END USER SOFTWARE PRODUCT LINE SUPPORT FOR SMART SPACES

by

Vasilios Tzeremes
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Information Technology

Committee:

Dr. Hassan Gomaa, Dissertation Director

Dr. Jeff Offutt, Committee Member

Dr. Jens-Peter Kaps, Committee Member

Dr. Thomas LaToza, Committee Member

Dr. Stephen Nash, Senior Associate Dean

Dr. Kenneth S. Ball, Dean, VVolgenau School
of Engineering

Date: Fall Semester 2016
George Mason University
Fairfax, VA

End User Software Product Line Support for Smart Spaces

A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

by

Vasilios Tzeremes
Masters of Science
American University, 2004
Bachelor of Business
Technological Educational Institute of Athens, 1999

Director: Hassan Gomaa, Professor
Department of Computer Science

Fall Semester 2016
George Mason University
Fairfax, VA

Copyright 2016 Vasilios Tzeremes
All Rights Reserved

DEDICATION

| dedicate this work to:

My wonderful children Konstantine and Zoe for all the time and attention | took from you
to complete this dissertation.

My beautiful wife Dora for your patience, support and motivation. You have been there for
me every step of the way in this journey. Without your understanding, love and sacrifices I
would have never finished.

To my parents Konstantino and Giannoula for your encouragement, trust and support
throughout the years.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor Dr. Hassan Gomaa for his continuous support and
the countless hours he spend throughout my PhD study, for his patience, motivation, and
extending my academic and technical capabilities beyond what | thought possible. His
guidance, thorough feedback and trust enabled me to complete this PhD dissertation. It was
an honor having Dr. Gomaa, an authority in the domains of software engineering and
software product lines to be my advisor.

Besides my advisor, | would like to thank Dr. Jodo Pedro Sousa for helping me to start this
research, making me part of the Team Computing (TeC) research group and expanding my
knowledge in the domains of ubiquitous computing, end user development and smart
spaces.

| would like to thank the rest of my committee: Dr. Offutt, Dr. Kaps, and Dr. LaToza, for
their support and valuable feedback that helped shape this research.

I would also like to thank Xiang Shen for his help, support and work on the TeC Android
simulator.

Last but not the least, | would like to thank my sister Despina, parents-in-law George and
Georgia, the rest of my family, friends, business partners, coworkers and everyone else
throughout the years that helped me to complete this research and my life in general.

TABLE OF CONTENTS

Page

LISE OF TADIES ... ettt ns X
S o) T U= SRS Xi
AADSTTACT ...ttt ere s XV
I 101 oo [FTox [o O SRUOP SRR 1
1.1 BACKOIOUNGc.veieieiiiecieee sttt e sne e aeennesneenraeee s 1
1.2 MIOTIVALION ...t bbbttt ettt et b bbb sbenreas 3
1.3 Glossary of ReIEVANT TEIMS......cc.ooiiiiiiieieieie e 4
1.4 Problem STAEMENTcviiiieieie et nneas 7
1.5 THESIS STAIEBMENT ..ottt bbbttt nre bbb sreeneas 8
1.6 Research FOCUS and GOalS..........ceeuviieiieiiiie e 8
1.7 ReSEArch APPIOACKcoiviiiiiiecie ettt reen et e re e e 9
1.8 Importance and Rationale of this Research..............ccoccoveviiiiiie e, 10
1.9 OrQANIZALION ...ttt bbbttt bbb 11

2 REIALEA WOTK ...t ettt nre s 12
2.1 INEFOUUCTION L.ttt bbb b nnenneas 12
2.2 UDIQUITOUS COMPULING -...veveiiieiieieteste et 12
2.3 Internet OF THINGS (10T)....eoueiiiieieie st 16
2.4 End User Development for Smart SPaces........cccccvevveieiieie e 20
2.4.1 Programming LanQUAOEScceiiriiiiieieieie et 20
2.4.2 Natural Language Processing (NLP) EUD Environmentsc.ccoccocevvnennns 21
2.4.3 Direct Manipulation EUD ENVIrONMENtS.........cccecviiciiereiie e 22
2.4.4 Programming by Example EUD ENVIFONMENTScccovviviieieniiene e 23
2.4.5 Visual Programing EUD ENVIFONMENTSccooeiiiiiiiiiieieene e 24

2.5 Software Product Line APPrOAChES..........cccueiieiiiiieciecie ettt 26
2.5.1 Product line engineering and management (ISO/IEK 26550:2016)................. 28
2.5.2 Product Line UML-Based Software ENgiNEeringccccevvverenenenennnnnnnns 29
2.5.3 Common Variability LangUageceevieiiiiiie e 30
2.5.4 Component-Oriented Platform Architectingccoovvvviiiiieiiienc s 31
2.5.5 Family-Oriented Abstraction, Specification and Translation..............cc.cccce... 32

