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For decades transportation legislation actions have demonstrated the desire to 

plan, design and operate multi-modal surface transportation systems (National Complete 

Streets Coalition [NCSC], 2009).  The push for multi-modal operations stems from 

several key concerns including environmental impacts, natural resource scarcity, rising 

fuel costs and dependency on foreign oil, and the declining health of Americans due to 

their reliance on personal automobile travel.  The introduction of legislation for multi-

modal surface transportation designs reflects the desire of the public and decision makers 

to provide greener designs that reduce our dependency on foreign oil and effects on the 

environment while improving air quality and the health of travelers.  However, it has 

been determined that the methods needed by engineers and planners to design such 

facilities are currently lacking in their ability to reflect traveler perceptions of service by 

mode which is needed to successfully design such multi-modal transportation systems.  



 

 

In addition, design guidance does not include methods by which engineers and planners 

can weigh the range of potential alternative designs to optimize the design of streets to 

comfortably accommodate all modal travelers. 

 

The purpose of this dissertation was to develop a Multi-objective Optimization Model to 

support the design of Complete Streets and to identify optimal urban street designs that  

achieve a pre-defined level of service rating for travelers on an urban arterial including 

auto, pedestrian and bicycle modal users, while meeting geometric design standards.   To 

achieve this goal, Cumulative Logit Level of Service (LOS) Models were developed for 

the pedestrian and bicycle modes that incorporate traveler’s perceptions of Level of 

Service and provide a distribution of perceived LOS to assist decision makers.  Next, a 

Multi-objective Optimization Model was developed that can provide an optimal right of 

way design to accommodate the auto, pedestrian and bicycle modes at a pre-defined LOS 

that also adhere to geometric design standards.   

 

Building on a national research study database, the probabilities of road user perceptions 

of Level of Service (LOS) for the pedestrian and bicycle modes were developed using the 

Cumulative Logit Modeling technique.  An existing auto cumulative logit LOS model 

was utilized and the transit mode was not included due to lack of similar data.  These 

models used variables found to be statistically significantly correlated to traveler’s 

perception of LOS including: Space Mean Speed and Median Presence for the auto 

mode; Number of Traffic Lanes, and Sidewalk Width for the pedestrian mode and Number 



 

 

of Traffic Lanes, Bike/Shoulder Width and Posted Speed Limit for bicycle mode.  These 

newly developed Cumulative Logit LOS Models for the pedestrian and bicycle modes 

provide a distribution of LOS ratings based on traveler perceptions of LOS and require 

minimal data collection on the part of the engineer or planner without a significant 

reduction in model accuracy which should spur the use of the methodology. 

 

Next, these Cumulative Logit LOS Models were used in the development of a four-step 

Multi-objective Optimization Model that provides designers with a set of urban street 

characteristics that optimize modal traveler perceptions of service.  The objective 

function was to balance the perceived LOS for each of the three modes subject to street 

characteristic constraints. Several scenarios of Right of Way (ROW) width for the Multi-

objective Optimization Model were created to demonstrate the usefulness of the 

modeling approach.  It was observed that fewer number of through lanes and the presence 

of a raised median, sidewalk and bike lane result in higher user rating of LOS for all three 

modes.  These findings reflect the findings of previous studies conducted in-vehicle, 

through surveys, and through focus groups (Pecheux et al., 2004; Petritsch et al., 2005). 

 

The findings of this study support the use of Cumulative Logit Modeling techniques to 

model ordered categorical traveler perception LOS data with a reduced set of independent 

variables for the pedestrian and bicycle modes on urban streets as compared to previous 

data intensive models (Dowling (NCHRP report 616).  In addition, this study provides a 

new method for designing Complete Streets that seeks to optimize the perceived 



 

 

performance of urban streets by the auto, pedestrian, and bicycle modes while adhering to 

existing design standards. 
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CHAPTER 1: INTRODUCTION 

 

 

 

 

1.1 Problem Statement 

 

 

 The greening of the surface transportation system in the United States (US) has 

been driven by two main influences:  the rapid increase in fuel costs and the increased 

desire for many travelers to reduce their carbon footprint through the use of more 

sustainable transportation modes.  This societal shift has resulted in an increased 

awareness of the need to design sustainable street systems that can accommodate 

alternative transportation modes alongside personal automobiles safely and efficiently.  

While the US is considered a rich and well educated country, for many years the 

development of a sustainable surface transportation system has not been a priority due in 

part to the heavy reliance on personal automobile travel (Buehler, 2009).  The 

affordability of automobiles and the convenience they bring to personal travel has 

resulted in an increase in automobile usage and decrease in the presence of competing 

modes on most highway facilities, including urban streets for decades (Buehler, 2009).  

In contrast to the benefits that automobiles provide to individual users are the negative 

effects including air, water, and noise pollution; use of non-renewable fossil fuels; and 

traffic congestion (Buehler, 2009). 
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The perceived negative impact of automobile presence on pedestrians and bicycles on 

streets is another reason for the decrease in the use of alternative modes of transportation 

on urban street facilities.   

 

Legislative actions reflect the attention that decision makers have given to their 

constituents’ desire for sustainable surface transportation solutions to green urban street 

networks.  To address this societal shift, this dissertation study developed a multi-

objective optimization tool which will allow transportation engineers and planners to 

design sustainable streets that accommodate all modes that meet design standards at an 

acceptable level of service. 

 

1.1.1 Legislative Action 

 

To combat the negative effects of private automobile use, recent transportation legislation 

calls for the inclusion of multi-modal planning, design, and operation of surface 

transportation systems that receive federal funding.  The Inter-modal Surface 

Transportation Efficiency Act (ISTEA), enacted by Congress in 1991, required state level 

plans for transportation to consider all transportation modes and all possible connections 

between them (USDOT, 2009).  The Transportation Equity Act for the 21
st
 Century 

(TEA-21), implemented in 1998, was a continuation of the ISTEA that placed the 

emphasis on statewide transportation planning processes.  Among the areas to be 

considered was an emphasis on the integration and connectivity of the transportation 
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system, across and between modes, for people and freight.  TEA-21 also required a multi-

modal statewide transportation planning process to involve federal, state and regional 

agencies and the public (USDOT, 2009).  

 

The Safe Accountable Flexible Efficient Transportation Equity Act:  A Legacy for Users 

(SAFETEA-LU) followed TEA-21 in 2005 and represented the largest surface 

transportation investment to date at $244.1 billion.  SAFETEA-LU addressed challenges 

of the transportation system including increasing intermodal connectivity and improving 

safety for all modes.  The passage of legislation in the past several decades that 

incorporates a multi-modal emphasis demonstrates the desire of the public and decision 

makers to reduce the dependency on foreign oil; improve air quality; reduce impact on 

the environment; and improve the health of travelers (FHWA, 2005).   

 

Locally, the Commonwealth of Virginia has developed, with the concurrence of the 

Secretary of Transportation and through four state transportation modal agencies, a multi-

modal long-range transportation plan called VTrans2025 (VDOT, 2009).  The Statewide 

Multi-modal Long-Range Transportation Plan is in compliance with federal and state 

legislative requirements to ensure continuation of federal funding for transportation 

programs and projects.  VTrans2025 is a multi-modal effort that is and will continue to 

engage the expertise of specialists from each modal sector to meet the objectives of the 

long range plan (VDOT, 2009). 
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Following on the heels of these landmark pieces of legislation, the concept of Complete 

Streets has emerged that envisions streets that will accommodate all transportation modes 

and users of urban streets facilities.  The concept is tailored to the needs and context of 

each community and provides a connected transportation network that promotes 

sustainable development and alternative transportation modes (Robinson, 2009).  The 

Complete Street Act of 2009, S.584, is a bill, that was introduced to the US Senate on 

March 12, 2009, written to require that all transportation modes be safely and 

conveniently accommodated on and across federally funded streets and highways 

(Harkin, 2009).  The Act has not yet been signed into law as of the time of this 

dissertation publication, however, if signed into law, it will require that all federally 

funded transportation projects take into account the safety and convenience of all 

transportation facility users from project planning to land development phases of projects 

(Harkin, 2009). 

 

Finally, on March 11, 2010, Secretary of Transportation Ray LaHood issued a Policy 

Statement on Bicycle and Pedestrian Accommodation Regulations and Recommendations 

(USDOT, 2010).  The policy emphasizes the support of the US Department of 

Transportation (USDOT) for the development of fully integrated transportation networks 

where bicyclists and pedestrians are included by transportation agencies in policy, 

planning, funding and implementation of improvements (USDOT, 2010). 
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The extent of legislation related to multi-modal planning, design, and operations of 

streets and highways demonstrates the need for analysis tools and methods to assist 

engineers and planners in their pursuit of multi-modal facilities. 

 

1.1.2 Analysis Methods 

 

While the motivation and policy is in place to consider all modal users when designing 

urban streets, the methods by which engineers and planners analyze their designs have 

yet to be fully developed.  Typically when preparing new designs, planners and engineers 

utilize many methods to assess the impact of their designs ranging from estimating safety 

performance; operational performance; determining air quality issues; addressing human 

factors considerations; and finally estimating the cost of the proposed design.  Engineers 

and planners often turn to the Highway Capacity Manual and Software to analyze the 

operational performance of surface transportation investments (TRB, 2000).  The current 

state-of-the-art methodology for urban street operational analysis is provided by the 

Highway Capacity Manual, (HCM) fourth edition, 2000 has been deemed incomplete by 

numerous studies and it will be replaced by a new version of the Highway Capacity 

Manual currently scheduled for release in 2010 (Cristei et al., 2005; Dowling et al., 2009; 

Flannery et al., 2008).  The forthcoming 2010 urban street methodology will greatly 

improve the tools engineers and planners can use to analyze the operational performance 

of urban streets; however, it does not provide a method to optimize their proposed 

designs to meet perceived level of service on urban streets.   
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A few studies have been conducted that sought to model traveler perceptions of service 

on urban streets; however, the methods identified in the studies did not address the 

optimal design for all users on urban streets (Dowling et al., 2008; Ali et al., 2009; 

Washburn et al., 2004; Petritsch et al., 2006).  This dissertation provides a method for 

practitioners to design optimal facilities for bicycle, pedestrian and auto users within an 

available right of way for development or redevelopment to obtain an acceptable level of 

user satisfaction on urban streets.  

 

1.2 Motivation and Contribution to State of the Knowledge 

 

The study utilizes concepts of quality of service set forth in the Highway Capacity 

Manual and an existing national database of traveler perceived level of service ratings for 

urban streets (TRB, 2000; TRB, 2009).  The inclusion of traveler perceived level of 

service through cumulative logit modeling technique is intended to provide decision 

makers with a better understanding of the public’s perception of service on urban streets 

which should improve the decision making process.  In addition, the use of a multi-

objective optimization method, as presented further in this dissertation, will allow 

engineers, planners, and decision makers to optimize the components of an urban street 

and obtain the perceived level of service across all modes on urban streets within a given 

right of way. 

 

 

Specifically this study: 
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1. Identifies existing methods to incorporate traveler perception of level of service 

on urban streets into the decision making process. 

2. Develops models to incorporate pedestrian and bicycle perception of level of 

service on urban streets into the decision making process. 

3. Develops an optimization model to design an optimal Complete Urban Street to 

meet a minimum modal traveler perception of service for the auto, bicycle and 

pedestrian modes.    

 

The contribution of the new model provides practitioners with a tool that will allow them 

to design streets that will accommodate three transportation modes, auto, pedestrian and 

bicycle, concomitantly at a level of service that is satisfactory for all three modes.  A 

review of the existing literature did not reveal an optimization approach to urban street 

multi-modal design.  Previous research studies focused on analyzing each transportation 

mode independently and providing insight on how modal users perceive the arterial 

roadway environment.  The methods developed in this dissertation incorporate traveler’s 

perceptions of service while providing optimal designs to achieve optimal modal level of 

service on urban streets. 
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1.3 An Overview of the Study Approach 

 

The tasks accomplished in this dissertation study are presented in Figure 1.1.  The main 

effort of this dissertation was to create a Multi-objective Optimization Model to use in the 

design of urban Complete Streets.  The objectives were to optimize a given right of way 

on urban streets while simultaneously achieving an acceptable auto, pedestrian and 

bicycle traveler perceived level of service.   

 

To accomplish these objectives, an existing national database of traveler perceptions of 

level of service on urban streets was utilized to develop an optimization model that 

attempts to surpass the previously created models that analyzed the level of service for 

different modes of transportation in isolation.   

 

The street characteristics for the roadway facilities identified in the data set have been 

analyzed for correlation with the study participant rated level of service for the pedestrian 

and bicycle modes.  The street characteristics identified as highly correlated with traveler 

perception of service have been used to develop cumulative logit models for the 

pedestrian and bicycle modes to determine modal level of service.  The cumulative logit 

modeling technique was used for its ability to estimate ordered categorical data and a  

distribution of LOS ratings.  An existing cumulative logit model for the auto mode has 

been utilized for this dissertation (Dowling, 2009).  The model includes variables that are 

suitable for the modeling process in this dissertation.  And finally, the results of the three 
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models have been used as objective functions in a multi-objective optimization model for 

the design of Complete Streets.  
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Figure 1.1 An overview of the study approach 
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This dissertation is organized as follows:  Chapter 2 provides a literature review with 

summaries of journal articles on related research objectives.  The study methodology is 

included in Chapter 3.  Chapter 4 presents the models used to estimate traveler perceived 

LOS for the pedestrian and bicycle modes and the creation of a Multi-objective 

Optimization Model.  Chapter 5 presents the validation of the Cumulative Logit Models 

and a sensitivity analysis of a Multi-objective Optimization Model.  Chapter 6 provides 

conclusions of study and finally Chapter 7 provides recommendations for future research.   
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CHAPTER 2: LITERATURE REVIEW 

 

 

 In this literature review, a brief overview of the methods contained in the 

Highway Capacity Manual (HCM) 2000 is provided along with a review of the 

definitions of quality of service and level of service as given in the HCM 2000.  In 

addition, a brief background on the HCM is provided to readers who are unfamiliar with 

transportation standards and guides used for operational analysis in the U.S. and 

internationally.  Next, studies that analyzed Quality of Service (QOS) and LOS are 

introduced.  Several journal articles that utilize a variety of modeling techniques for 

traveler perceived level of service are summarized.  Next, the concept of Complete 

Streets is presented to outline the emerging multi-modal urban streets policies.  Finally, 

optimization modeling techniques are reviewed and considered for their ability to model 

the Complete Street design environment.  Finally, the literature review is summarized 

with a review of the relevance of the identified studies to this dissertation research. 

The literature review has been presented in the following order: 

1. Highway Capacity Manual review 

2. Quality of Service and Level of Service research studies  

3. Quality of Service and Level of Service Modeling Techniques 

4. Complete Streets review 

5. Optimization modeling techniques. 
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6. Conclusions 

 

2.1 Highway Capacity Manual – QOS and LOS Methods and Uses 

 

To better understand the function of the Highway Capacity Manual in the context of the 

engineer and planner toolbox, a review of the HCM’s widespread use and impact is 

provided here.  In addition, a review of the definitions of QOS and LOS are provided.   

 

The Highway Capacity Manual will soon be released in its fifth edition, the Highway 

Capacity Manual 2010.  The HCM is published by the Transportation Research Board 

and is widely viewed by transportation professionals as the source of operational analysis 

methods for surface transportation systems.  The most recent version of the HCM, HCM 

2000, sold over 13,200 copies in 68 countries in the first three years of publication which 

demonstrates the wide use of the methods contained in the Manual.  While not a national 

standard of design, many state and local jurisdictions have adopted the Highway Capacity 

Manual and the methods contained in it as a standard for analyzing operational 

performance of surface highway systems (TRB, 2005).     

 

One of the most widely recognized uses of the HCM is the ability of the Level of Service 

methods contained in the Manual to synthesize information obtained from complex 

deterministic, empirically based models into a stratification of performance levels.  These 

performance levels are referred to as Level of Service or LOS.  For most analysis 

methods, a single Measure of Effectiveness (MOE) has been selected by the Highway 
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Capacity and Quality of Service Committee to represent the quality of the performance of 

a facility, and that single measure is stratified into six categories of performance, A-F (A 

being the best performance; F being the worst performance).  For example, the MOE for 

signalized intersections for vehicles is average control delay, with LOS A achieved when 

average control delay is 10 seconds and LOS F achieved when average control delay 

exceeds 80 seconds  (TRB, 2000).  A quick search on the Internet reveals that many 

agencies have adopted the stratification of LOS A to F as their means to assess the 

performance of roadway segments, intersections, and facilities (AHDT, 2009; FDOT, 

2007; VDOT, 2004).  Often jurisdictions require new developments to meet or exceed a 

particular LOS on the neighboring transportation facility or new developments are often 

required to mitigate the impact through transportation impact fees which are placed into a 

fund for future transportation improvement projects.    

 

Over the past decade the Highway Capacity and Quality of Service Committee 

(HCQOS), which is a volunteer organization that oversees and adopts the methods 

contained in the HCM, has begun to address the limits of the use of LOS.  In particular, 

surveys and focus groups held with user groups (engineers, planners, decision makers), 

has revealed that many felt that while the LOS methods were useful to explain complex 

transportation modeling results to non-technical decision makers, they also felt LOS 

methods needed refinement to better reflect travelers experiences (Flannery et al., 2004).  

To address these concerns, the HQCS Committee began to request funding for research 

studies to better relate LOS thresholds and MOEs to travelers’ experiences on various 
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facility types.  One recently completed study, National Cooperative Research Program 

Project 3-70 (NCHRP 3-70), Multimodal LOS for Urban Streets, has been reviewed as 

part of the literature review (Dowling et al., 2009).   

 

2.2      Quality of Service and Level of Service Studies 

 

NCHRP 3-70 Multimodal Level of Service for Urban Streets 

The quality of service provided to travelers on urban streets has been the focus of several 

recent research studies (Dowling et al., 2008; Flannery et al., 2008; Petritsch et al.,  

2006 ).  One study in particular was developed under the National Cooperative Highway 

Research Program (NCHRP) during a six year period beginning in 2003, NCHRP 3-70, 

Multimodal Level of Service for Urban Streets (Dowling et al., 2009).  This study 

developed a method for analyzing the level of service for multimodal streets which 

included auto, fixed route transit bus, pedestrian and bicycle modes.  The study 

developed a tool that allows practitioners in the transportation field to assess the effect of 

various characteristics of the urban streets based on perception of QOS by the auto, bus, 

pedestrians and bike riders.  The study was developed using a video laboratory 

methodology for auto, pedestrian and bicycle modes where video clips were created then 

shown to research subjects in a survey setting.  Transit data collection, however, took 

place in the field and on various bus routes to better capture the transit experience.  The 

results of the study are important due to the inclusion of street characteristics that have 

not been used previously by the HCM methodologies for computing LOS on urban streets 
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and the inclusion of the ratings of service by the traveling public to determine factors that 

influence service ratings and thresholds of service (Dowling et al., 2009). 

 

In NCHRP 3-70 data collection efforts took place in two phases.  Phase I of the data 

collection tested the feasibility of video laboratory settings to gather traveler perceptions 

of level of service.  To test the feasibility, video clips were filmed and created that 

captured the auto driver’s view of a variety of urban street cross-sections and conditions 

in the Washington, DC area.  Additionally, field surveys with participants who also 

viewed and rated video clips that depicted auto were conducted.  The ratings of LOS 

provided by a small group of participants who participated in both the video laboratory 

and the field studies were compared to ratings of the existing HCM auto LOS methods 

for urban streets.  A review of the differences between traveler perceived LOS and HCM 

estimated LOS was deemed acceptable and video laboratory settings were selected as the 

method of data collection for the larger efforts which took place in Phase II (Dowling et 

al., 2009).   

   

Video clips were created for the pedestrian, bicycle, and auto modes as part of NCHRP 3-

70.  Transit LOS ratings were gathered from users of the transit systems in several 

locations in the US; however, the transit methods and findings are not included here as 

the transit mode was not included in this overall study.  The transit mode was not 

included in this study due to two primary reasons: 
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 Level of service ratings were not collected using the same methods as the other 

modes 

 Level of service ratings were collected only from users of the transit systems 

which limited the ability to capture the perceived service by both riders and non-

riders, unlike the auto, pedestrian, and bicycle modes. 

 

Video clips were created for the auto mode by using: 

 Rented vehicle 

 Two video cameras  

 A Global Positioning System (GPS) unit 

 

The team filmed urban street scenes from the driver’s perspective then extracted the 

video clips creating a total of 35 clips showing the scene from driver’s perspective 

including a view of the speedometer. An important characteristic of the selected routes 

was a consistent cross section, including the same number of through travel lanes on the 

video clip. All taping sessions took place during daylight hours and dry conditions.  The 

auto clip characteristics have been summarized in table 2.1 and have been presented in 

detail in Appendix 1 (Dowling et al., 2009).  

 

Pedestrian video clip creation was also accomplished in two phases where in Phase I 

eight video clips were created and shown to 45 participants.  The video clip collection 

was continued in Phase II and was enhanced by adding combinations of conditions.  All 
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video clips were created during daylight hours and during dry conditions with the 

“moving camera” approach.  Taping was accomplished with a “steady camera” unit and 

32 video clips were created.  The ranges of pedestrian clip characteristics have been 

presented in Table 2.2. 

