions

The optimization problem in (2.14) deals with both equality (C4) and inequality (C1, C2, C5)

constraints. Hence, the method of Lagrange multipliers is not applicable. KarushKuhn-

Tucker (KKT) conditions generalize the method of Lagrange multipliers to allow inequality

constraints. KKT conditions are first order necessary conditions for a solution in nonlinear

programming to be optimal, provided that some regularity conditions are satisfied.

In order to solve (2.14), we first form the Lagrangian and apply the KKT conditions as
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follows:

L(pi,n, ci,n) = (

N∑
n=1

c1,nw log2(1 + c3p1,nG1,n)−R1,min)

. . . (

N∑
n=1

ci,nw log2(1 + c3pi,nGi,n)−Ri,min)

− λ
K∑
i=1

(

N∑
n=1

pi,n − Pmax)

−
N∑
n=1

µn(

K∑
i=1

ci,n − 1)

−
K∑
i=1

N∑
n=1

νi,npi,n (2.17)

Hence, the KKT conditions are:

∂L(pi,n, pi,n)

∂pi,n
= 0 (2.18)

∂L(pi,n, ci,n)

∂ci,n
= 0 (2.19)

λ, νi,n, µn ≥ 0 (2.20)

λ
K∑
i=1

(
N∑
n=1

pi,n − Pmax) = 0 (2.21)

N∑
n=1

µn(

K∑
i=1

ci,n − 1) = 0 (2.22)

where Gi,n =
h2
i,n

σ2 .
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From (2.18) we obtain the following power allocation equation:

pi,n =

∏K
j=1,j 6=i (Rj −Rj,min)

λ
ci,nw −

1

c3Gi,n
(2.23)

Assuming subchannel n is assigned to user i, i.e. ci,n = 1, (2.23) has the familiar face of a

water filling equation with slightly changes in the water level. Hence, more power will be

allocated to the subchannels with higher gains. On the other hand, (2.19) and (2.22) yield

to:

log2(1 + c3p1,nG1,n)

(R1 −R1,min)
= · · · =

log2(1 + c3pK,nGK,n)

(RK −RK,min)
(2.24)

As it is seen, finding a closed form solution for pi,n and ci,n from (2.23) and (2.24) is

an NP-hard. However, it casts light on the shape of the optimum solution. Looking at

ci,n each fraction can be interpreted as the rate of each user in one subchannel to the total

rate of all subchannels assigned to that user which illustrates the ratio of the rate in one

subchannel to the total rate should be the same for all users. In other words, Rate in each

subchannel is weighted by the total rate that allocated so far. This clue asserts the fairness

of the optimal solution, and also, gives us a metric for subchannel allocation. Assuming

that the subchannels are allocated,i.e. ci,n is known, from (2.23) and (2.21) we get the

following familiar water filling equation:

pi,n =

[
Pmax + 1

c3

∑N
i=1

1
Gi,n

N
− 1

c3Gi,n

]+

(2.25)
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2.8 Simplifying NBS and the Proposed Sub-optimum Algo-

rithm

As it is seen in previous section, Nash product terms are so hard to handle especially with

the large number of users and subchannels that some simplifications are needed. On the

other hand, all the available methods have ended up to some algorithms based on sorting

the users subchannel gains which seems to be the only degree of freedom that we have handy

in the rate equation in (2.3). Moreover, (2.3) is an increasing function of subchannel gain

to noise ratio Gi,n. Therefore, instead of (2.14), we propose to solve the following linear

problem:

arg max
p1,p2,...,pK ,ci,n

K∏
i=1

(
N∑
n=1

ci,nGi,n) (2.26)

subject to:

C1 : ci,n ∈ {0, 1}

C4 :
K∑
i=1

ci,n = 1

which is a binary integer programming problem and is simple to solve. Following the same

approach as we did for (2.24), we obtain:

G1,n∑N
n=1 c1,nG1,n

= · · · =
GK,n∑N

n=1 cK,nGK,n
(2.27)

Based on the above discussion we propose an algorithm for subchannel allocation while

keeping the same power for each user by modifying the algorithm in [4] as follows:
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Algorithm 1. 1. Subchannel allocation

(a) We assume a constant power for each user: pi,n = Pmax/K.

(b) Knowing power the allocation is done in three steps:

i. Initialization:

The initial rate for each user is set to zero : Ri = 0. Set subchannel set as

A = {1, 2, ..., N} and user set as B = {1, 2, ...,K}.

ii. Meeting the minimum rate:

The algorithm starts with finding the highest subchannel gain to noise ratio,

Gi,n and allocate it to the found user (ith). The assigned subchannels will

be removed: A = A − {n}. Once the minimum rate is met the user will

be removed: B = B − {i}. This step repeats till B is empty, i.e., all users

minimum are met.

iii. Allocating the excess subchannels:

For the remaining subchannels the allocation is done based on NBS metric

found in equation (2.24): Subchannel n is allocated to the user with the

highest value of
Gi,n∑
j∈Ωi

Gi,j
. Ωi is the set of subchannels allocated to user i

so far. This step repeats till A is empty, i.e., all subchannels are gone.

2. Power allocation:

Power is water filled based on (2.7.1) for each Ωi, i = 1, 2, ...,K.

The proposed algorithm is summarized in table 2.3.
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Table 2.3: The proposed subchannel and power allocation algorithm based on NBS

1. Initialization:

Set Ri = 0,Ωi = ∅ for all i = 1, 2, ...,K.
Set A = {1, 2, ..., N}, and B = {1, 2, ...,K}.

2. Meeting the minimum rate requirement:

While B 6= ∅,
a. Find (i, n) so that |Gi,n| is maximum for all i = 1, ...,K, and
n = 1, ..., N .
b. For the found i

if Ri ≤ Ri,min
Let Ωi = Ωi ∪ {n}, A = A− {n} and update Ri according to (2.3).

else
K = K − {i}.

3. Allocating the excess subchannels:

While A 6= ∅,
a. Find i satisfying

Gi,n∑
j∈Ωi

Gi,j
≥ Gm,n∑

j∈Ωm
Gm,j

for all m,1 ≤ m ≤ K. Ωi

and Ωm are the subchannels allocated to user i and m respectively;
b. For the found i, find n satisfying |Gi,n| ≥ |Gi,k| for all k ∈ A;
c. For the found i and n, let Ωi = Ωi ∪ {n}, A = A− {n} and update Ri

according to (2.3).

4. Power water filling:

Water fill power based on (2.7.1) for each Ωi, i = 1, 2, ...,K.
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Bandwidth w 3.2 mbps

Ri,min 0

N0 -110 dBm-Hz

channel gain Rayliegh

Pmax 0.3 Watt

Table 2.4: Simulation parameters

2.9 Numerical Results, Simulation and Discussion

In this section we evaluate the performance of the proposed resource allocation approach

and compare it with the Max-Min and Max-Sum schemes. Channel gains are i.i.d. random

variables with Rayleigh distribution. Noise spectral density is N0 = −110 dBm-Hz and is

the same for all K users. The total available bandwidth is w = 3.2 MHz, and the maximum

allowable power per user is 0.3 W. The minimum rate requirement of each user is set to

zero, i.e., Ri,min = 0.

In order to illustrate how the proposed algorithm work, we start with a simple example

of allocating N = 8 subchannel among K = 3 users with Rmin = 0 in Figure (2.9). The

top plot shows the varying subchannel gain for all 3 users. In the bottom plot, however,

we handpicked the best subchannels by applying the proposed algorithm. User 1 will fairly

achieve the highest rate as it has the highest gain, and the worst user (User 2) gets two

subchannels.

Figure 2.10 compares the fixed subchannel assignment where N = 16 subchannels are

equally divided among K = 6 users with the proposed dynamic scheme. It is seen that by

assigning the subchannels dynamically the higher rate per user is achieved.