2. 5.0 KO A 33

2.6 Meta-mMOdeliNgooveiiee e e 33
2.6.1 Model Driven ArChitECIUIE........cov i 34
2.7 Software Product Lines for ENd USEIS........ccooveiiiriieiiiie e 35
2.8 Comparison with EXisting APProaches...........cccceeveieeieiiesieere e e 37
2.8.1 EUD Environments for Smart SPacesccccevveieiieiieie e 37
2.8.2 SOftWare ProdUCE LINESccuvieerieiieiie ettt s 38
2.8.3 SPL Approaches for End Users and Smart SPaces..........ccccovveveereieeseenieannenns 38
2.8.4 Meta-mMOdeliNg......cc.ocuiiieii e 39
2.9 SUMIMAIY ...tttk b ettt et b e e n e nn e ne e 40
RESEArCh APPIOACKHc.eiieiiece e 41
S L INEFOTUCTION .ttt bbbttt bbb b e nnenneas 41
3.2 RESEAICN APPIOACK ..ottt 41
3.3 EU SPL Process for SMart SPaCEScceiveiieiieiieie e s esee s sieesie e e 43
3.4 EU SPL Meta-model for Smart SPaces........ccceveiieeiieie i 45
3.5 Proof-of-concept EUSPLP Development ENVIrONMENt..........cooveieiereneneninenins 46
3.6 ValIdALION ... bbb 48
3.7 Rationale for Extending EUD Approaches with EU SPLSccccccevviiiiieiiecnenn, 49
B8 SUMMEIY ..ottt b e bt nb e e 52
EU SPL Process fOr SMAart SPACEScouriiirieieieiie ettt 53
o I oo [FTox o] SRS 53
4.2 ENCU USEE SPL PIOCESS.....ctieiiiiieitieiesieesieeiesee e eeesseesteaneessaesseeneesseesseaneesseessnsseees 54
4.3 End User Product Line Engineering (EUPLE)cccocoiiiiiiiiniccece 57
4.3.1 Forward and Reverse EUPLE Strategyccccccovvevieveiieie e 57
4.3.2 EU SPL Requirements ENCItAtioNccoooiiiiiiiiieniseceeeee s 60
4.3.3 EU SPL Analysis MOdelingccocuiiiiiiiiieie s 67
4.3.4 EU SPL Design MOdelingccccoveiiiiieiieiir e 73
4.3.5 EU SPL IMPIemMENtAtioN........cc.ovuiiiiiiiiiiieieieese e 80
4.3.6 EU SPL TESHINGecveivieeicieiece ettt e 80
4.4 End User Application Engineering (EUAE)cccocove e 80
4.4.1 End User Application Requirements Selectionccoovevieneiciencncnenn 81
4.4.2 End User Application DEriVationccccoeierereneniniseeieeeseesie e 82

Vi

4.4.3 End User Application TESTINGccvveiieieiiiieie e 86

4.4.4 End User Application Deployment............cocvveiieieiie i 87
4.5 End USer SPL EVOIULIONcoiiiiiiieie e 87
4.6 SUMIMAIY ...ttt bbbt b e bt b e e b nbeen e 88

5 End User Software Product Line Meta-model for Smart Spaces..........cccccevevverieennnnn. 89
5.1 INEFOUUCTION ..ttt b bbb nneene s 89
5.2 Overview of the EU SPL Meta-model for Smart Spaces...........ccccceverereriniininnnnns 90
5.3 Platform Specific Meta-modelS..........ccoveiieiiiiiiicsece e 93

5.3.1 Platform Specific Meta-models for TeCccoovevviieiieieeecee e 93

5.3.2 Platform Specific Meta-models for JIgSawccccvviirieieieicienc s 99
5.4 Platform Independent Meta-modelS..........ccoooveiieiiiieiiciecc e 104

5.4.1 Platform Independent Product Line (PIPL).......cccccoeviiieiieie e 105

5.4.2 Platform Independent Product (PIP)........cccoeiiiiiiiiiiiiieeeee e 107

5.4.3 PIPL to PIP Meta-model Mappings........cccccveiveieiieeieiie e sveesve e 108
5.5 Platform Independent to Platform Specific Mappings........c.ccocovvvivveiiveveiiieieennnns 109

5.5.1 PIPL to TeC PSPL Meta-model Mappingsccovrerieiieienenenene e 110

5.5.2 PIPL to Jigsaw PSPL Meta-model Mappingscccccvevevieiveveiiene e 111

5.5.3 PIP to TeC PSP Meta-model Mappingsccceceveereeiieiieie e seesie e 111

5.5.4 PIP to Jigsaw PSP Meta-model Mappingsccccovvrerireeienenenenie e 112
5.6 SUMIMANY ...ttt bbb n e ne e 114

6 End User Software Product Line Prototype (EUSPLP) Development Environment .. 115
T8 A [0o 1 od 1 o USRS 115
6.2 EUSPLP SYStEM USE CASESeeiveeiiiiriiieeiii ettt 116
6.3 EUSPLP System ArChItECIUIE.......ccveiieieecie ettt 118
6.4 EUSPLP Meta-mOelSccooieiieeeeie et 122

