

END USER SOFTWARE PRODUCT LINE SUPPORT FOR SMART SPACES

by

Vasilios Tzeremes

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

_________________________________ Dr. Hassan Gomaa, Dissertation Director

_________________________________ Dr. Jeff Offutt, Committee Member

_________________________________ Dr. Jens-Peter Kaps, Committee Member

_________________________________ Dr. Thomas LaToza, Committee Member

_________________________________ Dr. Stephen Nash, Senior Associate Dean

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Fall Semester 2016

 George Mason University

 Fairfax, VA

End User Software Product Line Support for Smart Spaces

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Vasilios Tzeremes

Masters of Science

American University, 2004

Bachelor of Business

Technological Educational Institute of Athens, 1999

Director: Hassan Gomaa, Professor

Department of Computer Science

Fall Semester 2016

George Mason University

Fairfax, VA

ii

Copyright 2016 Vasilios Tzeremes

All Rights Reserved

iii

DEDICATION

I dedicate this work to:

My wonderful children Konstantine and Zoe for all the time and attention I took from you

to complete this dissertation.

My beautiful wife Dora for your patience, support and motivation. You have been there for

me every step of the way in this journey. Without your understanding, love and sacrifices I

would have never finished.

To my parents Konstantino and Giannoula for your encouragement, trust and support

throughout the years.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor Dr. Hassan Gomaa for his continuous support and

the countless hours he spend throughout my PhD study, for his patience, motivation, and

extending my academic and technical capabilities beyond what I thought possible. His

guidance, thorough feedback and trust enabled me to complete this PhD dissertation. It was

an honor having Dr. Gomaa, an authority in the domains of software engineering and

software product lines to be my advisor.

Besides my advisor, I would like to thank Dr. João Pedro Sousa for helping me to start this

research, making me part of the Team Computing (TeC) research group and expanding my

knowledge in the domains of ubiquitous computing, end user development and smart

spaces.

I would like to thank the rest of my committee: Dr. Offutt, Dr. Kaps, and Dr. LaToza, for

their support and valuable feedback that helped shape this research.

I would also like to thank Xiang Shen for his help, support and work on the TeC Android

simulator.

Last but not the least, I would like to thank my sister Despina, parents-in-law George and

Georgia, the rest of my family, friends, business partners, coworkers and everyone else

throughout the years that helped me to complete this research and my life in general.

v

TABLE OF CONTENTS

Page

List of Tables .. x

List of Figures .. xi

Abstract ... xv

1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Glossary of Relevant Terms .. 4

1.4 Problem Statement .. 7

1.5 Thesis Statement ... 8

1.6 Research Focus and Goals... 8

1.7 Research Approach ... 9

1.8 Importance and Rationale of this Research ... 10

1.9 Organization .. 11

2 Related Work .. 12

2.1 Introduction ... 12

2.2 Ubiquitous Computing .. 12

2.3 Internet of Things (IoT)... 16

2.4 End User Development for Smart Spaces ... 20

2.4.1 Programming Languages .. 20

2.4.2 Natural Language Processing (NLP) EUD Environments 21

2.4.3 Direct Manipulation EUD Environments ... 22

2.4.4 Programming by Example EUD Environments ... 23

2.4.5 Visual Programing EUD Environments ... 24

2.5 Software Product Line Approaches... 26

2.5.1 Product line engineering and management (ISO/IEK 26550:2016) 28

2.5.2 Product Line UML-Based Software Engineering .. 29

2.5.3 Common Variability Language .. 30

2.5.4 Component-Oriented Platform Architecting .. 31

2.5.5 Family-Oriented Abstraction, Specification and Translation 32

vi

2.5.6 KobrA ... 33

2.6 Meta-modeling .. 33

2.6.1 Model Driven Architecture ... 34

2.7 Software Product Lines for End Users .. 35

2.8 Comparison with Existing Approaches ... 37

2.8.1 EUD Environments for Smart Spaces .. 37

2.8.2 Software Product Lines .. 38

2.8.3 SPL Approaches for End Users and Smart Spaces ... 38

2.8.4 Meta-modeling.. 39

2.9 Summary ... 40

3 Research Approach ... 41

3.1 Introduction ... 41

3.2 Research Approach ... 41

3.3 EU SPL Process for Smart Spaces .. 43

3.4 EU SPL Meta-model for Smart Spaces ... 45

3.5 Proof-of-concept EUSPLP Development Environment .. 46

3.6 Validation .. 48

3.7 Rationale for Extending EUD Approaches with EU SPLs 49

3.8 Summary ... 52

4 EU SPL Process for Smart Spaces .. 53

4.1 Introduction ... 53

4.2 End User SPL Process ... 54

4.3 End User Product Line Engineering (EUPLE) ... 57

4.3.1 Forward and Reverse EUPLE Strategy .. 57

4.3.2 EU SPL Requirements Elicitation .. 60

4.3.3 EU SPL Analysis Modeling ... 67

4.3.4 EU SPL Design Modeling .. 73

4.3.5 EU SPL Implementation ... 80

4.3.6 EU SPL Testing .. 80

4.4 End User Application Engineering (EUAE) ... 80

4.4.1 End User Application Requirements Selection .. 81

4.4.2 End User Application Derivation ... 82

vii

4.4.3 End User Application Testing .. 86

4.4.4 End User Application Deployment ... 87

4.5 End User SPL Evolution ... 87

4.6 Summary ... 88

5 End User Software Product Line Meta-model for Smart Spaces 89

5.1 Introduction ... 89

5.2 Overview of the EU SPL Meta-model for Smart Spaces .. 90

5.3 Platform Specific Meta-models ... 93

5.3.1 Platform Specific Meta-models for TeC .. 93

5.3.2 Platform Specific Meta-models for Jigsaw .. 99

5.4 Platform Independent Meta-models .. 104

5.4.1 Platform Independent Product Line (PIPL) .. 105

5.4.2 Platform Independent Product (PIP) ... 107

5.4.3 PIPL to PIP Meta-model Mappings.. 108

5.5 Platform Independent to Platform Specific Mappings .. 109

5.5.1 PIPL to TeC PSPL Meta-model Mappings .. 110

5.5.2 PIPL to Jigsaw PSPL Meta-model Mappings .. 111

5.5.3 PIP to TeC PSP Meta-model Mappings ... 111

5.5.4 PIP to Jigsaw PSP Meta-model Mappings ... 112

5.6 Summary ... 114

6 End User Software Product Line Prototype (EUSPLP) Development Environment .. 115

6.1 Introduction ... 115

6.2 EUSPLP System Use Cases .. 116

6.3 EUSPLP System Architecture ... 118

6.4 EUSPLP Meta-models .. 122

6.4.1 EUSPLP TeC PSPL Meta-model ... 123

6.4.2 TeC Physical Meta-Model .. 128

6.5 EUSPLP EU SPL Development Subsystem ... 130

6.5.1 EU SPL Editor .. 132

6.5.2 Feature Creation in the EU SPL Editor .. 144

6.5.3 PIPL JSON Representation .. 145

6.5.4 PIPL to TeC PSPL Processing.. 147

viii

6.5.5 TeC PSPL JSON Representation .. 148

6.6 End User Application Derivation .. 151

6.6.1 Application Derivation Editor .. 153

6.6.2 Application Derivation Processor ... 156

6.6.3 TeC Application JSON Representation .. 158

6.7 End User Application Deployment ... 160

6.8 Summary ... 163

7 Research Validation .. 164

7.1 Introduction ... 164

7.2 Research Validation Approach.. 165

7.3 EU SPL Testing Framework ... 168

7.4 EU SPL Testing Approach .. 170

7.5 End User Software Product Line (EUSPL) Testing Process................................. 173

7.5.1 EU SPL Feature-based Consistency Checking ... 173

7.5.2 Feature-based Integration Testing .. 178

7.6 End User Application Testing Process .. 183

7.6.1 EU Application Feature-based Consistency Checking 184

7.6.2 EU Application Feature-based Testing ... 186

7.6.3 EU Application Testing for Smart Home End User Application 1 188

7.6.4 EU Application Testing for Smart Home End User Application 2 195

7.8 Summary ... 208

8 Contributions and Future Research ... 209

8.1 Introduction ... 209

8.2 Research Contributions ... 209

8.2.1 End User Product Line Engineering (EUPLE) Process 210

8.2.2 End User Application Engineering (EUAE) Process 210

8.2.3 EU SPL Meta-model .. 211

8.2.4 EUSPLP Development Environment ... 212

8.2.5 EU SPL Testing Approach ... 213

8.3 Future Research ... 213

8.3.1 Smart Space Security models for End User Software Product Lines 213

8.3.2 End User Visual Languages for End User Software Product Lines 214

ix

8.3.3 Enhancements to the EUSPLP Development Environment 214

8.3.4 Testing of End User Software Product Lines ... 215

8.3.5 Evolution of End User Product Lines for Smart Spaces 215

8.4 Summary ... 216

A Appendix: Smart Home EU SPL Case Study .. 217

A.1 Introduction .. 217

A.2 End User Product Line Engineering (EUPLE)... 218

A.2.1 EU SPL Requirements Elicitation ... 218

A.2.2 EU SPL Analysis Modeling... 223

A.2.3 EU SPL Design Modeling ... 237

A.3 End User Application Engineering... 248

A.3.1 Smart Home Example 1 - End User Application Engineering 248

A.3.2 Smart Home Example 2 - End User Application Engineering 254

A.4 Summary .. 259

References ... 260

x

LIST OF TABLES

Table Page

Table 3.1 Benefits of Extending EUD Approaches for Smart Spaces with EU SPLs 50
Table 4.1 Example of a Lawn Irrigation use case for a smart space 62

Table 4.2 Feature Group / Feature Dependency Table ... 66
Table 4.3 Platform Specific Feature / Component relationship table 69
Table 4.4 Feature / Component Dependency Table for the Smart Home EU SPL Case

Study ... 74
Table 4.5 Inter-Feature Component Communication Table for the Smart Home Case

Study ... 75
Table 4.6 Component Input / Output for the Home Alarm Feature.................................. 79

Table 4.7 Example of Derived End User Application Mapped to Jigsaw 83

Table 4.8 Example of Derived End User Application Mapped to Team Computing 85
Table 6.1 TeC PSP Physical Meta-Model .. 129
Table 6.2 EU SPL Editor Feature Model Notation ... 137

Table 7.1 Feature to Component Consistency Tests ... 174
Table 7.2 Feature Group to Feature Consistency Tests .. 175

Table 7.3 Feature Dependency Consistency Tests ... 176
Table 7.4 Feature-Based Integration Testing – Test Case Attributes 178
Table 7.5 EU Application Feature-Based Consistency Tests ... 185

Table A.1 Smart Home EU SPL Feature Description .. 219
Table A.2 Smart Home EU SPL Feature Group / Feature Dependency Table 222

Table A.3 Platform Specific Feature / Component relationship table 225
Table A.4 Smart Home EU SPL Feature/Component Dependency Table 236

Table A.5 Inter-Feature Component Communication Table .. 237
Table A.6 Smart Home EU SPL Component Input / Output Table 246

Table A.7 Component Input/Output Table (Continuation)... 247
Table A.8 Smart Home Example 1 – EU Derived Application Mapped to Jigsaw 251

Table A.9 Smart Home Example 1 – EU Derived Application Mapped to TeC 253
Table A.10 Smart Home Example 2 – Platform Spesific EU Application Mapped to TeC

... 257

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107305
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107306
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107308
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107308
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107309
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107310
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107311
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107312
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107313
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107314
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107315
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107316
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107317
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107318
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107321
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107324
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107325
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107326
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107327
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107328
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107328

xi

LIST OF FIGURES

Figure Page

Figure 2.1 TeC User Interface .. 25
Figure 2.2 Process Model for Software Product Lines ... 27

Figure 4.1 End User Software Product Line Process .. 55
Figure 4.2 End User Product Line Engineering Phases .. 56
Figure 4.3 End User Application Engineering Phases .. 58
Figure 4.4 Smart Home Feature Model .. 65
Figure 4.5 Smart Home Case Study Static Model .. 68

Figure 4.6 Sequence Diagram for the Video Feature ... 70
Figure 4.7 Sequence Diagram for the Energy Conservation Feature 72

Figure 4.8 Subscribe and Receive Messages to a Message Broker 77

Figure 4.9 Component Diagram for the Home Alarm Feature ... 78
Figure 4.10 Component Diagram for the Video Feature .. 80
Figure 4.11 Example of an Instance of the Smart Home Feature Model based on End

User Requirements .. 82
Figure 4.12 Example of Smart Home End User Application Architecture for Jigsaw 84

Figure 4.13 Example of Smart Home End User Application Architecture for TeC 86
Figure 5.1 End User SPL Meta-model .. 92
Figure 5.2 TeC Application Meta-model (PSP) ... 95

Figure 5.3 Flood Alert – TeC Team.. 96
Figure 5.4 TeC Platform Specific Product Line (PSPL) Meta-model 97

Figure 5.5 PSPL to PSP Meta-model Mapping for the TeC Platform 100
Figure 5.6 Jigsaw Application Meta-model (PSP) ... 101

Figure 5.7 Jigsaw Doorbell Application Example .. 102
Figure 5.8 PL Jigsaw Component Meta-model .. 103

Figure 5.9 PSPL to PSP Mapping for the Jigsaw Platform .. 105
Figure 5.10 Platform Independent Product Line (PIPL) Meta-model 106

Figure 5.11 Platform Independent Product (PIP) Meta-model 107
Figure 5.12 PIPL to PIP meta-model mappings ... 108
Figure 5.13 Platform Independent to Platform Specific Mappings 109
Figure 5.14 PIPL to TeC PSPL Meta-model Mappings ... 110
Figure 5.15 PIPL to Jigsaw PSPL Meta-model Mappings ... 112

Figure 5.16 PIP to PSP Mapping for the TeC EU Platform ... 113

Figure 5.17 PIP to PSP Mapping for the Jigsaw EU Platform 113

Figure 6.1 EUSPLP Use Cases ... 117
Figure 6.2 EUSPLP Subsystem Architecture and Processes .. 120
Figure 6.3 EUSPLP TeC PSPL - Feature Meta-Model .. 124
Figure 6.4 Feature to TeC EU SPL Component Meta-Model Relationships 125
Figure 6.5 TeC EU SPL Component Meta-Model ... 126

Figure 6.6 TeC PSP Physical Meta-Model ... 128

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016036
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016038
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016039
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016040
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016041
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016042
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016043
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016044
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016045
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016046
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016047
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016048
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016048
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016049
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016050
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016051
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016052
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016053
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016054
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016055
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016056
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016057
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016058
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016059
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016060
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016061
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016062
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016063
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016064
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016065
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016066
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016067
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016068
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016069
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016070
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016071
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016072
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016073

xii

Figure 6.7 EU SPL Development Subsystem and Component Interactions 130
Figure 6.8 EU SPL Editor User Interface ... 133
Figure 6.9 Feature Group Menu in the EU SPL Editor .. 135
Figure 6.10 Feature Menu in the EU SPL Editor.. 135

Figure 6.11 Platform Dependent Menu in the EU SPL Editor 135
Figure 6.12 EUSPLP Component Example .. 139
Figure 6.13 Component Type Configuration .. 143
Figure 6.14 Sample PIPL JSON Representation .. 146
Figure 6.15 Methods of the PIPLtoPSPLProcessor Class .. 147

Figure 6.16 Sample TeC PSPL JSON Representation.. 149
Figure 6.17 Application Derivation Subsystem and Component Interactions 151
Figure 6.18 Application Derivation Editor User Interface ... 154

Figure 6.19 Methods of the ApplicationDerivationProcessor Class 157
Figure 6.20 Sample TeC PSP JSON Representation .. 159
Figure 6.21 Application Deployment Diagram .. 161

Figure 7.1 Overall EU SPL Testing Approach .. 171
Figure 7.2 ConsistencyRuleChecker Output of executing EU SPL Consistency Test Cases

to the Smart Home EU SPL .. 177
Figure 7.3 Smart Home EU SPL: Audio Feature ... 180
Figure 7.4 Audio Feature Test Cases .. 180

Figure 7.5 Output of the FeatureBasedTestDriver for the Smart Home EU SPL 184
Figure 7.6 ConsistencyRuleChecker Output of executing EU Application Feature-Based

Consistency Tests on an invalid Feature Set from the Smart Home EU SPL 186
Figure 7.7 ConsistencyRuleChecker Output of executing EU Application Feature-Based

Consistency Tests on a valid Feature Set from the Smart Home EU SPL 186

Figure 7.8 FeatureBasedTestDriver Output executing Feature-Based Integration Test

Cases to a Derived Application that contains the Audio and Smart Irrigation Features 188
Figure 7.9 Smart Home Example 1 Application – Feature Model 189
Figure 7.10 ConsistencyRuleChecker Output of executing EU Application Consistency

Tests to the Features selected for the Smart Home Example 1 Application 189
Figure 7.11 Smart Home Example 1 - Application Architecture for TeC 191

Figure 7.12 Featured-Based Integration Test Cases for the Smart Home Example 1 EU

Application .. 192

Figure 7.13 FeatureBasedTestDriver Output of executing the Featured-Based Integration

Test Cases to the Smart Home Example 1 EU Application .. 195
Figure 7.14 Smart Home Example 2 Application – Feature Model 196
Figure 7.15 ConsistencyRuleChecker Output of executing EU Application Consistency

Tests to the Features selected for the Smart Home Example 2 Application 196
Figure 7.16 Smart Home Example 2 - Application Architecture for TeC 198
Figure 7.17 Featured-Based Integration Test Cases for the Smart Home Example 2 EU

Application .. 199
Figure 7.18 FeatureBasedTestDriver Output of executing the Featured-Based Integration

Test Cases to the Smart Home Example 2 EU Application .. 202
Figure 7.19 Smart Home Example 3 Application – Feature Model 204

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016074
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016075
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016076
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016077
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016078
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016079
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016080
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016081
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016082
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016083
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016084
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016085
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016086
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016087
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016088
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016089
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016090
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016090
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016091
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016092
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016093
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016094
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016094
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016095
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016095
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016096
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016096
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016097
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016098
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016098
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016099
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016100
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016100
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016101
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016101
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016102
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016103
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016103
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016104
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016106
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016106
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016107

xiii

Figure 7.20 Smart Home Example 3 - Application Architecture for TeC 205
Figure 7.21 Derived Featured-Based Integration Test Cases for the Smart Home Example

3 EU Application .. 206
Figure 7.22 Smart Home Example 3 Derived Application Stored in TeC Android 207

Figure 7.23 Executing a Test Case Example in TeC Device Simulators 207
Figure A.1 Smart Home EU SPL Feature Model ... 221
Figure A.2 Smart Home Case Study Static Model ... 224
Figure A.3 Sequence Diagram for the Smart Home EU SPL Audio Feature 226
Figure A.4 Sequence Diagram for the Smart Home EU SPL Video Feature 226

Figure A.5 Sequence Diagram for the Smart Home EU SPL Door Feature 227
Figure A.6 Sequence Diagram for the Smart Home EU SPL Motion Feature 227
Figure A.7 Sequence Diagram for the Smart Home EU SPL Window Feature 228

Figure A.8 Sequence Diagram for the Smart Home EU SPL Text Feature 228
Figure A.9 Sequence Diagram for the Smart Home EU SPL Email Feature 229
Figure A.10 Sequence Diagram for the Smart Home EU SPL Smart Irrigation Feature 229

Figure A.11 Sequence Diagram for the Smart Home EU SPL Schedule Feature 230
Figure A.12 Sequence Diagram for the Smart Home EU SPL Smart Weather Sensing

Feature... 230
Figure A.13 Sequence Diagram for the Smart Home EU SPL Flood Detector Feature . 231
Figure A.14 Sequence Diagram for the Smart Home EU SPL Faucet Drip Feature 231

Figure A.15 Sequence Diagram for the Smart Home EU SPL Light Failure Feature 232
Figure A.16 Sequence Diagram for the Smart Home EU SPL HVAC Filter Feature 232

Figure A.17 Sequence Diagram for the Smart Home EU SPL Power Failure Feature .. 233
Figure A.18 Sequence Diagram for the Smart Home EU SPL Energy Conservation

Feature... 233

Figure A.19 Sequence Diagram for the Smart Home EU SPL Home Alarm Feature 234

Figure A.20 Sequence Diagram for the Smart Home EU SPL 911 Feature 234
Figure A.21 Component Diagram for the Audio Feature ... 239
Figure A.22 Component Diagram for the Video Feature ... 239

Figure A.23 Component Diagram for the Door Feature ... 239
Figure A.24 Component Diagram for the Motion Feature ... 240

Figure A.25 Component Diagram for the Window Feature ... 240
Figure A.26 Component Diagram for the Text Feature .. 240

Figure A.27 Component Diagram for the Email Feature ... 241
Figure A.28 Component Diagram for the Smart Irrigation Feature 241
Figure A.29 Component Diagram for the Schedule Feature .. 242
Figure A.30 Component Diagram for the Smart Weather Sensing Feature 242

Figure A.31 Component Diagram for the Flood Detector Feature 242
Figure A.32 Component Diagram for the Faucet Drip Feature 243
Figure A.33 Component Diagram for the Light Feature .. 243

Figure A.34 Component Diagram for the HVAC Filter Feature 243
Figure A.35 Component Diagram for the Power Failure Feature 244
Figure A.36 Component Diagram for the Energy Conservation Feature 244
Figure A.37 Component Diagram for the Home Alarm Feature 244

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016108
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016109
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016109
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016110
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016111
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016112
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016113
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016114
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016115
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016116
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016117
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016118
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016119
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016120
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016121
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016122
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016123
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016123
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016124
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016125
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016126
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016127
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016128
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016129
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016129
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016130
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016131
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016132
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016133
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016134
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016135
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016136
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016137
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016138
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016139
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016140
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016141
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016142
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016143
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016144
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016145
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016146
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016147
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016148

xiv

Figure A.38 Component Diagram for the 911 Feature ... 245
Figure A.39 Smart Home Example 1 – Feature Model .. 249
Figure A.40 Smart Home Example 1 - EU Application Architecture for Jigsaw 252
Figure A.41 Example 1 - Smart Home Example 1 - EU Application Architecture for TeC

... 254
Figure A.42 Smart Home Example 2 – Platform Specific Feature Model 255
Figure A.43 Smart Home Example 2 – Platform Specific EU Application Architecture for

TeC .. 258

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016149
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016150
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016151
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016152
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016152
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016153
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016154
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016154

xv

ABSTRACT

END USER SOFTWARE PRODUCT LINE SUPPORT FOR SMART SPACES

Vasilios Tzeremes, Ph.D.

George Mason University, 2016

Dissertation Director: Dr. Hassan Gomaa

Smart spaces are physical environments equipped with pervasive technology that sense and

react to human activities and changes in the environment. End User Development (EUD)

skills vary significantly among end users who want to design, develop and deploy software

applications for their smart spaces. Typical end user development is opportunistic,

requirements are usually unplanned and undocumented, applications are simplistic in

nature, design is ad-hoc, reuse is limited, and software testing is typically haphazard,

leading to many quality issues. On the other hand, technical end users with advanced EUD

skills and domain expertise have the ability to create sophisticated software applications

for smart spaces that are well designed and tested.

 This research presents a systematic approach for adopting reuse in end user

development for smart spaces by using Software Product Line (SPL) concepts. End User

(EU) SPL Designers (who are technical end users and domain experts) design and develop

EU SPLs for smart spaces whereas less technical end users derive their individual smart

xvi

space applications from these SPLs. Incorporating SPL concepts in EUD for smart spaces

makes it easier for novice end users to derive applications for their spaces without having

to interface directly with devices, networks, programming logic, etc. End users only have

to select and configure the EU SPL features needed for their space. Another benefit of this

approach is that it promotes reuse. End user requirements are mapped to product line

features that are realized by common, optional, and variant components available in smart

spaces. Product line features and the corresponding component product line architecture

can then be used to derive EU applications. Derived EU applications can then be deployed

to different smart spaces, thereby avoiding end users having to create EU applications from

scratch. Finally the proposed approach has the potential of improving software quality

since testing will be an integral part of EU SPL process.

In particular, this research has: (a) defined a systematic approach for EU SPL

Designers to design and develop EU SPLs, (b) provided an EU SPL application derivation

approach to enable end users to derive software applications for their spaces, (c) designed

an EU SPL meta-model to capture the underlying representation of EU SPL and derived

application artifacts in terms of meta-classes and relationships that supports different EUD

platforms, (d) designed and implemented an EUD development environment that supports

EU SPL development and application derivation, and (e) provided a testing approach and

framework for systematic testing of EU SPLs and derived applications.

1

1 INTRODUCTION

1.1 Background

As computing becomes ubiquitous, software demands are rapidly increasing.

Software requirements for end users are becoming personalized and often fluctuate.

Professional engineers do not have the capacity and domain knowledge to satisfy all

software needs. End users know their own context and needs better than anybody else, and

they often have real-time awareness of shifts in their respective domains (Burnett and

Myers, 2014). End users are already involved in software development and outnumber

professional engineers. For instance, the current ratio of end users to professional engineers

is 30-to-1 (Burnett and Scaffidi, 2014). End User Development (EUD) involves a set of

methods, techniques, and tools that enable users of software systems, who are acting as

non-professional software developers, to create, modify, or extend a software artifact

(Lieberman et al., 2006). Examples of EUD are spreadsheet programming, visual

programming, email rule filters, web site creation tools, etc.

Another prominent area for end user development is smart spaces. Smart spaces are

environments equipped with visual and audio sensing systems, pervasive devices, sensors,

and networks that can perceive and react to people, sense on-going human activities and

respond to them (Singh et al., 2006). Several End User (EUD) environments for smart

spaces have been proposed to assist end users to create applications for their smart

2

environments. EUD environments for smart spaces provide user interfaces for end users to

create software applications and interconnect applications with devices deployed in a smart

space. Jigsaw (Humble et al., 2003), Puzzle (Danado and Paternò, 2012), PIP (Chin et al.,

2010), FedNet (Kawsar et al., 2008), and TeC (Sousa, 2010) are examples of EUD

environments. EUD environments enable end users to create their own applications for

home security, building automation, space notifications, energy conservation and office

ergonomics.

Having end users creating software applications has several benefits. Some of the

benefits are that it empowers end users to create software applications, the applications are

built to the end user specifications and there is better adaptation of the software applications

by end users. Having end users creating software applications also has challenges. End

users have different technological backgrounds. Thus not all end users have the same

development abilities. Furthermore EUD is more opportunistic than systematic,

requirements are usually unplanned and undocumented, reuse is ad-hoc, and software

testing is typically haphazard, leading to quality issues (Ko et al., 2011). End User Software

Engineering (EUSE) focuses on approaches, techniques and tools to improve the quality

of end user software (Burnett, 2009). Software Product Line (SPL) methods can also help

end users to reuse work of others and improve the software quality.

This research investigates how SPL concepts can be applied to end user

development for smart spaces.

3

1.2 Motivation

Several EUD environments for smart spaces have been proposed to enable end

users to customize their smart spaces. One of the problems with existing solutions is that

they either target a specific group of end users or they assume end users have a baseline

technical background. In fact, end users have different computer skills, personality

characteristics, ages, gender (Beckwith and Burnett, 2004) etc. Technical end users and

domain experts have the ability to create sophisticated software for their smart spaces.

However, less technical end users find it difficult to create software for their smart spaces

due to a lack of technical knowledge, domain expertise, and difficulties using EUD

environments for smart spaces (Kawsar et al., 2008). It would be beneficial to enable end

users to salvage the work of more technical end users and domain experts to create software

applications for their spaces.

Several quality issues have been reported by applications created by end users.

Some of these include errors in the logic, compatibility issues etc. (Burnett, 2009). The

domain of EUSE is derived from software engineering and provides systematic approaches

for end users to create quality software. Reuse is also one of the areas that EUSE identifies

as promising for improving end user software quality and promoting end user development.

Some of the issues of reuse in EUD is that end users don't design their software applications

for reuse and even if they do, other end users have difficulties finding and reusing the

software applications to address their needs (Burnett, 2009). SPL technology addresses

software reuse of requirements, designs and implementations, and could assist with EUSE.

The problem is that SPL methods target professional software engineers rather than end

4

users. SPL creation involves requirements gathering, commonality/variability analysis,

feature modeling, variable architecture design, component design and implementation. In

an end user environment, the development process is more agile. End users are not familiar

with prescriptive SPL methods and therefore modifications are needed to define a SPL

method to target end users.

By adopting reuse, end users would not have to duplicate work to create similar

applications. In addition, reuse of more sophisticated and stable end user applications can

increase the end user satisfaction that could lead to better adoption of EUD for smart

spaces.

1.3 Glossary of Relevant Terms

This section provides a common vocabulary for terms used in related literature and

throughout this dissertation.

 End User Development (EUD) – a set of methods, techniques, and tools that

enable users of software systems, who are acting as non-professional software

developers, to create, modify, or extend a software artifact (Lieberman et al., 2006)

(Chapter 1).

 Software Product Lines (SPL) – a set of software intensive systems sharing a

common, managed set of features that specify the specific needs of a particular

market segment or mission and are developed from a common set of core assets in

a prescribed way (Clements and Northrop, 2002) (Chapter 2).

 Smart Spaces – ordinary environments equipped with visual and audio sensing

systems, pervasive devices, sensors, and networks that can perceive and react to

5

people, sense ongoing human activities and respond to them (Singh et al., 2006).

Smart spaces are also referred to smart environments in part of the literature

(Chapter 2).

 End User Development (EUD) Environments for Smart Spaces – provide user

interfaces for end users to create software applications and interconnect

applications with devices deployed in a smart space. (Chapter 2). EUD

Environments are also referred as platforms (Chapter 5) and as EUD Tools in

literature.

 End User Product Lines (EU SPL) – product lines for smart spaces created by

technical end users and domain experts (Chapter 4).

 End User (EU) Application – software application for smart spaces derived by

end users from the EU SPL (Chapter 4).

 End User Product Line (EU SPL) Process – a systematic approach for EU SPL

designers who are technical end users and domain experts to design and develop

end user software product lines for smart spaces that end users can use to derive

applications for their smart spaces (Chapter 4). The EU SPL process consists of the

End User Product Line Engineering (EUPLE) process and the End User

Application Engineering (EUAE) process.

 End User Product Line Engineering (EUPLE) – is the process that technical end

users and domain experts follow to develop EU SPLs (Chapter 4).

 End User Application Engineering (EUAE) – is the process that end users follow

to derive applications from EUSPLs for their smart spaces (Chapter 4).

6

 EU SPL Meta-model – captures the underlying representation of end user product

lines and end user applications in terms of meta-classes and relationships (Chapter

5).

 Platform Independent Model – is an end user application model that is

independent of the platform (EUD environment e.g., Jigsaw/TeC) and the

hardware/Operating System (OS) (Chapter 5).

 Platform Specific Model – is an end user application model that is specific to an

EUD environment e.g., Jigsaw/TeC but independent of the hardware/OS platform

(Chapter 5).

 Platform Independent Product Line (PIPL) Meta-model – captures the

underlying representation of EU SPLs in terms of meta-classes and relationships

independent of the platform (EUD environment. The meta-model contains

representations of EU SPL features, feature dependencies, and the component

architecture that realizes each feature. The meta-model is platform independent and

contains meta-classes that are common to event-driven EUD environments for

smart spaces (Chapter 5).

 Platform Independent Product (PIP) Meta-model – provides the underlying

representation of end user applications in terms of meta-classes and relationships,

which are derived from the PIPL meta-model (Chapter 5).

 Platform Specific Product Line (PSPL) Meta-model - similar to the PIPL meta-

model but is extended with platform specific meta-classes (Chapter 5). The TeC

7

PSPL and Jigsaw PSPL are examples of PSPL meta-models for the TeC and Jigsaw

EUD environments.

 Platform Specific Product (PSP) Meta-model – provides the underlying

representation of end user application in terms of meta-classes and relationships,

which are derived from the PSPL meta-model (Chapter 5). The TeC PSP and

Jigsaw PSP are examples of application models derived for the TeC and Jigsaw

PSPLs.

1.4 Problem Statement

End User Development (EUD) skills vary significantly among end users who want

to design, develop and deploy software applications for their smart spaces. Typical end

user development is opportunistic, requirements are usually unplanned and

undocumented, applications are simplistic in nature, design is ad-hoc, reuse is limited, and

software testing is typically haphazard, leading to many quality issues. On the other hand,

technical end users with advanced EUD skills and domain expertise have the ability to

create sophisticated software applications for smart spaces that are well designed and

tested. The problem to be solved is (a) enable technical end users and domain experts to

design and develop software applications for smart spaces that can be reused, and (b)

enable less technical end users to adapt software applications developed by technical end

users and domain experts to their spaces.

8

1.5 Thesis Statement

A systematic design approach and end user development environment can be

created to specify, design, implement, test and deploy end user applications for smart

spaces by using software product lines concepts. This will enable technical end users and

domain experts to utilize the design method and development environment to create end

user software product lines for smart spaces, from which end users will be able to derive

applications for their spaces.

1.6 Research Focus and Goals

The focus of this research is to develop an End User Software Product Line (EU

SPL) approach that extends existing EUD practices for smart spaces. The main concept of

this approach is having End User SPL Designers (who are technical end users and domain

experts) create EU SPLs for smart spaces and have end users derive their individual smart

space applications from these SPLs. Incorporating SPL concepts in EUD for smart spaces

makes it easier for novice end users to derive applications for their spaces without having

to interface directly with devices, networks, programming logic, etc. End users only have

to select and configure the EU SPL features needed for their space. Another benefit of this

approach is that it promotes reuse. End user requirements are mapped to product line

features that are realized by common, optional, and variant components available in smart

spaces. Product line features and the corresponding component product line architecture

can then be used to derive EU applications. Derived EU applications can then be deployed

to different smart spaces, thereby avoiding end users having to create EU applications from

9

scratch. Finally the proposed approach has the potential of improving software quality

since testing will be an integral part of EU SPL process.

The goals of this research are to investigate: (a) a systematic approach for End User

SPL designers to design and develop EU SPLs, (b) an EU SPL application derivation

approach to enable end users to derive software applications for their spaces, (c) an EU

SPL meta-model to capture the underlying representation of EU SPL and derived

applications, (d) an EUD development environment that supports EU SPL development

and application derivation, and (e) a testing approach and framework for testing EU SPLs

and derived applications.

1.7 Research Approach

This research addresses the lack of a systematic approach and development

environments to design and develop software applications for smart spaces that can be

reused by end users. The research approach is described in detail in Chapter 3. Below is a

summary of the research approach:

1. Define a comprehensive EU SPL process for (a) designing, developing and testing

end user product lines for smart spaces and (b) deriving applications that can be

that can be applied to different end user environments.

2. Define an EU SPL meta-model that extends existing meta-models of EUD

environments for smart spaces to provide product line support. The meta-model

captures the underlying representation of end user product lines and derived

applications in terms of meta-classes and relationships that support different EUD

platforms.

10

3. Develop a proof-of-concept End User Software Product Line Prototype (EUSPLP)

development environment based on the EU SPL Process and meta-model. The

environment supports the creation of end user product lines and application

derivation for smart spaces.

4. Validate this research by applying the EU SPL process and proof-of-concept

EUSPLP development environment to the Smart Home EU SPL case study. A

testing framework is provided to test the artifacts of the EUSPLP development

environment.

5. Deploy and execute TeC applications on the distributed TeC Android simulator

(Shen, 2014).

1.8 Importance and Rationale of this Research

The growing adoption of ubiquitous computing and the Internet of Things (IoT)

have contributed to the advancement of smart spaces. In the context of smart spaces,

ubiquitous computing focuses on the interaction of end users with the environment whereas

the IoT focuses on the interconnection of devices and services using the internet for

connectivity. End user development environments for smart spaces aim to allow end users

to take advantage of the device connectivity and end user friendly user interfaces to create

applications for comfort, security, scheduling tasks, convenience through automation,

energy management efficiency, health and assisted living (Rashidi and Cook, 2009). Even

though EUD environments for smart spaces have made significant contributions for

enabling end users to create applications for their spaces, they do not account for reuse and

applications developed are platform (EUD environment) specific. For instance, TeC

11

applications can only be deployed to a TeC smart space and Jigsaw applications can only

be deployed to a Jigsaw smart space.

This research presents a systematic approach for adopting reuse in end user

development for smart spaces by using software product line concepts. Using product line

concepts for EUD, platform independent applications can be developed and then adapted

for different EUD platforms. This research approach extends EUD environments for smart

spaces with EU SPL support.

It should be noted that parts of the research described in this dissertation have been

published in international conferences and workshops (Sousa, Tzeremes and Masri 2010;

Sousa, Shen, Tzeremes and Hodum 2012; Tzeremes 2015; Tzeremes and Gomaa 2015;

Tzeremes and Gomaa 2016a; Tzeremes and Gomaa 2016b).

1.9 Organization

This dissertation is organized as follows. Chapter 2 surveys related work that form

the basis for this research. Chapter 3 details the research approach. Chapter 4 describes the

end user software product line process, including end user product line development and

application derivation. Chapter 5 describes the end user software product line meta-model

that captures the underlying representation of end user product lines. Chapter 6 presents

the EUSPLP development environment that supports product line development and

application derivation. Chapter 7 describes the validation and testing approach of this

research. Chapter 8 concludes the dissertation, outlines the contributions of this research,

and suggests future work. Finally, Appendix-A presents the complete design of the Smart

Home EU SPL case study used to validate this research.

12

2 RELATED WORK

2.1 Introduction

This chapter presents related research work that is the basis for the research

described in this dissertation. Section 2.2 describes ubiquitous computing. Ubiquitous

computing concepts and technologies are used to create smart spaces. Section 2.3 discusses

the Internet of Things (IoT). IoT utilizes existing internet protocols for the communication

of physical objects in smart spaces. Section 2.4 describes different development approaches

for end users to create software applications for smart spaces. Section 2.5 provides an

overview of software product lines. Section 2.6 discusses meta-modeling approaches for

creating software applications. Section 2.7 discusses the extent that software product lines

concepts have been applied to end user development. Section 2.8 discusses how this

research compares to the related research. Finally section 2.9 provides a summary of this

chapter.

2.2 Ubiquitous Computing

The term of ubiquitous, also known as pervasive, computing was first introduced

by Mark Weiser in 1991 (Weiser, 1991). Weiser used the word ubiquitous to describe the

concept of everywhere computing. Weiser believed that computing should be integrated

seamlessly in the background, allowing people to employ it when needed without shifting

their focus from their main tasks. The Olivetti Cambridge Research Labs active badge

project (Want et al., 1992) that took place between 1990 till 1992 was an example of a

ubiquitous computing environment at the time. The active badge project instrumented

13

people working on a building with smart badges. In the building itself a number of sensors

were deployed to read the badges. As a result, among others, doors were open to people

that were carrying the provisioned badges, rooms were greeting people with their name,

phones were transferred to a phone that the badge wearer was close and computers were

adjusted to the badge wearer preferences.

Computing has evolved over the years from mainframe computers that were

available in specific locations and supported multiple users, to personal computers where

each user mainly interacted with one computer, to pervasive computing where technology

is everywhere and supports multiple users. Satyanarayanan (Satyanarayanan, 2001)

describes the progress of distributed and mobile systems research in relation to pervasive

computing. Distributed systems are concerned with issues of remote communication

protocols, fault tolerance, high availability, and remote information access and secure

remote communication. Mobile computing builds on distributed systems and addresses

research problems for mobile networking, mobile information access, adaptive

applications, energy-aware systems and location sensitivity. Pervasive computing is the

natural progression of both distributed and mobile systems. Some of the main research

areas of pervasive technology are: (a) how to creating smart spaces that can react, send and

receive information, (b) how technology can be hidden to the background and its available

to users when needed, (c) how the environment can distinguish between different users that

exist on the same space, and (d) how applications are deployed to smart spaces that have

different technology support.

14

Pervasive environments, also known as smart spaces or smart environments, are

composed from devices, networking, middleware and applications (Saha and Mukherjee,

2003). There is a variety of heterogeneous devices available in a pervasive environment,

some examples are: mouse and keyboards, sensors and actuators embedded in the

environment, cell phones, computers, custom devices developed for a specific purposes

etc. Devices exchange data with other devices, software applications and the environment

seamlessly. Networks provide communication protocols, auto configuration, quality of

service, reliability, failover, lower bandwidths, lower transmission requirements, security

and routing algorithms to support pervasive computing. Pervasive middleware can be

thought as a distributed operating system. The middleware’s responsibilities are to perform

I/O operations, facilitate device communication, file system manipulation, application

execution, error detection and resource allocation. The middleware essentially needs to

present the heterogeneous environment as homogeneous to the applications. Pervasive

applications are aware of their environment and are able to recover from device and sensor

failures.

There have been several middleware architectures proposed for implementing

pervasive environments (Saha and Mukherjee, 2003; Whitmore et al., 2015). Some of those

initiatives are the ROS (Quigley et al., 2009), Aura (Sousa and Garlan, 2002), JCAF

(Bardram, 2005), Smart Products (Mühlhäuser, 2008), UbiComp (Goumopoulos and

Kameas, 2009), ACOCO (Fortino et al., 2013) projects. The Robot Operating System

(ROS) is a middleware for creating smart spaces through the use of service robots. The

ROS architecture consists of nodes, messages, topics and services. Nodes are processes

15

that communicate with other nodes through messages. Messages can be send through topics

for public-subscribe communication or services for point-to-point synchronous

communication. The Aura project enables users to preserve continuity of their tasks across

environments. The Aura architecture is composed of user tasks, the task manager, the

context observer and the environment manager. A user task is composed from a collection

of services used to accomplish the task. The task manager is responsible for managing the

user tasks. The context observer based on the user context executes the appropriate user

task on the target environment. The environment manager keeps track of all the resources

in the environment. The Java Context-Awareness Framework (JCAF) is a context-

awareness environment with an Application Programming Interface (API) that supports

the creation of specific context-aware applications. The Smart Products initiative is based

on creating autonomous objects that can communicate with another through peer-to-peer

protocols to create smart spaces. The UbiComp middleware creates smart spaces through

the composition of artefacts. Artifacts in UbiComp are heterogeneous tangible objects

(sensors/actuators/devices) that can be combined together to achieve a task. UbiComp

provides an editor for composing and instructing artifacts (Mavrommati et al., 2004) in

smart spaces. ACOSO is agent-oriented event-driven architecture that reacts when changes

in the environment occur. The middleware supports message passing and publish/subscribe

mechanisms for agent communication.

There are several challenges for developing software for pervasive environments.

These challenges can be grouped in the following areas: (a) application development, (b)

user context, (c) data, (d) configuration, and (g) user interface (Henricksen et al., 2001;

16

Satyanarayanan, 2001). Application development challenges deal with the application

structure, component design and implementation, interaction sequence between

components, components states, application lifetime, concurrency, transactionality, device

interaction, transmission requirements, workflow, application goals and security. User

context gives the ability to applications to infer user activities based on spatio-temporal

data (Pereira and Loyola, 2012). For example consider a smart meeting room. When the

door is closed and they are people in the room the smart room can infer that there is a

meeting in progress. Thus pervasive applications need to capture in their design: time,

space, location, proximity to other devices, transition states, events of other applications,

and operational history characteristics. Data challenges for creating pervasive applications

deal with data storage, data dissemination, data security and data replication issues across

environments. Finally configuration challenge research issues deal with how pervasive

applications can be dynamically reconfigured based on the presence or absence of certain

devices.

2.3 Internet of Things (IoT)

The Internet of Things (IoT) can be thought as a paradigm where every-day

physical objects (sensors, devices, vehicles, buildings) can be equipped with identifying,

sensing/actuation, storing, networking and processing capabilities that will allow them to

communicate with one another and with other devices and services over the Internet to

accomplish some objective (Whitmore et al., 2015). These objects are typically referred as

smart objects. Smart objects are everyday objects that are equipped with hardware

components such as a radio for communication, a CPU to process tasks, sensors/actuators

17

to be conscious of the world in which they are situated and to control it at a given instance

(Fortino and Trunfio, 2014). Smart objects can interact with other smart objects and people.

The term machine-to-machine (M2M) is used to describe the direct communication

protocols between smart objects (Yun et al., 2015). The idea of IoT was first introduced by

Kevin Ashton while working on the Auto-ID Center at the Massachusetts Institute of

Technology (MIT). Ashton originally used the term “Internet of Things” in 1999 in a

presentation he made to Procter and Gamble to introduce RFID technology to the

company’s supply chain management (Schneiderman, 2015).

