
JNW

7/23/86

DRAFT

REFLECTIONS ON SOFTWARE DEVELOPMENT

John N. Warfield

•

There is no question that, in its current prevailing state,

software development is much too expensive, and of low

quality. This has been pointed out by many observers, including

persons intimately acquainted with and a part of the

computer software development industry. Persons not acquainted

with this industry or its problems need not assume that the

foregoing remarks are highly opinionated and idiosyncratic

to the writer of this piece.

The purpose of this article is to identify and discuss

a variety of factors involved in software development,

to try to present perspective on how these factors affect

or influence software development, and to offer diagnoses

concerning what will and will not improve the industry.

Who Should Care?

Who should care about the state of the software industry?

First of all, the computer industry and especially the software

component of it should care, for several reasons:

• Any bloated, inefficient, industry with poor quality

products ultimately is going to be replaced with

an efficient industry with high quality products,

or at least is very vulnerable to this possibility.

• The size of the market is limited by knowledge of

poor quality products, so growth of the industry

is inhibited by the status of its products

• In certain applications, such as national defense

or automatic control, many lives may depend upon

the quality of this product

• Although just one industry, we have here a large

and growing industry, and have already lost part of

this industry, as well as many other industries to

foreign competition, and this industry should worry

about that



That part of the software industry that contracts primarily~

with the Department of Defense for software should worry about it.

Some might believe that because of the special character of

defense, American industries may be protected from foreign

competition, and d~ not seem likely to be put out of business,

even with the current high-cost of acquiring its products,

and the deficiencies exhibited by them. In response to this

argument, we may offer the following:

• Every industry that has been lost or is declining

was not perceived by its management as being in

peril until it was too late to recover

• On the hardware side of the defense business, where

a similar argument might be made, we have already

lost over half of the defense semiconductor chip

business to other countries

• Countries who lack a solid manufacturing infrastructure

can, nonetheless, move into software work, as has India.

So competition can arise readily and be more widespread

than in more capital intensive industries.

• Many potential competitors have people who are better

educated in relevant subject matter and are considerably

greater in number than what we have

The average citizen should worry about it. The software

industry is much like a service industry. Every time we lose

manufacturing, we rely on service industry to pick up the job

slack. But if we can't even keep those kinds of industries,

we are ultimately going to become a poor nation. We do this

one step at a time, and to prevent it, we need to stop taking

those individual steps downhill.

The universities should worry about it. They are offering

curricula that are not really quite suitable to meet the challenge.

While considerable curriculum development discussion is taking

place relative to software, the results of this still have not

met the competitive challenge.



But the universities must have a deeper cause for concern.

The role they have frequently played is one of support for the

existing industrial and military establishment. The universities

have to share responsibility for the malpractice in the

software industry. Tradeoffs where individuals seek their own

best interests, and avoid the kind of controversy that is

required to make progress in this field, will serve the university

well in the short run, and will serve the university, the industry,

the region, and the nation very badly in the longer run.

The plain fact is that it is only the universities that can

provide the high-quality guidance that is needed, and they

cannot implement this guidance. The task.is then twofold:

• Explain to the government and industries what they

have to do, and be convincing about it--get it down

on paper, and get it straight before starting

• Train the governmental procurement people to write

the kinds of contracts that make it possible for

industry management to demand proper performance

from their technical people

Given the very limited slack in the university systems,

if university personnel simply serve short-term industry

interests, we will never be able to marshall the critical

mass to carry out the above responsibilities.



What About the Whistleblower?

Recently we have seen in the press report after report

of indictments or charges against defense industries for

cheating the government. Among those named are General

Dynamics, TRW, and Litton Industries.

If these companies are deliberately cheating the government

in their billings, why should one assume that they are competent

or even interested in developing high quality software products?

What about those who see the sorry record of peformance

in the software field, and want to correct it?

There has already been developed a kind of approved

professional approach to some of the issues. The DOD and

some of the industry professionals have collectively produced

books about the software problem, and articles are being

published in the,technical literature about what is wrong.

Under these circumstances, is there a need for a whistleblower?

And what kind of attitude should be taken toward one?

There have been developed in the past few years several

defense initiatives toward improving the software situation.

We know of most of these. They are typically run by or

associated with universities. Should one not then suspect

that the forces have been set in motion to correct the situation?

Regrettably the answer to this question is probably "no".

What is the evidence or rationale for this answer?

The same people who have been creating the problems are

also running these new initiatives. You can change the name

of the play from Hamlet to A Streetcar Named Desire, but if

you keep the same cast that made a flop out of Hamlet, how can

you be confident of academy awards or Emmys for "Streetcar"?

The only thing that can really provide confidence here

is an open management posture, disciplined by the available

knowledge, and using management criteria that lend confidence

that change will really occur, of the type present knowledge

shows must happen.



What are the Obstacles to Success?

Let us first review the obstacles to success, and then

let us review some of the potential for change.