6.4.1 EUSPLP TeC PSPL Meta-modelcccooiveiiieiieieeie e 123

6.4.2 TeC Physical Meta-MOodel...........c.ccoveiiiiiiicie e 128
6.5 EUSPLP EU SPL Development SUDSYSIEMcccooeiiiiniiiiieieieesec e 130

6.5.1 EU SPL EQITOrccciiiii ettt 132

6.5.2 Feature Creation in the EU SPL EdItOrcccoooiiiiiiieniece e 144

6.5.3 PIPL JSON RePIeSENtationcccouririeieriiiieiiesiesie s 145

6.5.4 PIPL t0 TEC PSPL PrOCESSING......ccteiuiiiieieieniesiesiesiesiesieeeeee et 147

vii

6.5.5 TeC PSPL JSON RePresentation...........cccevererererenienieieieiesieneesie e 148

6.6 End User Application Derivation...........ccccveueieeieiiie s 151
6.6.1 Application Derivation EdItOrc.cccvevveiieeiiiie e 153
6.6.2 Application Derivation PrOCESSOcoueivirrerieriniesieaieeieieeesie e 156
6.6.3 TeC Application JSON Representation...........ccccevveveeiieseenesieseeseseeseenens 158

6.7 End User Application DeploymMENtcccecvieiieieiiieiieie e 160

6.8 SUMIMAIY ...ttt 163

7 ReSEArCh Validationc.ooveiviiiiiiiiei e 164

T L INEFOUUCTION .ttt bbb ene e 164

7.2 Research Validation APProach..........ccoeiiiiiiiiieies s 165

7.3 EU SPL TeSting FrameWOIKccceevviiieiieiiesiee et sra e 168

7.4 EU SPL TeSting APProach........ccveiiiiiiie sttt 170

7.5 End User Software Product Line (EUSPL) Testing Process...........ccccocevervrienenne 173
7.5.1 EU SPL Feature-based Consistency Checking..........cccccevvvereivieiiereiieseanens 173
7.5.2 Feature-based Integration TeStINGcccceveeieiiie i 178

7.6 End User Application Testing PrOCESS.ccueiueiieriirinieniesisieieeee e 183
7.6.1 EU Application Feature-based Consistency Checking............cccoovevviieinenns 184
7.6.2 EU Application Feature-based TeSting..........cccovevieieiiieiieiece e 186
7.6.3 EU Application Testing for Smart Home End User Application 1................ 188
7.6.4 EU Application Testing for Smart Home End User Application 2................. 195

7.8 SUMMIAIY ...ttt ettt ettt e et e e et e e s e e ss b e e as b e e e snbe e e snb e e e nnbeeannneeanneeans 208

8 Contributions and FUtUre RESEAICNccoiiiiiiiieice e 209

T80 11 0o [od 1 o PSSR 209

8.2 Research CONtriDULIONScc.oiiiiiiiiiiecieeee e 209
8.2.1 End User Product Line Engineering (EUPLE) Process.........ccccccovervivrennnn. 210
8.2.2 End User Application Engineering (EUAE) Processccccoceverenenenennenn. 210
8.2.3 EU SPL Meta-modelccoccviiiiiiiiiiie e 211
8.2.4 EUSPLP Development ENVIFONMENTccoviiiiiiiiiiieeeese e 212
8.2.5 EU SPL TeSting APPrOACHciiiiiiiieiieieiiesie sttt 213

8.3 FULUIE RESEAICHot e 213
8.3.1 Smart Space Security models for End User Software Product Lines............. 213
8.3.2 End User Visual Languages for End User Software Product Lines............... 214

viii

8.3.3 Enhancements to the EUSPLP Development Environment...........c.ccocoeeeee. 214

8.3.4 Testing of End User Software Product LiNeS..........cccevevvereiicviere e 215
8.3.5 Evolution of End User Product Lines for Smart Spacesccccoeevvvvervenns 215

8.4 SUMIMANY ...ttt ne e 216
A Appendix: Smart Home EU SPL Case Studycccccveveiieviiieiie e 217
AL INTFOTUCTION . bbbttt sb e nre s 217
A.2 End User Product Line Engineering (EUPLE)..........c.ccooiiiiiiiiiieiiien s 218
A.2.1 EU SPL Requirements ENCITAtioNccccovevieieiiieiieie e 218
A.2.2 EU SPL Analysis MOdeling........cccovveiiiiiiieiece e 223
A.2.3 EU SPL Design Modelingcccooeiiiiiiiiiieieee s 237
A.3 End User Application ENQINEEIING........cccciveiieiiiiieie e 248
A.3.1 Smart Home Example 1 - End User Application Engineering...................... 248
A.3.2 Smart Home Example 2 - End User Application Engineering.............c....... 254
AL SUMIMATY ittt e st e e st e e sn b e e e nsb e e e nbb e e e nbbeeasnes 259
R EIENICES ... ettt bbbt 260