Some of the drivers that contributed to the development of IoT are: (a) uniformity

of access, (b) logistics, (c) energy efficiency, (d) physical security and safety, (e) industrial

(f) medical, and (g) lifestyle (Kopetz, 2011). The internet provides uniform access to

different types of computing devices, with different architectures and communication

protocols. IoT takes advantage of the object interoperability over the internet and extends

its function to smart objects. Logistics is another driver for IoT. For example retail products

go through several steps in the supply chain before they make it to the market. The product

is created from raw material, then is transferred to the manufacturing warehouse, then is

transferred to the wholesaler warehouse and finally the product arrives at the retailer. This

process involved a lot of manual communication between the different business parties in

order to coordinate and keep track of the products. With the use of RFID tags on retail

products, IoT provides much more meaningful insight to the entire process. Manufacturers,

wholesalers and retailers have automated real time views of where products are in the

supply chain. In a smart space environment, RFID technology is used to track smart objects

https://en.wikipedia.org/w/index.php?title=Auto-ID&action=edit&redlink=1
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

18

throughout the environment. IoT has a major impact on energy efficiency. Smart objects

collaborate with each other to ensure that smart environments optimize their energy

consumption. Physical security and safety is another problem that IoT addresses. IoT

objects work with each other to ensure that smart environments are safe to operate while

providing access control to ensure that authorized resources are in the space. IoT plays a

significant role in industrial manufacturing process. Smart objects help verifying the

quality of manufactured products while monitoring the environment for failed machinery,

machinery maintenance etc. There are several medical devices that monitor people’s sugar

levels, blood pressure, heart rate etc. Medical devices can be in the form of wearable

technology or even internal to the patient’s body. Extending medical devices with IoT gives

the ability for medical devices to work together to diagnose patients and notify additional

help if needed. IoT can have a significant effect on people’s life styles. Smart objects can

collaborate to adjust smart environments based on people’s context. For instance, if a home

resident goes to sleep, smart objects can notify the environment to adjust the energy and

security objects in the environment.

Some of the current technical challenges current IoT research is investigating is (a)

Internet Integration, (b) Smart object identification, (c) Near Field communication, and (d)

Security (Kopetz, 2011). Adding internet connectivity to smart objects is a challenge.

Internet communication requires power and not all smart objects in IoT have the same

power capabilities. Furthermore as smart objects move potentially might lose internet

connectivity. Current research is working to develop new communication protocols to

minimize power consumption and address the offline challenges. For example the Internet

19

Engineering Task Force (IETF) has initiated a working group on IPv6 over Low Power

Wireless Area Networks to find an energy-efficient solution for the integration of the IPv6

standard with the IEEE 802.15.4 wireless near field communication standard. Smart object

identification is another challenge for IoT. According to forecasts from Cisco Systems, by

2020 more than 50 billion smart objects will be connected in the IoT (Fortino and Trunfio,

2014). Providing a common ontology to identify all these objects is a challenge. Smart

object identification can be even more challenging when you have composite smart objects

where a smart object is comprised of other smart objects. Near Field Communication

(NFC) (ISO/IEC 18092, 2013) is a high performance communication interface and

protocol for devices to communicate over a short range. One of the benefits of NFC is that

requires less power compared to Bluetooth and other similar protocols because of the short

range. One of the main challenges with NFC is security (Ji and Xia, 2016). Security overall

is another challenge for IoT. Some of the main security challenges in IoT are:

communication confidentiality and integrity, device availability, device authentication and

access control, device computing limitations, heterogeneity in security protocols supported

by devices and enforcing security policies in IoT environments (Mahmoud et al., 2015).

 Ubiquitous computing and IoT research areas are the building blocks for creating

smart spaces. Current ubiquitous computing research is focused on smart space

applications and Human-Computer Interaction (HCI) whereas the current IoT research

focus is to create the infrastructure and protocols for smart object communication (Ebling,

2016).

20

2.4 End User Development for Smart Spaces

Smart spaces are ordinary environments equipped with visual and audio sensing

systems, pervasive devices, sensors, and networks that can perceive and react to people,

sense ongoing human activities and respond to them (Singh et al., 2006). Examples of smart

spaces are homes, offices, hospitals, farms equipped with technology to sense and react to

environment changes. Applications for a smart home include energy efficiency, security,

entertainment, and utility automation. End User Development (EUD) environments for

smart spaces provide user interfaces for end users to create software applications and

interconnect applications with devices deployed in a smart space. The purpose of EUD

environments is to enable end users to develop software applications of their environments

to suit their needs. For example, consider an economy laundry end user application that

adjusts the operation of the washer and dryer during off peak hours when the power rates

are discounted and pause operation during hours that the power rates peak. Current EUD

approaches can be summarized in five general categories (Dimitris Kalofonos and Franklin

Reynolds, 2006): (1) Programming languages, (2) Natural language processing, (3) Direct

manipulation, (4) Programming by example, and (5) Visual programming.

2.4.1 Programming Languages

Programming languages have evolved over the years. Machine specific and

assembly languages have given their place to higher level languages that are less

demanding, easier to use and provide abstractions that make them almost hardware

independent. An example is the JAVA programming language with its motif of “Write

once, run anywhere” versus traditional languages that had to be compiled for different

21

environments. In JAVA, programs are compiled one time into byte code. There are

different byte code interpreters called Java Virtual Machines (JVMs) for different operating

systems this make it easier for end users to run their programs in different platforms.

Another advantage of higher level programming languages for end users is that Original

Equipment Manufacturers (OEM) expose functionality of their products as programming

APIs so end users can code to the API versus the internals of the devices. Programming

languages, even though they have become easier to use over the years, still require a

significant amount of training and computer science knowledge to be used by end users.

2.4.2 Natural Language Processing (NLP) EUD Environments

Natural Language Processing (NLP) approaches for end users are concerned with

enabling end users to program their environments using every day human speaking

languages. CAMP (Truong et al., 2004) and InterPlay (Messer et al., 2006) are some

examples of end user programming frameworks in this category. CAMP uses a magnetic

poetry metaphor for end users to program their environment. In CAMP, words are grouped

in the following categories: who, what, where, when and general. End users express tasks

by creating “poems” by combining words from different categories. An example of a

“poem” in CAMP is “Capture Joe’s dinner time conversations in the dining room.”

InterPlay provides the middleware for integrating consumer electronics in a smart home

and allows end users to control and coordinate those devices using “pseudo sentences.” A

“pseudo sentence” is a simpler form of a grammatically correct full sentence. It consists of

a verb, a subject and a target. The verb captures the activity that the user wants to perform.

The subject captures the content that the user wants to use. The target implies the device

22

that the user wants to perform a task. An example of a “pseudo sentence” is “Play big blue

at the home theater.” Even though NLP is very promising, there are limitations to the extent

that natural language processors can process complex end user input that deals with

programming a smart space.

2.4.3 Direct Manipulation EUD Environments

Direct Manipulation approaches allow end users to directly manipulate objects. The

Media Cubes (Blackwell and Hague, 2001) and FedNet (Kawsar et al., 2008) EUD

environments provide tangible user interfaces for end users to program their spaces by

direct manipulation. In Media Cubes, end users program their environment by

manipulating a set of physical cubes. A cube consists of sensors, a processor and batteries.

Cubes can be associated with devices and assume their functionality. For example a cube

can be associated with a DVD player and assume its “play” and “stop” functionality.

Cubes can sense and interact with other cubes by facing each other. End users can program

their environments by grouping cubes together. For example consider two cubes where one

of them represents a TV and the other one a DVD player. The DVD player cube, if it faces

the TV cube, implies that the DVD player streams its output to that TV. In FedNet, devices

and software applications come with RFID cards that embed remote URLs of where device

and application binaries can be downloaded. The FedNet deployment tool is used to install,

uninstall, start, stop, and associate devices and applications by scanning the corresponding

RFID cards. Direct manipulation can be easier to understand, since end users manipulate

directly physical objects versus having end users access physical objects through command

23

line or image representations. Similar to NLP, direct manipulations approaches are hard to

scale for complex end user applications.

2.4.4 Programming by Example EUD Environments

Programming by Example (PBE) and Programming by Demonstration (PBD)

approaches present the computer with examples of data that a program will process and

having the system automatically deduce the current program from the examples (Myers,

1990a). In the context of smart spaces end users demonstrate to their environments of how

to react when a certain conditions occur. The CAPpella (Dey et al., 2004) and Pervasive

Interactive Programming (PiP) (Chin et al., 2010) end user frameworks are examples of

this approach. CAPpella enables end users to create context-aware application through

programming by example. It uses machine learning and user input to build software

applications. End users train their environment with multiple examples that include a

situation and a corresponding action. After CAPpella gets trained, it will perform the

demonstrated action when the situation occurs. In PIP, the main concept is the

“Deconstructed Model” where devices advertise services they support. Users can create

virtual devices also called a MetaAppliance (MAp) that combine services provided by

different devices. End users construct MAps using a graphical user interface and

demonstrate behavior by physically interacting with the devices. Demonstrated behavior is

stored in the form of rules. During run time, PIP uses a rules engine to evaluate the rules.

Programming by example can be transparent to end users but the environment set up can

be challenging; also, altering the system behavior will require re-training of the system

model, which can be a complex task and time consuming.

24

2.4.5 Visual Programing EUD Environments

“Visual Programming” (VP) refers to any system that allows the user to specify a

program in a two (or more) dimensional fashion (Myers, 1990b). Visual programming uses

visual elements (such as icons, drawings or gestures) to create programs. Visual

programming provides a natural way to program that helps users conceptualize what they

develop.

In the smart space area, several EUD environments have been proposed that use

visual programming. Some examples of visual programming frameworks are: Jigsaw

(Humble et al., 2003), Puzzle (Danado and Paternò, 2012), GALLAG Strip (Lee et al.,

2013), ICAP (Dey et al. 2006) and Team Computing (Sousa, 2010). Jigsaw and Puzzle

provide a user interface for reconfiguring and reorganizing devices in a smart space.

Devices appear as jigsaw pieces in the Jigsaw and Puzzle editors. End users can

dynamically combine the Jigsaw pieces to create applications for their environments.

GALLAG Strip enables users to create context aware applications through a sequence of

screens in a mobile device. ICAP provides a visual rule building approach for end users to

create context aware applications for their spaces. End users can specify rules from simple

logic to personal, spatial and temporal relationships. Team designs define teams and are

created in the TeC Editor. A team design is a collection of Activity sheets connected

together. Activities sheets represent software components, devices, and humans. During

the team deployment, activity sheets are mapped to players operating in the smart space.

Additional logic, conditions and output events can be added to activity sheets for

customization. Activity sheet outputs are connected to inputs of other activity sheets and

25

get activated when their holding condition is true. Activity sheets are visually represented

in the TeC Editor as big square boxes, inputs and output are smaller square boxes attached

to the activity sheets. TeC also supports input and output streams. Streams are represented

with small triangles attached to activity sheets. Figure 2.1 shows a “surveillance” team for

a small farm to illustrate the user interface of TeC. The purpose of the team is to monitor

the perimeter fence of a small farm. If an animal leans on, or breaks the fence, the owner

of the farm gets contacted with a live video stream. The team has three activity sheets

“monitor fence”, “film” and “phone.” The monitor fence activity sheet has an output event

named “call” that gets triggered when the lean or break event occurs. The “call” output

event is connected to the “on” input event of the “film” activity sheet, which turns on the

camera and the “issue call” input event of the “phone” activity sheet that calls the farm

owner. A video stream is sent from the “film” activity sheet to the phone of the farm owner.

Video streams in TeC are represented with triangles. The owner of the farm can press key

5 on the phone, indicating that no further action is required from the system. This will

trigger the “handled” output event of the “phone” to be true, which will send the “off” input

event to “film” that results in the camera turning off.

Figure 2.1 TeC User Interface

26

2.5 Software Product Line Approaches

A Software Product Line (SPL) is a set of software intensive systems sharing a

common, managed set of features that specify the specific needs of a particular market

segment or mission and are developed from a common set of core assets in a prescribed

way (Clements and Northrop, 2002). An SPL consists of a family of systems that share

common and variable functionality. Common functionality utilizes reuse among products

created from the product line. Variable functionality is what differentiates each of the

products. Product lines are ubiquitous and can be found in almost all software applications

that are offered in different editions. An example is the windows operating system.

Windows is distributed in different editions, home, professional and ultimate. All versions

share common features like mail, calendar and messaging but higher priced versions

contain additional features like enhanced data protection and remote desktop connection

features. Companies that adopted SPLs have experienced improvements in quality,

maintainability, productivity and reduced costs (Kakola and Leitner, 2014).

The Software Product Line (SPL) engineering process is the process for creating a

product line. Figure 2.2 shows a high level overview of the SPL engineering (Gomaa,

2005a) process. The SPL engineering process consists of two sub-processes: (a) product

line engineering (a.k.a. domain engineering) process in which the product line is created

and (b) the application engineering process in which software applications are derived. The

software product line creation process involves software engineers working with product

line stakeholders to define the product line requirements, the product line features. All

artifacts created from the product line engineering process are stored in the product line

27

reuse library. The application engineering process is the process for generating applications

from the product line features, architecture, and components. A product line feature is

realized by one or more components and satisfies a specific user requirement or set of

requirements.

Features are categorized as common, optional, alternative and parameterized.

Common features exist in all products of the product line. Optional features exist in only

certain products of the product line. Alternative features are features that can be selected

in place of each other, one of which can be a default feature. Finally, parameterized features

are SPL configuration parameters that are set during application derivation or at run time

initialization. In application engineering, product engineers specify the feature

requirements of the final product. The product line creation process maps the feature

requirements to the components that implement them and assembles the final product.

Product engineers communicate additional requirements and errors back to the SPL

Figure 2.2 Process Model for Software Product Lines

28

engineers to include them in future releases. Some of the most common SPL approaches

are: The Software and systems engineering - Reference model for product line engineering

and management (ISO/IEC 26550:2016, 2016), PLUS (Gomaa, 2005a), CVL (Haugen et

al., 2013), COPA(America et al., 2000), FAST(Harsu, 2002), and KobrA (Atkinson and

Muthig, 2002).

2.5.1 Product line engineering and management (ISO/IEK 26550:2016)

The international standard for Software and systems engineering - Reference model

for product line engineering and management (ISO/IEC 26550:2016, 2016), aims to create

a common vocabulary and standard process for product line creation. The standard covers

domain and application engineering aspects for creating the product line. Domain

engineering covers product line scoping, domain requirements engineering, domain design,

domain realization and domain validation and verification. During domain engineering,

organizational management works with technical management to perform product line

scoping. Product line scoping involves identifying market groups, product categories,

common and variable features, functional domains for envisioned features that provide

sufficient reuse, reusable assets for creating products and cost benefit analysis for each

domain asset. After the product line is scoped domain requirements engineering is

performed that identifies the product line stakeholders and captures detailed requirements.

Domain design is used to perform commonality and variability analysis, feature modeling

and define the domain architecture. Domain realization is responsible for component

design and implementation. Domain validation and verification provide the quality

assurance aspect to the product line. All domain assets defined during domain engineering

29

are stored on the domain asset repository. The application engineering process in the ISO

involves application requirements engineering, application design, application realization

and application verification and validation. Application requirements engineering develops

application-specific requirements reusing common and variable requirements defined

during domain requirements engineering. Application design derives the application

architecture from the domain architecture in order to meet application requirements.

Application realization implements product line members by drawing upon the application

requirements and architecture; reusing and configuring domain components and interfaces.

Application verification and validation ensures that the right member product and the right

application assets have been modeled, specified, designed, built, verified, and validated.

All artifacts created by the application engineering process are stored in the application

asset repository.

2.5.2 Product Line UML-Based Software Engineering

Product Line UML-Based Software Engineering (PLUS) is defined as a design

method for software product lines that describes how to conduct requirements, analysis,

and design modeling for software product lines in UML (Gomaa, 2005a). PLUS

requirements phase identifies the product line use cases and tags them as kernel optional

and variant. Feature analysis identifies the product line features and maps them to the use

cases. During the analysis phase, PLUS examines the problem domain and develops the

system context diagram, collaboration/sequence diagrams and state diagrams. The analysis

phase concludes with feature/class dependency diagrams and tables that show the classes

that implement features. In the design phase, PLUS examines the solution domain and

30

develops the product line architecture and structures the system into subsystems and

components. The design phase ends with defining the communication interface of each

component. In the component implementation phase software engineers select a subset of

the designed functionality for development. The product line testing phase performs

integration testing among the components developed on the increment with the existing

components of the product line and functional testing that test the functionality of the

increment. All artifacts generated by PLUS are stored in the software product line

repository.

2.5.3 Common Variability Language

The Common Variability Language (CVL) (Haugen et al., 2013) is used to add

variability to MDA models. In particular CVL, is a Domain Specific Language (DSL) for

modeling variability in models that are based on Meta Object Facility (MOF) standard

defined by the Object Management Group (OMG) (Reinhartz-Berger et al., 2014). CVL

operates on three models: the base model, the variability model and the resolution model.

The base model is a domain model for a particular system. For example a base model can

describe a particular train control system deployed to a train station (Svendsen et al. 2010).

The variability model describes variations on the system. In the train control system

example there might be train stations with different number of tracks, different directions

etc. The train control variability model needs to capture different train control systems that

can be deployed to train stations with different configurations. The resolution model

captures a set of options on the variability model. In the train example a resolution model

can be the train control system supporting a train station with two tracks, one track going

31

east and another track going west. To create a new system CVL takes as input the three

models and generates new resolved models. Existing DSL tools can operate on the resolved

models that can transform them to runnable software.

2.5.4 Component-Oriented Platform Architecting

The Component-Oriented Platform Architecting (COPA) method is a component

based product line methodology that provides a set of (component-based) subsystems and

interfaces (with their associated processes, documentation and tools) from which a stream

of derivative and composite products (families) can be developed and produced according

to a domain specific architecture or product family architecture (America et al., 2000).

COPA uses the Business-Architecture-Process-Organization (BAPO) model to cover

multiple aspects of the product line lifecycle like business drivers, architecture, processes

and organization concerns. BAPO starts by identifying the business needs for the product

line which might be an improvement of an existing product line or the need for a new one.

After the business need gets identified, BAPO defines the product line architecture. There

the domain of the product line is defined. Systems and components are defined and

structured to fit the product line architecture. The process phase of BAPO creates the

architecture previously defined while identifying component dependency, commonality

and variability. The organization aspect of BAPO covers organizational support for the

product line. It ensures that the product line matches the organization’s business needs, it

provides management support and defines processes for product line maintainability and

evolution.

32

2.5.5 Family-Oriented Abstraction, Specification and Translation

Family-Oriented Abstraction, Specification and Translation (FAST) is a product

line methodology that abstracts the commonality of target software products and creates a

common platform for the creation of a family of software systems. Variability is addressed

through parameterization or conditional compilation (Harsu, 2002). The methodology has

two main phases: (1) Domain qualification (2) Domain Engineering and Application

engineering. During domain qualification product families are identified and justification

is made for their creation. Domain engineering covers analysis and implementation of the

domain. During domain analysis product line functionality is abstracted and a common

platform for product line family creation is designed. Domain implementation creates and

implements the common platform. Application engineering uses the platform created in

domain engineering to create product line family members.

Feature-Oriented Reuse Method for product line software engineering (FORM) is

a software product line methodology that supports architecture design and object oriented

component development while incorporating a design and analysis marketing perspective

(Kang et al., 2002). The FORM process has two sub processes: (1) Asset development and

(2) Product development process. The asset development process analyses the

commonality and variability of the product line and develops a component based

architecture based on the analysis performed. The product development process gathers

product requirements, selects features, adopts an architecture, adapts components and

generates code for the software product.

33

2.5.6 KobrA

KobrA (Atkinson and Muthig, 2002) is a component based approach for software

product line development. Software elements are created individually and get synthesized

in different ways to create different members of the product line. KobrA has two main

phases: Framework Engineering and Application Engineering. Framework engineering

analyses the commonality and variability of the product line and creates generic framework

that represents all variations of the product line while including information about the

common and variant features. Application engineering is responsible for instantiating the

generic framework and create different product variants based on customer specifications.

2.6 Meta-modeling

A model of a system is a description or specification of that system and its

environment for some certain purpose (OMG, 2003). A meta-model is a model that

describes a model (Kleppe, 2008). For example in EUD, end user applications created for

smart spaces can be thought as application models. Examples of application models are:

security, energy efficiency, and economics applications. Internally EUD environments

have developed a meta-model to describe the structure of these applications. Meta-

modeling is the process for creating a meta-model for a specific domain.

Many software specification and design methods advocate a modeling approach in

which, the developed system is represented by means of multiple-view meta-models.

Gomaa and Shin (Gomaa and Shin, 2008) proposed a multiple-view meta-modeling

approach for software product lines. Abu-Matar and Gomaa (Abu-Matar and Gomaa, 2012)

proposed a feature-based variability multi-view meta-modeling approach for service

34

oriented architectures. Model Driven Development (MDD) abstracts software

development life cycle by shifting its focus from code to models, metamodels and model

transformations. Blanc et al. (Blanc et al., 2005) propose extending MDD approaches with

meta-modeling approach for reuse. The UML4SPM (Bendraou et al., 2005) work proposes

a new UML based metamodel for software process modelling that support executable

models. Model Driven Architecture (MDA) (OMG, 2003) uses meta-modeling to define

the underlying representation of platform independent and platform specific architectures.

2.6.1 Model Driven Architecture

 Model Driven Architecture (MDA) is a software development framework based

on automatic transformations of models (Debnath et al., 2008). The Object Management

Group (OMG) promotes model-driven architecture which UML models of the software

architecture are developed prior to implementation (Gomaa, 2016). The Unified Modeling

Language (UML) is a modeling language used to describe the results of object-oriented

analysis and design developed by different methodologies e.g, COMET (Gomaa, 2000),

PLUS (Gomaa, 2005a).

MDA separates business and application logic from underlying platform

technology, distinguishing the following models: Computation Independent Model (CIM),

Platform Independent Model (PIM), Platform Specific Model (PSM) and code. The most

common representation of these models is UML. However, other languages can be used if

they are based on Meta Object Facility (MOF) meta-model (Abu-Matar, Mohammad

Ahmad, 2011). The CIM is used to analyze the problem domain. The CIM captures

business processes, system requirements and functions independent of any system

35

implementation. The PIM is used for creating an abstract version of the system independent

of technology implementation (Singh and Sood, 2009). The PIM captures different aspects

of the system, identifies the system entities and operations needed to satisfy the

requirements described in CIM. The PSM augments the PIM with specific platform details

and implementation information such as .NET, J2EE, Webservices, etc. To create an

application for multiple platforms, a given PIM will have to be mapped to multiple PSMs.

The PSM model is used to generate code and deploy the application to the environment.

2.7 Software Product Lines for End Users

Current research on utilizing product lines for end users includes Monaco (Prähofer

et al., 2008), SimPL (Malaer and Lampe, 2008), MobiLine (Marinho et al., 2013) and Perez

et al. (Perez and Valderas, 2009). Monaco proposes a software development framework

for building end user programming environments. The problem that Monaco solves is that

Original Equipment Manufacturers (OEMs) were spending significant effort to create end

user programming environments for similar products. Monaco abstracts end user

programming domain specific functionality and proposes a development framework for

the creation of end user programming environments that OEMs can reuse.

SimPL (Malaer and Lampe, 2008) provides product line tools for domain engineers

to set up an environment for end users to instantiate product line members. Domain

engineers in SimPL define a Domain Specific Modeling Language (DSML) that describes

a specific domain. The SimPL editor translates the DSML created by domain engineers to

a set of graphical elements that can be grouped together by end users to create software

applications. The SimPL approach is closer to the ones examined in the end user

36

programming frameworks section. SimPL does not explicitly model product line

variability but it defers it to the DSML creators. DSML dictates which elements can be

connected together in the SimPL editor.

MobiLine (Marinho et al., 2013) developed a software product line for the domain

of mobile and context-aware applications. MobiLine identified multiple individual mobile

applications (games, mobile commerce, mobile guides, mobile learning) that involve

mobile devices and user context. MobiLine used existing applications as requirements

elicitation and created a domain model for mobile and context aware functionality. The

mobile and context aware domain model is combined with specific application domain

models (eg., mobile visit guides, financial applications, health care applications) to create

mobile and context-aware applications. The benefit of this approach is that mobile and

context aware functionality does not have to be replicated across different application

domain models.

Perez et al. utilize variability engineering for professional engineers to cooperate

with end users to create configurable applications for their smart spaces (Pérez et al., 2009;

Pérez and Valderas, 2009). Variability modeling is used as a requirements gathering tool

between professional engineers and end users. Based on the variability model, engineers

create environments that end users can reconfigure using existing end user programming

frameworks like Jigsaw.

37

2.8 Comparison with Existing Approaches

The following sections discuss how this research relates to the current research in

the areas of: (a) EUD environments for smart spaces, (b) Software product lines, (c) Meta-

models, and (d) SPL approaches for end users and smart spaces.

2.8.1 EUD Environments for Smart Spaces

The functionality provided by EUD environments for smart spaces can be grouped

in two general areas: Smart space configuration and context aware environments. Smart

space configuration environments enable end users to control and combine functionality of

devices. Jigsaw (Humble et al., 2003), and Puzzle (Danado and Paternò, 2012) are some

examples. Context aware environments create rules based on user context (activity,

location, identity, time) and device functions. PIP (Chin et al., 2010), FedNet (Kawsar et

al., 2008), iCAP (Dey et al., 2006), GALLAG Strip (Lee et al., 2013), and TeC (Sousa,

2010) are some examples. Current EUD environments for smart spaces do not account for

reuse. End user applications are created for specific environments and are not portable to

other environments. For instance an end user application for TeC is only applicable for the

TeC EUD environment and cannot be reused for Jigsaw.

The research described in this dissertation extends existing EUD environments for

smart spaces with product line support. Thus, this research extends visual languages used

by EUD environments and application models to create product line features. End users

can select features from the product line and derive applications for their smart spaces.

38

2.8.2 Software Product Lines

Software product line methods such as ISO ISO/IEC 26550 (ISO/IEC 26550:2016,

2016), PLUS (Gomaa, 2005b), CVL (Haugen et al., 2013), COPA(America et al., 2000),

FAST (Harsu, 2002), and KobrA (Atkinson and Muthig, 2002) address the problem of

modeling variability in product lines and provide processes to design SPLs and derive

applications from them.

The research described in this dissertation extended current software product line

approaches to provide support for EUD development and smart spaces. In particular this

research defined a lightweight product line approach for technical end users and domain

experts to design and develop EU SPLs that can be used by end users to derive

applications for different EUD environments. Furthermore this research extended the

design method and modeling techniques defined in PLUS to capture feature and component

platform dependencies. The product line design artifacts of the PLUS method were also

extended to capture the platform and component / connector architecture information

available in smart spaces.

2.8.3 SPL Approaches for End Users and Smart Spaces

Current research on utilizing product lines concepts for end users and smart spaces

includes SimPL (Malaer and Lampe, 2008), MobiLine (Marinho et al., 2013) and Perez et

al. (Perez and Valderas, 2009). As with this research, SimPL uses components, connectors

and triggers to create application logic. In SimPL domain engineers are responsible for

providing implementations of the components that realize each feature in the product line.

39

End users use the DSML to select different components applicable for each feature and

connect them together to form application logic.

This dissertation research describes a visual language for technical end users and

domain experts to create product lines. The implementation of the components is provided

by the EUD environments. In addition, features in this research are realized by components

connected together versus having features realized by a set of components that the end user

is allowed to connect as proposed in SimPL.

 MobiLine extends SPL concepts to reuse mobile and context-aware functionality

for different application domains. The SPL process followed by MobiLine is complex and

requires the involvement of product line engineers, application engineers and domain

experts from different domains to create product lines and derive applications. This

dissertation research builds on extending SPL methods to address end user development

for smart spaces.

Perez et al. utilize variability engineering for professional engineers to cooperate

with end users to capture end user requirements for smart spaces (Perez and Valderas,

2009). Perez provides examples using Jigsaw and programming by demonstration. This

dissertation research extends Perez’s work beyond requirements elicitation for product

lines. This dissertation research utilizes visual languages and application models of EUD

environments to create product lines for smart spaces.

2.8.4 Meta-modeling

MDA separates business and application logic from underlying platform

technology. This dissertation research is influenced by the CIM, PIM and PSM concepts

40

but was expanded to end user development for smart spaces. Thus, this research

investigates the creation of platform independent and platform specific meta-models to

capture end user product lines that can be used to derive applications for different EUD

environments for smart spaces.

2.9 Summary

This chapter has described related work to this research. The ubiquitous computing

section and the Internet of Things sections described how the two concepts can be used to

create smart spaces, in particular the components of smart spaces, different smart space

initiatives, and challenges for creating software applications for smart spaces. The end user

development for smart spaces section covered the evolution of systems that enable end

users to develop software for their spaces. The software product line approach section

described the concept of software product lines and discussed different approaches for

creating software product lines. The software product lines for end users section described

current initiatives that show how software product line concepts can be adapted for end

users. Finally, this chapter described how the research described in this dissertation

compares to existing research on EUD environments, SPL methods, meta-modeling

approaches and current SPL approaches for end users.

41

3 RESEARCH APPROACH

3.1 Introduction

This chapter describes the research approach followed in this dissertation. In

summary, this research defines an EU SPL process that supports end user product line

development and application derivation for smart spaces. To support the EU SPL process,

an EU SPL meta-model is defined to capture the EUSPL meta-classes and relationships.

The EUSPLP development environment was created to enable the development of EU

SPLs and application derivation. Finally, a Smart Home EU SPL case study was used to

validate this research.

 The chapter is organized as follows: Section 3.2 describes the overall research

approach. Section 3.3 describes the background and artifacts of the EU SPL process

defined in this research. Section 3.4 provides an overview of the EU SPL meta-model

defined for capturing the underlying representation of end user product lines and end user

applications. Section 3.5 describes the proof-of-concept EUSPLP environment created in

this research. Section 3.6 describes the validation approach for this research, including the

testing approach and framework. Section 3.7 describes the rationale of extending existing

EUD approaches for smart spaces with EU SPLs. Finally, section 3.8 summarizes this

chapter.

3.2 Research Approach

This research addresses the End User Software Product Line (EU SPL) process and

supporting development environment, which are used by technical end users and domain

42

experts to develop end user product lines for smart spaces. End users utilize the same

process and environment to derive applications from the EU SPL. The EU SPL process

provides: (a) technical end users and domain experts with a systematic approach to develop

end user product lines, (b) end users with an approach to reuse end user applications, and

(c) testing support to improve the quality of end user applications.

The EU SPL process consists of the (a) End User Software Product Line

Engineering (EUPLE), and (b) End User Application Engineering (EUAE) sub-processes.

EUPLE defines the process steps and process artifacts to create end user product lines.

EUAE defines the process steps for deriving applications from the product line. The EU

SPL process is tailored to address end user requirements for smart spaces. The Smart Home

EU SPL case study was created to verify each step of the EU SPL process.

The research defined a meta-model that is utilized to capture the underlying

representation of EU SPLs and derived EU applications in terms of entities meta-classes

and relationships. The EU SPL meta-model was derived from: (a) examining the end user

environments for smart spaces described on Chapter 2, and (b) the Smart Home EU SPL

case study. As part of this research the meta-models of the TeC and Jigsaw EUD

environments were designed. The meta-models contain meta-classes for representing EU

applications in the TeC and Jigsaw EUD environments. The TeC and Jigsaw meta-models

were used to form the EU SPL meta-model. In particular, the common meta-classes of the

TeC and Jigsaw meta-models were extracted to create platform independent meta-models

(PIPL/PIP). The PIPL/PIP meta-models provide the underlying representation for end user

product lines and derived applications that can be applied to any event driven EUD

43

environment for smart spaces. The meta-model was extended to create platform specific

meta-models (PSPL/PSP) that support end user product lines for specific EUD

environments for smart spaces.

The EUSPLP development environment was created to enable end users to design

product lines and derive applications for smart spaces. The environment was developed

based on the EU SPL process and meta-model. As part of the user interface for the EUSPLP

environment, a visual language was designed to enable: (a) technical end users and domain

experts to design EU SPLs, and (b) end users to derive applications.

To validate this research, a Smart Home case study (a) was created using the EU

SPL process, (b) was implemented using the EUSPLP environment, (c) the TeC PSPL was

tested using the EU SPL Testing process, (d) derived applications from the EUSPL were

tested using the EU Application Testing process, and (e) derived applications were

deployed to the TeC Android simulator and tested using the EU Application Deployment

Testing process.

3.3 EU SPL Process for Smart Spaces

The EU SPL process described in this research provides a systematic approach for

creating end user software product lines and deriving applications for smart spaces. The

process is based on the PLUS method (Gomaa 2005) which was extended in this research

to include the design of end user product lines for smart spaces. The EU SPL method

consists of the End User Product Line Engineering (EUPLE) process in which the end user

software product line is designed and developed, and (b) the End User Application

Engineering (EUAE) process in which software applications are derived.

44

The following artifacts are created during the requirements, analysis and design phases of

the EUPLE process:

 Use Case Modeling – Use cases are defined to capture end user requirements.

 Feature Modeling – The EU SPL feature model is created.

 Static Modeling – During static modeling, the components needed to realize each

feature are defined.

 Dynamic Modeling – Sequence diagrams are defined for each feature defined in

the EU SPL.

 Inter-feature Component Communication Modeling – Captures inter-feature

component communication.

 Component Modeling – component diagrams and component input/output tables

are created for each feature to capture the component communication interfaces.

 Platform Specific Feature/Component Modeling – Captures platform specific

component information that applies to platform specific features.

 Feature-based Integration Test Cases – Capture component outputs / inputs /

triggering conditions and expected test results for testing the component

architecture of individual features and feature combinations.

The following artifacts are created during the requirements, application derivation and

testing phases of the EUAE process:

 Application Derivation Feature Modeling – The subset of the feature model that

contains the selected features for the application.

45

 End User Application Architecture Modeling – The derived application component

architecture for the target in the end user environment.

 Feature-based Integration Test Cases – The Feature-based Integration Test Cases

that apply to the features that comprise the derived application.

From the above artifacts, certain artifacts are designed differently in this research to cover

the unique issues related to end user development for smart spaces: feature modeling, static

modeling, dynamic modeling, component modeling, platform dependent

feature/component modeling, test case format, application derivation feature model and

end user application architecture modeling. The Smart Home EU SPL case study was

created using the EU SPL process.

3.4 EU SPL Meta-model for Smart Spaces

The EU SPL meta-model designed in this research provides a meta-model for

representing end user product lines and derived applications for different EUD

environments for smart spaces. The EU SPL meta-model was used to support the EU SPL

process. The EU SPL meta-model is composed of the following meta-models:

 Platform Independent Product Line (PIPL) meta-model - provides the underlying

representation of EU SPLs independent of any platform (EUD environment).

 Platform Independent Product (PIP) meta-model - provides the underlying

representation of end user applications derived from the PIPL meta-model.

 Platform Specific Product Line (PSPL) meta-model - provides the underlying

representation of EU SPLs for specific EUD environments.

46

 Platform Specific Product (PSP) meta-model - provides the underlying

representation of end user applications derived from the PSPL meta-model.

The EU SPL meta-model also defines the relationships between the meta-classes

representing the different models.

3.5 Proof-of-concept EUSPLP Development Environment

 A proof-of-concept End User Software Product Line Prototype (EUSPLP)

development environment was created to support this research. The EUSPLP environment

provides the functionality to (a) enable EU SPL designers to create end user product lines,

and (b) enable end users to derive and deploy applications for their smart spaces. Some of

the unique characteristics of the design and development of the EUSPLP environment are

that: (a) utilizes end user friendly interfaces for product line creation and application

derivation, (b) integrates with the TeC end user environment for application deployment,

(c) supports additional end user environments by developing different EUSPLP adaptors,

(d) remotely accessible to EU SPL designers and end users through the use of web

browsers, and (e) utilizes REST services and JSON format to communicate with remote

TeC end user environments. Below is an overview of each subsystem within EUSPLP:

 EU SPL Development Subsystem

- Allows EU SPL designers to visually create/edit the EU SPL feature model tree

and define feature and feature group relationships.

- Allows EU SPL designers to visually create/edit component architectures and

associate them with product line features. A drag and drop interface was created

for EU SPL designers to create component architectures.

47

- Allows EU SPL designers to configure different parameters relating to the

feature component architecture.

- Creates PIPL JSON representation of the EU SPL to store the product line

visual representation.

- Creates TeC PSPL JSON representation of the EU SPL to store the product line

specification for TeC used for application derivation.

 Application Derivation Subsystem

- Allows end users to visually select different features from the EU SPL.

- Allows end users to visually configure the component parameters of the

selected features.

- Allows end users to visually derive applications for their spaces. The

environment derives a TeC PSP model from the TeC PSPL model based on the

end user selections. The TeC PSP model is stored in JSON.

 Application Distributor Subsystem

- Provides a REST service for distributing the TeC PSP to TeC EUSPLP

Adaptors deployed in different TeC environments.

 TeC EUSPLP Adaptor Subsystem

- Retrieves the TeC PSP specification and stores it in the TeC environment. The

end user interacts with the TeC environment to complete the deployment of the

application.

48

3.6 Validation

The validation of this research was performed through (a) the Smart Home EU SPL

case study, (b) the EUSPLP environment, (c) the EU SPL Testing framework and (d) the

deployment of derived applications to the TeC Android simulator.

The Smart Home EU SPL case study described in Appendix-A was created

following the EU SPL method described in Chapter 4. The case study includes features

from the domains of home automation, home security, home notifications, home

maintenance, resident comfort and energy conservation. Both End User Product Line

Engineering (EUPLE) and End User Application Engineering (EUAE) were applied to the

case study. EUPLE was applied to develop the EU SPL. EUAE was applied to derive end

user applications for two end user platforms, TeC and Jigsaw.

To validate the EUSPLP environment, the Smart Home EU SPL case study was

designed and implemented using the prototype environment. In addition, several

applications were derived from the Smart Home SPL implementation using the application

derivation interface of the prototype.

The EUSPLP environment was also used to validate the EU SPL meta-model and

meta-model mappings described in Chapter 5. Thus, the PIPL, TeC PSPL and TeC PSP

meta-models defined in the EUSPLP environment were derived from the EU SPL meta-

model. The meta-class mappings required by the application derivation process for the

conversion of a TeC PSPL model to a TeC PSP model, were derived from the EU SPL

meta-model mappings.

49

The EU SPL Testing, EU Application Testing and EU Application Deployment

Testing processes of the EU SPL Testing approach, were used to test TeC SPLs and TeC

applications developed using the EUSPLP environment. In particular, the EU SPL Testing

process was used to validate that the TeC SPLs developed using the EUSPLP environment:

(a) follow the EU SPL consistency rules, and (b) each feature / component architecture

executes as it was designed in the EUSPLP environment. The EU Application Testing

process was used to validate that the TeC applications derived using the EUSPLP

environment: (a) are composed of a valid feature combination, and (b) the application

component architecture executes correctly. The EU Application Deployment Testing

process was used to test that TeC applications were deployed successfully to the smart

space. The TeC Android Simulator created by Shen (Shen, 2014) was used to validate that

derived applications from the EUSPLP environment were deployed successfully to a

distributed Android platform. Thus, different experimental end user applications including

an end user application derived from the Smart Home EU SPL case study were deployed

to the TeC Android Simulator.

3.7 Rationale for Extending EUD Approaches with EU SPLs

There are several issues in developing end user applications for smart spaces using

current EUD approaches that can be addressed by applying the End User Software Product

Line (EU SPL) approach described in this research. Table 3.1 provides a summary of the

EUD issues, and compares how each of the issue is addressed utilizing current EUD

approaches for smart spaces versus using EU SPLs.

50

Table 3.1 Benefits of Extending EUD Approaches for Smart Spaces with EU SPLs

EU Development Issue Current EUD Approaches for

Smart Spaces

Utilizing the EU SPL Approach

EU Application

Development Cost

Costs depend on the ability of

each end user to develop EUD

applications versus outsourcing

the development to technical end

users and/or domain experts.

Higher application development

cost, since there is no reuse and

applications from the same

domain have to be re-developed

for different EUD environments

and smart spaces.

Initial cost to design and develop the

EU SPL.

Low EU application development

cost after the EU SPL has been

created, since applications can be

derived from the EU SPL to satisfy

end user requirements for individual

smart spaces.

EU Technical Background Does not address variability in

end users technical backgrounds

and EUD capabilities.

EUD environments provide a

common user interface for all

end users to design and develop

applications for smart spaces.

Does not address non-technical

end users issues in developing

EU applications.

The EU SPL development

environment provides a different

user interface and workflows for

technical end users and/or domain

experts to create EU SPLs, whereas

it provides a simpler user interface

for end users to derive applications.

Software Reuse Software reuse is limited. End

users do not develop applications

with a goal to reuse and even if

they do, current EUD

environments do not provide

mechanisms for application

reuse.

End user applications have to be

re-developed for different EUD

environments and smart spaces.

EU SPLs promote reuse by

designing and developing product

line features that are realized by

common, optional, and variant

components and connectors.

End user applications are derived by

selecting EU SPL features for

different EUD environments and

smart spaces.

EU Application

Requirements

Requirements are usually

unplanned and undocumented.

End user requirements are too

personalized to create

applications that can be reused

by other end users for different

EUD environments and smart

spaces.

Requirements are collected and

documented through the EU SPL

requirements elicitation process.

Requirements are used to define the

EU SPL features, feature groups and

feature dependencies. Features are

selected by end users to tailor the EU

application to their needs.

51

End users focus on

implementation without taking

the time to document

requirements.

EU Software Design Software design of EU

applications is adhoc.

Non-technical end users are not

familiar with software design

methods.

Software design is an integral part of

the EU SPL process.

Technical end users and/or domain

experts design platform independent

and platform specific product line

features, feature dependencies,

feature groups and reusable

components that support different

EUD environments and smart spaces.

Non-technical end users can utilize

software design by selecting features

and reusable components to derive

applications for their smart spaces.

EU Software

Development

EUD is opportunistic.

Difficult for non-technical end

users to develop applications

utilizing existing EUD

environments for smart spaces.

EUD difficulty increases with the

complexity of the EU

application.

Software development is performed

by technical end users and/or domain

experts.

End users can derive complex

applications for their spaces by

selecting and configuring EU SPL

features

EU Application

Complexity

Applications are simplistic in

nature.

Limited user interfaces for

developing complex applications.

Variability in end user

application sophistication based

on the end user technical

background.

Application functionalities are

organized as EU SPL features that

are realized by common, optional,

and variant components and

connectors.

During application derivation,

selected features and their

corresponding component/connector

architecture can be used to compose

a highly complex and configurable

application.

EU Application Testing Software testing is typically

haphazard, leading to quality

issues in applications developed

by end users.

The EU SPL process provides a

systematic testing approach that can

be used to test EU SPLs, derived

applications, and end user

application deployment in smart

spaces

52

3.8 Summary

This chapter provides a summary of the research approach followed in this

dissertation. The research approach include (a) definition of the EU SPL process, (b)

definition of the EU SPL meta-model, (c) design and development of the EUSPLP

environment, and (d) a testing process to validate the artifacts of the EUSPLP environment.

The Smart Home EU SPL case study was used to validate the different parts of this

research.

53

4 EU SPL PROCESS FOR SMART SPACES

4.1 Introduction

The Software Product Line (SPL) engineering process provides a systematic

approach for developing software product lines. The SPL engineering process consists of

two sub-processes: (a) the product line engineering (a.k.a. domain engineering) process in

which the product line is developed, and (b) the application engineering process in which

software applications are derived from the product line. The product line engineering

process involves software engineers defining the product line features and developing the

product line architecture to support them. The application engineering process involves

application engineers deriving applications from the product line features and SPL

architecture. The SPL engineering process involves requirements gathering, commonality

/variability analysis, feature modeling, variable architecture definition, component design

and implementation.

 One of the issues with End User Development (EUD) for smart spaces is that there

is variability in the EUD environments and the components / devices supported by different

smart spaces. The SPL engineering process could be used for EUD but the problem is that

the SPL process targets professional engineers and can be complex for end users and

domain experts to use. This chapter presents an End User (EU) SPL process for developing

end user applications for smart spaces. The EU SPL process was defined as part of this

research and extends conventional SPL approaches to support the unique requirements of

EUD development for smart spaces. The EU SPL process provides a lightweight product

54

line approach for technical end users and domain experts to design and develop EU SPLs

that can be used by end users to derive applications for different EUD environments. As

part of the EU SPL process, conventional SPL design artifacts were extended to capture

information about platforms and component / connector architectures in smart spaces. The

Smart Home EU SPL case study was designed and developed using the EU SPL process

described in this chapter.