In Figure 2.11 we compare fixed power and sub-channel assignment, waterfilled power

but fixed subchannel assignment, and the proposed dynamic power and subchannel alloca-

tion. The first two bottom plots show the effect of water filling which improves the total

rate. However, the top plot has a much better improvement indicating the effectiveness of
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Figure 2.9: Allocation of N = 8 subchannels among K = 3 users
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Figure 2.11: A comparison of fixed subchannel and power assignment, waterfilling power,
and the proposed algorithm for N = 32 subchannels

the dynamic subchannel assignment.

Figure 2.12 shows the allocated rate per user per subchannel for N = 16 subchannels

and K = 6 users for one channel realization with green bars for the proposed algorithm,

blue bars for the Max-Sum rate and the brown bars for the Max-Min case. Let’s consider

the two extreme cases first. It is obvious that the second and third users have the worst

channel conditions. As we see the Max-Sum algorithm does not allocate any subchannel to

these two users since it lowers the total rate while the max-min approach treats these users

almost the same as other users at the cost of reducing the total rate of the network. The

proposed algorithm, however, aiming at balancing the optimality and the fairness, assigns

the lowest rates to these users. Let’s switch to the fifth user which is the best user with the

highest channel gain. The Max-Sum allocates the highest rate to this user but the Max-Min

assigns less rate which results in the underutilization of the fifth user good conditions. The

proposed algorithm keeps the middle position. The same analysis applies for the rest of

users which are between the two extreme cases. Generally, Max-Min tends to treat all users

the same while the proposed method applies a proportional fairness depending on each user
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Figure 2.12: A comparison of the allocated rate per user for the Max-Min, Max-Sum, and
the proposed algorithm (N = 16, K = 6)

channel condition.

Figure 2.13 shows the aggregate channel rate versus the number of users for the three

algorithms with dashed line for the Max-Min case, ’-O’ line for the proposed algorithm, and

the dash-point (-.) line for the Max-Sum method. As we expect from the above discussion

the min-max has the lower rate while the Max-Sum takes the higher rate. The proposed

algorithm lies in the middle so that combines the optimality of the Max-Sum and the fairness

of the Max-Min. More specifically, the proposed algorithm performs up to %10 better than

Max-Min.

The same comparison as Figure 2.13 is done in Figure 2.14 for the fixed number of

users K = 8 but different subchannels N = [8 : 2 : 32].

Figure (2.15) shows the allocated rate per user for two different values of minimum rate

Rmin but the same channel realization. For the left plot, it is assumed that Rmin = 0

whereas for the right plot Rmin is randomly generated with the mean of %10 of each user

maximum rate. As we observe, according to NBS the minimum rate is filled first (the bars
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Figure 2.13: A comparison of the allocated rate per user for the Max-Min, Max-Sum, and
the proposed algorithm (N = 32)
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Figure 2.15: Allocation of minimum rate and the excess subchannels (N = 128, K = 8)

Carrier frequency 2.4 GHz

Sampling frequency, fs 20 MHz

OFDM Symbol Duration 4 ms

FFT size, N 64

Subcarrier spacing, w 312.5 kHz

Max Delay Spread 250 ns

Doppler frequency (3km/hr) 13 Hz

Carriers used 52 (center + 11 sides not used)

Table 2.5: OFDM parameters for IEEE802.11g

in back) and then the excess subchannels are distributed. It is obvious that when there

is no minimum rate constarint the rate is allocated more evenly as it is the case in the

left plot. However, with the non-zero value of Rmin the priority is given to meeting the

mimum rate. It is worth to mention that if the minimum rate reqiurement (disagreement

point) is set very high no excess subchannel will be left to allocate thourgh NBS. This is

the mutual agreement that users make before entering the game so that they benefit from

the cooperative game outcome.
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Sampling frequency, fs 192 MHz

FFT size, N 128

Subcarrier spacing, w 15 kHz

Noise power -104.5 dBm

Pmax 43 - 48 dBm

Table 2.6: OFDM parameters for LTE systems

2.9.1 Resource Allocation in MIMO-OFDM Systems

In this chapter we developed a dynamic subchannel and power allocation scheme for OFDM

users assuming Single Input Single Output (SISO) systems. However, in all new generation

wireless systems both base station and mobile users are equipped with multiple antennas.

Therefore, we need to address the resource allocation problem for Multiple Input Multiple

Output (MIMO)- OFDM systems. This will add the space as a new dimension to the

power and subchannel allocation which will be the subject of possible future work for

this dissertation. In the case of MIMO-OFDM systems since the number of antennas in

base station side could be large, the load of the feedback required to report the channel

information would be burdensome specially for Frequency Division Multiplexing (FDD)

systems. Therefore, we may need to compress the feedback information using methods such

as Compressive Sensing. A survey of compressive sensing and how to apply it to MIMO

systems is presented in Appendix B for interested readers.

2.10 Conclusion

An effective and simple dynamic subchannel and power allocation algorithm proposed based

on Nash bargaining Solution. A new fairness metric is introduced which leads to a simplified

algorithm to allocate the subchannels while waterfilling the power. Comparing to the Max-

Sum approach which totally ignores the users with weak channel conditions and the Max-

Min scheme which maximizes the worst user rate at the cost of scarifying the good users,

the proposed algorithm balances these two extreme cases by weighting each user according
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to its total channel gain. Provided simulation results shows that the proposed algorithm

performs better than the Max-Min approach, and closely to the Max-Sum case especially

when the number of subchannels is comparably larger than the number of users.
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Chapter 3: Spectrum Sensing

With ever-increasing demand for high data rate communications and wider bandwidth,

spectrum scarcity is becoming an inevitable issue which reveals the inefficiency of the cur-

rent static spectrum access techniques. Cognitive radio technology as a potential platform

to implement the Dynamic Spectrum Access (DSA) has been captured the interest of re-

searchers in recent years [6]. Two major concerns in cognitive radio networks are spectrum

sensing and spectrum allocation. A secondary user senses the spectrum of the Primary

periodically, and uses it when it is idle, and switch to other unused bands when primary

system is present. As we can see spectrum sensing is the first and critical step for a cognitive

radio device to operate.

Figure 3.1: Hidden terminal problem

There are several detectors to sense the spectrum of a Primary User (PU) such as,
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matched filter, energy detector, and feature detection [13]. Feature detection is able to

distinguish between the received signal energy and the noise energy but it requires long

observation intervals of the received signal which leads to high computational complexity.

Matched filter detector is the optimal option for the case of stationary Gaussian noise and

when the primary signal is known. However, when the primary signal is unknown or com-

plexity is an issue, matched filter and feature detection are ruled out, and energy detector

appears to be the common and feasible choice. Nevertheless, the performance of an energy

detector is deeply affected by hidden terminal nodes due to the path loss and shadowing

(Figure 3.1). Indeed, while some secondary users are suffering from deep fading some

others have a better reception of the primary signal. This problem brings up the idea of

collaboration among secondary users in detecting the primary signal. Collaborative spec-

trum sensing has been studied in recent literatures [37–41], and two collaborative methods,

centralized and distributed, are available. In the case of centralized spectrum sensing, Sec-

ondary Users (SU) report their observations of the PU signal to a central fusion center (FC)

which combines the received information and broadcasts the final decision to SUs (Figure

3.2). Although collaboration enhances detection probability (Pd), it increases false alarm

probability (Pf ), at the same time. Moreover, having all SUs to report to a central entity

is not scalable and may not be applicable where SUs belong to different service providers.

As opposed to the centralized approach, the distributed spectrum sensing partitions the

secondary network to some groups or coalitions [41]. Within each coalition a SU with the

best channel reception is selected as a head and other SUs report their sensing bits to the

heads instead of a central entity. The head acts as a fusion center and makes the final

decision within each coalition (Figure 3.3). The way that the network is partitioned is

very important and it is done subject to keeping probability of false alarm under certain

threshold, and improving probability of detection as much as possible per coalition. Despite

the available centralized and distributed methods, an effective collaborative spectrum sens-

ing is still lacking. The main drawback of current approaches is the metric that is applied

to measure the collaborative detection probability in order to prove that the collaboration
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Figure 3.2: Centralized spectrum sensing

is beneficial [38, 41]. That is, no matter how accurately the SUs sense the channel, the

resulted collaborative detection probability increases anyway especially with the number

of SUs! Moreover, some selfish SUs may stop sensing the spectrum and just wait for the

final decision made by FC, and save the power for their own transmission. On the other

hand, the distributed approach enforces higher complexity and computations on the net-

work by forming groups and selecting the ”head”. Besides, in order to form coalitions SUs

need to know each other channel characteristics, which may not be favorable in sensitive

applications. To address the above mentioned drawbacks, a Stackelberg game spectrum

sensing method is proposed which works as follows: Based on the received SNR each SU is

considered either as a leader or a follower. Leading SUs have higher detection probability

as a result of good PU signal reception, so they will broadcast their sensing information.

