DETECTION OF CONCEPTUAL PATTERNS
THROUGH INDUCTIVE INFERENCE

Ryszard S. Michalski

Seminaries IRIA, Classification Automatique et Perception par Ordinateur,
INRIA, France, 1979.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

CLASSIFICATION AUTGMIATIOUE
ET
PERCEPTION PAR CRDINATEUR

TEXTES DES EXPOSES DU SEMINAIRE ORGANISE PAR
L INSTITUT DE RECHERCHE D’'INFORMATIQUE ET D'AUTOMATIQUE (iRIA)

ROCQUENCOURT

Octobre 1978 .- Juin 1879

Directeurs de Publication

E. DIDAY
Université Paris IX - Dauphine
IRIA / LABORIA

Y. LECHEVALLIER
IRIA/ LABORIA

[—

[SPECIMEN GRATUIT

PUBLIE PAR

rT-wﬂI
[’.J' &L&

INSTITUT NATIONAL DE RECHERCHE
ENINFORMATIQUE ET €N AUTOMATIQUE

DOMAINE DE YOLUCEAU - POCOUTMNOMUHT - R Fm 18 TEIRY ¢ F FHESM2 - TH cpRany P

DETECTION OF CONCEPTUAL PATTERNS
THROUGH INDUCTIVE INFERENCE

Ryszard S. MICHALSKI

University of lllinois
Urbana, Ili., U.5. A.

Abgiract: The determination of pattern recognitiun rules is viewed as

a problem of inductive inference, guided by gengralization ruies — which

control the generaiization process, and prebiam ewlzdge rules - which

represent the underlying semantics relzvant to the recognitioen problem
under consideration. The paper formulates the theoretical framework and

a method for inferring zeneral and optimzl (according to certain eriteriz)

descriptions of object classes from examples of classification or

partial descriptions. The language for expressing the class descriptiens
and the guidonce rules is an extenszion of the first order predicate
calculus, called variable-valued logi:c calculus VL,,. Vl,, involves

typed variables and contains several new operators, eepecially suited

for conducting inductive inference, such as gaieztor, intermal disjunziton,

thterncl conjunciion, aszepiion, gsncatization.

Important aspects of rhe chaory include:

1) a formulation of sevecal kinds of generalization rules

2) an ability to uniformly and adequazely handle descriptors {i.e.,
variables, functions and predicates) of different type (nominai,
linear and structured) aad of different arity (i.e., different number -
of arguments)

3} an ability t- generate new descriptors, which are derived Zrom the
initial descriptors thrcugh a rule-based system (i.e., an ability to
conduct the so called consorucktive 1HAUStion)

4) an ability to use the semantics underlying the problem under
conslderation.

An experimeatal computer imnlementation of the method is
briefly described and illustrated by an example.

Index Terms patiern recognition technicues, knowledge acquisition,
~generalization nmethods, irnductive inference, lezaraning
from examples, many-valued lospic, plausible infereace,

computer consulting systems, theory formation

1. INTRODUCTIION
A pattern recognition rule can be viewed as a rule
DESCRIFTICN ::> QECOGHITION CLASS (1)

which assicns a gituation (on object, a precess, 7o) to the RECOGNITION

This vork was ipporeett in opart By the lationist Stleace Fourdarf{on under
Grant HNat 04 70~-003%a. The autlor s dith Uhe Devarinent orf Coanuter
\;.

b -
Sciunve, Uedvciaioy of Titiwols, Urlnoa, D1Jinwi. 2LEH

-~ 298 -

CLASS, when the situation satisfies the DESCRIPTION. In the decision
theoretic approach the DESCRIPTION is an analytical expression involving
a set of numerical variables selected a priori. Variables spanning the
decision space are treated uniformly, are usually assumed to be measured
on at least an interval scale, and are desired to be relevant and inde-
pendent chafacteristics of the objects. .When the variables are strongly
interconnected andfcr the relevant object characteristics are not numerical
variables but various relations among other vwariables, or among parts oT
subparts of objects, ﬁhen the decision theoretic approach becomes inade-
quate. In such situations the structural approach can be useful.

In the structural (or syntactic) approach, the DESCRIPTION is
a formal grammar (usually a phase-structure grammar} in which terminals are
certain elementary parts of objects, called 'primitives'. The types of
relationships which can be expressed “néturally" in terms of a formal
grammar are, however, quite limited. If the relevant characteristics in-
clude, for example, some numerical measurements in addition fo relaticns
and symbolic concepts, then grammars involving them are very cumbersome
or inadequate. This is a strong limitation, because in many problems an
adequate class description requires bath numsrical characterizations of

objects and a specification of varlous relationships among propertles
of objects and/or of object parts, i.e.,

involve deseriptors of mixed arity* and measured on different scales.

*'arity' - the number of arguments of a descriptor. Unary descriptors
are called attributes, or, generally, variables, Two or more argument
descriptors with the value set (TRUE,FALSE)} are called predicates.

~ 298 -

To overcome this limitation attributed grammars were proposed [1]. Both the

decision theoretic approach and the svntactic approach make a1 little use of

the underlying semantics of the problem under cecnsideration, and therefore
the scope of patterns they are able to discover is limited. Also they
tend to produce descriptions which are not easily comprehensible by humans,
as they do not directly correspond to the 'natual language type' descrip-
tions which human experts would develop observing the same data, and which
they would normally like to use. Although in many applications ' human
comprehensibility' may not be important, in other applications {e.g., in
expert computer consulting systems) it is rrdcial.

This paper presents results, still early and limited, of an attempt
to develop a uniform conceptual framework and an implementation method wuich
appropriately handles descriptors of different type, is able to use the
semantics of the problem and satisfies the requirement of human comprehensi-

bility. Another aspect of this method is that Cthe final descriptions which it

produces may involve new descriptors (variables or relations) which were not
included in the initial characterization of objects. This is achieved
through the application of 'metarules' which represent the underlying knowledge

of the problem at hand and of the properties of descriptors used in formulat-

ing the descriptions of exemplary data. The presented theory uses as a

as a language for expressing the class descriptions and rules an extension ol

the first order predicate calculus, called variable-valued logic system VLZl i

and is most closely related to the body of work termed computer induction.

The ability to develop new descriptors (variables, predicates, functions]

in addition to those given a pfiori, places this work in the category of
what we call 'constructive induction'#®, as opposed to '"non-constructive
induction', in which the final descriptions relate only descriptors initiallv

provided.

*
The author thanks Latrrv Travis of the Univorsity of Wisconsin for suggesting
this name.

- 300 -

2. RELATED RESEARCH

It would be a very difficult task, requiring more space
than provided, to characterize adequately various important con-
tributions to computer Induction. Therefore, we will gake here only a very
limited and certainly not adequate review of some more recent works.

A dissatisfaction with the early work on general methods of
induction (in the early sixties) led some workers to concentrate on inductive
tasks within a specific problem domain. For example, programs collectively
called METADENDRAL [2] use a model-directed heuristic search to determine rules

that describe the molecular structure of an unknown chemical compound from

mass spectrometry data. In [3] Winston describes a method for deter-
mining a graph description of simple block structures from examples.
A program developed by Lenat [4] generates concepts (represented as
collections of apriori defined properties) of elementary wmathematics,
under the guldance of a large body of heuristic rules. Soloway and
Riseman [5] describe a method for creating multi-level descriptions
of a part of a baseball game, starting with'’snapshots' of the game,
and using rules representing general knowledge of the game.

The programs:such as those mentioned above usually incorporate
a large body of task-specific knowledge and tend to perform quite well
on tasks they were designed for. They demonstrate again that high
performance requires specialized solutions. On the other hand, it is
usually not easy to determine the general ideas they contribute to the under-
standing of inductive processes. Also, it is difficult te apply such

methods directly to other problem areas.

