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Abstract 

This report reviews recent research on Learnable Evolution Model (LEM), and presents selected results 
from its application to the optimization of complex functions and engineering designs. Among the most 
significant new contributions is a multi operator methodology for generating individuals (candidate 
solutions) and the employment of a more advanced learning program, AQ21, as the learning module. The 
new features have been implemented in the LEM3 program. To evaluate LEM3’s performance, it was 
experimentally compared to other evolutionary computation programs, such as, EA--a conventional, 
Darwinian-type evolutionary computation program, CA--a cultural evolution algorithm, and EDA--an 
estimation of distribution algorithm on selected function optimization problems. To determine the 
scalability of LEM3 and compared programs, the number of variables in the optimized functions was 
varied from 2 up to 1000.  In every experiment, LEM3 outperformed the other programs in terms of the 
evolution length, sometimes more than an order of magnitude. Another recent research result is the 
development of early versions of two LEM-based systems, ISHED and ISCOD, for the optimization of 
heat exchangers evaporators and condensers, respectively. This work was done in collaboration with 
scientists from the National Institute of Science and Technology. In experimental testing, the systems 
produced designs that matched or were superior to human designs, particularly, in the cases of non-
uniform air flows. This collaboration continues, and may ultimately produce systems that NIST will use 
to develop better designs of heat exchangers and have them implemented by the industry.   
 

Keywords:  Evolutionary Computation, Function Optimization, Learnable Evolution Model, 
Guided Evolutionary Computation 
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1 INTRODUCTION 

An attractive approach to solving very complex optimization problems is to employ evolutionary 
computation. In a conventional, Darwinian-type methods of such computation, innovation to the 
population of solutions is introduced through mutations and/or recombinations. Because these 
are semi-random operators, conventional evolutionary computation is a form of a trial and error 
search method, and thus not very efficient. 

Another approach to evolutionary computation is to employ an “intelligent agent” to guide the 
process of introducing innovation. Such an approach has been implemented in Learnable 
Evolution Model (LEM) in which the role of an intelligent agent is performed by a machine 
learning program (Michalski, 2000). In LEM, innovation is introduced by a new type of 
operators—hypothesis generation and hypothesis instantiation—that apply a learning and 
reasoning process. 

To generate new solutions, these operators exploit the differences between groups of high and 
low performance solutions. First, the hypothesis generation operator induces general rules 
delineating subareas in the space likely to contain the optimum, and then the hypothesis 
instantiation operator populates these subspaces with proposed new solutions. Multiple 
experiments have confirmed that an application of these operators can significantly shorten the 
evolution length, as measured by the number of fitness evaluations needed to achieve a desired 
solution. 

Hypothesis generation and instantiation operators are, however, computationally more complex 
than conventional mutations and recombinations, or operators used in standard gradient methods 
of optimization, because they require an execution of non-trivial inductive and deductive 
inferences. This means that there is a trade-off between advantage of applying the new operators 
and computational simplicity of executing conventional operators. To take advantage of this 
trade-off, LEM integrates both types of operators—new and conventional ones—and tries to 
apply them in a way that maximizes the effectiveness of the optimization process. 

The rest of this paper is organized as follows. Section 2 briefly describes the LEM3 
implementation of learnable evolution. Section 3 explains different operators for generating new 
candidate solutions in LEM3. Section 4 describes LEM3’s Control Module that selects the 
operator to be applied at any given step. Newly generated individuals (solutions) are then 
selected for a new population. This process is described in Section 5.  Section 6, briefly describes 
ISHED (version 2), a LEM-based a system specialized for the optimization of heat exchanger 
designs, and Section 7 reports selected results obtained by it.  Section 8 relates LEM research to 
other methods of evolutionary optimization. The final Section 9 concludes the paper with 
suggestions of desirable directions of further research. 

2 AN OVERVIEW OF LEM3 

Figure 1 presents a flow diagram of LEM3. The process starts with a generation of an initial 
population of candidate solutions. This can be done in three different ways, by a random process, 
by loading an existing population from an external source, or by a combination of these two 
methods.  
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Figure 1: The LEM3 top level algorithm. 