On the other hand, the follower SUs do not contribute to the sharing process while having

doubtful observations, so they look for any announced information by a leading SU in order

to discover the presence or absence of the PU. It is important to mention that the goal of

collaboration is to detect the presence of PU. Hence, there is no point for SUs to share their
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observations when PU is not active. However, this point has fallen through the cracks of

available collaborative spectrum sensing approaches which enforce unnecessary overhead on

the nodes (SUs).

Figure 3.3: Distributed spectrum sensing

The application of game theory both in wireless and wired communications has attracted

the attention of many researchers, and it includes many areas from resource allocation

and power control purposes to cooperative communications and routing. For example, a

thorough overview of game theory applications for cognitive radio networks is given in [36].

A Stackelberg game is a model for the case of hierarchical structure where a leader moves

first and the follower moves sequentially. In [42], for example, this game is employed for

the purpose of spectrum leasing.
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3.1 System Model and Formulation

Consider a secondary ad hoc network including N nodes and the primary system as a

cellular device operating in uplink which is the case for future wireless systems, e.g. Long

Term Evolution (LTE). Assuming that all the SUs are using energy detector with the

same parameters, the input signal to the detector is filtered by a band-pass filter with the

bandwidth W , squared, and integrated over the observation time T (Figure 3.4 ). The

output of the integrator Y , is compared with the threshold λ to make a decision out of

these two hypotheses:

 Y ≥ λ H1

Y < λ H0

(3.1)

where H1 indicates the presence of the PU and H0 denotes that PU is inactive.

Figure 3.4: Block Diagram of an Energy detector

The probability that the i-th SU detects the PU signal for a non-fading channel given

that PU is present is given by [37]:

Pd,i = P{Y > λ|H1} = Qm(
√

2γi,
√
λ) (3.2)

where m = TW is the time - bandwidth product, and Qm(., .) is the generalized Marcum

Q-function , and γi is the received SNR by i-th SU.

For the case of Rayleigh fading, γi follows exponential distribution with mean γ̄i. There-

fore, averaging( 3.2) over PDF of γi yields [37]:
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Pd,i = e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n
+

(
1 + ¯γi,j

¯γi,j

)m−1

×

(
e
− λ

2(1+ ¯γi,j) − e−
λ
2

m−2∑
n=0

1

n!

(
λ ¯γi,j

2 (1 + ¯γi,j)

)n)
(3.3)

where γ̄i = Phi
σ2 is the average SNR received by the i-th SU from PU, P is the PU

transmit power, and σ2 is the noise variance. Furthermore, hi = 1
dηi

is the path loss where

di is the distance between i-th SU and PU, and η is the path loss coefficient.

Another parameter to evaluate the performance of the detector is false alarm probability

and is given by [37]:

Pf,i = Pf = P{Y > λ|H0} =
Γ(m, λ2 )

Γ(m)
(3.4)

where Γ(., .) is the incomplete gamma function and Γ(.) is the gamma function. As it

is seen from 3.4 Pf is just function of the energy detector parameters m and λ and not

the location (di) of SUs. Hence, assuming that the detector parameters are the same for all

SUs, subscript i in Pf,i can be dropped.

A collaborative detection probability has been defined as follows in [38,41]:

Qd,i = 1−
n∏
j=1

(1− Pd,j) (3.5)

Let’s assume that all SUs have the same Pd = 0.5. A SU with this detection probability

is unable to certainly determine if PU is present or not. However, the resulting collaborative

detection probability for n = 5 would be Qd,i = 1− (1− 0.5)5 = 0.9688, which implies that

the PU is there with almost certainty! Therefore, the applied Qd,i increases with n , no

matter how poorly the SUs are sensing. Clearly, this cannot be true. Hence, we define
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another metric for each user to evaluate the collaborative probability. For this purpose, in

the next subsection we derive an indicator for the level of received signal strength per SU.

3.2 Upper Bound and Lower Bound for Pd

Let’s consider Pd,i for two boundary cases. First, Assuming that γ̄i >> 1, then γ̄i + 1 ≈ γ̄i.

Hence, equation ( 3.3) can be re-written as:

Pd,i ≈ e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n
+ 1×

(
e
− λ

2γ̄i − e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n)

= e
− λ

2γi

= e−
1

2α (3.6)

and α = γ̄i
λ which we use as a metric to distinguish SUs with strong signal reception

from the ones with weak SNR reception. Figure 3.5 shows approximated Pd,i versus α. As

it is expected the better the γ̄i is, the higher the detection probability is. For example, to

get Pd,i ≥ 0.7 the average SNR should be as big as 2λ , and for Pd,i ≥ 0.9 we need to have

γ̄i ≥ 5λ. Moreover, it is seen that Pd,i approaches its upper bound (Pd,i = 1) for quite large

values of γ̄i.

In order to categorize SUs as leaders or followers each SU needs to evaluate its energy

detector output (Y ) which has a non-central chi-square distribution with 2m degrees of

freedom and a non-centrality parameter 2γ under H1 [37]. Therefore, the mean of Y ,

denoted by Ȳ , would be 2m+ 2γ. To keep Pd,i above some threshold α1, we need to have:

Pd,i ≥ α1 ⇒ e−
1

2α ≥ α1 (3.7)
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Figure 3.5: Approximation of Pd,i versus α

After simplifications and noting that Ȳ = 2m+ 2γ we will get:

Ȳ ≥ −λ
ln(α1)

+ 2m = β (3.8)

Hence, each SU having average Y greater than the above threshold will be considered as a

leader, otherwise, as a follower. This point is of great importance since each SU just needs

to monitor its own detector output, and makes autonomous decision without considering

the other SUs channel information or average SNR which is the case in [41].

Now consider the case when γ̄i ≈ 0 , then from ( 3.2) we will have

Qm(0,
√
λ) ≈ 0⇒ Pd,i ≈ 0 (3.9)

The above is correspond to the case of hidden node. When a SU is hidden from PU

path, then the received SNR will decrease sharply and Pd,i gradually tends to zero.
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3.3 Stackelberg Collaborative Spectrum Sensing Scheme

3.3.1 Stackelberg game formulation

In this subsection, a game theory tool is applied in order to design the collaborative spec-

trum sensing algorithm. Since SUs are considered either as leaders or followers based on

their received SNR from the PU transmitter, the collaborative sensing process could be

interpreted as a Stackelberg game [43]. Here, the leaders determine the sensing decision by

which followers take actions. Therefore, the network sensing output is dominated by leaders

who are the more reliable nodes which can benefit the SUs with low received SNR as well.

Assuming that SUs are sharing their sensing result, the collaborative detection probability

would be the average over the detection probability per SU (Pd,i) as follows:

Qd =

∑n
i=1Hk,iPd,i∑n
i=Hk,i

Qf =

∑n
i=1Hk,iPf,i∑n
i=Hk,i

(3.10)

where Hk,i = H0,i or H1,i is the sensing bit and also the action of the i-th SU, and n

is the number of users collaborating with each other. As it is seen in 3.10, only having

Hk,i = H1,i will affect the collaborative detection.