LIST OF TABLES

Table Page
Table 3.1 Benefits of Extending EUD Approaches for Smart Spaces with EU SPLs...... 50
Table 4.1 Example of a Lawn Irrigation use case for a smart Spacec.cceeeeevereennnns 62
Table 4.2 Feature Group / Feature Dependency Table ... 66
Table 4.3 Platform Specific Feature / Component relationship table............c..ccccoevvenene 69
Table 4.4 Feature / Component Dependency Table for the Smart Home EU SPL Case

S (0o SR 74
Table 4.5 Inter-Feature Component Communication Table for the Smart Home Case

S (0o SRR 75
Table 4.6 Component Input / Output for the Home Alarm Feature...........cccocevvvivennennnns 79
Table 4.7 Example of Derived End User Application Mapped to Jigsawccccuvennee 83
Table 4.8 Example of Derived End User Application Mapped to Team Computing....... 85
Table 6.1 TeC PSP Physical Meta-Modelccccocoiiiiiiiciiiece e 129
Table 6.2 EU SPL Editor Feature Model NOtation..........cccccoovevenieiiinniee e 137
Table 7.1 Feature to Component CONSIStENCY TESES........cucvveieeiieriecie e 174
Table 7.2 Feature Group to Feature CONSIStENCY TESEScceviririricieiene e 175
Table 7.3 Feature Dependency ConsiSteNCY TESESc.cvvevveiieiieie e 176
Table 7.4 Feature-Based Integration Testing — Test Case Attributescccccocvrenne 178
Table 7.5 EU Application Feature-Based ConsisStenCy TestScccvevveveiieeieeriesnenne 185
Table A.1 Smart Home EU SPL Feature DesCriptionc.coovvvrieiiienenene e 219
Table A.2 Smart Home EU SPL Feature Group / Feature Dependency Table............... 222
Table A.3 Platform Specific Feature / Component relationship table..............cc.ccoe..... 225
Table A.4 Smart Home EU SPL Feature/Component Dependency Table. 236
Table A.5 Inter-Feature Component Communication Tablecccoovevvvieiininceenee. 237
Table A.6 Smart Home EU SPL Component Input / Output Table............cccceveneneenne. 246
Table A.7 Component Input/Output Table (Continuation)............ccccevererenenenenennenn 247
Table A.8 Smart Home Example 1 — EU Derived Application Mapped to Jigsaw........ 251
Table A.9 Smart Home Example 1 — EU Derived Application Mapped to TeC............ 253
Table A.10 Smart Home Example 2 — Platform Spesific EU Application Mapped to TeC
... 257

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107305
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107306
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107308
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107308
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107309
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107310
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107311
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107312
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107313
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107314
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107315
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107316
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107317
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107318
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107321
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107324
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107325
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107326
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107327
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107328
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468107328

LIST OF FIGURES

Figure Page
Figure 2.1 TeC USEr INTEITACEccoiiiiiiiiiiiieeeee s 25
Figure 2.2 Process Model for Software Product LIiNeS.........cccccevvivieieereciesiese e 27
Figure 4.1 End User Software Product Line ProCess..........c.ccoeovririiiiininciininesenees 55
Figure 4.2 End User Product Line Engineering Phases...........ccccccvivevvenecieieene e 56
Figure 4.3 End User Application Engineering Phases...........ccocovrviieiieienenc s 58
Figure 4.4 Smart Home Feature MOlcocoveiiiieiiece e 65
Figure 4.5 Smart Home Case Study Static Model ... 68
Figure 4.6 Sequence Diagram for the Video Featurecccccceevivevieve e 70
Figure 4.7 Sequence Diagram for the Energy Conservation Featureccoccocvrvennne. 72
Figure 4.8 Subscribe and Receive Messages to a Message Brokercccceveevevveiveenne. 77
Figure 4.9 Component Diagram for the Home Alarm Feature ..o, 78
Figure 4.10 Component Diagram for the Video Featurec.cccoovvevveveiieieececie s, 80
Figure 4.11 Example of an Instance of the Smart Home Feature Model based on End