In the next step, candidate solutions in the population, either those in the initial population or 
those resulting from a previous run of program are evaluated according to a user-defined fitness 
function (a.k.a. objective function). Based on the results of the evaluation, a new population of 
solutions is created by one of the standard selection methods developed in the field of 
evolutionary computation. The current version of LEM3 implemented rank, tournament, and 
proportional methods of selection.  Details on this step are presented in Section 3.5. 

The subsequent steps perform the most elaborated part of LEM3, namely, introduce innovation 
to the current population. This is done in LEM3 in several ways, depending on what action or 
actions are selected by the Control Module.  One important novelty of LEM3 is that it can 
execute different actions (alternatively called modes of operation) each employing a different 
type of innovation operators. Another novelty is that it can execute two or more actions in 
parallel. Possible actions include: Learn and Instantiate, Probe, Search Locally, Adjust 
Representation, and Randomize. These actions are described in detail in Section 3. Section 4 
describes the method used for determining which action or actions to apply at any given step. 

3 A DESCRIPTION OF LEM3 ACTIONS 

3.1 Learn and Instantiate  

The “Learn and Instantiate” action is the original and central component of the Learnable 
Evolution Model.  This action creates new candidate solutions by performing three steps: 

(1) Selecting a training set of solutions from a precursor population for the learning 
program, 
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(2) Learning a general hypothesis characterizing subspaces likely containing the optimum, 
and 

(3) Instantiating the hypothesis in different ways to create new candidate solutions. 

The precursor population is the current population, or a union of the current and some previous 
populations, specified by the lookback parameter (Michalski, 2000)1. Step (2) starts by 
determining the training set, which consists of a group of high-performing (H-group) and a 
group of low-performing (L-group) candidate solutions selected from the precursor population 
according to the fitness function. Details on methods of creating H- and L- groups are described 
in (Michalski, 2000) and (Wojtusiak and Michalski, 2005). The H- and L-group serve as positive 
and negative examples, respectively, for a learning program, which in LEM3 is AQ21. This 
program is the newest member in the AQ learning programs family (Wojtusiak, 2004a; 
Wojtusiak et al., 2006). 

In principle, there is no restriction on which learning program is used in LEM, provided that an 
effective method has been developed for instantiating hypotheses induced by it. The AQ-type 
learner has shown to be highly suitable for LEM, because the classifiers it learns are both, easy 
to instantiate and more expressive than those learned by other programs, because they employ a 
more expressive representation language, namely attributional calculus (Michalski, 2004). 

Specifically, classifiers learned by AQ21 are sets of attributional rules, whose simplest form is: 

 CONSEQUENT <= PREMISE (1) 

where CONSEQUENT and PREMISE are conjunctions of attributional conditions (a.k.a. 
selectors). An attributional condition defines a relation between an attribute, or a group of 
attributes, and the values satisfying that relation.  Here is an example of an attributional rule: 

[refrigerator-design = modern] 
 <= [energy use = 130..150] & [style = french_door] & 
      [surface material= aluminum v titanium] & 
      [dimensions: height < 6 & width = 36 &  
        depth = cabinet-depth v countertop-depth] 

This rule states that a design is classified as modern, if its energy use is between 130 and 150 
kW/year (units are defined in the attribute domain), its style is “French door”, its surface material 
is aluminum or titanium (these are values of the structured2 attribute “material”), its dimensions 
are: the height is smaller than 6’, the width is equal 36”, and the depth is either cabinet depth or 
countertop-depth. The attribute “dimensions” is a compound attribute whose constituent 
attributes are height, width, and depth. As one can see, the rule is easy to interpret, which makes 
it possible for experts to develop an insight into the problem being optimized. For more 
information about attributional rules and compound attributes, see (Michalski, 2004). 