- 3071 -

A significant part of research has been concerned with determining
patterns in sequences of symbols (e.g., Simon [6], Waterman [7]. Simon [6]
found that descriptions of such patterns consistently incorporate only a few
basic relations: 'some' and "next' between symbols, iterations between
subpatterns, and hierarchic phrase structure. Gaines [8] developed a method
for generating finite-state automata, which approximate a given symbol string,
and represent different trade-offs between the complexity and poorness—oi-
fit, Shaw, §wartout and Green [9] developed a program for inferring Lisp
code from a set of examples of LISP statements, Also, Jouannaud
Guiho and Treouil [10]} have developed an interactive systen wvaich can Infer
a class of LISP linear recursive functions from a set of examples,

The above works are related to the general subject of grammatical
inference {(i.e., inference of a grammar which may have produced a given
set of strings}., Early work in this area was coﬁcerned with the inference
of a phrase structure grammar (e.g., Feldman et al, [11]. More recent work
moves into inferring 'multi-dimensional' grammars (e.g., work by Brayer
and Fu [12]}

In recent years there has been a new trend toward the development
of peneral methods of induction.

In previous papers the author and his collaborators [e.g., 13,14,
15) have described a methodology and computer programs for learning
optimal discriminant descriptions of object classes from examples (in the
framework of an extended propositional calculus with many-valued variables
called VLl). Examples are presented as sequences of attribute-value pairs.
Each -attribute has an associlated value set and type. Work in a similar

spirit, although more limited in scupe, was reported by Stoffel [16] (the

elementary statements used there are restricted to the 'variable-value'

forms, 1.e., to elementary selectors as describec. in Section 4&).

An early work which recognizes the need for logic style descriptions

for pattern recognition was done by Bancrji [17). A more recent continuation

- 362 -

of this work 1s in Banerji (18], and Cohen {19], who developed a logic-based
description language CODE utilizing LISP~like notation.

An important problem of induction, that of empirical prediction,
was studied by Zagoruiko [25], who developed a general method of "strengthening
hypotheses”™ by narrowing the uncertainty ranges of values of output
variables. Hendrick [26] developed a methad of learning of production

systems describing symbol series using a semantic net of predefined concepts.

Many authors use a restricted form (usually quantifier-free) of the
first-order predicate calculus (FOPC) or some equivalent notation as the feor-
mal framework for expressing descriptions and hypotheses. Morgan [20]

describes a formal method of hypothesis generation, called £f-

resolution, which stems from deductive resolution principles. Varilous
theoretical issues of induction in FOPC were considered by Plotkin [21].
Fikes, Hart and Nilsson [22] describe an algorithm for generalizing

robot plans. Hayes~Roth and McDermott (e.g., {23]), also Vere [24],
describe methods and computer programs for generating conjunctive
descriptions of least generalityl(which they call 'maximal abstractions'),
of a set of objécts repreceented by products of n-ary predicetes. The rules
of generalization which they use caﬁ be characterized as 'dropping a
condition' and 'turning constants into variables' (see section 35.3),

This paper presents a theoretical framework for generalizing

and optimizing descriptions of object classes in the form of decision
rules. The decision rules can involve descriptors of three different types!
nominal, linear and structured , employ some new syntactic forms, and use
problem knowledge for gulding Induction and generating ncw descriptors.
The formal notation is a modification and extension for FOPC, called
. This formalism is claimed to be more

21

adequate than the traditional FOPC as a conceptual framework for describing tre

variable-valued leogic system VL

inductive p-acesses under consideration. The papcys (s an extension

and modification of the report {27], ard stresses i:e conceptual principles

~ 303 -

of the induction method, rather than specific algorithms and implementation

details. Most of the latter are described in [28, 29, 30].

3, PROBLEM STATEMENT

A VL transformation rule is defined as a rule

DESCRIPTION, C—> DESCRIPTION, (2)

where DESCRIPTIDN1 and DESCRIPTION, are expressions in vLZl system (section 4),

E—>stands for various transformation operators which define the meaning

of the rule.
A DESCRIPTION may look like:
le,pbﬁon—top(pl,pz)][size(pi)=3..5][color(P2)=blue,yellnw,red] A

[1ength(pl) ' 1ength(p2)=5mallﬂ

where
» the range operator

» (after the equality sign) denotes the internal disjunction
. denotes the tnternal conjunction.

(For explanation of notation see section 4).

We will consider here the following transformation operators:

(1) ::> the operator defines a dectsion rule. DESCRIPTION

2
specifies a decision (or a sequence of decisions) which is

assigned to a situation which satisfies DESCRIPTIOHI.

(In the application to pattern recognition, DESCRIPTIUH2

defines thé recognition class.)

If a situation does not satisfy the ﬁESCRIPTIGNl, the rule assigns

to it a NULL decision.

(i11) = the operator defines an tnference rule. If a situation

satisfies DESCRIPTION the rule assigns th:o “ruth-status 'TRUE!

1!
to DESCRIPTIUNZ, otherwise the truth-status of ﬁESCRIPTIONz

- 304 -~

is '"?'. (In an inference rule DESCRIPTION1 is called the

condition and DESCRIPTION, is called the consequence.

(1ii) K the operator denotes a generalization rule, which states
that the DESCRIPTION2 1s more general than DESCRIPTIONi,
1.e., the set of situations which satisfy DESCRIPTIDN2
18 a superset of the set of situations satisfying DESCRIPTIONl.

(iv) _F the operator denotes an equivalence preserving

rule (when the above mentioned sets are equal) .

The rule 1s a special case of a generalization rule.

The problem considered in this paper is defined as follows.

® Given Are:

(a) a set of VL decision rules, called data rules, which

speclfy initial knowledge,{cij}, about some situations
(objects, processes, ...) and the recognition class,

Ki, associated with them:

C sax K.) 11> K . Cltl 1> kﬁ

2t2 PP A
. (3)

£ = C it K rsaa &

305

(b) The problem knowledge rules wonich represent the background knowledge
about the recognition problem under consideration, This knowledge
{ncludes the type of each descriptor used in the data rules, its
value set, the problem constraints, the relationship among descrip-
tors that reflect the semantics of the problem and various consiruc-
tive generalization rules (sec. 5.3).

(¢) a preference criterion, which for any two 'comparable' sets of de-
eision rules specifies which one is more preferable, or states that
they are equally preferable.

® The problem is to determine, through an application of generalization
rules and problem'knawledge rules, a new set of decision rules called

output rules or hypotheses :

' [I | ' & B ' L I |
Cll il> Kl, Cll - l-> Kl’ a4 0 Cl]"ll . I> Kl
cl. > K o' 1> K L. O 1> K
21 2? 21 2 2r 2
) : 2 (4)
' [2] ' [I ' T 0
cml t-> Km, sz -|> Km' e Cm]ﬂm S Km

which ic nmost prcferable aronj all scts of rules that with regard to the

input rules are consistent and complete.

The output rules are consistent with regard to input rules, if for
any sltuation to which the input ruies assign a non-NULL class, the output

rules assipgn to it the same class, or the NULL class.

-~ 306 -

The output rules are complete with regard to input rules, if for any
sltuation to which the input rules assign a non-NULL class, the output
rules also assign to it a non-NULL class.

It 1s easy to see that if the output vules are consistent and
complete with regard to the input rules then they are semantically equivalent
({.e.,assign the seme decision to the same situation) or more general than
the input rules (i.e., they may assign a non-NULL class to situations to
which the input rules assign a NULL elass).

From a given set of data rules i: {s usually possible to derive
many different sets of output rules which are consistent and complete and which
satisfy the problem constraints. The role of the preference
criterion 1is to select one (or a few alternative sets of rules) which is
most desirable in the given problem domain. The preference criterion
may refer to, c.g.:

® the computational simplicity (or complexity) of the rules
® cthe cost of measuring the information needed for rule
evaluation

¢ the degree-of-fit to the data.