This chapter is organized as follows. Section 4.2 provides an overview of the EU

SPL process. Section 4.3 describes the end user product line engineering process including:

end user requirements elicitation, analysis modeling, design modeling, implementation and

testing. Section 4.4 describes the end user application engineering process including: end

user application requirements, application derivation, testing and application deployment.

Section 4.5 describes evolution of end user software product lines. Finally, section 4.6

summarizes this chapter.

4.2 End User SPL Process

End user development for smart spaces has several unique requirements that

differentiate it from traditional application development. Some of the differences are that

it targets end users to develop software and that applications can be highly personalized

with different smart space requirements (Dautriche et al., 2013). The End User SPL process

provides a systematic approach for EU SPL designers who are technical end users and

domain experts to design and develop end user software product lines for smart spaces that

end users can use to derive applications for their smart spaces. Figure 4.1 shows the End

User Software Product Line (EU SPL) process. Similar to the conventional SPL

55

engineering process (Gomaa, 2005a), the EU SPL engineering process consists of two sub-

processes: (a) the End User Product Line Engineering (EUPLE) process in which the end

user software product line is created, and (b) the End User Application Engineering

(EUAE) process in which software applications are derived.

Figure 4.2 shows the different phases of the end user product line engineering

process. In detail, during end user product line engineering, EU SPL designers work with

end users to collect requirements, define the product line scope and create the product line

feature model using the EU SPL requirements elicitation process. The feature model

captures all the features of the product line and the dependency between them. After the

requirements are created, analysis modeling is performed to define: the components needed

to implement each feature, the component interactions needed to realize each feature and

the component relationships. Components are designed to be reusable to avoid duplication.

Figure 4.1 End User Software Product Line Process

56

During design modeling, the EU SPL architecture is created, feature dependency resolution

is performed and the component interfaces are defined. During EU SPL implementation

the product line components are coded. Finally, during EU SPL testing test cases are

defined for the EU SPL features and feature combinations. As shown on Figure 4.2 there

is feedback between the different phases of EU Product Line Engineering. In particular,

issues and software defects identified during EU SPL testing are communicated to the

corresponding phases that the issue was introduced. For example if during testing, a

software defect is found that is caused by conflicting features, the issue will be

communicated to the EU Analysis Modeling, EU SPL Design Modeling and EU SPL

Implementation phases. All artifacts created during the EU SPL engineering are stored in

the End User SPL Repository. During end user application engineering, end users select

XANA

EU SPL Requirements
Elicitation

XANA

EU SPL Analysis
Modeling

XANA

EU SPL Design
Modeling

XANA
EU SPL Implementation

XANA

EU SPL Verification &
Testing

Figure 4.2 End User Product Line Engineering Phases

57

the product line features they need from the EU SPL and derive end user applications for

their smart spaces.

Figure 4.3 shows the different phases of End User (EU) Application Engineering.

In detail, during the End User Application Requirements Selection phase, end users select

the product line features from the EU SPL feature model that they need for their spaces.

During the End User Application Derivation phase, the end user application architecture,

components and test cases are derived from the EU SPL Repository. The EU Application

Testing phase ensures that the test cases are executed successfully against the derived

applications. Finally, during the “End User Application Deployment” phase, the derived

application is deployed to the end user smart space platform. End users communicate

defects and new requirements back to EU SPL designers for future product line releases as

shown in Figure 4.3.

4.3 End User Product Line Engineering (EUPLE)

This section describes the End User Product Line Engineering (EUPLE) process.

The section starts by discussing different EUPLE strategies for EU SPL designers to

develop EU SPLs and then proceeds with describing in detail each of the EUPLE phases.

4.3.1 Forward and Reverse EUPLE Strategy

There are two main EUPLE strategies for creating EU SPLs for smart spaces: (a)

forward engineering, and (b) reverse engineering. In the forward engineering strategy, EU

58

SPL designers consider the product line in its entirety. EU SPL designers work with end

users to define the product line requirements.

The requirements are classified as kernel, optional or variant. Kernel requirements

are implemented by all members of the EU SPL. Optional requirements are implemented

by some of the applications derived by the EU SPL. Variant requirements are alternative

requirements that can be selected for EUSPL derived applications. An example of a variant

requirement is to have derived applications support different languages. Based on the

requirements classification: (a) the product line feature model is created, and (b) EUD

environment analysis is performed in which EU SPL designers make the determination,

based on the feature model, if the EU SPL is going to be applicable to a specific EUD

environment, for example Jigsaw or TeC, or if the EU SPL is going to be designed

independent of any specific EUD environments. The EU SPL analysis modeling phase

XANA

EU Application
Requirements Selection

XANA

EU Application
Derivation

XANA

EU Application Testing
& Verification

XANA

EU Application
Deployment

Figure 4.3 End User Application Engineering Phases

59

involves the creation of the static model, dynamic model and feature/component model.

Kernel requirements are considered first and then optional and variant requirements are

considered. During design modeling the EU SPL architecture is composed, the design

patterns are selected to resolve inter feature component communication, and the component

interface is designed. In the design phase kernel features are considered first, and then

optional and variant features are added. The implementation phase also starts with the

development of kernel features first, and then optional and variant features are

implemented. Finally during the testing phase, the product line is tested and verified against

the initial requirements.

The reverse engineering approach is used when there are already individual end

user applications in place. EU SPL designers derive the EU SPL requirements from the

developed end user applications, classify the requirements as common, optional and

variant, and create the feature model. The target end user smart space platform

determination is also derived by the environments that the existing end user applications

are created. During analysis modeling the static model, dynamic model and

feature/component model are derived from existing end user applications and

requirements. Similar to the forward engineering approach, kernel requirements are

considered first followed by optional and variant requirements. Depending on the feature

type they realize, components are classified as common, optional or variant.

Feature/component modeling is performed to associate features with components they

depend on, and these dependencies are depicted in a table view. During dynamic modeling,

the product line architecture, design patterns for inter-feature component communication

60

and component interfaces are developed by reverse engineering existing end user

applications. Finally, during feature implementation, test cases can also be derived to some

extent by reverse engineering and reusing test cases of existing EU applications. The

remainder of this chapter will discuss the end user product line engineering from a top

down approach.

4.3.2 EU SPL Requirements Elicitation

EU SPL requirements elicitation involves a set of activities to help define the

overall scope of the product line. EU SPL designers with domain expertise define the

overall road map for the EU SPL. Then EU SPL designers work with end users to collect

and document requirements. Based on product line scoping and requirements, the product

line feature model is defined. This section describes the end user requirement elicitation

process and provides examples for a smart home case study.

4.3.2.1 Use Case Modeling for EU SPL

EU SPL designers can document end user requirements using Use Case modeling.

Use Cases describe the interactions between actors which are system external entities and

the smart space to achieve a goal. Typical actors in smart spaces are humans, animals,

sensors, actuators, devices, and external systems that initiate or detect external events that

cause the smart space to react. For example, consider a person entering a smart home.

Depending on whether the person is a home resident or an intruder, the smart home can

react in different ways. In addition to humans, smart spaces heavily depend on sensors,

actuators, devices, and external systems to identify changes to the environment. For

61

instance, a moisture sensor reading might be significant enough to notify a house resident

of a possible flood. Use cases for smart spaces should document all the actors that can

initiate or detect external events in the smart space. Typical use cases in smart spaces come

from the domains of security, automation, space notifications, energy conservation, and

ergonomics.

Use case modeling has been extended by the PLUS method to capture product line

requirements (Gomaa, 2005a). To document a Use Case for smart spaces using the PLUS

method the product line designers need to specify:

 Use Case Name - The name of the use case

 Reuse Category - Specifies weather the use case is kernel, optional or

alternative

 Summary - Provides the summary of the use case

 Actors - The actors of the use case (such as humans, animals, sensors,

actuators, devices, and external systems)

 Dependency - Use cases that this use case depends

 Preconditions - What conditions need to be true for the use case to execute

 Description - Sequence of events between the actor(s) and the system

 Alternatives - Description of alternatives to the mainstream sequence of

events

 Variation Points - Captures places that different functionality can be

performed by different members of the product line

62

 Post Condition - The state of the system after the successful execution of

the use case

 Outstanding Questions - Additional questions for end users

EU SPL designers should start documenting the kernel use cases first and then continue

with the optional and alternative ones. Table 4.1 shows an example of the Lawn Irrigation

Use Case from the Smart Home case study used in this research. The Lawn Irrigation Use

Case is part of the smart space automation domain.

Table 4.1 Example of a Lawn Irrigation use case for a smart space

Use Case Name Lawn Irrigation

Reuse Category Optional

Summary The user start/stops the sprinklers to water

the lawn. The smart space start/stops the

sprinklers and sends outcome notifications

Actors Home Resident

Dependency N/A

Preconditions 1. The sprinklers are off

2. The hose is connected to the sprinklers

and the water is on

Description 1. The home resident presses the start

irrigation button.

2. The smart space starts watering the lawn

and sends notifications that is started

3. The home resident presses the stop

irrigation button

4. The smart space stops watering the lawn

and sends notifications that is stopped

Alternatives N/A

Variation Points N/A

Post Condition The smart space has watered the lawn

Outstanding Questions Is automation desired? What type of

automation is preferred timer of weather

sensing?

63

4.3.2.2 Feature Modeling

Product line features are requirements or characteristics that are provided by one or

more members of the SPL (Gomaa, 2005a). Feature modeling is used to capture feature

commonality / variability and feature dependencies within the EU SPL. In addition, as part

of this research, feature modeling was extended to capture feature dependencies in EUD

environments (platforms). Product line features can be (a) platform independent to indicate

that a feature does not depend on components or functionalities of a specific EUD

environment, or (b) platform specific to indicate that a feature depends on components or

functionalities of a specific EUD environment e.g, TeC, Jigsaw.

Feature models are derived by use case modeling. In a feature model, features can

be organized (a) as common or variable, (b) in feature groups, and (c) as parametrized

features. Common features are features that exist in all products derived by the EU SPL.

Common features may dependent on other common features. Variable features exist only

in some product line members. Variable features can be further categorized as optional or

alternative features. Optional features are noncompulsory features that mainly depend on

other common or variant features. Alternative features are used to describe mutually

exclusive features. Feature groups are used for grouping similar features. Feature groups

can be classified as: (a) exactly-one-of, (b) zero-or-one-of, (c) at-least-one-of and (d) zero-

or-more-of. Exactly-one-of feature groups indicate that only one feature from a feature

group can be present in an end user application derived by the product line. Exactly-one-

of feature groups are mainly used to group alternative features, exactly one feature of the

group must be selected during application derivation. Zero-or-one-of feature groups are

64

also used to group alternative features but the feature selection from the feature group is

optional during application derivation. At-least-one-of feature groups are used to indicate

that at least one feature of the feature group must be selected during application derivation.

Zero-or-more-of feature groups are used to indicate that zero or more features of the feature

group can be selected from the feature group during application derivation. Parameterized

features are features that can be configured during the application deployment time. In the

feature model, features are decorated with the <<platform-specific>> and <<platform-

independent>> UML stereotypes to indicate whether a feature is platform specific or not.

If a feature is not decorated with any of the stereotypes, it implies that the feature is

platform independent. Figure 4.4 shows the feature model for the Smart Home EU SPL

case study developed in this research.

As shown in Figure 4.4 the feature model has one common feature called Smart

Home that all other features and feature groups depend on. There is one optional feature

Smart Irrigation that depends on the Smart Home feature. The Schedule and Smart Weather

Sensing features are also optional and depend on the Smart Irrigation feature. There is one

exactly-one-of feature group called Phone Alert that depends on the Smart Home feature.

The Phone Alert feature group has two mutually exclusive features Audio and Video. The

Audio feature is the default feature and Video is the alternative feature. Default features

are selected by default if no other feature in the feature group is selected. The Video feature

is platform specific.

The feature model also contains two at-least-one-of feature groups: Net

Notification and Home Security. Both of the feature groups depend on the Smart Home

65

common feature. The Net Notification feature group contains two optional features Email

and Text. Text is the default feature. The Home Security feature group contains three

optional features: Door, Motion and Window. Door is the default option of the feature

group. The Smart Home feature model also contains two zero-or-more-of feature groups:

Water Detector and Home Behavior. The Water Detector feature group contains two

optional features Faucet Drip and Flood Detector. The Home Behavior feature group

contains four optional features: Power Failure, HVAC Filter, Light Failure and 911. In

addition the Home Alarm optional feature depends on the Light Failure feature.

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
Motion

<<optional feature>>
Window

<<optional feature>>
Power Failure

<<optional feature>>
HVAC Filter

<<optional feature>>
Light Failure

<<optional feature>>
Home Alarm

<<optional feature>>
911

<<platform-specific>>
<<optional feature>>
Energy Conservation

<<optional feature>>
Faucet Drip

<<optional feature>>
Flood Detector

<<optional feature>>
Smart Irrigation

<<optional feature>>
Schedule

<<optional feature>>
Smart Weather Sensing

requires

<<default feature>>
Audio

<<platform-specific>>
<<alternative feature>>

Video

<<exactly-one-of
feature group>>

 Phone Alert

<<optional feature>>
Email

<<default feature>>
Text

requires

requires

<<at-least-one-of feature
group>>

Net Notification

<<zero-or-more-of
feature group>>
Water Detector

<<zero-or-more-of
feature group>>
Home Behavior

requiresrequires

requires

requires

requires

requiresrequires

Figure 4.4 Smart Home Feature Model

66

Furthermore the Energy Conservation optional feature depends on the HVAC Filter. The

Energy Conservation feature also is platform specific.

The Feature group / Feature dependency table is another view that captures the

relationship between product line features and feature groups. The Feature group / Feature

dependency table assists EU SPL designers to ensure consistency between features and

feature groups. As shown on Table 4.2 the table has four columns: (a) Feature Group Name,

(b) Feature Group Category, (c) Feature Name, and (d) Feature Category. The Feature

Group Category and Feature Category need to be compatible for example exactly-one-of

feature group needs to have a set of alternative features since only one can be selected.

Table 4.2 shows the Feature Group / Feature dependency table for the Smart Home case

study. For example as shown on Table 4.2 the Phone Alert exactly-one-of feature group

has two alternative features Audio and Video with the Audio feature being the default

option.

Table 4.2 Feature Group / Feature Dependency Table

Feature Group

Name

Feature Group

Category

Features in Feature

Group

Feature Category

Phone Alert exactly-one-of Audio

Video

default

alternative

Home Security at-least-one-of Door

Motion

Window

default

optional

optional

Water Detector zero-or-more-of Flood Detector

Faucet Drip

optional

optional

Home Behavior zero-or-more-of Light Failure

HVAC Filter

Power Failure

911

optional

optional

optional

optional

Net Notification at-least-one-of Text

Email

default

optional

67

4.3.3 EU SPL Analysis Modeling

EU SPL Analysis modeling consists of static modeling, component structuring,

dynamic modeling and feature/component modeling.

4.3.3.1 Static Model

The EU SPL static model captures the product line components needed to realize

the use cases defined and feature model. In addition component structuring is performed

to capture the component reuse stereotype, role stereotype and platform dependencies. This

research used UML stereotypes to classify the EU SPL components. To capture component

reuse characteristics, the following reuse stereotypes are used <<kernel>>, <<optional>>,

<<variant>>, <<default>>. This research uses the PLUS method role stereotypes to capture

the application purpose of each component (Gomaa, 2005a). For example a component can

be <<interface>>, <<entity>>, <<control>>, <<application logic>>, <<timer>>, <<system

interface>>, <<coordinator>>, <<device interface>>, <<algorithm>>, <<message-

broker>>, <<input/output device interface>>, etc. Components that are only applicable to

specific end user environments are annotated with the <<platform-specific>> stereotype.

Figure 4.5 shows the static model and the component structuring for the

components used in the Smart Home case study used in this research. For example as

shown on the securityAlertHandler component is annotated with the <<kernel>>

stereotype to capture reuse category and the <<message-broker>> stereotype to capture the

component role category. Similarly the component videoCall is annotated with the

<<optional>> stereotype to capture the reuse category, the <<input / output device

68

interface>> stereotype to capture the role category and the <<platform-specific>>

stereotype to indicate that this component only applies to specific platforms.

The Platform Specific Feature / Component relationship table captures the

relationship between platform specific features and platform specific components. As

shown in Table 4.3 the platform specific feature / component relationship table has 4

columns: (a) Feature Name, (b) Platform Name, (c) Component Name and (d) Platform

Specific Name. The Feature Name column captures the name of the feature. The Platform

Name column captures the end user platform(s) that the feature applies. The Component

Name column captures the component name as it appears on the static model. The Platform

<<kernel>>
<<message-broker>>

informationalAlertHandler

<<kernel>>
<<message-broker>>
securityAlertHandler

<<optional>>
<<coordinator>>

alertAudio

<<optional>>
<<input/output device interface>>

phone

<<platform-specific>>
<<optional>>

<<input/output device interface>>
videoCall

<<platform-specific>>
<<optional>>

<<coordinator>>
cameraManager

<<optional>>
<<coordinator>>

alertVideo

<<platform-specific>>
<<optional>>

<<input/output device interface>>
camera

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device interface>>

doorMonitor

<<optional>>
<<coordinator>>
breakInMotion

<<optional>>
<<input/output device interface>>

motionDetector

<<optional>>
<<coordinator>>
breakInWindow

<<optional>>
<<input/output device interface>>

windowDetector

<<optional>>
<<system-interface>>

email

<<optional>>
<<system-interface>>

text

<<optional>>
<<timer>>

sprinklerTimer

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

<<optional>>
<<input/output device interface>>

smartAudio

<<optional>>
<<input/output device interface>>

smartDisplay

<<optional>>
<<input/output device interface>>

smartLight

<<optional>>
<<coordinator>>

alarmHome

<<optional>>
<<coordinator>>

alarm911

<<optional>>
<<system interface>>

emergencyCall

<<optional>>
<<input/output device interface>>

power failure sensor

<<optional>>
<<input/output device interface>>

faucetLeakSensor

<<optional>>
<<input/output device interface>>

floodSensor

<<optional>>
<<platform-specific>>

<<coordinator>>
track

<<optional>>
<<input/output device interface>>

smartHVAC

<<optional>>
<<coordinator>>

energyControl

<<optional>>
<<input/output device interface>>

moistureMonitor

Figure 4.5 Smart Home Case Study Static Model

69

Specific Name column captures the actual component name in the specific platform. For

example the Energy Conservation feature applies only to the TeC platform. The track

component of the Energy Conservation feature would have to be mapped to the tecTrack

component of Team computing during the end user application deployment process.

4.3.3.2 Dynamic Modeling

EU SPL designers use dynamic modeling to capture the object interactions needed

to satisfy EU SPL features. This research used UML sequence diagrams to model object

interactions. Sequence diagrams model the message interaction of objects based on a time

sequence (Rumbaugh et al., 2004). Sequence diagrams should be developed for all features

defined in the feature model of the EU SPL.

Figure 4.6 shows the sequence diagram for the Video feature that is part of the

Phone Alert feature group. The sequence interaction starts with the :alertVideo object that

after initialization [init=true] sends a message to the subscribe input of the

:securityAlertHandler object to receive security alert notifications. When a security alert is

detected by the :securityAlertHandler [sendAlert=true] it sends the security alert message

Table 4.3 Platform Specific Feature / Component relationship table

Feature

Name

Platform Name Component Name Platform Specific Name

Energy Conservation Team Computing track tecTrack

Video Team Computing videoCall

cameraManager

camera

tecVideoCall

tecCameraManager

tecCamera

70

to the notify input event of the :alertVideo object. Upon receiving the security alert message

the :alertVideo object evaluates the [videoCall=true] condition and if true sends a message

to the makeVideoCall input of the :videoCall object. The :videoCall object represents a

smart phone device. When the makeVideoCall input is called a video call is initiated on

the smart phone device and the [videoCall=true] condition is evaluated and if true the

:videoCall object sends a message to the startVideoStream input of :cameraManager in

order to request a video stream. Upon receiving the message the :cameraManager evaluates

the [startVideo=true] condition and if true it sends a message to the startStream input of

the :camera object with the :videoCall object information. The camera will send the video

stream stream_out to the :videoCall object stream_in input in order for the video to be

displayed on the device. Upon the end of the phone call the [endCall=true] condition of the

:videoCall object evaluates to true and the :videoCall object sends a message to the

stopVideoStream input of the :cameraManager object. The stopVideoStream will evaluate

<<optional>>
:videoCall

<<optional>>
:cameraManager

[videoCall=true]

startVideoStream[videoCall=true]

makeVideoCall

stream_in

[endCall=true]

<<optional>>
:alertVideo

<<kernel>>
:securityAlertHandler

subscribe [init=true]

[sendAlert=true] notify

stopVideoStream

stream_out

<<optional>>
:camera

[startVideo=true] startStream

[stopVideo=true] stopStream

Figure 4.6 Sequence Diagram for the Video Feature

71

the [stopVideo=true] condition and if true the :cameraManager object will send a message

to the stopStream input of the :camera object to indicate that the :camera object can stop

sending the video stream to the :videoAlert object.

Similarly, Figure 4.7 shows the sequence diagram for the Energy Conservation

feature from the Smart Home EU SPL case study. The goal of the feature is to conserve

energy when the house residents are away by adjusting the home temperature. The

temperature will be adjusted back to normal when residents return home. The sequence

diagram starts with the :track object that sends a message to the econ input of the

:energyControl object when the house residents are away [away=true]. When the econ

input is received the [adjustHvacLevel=true] and [energyLevelNotification=true]

conditions are evaluated to true. The :energyControl object sends a message to the

setHvacLevel input of the :smartHVAC object with the desired temperature settings.

Furthermore the :energyControl objects sends a message to the receiveAlert input of the

:informationAlertHandler object with the energy level changes. When the residents are

back home the :track object [home=true] condition is evaluated to true, which causes the

:track object to send a message to the norm input of the :energyControl object. When the

norm input is received the [adjustHvacLevel=true] and [energyLevelNotification=true]

conditions are evaluated to true. The :energyControl object sends a message to the

setHvacLevel input of the :smartHVAC object to adjust temperature settings back to

72

normal. In addition, the :energyControl objects sends a message to the receiveAlert input

of the :informationAlertHandler object with the energy level changes.

4.3.3.3 Feature / Component Dependency Table

The Feature / Component table describes in detail the EU SPL features and the

components needed to support the implementation of each of the features. The purpose of

the table is for EU SPL designers to ensure consistency between features and the

components that support them. For example a common feature cannot be implemented by

optional components. The Feature/Component table contains the following columns:

 Feature Name – The name of the Feature

<<optional>>
:smartHVAC

<<kernel>>
:informationalAlertHandler

receiveAlert

<<optional>>
:track

<<optional>>
:energyControl

econ[away=true]

[adjustHvacLevel=true] setHvacLevel

[energyLevelNotification=true] receiveAlert

norm

[adjustHvacLevel=true] setHvacLevel

[home=true]

[energyLevelNotification=true]

Figure 4.7 Sequence Diagram for the Energy Conservation Feature

73

 Feature Group – The name of the Feature Group that the Feature belongs

 Feature Category – The type of feature (common, optional, etc.)

 Component Name – The components names that implement each feature

 Component Reuse Category – The component type (kernel, optional, etc.)

 Component Parameter – Component Parameters needed by the Feature

Table 4.4 shows the Feature / Component Dependency Table that was developed for the

Smart Home EU SPL Case Study used in this research. For example the common feature

Smart Home is implemented by the securityAlertHandler and the

informationalAlertHandler component that are kernel. Similarly the alternative Video

feature is implemented by the alertVideo, videoCall, cameraManager and camera optional

components. Since the Video feature depends on the Smart Home feature, the Video feature

will also be supported by the securityAlertHandler and informationalAlertHandler kernel

components. Finally, the optional Energy Conservation feature is implemented by the

optional track and energyControl components. The component parameter residentIDs of

the track component indicate the smart home residents that need to be tracked by the

component.

4.3.4 EU SPL Design Modeling

While EU SPL Analysis modeling focus on the analysis of the problem domain,

EU SPL Design modeling maps the EU SPL Analysis model to the solution domain

(Gomaa, 2016). During EU SPL Design modeling the component inter-feature

communication, component relationships and component interface models are defined.

74

Table 4.4 Feature / Component Dependency Table for the Smart Home EU SPL Case Study

Feature

Name

Feature

Group

Name

Feature

Category

Component Name Component

Reuse

Category

Component

Parameter

Smart Home common securityAlertHandler

informationalAlertHandler

kernel

kernel

Audio Phone Alert default alertAudio

phone

optional

optional

Video Phone Alert alternative alertVideo

videoCall

cameraManager

camera

optional

optional

optional

optional

Door Home

Security

default breakInDoor

doorMonitor

optional

optional

Motion Home

Security

optional breakInMotion

motionDetector

optional

optional

Window Home

Security

optional breakInWindow

windowDetector

optional

optional

Smart

Irrigation

 optional sprinkler

sprinklerControl

optional

optional

Schedule optional schedule optional timetorun :

String

Smart Weather

Sensing

 optional moistMonitor optional

Email Net

Notification

optional email optional

Text Net

Notification

default text optional

Flood Detector Water

Detector

optional floodSensor optional

Faucet Drip Water

Detector

optional faucetLeakSensor optional

Home Alarm Home

Behavior

optional alarmHome

smartAudio

smartDisplay

optional

optional

optional

911 Home

Behavior

optional alarm911

emergencyCall

optional

optional

Light Failure Home

Behavior

optional smartLight optional

HVAC Filter Home

Behavior

optional smartHVAC optional

Power Failure Home

Behavior

optional powerFailureSensor optional

Energy

Conservation

Home

Behavior

optional track

energyControl

optional

optional

residentIDs:

List<String>

4.3.4.1 Inter-Feature Component Communication

As EU SPL designers define features and the components that implement each

feature, they might determine situations where components of one feature need to

75

communicate with components of other features to accomplish a task. One solution to this

problem is to refactor the feature model to support this. Refactoring will work for smaller

feature models but as the model grows that might not be a viable option. This research

utilized the subscription/notification (Gomaa, 2016) design pattern for inter feature

component communication as an alternative option to feature refactoring. The idea is that

instead of components sending messages directly to each other, message broker

components are provided as intermediaries. Components can send messages to the message

broker, which then notifies components that have registered with the message broker to

receive messages. Some benefits of the public / subscribe design pattern for developing

EU SPLs are (a) promotes loose coupling between sender and receiver components and (b)

better scalability since newly created components can register with existing message

brokers to send and receive messages. The inter-feature component communication table

captures all product line components that send and receive messages through message

broker components. Table 4.5 shows the inter-feature component communication table

Table 4.5 Inter-Feature Component Communication Table for the Smart Home Case Study

Message Broker Subscribed Components Message Producer Components

securityAlertHandler alertAudio

alertVideo

alarmHome

alarm911

email

text

breakInDoor

breakInMotion

breakInWindow

informationalAlertHandler email

text

schedule

sprinklerControl

smartLight

smartHVAC

powerFailureSensor

energyControl

floodSensor

faucetLeakSensor

76

that was created to support the Smart Home case study. There are following columns in the

table:

 Message Broker – The name of the message broker component

 Subscribed Components – The components subscribed to receive messages

 Message Producer Components – The components producing the messages

For example as shown on Table 4.5 the securityAlertHandler is a message broker

component. The components alertAudio, alertVideo, alarmHome, alarm911, email, text are

subscribed and receive messages from the securityAlertHandler. The breakInDoor,

breakInMotion, breakInWindow components send messages to the securityAlertHandler.

As shown on the second row of Table 4.5 the text component is also subscribed and receive

messages from the informationalAlertHandler to support a different use case.

Figure 4.8 shows an example of component communication using

subscription/notification from the Smart Home EU SPL case study. In detail, when the

alertAudio component of the Audio feature initializes, it sends a message with its id to the

securityAlertHandler message broker component. Components that have subscribed to

receive messages from a message broker are shown in the Subscribed Components column

in the inter-feature component communication table. When there is a break-in activity, the

breakInDoor component of the Door feature sends alerts to the securityAlertHandler. When

there is a message available, the securityAlertHandler sends it to the alertVideo component.

77

4.3.4.2 Component Relationships and Interface Design

UML component diagrams can be used by EU SPL designers to capture (a)

components available in a smart home, (b) component relationships, and (c) provided and

required interfaces needed for components to communicate. In an end user environment,

components communicate with other components through output/input ports. Figure 4.9

shows the component diagram of the Home Alarm Feature. The component diagram is

composed of the securityAlertHandler, alarmHome, smartAudio, smartDisplay and the

smartLight components.

 The components are decorated with UML stereotypes to indicate whether a

component is kernel, optional, or variant. For example the securityAlertHandler is a

<<kernel>> component while alarmHome, smartAudio, smartDisplay and smartLight are

<<optional>> components. Furthermore additional stereotypes are used to capture the role

<<optional>>
:alertAudio

<<kernel>>
:securityAlertHandler

subscribe

sendAlert
[messageInQueue=true] notify

init
[startup=true]

<<optional>>
:breakInDoor

[activity=true] receiveAlert

Figure 4.8 Subscribe and Receive Messages to a Message Broker

78

of each component. For example securityAlertHandler is a <<message-broker>>

component, alarmHome is a <<coordinator>> component while smartAudio, smartDisplay

and smartLight are input/output device interface components. Components may also have

a multiplicity indicator to indicate the number of component instances in a smart space.

For example the smartAudio, smartDisplay and smartLight components have 1…*

multiplicity that indicates that there are one or more smartLight, smartAudio and

smartDisplay component instance in the smart space. The connections between

components also indicate the required and provided interfaces between components.

Table 4.6 shows details about the components input and output messages. For

example the init output of the alarmHome component outputs the clientID parameter to

indicate the component identification. The securityAlertHandler has a subscribe input and

expects as input the clientID parameter to indicate the component that is subscribing to

receive messages. Similarly the securityAlertHandler has a sendAlert output that outputs a

message parameter to indicate the alert message. As shown on Figure 4.9 the sendAlert

output of the securityAlertHandler is connected to the notify input of the alarmHome. The

<<optional>>

<<input/output device
interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

<<optional>>
<<input/output device

interface>>
smartLight

play

show

flash

alarm
<<optional>>

<<coordinator>>
alarmHome

init

notify
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

setLightLevel

replace

1..*

1..*

1..*

Figure 4.9 Component Diagram for the Home Alarm Feature

79

notify input expects as a parameter the message to distribute to the appropriate devices.

Parameters sent from outputs to inputs can be ignored by the inputs if the parameters are

not relevant. For instance the alarm output of the alarmHome component outputs a message

parameter. The play input of the smartAudio and the show input of the smartDisplay use

the message parameter to play the message over the house speakers or to display the

message to the house monitors. Figure 4.10 shows the component diagram of the Video

feature. The diagram contains the components: securityAlertHandler, alertVideo,

videoCall, cameraManager and camera that implement the Video feature. The components

videoCall, cameraManager and camera are annotated with the <<platform-specific>>

stereotype. The <<platform-specific>> stereotype indicates that the components are

specific to a specific EUD environment for smart spaces. The Platform Specific Feature

table contains additional details about the EUD environment and the applicable

components.

Table 4.6 Component Input / Output for the Home Alarm Feature

Component Name Component Input Component Output Component Output

Triggering Condition
securityAlertHandler

receiveAlert(in message)

subscribe(in clientID)

sendAlert(out message) messageInQueue=true

alarmHome notify(in message)

init(out clientID)

alarm(out message)

startup=true

message=true

smartAudio play(in message)

smartDisplay show(in message)

smartLight flash()

setLightLevel(in lightLevel)

replace(out lightID) light=out

80

4.3.5 EU SPL Implementation

EU SPL implementation is the process for implementing the code of the product

line components. The EUSPLP development environment created by this research can be

used to create EU SPLs. The EUSPLP is described in detail in Chapter 6.

4.3.6 EU SPL Testing

This research developed an EU SPL testing framework for testing end user product

lines. The EU SPL testing framework is described in detail in Chapter 7.

4.4 End User Application Engineering (EUAE)

End User Application Engineering (EUAE) is the process to derive end user

applications from the End User SPL and deploy end user applications to end user smart

spaces. The EUAE process can be broken down to the (a) End User Application

Requirements Selection, (b) End User Application Derivation, (c) End User Application

Testing, and (d) End User Application Deployment phases.

<<platform-specific>>
<<optional>>

<<input/output device
interface>>

videoCall

makeVideoCallvideoCall

<<platform-specific>>
<<optional>>

<<coordinator>>
cameraManager

videoCall

stream_in endCall

<<optional>>
<<coordinator>>

alertVideo

notify

init
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

startVideoStream

stopVideoStream

<<platform-specific>>
<<optional>>

<<input/output device
interface>>

camera

1..*

stream_out

startStream

stopStream

startVideo

stopVideo

Figure 4.10 Component Diagram for the Video Feature

81

4.4.1 End User Application Requirements Selection

During the End User Application Requirements Selection phase end users specify

the required EU SPL features for their spaces. The selected features need to be compatible

with other features selected from the EU SPL. For instance an end user cannot select two

alternative features or select zero features form an at-least-one-of feature group. The

outcome of the EU application requirements process is a derived feature model that

captures the features that end users selected. Figure 4.11 shows an example of features that

an end user selected from the Smart Home case study used in this research.

As shown in Figure 4.11 the following features were selected: Smart Home, Audio,

Flood detector, Door, Smart Irrigation, Schedule, Text, HVAC Filter, Light Failure and

Home Alarm. The Smart Home is a common feature that all features depend on. The Audio

feature was selected as an example of a feature selected from an exactly-one-of feature

group (Phone Alert). The text feature was selected as example of a feature selected from

an at-least-one-of feature group (Net Notification). Similarly, the door feature was selected

from the at-least-one-of Home Security feature group. The HVAC Filter and Light Failure

features are selected from the zero-or-more-of Home Behavior feature group. The Flood

Detector is another zero-or-more-of feature selected from the Water Detector feature

group. The Smart Irrigation feature is an example of an optional feature. Finally the Home

Alert and Schedule are examples of optional features that depend on other optional

features. The features selected are compatible with each other. For instance there are no

mutually exclusive features selected etc.

82

4.4.2 End User Application Derivation

The application derivation phase is responsible for deriving the end user application

based on the end user feature selections. In detail, the components, component connectors,

and component configuration parameters that realize the selected features are derived from

the EU SPL Repository. Then there is a component mapping process that maps the

components derived from the EU SPL Repository to the components of the target EUD

environment to create the application architecture. The component mappings from the SPL

to the EUD environment are described in detail in Chapter 5.

<<common feature>>
Smart Home

<<default feature>>
Door

<<at-least-one-of
feature group>>
Home Security

requires

requires

<<optional feature>>
Home Alarm

<<optional feature>>
Flood Detector

<<optional feature>>
Smart Irrigation

<<optional feature>>
Schedule

requires

requires

<<default feature>>
Audio

<<exactly-one-of
feature group>>

 Phone Alert

<<default feature>>
Text

requires
requires

<<at-least-one-of
feature group>>
Net Notification

<<zero-or-more-of
feature group>>
Water Detector

<<zero-or-more-of
feature group>>
Home Behavior

requires

requires

<<optional feature>>
Light Failure

<<optional feature>>
HVAC Filter

Figure 4.11 Example of an Instance of the Smart Home Feature Model based on End User Requirements

83

Table 4.7 shows the application mapping for the Smart Home derived application to the

Table 4.7 Example of Derived End User Application Mapped to Jigsaw

84

Jigsaw EUD environment based on the features selected in Figure 4.11. The table shows

all the components, inputs / outputs and triggering conditions used to react to smart space

events. Figure 4.12 visualizes the derived end user application architecture as it would be

<<optional>>
<<input/output device

interface>>
doorMonitor

action

1..*

<<optional>>
<<input/output device

interface>>
phone makeCall

<<kernel>>
<<message-broker>>
securityAlertHandler

receiveAlert

<<optional>>
<<input/output device

interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

play

show

<<kernel>>
<<message-broker>>

informationalAlertHandler

<<optional>>
<<input/output device interface>>

smartLight

flash

<<optional>>
<<input/output device interface>>

smartHVAC

<<optional>>
<<input/output device

interface>>
floodSensor

turn
off

<<optional>>
<<coordinator>>
sprinklerControl

replace

replace filter flood
1..*1..*

1..*

receiveAlert

receiveAlert

<<optional>>
<<system interface>>

text

notify

subscribe

init

<<optional>>
<<input/output device

interface>>
sprinkler

1..*

startWater

stopWa
ter

turn
on

turn
on

turn off

stopWater

<<optional>>
<<coordinator>>

alarmHome

alarm

alarm

notify

init

subscribe

<<optional>>
<<coordinator>>

 alertAudio
init

call

<<optional>>
<<coordinator>>

breakInDoor

activity

movement

activate on

1..*

1..*

notify

<<optional>>
<<timer>>

sprinklerTimer

timeAlert

water

sendAlert

init

notify

Smart Home

Text

Door

Home Alarm

Smart Irrigation

HVAC Filter

Flood Detector

Audio

Schedule

Light Failure

EU SPL Feature Color Codes

Audio Feature

Smart Home Feature

subscribe

Text Feature

sendAlert

Door Feature

sendAlert

subscribe

Home Alarm Feature

sendAlert

alarm

Light Failure Feature

HVAC Filter Feature

receiveAlert

Flood Detector Feature

receiveAlert receiveAlert

Smart Irrigation Feature Schedule Feature

Figure 4.12 Example of Smart Home End User Application Architecture for Jigsaw

85

displayed to the Jigsaw editor. As shown in Figure 4.12, components are represented as

Jigsaw pieces put together to form application logic. Similarly, Table 4.8 shows the

Table 4.8 Example of Derived End User Application Mapped to Team Computing

86

application mapping for Smart Home derived application to the Team Computing EUD

environment based on the feature selections shown in Figure 4.11. Figure 4.13 visualizes

the derived application architecture as it would be displayed to the Team Computing

application editor.

4.4.3 End User Application Testing

End User (EU) Application is described in detail in Chapter 7 as part of the EU SPL

testing framework.

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device interface>>

doorMonitor

activate on

movementaction

activity

1..*

<<optional>>
<<coordinator>>

alertAudio

notify <<default>>
<<input/output device

interface>>
phone

makeCallcall

init

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

<<optional>>
<<input/output device

interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

<<optional>>
<<input/output device

interface>>
smartLight

play

show

flash

alarm
<<optional>>

<<coordinator>>
alarmHome

init

notify

<<kernel>>
<<message-broker>>

infoAlertHandler

sendAlert

subscribe

receiveAlert

flood

<<optional>>
<<input/output device

interface>>
flood-sensor

1..*

<<optional>>
<<system-interface>>

text

notify

init

replace

<<optional>>
<<input/output device

interface>>
smartHVAC

replace filter

1..*

1..*

1..*

1..*

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

turn on turn off

startWater stopWater

1..*

<<optional>>
<<timer>>

sprinklerTimer

timeAlertwater

Schedule Feature

Smart Irrigation Feature

Flood Detector
Feature

HVAC Filter
Feature

Smart Home Feature

Door Feature

Text Feature

Audio Feature

Home Alarm
Feature

Light Failure Feature

Figure 4.13 Example of Smart Home End User Application Architecture for TeC

87

4.4.4 End User Application Deployment

End user application deployment involves end users deploying the derived

applications to their smart spaces. During application deployment, EUD environments map

the derived application to a set of devices available in the smart space. EUD environments

communicate with devices deployed in the smart space and provide them with application

instructions. It is the responsibility of the EUD environment to inform the end user if

devices that interface with components are not available during application deployment.

After derived applications are successfully deployed to the smart space, end users can use

the feature-based integration test cases used for EU application testing to test the successful

deployment of the application, as described in Chapter 7.

4.5 End User SPL Evolution

As end users derive and deploy applications to their smart spaces they might

identify product line defects and new product line requirements that want for their spaces.

End users communicate the new requirements and product line defects to EU SPL

designers. Similarly EU SPL designers might have new requirements and product line

defects identified by internal testing. All defects and new requirements are added to the EU

SPL repository. EU SPL designers prioritize, implement and test the new requirements

and/or defects using the EUPLE process shown in Figure 4.2 and Figure 4.3. EU SPL

updates can be communicated back to end users.

88

4.6 Summary

This chapter has described the end user software product line process that is used

by EU SPL designers to create end user product lines and end users to derive applications

for their spaces. The end user product line process consist of two phases: (a) end user

product line engineering, and (b) end user application derivation. During end user product

line engineering, end users perform product line requirements elicitation, analysis, design,

implementation and testing to develop the EU SPL. End user application engineering

involves end users selecting the smart space feature requirements they need, application

derivation, application testing, and application deployment to the smart space. This chapter

described the EU SPL process by providing examples for each phase from the Smart Home

case study developed for this research.

89

5 END USER SOFTWARE PRODUCT LINE META-MODEL FOR

SMART SPACES

5.1 Introduction

End User Development (EUD) environments such as Team Computing (TeC)

(Sousa et al., 2010), and Jigsaw (Humble et al., 2003) aim to enable end users to create and

deploy software applications for their smart spaces. EUD environments connect software

applications and devices deployed in the smart space while providing friendly user

interfaces for end users to create software applications. End User Software Product Lines

(EU SPLs) extend EUD environments with product line support to promote reuse and

software application portability. EU SPLs for smart spaces provide a lightweight approach

for SPL development while addressing the dynamic nature of these environments.

This chapter describes a meta-modeling approach for developing EU SPLs for

smart spaces. The meta-modeling approach provides platform independent and platform

specific EU SPL modeling support. A platform independent model is an end user

application model that is independent of the platform (EUD environment e.g., Jigsaw/TeC)

and the hardware/Operating System (OS). Platform independent modeling involves EU

SPL designers creating platform independent models that can be tailored to different EUD

environments through an application derivation process. A platform specific model is an

end user application model that is specific to an EUD environment e.g., Jigsaw/TeC but

independent of the hardware/OS platform. Platform specific modeling involves EU SPL

designers creating platform specific models that are bound to specific EUD environments

e.g., Jigsaw/TeC. Platform specific models provide an additional capability, since they

90

have access to platform specific functionality that is not available to the platform

independent models.

In detail, this chapter presents a meta-model as the basis for developing an EU SPL

development environment for creating EU SPLs and deriving End User (EU) applications.

The meta-model is composed of platform independent and platform specific meta-models.

This chapter describes in detail both parts of the meta-model and discusses the relationships

and mappings between them. This chapter is organized as follows. Section 5.2 describes

the overall EU SPL meta-modeling approach for smart environments. Section 5.3 presents

the platform specific meta-models for the TeC and Jigsaw EUD environments. Section 5.4

introduces the platform independent meta-model. Section 5.5 discusses the mapping of the

platform independent meta-model to the TeC and Jigsaw platform specific meta-models.

Finally, section 5.6 summarizes this chapter.

5.2 Overview of the EU SPL Meta-model for Smart Spaces

There are several common characteristics across EUD environments for smart

spaces. For example all event driven EUD environments consist of components that are

abstractions of devices, sensors, actuators, application, services etc. and connections

between the components to create application logic. There is also variability between EUD

environments. For example some end user environments provide specific functionality to

handle user-context, location, and temporal relationships while others do not. To address

the commonality and variability of EUD environments and provide a common approach

for the development of end user applications for smart spaces, the EU SPL meta-model is

designed.

91

Figure 5.1 shows the EU SPL meta-model for smart spaces. The meta-model

consists of platform independent and platform specific meta-models. The platform

independent meta-model is composed of the Platform Independent Product Line (PIPL)

and the Platform Independent Product (PIP) meta-models. The PIPL meta-model captures

the underlying representation of EU SPLs in terms of meta-classes and relationships

independent of the platform (EUD environment). The meta-model contains representations

of EU SPL features, feature dependencies, and the component architecture that realizes

each feature. The component architecture describes the smart space components,

connectors and other artefacts that are needed for the feature implementation. The PIP

meta-model provides the underlying representation of end user applications in terms of

meta-classes and relationships derived from the PIPL meta-model. To derive PIP models

end users select product line features from the PIPL model. The components and their

relationships that realize the selected features are used to derive the PIP model. Both PIPL

and PIP models are platform independent models that can be mapped to different EUD

environments e.g., Jigsaw/TeC for smart spaces.

The platform specific meta-model consists of the Platform Specific Product Line

(PSPL) and the Platform Specific Product (PSP) meta-models. The PSPL meta-model

captures the underlying representation of EU SPLs in terms of meta-classes and

relationships specific to platform (EUD environment). The meta-model contains

representations of EU SPL features, feature dependencies, and the component architecture

92

that realizes each feature. The PSPL meta-model is used for creating EU SPL models for

specific platforms. PSPL models are derived from PIPL models through meta-class

mapping discussed later in this chapter. The PSP meta-model captures the underlying

representation of end user application in terms of meta-classes and relationships derived

from the PSPL meta-model. As shown in Figure 5.1, PSP models can be derived from PIP

models in addition to PSPL models.