 

Table 2.1 Roadway Characteristics in Auto Clips 

Street Characteristics Range 

 
No of Through Lanes 1-3 Lanes 

Presence of median 0, 1, 2, 3* 

Total Travel Time (sec) 48-471 

Space Mean Speed (mph) 3.8-41.9 

Ped on sidewalk 0,1,2** 

# of stops (below 5 mph) 0-4 

Total # of Signals 1-9 

Pres of Excl LT L Signals 0,1*** 

Presence of RTL Signals 0,1*** 

Tree Presence 1,2,3**** 

Average Lane Width (ft) 10-14 

Width of Median (ft) 0-54 

Right  Shoulder Width (ft) 0,4,8 

Left Shoulder Width (ft) 0,2,3,4 

Width of Parking Lane (ft) 0,7,8,10 

Width of sidewalk (ft) 0-14 

Sep ROW to Sidewalk (ft) 0-10 

Width of Bike Lane (ft) 0,5,6 

 

 

 

The codes used to define categories for different variables are discussed blow: 

*Presence of median                                                              **Pedestrians on sidewalk 

  0 = no separation between opposing traffic streams                                  0= few or none 

  1 = no opposing traffic stream (one-way street)                                        1= some 

  2 = two way left turn lane                                                                          2= many 

  3 = raised median (curbs between opposing traffic streams) 

                                                                                                                                

*** Pres of Excl LT or RTL at Signals                                                   ****Tree Presence 

 0 = none present                 1= few or none 

 1 = present               2= some 
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Table 2.2 Roadway Characteristics in Pedestrian Clips 
 

Street Characteristics Range 

Sidewalk Width (ft) No Sidewalk, <4,  >4 

Separation of Walkway From Traffic Yes, No 

Traffic Speed (mph) <30,  30-40, >40 

Traffic Volume Outside Lane (vph) <400,  400-800,  >800 

Pedestrian Volumes (pph) Low(<300), Medium(300-1000), 

High(>1000) 

Number of lanes crossed 2, >4 

Signal Delay (sec) <30,  >30 

 

 

The creation of bicycle video clips was accomplished in one phase.  The street 

characteristics for the bicycle study have been presented in Table 2.3.  The video 

simulation with “moving camera” approach was used to create the video clips depicting 

bicycling conditions along various arterial streets in which the bicyclists utilized 

shoulders or bicycle lanes and traveled along the arterial as a vehicle.  Thirty video clips 

were created and shown to study participants (Dowling et al., 2009). 

 

 

Table 2.3 Roadway Characteristics in Bicycle Clips 

 
Street Characteristics Range 

Width of Outside Lane (ft) <12,  >12 

Presence/Width of Bike Lane (ft) No lane,  ≤4, >4 

Vehicle Flow in Outside Lane (vph) <400,  400-800,  >800 

Speed Limit (mph) <30,  30-40,  >40 

Crossing width (ft) <36,  36-60,  >60 

Control Delay (s) No stop,  <40,  >40 

 

The video clips created for each mode were presented to 145 participants in four different 

locations in the US: New Haven, CT; Chicago, IL; Oakland, CA and College Station, 
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TX.  For each of the three modes, participants were asked to watch 10 video clips and 

rate them on a six-point scale (A through F, A being the best and F the worst) as a 

commuter. 

 

Of the ten video clips per mode shown to study participants, six unique clips per mode 

per location were shown and rated by participants and four clips for each mode were 

shown at all four locations, which provided a robust set of data to be utilized in part in the 

validation of the models developed in the study.  The Appendix provides tables with the 

numbering and assignment of the video clips presented at each survey location (Dowling 

et al., 2009). 

 

Modeling Results – NCHRP 3-70 

The data collected were used in NCHRP 3-70 to develop traveler perceived LOS models 

for each of the modes.  The auto LOS model was developed as follows.  First, a 

correlation analysis was conducted to establish the relationship between the dependent 

variable, the LOS rating by each participant, and the independent variables or their 

transformations.  The results of the analysis were that 69 of the 78 variables were 

statistically significantly correlated to the dependent variable.  Linear regression 

techniques were considered for the auto mode, however, researchers responsible for the 

development of the auto LOS model believed that the categorical ordered nature of LOS 

ratings by participants pointed towards the use of the cumulative logistic modeling 

techniques to estimate the percentage of participants that would rate a facility LOS A, B, 
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C, D, E, or F versus the average rating of LOS as would be estimated by a traditional 

linear regression model (Dowling, et al, 2009).   

 

The logit model for cumulative probability P(Y≤j|x) is defined as follows (Agresti, 2007): 

 

)(')](1/)([ xxjYPxjYPLn , or   Equation 2.2.1 

 

)]('1/[))('exp()( xxxjYP    Equation 2.2.2 

 

Each cumulative probability has a different intercept αj but the same coefficients β.  

Which means that each independent variable will have one β parameter but it will not 

change when the α parameter changes (Agresti, 2007).   For the purpose of this 

dissertation study, the auto model selected from NCHRP 3-70 included the independent 

variables Median Presence and Space Mean Speed of the vehicle driven in the video 

clips.  A Cumulative Logistic Model was developed and the Maximum Likelihood 

Estimates Parameters have been presented in Table 2.4.  
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Table 2.4 Maximum Likelihood Estimate Parameters for Traveler Perceived 

Auto LOS Model 

 

Parameter  Estimate  

Intercept LOS F, α1= -1.192 

Intercept LOS E, α2=  -0.2 

Intercept LOS D, α3 =  0.706 

Intercept LOS C, α4=  1.801 

Intercept LOS B, α5=  3.617 

Space Mean Speed (mph), β1 =  -0.084 

Median Presence (0-3) , β2 =  -0.224 

 

 

 

The study also created a Cumulative Logit Model using the number of stops per mile on 

the facility and the presence of exclusive left turn lanes at intersections.  Table 2.5 

presents the results of the Maximum Likelihood Estimate for Ordinal Regression applied 

to automobile LOS (Dowling et al., 2009). 

 

 

Table 2.5 Maximum Likelihood Estimate Parameters for Automobile LOS 

 

Parameter  Estimate 

Intercept LOS F, α1 -2.919 

Intercept LOS E, α2  -1.827 

Intercept LOS D, α3  -0.853 

Intercept LOS C, α4  0.283 

Intercept LOS B, α5  2.094 

Stops per mile, β1=  0.203 

Pres of Ex LT Lane, β2= -0.522 

Tree Presence, β3= -0.338 

 

 



 

23 

Comparison of the HCM 2000 and the stops per mile model developed in NCHRP 3-70 

revealed that the HCM 2000 was only able to estimate 50 percent of the observed mean 

clip LOS while the NCHRP 3-70 stops model was able to estimate 83 percent of the 

observed mean clip LOS (Dowling et al., 2009).  The space mean speed model was used 

in this dissertation for its ability to contribute to the multi-objective optimization model.  

 

A bicycle LOS model was developed in NCHRP 3-70 as an aggregate model, by using 

the outputs from existing segment and intersection LOS models in order to obtain the 

arterial LOS instead of an agglomerate model which uses the independent street 

characteristics to calculate the arterial bicycle LOS.  Further, a linear regression model 

was considered by the researchers responsible for the bicycle mode to be more 

appropriate given the existing bicycle regression LOS models that have been developed 

in the past.  Given the use of linear regression techniques to estimate bicycle user 

perceived LOS, researchers determined the mean LOS rating of each video clip and 

regressed against that mean rating a combination of conditions present on the video clip.  

This approach means that of the 1413 observations of bicycle LOS ratings, only 28 mean 

ratings were used in the modeling process which represents the number of bicycle clips 

shown to study participants.   

 

Using Pearson correlation analysis relevant variables were selected and used for two sub-

models of the same form but with different predictor variables.  Bicycle Model # 1 is 

shown in equation 2.2.3 and Bicycle Model # 2 is shown in equation 2.2.4. 
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85.2)(*035.0

)(exp(*011.0)(*160.01#

Cflt

ABIntABSegBikeLOS
  Equation 2.2.3 

40.1)(*05.0

)(exp(*03.0)(*20.01#

Cflt

ABIntABSegBikeLOS
      Equation 2.2.4 

 

Where 

 

ABSeg   = The length weighted average segment bicycle score, 

     Exp  = The exponential function, where e is the base of the natural logarithms, 

  ABInt  = Average intersection bicycle score 

    Cflt    = Number of unsignalized conflicts per mile, i.e., the sum of the number    

of driveways per mile. 

 

The disadvantage of the bicycle LOS models created was that they are not able to 

generate an estimate of the entire distribution of LOS rating as a Cumulative Logit Model 

would have.  In addition, the dependent variable, participant perceived bicycle LOS, was 

not collected as a continuous variable, instead participants were restricted to rating their 

perceived LOS in categories ranging from A to F.  Therefore, the conversion of the LOS 

categories into a mean participant rating is necessarily the mathematically correct 

approach to modeling categorical data.   

 



 

25 

The models developed in NCHRP 3-70 for the bicycle mode were compared to the mean 

LOS as per the HCM 2000 bicycle LOS methodology.   Researchers reported that the two 

newly formed models did a better job of estimating traveler perceived bicycle LOS than 

the methodology in HCM 2000.  It was reported that the HCM 2000 bicycle LOS 

methodology predicted 15 percent of the observed mean LOS ratings while the two 

models created by NCHRP 3-70 predicted 27 and 46 percent of the observed mean LOS 

rating respectively. 

 

The pedestrian model development process was similar to the bicycle model development 

in that the model was developed to estimate the mean LOS observed by pedestrians along 

an urban street.  The level of service for the facility was selected between two computed 

LOS as presented in equation 2.2.5. 

 

)_(_ LOSorPedOtherDensityPedestrianofWorseLOSPedestrian     Equation 2.2.5 

 

Where 

            PedLOS  = The letter grade level of service for the urban street combining  

          density and other factors, 

LOSPedDensity  = The letter grade level of service for sidewalks, walkways, and street  

           corners based on density, 

    SPedOtherLO  = The letter grade level of service for the urban street based on factors  

           other than density. 
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The approach taken by the NCHRP 3-70 research team for the pedestrian mode was to 

provide the analyst with two methods by which to estimate pedestrian LOS.  The first, 

which is based on the HCM 2000 methodology, was used to determine the pedestrian 

density for the sidewalk and waiting areas at signalized intersections street corners.  

Pedestrian density can then be used to estimate pedestrian LOS in areas where pedestrian 

traffic is very high.  Alternatively, the analyst can utilize the pedestrian LOS for the 

facility which was developed in NCHRP 3-70 using linear regression and traveler’s 

perceptions of pedestrian LOS.  The NCHRP 3-70 research team developed two linear 

regression models to estimate pedestrian LOS as presented in the following equations: 

 

Pedestrian LOS Model #1 

)(*)606.1int220.0318.0()1(# RCDFPPSegOtherPLOS    Equation 2.2.6 

Pedestrian LOS Model #2 

)(*)30.1int30.045.0()2(# RDCFPPSegOtherPLOS    Equation 2.2.7 

 

Where 

 

OtherPLOS  =Pedestrian non-density (other factors) LOS, 

          PSeg  =Pedestrian segment LOS value, 

             intP =Pedestrian intersection LOS value, 

        RCDF  =Roadway crossing difficulty factor. 
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Since the first model did not produce LOS F, the second model was created to produce a 

full LOS range.  The two models predicted the mean video clip rating 43 percent of the 

time while the HCM 2000 methods predicted the mean video clip rating correctly only 25 

percent of the time.  Thus, again there was an improvement in predicting the mean 

pedestrian LOS, however, again the full robustness of the 1400 individual data points for 

pedestrian LOS ratings was not utilized in the modeling process by the NCHRP 3-70 

team and will be addressed in this dissertation. 

 

NCHRP 3-70 Model Performance 

The fit of the auto, bicycle, and pedestrian models developed in NCHRP 3-70 were 

compared to the existing HCM 2000 models for each mode respectively.  Table 2.6 

presents the results of the correlation analysis of the HCM LOS, observed LOS and auto 

model LOS.  The auto model has a superior correlation to the mean video clip ratings, 

explaining approximately 82 percent of the variation in mean observed LOS ratings.   

 

 

Table 2.6 Correlation Coefficients of Auto LOS Model 

 

Models Compared Pearson Correlation Coefficient 

HCM LOS to Mean Observed LOS 0.499 

Model LOS to Mean Observed LOS 0.825 

 

 

Similarly, Tables 2.7 and 2.8 include the results of the correlation analysis for the 

pedestrian and the bicycle LOS models.  Both models are better able to estimate the 

observed mean LOS for the video clips as compared to the HCM 2000 methodologies.  .  
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The pedestrian model developed in NCHRP 3-70 is able to explain approximately 70 

percent of the variation in mean observed LOS ratings and the NCHRP 3-70 bicycle 

model is able to explain approximately 50 percent of the variation in the mean LOS 

ratings.   

 

Table 2.7 Correlation Coefficients of Pedestrian LOS Model 

 

Models Compared Pearson Correlation Coefficient 

HCM LOS to Mean Observed LOS 0.016 

Model LOS to Mean Observed LOS 0.709 

 

 

Table 2.8 Correlation Coefficients of Bicycle LOS Model 

 

 

Models Compared Pearson Correlation Coefficient 

HCM LOS to Mean Observed LOS 0.059 

Model LOS to Mean Observed LOS 0.468 

 

 

As noted previously, the robustness of the perceived traveler LOS data for the bicycle 

and pedestrian modes is believed to have not been fully utilized in the NCHRP 3-70 

modeling effort.  Efforts were taken in this dissertation research to develop cumulative 

logit models for the pedestrian and bicycle modes to estimate the entire distribution of 

traveler ratings.  The Cumulative Logit Model for the auto mode developed as part of 

NCHRP 3-70 has been utilized in this dissertation research.   
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The NCHRP 3-70 methodology addresses the perceived LOS by auto, pedestrian, bicycle 

and transit modal users separately while attempting to capture the multimodal interaction 

between modes when applicable.  The study provides engineers and planners with four 

models to assess the perceived traveler service provided to fixed route on-street transit 

systems; on-street bicycle facilities; roadside pedestrian facilities; and auto facilities for 

the primary through movement on urban streets, however, no methodology was provided 

that will allow an analyst to perform an optimization design for urban streets (Dowling et 

al., 2009).   

 

A follow-on study developed with the data from NCHRP 3-70 modeled pedestrian LOS 

using a cumulative logistic regression modeling approach was recently completed (Ali et 

al., 2009).  The street characteristics that were strongly correlated with the individual 

LOS rating were used for developing the model included: number of traffic lanes, 

sidewalk width, posted speed and traffic volume.  The results of the correlation analysis 

are presented in Table 2.9. 
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Table 2.9 Results of Correlation Analysis of Independent Variables with LOS 

Ratings 

 

Variable τ Rank Correlation Coefficient Significance p-value 

Sidewalk Width 0.335 0 

Pedestrian Flow Rate 0.201 0 

Outside Lane Width 0.121 0.007 

Shoulder Width -0.277 0 

On Street Parking 0.246 0 

Barrier 0.314 0 

Buffer Width 0.111 0.005 

Same Direction Traffic Volume -0.182 0 

Number of Through Lanes -0.291 0 

Speed Limit -0.161 0 

Traffic Volume/Lane -0.028 0.465 

 

 The model predicted the probability of rating for each of the six LOS levels.  Table 2.10 

presents the results of the Maximum Likelihood Estimates for Ordinal Regression for the 

pedestrian mode as developed by Ali et al. 

 

Table 2.10 Maximum Likelihood Estimate Parameters for Pedestrian Mode 

 

Parameter  Estimate 

Intercept LOS F, α1= -3.497 

Intercept LOS E, α2=  -2.020 

Intercept LOS D, α3 =  -1.108 

Intercept LOS C, α4=  0.014 

Intercept LOS B, α5=  2.283 

Sidewalk Width (>5 ft), β1 =  0.562 

Num of Through Lanes , β2= -0.601 

Directional Volume (H), β3= 1.293 

Directional Volume (L), β4= 0.457 

Speed Limit  (>40) , β5 =  -0.674 
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Figure 2.1 presents the cumulative probability curves for the pedestrian LOS model 

created by Ali et al. where the number of traffic lanes is depicted for one to four lanes 

while the traffic volume varies between 0-500 vph, the sidewalk width is less than 5 ft 

and the posted speed limit varies between 20-40 mph.  On the X axis of Figure 2.1 the 

pedestrian LOS categories are depicted as follows:  A=6 and F=1. 
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Figure 2. 1 Cumulative Probability Curves for Pedestrian LOS Rating (Ali et al., 

2009) 

 

 

The study also provided a validation for the proposed pedestrian cumulative logit model 

which is presented in Figure 2.2.  Similarly with Figure 2.1 the X axis represents 



 

32 

pedestrian LOS categories as A=6 and F=1.  The authors noted the model validation 

demonstrated that the participants’ ratings of service were closely predicted by the model 

(Ali et al., 2009).   

 

 

Figure 2. 2 Pedestrian Model Validation – Observed versus Estimated Pedestrian 

LOS Ratings for Clip 226 (Ali et al., 2009) 

 

 

Other large-scale studies have been conducted to determine traveler perception of service 

on rural freeways in Florida (Washburn et al., 2004).  A study based on a field survey 

based approach collected data related to driver and passenger perception of quality of 

service on rural freeways.  The participants selected the performance measures that were 

the most important to them when traveling on rural freeways.  The top four factors were 

determined to be: the ability to maintain desired speed (Factor 1), ability to travel at 
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speed limit (Factor 2), ability to change lanes and pass easily (Factor 3), and good road 

surface conditions (Factor 4).  An ordered probit model was later developed to determine 

the statistical importance of facility characteristics to drivers’ ratings of service.  The 

model was formulated as presented by equation 2.2.9 and it provides the goodness-of-fit 

measure, corrected ρ
2
. 

)0(

)
2

()ˆ(

1
*

*

2

L

k
L

    Equation 2.2.9 

Where: 

)ˆ(*L log likelihood at model convergence 

)0(*L log-likelihood at zero, 

k = number of coefficients in the model 

The initial log-likelihood, the log-likelihood at convergence and the corrected goodness-

of-fit measure for the four factors are presented in table 2.11(Washburn et al., 2004). 

 

Table 2.11 Results of the Ordered-Probit Model Estimated Results 
 

  

 Factor 1 Factor 2 Factor 3 Factor 4 

Initial log-likelihood -491.94 -472.8 -501.55 -540.94 

Log-likelihood at convergence -282.35 -322.33 -315.77 -350.43 

Corrected goodness-of-fit measure 

(
2

) 

0.420 0.313 0.364 0.348 

 

 

It was concluded that travelers think multi-dimensionally with regards to quality of 

service and not one dimensionally as is typically the case with most HCM LOS methods.  



 

34 

A majority of the study participants considered three or more characteristics as extremely 

important when rating the service quality of their trip (Washburn et al., 2004). 

 

The HCM 2000 LOS concept has also been analyzed in a study performed in Indiana 

(Choocharukul et al., 2003).  The study provided statistical evidence that travelers 

perceived LOS differs from the LOS defined by the Manual.  The researchers recruited a 

pool of 195 study participants from five occupational groups: 84 graduate and 

undergraduate students, 32 transportation professionals, 14 environmental management 

professionals, 35 truckers and 30 clerical staff from state agencies.  Additional, socio-

demographic attributes were also gathered about the participants.  Two groups were 

formed: group one included the students, transportation professionals and the 

environmental professionals; group two included the truckers and the clerical staff.  The 

collected data were from two locations near Chicago and five locations in and around 

Indianapolis and resulted in two sets of 12 video clips.  Each set contained two clips for 

each LOS; one clip from the lower end of the threshold and the second from the upper 

end.  The study was developed in a laboratory setting where a group-administered survey 

procedure was chosen.  This setting allowed the two participating groups to view the 

video clips simultaneously.  The participants were shown 12 video clips and were asked 

to rate their perception of LOS from A to F.  The data collected were used in statistical 

model development.   
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 The ordered probability model was derived by defining a variable, z, for the perception 

of LOS rankings: 

Xz     Equation 2.2.9 

Where X is a vector of variables for perceived LOS, β is a parameter and ε is a random 

disturbance (Choocharukul et al., 2003).  Observed LOS was written as follows: 
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Where LOS A corresponds to 1y  and LOS F corresponds to 6y ; μ are estimable 

parameters that define y .  The ordered probit model was written as: 
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The model was estimated by random effects ordered probability model with traffic 

density as the only independent variable.  The parameter estimation results are presented 

in Table 2.12. 

 

Table 2.12 Parameter Estimation Results for Density Threshold Values (t-statistics 

in parenthesis) 

 

Independent 

Variable 

Model 1 

STU 

Model 2 

TPP 

Model 3 

ENV 

Model 4 

TRK 

Model 5 

CLK 

Model 6 

ALL 

Constant -0.535 

(-3.84) 

-1.156 

(-3.05) 

-1.218 

(-1.87) 

-0.715 

(-1.73) 

-0.504 

(-1.93) 

-0.658 

(-7.09) 

Traffic 

Density 

In pc/mi/ln 

0.107 

(30.46) 

0.107 

(9.12) 

0.122 

(14.13) 

0.103 

(19.60) 

0.080 

(18.39) 

0.099 

(52.48) 

Threshold μ2 1.445 

(11.53) 

1.250 

(6.41) 

1.663 

(3.08) 

1.386 

(5.76) 

1.328 

(8.08) 

1.366 

(21.55) 

Threshold μ3 3.016 

(23.21) 

2.884 

(9.31) 

3.069 

(6.76) 

2.467 

(9.16) 

2.424 

(13.15) 

2.741 

(38.39) 

Threshold μ4 4.704 

(27.26) 

4.389 

(9.48) 

4.505 

(8.08) 

4.077 

(14.25) 

3.573 

(17.03) 

4.222 

(47.36) 

Threshold μ5 8.333 

(26.75) 

6.854 

(6.60) 

7.363 

(8.26) 

8.255 

(18.94) 

6.546 

(17.91) 

7.440 

(47.08) 

Std Dev of 

Rand Eff 

0.573 

(9.88) 

 

0.636 

(4.16) 

 

0.815 

(1.21) 

 

0.540 

(3.84) 

 

0.507 

(4.16) 

 

0.580 

(12.99) 

Num of Obs 1008 384 168 420 360 2340 

Log 

Likelihood at 

zero 

-1728.08 -641.59 -293.71 -712.01 -622.71 -4029.21 

Log 

Likelihood at 

convergence 

-938.88 -377.90 -151.86 -410.92 -406.20 -2343.50 

ρ
2 

0.46 0.41 0.48 0.42 0.35 0.42 

 

 

The acronyms in Table 2.12 are: STU=University Students, TPP=Transportation 

Professionals, ENV=Environmental Management Professionals, TRK=Truckers, 

CLK=Clerical Staff, and ALL=All subgroups. 
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The results show that the density and the threshold estimates are statistically significant, 

as indicated by the t-statistic and the goodness-of-fit is reasonable.  A comparison of the 

HCM 2000 density range and the estimates was performed.  It showed that the perceived 

LOS did not closely follow the HCM 2000 in many areas.  Table 2.13 presents the 

comparison of LOS.   