In this paper we accept the restricticn that the DESCRIPTIONs, Cij and
ngq are disjunctive simple VLZl expressions (section 4). Such expressions

have a very simple linguistic interpretation, and seem to be of interest to

many applications.

- 307 -

4, VI EXPRESSIONS AS DESCRIPTIONS
4.1 Definition of VLZl
Data rules, hypotheses, problem kpnowledge rules

and generalization rules are all expressed using the same formalism,

that of variable-valued logic calculus VLZI;* vLZl is an extension

of predicate calculus designed to facilitate a compact and uniform
expression of descriptions of different degrees and different types

of generalization. The formalism also provides a simple linguistic inter-
pretation of descriptions without losing the precision of the con-

ventional predicate calculus. To make the paper self-contained, we

will provide here a brief description of VLZl.

There are three major differences between VLZl and the first
oxrder predicate calculus (FOPC):
1. Tu place of predicates, it uses selectors (or relational
slatements) as basic operands., A selector, in the most
general form, specifies a relationship between one or
more atomlc functions and other atomic functions or
constants. A common form of a selector is a test to

ascertain whether the value of an atomic function is a

specific constant or is a member of a set of constants.

The selectors represent compactly certain types of
logical relationships which cannot be directly represented
in FOPC but which are common in human descriptions. They
are particularly useful for representing changes in the ilepree
of generality of descriptions and for syntactically un:form

treatment of descriptors of different types.

*VL,, is & subsec: uf a more complete system VLz ucder development.

21

~ 308 -

2. Each atomic function (a variable, a predicate, a function)

is assipgned a value set (domain), from which it draws values,

and its type, which defines the structure of the wvalue set (see p.5.2).
This feature facilitates a representation of the semantics
of the problem and the application of generalization rules appropriate

to the type of descriptors.

3. An expression in VLZl can have a truth status: TRUE, FALSE or

7 (UNKNOWN).
The truth-status '?' provides an interpretation

of a VLZl description in the situation, when, e.g., outcomes of

sOome measurements are not known.

Definition 1: An atomic function is a variable, or a function symbol followed
by a pair of parentheses which enclose a sequence of atomic functions
and/or constants. Atomic functions which have a defined interpretation
in the problem under consideration are called descripiors.

A constant differs from a variable or a function symbol in that

its value set is empty. If confusion is possible, a constant is typed
in quotes.

Examples

Constants 2 * red

Atomic forms: xl color (box) on-top(pl,p2) f(xl,g(xz))

Exemplary

Value sets: D(xl) = {0, 1,..., 10}
D(color) = {red, blue,...}
D(on-top} = {true, false)}
D(f) = {0,1,..., 20}

Definition 2: A selector is a form

[L # R} (5)

where L - called referee,is an atomic function, or a sequence of atomic

functions separated by '.'. (The operator '.' is called the itnternal
conjunction,)

§ - 18 one of the following relational operaters:

l==i=><><

R - called reference, is a constant or atomic function, or a

sequence of constants or atomic functions separated by operator

*''"or '..'. (The operators ',' and '..' are called the

internal disjunction, and the rcnge operator, recpectively).

A selector in which the referes L is a simple atomic function and
the reference R is a single constant 1is called an elementary selector. The
selector has truth-status TRUE {or FALSE} with regard to a situation if the
situation satisfies {does not satisfy} the selector, i.e., 1f the referee L
is {1is not} related by # to the reference R. The selector has the truth-
status "?' (and 1s interpreted as being a question), if there is not sufficient
Information about the values of descriptors in L for the given situation.

Instead of giving a definition of what it meats that

'L is related by # to R'", we will simply explain this by examples. {(See section

section 5.1 for more details).
linguistic cescription

(L) [color(boxl) = white] color of boxl is white
(11) {length(boxl) > 2] length of boxl is greater than or equal to 2
(11i) {weight(boxl) = 2..5] weight of boxl is between 2 and 3,
{iv) [blood-type (Pl) = 0,A,B] blood-type of P1 1s O or A or B
(v) [on-top(boxl, box2) = T] boxi 1s on top of box2
or simply

[on-top(boxl, box2)]
(vi) [above(box1l, box2) = 3"] box 1 1s 3" above box?
(viii) [weight(boxl) > weight (box3)] the weight of btoxl is greater than the

welightof box3
(ix) [length(boxl) + length (box2) = 3]* the length of boxl and box2 is 3

(x) [type(pl) . type (Pz) = A,B] the type of P1 and the type of P2
is either A or B.

Note the direct correspondence of the selectors teo linguistic

Efscriptions. Note also that some selectors can not be expressed in FOPE

in a pragmatically equivalent form (e.g., (iv), (ix), (x)).

*This expression 1s equivalent to [length(box1)=3][lenzth’box2)=3]. (The operator
'.' is called the internal conjunction).

- 310 -

A VLzl expression (or, here, simply VL expression) is defined by
the following rules:
(1) A constant TRUE, FALSE or '?' is a VL expression

(11) A selector is a VL expression

{111) If v, Vl and VZ are VL expressions then so are:

(V) formula in parentheses

s inverse

v, A v, or V.V, conjunction

Vl Y v, disjunction

Vf\i Vz exception (Vl except when VZ)
V1:£>V2 metalimplication

where=€ {+, &, 11>, =, k: I=]
(implication, equivalence, decision assignment,
inference, generalization, semantical equivalen

Hxl,xz,...,xk(V) existentially quantified expression

Vxl,xz,...,xk(V) universally quantified expression

A VL formula can have truth-status TRUE (T), FALSE (F) or UNKNOWN(?).
The interpretation given to connectives 1, A, V, », is defined in Fig. 1. (This
interpretation is consistent with Kleen-Korner 3-valued logic}. An expression
with the operator =, k or E 1s assumed to always have the truth-status TRUE
and with operator ::>, TRUE or ?. Operators'y and «* are Iinterpreted:

V1\V V, 1is equivalent ('1V2+V1)(V2+1Vl)

Vl + VZ is equivalent to (V14V2)(V2+V1)

The interpretation of the VL formulas is done in the contex of each
situaticn. This means, that each situaticn i3 treated as a domain over
which the formulas are evaluated: the value sets of the quantified
variables and the interpretation of the functione 3.4 predicates 1s done

individually for each situation.

- 311 -

D
—]

'13-,_J

- M >
-
MMM |
—~ M|

~2 | N

.n
M| —

)

SRS
| T

) |~
~ |~

~ M2
—4 M |y
0|~
n| -
—| =]

T

DEFINITION OF CONNECTIVES
AL,V AND —

4,.m ~ <
-

Figure 1.

Thus the truth-status of

r
TRUE {FALSE} ;¢ there exists { does ndlexist } a value
of X {in the given situation for which
Hx(V) is < the truth-status of V is TRUE
1 if 1t is wot known whether there exists .
\.
TRUE {FALSE} 1if for every value of x in the situation
Vx(V) is the truth-status of V is {is not} TRUE

? 1f it is not known whether for every .

A constant * ('irrelevant’) is introduced to substitute for R, in
a selector [L = R], when R 1s the sequence of all possible values the L can
take.

A VI expression in the form

QF].’QFZ'.‘. (Pl v Pz VooV Pl) (?)

where QFi is a quantifier form;Hxl,xz,... or Vxl,xz,... and P1 is a con-

yunction of selectors (a term), is called a disjunctive simple VL expression

{(a DVL expression).

- 312 -

3. INFERENCE AND GENERALIZATION RULES

5.1 Interpretation of Inference Rules

An inference rule

DESCRIPTION1 » DESCRIPTIOH2 (8)
is used by applying it to situations. A situation is, in general,-a source
of information about values of variables and atomic functions in DESCRIPTIDNl
(the condition part of the rule). A situation can, e.g., be a data base
storing values of variables and procedures for evaluating atomic functionms,
or it can be an object on which various tests are performed to obtain these
values.

