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Abstract

PERFORMANCE WEIGHTED BLENDED SPECTRAL ESTIMATION

Jeffrey Tucker

George Mason University, 2020

Thesis Director: Dr. Kathleen E. Wage

A classic approach to power spectrum estimation is to apply a time domain window to

a signal and then compute the discrete Fourier transform (DFT). The window provides a

trade off between the resolution of the estimator, and the ability to detect a quiet signal

when loud signals are also present. There are many windows available, and there is often

no single window that provides the best balance between resolution and dynamic range.

Analysts can often improve their estimates by combining spectra from multiple windowed

DFTs. This thesis proposes a performance weighted blended (PWB) spectrum estimator

that automates the work of an analyst by blending an ensemble of estimators. The proposed

estimator is an adaptation of Buck and Singer’s performance weighted blended beamformer.

A sensor array samples a signal in space and a beamformer calculates a spatial frequency

spectrum. Since planewave beamforming is analogous to spectral estimation, Buck and

Singer’s approach can be used to blend windowed DFTs. Thus the same approach can be

used to blend windowed DFTs. When an ensemble spectral estimators are constrained to

have



unity gain in the look direction, then any difference in their estimates is due to noise or

interference. With this in mind, accumulated power output was chosen as the performance

metric for the PWB estimator. This estimator is guaranteed to perform as well or better

than the best performing estimator in the ensemble as the number of data blocks goes to

infinity. The PWB estimator was tested on complex exponential signals with uniformly

distributed random phase in complex Gaussian white noise and experimental data. Results

show that the PWB estimator is able to exhibit improved resolution in regions of the

spectrum where there are loud signals, and improved dynamic range in regions where there

are quiet signals. Simulations also show that the PWB estimator is able to outperform a

minimum power distortionless response (MPDR) estimator when it is calculated using the

sample statistics. Since the estimator as it was originally proposed was not robust enough

for use with real data, methods to improve robustness will be presented. The algorithm was

evaluated using data from a hydrophone mounted on an underwater glider. The experiments

show that the PWB algorithm is able approximate the performance of the best estimator

in the ensemble as long as certain restrictions on its parameters are respected.



Chapter 1: Introduction

Spectrum estimation is the problem of calculating the power of a signal at a specific fre-

quency or frequencies of interest. Spectral analysis is very important to many fields such

as radar, sonar, geophysics, and music [1]. For example, resonant frequencies in sound

reinforcement systems may result in a very loud and unpleasant sound. Audio technicians

often use spectrum analyzers to identify these resonant frequencies so that they can be are

attenuated using a graphic equalizer.

A well trained audio technician can often identify resonant frequencies and the proper

amount of attenuation simply by listening carefully. However, many applications require

a more rigorous approach that is usually based on windowed versions of the fast Fourier

transform (FFT). The FFT can be viewed as a bank of band pass filters, one for each

frequency of interest [2]. Each filter’s frequency response has a main lobe that passes the

frequency of interest but also allows power from nearby signals to corrupt the estimate, and

side lobes which allow power from signals outside the main lobe to corrupt the estimate [3].

These two sources of bias in the estimate are known as resolution, and side lobe leakage

respectively. They cannot be completely alleviated, however a window can be applied to

the time domain signal in order to change the resolution, and side lobe leakage of each

filter in the filterbank [4]. Most useful windows that reduce side lobe leakage also reduce

resolution, and windows that improve resolution tend to increase side lobe leakage. Much

of the art of practical spectrum estimation reduces to selecting a window that provides a

balance between resolution, and side lobe leakage that is appropriate for the spectrum to

be estimated.

To get a picture of a signal’s frequency content, an analyst will often use multiple win-

dows and synthesise the results from each spectral estimate. High resolution windows are

at their best when there is a loud line component at a particular frequency because the

1



improved resolution does a better job of identifying the exact frequency of the line com-

ponent. When there is a loud line component at a frequency other than the frequency of

interest, a window with less side lobe leakage will do a better job of rejecting the interferer

signal. When there are both loud and quiet signals present there will be no single window

that provides the best estimate at all frequencies of interest, thus different windows must

be selected at each frequency. This thesis presents a performance weighted blended (PWB)

estimator that automates this process by weighting each estimator in an ensemble of win-

dowed FFTs based on its performance at each frequency of interest. The resulting spectral

estimator performs as well or better than each of the estimators in the ensemble at each

frequency of interest [5].

This thesis begins with a review of non-parametric power spectrum estimation. Chapter

3 presents historical context as well as a complete description of the blending algorithm and

a detailed convergence proof. Chapter 4 presents simulations of the PWB estimator where

it is applied to both stationary, and non-stationary environments. Additionally, the PWB

estimator is compared to the minimum power distortionless response (MPDR) estimator [6].

Chapter 5 contains a guide for setting the parameters of the algorithm, and designing the

window ensemble. Chapter 6 develops some modifications to the PWB estimator to improve

its robustness. The improved algorithm is then demonstrated using hydrophone data which

has been spiked with a line component. The performance of the improved PWB algorithm

is analyzed in terms of regret, which is the difference between the performance of the PWB

algorithm and the best performing algorithm in the ensemble. Chapter 6 also examines

the performance of the algorithm in terms of its output signal to noise ratio. It is shown

that the PWB algorithm is able to perform as well or better than the best estimator in the

ensemble as long as certain conditions on the algorithm parameters are respected. The final

chapter summarizes the results, and presents opportunities for future study.
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Chapter 2: Background

The goal of spectral analysis is to estimate the distribution of a signal’s power in the fre-

quency domain from a finite sequence of measurements. From the analysis we should be able

to perform tasks such as identifying resonant frequencies, and determining which frequency

bands contain the most power [1]. This thesis focuses on a non-parametric approach based

on the Fourier transform. The Fourier transform assumes that any signal can be represented

as a sum of complex exponentials. Consider a finite sequence of length N stored in a vector:

x =



x[0]

x[1]

...

x[N − 1]


. (2.1)

Vectors will be represented with variables in bold type. The discrete time Fourier trans-

form (DTFT), X(ejω) of the signal x is

DTFT{x} = X(ejω) =

N−1∑
n=0

x[n]e−jωn. (2.2)

The DTFT of a sequence is a continuous function of ω so it cannot be represented digitally.

Throughout the thesis we will use square brackets to distinguish discrete functions from

continuous functions. A more practical approach to the spectral analysis is to calculate the

DTFT for a discrete set of frequencies of interest. When this is done for N equally spaced

3



frequencies starting from zero the result is the discrete Fourier transform (DFT):

DFT{x} = X[k] =

N−1∑
n=0

x[n]e−jωkn, (2.3)

where

ωk =
2πfsk

N
. (2.4)

N will be assumed to be even in this thesis so the index k will take the values:

k =

{
−N

2
,−N

2
+ 1, . . . , 0, . . . ,

N

2
− 1

}
(2.5)

When the signal x only takes real values as like the data from a hydrophone, then the

spectra will be even functions. The complex exponential signals in this research will only

be assigned positive frequencies. In both cases the negative half of the spectrum does not

provide any additional insight so it will be omitted. Each element of X(k) represents the

complex amplitude of the complex exponential portion of the signal at the frequency ωk [7].

Each index k is referred to as the kth bin rather than explicitly referencing a frequency.

These complex amplitudes be squared for each k to estimate the power of the signal at each

frequency of interest ωi

P̂ (ωi) =

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωin

∣∣∣∣∣
2

. (2.6)

This chapter will explain the DFT approach by considering it as a bank of band pass

filters. The characteristics of the filters in the in the filter bank will be altered by windowing

the signal. The advantages of and disadvantages of different types of windows will be dis-

cussed. Finally, an optimal filter called the minimum power distortionless response (MPDR)

filter will be introduced. The MPDR will be used as a basis of comparison for the proposed

performance weighted blended (PWB) algorithm.
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2.1 Filter Bank Interpretation

Consider a band pass filter with center frequency ωc and transfer function

H(ejω) = ej(N−1)(ωc−ω)/2
sin(N(ωc − ω)/2)

sin((ωc − ω)/2)
(2.7)

The impulse response of this filter is

h(n) =


ejωcn n = {0, 1, . . . , N − 1}

0 otherwise

(2.8)

Passing a sequence of N measurements x through this filter yields

xf (N − 1) =
∑∞

n=0 x[n]h[N − 1− n]

=
∑N−1

n=0 x[n]ejωc(N−1−n)

=
∑N−1

n=0 x[n]e−jωcn

(2.9)

where xf is the filtered output. This is the discrete time Fourier transform (DTFT) of x(n)

evaluated at the center frequency of the filter. The DFT forms a bank of these filters by

evaluating the filter output for each frequency ωk. The final step in the estimation is to

take the norm squared of the estimates X(k) which yields Eq. 2.6 [8]. Different estimates

can be formed using different filters. For example the impulse response

h(n) =


1√
N
ejωcn n = {0, 1, . . . , N − 1}

0 otherwise

(2.10)

5



will result in the estimator

P̂Per(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn

∣∣∣∣∣
2

. (2.11)

which is the periodogram [8].