 

Table 2.13 Comparison of Level of Service Criteria 

 

LOS 

 

Perceived Density Range (pc/mi/ln) 

 

Model 1 

STU 

Model 2 

TPP 

Model 3 

ENV 

Model 4 

TRK 

Model 5 

CLK 

Model 6 

ALL 

HCM 

 

A 

 

0-5 0-11 0-10 0-7 0-6 0-7 0-11 

B 

 

>5-19 >11-23 >10-24 >7-20 >6-23 >7-21 >11-18 

C 

 

>19-34 >23-38 >24-35 >20-31 >23-37 >21-34 >18-26 

D 

 

>34-49 >38-52 >35-47 >31-47 >37-51 >34-49 >26-35 

E 

 

>49-83 >52-75 >47-70 >47-87 >51-89 >49-82 >35-45 

F 

 

>83 >75 >70 >87 >89 >82 >45 

 

 

The conclusion of this study was that the HCM 2000 thresholds do not correspond with 

the perceived thresholds of LOS and that factors other than density influence driver 

perceived LOS.  Among factors that were found to influence driver perception of LOS 

were freeway visibility, average speeds, number of lanes, percent of trucks and standard 

deviation of headway (Choocharukul, 2003).    
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A study, conducted in the greater Washington DC area, used video presentation to assess 

the facility characteristics that influence driver’s perception of quality of service on urban 

streets (Cristei, 2005).  Nineteen videotaped clips were created on urban streets having 

the driver perspective and the speedometer images combined into one.  The deficiency of 

the study was that the video clips created did not cover the entire array of urban street 

category and LOS.  However, the study analyzed the demographic data and concluded 

that there was no statistically significant difference between male and female ratings at 

0.05 confidence level, but there was a statistically significant difference of the ratings of 

three age groups (18-27, 28-55, over 55).  Further the study provided statistical evidence 

that driver ratings of LOS were not well represented by the HCM LOS.  The study 

created and analyzed box plots for each arterial type and provided evidence that driver 

perception of LOS may be biased by local conditions.  One of the conditions referred to 

the landscaped arterials that were consistently rated higher than the HCM LOS and the 

second referred to the fact that the greater Washington DC area has congested traffic 

conditions on a daily basis therefore lowering driver’s expectations.  

 

The study provided a launching board for future research by suggesting data collection to 

obtain a set of video clips that cover the entire array of arterial category and LOS and 

further analysis by creating a categorical model to predict the LOS ratings distribution. 

The importance of the study also consists of the suggestion that understanding the 

characteristics of the participants may facilitate a better understanding of their ratings 

(Cristei, 2005).  
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The roadway lane designation among variable modes was analyzed in a study at 

University of Maryland (Elshafei, 2006)). The study was based on assigning three 

different lane scenario to a fixed given right-of-way width in an urban transportation 

network setting. The measures of performance used in the study were: 

 travel speed, 

  travel time,  

 delay time and users’ cost for each mode, 

  operating cost,  

 bicycle compatibility index (BCI) comparisons,  

 mobility,  

 accessibility and  

 safety and environmental impacts.  

 

The average travel speed, as well as travel times and delays, for each mode in each of the 

three scenarios were determined using the traffic simulation software VISSIM (Verkehr 

in Städten – Simulation, or “traffic in towns – simulation” ) (Elshafei, 2006).  VISSIM is 

a microscopic, behavior-based multi-purpose traffic simulation program. The software is 

capable of integrating pedestrian and vehicle simulations.  

 

The cost of travel and delays, operating costs, effectiveness for mobility accessibility, 

safety and environmental impacts were calculated using the VISSIM output data.  The 

multi-objective decision-making framework consisted of a collection of charts each 
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presenting the result of each objective in each of the three different scenarios.  Each 

charts’ top and bottom values represented unlabeled constraints for the model. The 

study’s main question regarding the impact on performance of the change in lane 

distribution and modes was to be answered – if necessary - by performing a sensitivity 

analysis.  The three selected scenarios for the 26-foot width were: 

 Scenario # 1 with two 13-foot mixed traffic lanes. 

 Scenario # 2 one 12-foot mixed traffic lane and one 14-foot exclusive bus lane. 

 Scenario # 3 two 10.5-foot mixed traffic lanes and one 5-foot bicycle lane. 

The case study conducted showed that in scenario #1 the performance levels for all 

objectives were higher than the other two scenarios; however it was acknowledged that 

bicycle safety is the major drawback of this scenario. Scenario #3 had the second best set 

of performance levels. The drawback of this model was the high number of accidents 

predicted. 

 

The study went on to analyze the impact of lane width modification and travel time and it 

concluded that lane width increase results in travel time decrease (Elshafei, 2006).  The 

lack of statistical analysis is a weakness of the study; however the findings are helpful for 

the scope of this dissertation by showing that street characteristics influence user’s 

performance levels, and not only free flow speed, as used in the HCM methodology.  

 

Some of the previously summarized studies provide statistical evidence that additional 

facility characteristics, as well as driver demographics, are important when attempting to 
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determine user’s level of satisfaction with transportation facilities.  The HCM 2000 

methodology for calculating the LOS has been challenged for it does not include facility 

characteristics in equations computing the LOS and does not appear to represent 

travelers’ perceptions of service well.   

 

2.3      Modeling Techniques for LOS data 

 

The LOS data gathered to date consists of discrete ordered data reflecting traveler’s 

perception of the quality of service on highway facilities for auto, bicycle, transit or 

pedestrian modes. Several modeling techniques, including linear and non-linear 

regression and Cumulative Logit modeling have been used to estimate the LOS of 

travelers.  These modeling techniques are described in several examples here. 

 

2.3.1 Linear Regression 

 

A study conducted in Florida developed a LOS model to represent pedestrians’ 

satisfaction and perception of LOS on sidewalks along urban arterials (Petritsch et al., 

2006).  The focus of the study was on pedestrians’ response to walking in real-life 

conditions which was part of a larger study including video laboratory surveys. 

Approximately 100 people, both volunteers and paid participated in what was referred to 

as the “Walk for Science 2004” participated in the study.  The participants were a mix of 

sex, age, geographic origin, and many were also active walkers.  Half of the participants 

were assigned to a segment study and the other half to an intersection study.  Each 
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participant was provided with a score card and received two briefings, a video briefing 

and a course briefing, before starting their walk individually.  The data collected were 

analyzed to determine how well distributed were the ratings. Three major hypotheses 

were tested: 

 

 Participants’ scores would be differentiated by demographic characteristics, 

 The pedestrian LOS model, as provided in HCM 2000, for street segments does 

not adequately predict users’ satisfaction, 

 Paid participants will not score differently than volunteer participants 

 

The first hypothesis was tested using a student t-test and determined that demographic 

characteristics did not influence participants’ ratings.  The second hypothesis was tested, 

for parallel segments and for perpendicular segments, also using a student t-test. The 

pedestrian LOS model, as provided in HCM 2000, was used to compute the LOS for the 

street segments selected and compared with the LOS ratings of the participants. The 

results of the test demonstrated that there was a large statistically significant difference 

between the calculated LOS and the rated LOS and that there was a need for an improved 

pedestrian LOS model. 

 

The third hypothesis was also tested using a student t-test and the findings provided 

evidence that there was no difference in the ratings of volunteer and paid participants. 
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Further it was concluded that additional studies could be successfully conducted by using 

volunteer and/or paid participants.   

 

The study went on to build a model to determine which characteristics influence 

pedestrians’ perception of QOS. Three steps were followed. The first step was to identify 

the relevant variables by using a Pearson correlation analysis. The second step was to test 

for the best configuration for each variable and the third was to establish the coefficients 

for the variables to be introduced in the best-fit regression model.  The independent 

variables selected in the preliminary list were: 

 Pedestrian proximity to travel lanes, 

 Pedestrian perceived conflicts at intersections, 

 Pedestrian perceived threat exposure when crossing roadways or driveways, 

 Pedestrian delay at intersections. 

 

Two of the listed variables were highly correlated with the dependent variable and were 

included in the model development: the separation between the motor vehicles and the 

pedestrians and the total number of lanes crossed.  The model format for pedestrian LOS 

for arterials with sidewalks was as shown by equation 2.3.1.1.: 

 

CvolamiwidthXingaLOSPedestrian )15()/_(_ 21  Equation 2.3.1.1 
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Where 

21 aanda  = coefficients for Xing width/mi and vol 15 respectively; 

miXingWidth/  = total width of crossing at conflict locations [sum/mi of the crossing 

widths in ft of all driveways and intersection, signalized and 

unsignalized; 

15vol  = average 15-min volume on adjacent roadway; and 

C  = a constant. 

 

      

The results of the stepwise analysis are presented in Table 2.14, including the terms, 

coefficients and t-statistic for the model.  The model coefficient determination shows a 

good fit of the model with the collected data.  

 

 

Table 2.14 Model Coefficients and Statistics Developed by Using Field 

“Walk for Science Data” 

 

Model Terms Coefficient t-Statistic 

Crossing width/mi 0.001 2.314 

Vol 15 (average 15-min volume on 

adjacent roadway) 

0.008 2.923 

Constant 1.43 3.373 

Model coefficient of determination (R
2
) 0.70  

 

 

The study emphasized the applicability of the model and its limitations. The first 

limitation of the developed model was that it can only be applied to roadways with 
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sidewalks.  A second limitation was that the participants walked along roadways with a 

maximum of four lanes and all crossed intersections were not wider than four lanes.  And 

a third limitation was that none of the participants were physically or visually impaired.  

The study presents a good applicability of the stepwise regression analysis to the context 

of LOS analysis studies, however, it should be noted that only the mean ratings of service 

for segments and intersections were used to determine the pedestrian LOS model.  This 

modeling approach may not fully utilize the robustness of the individual participate 

ratings (Petritsch et al., 2006). 

 

Another study conducted in Florida focused on LOS for pedestrians at signalized 

intersections (Petritsch et al., 2007b).  The participants dedicated to the intersection 

study, 50 people of 100 selected, were a mix of gender, age and geographic origin.  The 

walking course was approximately 5 km in length and included 23 intersection crossings 

of which 21 had pedestrian signals.  The data collection was also accomplished by 

distributing score cards with numbers for each intersection and a map with the 

intersection numbers noted.  The participants were given a video simulation briefing and 

a course briefing and were instructed to obey the traffic signals when crossing the 

intersections.  

The hypotheses tested prior to model development were: 

 Participants’ scores will be differentiated by demographic characteristics, 
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 Pedestrians crossing with traffic (in the same direction as traffic in the adjacent 

lanes parallel to the crosswalk) would score the intersection differently than 

pedestrians crossing against traffic. 

 The HCM 2000 pedestrian LOS model for roadway segments does not adequately 

predict how well intersections serve pedestrians. 

 Paid participants will not score differently than volunteer participants. 

 

The first hypothesis was tested using a student t-test and it was found that at a 

significance level of 0.05, the differences between participants’ scores by demographic 

characteristics were not statistically significantly different. 

 

The second hypothesis was also tested using a student t-test. Four intersections were 

selected and it was found that the pedestrians crossing with traffic did not score the 

intersection LOS differently than pedestrians who crossed against traffic.  The third 

hypothesis which stated that the HCM 2000 model does not predict how well 

intersections serve pedestrians was determined to be correct and it was concluded that a 

model has to be developed specifically for the pedestrian LOS.  The fourth hypothesis 

was also accepted indicating that volunteer participants can be selected for this study. 

A pedestrian LOS model was developed to mathematically represent the level of 

satisfaction of pedestrians that engage in crossing an intersection. Three steps were 

followed. The first step was to identify the relevant variables by using a Pearson 

correlation analysis.  The second step was to test for the best configuration for each 
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variable and the third was to establish the coefficients for the variables to be introduced 

in the best-fit regression model. 

The factors that influence pedestrians perception of level of exposure selected for the 

model were as follows: 

 Right-turn-on-red volumes for the street being crossed; 

 Permissive left turns approaching from the street parallel to the crosswalk; 

 The motor vehicle volume on the street being crossed; 

 The speed of vehicles on the street being crossed; 

 The number of lanes being crossed; 

 Pedestrians’ delay. 

 

The model for pedestrian LOS for signalized intersections was formulated as presented 

by equation 2.3.1.2: 

CPedDelayadLanesClosea

eedPerpTrafSplPerpTrafVoaPermLeftsRTORaLOSPedestrian

)ln()(

)*()(

4

514.0

3

21

 Equation 2.3.1.2 

Where 

 

      PermLeftsRTOR  = sum of number for right-turn-on-red vehicles and the  

       number of motorists making a permitted left turn in a  

       15-min period, 

eedPerpTrafSplPerpTrafVo *  = product of the traffic volume in the outside through lane 

of the street being crossed and the midblock 85
th
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percentile speed of the traffic on the street being crossed 

in a 15-min period, 

     dLaneCrosse  = the number of lanes being crossed by the pedestrian, 

          PedDelay  = average number of seconds that the pedestrian is  

          delayed before being able to cross the intersection, 

             C  = a constant. 

The results of the stepwise correlation conducted are shown in Table 2.15. 

 

Table 2.15 Model Coefficients and Statistics 

 

Model Terms Coefficient t-Statistic 

RTOR+PermLefts 5.689E-03 8.474 

PerpTrafVol*PerpTrafSpeed 1.274E-04 27.955 

LanesCrossed
0.514

 0.6810 17.579 

ln(PedDelay) 4.011E-02 7.527 

Constant 0.5997 6.756 

Model coefficient of determination (R
2
) 0.770  

 

 

The researchers concluded that the model developed with their study was highly reliable, 

due to the relatively high coefficient of determination, and the fact that it had been 

calibrated and applied in many US metropolitan areas (Petritsch et al., 2007b).  This 

study provided insight into pedestrian perception of level of service at signalized 

intersections, and the statistical analysis provided evidence that the HCM 2000 pedestrian 

LOS model does not predict pedestrian perception of LOS at intersections well.  It is not 
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the focus of this dissertation to analyze pedestrian perception of LOS at intersections; 

however, the findings of this study can be useful for future research.    

 

A different study, also developed in Florida, focused on bicycle LOS for arterials 

(Petritsch et al., 2007a). The purpose of the study was to build on an existing model that 

estimated bicycle LOS for segments and intersections to create a model that would be 

applicable to entire arterial sections.  The data for this study were collected during an 

event called “Ride for Science 2005” sponsored by the Florida Department of 

Transportation which took place in Tampa Florida. The participants were volunteers of 

various levels of bicycling experience, age, gender and the number of years that they 

lived in the Metropolitan Tampa Area. 

 

The bicycling course was selected to include roadways with two, four, and six lanes 

conditions with and without shoulders and bike lanes with various speed limits and 

vehicle mix. The course also included signalized and unsignalized intersections and it 

was approximately 20 miles long.  The participants received score cards at the beginning 

of the ride and were asked to rate their experience on an A to F scale.  700 data points 

were collected as part of the study which were converted to numerical scores with LOS 

of A=1 and LOS of F=6.  The second part of the study consisted of a video laboratory 

survey.  The participants were asked to watch a video simulation; some watched the 

video then rode the course while others first rode the course then watched the video.  The 

ratings between the two groups did not differ statistically significantly according to the 
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authors.  The participants were then asked to give three reasons for their ratings.  The 

answers that were most common pertained to the presence or lack of bicycle lanes, traffic 

volume, pavement condition and available space (Petritsch et al., 2007a). 

 

The study tested an existing linear regression for bicycle segment LOS model with 

equation 2.3.1.3: 

 

CWaPCaHVSPaLvolamentLOSBicycleSeg et

2

4

2
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2

2151 )()/1()38.101(/ln(

 Equation 2.3.1.3 

Where 

 15vol  = volume of directional traffic in a 15-min time period, 

       L  = total number of through lanes, 

    tSP  = effective speed limit [where SPt=1.12 ln(SPp-20)+0.81 and SPp is the    

  posted speed limit in mph, 

    HV  = percentage of heavy vehicles, 

   5PC  = FHWA’s five-point surface condition rating, 

    eW  = average effective width of outside through lane, 

      C  = a constant, and 

       a1 to a5 = coefficients (a1=0.507;a2=0.199; a3=7.066; a4=-0.005; and C=0.760). 
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The explanatory power of this model was R
2
=0.53 which was considered strong however 

the researchers developed a new model through the described effort to improve the 

existing one.  A correlation analysis was conducted to determine the relationship between 

the independent variables and the dependent variable.  Three variables were tested: the 

number of driveways per mile, signalized intersections per mile and unsignalized 

intersections per mile.  The number of unsignalized intersections per mile was selected as 

a variable that was highly correlated with the traveler perceived LOS data and was 

introduced in the new regression model as shown in equation 2.3.1.4 as follows: 

CnumunsigpmaavsegLOSailityLOSBicycleFac )()( 21  Equation 2.3.1.4 

Where 

 avsegLOS = distance-weighted average segment bicycle LOS along the facility,    

        numunsigpm = the number of unsignalized intersection per mile along the facility, 

    C  = a constant. 

The results of the model are presented in Table 2.3 and are considered an improvement 

over the initial model by the authors (Petritsch et al, 2007).   

 

Table 2.16 Model Coefficients and Statistics Developed by Using Field 

“Ride for Science Data” 

 

Model Terms Coefficient t-Statistic 

AvSeg LOS 0.797 6.648 

NumUnsigpm 0.131 4.061 

Constant 1.370 4.074 

Model correlation (R
2
) 0.717  
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It was not clear how the variables included in the model were selected in the preliminary 

stage of the study.  The modeling approach was not fully documented in the papers by 

not including the provenience of all coefficients and the reasoning behind variable 

selection and model format.  The use of natural logarithm and the combination of 

variables using summation or multiplication was not fully explained or justified.  These 

models predicted only the mean LOS rating for a mode of transportation that in turn had 

to be compared to a mean of the participants’ LOS ratings.  The researchers utilized only 

the mean rating of bicycle LOS by all participants and as a result it was difficult to 

estimate the full range of LOS ratings from A to F.  In addition, the variables and weights 

for variables were transformed in order to obtain the six LOS levels.  This approach to 

modeling categorical data is questionable.  

 

2.3.2 Cumulative Logit 

 

The Cumulative Logit Modeling technique has been used to analyze a data set for 

automobile driver’s perception of LOS in an effort to determine which facility 

characteristics were important in determining driver’s perception of LOS (Flannery et al, 

2008).  This technique is one type of binomial regression based on a generalized linear 

model.  The data collection approach was video laboratory and it included video clips 

depicting several different segments of urban streets under various operating conditions. 

Given the traditional use of LOS methodologies, which typically do not include weather 

or lighting conditions, all videos were taped during daylight hours and dry weather 
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conditions.  Participants in the study were asked to watch the video clips and rate each of 

them on a scale from LOS A to LOS F with A being the best and F the worst.  Then these 

ratings were converted into numerical values where A=6 and F=1.  The factors that were 

highly correlated with driver’s perception of service included: 

 Presence of median (yes or no) 

 Landscaping (yes or no) 

 Progression (no progression is stopped and more than 50 percent of signals), and 

 Posted Speed (surrogate for arterial type) 

 

These factors were used in selecting the facilities that were video taped and used in the 

full nation-wide study.  The modeling process was preceded by a heuristic selection of 

the explanatory variables. Five variables were selected as follows: 

 Stops per mile, 

 Median Type, 

 Width of parking lane, 

 Presence of Exclusive Left Turn Lanes, 

 Presence of Trees. 

 

A stepwise cumulative logistic model was developed and resulted in a set of three 

variables used for the final model: stops per mile, presence of exclusive left turn lanes 

and presence of trees.  The Maximum Likelihood Estimates of parameters for the model 

have been presented in Table 2.17 
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Table 2.17 Maximum Likelihood Estimate of Parameters for Cumulative Regression 

Model Applied to Automobile LOS 

 

 

Parameter DF Estimate 
Standard 

Error 

Wald Chi-

Square 
Pr>ChiSq 

Intercept α1 1 -2.919 0.227 164.405 <.0001 

Intercept α2 1 -1.827 0.207 77.519 <.0001 

Intercept α3 1 -0.853 0.201 18.025 <.0001 

Intercept α4 1 0.283 0.201 1.995 0.1578 

Intercept α5 1 2.094 0.209 100.300 <.0001 

Stops per mile β1 1 0.203 0.018 122.336 <.0001 

Pres of Ex LT Ln β2 1 -0.522 0.111 22.063 <.0001 

Tree Presence β3 1 -0.338 0.061 30.476 <.0001 

 

 

 The study concluded that the cumulative logit models matched the ratings at a much 

higher rate (71 percent) than the HCM methodology did (17 percent) and that additional 

factors: stops per mile, presence of exclusive left turn lane and presence of trees, 

currently not considered by the HCM methodology contribute to the explanatory power 

of the methodology (Flannery et al., 2008).  