There is a one-to-many relationship between the platform independent and the

platform specific models. For instance, multiple PSPL models for different platforms can

be derived from the PIPL model. EU SPL designers can model platform independent EU

SPLs using the PIPL meta-model that can be map to PSPL models for different platforms.

Similar multiple PSP models can be derived from the PIP model. End users can derive PIP

models that can be mapped to PSP models for different platforms.

Platform Independent
Product Line

(PIPL)

Platform Independent
Product

(PIP)

Platform Specific
Product Line

(PSPL)

Platform Specific
Product

(PSP)

PIPL
to

PSPL

PIP
to

PSP

PIPL to PIP

PSPL to PSP

1..*

1

1

1

1..*

1

1..*

1..*

Figure 5.1 End User SPL Meta-model

93

The PIPL to PIP and PSPL to PSP model relationships are one-to-many. For

instance, multiple PIP models can be derived from one PIPL model. Similar multiple PSP

models can be derived from one PSPL model. PSPL and PSP models are bound to a specific

EUD platform. For example a PSPL model designed for TeC can derive PSP models that

can only be deployed to TeC smart spaces. The following sections of this chapter describe

in detail the platform specific and platform independent meta-models.

5.3 Platform Specific Meta-models

This section describes the platform specific meta-models, for the Team Computing

(TeC) and Jigsaw end user environments, before describing how they can be integrated

into platform independent meta-models in Section 5.4. In particular, the section presents

the application meta-models of the (TeC) and Jigsaw end user platforms and explains how

they were extended to create platform specific product line meta-models that can be used

to create EU SPLs. Furthermore the component mappings of the product line meta-models

to the application meta-models needed to derive end user applications from the EU SPL

are also discussed for each EUD environment. Section 5.3.1 describes the platform specific

meta-models for TeC and section 5.3.2 for the Jigsaw end user environment.

5.3.1 Platform Specific Meta-models for TeC

This section describes the PSP and PSPL meta-models for the TeC end user

environment. In particular, section 5.3.1.1 introduces TeC and presents its application

(PSP) meta-model, and section 5.3.1.2 explains how the TeC application meta-model was

extended to create the TeC PSPL. The TeC PSPL can be used to create EU SPLs for the

94

TeC platform. Section 5.3.1.3 describes the meta-model component mapping between the

TeC PSPL and the TeC PSP meta-models.

5.3.1.1 Platform Specific Product (PSP) for TeC

Team Computing (TeC) is an event driven architectural style that enables end users

to design and deploy personalized software for their smart spaces (Sousa et al., 2010). A

detailed description of TeC is provided in section 2.4.5 of Chapter 2.

Figure 5.2 shows the application meta-model for TeC. The Team Design meta-class

captures information about TeC applications. A Team Design can be deployed to zero or

more Locations. The Location meta-class captures location information of a smart space.

For example, one Team Design might apply to devices available to the family room of a

smart home versus another one that applies to the entire house. A Team Design is realized

by one or more Activity Sheets. The Activity Sheet meta-class represents software

components, devices, and humans operating in ubiquitous computing environments.

Activity Sheets have zero or more Inputs and Outputs. The Input meta-class contains

information about the Activity Sheet required interfaces for receiving data. The Output

meta-class contains information about the Activity Sheet provided interfaces for sending

data. Outputs are bound by triggering conditions that when evaluated to true causes the

output to be send to the destination. In TeC, device connectivity can be achieved by having

outputs from one Activity Sheet send to inputs of another Activity Sheet. Inputs and

Outputs can contain zero or more Payloads. The Payload meta-class contains information

95

in the form of key-value pairs about the data send from Outputs to Inputs. The Activity

Connector meta-class contains information about the Activity Sheet’s connectivity within

a Team Design. Outputs send data to zero or more Activity Connectors and Inputs receive

data from zero or more Activity Connectors.

Figure 5.3 shows the Team Design of a “Flood Alert” TeC application deployed in

a smart home. The purpose of the application is to send text alerts to the home residents if

a flood is detected. The “Flood Alert” Team Design is realized of a flood detector and a

phone TeC Activity Sheets. The flood detector Activity Sheet represents moisture sensors

deployed in the smart home, and the phone Activity Sheet a house phone that supports

landline messaging. The flood detector Activity Sheet has an Output called “alert” that

sends flood notifications to the “text” Input of the phone Activity Sheet. The Activity

Connector meta-class for the Team Design contains information about the connection of

the “alert” Output and the “text” Input. The “alert” output has a triggering condition that is

evaluated to true when the flood detector detects moisture. When moisture is detected,

Activity Sheet

Output InputPayload

Activity

Connector

has

contains contains

isSend

has

Activity

Parameter

isParameterized

0..*

0..*
0..*

0..*

0..*

isReceived

Team Design

1..*

Location
isDeployed

isRealized

0..*

isConfigured

isConnected

0..* 0..*

0..*

0..*

Figure 5.2 TeC Application Meta-model (PSP)

96

“alert” sends one message with two Payloads in the form of key-value pairs to the “text”

input. The keys of the payloads are phone_number and message. The phone Activity Sheet

will interpret the phone_number payload value as the number to text and the message

payload value as the contents of the message to send. An Activity Sheet is configured by

zero or more Activity Parameters. The Activity Parameter meta-class captures information

about configurable internal parameters of Activity Sheets. An example of an Activity

Parameter in the “Flood Alert” example are the moisture threshold values for the flood

detector Activity Sheet. When the moisture threshold values are exceeded then the sensor

can report moisture.

5.3.1.2 Platform Specific Product Line (PSPL) for TeC

To extend TeC with product line support, the TeC PSPL was created. The TeC

PSPL is used to derive applications for different TeC environments. In particular, The TeC

PSP model was extended with product line support to create the TeC PSPL meta-model

shown in Figure 5.4. The objective of the TeC PSPL meta-model is to derive multiple TeC

PSP models from one TeC PSPL model. The TeC PSPL meta-model is composed of the

Feature and the TeC Product Line (PL) Component meta-models. The Feature meta-model

Figure 5.3 Flood Alert – TeC Team

97

is platform independent and describes the EU SPL and feature relationships. The TeC

Product Line Component meta-model is specific to the TeC platform and describes the

relationships between product line features and the TeC Product Line (PL) component

architecture that realizes each feature. The TeC PL meta-model extends the TeC meta-

model with product line support. The remainder of this section describes the meta-model

in detail.

As shown in Figure 5.4, an EU SPL is composed of one or more features. Each

Feature describes a specific functionality that the EU SPL supports. Features can be

Feature
Feature

Dependency

Feature
Condition

Default Feature
Optional
Feature

Common
Feature

Feature Group
Parameterized

Feature

ZeroOrMoreOf
Feature Group

AtLeastOneOF
Feature Group

ExactlyOneOf
Feature Group

ZeroOrOneOf
Feature Group

selected by

from/to

1

1

EU SPL
1 1 *

Alternative
Feature

PL Activity Sheet PL Output PL InputPL Payload

PL Activity Sheet
Connector

has
contains contains

isSend

has

PL Activity Sheet
Parameter

isConfigured

0..*

0..*

0..*

0..*

0..*

isReceived
0..*

1..*

isConnected

isParameterized

isRealized

0..*

Kernel
PL Activity Sheet

Connector

Optional
PL Activity Sheet

Connector

Variant
PL Activity Sheet

Connector

Kernel
PL Activity Sheet

Optional
PL Activity Sheet

Variant
PL Activity Sheet

Feature Meta-model

TeC PL
Component Meta-model

0..* 0..*

PL Location

isDeployed

0..*

isComposed

Figure 5.4 TeC Platform Specific Product Line (PSPL) Meta-model

98

common, optional, alternative, default or parameterized. Common are features that exist

in all products derived from the product line. Optional features are features that can be

found in only some products derived from the product line. Alternative features are features

that are mutually exclusive. Default features are one of a group of alternative features that

the EU SPL designer has pre-selected for product derivation. Parameterized features are

features that can be parameterized by end users during application derivation.

Features can belong to feature groups. Feature groups can be thought as a set of

features that share a common set of constraints. There are four types of feature groups: (1)

ZeroOrMoreOf, (2) AtLeastOneOf, (3) ExactlyOneOf, and (4) ZeroOrOne.

ZeroOrMoreOf is a feature group from which zero or more features can be selected.

AtLeastOneOf is a feature group from which more than one feature must be selected.

ExactlyoneOf is a feature group from which only one feature can be selected. ZeroOrOne

is a feature group from which either no feature or one feature can be selected. Features can

be dependent on other features. For example consider three features {A}, {B}, {C} and

that {C} → {A} ^ {B}, this implies that feature {C} cannot exist if features {A} and {B}

do not exist. The Feature Dependency meta-class captures the dependency among features.

Feature conditions are an alternative way for expressing feature selection.

Features are realized by one or more PL Activity Sheets and are connected to zero

or more PL Activity Connectors. PL Activity Sheets can be kernel, optional or variant.

Kernel PL Activity Sheets are available to all PSPs derived from the PSPL. Optional PL

Activity Sheets are available to only some derived PSPs. Variant PL Activity Sheets are

mutually exclusive PL Activity Sheets. PL Activity Sheets can have zero or more PL Inputs

99

and PL Outputs. PL Inputs and PL Outputs can have zero or more PL Payloads. PL Activity

Connectors can also be kernel, optional or variant. A feature is parameterized by zero or

more PL Activity Parameters. Finally, a feature is deployed in zero or more PL Locations.

For example a product line feature can be applicable to components in a specific location

of the smart space. The PL Location meta-class captures the location info.

5.3.1.3 TeC PSPL to PSP Meta-model Mappings

To derive end user applications from the TeC EU SPL, the selected features and

components of the TeC PSPL need to be mapped to the features and components of the

TeC PSP model. Figure 5.5 shows the high-level meta-class mappings between the TeC

PSPL and the TeC PSP meta-models.

In detail, each PL Activity Sheet in the PSPL model is mapped to an Activity Sheet

in the PSP model. Similar each PL Activity Connector in the PSPL component model will

be mapped to an Activity Connector in the PSP model. PL Activity Parameters will be

mapped to Activity Parameters and PL Locations to Locations meta-classes in the TeC

component model. The PL Inputs, PL Outputs and PL Payload meta-classes from the TeC

PSPL model are mapped to Input, Outputs and Payload meta-classes in the TeC PSP.

5.3.2 Platform Specific Meta-models for Jigsaw

This section describes the PSP and PSPL meta-models for the Jigsaw end user

environment. In particular, section 5.3.2.1 introduces Jigsaw and presents its application

(PSP) meta-model, section 5.3.2.2 discusses how the Jigsaw application meta-model was

extended to create the Jigsaw PSPL. The Jigsaw PSPL can be used to create EU SPLs for

100

the Jigsaw platform. Finally, section 5.3.2.3 describes the meta-model mapping between

the Jigsaw PSPL and the Jigsaw PSP meta-models

5.3.2.1 Platform Specific Product (PSP) for Jigsaw

Jigsaw (Humble et al., 2003) is an EUD environment that enables end users to

configure devices, applications and services available to their smart space through a puzzle

like user interface. Figure 5.6 shows the Jigsaw meta-model that was developed as part of

this research. In detail, a Jigsaw Puzzle is realized by one or more Jigsaw Pieces. Each

Jigsaw Piece represents a device in the smart space. Examples of Jigsaw Pieces are a phone,

a doorbell, a camera etc. Each Jigsaw Piece can have zero or more Jigsaw Piece Parameters.

Jigsaw Piece Parameters represent device configuration parameters. For example a

PL Activity Sheet

PL Activity

Connector

PL Activity

Parameter

(Product)

Team Design

1..*
Activity Sheet

Activity

Connector

Activity

Parameter

0..*

0..*

Feature

1..*

TeC Platform Specific Product

isRealised

isConnected

isParameterized

0 *

0 *

1 *

TeC Platform Specific Product Line

Feature

PSPL to PSP

PL Location

isDeployed

 Location

0 *

isDeployed

0 *

isCreated

isParameterized

isConnected

isRealised

1 1

1 1

1 1

1 1

Figure 5.5 PSPL to PSP Meta-model Mapping for the TeC Platform

101

doorbell device might have different ring tones, a photo camera can have different light

settings and so on. Jigsaw Pieces have zero or more Jigsaw Piece Inputs and Jigsaw Piece

Outputs. Jigsaw Piece Inputs capture device inputs and Jigsaw Piece Outputs capture

device outputs. The Jigsaw Piece Connector meta-class captures the connectivity of Jigsaw

Pieces. In particular, the Jigsaw Piece Output of one Jigsaw Piece can be connected to the

Jigsaw Piece Input of another Jigsaw Piece. The Jigsaw Piece Output to Jigsaw Piece Input

relationship is captured by the Jigsaw Piece Connector meta-class. A Jigsaw Puzzle is

connected by zero or more Jigsaw Piece Connectors.

Figure 5.7 shows an example of a doorbell application using Jigsaw. The purpose

of the application is when a person rings the doorbell, the camera takes a picture and send

it to the resident smart phone. To create this application a Jigsaw Puzzle is created. The

Jigsaw Pieces of the puzzle are “Door Bell”, “Camera” and “Phone.” The “Door Bell”

Jigsaw Piece represents the house door bell device, the “Camera” Jigsaw Piece represents

a webcam device installed in the entrance and the “Phone” Jigsaw Piece represents the

Jigsaw Piece

Jigsaw Piece

Output

Jigsaw Piece

Input

Jigsaw Piece

Connector

has

isSend

has

Jigsaw Piece

Parameter

isConfugured

0..*

0..*
0..*

0..*

0..*

isReceived

Jigsaw Puzzle

1..*

0..*

isParameterized

0..*

isConnected

Figure 5.6 Jigsaw Application Meta-model (PSP)

102

resident’s smart phone. The “onRing” output of the “Door Bell” piece captures the event

of a person ringing the doorbell. The “onRing” output is connected to the “takePhoto” input

of the “Camera” Jigsaw Piece instructing the camera to take a picture. The “onRing” to the

“takePhoto” connectivity information is captured by the Jigsaw Activity Connector meta-

class. Finally the “sendPhoto” output of the “Camera” Jigsaw Piece is connected to the

“receiveData” input of the “Phone” Jigsaw Piece to indicate that the picture taken by the

camera needs to be send to the phone.

5.3.2.2 Platform Specific Product Line (PSPL) for Jigsaw

To extend Jigsaw with product line support the Jigsaw PSPL was created. The

Jigsaw PSPL is used to derive applications for different Jigsaw environments. In particular,

the Jigsaw PSP meta-model was extended with product line support to create the Jigsaw

PSPL meta-model. The Jigsaw PSPL meta-model consists of the Feature meta-model and

the PL Jigsaw Component meta-model. The Feature meta-model part of the Jigsaw PSPL

meta-model is the same as the TeC PSPL shown on Figure 5.4. Figure 5.8 shows the PL

Jigsaw Component meta-model part of the Jigsaw PSPL meta-model.

Figure 5.7 Jigsaw Doorbell Application Example

103

The main meta-classes of the PL Jigsaw Component meta-model are the PL Jigsaw

Piece, PL Jigsaw Piece Parameter, PL Jigsaw Piece Connector, PL Jigsaw Input and PL

Jigsaw Output. The PL Jigsaw Piece abstracts Jigsaw Pieces that represent different devices

in a smart space. PL Jigsaw Pieces can be kernel, optional or variant product line

components. A PL Jigsaw Piece is configured by zero or more PL Jigsaw Piece Parameters.

PL Jigsaw Piece Parameters contain configuration parameters for the PL Jigsaw Piece. PL

Jigsaw Pieces can have zero or more PL Jigsaw Piece Inputs and PL Jigsaw Piece Outputs.

The PL Jigsaw Piece Input meta-class contains information about the PL Jigsaw Piece

required interfaces and the PL Jigsaw Piece Output meta-class contains information about

PL Jigsaw Piece provided interfaces. PL Jigsaw Piece Connector meta-class contains

information about the PL Jigsaw Piece’s connectors within a product line feature. PL

Jigsaw Piece Outputs send data to zero or more PL Jigsaw Piece Connector Connectors

Feature

PL Jigsaw Piece
PL Jigsaw Piece

Output
PL Jigsaw Piece

Input

PL Jigsaw Piece
Connector

has

isSend

has

PL Jigsaw Piece
Parameter

isConfigured

0..*

0..*

0..*

0..*

0..*

isReceived
0..*

1..*

isConnected

isParameterized

isRealized

0..*

Kernel
PL Jigsaw Piece

Connector

Optional
PL Jigsaw Piece

Connector

Variant
PL Jigsaw Piece

Connector

Kernel
PL Jigsaw Piece

Optional
PL Jigsaw Piece

Variant
PL Jigsaw Piece

PL Jigsaw
Component Meta-model

Figure 5.8 PL Jigsaw Component Meta-model

104

and PL Jigsaw Piece Inputs receive data from zero or more Activity Connectors. PL Jigsaw

Piece Connector can be kernel, optional or variant. A product line feature is realized from

one or more PL Jigsaw Pieces, is parameterized by zero or more PL Jigsaw Piece

Parameters and is connected to zero or more PL Jigsaw Piece Connectors. During

application derivation PL Jigsaw meta-classes are mapped to the Jigsaw meta-classes.

5.3.2.3 Jigsaw PSPL to PSP Meta-model Mappings

Figure 5.9 shows the Jigsaw PSPL to PSP high-level meta-class mappings needed

to derive Jigsaw end user applications. In detail, all components that realize end user

selected features are derived from the Jigsaw PSPL. The derived PSPL components are

mapped to PSP components models during application derivation.

As shown in Figure 5.9 each PL Jigsaw Piece in the PSPL model is mapped to one

Jigsaw Piece in the PSP model. Similar each PL Jigsaw Piece Connector in the PSPL

component model will be mapped to a Jigsaw Piece Connector in the PSP model. PL

Jigsaw Piece Parameters are mapped to Jigsaw Piece Parameters. The PL Jigsaw Piece

Inputs and PL Jigsaw Piece Outputs are mapped to Jigsaw Piece Input and Jigsaw Piece

Outputs.

5.4 Platform Independent Meta-models

In order to develop end user applications that do not depend on any particular EUD

environment, the PSPL and PSP meta-models were extended to create the Platform

Independent Product Line (PIPL) and the Platform Independent Product (PIP) meta-

105

models. The platform independent models apply to all EUD environments that support a

component and connector architecture.

5.4.1 Platform Independent Product Line (PIPL)

Similar to the PSPL, the PIPL meta-model consists of the Feature and the

Component meta-models. The Feature meta-model is the same as the PSPL shown on

Figure 5.4. The Component meta-model is designed to support common component

connector functionality across different EUD environments.

Figure 5.10 shows the PIPL component meta-model. In detail, each feature in the

PIPL is realized by one or more PL Components, is connected by zero or more PL

Component Connectors, and is parameterized by zero or more PL Component Parameters.

PL Components are similar to PL Activity Sheets in the TeC PSPL and PL Jigsaw Pieces

in the Jigsaw PSPL. PL Components represent software applications and devices that are

PL Jigsaw Piece

PL Jigsaw Piece

Connector

PL Jigsaw Piece

Parameter

(Product)

Jigsaw Puzzle

1..*
Jigsaw Piece

Jigsaw Piece

Connector

Jigsaw Piece

Parameter

0..*

0..*

Feature

1..*

isCreated

Jigsaw Platform Specific Product

isRealized

isConnected

isParameterized

0 *

0 *

1 *

Jigsaw Platform Specific Product Line

Feature

isRealized

isConnected

isParameterized

PSPL to PSP

Figure 5.9 PSPL to PSP Mapping for the Jigsaw Platform

106

part of the smart space. PL Components can be kernel, optional or variant and they have

zero or more PL Inputs and PL Outputs. The PL Input meta-class contains information

about the PL Component required interfaces and the PL Output meta-class about the PL

Component provided interfaces. PL Component Connectors indicate the way PL

Components within a product line feature are connected. For instance, PL Outputs of one

PL Component can be connected to PL Inputs of another PL Component. PL Inputs send

data to zero or more PL Component Connectors and PL Inputs receive data from zero or

more PL Component Connectors. PL Component Connectors can be kernel, optional or

variant. Finally, PL Components are configured by zero or more PL Component

Parameters.

Feature

PL Component PL Output PL Input

PL Component
Connector

has

isSend

has

PL Component
Parameter

isConfigured

0..*

0..*

0..*

0..*

0..*

isReceived
0..*

1..*

isConnected

isParameterized

isRealized

0..*

Kernel
PL Component

Connector

Optional
PL Component

Connector

Variant
PL Component

Connector

Kernel
PL Component

Optional
PL Component

Variant
PL Component

Component Metamodel

Figure 5.10 Platform Independent Product Line (PIPL) Meta-model

107

5.4.2 Platform Independent Product (PIP)

The Platform Independent Product (PIP) meta-model provides the underlying

representation of end user applications in terms of meta-classes and relationships, which

are derived from the PIPL meta-model. Figure 5.11 shows the PIP meta-model. End user

applications in the PIP meta-model are represented by the Product meta-class. A Product

in the PIP meta-model is composed of one or more Components. Components represent

meta-classes of the smart space (devices, applications, sensors, etc.). Components of a

product are connected by zero or more Component Connectors. Components can have zero

or more Inputs to receive data and zero or more outputs to send data. The Component

connector meta-class contains information about interconnecting Component Outputs and

Component Inputs. Finally a Product in the PIP meta-model is parameterized by zero or

more Component Parameters.

Component Output Input

Component

Connector

has

isSend
has

Component

Parameter

isConfigured

0..*

0..*
0..*

0..*

0..*

isReceived

0..*

1..*
0..*

isConnectedisParameterized

isRealized

Product
(End User Application)

0..*

Figure 5.11 Platform Independent Product (PIP) Meta-model

108

5.4.3 PIPL to PIP Meta-model Mappings

 Figure 5.12 shows the PIPL to PIP meta-model component mappings needed to

derive end user applications from the product line. Similar to the PSPL to PSP meta-model

mappings, the components of the selected features are derived from the PIPL model. The

PIPL components are mapped to PIP models following the mappings shown in Figure 5.12.

In detail, PL Components that are part of each feature are mapped to Components in the

PIP model, PL Component Connectors are mapped to Component Connectors and PL

Component Parameters are mapped to Component Parameters in the PIP model. PL Inputs

and PL Outputs are mapped to the Input and Output meta-classes in the PIP model.

PL Component

PL Component

Connector

PL Component

Parameter

Product

1..*
Product Component

Product Component

Connector

Product Component

Parameter

0..*

0..*

Feature

1..*

Platform Independent Product

isRealized

isConnected

isParameterize
d

0 *

0 *

1 *

Platform Independent Product Line

Feature

PIPL to PIP

isRealized

isConnected

isParameterize
d

isCreated

1 1

1 1

1 1

Figure 5.12 PIPL to PIP meta-model mappings

109

5.5 Platform Independent to Platform Specific Mappings

Platform independent models need to be mapped to platform specific models in

order to be deployed to a specific end user environment. This section describes the

component meta-class mappings between platform independent and platform specific

meta-models. Figure 5.13 shows the platform independent to platform specific mappings

in the EU SPL meta-model.

The PIPL to PSPL meta-model mapping shown in Figure 5.13 enables EU SPL

designers to develop product lines that can be mapped to EU SPLs for different EUD

environments. Another benefit of the PIPL to PSPL meta-model mapping is that EU SPL

designers can develop basic EU SPL functionality as platform independent models, and

map the EU SPL to a platform specific model. At the platform specific layer the EU SPL

designers can extend the EU SPL with platform specific functionality. This allows EU SPL

designers to reuse and extend EU SPL models across different platforms. The following

Platform Independent
Product Line

(PIPL)

Platform Independent
Product

(PIP)

Platform Specific
Product Line

(PSPL)

Platform Specific
Product

(PSP)

PIPL
to

PSPL

PIP
to

PSP

1..*

1

1..*

1

Figure 5.13 Platform Independent to Platform Specific Mappings

110

sections describes the PIPL to PSPL meta-model mappings for TeC and Jigsaw EUD

environments. The PIP to PSP meta-model mapping enables end users to derive platform

independent application models from the PIPL that are then mapped to specific end user

environments. This section describes the PIP to PSP meta-model mappings for the TeC

and Jigsaw architectures.

5.5.1 PIPL to TeC PSPL Meta-model Mappings

Figure 5.14 shows the component mapping of the PIPL meta-model to the TeC

PSPL meta-model. The component mapping can be used for converting platform

independent product line models to TeC platform specific product line models. In detail,

there is a one-to-one relationship between PL Components in the PIPL meta-model and the

PL Activity sheets in the TeC PSPL meta-model. Similarly, there is a one-to-one

relationship between PL Component Connectors and PL Activity Connectors in TeC PSPL,

Feature

1..*
PL Activity Sheet

PL Activity

Connector

PL Activity

Parameter

0..*

0..*

TeC Platform Specific Product
Line

PL Location

isDeployed

0 *

PL Component

PL Component

Connector

PL Component

Parameter

isRealized

isConnected

isParametrized

0 *

0 *

1 *

Platform Independent Product Line

Feature

PIPL to PSPL

isRealized

isConnected

isParameterized

1 1

1 1

1 1

Figure 5.14 PIPL to TeC PSPL Meta-model Mappings

111

and between PL Component Parameters in PIPL and PL Activity Parameters. PL Inputs

and PL Outputs in the in the PIPL meta-model are mapped to PL Inputs and PL Outputs in

the TeC PSPL meta-model. The PL Payload and PL Location are specific meta-classes of

TeC and do not map to PIPL. The PIPL meta-model was not extended with the PL Payload

and PL Location meta-classes because the PIPL to PSPL model mapping will not be

successful for EUD environments that do not support these meta-classes.

5.5.2 PIPL to Jigsaw PSPL Meta-model Mappings

Figure 5.15 shows the component mapping of the PIPL to the Jigsaw PSPL meta-

model. The component mapping can be used for converting platform independent product

line models to Jigsaw platform specific product line models. In particular, there is a one-

to-one relationship between PL Components in the PIPL and PL Jigsaw Pieces in the

Jigsaw PSPL. There is also a one-to-one relationship between PL Component Connector

meta-classes and PL Jigsaw Piece Connectors, and between PL Component Parameters

and PL Jigsaw Piece Parameters. PL Inputs, PL Outputs in the PIPL meta-model are

mapped to PL Inputs and PL Outputs in the Jigsaw PSPL meta-model.

5.5.3 PIP to TeC PSP Meta-model Mappings

Figure 5.16 shows the platform independent product to TeC platform specific

products component meta-model mappings. The component mapping can be used for

converting PIP models to TeC PSP models. In detail, there is a one-to-one relationship

112

between a Product in the PIP meta-model and a Team Design in TeC. Both the Product and

Team Design meta-classes represent end user applications. There is also a one-to-one

relationship between Components in PIP and Activity Sheets in the TeC PSP meta-model.

Similar there is a one-to-one relationship between Component Connectors and Activity

Connectors, and between Component Parameters and Activity Parameters. There is also a

one-to-one mapping between Inputs and Outputs in the PIP model and the corresponding

Inputs and Outputs in the TeC PSP meta-model. The Payload and Location meta-classes

are specific to TeC and there is no mapping to the PIP model.

5.5.4 PIP to Jigsaw PSP Meta-model Mappings

Figure 5.17 shows the platform independent product to Jigsaw platform specific

product meta-model mappings. The component mapping can be used for converting PIP

models to Jigsaw PSP models. In detail, there is a one-to-one relationship a Product in the

Feature

1..*
PL Jigsaw Piece

PL Jigsaw Piece

Connector

PL Jigsaw Piece

Parameter

0..*

0..*

Jigsaw Platform Specific Product Line

PL Component

PL Component

Connector

PL Component

Parameter

isRealized

isConnected

isParameterized

0 *

0 *

1 *

Platform Independent Product Line

Feature

PIPL to PSPL

isRealized

isConnected

isParameterized

1 1

1 1

1 1

Figure 5.15 PIPL to Jigsaw PSPL Meta-model Mappings

113

PIP meta-model with a Jigsaw Puzzle in Jigsaw. Both the Product and Jigsaw Puzzle meta-

classes represent end user applications. There is also a one-to-one relationship between

Components in PIP with Jigsaw Pieces in the Jigsaw PSP meta-model. Similar there is a

Component

Component

Connector

Component

Parameter

Team Design

1..*
Activity Sheet

Activity

Connector

Activity

Parameter

0..*

0..*

Feature

1..*

isCreated

TeC Platform Specific Product

isConnected

0 *

0 *

1 *

Platform Independent Product

Product

PIP to PSP

 Location

isDeployed

0 *

isRealized

isConnected

isParameterized

1 1

1

1

1

1

isParameterized

isRealized

Feature

isCreated

1..*

Figure 5.16 PIP to PSP Mapping for the TeC EU Platform

Component

Component

Connector

Component

Parameter

Jigsaw Puzzle

1..*
Jigsaw Piece

Jigsaw Piece

Connector

Jigsaw Piece

Parameter

0..*

0..*

Feature

1..*

isCreated

Jigsaw Platform Specific
Product

isRealized

isConnected

isParameterized

0 *

0 *

1 *

Platform Independent Product

Product

PIP to PSP

isRealized

isConnected

isParameterized

1 1

1 1

1 1

Feature

1..*

isCreated

Figure 5.17 PIP to PSP Mapping for the Jigsaw EU Platform

114

one-to-one relationship between Component Connectors with Jigsaw Piece Connectors and

Component Parameters with Jigsaw Piece Parameters. Finally, there is a one-to-one

mapping between Inputs and Outputs in the PIP model and the corresponding Inputs and

Outputs in the Jigsaw PSP meta-model.

5.6 Summary

As EUD environments for smart spaces expand, end users will be faced with the

challenge of having to develop the same type of applications for different environments.

EU SPLs for smart spaces enables end users to derive software applications for their

individual spaces. This chapter described the EU SPL meta-model for creating end user

product lines. The EU SPL meta-model consists of platform independent and platform

specific meta-models. The platform specific meta-models were discussed in context of the

TeC and Jigsaw end user environments. The platform independent meta-model is an

abstract meta-model for creating product lines for end user environments that supports

component and connector architecture. The chapter also presented the meta-model

mappings between platform independent and platform specific meta-models to indicate the

way platform independent models can be mapped to specific end user environments.

115

6 END USER SOFTWARE PRODUCT LINE PROTOTYPE (EUSPLP)

DEVELOPMENT ENVIRONMENT

6.1 Introduction

This chapter describes the End User Software Product Line Prototype (EUSPLP)

development environment created to validate this research. The EUSPLP environment was

designed to support end users and extend End User Development (EUD) environments for

smart spaces with product line support. The environment provides end user oriented

interfaces to enable EU SPL designers to develop End User (EU) Software Product Lines

(SPL) and end users to derive applications. The EUSPLP environment was created using

the EU SPL process and the EU SPL meta-models described in Chapters 4, and Chapter 5

respectively. In addition, the EUSPLP environment was used to implement the Smart

Home EU SPL case study described in the Appendix and to derive end user applications

for the TeC EUD environment.

The chapter is organized as follows: Section 6.2 describes the system use cases that

the EUSPLP implements. Section 6.3 discusses the overall EUSPLP system architecture.

Section 6.4 provides an overview of the physical meta-models developed for the EUSPLP

to represent EU SPLs for smart spaces and derived applications. Section 6.5 describes in

detail the EUSPLP EU SPL Development subsystem used to develop product lines. Section

6.6 discusses the EUSPLP Application Derivation subsystem used to derive applications

from the EU SPL. Section 6.7 describes the process for deploying EU SPL derived

applications to the Team Computing (TeC) environment. Finally section 6.8 provides a

summary of this chapter.

116

6.2 EUSPLP System Use Cases

There are five main use cases shown in Figure 6.1 that the EUSPLP development

environment supports: (1) Manage EU SPL, (2) Create EU SPL, (3) Edit EU SPL, (4)

Derive EU SPL Application, and (5) Import Derived Application. The use cases have two

main actors that interact with the EUSPLP environment: (1) the EU SPL designer, and (2)

the End user. The EU SPL designer is an advanced end user or domain expert who creates

and maintains the EU SPL. The end user derives an EU SPL application and initiates the

application deployment process to the EUD environment.

The Manage EU SPL use case captures the interactions between the EU SPL

designer and the EUSPLP environment to create and maintain the EU SPL. In particular,

during this interaction, EU SPL designers create product line features and develop the

component architectures to realize them. The EUSPLP environment stores the EU SPLs

created by EU SPL designers for application derivation. The Manage EU SPL use case

includes the Create EU SPL and Edit EU SPL use cases.

The Derive EU SPL Application use case captures the interactions between the End

user and the EUSPLP environment to derive applications from the EU SPL. In particular,

during application derivation, end users select and configure the EU SPL features needed

for their spaces. The EUSPLP environment, based on the end user selections, extracts the

components and component connectors for the selected features and generates the derived

application architecture.

117

The Import Derived Application use case captures the interactions between the End

User and the EUSPLP environment to import a derived application to the end user

environment. In particular, the end user imports and stores the derived application from the

EUSPLP to the EUD environment. End users interact with EUD environment to deploy the

end user application to the smart space.

End User Software Product Line Prototype

(EUSPLP)

Manage EU SPL

Derive EU SPL
Application

Import Derived
Application

End User

EU SPL

Designer

Create EU SPL Edit EU SPL

<<include>> <<include>>

 Figure 6.1 EUSPLP Use Cases

118

6.3 EUSPLP System Architecture

The EUSPLP development environment was created in Java and is packaged to be

deployed in any compatible Java Platform Enterprise Edition (Brock et al., 2014) (Java EE)

application server implementing the Java Servlet, Java Server Pages and Java Expression

Language specifications. In this research, EUSPLP was deployed in the Java EE Apache

Tomcat server that implements the required specifications. The reasons that motivated the

selection of Java and the Java EE platform were that the technologies are open source,

portable and provide web support.

 The open source characteristics makes the EUSPLP environment to not depend on

any proprietary technologies. The EUSPLP can be deployed in any operating system that

runs Java. The Java EE web support is another feature that the EUSPLP prototype utilizes.

The EUSPLP user interface is written using HyperText Markup Language (HTML)

(Pilgrim, 2010), and JavaScript (Duckett, 2014) technologies. EU SPL designers and end

users, interface with the EUSPLP using web browsers. The EUSPLP user interface

communicates with the EUSPLP server using Representational State Transfer (REST)

services (Richardson and Ruby, 2007) over the HyperText Transfer Protocol (HTTP)

(Totty et al., 2002). REST is a client-server architecture which uses the HTTP protocol.

REST services are represented as different URIs in the server that represent different

resources. HTTP methods (POST, GET, PUT, DELETE) are used to create, update, modify

and delete server resources. JavaScript Object Notation (JSON) (Taylor, 2014) is used as

the format for messages exchanged between the EUSPLP client (user interface) and

EUSPLP server. JSON is a lightweight human readable data format. Data in JSON are

119

represented as nested key-value pairs. JSON is an alternative format to XML. XML uses a

rich markup language for data representation versus JSON that uses a simpler

representation. The JSON format is common across JavaScript frameworks used for

asynchronous browser / server communication. Similar TeC is communicating with the

EUSPLP using REST services and JSON messages over HTTP.

Figure 6.2 shows the EUSPLP subsystem architecture and processes. The EUSPLP

subsystem is composed of four subsystems developed as part of this research: (1) EU SPL

Development, (2) Application Derivation, (3) Application Distributor, and (4) TeC

EUSPLP Adaptor. EU SPL Development subsystem provides the user interface, services

and storage mechanisms for EU SPL designers to create and edit end user product lines.

The Application Derivation subsystem provides the user interface, services and storage

mechanisms for end users to derive TeC applications. The Application Distributor

subsystem provides services for external systems to query and retrieve the derived

application. . The TeC EUSPLP Adaptor subsystem is responsible for acquiring the

application derivation specification from the Application Distribution subsystem and

sending it to the target TeC environment to be stored in the TeC database. End users can

utilize the TeC environment to complete the application deployment.

120

<<subsystem>>

EU SPL

Development

<<subsystem>>

Application

Derivation

EU SPL Designer

End User

EUSPLP
<<subsystem>>

EU SPL
(JSON)

EU SPL VIEW
(JSON)

TeC App
(JSON)

1. Submit EU SPL 1.2 Store TeC PSPL

2. Submit Feature
Selection

2.1 Extract TeC App
(PSPL PSP)

2.2 Store TeC App
(PSP)

3.4 TeC App
(JSON)

Smart Space TeC

Components/

Devices4.2 Instruct TeC
Components

Application
Deployment Process

EU SPL Development
Process

Application
Derivation Process

<<subsystem>>

Application

Distributor

End User

<<subsystem>>

TeC

<<subsystem>>

TeC EUSPLP

Adaptor

TeC
Database

3. Import
Application to

TeC

3.2 Retrieve TeC App

3.5 Store
TeC App

4. Deploy
TeC App

3.1 Request
TeC App

4.1 Retrieve
TeC App

3.6 Store App

3.3 TeC App

1.1 Store EU SPL Visual
Representation (PIPL)

<<operating-system>>

Android

 Figure 6.2 EUSPLP Subsystem Architecture and Processes

121

The EUSPLP supports three major processes shown in Figure 6.2: (1) EU SPL

Development, (2) Application Derivation, and (3) Application Deployment. The EU SPL

Development process enables end users to develop and store EU SPLs that can be used for

deriving EU applications. In detail, after developing product line features, EU SPL

designers submit the EU SPL to the EU SPL Development subsystem for processing

(shown in step “1. Submit EU SPL” in Figure 6.2). The EU SPL Development subsystem

stores the EU SPL Platform Independent Product Line (PIPL) model (shown in step “1.1

Store EU SPL Visual Representation (PIPL)”) in JSON format. The PIPL captures the EU

SPL visual representation. The EU SPL Development subsystem converts the PIPL model

to the TeC Platform Specific Product Line (PSPL) model. The TeC PSPL is serialized as

JSON in the file system for long term storage, as shown in step “1.2 Store TeC PSPL.”

The Application Derivation process enables end users to derive applications for

their smart spaces. In detail, the Application Derivation process starts with the end user

selecting features from the EU SPL and submitting the selections to the Application

Derivation subsystem, as shown in step “2. Submit Feature Selection” in Figure 6.2. The

Application Derivation subsystem extracts the component architecture of the selected

features from the PSPL (shown in step “2.1 Extract TeC App (PSPL PSP)”) and

generates the TeC App (PSP). The TeC App is serialized to JSON in the file system, as

shown in step “2.2 Store TeC App (PSP)” in Figure 6.2.

The Application deployment process enables end users to import derived

applications to the TeC environment and deploy them to their smart spaces. The

Application Deployment process starts with the end user interfacing with the TeC EUSPLP

122

Adaptor deployed in the target TeC platform e.g., Android. In detail, The TeC EUSPLP

Adaptor subsystem interacts with the Application Distributor to retrieve the derived

application (shown in steps “3. Import Application to TeC” through “3.4 TeC App (JSON)”

in Figure 6.2) and stores the derived application to the TeC environment (shown in steps

“3.5 Store TeC App” through “3.6 Store Appp” in Figure 6.2). To complete the deployment

process of the derived application, the end user interacts with the TeC subsystem, as shown

in step “4. Deploy TeC App” in Figure 6.2. The TeC subsystem retrieves the TeC App, as

shown in step “4.1 Retrieve TeC App”, decomposes the TeC App into a set of individual

instructions for TeC components and devices available in the smart space and

communicates with the components / devices to provide them with application instructions

as shown in step “4.2 Instruct TeC Components” in Figure 6.2.

6.4 EUSPLP Meta-models

This section describes the physical meta-models created for the EUSPLP

development environment to represent: (a) EU SPLs for TeC (TeC PSPL), and (b) TeC

applications (TeC PSPs). The EUSPLP physical meta-models are based on the TeC PSPL

and PSP meta-models described in Chapter 5. In detail, this section describes how the TeC

PSPL meta-model described in Chapter 5 was implemented in the EUSPLP to represent

TeC EU SPLs. In addition, the section describes how the TeC PSP meta-model described

in Chapter 5 was implemented to represent a TeC application. The TeC PSPL meta-model

created for the EUSPLP was created as part of the development of the EUSPLP. The part

of the TeC physical meta-model used by the EUSPLP to represent the TeC application,

123

excluding the meta-classes used for TeC application deployment, was implemented as part

of this research.

6.4.1 EUSPLP TeC PSPL Meta-model

The EUSPLP TeC PSPL meta-model describes the meta-classes and their

relationships used to represent a TeC EU SPL. The EUSPLP TeC PSPL meta-model is

divided into three logical areas: (1) Feature meta-model, (2) Feature to TeC EU SPL

Component meta-model relationships, and (3) TeC EU SPL Component meta-model. The

sections below describe in detail each of the meta-models.

Figure 6.3 shows the TeC PSPL Feature meta-model. In detail, the EUSPL meta-

class is used to capture the TeC product line information. The EUSPL meta-class has one

or more Features. The Feature meta-class captures information about product line features.

Each Feature can be a member of zero-or-one FeatureGroup. The FeatureGroup meta-class

is used to group a set of related Features with a particular constraint on their usage in a

derived application. The feature group types supported by the EUSPLP are

AT_LEAST_ONE_OF_FEATURE_GROUP,

EXACLY_ONE_OF_FEATURE_GROUP, ZERO_OR_ONE_OF_FEATURE_GROUP

and ZERO_OR_MORE_OF_FEATURE_GROUP. Each Feature meta-class contains

exactly one FeatureVariability meta-class to describe the variability of the Feature meta-

class. The variability types supported by the EUSPLP are COMMON, OPTIONAL,

DEFAULT_OPTIONAL, DEFAULT_ALTERNATIVE, ALTERNATIVE and

PARAMETERIZED_FEATURE. A Feature can itself contain zero or more Features. This

relationship is shown in Figure 6.3 through the childFeatures attribute attached to the

124

Feature meta-class. Nested Features relationships are used in the EUSPLP to represent the

EU SPL as a Feature hierarchy.

Figure 6.4 shows the relationships between the Feature meta-class and the TeC EU

SPL Component meta-model. The TeC EU SPL Component meta-model contains the

meta-classes and relationships needed for the implementation of each Feature. As shown

on Figure 6.4 the component meta-classes associated to the Feature meta-class are:

PL_Activity_Sheet, PL_Activity_Connector, PL_Location, and PL_Activity_Parameter.

The PL_Activity_Sheet meta-class represents TeC components extended with product line

Figure 6.3 EUSPLP TeC PSPL - Feature Meta-Model

125

semantics to capture variability. TeC components represent devices and software available

in a TeC environment. Examples of PL_Activity_Sheet meta-classes are phones, cameras,

motion sensors, etc. A Feature can have one or more PL_Activity_Sheet meta-classes. The

PL_Activity_Connector meta-class captures connectivity of PL_Activity_Sheet meta-

classes related to a Feature. Features can have zero or more PL_Activity_Connector meta-

classes. The PL_Location meta-class captures location information applicable to a given

Feature. The PL_Activity_Parameter meta-class captures configurable internal parameters

Figure 6.4 Feature to TeC EU SPL Component Meta-Model Relationships

126

of the PL_Activity_Sheet. Feature meta-classes can have zero or more

PL_Activity_Parameter meta-classes.

Figure 6.5 shows the TeC EU SPL Component meta-model. In detail, the

PL_Activity_Sheet meta-class has zero or more PL_Input and PL_Output meta-classes.

The PL_Input meta-class captures input events and the PL_Output meta-class captures

output events or data streams of the PL_Activity_Sheet meta-class. Examples of data

streams can be audio or video data. The PL_Input events capture changes in the

environment and based on the input values can modify the internal state of the

PL_Activity_Sheet meta-class. The PL_Output events cause output events to be generated

Figure 6.5 TeC EU SPL Component Meta-Model

127

when changes occur in the internal state of the PL_Activity_Sheet. The PL_Output events

have a triggering condition that is based on the PL_Activity_Sheet internal variables. The

PL_Payload meta-class captures the data elements send by output events to inputs.