For the purpose of understanding LEM, it is sufficient to know that its learning module learns a 
classifier that consists of attributional rules whose set-theoretical union is a generalization of the 

————— 
1  All references in this paper by one or more of the authors refer to papers downloadable from http://www.mli.gmu.edu/mpubs.html 

2  The domain of a structured attribute is a partially ordered set. The most common structured attribute is a hierarchical attribute whose domain is 
a hierarchy of concepts (Kaufman and Michalski, 1996). 
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H-group solutions, but does not include any solutions from the L-group. Rules in the classifier 
delineate segments of the search space that is worth to explore further, as there is a likelihood 
that one of them may contain the optimal solution. If there is more than one optimal solution, 
they may be located in different segments. By instantiating rules in the classifier in different 
ways (which is equivalent to sampling these segments), new candidate solutions are created. 
Details of this process are presented in Section 3. Because each rule can be separately 
instantiated, the generation of new solutions may be conducted in parallel. If there are several 
optimal solutions, the program may find them all or a subset of them simultaneously. 

To instantiate a rule, for each condition of the rule, the program randomly assigns an attribute 
value that satisfies that condition.  For attributes not included in the rule, the program selects a 
value that the attribute takes in a randomly selected individual from the H-group.  Because rule 
conditions can usually be satisfied by several different values, many different individuals can be 
created by instantiating one rule. For details of this process, see e.g., (Wojtusiak and Michalski, 
2005; 2006). 

There are several modifications to the above basic instantiation algorithm, one of which is a 
flexible interpretation of selectors in a rule.  For example, if a rule states that a design is high-
performing if its energy use is between 130 and 150, its may advantageous to generate designs 
with energy use 129 or 151 as instances of the high-performing class, although their energy use 
does not strictly match the condition.  A flexible interpretation of a selector assigns a degree of 
match to it that diminishes with the distance of the attribute value in an entity matched to the 
attribute value/s stated in the selector. This degree affects the probability of generating solutions 
with an attribute value outside of the strict range. 

As mentioned earlier, learned rules are used to generate new solutions, not to match given 
solutions against the rules in order to classify them, as in classification problems. Therefore, a 
flexible interpretation of attributional rules in LEM3 is done differently than in classification 
problems. The method for flexibly instantiating rules, implemented in LEM3, generates s% 
individuals with attribute values strictly satisfying rule conditions, and f% individuals with 
attribute values whose probabilities linearly decrease with distance from the condition border. 
where, s% and f% are control parameters (s% = 100% – f%)..  In experiments, such a flexible 
rule interpretation gave better results than strict interpretation for some problems, e.g., for 
optimizing the Rosenbrock function in which the solution is located on a narrow ridge and 
therefore may be missed by strictly interpreted rules. 

3.2 Probe Action 

The probe action generates new individuals by guided Darwinian-type operators. These operators 
are akin to mutations and crossover but are designed to represent types of changes in the 
solutions that according to an expert may plausibly lead to their improvement, and satisfy 
constraints imposed on the attributes describing solutions by attribute types and domain sizes. In 
order to be applicable to a wide range of problems, these operators are defined to LEM3 by the 
user. 

To make LEM3 applicable to wider range of problems, it allows the user to describe solutions in 
terms of several different types of attributes, such as nominal, structured (hierarchical), ordinal, 
cyclic, interval, ratio, absolute, and compound (Michalski and Wojtusiak, 2007).  These types are 
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taken into consideration during both hypothesis generation and instantiation, and probing as they 
represent problem background knowledge that is used to guide these operators. For example, 
mutations of metric attributes (interval, ratio and absolute) involve making small modifications 
to their values within the scope of the attribute domain. Mutations of symbolic attributes 
(nominal, ordinal, cyclic and structured) are done appropriately for each attribute type. Nominal 
attributes are mutated by randomly taking another value from the attribute domain. Ordinal 
attributes are mutated by taking a neighboring value. Mutations of hierarchical attributes involve 
making small steps in climbing up and down the attribute hierarchies.  For more details on 
probing operators implemented in LEM3, see (Wojtusiak and Michalski, 2005; 2006). 

A crossover operator in probing action is done by randomly selecting two parent individuals 
from the population, and creating two new individuals by exchanging values of the first k 
attributes, where k is selected randomly. Results are accepted only when they do not contradict 
the constraints that reflecting relationships among different attributes and any other problem 
knowledge introduced to the program. 