 

The studies summarized here that use the regression analysis as the modeling tool are 

actually creating models of low to moderate strength.  These models predicted only the 

mean LOS rating for a mode of transportation that in turn had to be compared to a mean 

of the participants’ LOS ratings, meaning that the studies did not use the full range of 

data but the mean rating.  Due to this process of compressing the data, it was difficult to 

estimate the full range of LOS ratings from A to F, therefore the linear regression models 

were considered to be less suitable for analyzing the LOS data.   
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The studies that used Cumulative Logit Modeling provided a base for the modeling 

approach utilized for this dissertation.  Cumulative Logit Modeling is ideal for modeling 

categorical data with hieratical categories.  This modeling approach also uses the entire 

range of the data collected and creates models that provide the distribution of the traveler 

perceived LOS ratings.  Cumulative Logit Modeling has been utilized in this dissertation 

to model bicycle and pedestrian LOS.   

 

2.4      Complete Streets  

 

The concept of Complete Streets has gained interest in recent years. Policy makers, 

planners, and engineers are investing energy into promoting the idea of urban streets that 

accommodate bicycles, pedestrians and mass transit along with automobiles.  Advocates 

of the concept envision that people of all ages will be provided with more transportation 

options that will significantly improve their lifestyle.  Despite the appeal of Complete 

Streets to many, critics have made their opinions known. Their main concern is that there 

will be no funds to be allocated to the new concept and the projects that would spring 

from it.  Other critics fear that the automobile traffic will not decrease; instead it will be 

redistributed to other streets defeating the main purpose of the concept (NCSC, 2009).  

   

The Complete Street Act of 2009, S.584 has been introduced to Congress and it may 

become law.  The bill defines Complete Streets as roadways that accommodate all 

travelers safely and efficiently.  The bill stipulates that the concept of Complete Streets 

must be implemented starting with the planning phase and be sustained through the 
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development phase.  The safety and convenience of all users is the main focus of the 

concept (Harkin, 2009).  Previous legislation has suggested the need for multimodal 

planning and design which support the current Complete Streets legislation.                       

 

Across the US fourteen states, six counties, ten regional governments and fifty two cities 

have implemented Complete Street policies as related by the National Complete Street 

Coalition (NCSC, 2009).  This fact points to the desire by many agencies to improve 

multimodal options for travelers on urban streets. 

 

The fact that policy makers in the US are investing their efforts into proposing legislation 

dedicated to the design and deployment of Complete Streets is encouraging.  How to 

design and operate these Complete Streets has yet to be determined and it is the focus of 

this dissertation research to provide the tools needed by engineers and planners to assess 

the effect of their designs on traveler perceived LOS on urban Complete Streets.    

 

2.5 Optimization Techniques 

 

The proposed approach for this dissertation research is to utilize a multi-objective 

optimization technique to determine the division of urban street right of way to optimize 

and normalize the perceived LOS by pedestrians, bicyclists, and through movement auto 

drivers at the same time.  To understand better the appropriateness and the requirements 

of the proposed multi-objective optimization model and the ordered logistic model 
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development process, a review of optimization techniques and multi-objective 

optimization methods is included here.   

 

2.5.1 Introduction to Optimization 

 

Mathematical optimization has its roots in calculus but took a major leap forward with 

the advent of Operations Research beginning in the 1940s (Agresti, 2007).  During World 

War II, groups of scientists and mathematicians in Great Britain and the United States 

were assigned to support field commanders in solving an array of complex strategic and 

operations problems, thus deriving the term “operational research” or “operations 

research”. Following World War II, the techniques of operations research were applied 

throughout the public and private sectors to address planning, design, and management 

problems.  Operations research became a discipline in academic curricula and 

optimization is considered to be a chapter of this discipline.  Optimization techniques 

now are able to address linear and nonlinear problems including discrete and continuous 

variables.  Optimization problems have a specific structure where an objective function is 

maximized (e.g. profit, revenue) or minimized (e.g. environmental harm, mortality) 

subject to a set of constraints that define the set of feasible solutions.  The optimal 

solution is given by the best value (maxima or minima) of the objective function that also 

satisfies the constraint set (Agresti, 2007). 



 

58 

Successful, large-scale commercial products have been developed and used to solve 

single and multi-objective optimization problems. These commercial products include 

CPLEX , SOLVER and LINGO.  

 

2.5.2 Multi-objective Optimization 

 

Most of the real-world  decision-making problems are multi-objective where the 

objectives are conflicting.  Solving a multi-objective optimization problem brings three 

enhancements to the single-objective problem solving approach.  First, the planners and 

decision-makers have more appropriate implications in the optimization process.  Second, 

more alternatives are indentified during the optimization process.  Third, and a more 

realistic image of the problem is perceived by the analysts (Cohon, 1978).   

 

A multi-objective optimization problem has two or more objective functions which are 

expressed differently than in single-objective problems.  The general form of a multi-

objective optimization function with n decision variables, m constraints and p objectives 

is: 

Maximize: 

 )],...,,(),...,....,,(),,...,,([),...,,( 2121221121 npnnn xxxZxxxZxxxZxxxZ  

Equation 2.5.2.1 

Subject to: 

  0),...,,( 21 ni xxxg ,  mi ,...,2,1     Equation 2.5.2.2 
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 0jx , nj ,...,2,1      Equation 2.5.2.3 

Where ),...,,( 21 nxxxZ  is the multi-objective objective function and Z1(  ), Z2(  ),…,Zp(  ) 

are the p individual objective functions. 

To solve multi-objective optimization problems several techniques can be applied that 

can be grouped as follows: 

 Generating Techniques which include the Weighting Method, the Constraint 

Method, the Derivation of a functional relationship for the noninferior set method 

and the Adaptive Search Method. 

 Prior Articulation of Preferences Techniques which include:  Goal Programming, 

Assessing Utility Functions, Estimation of optimal Weights and Surrogate Trade 

off Method. 

 Progressive Articulation of Preferences Techniques which include the Step 

Method, the Iterative Weighting Method and the Sequential  Multi-objective 

Problem Solving Method (Cohon et al., 1975). 

The Generating Techniques will not be discussed further in this dissertation.  

The Prior Articulation of Preferences Techniques are based on the selection of a complete 

ordering of alternatives to eliminate most of the noninferior solutions, therefore reducing 

the computational burden, prior to computing the solution to the multi-objective problem. 

The noninferiority concept can be defined as finding the noninferior solution when no 

other feasible solution can be found that can produce increase to one objective without 

causing decrease in any of the other objectives. 
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Progressive Articulation Preferences Technique have the following general approach:  

first find a noninferior solution then present he solution to decision makers and modify it 

according to their comments.  Further, the same process is repeated until satisfaction is 

achieved or a termination rule is applied.  This algorithm is applies to all techniques listed 

for this method (Cohon et al., 1975). 

This dissertations scope is to create one objective for each of the three modes considered:  

auto, pedestrian and bicycles.  The objective functions are conflicting and are based on 

the perceived LOS by each mode’s users.  In order to find an optimum solution the three 

objectives have to be balanced where the perceived level of satisfaction for each mode 

can not fall below a minimum established value and it will be further explained in 

Chapter 4. 

 

2.5.3 Goal Programming 

 

Goal Programming (GP) is a well known multi-objective method proposed by Charnes 

and Cooper that was applied primarily to private sector problems during 1970’s (Cohon, 

1978).  The distinguishing characteristic of GP is the specification of goals by decision 

makers.  An optimal solution will produce the target values for all objectives 

simultaneously.  Pre-emptive programming is used where there exists a priority in goal 

achievement amongst the goals.  If there needs to be a direct comparison of the 

objectives, non pre-emptive programming should be used, where unwanted deviations are 
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multiplied by weights which reflect their relative importance (Cohon, 1978).  The three 

primary means of developing the objective function under Goal Programming are: 

• Preemptive (lexicographic) – where the goals are ordered into a priority level, with 

each level being substantially higher than the next. 

• Non-preemptive (weighted) – where the goals are given a relative weight. Goal 

achievement is normalized to achieve direct comparison. 

• Minmax (balanced) – The achievement function seeks to minimize the 

maximum unwanted deviation, or, alternatively, to maximize the minimum 

progress towards all objectives (Cohon, 1978).   

 

2.5.4 Balancing Multiple Objectives 

 

In a study conducted by Liner in 2009, he addressed conflicting goals of economical, 

environmental and social issues. These multiple non-commensurate objectives were 

considered equally important for the optimization of the water supply planning process.  

The study focused on a balanced achievement function and preemptive methods.   

 

The goal programming process for the water supply plan was structured to accomplish a 

definition of requirements followed by an evaluation of alternatives and then by the 

development and execution of the model.   

Under the definition of requirements the demand baseline was established first by 

introducing conservation programs, followed by baselining the utility financials and the 
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water supply capacity.  This step was followed by evaluating the alternatives where the 

evaluation goals for performance were defined to include Performance Measure 

Definitions, Magnitude and Direction of Goodness and Relative Weighting of Measure 

within Goal.  The Goals for the Evaluation Menu were established by the specific needs 

facing the utility and included:     

o Economic Goal Measures to include cost of water supply alternative, net 

income, operating ratio and average water rate; 

o Environmental Goal Measures to include percentage of water from 

renewable sources, wastewater reuse percentage, total waste discharge and 

energy usage; 

o Social Goal Measures to include average water bill/median household 

income, hours of service lost due to water main breaks, minimum demand 

utility, expected duration to meet minimum demand on backup power 

after power loss and hours of service lost due to sewer collapses.  

The potential alternatives were defined in terms of capacity, cost and contribution to 

performance. 

Frame Decision Variables were established to determine the need for an alternative to 

be introduced. The Constraints were established in relationship with uniqueness and 

capacity. 

Following the Goal Definition the Baseline Balance, and Relax Goal Achievement 

were the next steps and were accomplished by maximizing each goal individually and 

balancing the goal achievement as presented in equations 2.4.2.1 to 24.2.4. 
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      Maximize zZ Balance  

      Subject to: 

Economicsj

n

j

jEconomics Gxcz /
1

     Equation 2.4.2.1 

Socialj

n

j

jSocial Gxcz /
1

    Equation 2.4.2.2 

talEnvironmenj

n

j

ntaljEnvironme Gxcz /
1

  Equation 2.4.2.3 

ij

n

j

ij bxa
1

, for i=1,…,m   Equation 2.4.2.4 

Where: 

z = deviation variable for the goal achievement, 

Gk = maximum goal achievement threshold for k  {Economic, 

Environmental and Social}, 

aij = technological coefficients representing unit usage by xj, 

bi =right hand side coefficient, 

m = number of constraints such as supply, demand and budget. 

 

Capacity constraints were defined for each of the goals and state-of-the art software was 

used to maximize the minimum goal achievement, ZBalance, for all three goals. 

The hypothesis for this study, that an integrated water resource plan can accomplish 

balance between three components, was demonstrated using GP.  It was demonstrated 

that a balance can be achieved for the three objective goals (Liner, 2009).  
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The objectives established for this study were conflicting, non-commensurate, and each 

had to be considered by decision makers to achieve the most politically and technically 

feasible set of solutions.  To accommodate all of the objectives, the decision was made to 

evaluate how measures with a social aspect can be incorporated in a mathematical model. 

This has been accomplished by identifying consistent and useful social indicators that can 

be incorporated into decision analysis methodology.  Each goal was first defined with 

unweighted components.  The problem was then defined by a composite goal where all 

components were given equal importance for the final goal.  The overall goals have been 

balanced; however, the components inside the goal were weighted to allow for the more 

important components to outweigh the less important components.  

 

Another study developed in Chicago in 1979 used a global optimization model to develop 

a comprehensive land use plan (Bammi & Bammi, 1979).  This study optimized the 

allocation of land throughout the county required for different uses (e.g. residential, 

commercial, open space) in response to a forecasted significant increase in county 

population over the next twenty years.  A rural county was undergoing urbanization and 

needed a land use plan that would accommodate new residents and businesses as well as 

established farms in a coherent and efficient way.  The goal was to avoid haphazard or 

unplanned growth by providing an overall land use plan that would focus new 

development in economically, socially, and environmentally reasonable ways.   

The objective functions included in the optimization process were:  

 Conflict - minimized the negative impacts of adjacent land uses, 
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 Transportation - minimized the distance traveled in all new trips, 

 Tax Impact - minimized the overall tax cost index,  

 Environmental Impact – minimized the cost to the environment, 

 Community Facilities – minimized capital costs for providing services to the 

residents. 

 

The objectives were conflicting, non-commensurate, and each had support from decision 

makers.  To accommodate all of the objectives, the decision was made to find a land use 

plan that achieved balance in achievement of all objectives.   Each objective function was 

first optimized by itself to find its best possible value without concern for the values of 

any other objective.  Because all of the objectives were to be minimized, these objective 

values represent not only best values but also lower bounds for each objective.  Any land 

use plan that accommodates one objective will necessarily result in a worse value for 

some other objective, higher than that objective’s lower bound.  Forming ratios of each 

objective’s value to its lower bound (or best possible value) normalizes all of the 

objectives and ratios are commensurate (they are all unitless).  Minimizing the maximum 

of these ratios results in a land use plan with all objectives being achieved at 

approximately the same proportion to their best values.  Thus, balance is achieved 

between all of the objectives (Bammi & Bammi, 1979). 

 

Balancing competing objectives or performance measures by first normalizing the 

different measures to a single scale, and then minimizing the maximum of their 
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normalized values has been used in real-time reservoir operations (Houck, 1982; Nzewi 

& Houck, 1995).  The goal in these cases was to find an operating policy that maximized 

total net benefits from a multi-purpose reservoir system.  The competing uses of the 

reservoir for flood control, water supply, and recreation made the identification of a 

usable real-time operating policy difficult.  The derivation of the real-time operating 

policy involved these steps: 

1. Find the optimal operations for an extended period (e.g. 365 days) using historical 

streamflow data and economic benefit and loss functions for all uses of the 

reservoir-river system. 

2. From the optimized operations for the extended historical period, estimate the 

cumulative distribution functions of storages, releases, and any other physical 

measures desired. 

3. The real-time operating policy is determined by solving an optimization model at 

the beginning of any day.  The objective of the optimization model is to minimize 

the maximum CDF value for storages, releases, or other physical measures used 

in step 2, that are forecasted to occur during the next one or more days included in 

the optimization model.   

Remarkably, tests demonstrated that this balancing of the physical attributes of the 

operations within a real-time operations policy resulted in better long term performance 

of the reservoir-river system than other real-time operating policies. 
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The scope of this dissertation matches the problems confronted by Liner (2009), Bammi 

and Bammi (1979), and is similar to those discussed by Houck (1982), and Nzewi and 

Houck (1995).  It encompasses multiple, noncommensurate, conflicting objectives that 

are difficult to accommodate in a different manner than the one used in these studies.  

The Complete Streets mandate is to balance the objectives at hand.  Hence, attempting to 

make the ratios of actual achievement to best possible values equal for all objectives is a 

reasonable approach.    

 

 

2.6 Conclusions 

 

 

The literature review provided background information regarding the Highway Capacity 

Manual, Level of Service and Quality of Service studies, Complete Streets and 

Optimization Modeling Techniques.  This information has been utilized in this 

dissertation study in the following chapters. 
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CHAPTER 3: METHODOLOGY 

 

 

 The purpose of this dissertation is to create a method that will allow practitioners 

to design a new facility or retrofit the existing design by optimizing the geometrical 

characteristics by balancing the level of service for several modes utilizing a Multi-

objective Optimization Model.  A brief description of the data collection efforts 

undertaken in NCHRP 3-70 study is provided in Chapter 2 as these data were utilized n 

this study.   Appendix 1 is provided for additional background information. 

 

The approach taken to develop the multi-objective optimization model is described in 

Figure 3.7 at the end of this chapter.  As shown in Figure 3.7, the steps taken in the 

development of the multi-objective optimization model were: 

 Develop Cumulative Logit Model for the pedestrian mode 

 Develop Cumulative Logit Model for the bicycle mode 

 Develop Multi-objective Optimization Model for urban streets 

The following sections describe the efforts undertaken to develop the Cumulative Logit 

LOS Models for the pedestrian and bicycle modes and the development of the multi-

objective optimization model for urban streets. 
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3.1     Use of NCHRP 3-70 LOS Models and Data 

 

The NCHRP 3-70 datasets had individual traveler ratings of LOS for the auto, pedestrian 

and bicycle modes that were used in this dissertation.  As noted is Chapter 2, the auto 

cumulative logit traveler perceived LOS model developed in NCHRP 3-70 was utilized in 

this dissertation.  The Cumulative Logit Model developed with NCHRP 3-70 was found 

to be superior to the existing HCM 2000 models (Flannery et al., 2008).  As was noted in 

Chapter 2, the linear regression pedestrian and bicycle LOS models developed in NCHRP 

3-70 did not capture the ordered categorical nature of the ratings of LOS.  This 

dissertation research developed cumulative logit models for the pedestrian and bicycle 

modes to estimate the entire distribution of traveler ratings instead of using linear 

regression techniques as was the case in NCHRP 3-70 for the pedestrian and bicycle 

modes.   The next section of this chapter describes the efforts to select the variables for 

pedestrian and bicycle LOS models. 

 

3.2      Data Exploration and Variable Selection for Pedestrian and Bicycle Modes 

 

Pedestrian Mode 

A new model for the pedestrian mode was developed by using the NCHRP 3-70 data, this 

dataset consists of 1410 useable traveler perceived LOS data points.  Using a random 

number generator, the data were separated into two groups:  two-thirds of the data were 

reserved for modeling, 931 data points, and one-third of the data were reserved for 

validation, 471 data points.  Box plots were developed to understand the thresholds of the 
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data which could be categorized such as Sidewalk Width and Through Lanes as shown in 

Figures 3.1 and 3.2.  Figure 3.1 shows an overlap in the data for the two sidewalk 

categories; however there is a difference of one LOS category between the mean ratings 

of the two sidewalk categories therefore the two selected categories were used in the 

Cumulative Logit Model.  In Figure 3.2 the perceived LOS by pedestrians overlaps for 

facilities with two and three lanes; however, a portion of the data for the three lane 

category was below the two lane category.  A difference was also observed for the 

pedestrian ratings for facilities with one lane therefore three categories were used for the 

variable Through Lanes.  

 

 

Figure 3.1 Box Plot of Categorized Sidewalk Width for Pedestrian Mode 
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Figure 3.2 Box Plot of Categorized Speed Limit for Pedestrian Mode 

 

 

 

The categories for the variables selected and presented in Figures 3.1 and 3.2 are:    

 Sidewalk Width  

  15,05 ftft  

 Number of Through Lanes  

  1, 2, 3 

 

Next, to better understand the relationship between traveler perceptions of LOS and the 

independent variables collected through NCHRP 3-70, a correlation analysis was 
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conducted.  A Kendall Tau Correlation analysis was selected to be conducted due to the 

ordinal variables present in the data.  A Kendall-tau coefficient is a non-parametric 

correlation coefficient used to assess and test correlations between non-interval scaled 

ordinal variables, while Pearson correlation provides a measure of the strength and 

direction of the linear relationship between two variables (Bolboaca et al., 2009). 

 

 Table 3.1 contains the results of the Kendall correlation analysis between participant 

ratings of LOS and a variety of geometric and traffic characteristics for the pedestrian 

mode.  This analysis was conducted by Ali et al. in a published study discussed in 

Chapter 2, this analysis was further refined as part of this dissertation.  

 

 

Table 3.1 Results of Correlation Analysis with Participant Rating 

of Pedestrian LOS (Ali et al., 2009) 

 

Variable τ Rank Correlation Significance p-value 

Sidewalk Width 0.335 0 

Pedestrian Flow Rate 0.201 0 

Outside Lane Width 0.121 0.007 

Shoulder Width -0.277 0 

On-street Parking 0.246 0 

Barrier 0.314 0 

Buffer Width 0.111 0.005 

Same Direction Traffic Volume -0.182 0 

Through Lanes -0.291 0 

Posted Speed Limit -0.161 0 

Traffic Volume/Lane -0.028 0.465 
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Table 3.1 reveals that several variables including Sidewalk Width; Pedestrian Flow Rate; 

Shoulder Width; On-street Parking; Barrier and Through Lanes have some correlation 

with participant rating of LOS.  However, further analysis as shown in Table 3.2 which  

provides the correlation between variables, reveals that all variables except Through 

Lanes were highly correlated with Sidewalk Width.  Therefore, the variables selected 

from the set of variables found to be correlated with participant rating of pedestrian LOS 

and considered to be significant contributors to the development of the multi-objective 

optimization model were Sidewalk Width and Through Lanes.   

 

Table 3.2 Results of Correlation Analysis between Variables for Pedestrian Mode 

 

 
 

 

 

 

Bicycle Mode 

The bicycle model also has been developed with the data collected from the NCHRP 3-70 

Study.  Box plots for each of the variables that could take a categorical form and that 

would be useful for the Multi-objective Optimization Model were developed next.  

Variable/Correlation Coefficient Sidewalk  
Width 

Pedestrian  
Flow Rate 

Outside  
Lane  

Width 

Shoulder  
Width 

On-street  
Parking Barrier Buffer  

Width 

Same  
Direction  
Traffic  
Volume 

Traffic  
Lanes 

Sidewalk Width 1.000 
Pedestrian Flow Rate 0.491 1.000 
Outside Lane Width 0.455 0.511 1.000 

Shoulder Width -0.296 -0.415 -0.271 1.000 
On-street Parking 0.563 0.594 0.454 -0.485 1.000 

Barrier 0.627 0.692 0.608 -0.540 0.897 1.000 
Buffer Width 0.400 0.050 0.044 0.057 0.207 0.196 1.000 

Same Direction Traffic Volume -0.336 -0.291 -0.039 0.418 -0.201 -0.247 -0.119 1.000 
Through Lanes -0.041 -0.200 -0.044 0.537 -0.331 -0.362 -0.136 0.500 1.000 

Posted Speed Limit -0.173 -0.076 0.159 0.555 -0.165 -0.194 0.026 0.552 0.387 
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Figures 3.3 through 3.5 present the relationships between LOS and each of the selected 

variables.  Figure 3.3 shows lower LOS ratings for facilities without bicycle lanes while 

the ratings increase for facilities with bicycle lanes between four and eight ft. 