The major obstacles to a first-rate software industry

include the following:

• Large vested interest in the status quo in both

industry and university

• Those· in. positions of responsibility are not

doing what is needed· to correct the situation,

for any or all of the following reasons:

* They generally don't understand the problem

in depth

* They do not know what steps to take to correct

the situation

* They get bad advice from those with vested interests

* They lack the historical perspective that is needed

to understand this industry and its science roots

• Those who perceive themselves to be in the midst of

education in this area (e.g., people in computer science

departments, engineering deans, etc.) have never syste­

matically reasoned in depth about what is required or

what is important in the underlying science; consequently

the programs that we have are unbalanced, and omit

critical knowledge

• The faculty who are preparing people for this field are

greatly overworked because of the number of students

enrolled, and have not had the time to develop the

science; therefore most curriculum and course decisions

lack the in-depth consideration that one would like to

see in a new and growing field

• Practitioners are generally not aware of the fundamentals

of the field, and are making decisions somewhat remote

from the fundamentals, thereby engendering practices

that are scientifically and economically unjustified,

at least from the point of view of a science and a

consumer, even if they serve the short-term needs of

the industry



• A culture has developed that is self-perpetuating,

resistant to change, and intolerant to

critical examination

• The active roles are all deficient, therefore any

one actor tends to make decisions that are

very conservative in terms of expectations; the

actors Uack confidence in management and in other

roles, and adjust their behavior accordingly

What are Some Specific Deficiencies?

Some of the specific deficiencies that are readily

discernible in the software field are:

• Methodology that is too complex for the human

actors, guaranteeing that they will produce

defective products

• Piecemeal methods that have not been linked

in a pattern of development that takes the

product through a sensible life cycle, rejecting

methods that serve one part of the life cycle to

the great detriment of the rest of it

• Far too many choices to be made, with far too little

beneficial distinctions among the choices, leading

to a gross communication-deficient industry

• Job assignments that at one and the same time call

for personalities that are very creative and very

dedicated to routine, uninspiring work

• A significant gap between management and software

developers, preventing any effective check and

balance situation

• Failure to use extensively in software development

the very computer-oriented assistance that the

industry tries to convince its customers they must have

• The lack of any justifiable criteria for managing

software development projects



• Failure to define and apply carefully thought out

design theory, principles, and methods

• A wealth of ad-hoc racy

What Prescriptions are Available?

Given the foregoing remarks, an uninformed observer

might reasonably assume that what is needed to rescue this

industry is a great deal of scientific invention and discovery.

It might be assumed that nothing is in sight that could be

put to use effectively to save this industry any time soon

from the vulnerability to foreign competition.

While this might reasonably be assumed, it is not true.

On the contrary, what is needed to rescue this industry is

readily determinable, and most of what is needed could be

put in place within three years or so under a management

and resource environment dedicated to accomplishing it.

Let us try now to explain why the scientific means

are available, for if we can establish this then we can

see that the real problem in this industry lies in developing

the management attitude to install the scientific basis for

good software developrrent.

We do anticipate that the "revelations" we will make

will encounter two types of predominant reaction:

• Indifference -- because the incentives to change

are not great to the individual actors without

a concern for the nation, and because the change

agents will have to fight the prevailing culture

, )

• Understructured rebuttals -- because people will

see their situations threatened and, if they are

not able to see the big picture, will try to attack

our views in a piecemeal way

We want to make it easy for these people to attack this paper,

for it is only by giving them enough rope to hang themselves

that they will be unmasked as bottlenecks that threaten our

national economy, just as the labor unions, steel management,

and the federal government of the 1950's and 1960's ruined our



steel industry, and just as the auto unions and auto manufacturing

management drove our auto industry to the brink of collapse

in the 1970's.

To make it easy for the antis to attack, we organize

this discussion around a set of numbered topics, with just

enough references given to suggest to the serious reader

that there is much more to be learned.



----------------------------------------------------------------------

POINT 1. The social system involved in software development

does not consist of the right set of roles; nor are the people

filling the existing roles qualified to provide the necessary

leadership.
----------------------------------------------------------------------

The development of the software industry and its auxiliary

operations such as university computer science departments

has been ad hoc, but driven largely by a frantic business

situation that is not conducive to thought, but only to action.

While computers are "systems", they can be built by people

that mostly know nothing about systems theory, and invent methods

and practices without being informed. Moreover, while computers

are mathematically based, they can be built by people that know

nothing about mathematics.

While software cannot be created without some knowledge of

computers, most software has been written by people that

don't know much systems theory, don't know much mathematics,

don't know how to articulate complex ideas in plain English,

lack personal discipline, may have great creativity and no

propensity for communication, or may communicate well but

have no creativity.

Engineers and physical scientists have made great strides

in developing hardware that is reliable. This is why the costs

of hardware have been coming down drastically over the years,

and the reliability has been going up. And this is in sharp

contrast with the software situation where the cost has been

going up and up and the reliability remains bad.

The most gross deficiencies in roles are:

• Software designers are ignorant about what human

beings can be expected to do well, therefore they

create tools or languages for people that violate

everything that is known about human intellectual

capacity; and this is why we get so much bad software

[Refs. 1 and 2]



See references 7 and 8 ]

• More recently, engineers have begun to recognize the

great difficulties and fundamental importance of

documenting the requirements on software, and to

begin to understand the need for eliciting knowledge

about these requirements to provide a certain kind

of discipline to the overall design approach,

but having done so, they are now busily engaged in

reinventing the wheel, as though the fields of

psychology and management have nothing to say about

getting information from people. The entire computer

software industry has ignored the work that is well

known in other arenas, and which presents a very

thoroughly defined and behaviorally sound means of

eliciting information, which has been very heavily tested

around the nation and been found to be very effective.