Furthermore, a possible concave utility function per user could be defined as:

ui(Hi, H−i) = log

(
Yi
β

)Hi+(
∑n
k=1,k 6=i Hk)

n

=


0 Hk = 0

≥ 0 Hk = 1, n = 0, Yi ≥ β

< 0 Hk = 1, n = 0, Yi < β

(3.11)
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where in Hi +
(
∑n
k=1,k 6=iHk)

n the first term determine the SU observation itself, and the

second term is what SU i gets as the result of collaboration with n other SUs (H−i). Ac-

cording to ( 3.11) each user would like to maximize its own utility which leads to increasing

n. However, receiving more sensing bits requires more sensing time as well as increasing the

false alarm probability.

Generally, the goal of collaborative sensing is to solve the following optimization prob-

lem:

max
n,Hk

Qd(n,Hk) (3.12)

Subject to Qf ≤ α2. (3.13)

That is, how to arrange the network structure and consequently n so that a SU can

detect the PU signal with the highest possible probability. On the other hand, increasing

n as much as possible is not desirable since the sensing time will increase as well. However,

the above optimization problem is an NP-complete problem which is not trivial to solve

and obtain a closed-form result. Therefore, we propose a simple algorithm that enhances

the whole network collaborative detection while maintain the false alarm probability under

the given threshold.

The proposed algorithm for sensing process

In the proposed method based on the level of received signal at the energy detector output,

the SUs are divided to leaders or followers as it was shown in ( 3.8). Furthermore, we

assume that there is a signaling channel among SUs so that they can communicate with

each other. Then, the collaboration is performed according to the following algorithm:

1. Only leaders are allowed to broadcast their sensing bits and only under hypothesis

H1. As it is mentioned the reporting of channel information such as hi or γi are not

required.
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2. A follower SU needs to listen to the signaling channel in search of any decision H1. If

found any, the SU stops the search, and takes H1 as its decision.

3. Information sharing happens only under H1 when at least one user strongly detects

the PU. There is no point in sharing information to detect the noise (H0).

4. If there is no leader under H1, the sensing would be done non-cooperatively since

there is no point in sharing doubtful information.

5. The game reaches its equilibrium when each follower is able to pair with a leader.

6. Each leader can have more than one follower while each follower is matched with only

one leader. The reason is that listening to more leaders will make the sensing process

longer for a follower.

Figure 3.6 illustrates a scenario where SU6 is hidden from PU path, so it is considered

as a follower while all other SUs are able to strongly receive PU signal. In this case, all

SU1-SU5 will broadcast their decision H1 whereas SU6 will do nothing but waiting for the

observations by others, and it will probably catch the sensing bit sent by SU5 first since it

is closer. Therefore, SU6 will get a true vision of the PU signal although it is hidden from

PU path. Moreover, as soon as SU6 gets the first H1 it will take it.

3.4 Simulation Results

For simulation, we assume N SUs are randomly distributed around a single PU within the

radius of 3 km. We, furthermore, set m = 5, Pf ≤ 0.1, and α1 = 0.7 as recommended

by the IEEE 802.22 standards [44]. For the first case, let’s have N = 5 with two weak

SUs (nw = 2) and the remaining three as leaders. That means that by setting α1 = 0.7 in

( 3.7) and ( 3.8) the detector output and average SNR for leading SUs are Ȳ ≥ 17dB, and

γ̄i ≥ 13.22dB respectively. For the case of non-cooperative, the received γ̄i is weakened by

a factor 20% and 40% for the follower SUs because of the deep fading.
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Figure 3.6: The proposed collaborative spectrum sensing scheme

Figure( 3.7) shows the average collaborative detection probability versus average SNR

(γ̄). As is it seen, the proposed algorithm increases the collaborative probability by 35% for

γ̄ = 16dB as compared to the non-cooperative case. The reason is that the collaborative

detection probability is dominated by leading users having an acceptably good SNR while

the weak users lower the detection probability in non-cooperative case. In Figure ( 3.8),

we keep the same parameters as Figure( 3.7) except for N = 7 and nw = 1. As we see

the difference between collaborative and non-cooperative schemes decreases since the nw

is lower, but still collaborative scheme works 5.2% better for γ̄ = 16 dB. However, if we

decrease nw to zero then both schemes will work almost the same since there is not any

weak SU, and the sensing is done non-cooperatively.
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Figure 3.7: The average detection probability for the case of proposed collaborative algo-
rithm (-o) and non-cooperative case(–). N = 5, Pf = 0.1, α1 = 0.7, nw = 2
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Figure 3.8: The average detection probability for the case of proposed collaborative algo-
rithm (-o) and non-cooperative case(–). N = 7, Pf = 0.1, α1 = 0.7, nw = 1
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Chapter 4: Joint Spectrum Sensing and Allocation

4.1 Introduction

In Chapter 2 we studied dynamic resource allocation in non-cognitive based OFDM networks

and a power and subchannel allocation scheme was proposed. We learned in Chapter 3 that

in a cognitive radio network unlicensed users need to sense the spectrum in the hope for idle

spectrum bands and a distributed spectrum sensing approach was presented. In this chapter

we would like to generalize our resource allocation scheme to encompass cognitive users as

well. In particular, since the spectrum sensing information in physical (PHY) layer will

directly affect spectrum allocation in MAC layer, a cross layer a design is needed. Figure

(4.1) shows the layer stack in a cognitive radio network along with brief description on each

layer functionality [7].

In [14] the dynamic resource allocation in cognitive radio networks with Imperfect Chan-

nel Sensing is investigated and is solved using a discrete stochastic optimization method.

However, the imperfectness is assumed for the channel gain information. Basically, the

goal of spectrum sensing is to monitor the activity of the PU which is the case in this

dissertation. An interesting joint cross-layer scheduling and spectrum sensing for cognitive

radio networks is proposed in [15] based on what is called ’Raw Sensing Information’ and

the power and subchannel allocation is solved using primal-dual decomposition approach.

Their underlay spectrum sharing method with assuming some acceptable interference level

differs from our work where we adopt overlay method which does not allocate an OFDM

sub-channel to more than one user simultaneously. Moreover, our problem solving method

is based on NBS which gives a fair and simpler allocation scheme.

Here, we use the sensing information of the energy detector of each SU to design an

optimum power and subchannel allocation for SUs. First, we show that how the sensing
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Figure 4.1: Layer functionalities in a cognitive radio network

bits of the PHY layer can affect the allocation process in MAC layer. Then, we propose a

sub-optimum resource allocation algorithm in order to increase the network total throughput

while maintaining fairness among users.

4.2 System Model

Consider an adhoc secondary network with K users competing over N OFDM sub-channels

of a Primary base-station. Each subchannel has a bandwidth of w. The rate for i-th user

is expressed as:

Ri =

N∑
n=1

wbi,n (4.1)
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where bi,n is the number of bits per symbol for the i-th user in subchannel n. Assuming

bi,n ≥ 2 and BERi ≤ 10−3, the following approximation will hold [31]:

bi,n ≈ log2(1 + c2γi,n ln(
BERi

c1
)) (4.2)

where c1 = 0.2, c2 = 1.5. BERi is the i-th user bit error rate, and γi,n is the SNR in

subchannel n. Hence, the rate for user i can be formulated as:

Ri =

N∑
n=1

ci,nw log2(1 + c3

pi,nh
2
i,n

σ2
i

) (4.3)

where c3 = c2/ ln(c1/BERi), σ
2
i is the noise power, and hi,n and pi,n are the channel gain and

transmitted power of the i-th user on subchannel n respectively. Moreover, the subchannel

assignment coefficient ci,n is given as:

ci,n =


1, If subchannel n is allocated to user i

0, Otherwise.

(4.4)

On the other hand, we assume that each secondary user is equipped with an energy

detector to sense the presence of PU on any of the N subchannels [16]. Recalling from

Chapter 3, the output of the detector Y , is compared with the threshold λ to make a

decision out of these two hypotheses (Figure 3.4):

 Y ≥ λ H1

Y < λ H0

(4.5)

where H1 indicates the presence of the PU and H0 denotes that PU is inactive.