A declsion rule is viewed as a special case of an inference rule,
when DESCRIPTION2 (the consequence or decision part of the rule) is a con-
stant, an elementary selector, or a product of elementary selectors invelving
decistion variables (i.e., the DESCRIPTIOH2 uniquely defines a decision or
a sequence of decisions). The truth status of the condition and decisicn
part of a rule, before applying it to a situation, is assumed to be UNKNOWN.

Let Q denote the set of all possible situations under consideration.
To characterize situaticons in Q, one determines a set 5. called the descriptar
s8et, which consists of variables, predicatesand atomic functions (called,
generally, descriptors%*whose specific values can adequately characterize
(for the problem at hand) any specific situation. We will assume here
that theaguments of atomic functions are single variables, rather

than other atomic functions. A situation i{s characterized by an event which
18 a sequence of assignments (L:=v), where [is a variable or an atomlc function
with specific values of arguments, and v {s a value of the variable or atomic
function which chacvtcterizes the situation. It i3 assumed that each descriptor

has defined a value st (domaic) which contains all possible values the

descriptors can take for any situation in Q. Certain descriptors may not
be applicable to some situvations and therefore it is assumed that a
descriptor in such cases takes value NA, which stands for not applicable.
Thus, the domains of all descriptors always include by default the value
NA. The set of all possible events for the given descriptor set S is called
the event space, and denoted &(S). The domain of quantified variables are
assumed to be determined by a given situation or object, E.g., 1f the
quantified variable is a part, then its values are assumed to be individual
parts of the object. In an event describing such an object, there will be a
sequence of pairs (L :='U9 sy 1 = 1,2,..., where L is a quantified variable,
and Vi Btandé for different values this variable takes in the object.

An event e € &(S) is said to satisfy a selector [f(xi,...,xk} ¥ R]
iff the value of function f for values of X, 1=1,2, ..., k, as specified
in the event ¢, is related to R by #. For example, the event

e: (...x5:=gl,x6:=az,fZD(al, ag) o T |
satisfies the selector:
[fzu(xs,xﬁ) = L, 3 5]

A satisfied selector is assigned truth-status TRUE. If an event
does not satilsfy a selector then the selector is assigned truth~status FALSE.
If an event does not have enough information in order to establish whether a
selector is satisfied or not then the selector has UNKNOWN truth-status
with regard to this event.

Let us assume first thatthecondition part of an inference rule is
a quantifier-free formula. Interpreting the connectives 1, A, ¥, as
described in figure 1, one can determine from the truth status of selectors
the truth-status of the whole formula. An event is said to saiisfy a rule,
1ff an application of the condition part of the rule to the event gives the
formula truta~status TRUE. Othorwise, the event is said to et satisfy

the rule.

- 314 -

Suppose now that the condition forrula is in the form
Ax(V)
An application of this formula to an event assigns status TRUE teo the formula
1ff there exists in ¢ a value assigned to x such that V achieves status TRUE.

For example, the formula

dpart [color (par%:) = red]
1s satisfied by the event:

e = (... part:=P1, color (P1):=blue, part:=P2, color (P2):=yellow,

part:=P3, color (P3):=red...)
If the condition part is a form
Yx(v)
then it Is assigned status TRUE if every value of x in the event applied to
it satisfies V.

If the condition part assumes truth-status TRUE then the decisign
part is assigned status TRUE. When the decision part reaches status TRUE
then variables and functions which occur in it are assumed to have values
which make this formula TRUE. These values may not, in general, be unique,

For example, suppose that V is a decision part with status TRUE:

Vi IpCaxy) = 200xy = 2..5](xg=7)
V is interpreted as a description of a situation 1n which p has value 2 (if a
specification of p(xl,xz) Is known, then from it we can infer what values cof
* and X, might he}, X4 Bas a value between 2 and 5, inclusively, and Xc ha ;
value 7. (Note that the formula does not give precise information about the
value of x3.) After applying a formula to an event, the truth status of the
condition and dectsion pirt returns to UNKIOWN. "Wz role of an inference rule

can then be described as follows: the rul {is srpliced to an avent, and i rhe

event satisfies the condition part, then an assignment of values to variables

- 315 —

and functions is made as defined by the decision part. This assignment
defines a new event (or a set of events which satisfy the decision part).
Another inference rule can nowbe applied to thiz event (or set of events},
and {f satisfied by it (or by all of them), a new assignment of values to
some variables and functions can be made.
Examnples of VL inference rules:
[pCx)5%)) = 3]Malxy) = 2,5]0x; 4 0] = [d(y) = 71lp(y,,7,) = 2]
dx3([p(xy,x4) = 2..3}qlxq,x45) > 213 V [£(xy) = 1] = [d(y;) = 7]

TRUE = [p(xz,x?) = 2][x? = 2,3,5]

5.2 Specification of the problem environment in the form of inference rules

Iypes of descriptors

The process of generalizing a description depends on the type of

descriptors used in the description. The type of a descriptor depends on the

structure of the value set of the descriptor. We distinguish here among three

different structures of a value set:

1. Urnordered

Elements of the domain are considered to be independent
entities, no structure is assumed to relate them. A
variable or function symbol with this domain is called
nominat (e.g., blood-type).

2. Linearly Ordered

The domain is 2 linearly ardered set. A variable or
function symbol with this domain is called linear
(e.gi, military rank, temperatura, weight).

3. Tree Ordered

Elements of the domain are ordered into a tree structure.
A superior node in the trec represents a concept which

is mere general than the concepts represzented by the
subordinate nodes (e.g., the superior of nodes 'triangle,
rectangle, pentagun, c¢tc. may be a 'polygon'). A variable
or function symbol with such a domain is called structured.

~--316 -

Each descriptor (a variable ox functionsymbol) 1s assigned

its type in the specification of the problem. In the cage of structured

descriptors, the structure of the value set {s defined by inference rules

(e.g., see eqs. (13),(14),(15)).

In addition to assigning to each variable and function symbol a domain,
one defines properties of variables and atomic functions characteristic for the
giveﬁ problem. They are represented in the form of inference rules. Here are

a few examples of such properties.
1. Restrictions on Variables

Suppose that we want to represent a restriction on the event
space saying thac if a value of variable x 1s 0 ('a person

does not smoke'), then the variable x. is 'not applicable’

(x, - kind of cigarettes the person smokes). This is repre-
sented by a rule:

{xl = 0] “‘[xj = NA]
NA = not applicable

2. Relationships Betwcen Atomic Functiens

For example, suppose that for any situation in a
given problem, the atomic function f(x,, %x.) is
always greater than the atomic function g(xl, xz).
We represent this:

T ”'Vxl,xz (£(x,, X,) > glx;, x,)]

3. Properties of Predicate Functions

For example, suppose that a predicate function is transitive.
We represent this:

‘Q‘xl sxz ,K3([1Eft(}(l lxz) } [left(xz,x3)] = [left (Xlng}])

Other types of relationships characteristic for the problem
environment can be represented similarly,

- 317 -

5.3. Generalization rules

The transformation of data rules (3) into hypotheses (4} can
be viewed as a process of applying certain generalization rules to
data rules. A generalization rule transforms one or more decision rules
associated with the same generalization class (which, in our case, is
the same as recognition class), into a new decision rule, which is
equivalent to or more general than the fnitial rules. |

A decision rule

x> K (9)
is equivalent to a set of decision rules
{Vi > Ky .51y 2 20 (10)
1f any event which satisfies at least one of the ¥V,, 1 =1, 2, ...,
Batisfies also V, and conversely. If the converse is not required, the
rule (9) is said to be more general than (10).

The generalization rules are applied to data rules under the
condition of preserving consistency and completeness, and achieving
optimality according to the preference criterion. A basic property of a
generalization transformation is that the resulting rule has UNKNOWN
truth-status (Is a Aypothesig); its truth-status has to be tested on
new data.

Below is a list of a few basic generalization rules (X denotes
a generalization class).