In general the filterbank approach produces estimates in the form

P̂ =

∣∣∣∣∣
N−1∑
n=0

q[n]x[n]e−jωcn

∣∣∣∣∣
2

, (2.12)

where q[n] is referred to as a taper. To simplify our notation we will define a replica vector

v(ω) as:

v(ωi) =



exp jωi[0]

exp jωi[1]

...

exp jωi[N − 1]


(2.13)

The dependence on ω will sometimes be suppressed for clarity. The replica vector is the

length N sequence that would be produced by a complex exponential at frequency ωi. The

replica vector is useful because it can be used to define a window as w = q � v where �

represents element-wise multiplication. The power estimate at the frequency ωi can then be

written as
∣∣w(ωi)

Hx
∣∣2, where the superscript H denotes the Hermitian transpose. Fig. 2.1

contains a block diagram of the estimator using the vector notation.

2.2 Windows

The characteristics of the window used in to implement the filterbank determines the quality

of the estimates that the filterbank produces. Figure 2.2 shows the frequency response of the

6



x

×

×

×

wH
0

wH
1

wH
(N−1)

|·|2

|·|2

|·|2

P̂ (ω0)

P̂ (ω1)

P̂ (ωN−1)

Figure 2.1: A windowed DFT can be interpreted as a bank of band pass filters each imple-
mented by multiplication with the vector w

filter implemented by the uniform window where quniform[n] = 1
N , n = {0, 1, ..., N−1). The

most important features of the response are the gain at the center frequency, the resolution,

side lobe performance, and coherent gain. This section will look at each of these features

and discuss how they effect power estimates generated by the windowed DFT.

The response of the filter in Fig. 2.2 at the center frequency is unity or 0 dB. This

is called either the unity gain constraint or the distortionless response constraint [9]. We

will require that all windows used in this thesis have this constraint. The reason is that in

order to obtain unbiased estimates we have to avoid distorting the signal at the frequency

where we are attempting to estimate the power. If a signal x consists of a single complex

exponential at the frequency of interest ωk then this constraint will insure an unbiased

estimate. Further, any bias in the estimate will be the result of interference from either noise,

or complex exponential components at frequencies other than the frequency of interest. We

can normalize any window to have the distortionless constraint by multiplying the window

by 1∑N−1
n=0 w̃(n)

where w̃(n) is the un-normalized window.

7
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Figure 2.2: Resolution is the ability of a filter to distinguish between signals that are close
in frequency space. It is determined by the shape of the filter’s main lobe. The side lobes
determine the amount of spectral leakage that the filter will admit into the estimate.

The resolution of a filter refers to the width of its main lobe. Another way to describe

resolution is as the ability of a filter to tell the difference between two signals that are close

in frequency space. If two components of a signal have frequencies that both appear in the

main lobe of the filter then they will be difficult to tell apart in the resulting spectrum.

The width of the main lobe is often measured from one null to the next called the null

to null beamwidth, however it can also be measured at the point either 3 dB, or 6 dB

below the maximum gain which are called the -3 dB bandwidth, and the -6 dB bandwidth

respectively [4]. Notice that the frequency axis in Fig. 2.2 is in bins. Recall that the center

frequencies of each bin ωk = 2πfsk
N are a function of N the length of the data record. So

in addition to the natural resolution of the filter the resolution of the estimator is limited

by the length of the data record N . Filters that are longer than the data record say with

length M > N can be implemented by zero padding the data, however the zero padding

the signal is equivalent to windowing it with a uniform window of length N so we are not

able to improve the resolution of the estimates by zero padding [7].

The side lobe performance of a window determines the amount of bias from spectral

leakage. The side lobes are usually referenced by both the peak level, and the rate at which

they decrease as you move out from the main lobe. The peak side lobe level of the uniform

8



window in Fig. 2.2 is at -13 dB. Uniform windows have side lobe peaks that decay at -6 dB

per octave, however other windows have side lobes that decay at different rates or do not

decay at all in the case of Chebychev windows. Most useful window functions represent a

trade-off between resolution and side lobe performance. Windows with lower peak side lobe

levels tend to have less resolution.

Coherent gain, which is also called processing gain or white noise gain (WNG) is the

ratio of the signal to noise ratio (SNR) at the filter output to the SNR at the filter input

when there is a single signal at the frequency of interest in white noise. Filters with high

coherent gain do a better job of rejecting uncorrelated noise in favor of coherent signals in

the spectrum. This is a very important metric because if a filter is incapable of rejecting

enough noise it will be unable to estimate the power of the line components in the signal [4].

The WNG of a window can be calculated as WNG(w) = |w|−2 [9].

2.2.1 Dolph-Chebychev Windows

For this research the Dolph-Chebychev window is of particular interest. The window was

developed by antenna engineers and it is popular in both temporal and spatial spectrum

estimation. The window is derived by minimizing the main lobe width of the frequency

response of the window,while fixing the level of the side lobes. The window is given by

W (k) = (−1)k
N cos−1

[
β cos

(
π k
N

)]
cosh

[
N cosh−1(β)

] ; 0 ≤ |k| ≤ N − 1 (2.14)

where

β = cosh
[
1
N cosh−1(10α)

]
and

cos−1(x) =


π
2 − tan−1

[
x√
1−x2

]
; |x| ≤ 1

ln
[
x+
√
x2 − 1

]
; |x| ≥ 1

9
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Figure 2.3: The frequency response of a 10 point Chebychev window

The parameter α is the log base 10 of the ratio of mainlobe level which we will assume to

be unity to the sidelobe level [9]. Fig. 2.3 contains a plot of a 10 point Chebychev window

with a peak side lobe level of -12 dB

The Dolph-Chebychev window has maximum resolution for a particular side lobe level,

so it represents a direct trade between resolution, and dynamic range. In fact when the

side lobe levels are set very high, the window can achieve better resolution than even a

rectangular weighting. This fact will be very important in choosing which windows to

include as sub-estimators for a universal estimator.

For practical signals there is generally no single window that can provide an unbiased

power estimate. Windows with higher resolution will be preferred for signals that contain

complex exponential components that are closely spaced in frequency. Windows with lower

side lobes will be preferred for signals that contain both loud and quiet complex exponential

components that are far apart in frequency space. The difficulty occurs because the nature

of the spectrum to be estimated is generally not known in advance so appropriate windows

must be found through trial and error. The next section presents a data adaptive window

that seeks to solve this problem by minimizing the power output of the window while

maintaining the distortionless response requirement.
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2.3 The Minimum Power Distortionless Response Estimator

The minimum power distortionless response (MPDR) estimator was first proposed by Capon

in a beamforming context [6]. The estimator is derived by minimizing the power of the

estimate subject to the constraint that the output of the estimator has unity gain. Recall

that the replica vector v defined in Eq. 2.13 is that it represents a unit amplitude complex

exponential input at a particular frequency of interest ωi. So we would like to find the

weight vector w that minimizes |wHx|2 with the constraint that wHv = 1. This can be

done with Lagrange multipliers, and the resulting weight vector is

w =
R−1x v

vHR−1x v
, (2.15)

where Rx is the covariance matrix of x [10]. The expected value of the power estimate is

then E{|wHx|2} = wHE{xxH}w = wHRxw = 1
vHR−1

x v
[9]. The key insight here is that

when the ensemble covariance matrix is known, then the MPDR estimate is a deterministic

function of the covariance matrix. Another important property of the MPDR is that if x

consists of only a single exponential signal in white noise then the MPDR estimator becomes

the uniform window [9].

In practice the ensemble covariance matrix is not available, so Rx must be replaced

by the sample covariance matrix estimated from a block of the data which introduces bias

into the estimate. We will refer to the MPDR calculated with the sample statistics as the

sample MPDR to distinguish it from the ensemble MPDR in Capon’s original formulation.

The sample covariance matrix can be estimated as

R̂x =
1

M

M∑
m=1

xmx
H
m, (2.16)

where here the data record x has been segmented into M non-overlapping blocks of length
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N . The mth block is stored int he vector xm. Capon and Goodman showed that when

the signal consists of independent complex Gaussian random variables, the sample MPDR

underestimates power in the look direction by a factor of M−N+1
M . This bias can be corrected

by multiplying the estimate by M
M−N+1 , but the correction should be done with caution as

it also increases the variance of the estimate [11].

2.4 Examples

This section presents two examples to illustrate the importance of the window properties

in the previous section. The examples use estimators built with Chebychev windows. The

main focus is examples that demonstrate the effects of resolution, spectral leakage, and

coherent gain. Each example consists of complex exponentials with a uniformly distributed

random phase, and zero mean additive Gaussian white noise. The power and location of the

complex exponentials in frequency space is shown in Fig. 2.4. The sampling frequency is

1000 Hz. A total of 100,000 samples of the processes were generated, and the time series was

split into 1,000 blocks of 100 samples each. The spectral estimates were all calculated using

a 10,000 point DFT on each block. The power estimates were then averaged over the 1,000

Monte Carlo trials. Each example is processed using two different Chebychev windows, one

with -6 dB peak side lobes, and the other with -30 dB side lobes. The spectral responses

of the two windows are shown in Fig. 2.5.