As shown on Figure 6.5 the PL_Output and PL_Input events have zero or more

payload data. The PL_Output is connected to the PL_Input through the

PL_Activity_Connector meta-class in order to connect different components. The

PL_Activity_Connector meta-class combines inputs, outputs and payloads to ensure data

integrity. The PL_Activity_Connector meta-class has one PL_Output to indicate the

beginning of the component connection, one PL_Input to indicate the end of the component

connection and zero-or-one PL_Payload to indicate the data payload to be used between

the PL_Output and PL_Input events. Each PL_Activity_Sheet meta-class can have zero-

or-one Grouping. The Grouping meta-class represents the way that the PL_Activity_Sheet

is applied to the physical environment. For example a PL_Activity_Sheet with grouping

type “All” represents all devices/components in the physical environment that implement

the activity type that the PL_Activity_Sheet meta-class represents. The grouping type

“Location” represents all devices/components in a given location and “Any” represents any

device/component that implement the activity type that the PL_Activity_Sheet meta-class

represents. The ComponentVariability meta-class captures the PL_Activity_Sheet

variability information. Finally each PL_Activity_Sheet meta-class belongs to one

ActivityType. The ActivityType meta-class is used to indicate the type of a

PL_Activity_Sheet. For example consider an ActivityType that represents a motion sensor.

The ActivityType for the motion sensor exposes an Application Programming Interface

128

(API) for TeC meta-classes to use. A PL_Activity_Sheet meta-class that belongs to the

motion sensor ActivityType represents an instance of the ActivityType and inherits all API

functions from the type.

6.4.2 TeC Physical Meta-Model

This section describes the TeC Physical meta-model. The meta-model was used by

the EUSPLP development environment to represent derived applications for TeC. The TeC

meta-model excluding the DeviceManager / Player meta-classes and their relationships

were developed as part of this research. The meta-model is used by the TeC Android

simulator (Shen, 2014) (a) to capture the structure of TeC applications developed by end

users, and (b) to map TeC application components to devices in the TeC environment

during application deployment.

Figure 6.6 TeC PSP Physical Meta-Model

129

The EUSPLP environment during application derivation, retrieves the components

and connectors that realize the selected features from the EU SPL and maps them to the

TeC meta-model in order to create the TeC application. The TeC application is stored in

the TeC environment during the application deployment process. Figure 6.6 shows the

meta-classes and relationships of the TeC physical meta-model. The main meta-classes of

the TeC meta-model are the: TeamDesign, Location, ActivityParameter, ActivitySheet,

ActivityType, Input, Output, Payload, ActivityConnector, DeviceManager and Player.

Table 6.1 provides a brief description for each meta-class. The EUSPLP uses the entire

TeC physical meta-model shown on Figure 6.6 to represent TeC applications, besides the

DeviceManager and the Player meta-classes. The DeviceManager and Player meta-classes

are used to capture low level application deployment information in the TeC environment.

Table 6.1 TeC PSP Physical Meta-Model

Meta-Class Name Meta-Class Description

ActivityType Captures the logical component type (phone, moisture sensor,

etc).

ActivitySheet Capture ActivityType instances in TeC applications

TeamDesign Captures a TeC Application

Location Captures the location of the TeC Application

Input Captures the input events of the ActivitySheet

Output Captures the output events of the ActivitySheet

Payload Captures the payload send between outputs/inputs

ActivityConnector Captures the output/input connectivity

ActivityParameter Captures the parameters of the ActivitySheet

DeviceManager Captures the device information that implement each

ActivityType. Each device has to extend the DeviceManager

class. For this research the TeC devices were extended to

support the Smart Home case study

Player Captures device instances of different devices that are part of a

TeC Application

130

6.5 EUSPLP EU SPL Development Subsystem

Figure 6.7 shows the internal composition of the EU SPL Development subsystem

and the EU SPL designer interactions. The EU SPL Development subsystem is composed

of six components: (1) EU SPL Editor, (2) EU SPL Retriever, (3) EU SPL Manager, (4)

EU SPL View, (5) PIPLtoPSPLProcessor, and (6) EU SPL Storage. The EU SPL Editor

provides the user interface for developing EU SPLs. The EU SPL Retriever provides the

user interface to query existing EU SPLs. The EU SPL Manager provides the services for

creating and retrieving EU SPLs. The EU SPL View provides services for storing and

retrieving the visual representation (PIPL) of the EU SPL. The PIPLtoPSPLProcessor

generates the TeC product line model (TeC PSPL) from the visual representation (PIPL).

The EU SPL Storage provides services for storing and retrieving the TeC PSPL. The reason

for having different components is to have separation of concerns on the functionality

provided by each of the components. With this approach, components can be reused by

<<user interface>>

EU SPL Retriever

<<user interface>>

EU SPL Editor

<<business logic>>

EU SPL Manager

<<processor>>

PIPLtoPSPLProcessor

<<entity>>

EU SPL Storage

(TeC PSPL)

<<entity>>

EU SPL View

(PIPL)
EU SPL Development

<<subsystem>>

EU SPL
Designer

1. Create New
EU SPL or Edit

Existing
1.1 Request

PIPL

1.2 Retrieve Visual
Representation of PIPL
3.2 Store PIPL (JSON)

1.3 Visual
Representation of PIPL
(JSON)

1.4 PIPL
3.7 Ack

1.5 Display PIPL
2.1 Respond to
Designer input
3.8 Ack

2. Interact with EU SPL Editor
to create/edit the EUSPL
3. Submit EU SPL for Storage

3.1 Submit PIPL

3.3 Extract PSPL

3.4 TeC PSPL

3.5 Store TeC PSPL

3.6 Ack

Figure 6.7 EU SPL Development Subsystem and Component Interactions

131

other subsystems. Another benefit is that internal updates of individual components do not

affect the rest of the components.

The remainder of this section discusses the EU SPL designer interactions and inner

workings of the EU SPL Development subsystem. In detail, the EU SPL designer interacts

with the EU SPL Retriever component to retrieve or create a new EU SPL, as shown in

steps “1. Create New EU SPL or Edit Existing” in Figure 6.7 through “1.5 Display PIPL.”

The EU SPL designer interacts with the EU SPL Editor to create or edit the EU SPL, as

shown in step “2. Interact with EU SPL Editor to create/edit the EUSPL” in Figure 6.7.

The EU SPL Editor responds to the EU SPL Designer inputs, as shown in step “2.1

Respond to Designer input.”

Next, the EU SPL designer submits the EU SPL to the EU SPL Editor, as shown in

step “3. Submit EU SPL for Storage” in Figure 6.7. The EU SPL Editor submits the EU

SPL to the EU SPL Manager in JSON format as shown in step “3.1 Submit PIPL.” The

communication between the EU SPL Editor and the EU SPL Manager is through REST

services. The JSON message that the EU SPL Editor sends contains PIPL with visual

representation constructs used by the user interface of the editor. The EU SPL Manager

sends the PIPL to the EU SPL View component to store the PIPL shown in step “3.2 Store

PIPL.” After the PIPL view is stored, the EU SPL Manager sends the PIPL to the

PIPLtoPSPLProcessor shown in step “3.3 Extract PSPL” to convert the PIPL to the TeC

PSPL. The PIPLtoPSPLProcessor extracts the TeC PSPL specification, as a Java Object

representation, from the PIPL. The PIPLtoPSPLProcessor sends the TeC PSPL

specification to the EU SPL Manager as shown in step “3.4 TeC PSPL.” The EU SPL

132

Manager sends the TeC PSPL representation to the EU SPL Storage component for storage

shown in step “3.5 Store TeC PSPL.” The EU SPL Storage component stores the TeC

PSPL representation on the file system in JSON format and sends an acknowledgement

message to the EU SPL Manager shown in step “3.6 Ack.” Upon successful storage of the

TeC PSPL, the EU SPL Manager sends an acknowledgement message to the EU SPL

Editor shown in step “3.7 Ack.” The EU SPL Editor shows an acknowledgement message

to the EU SPL designer that the EU SPL has been stored successfully, as shown in step

“3.8 Ack.” The EU SPL designer can repeat the processes shown in Figure 6.7 to continue

evolving the EUSPL.

6.5.1 EU SPL Editor

Figure 6.8 shows the user interface of the EU SPL Editor used to develop EU SPLs.

The user interface utilizes an interactive tree structure for representing the EU SPL feature

model and a drag and drop interface for component designs to make it more natural for EU

SPL designers to use. The user interface is divided in four main sections: (1) The Feature

Model section, (2) The Feature Architecture section, (3) The Component Types section,

and (4) The Parameter Table.

133

Figure 6.8 EU SPL Editor User Interface

134

6.5.1.1 Feature Model Section

The Feature Model section is responsible for capturing the SPL feature model. The

Feature Model section was implemented in JavaScript by customizing and extending the

jsTree (Duckett, 2014) tree plugin of the jQuery technology. The EU SPL designer can

right click on the feature model section as shown in Figure 6.9 through Figure 6.11 to create

new features, platform dependent features and feature groups. The Feature Model is

represented as a hierarchical tree structure in the EUSPLP. The reason that a hierarchical

tree structure was used to represent the feature model versus a directed acyclic graph

normally used in traditional SPLs was to make it simpler for EU SPL designers to visualize

the product line features and their dependencies. Furthermore different icons were used as

a visual representation of different feature types. The visual representation of feature types

was used to simplify the user interface. The remainder of this section describes the visual

representations of the feature types.

The Feature Model section supports the creation of (a) common, (b) default

optional, (c) optional, (d) default alternative, and (e) alternative features. Common features

are represented with the exclamation mark icon in a black circle and represent features

that are required for application derivation. Default optional features are represented with

a white question mark icon in a black background and represent the default features from

a set of optional features. Optional features are represented with a black question mark

icon and represent features that are optional. Default alternative features are represented

with the icon and represent the default feature from a set of alternative features.

135

Figure 6.9 Feature Group Menu in the EU SPL Editor

Figure 6.10 Feature Menu in the EU SPL Editor

Figure 6.11 Platform Dependent Menu in the EU SPL Editor

136

Alternative features are represented with icon and represents mutually exclusive

features. The feature model also supports platform dependent features, which are features

that are only applicable to a specific end user environment.

The Platform dependent features supported by the prototype are (a) common, (b)

default optional, (c) optional, (d) default alternative, and (e) alternative features. The icons

representing platform dependent features are similar to regular features but in addition have

a dot indicator on the icon left corner. For example platform dependent common features

are represented with the exclamation mark icon having a white dot on the left corner.

Platform dependent default optional features are represented with a white question mark in

a back background icon having a white dot on the left corner. Platform dependent

optional features are represented with the question mark icon having a black dot on the

left corner. Platform dependent default alternative features are represented with the

icon having a white dot on the left corner. Alternative features are represented with

having a black dot on the left corner.

The feature groups supported by the prototype are (a) zero-or-more (b) zero-or-one

(c) one or more and (d) exactly-one. The EUSPLP is using the crow’s foot notation (Barker,

1990) to capture the cardinality of a feature group. The reason that Crow’s foot notation

was used in the EUSPLP was because the notation is widely used to represent entity

relationships in data models. In detail, zero or more feature groups indicate that zero or

more features can be selected from the feature group during application derivation. Zero or

more feature groups are represented with the following icon that has a circle to indicate

zero features connected to three lines to indicate multiple features. Zero-or-one feature

137

groups indicate that zero or one feature can be selected from the feature group during

application derivation. Zero-or-one feature groups are represented with the following icon

 that has a circle to indicate zero features connected to vertical line to indicate one

feature. One or more feature groups indicate that one or more features can be selected from

the feature group during application derivation. One or more feature groups are represented

with the following icon that has a vertical line to indicate one feature connected to three

lines to indicate multiple features. Exactly-one feature groups indicate that exactly one

feature can be selected from the feature group during application derivation. Exactly-one

feature groups are represented with the following icon that has two vertical lines to

indicate that minimum and maximum feature group cardinality is one. Table 6.2 displays

Table 6.2 EU SPL Editor Feature Model Notation

Feature Model Node

Notation

Feature Model Node Description

common feature

optional default feature

optional feature

alternative default feature

alternative feature

platform dependent common feature

platform dependent optional default feature

platform dependent optional feature

platform dependent alternative default

feature

platform dependent alternative feature

 zero-or-more feature group

 zero-or-one feature group

 one-or-more feature group

 exactly-one feature group

138

a summary of the EU SPL Editor Feature Model Notation used by the EUSPLP

environment.

 Internally each node on the feature model that describes a feature or a feature group

has the following properties: id, icon, and data. The id property captures the unique id of

each node on the feature model. The icon property captures the location of the icon

representation of the node in the feature model. The data object captures the data needed

to realize a product line feature. To create the EU SPL the EU SPL designer submits the

feature model including feature nodes with their properties to the EU SPL Manager.

6.5.1.2 Feature Architecture Section

The Feature Architecture section shown in Figure 6.12 is used to capture the

component/connector specification that realizes each feature. This section utilizes a drag

and drop interface. Drag and drop interfaces are ubiquitous and used daily by end users.

For instance drag and drop is used to resize windows in personal computers, tablets,

navigate maps, to scroll up and down a document (Appert et al., 2015). Furthermore the

What You She Is What You Get (WYSIWYG) principal used for end user development

(Burnett, 2009) aims to have end users relate their programs to the end result. By utilizing

the drag and drop interface, EU SPL designers can drag and drop components to the feature

architecture section and connect them together. The feature architecture section was

created in this research by customizing and extending the community edition of the

jsPlumb (Porritt 2016) JavaScript Library.

139

In detail, the Feature Architecture section contains components and component

connectors. The components are instances of TeC activity types. Components are

represented as rectangular boxes in the feature architecture section. Inputs of the

components are shown as gray boxes attached to the component box and outputs are shown

as orange boxes attached to the component box. Figure 6.12 shows an example of a

component design from the feature architecture section used to implement a feature. As

shown in Figure 6.12, there are three components, the infoAlertHandler, the

securityAlertHandler and the email. The infoAlertHandler and securityAlertHandler

components have two inputs: subscribe and receiveAlert and one output sendAlert. The

email component has one input notify and one output init. The design indicates that during

the initialization the email component subscribes to the infoAlertHandler and

securityAlertHandler components to receive messages. When a message is available the

Figure 6.12 EUSPLP Component Example

140

infoAlertHandler and securityAlertHandler components send alert messages to the notify

input of the email component. The email will send email notifications upon the receipt of

the alert message.

 The component internal representation contains the following properties:

comp_name, comp_type, variability_type, location, platform_name,

platform_specific_component_name, is_group, inputs, and outputs. The comp_name

property captures the component name. The comp_type property captures the activity type

of the component. The variability_type property captures if the component is kernel,

optional, variant, or default variant. The location property specifies the location name of

the component. The platform_name property is applicable if the component is platform

specific and indicates the name of the end user environment that the component applies.

The platform_specific_component_name property is also applicable if the component is

platform specific and indicates the component name in the end user environment that the

component applies. The is_group property specifies if the component represents a grouping

of components that implement the same activity type. The inputs property of the

component is an array and specifies the input events of each component.

Inputs events are component notifications that can cause changes in a component

state that can lead to the execution of component outputs. For example consider a

component that represents a DVD player. The component can have an input event play that

causes the DVD player to play a movie and output a video stream or an error message if

there is no DVD in the player. Each object on the input events array contains the following

properties: name, type, and a payloadlist. The name property specifies the name of the

141

event type, the type property specifies if the input event is of type event or a video data

stream and the payloadlist property specifies the payloads that the component needs to

handle an event. Payload objects are mainly name-value pairs. For example consider an

input event called “send-text” on a component that represents a cell phone. The send-text

event will need to have a payload list that will consist of two payload objects. The first

payload object will have a name called “phone_number” and value the actual phone

number for example “(999) 999-9999” that the text will be send. The second payload object

will have “message” as the name of the payload and the actual text that will be send as

value. In the EUSPLP all component inputs are inherited by the components type that they

represent. The outputs property of the component is an array and specifies the output events

of each component.

Output events are events generated by a component when it’s internal state changes.

For example consider a thermometer that makes a sound when a certain temperature gets

reached. The sound is the output event of the thermometer. To control output events there

are triggering conditions that when they are true the output event gets generated. Output

events are connected to input events of other components to create application logic. Each

object on the outputs array contain the following properties: name and triggering condition.

The name specifies the output name and triggering condition specifies the state of the

component that needs to be true in order for the output event to be generated. EU SPL

designers can specify component outputs during component designs. The component

connector object of the Feature Architecture section encapsulates the information needed

to connect two components.

142

6.5.1.3 Component Types Section

The Components Types section displays all available component types in the EU

SPL Editor that EU SPL designers can use to realize features. Since the EUSPLP targets

to derive applications that can be deployed to the TeC environment, the component types

used in the prototype are TeC activity types.

The properties of the component types are: id, name and inputTypes. The id and

name properties specify the id and name of component type. The inputTypes is an array of

input objects. To create or edit the component architecture of a feature, EU SPL designers

select the component type. Upon the component selection, the EU SPL Editor prompts the

EU SPL designer for additional component information (comp_name, variability_type,

location, platform_name, platform_specific_component_name, and is_group) needed to

create the component instance as shown in Figure 6.13. The EU SPL Editor combines the

component type and the EU SPL designer entered information to create the activity

instance in the Feature Architecture section. The component type user interface was

developed by extending the JQuery UI (Sarrion 2012) JavaScript libraries.

6.5.1.4 Parameter Table Section

The Parameter Table section specifies all parameters that need to be configured

either by the EU SPL designer or by the end users during application derivation. The

parameter table user interface is created by extending the editablegrid (Máca, 2016)

JavaScript libraries. The Parameter Table displays all component connector properties

applicable to a selected feature from the feature model. The parameter table gets auto

populated as EU SPL designers connect components in the Feature Architecture section to

143

implement a feature. The internal parameter table representation contains the following

properties: sourceactivityname, sourcetrigercondition, sourceoutput, targetactivityname,

targetinput, configuredRunTime, propertyname, propertyvalue and description. The

sourceactivityname specifies the name of the component name that that is the source of the

component connection. The sourcetrigercondition property specifies the triggering

condition that is needed for the output event to occur. The sourceoutput property specifies

the output name that the component connection starts. The targetactivityname property

Figure 6.13 Component Type Configuration

144

specifies the target activity of the component connection. The target input property

specifies the name of the input of the target activity that the component connection ends.

The configuredRunTime property specifies if the parameter need to be defined during

application derivation or if the parameter need to be specified by the EU SPL designer

during feature creation. The propertyname specifies the name of the input parameter that

needs to be specified by the output event for the target component to process the input

event. The propertyvalue specifies the value of the propertyname property. The description

property provides additional information about the propertyname property. All entries of

the parameter table are stored on the feat_properties array specified for each feature.

6.5.2 Feature Creation in the EU SPL Editor

To create a feature, EU SPL designers create a node on the feature model by

selecting the appropriate feature type. The Feature Architecture section and the Parameter

Table are reset to accommodate the new feature architecture and parameters. Child features

can be added under a feature node. Kernel features exist in all products derived by the

product line, so they should not depend on non-kernel (optional/variant) features types.

Optional and variant features can depend on kernel features or other features. After the

feature node is created EU SPL designers select the component types and add them to the

Feature Architecture section. As the EU SPL designers connect components to develop the

feature architecture, the parameter table gets auto-populated based on the components

configuration parameters. EU SPL designers configure the parameter table to complete the

feature realization. When EU SPL designers select existing nodes on the feature model, the

145

Feature Architecture and the Parameter table sections are restored and show the selected

feature design and parameter values.

6.5.3 PIPL JSON Representation

The EU SPL designers select the “Save EU SPL” button in the user interface of the

EU SPL Editor, shown in Figure 6.14 to store EU SPLs to the EUSPLP server. Internally

the EU SPL Editor extracts from client memory the product line design (PIPL), serializes

it to JSON format and sends it to the EU SPL Manager component for processing in the

EUSPLP server. The PIPL captures the EU SPL representation in JSON combined with

visual elements needed by the EU SPL Editor to display the end user product line.

Figure 6.14 shows part of the PIPL JSON representation created for the Smart

Home EU SPL case study. The left side of Figure 6.14 displays the row JSON format of

the Smart Home PIPL that was submitted to the EUSPLP for processing. The right side of

Figure 6.14 displays the PIPL JSON in a human readable format.

In detail, the right side of Figure 6.14 shows that the PIPL is submitted to the

EUSPLP server as an array. The array has one node named Smart Home and it contains

eight properties: id, text, icon, li_attr, a_attr, state, data and children. The icon, li_attr, a_attr

and state properties capture user interface information needed by the EU SPL editor. The

data property captures the feature architecture of the Smart Home feature. The EU SPL

Manager sends the PIPL JSON to the EU SPL View meta-class for storage as shown in

Figure 6.14. The PIPL will be retrieved and sent to the EU SPL Editor when the EU SPL

designers requests to edit the product line.

146

Figure 6.14 Sample PIPL JSON Representation

147

6.5.4 PIPL to TeC PSPL Processing

The PIPLtoPSPLProcessor generates, from the EU SPL visual representation

(PIPL), the TeC PSPL by following the PIPL to TeC PSPL mappings described in Chapter

5. The TeC PSPL created by the PIPLtoPSPLProcessor is distilled from visual elements

and is exclusively used to describe the end user product line for the TeC environment. The

separation of PIPL and TeC PSPL representations in the EUSPLP is used to decouple the

user interface from the core product line logic of storing /retrieving and deriving

applications form the TeC product line. This allows any updates to the user interface not

to affect the core product line logic and vice versa. Figure 6.15 shows the main methods of

the PIPLtoPSPLProcessor. In detail, the createPSPLfromPIPL method of the

PIPLtoPSPLProcessor starts the PIPL to TeC PSPL conversion. The createPSPLfromPIPL

method takes as input the JSON representation of the PIPL and returns the EUSPL object

that represents the TeC PSPL. The createPSPLfromPIPL method makes calls the

addFeaturetoPL method to extract the product line features from JSON and add it to the

Figure 6.15 Methods of the PIPLtoPSPLProcessor Class

148

product line. The addFeaturetoPL method makes calls to: (1) the getFeatureComponents

method to extract from the PIPL model the components that realize each feature (2) the

getFeatureConnectors method to extract the component architecture of each feature (3) the

getFeatureParameters method to extract the parameters of each feature (4) the

setVariability method to extract the variability type and set it on each feature and (5) the

addChildFeatures method that processes the child features. For each child feature the

addChildFeatures calls recursively the addFeaturetoPL method. In addition to the methods

above, there are also a set of utility methods defined to further extract feature and

component meta-classes from the PIPL. In detail the utility method: (1) setFeatureGroup

sets the group type of each feature, (2) getInputs extract the inputs of each component from

the PIPL, (3) getInputs extract the outputs of each component from the PIPL, and (4)

setComponentVariability sets the variability type of each component.

6.5.5 TeC PSPL JSON Representation

The output of the PIPLtoPSPLProcessor is the Java object representation of the

TeC PSPL. The EU SPL Manager sends the TeC PSPL java representation to the EU SPL

Storage class. The EU SPL Storage class converts the TeC PSPL java representation to

JSON and stores it to the file system.

Figure 6.16 shows part of the TeC PSPL JSON representation created for the Smart

Home EU SPL case study. The left side of Figure 6.16 displays the row JSON format of

the Smart Home TeC PSPL as it is stored in the file system. The right side of Figure 6.16

displays the TeC PSPL JSON in a more readable format.

149

Figure 6.16 Sample TeC PSPL JSON Representation

150

For instance, the right side of Figure 6.16 shows that the TeC PSPL is contained in

the Smart Home EUSPL object. The Smart Home EUSPL has one common feature named

Smart Home which is the root feature of the product line. The Smart Home feature is

common and is not a feature group. The Smart Home feature contains six childFeatures.

The six childFeatures are the Phone Alert, Net Notification, Home Security, Home

Behavior, Water Detector and Smart Irrigation features which in return have their own

features. Each feature on the EU SPL has the following properties: id, name, description,

featureVariability, featureGroup, pl_activity_parameters, childFeatures,

pl_activity_sheets, pl_activity_connectors, pl_locations, and platformDependent that

capture the architecture of each feature. The JSON TeC PSPL is stored on the file system

and gets accessed by the Application Derivation subsystem to derive the TeC Applications

(PSP) based on the end user selections.

151

6.6 End User Application Derivation

Figure 6.17 shows the internal composition of the Application Derivation

subsystem and the end user interactions needed to derive an application from the product

line. The Application Derivation subsystem is composed of six components: (1)

Application Derivation Editor, (2) EU SPL Derivation Loader, (3) Application Derivation

Manager, (4) EU SPL Storage, (5) ApplicationDerivationProcessor, and (6) TeCApp. The

Application Derivation Editor provides the user interface for deriving end user

applications. The EU SPL Derivation Loader provides the user interface for selecting EU

SPLs for application derivation. The EU SPL Manager provides the services and

coordinates the interactions of components for creating and retrieving EU SPLs. The

Application Derivation Manager provides services for retrieving the EU SPL and

deriving/storing end user applications. The EU SPL Storage provides services for storing

and retrieving the EU SPL. The ApplicationDerivationProcessor is used to derive

<<user interface>>

EU SPL Derivation

Loader

<<user interface>>

Application Derivation

Editor

<<business logic>>

Application

Derivation Manager

<<processor>>

ApplicationDerivation

Processor

<<entity>>

TeCApp

(TeC PSP)

<<entity>>

EU SPL Storage

(TeC PSPL)
Application Derivation

<<subsystem>>

End User

1. Request the EU
SPL for Application

Derivation
1.1 Request

TeC PSPL

1.2 Retrieve
TeC PSPL 1.3 TeC PSPL

1.4 TeC PSPL
3.6 Ack

1.5 Display TeC
PSPL
2.1 Respond to
the End User
Input
3.7 Ack

2. Interact with Application
Derivation Editor to Select
Features
3. Submit Feature Selections

3.1 Feature
Selections

3.2 Extract Derived
Application Specification

from TeC PSPL

3.3 TeC App

3.4 Store TeC App

3.5 Ack

Figure 6.17 Application Derivation Subsystem and Component Interactions

152

applications from the EU SPL. The TeCApp is used to store the derived applications in the

file system as JSON. The different components were created to organize the application

derivation logic and obtain separation of concerns. Thus each component is responsible for

specific functionality. The sections below describe the interactions of the end user with the

Application Derivation subsystem in detail.

The application derivation process starts with the End User that requests from the

EU SPL Derivation Loader the EU SPL to derive applications shown in step “1. Request

the EU SPL for Application Derivation.” The Application Derivation subsystem retrieves

the EU SPL (shown in steps “1.2 Retrieve TeC PSPL” through “1.4 TeC PSPL” in Figure

6.17) and populates the Application Derivation Editor user interface with the TeC PSPL

shown in step “1.5 Display TeC PSPL.”

The End User interacts with the Application Derivation Editor to select the features

needed for his/her smart space shown in step “2. Interact with the Application Derivation

Editor to Select Features” in Figure 6.17. The Application Derivation Editor responds to

the End User inputs shown in step “2.1 Respond to End User Input” with additional

configuration details for selected features

The End User submits his/her feature selections to the Application Derivation

Editor shown in step “3. Submit Feature Selections” in Figure 6.17 to derive an application

for his/her smart space. The Application Derivation subsystem derives the application and

stores it in the on the file system in JSON format (as shown in steps “3.1 Feature

Selections” through “3.7 Ack” in Figure 6.17).

153

6.6.1 Application Derivation Editor

Figure 6.18 shows the user interface of the Application Derivation Editor. The user

interface is divided in three main sections: (1) The Feature Selection, (2) The Application

Architecture, and (3) The Application Parameter table.

6.6.1.1 Feature Selection Section

The Feature Selection Section displays the end user view of the EU SPL feature

model called feature selection model. During application derivations the icon

representation used during product line creation is transformed to actionable checkboxes

and radio buttons that end users can use to select features for their smart spaces. The feature

selection model is similar to the feature model on the EU SPL Editor and is represented as

a tree data structure. The feature selection model was implemented in JavaScript by

customizing and extending the TreeView (Livingston, 2002) JavaScript library. The JsTree

library was also evaluated since it was used for the Feature Model Selection section of the

EU SPL Editor but does not support combinations of HTML checkboxes / and radio

buttons / .

In detail, the nodes of the feature selection model represent features and feature

groups. Common features are not selectable and only their name is displayed on the node.

The Smart Home feature shown on the Feature Selection Section in Figure 6.18 is an

example of a common feature.

154

Figure 6.18 Application Derivation Editor User Interface

155

Optional default and platform dependent optional default features are displayed as

checked checkboxes on the Feature Selection Section. The Text and Door features shown

on the Feature Selection Section in Figure 6.18 are examples of optional default features

displayed as checked checkboxes. Similar optional features and platform dependent

optional features are displayed as non-checked checkboxes. The Email and Motion features

shown in Figure 6.18 are examples of optional features displayed as non-checked

checkboxes.

Alternative default features and platform dependent alternative default features are

displayed as selected radio buttons. The Audio feature shown in Figure 6.18 is an example

of an alternative default feature. Alternative features and platform dependent alternative

features are displayed as non-selected radio buttons. The Video feature shown on Figure

6.18 is an example of a platform dependent alternative feature.

Feature groups appear as non-selectable and are used for grouping a set of features.

The Phone Alert, Net Notifications, Home Security, Home Behavior and Water Detector

feature groups shown on Figure 6.18 are examples of how features groups are displayed

on the feature selection model. End users can change the default options and select the

feature combinations needed for their spaces.

6.6.1.2 Application Architecture Section

The Application Architecture section is used to display the cumulative

component/connector architecture for all features selected by the end user. This section

utilizes the same interface as the one used on the Feature Architecture Section of the EU

SPL editor. As end user select features in the feature selection section of the Application

156

Derivation Editor the application architecture is shown in the Application Architecture

section shown in Figure 6.18 In detail, the EUSPLP environment derives the

component/connector architecture for the selected features and sends them as JSON objects

to the Application Derivation editor. The editor draws the components and connectors on

the Application Architecture section using the jsPlumb JavaScript framework.

6.6.1.3 Application Parameter Table

The Application Parameter Table section specifies all the derived application

parameters that need to be configured by end users. Similar as the parameter table in the

EU SPL Editor the application parameter user interface is created by extending the

editablegrid JavaScript libraries. The Application Parameter Table displays all component

connector properties applicable to the selected features in the feature selection model. The

parameter table gets auto-populated as end users select features in the Feature Selection

section.

6.6.2 Application Derivation Processor

The purpose of the ApplicationDerivationProcessor is to compose the Java object

representation of the TeC application architecture based on features selected by end users.

This section describes the approach followed to compose the TeC application architecture.

In detail, the Application Derivation Manager sends the EU SPL and feature name

selections to the ApplicationDerivationProcessor class to extract the TeC Application

model. Figure 6.19 shows the main methods of the ApplicationDerivationProcessor. In

detail, the createApplication method starts the TeC Application extraction. The

157

createApplication calls the getCommonFeaturesRecursive method to get the Java object

representation of the product line common features. After the common features are

retrieved the getFeaturefromEUSPLRecursive method is called to get the Java object

representation of the selected features. For each feature the activity sheet is extracted from

the PL_Activity_Sheet through the addActivitySheet method. For each activity sheet the

activity type is extracted through the addActivityType method. In addition for each activity

sheet inputs and outputs are extracted through the getInput and getOutput methods. The

payloads for inputs and outputs are extracted through the extractPayloadFromPL_Output

and extractPayloadFromPL_Input methods. The addInputConnections and the

addOutputConnections methods add other activity sheets connecting output and input ids

respectively. The addConnectors method adds all activity sheet connectors to the TeC

application. The getNextAppCompId method generates temporary IDs for

components/inputs/outputs and payloads needed to link them together.

Figure 6.19 Methods of the ApplicationDerivationProcessor Class

158

6.6.3 TeC Application JSON Representation

The ApplicationDerivationProcessor sends the derived Java object representation

of the TeC application to the Application Derivation Manager which then get Serialized as

JSON in the file system. Figure 6.20 shows part of the TeC Application JSON

representation created by the feature selections shown in Figure 6.18. The left side of

Figure 6.20 displays the row JSON format of the TeC Application as it is stored in the file

system. The right side of Figure 6.20 displays the TeC Application in a more readable

format. The main properties of the TeC application JSON shown in Figure 6.18 are:

teamdesign, team_activities, activity_types and activity_connectors. The team design

captures the ID and the name of the TeC application. As shown in Figure 6.20, the name

of the team is Smart Home EUSPL. The team_activities property is an array that contains

activity sheets. Activity sheets are TeC components. The team_activities array contains

seven activity sheets: securityAlertHandler, infoAlertHandler, alertAudio, call, text,

doorMonitor, breakInDoor shown on the Application Architecture section in Figure 6.18.

The activity_types array captures the types of the activity sheets. Figure 6.20 shows that

there are six activity types in the activity_types. The message-broker activity type is being

used by the securityAlertHandler and the infoAlertHandler activity sheets. The

activity_connectors array capture the input/output connectivity information between

activity sheets. Figure 6.20 shows ten activity connectors which are consistent with the

connectors shown on in Figure 6.18. The JSON TeC Application representation is stored

on the file system and gets accessed by the Application Distribution subsystem to distribute

the TeC Application to the end user TeC platform.

159

Figure 6.20 Sample TeC PSP JSON Representation

160

6.7 End User Application Deployment

 During application deployment, end users deploy the derived application from the

EUSPLP to their TeC environment. Figure 6.21 shows the physical deployment of the

different systems used in this prototype and the event sequence between the different

subsystems to deploy an end user application. As shown on Figure 6.21, the EUSPLP is

deployed on the Tomcat JEE container. Tomcat is deployed in a Windows environment.

The Application Distributor subsystem handles requests to distribute the derived

application specification through REST services. The Application Distributor subsystem is

composed of two components, ApplicationPublisher and TeCApp. The

ApplicationPublisher provides services for sending the TeC application (PSP) to an

external system. The TeCApp is used to retrieve a derived application from the file system.

The TeC EUSPLP Adaptor and the TeC simulator are deployed to the end user

environment on an Android platform. The TeC EUSPLP Adaptor subsystem is designed to

be an extension to TeC environments. The purpose of the TeC EUSPLP Adaptor is to

retrieve, configure and store the TeC applications (PSPs) derived from the EUSPLP

environment to the TeC simulator. The EUSPLP adaptor subsystem is composed of two

components, EUSPLP Manager and TeCAppImporter. EUSPLP Manager provides the

user interface to end users to import derived applications form the EUSPLP. The

TeCAppImporter provides the services for communication with the EUSPLP to retrieve

the EU SPL and the TeC environment to store the derived application.

161

Windows
<<operating-system>>

Tomcat
<<JEE Container>>

EUSPLP
<<subsystem>>

Application

Distributor

<<subsystem>>
<<entity>>

TeCApp

(TeC PSP)

<<system-interface>>

ApplicationPublisher

Team Manager
<<subsystem>>

<<user-interface>>

TeCEditor

<<entity-storage>>

TeCStorageManager

<<coordinator>>

TeCAppImporter

TeC EUSPLP

Adaptor

<<subsystem>>

<<user-interface>>

EUSPLP Manager1. Import

Application to

TeC

2. Configure

TeC App and

 Store

3. Deploy

TeC App

1.7 TeC App

(JSON)

1.2 Request

TeC App

1.1 Get TeC App

2.1 Store TeC App

1.5 TeC

App1.6 TeC

App

1.8 TeC App

2.6 Ack

1.9 TeC App

Configuration

Page

2.7 Ack

2.2 Store

TeC App
2.5

Ack

2.3 Store

App

TeC

Database

3.1 Deploy

Team

3.8 Ack

2.4 Ack

3.4 App

<<coordinator>>

TeamManager

3.2 Get

TeC App
3.5 App

3.3 Retrieve

App

<<device>>

TeCDevices

<<operating-

system>>

Android

3.7

Ack

3.6 Instruct TeC

Components

3.9 Ack

<<operating-system>>

Android

TeC App

(JSON)

TeC
<<subsystem>>

1.3 Retrieve

TeC App

1.4 Get

TeC App

End

User

Figure 6.21 Application Deployment Diagram

162

 The TeC simulator (Shen, 2014) used in this research simulates TeCDevices

running as different Android instances. The TeC database used by the simulator is also

running in Android. For application deployment there are three components used in the

TeC simulator: (1) TeCEditor, (2) TeCStorageManager, and (3) TeamManager. The

TeCEditor provides the user interface for designing and deploying TeC applications. The

TeCStorageManager is used for the storage and retrieval of TeC applications. The

TeamManager is responsible for deploying TeC devices deployed in a smart space with

application instructions. There are several reasons for separating the Application

Distributor and TeC EUSPLP Adaptor subsystems. One of the main reasons is the

separation of concerns between retrieving the derived application and configuring/storing

it to the target system. By separating the two subsystems the Application Distributor does

not need to have information about how to store derived applications to different TeC

environments. Another reason is that the EUSPLP Adaptor can be specific to an operating

system, hardware etc. For example consider an EUSPLP Adaptor for a TeC system

deployed in Windows versus Android. Finally the EUSPLP Adaptor could be extended to

map TeC applications to other EUD environments for smart spaces similar to Jigsaw. The

sections below discuss in detail the application deployment process.

Application deployment starts with end users that interact with the TeC EUSPLP

Adaptor to import an application from EUSPLP to TeC as shown in steps “1. Import

Application to TeC” through “1.9 TeC App Configuration Page” in Figure 6.21 End Users

configure the derived application and submit their selections to the TeC EUSPLP Adaptor

to store the application to the TeC environment shown in step “2. Configure TeC App and

163

Store” through “2.7 Ack” in Figure 6.21. End Users interact with the TeC subsystem to

deploy the derived application to the TeC environment as shown in steps “3. Deploy TeC

App” through “3.9 Ack” in Figure 6.21.

6.8 Summary

This chapter has described the EUSPLP development environment that was created

as part of this research and described how it can be used to support the development of EU

SPLs, application derivation and application deployment for end user smart spaces. In

summary, the chapter described the use cases that EUSPLP implements. The overall

EUSPLP subsystem architecture was presented to show the interactions between different

subsystems that implement the use cases. The EUSPLP and TeC physical data model

sections described the meta-classes and their relationships used by the prototype to capture

end user product lines and derived applications. The EUSPLP EU SPL Development

section described the processes, user interface and artifacts used by EU SPL designers to

create or edit EU SPLs. The End User Application Derivation section describes the

processes, user interface and artifacts used by End Users to derive applications from EU

SPLs. Finally the End User Application Deployment section described the deployment of

derived applications to the TeC environment.

164

7 RESEARCH VALIDATION

7.1 Introduction

This chapter describes the validation approach used in this research. The Smart

Home EU SPL case study was used in the validation of: the End User Software Product

Line (EU SPL) Process and the EUSPLP development environment. The EUSPLP

environment was used to validate the EU SPL process and meta-model by enabling the

creation of the EU SPL, from which EU applications were derived.

As part of this research an EU SPL Testing Approach was defined with

corresponding tool support to test the TeC EUD platform specific SPL and TeC EUD

platform specific applications. The testing approach consists of: (a) EU SPL Testing to test

the TeC SPL, (b) EU Application Testing to test the derived TeC application, and (c) EU

Application Deployment Testing to test the deployment of the TeC application. To perform

EU SPL Testing and EU Application Testing the following tools were developed by this

research: (a) ConsistencyRuleChecker, (b) FeatureBasedTestDriver, and (c) TeC

interpreter. Finally, as part of EU Application Deployment Testing, the TeC Android

simulator (Sousa et al., 2012) was used to test the distributed deployment and execution

of derived applications in the TeC platform.

The chapter is organized as follows: section 7.2 describes the overall validation

approach as it relates to the research problem. Section 7.3 describes the testing framework

developed by this research to test EU SPLs and derived applications. Section 7.4 describes

the overall EU SPL testing approach used in this research. Section 7.5 describes the testing

165

process for testing the EU SPL created by using the EUSPLP environment. Section 7.6

describes the testing process for testing end user applications derived using the EUSPLP

environment. Section 7.7 describes the deployment, execution and testing of derived end

user applications by the TeC Android simulator. Finally section 7.8 provides a summary

of this chapter.

7.2 Research Validation Approach

This research is validated through the implementation and testing of the Smart

Home EU SPL case study described in Appendix A. The case study was designed using

the EU SPL process described in Chapter 4 and was implemented using the EUSPLP

environment described in Chapter 6. The remainder of this section describes the validation

process:

1. Designed the Smart Home EU SPL case study using the End User Product Line

Engineering (EUPLE) process described in Chapter 4. The design included:

 Feature Modeling – A feature model was created for the Smart Home

EU SPL case study. (Section 4.3.2.4 - Chapter (4).

 Static Modeling – A static model was created with all components that

realize the Smart Home EU SPL. (Section 4.3.3.1 - Chapter (4).

 Dynamic Modeling – Sequence diagrams and a Feature / Component

relationship table was developed for each feature defined in the Smart

Home EU. (Sections 4.3.3.2/4.3.3.3 - Chapter (4).

 Component Modeling – Component diagrams were developed for all

features of the Smart Home EU SPL. A Component Input / Output table

166

was created to capture the input / output parameters and triggering

conditions of each component. (Section 4.3.4.2 in Chapter (4).

 Inter-feature Component Communication Modeling – A component

association table was created to capture components of the Smart Home

case study that use the subscription/notification design pattern to

communicate with components that realize other features. (Section

4.3.4.1 in Chapter (4).

 Platform Specific Feature/Component Modeling – A Feature /

Component association table was created that captures platform specific

component information for platform specific features in the Smart

Home EU SPL. (Section 4.3.4.3 in Chapter (4)

2. Derived two end user TeC applications from the Smart Home EU SPL case study

developed in the previous step. For the first end user application the application

models (PSPs) were created for both the TeC and Jigsaw end user platforms

(Section 4.4 in Chapter (4). The second end user application was platform specific

and the application model was developed for the TeC platform (Sections A.5.4 and

A.5.5 in Appendix-A).

3. Developed the EUSPLP development environment, which supports the

development of EU SPLs, and application derivation. The EUSPLP was created

based on the EU SPL process and meta-models described in Chapters 4 and 5.

The EUSPLP environment was used as follows:

167

 To implement several experimental EU SPLs, including the Smart

Home EU SPL case study, using the EU SPL Editor subsystem of the

EUSPLP environment. The EUSPLP environment produces Platform

Independent Product Line (PIPL) and TeC Platform Specific Product

Line (PSPL) specifications to store the EU SPLs created by the EU SPL

Editor.

 To derive applications from several EU SPLs including the Smart Home

EU SPL case study using the Application Derivation Editor subsystem

of the EUSPLP environment. During application derivation, the

EUSPLP environment produces the TeC Platform Specific Product

(PSP) specification.

4. Developed a testing approach to test TeC PSPLs and TeC PSPs created by the

EUSPLP environment. The testing approach is used to perform EU SPL Testing,

EU Application Testing and EU Application Deployment Testing. During EU SPL

Testing, EU SPL Feature-based Consistency and Feature-based Integration test

cases are used to test the TeC SPL. During EU Application testing, EU Application

Feature-based Consistency and Feature-based Integration test cases derived from

the EU SPL are used to test the TeC PSP. During EU Application Deployment

Testing Feature-based Integration tests are executed to deployed application. The

TeC PSPL created using the EUSPLP environment to represent the Smart Home

EU SPL was tested using EU SPL Testing. Two end user applications (TeC PSPs)

derived from the Smart Home EU SPL were tested using EU Application Testing.

168

In addition a third end user application was derived from the Smart Home EU SPL

that was tested using EU Application deployment testing. The remainder of this

chapter describes the testing framework in detail.

5. Deployed several experimental applications (TeC PSPs) to the TeC Android

simulator. In addition a TeC PSP derived from the Smart Home EU SPL case study

was also deployed to the TeC Android simulator.

7.3 EU SPL Testing Framework

To validate that the EUSPLP development environment produces valid EU SPL

specifications (PSPLs) and derives applications (PSPs) that can be executed by a TeC

platform, a testing framework was created. The testing framework is composed of a set of

tools to assist with test automation. The tool set can be divided into two categories: (1)

Consistency rule checking and (2) Feature-based integration testing.

Consistency rule checking is used to ensure that the structure of the EU SPL is

compliant with the product line consistency rules described in detail in section in 7.5.1 and

that features selected from the EU SPL during application derivation are compliant with

the feature set consistency rules described in section 7.6.1. As part of this research, the

ConsistencyRuleChecker Java program was created to execute consistency rule checks on

the EU SPL and features selected. To perform consistency rule checking on the EU SPL,

the ConsistencyRuleChecker program takes as input the EU SPL JSON representation and

executes the product line consistency rules. To perform consistency rule checking for an

EU SPL feature selection, the ConsistencyRuleChecker program takes as input: (a) an

array containing the names of the selected features and (b) the EU SPL JSON

169

representation. The ConsistencyRuleChecker program checks that the selected features do

not violate any of the feature dependency and feature group relationships in the EU SPL.