[See reference 9 ]

• The Department of Defense, as a major buyer of software,

has understood the need for some standardization

as a way of eliminating much of the confusion due to

hundreds of languages, operating systems, conventions,

etc. But even this high-resource branch of government

has elected to standardize on ADA without even realizing

what other important criteria should be applied in

choosing a programming language besides simply that

of reducing the numbers used: We are seeing here

a first-class example of the gap that exists between

management and technical decision-making, undisciplined

by awareness of what criteria should inform a decision

having4§ widespread ramifications.



• Recently more attention is being given to a strange

quirk of humanity, in which people advocate things

to others (especially their clients, students, or

customers) but, strangely, do not demonstrate their

dedication to what they advocate by following their

own preaching in their own practice.

There is probably no field that could benefit more from

the use of computers to assist professional people

than computer programming. Now it is true that computers

are being used, but the degree of sophistication and

scholarship embodied in such uses is almost trivial.

The same physical workspace that is used to add up

check totals is also used to help a programmer deal

with writing a system of 10,000 or more lines of

software, all of which must be sequenced logically,

etc., etc. In other words, there is no matching of

the work environment to the cognitive work demands.

This is the same kind of "human factors" thinking that

went into the design of the Three-Mile Island nuclear

reactor controls, described by John Kemeny as 40 years

out of date.

:Why can't the computer industry invest in large displays,

of the same size as those that are used to control

train passenger routini, instead of being permanently

wedded to small screens that take their size because

of marketing thinking instead of criteria for effective

human performance in software design?



not the

r

POINT 2. Structured programming offers the necessary discipline

to make good documentation possible. It then leads into

validation of program modules, giving mathematical

proof of validity. The latter leads into computer

software to assist in structural operations related to

structural programming and proof of validity, which

takes extensive cognitive burden off the programmer,

and which leads naturally into high quality documentation

and easy means for program modification.

Anyone who looks deeply into this situation will discover

that, in computer science departments, and in practice, people are

doing some of this, giving lip service to some of it, and not

doing some of it. But it is the integrated system that is critical,
parts. . 11 h . 1 . 1 d h .Vlrtua y any t eoretlca questlon re ate to t e foregolng

either can already be answered, or an answer can be developed

within a few months.

But the state of the art in the industry is to treat

special cases of generic results as unique developments, not

blessed by any connection to sound theory, and just to be applied

in an ad-hoc way, with ad-hoc practices.

To see how bad it is, look at the overview on programming

practices in Reference 10.

To see how, on the one hand, there is recogn~tion of the

gap between the state-of-the-art and defense contractor

software practices, and at the same time a bias against moving

against ~R*iN~i~~xx~~XX~NX look at Reference 11 (the Eastport Report

developed for the government Strategic Defense Initiative

by a blue-ribbon panel). The panel acknowledges the huge

gap, and at the same time in another part of the report,

disavows the very basis for correcting it.



REFERENCES

1. G. A. Miller, "The Magical Number Seven, Plus or Minus

Two: Some Limits on our Capacity for Processing

Information", Psychol. Rev., 63(2), 81-97 (1956).

2. J. N. Warfield, "Structural Analysis of a Computer

Language", Proc. 17th Annual Southeastern Symp. on

Systems Theory, IEEE, New York (1985).

3. , "Developing a Design Culture in Higher

Education", Proc. SGSR, Seaside: Intersystems, 1985, 725-729.

4. "Education in Generic Design", Proc. SGSR,

Seaside:

5.

Intersystems, 1986, H22-H33.

________, "Dimensionality", Proc. IEEE SMC Society,

to appear, 1986.

6. , "Organizations and Systems Learning",

General Systems, Vol. 27, 1982, 5-74.

7. R. C. Linger, H. D. Mills, and B. I. Witt, Structured

Programming: Theory and Practice, Addison-Wesley, 1979.

8. James Martin, An Information Systems Manifesto,

(esp. Chap. 9), Prentice-Hall, 1984.

9. Andre L. Delbecq, A. H. Van de Ven, and David H. Gustafson,

Group Techniques for Program Planning, Scott Foresman, 1975.

10. David King, Current Practices in Software Development,

(esp. Chap. 3), New York: Yourdon, 1984.

11. Eastport Study Group, A Report to the Director,

Strategic Defense Initiative Organization, 1985.


	Warfield_34_4_1a
	Warfield_34_4_1b
	Warfield_34_4_1c
	Warfield_34_4_1d
	Warfield_34_4_1e
	Warfield_34_4_1f
	Warfield_34_4_1g
	Warfield_34_4_1h
	Warfield_34_4_1i
	Warfield_34_4_1j
	Warfield_34_4_1k
	Warfield_34_4_1l
	Warfield_34_4_1m