For the first example the noise power was set to unity to demonstrate the effects of

resolution and side lobe levels. The spectra generated by each of the two Chebychev windows

and an ensemble MPDR is shown in Fig. 2.6. The ensemble MPDR provides a more

accurate estimate however it requires advance knowledge of the signal’s covariance matrix

to implement. The window with -6 dB side lobes has enough resolution that the spectrum

it generates clearly displays the signals at 250 Hz, and 258 Hz as separate components. The

cost of this improved resolution is poor side lobe performance, thus the spectrum shows the

signal at 400 Hz is covered by spectral leakage from the two louder signals. The window

12



Simulated signals

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

-60

-50

-40

-30

-20

-10

0

P
ow

er
 (

dB
)

Figure 2.4: The locations and relative powers of the complex exponential signals in the
example were chosen to demonstrate the trade off between resolution and side lobe perfor-
mance for spectrum estimation with fixed windows.
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Figure 2.5: Chebychev windows with high side lobe levels have better resolution, and Cheby-
chev windows with low side lobe levels have worse resolution
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Figure 2.6: The window with -6 dB side lobes can resolve the signals at 250 Hz and 258 Hz,
however it cannot detect the signal at 400 HZ. The window with -30 dB side lobes can
detect the signal at 400 Hz but it cannot resolve the other two signals. The ensemble
MPDR provides a more accurate estimate however it requires advance knowledge of the
signal’s covariance matrix.

with -30 dB side lobes estimates the power of the 400 Hz signal more accurately, however

it lacks the resolution to distinguish between the signals at 250 Hz and 258 Hz. Recall that

by definition the Chebychev window provides the maximum resolution for a given peak side

lobe level, so this problem is not limited to the case of these two windows it is a fundamental

difficulty in spectrum estimation using windowed DFTs.

To demonstrate the effects of coherent gain, the noise power has been increased by in

the second example. The spectra are shown in Fig. 2.7. The ensemble MPDR is not able

to reject enough noise to reveal the signals in this case. The Chebychev window with -6 dB

side lobes has much less coherent gain than the other window, so even though it has superior

resolution it is unable to provide a satisfactory spectral estimate because the SNR in the

example is too low. The window with -30 dB side lobes performs better however it still

unable to resolve the signals at 250 Hz and 258 Hz. The key insight is that the coherent

gain of a window determines the minimum SNR at which it can still detect line components

in the signal.
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Figure 2.7: The window with -6 dB side lobes doesn’t have enough coherent gain to reveal
any of the signals . The window with -30 dB side lobes can detect that there is power in
the 250 Hz region but it cannot resolve the other two signals.

2.5 The Short Time Fourier Transform

In order for the periodogram to provide a reasonable spectral estimate we require that the

process be wide sense stationary, however this is rarely the case with practical signals. To

make the process more general we can assume that process is locally stationary that is, the

autocorrelation function rx(k) is only a function of the lag for |k| ≤M for some finite integer

M . This assumption justifies processing the time series with a periodogram M samples at

a time. The resulting spectrum is a function of both frequency and time and is called the

short time Fourier transform (STFT). The STFT is defined as

X(n, ω) =

M−1∑
m=0

x[n+m]q[m]e−jωm (2.17)

where q[n] is a taper [1].

The spectrogram is a plot of the output of the STFT. It is useful because it shows how

the power spectrum of a non-stationary signal changes over time. The STFT produces

a spectrum for each time n in the data record, however in creating a spectrogram we

typically do not calculate the STFT for each time n. The STFT in Eq. 2.17 can be

15



viewed as advancing the analysis window by one time sample for each new periodogram.

If the analysis window has length M then instead of advancing by one sample at a time

we can advance the window by M samples so that each periodogram in the spectrogram

is calculated using a different non-overlapping block of the time series data. Alternatively

the blocks can be allowed to overlap, and the amount of overlap is usually specified as a

percentage of the length of the block. So if M = 100 then 50% overlap would require an

advance of 50 samples for each periodogram.
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Chapter 3: Algorithm

This chapter discusses the history of the proposed PWB algorithm. It also presents John

Buck’s proof that the loss of the PWB converges to the best estimator in the ensemble [12].

There is a brief discussion about how to efficiently calculate the PWB estimates. Finally,

a renormalization method that mitigates numerical issues with the PWB algorithm is pre-

sented.

3.1 History

The PWB algorithm is a special case of universal coding algorithms, an idea that comes from

information theory. Kolmogorov gave the first description of universal coding in a paper on

the quantitative definition of information [13]. A formal definition is given by Davisson in

[14]. Davisson describes universal coding as any method for converting message blocks into

code blocks when the encoding is based only on an observed source, and some performance

measure is attained in the limit as the block length goes to infinity. As an example, the

performance measure could be vanishing MSE in the case of a prediction algorithm, or

some other loss function to be minimized. The universal approach can also be used for

the problems of estimation, and prediction, as suggested in [15] and [16], by expanding the

definition so that the only requirement is that some performance measure is attained in the

limit as the number of estimates or predictions goes to infinity. In 1999 Singer and Feder

proposed a universal predictor that uses a function for weighting predictors of different

model orders [17]. Finally, Buck, and Singer proposed using Singer and Feder’s weighting

function with Dominant Mode Rejection Beamformers of different model orders [5].
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3.1.1 Universal Linear Prediction Using Soft-max

Linear prediction is the problem of predicting future values of a sequence x[t] by a linear

transformation of the past values so that x̂[t] = f(x[0], x[1], . . . , x[t− 1]) ≈ x[t] where f is a

linear function. The weighting function used in the PWB estimator was also used in [17] by

Singer and Feder to combine an ensemble of linear predictors. They proposed a universal

linear predictor of the form

x̂u[t] =
M∑
k=1

µk[t]x̂k[t] (3.1)

where

µk[t] =
exp(− 1

2ν lt−1(x, x̂k))∑M
j=1 exp(− 1

2ν lt−1(x, x̂j))
. (3.2)

where ν is a sensitivity parameter that determines the estimator’s speed of convergence. The

function ln(x, x̂n) is a loss function that acts as the performance metric for each predictor

in the ensemble. Singer and Feder used the squared error between the estimate and the

true value of x[t] is used as the loss function in this case so that:

ln(x, x̂n) =

n∑
t=1

(x[t]− x̂u[t])2

Singer and Feder went on to show that for any bounded sequence |x[t]| ≤ A, and ν ≥ 4A2

1

n
ln(x, x̂u) ≤ min

k

1

n
ln(x, x̂k) +

2νln(M)

n

.

This universal predictor can be interpreted as a performance weighted sum of an ensemble
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of predictors. The weightings are determined by applying what is often called the soft-max,

multivariate-sigmoid, or multivariate-logistics function to the output of the loss function ln.

The PWB algorithm makes use of the same weighting function.

3.1.2 The Universal Dominant Mode Rejection Beamformer

Buck and Singer adapted Singer and Feder’s prediction algorithm for use with dominant

mode rejection beamformers [5]. A new loss function was the only alteration to Singer, and

Feder’s prediction algorithm required to use it with dominant mode rejection beamformers

of different dominant subspace dimensions instead of the predictors that Singer and Feder

used [5]. In the beamforming problem a spatial spectrum is estimated from snapshots which

are vectors of complex phasors that represent narrowband planewaves passing through a

sensor array. Each snapshot is an N × 1 complex valued vector where N is the number of

sensors in the array. Snapshots are the beamforming analog of the blocks used in the STFT

for temporal spectrum estimation. The dominant mode rejection (DMR) beamformer was

introduced by Abraham and Owsley as an improvement to the MPDR beamformer [18]. To

calculate the MPDR weight vector the covariance matrix of the data must be inverted. If

the ensemble statistics are known then the matrix inversion does not cause any problems.

However, when the covariance matrix is estimated from the data the estimate may not be an

invertible matrix. To overcome this difficulty the DMR imposes a structure on the sample

covariance matrix. The algorithm replaces the N−d smallest eigenvalues with their average.

The remaining d eigenmodes form the dominant subspace of the resulting estimate of the

covariance matrix SDMR. The new DMR covariance matrix is then used in place of the

ensemble covariance matrix in the MPDR beamformer. The difficulty in application of the

DMR beamformer is estimating the appropriate dominant subspace dimension d. Buck and

Singer use an ensemble of D dominant mode rejection beamformers each with a different

number of dimensions in the noise subspace. The window vector for each beamformer will

be called wd.
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A major change to Singer and Feder’s estimator was required to adapt it for beamform-

ing. In the linear prediction case we have access to the ground truth so the square error is

a natural loss function, but this is not true in the beamforming problem. In [5] Buck and

Singer propose a universal dominant mode rejection (UDMR) beamformer with the loss

function

ln(w,x) =
n∑
τ=1

|w[τ ]Hx[τ ]|2 (3.3)

which is simply the accumulated power output of the beamformers.