 Feature-based integration testing is used to test the implementation of the

component architecture of: (a) EU SPL features and feature combinations, (b) applications

derived from the EU SPL, and (c) application deployment. As part of this research, two

tools were developed to support the automation of Feature-based integration testing for EU

SPL features and derived applications: (1) FeatureBasedTestDriver and (2) TeC

interpreter. The FeatureBasedTestDriver is a Java program developed in Windows that

reads feature-based test cases from the file system, instantiates the corresponding

component architecture in the TeC interpreter, executes the test cases in the TeC

interpreter, and evaluates the test results. The TeC interpreter is a Java program that

instantiates and executes the component implementation of EU SPL features and derived

applications. The FeatureBasedTestDriver is used to execute feature-based test cases by

simulating external events input to the TeC interpreter. The TeC interpreter, based on each

event, executes the appropriate components and component connectors.

To perform feature-based integration testing on a distributed platform, the TeC

Android simulator (Sousa et al., 2012) was used. Tzeremes developed the user interface

(TeCEditor) and TeC meta-model to develop end user applications in the TeC Android

simulator. In particular, the TeCEditor provides user interfaces to create, display and edit

available TeC applications in the simulator and their component architecture. Applications

derived from the EU SPL and imported in the TeC Android simulator appear in the

TeCEditor. During application deployment testing, the TeCEditor was used to ensure that

170

derived applications were imported correctly into the TeC Android simulator. Shen and

Hodum developed the TeC application execution. Shen developed a testing interface in the

Android simulator to simulate external events. Shen’s user interface was used to manually

execute feature-based integration tests in the TeC Android platform.

7.4 EU SPL Testing Approach

As part of this research an overall testing approach was defined to test EU SPLs

and derived applications. The EU SPL Testing Approach is a hybrid approach that builds

on the testing methods described in the theses of (Abu-Matar, Mohammad Ahmad, 2011)

and (Olimpiew, 2008). Abu-Matar used static defined SPL consistency test cases to test

SPLs and derived applications created in his research (Abu-Matar and Gomaa, 2013).

Olimpiew described an approach for defining test cases for each feature that can be

retrieved and executed during application derivation (Olimpiew and Gomaa, 2009).

Similarly, the test cases created in this research consist of: consistency test cases for testing

the EU SPL and the derived applications; and test cases for each feature that can be

executed during product line creation, application derivation and application deployment.

Figure 7.1 shows the overall EU SPL Testing Approach used to test EU SPLs and

derived applications. The testing approach is composed of: (a) the EU SPL Testing, (b) the

EU Application Testing, and (c) the EU Application Deployment Testing processes. The

EU SPL Testing process is responsible for testing the product line. The EU SPL Testing

process performs EU SPL Feature-based Consistency Checking and Feature-based

Integration Testing. EU SPL Feature-based Consistency Checking executes static test cases

171

to verify feature and feature group dependencies. Feature-based Integration consists of

integration test cases defined by EU SPL designers to test the EU SPL. In particular,

integration test cases are developed for every feature and feature combination in the EU

SPL to test the component interconnections. As shown in Figure 7.1 Feature-based

Integration test cases are stored in the EU SPL Repository for later usage during application

derivation.

The EU Application Testing Process is responsible for testing the applications

derived from the EU SPL based on feature selected from the product line. The EU

Application Testing consists of EU Application Feature-based Consistency Checking and

EU Application Feature-based Integration Testing. EU Application Feature-based

Consistency Checking contains static test cases used to verify the compatibility of features

EU SPL Testing Process

EU Application
Testing Process

EU SPL Repository

EU SPL
Designer

EU Application
Feature-based

Integration Testing

EU Application
Feature-based

Consistency Checking

Feature-based
Integration Testing

Derived
Application

Feature-based Integration Test Cases Feature Tests

EU SPL
Feature-based

Consistency Checking

EU SPL Feature Model
EU SPL Component Architecture

Feature-based
Integration
Test Cases

End User

EU Application Deployment
Testing Process

EU Application Deployment
Feature-based Integration

Testing

End User Application
(PSP) Feature-based

Integration Test Cases

Figure 7.1 Overall EU SPL Testing Approach

172

that comprise the derived application. EU Application Feature-based Integration involves

executing integration test cases to test the component architecture and implementation of

the derived application. The integration test cases are a subset of the EU SPL integration

test cases that are based on the selected features that comprise the derived application. As

shown in Figure 7.1, Feature-based Integration test cases to test the derived application are

selected from the EU SPL Repository corresponding to the features selected by the end

user.

The EU Application Deployment Testing Process shown in Figure 7.1, is

responsible for testing the distributed deployment and execution of the TeC derived

application. In detail, during the deployment testing process, EU Application Deployment

Feature-based Integration Testing involves executing integration test cases to test the

deployment and execution of components and their interconnections in the environment.

The integration test cases are the same ones used during EU Application Feature-based

Integration Testing. The integration test cases are reused to test the deployment of the

derived application.

The Feature-based integration test cases provide test coverage of each feature and

component during EU SPL Testing, EU Application Testing and EU Application

Deployment Testing. In particular test cases are developed to: (a) test each component (b)

test each feature by testing the components and connectors that realize the feature (c) If a

feature depends on other features, test the feature in combination with the features it

depends on. Detailed examples of the execution of feature-based integration test cases and

test criteria are described in sections 7.5.2, 7.6.2, 7.6.3 and 7.6.4

173

7.5 End User Software Product Line (EUSPL) Testing Process

There were two types of tests performed on the EU SPL (PSPL) produced by the

EUSPLP environment: (a) EU SPL Feature-based Consistency Checking, and (b) Feature-

based Integration Testing. EU SPL Feature-based Consistency Checking ensures that the

EU SPL is a valid product line. For instance these types of tests validate: (a) the consistency

between the product line features and the components that realize them, (b) the consistency

between feature groups and the features they contain, and (c) the consistency between

features and features they depend on. Feature-based Integration Testing ensures that: (a)

the visual EU SPL representation in the prototype is consistent with the TeC SPL model

produced by the EUSPLP environment, and (b) the component architecture functions as

the EU SPL designer intended.

7.5.1 EU SPL Feature-based Consistency Checking

To perform the EU SPL Feature-based Consistency Checking, three types of EU

SPL Feature-based Consistency Test Cases were developed: (1) Feature to Component

Consistency tests, (2) Feature Group to Feature Consistency tests, and (3) Feature

Dependency Consistency tests. All test cases execute independently of each other. Table

7.1 to Table 7.3 show the test cases in detail. Each of the tables has 3 columns: (1) Test

Case, (2) Expected Result, and (3) Test Result. The Test Case column shows the test case.

The Expected Result column shows the expected result of the test case after it executes.

The Test Result column shows the result found when the test case was executed.

 Feature to Component Consistency tests verify that the feature type variability is

consistent with the component types that realize each feature. For instance, an optional

174

feature should not contain kernel components. Feature Group to Feature Consistency tests

verify that the feature group type is consistent with each feature variability type contained

in that group. For instance none of the following feature groups: At-least-one-of, Exactly-

one-of, Zero-or-more-of and Zero-or-one-of should contain common features. Table 7.2

show all the feature group to feature consistency tests Feature Dependency Consistency

tests verify that each feature depends on a feature with compatible feature type. For

instance it is not valid to have a common feature depend on an optional feature. Table 7.3

shows all the feature dependency consistency tests.

To test that the EU SPL Feature-based Consistency Test Cases themselves execute

correctly, a “Valid EU SPL” and an ““Invalid EU SPL” were defined. The “Valid EU SPL”

contained valid feature to component dependencies, valid features under feature groups

and valid feature to feature dependencies. The purpose of the “Valid EU SPL” was to

evaluate that all positive tests defined in Table 7.1 to Table 7.3 were executed correctly.

Table 7.1 Feature to Component Consistency Tests

Test Case Expected Result Test Result

Common Feature contains Kernel

Component

Pass Pass

Common Feature contains Optional

Component

Fail Fail

Common Feature contains Variant

Component

Fail Fail

Optional Feature contains Kernel

Component

Fail Fail

Optional Feature contains Optional

Component

Pass Pass

Optional Feature contains Variant

Component

Fail Fail

Alternative Feature contains Kernel

Component

Fail Fail

Alternative Feature contains Optional

Component or Variant Component

Pass Pass

175

Table 7.2 Feature Group to Feature Consistency Tests

Test Case Expected Result Test Result

At-least-one-of Feature Group

contains one Default Optional

Feature

Pass Pass

At-least-one-of Feature Group

contains zero or more than one

Default Optional Feature

Fail Fail

At-least-one-of Feature Group

contains Common, Default

Alternative or Alternative

Features

Fail Fail

At-least-one-of Feature Group

contains Common, Default

Alternative or Alternative

Features

Fail Fail

Zero-or-more-of Feature Group

contains Common Feature

Fail Fail

Zero-or-more-of Feature Group

contains Optional Feature

Pass Pass

Zero-or-more-of Feature Group

does not contain Optional

Feature

Fail Fail

Zero-or-more-of Feature Group

contains Common, Default

Optional, Default Alternative or

Alternative Features

Fail Fail

Zero-or-one-of Feature Group

contains Alternative Feature

Pass Pass

Zero-or-one-of Feature Group

does not contain Alternative

Feature

Fail Fail

Zero-or-one-of Feature Group

contains Default Optional,

Optional or Alternative Feature

Fail Fail

Exactly-one-of Feature Group

contains Default Alternative

Feature

Pass Pass

Exactly-one-of Feature Group

does not contain Default

Alternative Feature

Fail Fail

Exactly-one-of Feature Group

contains Common, Default

Optional or Optional Features

Fail Fail

Exactly-one-of Feature Group

contains zero or more than one

Default Alternative Feature

Fail Fail

176

The “Invalid EU SPL” contained invalid feature to component dependencies,

invalid features under feature groups and invalid feature dependencies. The purpose of the

“Invalid EU SPL” was to evaluate that all negative tests defined in Table 7.1 to Table 7.3

were executed correctly. After each test case was verified against the “Valid EU SPL” and

the “Invalid EU SPL,” EU SPL Feature-based Consistency Checking was performed

against the EU SPL produced by the EUSPLP environment for the Smart Home Case study.

All positive tests defined on Table 7.1 to Table 7.3 were executed correctly. Figure 7.2

shows the output of the ConsistencyRuleChecker executing EU SPL Feature-based

Consistency Checking test cases to the Smart Home EU SPL.

Table 7.3 Feature Dependency Consistency Tests

Test Case Expected Result Test Result

Common Feature depends on

Common Feature

Pass Pass

Optional Feature depends on

Common Feature

Pass Pass

Alternative Feature depends on

Common Feature

Pass Pass

Common feature depends on

Optional feature

False False

Optional Feature depends on

Optional Feature

Pass Pass

Alternative Feature depends on

Optional Feature

Pass Pass

Common Feature depends on

Alternative Feature

False False

Optional Feature depends on

Alternative Feature

Pass Pass

Alternative Feature depends on

Alternative Feature

Pass Pass

177

Figure 7.2 ConsistencyRuleChecker Output of executing EU SPL Consistency Test Cases to the Smart

Home EU SPL

178

7.5.2 Feature-based Integration Testing

Feature-based Integration Testing is used to test the component architecture of each

feature. Feature-based Integration Test Cases defined for features and feature combinations

were used to perform Feature-based Integration Testing. Table 7.4 shows the attributes of

each Feature-based Integration Test Case. Feature-based Integration Test Cases were

defined for each connector available in each feature. The connector tests ensure that the

output / input interfaces between components are consistent, and the triggering conditions

are executing correctly. In addition, Feature-based Integration Test Cases were defined to

test the interaction sequence of multiple components.

Table 7.4 Feature-Based Integration Testing – Test Case Attributes

Test Case Element Description

Test Case The test case id

Feature Name The name of the feature that the test applies

Feature Type The expected feature variability type

Source Component The name of the component that initiates the component

communication by sending a message when the output

triggering condition is true

Source Output The name of the source component output sending the

message

Source Output Parameters The output message parameters

Source Trigger The trigger that activates the output on the source

component

Target Component The name of the component that receives the message

Target Input The name of the target component input receiving the

message

Test Case Result

The expected test result

179

 For example consider the “Audio” feature defined in the Smart Home EU SPL case

study. As shown in Figure 7.3 the “Audio” feature has three components: “alertAudio”,

“phone” and “securityAlertHandler.” The “Audio” feature contains three connectors: the

“audioAlert” to “securityAlertHandler” connector, (2) the “securityAlertHandler” to

“audioAlert” connector, and (3) the “audioAlert” to “phone” connector. The first three

rows of Figure 7.4 shows the Feature-based Integration Test Cases defined for each

connector. For instance, the first row tests the “audioAlert” to “securityAlertHandler”

connector. When the source trigger “startup=true” is true in the “alertAudio” component,

the source output “init” is executed that sends parameters “component_name=alertAudio,

topic=security” to the input “subscribe” of the target component “securityAlertHandler.”

If the test case is executed correctly the “subscribe” input of the “securityAlertHandler”

component should receive a message with parameters “component_name=alertAudio,

topic=security.”

The integration test case shown in the fourth row of Figure 7.4 tests a sequence of

component connectors triggered by an external event. The source component of the test

case is the “securityAlertHandler” and the target component is the “phone” component.

This test case tests two component connectors: (1) the “securityAlertHandler” to

“audioAlert” connector, and (2) the “audioAlert” to “call” connector shown in Figure 7.3.

The purpose of this test case is to test that when there is a security alert, a call is made to

the house residents. This test case exercises a set of inputs, outputs, and triggering

conditions in all participating components for the test case to complete successfully. For

180

instance as shown in Figure 7.3, the “securityAlertHandler” needs to send a message to the

“alertAudio” component. The “alertAudio” component evaluates the message and sends a

message to the “phone” component.

As part of this research, a FeatureBasedTestDriver and a TeC interpreter were

developed to perform feature-based testing. The FeatureBasedTestDriver is used to

execute the integration test cases. The TeC interpreter is used to execute the component

implementations of features and feature combinations. For example, to test the “Audio”

feature shown in Figure 7.3 three testing components “securityAlertHandler,”

“alertAudio”, and “phone” were implemented and executed by the TeC interpreter. Each

component implementation contains: (a) methods that simulate the component inputs, (b)

<<optional>>
:alertAudio

<<optional>>
:phone

makeCall

<<kernel>>
:securityAlertHandler

subscribe

sendAlert
[messageInQueue=true] notify call

[message=true]

init
[startup=true]

Figure 7.3 Smart Home EU SPL: Audio Feature

Figure 7.4 Audio Feature Test Cases

181

a method “evaluateTrigeringConditions” that executes the component triggering

conditions, and (c) a “testResult” variable that captures the parameters passed in each

component input. For example, for the “securityAlertHandler” component shown in Figure

7.3, an input “subscribe” was created and a method “evaluateTrigeringConditions” that

executes the “messageInQueue=true” triggering condition. The “subscribe” input when

called populates the “testResult” variable with the parameters that were passed to the input.

The FeatureBasedTestDriver for each integration test case extracts the component

implementations of the corresponding feature(s) from the TeC PSPL. It then interfaces with

the TeC interpreter to provide the test components with outputs, triggering conditions and

component connectors that realize each feature.

The FeatureBasedTestDriver executes the triggering condition defined in the test

case by calling the “evaluateTriggeringConditions” method on the source component in

the TeC interpreter. The “evaluateTriggeringConditions” method will evaluate the

triggering conditions of each output and if the condition is true it will execute the output.

After the TeC interpreter executes the triggering condition, the FeatureBasedTestDriver

will query the “testResult” of the target component in TeC interpreter. The

FeatureBasedTestDriver compares the “testResult” variable with the expected test case

result defined in the test case to verify that the parameters passed to the target object are

what were expected.

For example, for the FeatureBasedTestDriver to execute the first test case shown in

Figure 7.3, the three “securityAlertHandler”, “alertAudio”, and “phone” test components

need to be instantiated and executed by the TeC interpreter. The FeatureBasedTestDriver

182

interfaces with the TeC interpreter to execute the “message=true” triggering condition on

the “alertAudio” component and retrieve the “testResult” variable on the “phone”

component that contains the test results. The FeatureBasedTestDriver compares the

“testResult” variable with the test case expected result to ensure that the correct input was

called and the correct parameters were passed to it.

The execution of the feature-based test cases ensures that: (a) the visual

representation of the component designs that realize each feature in the EU SPL is

consistent with the TeC PSPL specification produced by the EUSPLP environment, (b) the

component architecture is communicating as expected, and (c) the component

implementations in the TeC interpreter are consistent with the component interfaces in the

EUSPLP environment. To evaluate the execution of the FeatureBasedTestDriver and the

TeC interpreter, valid and invalid test cases were developed. Valid test cases contained

features, components, inputs, outputs and triggering conditions consistent with the TeC

PSPL. Invalid test cases contained features that did not exist, components with incorrect

inputs, outputs and triggering conditions. All valid test cases executed correctly and invalid

test cases failed as expected. The FeatureBasedTestDriver and TeC interpreter helped to

identify issues with (a) missing inputs from the component implementations, (b) triggering

conditions not implemented correctly, and (c) PSPL specifications that were invalid (such

as missing PL_Activity_Sheets, component connectors, inputs, outputs, output parameters,

invalid JSON etc.).

To validate the Smart Home EU SPL case study, Feature-based Integration Test

Case Test Cases were defined for (a) testing all connectors on all features defined in the

183

Smart Home EU SPL, (b) testing multi-component interactions of dependent features, and

(c) testing multi-component interactions of features that are not dependent in the feature

model level but an event on one feature affects the other. The Feature-based Integration

Test Case Test Cases were executed using the FeatureBasedTestDriver and the TeC

interpreter. All test cases were executed successfully. Figure 7.5 shows part of the

FeatureBasedTestDriver output of the Smart Home EU SPL case study.

7.6 End User Application Testing Process

There are two types of tests performed to applications derived from the EUSPLP

environment: (a) EU Application Feature-based Consistency Checking, and (b) EU

Application Feature-based Testing. EU Application Feature-based Consistency Checking

ensures that the feature selection is valid and the features selected are compatible with each

other. For example, a feature selection that contains two mutually exclusive features is not

valid. EU Application Testing ensures that: (a) the derived application component

architecture adheres to the selected feature component architectures, and (b) the application

component architecture functions correctly. To validate the application derivation process

of the EUSPLP environment, EU Application Testing was performed on the “Smart Home

Example 1 for TeC” and “Smart Home Example 2 for TeC” end user applications derived

from the Smart Home EU SPL. The end user applications are described in detail in

Appendix A.

184

7.6.1 EU Application Feature-based Consistency Checking

Table 7.5 shows the EU Application Feature-based Consistency test cases for

validating the compatibility between features that comprise the derived application. To

ensure that the consistency checking process used to execute the consistency test cases

functions correctly, valid and invalid feature selection sets were evaluated. The feature sets

were derived from the Smart Home EU SPL case study. The valid feature set contained

Figure 7.5 Output of the FeatureBasedTestDriver for the Smart Home EU SPL

185

features that are compatible with each other. The invalid feature set contained features that

cannot exist together in a derived application.

Figure 7.6 shows the output the output of the ConsistencyRuleChecker executing

consistency test cases on the invalid feature set. The invalid feature set contains features:

Audio, Video, Abs and Energy conservation from the Smart Home EU SPL. As shown in

the output of Figure 7.6 there are several issues with the invalid feature set for instance:

the Smart Home common feature is not available, there are required features missing from

the Net Notifications and Home Security feature groups, there are mutually exclusive

Table 7.5 EU Application Feature-Based Consistency Tests

Test Case Expected

Result

Test Result

All Common Features were selected Pass Pass

Not all Common Features were

selected

Fail Fail

More than one Feature was selected

form Exactly-one-of Feature Group

Fail Fail

Zero Features were selected form

Exactly-one-of Feature Group

Fail Fail

One Feature was selected from

Exactly-one-of Feature Group

Pass Pass

More than one Feature was selected

from Zero-or-one-of Feature Group

Fail Fail

Zero or one Feature was selected

from Zero-or-one-of Feature Group

Pass Pass

Zero or more Features were selected

from Zero-or-more-of Feature

Group

Pass Pass

Zero Features were selected form

At-least-one-of Feature Group

Fail Fail

One or more Features were selected

from At-least-one Feature Group

Pass Pass

For each Feature selected the entire

parent Feature hierarchy was

selected

Pass Pass

For each Feature selected the parent

Feature hierarchy were not selected

Fail Fail

Mutually Exclusive Alternative

features were selected

Fail Fail

186

features present in the set, there are features missing that features in the set depend on and

there is an Abs feature available in the set that is not available in the Smart Home EU SPL.

Similar, Figure 7.7 shows the output of the ConsistencyRuleChecker testing the valid

feature selection set. The valid feature set contains features: Audio, Energy Conservation,

HVAC Filter, Door, Text and Smart Home from the Smart Home EU SPL. As shown in

Figure 7.7 this feature set is valid. It contains all product line common features and required

feature dependencies. The consistency checking process evaluated all test cases

successfully for both feature selection sets.

7.6.2 EU Application Feature-based Testing

EU Application Feature-based Testing is used to test the component architecture

and implementation of the end user derived application. In detail, for each feature that is

Figure 7.6 ConsistencyRuleChecker Output of executing EU Application Feature-Based Consistency

Tests on an invalid Feature Set from the Smart Home EU SPL

Figure 7.7 ConsistencyRuleChecker Output of executing EU Application Feature-Based Consistency

Tests on a valid Feature Set from the Smart Home EU SPL

187

part of the feature selection the corresponding integration test cases are selected from the

EU SPL Repository. The integration test cases test the component architecture and

implementation of the derived application. The test cases are executed using the

FeatureBasedTestDriver and a TeC interpreter tools.

To execute an integration test, the TeC interpreter reads the derived application

specification (TeC PSP) that was created by the EUSPLP environment and instantiates the

TeC component implementations of the derived application. Each TeC component in the

interpreter is assigned with TeC application instructions based on the derived application.

The FeatureBasedTestDriver executes the triggering condition in the source component

defined in the test case and evaluates the target component “testResult” variable with the

expected result defined in the test case. The execution of the feature-based test cases

ensures that the application component architecture derived by the EUSPLP environment

is consistent with the component architecture of each feature that comprises the application.

Figure 7.8 shows an example of the FeatureBasedTestDriver output of executing

feature-based tests to a derived application that contained the “Audio” and “Smart

Irrigation” features. The tests executed by the FeatureBasedTestDriver included: (a) The

test cases defined for the “Audio” and “Smart Irrigation” features, and (b) The test cases

defined for the “Email”, “Text”, “Door”, “Motion”, “Window”, “Faucet Drip” and “Flood

Detector” features that did not apply to the derived application. As expected the test cases

of the “Audio” and “Smart Irrigation” features executed correctly. The test cases of the

additional feature test cases failed as expected since components and connectors of these

188

features were not available in the derived application. Feature-based testing using the

FeatureBasedTestDriver and the TeC interpreter helped to identify issues with (a) the

component implementation (b) thread issues between components and (c) PSP

specifications that were invalid (missing Activity_Sheets, component connectors, inputs,

outputs, output parameters, invalid JSON etc.).

7.6.3 EU Application Testing for Smart Home End User Application 1

This section describes the EU Application Testing process applied to the “Smart

Home Example 1” application described in Appendix A. The application was derived from

the Smart Home EU SPL case study using the application derivation process of the

EUSPLP development environment. Figure 7.9 shows the Feature Model of the derived

Figure 7.8 FeatureBasedTestDriver Output executing Feature-Based Integration Test Cases to a Derived

Application that contains the Audio and Smart Irrigation Features

189

application. The derived application consists of the following features: “Smart Home”,

“Audio”, “Door”, “Text”, “Flood Detector”, “Smart Irrigation”, “Schedule”, “HVAC

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
HVAC Filter

<<optional feature>>
Light Failure

requires

requires

<<optional feature>>
Home Alarm

<<optional feature>>
Flood Detector

<<optional>>
Smart Irrigation

<<optional feature>>
Schedule

requires

requires

<<default feature>>
Audio

<<exactly-one-of
feature group>>

 Phone Alert

<<default feature>>
Text

requires

requires

<<at-least-one-of
feature group>>
Net Notification

<<zero-or-more-of
feature group>>
Water Detector

<<zero-or-more-of
feature group>>
Home Behavior

requires

requires

Figure 7.9 Smart Home Example 1 Application – Feature Model

Figure 7.10 ConsistencyRuleChecker Output of executing EU Application Consistency Tests to the Features

selected for the Smart Home Example 1 Application

190

Filter”, “Home Alarm” and “Light Failure.” Figure 7.10 shows the output of executing EU

Application Feature-based Consistency Test Cases to the features that comprise the “Smart

Home Example 1” application. The selected features for the “Smart Home Example 1”

passed all the EU Application Feature-based Consistency tests.

Figure 7.11 shows the application architecture of the “Smart Home Example 1”

application. Figure 7.12 shows the Feature-based Integration Test Cases derived for the

“Smart Home Example 1” application to support EU Application Testing. To perform EU

Application Testing of the “Smart Home Example 1” application, three types of Feature-

based Integration Test Cases were executed: (1) component interface test cases defined for

every connector in the derived application, (2) multi-component interaction sequence test

cases of dependent features, and (3) multi-component interaction sequence test cases for

features that don’t explicitly depend on each other in the feature model but an event in one

feature affects the other. Below are examples of each test case type. Test case 2, defined

for the “Audio” feature shown in Figure 7.12, is an example of component interface testing.

This test case tests the connector of the “sendAlert” output of the “securityAlertHandler”

component to the “notify” input of the “alertAudio” component. There are two components

tested, the “securityAlertHandler” component of the “Smart Home” feature and the

“alertAudio” component of the “Audio” feature. The scenario that this test case evaluates

is that when a security alert is available in the “securityAlertHandler” component queue, a

message is send to the “notify” input of the “alertAudio” component to notify the house

residents.

191

The test case 16 shown in Figure 7.12 is an example of multi-component interaction

sequence test case. The test case source component is the “doorMonitor” of the “Door”

feature and the target component is the “securityAlertHandler” of the “Smart Home”

feature. The scenario evaluated is that when a door break-in is detected a message will be

send to the “securityAlertHandler.” For the test to be successful the “breakInDoor”

component of the “Door” feature shown Figure 7.11 needs to send a message to the

“receiveAlert” input of the “securityAlertHandler” with the parameters shown in the test

case.

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device interface>>

doorMonitor

activate on

movementaction

activity

1..*

<<optional>>
<<coordinator>>

alertAudio

notify <<default>>
<<input/output device

interface>>
phone

makeCallcall

init

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

<<optional>>
<<input/output device

interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

<<optional>>
<<input/output device

interface>>
smartLight

play

show

flash

alarm
<<optional>>

<<coordinator>>
alarmHome

init

notify

<<kernel>>
<<message-broker>>

infoAlertHandler

sendAlert

subscribe

receiveAlert

flood

<<optional>>
<<input/output device

interface>>
flood-sensor

1..*

<<optional>>
<<system-interface>>

text

notify

init

replace

<<optional>>
<<input/output device

interface>>
smartHVAC

replace filter

1..*

1..*

1..*

1..*

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

turn on turn off

startWater stopWater

1..*

<<optional>>
<<timer>>

sprinklerTimer

timeAlertwater

Schedule Feature

Smart Irrigation Feature

Flood Detector
Feature

HVAC Filter
Feature

Smart Home Feature

Door Feature

Text Feature

Audio Feature

Home Alarm
Feature

Light Failure Feature

Figure 7.11 Smart Home Example 1 - Application Architecture for TeC

192

Figure 7.12 Featured-Based Integration Test Cases for the Smart Home Example 1 EU

Application

193

This test case tests the interaction of the “doorMonitor”, “breakInDoor” and

“securityAlertHandler” components.

Test case 54 defined for the “Door” and “Audio” features shown in Figure 7.12 is

an example of multi-component interaction sequence test case across features that are not

dependent in the feature model but an event on one affects the other. The scenario that this

test case evaluates is that when there is a door break-in, a security message notification is

send to the resident’s phone. Although the components of the “Door” are not

communicating with the “Audio” feature directly, they communicate through the “Smart

Home” feature. For instance, when a door break-in is detected, the “securityAlertHandler”

receives a security alert. The “securityAlertHandler” sends the security alert to the

“alertAudio” component that is subscribed to receive messages. As shown in Figure 7.12

when the “alertAudio” component receives the security alert message, it will evaluate the

corresponding triggering condition and send an alert message to the “makeCall” input of

the “phone” component to contact the house resident. This test case tests the interaction

sequence of the “doorMonitor”, “breakInDoor”, “securityAlertHandler”, “alertAudio” and

“phone” components.

All test cases have the same format shown in Table 7.4. Triggering conditions were

used to simulate external events. The “Source Trigger” column in Figure 7.12 shows all

the triggers executed in the derived application. The test case execution starts with a

triggering condition that evaluates to true. Triggering conditions are evaluated to true when

an external event occurs. For example, when there is a break-in detected, the triggering

condition “move=true” of the “doorMonitor” component evaluates to true, which causes

194

the “movement” output to get executed. To ensure that the test cases executed correctly,

the “testResult” attribute of the test case target component was compared with the expected

results of the test case shown in the “Test Case Result” column. The “testResult” attribute

contains: (a) the component input that was called and (b) the parameters that were passed

to the target component. Separate test cases were created to test a triggering condition that

causes inputs on different components to get triggered. For example, as shown in Figure

7.11 the “alertHome” component sends three independent messages to the “smartLight”,

“smartDisplay” and “smartAudio” components when it receives a message from the

“securityAlertHandler” component. To test this scenario, three test cases were created test

cases 50, 51and 52 shown in Figure 7.12. System traces were also used to verify that all

three events executed when the “alertHome” component received a message from the

“securityAlertHandler” component.

EU Application Testing validated (a) that all application components were derived

from the features selected and (b) the connectivity between components worked as

designed in the EU SPL. Figure 7.13 shows the output of executing the Featured-Based

Integration Test Cases against the derived application. The output shows that all tests

executed successfully, which indicates that the expected test result in the test case is

consisted with the “testResult” attribute values found in the target component. In addition

to the test cases that relate to the features selected, all Feature-based Integration Test Cases

defined for the Smart Home EU SPL were executed to verify that no additional components

or component connectors were introduced. All test cases defined for features that were not

part of the “Smart Home Example1” application failed as expected.

195

7.6.4 EU Application Testing for Smart Home End User Application 2

This section presents the EU Application Testing process applied to the “Smart

Home Example 2” application described in Appendix A. The application was derived from

the Smart Home EU SPL case study using the application derivation process of the EUSPL

development environment. Figure 7.14 shows the Feature Model for the derived

application. The derived application consists of the following features: “Smart Home”,

“Video”, “Door”, “Motion”, “Window”, “Email”, “HVAC Filter”, “Energy Conservation”

Figure 7.13 FeatureBasedTestDriver Output of executing the Featured-Based Integration Test Cases to the

Smart Home Example 1 EU Application

196

and “911.” Figure 7.15 shows the output of executing EU Application Feature-based

Consistency Tests to the features that comprise the “Smart Home Example 2” application

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
Motion

<<optional feature>>
Window

<<optional feature>>
HVAC Filter

requires

requires

<<optional feature>>
911

<<platform-dependent>>
<<optional feature>>
Energy Conservation

requires

<<platform-dependent>>
<<alternative feature>>

Video

<<exactly-one-of
feature group>>

 Phone Alert

<<optional feature>>
Email

requires

<<at-least-one-of
feature group>>
Net Notification

<<zero-or-more-of
feature group>>
Home Behavior

requires

Figure 7.14 Smart Home Example 2 Application – Feature Model

Figure 7.15 ConsistencyRuleChecker Output of executing EU Application Consistency Tests to the Features

selected for the Smart Home Example 2 Application

197

to test if the features are compatible. As shown in Figure 7.15 all EU Application Feature-

based Consistency Tests executed successfully.

Figure 7.16 shows the application architecture of the “Smart Home Example 2.”

Figure 7.17 shows the Feature-based Integration Test Cases derived for the “Smart Home

Example 2” application to support EU Application Testing. To perform EU Application

Testing to the “Smart Home Example 2” three types of Feature-based Integration Test

Cases were executed: (1) component interface test cases defined for every connector in the

derived application, (2) multi-component interaction sequence test cases of depend

features, and (3) multi-component interaction sequence test cases of independent features

that an event on one feature affects the other. Below are examples of each test case type.

Test case 8 defined for the “Email” feature shown in is an example of component interface

testing. This test case tests the connector of the “sendAlert” output of the

“infoAlertHandler” component to the “notify” input of the “email” component. The

scenario that this test case evaluates is that when an informational alert is available in the

“infoAlertHandler” component queue, a message is sent to the “email” component to notify

the house residents.

198

Figure 7.16 Smart Home Example 2 - Application Architecture for TeC

199

Figure 7.17 Featured-Based Integration Test Cases for the Smart Home Example 2 EU Application

200

Test case 35, defined for the “Video” feature shown in Figure 7.17, is an example

of multi-component interaction sequence test case. The test case source component is the

“securityAlertHandler” component of the “Smart Home” feature and the target component

is the “videoCall” component of the “Video” feature. The scenario tested is that when a

security alert is detected, a video call is placed and the resident gets a live video feed of the

events in the house. This test case tests the connectors between components:

“securityAlertHandler”, “alertVideo”, “videoCall”, “cameraManager” and “camera”

required to complete the scenario.

Test case 65 defined for the “Energy Conservation” and the “Email” features shown

in Figure 7.17 is an example of multi-component interaction sequence test case across

features that are not dependent. The scenario tested is that when the residents are away, the

house energy consumption gets adjusted and an informational email is send to the house

resident. Although, the components of the “Energy Conservation” are not communicating

directly with the components of the “Email” feature, they communicate through the

components of the “Smart Home” feature. For instance, when the “away” output of the

“tecTrack” component gets triggered, the “energyControl” component will send a

notification to the “infoAlertHandler” component. The “infoAlertHandler” component will

send a notification to the “email” component to notify the house residents. This test case

tests the interaction sequence of the following components: “tecTrack”, “energyControl”,

“infoAlertHandler”, and “email.”

The “Source Trigger” column of the test cases in Figure 7.17 shows all the triggers

executed in the “Smart Home Example 2” application. Triggers are used to simulate

201

external events in the smart space. For example as shown on test case 55 in Figure 7.17

when the “messageInQueue=true” triggering condition is true, the “sendAlert” output gets

executed and through a sequence of component interactions, the “emergency” input is

executed on the “emergencyCall” component. To verify that the test case executed

successfully, the testResult attribute of the “emergencyCall” component was compared to

the expected test result of the test case. For this test case it was found that (a) the input

captured in the testResult attribute was emergency and (b) the parameter passed to the

“emergency” input was “msg=help.” Separate test cases were created to test triggering

conditions that send messages to multiple inputs on different components. For example as

shown in Figure 7.16 the “energyControl” component sends two independent messages

when it receives a message from the “tecTrack” component. One message is to the

“infoAlertHandler” component and another message is to the “smartHVAC.” To test this

scenario, two test cases were created: test case 61 and test case 62 shown in Figure 7.17

EU Application logging messages were also used to confirm that both events occurred

when the “energyControl” component received a message from the “tecTrack” component.

EU Application Testing validated that all application components were derived for

the features that comprise the “Smart Home Example 2” application, and the connectivity

between components worked as were designed in the EU SPL development environment.

Figure 7.18 shows the EU Application Testing output that executed the Derived Feature-

based Test Cases against the component architecture of the “Smart Home Example 2”

application. All Feature-based Integration Test Cases were executed successfully.

202

7.7 Application Deployment Testing Process

The deployment of a derived application from the EUSPLP environment to the TeC

EUD platform is a multi-step process. As described in Chapter 5, the first step of the

deployment process is for the TeC EUSPLP Adaptor deployed in the TeC EUD

environment to retrieve the TeC PSP for the derived application from the Application

Distributor subsystem of the EUSPLP. The second step of the process is for the TeC

EUSPLP Adaptor to store the derived application to the TeC platform. Finally the TeC

Figure 7.18 FeatureBasedTestDriver Output of executing the Featured-Based Integration Test Cases to the

Smart Home Example 2 EU Application

203

environment deploys the derived application to the TeC devices of the smart space. To test

each step of the application deployment process, a third application, “Smart Home

Example 3” was derived from the Smart Home EU SPL that was deployed to the TeC

Android simulator. To support the deployment and execution of “Smart Home Example

3”, this research extended the TeC Android simulator with additional TeC devices from

the Smart Home domain.

Figure 7.19 shows the Feature Model for the “Smart Home Example 3” derived

application. As shown in Figure 7.19, the “Smart Home Example 3” application consists

of the following features: “Smart Home”, “Audio”, “Text”, and “Door.” Figure 7.20 shows

the application architecture of the derived application. EU Application Feature-based

Consistency Checking and EU Application Testing were performed on the “Smart Home

Example 3” application. Figure 7.21 shows the Feature-based Integration Test Cases

related to the derived application. All test cases performed on the “Smart Home Example

3” application executed successfully.

The “Smart Home Example 3” derived application was imported successfully by

the TeC EUSPLP Adaptor to the TeC simulator. Figure 7.22 shows three Android windows

related to the application importing process. The left Android window shows the TeC

EUSPLP Adaptor Android device retrieving the “Smart Home Example 3” derived

application (PSP) from the Application Distributor subsystem. The two Android windows

on the right show the imported application as it appears in the TeCEditor. The TeCEditor

204

is used to develop TeC applications for the TeC Android platform. The TeCEditor was

created as part of this research. In detail, the middle Android window of Figure 7.22 shows

the ActivitySheet objects that the TeC EUSPLP Adaptor stored in TeC. The last Android

window in Figure 7.22 shows all the ActivityConnector objects that were stored in TeC. In

addition to verifying the TeCEditor, the TeC database entries were also verified to confirm

that the Smart Home derived application was stored correctly. Finally to verify that the

derived application functions as intended, the application was deployed to the TeC Devices

that are part of the TeC Android simulator to simulate the execution of ActivitySheet

objects. The TeC Device simulators provide a testing user interface for executing triggering

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

requires

requires

<<default feature>>
Audio

<<exactly-one-of
feature group>>

 Phone Alert

<<default feature>>
Text

requires

<<at-least-one-of
feature group>>
Net Notification

Figure 7.19 Smart Home Example 3 Application – Feature Model

Deployed to the TeC Android Simulator

205

conditions for the ActivitySheet deployed in the devices. The testing interface of the TeC

Device simulators was used to execute the test cases shown in Figure 7.21. All test cases

were executed successfully. Figure 7.23 shows an example of executing the first test case

in Figure 7.21 between two TeC Devices, “Coordinator” and “Notify”, that simulate the

“alertAudio” and “phone” components respectively. When the “message=true” trigger

executes in the “alertAudio” component, the “call” output executes, which causes the "Dial

is: 703545558 and Message: securityAlert” message to be displayed by the “phone”

component. Similarly, all the other test cases shown on Figure 7.21 were executed

successfully.

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device

interface>>
doorMonitor

activate on

movementaction

activity
1..*

<<optional>>
<<coordinator>>

alertAudio

notify
<<default>>

<<input/output device
interface>>

phone

makeCallcall

init
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

<<kernel>>
<<message-broker>>

informationalAlertHandler

sendAlert

subscribe

receiveAlert

<<optional>>
<<system-interface>>

text

notify

init

Smart Home
Feature

Door Feature

Text Feature

Audio Feature

Figure 7.20 Smart Home Example 3 - Application Architecture for TeC

206

Figure 7.21 Derived Featured-Based Integration Test Cases for the Smart Home Example 3 EU Application

207

Figure 7.22 Smart Home Example 3 Derived Application Stored in TeC Android

Figure 7.23 Executing a Test Case Example in TeC Device Simulators

208

7.8 Summary

This chapter has provided an overview of the validation process for this research.

In summary, the Smart Home EU SPL case study was developed to validate: (a) the

proposed design method for creating end user product lines, (b) the end user application

derivation process, (c) the EUSPLP development environment for the product line creation

process, (d) the EUSPLP environment for the application derivation process, and (e) the

application deployment process. The EUSPLP environment was used to validate the EU

SPL process and meta-model. To validate the TeC PSPLs produced by the EUSPLP

environment, EU SPL Testing was performed. EU SPL Testing consisted of executing EU

SPL Feature-based Consistency and Feature-based Integration Test Cases for the Smart

Home EU SPL case study. All EU SPL Testing test cases executed successfully. In

addition, to verify the TeC applications derived by the EUSPLP environment, EU

Application Testing was performed. EU Application Testing consisted of executing EU

Application Feature-based Consistency and Feature-based Test Cases to test two

applications derived from the Smart Home EU SPL case study. All EU Application Testing

test cases executed successfully in both derived applications. Finally to test the application

deployment process a third application was derived from the Smart Home EU SPL that

was deployed to and executed by the TeC Android simulator. The author of this dissertation

developed and executed all test cases described in this chapter.

209

8 CONTRIBUTIONS AND FUTURE RESEARCH

8.1 Introduction

This dissertation has described a systematic approach and development

environment for designing, developing and testing End User Software Product Lines (EU

SPL) that end users can use to derive applications for their smart spaces. This research

investigated the EU SPL process for technical end users and domain experts to create EU

SPLs, which provides a step by step process for designing, developing and testing EU

SPLs. The EU SPL process has extended existing product line approaches to end user

development and smart spaces, as well as for deriving EU applications from the EU SPL.

The EU SPL meta-model was designed to capture the underlying representation of end user

product lines in terms of meta-classes and their relationships. The EUSPLP development

environment was developed to enable the implementation of EU SPLs and application

derivation for smart spaces. Finally a testing framework was developed to test the EU SPL

and application models created using the EUSPLP development environment.

The remaining sections of this chapter describe the contributions of this research

and future work. Section 8.2 describes the contributions of this research. Section 8.3

discusses areas where this research could be extended. Finally, section 8.4 provides a

summary of this chapter.

8.2 Research Contributions

This section discusses the contributions of this research as they relate to the research

goals described in Chapter 1. The overall contributions of this research are: (a) the End

210

User Product Line Engineering (EUPLE) process, (b) the End User Application

Engineering (EUAE) process, (c) the EU SPL meta-model, (d) the EUSPLP development

environment, and (e) the EU SPL Testing framework. The following subsections briefly

detail the contributions of this research.

8.2.1 End User Product Line Engineering (EUPLE) Process

The End User Product Line Engineering (EUPLE) process for designing,

developing and testing EU SPLs for smart spaces, is one of the contributions of this

research. The EUPLE process is part of the EU SPL process. In particular, the EUPLE

process provides EU SPL designers with a systematic approach for designing and

developing EU SPLs. The EUPLE process extended conventional Product Line

Engineering (PLE) approaches (Gomaa, 2005a) to account for EUD development and

smart spaces. SPL design artifacts were extended by the EUPLE process to capture

platform and component / connector architecture information available in smart spaces.

The EUPLE process provides a lightweight product line approach for technical end users

and domain experts to design and develop EU SPLs that can be used to derive applications

for different EUD environments.

8.2.2 End User Application Engineering (EUAE) Process

The End User Application Engineering (EUAE) process for deriving end user

applications from the EU SPL is another contribution of this research. The EUAE process

is part of the EU SPL process. In particular, the EUAE process enables end users to derive

software applications for their smart spaces. The EUAE process extended conventional

211

Application Engineering approaches (Gomaa, 2005a) to account for end users and smart

spaces. In conventional Application Engineering, application engineers and application test

engineers work with end users to derive and install applications from the product line. The

EUAE process is executed by end users. EUAE provides sub-processes for collecting end

user requirements for smart spaces, deriving the EU application architecture, testing the

application, and deploying the application to the smart space. The EUPLE process provides

a lightweight approach for end users to derive applications from the EU SPLs for their

spaces.

8.2.3 EU SPL Meta-model

 The EU SPL meta-model is another contribution of this research. The EU SPL

meta-model is used to capture the underlying representation of EU SPLs and derived

applications artifacts in terms of meta-classes and relationships. The EU SPL meta-model

extended conventional SPL meta-models with support for EUD environments. In addition,

the EU SPL meta-model contains platform independent and platform specific meta-

models. Platform independent meta-models are used to capture the underlying

representation of end user product lines and applications in terms of meta-classes and

relationships independent of the EUD environment. Platform independent product lines are

beneficial because they can be reused to derive applications for different EUD

environments. Platform specific meta-models are applicable to specific EUD

environments. Platform specific meta-models are beneficial when designing an end user

product line that uses exclusive functions of a specific EUD environment.