USEr REGUITEIMENTSeevieiiciieiie ettt ettt ettt et e s te e e s estaesteesnesraeteaneesneesrs 82
Figure 4.12 Example of Smart Home End User Application Architecture for Jigsaw..... 84
Figure 4.13 Example of Smart Home End User Application Architecture for TeC......... 86
Figure 5.1 End User SPL Meta-model...........ccooiiiiiiiiiiieeee s 92
Figure 5.2 TeC Application Meta-model (PSP)ccoiieiiiiiieeie e 95
Figure 5.3 FI00d Alert — TEC TRAM......ccciiiiiriiieieeee e 96
Figure 5.4 TeC Platform Specific Product Line (PSPL) Meta-model.............c.ccccovennnee. 97
Figure 5.5 PSPL to PSP Meta-model Mapping for the TeC Platform...............cc.coovnene 100
Figure 5.6 Jigsaw Application Meta-model (PSP)c.ccovevviieiieieccceece e 101
Figure 5.7 Jigsaw Doorbell Application EXample..........ccooviiiiiiiiiic e 102
Figure 5.8 PL Jigsaw Component Meta-modelccccoveviiieiieve e 103
Figure 5.9 PSPL to PSP Mapping for the Jigsaw Platformccccoovveiininiiinininnns 105
Figure 5.10 Platform Independent Product Line (PIPL) Meta-modelcccoveeeee. 106
Figure 5.11 Platform Independent Product (PIP) Meta-modelccccocvieniivninnnnnns 107
Figure 5.12 PIPL to PIP meta-model mappingsccccevveveiieiiece e 108
Figure 5.13 Platform Independent to Platform Specific Mappingscccocevvvenirnnnnns 109
Figure 5.14 PIPL to TeC PSPL Meta-model Mappingscccevveveevieieeiesie e 110
Figure 5.15 PIPL to Jigsaw PSPL Meta-model Mappingscccoevvererenencnenennnnnns 112
Figure 5.16 PIP to PSP Mapping for the TeC EU Platformccccccoveiiiiiciiiceee, 113
Figure 5.17 PIP to PSP Mapping for the Jigsaw EU Platformccccocooviiiininnnnnns 113
FIQUIe 6.1 EUSPLP USE CaSEScciuveiiieitie it siiesie e siteeteestee et ssa e e abeesraesaa e 117
Figure 6.2 EUSPLP Subsystem Architecture and ProCessescccevererenenenenennens 120
Figure 6.3 EUSPLP TeC PSPL - Feature Meta-Modelccccooviviiiiiiiieiie e, 124
Figure 6.4 Feature to TeC EU SPL Component Meta-Model Relationships 125
Figure 6.5 TeC EU SPL Component Meta-Modelcccooveiiiiiiiicccc 126
Figure 6.6 TeC PSP Physical Meta-Modelccooeiiiiiiiiiiicec s 128

Xi

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016036
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016038
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016039
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016040
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016041
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016042
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016043
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016044
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016045
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016046
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016047
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016048
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016048
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016049
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016050
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016051
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016052
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016053
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016054
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016055
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016056
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016057
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016058
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016059
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016060
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016061
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016062
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016063
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016064
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016065
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016066
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016067
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016068
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016069
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016070
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016071
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016072
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016073

Figure 6.7 EU SPL Development Subsystem and Component Interactions................... 130

Figure 6.8 EU SPL Editor User INterfaceccocvevviie i 133
Figure 6.9 Feature Group Menu in the EU SPL EdItOr ..o 135
Figure 6.10 Feature Menu in the EU SPL EdItOr..........ccccovevviieiieie e 135
Figure 6.11 Platform Dependent Menu in the EU SPL EditOrcccceviiiiciinininnnns 135
Figure 6.12 EUSPLP Component EXamPple..........ccccoviieiieieiiie e 139
Figure 6.13 Component Type Configuration...........cccocererinineninieeieee e 143
Figure 6.14 Sample PIPL JSON Representationccccceeviveiveneeieesieesesieeseesse e 146
Figure 6.15 Methods of the PIPLtOPSPLProcessor CIasscccoeveieieiencieneninnnns 147
Figure 6.16 Sample TeC PSPL JSON Representation.............cccccvevvevveieenesieeseeseanenns 149
Figure 6.17 Application Derivation Subsystem and Component Interactions 151
Figure 6.18 Application Derivation Editor User Interfaceccccocovevvveviviieinececnnn, 154
Figure 6.19 Methods of the ApplicationDerivationProcessor CIass............ccoccvvvrvrininns 157
Figure 6.20 Sample TeC PSP JSON Representationccccccevveveevieseesesieeseese e 159
Figure 6.21 Application Deployment DIagramcccoceeeririeninieniinieie e 161
Figure 7.1 Overall EU SPL Testing ApPProachcccccooveviiieiiece e 171
Figure 7.2 ConsistencyRuleChecker Output of executing EU SPL Consistency Test Cases
t0 the SMArt HOME EU SPL.....coiiiieieese e 177
Figure 7.3 Smart Home EU SPL: AUdIiO FEAtUrecccooiiiiiiiiiiieee e 180
Figure 7.4 AUdio FEAtUre TSt CaASES.....cc.ciierieeieiiesieeiesieeste e steeste e re e e e sra e 180
Figure 7.5 Output of the FeatureBasedTestDriver for the Smart Home EU SPL........... 184
Figure 7.6 ConsistencyRuleChecker Output of executing EU Application Feature-Based