The motivation behind the loss function is the unity gain constraint placed on the

DMR beamformers. If a collection of DMR beamformers are steered towards a signal

the signal itself will be passed through unaltered. So any variation in the outputs is due

to interference or noise, and can only increase the output power. The new loss function

changes the formulation of the estimator slightly so that the UDMR beamformer is

wu[n] =
D∑
d=0

µd[n]wd[n] (3.4)

with

µd[n] =
exp(− 1

2ν ln−1(wd,x))∑D
q=0 exp(− 1

2ν ln−1(wq,x))
. (3.5)

The beamformer converges so that

1

n
ln(wu,x) ≤ min

d

1

n
ln(wd,x) +

2νln(M)

n
(3.6)

when

ν ≥ max
d,n
||x[n]||2||wd[n]||2. (3.7)
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Figure 3.1: A block diagram of the algorithm

Although Buck and Singer’s beamformer was designed for use with DMR beamformers,

it works with any ensemble of linear estimators with a unity gain constraint. The next

section describes the PWB algorithm which has the same basic structure as the UDMR.

3.2 The Performance Weighted Blended Spectral Estimator

For this discussion of the PWB algorithm we will make the assumptions that we are es-

timating the power of a signal at a single frequency from the nth block of data. We will

assume that each block has length N . The algorithm uses each of M windows, which we

will call the ensemble to calculate the power of the current data block at a frequency of

interest. We will use the notation wm, suppressing the dependence on ω to refer to the mth

filter in the ensemble. The output from each window is combined with the output from all

previous data blocks and a loss is calculated. Then weights are found as a function of the

loss for each window in the ensemble, and the windows are multiplied by their weights, and

summed to form a new window wu. The new window is then applied to the next block to

find the power estimate. Fig. 3.1 contains a block diagram of the algorithm.
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We require the windows in the ensemble to be normalized so that the filters pass a signal

at the frequency of interest with no amplification or attenuation. As in the beamforming

problem, windows with this normalization will provide estimates that can only have a

positive bias resulting from noise, or interaction with signals at other frequencies. This

property allows us to use accumulated power

Ln(w,x) =
n∑
τ=1

∣∣w[τ ]Hx[τ ]
∣∣2 (3.8)

as the loss function. The weighting function is

µm(ω) =
exp(−( 1

2ν )Ln−1(wm,x, ω))∑M
i=1 exp(−( 1

2ν )Ln−1(wi,x, ω))
(3.9)

where the parameter ν will be explained in the convergence proof. The universal window is

wu[n, ω] =
M∑
m=1

µm[n, ω]wm[n]. (3.10)

The algorithm is guaranteed to converge such that

1

n
Ln(wu,x) ≤ min

m

1

n
Ln(wm,x) +

2νln(M)

n
(3.11)

3.3 Convergence Proof

John Buck proved the assertion in Eq. 3.11 [12]. Start by defining a psuedo-probability on

the loss function

Pw(Xn) = c exp

[−1

2ν
Ln(w,x)

]
(3.12)
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the psuedo-probability for the PWB estimator is then

Pu(Xn) = c exp
[−1
2ν Ln(wu,x)

]
= c exp

[
−1
2ν

n∑
τ=1

∣∣wu[τ ]Hx[τ ]
∣∣2]

= c exp

−1
2ν

n∑
τ=1

∣∣∣∣∣
M∑
m=1

µm[τ ]wm[τ ]Hx[τ ]

∣∣∣∣∣
2


= c
n∏
τ=1

exp

−1

2ν

∣∣∣∣∣
M∑
m=1

µm[τ ]wm[τ ]Hx[τ ]

∣∣∣∣∣
2


(3.13)

Defining the function

fτ (z) = exp

[−1

2ν

∣∣zHx[τ ]
∣∣2] (3.14)

and substituting yields the psuedo-probability as a function of a weighted blend of the

windows in the ensemble

Pu(Xn) = c
n∏
τ=1

fτ

(
M∑
m=1

µm[τ ]wm[τ ]

)
(3.15)

The psuedo-probability of the average estimator is then

PAvg(X
n) =

1

M

M∑
m=1

Pm(Xn) (3.16)

where Pm is the psuedo-probability associated with the mth estimator in the ensemble.

Using successive conditioning the average pseudo-probability is rewritten as

PAvg(X
n) = PAvg(x[n]|Xn−1PAvg(x[n− 1]|Xn−2 . . . PAvg(x[1])

=
∏n
τ=1 Pavg(x[τ ]|Xτ−1)

(3.17)
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where

PAvg(x[1]|X0) = PAvg(x[1]) (3.18)

The next step is to invoke Bayes rule to write

PAvg(x[n]|Xn−1) =
PAvg(x[n],X

n−1)
PAvg(Xn−1)

=
PAvg(X

n)
PAvg(Xn−1)

=

M∑
m=1

Pm(Xn)

M∑
k=1

Pk(X
n−1)

=

M∑
m=1

Pm(x[n]|Xn−1)Pm(Xn−1)

M∑
k=1

Pk(X
n−1)

=
M∑
m=1

Pm(x[n]|Xn−1)
Pm(Xn−1)
M∑
k=1

Pk(X
n−1)

(3.19)

but

Pm(Xn−1)
M∑
k=1

Pk(X
n−1)

=
exp(−12ν Ln−1(wm,x))
M∑
k=1

exp(
−1

2ν
Ln−1(wk,x))

= µm[n] (3.20)

so

Pavg(x[n]|Xn−1) =
M∑
m=1

Pm(x[n]|Xn−1)µm (3.21)
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Using Bayes rule again we can write Pm(x[n]|Xn−1) in terms of the function f defined

earlier

Pm(x[n]|Xn−1) = Pm(x[n],Xn−1)
Pm(Xn−1)

= Pm(Xn)
Pm(Xn−1)

=
exp(−1

2ν
Ln(wm,x))

exp(−1
2ν
Ln−1(wm,x))

=
exp(−1

2ν

∑n
τ=1 |wm[τ ]Hx[τ ]|2)

exp(−1
2ν

∑n−1
t=1 |wm[t]Hx[t]|2)

= exp(−12ν |wm[n]Hx[n]|2) = fn(wm[n]).

(3.22)

Putting it all together

Pavg(x[n]|Xn−1) =
M∑
m=1

µmPm(x[n]|Xn−1) =
M∑
m=1

µmfn(wm[n]) (3.23)

and

PAvg(X
n) =

n∏
τ=1

Pavg(x[τ ]|Xτ−1) =

n∏
τ=1

M∑
m=1

µmfτ (wm[τ ]) (3.24)

Jensen’s inequality guarantees that

fτ (
M∑
m=1

µm[τ ]wm[τ ]) ≥
M∑
m=1

µm[τ ]fτ (wm[τ ]) (3.25)

The inequality holds as long as fτ is convex. To make sure this condition is met it is required

to place an lower bound on the parameter ν so that

|wH
mx[τ ]| ≤ √ν (3.26)

or

ν ≥ |wH
mx[τ ]|2 (3.27)
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Comparing the products terms by term in equations 3.24, and 3.15 shows that

Pu(Xn) ≥ PAvg(Xn) (3.28)

The next step is to bound the average estimator in terms of the best estimator.

PAvg(X
n) =

1

M

M∑
m=1

Pm(Xn) ≥ 1

M
min
m

Pm(Xn) (3.29)

Therefore

Pu(Xn) ≥ 1

M
max
m

Pm(Xn) (3.30)

To complete the proof we take the natural logarithm of both sides, multiply both sides

by negative one to flip the inequality, and finally substitute from the definitions of the

pseudo-probabilities.

ln(Pu(Xn)) ≥ ln( 1
M maxm Pm(Xn))

−ln(Pu(Xn)) ≤ −ln( 1
M )− ln(maxm Pm(Xn))

−ln(c exp [−12ν Ln(wu,x)] ≤ −ln( 1
M )− ln(maxm c exp [−12ν Ln(wm,x)]))

−ln(c) + 1
2νLn(wu,x)] ≤ −ln( 1

M )− ln(c) + 1
2ν min

m
Ln(wm,x)

Ln(wu,x) ≤ min
m
Ln(wm,x) + 2νln(M)

(3.31)

Dividing both sides by n yields eq. 3.11 as claimed.[12]

3.4 Efficient Calculation

It is not necessary to calculate the PWB window in order to get the resulting power estimate.

Using vector notation for the filters and suppressing the dependence on the frequency of
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interest yields:

P̂ =
∣∣wH

u x
∣∣2 =

∣∣∣∣∣(
M∑
m=1

µmwm)H)x

∣∣∣∣∣
2

=

∣∣∣∣∣
M∑
m=1

µm(wH
mx)

∣∣∣∣∣
2

. (3.32)

The insight here is that we can calculate the power estimate for a frequency of interest by

calculating the weight coefficients, and applying them directly to the complex output of

each filter in the filter-bank formed by the windowed DFT without the need to explicitly

calculate the PWB window.

3.5 Re-normalization

The PWB algorithm has a numerical problem built in to the performance weighting. The

performance weighting function is vulnerable to saturation when the values of the loss are

very large. The exponential terms can get truncated to zero, and if this happens for each

of the estimators the denominator of the weighting function becomes zero. A method for

stabilizing the softmax function is presented by Goodfellow et al. in [19]. The maximum of

the inputs to the function is subtracted from each of the inputs to the soft-max function.

softmax(− 1

2ν
L) = softmax(− 1

2ν
L −max

i
(− 1

2ν
Li)) (3.33)

To show that this does not change the weights define the unnormalized performance

weight µ̃ = exp(−12ν Lm) where here Lm denotes the loss of the mth window in the ensemble.