The bicyclists LOS ratings for facilities with one lane, as shown in Figure 3.4, are higher 

as compared to the ratings for facilities with two or three lanes indicating that the 

potential of multiple vehicles to the left of the bicyclists is reducing bicyclist perception 

of LOS.  It appears that the facilities with one lane only are differentiated from facilities 

with two lanes.  Although there is some overlap of the data between the facilities with 

two and three lanes a difference in LOS ratings was observed and therefore three 

categories were used for Through Lanes. 

 

In Figure 3.5 the Posted Speed Limit has been categorized and plotted against the 

bicyclists LOS ratings.  A difference between the bicyclists ratings of LOS for facilities 

with Posted Speed Limit <30 mph and >30 mph was observed.  
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Figure 3.3 Box Plot of Relationship between Bike/Shoulder Width and LOS 

 

 

Figure 3.4 Box Plot for Relationship between Number of Through Lanes and LOS 
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Figure 3.5 Box Plot for Relationship between Posted Speed Limit Category and LOS 

 

 

 

Based on the data diagnosis, the independent variables were categorized as follows:  

• Bike/Shoulder Width  

  184,00 ftft  

• Speed Limit  

  15530,03020 mphmph  

 Number of Through Lanes  

  1, 2, 3 

 

A Kendall correlation analysis was next conducted in order to determine the variables 

that were statistically significantly correlated to individual traveler LOS ratings.  The 
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results of the correlation analysis between the independent variables and participant 

bicycle LOS are presented in Table 3.3 and the results of the correlation analysis between 

variables shown in Table 3.4.  

  

Table 3.3 Results of Correlation Analysis 

 

Variable τ Rank Correlation Significance p-value 

Outside Lane Width -0.160 0.000 
Bike/Shoulder Width 0.188 0.000 
Through Lanes -0.417 0.000 
Peak hour Volume -0.107 0.000 
Heavy Vehicles -0.100 0.001 
Speed Limit -0.457 0.000 
Pavement Rate 0.054 0.078 

On Street Parking 0.090 0.000 
Signalized Intersections 

Distance -0.127 0.000 

Unsignalized Conflicts 

per Mile -0.276 0.000 

 

 

The variables found to be correlated with participant rating of bicycle LOS and 

considered to be significant contributors to the development of the Multi-objective 

Optimization Model were: Bike/Shoulder Width, Speed Limit and Through Lanes. The 

Bike/Shoulder Width variable was found to be positively correlated with the dependent 

variable indicating that an increase in lane width results in an increase in traveler 

perceived LOS rating therefore an increase in comfort level for bicyclists.  While the 

Number of Through Lanes and Posted Speed Limit were negatively correlated with the 

traveler perceived LOS indicating that an increase in the number of lanes and speed limit 



 

78 

results in worse ratings of LOS by study participants.  The number of through lanes and 

posted speed limit are also indicators that an increase in auto activity results in a worse 

LOS rating for the bicycle mode.   

 

The correlation analysis conducted between variables shows that the Bike/Shoulder Width 

and the Through Lanes variable are not highly correlated.  Similarly, Bike/Shoulder 

Width and Speed Limit Category are not correlated.  However there appears to be a 

relationship between Through Lanes and Speed Limit Category which has been further 

explored in the development of the Cumulative Logit Model.   

 

Table 3.4 Results of Correlation Analysis between Variables for Bicycle Mode 

 

 

  

Variable/ 

Correlation 

Coefficient 

OLW B/SW TL PHV HV SL PR OSP SID 

Outside Lane 

Width 
1.000         

Bike/Shoulder 
Width 

0.483 1.000        

Through Lanes 0.084 -0.066 1.000       

Peak hour Volume 0.445 0.584 0.043 1.000      

Heavy Vehicles 0.109 -0.241 0.104 -0.182 1.000     

Speed Limit 0.668 0.223 0.477 0.666 0.163 1.000    

Pavement Rate -0.105 -0.021 0.077 0.176 -0.513 0.033 1.000   

On Street Parking 0.143 0.272 0.070 0.322 -0.059 0.215 0.057 1.000  

Signalized 

Intersections 
Distance 

-0.071 -0.172 0.268 -0.392 0.005 0.016 0.155 -0.085 1.000 

Unsig Conflicts per 

Mile 
0.431 0.204 0.387 0.155 -0.022 0.345 0.034 -0.104 -0.273 
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The Multi-objective Optimization Model has been built to provide the street elements for 

each mode: traffic lanes, bicycle lanes, sidewalks, median and grass strips.  The 

Bike/Shoulder Width for the bicycle mode is the facility characteristic that is part of the 

ROW width, therefore contributing to the Multi-objective Optimization Model. Similarly, 

the Sidewalk Width and the Through Lanes contribute to the Multi-objective 

Optimization Model for the auto and pedestrian modes.  The auto mode has been 

connected with the bicycle mode through the Average Space Mean Speed variable which 

is influenced by the Posted Speed Limit, and the bicycle mode has been connected to the 

pedestrian mode through the Through Lanes. 

 

3.3 Proposed Modeling Approach 

 

The process of variable selection was followed by the development of an optimization 

function.  The main purpose of the optimization function was to include one objective for 

each of the three modes: auto, bicycle and pedestrian.  Each mode’s objective was to 

determine a design that will produce a traveler perceived LOS equal to or greater than a 

chosen level.  For this study, the chosen level of LOS was D which may allow for a 

comfortable and acceptable level of satisfaction for the three modes concomitantly, 

however, an analyst could choose any LOS as desired.  Also, all three modes carry an 

equal weight in the optimization model.  Figure 3.6 represents a potential design of a 

Complete Street with a 70 ft right of way width consisting of two 12 ft auto lanes; two 5 

ft bicycle lanes; a 10ft median; and two 5 ft sidewalks on either side of the street.  The 

purpose of the proposed optimization model is to allow engineers and planners to 
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manipulate the design of each of the modal facilities to optimize LOS for all modes.  For 

example, reducing the auto lane width to 11 ft would allow for a wider bike lane which 

may improve bicycle LOS.  

 

 

 

 

 

 

 

 

Figure 3.6  Example Complete Street Design Cross-Section 

 

 

 

The sequence of steps followed in the modeling process is presented below.  The first 

three steps of the process consisted of creating three LOS Optimization Models for the 

three modes: auto, pedestrians and bicycles where the objective functions were 

cumulative logit equations for the selected LOS level.  The fourth step consisted of 

creating a Multi-objective Optimization Model where the three Optimization Models 

created in steps 1 through 3 were combined and optimized simultaneously. 

 

 

 

ROW = 70 ft 
feet 

 5’    8’   5’          12’             10’             12’           5’  8’  5’   
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3.3.1 Cumulative Logit Model 

 

The Cumulative Logit Model is a type of binomial regression model and it has been 

selected for use in this dissertation for its capability of treating variables as if they were 

measured on an ordinal scale and was developed by using equation 3.3.1.1 (Agresti, 

2007). 

 

xjjYPLogit )]([ ,     Equation 3.3.1.1 

Where: 

j=1, ……,J-1 

 

The αj were the intercepts for each category and β was a constant parameter for each 

independent variable that remained unchanged for all logit functions.  The cumulative 

probabilities for each of the response variable categories were obtained with equation 

3.3.1.2. 

)1(

1
)(Pr

)( jje
jeventob    Equation 3.3.1.2 

 

Then the individual probabilities were calculated using the following equation: 

 

)(Pr)(Pr)(Pr jeventobjeventobjeventob  (Agresti, 2007)  Equation 3.3.1.3  

 



 

82 

The intercepts and the constant parameters for pedestrian LOS ratings were computed 

using the Maximum Likelihood Estimation (MLE).   

 

3.3.2 Optimization modeling 

 

The generalized reduced gradient method was used for the development of the auto, 

pedestrian and bicycle Optimization Models (Flystra et al., 1998).  Each of the three 

modes was set into an Optimization Model with the objective to minimize the probability 

of obtaining LOS ratings of D or less.  The optimization models are discussed in Chapter 

4.   

 

3.3.3 Multi-objective Optimization Modeling 

 

A Multi-objective Optimization Model has been developed for Complete Street design.  

The objective constraints have been established based on the facility characteristics 

included in the Cumulative Logit Models for each mode.  The model has been built in 

four steps.  The first three steps established the minimum values for the probability of 

obtaining LOS D or less, thus establishing the low threshold for each of the three modes 

as follows: 
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   Pauto≤ LOS D       Equation 3.3.3.1 

Minimize Ppedestrian≤  LOS D     Equation 3.3.3.2 

  Pbicycle≤ LOS D      Equation 3.3.3.3 

 

Step 1: Minimize P1 for auto mode, resulting in P1* as the optimized value; 

Step 2: Minimize P2 for pedestrian mode, resulting in P2* as the optimized value; 

Step 3: Minimize P3 for bicycle mode, resulting in P3* as the optimized value; 

Step 4: Bring the three modes together into one optimization model as shown in 

equations 3.3.3.4 and 3.3.3.5. 

XMinimizeZ4    Equation 3.3.3.4 

Subject to: 

     
*/ PiPiX  i=1,2,3  Equation 3.3.3.5 

 

The steps to be followed in obtaining the Optimization Model are described in more 

detail in Chapter 5.  The selection of the models to be used for this study for each of the 

three modes is described in Chapter 4.  A schematic of the approach to the Multi-

objective Optimization Model is presented in Figure 3.7. 



 

84 

 

Figure 3. 7 Schematic of Modeling Approach
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CHAPTER 4: COMPLETE ROADWAY INTEGRATION STUDY TO EFFECT 

IMPROVEMENT (CRISTEI) MULTI-OBJECTIVE OPTIMIZATION MODEL 

 

 

 Complete Street design can be accomplished by providing optimal facilities for all 

the modes expected to be present on urban arterials.  Ideally a transportation engineer or 

planner will utilize the modeling approach presented here in the preliminary design stage 

of a new facility or in the redevelop process of an existing cross section of urban arterial.  

The modeling approach presented takes into account the level of perceived service of 

pedestrians, bicyclists, and through auto drivers; the available right of way; and required 

design standards.   

 

Three transportation modes have been included in this study: the auto mode, the 

pedestrian mode, and the bicycle mode.  A standard urban street will have, or will most 

likely have mass transit. This transportation mode has not been included in the modeling 

effort due to the method used to collect traveler perceived LOS data for the transit mode.  

In NCHRP 3-70, participants who rated the performance of the transit mode were 

surveyed in-route on fixed-route surface street systems unlike the auto, pedestrian, and 

bicycle modes which were surveyed through a video laboratory setting.  In addition, the 

decision to use the transit mode was made as participants were using the transit system, 

as compared to participants who rated the auto, pedestrian, and bicycle trips who had not 
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made that travel choice.  Due to this difference in the type of data collected, the transit 

mode has not been included in this dissertation. However, future studies may be designed 

to enhance the model and create a design that takes into account the transit mode. 

 

An optimization model for transportation practitioners that will facilitate the optimal 

design of Complete Streets that achieves the highest level of traveler perceived service by 

mode within recognized design standards has been developed.  This contribution is 

unique, opportune and is anticipated to be well received by engineers, planners, and 

decision makers.  This chapter presents the models developed to estimate the traveler 

perceived pedestrian and bicycle LOS utilizing the cumulative logit modeling approach.  

In addition, this chapter includes a description of the approach taken to develop the 

Multi-objective Optimization Model for Complete Street Design. 

 

4.1     Cumulative Logit Models 

 

Cumulative Logit Models for ordinal responses are powerful models that provide 

cumulative probabilities reflecting the ordering of the response categories. A cumulative 

probability for a category indicates that the category will fall at or below a certain value 

and reflects ordering of the dependent variable (Agresti, 2007).  To fit a binary logistic 

regression model, a set of regression coefficients must be estimated first.  These 

coefficients will predict the probability of the dependent variable, in this case the 

probability of achieving a particular modal LOS (Norusis, 2009).  The linear combination 
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of parameters results from a function of the probabilities as shown in equation 4.1.1 

(Norusis, 2009): 

 

kk xxeventprobeventprob ...)))(1/()(ln( 110   Equation 4.1.1 

 

The quantity situated to the left of the equal sign is the log of odds for an event to occur. 

The coefficients indicate how much the logit changes based on the values of the predictor 

variables.  To incorporate the ordinal nature of a dependent variable the probability of the 

event and all events that are ordered before it should be considered.  The ordinal logistic 

model for one variable is presented in equation 4.1.2 (Norusis, 2009): 

 

Xjj )ln( , j=1,…,n-1   Equation 4.1.2 

 

For each logit there is a different αj but all logits share the same β coefficient, indicating 

that the effect of the independent variables is the same for each logit function. The αj 

values are similar to the intercepts in a linear regression model; however, there is one 

value for each logit.  The expected values can be calculated for each case by using 

equation 4.1.3 (Norusis, 2009): 

 

)1/(1)_(
)( xjejeventprob    Equation 4.1.3 
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This method of analyzing categorical data utilizes the entire data set of traveler perceived 

LOS to predict the probability of a particular LOS threshold and the entire distribution of 

LOS ratings (Norusis, 2009).  The Cumulative Logit Model has been selected by the 

NCHRP 3-70 researchers for the auto mode and it has been used for the pedestrian and 

bicycle modes in this dissertation. 

 

4.1.1     Pedestrian Mode 

 

The cumulative logit model created by Ali et al. was developed by using four variables 

which were found to be significant for the LOS ratings by pedestrians. The results of the 

model were introduced in the Single-Objective Optimization Model and in the Multi-

objective Optimization Model.  The attempt to create the constraints for the Multi-

Objective Model was not as successful as expected.  The variables in the Ali et al. 

pedestrian model were continuous and it was determined that categorical variables were 

more appropriate with the generalized reduced gradient method used in the optimization 

process.  Therefore, a new model was developed to include categorical variables.     

The development of the Cumulative Logit Model for the pedestrian mode was preceded 

by the variable selection process.  The selected variables were analyzed by creating box 

plots, presented in Chapter 3, that directed the process of categorizing the data to be 

better utilized by the optimization model.  From the four variables previously selected 

only two were found to be statistically significant contributors to the model and were 

categorized as follows: 
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 Number of Lanes (NL): 1, 2, 3, 

 Sidewalk Width Category (SWC):, < 4 ft, >4 ft, 

The Maximum Likelihood Estimates for Ordinal Regression for the selected independent 

variables for the model are presented in Table 4.1. 

 

Table 4. 1 Maximum Likelihood Estimate Parameters for Traveler Perceived 

Pedestrian LOS 

 

Parameter DF Estimate 

Standard 

Error  

Wald 

Chi- 

Square 

Pr > 

ChiSq 
Intercept LOS F, α1= 1 -2.934 0.221 175.919 <0.000 

Intercept LOS E, α2=  1 -1.983 0.205 93.598 <0.000 

Intercept LOS D, α3 =  1 -1.124 0.198 32.105 <0.000 

Intercept LOS C, α4=  1 .100 0.195 .265 <0.607 

Intercept LOS B, α5=  1 1.637 0.204 64.205 <0.000 
Sidewalk Width , β = 1 .920 0.127 52.530 <0.000 
Number of Through Lanes, β2 =  1 -.561 0.087 42.026 <0.000 

 

 

The cumulative probabilities have been computed and presented in Figure 4.1.   The 

model results were also aligned with the assumptions made, for example, the probability 

of traveler perceived pedestrian LOS rating of F increases as the number of vehicle 

through lanes increases as seen in Figure 4.1.  



 

90 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Pedestrian LOS Rating

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

TL = 1

TL = 2

TL 3

P(Y=6)

P(Y=5)

P(Y=4)

P(Y=3)

P(Y=2)
P(Y=1)

=LOS F               =LOS E                =LOS D               =LOS C              =LOS B              =LOS A

 

Figure 4. 1 Cumulative Probability Curves for Pedestrian LOS Rating 

 

 

The two variables selected were found to be significant for this mode and the Chi Square 

coefficient (45.167) for the model indicated this was a strong model.  Also it was noted 

that the alpha intercepts increase in value as the LOS increases.  Therefore, this model 

was selected for the Multi-objective Optimization Model as presented further in this 

Chapter. 
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4.1.2      Bicycle Mode 

Two cumulative logit models were developed for the bicycle mode, in order to find one 

model that would be suitable for the optimization model, as presented below.  For the 

first model, the selected variables, as described in Chapter 3, are as follows:   

 Bike/Shoulder Width: 0 ft, 4 ft, 5 ft, 8 ft, 

 Number of Through Lanes: 1, 2, 3, 

 Speed Limit: 20mph, 25mph, 30mph, 40mph, 45mph, 50mph, 55 mph. 

The Maximum Likelihood Estimates for Ordinal Regression for the selected independent 

variables are presented in Table 4.2. 

 

Table 4. 2 Maximum Likelihood Estimate Parameters for Traveler Perceived 

Bicycle LOS Model # 1 

 

Parameter DF Estimate 

Standard 

Error  

Wald 

Chi- 

Square 

Pr > 

ChiSq 

Intercept LOS F, α1= 1 -4.365 0.301 210.665 0.000 

Intercept LOS E, α2=  1 -3.369 0.288 136.704 0.000 

Intercept LOS D, α3=  1 -2.548 0.279 83.521 0.000 

Intercept LOS C, α4=  1 -1.428 0.271 27.766 0.000 

Intercept LOS B, α5=  1 .014 0.282 .003 0.960 

Number of Through Lanes, β1 =  1 -.521 0.125 17.358 0.000 

Bike/Shoulder Width, β3 = 1 -.062 0.007 69.880 0.000 

Speed Limit (mph), β2= 1 .190 0.028 46.030 0.000 
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As can be seen in Table 4.2, the model had difficulty estimating the LOS B intercept; in 

addition, the positive and negative signs are not intuitive.  One would expect that 

variables such as speed limit and number of through lanes would have the same sign. The 

cumulative probabilities were also computed to study the shape of the models and 

presented in Figure 4.2.  The model results show that the probability of traveler perceived 

bicycle LOS rating of F increases as the number of vehicle travel lanes increases. 
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Figure 4. 2 Cumulative Probability Curves for Bicycle LOS Rating – Model # 1 
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The cumulative logit equation was introduced into the Optimization Model but it did not 

perform as expected, giving opposite results than anticipated.  Further analysis of the data 

revealed that using the data in categorical form created a better performing model. 

Model 2 was created using categorical data for the independent variables. For Model 2 

the variables were categorized as: 

 Bike/Shoulder Width: 0 ft = 0, 4-8 ft = 1 

 Number of Through Lanes: 1, 2, 3, 

 Speed Limit: 20-30 mph = 0, 40-55 mph = 1 (45mph was not present in the 

collected data). 

The categorized independent variables were used to create a second Cumulative Logit 

Regression Model for Ordinal Responses as is shown in Table 4.3.   

 

 

Table 4. 3 Maximum Likelihood Estimate Parameters for Bicycle 

LOS Rating –Model # 2 

 

 

Parameter DF Estimate 

Standard 

Error  

Wald 

Chi- 

Square 

Pr > 

ChiSq 

Intercept LOS F, α1= 1 -4.237 0.322 173.529 0.000 

Intercept LOS E, α2=  1 -3.023 0.308 96.086 0.000 

Intercept LOS D, α3 =  1 -2.004 0.299 44.881 0.000 

Intercept LOS C, α4=  1 -0.512 0.294 3.044 0.081 

Intercept LOS B, α5=  1 1.532 0.311 24.280 0.000 

Number of Through Lanes, β1 =  1 -0.972 0.133 53.330 0.000 

Bike/Shoulder Width , β3 = 1 1.695 0.175 187.087 0.000 
Speed Limit (mph), β2= 1 -2.398 0.157 116.274 0.000 
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As seen in Table 4.3, the LOS intercept values increase with the LOS level, higher LOS 

levels corresponding to higher intercept parameter values. The goodness-of-fit Chi-

Square coefficient (59.184) indicates that it is a strong model.  The Number of Through 

Lanes and Speed Limit beta parameters have negative signs reflecting lower ranking of 

the LOS for bicyclists while the Bike/Shoulder Width beta parameter has a positive sign 

reflecting higher LOS rankings.  In addition, all independent variables are statistically 

significant at the 0.10 level or less. 

 

To better understand the performance of the model, the cumulative probabilities were 

computed and are presented in Figure 4.3.  The model results show that the probability of 

traveler perceived bicycle LOS rating of F increases as the number of vehicle travel lanes 

increases as is expected when holding all other independent variables constant. 
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Figure 4. 3. Cumulative Probability Curves for Bicycle LOS Rating – Model # 2 

 

Model # 2 was included in the Multi-objective Optimization Model as described in 

section 4.2.  