3.3 Search Locally 

A local search employs user-defined methods.  It is used when at least some solutions in the 
current populations are expected to be close to the global optimum and only in searching for 
optimal values of the metric attributes. Because local search methods have been studied for many 
years and are well-known, LEM3 has been designed to allow the user to attach an external 
program to run a method of the user’s choice. A full implementation of this feature is still under 
development. Currently, the local search is executed by applying the user-defined method (an 
external program) to the best candidate solution whenever the “Probe” action is executed.  

3.4 Adjust Representation Space 

This action applies operators that modify the representation space of solutions in order to make it 
more suitable for a successful application of the learn and instantiate action. The representation 
space can be modified by such operators as modifying domains of metric variables (through 
different ways of discretizing them), removing variables considered irrelevant to the optimization 
problem, and/or creating new, more relevant variables as functions of the original variables.  

So far, we developed of an operator that seeks an optimal discretization of metric attributes. It 
employs the method for Adaptive Anchoring Discretization, called ANCHOR (Michalski and 
Cervone, 2001) that discretizes continuous attributes with a granularity size dynamically 
increasing in the subranges of the variable domain that appear to require such an increase.  The 
method starts with an initial, very rough discretization of the variable domain. Once it starts 
converging toward a possible solution, the precision of metric attributes is increased in the 
subranges of the entire domain suggested by the best known individuals.  Conditions under 
which LEM3 invokes ANCHOR are specified in Section 3.6. 

3.5 Select Population 

The survival-of-the-fittest principle that underlies Darwinian-type algorithms is applied using 
one of the selection methods developed in the field of evolutionary computation. LEM3 
implements several methods: the rank selection (that selects solutions that have the highest rank, 
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as determined by the fitness function), probabilistic selection (a.k.a. proportional or roulette-
wheel selection that selects solutions with probability proportional to their fitness), and 
tournament selection (that selects solutions that “win” when compared with other randomly 
drawn solutions).  Note that these selection methods are based on the fitness (a measure of 
quality) of individual solutions, and do not take into consideration other factors, such as the need 
to maintain diversity of population, that is, to keeping representative solutions from different 
parts of the space. 

3.6 Action Selection Module 

The Action Selection Module uses an Action Profiling Function (APF) to control which actions 
are applied at any given step of the computation.  Initially, by default, the Control Module selects 
the “Learn and Instantiate” action.  If an unsatisfactory progress is observed after a number of 
iterations defined by the learn-probe and learn-threshold parameters, the program switches to 
the “Probe” action.  The learn-probe parameter defines the minimum number of iterations for 
which the Learn and Instantiate action is to be performed, even if the progress is unsatisfactory.  
The learn-threshold parameter specifies the minimal improvement of the fitness value of the best 
individual in the population in order to evaluate progress as satisfactory.  After applying the 
Probe operator, LEM3 attempts “Learn and Instantiate” again. 

LEM3 counts how many times the “Probe” action was applied after “Learn and Instantiate” and 
failed. If this number reaches mutation-probe, control switches to the “Adjust Representation” 
action.  The representation-probe parameter defines the maximum number of times the 
representation is adjusted before switching to the “Randomize” action, which randomly 
generates new individuals. 

One way to apply above actions is to execute them in the sequence listed above. After the Learn 
and Instantiate action stops improving the population, the Probe operator applies mutation to 
introduce diversity. This is particularly important when the population becomes uniform, and it 
is not possible to determine different H- and L-groups. 

If the Probe action does not lead to a sufficient improvement after a defined number of 
repetitions, the next action is to increase the representation precision, which is done by 
discretizing selected ranges of values into smaller units according to the ANCHOR method. 
Again, if this action does not bring sufficient improvement after a certain number of steps, the 
Control Module executes a start-over action that generates a number of solutions randomly and 
introduces them into the population. This step seeks to explore parts of the search space that may 
have been previously missed. 