212

8.2.4 EUSPLP Development Environment

The End User Software Product Line Prototype (EUSPLP) development

environment used to validate this research is another contribution. This development

environment enables: (a) EU SPL designers to develop end user product lines, and (b) End

users to derive and deploy applications for their smart spaces. The EUSPLP environment

is different from conventional SPL environments as it is based on the EU SPL process and

targets end users. The EUSPLP provides different user interfaces for supporting EU SPL

development and application derivation. EU SPL designers use the EU SPL development

user interface to design and implement end user product lines. End users use the application

derivation user interface to derive applications for their spaces. The EUSPLP is integrated

with the TeC Android environment for application deployment. The EUSPLP design

supports the deployment of derived applications to additional EUD environments by

developing EUSPLP adaptors for each different end user development environment. The

EUSPLP environment was implemented using open source technologies and is web-based.

As part of the EUSPLP environment, an end user oriented visual language was

defined to support the development of EU SPLs and application derivation. In particular,

during EU SPL design, the feature model is represented as a tree structure to capture feature

and feature group dependencies. During application derivation, end users are presented

with a different view of the feature model applicable for feature selection. The visual

language is beneficial for developing end user product lines since it uses simple visual

representations and symbols to capture complex product line terminology.

213

8.2.5 EU SPL Testing Approach

The EU SPL Testing Approach is another contribution of this research. The testing

approach extended conventional SPL testing approaches for end user product lines and

derived applications. In particular, the testing approach consists of three sub-processes: (1)

EU SPL Testing, (2) EU Application Testing, and (3) EU Application Deployment Testing.

The EU SPL testing process executes at the product line level, and tests feature

dependencies and component interconnections of the EU SPL. The EU Application Testing

process executes applications derived from the EU SPL, and tests the validity of each

feature combination that composes the derived application in addition to the application

component interconnections. The EU Application Deployment Testing process executes

during the application deployment to the smart space and tests that the application has been

deployed successfully and executes correctly. The EU SPL Testing framework is beneficial

since it provides testing throughout the EU SPL process.

8.3 Future Research

This section discusses possible future research for extending this work. The

proposed future work in this section can further promote the adoption of end user software

product lines for end user development of smart spaces.

8.3.1 Smart Space Security models for End User Software Product Lines

 There are several security challenges in multi-user smart spaces. Some of the issues

involve authentication, access control, privacy and confidentiality of communication (Jani

Suomalainen and Pasi Hyttinen, 2011). Each EUD environment has its own mechanisms

214

for addressing these challenges. Additional research can be conducted to create a security

meta-model that addresses the authentication, access control, privacy and confidentiality

security attributes of smart spaces, which can be used in the design, implementation and

testing of EU SPLs. The security meta-model could be mapped to security models of

different EUD environments. In addition, different design artifacts that address each of the

security attributes could be used to expand the EU SPL process.

8.3.2 End User Visual Languages for End User Software Product Lines

A visual language was developed as part of the EUSPLP development environment

to enable technical end users and domain experts to create EU SPLs and end users to derive

applications for their environments. This research performed a preliminary user study

(Tzeremes and Gomaa, 2016b) to investigate (a) different visual symbols for representing

feature types, and (b) user interfaces for creating EU SPLs and deriving applications for

smart spaces. An extension of the original user study could be conducted to ensure that the

visual language and user interface created in the EUSPLP is sufficient for (a) technical end

users and domain experts to create EU SPLs, and (b) end users to derive applications.

8.3.3 Enhancements to the EUSPLP Development Environment

The EUSPLP development environment provides functions for creating EU SPLs

and deriving applications for the TeC EUD environment. The prototype can be extended

to support additional EUD environments for smart spaces using the meta-models described

in Chapter 5. A conversion mechanism could be investigated to convert EU SPLs created

by the EUSPLP to different EUD smart spaces. Additional research can be performed in

215

the area of addressing conflicts between the smart space security policy and the EU SPL

features. Finally, additional research can be conducted in extending this prototype to other

domains of end user development and product line development.

8.3.4 Testing of End User Software Product Lines

 This research developed a testing approach and framework for testing end user

product lines for smart spaces. The testing framework could be enhanced by investigating

approaches to automatically generate test cases based on feature dependencies and

component relationships, in addition to test cases provided by EU SPL designers. Another

area that needs additional research is automated methods for testing mobile systems

(Canfora et al., 2013) that can be integrated with the EU SPL process. For instance the TeC

Android simulator (Shen, 2014) could be extended with an automated method for software

testing. Furthermore additional research is needed in incorporating usability testing

(Brinkman et al., 2008) in the EU SPL process. Usability testing can assist EU SPL

designers to ensure that feature designs are easy to use and increase the satisfaction of end

users.

8.3.5 Evolution of End User Product Lines for Smart Spaces

 As part of this research a manual process was created for EU SPL designers to

communicate with end users to address the evolution of EU SPL. New requirements are

identified by end users, defects are addressed, and new features are added and other features

are retired. An automated process could be investigated that (a) informs end users about

updates in features that are part of derived applications deployed in their spaces, (b) informs

216

end users about new features that are applicable to their spaces, (c) tests and deploys

enhancements to derived applications, and (d) reports defects back to EU SPL designers.

8.4 Summary

This dissertation has described an approach for designing, developing and testing

end user product lines for smart spaces. This research investigated an EU SPL process for

creating EU SPLs and deriving applications for smart spaces. This research also defined a

meta-model that captures the underlying representation of the commonality and variability

of EUD smart spaces and product lines. A prototype was created to validate the approach

and to enable EU SPL development and application derivation. The Smart Home EU SPL

was created as a case study to validate the different parts of this research. A testing

approach and supporting testing framework was developed to test end user product lines

and derived applications. Security for smart spaces, visual languages for EU SPLs,

EUSPLP enhancements, extensions to the testing framework and EU SPL evolution are

some areas that could further enhance this research.

217

A APPENDIX: SMART HOME EU SPL CASE STUDY

A.1 Introduction

The Smart Home EU SPL case study presented in this appendix was developed in

this research following the EU SPL Process described in Chapter 4 and was used to validate

this research. Smart homes are physical environments equipped with sensors, actuators,

appliances and devices that can react proactively or reactively to environment changes.

End User Development (EUD) environments for smart homes integrate sensors, actuators,

appliances and devices and provide end user friendly interfaces to allow ordinary end users

to create applications for their environments. As smart homes evolve and get additional

instrumentation they become complex and it can be difficult for ordinary end users to create

software applications using EUD environments. By adopting the EU SPL process

described in this research advanced end users and domain experts can develop end user

product lines for smart spaces. Ordinary end users can use end user product lines to select

features, derive and deploy applications for their homes.

The Smart Home EU SPL case study presents an end user product line created for

a complex smart home. The case study includes features from the domains of home

automation, home security, home notifications, home maintenance, resident comfort and

energy conservation. The case study was developed following the EU SPL Process. In

particular, the End User Product Line Engineering (EUPLE) process was used to design

and develop the case study and the End User Application Engineering process was used to

derive applications.

218

The appendix is organized as follows. Section A.2 describes the EUPLE process

(requirements elicitation, feature modeling, analysis modeling and design modeling) used

to create the Smart Home EU SPL. Section A.3 describes how the EUAE process was used

to derive end user applications from the Smart Home EU SPL for the TeC and Jigsaw EUD

environment. Finally, section A.4 summarizes this chapter.

A.2 End User Product Line Engineering (EUPLE)

End User Product Line Engineering (EUPLE) is the process that EU SPL designers

(technical end users and domain experts) follow to develop EU SPLs. This section

describes the EU SPL Requirements Elicitation, EU SPL Analysis modeling and EU SPL

Design modeling as related to the Smart Home EU SPL case study.

A.2.1 EU SPL Requirements Elicitation

EU SPL requirements elicitation involves a set of activities to help define the

overall scope of the product line. EU SPL designers with domain expertise define the

overall road map for the EU SPL. Then EU SPL designers work with end users to collect

and document requirements. Based on product line scoping and requirements, the product

line feature model is defined. This section describes the end user requirement elicitation

process and provides examples for a smart home case study. In detail section A.2.1.1

describes the Smart Home EU SPL features. Section A.2.1.2 presents the Smart Home EU

SPL feature model. Section A.2.1.3 shows the product line features groups and their

features in a tabular view.

219

A.2.1.1 Smart Home EU SPL Feature Description

Table A.1 provides a summary of the features that comprise the Smart Home EU SPL

case study.

Table A.1 Smart Home EU SPL Feature Description

Feature Name Feature Description

Smart Home Provides common mechanisms for informational and security notifications

Audio Provides audio notifications to the home residents phone when there are

security alerts

Video Provides video notifications to the home residents smart phone when there are

security alerts

Home Alarm The siren, flashing Lights and smart displays get activated when a security

bridge is detected

911 The police is notified when a security bridge is detected

Door Door sensors send security notifications that the doors have been bridged

Motion Motion sensors send security notifications that the doors have been bridged

Window Window sensors send security notifications that the doors have been bridged

Smart Irrigation Controls the sprinkler system

Schedule Starts the sprinkler system based on a schedule

Smart Weather

Sensing

Starts the sprinkler system based on the soil moisture

Email Provides email notifications to the home residents phone when there are

informational or security alerts

Text Provides text notifications to the home residents phone when there are

informational or security alerts

Light Failure Light sensors send informational notifications when a light bulb need to be

changed

HVAC Filter HVAC filter quality sensors send informational notifications when the filter

needs to be changed

Power Failure Power Failure sensors send informational notifications when a device has no

power

Energy Conservation When the home residents are away the home adjusts the home appliances to

lower energy consumption. The home adjust to normal energy levels when the

home residents are back in the house

Flood Detector Moisture sensors send informational notifications when a flood is detected

Faucet Drip Faucet sensors send informational notifications when a faucet keeps dripping

A.2.1.2 Smart Home EU SPL Feature Model

Feature modeling is used to capture feature commonality/variability and feature

dependencies within the EU SPL. In a feature model, features can be organized (a) as

220

common or variable, (b) in feature groups, and (c) as parameterized features. Figure A.1

shows the feature model for the Smart Home EU SPL case study. As shown in Figure A.1

the smart home feature model has one common feature called Smart Home that all other

features and feature groups depend on. There is one optional feature Smart Irrigation that

depends on the Smart Home feature. The Schedule and Smart Weather Sensing features

are also optional and depend on the Smart Irrigation feature. There is one exactly-one-of

feature group called Phone Alert that depends on the Smart Home feature. The Phone Alert

feature group has two mutually exclusive features Audio and Video. The Audio feature is

the default feature and Video is the alternative feature. Default features are selected by

default if no other feature in the feature group is selected. The Video feature is platform

specific.

The feature model also contains two at-least-one-of feature groups: Net

Notification and Home Security. Both of the feature groups depend on the Smart Home

common feature. The Net Notification feature group contains two optional features Email

and Text. Text is the default feature. The Home Security feature group contains three

optional features: Door, Motion and Window. Door is the default option of the feature

group. The Smart Home feature model also contains two zero or more feature groups:

Water Detector and Home Behavior. The Water Detector feature group contains two

optional features Faucet Drip and Flood Detector. The Home Behavior feature group

221

contains four optional features: Power Failure, HVAC Filter, Light Failure and 911. In

addition the Home Alarm optional feature depends on the Light Failure feature.

Furthermore the Energy Conservation optional feature depends on the HVAC Filter. The

Energy Conservation feature also is platform specific.

A.2.1.3 Smart Home EU SPL Feature Group / Feature Dependency Table

 The Feature group / Feature dependency table is another view that captures the

relationship between product line features and feature groups. The Feature group / Feature

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
Motion

<<optional feature>>
Window

<<optional feature>>
Power Failure

<<optional feature>>
HVAC Filter

<<optional feature>>
Light Failure

<<optional feature>>
Home Alarm

<<optional feature>>
911

<<platform-specific>>
<<optional feature>>
Energy Conservation

<<optional feature>>
Faucet Drip

<<optional feature>>
Flood Detector

<<optional feature>>
Smart Irrigation

<<optional feature>>
Schedule

<<optional feature>>
Smart Weather Sensing

requires

<<default feature>>
Audio

<<platform-specific>>
<<alternative feature>>

Video

<<exactly-one-of
feature group>>

 Phone Alert

<<optional feature>>
Email

<<default feature>>
Text

requires

requires

<<at-least-one-of feature
group>>

Net Notification

<<zero-or-more-of
feature group>>
Water Detector

<<zero-or-more-of
feature group>>
Home Behavior

requiresrequires

requires

requires

requires

requiresrequires

Figure A.1 Smart Home EU SPL Feature Model

222

dependency table assists EU SPL designers to ensure consistency between features and

feature groups.

Table A.2 shows the Feature Group / Feature dependency table for the Smart Home

case study. The table captures the Smart Home EU SPL feature groups with features

dependencies. The purpose of this table is to ensure consistency between each feature

group and the features it contains. Table A.2 the table has four columns: (a) Feature Group

Name, (b) Feature Group Category, (c) Feature Name, and (d) Feature Category. The

Feature Group Category and Feature Category need to be compatible for example exactly-

one-of feature group needs to have a set of alternative features since only one can be

selected. For example as shown in Table A.2 the Phone Alert exactly-one-of feature group

has two alternative features Audio and Video with the Audio feature being the default

option.

Table A.2 Smart Home EU SPL Feature Group / Feature Dependency Table

Feature Group Name Feature Group Category Features in Feature Group Feature Category

Phone Alert exactly-one-of Audio

Video

default

alternative

Home Security at-least-one-of Door

Motion

Window

default

optional

optional

Water Detector zero-or-more-of Flood Detector

Faucet Drip

optional

optional

Home Behavior zero-or-more-of Light Failure

HVAC Filter

Power Failure

911

optional

optional

optional

optional

Net Notification at-least-one-of Text

Email

default

optional

223

A.2.2 EU SPL Analysis Modeling

EU SPL Analysis modeling consists of static modeling and component structuring,

dynamic modeling and feature / component modeling. Section A.2.2.1 describes the Smart

Home EU SPL static model and component structuring. Section A.2.2.2 captures the Smart

Home EU SPL dynamic modeling in the form of sequence diagrams. Section A.2.2.3

provides details about the feature/component dependencies.

A.2.2.1 Smart Home EU SPL Static Model and Component Structuring

Figure A.2 shows the static model and the component structuring for the

components used in the Smart Home case study. The Smart Home EU SPL static model is

composed of the platform specific feature / component table and the components diagram.

The components diagram shown in Figure A.2 captures all the components used on the

Smart Home EU SPL annotated with the reuse, role and platform dependency UML

stereotypes. For example as shown on the securityAlertHandler component is annotated

with the <<kernel>> stereotype to capture reuse category and the <<message-broker>>

stereotype to capture the component role category. Similar the component videoCall is

annotated with the <<optional>> stereotype to capture the reuse category, the <<input /

output device interface>> stereotype to capture the role category and the <<platform-

specific>> stereotype to indicate that this component only applies to specific platforms.

224

The Platform Specific Feature / Component relationship table captures the

relationship between platform specific features and platform specific components. As

shown in Table A.3 the platform specific feature / component relationship table has 4

columns: (a) Feature Name, (b) Platform Name, (c) Component Name, and (d) Platform

Specific Name. The Feature Name column captures the name of the feature. The Platform

Name column captures the end user platform(s) that the feature applies. The Component

Name column captures the component name as it appears on the static model. The Platform

Specific Name column captures the actual component name in the specific platform. For

example the Energy Conservation feature applies only to the TeC platform.

<<kernel>>
<<message-broker>>

informationalAlertHandler

<<kernel>>
<<message-broker>>
securityAlertHandler

<<optional>>
<<coordinator>>

alertAudio

<<optional>>
<<input/output device interface>>

phone

<<platform-specific>>
<<optional>>

<<input/output device interface>>
videoCall

<<platform-specific>>
<<optional>>

<<coordinator>>
cameraManager

<<optional>>
<<coordinator>>

alertVideo

<<platform-specific>>
<<optional>>

<<input/output device interface>>
camera

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device interface>>

doorMonitor

<<optional>>
<<coordinator>>
breakInMotion

<<optional>>
<<input/output device interface>>

motionDetector

<<optional>>
<<coordinator>>
breakInWindow

<<optional>>
<<input/output device interface>>

windowDetector

<<optional>>
<<system-interface>>

email

<<optional>>
<<system-interface>>

text

<<optional>>
<<timer>>

sprinklerTimer

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

<<optional>>
<<input/output device interface>>

smartAudio

<<optional>>
<<input/output device interface>>

smartDisplay

<<optional>>
<<input/output device interface>>

smartLight

<<optional>>
<<coordinator>>

alarmHome

<<optional>>
<<coordinator>>

alarm911

<<optional>>
<<system interface>>

emergencyCall

<<optional>>
<<input/output device interface>>

power failure sensor

<<optional>>
<<input/output device interface>>

faucetLeakSensor

<<optional>>
<<input/output device interface>>

floodSensor

<<optional>>
<<platform-specific>>

<<coordinator>>
track

<<optional>>
<<input/output device interface>>

smartHVAC

<<optional>>
<<coordinator>>

energyControl

<<optional>>
<<input/output device interface>>

moistureMonitor

Figure A.2 Smart Home Case Study Static Model

225

The track component of the Energy Conservation feature would have to be mapped to the

tecTrack component of Team computing during the end user application deployment

process.

A.2.2.2 Smart Home EU SPL Dynamic Modeling

EU SPL designers use dynamic modeling to capture the object interactions needed

to satisfy EU SPL features. This research used UML sequence diagrams to model object

interactions. Sequence diagrams model the message interaction of objects based on a time

sequence (Rumbaugh et al., 2004). Figure 4.3 to Figure A.20 show the sequence diagrams

developed for each feature defined in the feature model. The components

securityAlertHandler and informationalAlertHandler are kernel components and support

the Smart Home Feature. The kernel components support all sequence diagrams.

Table A.3 Platform Specific Feature / Component relationship table

Feature

Name

Platform Name Component Name Platform Specific Name

Energy Conservation Team Computing track tecTrack

Video Team Computing videoCall

cameraManager

camera

tecVideoCall

tecCameraManager

tecCamera

226

<<optional>>
:alertAudio

<<optional>>
:phone

makeCall[call=true]

<<kernel>>
:securityAlertHandler

subscribe

[sendAlert=true]

[init=true]

notify

Figure A.3 Sequence Diagram for the Smart Home EU SPL Audio Feature

<<optional>>
:videoCall

<<optional>>
:cameraManager

[videoCall=true]

startVideoStream[videoCall=true]

makeVideoCall

stream_in

[endCall=true]

<<optional>>
:alertVideo

<<kernel>>
:securityAlertHandler

subscribe [init=true]

[sendAlert=true] notify

stopVideoStream

stream_out

<<optional>>
:camera

[startVideo=true] startStream

[stopVideo=true] stopStream

Figure A.4 Sequence Diagram for the Smart Home EU SPL Video Feature

227

<<optional>>
:breakInDoor

<<optional>>
:doorMonitor

<<kernel>>
:securityAlertHandler

on[activate=true]

[movement=true]action

[activity=true] receiveAlert

Figure A.5 Sequence Diagram for the Smart Home EU SPL Door Feature

Figure A.6 Sequence Diagram for the Smart Home EU SPL Motion Feature

<<optional>>
:breakInMotion

<<optional>>
:motionDetector

<<kernel>>
:securityAlertHandler

on[activate=true]

[movement=true]action

[activity=true] receiveAlert

228

Figure A.7 Sequence Diagram for the Smart Home EU SPL Window Feature

Figure A.8 Sequence Diagram for the Smart Home EU SPL Text Feature

<<optional>>
:breakInWindow

<<optional>>
:windowDetector

<<kernel>>
:securityAlertHandler

on[activate=true]

[movement=true]action

[activity=true] receiveAlert

<<optional>>
:text

<<kernel>>
:informationalAlertHandler

subscribe

[sendAlert=true]

[init=true]

notify

<<kernel>>
:securityAlertHandler

[sendAlert=true]

[init=true]

notify

subscribe

229

Figure A.9 Sequence Diagram for the Smart Home EU SPL Email Feature

Figure A.10 Sequence Diagram for the Smart Home EU SPL Smart Irrigation Feature

<<optional>>
:email

<<kernel>>
:informationalAlertHandler

subscribe

[sendAlert=true]

[init=true]

notify

<<kernel>>
:securityAlertHandler

[sendAlert=true]

[init=true]

notify

subscribe

<<optional>>
:sprinklerControl

<<optional>>
:sprinkler

startWater[turn on=true]

stopWater[turn off=true]

<<kernel>>
:informationalAlertHandler

[turn off=true] receiveAlert

[turn on=true] receiveAlert

230

<<optional>>
:sprinklerTimer

<<optional>>
:sprinklerControl

water[timeAlert=true]

Figure A.11 Sequence Diagram for the Smart Home EU SPL Schedule Feature

<<optional>>
:sprinklerControl

<<optional>>
:moistureMonitor

[drySoil=true] water

Figure A.12 Sequence Diagram for the Smart Home EU SPL Smart Weather Sensing Feature

231

Figure A.13 Sequence Diagram for the Smart Home EU SPL Flood Detector Feature

Figure A.14 Sequence Diagram for the Smart Home EU SPL Faucet Drip Feature

<<optional>>
:floodSensor

<<kernel>>
:informationalAlertHandler

receiveAlert[flood=true]

<<optional>>
:faucetLeakSensor

<<kernel>>
:informationalAlertHandler

receiveAlert[leak=true]

232

Figure A.15 Sequence Diagram for the Smart Home EU SPL Light Failure Feature

Figure A.16 Sequence Diagram for the Smart Home EU SPL HVAC Filter Feature

<<optional>>
:smartLight

<<kernel>>
:informationalAlertHandler

receiveAlert[replace=true]

<<optional>>
:smartHVAC

<<kernel>>
:informationalAlertHandler

receiveAlert[replace filter=true]

233

Figure A.17 Sequence Diagram for the Smart Home EU SPL Power Failure Feature

<<optional>>
:smartHVAC

<<kernel>>
:informationalAlertHandler

receiveAlert

<<optional>>
:track

<<optional>>
:energyControl

econ[away=true]

[adjustHvacLevel=true] setHvacLevel

[energyLevelNotification=true] receiveAlert

norm

[adjustHvacLevel=true] setHvacLevel

[home=true]

[energyLevelNotification=true]

Figure A.18 Sequence Diagram for the Smart Home EU SPL Energy Conservation Feature

<<optional>>
:powerFailureSensor

<<kernel>>
:informationalAlertHandler

receiveAlert[failure=true]

234

<<optional>>
:alarmHome

<<optional>>
:smartAudio

play[alarm=true]

<<kernel>>
:securityAlertHandler

subscribe [init=true]

notify [sendAlert=true]

<<optional>>
:smartDisplay

<<optional>>
:smartLight

show[alarm=true]

flash[alarm=true]

Figure A.19 Sequence Diagram for the Smart Home EU SPL Home Alarm Feature

<<optional>>
:alarm911

<<optional>>
:emergencyCall

[contact911=true]

<<kernel>>
:securityAlertHandler

subscribe [init=true]

notify [sendAlert=true]

emergency

Figure A.20 Sequence Diagram for the Smart Home EU SPL 911 Feature

235

A.2.2.3 Smart Home EU SPL Feature/Component Dependency Table

The Feature / Component table describes in detail the EU SPL features and the

components needed to support the implementation of each of the features. The purpose of

the table is for EU SPL designers to ensure consistency between features and the

components that support them.

Table A.4 shows the Feature / Component Dependency Table that was developed

for the Smart Home EU SPL Case Study used in this research. For example the common

feature Smart Home is implemented by the securityAlertHandler and the

informationalAlertHandler component that are kernel. Similarly the alternative Video

feature is implemented by the alertVideo, videoCall, cameraManager and camera optional

components. Since the Video feature depends on the Smart Home feature, the Video feature

will also be supported by the securityAlertHandler and informationalAlertHandler kernel

components. Finally, the optional Energy Conservation feature is implemented by the

optional track and energyControl components. The component parameter residentIDs of

the track component indicate the smart home residents that need to be tracked by the

component.

236

Table A.4 Smart Home EU SPL Feature/Component Dependency Table

Feature

Name

Feature

Group

Name

Feature

Category

Component Name Component

Reuse

Category

Component

Parameter

Smart Home common securityAlertHandler

informationalAlertHandler

kernel

kernel

Audio Phone Alert default alertAudio

phone

optional

optional

Video Phone Alert alternative alertVideo

videoCall

cameraManager

camera

optional

optional

optional

optional

Door Home

Security

default breakInDoor

doorMonitor

optional

optional

Motion Home

Security

optional breakInMotion

motionDetector

optional

optional

Window Home

Security

optional breakInWindow

windowDetector

optional

optional

Smart

Irrigation

 optional sprinkler

sprinklerControl

optional

optional

Schedule optional sprinklerTimer optional timetorun :

String

Smart Weather

Sensing

 optional moistureMonitor optional

Email Net

Notification

optional email optional

Text Net

Notification

default text optional

Flood Detector Water

Detector

optional floodSensor optional

Faucet Drip Water

Detector

optional faucetLeakSensor optional

Home Alarm Home

Behavior

optional alarmHome

smartAudio

smartDisplay

optional

optional

optional

911 Home

Behavior

optional alarm911

emergencyCall

optional

optional

Light Failure Home

Behavior

optional smartLight optional

HVAC Filter Home

Behavior

optional smartHVAC optional

Power Failure Home

Behavior

optional powerFailureSensor optional

Energy

Conservation

Home

Behavior

optional track

energyControl

optional

optional

residentIDs:

List<String>

237

A.2.3 EU SPL Design Modeling

EU SPL Design modeling maps the EU SPL Analysis model to the solution domain

(Gomaa, 2016). During EU SPL Design modeling the component inter-feature

communication, component relationships and component interface models are designed.

Section A.2.3.1 describes the inter-feature component communication table. Section

A.2.3.2 presents the component relationships and component interfaces in the form of

component diagrams. Section A.2.3.3 provides additional details about the component

inputs/outputs and component output triggering conditions that initiate an event.

A.2.3.1 Smart Home EU SPL Inter-Feature Component Communication Table

The inter-feature component communication table captures all product line

components that send and receive messages through message broker components. Table

A.5 shows the inter-feature component communication table that was created to support

the Smart Home case study.

Table A.5 Inter-Feature Component Communication Table

Message Broker Subscribed

Components

Message Producer Components

securityAlertHandler alertAudio

alertVideo

alarmHome

alarm911

email

text

breakInDoor

breakInMotion

breakInWindow

informationalAlertHandler email

text

schedule

sprinklerControl

smartLight

smartHVAC

powerFailureSensor

energyControl

floodSensor

faucetLeakSensor

238

A.2.3.2 Smart Home EU SPL Component Diagrams

UML component diagrams can be used by EU SPL designers to capture (a)

components available in a smart home, (b) component relationships, and (c) provided and

required interfaces needed for components to communicate. The components diagrams are

developed based on the sequence diagrams shown in Figure A.21 to Figure A.38 during

EU SPL Analysis phase. Figure A.21 to Figure A.38 show the component diagrams

developed for the Smart Home EU SPL case study.

Figure A.37 shows the component diagram of the Home Alarm Feature. The

component diagram is composed of the securityAlertHandler, alarmHome, smartAudio,

smartDisplay and the smartLight components. The components are decorated with UML

stereotypes to indicate whether a component is kernel, optional, or variant. For example

the securityAlertHandler is a <<kernel>> component while alarmHome, smartAudio,

smartDisplay and smartLight are <<optional>> components. Furthermore additional

stereotypes are used to capture the role of each component. For example

securityAlertHandler is a <<message-broker>> component. Components may also have a

multiplicity indicator to indicate the number of component instances in a smart space. For

example the smartAudio, component has 1…* multiplicity that indicates that there are one

or more smartAudio in the smart space. The connections between components also indicate

the required and provided interfaces between components.

239

<<optional>>
<<coordinator>>

alertAudio

notify

<<optional>>
<<input/output device

interface>>
phone

makeCallcall

init
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

Figure A.21 Component Diagram for the Audio Feature

<<platform-specific>>
<<optional>>

<<input/output device
interface>>

videoCall

makeVideoCallvideoCall

<<platform-specific>>
<<optional>>

<<coordinator>>
cameraManager

videoCall

stream_in endCall

<<optional>>
<<coordinator>>

alertVideo

notify

init
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

startVideoStream

stopVideoStream

<<platform-specific>>
<<optional>>

<<input/output device
interface>>

camera

1..*

stream_out

startStream

stopStream

startVideo

stopVideo

Figure A.22 Component Diagram for the Video Feature

Figure A.23 Component Diagram for the Door Feature

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device

interface>>
doorMonitor

activate on

movementaction

activity

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert
1..*

240

Figure A.24 Component Diagram for the Motion Feature

Figure A.25 Component Diagram for the Window Feature

Figure A.26 Component Diagram for the Text Feature

<<optional>>
<<coordinator>>
breakInMotion

<<optional>>
<<input/output device

interface>>
motionDetector

activate on

movementaction

activity

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert
1..*

<<optional>>
<<coordinator>>
breakInWindow

<<optional>>
<<input/output device

interface>>
windowDetector

activate on

movementaction

activity

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert
1..*

<<optional>>
<<system-interface>>

text

notify

init

<<kernel>>
<<message-broker>>

informationalAlertHandler

sendAlert

subscribe

receiveAlert

<<kernel>>
<<message-broker>>
securityAlertHandler

receiveAlert
sendAlert

subscribe

241

Figure A.27 Component Diagram for the Email Feature

Figure A.28 Component Diagram for the Smart Irrigation Feature

<<optional>>
<<system-interface>>

email

notify

init

<<kernel>>
<<message-broker>>

informationalAlertHandler

sendAlert

subscribe

<<kernel>>
<<message-broker>>
securityAlertHandler

receiveAlert
sendAlert

subscribe

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

turn on turn off

startWater stopWater

1..*
<<kernel>>

<<message-broker>>
informationalAlertHandler

subscribe

receiveAlert

sendAlert

242

<<optional>>
<<timer>>

sprinklerTimer

timeAlert <<optional>>
<<coordinator>>
sprinklerControl

water

Figure A.29 Component Diagram for the Schedule Feature

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

moistureMonitor

water drySoil 1..*

Figure A.30 Component Diagram for the Smart Weather Sensing Feature

Figure A.31 Component Diagram for the Flood Detector Feature

flood

<<optional>>
<<input/output device interface>>

floodSensor

<<kernel>>
<<message-broker>>

informationalAlertHandler

sendAlert

subscribe

receiveAlert

1..*

243

Figure A.32 Component Diagram for the Faucet Drip Feature

Figure A.33 Component Diagram for the Light Feature

Figure A.34 Component Diagram for the HVAC Filter Feature

leak

<<optional>>
<<input/output device interface>>

faucetLeakSensor

<<kernel>>
<<message-broker>>

informationalAlertHandler

sendAlert

subscribe

receiveAlert

1..*

<<optional>>
<<input/output device interface>>

smartLight

replace 1..*
<<kernel>>

<<message-broker>>
informationalAlertHandler

subscribe

receiveAlert
sendAlertflash

setLightLevel

<<optional>>
<<input/output device interface>>

smartHVAC

replace filter receiveAlert1..*
<<kernel>>

<<message-broker>>
informationalAlertHandler

subscribe

sendAlert

setHvacLevel

244

Figure A.35 Component Diagram for the Power Failure Feature

<<optional>>
<<platform-specific>>

<<coordinator>>
track

<<optional>>
<<input/output device interface>>

smartHVAC

away

home

1..*
<<optional>>

<<coordinator>>
energyControl

receiveAlert

<<kernel>>
<<message-broker>>

informationalAlertHandler

subscribe

sendAlert

energyLevelNotification

econ

norm

setHvacLevel

adjustHvacLevel

replace filter

Figure A.36 Component Diagram for the Energy Conservation Feature

<<optional>>

<<input/output device
interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

<<optional>>
<<input/output device

interface>>
smartLight

play

show

flash

alarm
<<optional>>

<<coordinator>>
alarmHome

init

notify
<<kernel>>

<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

setLightLevel

replace

1..*

1..*

1..*

Figure A.37 Component Diagram for the Home Alarm Feature

<<optional>>
<<input/output device interface>>

powerFailureSensor

failure
receiveAlert1..*

<<kernel>>
<<message-broker>>

informationalAlertHandler

subscribe

sendAlert

245

A.2.3.3 Smart Home EU SPL Component Input / Output Table

 Table A.6 and Table A.7 shows component input / output table developed

for the Smart Home EU SPL. The component input / output table describes all the inputs,

outputs and triggering conditions of each component in order to support the features

described in the product line. The input / output table has four columns: (1) Component

Name, (2) Component Input, (3) Component Input, and (4) Component Output triggering

condition. For example the alarm911 has one input called notify that takes as a parameter

a message. The alarm911 has two outputs: (1) init, and (2) contact911. The init output

sends the component clientID when the triggering condition “startup=true.” This indicates

that this output executes during initialization. The contact911 output sends a message out

when the “message=true” condition is true. The Component Input / Output Table gets

mapped to specific platform during application derivation.

Figure A.38 Component Diagram for the 911 Feature

<<optional>>
<<coordinator>>

alarm911
init

notify

<<optional>>
<<system interface>>

emergencyCall

emergencycontact911<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

246

T
a
b

le
 A

.6
 S

m
a
rt

 H
o

m
e

E
U

 S
P

L
 C

o
m

p
o

n
e
n

t
In

p
u

t
/

O
u

tp
u

t
T

a
b

le

C
o

m
p

o
n

e
n

t
N

a
m

e

C
o

m
p

o
n

e
n

t
In

p
u

t
C

o
m

p
o

n
e
n

t
O

u
tp

u
t

C
o

m
p

o
n

e
n

t
O

u
tp

u
t

T
ri

g
g

er
in

g
 C

o
n

d
it

io
n

se

cu
ri

ty
A

le
rt

H
an

d
le

r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g
e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

in
fo

rm
at

io
n
al

A
le

rt
H

an
d

le
r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g
e)

su

b
sc

ri
b

e(
in

 c
li

en
tI

D
)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

al
er

tA
u

d
io

n

o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

ca
ll

(o
u

t
p
h

o
n

e_
n
u

m
b

er
,

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

p
h

o
n

e
m

ak
eC

al
l(

in
 p

h
o
n

e_
n
u

m
b

er
,

in
 m

es
sa

g
e)

al
er

tV
id

eo

n
o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

v
id

eo
ca

ll
(o

u
t

p
h

o
n

e_
n
u

m
b

er
,

o
u

t
m

es
sa

g
e)

st

ar
tu

p
=

tr
u

e
m

es
sa

g
e=

tr
u

e

v
id

eo
C

al
l

m
ak

eV
id

eo
C

al
l(

in
 p

h
o
n

e_
n
u

m
b

er
,

in
 m

es
sa

g
e)

st
re

am
_

in
(i

n
 v

id
eo

_
st

re
am

)

v
id

eo
C

al
l(

o
u

t
cl

ie
n
t_

IP
_

ad
d

re
ss

)

en
d

C
al

l(
o
u

t
cl

ie
n

t_
IP

_
a
d

d
re

ss
)

v
id

eo
In

it
=

tr
u

e

p
re

ss
ed

E
n
d

C
al

lB
u

tt
o
n

=
tr

u
e

ca
m

er
aM

an
ag

er

st
ar

tV
id

eo
S

tr
ea

m
(i

n
 c

li
en

t_
IP

_
ad

d
re

ss
)

st
o
p

V
id

eo
S

tr
ea

m
(i

n
 c

li
en

t_
IP

_
ad

d
re

ss
)

st
ar

tV
id

eo
(o

u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
o
p

V
id

eo
(o

u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

ca
m

er
a

st
ar

tS
tr

ea
m

(o
u

t
cl

ie
n

t_
IP

_
ad

d
re

ss
)

st
o
p

S
tr

ea
m

(o
u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
re

am
_

o
u
t(

o
u

t
v
id

eo
_

st
re

am
)

al
ar

m
H

o
m

e
n

o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

al
ar

m
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

sm
ar

tA
u

d
io

p

la
y
(i

n
 m

es
sa

g
e)

sm
ar

tD
is

p
la

y

sh
o
w

(i
n

 m
es

sa
g
e)

sm
ar

tL
ig

h
t

fl
as

h

se
tL

ig
h

tL
ev

el
(i

n
 l

ig
h

tL
ev

el
)

re
p

la
ce

(o
u

t
li

g
h

tI
D

)
li

g
h

t=
o
u
t

al
ar

m
9
1

1

n
o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

co
n

ta
ct

9
1

1
 (

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

em
er

g
en

cy
C

al
l

em
er

g
en

cy
(i

n
 m

es
sa

g
e)

b
re

ak
In

D
o
o

r
ac

ti
o
n

(i
n

 d
ev

ic
eI

D
,

in
 d

ev
ic

eT
y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g

e)

st
ar

tu
p

=
tr

u
e

m
o
ti

o
n

=
tr

u
e

d
o
o
rM

o
n

it
o
r

o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

b
re

ak
In

M
o
ti

o
n

ac
ti

o
n

(i
n

 d
ev

ic
eI

D
,

in
 d

ev
ic

eT
y
p

e)

ac
ti

v
at

e
ac

ti
v
it

y
(o

u
t

m
es

sa
g
e)

st

ar
tu

p
=

tr
u

e
m

o
ti

o
n

=
tr

u
e

m
o
ti

o
n

D
et

ec
to

r
o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

b
re

ak
In

W
in

d
o
w

ac

ti
o
n

(i
n

 d
ev

ic
eI

D
,

in
 d

ev
ic

eT
y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
o
ti

o
n

=
tr

u
e

w
in

d
o
w

D
et

ec
to

r
o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

sp
ri

n
k

le
r

st
ar

tW
at

er
(o

u
t

m
es

sa
g
e)

st
o
p

W
at

er
(o

u
t

m
es

sa
g
e)

sp
ri

n
k

le
rT

im
er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu

rn
 o

ff
 (

o
u

t
m

es
sa

g
e)

sc

h
ed

u
le

d
S

ta
rt

T
im

e=
tr

u
e

sc
h

ed
u

le
d

E
n
d

T
im

e=
tr

u
e

sp
ri

n
k

le
rC

o
n

tr
o
l

w
at

er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu
rn

 o
ff

 (
o
u

t
m

es
sa

g
e)

m
o
is

tu
re

M
o
n

it
o
r

d

ry
S

o
il

d

ry
=

tr
u

e

247

T

a
b

le
 A

.7
 C

o
m

p
o

n
e
n

t
In

p
u

t/
O

u
tp

u
t

T
a

b
le

 (
C

o
n

ti
n

u
a
ti

o
n

)

C
o

m
p

o
n

e
n

t

N
a

m
e

C
o

m
p

o
n

e
n

t
In

p
u

t
C

o
m

p
o

n
e
n

t
O

u
tp

u
t

C
o

m
p

o
n

e
n

t
O

u
tp

u
t

T
ri

g
g

er
in

g
 C

o
n

d
it

io
n

em

ai
l

n
o
ti

fy
(i

n
 m

es
sa

g
e)

in

it
(o

u
t

cl
ie

n
tI

D
)

st
ar

tu
p

=
tr

u
e

te
x
t

n
o
ti

fy
(i

n
 m

es
sa

g
e)

in

it
(o

u
t

cl
ie

n
tI

D
)

st
ar

tu
p

=
tr

u
e

sm
ar

tH
V

A
C

se

tH
v
ac

L
ev

el
(i

n
 t

em
p

)
re

p
la

ce
 f

il
te

r(
o
u

t
h

v
ac

ID
)

re
p

la
ce

F
il

te
r=

tr
u

e

p
o
w

er
F

ai
lu

re
S

en
so

r

fa
il

u
re

(o
u

t
d

ev
ic

eI
D

)
p

o
w

er
F

ai
lu

re
=

tr
u

e

tr
ac

k

aw

a
y

h
o
m

e

re
si

d
en

ts
A

w
a
y
=

tr
u

e

re
si

d
en

ts
H

o
m

e=
tr

u
e

en
er

g
y
C

o
n

tr
o
l

ec
o
n

n

o
rm

en

er
g

y
L

ev
el

N
o
ti

fi
ca

ti
o
n

 (
o

u
t

m
es

sa
g
e)

ad

ju
st

L
ig

h
tL

ev
el

 (
o
u

t
li

g
h
tL

ev
el

)

ad
ju

st
H

v
ac

L
ev

el
 (

o
u

t
te

m
p

)

ec
o
n

L
v
l=

tr
u

e
O

R
 n

o
rm

L
v

l=
tr

u
e

ec
o
n

L
v
l=

tr
u

e
O

R
 n

o
rm

L
v

l=
tr

u
e

ec
o
n

L
v
l=

tr
u

e
O

R
 n

o
rm

L
v

l=
tr

u
e

fl
o
o
d

S
en

so
r

fl

o
o
d

(o
u

t
lo

ca
ti

o
n

)
m

o
is

tu
re

=
tr

u
e

fa
u

ce
tL

ea
k

S
en

so
r

le

ak
(o

u
t

d
ev

ic
eI

D
)

le
ak

D
et

ec
te

d
=

tr
u

e

248

A.3 End User Application Engineering

End User Application Engineering (EUAE) is the process to derive end user

applications from the End User SPL and deploy them to end user smart spaces. This

section, describes two application derivation examples, “Smart Home Example 1” and

“Smart Home Example 2” from the Smart Home EU SPL. In particular, the feature

selection for the “Smart Home Example 1” does not contain any platform specific features

and application derivation examples are given for both the Jigsaw and TeC EUD

environment. The “Smart Home Example 2” is platform specific in which the application

is derived for the TeC EUD framework. The remainder of this section describes the EUAE

process for both examples. Section A.3.1 describes the “Smart Home Example 1”

application and section A.3.2 describes the “Smart Home Example 2” application.

A.3.1 Smart Home Example 1 - End User Application Engineering

The “Smart Home Example 1” is an example of an application derived from the

Smart Home EU SPL based on the end user requirements. Figure A.39 shows the Feature

Model of the derived application. The derived application consists of the following

features: “Smart Home”, “Audio”, “Door”, “Text”, “Flood Detector”, “Smart Irrigation”,

“Schedule”, “HVAC Filter”, “Home Alarm” and “Light Failure.” The feature model

follows the feature and feature group consistency rules. For example there is only one

feature selected form the “Phone Alert” exactly-one-of feature group, there is one feature

selected from the “Home Security” and “Net Notification” at-least-one-of feature groups.

Also all parent features that other features depend on are also available. Some examples of

parent features are the “Smart Home” common feature that all other features depend on,

249

the “Light Failure” feature that the “Home Alarm” depends on and the “Smart Irrigation”

feature that the “Schedule” feature depends on. As shown in Figure A.39 there are not any

platform specific features selected, thus the derived application can be deployed to either

the Jigsaw or TeC EUD environment. Table A.8 and Figure A.40 describe the

deployment of the derived application to the Jigsaw EUD environment. Table A.8

shows the mapping of the “Smart Home Example 1” features to the Jigsaw architecture. In

detail Table A.8 has six columns: (1) Feature Name, (2) Feature Group Name, (3) Jigsaw

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
HVAC Filter

<<optional feature>>
Light Failure

requires

requires

<<optional feature>>
Home Alarm

<<optional feature>>
Flood Detector

<<optional>>
Smart Irrigation

<<optional feature>>
Schedule

requires

requires

<<default feature>>
Audio

<<exactly-one-of
feature group>>

 Phone Alert

<<default feature>>
Text

requires

requires

<<at-least-one-of
feature group>>
Net Notification

<<zero-or-more-of
feature group>>
Water Detector

<<zero-or-more-of
feature group>>
Home Behavior

requires

requires

Figure A.39 Smart Home Example 1 – Feature Model

250

Component Name, (4) Jigsaw Component Input, (5) Jigsaw Component Output, and (6)

Jigsaw Component Output Triggering Condition. For example, the first row of shows that

the feature “Smart Home” is implemented by one component the “securityAlertHandler.”

The “securityAlertHandler” component contains two inputs: (1) “receiveAlert (in

message)”, and (2) “subscribe (in clientID).” The “receiveAlert” input is used to receive

security alerts from other components and expects a parameter called “message.” The

“subscribe” input is used for other components to register to the “securityAlertHandler.”

The “subscribe” input and expects a parameter called “clientID” with the identification

name of the component that needs to be registered. The “securityAlertHandler” component

contains one output called “sendAlert (out message).” The output send alerts to registered

components. The output sends one parameter to registered components called “message”

that contain the alert details. The “sendAlert (out message)” output of the

“securityAlertHandler” component is executed when the “messageInQueue=true”

triggering condition evaluates to true. Figure A.40 visualizes the derived end user

application architecture as it would be displayed to the Jigsaw editor. As shown in Figure

A.40 components are represented as Jigsaw pieces put together to form application logic.