Multiplying each µ̃ by a constant β gives us

βµ̃m∑M
m=1 βµ̃m

=
µ̃m∑M
m=1 µ̃m

= µm. (3.34)

So multiplying the unnormalized weights by a constant does not change the output of the
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weighting function. With this in mind we can choose

β = exp(
1

2ν
min
m
Lm) (3.35)

so that

µ̃m = exp(
−1

2ν
(Lm −min

k
Lk)). (3.36)

This technique limits the growth of the arguments in the exponential terms and hence keeps

the numerical issues under control.
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Chapter 4: Simulations

The performance of the PWB algorithm was verified with four types of simulations. The first

simulation is a simple example that demonstrates how the algorithm operates. The next

set of simulations demonstrate the performance of the PWB estimator under stationary

conditions. The third set of simulations compares the PWB estimator to the ensemble

MPDR and the sample MPDR. Finally, a simulation in a non-stationary environment is

examined.

4.1 Example

The estimator ensemble for this example is two Chebychev windows with peak side lobe

levels of -12 dB and -120 dB. The simulation uses a sampling frequency of 1000 Hz, and the

data record is segmented into a total of 311 non-overlapping blocks of 100 samples each.

The first block was used only to initialize the blend weights. The power estimates were

averaged over 1000 Monte Carlo trials. The first 11 blocks consist only of white noise with

a power of -24 dB below unity at a single sample, i.e., 10 log10(σ
2) = −24, where σ2 is the

variance of the noise process. The subsequent blocks consist of the same white noise with

two complex exponential signals. The exponential signals were assigned random phases at

the beginning of each Monte Carlo trial. The first signal is at 250 Hz and unity gain. The

second signal has a power of -24 dB below unity at 400 Hz. The sensitivity parameter of

the PWB estimator was set to 1.

Spectrograms using each of the two Chebychev windows are shown in Fig. 4.1. The

estimator using a Chebychev window with -12 dB side lobes admits less bias through its

main lobe and the estimator using a Chebychev window with -120 dB side lobes admits less

bias through its side lobes. The result is that in the spectrogram produced by the window
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with -12 dB side lobes the signal component at 400 Hz is not visible. In the spectrogram

produced by the estimator with -120 dB side lobes both components are visible however

the cost of the reduced spectral leakage is that the signals are not as well localized due to

the lack of resolution.

Figure 4.1 also contains a spectrogram generated by the PWB algorithm. By the end of

the simulation the PWB estimator is able to combine the estimates from the two ensemble

estimates into an estimate that has the best properties of each. The signal at 250 Hz appears

with the resolution of the estimate produced by the Chebychev window with -12 dB side

lobes. The 400 Hz signal also appears in the estimate however it does not have the same

resolution as the signal at 250 Hz. Also notice that in the region of improved resolution

around 250 Hz there is more spectral leakage from the 250 Hz signal than there is in other

regions. This is fundamentally how the PWB works. For each frequency of interest the

PWB selects the estimator or combination of estimators that have resolution and side lobe

characteristics that minimize the bias of the PWB estimate.

To understand how the algorithm is combining the two estimates we can look at the

blend weights associated with estimator using the Chebychev window with -12 dB side lobes

which we will call µ1(m,ω). There are only two estimators in the ensemble so the blend

weights for the second window is simply 1−µ1(m,ω). Figure 4.2 contains a color scale plot

of µ1(µ, ω) as well as vertical slices of the color scale plot at 250, 260, 281, and 400 Hz.

For the first 10 blocks the blend weights are all at roughly 0.5 because there are no line

components in the signal. When the line components are turned on the weights adapt to

the new environment. At 250 Hz the weights stay at 0.5 because both estimators pass the

250 Hz signal at unity gain. At 260 Hz the PWB weights the window with -12 dB side lobes

more heavily. The 250 Hz signal appears in the main lobe of the window with -120 dB side

lobes at 260 Hz so the improved resolution of the window with -12 dB side lobes provides a

less biased estimate. At 281 Hz the PWB algorithm prefers the window with -120 dB side

lobes because the 250 Hz signal now appears in the side lobes of both windows. Similarly

at 400 Hz, the algorithm weights the window with -120 dB side lobes more heavily because
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Spectrogram for the -12 dB window

0 100 200 300 400 500
Frequency (Hz)

50

100

150

200

250

300

B
lo

ck
 #

-40

-35

-30

-25

-20

-15

-10

-5

0
Spectrogram for the -120 estimator
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Spectrogram for the PWB estimator
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Figure 4.1: The Chebychev window with -12 dB side lobes has better resolution, however
the Chebychev window with -120 dB side lobes has less spectral leakage. The PWB estimate
has the best properties of each estimator in the ensemble.

31



1
 as a function of frequency and time

0 100 200 300 400 500
Frequency (Hz)

50

100

150

200

250

300

B
lo

ck
 #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300
Block #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ow

er
 (

dB
)

1
 At Selected Frequencies

250 Hz
260 Hz
281 Hz
400 Hz

Figure 4.2: The PWB blend weights illustrate how the PWB chooses the appropriate esti-
mator at each frequency of interest.

its improved side lobe performance reduces the bias of the estimate there.

This simulation also reveals the effect of the sensitivity parameter ν. At 260 Hz it

takes 41 blocks after the complex exponentials are added for the blend weight to reach

its final value of 1. In contrast at 400 Hz the blend weight takes the entire remainder of

the simulation 300 blocks to reach its final value of 0. The reason for the difference is the

sensitivity parameter ν. When the power of the estimator outputs is close to the value of ν

then the algorithm will react more quickly, and conversely if the estimator outputs are much

lower than ν the estimator will converge more slowly. In each case the bound established

by Eq. 3.11 is met, however the regret term 2νln(M)
n isn’t related to the signal power so

there is more relative error for quiet signals than for loud signals. It is very important to

choose a value of ν that is low enough for the regret to be reduced fast enough to reveal the

quiet components of the signal, while still respecting the lower bound in Eq. 3.26 required

for convergence.
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4.2 Stationary Simulations

The first of three simulations in this section consists of three complex exponential signals

with random phase in white noise. The location in frequency space, and power of each

signal is the same as the example in Section 2.4. The scenario is shown in Fig. 2.4. The

signals and windows were chosen so that no single window in the ensemble would be able

to return a spectrum where all the line components are clearly visible. The power of the

noise is set to -6 dB below unity. There are two unity gain line components at 250 Hz, and

the bin center nearest 258 Hz. Finally there is a third line component at the bin center

nearest 400 Hz that is -20 dB below unity. The block length was 100 samples, and 51

blocks were generated with the first block used only to initialize the weights. Each estimate

was calculated using the 1024 point DFT of the windowed signal. The outputs at the final

block were averaged over 1000 Monte Carlo trials to create the final estimate. For these

stationary simulations the sensitivity parameter was set to 1, and the sampling frequency

was 1000 Hz. The windows in the ensemble are five Chebychev windows with peak side-lobe

levels of -6 dB, -12 dB, -24 dB, -48 dB, and -96 dB. The -6 dB, -12 dB, are able to at least

marginally resolve the line components at 250 Hz, and 258 Hz, however because of their

poor peak side-lobe performance they are unable to detect the line component at 400 Hz.

In contrast, the three windows with the lowest peak side-lobe levels are able to detect the

line component at 400 Hz but they fail to resolve the signals at 250 Hz, and 258 Hz. The

situation is illustrated in Fig. 4.3. The PWB processor is able to combine all five estimates

into a single estimate where each line component is visible. Fig. 4.4 shows the spectrum

estimate from the PWB processor as well as the estimates from each of the estimators in

the ensemble.

Fig. 4.5 shows the same example with the noise power increased to 10 dB above unity.

In this case all of the windows fail to resolve the two components at 250 Hz, and 258 Hz

and they fail to detect the component at 400 Hz. The problem is that all of the windows

lack enough coherent gain to eliminate the noise. The PWB estimator fails as well. The

key insight is that when choosing the windows in the estimator ensemble the SNR in the
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Figure 4.3: To show that no window in the ensemble can reveal all three line components
the signal locations and powers are plotted on top of the responses of the windows at 250 Hz.
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Figure 4.4: The PWB processor returns a spectrum that clearly contains three line compo-
nents even though no single window in the ensemble can detect all three signals.

environment limits both the maximum resolution, and the maximum dynamic range that

the PWB processor can achieve.

Fig. 4.6 shows the original example again however this time the power of the component

at 258 Hz has been lowered to -20 dB below unity. The two signals at 250 Hz, and 258

Hz can no longer be resolved because the high resolution windows do not allow for enough

dynamic range to see both components. This will be a problem for any window ensemble

because there is a general trade off between resolution and side-lobe performance in window

design. In order for the high resolution windows in the ensemble to resolve two signals, the

dynamic range between them must be low. This implies that the PWB processor will always

have difficulty resolving components that are close together in frequency space, and have

dramatically different powers.