Another way to execute the above actions is to apply some of them in parallel. This is an 
important novelty of LEM3.  For example, the program may generate 100 individuals in each 
generation, 80 of which are created by learning and instantiation, 10 by applying crossover, 5 by 
applying mutation, and 5 by random generation.  Numbers of individuals created by different 
actions can be adjusted based on the program’s performance. This is the newest feature of LEM3 
that is being currently tested, and obtained results will be presented in another report.  
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4 APPLYING LEM3 TO FUNCTION OPTIMIZATION  

To test the performance and scalability of LEM3, it was applied to selected benchmark problems 
that involve optimizing Rastrigin, Griewangk and Rosenbrock functions with numbers of 
variables ranging between 2 and 1000.  Results were compared with those obtained by applying 
EA, a conventional Darwinian-type program, implemented using Evolutionary Objects Library, 
to the same problems.  We also compared LEM3 results with the published results by Estimation 
of Distribution Algorithms (EDAs), and a Cultural Algorithm (CAs). 

Results from comparing LEM3 with EA are presented in Table 1.  The relative performance of 
LEM3 and EA is measured by the speedup LEM3/EA, defined as the ratio of the evolution 
length of EA to the evolution length of LEM3 needed to achieve the same result. The 
evolutionary length is the number of fitness evaluations required by a program to reach a desired 
result. The speedup LEM/EA thus states how many times the number of fitness of evaluations 
done by EA is greater than the number of fitness evaluations done by LEM3. The stopping 
criterion for EA and LEM3 was finding a 

δ
-close solution, that is, a solution that is better than 

the best solution in the starting population by a factor 1/
δ
, where 

δ
 is a user-defined parameter 

(Wojtusiak and Michalski, 2005; 2006). For example, if δ =0.1, the best solution in the final 
population must be at least 10 times better that the best solution in the original population. 

 
Table 1: Average speedups of LEM3 over EA in optimizing the Rosenbrock, Griewangk and 

Rastrigin functions with the number of variables ranging from 100 to 1000 for δ =0.1 and δ =0.01. 

Number of variables 100 200 300 400 500 600 700 800 900 1000 

Speedup LEM3/EA 10.7 15 16.8 17.8 17.2 16.7 19 16.6 17.2 18 

 

The table presents the speedup averaged for the three functions and two different values of δ . 
Each experiment was repeated 10 times with a different starting population, which was the same 
for LEM3 and EA.  

As one can see, the speedup of LEM3 over EA ranged between 10 and 18, and has a tendency to 
increase with the number of function variables. There was not a single case when speedup was 1 
or smaller than one. It should be noted that LEM3 was executed with default parameters, without 
tuning it to these particular functions. 

A comparison of LEM3 results with the best results from the Cultural Algorithm  program (CA) 
was done by applying LEM3 to optimize the same functions and with the same number of 
variables as CA, as reported in (Reynolds and Zhu, 2001); specifically, to the optimization of the 
Rastrigin, Griewangk, and Rosenbrock functions of 5, 3, and 2 variables. For these numbers of 
variables, LEM3 required on the average times fewer fitness evaluations on the Rastrigin 
function, 53 times fewer fitness evaluations on the Griewangk function, and 243 times fewer 
fitness evaluations on the Rosenbrock function. Details are presented in Table 2.  The stopping 
criterion for LEM3 was finding an individual with fitness at least as good as reported for the CA.  
Each experiment was repeated 40 times, and the above numbers are averages. 
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Table 2: Comparison of LEM3 with CA on the Rastrigin, Griewangk, and Rosenbrock functions 
(reproduced from Wojtusiak and Michalski, 2006). 

Function and  
# variables 

Method Best fitness 
Value 

Evolution 
Length 

LEM3/CA 
Speedup 

LEM3 0 687 Rastrigin 5 
variables CA 5.4532e-05 ~500,000 ~728 

LEM3 0 1,521 Griewangk 3 
variables CA 1.0E-10 ~79,900 ~53 

LEM3 0 219 Rosenbrock 2 
variables CA 1.0e-10 ~53,200 ~243 

 

Comparing LEM3’s results with the best results from the several EDA implementations on 
Griewangk and Rosenbrock functions of 10 and 50 variables reported in (Bengeoxtea et al., 
2002) also indicated its significant advantage.  Specifically, LEM3 required on the average 142 
and 66 times fewer fitness evaluations for optimizing the Griewangk and Rosenbrock function, 
respectively. The LEM3 stopping criterion was finding a solution with fitness at least as good as 
the one found by the EDA program. Each experiment was repeated 10 times, and reported 
numbers are averages. The averages for functions of 10 and 50 variables are reported in Table 3. 