Similarly, Table shows the application mapping for Smart Home derived application to the

Team Computing EUD environment based on the feature selections shown in Figure A.41

visualizes the derived application architecture as it would be displayed to the Team

Computing application editor.

251

T

a
b

le
 A

.8
 S

m
a
rt

 H
o

m
e

E
x

a
m

p
le

 1
 –

 E
U

 D
er

iv
e
d

 A
p

p
li

ca
ti

o
n

 M
a
p

p
e
d

 t
o
 J

ig
sa

w

F
ea

tu
re

N
a

m
e

F
ea

tu
re

G
ro

u
p

 N
a

m
e

J
IG

S
A

W
 P

S
P

C
o

m
p

o
n

e
n

t
N

a
m

e

J
IG

S
A

W
 P

S
P

C
o

m
p

o
n

e
n

t
In

p
u

t

J
IG

S
A

W
 P

S
P

C
o

m
p

o
n

e
n

t
O

u
tp

u
t

J
IG

S
A

W
 P

S
P

C
o

m
p

o
n

e
n

t
O

u
tp

u
t

T
ri

g
g

er
in

g
 C

o
n

d
it

io
n

S
m

ar
t

H
o

m
e

se

cu
ri

ty
A

le
rt

H
an

d
le

r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g

e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

S
m

ar
t

H
o

m
e

in

fo
rm

at
io

n
al

A
le

rt
H

an
d

le
r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g

e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

L
ig

h
t

F
ai

lu
re

H
o

m
e

B
eh

av
io

r

sm
ar

tL
ig

h
t

fl
as

h

re
p

la
ce

(o
u

t
li

g
h

tI
D

)
li

g
h

t=
fa

ls
e

H
V

A
C

F
il

te
r

H
o

m
e

B
eh

av
io

r

sm
ar

tH
V

A
C

re
p

la
ce

 f
il

te
r(

o
u

t
h

v
ac

ID
)

re
p

la
ce

F
il

te
r=

tr
u

e

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r

al
ar

m
H

o
m

e

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in
it

(o
u

t
cl

ie
n

tI
D

)

al
ar

m
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r

sm
ar

tA
u

d
io

p

la
y
(i

n
 m

es
sa

g
e)

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r

sm
ar

tD
is

p
la

y

sh
o

w
(i

n
 m

es
sa

g
e)

A
u

d
io

P

h
o
n

e
A

le
rt

al

er
tA

u
d

io

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in
it

(o
u

t
cl

ie
n

tI
D

)

ca
ll

(o
u

t
p

h
o

n
e_

n
u

m
b

er
,

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

A
u

d
io

P

h
o
n

e
A

le
rt

p

h
o
n

e
m

ak
eC

al
l(

in

p
h

o
n

e_
n

u
m

b
er

,
in

m
es

sa
g
e)

D
o

o
r

H
o

m
e

S
ec

u
ri

ty

b
re

ak
In

D
o

o
r

ac
ti

o
n

(i
n
 d

ev
ic

eI
D

,
in

d
ev

ic
eT

y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g

e)

st
ar

tu
p

=
tr

u
e

m
o

ti
o

n
=

tr
u

e

D
o

o
r

H
o

m
e

S
ec

u
ri

ty

d
o

o
rM

o
n

it
o

r
o

n

m
o

v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,

o
u

t
d

ev
ic

eT
y
p

e)

m
o

v
e=

tr
u

e

F
lo

o
d

D
et

ec
to

r

W
at

er
 D

et
ec

to
r

fl
o

o
d

S
en

so
r

fl

o
o

d
(o

u
t

lo
ca

ti
o

n
)

m
o

is
tu

re
=

tr
u

e

S
m

ar
t

Ir
ri

g
at

io
n

S

p
ri

n
k
le

r
st

ar
tW

at
er

st
o

p
W

at
er

S
m

ar
t

Ir
ri

g
at

io
n

sp

ri
n

k
le

rC
o

n
tr

o
l

w
at

er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu
rn

 o
ff

 (
o

u
t

m
es

sa
g
e)

S
ch

ed
u

le

sp

ri
n

k
le

rT
im

er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu
rn

 o
ff

 (
o

u
t

m
es

sa
g
e)

sc
h

ed
u

le
d

S
ta

rt
T

im
e=

tr
u

e

sc
h

ed
u

le
d

E
n

d
T

im
e=

tr
u

e

T
ex

t
N

et

N
o

ti
fi

ca
ti

o
n

te
x
t

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in

it
(o

u
t

cl
ie

n
tI

D
)

st
ar

tu
p

=
tr

u
e

252

<<optional>>
<<input/output device

interface>>
doorMonitor

action

1..*

<<optional>>
<<input/output device

interface>>
phone makeCall

<<kernel>>
<<message-broker>>
securityAlertHandler

receiveAlert

<<optional>>
<<input/output device

interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

play

show

<<kernel>>
<<message-broker>>

informationalAlertHandler

<<optional>>
<<input/output device interface>>

smartLight

flash

<<optional>>
<<input/output device interface>>

smartHVAC

<<optional>>
<<input/output device

interface>>
floodSensor

turn
off

<<optional>>
<<coordinator>>
sprinklerControl

replace

replace filter flood
1..*1..*

1..*

receiveAlert

receiveAlert

<<optional>>
<<system interface>>

text

notify

subscribe

init

<<optional>>
<<input/output device

interface>>
sprinkler

1..*

startWater

stopWa
ter

turn
on

turn
on

turn off

stopWater

<<optional>>
<<coordinator>>

alarmHome

alarm

alarm

notify

init

subscribe

<<optional>>
<<coordinator>>

 alertAudio
init

call

<<optional>>
<<coordinator>>

breakInDoor

activity

movement

activate on

1..*

1..*

notify

<<optional>>
<<timer>>

sprinklerTimer

timeAlert

water

sendAlert

init

notify

Smart Home

Text

Door

Home Alarm

Smart Irrigation

HVAC Filter

Flood Detector

Audio

Schedule

Light Failure

EU SPL Feature Color Codes

Audio Feature

Smart Home Feature

subscribe

Text Feature

sendAlert

Door Feature

sendAlert

subscribe

Home Alarm Feature

sendAlert

alarm

Light Failure Feature

HVAC Filter Feature

receiveAlert

Flood Detector Feature

receiveAlert receiveAlert

Smart Irrigation Feature Schedule Feature

Figure A.40 Smart Home Example 1 - EU Application Architecture for Jigsaw

253

T
a
b

le
 A

.9
 S

m
a
rt

 H
o

m
e

E
x

a
m

p
le

 1
 –

 E
U

 D
er

iv
ed

 A
p

p
li

c
a
ti

o
n

 M
a
p

p
e
d

 t
o
 T

eC

F
ea

tu
re

N
a

m
e

F
ea

tu
re

 G
r
o
u

p

N
a

m
e

T
eC

 P
S

P

C
o

m
p

o
n

e
n

t
N

a
m

e

T
eC

 P
S

P
 C

o
m

p
o
n

en
t

In
p

u
t

T
eC

 P
S

P
 C

o
m

p
o
n

en
t

O
u

tp
u

t

T
eC

 P
S

P
 C

o
m

p
o
n

en
t

O
u

tp
u

t
T

ri
g

g
er

in
g

C
o
n

d
it

io
n

S
m

ar
t

H
o

m
e

se

cu
ri

ty
A

le
rt

H
an

d
le

r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g

e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

S
m

ar
t

H
o

m
e

in

fo
rm

at
io

n
al

A
le

rt
H

a

n
d

le
r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g

e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

L
ig

h
t

F
ai

lu
re

H

o
m

e
B

eh
av

io
r

sm
ar

tL
ig

h
t

fl
as

h

re
p

la
ce

(o
u

t
li

g
h

tI
D

)
li

g
h

t=
fa

ls
e

H
V

A
C

 F
il

te
r

H
o

m
e

B
eh

av
io

r
sm

ar
tH

V
A

C

re

p
la

ce
 f

il
te

r(
o

u
t

h
v
ac

ID
)

re
p

la
ce

F
il

te
r=

tr
u

e

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r
al

ar
m

H
o

m
e

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in
it

(o
u

t
cl

ie
n

tI
D

)

al
ar

m
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r
sm

ar
tA

u
d

io

p
la

y
(i

n
 m

es
sa

g
e)

H
o

m
e

A
la

rm

H
o

m
e

B
eh

av
io

r
sm

ar
tD

is
p

la
y

sh
o

w
(i

n
 m

es
sa

g
e)

A
u

d
io

P

h
o
n

e
A

le
rt

al

er
tA

u
d

io

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in
it

(o
u

t
cl

ie
n

tI
D

)

ca
ll

(o
u

t
p

h
o

n
e_

n
u

m
b

er
,

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

A
u

d
io

P

h
o
n

e
A

le
rt

p

h
o
n

e
m

ak
eC

al
l(

in

p
h

o
n

e_
n

u
m

b
er

,
in

m
es

sa
g
e)

D
o

o
r

H
o

m
e

S
ec

u
ri

ty

b
re

ak
In

D
o

o
r

ac
ti

o
n

(i
n
 d

ev
ic

eI
D

,
in

d
ev

ic
eT

y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g

e)

st
ar

tu
p

=
tr

u
e

m
o

ti
o

n
=

tr
u

e

D
o

o
r

H
o

m
e

S
ec

u
ri

ty

d
o

o
rM

o
n

it
o

r
o

n

m
o

v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,

o
u

t
d

ev
ic

eT
y
p

e)

m
o

v
e=

tr
u

e

F
lo

o
d

D
et

ec
to

r

W
at

er
 D

et
ec

to
r

fl
o

o
d

S
en

so
r

fl

o
o

d
(o

u
t

lo
ca

ti
o

n
)

m
o

is
tu

re
=

tr
u

e

S
m

ar
t

Ir
ri

g
at

io
n

sp

ri
n

k
le

r
st

ar
tW

at
er

st
o

p
W

at
er

S
m

ar
t

Ir
ri

g
at

io
n

sp

ri
n

k
le

rC
o

n
tr

o
l

w
at

er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu
rn

 o
ff

 (
o

u
t

m
es

sa
g
e)

S
ch

ed
u

le

sp

ri
n

k
le

rT
im

er

tu
rn

 o
n
 (

o
u

t
m

es
sa

g
e)

tu
rn

 o
ff

 (
o

u
t

m
es

sa
g
e)

sc
h

ed
u

le
d

S
ta

rt
T

im
e=

tr
u

e

sc
h

ed
u

le
d

E
n

d
T

im
e=

tr
u

e

T
ex

t
N

et
 N

o
ti

fi
ca

ti
o

n

te
x
t

n
o

ti
fy

(i
n

 m
es

sa
g
e)

in

it
(o

u
t

cl
ie

n
tI

D
)

st
ar

tu
p

=
tr

u
e

254

A.3.2 Smart Home Example 2 - End User Application Engineering

The “Smart Home Example 2” is an example of an application derived from the

Smart Home EU SPL based on the end user requirements. Figure A.42 shows the Feature

Model of the derived application. The derived application consists of the following

features: “Smart Home”, “Video”, “Door”, “Motion”, “Window”, “Email”, “HVAC

Filter”, “911”and “Energy Conservation.” The feature model follows the feature and

feature group consistency rules. For example there is only one feature selected form the

<<optional>>
<<coordinator>>

breakInDoor

<<optional>>
<<input/output device interface>>

doorMonitor

activate on

movementaction

activity

1..*

<<optional>>
<<coordinator>>

alertAudio

notify <<default>>
<<input/output device

interface>>
phone

makeCallcall

init

<<kernel>>
<<message-broker>>
securityAlertHandler

sendAlert

subscribe

receiveAlert

<<optional>>
<<input/output device

interface>>
smartAudio

<<optional>>
<<input/output device

interface>>
smartDisplay

<<optional>>
<<input/output device

interface>>
smartLight

play

show

flash

alarm
<<optional>>

<<coordinator>>
alarmHome

init

notify

<<kernel>>
<<message-broker>>

infoAlertHandler

sendAlert

subscribe

receiveAlert

flood

<<optional>>
<<input/output device

interface>>
flood-sensor

1..*

<<optional>>
<<system-interface>>

text

notify

init

replace

<<optional>>
<<input/output device

interface>>
smartHVAC

replace filter

1..*

1..*

1..*

1..*

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>

sprinkler

turn on turn off

startWater stopWater

1..*

<<optional>>
<<timer>>

sprinklerTimer

timeAlertwater

Schedule Feature

Smart Irrigation Feature

Flood Detector
Feature

HVAC Filter
Feature

Smart Home Feature

Door Feature

Text Feature

Audio Feature

Home Alarm
Feature

Light Failure Feature

Figure A.41 Example 1 - Smart Home Example 1 - EU Application Architecture for TeC

255

“Phone Alert” exactly-one-of feature group, there is one feature selected from the “Home

Security” and “Net Notification” at-least-one-of feature groups. Also all parent features

that other features depend on are also available. This feature model contains two platform

specific features: (1) “Video”, and (2) “Energy Conservation.” The features are platform

specific to the TeC platform. This means that the features are realized by TeC components.

During the application derivation the EU SPL Platform Specific Feature / Component

<<common feature>>
Smart Home

<<at-least-one-of
feature group>>
Home Security

<<default feature>>
Door

<<optional feature>>
Motion

<<optional feature>>
Window

<<optional feature>>
HVAC Filter

requires

requires

<<optional feature>>
911

<<platform-specific>>
<<optional feature>>
Energy Conservation

requires

<<platform-specific>>
<<alternative feature>>

Video

<<exactly-one-of
feature group>>

 Phone Alert

<<optional feature>>
Email

requires

<<at-least-one-of
feature group>>
Net Notification

<<zero-or-more-of
feature group>>
Home Behavior

requires

Figure A.42 Smart Home Example 2 – Platform Specific Feature Model

256

Table is consulted to get the platform specific components for the platform specific

features.

 Table A.10 shows the application mapping for Smart Home Example 2

derived application to the Team Computing EUD environment. The components: tecTrack,

tecCamera, tecCameraManager, tecVideoCall in Table A.10 are specific only to TeC.

Figure A.43 visualizes the derived application architecture as it would be displayed to the

Team Computing application editor.

257

T
a
b

le
 A

.1
0

 S
m

a
rt

 H
o

m
e

E
x

a
m

p
le

 2
 –

 P
la

tf
o
r
m

 S
p

e
si

fi
c

E
U

 A
p

p
li

ca
ti

o
n

 M
a
p

p
e
d

 t
o
 T

eC

F
e
a

tu
re

N
a

m
e

F
e
a

tu
re

 G
r
o

u
p

N
a

m
e

T
E

C
 P

S
P

 C
o

m
p

o
n

e
n

t

N
a

m
e

T
E

C
 P

S
P

 C
o

m
p

o
n

e
n

t

In
p

u
t

T
E

C
 P

S
P

 C
o

m
p

o
n

e
n

t
O

u
tp

u
t

T
E

C
 P

S
P

C
o

m
p

o
n

e
n

t

O
u

tp
u

t
T

r
ig

g
e
ri

n
g

C
o

n
d

it
io

n

S
m

ar
t

H
o
m

e

se
cu

ri
ty

A
le

rt
H

an
d

le
r

re

ce
iv

eA
le

rt
(i

n
 m

es
sa

g
e)

su

b
sc

ri
b

e(
in

 c
li

en
tI

D
)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

S
m

ar
t

H
o
m

e

in

fo
rm

at
io

n
al

A
le

rt
H

an
d

le
r

re
ce

iv
eA

le
rt

(i
n

 m
es

sa
g
e)

su
b

sc
ri

b
e(

in
 c

li
en

tI
D

)

se
n

d
A

le
rt

(o
u

t
m

es
sa

g
e)

m

es
sa

g
eI

n
Q

u
eu

e=
tr

u
e

D
o
o
r

H
o
m

e
S

ec
u

ri
ty

b

re
ak

In
D

o
o

r
ac

ti
o
n

(i
n

 d
ev

ic
eI

D
,

in

d
ev

ic
eT

y
p

e)

ac
ti

v
at

e
ac

ti
v
it

y
(o

u
t

m
es

sa
g
e)

st

ar
tu

p
=

tr
u

e
m

o
ti

o
n

=
tr

u
e

D
o
o
r

H
o
m

e
S

ec
u

ri
ty

d

o
o
rM

o
n

it
o
r

o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

M
o
ti

o
n

H
o
m

e
S

ec
u

ri
ty

b

re
ak

In
M

o
ti

o
n

ac
ti

o
n

(i
n

 d
ev

ic
eI

D
,

in

d
ev

ic
eT

y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
o
ti

o
n

=
tr

u
e

M
o
ti

o
n

H
o
m

e
S

ec
u

ri
ty

m

o
ti

o
n

D
et

ec
to

r
o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

W
in

d
o
w

H

o
m

e
S

ec
u

ri
ty

b

re
ak

In
W

in
d

o
w

ac

ti
o
n

(i
n

 d
ev

ic
eI

D
,

in

d
ev

ic
eT

y
p

e)

ac
ti

v
at

e

ac
ti

v
it

y
(o

u
t

m
es

sa
g
e)

st
ar

tu
p

=
tr

u
e

m
o
ti

o
n

=
tr

u
e

W
in

d
o
w

H

o
m

e
S

ec
u

ri
ty

w

in
d

o
w

D
et

ec
to

r
o
n

m

o
v
em

en
t(

o
u

t
d

ev
ic

eI
D

 ,
 o

u
t

d
ev

ic
eT

y
p

e)

m
o
v
e=

tr
u

e

9
1
1

H
o
m

e
B

eh
av

io
r

al
ar

m
_
9

1
1

n
o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

co
n

ta
ct

9
1

1
 (

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

9
1
1

H
o
m

e
B

eh
av

io
r

em
er

g
en

cy
_

ca
ll

em

er
g
en

cy
(i

n
 m

es
sa

g
e)

V
id

eo

P
h

o
n

e
A

le
rt

al

er
tV

id
eo

n

o
ti

fy
(i

n
 m

es
sa

g
e)

in
it

(o
u
t

cl
ie

n
tI

D
)

v
id

eo
ca

ll
(o

u
t

p
h

o
n

e_
n
u

m
b

er
,

o
u

t
m

es
sa

g
e)

st
ar

tu
p

=
tr

u
e

m
es

sa
g
e=

tr
u

e

V
id

eo

P
h

o
n

e
A

le
rt

te

cV
id

eo
C

al
l

m
ak

eV
id

eo
C

al
l(

in

p
h

o
n

e_
n
u

m
b

er
,

in
 m

es
sa

g
e)

st
re

am
_

in
(i

n
 v

id
eo

_
st

re
am

)

v
id

eo
C

al
l(

o
u

t
cl

ie
n
t_

IP
_

ad
d

re
ss

)

en
d

C
al

l(
o
u

t
cl

ie
n

t_
IP

_
ad

d
re

ss
)

v
id

eo
In

it
=

tr
u

e

p
re

ss
ed

E
n
d

C
al

lB
u

tt

o
n

=
tr

u
e

V
id

eo

P
h

o
n

e
A

le
rt

te

cC
am

er
aM

an
ag

er

st
ar

tV
id

eo
S

tr
ea

m
(i

n

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
o
p

V
id

eo
S

tr
ea

m
(i

n

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
ar

tV
id

eo
(o

u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)
st

o
p

V
id

eo
(o

u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

V
id

eo

P
h

o
n

e
A

le
rt

te

cC
am

er
a

st
ar

tS
tr

ea
m

(o
u

t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
o
p

S
tr

ea
m

(o
u
t

cl
ie

n
t_

IP
_

ad
d

re
ss

)

st
re

am
_

o
u
t(

o
u

t
v
id

eo
_

st
re

am
)

H
V

A
C

F
il

te
r

H
o
m

e
B

eh
av

io
r

sm
ar

tH
V

A
C

se

tH
v
ac

L
ev

el
(i

n
 t

em
p

)
re

p
la

ce
 f

il
te

r(
o
u

t
h

v
ac

ID
)

re
p

la
ce

F
il

te
r=

tr
u

e

E
n

er
g

y

C
o
n

se
rv

at
io

n

H
o
m

e
B

eh
av

io
r

te
cT

ra
ck

aw
a
y

h
o
m

e
re

si
d

en
ts

A
w

a
y
=

tr
u

e
re

si
d

en
ts

H
o
m

e=
tr

u
e

E
n

er
g

y

C
o
n

se
rv

at
io

n

H
o
m

e
B

eh
av

io
r

en
er

g
y
C

o
n

tr
o
l

ec
o
n

n

o
rm

en

er
g

y
L

ev
el

N
o
ti

fi
ca

ti
o
n

 (
o
u
t

m
es

sa
g
e)

ad

ju
st

L
ig

h
tL

ev
el

 (
o
u

t
li

g
h
tL

ev
el

)

ad
ju

st
H

v
ac

L
ev

el
 (

o
u

t
te

m
p

)

ec
o
n

L
v
l=

tr
u

e
O

R

n
o
rm

L
v
l=

tr
u

e

ec
o
n

L
v
l=

tr
u

e
O

R

n
o
rm

L
v
l=

tr
u

e
ec

o
n

L
v
l=

tr
u

e
O

R

n
o
rm

L
v
l=

tr
u

e

E
m

ai
l

N
et

 N
o
ti

fi
ca

ti
o
n

em
ai

l
n

o
ti

fy
(i

n
 m

es
sa

g
e)

in

it
(o

u
t

cl
ie

n
tI

D
)

st
ar

tu
p

=
tr

u
e

258

F

ig
u

re
 A

.4
3

 S
m

a
rt

 H
o

m
e

E
x

a
m

p
le

 2
 –

 P
la

tf
o
r
m

 S
p

ec
if

ic
 E

U
 A

p
p

li
ca

ti
o
n

 A
r
ch

it
ec

tu
re

 f
o

r
T

eC

259

A.4 Summary

This appendix has described the analysis and design of the Smart Home EU SPL

case study that was used in this research. In detail, the chapter described (a) the Smart

Home EU SPL requirements that included the Smart Home EU SPL features, feature model

and feature group / feature dependencies, (b) the Smart Home EU SPL analysis model that

included the EU SPL static model, component structuring, platform dependent component

analysis, dynamic modeling through the use of sequence diagrams and features to

component relationships, and (c) the Smart Home EU SPL design model that included the

EU SPL inter-feature component communication analysis, component relationships,

component interfaces and component input / output details. Finally the appendix provided

two application derivation examples from the Smart Home EU SPL. The first example of

the derivation process was for the Jigsaw and TeC EUD environments. The second

example was platform specific and the application derivation process was for the TeC EUD

environments.

260

REFERENCES

Abu-Matar, M. and Gomaa, H. (2013), “An Automated Framework for Variability

Management of Service-Oriented Software Product Lines”, Proceedings of the

2013 IEEE 7th International Symposium on Service Oriented System Engineering

(SOSE), San Francisco Bay, USA, pp. 260–267.

Abu-Matar, M. and Gomaa, H. (2012), “Feature-based Variability Meta-Modeling for

Service-Oriented Product Lines”, Proceedings of the 2011 Models in Software

Engineering, Workshops and Symposia (MoDELS), Springer LNCS 7167, pp. 68-

82, 2012

Abu-Matar, Mohammad Ahmad. (2011), “Variability Modeling and Meta-Modeling for

Service-Oriented Architectures”, Doctoral Dissertation, George Mason University.

America, P., Obbink, H., Muller, J. and Ommering, R.V (2000), “COPA: A Component-

Oriented Platform Architecting Method for Families of Software Intensive

Electronic Products”, Proceedings of the First Conference on Software Product

Line Engineering, Denver, Colorado.

Appert, C., Chapuis, O., Pietriga, E. and Lobo, M.-J. (2015), “Reciprocal Drag-and-Drop”,

ACM Transactions on Computer-Human Interaction (TOCHI), Vol. 22 No. 6, p.

29:1–29:36.

Atkinson, C. and Muthig, D. (2002), “Component-Based Product-Line Engineering with

the UML”, Software Reuse: Methods, Techniques, and Tools, Vol. 2319, Springer

Berlin / Heidelberg, pp. 155–182.

Bardram, J.E. (2005), “The Java Context Awareness Framework (JCAF) – a Service

Infrastructure and Programming Framework for Context-aware Applications”,

Proceedings of the 3rd International Conference on Pervasive Computing,

Springer-Verlag, Berlin, Heidelberg, pp. 98–115.

Barker, R. (1990), Case Method: Entity Relationship Modelling, 1st ed., Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Beckwith, L. and Burnett, M. (2004), “Gender: An important factor in end-user

programming environments?”, Proceeding of 2004 IEEE Symposium on Visual

Languages - Human Centric Computing, Rome, Italy, pp. 107–114.

Bendraou, L., Gervals, M., and Blanc X. (2005), “UML4SPM: A UML2.0-Based

Metamodel for Software Process Modeling,” Proceedings of the ACM/IEEE 8th

261

International Conference on Model Driven Engineering Languages and Systems,

Montego Bay, Jamaica, pp. 17–38.

Blackwell, A.F. and Hague, R. (2001), “AutoHAN: An architecture for programming the

home”, Proceedings of the 2001 IEEE Symposia on Human-Centric Computing

Languages and Environments, Stresa, Italy, pp. 150–157.

Blanc, X., Ramalho, F. and Robin, J. (2005), “Metamodel Reuse with MOF,” Proceedings

of the ACM/IEEE 8th International Conference on Model Driven Engineering

Languages and Systems, Montego Bay, Jamaica, pp. 17–38.

Brinkman, W.P., Haakma, R. and Bouwhuis, D.G. (2008), “Component-Specific Usability

Testing”, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems

and Humans, Vol. 38 No. 5, pp. 1143–1155.

Brock, J., Gupta, A. and Wielenga, G. (2014), Java EE and HTML5 Enterprise Application

Development, 1st ed., McGraw-Hill Education Group.

Burnett, M. (2009), “What Is End-User Software Engineering and Why Does It Matter?”

Proceedings of the 2nd International Symposium on End-User Development (IS-

EUD), Siegen, Germany, pp. 15–28.

Burnett, M. and Scaffidi, C. (2014), End-User Development. In “The Encyclopedia of

Human-Computer Interaction, 2nd Ed.” Aarhus, Denmark: The Interaction Design

Foundation. Available Online at https://www.interaction-

Design.org/Encyclopedia/End-User_development.html.

Burnett, M.M. and Myers, B.A. (2014), “Future of End-user Software Engineering:

Beyond the Silos”, Proceedings of the 2014 of the Future of Software Engineering

(FOSE), Hyderabad, India, pp. 201–211.

Canfora, G., Mercaldo, F., Visaggio, C.A., DAngelo, M., Furno, A. and Manganelli, C.

(2013), “A Case Study of Automating User Experience-Oriented Performance

Testing on Smartphones”, Proceedings of the 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation (ICST), Luxembourg,

Luxembourg, pp. 66–69.

Chin, J., Callaghan, V. and Clarke, G. (2010), “End-user Customization of Intelligent

Environments”, Handbook of Ambient Intelligence and Smart Environments,

Springer US, Boston, MA, pp. 371–407.

Clements, P. and Northrop, L.M. (2002), Software Product Lines: Practices and Patterns,

Addison-Wesley.

262

Danado, J. and Paternò, F. (2012), “Puzzle: a visual-based environment for end user

development in touch-based mobile phones”, Human-Centered Software

Engineering, Springer, pp. 199–216.

Dautriche, R., Lenoir, C., Demeure, A. and Coutaz, J. (2013), “End-User-Development for

Smart Homes: Relevance and Challenges”, Proceedings of the 2013 Workshop

“EUD for Supporting Sustainability in Maker Communities”, 4th International

Symposium on End-user Development (IS-EUD), Eindhoven, Nederland, p. 6.

Debnath, N., Leonardi, M.C., Mauco, M.V., Montejano, G. and Riesco, D. (2008),

“Improving Model Driven Architecture with Requirements Models”, Proceedings

of the 5th International Conference on Information Technology: New Generations

(ITNG), Las Vegas, Nevada, USA, pp. 21–26.

Dey, A.K., Hamid, R., Beckmann, C., Li, I. and Hsu, D. (2004), “a CAPpella: programming

by demonstration of context-aware applications”, Proceedings of the 2004 Special

Interest Group on Computer-Human Interaction Conference on Human Factors in

Computing Systems, Vienna, Austria, pp. 33–40.

Dey, A.K., Sohn, T., Streng, S. and Kodama, J. (2006), “iCAP: Interactive prototyping of

context-aware applications”, Pervasive Computing, Springer, pp. 254–271.

Dimitris Kalofonos and Franklin Reynolds. (2006), “Task-Driven End-User Programming

of Smart Spaces Using Mobile Devices”, NRC-TR-2006-001, Technical Report,

Nokia.

Duckett, J. (2014), JavaScript and JQuery: Interactive Front-End Web Development, 1st

ed., Wiley Publishing.

Ebling, M.R. (2016), “Pervasive Computing and the Internet of Things”, IEEE Pervasive

Computing, Vol. 15 No. 1, pp. 2–4.

Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M. and Russo, W. (2013), “An Agent-Based

Middleware for Cooperating Smart Objects”, Proceedings of the 2013 Highlights

on Practical Applications of Agents and Multi-Agent Systems: International

Workshops of PAAMS, Salamanca, Spain, pp. 387–398.

Fortino, G. and Trunfio, P. (2014), Internet of Things Based on Smart Objects: Technology,

Middleware and Applications, Springer.

Gomaa, H. (2000), Designing Concurrent, Distributed, and Real-Time Applications with

UML, Addison-Wesley Professional.

263

Gomaa, H. (2005a), Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures, Addison-Wesley Professional.

Gomaa, H. (2005b), “Software Product Line Engineering for Web Services and UML”,

The 3rd ACS/IEEE International Conference on Computer Systems and

Applications, Cairo, Egypt, pp. 110–114.

Gomaa, H. (2016), Real-Time Software Design for Embedded Systems, Cambridge.

Gomaa, H. and Shin, M.E. (2008), “Multiple-View Modeling and Meta-Modeling of

Software Product Lines”, Journal of IET Software, Volume 2, Issue 2, Pages 94-

122.

Goumopoulos, C. and Kameas, A. (2009), “Smart objects as components of ubiquitous

computing applications”, International Journal of Multimedia and Ubiquitous

Engineering, Special Issue on Smart Object Systems, Vol. 4(3), SERSC Press, pp.

1–20.

Harsu, M. (2002), “FAST product-line architecture process”, Technical Report, Institute

of Software Systems, Tampere University of Technology.

Haugen, Ø., Wąsowski, A. and Czarnecki, K. (2013), “CVL: Common Variability

Language”, Proceedings of the 17th International Software Product Line

Conference, ACM, New York, NY, USA, pp. 277–277.

Henricksen, K., Indulska, J. and Rakotonirainy, A. (2001), “Infrastructure for Pervasive

Computing: Challenges”, Proceedings of the 2001 Workshop on Pervasive

Computing Informatik, Vienna, Austria, pp. 214–222.

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.P., Koleva, B., Rodden, T. and

Hansson, P. (2003), “Playing with the Bits User-Configuration of Ubiquitous

Domestic Environments”, Proceedings of the 5th International Conference in

Ubiquitous Computing, Springer LNCS, Seattle, WA, USA, pp. 256–263.

ISO/IEC 18092. (2013), Information Technology – Telecommunications and Information

Exchange between Systems – Near Field Communication–Interface and Protocol

(NFCIP-1), Standard No. ISO/IEC 18092:2013, International Organization for

Standardization, Geneva, CH.

ISO/IEC 26550:2016. (2016), Software and Systems Engineering – Reference Model for

Product Line Engineering and Management, ISO No. ISO/IEC 26550,

International Organization for Standardization, Geneva, Switzerland.

264

Jani Suomalainen and Pasi Hyttinen. (2011), “Security Solutions for Smart Spaces”,

Proceedings of the 11th IEEE/IPSJ International Symposium on Applications and

the Internet (SAINT), Munich, Germany, pp. 297–302.

Ji, Y. and Xia, L. (2016), “Improved Chameleon: A Lightweight Method for Identity

Verification in Near Field Communication”, Proceedings of the International

Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, pp. 387–

392.

Kakola, T. and Leitner, A. (2014), “Introduction to Software Product Lines: Engineering,

Services, and Management Minitrack”, Proceedings of 47th Hawaii International

Conference on System Sciences (HICSS), Hawaii, USA, pp. 5048–5048.

Kang, K.C., Lee, J. and Donohoe, P. (2002), “Feature-oriented product line engineering”,

Software, IEEE, Vol. 19 No. 4, pp. 58–65.

Kawsar, F., Nakajima, T. and Fujinami, K. (2008), “Deploy Spontaneously: Supporting

End-Users in Building and Enhancing a Smart Home”, Proceedings of the 10th

International Conference in Ubiquitous Computing, Seoul, South Korea, pp. 282–

291.

Kleppe, A. (2008), Software Language Engineering: Creating Domain-Specific

Languages Using Metamodels, 1st ed., Addison-Wesley Professional.

Ko, A.J., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S., Abraham,

R., et al. (2011), “The State of the Art in End-User Software Engineering”, ACM

Computing Surveys, Vol. 43 No. 3, pp. 1–44.

Kopetz, H. (2011), Real-Time Systems: Design Principles for Distributed Embedded

Applications, 2nd ed., Springer Publishing Company, Incorporated.

Lee, J., Garduño, L., Walker, E. and Burleson, W. (2013), “A Tangible Programming Tool

for Creation of Context-Aware Applications”, Proceedings of the 2013

International Joint Conference on Pervasive and Ubiquitous Computing, Zurich,

Switzerland, ACM Press, p. 391.

Lieberman, H., Paternò, F., Klann, M. and Wulf, V. (2006), “End-User Development: An

Emerging Paradigm”, in Lieberman, H., Paternò, F. and Wulf, V. (Eds.), End User

Development, Vol. 9, Springer Netherlands, pp. 1–8.

Livingston, D. (2002), Advanced Javascript, Prentice Hall PTR, Upper Saddle River, NJ,

USA.

265

Máca, P. (2016), “Editablegrid”, JavaScript Library, available at:

http://www.editablegrid.net/en/.

Mahmoud, R., Yousuf, T., Aloul, F. and Zualkernan, I. (2015), “Internet of things (IoT)

security: Current status, challenges and prospective measures”, Proceedings of the

10th International Conference for Internet Technology and Secured Transactions

(ICITST), London, UK, pp. 336–341.

Malaer, A. and Lampe, M. (2008), “SimPL: A Simple Software Production Line for End

User Development”, Proceedings of the 15th Asia-Pacific Software Engineering

Conference, Beijing, China, pp. 179–186.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S.,

Teixeira, E., Filho, J.B., Dantas, V., Lima, F., Aguiar, S., (2013), “MobiLine: A

Nested Software Product Line for the Domain of Mobile and Context-aware

Applications”, Science of Computer Programming, Vol. 78 No. 12, pp. 2381–2398.

Mavrommati, I., Kameas, A. and Markopoulos, P. (2004), “An Editing Tool That Manages

Device Associations in an In-home Environment”, Personal Ubiquitous

Computing, Vol. 8 No. 3–4, pp. 255–263.

Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P., Nguyen, P. and Yi,

K. (2006), “InterPlay: A Middleware for Seamless Device Integration and Task

Orchestration in a Networked Home”, Proceedings of the 4rth Annual IEEE

International Conference on Pervasive Computing and Communications

(PERCOM), Pisa, Italy, pp. 298–307.

Mühlhäuser, M. (2008), “Smart Products: An Introduction”, Constructing Ambient

Intelligence: Workshops Darmstadt, Germany (AMI), Revised Papers, Springer

Berlin Heidelberg, Berlin, Heidelberg, pp. 158–164.

Myers, B.A. (1990a), “Creating User Interfaces Using Programming by Example, Visual

Programming, and Constraints”, ACM Transactions on Programming Languages

and Systems, Vol. 12 No. 2, pp. 143–177.

Myers, B.A. (1990b), “Taxonomies of Visual Programming and Program Visualization”,

Journal of Visual Languages and Computing, Vol. 1 No. 1, pp. 97–123.

Olimpiew, E.M. (2008), “Modeling-Based Testing For Software Product Lines”, Doctoral

Dissertation, George Mason University.

Olimpiew, E.M. and Gomaa, H. (2009), “Reusable Model-Based Testing”, Formal

Foundations of Reuse and Domain Engineering: Proceedings of the 11th

266

International Conference on Software Reuse (ICSR), Falls Church, VA, USA, pp.

76–85.

OMG. (2003), MDA Guide Version 1.0.1, edited by Miller, J. and Mukerji, J., available at:

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

Pereira, D. and Loyola, L. (2012), “Inferring User Context from Spatio-Temporal Pattern

Mining for Mobile Application Services”, Proceedings of the 2012

IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent

Agent Technology (WI-IAT), Macau, China, Vol. 2, pp. 450–457.

Pérez, F., Cetina, C., Valderas, P. and Fons, J. (2009), “Towards End-User Development

of Smart Homes by means of Variability Engineering”, Proceedings of the 3rd

International Workshop on Variability Modelling of Software-Intensive Systems,

Seville, Spain, pp. 103–110.

Perez, F. and Valderas, P. (2009), “Allowing End-Users to Actively Participate within the

Elicitation of Pervasive System Requirements through Immediate Visualization”,

Proceedings of the 4th International Workshop on Requirements Engineering

Visualization, Atlanta, Georgia, USA, pp. 31–40.

Pérez, F. and Valderas, P. (2009), “A Tool-supported Natural Requirements Elicitation

Technique for Pervasive Systems centered on End-users”, Proceedings of the 14th

Jornadas de Ingeniería del Software y Bases de Datos (JISBD), San Sebastián,

Spain, pp. 115–120.

Pilgrim, M. (2010), HTML5: Up and Running, 1st ed., O’Reilly Media, Inc.

Prähofer, H., Hurnaus, D., Schatz, R. and Wirth, C. (2008), “Software support for building

end-user programming environments in the automation domain”, Proceedings of

the 4th International Workshop on End-User Software Engineering, Leipzig,

Germany, pp. 76–80.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., et al.

(2009), “ROS: an open-source Robot Operating System”, Proceedings of the 2009

International Conference in Robotics and Automation (ICRA) Workshop on Open

Source Software, Kobe, Japan

Rashidi, P. and Cook, D.J. (2009), “Keeping the Resident in the Loop: Adapting the Smart

Home to the User”, Journal of IEEE Transactions on Systems, Man, and

Cybernetics Part A, Vol. 39 No. 5, pp. 949–959.

Reinhartz-Berger, I., Figl, K. and Haugen, Ø. (2014), “Comprehending feature models

expressed in CVL”, Proceedings of the 17th International Conference Model-

267

Driven Engineering Languages and Systems (MODELS), Valencia, Spain, pp. 501–

517.

Richardson, L. and Ruby, S. (2007), Restful Web Services, 1st Edition, O’Reilly.

Rumbaugh, J., Jacobson, I. and Booch, G. (2004), The Unified Modeling Language

Reference Manual, 2nd Edition, Pearson Higher Education.

Saha, D. and Mukherjee, A. (2003), “Pervasive computing: a paradigm for the 21st

century”, Computer, Vol. 36 No. 3, pp. 25–31.

Satyanarayanan, M. (2001), “Pervasive computing: Vision and challenges”, IEEE

Personal Communications, Vol. 8 No. 4, pp. 10–17.

Schneiderman, R. (2015), “Internet of Things/M2M - (Standards) Work in Progress”,

Modern Standardization: Case Studies at the Crossroads of Technology,

Economics, and Politics, Wiley-IEEE Standards Association.

Shen, X. (2014), “A Team Computing Implementation on the Android Platform”,

Engineering Thesis, George Mason University.

Singh, R., Bhargava, P. and Kain, S. (2006), “State of the art smart spaces: application

models and software infrastructure”, ACM Ubiquity, September, Vol. 2006 No.

September, p. 7:2–7:9.

Singh, Y. and Sood, M. (2009), “Model Driven Architecture: A Perspective”, Proceedings

of the 2009 IEEE International Advance Computing Conference, (IACC) Patiala,

India, pp. 1644–1652.

Sousa, J.P. (2010), “Foundations of Team Computing: Enabling End Users to Assemble

Software for Ubiquitous Computing”, Proceedings of the 2010 International

Conference on Complex, Intelligent and Software Intensive Systems (CISIS),

Krakow, Poland, pp. 9–16.

Sousa, J.P. and Garlan, D. (2002), “Aura: an architectural framework for user mobility in

ubiquitous computing environments”, Software Architecture: System Design,

Development and Maintenance: IFIP 17th World Computer Congress--TC2

Stream/3rd Working IEEE/IFIP Conference on Software Architecture (WICSA3),

Montréal, Québec, Canada, Kluwer Academic Publishers, p. 29.

Sousa, J.P., Shen, X., Tzeremes, V. and Hodum, F. (2012), “TeC apps for smart spaces:

simple, decentralized, resilient, and self-healing”, Proceedings of the 2012 ACM

Conference on Ubiquitous Computing, Pittsburgh, PA, USA, pp. 637–638.

268

Sousa, J.P., Tzeremes, V. and El Masri, A. (2010), “Space-aware TeC: End-user

Development of Safety and Control Systems for Smart Spaces”, Proceedings of

2010 Systems Man and Cybernetics, IEEE International Conference on, Istanbul,

Turkey, pp. 2914–2921.

Taylor, M. (2014), Introduction to JavaScript Object Notation: A To-the-Point Guide to

JSON, CreateSpace Independent Publishing Platform, USA.

Totty, B., Gourley, D., Sayer, M., Aggarwal, A. and Reddy, S. (2002), HTTP: The

Definitive Guide, O’Reilly & Associates, Inc., Sebastopol, CA, USA.

Truong, K.N., Huang, E.M. and Abowd, G.D. (2004), “CAMP: A Magnetic Poetry

Interface for End-User Programming of Capture Applications for the Home”,

Proceedings of the 6th International Conference in Ubiquitous Computing,

Nottingham, UK, pp. 143–160.

Tzeremes V (2015), “End User Software Product Line Support for Smart Spaces” In:

Doctoral Symposium, International Conference on Software Reuse (ICSR), Miami,

USA

Tzeremes, V. and Gomaa, H. (2015), “A Software Product Line Approach for End User

Development of Smart Spaces”, Proceedings of the 5th International Workshop on

Product LinE Approaches in Software Engineering (PLEASE), IEEE Press,

Piscataway, NJ, USA, pp. 23–26.

Tzeremes, V. and Gomaa, H. (2016a), “A Multi-platform End User Software Product Line

Meta-model for Smart Environments”, Proceedings of the 11th International Joint

Conference on Software Technologies (ICSOFT) - Volume 1: ICSOFT-EA, Lisbon,

Portugal, pp. 290–297.

Tzeremes, V. and Gomaa, H. (2016b), “XANA: An End User Software Product Line

Framework for Smart Spaces”, Proceedings of 49th Hawaii International

Conference on System Sciences (HICSS), Hawaii, USA, pp. 5831–5840.

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992), “The Active Badge Location

System”, ACM Transactions on Information Systems, Vol. 10 No. 1, pp. 91–102.

Weiser, M. (1991), “The Computer for the 21st Century”, Scientific American (Special

Issue: Communications, Computers, and Networks), Vol. 265 No. 3, pp. 94–104.

Whitmore, A., Agarwal, A. and Xu, L. (2015), “The Internet of Things–A Survey of Topics

and Trends”, Information Systems Frontiers, Vol. 17 No. 2, pp. 261–274.

269

Yun, J., Choi, S.-C., Sung, N.-M. and Kim, J. (2015), “Demo: Towards Global

Interworking of IoT Systems – oneM2M Interworking Proxy Entities”,

Proceedings of the 13th ACM Conference on Embedded Networked Sensor

Systems, ACM, New York, NY, USA, pp. 473–474.

270

BIOGRAPHY

Vasilios Tzeremes is a senior software engineer with over 17 years of technical experience

and founding partner of a software consulting company operating in Northern Virginia.

Throughout his career, Vasilios has developed numerous software solutions for private and

government organizations. His area of expertise is in enterprise software design and

development. Vasilios has an undergraduate degree in Business from the Technological

Educational Institute of Athens and an M.S. degree in Information Systems from American

University. He continues to learn and develop in his field by completing a PhD in

Information Technology with concentration in Software Engineering from George Mason

University. Vasilios research interests include software design and development, software

product lines, end user development, software and enterprise design patterns, distributed

systems, human computer interaction and enterprise systems.