 

4.2      Multi-objective Optimization Model 

 

A Multi-objective Optimization Model has been developed to improve the design process 

for urban streets.  The improvement consists of accommodating three modes 

simultaneously and including user perception of LOS in the modeling process, thus 

creating a new method of urban street design which accounts for perceived operational 
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and safety performance by modal users.  The three modes included in the modeling 

process are auto, pedestrian and bicycle modes.  The level of satisfaction of the users of 

each of these modes can occasionally conflict with the other modes.  For example, drivers 

tend to perceive a higher level of satisfaction on urban streets when the average travel 

speed is as high as or slightly higher than the posted speed limit and the road has multiple 

lanes.  By contrast, pedestrians and bicyclist perceive a low level of satisfaction when 

their facilities adjoin streets with high posted speed limits and when traffic lanes exceed 

two or three through traffic lanes in the same direction of their movement.  In Chapter 3, 

the data exploration process revealed statistically significant relationships between the 

independent variables and the participant ratings of LOS for the three modes.  Constraints 

were also developed for each independent variable included in the modal models and 

optimization models were developed for each of the three travel modes to obtain the 

highest probability of LOS rating.  The general flow of data in the modeling process is 

presented in Figure 4.4. 
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Figure 4. 4 General Flow of Modeling Process 
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Goal Definition 

The developed Multi-objective Optimization Model has three objective functions:  

 Auto modal users perception of LOS, 

 Pedestrian modal users perception of LOS, 

 Bicycle modal users perception of LOS. 

Three goal statements were to optimize the three modal LOS (pedestrian, bicycle, auto) 

instead of a single goal. The objective functions are conflicting since increasing speed for 

automobiles impedes the bicycle and pedestrian perceived LOS.  The Multi-objective 

Optimization Model will result in a compromise among these objectives, as encountered 

in real-life problems, and are often mathematical functions of contrasting forms.  

The goal of the Multi-objective Optimization Model is to include three objectives which 

are further constrained by the available Right of Way (ROW) width.  Ultimately the 

model will provide values for the characteristics of the urban street which will meet or 

exceed the required LOS for each mode. 

Baseline, Balance and Goal Achievement 

Following the definition of the goals, the three single-objective optimization models were 

created.  The scope of each model was to minimize each of the three goals individually. 

For this step, no influence from the other modes has been included.  The general form of 

the individual optimization model is as presented in Figure 4.5. 
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Figure 4. 5  Optimization Model-General Format 

 

 

The modeling effort continued by creating the baseline for the Multi-objective 

Optimization Model, or Steps 1, 2 and 3, as shown in Figure 4.6. 
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Figure 4. 6 Optimization Baseline 

 

 

Where: 

P1, P2 and P3 are the probabilities that the LOS ratings by the users of each mode will be 

less than or equal to LOS D (this is an arbitrary LOS which can be selected by the 

modeler).   

The results from Steps 1, 2 and 3 constitute the lower threshold of the acceptable LOS for 

each of the three modes as shown in Figure 4.7. 
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.

 

Figure 4. 7 Multi-objective Optimization Model 
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Step 4 

Once the three modes have been optimized independently, the multi-objective goal 

achievement threshold was established.  This threshold normalizes the three concomitant 

goals creating the optimization model.  

The variables selected for the Multi-objective Optimization Model have a defined range 

that when changed in the optimization equation will provide a different outcome.  The 

result of the optimization function is a combination of variables and ranges that provide 

the optimum LOS for the three modes concomitantly.  The first three steps of the 

optimization process consisted of creating three Single Objective Optimization Models, 

one for each travel mode as described below. 

The Target Cells, only one for each model, were defined by the Ordinal Logit model 

equation for cumulative predicted probability from the logistic model for LOS D.: 

)1/(1)(
)( )( kkJ x

eJLOSP    Equation 4.2.1 

Where:   

)( JLOSP  = Probability that an individual will rate the        

experience as LOS “J” or worse 

e  = Exponential function 

)( J   = Intercept for LOS “J” 

k  = Calibration parameter beta for each attribute 

kx  = Attribute “k” of the segment. 



 

103 

The LOS level selected was considered to be a level that will allow travelers to 

satisfactorily complete their trip. The goal of the model is to provide a facility that will 

provide at least LOS D for all three modes concomitantly.  The estimated parameters 

used in the modal Ordinal Logit model were obtained from Maximum Likelihood 

Estimates for Ordinal Regression and have been discussed previously in this Chapter. 

The numbers to be generated were the values that each independent variable would take 

when the optimum of the Target Cell was reached.  The values these cells could take 

were constrained by the range of the data collected in NCHRP 3-70 study.  These 

constraints were used to allow the probabilities of obtaining LOS ratings of D or less to 

be driven by the variables collected for the NCHRP 3-70 study and are presented below. 

 

Multi-objective Optimization Model Step 1: Single Objective Optimization Model for 

Auto Mode 

The objective for the auto mode is: 

1PMinimizeZ    Equation 4.2.2 

Subject to: 

))*224.0*084.01*706.0((1

1
)(Pr1

MPSMSEXP
DLOSobP  

Equation 4.2.3 
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4SMS         Equation 4.2.4 

42SMS         Equation 4.2.5 

}3,2,1,0{MP        Equation 4.2.6 

These thresholds indicate: 

 Average Space Mean Speed (SMS) was between 4 and 42 mph, as observed 

during the data collection process for NCHRP 3-70, 

 Median Presence (MP) can take the values of 0, 1, 2 and 3  

MP=0 means no median present. 

MP=1 means the street was one way 

MP=2 means there was a two-way Left-Turn Lane 

MP=3 means a raised median was present. 

 

Multi-objective Optimization Model - Auto Mode Step 1: Results 

The Maximum Likelihood Estimate Parameters presented in Table 2.4 were introduced in 

Equation 4.2.2 resulting in minimum P1= 0.03 for values of the independent variables of 

SMS=42 mph and MP=3. The results of the optimization model indicate that auto drivers 

will be satisfied with their driving experience when the average space mean speed is 
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closer to the upper observed SMS threshold and a raised median is present. The minimum 

value P1= P1
*
 was introduced in the Step 4 of the Multi-objective Optimization Model. 

 

Multi-objective Optimization Model Step 2: Single Objective Optimization Model for 

Pedestrian Mode 

The objective for the pedestrian mode is: 

2PMinimizeZ     Equation 4.2.7 

Subject to:   

))*920.0*561.01*124.1((1

1
)(Pr2

SWCNLEXP
DLOSobP  

Equation 4.2.8 

1NL         Equation 4.2.9 

3NL                  Equation 4.2.10 

INTEGERNL                 Equation 4.2.11 

BINARYSWC                 Equation 4.2.12 
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These thresholds indicate: 

 Number of Lanes (NL) can be 1, 2 or 3, 

  Sidewalk Width Category (SWC) can be 0 or 1. 

The Maximum Likelihood Estimate Parameters presented in Table 4.2 were introduced in 

Equation 4.2.6 resulting in minimum P2=P2
*
 for values of the independent variables of 

NL=1 and SWC=1. The results of the optimization model indicate that pedestrians will be 

satisfied with their walking experience when the number of lanes in the same direction as 

they are walking is at the lower threshold and the width of the sidewalk is at the upper 

threshold.  The minimum value P2=
 
0.205 was introduced in the Step 4 of the Multi-

objective Optimization Model. 

 

Multi-objective Optimization Model Step 3: Single objective Optimization Model for 

Bike Mode 

The objective function for the bicycle mode is: 

3PMinimizeZ    Equation 4.2.13 

Subject to:   

))*695.1*398.2*972.01*004.2((1

1
)(Pr3

BWPSLNLEXP
DLOSobP  
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Equation 4.2.14 

1NL        Equation 4.2.15 

3NL        Equation 4.2.16 

INTEGERNL       Equation 4.2.17 

BINARYBWC       Equation 4.2.18 

mphPSL 25        Equation 4.2.19 

mphPSL 55        Equation 4.2.20 

INTEGERPSL       Equation 4.2.21 

These thresholds indicate: 

 Through  Lanes (NL) can be 1, 2 or 3, 

 Bike Shoulder Width Category (BWC)can be 0 or 1, 

 Posted Speed Limit (PSL) can vary between 25mph and 55 mph. 
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Similarly with the pedestrian mode, these variables represent characteristics of the street 

facilities that are contributing to the multi-objective optimization model and represent the 

range of the data included in the study dataset. 

The Maximum Likelihood Estimate Parameters presented in Table 4.4 were introduced in 

Equation 4.2.11 resulting in minimum P3= P3
 *

 for values of the independent variables of 

NL=1, PSL=0 and BWC=1. The results of the optimization model indicate that the 

bicyclists will be satisfied with their bicycling experience when the number of lanes in 

the same direction as their travel is at the lower threshold, the posted speed limit is at the 

lower threshold and the width of the bike lane is at the upper threshold.  The minimum 

value P3= 0.061 was introduced in the Step 4 of the Multi-objective Optimization Model. 

 

Multi-objective Optimization Model Step 4  

The objective function is: 

XMinimizeZ  Equation 4.2.22 

Subject to  

*1/1 PPX        Equation 4.2.23 

*2/2 PPX        Equation 4.2.24 

*3/3 PPX        Equation 4.2.25 
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ROWWOROWWA       Equation 4.2.26 

2*)*( BLWGSSWWLWNLMWROWO   Equation 4.2.27 

4SMS         Equation 4.2.28 

42SMS        Equation 4.2.29 

205*PSLSMS       Equation 4.2.30 

357*PSLSMS       Equation 4.2.31 

3MP         Equation 4.2.32 

0MP         Equation 4.2.33 

INTEGERMP        Equation 4.2.34 

3*32*21*10*0 MTMTMTMTMP   Equation 4.2.35 

BINARYMT0        Equation 4.2.36 

BINARYMT1        Equation 4.2.37 

BINARYMT2        Equation 4.2.38 

BINARYMT3        Equation 4.2.39 

4MW         Equation 4.2.40 
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80MW         Equation 4.2.41 

3*802*141*00*0 MTMTMTMTMW    Equation 4.2.42 

3*42*141*00*0 MTMTMTMTMW    Equation 4.2.43 

1NL         Equation 4.2.44 

3NL         Equation 4.2.45 

INTEGERNL        Equation 4.2.46 

3*12*11*10*1 MTMTMTMTNL    Equation 4.2.47 

3*32*31*30*3 MTMTMTMTNL    Equation 4.2.48 

BINARYSWC        Equation 4.2.49 

ftSW 4         Equation 4.2.50 

ftSW 8         Equation 4.2.51 

INTEGERSW        Equation 4.2.52 

mphPSL 25        Equation 4.2.53 

mphPSL 55        Equation 4.2.54 

INTEGERPSL        Equation 4.2.55 
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BINARYBW        Equation 4.2.56 

ftBW 4         Equation 4.2.57 

ftBW 5         Equation 4.2.58 

INTEGERBW        Equation 4.2.59 

The Multi-objective Optimization Model has been defined within a series of constraints 

that have been provided with this dissertation; however these constraints can be tailored 

as required for the environment planned to be used.  The constraints have been developed 

to reflect the state of the practice and established standards by governing bodies such as 

the American Association of State Highway and Transportation Officials (AASHTO, 

2004).  In addition, a set of new decision variables as well as of a set of non-decision 

variables were added to aid the construction of the optimization model.  An overview of 

the constraints contained in the optimization model is provided here. 

Right of Way Width  

The width of the Right of Way is a value that is available to the engineer or planner and 

represents the available width for the design of an urban arterial.   This value is inserted 

into the assigned cell within the developed spreadsheet and governs the street 

characteristics optimization calculations. The decision and non-decision variables are 

manipulated and replaced in equation 4.2.60 which is the same with equation 4.2.26 to 

satisfy the equality: 
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ROWWOROWWA      Equation 4.2.60 

Where: 

   ROWWA= Right of Way Width Available (given) 

ROWWO = Right of Way Width Optimum 

The constraint for ROWWO is shown in equation 4.2.27 which is the same with equation 

4.2.61: 

2*)*( BLWGSSWWLWNLMWROWWO   Equation 4.2.61 

Where: 

MW  = Median Width (ft) 

NL  = Number of Lanes 

LW  = Lane Width (ft) 

SWW  = Sidewalk Width (ft) 

GS  = Grass Strip (fixed width) 

BLW  = Bike Lane Width (ft) 

From the variables included in equation 4.2.61 the following variables have been created 

to allow the construction of the ROW width:  Median Width (MW), Lane Width (LW), 
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Sidewalk Width (SWW), Grass Strip (GS) and Bike Lane Width (BLW).  The values these 

variables can take are defined as follows: 

Median Width (MW) 

A median is a portion of an urban street separating the opposing directions of traffic and 

it is highly desirable on arterials with four or more lanes. The width of a median can vary 

between 4 and 80 feet and it is selected based on ROW width available, type of street and 

location. For urban streets, narrower medians are desirable due to economic constraints 

(AASHTO, 2004); however widths less than 4 ft limit the ability to plant vegetation on 

the median.  For the purpose of this dissertation, the median width has been set to vary 

between 4 feet and 80 feet. 

Number of Lanes (NL) 

The number of lanes for collector roads in urban areas may be established based on future 

development needs.  When practical and economically feasible, two lanes in each 

direction should be provided; however one lane in each direction may be acceptable 

given that additional space for parking is provided based on AASHTO guidance.  The 

correct assessment of the number of lanes needed for streets with high traffic volume 

would be determined from a capacity analysis (AASHTO, 2004).  Due to the data 

collected, the optimization model has been designed to accommodate up to three traffic 

lanes in each direction.  
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Lane Width (LW) 

AASHTO standards were consulted in order to select the adequate width for each facility.  

The desirable lane width for urban arterials is 12 feet; however 10 feet and 11 feet lanes 

are also considered acceptable. The increase in cost of 12-foot lanes is somewhat offset 

by the increased sense of safety for the drivers due to the desirable clearance from the 

opposing traffic, especially larger vehicles. The cost is also offset by the decrease in 

shoulder maintenance and the roadway surface maintenance due to less damage at the 

edge of the pavement from excessive wheel concentration. When there are multiple lanes 

in one direction of travel, the lane width can be uneven, with the wider lane on the 

outside allowing heavy vehicles and potentially bike travel. Narrower lane widths are 

acceptable where pedestrian crossings, ROW or existing development become strict 

controls. Lanes narrower than 11 feet are only recommended for low-speed facilities 

(AASHTO, 2004).  For the purpose of this dissertation the lane width is set to vary 

between 10 feet and 12 feet. 

Sidewalk Width (SW) 

Sidewalks are facilities present in communities that have pedestrian concentrations along 

the streets.  Shoulders may also accommodate pedestrian traffic if they encourage use in 

all weather conditions.  When sidewalks are proposed there is desire for a border between 

the roadway and the sidewalk that serves the purpose of providing safety for pedestrians 

as well as accommodating street lights, fire hydrants, street hardware and aesthetic 

vegetation.  This border has been called the grass strip throughout this dissertation.   In 
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residential areas the recommended sidewalk width may vary between 4 and 8 feet and a 

minimum width grass strip of 2 feet.  A width of 4 feet is desirable where sidewalks are 

placed adjacent to the curb, allowing for street hardware and snow storage (AASHTO, 

2004).  For the purpose of this dissertation the sidewalk width has been set to vary 

between 4 and 8 feet.  A grass strip of varying width has been added to different 

scenarios to provide the minimum required by existing standards. 

A roadway cross section with bike lanes and sidewalks has been depicted in Figure 4.8.  

 

 

 

 

 

 

 

 

 

Figure 4. 8 Typical Sidewalk Cross Section 
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Bike Lane Width (BW) 

Bicycle lanes are one way facilities, placed on the right side of travel lanes, carrying 

traffic in the same direction as the adjacent auto traffic.  The width of the bicycle lanes, 

for roadways without curb and gutter should be no less than four feet (AASHTO, 2004).  

When on-street parking is permitted, the bicycle lane should be placed between the travel 

lane and the parking area.  This dissertation will not include this scenario; however it may 

be included in future research. 

The width of a bicycle lane varies based on the type of roadway.  For urban streets with 

curb and gutter or with guardrail the recommended width is five feet from face of curb or 

guardrail to the bicycle lane stripe.  A width greater than five feet is recommended for 

bicycle lanes adjacent to roadways that carry substantial heavy vehicle traffic or when 

traffic speed is in excess of 50 mph (AASHTO, 1999).  The width of the bicycle lane has 

been set to vary between four feet and five feet for this dissertation. 

A roadway cross section with bicycle lanes has been depicted in Figure 4.9. 
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Figure 4. 9  Typical Bicycle Lane Cross Section 

 

 

Bicycle Shoulder Width Category (BWC) 

This variable has been generated by the data coding and it takes the values of 0 and 1.  In 

combination with BW variable it contributes to the model. 
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variable influences the perceived pedestrian and bicyclist LOS through the respective 

cumulative logit equations.  Similarly, the Average Space Mean Speed variable was not 

included in the ROW equation but it has influence on the perceived LOS by drivers.  

Five conditions that influence the Posted Speed Limit were identified in addition to driver 

capabilities and type of vehicle being operated, as follows: 
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 Physical characteristics of the roadway 

 The amount of roadside interference 

 Weather conditions 

 Presence of other vehicles 

 Speed limitations. 

For the purpose of this dissertation two of the identified characteristics have been taken in 

to account: physical characteristics of the roadway and speed limitations. 

The design speed is established based on topography, anticipated operating speed, the 

adjacent land use and functional classification of the roadway. For local streets speed 

control measures are often implemented therefore the design speed will be controlled 

differently (AASHTO, 2004).  Measures including lane width, presence and width of 

shoulders and clearance to obstacles including walls and rails indirectly affect vehicle 

speeds.  For this reason it is recommended to increase lane and shoulder width for 

roadways with higher design speeds (AASHTO, 2004). 

For collector streets a design speed of 30 mph is customary, and it varies based on site 

controls (AASHTO, 2004).  The Posted Speed Limit (PSL) for this dissertation has been 

set to vary between 25 mph and 55 mph, as included in the NCHRP 3-70 study. 
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The constraints for SMS provide the thresholds in relation with the PSL.  For PSL value 

of 0 the SMS can vary between 20 and 35 mph and for PSL value of 1 the SMS can vary 

between 35 and 42 mph.  

Equations 4.2.62 and 4.2.63 represent the constraints set for the Median Presence (MP) 

variable. 

13210 MTMTMTMT     Equation 4.2.62 

3*32*21*10*0 MTMTMTMTMP    Equation 4.2.63 

The constraint for Median Presence (MP) involves the non-decision variables MT0 to 

MT3 and directs the model to select precisely the values of zero, one, two or three for the 

presence of median. These constraints have also been introduced to provide a relationship 

between the type or presence of median and the width of the median and the number of 

traffic lanes. 

As mentioned before, the median width has been set to vary between four and 80 feet; 

however the MP variable dictates the width of the median. For MP type 0 or 1, the width 

of the median has been set to 0.  For MP type 2, the width of the median has been set to 

14 ft to represent a two-way center left turn lane.  For MP type 3, the width of the median 

can vary between 4 and 80 feet.  Equations 4.2.64 and 4.2.65 depict the constraints that 

establish the relationship between the type of median and the median width. 

3*802*141*00*0 MTMTMTMTMW   Equation 4.2.64 

3*42*141*00*0 MTMTMTMTMW   Equation 4.2.65 



 

120 

The type of median is restricted by the number of lanes.  In the scenario for which the 

constraints are presented the median type is not restricted by the number of lanes.  

However, Equations 4.2.66 and 4.2.67 present the constraints that would allow a different 

scenario to be set where the type of median is dictated by the number of lanes.  

For example, when only two lanes are present the median type should be restricted to 0 

which means no median is present. 

3*42*41*40*2 MTMTMTMTNL  Equation 4.2.66 

3*22*21*20*2 MTMTMTMTNL  Equation 4.2.67 

 

The Multi-objective Optimization Model for urban streets has been described and 

presented in detail above.  As designed, the model involves three objective functions, 

each assigned to one transportation mode.  The simplicity of the model makes it 

accessible and user friendly.  Several scenarios have been created to further analyze the 

Multi-objective Optimization Model and are presented in Chapter 5. 
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CHAPTER 5 MODEL VALIDATION 
 

 

Auto, Pedestrian and Bicycle Models 

 The foundation of the Multi-objective Optimization Model was the Cumulative 

Logit Model.  The three conflicting objective of the model were developed using this 

method; the auto model developed by the NCHRP 3-70 study and the pedestrian and 

bicycle traveler perceived LOS models developed in this dissertation.   

 

5.1     Auto Model Validation – Review of NCHRP 3-70 Findings 

 

 

The auto model was tested for ability to accurately predict the distribution of ratings by 

comparison with the HCM ratings and the observed LOS ratings.  The results of the 

testing were presented in Table 2.6.  The cumulative logit model was able to predict 

approximately 32 percent more of the LOS ratings as compared to the HCM 2000.  This 

comparison explains the preference of the researchers for this model. 

 

5.2     Cumulative Logit Pedestrian LOS Model Validation 

 

 

The Cumulative Logit pedestrian LOS Model, created with this dissertation was also 

tested for its ability to predict the LOS ratings.  The validation data which was initially 

separated from the modeling data were used for this process.  The comparison has been 
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represented in Figures 5.1 through 5.4.  The clips selected for the evaluation are the four 

clips shown at each of the four study sites in the NCHRP study.  These four clips had the 

largest number of observations to develop a robust distribution of data.  The data 

predicted by the model are following the trend of the video clip ratings distribution which 

suggests a good fit of the model to the data.  In Clip 208, the validation data does not 

have any LOS A ratings.  After watching this video clip again it was concluded that this 

can be due to the fact that the first portion of the selected path did not have a paved 

sidewalk only a wide grass strip.  LOS F is also under predicted by the model.  This 

difference can be attributed to the large traffic volume and to the long distance that the 

pedestrian had to travel to cross the street.  Table 4.6 presents the evaluation of the 

pedestrian model in comparison with the validation data and the NCHRP 3-70 pedestrian 

model. 