As Table 3 shows, greatest speedup was achieved in optimizing the Griewangk function of 10 
variables, which was about 231. Note also that while LEM3 found the optimum (0), EDA result 
was very close (0.0511), but not the exact optimum. 

 
Table 3: Comparison of LEM3 with EDA on the Rastrigin, Griewangk, and Rosenbrock 

functions (reproduced from Wojtusiak and Michalski, 2006). 

Function and  
# variables 

Method Best fitness 
Value 

Evolution 
Length 

LEM3/EDA 
Speedup 

LEM3 0 1,305 Griewangk 10 
variables. EDA 0.051166 301,850 ~ 231 

LEM3 0 4,005 Griewangk 50 
variables EDA 8.7673E-6 216,292 ~ 54 

LEM3 1.2 1,389 Rosenbrock 10 
variables EDA 8.6807 164,519 ~ 118 

LEM3 46.74 7,875 Rosenbrock 50 
variables EDS 48.8234 275,663 ~ 15 

 

5 LEM-BASED SYSTEMS FOR OPTIMIZING HEAT EXCHANGERS  

Because LEM shortens the evolution length, this suggests that it may be particularly suitable for 
solving optimization problems in which fitness evaluation is time consuming or costly. Problems 
of optimizing complex engineering designs are of this type. 

Using LEM methodology, we developed two specialized systems for optimizing designs of 
engineering systems, one, ISHED, for optimizing evaporators in heat exchangers (Kaufman and 
Michalski, 2000; Domanski et al., 2004; Michalski and Kaufman, 2006), and the other, ISCOD, 
for optimizing condensers. The evaluation of such design requires running a complex simulator 
and is time consuming. Heat exchangers are subject to a variety of physical and environmental 
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constraints, resulting in a very large number of different feasible designs, scattered throughout 
intractably large representation spaces.  In both systems, the objective is to arrange the 
connections among the tubes that maximize the heat transfer. This problem is very important, 
because due to the ubiquity of heat exchangers in a modern society, improving efficiency of heat 
exchangers can bring significant economic, as well as environmental benefits.  

ISHED and ISCOD were equipped with two modes of operation: learning and probing.  When 
after a specified number of trials one of the modes makes insufficient progress, the program 
switches to the other mode. The learning operator learns rules expressed in terms of attributes 
that abstracted the heat exchanger design, and returns a hypothesis specifying parts of the 
abstracted representation space.  The program then instantiates the rules, linking the tubes in the 
heat exchanger in ways that given the domain knowledge are plausibly feasible.  More recent 
versions of the programs have enhanced the flexibility by which such an instantiation is made, so 
that the same rule can now generate more distinct heat exchangers. 

Probing action utilizes eight operators akin to mutation and crossover, but tailored to the heat 
exchanger optimization domain.  One operator, for example, swaps the position of two adjacent 
tubes in a refrigerant path, while another operator moves a fork point in a path up or down the 
path. 

Experiments have consistently shown that both systems are able to adapt to varying 
environmental conditions, and evolve heat exchanger designs that perform on a par with, or 
better than the best human designs.  In problems with highly uneven airflows, the ISHED 
designs were evaluated by experts as superior to the best human designs. 

6 RELATED RESEARCH 

The LEM3 program follows earlier implementations, LEM2 and LEM1, that used earlier 
versions of AQ learning programs and had fewer features. An implementation of Learnable 
Evolution Model for multi-objective optimization, LEMMO, developed by another research 
group, is described in (Jourdan et al., 2005).  LEMMO is based on rules derived from decision 
trees learned by the C4.5 program, and was applied to a water quality optimization problem.  The 
decision tree representation of the hypotheses is more limited than the attributional rule 
representation used in LEM3. 