The probability that each SU correctly detects the presence of PU is Pd,i, and the

probability that PU presence is falsely reported is Pf,i:
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Figure 4.2: Sequential graph for SU sensing

Pd,i = P{Y > λ|H1}

Pf,i = P{Y > λ|H0} (4.6)

Based on the above definition the following four cases could occur (Figure 4.2):

1. PU is present and SU detects correctly

2. PU is present and SU detects falsely

3. PU is inactive and SU detects the same

4. PU is inactive and SU detects active

Taking into account the sensing information, we define the utility per SU as follows:
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Ūi =

N∑
n=1

Ĥi,nri,n

=

N∑
n=1

Ĥi,nci,nw log2(1 + c3pi,nGi,n) (4.7)

where Ĥi,n is the sensing bit of the i-th user on subchannel n. Ĥi,n = 0 means that the

subchannel is occupied by the PU whereas Ĥi,n = 1 indicates the availability of the the

subchannel for SU usage.

The problem is how to allocate the N subchannels and subsequently the transmitted

power among K SUs so that the maximum throughput is achieved. In order to define the

total throughput we take the product of the rates from Nash Bargaining game. We assume

that channel state information of all users are known. In order to model the resource

allocation problem we set the utility function as follows:

Ūi = E{Ui|H0}

=
N∑
n=1

E[Ĥi,n|H0]ci,nw log2(1 + c3pi,nGi,n) (4.8)

On the other hand, from Figure 4.2 it is obvious that:

P{Ĥi,n|H0} =
(1− pp)(1− pf )

(1− pp)(1− pf ) + pp(1− pd,i)

= βi (4.9)

where pp is the probability that PU is active on any of subchannels and βi indicates how

accurately a SU can sense the presence of PU as is defined in [15] as well. For example, the
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Figure 4.3: (a) βi vs pp, (b) βi vs pd

case of pd,i = 1 results in βi = 1 which states that detection is done with %100 certainty

(see Figure (4.3)). Hence, (4.8) can be re-written as:

Ūi =
N∑
n=1

βici,nw log2(1 + c3pi,nGi,n) (4.10)

Therefore, F (S, (Ū1,min, Ū2,min, ..., ŪK,min)) is a bargaining problem where the set S

contains all the feasible rates, and its solution satisfies:

arg max
{P,C},Ūi≥Ūi,min

K∏
i=1

(Ūi − Ūi,min) (4.11)
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subject to:

C1 :
K∑
i=1

N∑
n=1

pi,n ≤ Pmax

C2 : Ūi ≥ Ūi,min

C3 : ci,n ∈ {0, 1}

C4 :
K∑
i=1

ci,n = 1

C5 : pi,n ≥ 0

C6 : βi ≥ βT

(4.12)

where P = [pi,n]K×N is power allocation matrix and C = [ci,n]K×N is subchannel

allocation matrix. Moreover, Pmax is the total power budget of all SUs. Constraint C4

ensures that each subchannel is assigned to one user only. Constraint C6 assures that

sensing accuracy of the secondary network is greater that the acceptable threshold βT .

4.2.1 Satisfying the Network Sensing Requirement

In order to solve the aforementioned resource allocation problem we start from constraint

C6 as it is independent from pi,n and ci,n. For βi to meet the minimum sensing accuracy

requirement we need to have:

(1− pp)(1− pf )

(1− pp)(1− pf ) + pp(1− pd,i)
≥ βT (4.13)

With further simplification we arrive at:
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pd,i ≥ 1−
[
(
1− βT
βT

)(
1− pp
pp

)(1− pf )

]
(4.14)

That is, in order to keep the constraint C6, the detection probability should be greater

than the threshold given in right-hand side of (4.14). On the other hand, the probability

that the energy detector of i-th SU detects the PU signal for a Rayleigh fading channel,

provided that PU is present, is given by [37]:

Pd,i = e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n
+

(
1 + ¯γi,j

¯γi,j

)m−1

(4.15)

×

(
e
− λ

2(1+ ¯γi,j) − e−
λ
2

m−2∑
n=0

1

n!

(
λ ¯γi,j

2 (1 + ¯γi,j)

)n)

where m = TW is the energy detector time - bandwidth product, γ̄i = Phi
σ2 is the average

SNR received by the i-th SU from PU, P is the PU transmit power, and σ2 is the noise

variance. Furthermore, hi = 1
dηi

is the path loss where di is the distance between i-th SU

and PU, and η is the path loss coefficient.

On the other hand, the false alarm probability is given by [37]:

pf,i = pf = P{Y > λ|H0} =
Γ(m, λ2 )

Γ(m)
(4.16)

To obtain a better illustration of (4.16) we plot pd,i versus average SNR under different

values of pf in figure 4.4. For instance, to have βi ≥ 0.9, given Pf = 0.1 and pp = 0.3,

the detection probability should be greater than 0.76 according to (4.14) as is indicated

in Figure 4.5 with gray shaded area. This means that the received average received SNR

of the energy detector should be greater than 12 dB which is the shaded area in gray and
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Figure 4.4: pd,i vs SNR for different values of Pf , pp = 0.3

blue. Therefore, in addition to energy detector parameters (λ and m), the sensing accuracy

of SUs is directly related to the received SNR of PU signal at the energy detector. In the

case of deep fading or hidden terminal nodes the performance of energy detector reduces

significantly which calls the need for collaborative sensing. A distributed collaborative

sensing is presented in [16].

4.2.2 Resource Allocation Algorithm

We apply the same approach as in section 2.7.1 to solve the optimization problem in 4.11.

By employing KKT conditions and some simplifications we obtain the following equations

for power and subchannel allocation respectively:

pi,n =

∏K
j=1,j 6=i (Ūj − Ūj,min)

λi
βici,nw −

1

c3Gi,n
(4.17)
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Figure 4.5: pd,i vs SNR, Pf = 0.1, pp = 0.3, βT ≥ 0.9

β1 log 2(1 + c3p1,nG1,n)

(Ū1 − Ū1,min)
= · · · = βi log 2(1 + c3pi,nGi,n)

(ŪK − ŪK,min)
(4.18)

As it is seen, finding a closed form solution for pi,n and ci,n from (4.17) and (4.18) is an

NP-hard problem. However, it casts light on the shape of the optimum solution. Looking at

ci,n each fraction can be interpreted as the rate of each user in one subchannel to the total

rate of all subchannels assigned to that user which illustrates the ratio of the rate in one

subchannel to the total rate should be the same for all users. This clue asserts the fairness

of the optimal solution and ,also, gives us a metric for subchannel allocation.

4.2.3 The Proposed Sub-optimum Power and Sub-channel Allocation Al-

gorithm for a Cognitive ORDM Network

The proposed resource allocation scheme for cognitive uasers is detailed in Table 4.1. The

approach is similar to non-cognitive radio case except that we need to check the accuracy
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Table 4.1: The proposed subchannel and power allocation algorithm based on NBS

1. Meeting the network sensing requirement:

Check to see if βi ≥ βT . If yes, start the allocation algorithm
If no, disregards the sensing bits and wait for the new sensing bits..

2. Initialization for subchannel allocation:

Set Ri = 0,Ωi = ∅ for all i = 1, 2, ...,K.
Set A = {1, 2, ..., N}, and B = {1, 2, ...,K}.

3. Meeting the minimum rate requirement:

While B 6= ∅,
a. Find (i, n) so that |Gi,n| is maximum for all i = 1, ...,K, and
n = 1, ..., N .
b. For the found i

if Ri ≤ Ri,min
Let Ωi = Ωi ∪ {n}, A = A− {n} and update Ri according to (4.3).

else
K = K − {i}.

4. Allocating the excess subchannels:

While A 6= ∅,
a. Find i satisfying

Gi,n∑
j∈Ωi

Gi,j
≥ Gm,n∑

j∈Ωm
Gm,j

for all m,1 ≤ m ≤ K. Ωi

and Ωm are the subchannels allocated to user i and m respectively;
b. For the found i, find n satisfying |Gi,n| ≥ |Gi,k| for all k ∈ A;
c. For the found i and n, let Ωi = Ωi ∪ {n}, A = A− {n} and update Ri

according to (4.3).