Non-constructive rules:

(1) Dropping Condition Rule
If a description is a logical product of conditions which
must be satisfied, then one way to 3:neralize it 1is to drop rne

or more of these conditions. For exampie:

- 318 -

[size (box)=small]lcolor (box)=blue] ::>K’F= [size (box)=small] ::>X
This reads: the description tsmall and Llue box' can be generalized
to 'small box?.(}< is the generalization operator.)

In general this rule can be expressed:
WL=R] :s5 X |k W:i>k
;here W- an arbitrary description. This rule is generally
applicable (the type of L does not matter).

(i1) Turning Constants to Variables Rule

When we have two or more descriptions, each referring to a
single object in a class, and the descriptions differ in
having different constants in the same predicate, then they

can be generalized Into one description with an existentially

quantified variable in the place of the constants:

g Flp(a,Y)] ::> K
mote [FPOOT K e Bpeon] te K
Tules :
V[P(i,Y)] 13> K
-

where P - is a predicate

Y - stands for one or more arguments of the predicate p
For example:
[1NSIDE (ball, box)] ::>K

}cax [1¥sIDE (X,box)] ::> X

[INSIDE (cup, box)] ::>X
The generalization (on the ripght of k Y states that 1f an
object is a BOX which has something inside, then it belongs
to class X.

vhis rule together with the dropping condition rule are

two basic peneralization rules used in the literature on

- 319 —

computer Iinduction. Both these rules can, however, be viewed
as speclal cases of the following rule.

(111) Generalization by Intermal Disjunction
(The Extending Reference Rule)

A description can be generalized by gxtending the set of values
that a description (a variable, predicate or a fundtion) is
allowed to take on in order than an object satisfies the
description. This extension is expressed by the internal
disjunction (def. 2) (i.e., logical OR involving values of

the same variable). For example:

Wlcolor (wall) = blue] ::> X

F Wlcolor{wall)= blue,red,green...] ::> X
Wlcolor (wall) = red] ::> X

(The "s" denotes internal disjunction)

In general we have:
WL = R]] 1> K [« W[L = RZJ 1> X
where L -~ 1s an atomic function
Rl' R2 - references, i.e., subsets of values from the domain of
L expressed as internal disjunction and ngﬁﬂz,
Although the internal disjunction seems at first glance to be
just a notational abbreviation, this operation is one of
fundamental operations people use in generalizing deseriptions.
In addition to the previous two rules, there are two more
important special cases of this rule. First, when the descriptor
involved takes on values which are linearly ordered (a linear
descriptor) and the second when the descriptor takes on values
which ave natural language concepts representing different
level:s of zenerality (a structuved descriptor).

In the case of a linear descriptor we have:

- 320 -

(iv) Cloaing Interval Rule

For example, suppose two objects of the same class have all the
same characteristics except that they have different sizes,
a and b. Then, 1t is plausible to hypothesize that all objects
which share these characteristics but which have sizes between
a and b are also in this class.

Wsize(x1)=a] ::

Wlsize(x) = a..b] ::> g
Wisize(x1)=b] ::>k

In general:

VIL = a]

} VI[L = a,..b] :r:> &
VIL = b] ::> ¥

This rule 1s applicable only when L is a linear descriptor.

In the case of structured descriptors we have:

(v) Climbing Generalization Tree Rule

Suppose the value set of the shape descriptor is the tree (in

general it could be a partially ordered set):

plane geometric figure

g /,1 fis;{e
triangle r:i}::;I;‘hﬁﬁh‘h“““pentagon ellipse ... circle

With this tree structure, values such as triangle and rectangle
can be generalized (by'climbing the generalization treg} into a
polvgon:

[shape(x) = rectangle] ::

F [shape(x) = polygon] ::> X
[shape(x) = triangle] ::>%x

A general ruyle is:

3 KL = a] ::>
one or ML = p s s - .
e (. } A (L =s]::> kg
rules :
FlL = 1] ::5 x

321

where L 1s a structured descriptor
8 - represents the superior node {a concept at the
next 'level of generality') of nodes a,b,...and i, in
the tree domain of L.

The rule 1s applicable only to selectors involving structured

descriptors, This rule has been used, e.g., in [3], [4], [26].

(v) Kzxtension Against Rule

This rule applies when a desription is being generalized in the
presence of another description, representing the 'negative examples'
of the given recognition class. The latter description provides an
obvious limit for the peneralization of the given description, since
these two descriptions should not intersect in order to avoid in-
consistency, TFor example:

PP, ([on-top(p,,p,)1[color(p)=red]) * %> X

gpl,pz([left—of(pl,pz)][color(pl)=green]) 11 >k
gpl[color(pl) # gpreen] > K

The description produced by the rule: 'There exists Py whose color

18 not green' i1s the most general statement which satisfies both
premises on the left ofl‘.

In general the rule states:

wllL - Rll ri> K
(L $ Ry) ::> K
WZ[L - RZ] $:13qK

where R, ™ d_ =
L 2

ﬁl Br| Wé - arvitrary descriptiens.

- 322 -

This rule is very useful in generating the diseriminant descriptions

of object classes (see next section). It is one of the basic rules used
in the inductive program AQVAL/1 [14], whose version is used

as a basic procedure in program INDUCE 1.1 described in section 6.2,

Constructive Rules:

Constructive rules generate generalized descriptions of the data

rules in terms of certain new descriptors (metadescriptors or derived

descriptors). There can be very many such rules. We will restrict

ourselves here to two examples. Some constructive rules are encoded

as speclalized procedures

(vi) the counting rule

P [attributEl(Pl)=A]...[attributel(Pk)=A][attributel(Pk+l)%A]...

---[ﬂttributel(Pr) FA]l s> K ¢ WWP__al:tributel__A=k] 12> K
where P _,P_,...,P ,...,P ~ are constants denoting, e.g.,
1° 2 k r .
parts of an object
attributel = stands for a certain attribute

of Pi—s, e.g., color, size,
texture, etec.
#P_attributelrg - denotes a new descriptor inter-
preted as the "number of P;-s (e.g.,
. parts) with attribute equal A'.

Example:

Klcolor(PL)Y=RED][color(P2)}=RED][color(P3)=BLUE]::>X
k W[#P_color_red=2] ::> X

(The above is a Fenerzlization rule, because - sct nf nhdanga «-1ph any
two red parts is a supers

¢t ol a gset >f oblvcts with twe parcts which are
red and one part which is blue)

(viii)

A bt -E———

— 323 -

the generating chain rroperties rule

If the arguments of different occurrences of the same relationm
in an event are linearly ordered by the relation (e.g., are
objects ordared linearly by a relation ABOVE, LEFI-OF, NEXT-TO,

CONTAINS, etc.), that is form a chain, the rule generates descriptors

which characterize variocus objects in the chain, for example

LST+object : the 'least object', i.e., the object at the beginning
of the chain (e.g., the bottom object in the case

of relation ABOVE)

MST~object : the 'most object', i.e., the object at the end of
the chain

MDL-object : the 'middle' object

Ith-object : the itk object in the chain

or characterize the chain itself, for example the chain-length.

EERSRT L e T i b - - e s oma A ——

5.4 The preference criterion

The preference criterion defines what is the desired solution

to the problem, i.e., what kind of hypotheses are beinp souzht. The

question of what should be the preference criterion is a broad subject

beyond the scope of the paper. We will, therefore, discuss here only

the underlying ideas behind the presented approach., First, we disagree

with many authors who seem to be searching for one universal criterion

which should guide induction. Our position is that there are many di-

mensions, independent and interdependent, on which 4 hypothesis can

be evaluated. The weight given to each dimension depends on the ultimate

use of the hypothesis, Among these dimensions are various forms of

simplicity of a hypothesis {e.g., the number of operators in it, the

quantity of information required to encode a hypothesis using operators

from ap a priorli defined set [31], etc.), the scope of the hypothesig,which

relates the events predicted by a hypothesis to the events actually

- 324 -

observed {(e.g., the degree of generalization' [13], the ‘'precision’ [}1]),

the cost of measuring the descriptors in the hypothesls, etc. Therefore,
instead of defining a specific criterion, we specify only & general form

of the criterion. The form permits a user to define various specific

criteria to the inductive program, which are appropriate to the application. The
form, called a 'lexicographic functional' consists of an ordered list of

criteria {(of dimensions of hypothesis quality) and a list of 'tolerances'

for these criteria [13, 14].