The final stationary example is shown in Fig. 4.7. Here the original simulation has been

modified by increasing the power of the signal at 400 Hz to 20 dB above unity. The result

is that the two signals at 250 Hz and 258 Hz are no longer resolved. The problem is that

the high resolution windows have too much spectral leakage from the loud component to
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Figure 4.5: When the noise power is increased all of the windows in the ensemble fail and
so does the PWB estimator.
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Figure 4.6: When the power of two line components that are close in frequency is not similar
then the ability to resolve them is lost.
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Figure 4.7: A loud line component can destroy the improved resolution of the PWB pro-
cessor.

be able to identify the two components at 250 Hz, and 258 Hz at all so the only windows

that identify those components are those without the ability to resolve them.

The performance of the PWB estimator is limited by the performance of the estimators

in the ensemble. It is synthesizing the results of the estimators in the ensemble so if they

all fail the PWB estimator will fail as well. When the environment is stationary this means

that the PWB estimator will never outperform the best estimator in the ensemble.

4.3 Comparison to MPDR

The simulations in this section compare the PWB to both the ensemble MPDR and the

sample MPDR with the bias correction. There are three sets of simulations. The first

examines the PWB’s ability to estimate a single signal in noise. The second simulation

contains a signal with in noise and an interferer with varying power levels. The final

simulation contains a signal with noise and the interferer has a fixed power and its location in

frequency space is varied. The PWB ensemble consists of 5 windows, 4 Chebychev windows

with peak side lobe levels of -6 dB, -12 dB, -24 dB, and -48 dB and a uniform window. The
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simulated data is segmented into 51 blocks of 50 samples each. The simulations use a 512

point FFT and the signal has unity power and its frequency places it at the center of bin

129. In each case 1000 Monte Carlo trials were simulated for each value of the independent

variable. The mean and variance of the power estimates at the final block and the bin that

contains the signal from the PWB and sample MPDR are compared.

The results of the first simulation are shown in Fig. 4.8. The independent variable in

this case is the noise power and it was varied from an SNR of -50 dB to 20 dB. The power

outputs at the bin containing the signal show that the ensemble MPDR, the sample MPDR

and the PWB perform similarly in terms of the estimate they produce. The variance plots

show that the variance of the PWB estimator is lower than the sample MPDR estimate.

Recall that when only a signal and noise are present the ensemble MPDR reduces to the

uniform window, therefore the optimal estimator in this case is the uniform window. The

PWB ensemble contains a uniform window so the PWB estimates are equivalent in this

case to the ensemble MPDR but with the addition of the PWB regret term. The sample

MPDR is limited by its ability to accurately estimate the sample covariance matrix. Given

enough blocks the sample MPDR will eventually converge to the ensemble MPDR estimate.

The regret term of the PWB also vanishes with increased numbers of data blocks. This

simulation indicates that the PWB is able to converge to the ensemble MPDR more quickly

than the sample MPDR.

For the second simulation the SNR is fixed at 0 dB and an interferer signal has been

added at bin 50. The power of the interferer signal was varied from -10 dB below the signal

power to 40 dB above the signal power. The power and variance plots are shown in Fig.

4.9. This time the power estimates from each of the estimators in the PWB ensemble have

been included to illustrate how the PWB algorithm fails. As the power of the interferer

signal is increased, the estimators in the PWB ensemble fail one at a time. The PWB

estimator performs similarly to the ensemble MPDR until the interferer power is increased

to the point where none of the estimators in the PWB ensemble can reject the interference.

Before this point, the PWB estimate has less variance than the sample MPDR. It is also
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Power Outputs at Bin 129 vs SNR

Variance at Bin 129 vs SNR

Figure 4.8: As the SNR is increased the PWB estimate is similar to the ensemble MPDR
estimate and it has lower variance than the sample MPDR estimate
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Power Outputs at Bin 129 vs Interferer Power

Variance at Bin 129 vs Interferer Power

Figure 4.9: As the power of an interferer is increased the windows in the PWB ensemble
fail one by one. The PWB estimate is similar to the ensemble MPDR estimate and has
lower variance than the sample MPDR estimate until all of the windows in the estimator
ensemble have failed
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important to notice that if more interferer rejection is required, another window with lower

side lobes could be added to the estimator ensemble.

The final simulation in this section fixes the SNR at 0 dB, and fixes the power of the

interferer signal at 20 dB. The location of the interferer is then varied from bin 50 to bin

129 where the signal resides. This simulation highlights the trade that the PWB makes

between side lobe performance and resolution. When the interferer is far from the signal

the PWB weights estimators with lower side lobes more heavily and is able to approximate

the performance of the ensemble MPDR. However when the interferer gets close to the

signal bin the PWB weights the estimators with high resolution more heavily. The result is

that the bias and variance of the estimates is increased because of the sacrifice in side lobe

performance.

Overall when the ensemble is chosen appropriately the PWB algorithm is able to provide

a better approximation of the ensemble MPDR’s performance than the sample MPDR. This

is especially true when there are few blocks of data available for the calculation of the sample

covariance matrix. The PWB estimator only requires one block of data to initialize its blend

weights. In contrast the sample MPDR requires at least N + 1 samples to guarantee an

invertible estimate of the covariance matrix, and even then the variance of the estimates is

greater than those produces by the PWB algorithm. This is an important feature of the

PWB estimator because in practical situations there is not always enough data available

for the sample MPDR to return a reliable estimate. In the next set of simulations the

performance of the PWB in a non-stationary simulation is examined. In the non-stationary

case the sample MPDR would never be able to satisfactorily estimate a sample covariance

matrix however, the PWB is still able to return an estimate.
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Power Outputs at Bin 129 vs Interferer Location

Variance at Bin 129 vs Interferer Location

Figure 4.10: The improved side lobe performance of the PWB algorithm is traded for
improved resolution as an interferer signal is moved towards the frequency of interest. Until
this occurs the PWB estimate has lower variance than the sample MPDR estimate.
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4.4 Non-Stationary Trials

The final simulation explores the performance of the PWB algorithm in a non-stationary

environment. The simulation includes two stationary line components, a line component

with varying power, and noise with unity power. The stationary line components are at

250 Hz with a power 10 dB above unity, and 265 Hz with a power 15 dB above unity.

The varying line component is at 400 Hz with power that varies from 0 dB to 50 dB. The

simulation was run for a total of 1001 blocks with the first block used to initialize the PWB

weights. The window ensemble consisted of only two Chebychev windows. The windows

have peak side-lobe levels of -15 dB, and -100 dB. The top left plot in Fig 4.11 shows a

spectrogram generated by the window with -15 dB peak side-lobes. At first the window

is able to resolve the components at 250 Hz, and 265 Hz, however as the interferer gets

loud both signals are lost to side-lobe leakage. On the other hand Fig. 4.11 also shows

the spectrogram produced by the -100 dB window. In this case the window is never able

to resolve the components at 250 Hz, and 265 Hz, however it has low enough side-lobe

leakage that the two unresolved signals are not covered by the loud interferer. Finally, the

bottom plot Fig. 4.11 shows the spectrogram produced by the PWB processor. The PWB

estimator is able to resolve the two stationary signals at first but it loses the resolution

as the interferer at 400 Hz gets loud. Even then the PWB estimator is still able to use

the resolution of the -15 dB side-lobe Chebychev window in the local region around where

the interferer is located. So the PWB processor is effectively combining estimates from the

two sub-estimators to generate the best possible final output. This is further confirmed by

Fig. 4.12 which shows the accumulated loss of the PWB, and each sub-estimator throughout

the trial at the 250 Hz bin. The loss of the PWB processor closely tracks the loss of the

best performing sub-estimator throughout the simulation.

In summary, the simulations have shown that when the window ensemble is appropriate

the PWB estimator is able to display high resolution in regions of the spectrum where

there are closely spaced line components, and improved side lobe performance in regions

where there are quiet components subject to interference by loud components in other
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Spectrogram with -15dB sidelobes
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Spectrogram with -100dB sidelobes
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Spectrogram for the PWB estimator
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Figure 4.11: The spectrogram produced by a single Chebychev window with -15 dB peak
side-lobe cannot reveal the quiet signals as the tone at 400 H gets loud. The spectrogram
produced by a single Chebychev window with -100 dB peak side-lobe cannot resolve the two
signals at 250 Hz and 258 Hz. The spectrogram produced by the PWB estimator reveals
the two quiet signals and though it can no longer resolve them when the 400 Hz signal gets
loud it still reveals that there is content in that region.

44



100 200 300 400 500 600 700 800 900 1000
Block #

5

10

15

20

25

30

35

40

45

50

55

Lo
ss

(d
B

)

Loss at 250Hz
-10dB
-100dB
PWB

Figure 4.12: The loss of the PWB estimator is similar to the loss of the best performing
window at each instance

regions of the spectrum. The simulations also show that the PWB algorithm is able to

provide a better approximation of the ensemble MPDR than the sample MPDR, especially

when there are not enough blocks of data to get a good estimate of the covariance matrix.