 

 



 

123 

Clip 201

16%
17%

21%

27%

15%

5%

13%

7%

30%

28%

15%

7%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
(Y

<1
) L

O
S
 F

P
(Y

<2
) L

O
S
 E

P
(Y

<3
) L

O
S
 D

P
(Y

<4
) L

O
S
 C

P
(Y

<5
) L

O
S
 B

P
(Y

<6
) L

O
S
 A

Pedestrian LOS Ratings

P
ro

b
a
b

il
it

y
 M

a
s
s
 F

u
n

c
ti

o
n

Model Data

Validation Data

NCHRP 3-70 Regression Model Mean LOS=D

 

Figure 5.1 Comparison of LOS Distribution - Clip 201 and 

Estimated Pedestrian LOS Rating 
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Figure 5.2 Comparison of LOS Distribution - Clip 208 and 

Estimated Pedestrian LOS Rating 
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Figure 5.3 Comparison of LOS Distribution - Clip 215 and 

Estimated Pedestrian LOS Rating 
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Figure 5.4 Comparison of LOS Distribution - Clip 208 and 

Estimated Pedestrian LOS Rating 
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The Cumulative Logit Model and the regression model developed by the NCHRP 3-70 

study predict the participant rated LOS similarly, as shown in Table 5.1.  Further 

validation of the Cumulative Logit Model was provided by performing a Pearson 

Correlation analysis for the validation LOS and the cumulative logit LOS and for the 

validation LOS and the NCHRP 3-70 regression model.  The results of the test have been 

presented in Table 5.2. 

 

The newly created pedestrian model has been considered to be more suitable for the 

scope of this dissertation and will be used for an optimization model and ultimately used 

in the Multi-objective Optimization Model.  The decision of adopting the new model was 

based on the fact that pedestrian LOS can be estimated accurately using three variables as 

compared to twenty eight variables used in the NCHRP 3-70 model.   In addition the 

Cumulative Logit Model can estimate the distribution of LOS rating as compared to a 

mean rating of LOS as estimated by the NCHRP 3-70 model. 
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Table 5. 1 Evaluation of Pedestrian Cumulative Logit Model 

 

Clip No. 
Validatio

n LOS 

NCHRP 

Model 1 LOS 

Cum. Logit 

Model 

215 C D D 

227 D C B 

230 E B B 

221 E D C 

224 D E D 

228 D E E 

226 C C D 

232 C B D 

229 C D C 

205 B B B 

211 C C D 

214 C B D 

225 B B B 

218 C B B 

222 C B B 

219 B B C 

220 B C B 

223 C A B 

210 B B C 

216 C D C 

217 B C B 

203 C C B 

204 D D D 

231 C  D 

201 D D B 

209 E C B 

206 E B C 

208 D D D 

Percentage Exact Match to Validation Data 100% 35% 35% 

Percentage Within 1 LOS of Validation  Data 100% 87% 83% 

 

 

 

 

 

 



 

127 

Table 5. 2  Pearson Correlation Coefficients of Pedestrian LOS Models 

 

Models Compared Pearson Correlation Coefficient 

HCM LOS to Mean Observed LOS 0.059 

NCHRP LOS to Mean Observed LOS 0.468 

Model LOS to Mean Observed LOS 0.326 

 

By using the cumulative logit model approximately 15 percent of the estimation ability 

has been lost.  However, the NCHRP pedestrian model was created using twenty eight 

variables that are often difficult to collect, such as pedestrian delay, right turning vehicles 

on red and pedestrian volumes.  Such a model would involve considerable efforts and 

resources which may not be attractive for practitioners potentially resulting in a lack of 

proper use of the model or lack of use at all.  The Cumulative Logit Model developed in 

this study used only three variables that are easy to collect in the field or are in many 

cases readily available to practitioners. 

 

5.3    Cumulative Logit Bicycle LOS Model Validation 

 

 

The Cumulative Logit Bicycle LOS Model created with this dissertation was tested for its 

ability to estimate the LOS ratings.  The validation data reserved for this process was 

used.  The comparison is shown in Figures 5.5 through 5.8.  These four clips, similarly 

with the pedestrian data, had the largest number of data points to develop a robust 

distribution of data. The LOS ratings estimated by the model follow the same trend of the 

video clip ratings distribution which suggests a good fit of the model to the data.  In Clips 

309 and 321, the validation data does not have any LOS A ratings.  This fact can be due 
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to the fact that the facilities in these clips did not have a bicycle lane and the traffic 

volume was high.  LOS F is also under predicted by the model slightly.  This fact can be 

attributed to the large traffic volume.   
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Figure 5. 5 Comparison of LOS Distribution - Clip 309 and 

Estimated Bicycle LOS Rating 
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Clip 321
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Figure 5.6 Comparison of LOS Distribution - Clip 321 and 

Estimated Bicycle LOS Rating 
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Figure 5.7 Comparison of LOS Distribution - Clip 324 and 

Estimated Bicycle LOS Rating 
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Clip 320
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Figure 5. 8 Comparison of LOS Distribution - Clip 320 and 

Estimated Bicycle LOS Rating 

 

 

Table 5.3 presents the evaluation of the bicycle model in comparison with the validation 

data and the NCHRP 3-70 bicycle model.  The Cumulative Logit Model for the bicycle 

mode has been created to provide a better analysis of the existing data set than the one 

provided by the NCHRP 3-70 study as it utilizes all of the available data points, provides 

all the response categories and provides a complete distribution of LOS ratings based on 

participant ratings of LOS. 
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An evaluation of the Cumulative Logit model has been presented in Table 5.3.  The 

Cumulative Logit Model matches the ratings of the validation data 38 percent of the time 

while the regression model developed by the NCHRP 3-70 matched only 27 percent of 

the time.   

 

Table 5. 3  Evaluation of Bicycle Cumulative Logit Model 

 

Clip # 
Validation 

LOS 

NCHRP Model 

1 LOS 
Cum. Logit Model 

328 B C C 

330 A C C 

306 B C C 

305 C D C 

307 C C C 

304 B C C 

303 B D E 

319 C D D 

311 C D A 

329 A D E 

302 C D E 

327 C D B 

309 C C C 

313 C E D 

308 C D C 

320 D D D 

321 E D D 

318 E F F 

322 E E F 

310 E F E 

301 E E E 

312 E D C 

317 E E E 

314 E F E 

323 E E F 

324 E D E 

Percentage Exact Match to Validation Data 100% 27% 38% 

Percentage Within 1 LOS of Validation  Data 100% 85% 77% 
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The Cumulative Logit Model provides values that are closer to the video clip LOS, 

indicating a stronger model.  The Cumulative Logit Bicycle Model was further tested by 

performing the Pearson Correlation analysis between the validation dataset and the 

Cumulative Logit Model estimated LOS and for the validation LOS and the NCHRP 3-70 

regression model.  The results of the test are presented in Table 5.4. 

 

Table 5.4 Pearson Correlation Coefficients of Bicycle LOS Models 

 

Models Compared Pearson Correlation Coefficient 

HCM LOS to Mean Observed LOS 0.016 

NCHRP LOS to Mean Observed LOS 0.709 

Model LOS to Mean Observed LOS 0.618 

 

 

This model was developed using significantly fewer variables than the existing regression 

model developed in NCHRP 3-70.  Also, the new model gives the distribution of ratings 

as compared to the mean of the ratings given by the existing model.  The newly created 

bicycle model was selected for use in the optimization model for bicycle mode and 

ultimately in the Multi-objective Optimization Model.   

 

5.4    Multi-objective Optimization Model – Sensitivity Analysis 
 

The Multi-objective Optimization Model provides a method of distributing a given Right 

of Way (ROW) width between three modes.  As designed, the model provides now equal 

weights for the three modes giving equal importance to all mode users.  To test the model 

five different scenarios were created and presented here. 
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Scenario A – 100 ft ROW Width 

This scenario represents a cross section design where the number of lanes has been set to 

three in each direction.  Equation 5.1 presents the design elements included which are 

constraints defined in Chapter 4: Median Width, Number of Lanes, Lane Width, Sidewalk 

Width, Bike Lane Width and a fixed value for a grass strip, as required by AASHTO.  The 

schematic in Figure 5.9 presents the results of the Multi-objective Optimization Model.  

The Number of Lanes result is for the lanes in one direction of traffic.  The urban street 

features selected through the Optimization Model resulted in the lowest level of 

satisfaction for all three modes.  The three modes have been accommodated at a less than 

desirable level of service.  For drivers it appears that the level of satisfaction given by a 

large (upper threshold) number of lanes is counterbalanced by the dissatisfaction with a 

lower average space mean speed and the absence of a median.  For practitioners this may 

mean that providing a median perhaps at the expense of having fewer lanes may provide 

a higher level of satisfaction with the facility.  The results of the model are presented in 

Table 5.5. 
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2*)'2

*(

dthBikeLaneWiGrassStrip

dthSidewalkWiLaneWidthNoLaneshMedianWidtOWWidthOptimizedR

 Equation 5.1 
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Figure 5. 9 Scenario A – Schematic of Multi-objective Optimization Model Results 

 

 

Auto 

Probability of 

LOS D or 

less = 0.154 

 

Pedestrian 

Probability of 

LOS D or  

less= 0.411 

 

 

Bicycle 

Probability of 

LOS D or  

less= 0.314 

 

MW=0 ft;   NL=3;  LW=12 ft;  SWW=8 ft;  GS=2 ft;  BLW=4 ft;    

SMS=29 mph;   PSL=20-30 mph 
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Table 5.5 Multi-objective Optimization Model Results for Scenario A 

 

Minimize Z Z=5.14 

Auto Mode Pedestrian Mode Bicycle Mode 

Variable Optimized 

Value 

Variable Optimized 

Value 

Variable Optimized 

Value 

*1/1 PP  
14.5

030.0

154.0

 

*2/2 PP  
22.2

185.0

411.0

 

*3/3 PP  
14.5

061.0

314.0

 

SMS 29 NL 3 NL 3 

MP 0 SWC 1 PSL 0 

MW 0 LW  12 BWC 1 

MT0 1 SW  8 BW 4 

MT1 0     

MT2 0     

MT3 0     

ROWWOROWWA

FTROWWA 100  

2*)*( BLWGSSWWLWNLMWROWWO  

FTROWWO 100  
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 For the auto mode, approximately 85 percent (1-0.154) of the users are most 

likely to rate this facility above LOS D.  The urban street cross section allows for 

six through lanes in both directions at 12 feet wide.  The absence of a median 

provides the least desirable scenario for automobiles.   

 For the pedestrian mode, approximately 60 percent (1-0.411) of the users are most 

likely to rate the facility above LOS D.  This finding can be explained by the 

sidewalk width of 8 feet and the presence of a grass strip providing separation 

between the pedestrians and automobile traffic.  The Average Space Mean Speed 

and the Posted Speed Limit are both at the low threshold resulting in an acceptable 

level of satisfaction for the pedestrians. 

 For the bicyclists 69 percent (1-0.314), are most likely to rate the facility above 

LOS D. 

Scenario A represents a less desirable cross section design for urban streets where the 

three modes are at the lowest level of satisfaction compared to the scenarios that follow.  

Scenario A1, with results presented in Table 5.6 was built by using Scenario A and 

forcing the number of lanes to remain two or fewer in each direction.   
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Table 5. 6  Optimization Model Results for Scenario A1 

 

Minimize Z Z=2.42 

Auto Mode Pedestrian Mode Bicycle Mode 

Variable Optimized 

Value 

Variable Optimized  

Value 

Variable Optimized 

 Value 

*1/1 PP  
42.2

030.0

073.0

 

*2/2 PP  
54.1

185.0

285.0

 

*3/3 PP  
42.2

061.0

147.0

 

SMS 31 NL 2 NL 2 

MP 3 SWC 1 PSL 0 

MW 22 LW  12 BWC 1 

MT0 0 SW  8 BW 5 

MT1 0     

MT2 0     

MT3 1     

ROWWOROWWA

FTROWWA 100  

2*)*( BLWGSSWWLWNLMWROWWO  

FTROWWO 100  
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Scenario A2, with results presented in Table 5.7, was built by using Scenario A and 

forcing the number of lanes to remain one in each direction. 

 

Table 5. 7 Multi-objective Optimization Model Results for Scenario A2 

 

Minimize Z Z=1.75 

Auto Mode Pedestrian Mode Bicycle Mode 

Variable Optimized 

Value 

Variable Optimized 

Value 

Variable Optimized 

Value 

*1/1 PP  
75.1

030.0

053.0

 

*2/2 PP  
00.1

185.0

185.0

 

*3/3 PP  
00.1

061.0

061.0
 

SMS 35 NL 1 NL 1 

MP 3 SWC 1 PSL 0 

MW 48 LW  12 BWC 1 

MT0 0 SW  8 BW 4 

MT1 0     

MT2 0     

MT3 1     

ROWWOROWWA

FTROWWA 100  

2*)*( BLWGSSWWLWNLMWROWWO  

FTROWWO 100  
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When comparing Scenarios A, A1 and A2 which have been built to force the number of 

lanes to be three or fewer, two or fewer, and one respectively, the perceived LOS has 

increased as the number of lanes decreased for all three modes.  It should be noted that 

the auto LOS was found to increase due to the increase in required Space Mean Speed 

which may or may not be achievable but can be estimated by engineers and planners 

using simulation tools.  Also, the LOS for drivers decreased as the median type decreased 

to 0 indicating that a raised median is the most desirable scenario for drivers.   

For pedestrians and bicyclists, as the number of lanes increased the perceived LOS 

decreased, despite the fact that the bicycle lane and sidewalk widths remained relatively 

the same.  In conclusion, the three modes appear to be satisfied at a higher LOS when the 

number of lanes is one or two and there is a raised median present.  Figure 5.10 was 

created to graphically depict the results for scenarios A, A1 and A2. 
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Figure 5.10 Sensitivity Analysis of Multi-objective Optimization Model 
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Scenario B - “Green Streets” 

 

Under this scenario the ROW width includes a 15 foot grass strip and a wider median 

width as presented in Equation 5.2.  The following design parameters need to be 

considered: 

 

2*)'15

*(

dthBikeLaneWiGrassStrip

dthSidewalkWiLaneWidthNoLaneshMedianWidtOWWidthOptimizedR

 Equation 5.2 

 

Generously sized grass strips allow for consideration of Low Impact Development (LID) 

measures briefly presented below.  LID measures enable the designer to mimic the pre-

development hydrology of the soil by allowing rain water to infiltrate without traveling to 

an end point treatment facility.  Several conditions have to be met, for this type of 

development, which have been presented below.  The median and the grass strip can be 

graded to provide infiltration swales.  To allow the rain water runoff from the streets to 

be collected in the swales it is preferred to have no curb and gutter along the streets.  

Eliminating this feature is not acceptable practice in some jurisdictions thus making this 

scenario not feasible in those jurisdictions (NRDC, 2009). 

 

The probabilities for LOS D or less have decreased from Scenario A despite the fact that 

both sidewalk width and bicycle lane width did not change.  This fact could represent a 
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decline in model sensitivity as variables values are maximized.  The upper threshold for 

the number of lanes for this scenario has been set at three in one direction; however, this 

constraint of the model can be changed to allow for more or for fewer lanes.  It has to be 

noted that by increasing the number of through lanes the LOS for bicyclists and 

pedestrians will most likely decrease. 

 

Scenario B represents an environmentally friendly sustainable option for Complete Street 

design and it should be considered where favorable conditions exist.  The scenario can be 

further tailored to the needs of the community where will ultimately be implemented.  

The optimization model that generated this scenario is presented in Figure 5.11 below.  

The results of the model have been presented in Table 5.8.   
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Figure 5. 11 Scenario B “Green Streets” – Schematic of Multi-objective 

Optimization Model Results 
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Table 5.8 Multi-objective Optimization Model Results for Scenario B “Green 

Streets” 

 

Minimize Z Z=3.80 

Auto Mode Pedestrian Mode Bicycle Mode 

Variable Optimized 

Value 

Variable Optimized 

Value 

Variable Optimized 

Value 

*1/1 PP  
80.3

030.0

114.0

 

*2/2 PP  
70.1

185.0

314.0
 

*3/3 PP
 

96.2
061.0

181.0

 

SMS 25 NL 2 NL 2 

MP 3 SWC 1 PSL 0 

MW 40 LW  12 BWC 1 

MT0 0 SW  8 BW 5 

MT1 0     

MT2 0     

MT3 1     

ROWWOROWWA

FTROWWA 150
 

2*)*( BLWGSSWWLWNLMWROWWO  

FTROWWO 150  
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Scenario C – 80 ft ROW Width 

The perceived level of satisfaction for drivers, pedestrians and bicycles increased, when 

compared with Scenario B for the cross section provided with this scenario.  Equation 5.3 

presents the street characteristics included.  

2*)

*(

dthBikeLaneWi

dthSidewalkWiLaneWidthNoLaneshMedianWidtOWWidthOptimizedR

 Equation 5.3 

 

The urban street features selected through the Optimization Model for this scenario 

generated similar levels of satisfaction for all three modes: auto mode (P1/P1
*
=2.16), 

pedestrian mode (P2/P2
*
=1.54) and bicycle mode (P3

 
/P3

*
=2.42).  The balancing of the 

three objectives resulted in different values for each mode reflecting the fact that the 

independent variables take only integer values.  The variables were set in this manner in 

order to obtain realistic results.  Where the independent variables can take any value, the 

levels of satisfaction for the three modes would be equal.  This scenario provided the 

values for the urban street characteristics that accommodated the three modes 

simultaneously at similar modal LOS. 

 

 For the auto mode, approximately 90 percent (1-0.065) of the users are most 

likely to rate this facility at LOS C and above.  The urban street cross section 

allows for two, 12-foot through lanes.  The median type was changed to 2 

which represents a 14-foot central two way left turn lane.  Because the 
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probability of being rated as LOS C and above increased from Scenarios A 

and B it leads to the conclusion that drivers do not see an impediment in 

having a marked median in place of a raised median.  Because the Traffic 

Volume variable was not highly correlated with the LOS rating, and it was not 

included among the decision variables for the optimization model, it can be 

concluded that this scenario lacks strong proof that drivers will be more 

satisfied with two through lanes rather than three through lanes in one 

direction.  This conclusion leads to recommendations for future research.  

 For the pedestrian mode, approximately 82 percent (1-0.285) of the users are 

most likely to rate the facility at LOS C or above.  In this Scenario the grass 

strip has also been eliminated, and the sidewalk width is 4 feet.  The number 

of lanes decreased to one in each direction providing additional sense of safety 

resulting in an increase in the perceived level of satisfaction.   

 For the bicyclists, this scenario provides the optimum LOS.  The bicycle lane 

width is at the upper threshold and the number of through lanes is at the lower 

threshold resulting in a lower number of automobiles on the road thus 

influencing positively the perceived bicycle LOS.  The fact that the posted 

speed limit and the average mean speed are also at the low thresholds are 

perceived positively by the bicyclists also contributing to the high LOS.    

Figure 5.12 represents the optimization model that generated this Scenario. 
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Figure 5. 12  Scenario C– Schematic of Multi-objective 

Optimization Model Results 
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Table 5.9 Multi-objective Optimization Model Results for Scenario C 

  

Minimize Z Z=5.14 

Auto Mode Pedestrian Mode Bicycle Mode 

Variable Optimized 

Value 

Variable Optimized 

Value 

Variable Optimized 

Value 

*1/1 PP  
27.3

030.0

098.0

 

*2/2 PP
 

22.2
185.0

411.0

0. 

*3/3 PP  
14.5

061.0

314.0

 

SMS 35 NL 3 NL 3 

MP 0 SWC 1 PSL 0 

MW 0 LW  12 BWC 1 

MT0 1 SW  8 BW 4 

MT1 0     

MT2 0     

MT3 0     

ROWWOROWWA

FTROWWA 80  

2*)*( BLWGSSWWLWNLMWROWWO  

FTROWWO 80  

 

 

The five scenarios presented provide insight in the Multi-objective Optimization Model 

by analyzing how the perception of LOS is influenced when characteristics of the streets 

vary.  
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5.5 Model Validation and Sensitivity Conclusions 

 

This chapter presented the findings of the model validation for the pedestrian and bicycle 

Cumulative Logit LOS Models as well as a sensitivity analysis for the Multi-objective 

Optimization Model.  As was noted, the new Cumulative Logit Models for the pedestrian 

and bicycle modes provide the analyst with methods to determine the entire distribution 

of traveler perceptions of service on urban streets.  In addition, the models performed 

well as compared to the validation data set.  One of the most important contributions 

through this effort lies in the ability to simplify the requirements on engineers and 

planners to estimate traveler perceived LOS for the pedestrian and bicycle modes on 

urban streets.  The data requirements have been greatly reduced to only a few variables as 

compared to the large data requirements of the previously developed NCHRP 3-70 linear 

regression models that can estimate the mean traveler perceived LOS.  The use of the 

Cumulative Logit Models for all three modes was included in the Multi-objective 

Optimization Model which was demonstrated through various examples of its application 

also in this chapter.   

The Multi-objective Optimization Model has the ability to provide engineers and 

planners with alternative methods to analyze their choices in the design of urban street 

ROWs to best accommodate the bicycle, pedestrian, and auto modes on urban streets.  

Figure 5.13 has been provided to review the steps taken through this modeling effort. 

 



 

150 

 

 

 

Figure 5.13 Multi-objective Optimization Modeling Path 
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CHAPTER 6: CONCLUSIONS 

 

 

 This dissertation analyzed an existing data set to determine the street 

characteristics that affect travelers’ perceptions of LOS and combined the results of the 

selected method into a Multi-objective Optimization Model for street design.   

 

Cumulative Logit Models to estimate travelers’ perceptions of LOS on urban streets were 

developed in the pursuit of a Complete Streets design tool.  The Cumulative Logit 

Models developed for the pedestrian and bicycle mode showed that the number of 

through lanes, the posted speed limit and the width of the sidewalk and bike lane, 

respectively, are among the most highly correlated street characteristic to pedestrian and 

bicycle LOS.  When compared to the existing regression analysis models, the cumulative 

logit modeling technique was determined to be a more powerful and accessible model to 

determine the probabilities of travelers perceived LOS.  This technique provides 

practitioners with the distribution of LOS ratings and these models require fewer number 

of variables that are easily accessible.  