An {mportant and somewhat surprising property of

such an approach is that by properly defining the preference eriterion,

the same comp:ter program can produce either the characteristic or dis-
eriminant descriptions of object classes. The characteristic

description specifies the common properties shared by the objects of the
same class (most work on induction considers only this type of descriptions,
e.g., (3], [6]1, {22]), while the diseriminant description specifies only
the properties necessary for distinguishing the given class from all the

other classes (Michalski [1R, 32], Larson [28]).

3.5 Arithmetic descriptors

In addition to initial linear descriptors used in the data rules,
new linear descriptors can be formulated as arithmetic functions of the

originral ones. These descriptors are formulated by a human expert as

suggestions to the program.

6. OUTLINE OF ALGORITEX AND OF COMPUTER IMPLEMENTATION'
In this section we outline the top level algorithm for rule
induction and its i~m;lementation in the computer program INDUCE-1.1

([28}[29}136]). Tbe algoritha 1s fllustrated by an example.

- 325 ~

INDUCE-1.1 1s considered to be only an aid to rule induction. Its
successful application to practical problems requires a cooperation between the
program and an expert, whose role is to determine the initial set of descriptors,
to formulate data rules and the problem knowledge rules, to define the preference
criterion and other parameters, evaluate the obtained rules, repeat the process

if desired, etc.

6.1 Computer representation of VL decision rules

Decislon rules are represented as graphs with labeled nodes and
labeled directed arcs. A label on a node can be:

a) a selector with a descriptor without the argument list,

b) a logical operation,

¢) a quantifier form dx or Yx .
Ares link arguments with selectors or descripiors, and are labeled by 0,1,2,...
to specify the positiocn of an argument in the descriptor indicated at the head
of the arc (0 indicates that the order of arguments is not important).

Several different types of relations may be represented by an arc.
The type of relation is determined by the label on the node at each end of
the arc. The types of relations are: 1) functional dependence, 2) logical
dependence, 3) implicit variable dependence, 4) scope of variables.

Figure 2 gives a graph representing a VLEl expression. The two
arcs connected to the logical operation (A) represent the logical dependence
of the value of the formula on the values of the two selectors. .The other

arcs in the figure represent the functional dependence of f on xl and Xy

and g on Xye

(f = 1] (g = 2]

. / \312/

1

VL Craph Structure: axl xz([f(xl.xz) - 1][g(x2) =21

- 326 -

6.2. OQutline of the Top Level Algorithm

The implementation of the inductive process in the program INDUCE-1.
was based on ideas and alpgorithms adopted from the earlier research on the
generalization of VLl expressions (Michalski [13,32]. and some new ideas
and algorithms developed by Larson [28,29].

The top level algorithm (in somewhat simplified form) can be
described 1s follows:

1. At the first step, the data rules (whose condition parts are 1in the
disjunctive simple forms) are transformed to a new set of rules, in which
condition parts are in the form of c-exrpressions. A c-expression (a
conjunctive expression) 1s a product of selectors accompanied by one or
more quantifier forms, i.e., forms QFxl,xz,..., where QF denotes a
quantifier. (Note, that due to the use of the internal disjunction and
quantifiers, a c~expression represents a more general concept than a
conjunction of predicates (used, e.g., in [23][24]).

2. A decision class is selected, say K,, and all c-expressions associated

i

with this class are put into a set Fl, and all remaining c-expressions

are osut into a set FO (the set Fl represents events to be covered |,

and set FQ represents constraints, i.e., events not to be covered).

3. By application of inference rules (describing the problem environment),
constructive generalization rules, and rules generating arithmetic

descriptors (sec.5.5), new selectors are generated. The 'most promising’
selectors (according to a certain criterion) are added to the c-expressions

in Fland FO.

4. A c-expression is selected from F1, and a set of consistent generalizations
(a restricted star) of this expression 1s obtained. This is done by starting
with single seleciors (called ‘seeds'), solected from this c-expression

as the 'most promisiag' ones (according to the preference criterion). In each

. S

sbsequent rext step,a new selector is added to the c-expression obtained in
the previous step (initially the seeds), until a specified number (parameter
NCONSIST) of consistent generalizations is determined. Consistency is
achieved when a c~expressidn has NULL intersection with the se: FO. Thig
'rule growing' process is illustrated in Fig, 3.

5. The obtained c-expressions, and c-expressions in FQ, are transformed

to two sets El and EQ, respectively, of VL, events (i.e., sequences of
values of certain discrete variables).

A procedure for generalizing VLl descriptions is then applied
to obtain the 'best cover! (according to a user defined criterion) of set
El against EQ0 (the procedure is a version of AQVAL/1 program [13]).

During this process, the extension against, the elosing
the interval and the elimbing generalization tree rules are applied.

The result is transformed to a new set of c-expressions
(a restricted star) in which selectors have now appropriately generalized
references.

6. The 'best' c-expression is selected from the restricted star.

7. If the c-expression completely coversFl, then the process repeats for
another decision class. Otherwise, the set Fl is reduced to contain only the
uncovered c-expressions, and steps 4 to 7 are repeated.

The implementation of the inductive process in INDUCE-1.1 consists
of a large collection of specialized algorithms, each accomplishing a certain
task . Among the most Important tasks are:

l. the implementation of the 'rule growing process'

2, testing whether one c-expression is a generalization of
(*covers') another c-expression. This 1s done by testing for subgraph

ilsomorphism,

- 328 -

0 - a discarded e-rule
® - an active c-rule
: a terminal node denoting a consistent c-rule

‘Each arc represents an operation of adding a new selector to a c-rule

The branching factor is determined by parameter ALTER. The
number of active rules (which are maintained for the next step of the
rule growing process) is specified by parameter MAXSTAR. The number of
terminal nodes (consistent generallzations) which program attempts to
generate 1s specified by pavameter NCONSIST.

o Illustration of the rule growing process
: (an application of the Uropping Condtition Rute 4n reverse order)

Figure J

— Whd

3. generalization of a c-expression by extending the selector
references and forming irredundant c-expressions (includes application
of AQVAL/1 procedure).

4. Generation of new descriptors and new selectors.

Program INDUCE 1.1 has been implemented in PASCAL (for Cyber

175 and DEC 10); its complete description is given in [30].

6.3, Example

We will present now an example i1llustrating some of the features
of INDUCE-1l.1.Suppose given are two sets of trains, Eastbound and Westbound,
as shown in Fig. 4. The problem is to determine a concise (logically
sufficient) description of each set of trains, which distinguishes one set
from the other (i.e., a discriminant description which contains only necessary

conditions for distinguishing between the two sets).

As the first step, an initial set of descriptors is determined (by a

user) for describing the trains. Eleven descriptors are selected in total.