Consistency Tests on an invalid Feature Set from the Smart Home EU SPL 186
Figure 7.7 ConsistencyRuleChecker Output of executing EU Application Feature-Based

Consistency Tests on a valid Feature Set from the Smart Home EU SPL 186

Figure 7.8 FeatureBasedTestDriver Output executing Feature-Based Integration Test
Cases to a Derived Application that contains the Audio and Smart Irrigation Features 188

Figure 7.9 Smart Home Example 1 Application — Feature Modelccccevernennnn. 189
Figure 7.10 ConsistencyRuleChecker Output of executing EU Application Consistency
Tests to the Features selected for the Smart Home Example 1 Application................... 189
Figure 7.11 Smart Home Example 1 - Application Architecture for TeC..........c.cccceeeee 191
Figure 7.12 Featured-Based Integration Test Cases for the Smart Home Example 1 EU
APPIICALION ...t e et 192
Figure 7.13 FeatureBasedTestDriver Output of executing the Featured-Based Integration
Test Cases to the Smart Home Example 1 EU Application...........cccoeveieiinencnennnnnn 195
Figure 7.14 Smart Home Example 2 Application — Feature Modelcccccoeeneenen. 196
Figure 7.15 ConsistencyRuleChecker Output of executing EU Application Consistency
Tests to the Features selected for the Smart Home Example 2 Application................... 196
Figure 7.16 Smart Home Example 2 - Application Architecture for TeC............ccoceueee 198
Figure 7.17 Featured-Based Integration Test Cases for the Smart Home Example 2 EU
APPIICALION. ...ttt bbb 199
Figure 7.18 FeatureBasedTestDriver Output of executing the Featured-Based Integration
Test Cases to the Smart Home Example 2 EU Application...........ccocevvveienencnennnnnn 202
Figure 7.19 Smart Home Example 3 Application — Feature Modelcccceevvennnnnn. 204

xii

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016074
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016075
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016076
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016077
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016078
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016079
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016080
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016081
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016082
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016083
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016084
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016085
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016086
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016087
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016088
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016089
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016090
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016090
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016091
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016092
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016093
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016094
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016094
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016095
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016095
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016096
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016096
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016097
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016098
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016098
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016099
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016100
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016100
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016101
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016101
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016102
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016103
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016103
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016104
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016106
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016106
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016107

Figure 7.20 Smart Home Example 3 - Application Architecture for TeC............cc.ceeee. 205
Figure 7.21 Derived Featured-Based Integration Test Cases for the Smart Home Example

S EU APPHICALION ...t 206
Figure 7.22 Smart Home Example 3 Derived Application Stored in TeC Android....... 207
Figure 7.23 Executing a Test Case Example in TeC Device Simulators..............cc.co..... 207
Figure A.1 Smart Home EU SPL Feature Modelcccocvieiiive e 221
Figure A.2 Smart Home Case Study Static Model ... 224
Figure A.3 Sequence Diagram for the Smart Home EU SPL Audio Feature................. 226
Figure A.4 Sequence Diagram for the Smart Home EU SPL Video Feature.................. 226
Figure A.5 Sequence Diagram for the Smart Home EU SPL Door Feature................... 227
Figure A.6 Sequence Diagram for the Smart Home EU SPL Motion Feature............... 227
Figure A.7 Sequence Diagram for the Smart Home EU SPL Window Feature............. 228
Figure A.8 Sequence Diagram for the Smart Home EU SPL Text Feature 228
Figure A.9 Sequence Diagram for the Smart Home EU SPL Email Feature.................. 229
Figure A.10 Sequence Diagram for the Smart Home EU SPL Smart Irrigation Feature 229
Figure A.11 Sequence Diagram for the Smart Home EU SPL Schedule Feature........... 230
Figure A.12 Sequence Diagram for the Smart Home EU SPL Smart Weather Sensing

AU, ...ttt b e r e n e 230

Figure A.13 Sequence Diagram for the Smart Home EU SPL Flood Detector Feature. 231
Figure A.14 Sequence Diagram for the Smart Home EU SPL Faucet Drip Feature...... 231
Figure A.15 Sequence Diagram for the Smart Home EU SPL Light Failure Feature.... 232
Figure A.16 Sequence Diagram for the Smart Home EU SPL HVAC Filter Feature.... 232
Figure A.17 Sequence Diagram for the Smart Home EU SPL Power Failure Feature .. 233
Figure A.18 Sequence Diagram for the Smart Home EU SPL Energy Conservation