4. Power water filling:

Water fill power based on (2.7.1) for each Ωi, i = 1, 2, ...,K.

of sensing bits.
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Figure 4.6: CSMA/CA protocol for cognitive radio networks

4.3 Medium Access Control in Cognitive Radios

The spectrum sensing of SUs can be further followed by collision avoidance techniques such

as Carrier Sensing Multiple Access/ Carrier Avoidance (CSMA/CA) to prevent interference

to both PU and other SUs. With successful employment of CSMA/CA in IEEE 802.11

standard, it can be applied to cognitive radio networks especially because of its listen-

before-transmission nature. A cognitive-based CSMA/CA an operate as follows ( [45]):

• An SU periodically senses the spectrum band with the structure of sensing and vaca-

tion during ON period when PU is active. If an SU finds the spectrum band to be in

an ON state for a sensing time Ts, then the SU senses the spectrum band again after

a fixed vacation time Tv. This process is repeated until it finds the spectrum band to

be in an OFF state where PU is inactive.

• After the SU senses the spectrum band to be in OFF state in a sensing time, it

operates the carrier sense multiple access/collision avoidance(CSMA/CA) with the

binary exponential random backoff mechanism using IEEE 802.11 DCF as follows.

1. The SU chooses a random number (so-called backoff counter) in the range [0, CW−
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1] where CW is the contention window size and is initially set to W0 at the backoff

stage 0.

2. The SU counts down its backoff counter every time interval if the spectrum band

is sensed to be idle.

3. While the backoff counter is decremented, the spectrum band might be occupied

by either other SUs transmission or the transition from OFF period to ON period.

If once the spectrum band is sensed to be busy by either one, the SU freezes its

backoff counter for a SU packet transmission time Tp first. Then the SU senses

the spectrum band for a sensing time Ts to check whether the spectrum band is

in ON state or OFF state.

– If the spectrum band is sensed to be idle in the sensing time, it means that

the spectrum band is still in OFF state and so the SU resumes the backoff

procedure from the frozen backoff counter point.

– If the spectrum band is sensed to be busy in the sensing time, it means

that the status of the spectrum band is changed to ON period and so the

SU repeats alternating sensing and vacation, and then resumes the backoff

procedure with the frozen backoff counter when the spectrum band is sensed

to be in OFF state.

4. The SU transmits a packet when its backoff counter reaches zero.

5. If the packet transmission fails, the SU increases its backoff stage by one, doubles

its CW and randomly chooses a backoff counter. Then SU proceeds the random

backoff again with the newly chosen backoff counter.

6. If the backoff stage excess the maximum backoff stage, the SU discards its packet.

Figure (4.6) illustrates an example for operations of SUs described above [45]. To analyze

the performance of a cognitive CSMA/CA SU’s behavior could be modeled as a discrete

time Markov Chain. The detail of this analysis is out of the scope of this dissertation and

the interested readers are referred to [46] [47] [48].
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Figure 4.7: Total throughput vs. the probability of PU activity (K = 12, N = 32)

4.4 Simulation Results

In this section we evaluate the performance of the proposed subchannel and power allocation

approach under different sensing parameters. It is assumed that the sub-channel gains are

i.i.d. random variables with Rayleigh distribution. Noise spectral density is N0 = −110

dBm-Hz and is the same for all K users. The total available bandwidth is w = 3.2 MHz,

and the maximum allowable power per user is 0.3 W. Without loss of generality we set

Ūi,min = 0.

Figure 4.7 illustrates the total throughput of the K = 6 users with N = 32 subchannels

versus the probability of the PU activity. We observe that for the values of Pp < 0.4 the

throughput does not drop that much. However, when Pp passes 0.5 the total throughput

drops rapidly which can give us a threshold on where the co-existence of a PU and SUs are

beneficial.

In Figure 4.8 we assess the total throughput of the secondary network under different

values of β. We assume that all SUs are using an energy detector with the same parameters,

therefore, the index i of β could be dropped. The very bottom plot is correspond to the
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Figure 4.8: Total throughput vs. number of users (N = 32)

case of β = 0 which could be mapped to the case that PU is active all the time (Pp = 1)

or the case that Pf = 0. In either case there would be no transmission opportunity for the

SUs and no throughput will be achieved. As β increases the total throughput is growing

accordingly which indicates that the more accurately the SUs sense the higher throughput

is obtained. The maximum throughput is for the case of β = 1 which means either SUs are

sensing perfectly Pd = 1 or PU is completely silent Pp = 0.

4.5 Conclusion

An effective dynamic subchannel and power allocation algorithm is proposed based on Nash

bargaining Solution for an ad hoc network of secondary users with imperfectly sensing PU

activity. It was shown that the total throughput of the secondary network is highly related

to how accurately the sensing process is performing and how frequently the PU is present.

The higher detection probability is desirable in order to take the best advantage of the

temporarily available PU subchannels. Furthermore, a PU with more than %40 activity

lowers the SU throughput sharply which could be an indicator for the SUs that the PU is
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not worth sensing.
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Chapter 5: Summary, Contributions, and Future Work

5.1 Summary and Contributions

This dissertation addressed two important issues in cooperative cognitive radio networks:

spectrum sensing in physical and dynamic spectrum allocation in MAC layer. First a

dynamic subchannel and power allocation algorithm for the downlink of multiuser OFDM

systems based on Nash Bargaining Solution was presented in Chapter 2. The NBS problem

is decomposed into two sub-problems where the power allocation reduces to the well-known

water-filling algorithm and the subchannel assignment leads to a simple algorithm which

takes the total channel gain of each user as the fairness metric. Comparing to the Max-Sum

approach which totally ignores the users with weak channel conditions and the Max-Min

scheme which maximizes the worst user rate at the cost of scarifying the good users, the

proposed algorithm balances these two extreme cases by weighting each user according

to its total channel gain. Provided simulation results shows that the proposed algorithm

performs better than the Max-Min approach, and closely to the Max-Sum case especially

when the number of subchannels is comparably larger than the number of users. The

proposed algorithm was implemented for the LTE systems as well which increased the total

rate as much as %25 for the case of K = 15 users as compared to the fixed subchannel and

power allocation schemes.

We further extend the dynamic resource allocation for the case of cognitive radio net-

works where some secondary users sense the spectrum of the primary system to obtain

transmission opportunities. Since the sensing information in physical layer affects the re-

source allocation in MAC layer we first studied spectrum sensing methods in Chapter 3.

Then, a collaborative and distributed spectrum sensing scheme was proposed to keep ex-

tra overhead as minimum as possible. We formulated the spectrum sensing problem as a
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Stackelberg game and proposed a simple algorithm to solve the game. For this purpose,

each SU in the network is considered either as a leader or follower. The leading SUs who

are having the highest detection probabilities among the other users will broadcast their

sensing information while the followers will take action sequentially based on what they

receive from the leaders. As a result the whole network detection probability will increase

since it is dominated by users having acceptable reception of the PU signal. The simulation

result showed an improvement of %35 in average detection probability of the whole net-

work for the case of two followers and three leaders scenario. Consequently, the proposed

method significantly improves the average detection probability of the nodes as compare to

the non-cooperative case especially when more SUs are suffering from fading.

Having spectrum sensing parameters from Chapter 3, we extended the proposed dynamic

resource allocation scheme in Chapter 2 to encompass cognitive radio users as well. To this

end, in Chapter 4 an effective dynamic subchannel and power allocation algorithm was

proposed based on Nash bargaining Solution for an ad hoc network of secondary users with

imperfectly sensing PU activity. It was shown that the total throughput of the secondary

network is highly related to how accurately the sensing process is performing and how

frequently the PU is present. The higher detection probability is desirable in order to take

the best advantage of the temporarily available PU subchannels. Furthermore, a PU with

more than %40 activity lowers the SU throughput sharply which could be an indicator for

the SUs that the PU is not worth sensing.

5.2 Future Work

We can briefly list the possible extensions of this dissertation as follows:

• In chapter 2 we developed a dynamic subchannel and power allocation scheme for

OFDM users assuming Single Input Single Output (SISO) systems. However, in all

new generation wireless systems both base station and mobile users are equipped with

multiple antennas. Therefore, we need to address the resource allocation problem for
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Multiple Input Multiple Output (MIMO)- OFDM systems. This will add the space

as a new dimension to the power and subchannel allocation.