The evolutionary methods that seem to be closest in spirit to LEM are cultural algorithms (e.g. 
Reynolds and Zhu, 2001) that perform a constrained optimization process in which constraints 
are learned during the evolutionary computation.  The constraints, called beliefs, reside in a 
belief space that is updated during the evolution process.  Individuals that are stored in an 
optimization space are modified so that they satisfy the beliefs.  The belief space is being built 
based on statistical information about individuals, which usually consists of intervals containing 
the fittest individuals. 

Estimation of Distribution Algorithms (EDAs) use statistical inference, usually Bayesian or 
Gaussian networks, to estimate distributions of high-performing individuals selected from one 
population (Larranaga and Lozano, 2002).  LEM significantly differs from EDAs in that it seeks 
rules for distinguishing between high- and low-performing individuals, and employs symbolic 
learning, rather than statistical.  It also uses the fitness function not only for selecting individuals 
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for learning, but also during the learning process itself, while EDA uses it solely for selecting 
individuals.  LEM does this by learning significance-based descriptions. 

Another form of non-Darwinian evolutionary computation is performed by memetic algorithms 
that combine conventional evolutionary computations with local search methods (Hart, 
Krasnogor and Smith, 2004).  LEM3 takes an advantage of this idea by including local search as 
one of its actions. 

7 CONCLUSION 

This paper reported recent results from research on Learnable Evolution Model (LEM). The most 
important result is the development of LEM3, the most complete and advanced implementation 
of the model so far. It includes some elements that go beyond the features described in 
(Michalski, 2000), such as the introduction of the Action Profiling Function and new 
instantiation algorithms. LEM3 is more advanced than LEM2 also due to the employment AQ21,   
the recent and most advanced version of AQ learning. In experimental applications of LEM3 to 
complex function optimization problems (with up to 1000 continuous variables) it outperformed 
EA, a standard Darwinian-type method.  Comparisons with published results on Estimation of 
Distribution Algorithms and Cultural Algorithms also show the superiority of LEM3 in terms of 
evolution length.  

LEM3 is highly scalable in comparison to the previous implementations.  Extensive experiments 
have confirmed that LEM3 can serve as a powerful optimization system and that it outperforms 
other evolutionary computation systems in terms of evolution length.  It was also applied to 
problems in which in addition to numeric attributes solutions are described in terms of different 
types of attributes, such as nominal, structured, and ordinal. The usefulness of this feature is not 
demonstrated in this paper, because in the first stage we wanted to compare LEM3 to other 
evolutionary computation programs, but these programs do not have this feature. There are, 
however, applications in which this feature may be very useful, such as the optimization of very 
complex engineering systems.  

Early results from applying LEM-based ISHED and ISCOD systems to optimizing heat 
exchangers were evaluated by experts from the National Institute for Standards and Technology 
as superior to human designs in the cases of non-uniform air flows. 

Summarizing, presented results confirm those published in previous papers that guided 
evolutionary computation represented by the LEM approach can be highly advantageous for very 
complex optimization problems in which the fitness evaluation is time-consuming or costly.  It is 
especially recommended for problems for which standard evolutionary computation methods 
require long evolutionary processes. Our current research concerns several unresolved aspects of 
the LEM methodology, such as its computational complexity, convergence speed for different 
types of functions, and the areas of applicability to which it is the most suitable. 

 



 

 11 

REFERENCES 
Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano, J.A., “Experimental Results in 
Function Optimization with EDAs in Continuous Domain,” in Larranaga, P. and Lozano J.A., 
Estimation of Distribution Algorithms, Kluwer Academic Publishers, 2002. 

Domanski, P.A., Yashar, D., Kaufman K. and Michalski R.S., “An Optimized Design of Finned-
Tube Evaporators Using the Learnable Evolution Model,” International Journal of Heating, 
Ventilating, Air-Conditioning and Refrigerating Research, 10, pp 201-211, April, 2004. 

Evolutionary Objects Library, downloadable from the website: http://eodev.sourceforge.net 

Hart, W.E., Krasnogor, N. and Smith, J.E. (eds.), Recent Advances in Memetic Algorithms, 
Springer, 2004. 

Jourdan, L., Corne, D., Savic, D. and Walters, G., “Preliminary Investigation of the ‘Learnable 
Evolution Model’ for Faster/Better Multiobjective Water Systems Design,” Proceedings of The 
Third International Conference on Evolutionary Multi-Criterion Optimization, EMO’05, 2005. 