Finally, simulations in a non-stationary environment show that the PWB is able to adapt

to a changing environment. In general the performance of the PWB algorithm is limited by

the performance of the windows in the ensemble. The next chapter proposes a procedure

for choosing an appropriate window ensemble.
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Chapter 5: Design Guide

In order to design an effective PWB estimator there are several choices to be made. The

first is how to segment the data record. This is a well understood problem, and represents

a trade between increased resolution gained by using longer blocks of data, and reduced

variance of the estimate by using shorter blocks that allow for more time averaging [1]. The

second choice is the window ensemble. The PWB spectrum estimator is simply a linear

combination of an ensemble of sub-estimators. Once the block length has been selected the

performance is completely determined by the windows in the ensemble, and the choice of

the sensitivity parameter. It is very important when designing the estimator ensemble that

at least one window in the ensemble will give an acceptable estimate at all times. It is also

important to notice that the guarantee placed on the average loss of the PWB estimator

depends on the number of windows in the ensemble, so there is a cost associated with the

size of the window ensemble. In order to design a good estimator, we must determine how

many windows to include in the ensemble, as well as which windows to include. To get

the lowest possible average loss, the sensitivity parameter should be set as close as possible

to the constraint placed on it by the convexity requirement. It should be noted that it

is entirely possible to use different window ensembles, and different values of ν for each

frequency of interest in the estimate, however for simplicity and clarity that scenario is not

considered in this work.

Chebychev windows are a natural choice for the windows in the ensemble because their

defining characteristic is maximum resolution for a given peak side-lobe level. Figure 5.1

contains a plot of the peak side-lobe level versus the null to null beamwidth for Chebychev

windows with several other canonical windows included for reference. The trade off between

side-lobe level and resolution is a very important consideration because it determines a

window’s ability to resolve line components that are close together, and the window’s ability
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Figure 5.1: The Chebychev window offers the best possible resolution for a given side-lobe
level

to reject interference from loud line components. The other important consideration is

coherent gain which reflects a window’s ability to reject white noise. Fig. 5.2 contains a

plot of the coherent gain of Chebychev windows and other canonical windows vs. peak

side-lobe level. The coherent gain of the uniform window significantly outperforms the

Chebychev window and its side lobes decay unlike the Chebychev window. Therefore, it

is useful to include the uniform window in an ensemble that otherwise consists only of

Chebychev windows.

Having determined the quality of the windows in the ensemble i.e., Chebychev windows,

and a uniform window, the next step is to determine how many Chebychev windows to

include, and how to set their peak side-lobe levels. The first consideration is the amount of

noise in the environment. The coherent gain property of a window determines how much

noise it can reject from the environment so regardless of resolution and side lobe level if

a window cannot reject enough noise to reveal the signals it will fail. It is recommended

to use an estimate of the SNR that the algorithm will encounter to place upper and lower

bounds on the peak side lobe levels of the Chebychev windows in the ensemble. Fig. 5.2 can
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Figure 5.2: The Chebychev window offers good coherent gain or equivalently white noise
gain for a given side-lobe level but it is outperformed by a uniform window.

be used to find appropriate endpoints for a given SNR. The endpoints can then be further

refined by considering the maximum power of interfering line components if available and the

maximum resolution required. Fig. 5.1 can be used to determine maximum and minimum

peak side-lobe levels that give the required resolution and side lobe performance.

Having selected the two endpoint windows the final step is to choose the number of

windows with intermediate peak side lobe levels that will be in the ensemble, and where to

set their peak side lobe levels. The upper bound on the average loss of the PWB estimator

increases monotonically with the number of windows in the ensemble. Therefore, the smaller

the ensemble, the less average loss the algorithm will have. The downside of a small window

ensemble is there are fewer estimates for the PWB algorithm to chose from so it is more

likely that all windows will fail to give a good estimate. In simulations, and preliminary work

with real data it was found that evenly spacing the side lobe levels of Chebychev windows

within the range determined by the SNR, and side-lobe requirements provided acceptable

results. However, the performance of a particular ensemble is very much dependent on the

characteristics of the environment.
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Chapter 6: Experimental Results

This chapter examines the use of the PWB algorithm on data from a hydrophone on an

underwater glider. The first section presents some alterations to the algorithm that improve

robustness. In the second section the PWB algorithm is tested on the actual hydrophone

data. The experiments show that with the improvements the PWB algorithm can outper-

form each of the fixed window estimators in its ensemble.

6.1 Improving robustness

A problem was encountered using the PWB processor for power spectrum estimation with

hydrophone data from an underwater glider. The audio from the glider was intermittently

corrupted by mechanical noise from the glider’s machinery, which was much louder than

the signals being searched for in the data. This poses a problem for the PWB processor

because when the sensitivity parameter is tuned for the quiet signals, the restrictions on

the parameter ν are grossly violated. The loss is accumulated from the beginning of the

data-record so the processor retains memory of the loud transients and chooses the wrong

processor even after the transients have disappeared. Figure 6.1 shows a simulated example

of the problem. In the example there is a complicated environment with two closely spaced

unity gain signals at 250 Hz and 257 Hz, two quiet signals with gain at -20 dB below unity

and frequencies of 225 Hz, and 400 Hz. There is a chirp signal at -10 dB below unity gain

that moves linearly from 100 Hz to 400 Hz and there is white noise with a power of -20 dB

below unity gain. The problem signal is a pulse that occurs at 100 Hz and 100 dB above

unity gain but only for blocks 500 through 525. Also note that the pulse looks a broadband

signal in the spectrogram, though it is a complex exponential pulse at 100 Hz, because its

power leaks into all of the other bins. The sensitivity parameter is set to unity which is
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Figure 6.1: A very loud pulse at 100 Hz and 100 dB from blocks 500 to 525 causes the
processor to malfunction. The output of a uniform window processor is shown for reference.

approximately correct for the unity gain signals, however it is too low for the loud pulse.

The violation of the conditions for ν causes ghost signals in the PWB spectrogram. If we

had set the sensitivity parameter to 1010 which would be appropriate for the transient, then

the parts of the spectrum before and after the loud transient would just be a simple average

of the windows in the ensemble.

There are two proposed solutions to solving the problem of the loud transients. The

first is altering the loss function so that it accumulates over a sliding window rather than

for all time. The second solution is limiting the maximum value that the loss can take.

Simulations have shown that the most robust solution is to use both of the proposed methods

simultaneously.

The insight behind using a sliding window to accumulate loss is two-fold. The original

reason for exploring this idea was to solve numerical problems in calculating the perfor-

mance weights. The accumulated loss increases monotonically so without renormalization

techniques it will eventually grow too large for our processors to calculate the performance

weights. Limiting the loss accumulation to a sliding window of a fixed length also limits the
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Figure 6.2: Accumulating the loss over a sliding window confines the disruption caused
by the transient to a short section of the spectrogram. The output of a uniform window
processor is shown for reference.

maximum accumulated loss, which solves the numerical issue. For the purposes of solving

the transient problem the sliding window allows the PWB processor to ”forget” that the

offending transient occurred. The ghost signals still appear, however they only last for the

duration of the window. Using the sliding window contains the impact of the loud transients

to a smaller region of the spectrogram output. Fig 6.2 shows the same example as Fig. 6.1

however this time it is processed with the loss accumulated only over 25 blocks.

Limiting the accumulation of the loss has a cost. The convergence of the average loss

of the PWB processor is a function of the number of blocks used to average over as shown

in Eq. 3.11. When we choose the length of the sliding window, we are also fixing the value

of the regret term 2νln(M)
n . Setting the window length too short increases the regret in the

PWB output, but setting it too long increases the effects of transients in the signal.

An alternative approach is to limit the maximum value of the loss for each block so that
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the new loss function is

Ln(w,x) =

n∑
τ=1

min(γ, |w[τ ]Hx[τ ]|2), (6.1)

where γ represents the maximum possible contribution of a single block to the total loss.

The new definition of loss is used to calculate the performance weights. The sub-

estimator outputs are not limited so the resulting spectrum does not have a reduced dynamic

range. Choosing the threshold so that γ = ν ensures that the condition required for

convexity is never violated. Another way to think about the threshold parameter is as

an upper limit on the universality of the PWB estimator. When a narrowband signal with

a power above the threshold is present over the entire loss calculation then the output at

that frequency is a simple average of the window ensemble outputs and the PWB is no

longer universal. The benefit is that the processor is no longer able to overreact to loud

transients that violate the restriction on ν. It is tempting to use this method to further

reduce the value of ν below the value required by the original proof, however the average of

the window ensemble is generally not as good an estimator as the PWB estimator, so if the

threshold and corresponding sensitivity parameter are set too low then the output simply

becomes an average of the ensemble windows, and we lose the benefit of the performance

weighting. Fig. 6.3 shows the same example as earlier however this time the loss is limited

but accumulated over the entire simulation. The result of the limiting process is that the

effect of the loud transient is mitigated but without the short region with ghost signals seen

in the sliding window solution.

A practical PWB spectrum estimator for deployment in an underwater glider will likely

need to include both the loss thresholding technique, as well as a sliding window. The loss

thresholding technique prevents the estimator from being overwhelmed by loud on-board

machinery that doesn’t run all the time. The sliding window acts as a second line of defense

against loud transients that are below the chosen threshold. If the threshold has been set

too high the sliding widow allows the processor to forget a loud signal, and restores the
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Figure 6.3: Limiting the maximum loss for each block mitigates the effects of a loud transient
without simply containing the problem within a sliding window. The output of a uniform
window processor is shown for reference.

system to normal operation. Fig. 6.4 shows the output of the same example with a sliding

window of 100 blocks, and loss threshold of 1. The result is that we get a lower regret

compared to the 25 block sliding window used in the previous example, and we get the

transient mitigation from the loss thresholding.