• In the case of MIMO-OFDM systems since the number of antennas in base station

side could be large, the load of the feedback required to report the channel information

would be burdensome specially for Frequency Division Multiplexing (FDD) systems.

Therefore, we may need to compress the feedback information using methods such as

Compressive Sensing. A survey of compressive sensing and how to apply it to MIMO

systems is presented in Appendix B.

• An interesting application of the resource allocation algorithm presented in Chapter 2

is developing a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

based Mac protocol for cognitive radio networks. The listen-before-transmit nature

of CSMA/CA makes it an ideal candidate for cognitive radio networks.
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Appendix A: An Overview on Game Theory

Game theory is a mathematical tool to analyze the strategic interactions among multiple

decision makers. While the goal in optimization theory is to optimize a single objective over

a decision variable game theory is a solution for a multi-objective optimization problem.

The major components in a strategic-form game are as follows:

• Finite set of players (N)

• A set of actions (xi)

• Payoff/Utility function(ui : X → R): Outcome of the game for player i determined

by the actions of all players. For example let assume that xi ∈ R, then:

ui(xi, x−i), x−i = (x1, ..., xi−1, xi+1, ..., xN ), ui ∈ RN (A.1)

Here we have a multi-objective function. Given the notation above, a strategic game

is denoted by 〈N, (xi), (ui)〉.

As a simple example let’s assume that a group of players would like to make a pie

together. Here Players have a common interest to make the pie as large as possible, but

they have competing interests to maximize their own share of the pie.

A.1 Different Types of games

• Cooperative versus non-cooperative: there is no mutual agreement among players in

non-cooperative game.

• Strategic- form or Static games versus Extensive-form or Multi-Stage or Dynamic

Games: In strategic game players move simultaneously while in extensive form game

players move sequentially. Moreover, the players are informed of the previous moves.

For example, Chess is a strategic game.
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Table A.1: Classifications of the games

Non-Cooperative Cooperative

Static Dynamic(Repeated)

Strategic form Extensive form

Perfect information Imperfect information

Complete information Incomplete information

• Game with Perfect versus imperfect Information: in a perfect information game all

information of history is perfectly known to all users. That is, each player knows

the identity of other players and, also, the payoff resulting of each strategy per user.

For instance, chess is a game with perfect information while poker is a game with

imperfect information.

• Game with Complete versus incomplete information: each player can observe the

action of each other player.

A.2 Nash equilibrium

In a non-cooperative game each player is only interested in his/her own benefit and takes

action in order to maximize his/her utility function. The solution for such a game is the

well-know Nash Equilibrium (NE)which is defined as follows:

Definition A.1. A Nash equilibrium of a strategic game 〈N, (xi, ui)〉 is the action set

x∗ ∈ X such that for every player i ∈ N we have

ui(x
∗
i , x
∗
−i) ≥ ui(xi, x∗−i) (A.2)

for all xi ∈ Xi, where xi indicates the action of player i and x−i denotes the actions of all

players other than player i. It is concluded from the definition that NE is a point that none

of players tends to deviate from since it gives the best-response action for each player.
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Theorem A.1. A strategic game 〈N, (xi), (ui)〉 has a Nash equilibrium if for all i ∈ N , the

action set Xi of player i is a nonempty compact convex subset of a Euclidean space, and

the utility function ui is continuous and quasi-concave on Xi.

A.3 Stackelberg Games

Definition A.2. A Stackelberg game is a two-player extensive game with perfect infor-

mation in which a ”leader” chooses an action from a set X1 and a ”follower”, informed of

the leader’s choice, chooses an action from a set X2. A solution to a Stackelberg game is

correspond to the following maximization problem:

max
(x1,x2)∈X1×X2

u1(x1, x2) (A.3)

subject to

x2 ∈ arg max
x́2∈X2

u2(x1, x́2)

It is seen that the action of the leader is given in the second equation.
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1 Appendix B: Compressive Sensing

B.1 Introduction

Compressive Sensing (CS), the idea of sampling below the well-know Nyquist rate, was first

introduced in [49–51]. CS theory indicates that one can recover certain signals from far

fewer samples than is needed in traditional methods. Although, CS gets its first applications

in image processing, it quickly extends to telecommunication field as well. The problem of

multiuser detection over a random access channel in Wireless sensor Networks seems to be

a proper application for CS [52, 53]. Since the number of users are large with low activity

,then the received data at the aggregation point would be sparse. Hence, the fusion center

can recover sensors data with less samples.Compressive Sensing has, also, attracted the in-

terest of researchers in the field of Massive-MIMO [54]. Since the number of antennas in a

Massive-MIMO system is very large, the load of the feedback required to report the channel

information would be burdensome specially for Frequency Division Multiplexing(FDD) sys-

tems. Another application of Compressive Sensing in Cognitive Radio Networks for sensing

a Primary User(PU) spectrum holes is proposed in [55]. It is shown that as the PU activ-

ity follows a sparse pattern, the spectrum usage information can be recovered from a small

number of reports by Secondary Users. A quick start-up in Compressive sensing is given in

[56].

In this chapter, we are interested in compressing channel information in a massive MIMO

system and its direct effect on the channel rate. The rest of this report is as follows: a brief

introduction on CS in given in Section B.2 . In Section B.3 we focus on modeling and

simulation of aggregate channel rate with perfect and compressed information in a massive

MIMO environment. In the end, Section B.4 concludes the chapter.

The results of this chapter is presented in [57] as well.

1This work was supported by Bell labs, Germany during my internship in summer 2012.
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B.2 The basics of Compressive Sensing

Assume that we have a signal f(t) which could be expressed in an orthonormal basis Ψ =

[ψ1, ψ2, ..., ψn] as follows:

f(t) =
n∑
i=1

xiψi(t), f ∈ RN (B.1)

or equivalently, xi =< f, ψi >, where < . > denotes inner product operation. We measure

f with another basis, Φ, as yk =< f, φk >, k = 1, 2, ...,m. Then, x can be fully recovered

from m < n samples by solving the following l1 minimization problem:

minx̃∈RN ‖x̃‖l1 (B.2)

subject to yk =< φk,Ψx̃ >, ∀k ∈M .

Theorem B.1. If x is S- sparse in Ψ, then it can be recovered exactly with overwhelming

probability by solving the above mentioned l1 minimization given that the number of taken

samples satisfies the following condition:

m ≥ Cµ2(Φ,Ψ)Slogn. (B.3)

where C is some positive constant [49]. The probability of success exceeds 1− δ if

m ≥ Cµ2(Φ,Ψ)Slog(n/δ). (B.4)

where µ2(Φ,Ψ) is defined as the coherence between the sensing basis (Φ), and the repre-

sentation basis(Ψ):

µ(Φ,Ψ) =
√
n.max |< φk, ψj >| , 1 ≤ k, j ≤ n. (B.5)
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B.2.1 Robust Compressive Sensing

We saw that the exact reconstruction for a sparse signal is possible with much fewer samples,

but in practice signals may be almost sparse and there is some noise. To count these two

issues into account we are interested in recovering x ∈ Rn from the following data:

y = Ax+ n (B.6)

where A is an m × n ”‘sensing” or ”measurement” matrix, y ∈ Rm is our observation

vector, and z is the noise term. We need to solve an under-determined system as we have

more unknowns(n) than equations(m). It is shown that if A meets RIP(Restricted Isometry

Property), then x can be recovered from under-sampled data y.

Definition B.1. Restricted Isometry Property: For each integer S = 1, 2, ... define the

isometry constant δ of a matrix A as the smallest number such that

(1− δS) ‖x‖2l2 ≤ ‖Ax‖
2
l2
≤ (1 + δS) ‖x‖2l2 (B.7)

holds for all S- sparse x [58].

That is, y tends to x in l2 norm which implies that δS is not too close to one. Another

interpretation is that a matrix obeys RIP of order δS if all subsets of S columns taken from

A are almost orthogonal. The importance of above theorem is that if RIP holds then the

l1 minimization will give an accurate reconstruction of x from y.