Among them:
* 1nfront(car1,car) - c¢ar_ is in front of earj
] (a nominal descriptor)
* length(cari) - the length of car,
(a. linear descrip%ar)
o car—shape(cari) - the shape of car,

(a structured deécriptor with 12 nodes in the
generalization tree; see eqs. (13) and (14))

load,) - ecar, contains load,

b cout-load(cari,
J (a fiominal descriplor)

* load-shape(loadi) -~ the shape of load
(a structured descriptor)

The value set:

» hexagon——____)
-trianglee—w*"“§"‘*01?gon

.rectangle*’#’w

- 330 -

1. EASTBOUND TRAINS

OH. © AT loog} -]

2. WESTBOUND TRAINS

- La-gog-E—;
=

oA I

g
§
B

- 331 -

& nrptaﬂload(cari) — the number of parts in the load of cari
(a linear descriptor)
@ nrwheels(car,) - number of wheels in car

1 (a linear descriptor)

The data rules consist of descriptions of the individual
trains in terms of the selected descriptors, together with the
specification of the train set they belong to. For example, the data
rule deseribing the second eastbound train 1s:

dcar. ,car load_,load

1 2 3 4’ 1 2’77
[infront(carl,carz)][infront(carz,carg]...[1ength(car1)=long] A

sCar. ,car

tcar-Shape(Carl) =enEin€’:] [car-ShaDE (Car2)=II—ghangd] [Cont—lgad (Carz .]‘Gadl)]h (12)

[1oad-shape(1oadl)=tr1angle]...[nrwheels(car3)=2].. r:>{class=Eastbound]
Rules describing the problem environment in this case are only

rules defining structures of structured descriptors (arguments of descriptors

are omitted):
[car-shape=open rctngl,open trapezoid,U-shaped,dbl open rctmgl] = (13)
[car-shape=open top]
[car-shape=ellipse,closed rctngl,jagged top,sloping top]®[car-shape=closed top](14)
{load-shape=hexagon,triangle,rectangle] = [load-shape=polygon] (15)
The eriterion of preference was to minimize the number of rules
(c-expressions) in describing each class, and, with secondary priority,
to minimize the number of selectors in each rule.
Rules.of constructive generalization included in the program are
able to construct, among other descriptors, such descriptors as the length
of a chain, properties of elements of a chain, aumber of objects satisfying a
certain relation, etc. For example, from the data rule (12) , the constructive

generalization rules can produce new selectors such as:

At this moment, before proceeding further, the reader is advised t-
look at the pictures and to try to solve this proclem on als/her own.

- 332 -

[nrcars=4] - the number of cars in the train {s 4
(the length of chain defined by relation
infront)

[nrcars-length-long=l] - the number of long cars is 1 (the engine)

[nr-pts-load(1ast—car)=2]- the number. of parts in the loag of the last
car is 2

[position(cari)=i] - the position of car, is i

Suppose that eastbound trains are considered firsec. The
set Fl contains then all c~expressions describing eastbound trains,
and FC,all c-expressions describing westbound trains. The description
€ 1s selected from Fl (suppose it 1s tha above description of the second
eastbound train), and supplemented by 'most promising’ metadescriptors
generated by problem environment rules and constructive generalization
rules. In this case, the metaselector [shape(1ast-car)=rectangle] is added
to e. Next, a set G (a restricted star) of certain number (NCONSIST) of
consistent generalizations of ¢ 1is determined.

This is done by forming a sequence of partial stars (a partiai
8lar may include inconsistent generalizations of ¢). If an element of a
partial star 1is consistent, it is placed into the set G. The initial
partial star (Pl) contains the set of all selectors of Ei' This partial
star and each subsequent partial star is reduced according to a user
specified preference eriterion to the 'best' subset, before a new partial
star is farmed.. The size of the subset is controlled by a parameter called
MAXSTAR. A new partial star Pi+l is formed from an existing partial star
P1 in the following way: for each c-expression in Pi' a8 set of c-expressions
1s placed into Pi+l' each new c-expression containing the selectors of the
original c-expression plus one new selector from e, which is not in the origina

C-expression. Once a sufficient number of consistent generalizations have ien

formed, a version of the AQVAL/1- program (Michalski [13]))is

—333 -

applied to extend the references of all selectors in each consistent

generalization. As the result, some selectors may be removed and some

may have more general references.

In the example, the best subset of selectors of e {i.e., the

reduced partial star (Pl)) wag

Hcarl[car-shape(car1)=U—shaped] | (16)
ﬂcarl[car—éhape(carl)=open-trapezoid] (17)
Hcarllcar-shape(carl}=rectangle] (18)
fcar—shape(last-car)=rectangle] (19)

The last c-expression is consistent (has empty intersection with
c-expressione in F0)} and, therefore, 1s placed in G. From the remaining,
8 new partial star is determined. This new partial star contains a
congistent generalization:
Hcarl[car--shape(carl}=rectangle][length(carl)=short] (20)
which is added to G. Suppose G is restricted to have only two elements
(NCONSIST=2). Now, the program AQVAL/l is applied to generalize referenées
of the selectors in c-expressions of G, if it leads to an improvement
(according to the preference criterion).

In this case, a generalization of (20) produces a consistent and
complete generalization:
Hcarl[car—ahape(carl)wclosed top][length(car1)=short] (21)
(the generalization of (19), {car-shape(last-car)=polygon], is not

complete; it does not cover all Fl).

In this example, only 2 partial stars were formed, and two
conaistent generalizations were created. In general, a set of consistent
generalizations is ~reated through the formation of several partial stars.

The size of each partial star and the nuarer of alternative generalizations

are controlled by user supplied parameters.

-~ 334 -

Assuming a larger value of NCONSIST, and applying the above
procedure to both decision classes, the program INDUCE-11l.1l produced the
following alternative descriptions of each set of trains:

(The selectors or references underlired by a dotted line were

generated by application of constructive generalization rules or problem
environment rules).

Fastbound trainag:
'Hcarl[length(carl)=short][car~shape{carl)=closed top]::>{class=Eastbound] (22)

(the same as (21)).It can be interpreted:

If a train contains a car which is short and has a closed top,
then it is an eastbound train,

Alternatively,

Htarl,carz,loadl,loadz Iinfront(carl,carz)][cont*load(carl,lnadl)]

A [con{_load(carz.loadz)][lan_shape(loadl)=triangle]

A [lﬂad_shape(load2)=39é£525] i:1» [class=Eastbound] (23)
It can be interpreted:

Ifi a train contains a car whose load is a triangle, and the load c¢f the
car behind is polvgon, then the train is eastbound.

Wegtbownd traing:

(arcars=3] V Hcarl[cat;_shape{carl)=jagged—top] ::> [class=Westbound] (24)

Acar, (nrears length_long=2] lposizion(car,)=31{shape(car,)=open_top, jagred_top]
::> [class=Westbhound] (25)
It {s interesting to note that the example was constructed with

rules (23} and {24) in m*nd. The rule (22) found by the program as an
alternative was rather surprising because it seems to be conceptually
elopler than rule (23). This shows that the combinatorial part of
an induction process can be successfully handled by a computer
program, and therefore, programs like the above have a2 potential to

serve as a~ aild to induction processss in various applied sclences.

7.

- 3386 -

SUMMARY

We have presented an outline of a theory and an implementation

method which views pattern recognition as a rule-guided inductive inference.

The inltial data rules (examples) are transformed to general recognition

rules by an application of generalization rules and problem knowledge rules,

under the control of a preference criterion. The implemented method (in the

form of computer program INDUCE 1il):

L

applies different generalization rules according to the type of descriptors
in the data (nominal, linear, structured)

takes Into consideration the properties of the interrelationships of descrip-
tors characteristic to the recognition problem

permits the specification by a user of a preference criterion, which
evaluates the usefulness of the rules from the viewpoint of the given

application

can generate certain new descriptors ('metadescriptors') and blend them with
the initial ones to provide a basis from which the final description chooses
its most appropriate descriptors

uses the same representation language (VL,.) to describe the learning events
as well as problem knowledge rules, which simplifies for a user the task
of the data preparation for the program

Permits a user to suggest to the program varioeus arithmetic transformations
of the original (linear) variables which seem promising as relevant charac-

terization of object classes.

The implemented method has many limitations. Among major limitations

is 8 restricted form in which PTOgram can express the recognition rules L

in the form of a disjunctive simple VLZl expression with limited use of

quantifiers), and a restricted number of operators and mechanisms which the

pProgram uses in constructing a generalized description. Also, the method

does not take into consideration any probabilistic information.