 

The probabilities of LOS ratings obtained with the cumulative logit models were 

incorporated into the proposed CRISTEI Multi-objective Optimization Model.  The first 
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three steps of the model were accomplished by creating three Single-objective 

Optimization Models, one for each of the three modes.  The probabilities of obtaining 

ratings for LOS D or less were estimated for the auto mode from an existing cumulative 

logit model, and for the pedestrian and bicycle modes from newly created cumulative 

logit models.  The street characteristics selected for these models were translated into 

constraints for three single-objective optimization models, one for each of the three 

modes.  The results of these models were the minimum probabilities that travelers would 

rate a facility at LOS D or less.  

 

The fourth step of the CRISTEI Multi-objective Optimization Model consisted of 

incorporating the three single-objective models into one multi-objective model. 

The objective function of this model was to balance the probabilities of LOS ratings, 

constrained by a series of factors, and to prevent them from falling below the minimum 

probability calculated.  The objective function was subject to decision variables and 

constraints selected from the data used and from standards.  The constraint that brought 

the street characteristics for the three modes together was the ROW width.  This 

constraint compared a given ROW width value with an equation for ROW width 

containing the values for street characteristics.  Several scenarios that were created by 

varying the ROW width were created to show the sensitivity of the model to variation in 

street characteristics.  The scenarios showed that the CRISTEI model provides 

information about travelers’ satisfaction with different street designs. 
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The CRISTEI Multi-objective Optimization Model surpassed the previously created 

models by including three travel modes simultaneously into one optimization model. 

It has been designed using readily available software thus creating a scholastic interface 

that allows easy manipulation of the components.  However, the model can be further 

designed into a user-friendly interface that, when given to a designer, would allow the 

simple operation of inserting the given ROW width in a cell and a function button would 

be clicked for the model to start the iteration process.  The final result would be the 

values for the street characteristics included in the design of a street segment. The 

Complete Street design will accommodate automobiles, pedestrians and bicycles within 

the same ROW while achieving an LOS level determined by the designer.  The objectives 

of this dissertation were to design Cumulative Logit LOS Models for the pedestrian and 

bicycle modes and a Multi-objective Optimization Model to design Complete Streets 

which has been accomplished and demonstrated in this document.  
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CHAPTER 7: RECOMMENDATIONS 

 

 

 The CRISTEI Multi-objective Optimization Model proposed with this dissertation 

was an approach selected that was determined appropriate due to the structure of the data 

and the goal of the model.  It is certain that different approaches can be explored in future 

studies, such as evolutionary computations.  In addition, future models could incorporate 

cost calculations and a construction budget that the Optimization Model is indirectly 

including when restricting the ROW width. 

Further, the CRISTEI Multi-objective Optimization Model does not include the transit 

mode due to the limits of the data collected through the NCHRP 3-70 study.  Additional 

data collection could be conducted to allow for the inclusion of the transit mode in future 

studies.   

Also, the perception of travel modes by the occupants of the adjacent facilities i.e. 

residents of private homes and people working in buildings adjacent to streets has not 

been considered and could be a deciding factor in adding or excluding sidewalks and 

bicycle lanes to urban street facilities.  

The model can be further perfected where a bullet-proof interface would be presented to 

the user.  An empty cell would allow the user to enter the available ROW width and a 
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command button would allow the user to start the calculation process.  Several 

conditional cells would be created to provide the user with error messages.   

Several different options of the model can also be created where the user would have the 

ability to enter certain preferences, including the weight of a certain mode in comparison 

with the other modes.  For example, where the bicycle traffic is very low, the contribution 

of the level of satisfaction of bicycle riders could be proportionally smaller then the level 

of satisfaction of the other modes in the overall optimization.  Also, a single model can be 

created to combine several different scenarios where the user could select the constraints 

and the weights for each mode. 

Overall the model performed well and provides a unique approach to the design of urban 

streets which can be termed Complete Streets.  The methods provided within this 

document provide insight into the perceptions of level of service by bicycle and 

pedestrian modal users on urban streets, as well as providing a method for engineers and 

planners to design urban Complete Streets to reflect traveler’s perceptions of service and 

relevant design standards. 

 

 

 

 

 

 

 

 

 

 

 

 



 

156 

APPENDIX 1 

 

The data used for developing this dissertation has been collected through the NCHRP 3-

70 effort.  This Appendix includes a more detailed review of the data collection process 

in NCHRP 3-70, including:  

 Development of testing stimuli 

 Data collection methods (field and survey) 

 Modeling efforts for the auto, pedestrian, bicycle, and transit modes 

 Use of NCHRP 3-70 data for this dissertation 

 

 

NCHRP 3-70 Development of Testing Stimuli 

 

For auto mode, the data collection took place in two phases. During phase I of the study 

the street characteristics that proved to be the most important to participants were 

identified and used in the selection of the arterials for the second phase of the study for 

auto mode. The videotaping took place on pre-selected arterials. All videos were created 

in daylight conditions on days without precipitation.  The materials used for filming the 

video clips were: 

 Standard rented vehicles; 

 Two video cameras (one for driver’s perspective and one for the speedometer) 

and one GPS unit; 

 Two camera tripods. 

After the videotaping was complete, video clips were created using a series of software 

and video devices. The team of researchers identified the segments of the roadway that 

had consistent cross sections, lane positions and speed limit.  Video clips were created 

that depicted various scenarios on urban streets.  The video clips were shown to a total of 

145 participants at four different locations in the US with four video clips shown to all 

participants in all locations and a unique additional six clips shown in each location.  This 

resulted in a total of 1400 observations of auto traveler perceived LOS.   

 

The data collection for the bicycle mode differed from the auto mode due to the different 

type of environmental factors that bicycle riders encounter.  Field studies are the most 

desirable for this mode; however, this type of study imposes great risks on the 

participants. The research team selected the video simulation method with a “moving 

camera” approach. The collection of video clips used for the study included clips created 

by Sprinkle Consulting of Florida. A total of 30 bicycle video clips were created and 

showed to participants at four different locations within the US.  Table 5 shows the video 

clip distribution by study location. 

 

Pedestrian data collection was also performed using video simulation at four locations in 

the US. The locations were selected using a matrix of geometric and operational criteria 
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representing typical ranges of urban streets in the US. To perform the video taping the 

following materials were used: 

 Steady-cam unit; 

 Stereo microphone. 

For the data collection process video clips were selected for each mode. Four of the video 

clips were showed to all participants, and a total of ten were shown to each participant, as 

depicted in Tables A.1.1, A.1.2 and A.1.3. 

 

Table A.1.1: Auto Clip Sequence in Each of the Study Locations 

 

Presentation 

Order 

Location of Video Laboratory –Auto Clips Shown 

New Haven, 

CT 

Chicago, IL Oakland, CA College 

Station, TX 

Pilot Clip 25 25 25 25 

1 21 20 12 15 

2 55 56 56 7 

3 52 10 8 52 

4 60 51 65 13 

5 53 14 59 58 

6 56 2 29 56 

7 54 62 6 2 

8 2 63 15 1 

9 15 52 2 61 

10 57 15 52 64 
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Table A.1.2: Bicycle Clip Sequence in Each of the Study Locations 

 

Presentation 

Order 

Location of Video Laboratory –Bicycle Clips Shown 

New Haven, 

CT 

Chicago, IL Oakland, 

CA 

College Station, 

TX 

Pilot Clip 326 326 326 326 

1 301 319 302 311 

2 323 308 310 328 

3 321 306 305 324 

4 320 309 324 315 

5 317 320 327 309 

6 312 318 321 313 

7 309 304 309 303 

8 307 324 322 319 

9 314 321 330 320 

10 324 329 320 321 

Total Clip 

Time 

13 min 13 min 13 min 13 min 

 

Table A.1.3: Pedestrian Clip Sequence in Each of the Study Locations 

 

Presentation 

Order 

Location of Video Laboratory –Pedestrian Clips Shown 

New Haven, 

CT 

Chicago, IL Oakland, CA College 

Station, TX 

Pilot Clip 212 212 212 212 

1 223 201 215 208 

2 208 226 220 217 

3 226 225 206 215 

4 204 208 201 214 

5 205 219 227 201 

6 203 228 226 230 

7 201 211 209 218 

8 231 215 216 232 

9 215 229 224 226 

10 210 222 208 221 

Total Clip 

Time 

16 min 18 min 16 min 19 min 
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Table A.1.4: Pedestrian Video Clip Characteristics 
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215 8 60 12 0 50% Y 7 170 1 25 

227 6 200 16 0 0% Y 4 630 2 30 

230 6 220 12 0 0% N 5 220 2 30 

221 4 640 16 0 0% Y 3 0 1 30 

224 4 1320 12 0 100% Y 2 80 1 30 

228 6 180 10 0 40% Y 1 370 1 30 

226 9 190 20 0 50% Y 5 1180 2 40 

232 6 0 16 4 0% N 0 540 1 45 

229 6 280 10 0 40% Y 0 310 1 30 

205 10 0 12 4 0% N 10 200 2 30 

211 4 0 12 0 0% N 5 570 1 45 

214 9.5 0 12 5 0% N 35 2030 3 45 

225 9 280 20 0 50% Y 5 1050 2 40 

218 15 340 12 0 0% N 12 60 1 30 

222 6 610 16 0 50% Y 3 220 2 30 

219 7 640 16 0 100% Y 4 150 1 30 

220 7 820 16 0 100% Y 4 150 1 30 

223 6 1600 16 0 50% N 3 0 2 30 

210 0 0 12 0 0% N 0 160 2 30 

216 6 0 12 0 0% N 0 360 1 30 

217 6 0 12 0 0% N 0 300 1 30 

203 10 0 12 4 0% N 15 270 2 30 

204 10 0 12 4 0% N 15 160 2 30 

231 5 0 12 0 0% N 6 570 1 35 

201 0 0 10 0 0% N 0 270 2 20 

209 0 0 12 4 0% N 0 2170 4 45 

206 5 0 12 5 0% N 23 1690 4 50 

208 0 30 12 4 0% N 0 1750 4 45 
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Table A.1.5: Pedestrian Variables 

 

 

Pedestrian 

No. Variable Range 

  Clip No. # 

1 Sidewalk Width 0 TO 15 

2 Pedestrian Flow Rate (pph) 0 TO 1600 

3 On-street Parking (%) 0,40,50,10 

4 Number of Traffic Lanes (lanes) 1,2,3,4 

5 Outside Lane (ft) 10 TO 20 

6 Barier (Y/N) Y/N 

7 Posted Speed Limit (mph) 20 to 45 

8 Shoulder width 0,4,5 

9 Buffer Width (ft) 0 to 35 

10 Dir. Vol. 0 to 2170 
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Table A.1.6: Auto Video Clip Characteristics - Part 1 

 
Clip No. 1 2 5 6 7 8 10 12 13 14 15 1

6 
Clip Distance 

(miles) 
0.50 0.46 0.50 0.43 0.48 0.49 0.53 0.47 0.50 0.50 0.50 0.

55 

Street Name 
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G
le

b
e 

R
d

 

 F
ai

rf
ax

 D
ri

v
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HCM Class 1 3 3 3 3 3 3 3 3 2 2 3 

LOS per HCM 1 6 5 3 4 2 3 3 5 1 1 1 

No of Through 

Lanes 
3 2 2 2 2 2 1 2 1 3 3 2 

Presence of 

median 
3 3 3 1 1 1 0 0 0 3 3 3 

Total Travel Time 

(sec) 
119 48 60 87 86 130 113 118 71 161 229 

13

6 

Space Mean Speed 15.1 34.5 30.0 18.3 20.1 13.6 16.9 14.3 25.4 11.2 7.9 
12

.1 

Ped on sidewalk 0 0 2 2 2 2 2 0 1 2 2 2 

# of stops (below 5 

mph) 
1 0 0 1 0 2 2 2 0 3 3 4 

Total # of Signals 2 3 3 2 3 5 3 2 1 3 3 4 

Pres of Excl LT L 

Signals 
1 1 1 1 1 1 0 0 0 1 1 1 

Presence of RTL 

Signals 
1 1 1 0 0 1 0 0 0 1 1 1 

Tree Presence 2 2 1 1 1 1 3 1 3 1 1 1 

Average Lane 

Width (ft) 
12 13 14 14 14 12 12 11 12 11 11 11 

Width of Median 

(ft) 
54 4 0 0 0 0 0 0 0 4 4 10 

Right  Shoulder 

Width (ft) 
0 0 0 0 0 0 0 0 0 0 0 0 

Left Shoulder 

Width (ft) 
3 0 0 0 0 0 0 0 0 0 0 0 

Width of Parking 

Lane (ft) 
0 0 7 7 7 8 8 8 8 0 0 8 

Width of sidewalk 

(ft) 
4 4 10 4 10 14 6 11 6 8 8 16 

Sep ROW to 

Sidewalk 
3 3 0 0 0 0 0 5 0 0 0 0 

Width of Bike 

Lane (ft) 
0 0 5 0 5 6 0 0 0 0 0 5 
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Table A.1.7: Auto Video Clip Characteristics - Part 2 

 
Clip No. 19 20 21 23 25 29 30 31 51 52 53 54 

Clip Distance 

(miles) 
0.52 0.55 0.50 0.54 0.54 0.50 0.55 0.50 0.44 0.41 0.60 0.

60 

Street Name 
2
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HCM Class 4 1 1 4 4 2 4 4 4 4 2 2 

LOS per HCM 4 2 2 2 3 4 1 1 1 2 3 4 

No of Through 

Lanes 
2 2 2 2 2 3 2 2 2 2 2 2 

Presence of 

median 
0 3 3 0 0 3 0 0 0 0 3 2 

Total Travel Time 

(sec) 
116 122 89 243 179 79 2998 471 240 186 121 93 

Space Mean Speed 16.1 16.2 20.2 8.0 10.9 22.8 6.6 3.8 6.5 7.9 18.5 24

.5 

Ped on sidewalk 2 2 2 2 2 0 2 2 2 2 0 0 

# of stops (below 5 

mph) 
3 1 2 3 2 1 8 9 4 3 1 2 

Total # of Signals 8 2 3 8 8 3 8 8 9 7 2 4 

Pres of Excl LT L 

Signals 
0 1 1 0 0 1 0 0 0 0 1 1 

Presence of RTL 

Signals 
0 0 1 0 0 1 0 0 0 0 1 1 

Tree Presence 2 1 2 1 1 2 1 1 1 1 2 3 

Average Lane 

Width (ft) 
10 11 11 10 10 12 10 10 10 10 12 12 

Width of Median 

(ft) 
0 17 17 0 0 54 0 0 0 0 15 14 

Right  Shoulder 

Width (ft) 

0 8 8 0 0 0 0 0 0 0 0 4 

Left Shoulder 

Width (ft) 
0 2 2 0 0 3 0 0 0 0 0 4 

Width of Parking 

Lane (ft) 

7 0 0 10 10 0 10 10 10 10 0 0 

Width of sidewalk 

(ft) 

6 0 0 10 10 0 10 10 10 10 4 4 

Sep ROW to 

Sidewalk 

5 0 0 0 0 0 0 0 0 0 4 10 

Width of Bike 

Lane (ft) 
0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.1.8: Auto Video Clip Characteristics - Part 3 

 
Clip No. 55 56 57 58 59 60 61 62 63 64 65 

Clip Distance (miles) 0.45 0.50 0.61 0.60 0.61 0.50 0.70 0.50 0.50 0.50 0.50 
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HCM Class 2 2 2 2 2 2 1 1 1 1 2 

LOS per HCM 1 4 3 1 1 2 4 5 6 2 6 

No of Through 

Lanes 
2 2 2 2 2 2 3 3 2 2 2 

Presence of median 3 3 0 3 0 2 0 0 3 3 2 

Total Travel Time 

(sec) 
128 77 129 144 182 120 91 49 53 92 50 

Space Mean Speed 12.7 23.1 17.4 11.2 12.1 15.0 27.7 36.7 41.9 19.6 36.0 

Ped on sidewalk 0 0 0 0 0 0 0 0 0 0 0 

# of stops (below 5 

mph) 
1 1 2 1 3 1 1 0 0 1 0 

Total # of Signals 1 1 2 3 2 3 3 2 2 3 3 

Pres of Excl LT L 

Signals 
1 1 0 1 0 1 1 1 1 1 1 

Presence of RTL 

Signals 
1 0 0 0 0 0 0 0 1 0 0 

Tree Presence 3 3 3 3 3 1 3 3 3 3 2 

Average Lane Width 

(ft) 
12 12 12 12 12 12 12 12 12 12 12 

Width of Median (ft) 15 8 0 10 0 14 0 0 6 6 14 

Right  Shoulder 

Width (ft) 

0 0 0 0 0 0 0 0 4 0 0 

Left Shoulder Width 

(ft) 
0 0 0 0 0 0 0 0 4 0 0 

Width of Parking 

Lane (ft) 

0 0 0 0 0 0 0 0 0 0 0 

Width of sidewalk 

(ft) 

6 0 4 3 4 4 0 0 0 0 0 

Sep ROW to 

Sidewalk 

0 0 2 4 4 4 0 0 0 0 0 

Width of Bike Lane 

(ft) 
0 0 0 0 0 0 0 0 0 0 0 
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Table A.1.9 Street Characteristics Collected 

 

Auto 

No. Variable Range 

1 Clip Distance (miles) 0.4-0.6 

2 Number of Through Lanes 1 to 3 

3 Presence/Type of Median 0 to 3 

4 Total Travel Time (seconds) 50 to 471 

5 Space Mean Speed 3.8 to 41.9 

6 Ped on Sidewalk 0 to 2 

7 Avg Spot Mean Speed MPH 3.61 to 38.57 

8 Variance of Speed 26.30 to 394.89 

9 Lane Position 0 to 3 

10 PED on Sidewalk 0 to 2 

11 

Pavement Quality 
(New, Typ, Cracked/worn, Poor) 0 to 3 

12 # Stops (below 5 mph) 0 to 9 

13 Total # of Signals 0 to 9 

14 Stops/Signal (Yes, No) 0,1 

15 Pres. Of Ex. LT Lane – Signals (Yes, No) 0,1 

16 Pres. Of Rt Turn Lane- Signals (Yes, No) 0,1 

17 Quality of Lane Markings (New, Typical, Worn, Poor) 0 to 3 

18 Sign Quality 1 to 3 

19 Landscaping 0 to 3 

20 Tree Presence (Few or None, Some, Many) 1 to 3 

21 Vehicle 0,1 

22 Vehicle Driver 0,1 

23 Position in Queue at Red Lights  Sig 1-9 0-40 

24 Estimated Control Delay By Signal  Sig 1-9 0-125 

25 Average Lane Width (ft) 10 to 14 

26 Width of Median (ft) 0-54 

27 Rigth Shoulder Width (ft) 0-8 

28 Left Shoulder Width (ft) 0-4 

29 Width of Parking Lane (ft) 0 to 10 

30 Width of Sidewalk (ft) 0-16 

31 Separation from Right-of-Way to Sidewalk (ft) 0-10 

32 Width of Bike Lane (ft) 0-5.5 
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Table A.1.10: Bicycle Video Clip Characteristics 
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328 12.0 4.0 1 U 79 0 30 4 0 0 

330 12.0 4.0 1 U 136 0 30 4 0 0 

306 11.0 4.0 2 U 717 0 30 4 0 72 

305 12.0 3.5 2 D 813 8 30 3.5 0 65 

307 11.0 4.0 2 U 757 0 30 4 0 72 

304 12.0 3.5 2 D 428 0 30 3.5 0 65 

303 12.0 5.0 3 D 1211 0 50 4 0 0 

319 12.0 5.0 2 D 2961 0 45 4 70 53 

311 12.0 8.0 1 U 631 0 25 3.5 0 33 

329 12.0 4.0 2 D 1261 0 45 3.5 0 61 

302 12.0 5.0 3 D 2119 0 50 4 40 0 

327 12.0 8.0 2 U 165 0 30 3 0 40 

309 10.0 0.0 2 U 134 0 20 4 0 52 

313 10.0 0.0 3 OW 536 0 30 3.5 0 33 

308 10.0 0.0 2 U 407 0 20 4 0 86 

320 12.0 5.0 2 D 1898 0 45 4 0 64 

321 12.0 5.0 2 D 2146 0 45 4 0 0 

318 12.0 0.0 3 D 182 100 55 3.5 0 335 

322 12.0 0.0 3 D 1544 0 45 3.5 0 0 

310 11.5 0.0 2 D 1589 0 40 4 0 0 

301 12.0 5.0 3 D 2549 0 50 4 0 0 

312 12.0 0.0 1 U 631 0 25 3.5 0 49 

317 12.0 0.0 2 D 495 17 55 3 0 0 

314 12.0 0.0 2 D 638 0 45 3.5 0 142 

323 12.0 0.0 3 D 357 0 45 3.5 0 142 

324 12.0 4.0 3 D 636 0 45 4 0 887 
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Table A.1.11: Bicycle Variables 

 

Bicycle 

No. Variable Range 

1 Outside Lane (ft) 10 to 12 

2 Bike Lane/ Shoulder width (ft) 0 to 8 

3 Number of Through Lanes 1,2,3 

4 Divided DUD U,D,One Way 

5 Peak Hour Volume (vph) 79-2961 

6 Heavy Vehicles 0-100 

7 Posted Speed Limit (mph) 20-55 

8 Pavement Rate15 3,4 

9 On-street Parking 0,40,70 

10 Signalized Intersection Dist ( ft) 0-887 

11 Unsignalized Conflicts Per Mile 0-40 
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