Random Sensing: How to make RIP-met sensing matrices

In order to check whether a sensing matrix meets RIP, one has to evaluate the inequality in

(B.7) which does not seem easy to handle. The following matrices will hold RIP condition:

• If the elements of A are random i.i.d Gaussian samples with zero mean and variance

1/m.
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• If A is formed by taking n random columns from unit sphere of Rm.

• If the elements of A are random i.i.d entities of a symmetric Bernoulli distribution

with P (Ai,j = ±1/
√
m = 1/2) or other sub-Gaussian distribution.

All the above matrices obey RIP with overwhelming probability given that:

m ≥ C.Slog(n/S) (B.8)

where C is some constant depending on each application.

Sparsifying Matrix

In some practical cases x is not Sparse in its own domain and needs proper mapping which

is called sparsifying transformation:

A = ΦΨ (B.9)

where Φm×n is the measurement matrix and Ψn×n is an arbitrary ortho-basis for spar-

sifying. Hence, x is not sparse by itself but Ψx is. If Ψ is arbitrary and Φ is formed based

on the methods described earlier, then A still obeys RIP [56].

Example 1: A Sparse signal in frequency

This example shows a sparse signal in frequency. The input signal is a sinusoid with the

frequency f1 = 20Hz. Since x(t) is not sparse by itself we define the sparsifying matrix

Ψ as the 512 × 512 DFT matrix. The measurement matrix is m = 124 random columns

taken from 512 × 512 IDFT matrix. Figure B.1 shows the time and frequency domain

representation of x(t), and figure B.2 represents the recovered x(t) from m samples.
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Figure B.1: A sinusoid in time and frequency

Example 2: A Sparse signal in time

In this section a sparse pulse with S non-zero samples is generated in time domain. The

sensing matrix is random columns taken from a N×N DFT matrix. Moreover, the sparsity

ratio is defined as S/N . The applied recovery algorithm is Orthogonal Match Pursuit(OMP)

which is categorized as greedy algorithms and is faster and easier-to-implement than L1

minimization. Then, the MSE error between the original signal and the recovered one is

evaluated for different sparsity and SNR ratios and is demonstrated in Figure B.3. As we

see, the more sparse the signal is, the lower MSE is achieved. And, the performance of the

recovery algorithm is very sensitive to noise which makes the recovery almost impossible

for the SNRs below 0dB. For the SNR above 30dB the recovery algorithm performs the

same as no noise case ( Figure B.4)which is an interesting indicator for compression cost

in terms of SNR.
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Figure B.2: Recovered sinusoid from compressed samples

Figure B.5 shows one snapshot of the above example for the case of m = 100, N = 500,

S = 10, and no noise.

B.3 Channel Rate with ”perfect” and ”Compressed” Infor-

mation

In this section we would like to see how much one can compress a wireless channel based

on achievable rate.

B.3.1 System model

Consider a base station(BS) with N transmitting antennas operating in downlink, and K

single antenna mobile users. We assume M is large enough to create some correlation among

the signals reaching each element of base station array.Then, the N × 1 channel vectorhk
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Figure B.3: MSE of Original and recovered time sparse pulse

between the kth user and the base station can be expressed as:

hk = R
1/2
N×NzN×1 (B.10)

where R
1/2
N×N is the correlation matrix of BS antennas,and zN×1 is the channel gain

with i.i.d zero mean and unit variance complex Gaussian entities. The ith row and the jth

column of R is defined as:

rij = J0(
2π∆dij
λ

) (B.11)

where J0(.) is the zeroth-order Bessel function of first kind, di,j is the distance between

the ith and the jth antennas of the BS, λ is the wavelength, and ∆ is the angel spread. The
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received signal at the kth mobile user can be written as:

yk =

√
P

K
hk

Twksk︸ ︷︷ ︸
desiredsignal

+

√
P

K

∑
i 6=k

hi
Twisi︸ ︷︷ ︸

interference+noise

+nk (B.12)

where wk is the channel precoder, sk is the user message with unit power, and P is the

BS transmitting power. Assuming a matched filter precoder for the channel, then wk = hk
∗,

and the SINR ratio for the kth can be expressed as:

SINRk =
P
αK

∣∣hk
Thk

∗∣∣2
1 + P

αK

∑
i 6=k
∣∣hi

Thi
∗∣∣2 (B.13)

where α is the precoder normalizing factor. Hence,the achievable rate for all K users

would be:
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Rtotal =
k=K∑
k=1

log2(1 + SINRk) (B.14)

B.3.2 Channel rate with Compressed Channel Information

Having hk as the channel vector per user, the channel matrix H can written as:

HN×K = [h1h2...hK] (B.15)

In order to compress H we first need to convert it to the vector format as follows:

h1×NK = [h1
Th2

T ...hK
T ] (B.16)
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where h is the vectorized format of H. The sensing matrix A is chosen as m random

columns from NK ×NK DFT matrix. Hence, the compressed h is

h̃ = Ah (B.17)

Therefore, the compression ratio would be η = m/NK. The kth user channel vector can

obtain by converting the channel vector h̃ to its matrix format H̃.Then, the total rate with

new channel vector, ĥ, obtained from solving the L1 minimization for (B.17) would be:

˜Rtotal =
k=K∑
k=1

log2(1 +

P
αK

∣∣∣hk
T ĥk

∗∣∣∣2
1 + P

αK

∑
i 6=k

∣∣∣hi
T ĥi
∗∣∣∣2 ) (B.18)

B.3.3 Simulation results

In this part we will evaluate the performance of a channel with perfect information versus

the imperfect one due to compression. To this end, we measure the total rate once when

the channel vector hk is known and when h̃k is recovered using m < N samples. we set

N = 100, K = 10, d = λ/2, and the compression ratio as η = m
N . Figure B.6 shows the

total rate versus SNR for different compression ratios. It is seen that the more we compress

the channel, the more cost we need to pay in terms of rate.

In Figure B.7 the total rate is plotted versus SNR for several numbers of BS antennas

N . The compression ratios is set to η = 0.3. It is obviously seen the total achievable rate

is directly related to the number of BS antennas. This is not surprising as by increasing N

the correlation among the received signal at BS is increased as well which lowers the effect

of data loss due to compression.

Figure B.8, and B.9 show channel response in time and the reconstructed version of

it. Considering theses two figures it is obvious that channel response is not sparse in time.
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That is the reason for the total rate loss when we compress the channel information. One

idea is to map the channel information to a proper field to make it sparse first and then

apply any compressing algorithm in order to keep the rate loss as low as possible. This

issue will be taken into account in future work.

The channel rate with perfect and compressed channel information is simulated. As

a future work, it would be interesting to evaluate this problem analytically. One possible

option is to solve the following optimization problem:

minh∈RNK ‖h‖l1 (B.19)

subject to h̃ = Ah, and Rtotal ≤ Rmin.
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That is, how much we are allow to compress h so that the total achievable rate require-

ment is met.

Moreover, in order to minimize the rate loss a proper sparsifying basis is needed as we

saw in previous section that channel response is not sparse in time domain. This would be

another point to consider for the future work.

B.4 Conclusion

A brief introduction to Compressive Sensing was provided in this report. Then, it is applied

to reduce the amount of channel information needed to be reported to the BS in a downlink

scenario. Simulation results show that the total rate decreases as the compression ratio

increases. Moreover, the compression ratio is directly proportional to the number of BS

antennas as it spatially saprsifies the channel information in order to apply a CS algorithm.

86



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Samples

C
h

a
n

n
e

l 
re

s
p

o
n
s
e

 a
m

p
lit

u
d

e

Uncompressed channel matrix

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Samples

C
h
a
n
n
e
l 
re

s
p
o
n
s
e
 a

m
p

lit
u

d
e

compressed channel matrix L1 recovery

Figure B.8: Original and recovered channel response

However, according to simulation results a proper sparcifying basis is still needed as CS

theory claims that it gives you the exact reconstruction under some condition, which would

be the subject of the future work.
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