FRALUIE......eee ettt ettt ekt e a bt ek b e e e nb e e e b e e e nr e e nreean 233
Figure A.19 Sequence Diagram for the Smart Home EU SPL Home Alarm Feature.... 234
Figure A.20 Sequence Diagram for the Smart Home EU SPL 911 Feature................... 234
Figure A.21 Component Diagram for the Audio Featurecccccoeveieeiiiic e, 239
Figure A.22 Component Diagram for the Video Featureccocvvvieieiencieninneens 239
Figure A.23 Component Diagram for the Door Feature............ccccevveveeieeiecve s, 239
Figure A.24 Component Diagram for the Motion Featurecccooeveiinencieneninnnns 240
Figure A.25 Component Diagram for the Window Featureccccccevveveivieieecieennen, 240
Figure A.26 Component Diagram for the Text Feature..........c.ccoovvviiieieienciencnieens 240
Figure A.27 Component Diagram for the Email Featurecccccoveveeiiiic e, 241
Figure A.28 Component Diagram for the Smart Irrigation Featureccccoovvvrnnne 241
Figure A.29 Component Diagram for the Schedule Featureccccooveviiveieeieennen, 242
Figure A.30 Component Diagram for the Smart Weather Sensing Feature 242
Figure A.31 Component Diagram for the Flood Detector Feature............cccccoeevvvernnnnne. 242
Figure A.32 Component Diagram for the Faucet Drip Feature...........ccoceveniivnennnnnns 243
Figure A.33 Component Diagram for the Light Featurecccccoevvevie i, 243
Figure A.34 Component Diagram for the HVAC Filter Featurecccccooeviivniinnnns 243
Figure A.35 Component Diagram for the Power Failure Featurecccccevvevivennnnne 244
Figure A.36 Component Diagram for the Energy Conservation Feature 244
Figure A.37 Component Diagram for the Home Alarm Feature...........cccccevvvciveiinnnn, 244

Xiii

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016108
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016109
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016109
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016110
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016111
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016112
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016113
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016114
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016115
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016116
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016117
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016118
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016119
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016120
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016121
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016122
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016123
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016123
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016124
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016125
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016126
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016127
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016128
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016129
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016129
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016130
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016131
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016132
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016133
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016134
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016135
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016136
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016137
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016138
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016139
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016140
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016141
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016142
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016143
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016144
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016145
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016146
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016147
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016148

Figure A.38 Component Diagram for the 911 Featurec.ccoceveeviiieinciinccesee 245

Figure A.39 Smart Home Example 1 — Feature Modelcccccvevveieiiiere e 249
Figure A.40 Smart Home Example 1 - EU Application Architecture for Jigsaw 252
Figure A.41 Example 1 - Smart Home Example 1 - EU Application Architecture for TeC

... 254
Figure A.42 Smart Home Example 2 — Platform Specific Feature Model 255
Figure A.43 Smart Home Example 2 — Platform Specific EU Application Architecture for
=TSPTSRO 258

Xiv

file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016149
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016150
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016151
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016152
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016152
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016153
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016154
file:///D:/Vasilios/Dissertation/Dissertation/sections/predefensedraft/ChangetoPDVersion/Tzeremes_Dissertation_format_review_rev2.docx%23_Toc468016154

ABSTRACT

END USER SOFTWARE PRODUCT LINE SUPPORT FOR SMART SPACES
Vasilios Tzeremes, Ph.D.
George Mason University, 2016

Dissertation Director: Dr. Hassan Gomaa

Smart spaces are physical environments equipped with pervasive technology that sense and
react to human activities and changes in the environment. End User Development (EUD)
skills vary significantly among end users who want to design, develop and deploy software
applications for their smart spaces. Typical end user development is opportunistic,
requirements are usually unplanned and undocumented, applications are simplistic in
nature, design is ad-hoc, reuse is limited, and software testing is typically haphazard,
leading to many quality issues. On the other hand, technical end users with advanced EUD
skills and domain expertise have the ability to create sophisticated software applications
for smart spaces that are well designed and tested.

This research presents a systematic approach for adopting reuse in end user
development for smart spaces by using Software Product Line (SPL) concepts. End User
(EU) SPL Designers (who are technical end users and domain experts) design and develop

EU SPLs for smart spaces whereas less technical end users derive their individual smart

space applications from these SPLs. Incorporating SPL concepts in EUD for smart spaces
makes it easier for novice end users to derive applications for their spaces without having
to interface directly with devices, networks, programming logic, etc. End users only have
to select and configure the EU SPL features needed for their space. Another benefit of this
approach is that it promotes reuse. End user requirements are mapped to product line
features that are realized by common, optional, and variant components available in smart
spaces. Product line features and the corresponding component product line architecture
can then be used to derive EU applications. Derived EU applications can then be deployed
to different smart spaces, thereby avoiding end users having to create EU applications from
scratch. Finally the proposed approach has the potential of improving software quality
since testing will be an integral part of EU SPL process.