Among the advantages is the significant ¢rnerality of the approach

and/an ability to use the semantics uaderiying Lhe vecognitionn problem, An

important property of the method is the simplicity of conceptual interpreta~

- 336 -

tion of the pattern recognition rules, The streugth of the method was
1ilustrated by a testing example where program was able to discover a

pattern unknown to the authors. On the practical side, an earlier program
(AQll) was able to determine from examples the rules for diagnosis of soybean
diseases which gave hetter perfcrmance than the rules obtained by representing

an expert’'s knowledge [23].

ACKNOWLEDGEMENT

The research presented here has been supported in part by
the National Science Foundation Grant NSF MCS 79.763514.

The author acknowledges the collaboration with Janes Larson
of Rockwell International, Inc., 1in developing several ideas presented
here and, in particular, his outstanding implementation of the first
version of the program,INDUCE-1. Among many people who helped through
discussions or through their interest in the work, the author would
specially like to mention K. S. Fu, Brian Gaines, Donald Michie, Raj
Reddy, Larry Travis and Len Uhr. Thanks go also to A. B. Baskin and

Tom Dietterich for proofreading of the paper.

B B

REFERENCES

[1] Yau, K. C. and Fu, K. S., Syntactic shape recognition using attributed
grammars , Procecedings of the 3tk Annual ZIA Syrposium on Autormatic

imagery Pattern Recoguition, 19378.

(2] Buchanan, B. G., Mitchell 7., Model~directed learning of production rules,
Computer Science Depart.,Report No. STAN-CS-77-397, Stantord
University, March 1977 .

{ 3] Winston, P. H., Learning structural descriptions from examples,
Tech. Rep. AT TR-231, MIT AI Lab, Cambridge 1970.

[4] Lenat, D. B., AM; An artificial intelligence approach to discovery
in mathematics as Leuristic search, Computer Science Department,
Report No. STAN-CS-76-570, Stanford University, July 1976.

{ 5] Soloway, E. M. and Riseman, E. M., Levels of pattern description in
learning, Proceedings of the 5th International Joint Conference
on Artificial Intelligence, August 22-25, MIT, 1977-

[6] Simon, H. A., Complexity and the Tepresentation of =atterned
sequences of symbols, Psychological Review, Vol. 79, PP
369-382, 1972.

[7] Waterman, D. A., Adaptive production systems, Working paper #285,
Department of Psychology, CarnegieMellon University, Pittsburgh,
1974 .

[8] Gaines, B. R., Behavior/structure transformations under uacertainty,
Int. Journal on Man-Machine Studies, Vol. 8, pp. 337-365, 1976.

[9] Shaw, D. E., Swartout, W. R. and Green, C. C., Inferring Lisp programs
- from examples, Proceedings of the 4th International Joint Conference

on Artificial Intelligence, Vol. I, pp. 351-356, Tbilisi,
September 1975.

[10 Jouannaud, T. P., Guiho, G. and Treuil, T. P. SISP/1 AN INTERACTIVE
SYSTEM ABLE TO SYNTHESIZE FUNCTIONS FROM EXAMPLES, 5th Intern J. Con.
on artificial intei., vol. 1, pp. 412-418, Cambridge, 1977.

[11] Feldman, J. A., Gips, J., Horning,J. J., and Reder, 5. Grammatical
complexity and inference, CS report No. 125, Computer Science
Department, Stanford University 1969.

{12] Brayer, J. M., Fu, K. S.» Web graomars and their application to
pattern recognition, TR-EE 75~1, School of EE, Purdue University,
December 1975.

{13] Michalski, R. $+ A variable-valued logie system gs applied to
plcrure 2escripilon ansg recognition, GRAFIIC LANGUAGES, edts.
F. Nake and A. Rozenfeld, North-Holland 1972.

- 338 -

[14] Michalski, R. S., AQVAL/1-~computer implementation of a variable-
valued logic system and the application to pattern recognition,
Proceedings of the First International Joint Conference on
Pattern Recognition, Washington, D.E., October 30-November 1,

1973.

{15] Larson, James, A mlti-step formation of variable-valued lngic
hypotheses , Froceedings of the Sixth Annual International
Symposium on Multiple-Valued Logic at Utah State University,

May 25-28, 1976.

{16] Stoffel, J. C., The theory of prime events:data analysis for sample
vectors with inherently discrete variables, Information
Processing 74, North-Helland Publishing Company, pp. 702-7086,

1974.

(17]) Banerji, R. B. An information Processing program for object recognition,
General Systems No. 5, 1950.

[18] Banerji, R. B._ Learning in structural description languages, Temple
University Report to NSF Grant MCS 75-0-200, 1877.

{19] Cohen, Brian L. A powerful and efficient structural pattern recognition
Bystem, Artificial Intellipence, Vol. 9, No. 3, December 1977,

[20] Morgan, €. ¢., Autcomated hypothesis generation using extended
loductive resolution, Advance Papers of the 4th I. J. Conf.
on Artificial Intelligence, Vol. I, pp. 351-356, Tbilisi,
Georgia, September 1975,

{21] Plotkin, G. D., A further mote on inductive generalization. In
Machine Intelligence &, B. Meltzer and D. Michie, Eds.,
American Elsevier, lNew York, 1971,

{22] Fikes, R. E., Hart, R. E. and Nilsson, N. J. Learning and
executing generalized robot plans , Artificial Intelligence 3,

1972,

(23] Hayes-Roth and McDermott, J. An interference matthing technique
for inducing abstractions, Communications of the ACM, No. 5,
Vol. 21, pp. 401-411, May 1978.

(24) Vere, S.,, Induction of concepts in the predicate calculus ,
Advance Papers of the 4th I. J. Conf. on Artificial Intelligence,
Vol. I, pp. 351-356, Tbilisi, Georgia, September 1975.

[25) Zagoruiko, N. G., Empiricheckoie predskazanie, Novosibirskij
Gosudarstviennyi Unversitiet, 1979,

[26] Hedrick, C. L., A computer program to learn prodvzction systems
using a semantic na2t, Ph,D. thesis, Devarrment of Computer
Science, Carnegie-Mellon University, [ittsburgh, July 1974.

[27]

{28]

(29)

[30]

{31]

[32]

[33]

o d =

Larson, J., Michaiski, R. 5., Inductive inference of VL decision
;ules, Proceedings of the Workshop on Pattern-Dire;ted
Inference Systems, Honolulu, Hawaii, May 23-27, 1%77,

SIGART Newsletter, No. 63, June 1977,

Inductive inference in the variable-valued predicate

Larson, James, _
: methodology and computer lmplementation,

logic system VL21
Ph.D. Thesis, Report No. UIUCDCS-R-77-869, Department of Computer

Science, University of Illinois, Urbana, May, 1%77.

Larson, James, INDUCE-1l: an interactive inductive inference program
in VL,, logic system, Report No. UIUCDCS-R~77-876, Department
of Computer Science, University of Illinois, Urbana, May,

1877 .

Dietterich, T., INDUCE 1.1 - che program description and a user's
gulde, Internal Report, Department of Computer Science,

University of Illinois, Urbana, July, 1978.

Coulen, D., Kayser, D., Learning criterion and inductive behaviour,
Pattern Recognition, Vol. 10, No. 1, pp. 19-25, 1978.

Michalski, R. 5., A system of programs for computer-aided induction:
a summary, 3th International Joint Conference on Artificial

Intelligence, MIT, Boston, Massachusetts, August, 1977.

Michalski, R, S., Chilousky, R. KNOWLEDGE ACQUISITION RY ENCODING
EXPERT RULES VERSUS INDUCTIVE LEARNING FROM EXAMPLES: An

experiment utilizing plant pathology, 4
ccented f 1
in Intern. Journal for MAN-MACHINE STUDIES. — = Pubilcation