6.2 Experimental results

The PWB algorithm was tested using hydrophone data from a deep water underwater glider

experiment near the Scotian Slope off the coast of Nova Scotia in the northern Atlantic. A

25 second segment of data was selected. The data contains a 23 second linear frequency

modulated (LFM) signal that began at 20 Hz and increased in frequency to 250 Hz. The

power of the LFM signal is roughly -75 dB below unity. The data also contains a section of

loud noise from the the machinery of the glider. The original data was sampled at 128 kHz,

and it was decimated to a sampling frequency of 4 kHz to reduce the computations required

for the analysis. The DC components of the signal were also removed by subtracting the
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Figure 6.4: Applying both loss limiting, and a sliding window gets the benefits of both
methods. The output of a uniform window processor is shown for reference

sample mean of the entire data record [20]. Fig. 6.5 has spectrograms of the data created

using a block length of 1000 samples with 75% overlap, which results in 397 total data

blocks. The blocks were processed using an 8192 point DFT. For the PWB algorithm, the

sensitivity parameter was set to 2 × 10−7, and the threshold was set to 3 × 10−7. The

PWB window ensemble contains a uniform window as well as Chebychev windows with

peak side-lobe levels of -25 dB, -50 dB, -100 dB, and -125 dB. All of these parameters were

tuned through experimentation with the data.

The data segment was injected with a 150 Hz complex exponential signal. Fig. 6.6 shows

spectrograms created with the PWB algorithm and with a fixed uniform window when the

exponential signal is at -35 dB below unity. Visual inspection of the resulting spectrograms

show that the PWB algorithm is able to reveal the LFM signal even when the uniform

window fails.

When the injected signal is loud it serves as an interferer for the LFM signal. Fig. 6.7

shows two slices of the PWB spectrogram. In the first slice the glider machinery is not

running and both the LFM and interferer signals are visible. In the second slice the glider
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Figure 6.5: The data segment used for the experiment contains an LFM sweep and is
corrupted by noise from the glider.

machinery is running which creates a couple loud tonal components, and broadband noise.

In this case the interferer signal is still clearly visible and the LFM signal is marginally

visible. Slices from the spectrogram produced by a uniform window, and a Chebychev

window with -125 dB peak side-lobes are included for reference. It should be noted that

in the first slice the PWB algorithm closely tracks the Chebychev window because of the

need to suppress side-lobe leakage. In the second slice both estimators fail to definitively

reveal the LFM signal therefore the PWB algorithm is also unable to definitively reveal

that signal.

When the injected signal is roughly the same power as the LFM signal the PWB al-

gorithm tends to prefer the uniform window. This is because the priority becomes noise

reduction rather than reduction of side-lobe leakage. The uniform weighting has the best co-

herent gain [4] so it does a better job of reducing the noise and is preferred by the algorithm.

The two plots for this example are shown in Fig. 6.8.

The previous examples have qualitatively shown the performance of the algorithm. The

performance is quantified in two ways. The first is to observe the regret of the PWB

55



PWB with spiked data

0 50 100 150 200 250 300
Frequency (Hz)

0

5

10

15

20

25

tim
e 

(s
)

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35
Rectangular with spiked data

0 50 100 150 200 250 300
Frequency (Hz)

0

5

10

15

20

25

tim
e 

(s
)

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

Figure 6.6: The PWB algorithm reveals the LFM signal when the uniform window fails due
to a loud interferer.

estimator and compare it to the analytic bound. The second is the output SNR of the

PWB estimator will be compared to the output SNR of each of the estimators in the

ensemble.

Fig. 6.9 shows the regret at the final data block; of the PWB estimator as a function of

the power of the injected signal. The lower plot in Fig. 6.9 shows a detail of the portion

of Fig. 6.9 in the black rectangle. In both cases the red vertical line shows the point at

which the injected signal power alone is enough to violate the condition on the sensitivity

parameter. The regret is shown for 150 Hz where the injected signal is located, and also

at 50 Hz where there is no signal. The plots show that as long as the restriction on ν is

respected the algorithm performs as advertised in terms of regret. Even when the conditions

on ν are violated the regret only increases at the frequency of interest where the condition

is violated. That is why the 50 Hz curve remains below the analytic limit as the power of

the injected signal is increased.

The final evaluation of the PWB algorithm is to examine the output SNR in comparison
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Figure 6.7: When a -30 dB interferer signal is injected the PWB algorithm is able to reveal
the LFM signal.

to the fixed window estimators in the ensemble. Fig. 6.10 shows the PWB estimator and

each of the estimators in the ensemble. The output SNR was calculated as

SNRout = 10 ∗ log10

(
X̂s − X̂n

X̂n

)
(6.2)

where X̂s is the estimate at the last block with the injected signal, and X̂n is the estimate

at the last block of the unaltered signal. The resulting plot shows that even after the

conditions on the ν are violated the PWB estimator is still able to relatively closely match

the performance of the best estimator in the ensemble in terms of output SNR.

In summary the PWB estimator is able to outperform each of the fixed window esti-

mators in its ensemble however, it requires protection from loud transient signals in the
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Figure 6.8: When a -75 dB interferer signal is injected the PWB algorithm is able to reveal
the LFM signal.

environment. The protection can be provided by applying a sliding window, and thresh-

olding the loss function. When the convexity conditions on the sensitivity parameter are

not violated the PWB estimator has a regret that is less than or equal to 2νln(M)
n . The

output SNR of the PWB estimator is also similar to the output SNR of the best performing

fixed window estimator in the ensemble. The PWB is a very promising estimator for situa-

tions where there is no single fixed window estimator that can reliably return an acceptable

estimate.
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Figure 6.9: The PWB algorithm meets the performance guarantees until the restrictions
on the sensitivity parameter are violated and it performs better than the analytic limit in
terms of regret especially when there is no signal at the frequency of interest.
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Chapter 7: Conclusion

This thesis developed the PWB estimator and showed analytically that it performs as well

or better than the best fixed window estimator in the ensemble. We also presented a method

for numerically stabilizing the algorithm by renormalization. Simulations have shown that

the PWB estimator automatically selects the most accurate estimator or combination of

estimators at each frequency of interest. If the windows in estimator ensemble are selected

as described in the design guide, then they provide the PWB estimator the ability to display

high resolution in regions of the spectrum where interferers are not a problem, and lower

side-lobe leakage in regions where rejection of an interferer component is required. The

simulations also show that the PWB algorithm is able to outperform the sample MPDR.

When applied to hydrophone data from an underwater glider experiment the PWB algo-

rithm required some modification to protect the algorithm from very loud transients that

violate the conditions on its sensitivity parameter. The issue of loud transients is mitigated

by thresholding the loss, and by applying a sliding window to the loss calculation. With

these modification the experiments show that the PWB algorithm performs as promised

by the convergence proof in terms of regret as long as the restriction on the sensitivity

parameter is respected. It was shown that in terms of output SNR the PWB algorithm still

performs competitively to the estimators in its ensemble when the restriction is violated.

These properties make the PWB estimator especially promising for applications where a

spectrum must be calculated without the help of an analyst.

There are still opportunities to improve the algorithm. It may be useful to look at the

PWB algorithm in a stochastic setting. Currently we do not have closed form expressions

for the distribution, or statistics of the estimator. However, some preliminary work on

this problem suggest that it may provide an upper bound on ν instead of the lower bound

provided by the deterministic proof presented in this thesis. Another interesting avenue of
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study is to borrow from the field of machine learning. The PWB algorithm may be viewed

as an unsupervised learning algorithm because it ”learns” weights that restrict the loss of

the algorithm. In a machine learning context, the function that generates the weights is

known as the soft-max function. It would be interesting to replace the soft-max function

with some of the other common activation functions in machine learning such as inverse

tangent, or hyperbolic tangent.

In this thesis the value of the sensitivity parameter was kept constant across all fre-

quencies of interest, however this is not required by the algorithm. In a situation where

the spectrum changes drastically in different regions of the spectrum it might be useful to

assign different values of ν in different regions. For example in the hydrophone data the

general trend is that there is more noise at the lower frequencies of the spectrum, so at

the lower frequencies a relatively high value of ν is required. This means that at higher

frequencies the algorithm is less sensitive than it could be. To solve this problem a lower

value of ν could be used at the higher frequencies. Finally it would be interesting to explore

choosing the window ensemble adaptively. The blend weights provide a description of how

much each window is used by the estimator. Windows that consistently have low weights

could be altered to make them more useful to the estimator. For example if the ensemble

consists of Chebychev windows the peak side-lobe levels of the windows in the ensemble

could be adjusted based on the blend weights in an attempt to maximize the usefulness of

the ensemble windows.

In conclusion, the PWB estimator is an exciting new algorithm for spectral estimation.

While there are many opportunities to improve the estimator it could be used in its current

form to improve spectrum estimates especially when a spectrum must be calculated without

the help of an analyst, which commonly occurs in autonomous vehicles such as underwater

gliders or drones.
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