Kaufman, K. and Michalski, R.S., “A Method for Reasoning with Structured and Continuous 
Attributes in the INLEN-2 Multistrategy Knowledge Discovery System,” Proceedings of the 
Second International Conference on Knowledge Discovery and Data Mining (KDD-96), 
Portland, OR, pp. 232-237, August, 1996. 

Kaufman, K. and Michalski, R.S., “Applying Learnable Evolution Model to Heat Exchanger 
Design,” Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-
2000) and Twelfth Annual Conference on Innovative Applications of Artificial Intelligence 
(IAAI-2000), Austin, TX, pp. 1014-1019, 2000. 

Larrañaga, P. and Lozano, J. (eds.), Estimation of Distribution Algorithms: A New Tool for 
Evolutionary Computation, Kluwer Academic Publishers, 2002. 

Michalski, R.S. “LEARNABLE EVOLUTION MODEL Evolutionary Processes Guided by 
Machine Learning,” Machine Learning, 38, pp. 9-40, 2000. 

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for 
Natural Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-2, 
George Mason University, Fairfax, VA, April, 2004. 

Michalski, R.S. and Cervone, G., “Adaptive Anchoring Discretization for Learnable Evolution 
Model,” Reports of the Machine Learning and Inference Laboratory, MLI 01-3, George Mason 
University, Fairfax, VA, 2001. 

Michalski, R.S., Wojtusiak, J. and Kaufman, K., "Intelligent Optimization via Learnable 
Evolution Model," Proceedings of The 18th IEEE International Conference on Tools with 
Artificial Intelligence, Washington D.C., November 13-15, 2006. 

Michalski, R.S. and Kaufman, K., “Intelligent Evolutionary Design: A New Approach to 
Optimizing Complex Engineering Systems and its Application to Designing Heat Exchangers,” 
International Journal of Intelligent Systems, 21, 2006. 

Reynolds, R.G. and Zhu, S., “Knowledge-Based Function Optimization Using Fuzzy Cultural 
Algorithms with Evolutionary Programming,” IEEE Transactions on Systems, Man, and 
Cybernetics, 31, 2001. 

Wojtusiak, J., “AQ21 User’s Guide,” Reports of the Machine Learning and Inference 
Laboratory, George Mason University, MLI 04-3, Fairfax, VA, 2004a. 



 

 12 

Wojtusiak, J., “The LEM3 Implementation of Learnable Evolution Model: User’s Guide,” 
Reports of the Machine Learning and Inference Laboratory, George Mason University, MLI 04-
5, Fairfax, VA, 2004b. 

Wojtusiak, J. and Michalski, R.S., “The LEM3 System for Non-Darwinian Evolutionary 
Computation and Its Application to Complex Function Optimization,” Reports of the Machine 
Learning and Inference Laboratory, MLI 05-2, George Mason University, Fairfax, VA, October, 
2005. 

Wojtusiak, J., Michalski, R.S., Kaufman, K. and Pietrzykowski, J., “Multitype Pattern Discovery 
Via AQ21: A Brief Description of the Method and Its Novel Features,” Reports of the Machine 
Learning and Inference Laboratory, MLI 06-2, George Mason University, Fairfax, VA, June, 
2006. 

Wojtusiak, J. and Michalski, R.S., “The LEM3 Implementation of Learnable Evolution Model 
and Its Testing on Complex Function Optimization Problems,” Proceedings of Genetic and 
Evolutionary Computation Conference, GECCO 2006, Seattle, WA, July 8-12, 2006. 
 
 

 

 

 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A publication of the Machine Learning and Inference Laboratory 
George Mason University 
Fairfax, VA 22030-4444 U.S.A. 
http://www.mli.gmu.edu 
 
Editor:  R. S. Michalski 
Assistant Editor:  Janusz Wojtusiak 
 
The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning 
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group 
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group) 
Reports, or were part of the Department of Computer Science Reports). 
 
Copyright © 2007 by the Machine Learning and Inference Laboratory 