In particular, this research has: (a) defined a systematic approach for EU SPL
Designers to design and develop EU SPLs, (b) provided an EU SPL application derivation
approach to enable end users to derive software applications for their spaces, (c) designed
an EU SPL meta-model to capture the underlying representation of EU SPL and derived
application artifacts in terms of meta-classes and relationships that supports different EUD
platforms, (d) designed and implemented an EUD development environment that supports
EU SPL development and application derivation, and (e) provided a testing approach and

framework for systematic testing of EU SPLs and derived applications.

1 INTRODUCTION

1.1 Background

As computing becomes ubiquitous, software demands are rapidly increasing.
Software requirements for end users are becoming personalized and often fluctuate.
Professional engineers do not have the capacity and domain knowledge to satisfy all
software needs. End users know their own context and needs better than anybody else, and
they often have real-time awareness of shifts in their respective domains (Burnett and
Myers, 2014). End users are already involved in software development and outnumber
professional engineers. For instance, the current ratio of end users to professional engineers
is 30-to-1 (Burnett and Scaffidi, 2014). End User Development (EUD) involves a set of
methods, techniques, and tools that enable users of software systems, who are acting as
non-professional software developers, to create, modify, or extend a software artifact
(Lieberman et al., 2006). Examples of EUD are spreadsheet programming, visual
programming, email rule filters, web site creation tools, etc.

Another prominent area for end user development is smart spaces. Smart spaces are
environments equipped with visual and audio sensing systems, pervasive devices, sensors,
and networks that can perceive and react to people, sense on-going human activities and
respond to them (Singh et al., 2006). Several End User (EUD) environments for smart

spaces have been proposed to assist end users to create applications for their smart

environments. EUD environments for smart spaces provide user interfaces for end users to
create software applications and interconnect applications with devices deployed in a smart
space. Jigsaw (Humble et al., 2003), Puzzle (Danado and Paterno, 2012), PIP (Chin et al.,
2010), FedNet (Kawsar et al., 2008), and TeC (Sousa, 2010) are examples of EUD
environments. EUD environments enable end users to create their own applications for
home security, building automation, space notifications, energy conservation and office
ergonomics.

Having end users creating software applications has several benefits. Some of the
benefits are that it empowers end users to create software applications, the applications are
built to the end user specifications and there is better adaptation of the software applications
by end users. Having end users creating software applications also has challenges. End
users have different technological backgrounds. Thus not all end users have the same
development abilities. Furthermore EUD is more opportunistic than systematic,
requirements are usually unplanned and undocumented, reuse is ad-hoc, and software
testing is typically haphazard, leading to quality issues (Ko et al., 2011). End User Software
Engineering (EUSE) focuses on approaches, techniques and tools to improve the quality
of end user software (Burnett, 2009). Software Product Line (SPL) methods can also help
end users to reuse work of others and improve the software quality.

This research investigates how SPL concepts can be applied to end user

development for smart spaces.

1.2 Motivation

Several EUD environments for smart spaces have been proposed to enable end
users to customize their smart spaces. One of the problems with existing solutions is that
they either target a specific group of end users or they assume end users have a baseline
technical background. In fact, end users have different computer skills, personality
characteristics, ages, gender (Beckwith and Burnett, 2004) etc. Technical end users and
domain experts have the ability to create sophisticated software for their smart spaces.
However, less technical end users find it difficult to create software for their smart spaces
due to a lack of technical knowledge, domain expertise, and difficulties using EUD
environments for smart spaces (Kawsar et al., 2008). It would be beneficial to enable end
users to salvage the work of more technical end users and domain experts to create software
applications for their spaces.

Several quality issues have been reported by applications created by end users.
Some of these include errors in the logic, compatibility issues etc. (Burnett, 2009). The
domain of EUSE is derived from software engineering and provides systematic approaches
for end users to create quality software. Reuse is also one of the areas that EUSE identifies
as promising for improving end user software quality and promoting end user development.
Some of the issues of reuse in EUD is that end users don't design their software applications
for reuse and even if they do, other end users have difficulties finding and reusing the
software applications to address their needs (Burnett, 2009). SPL technology addresses
software reuse of requirements, designs and implementations, and could assist with EUSE.

The problem is that SPL methods target professional software engineers rather than end

users. SPL creation involves requirements gathering, commonality/variability analysis,
feature modeling, variable architecture design, component design and implementation. In
an end user environment, the development process is more agile. End users are not familiar
with prescriptive SPL methods and therefore modifications are needed to define a SPL
method to target end users.

By adopting reuse, end users would not have to duplicate work to create similar
applications. In addition, reuse of more sophisticated and stable end user applications can
increase the end user satisfaction that could lead to better adoption of EUD for smart

spaces.

1.3 Glossary of Relevant Terms
This section provides a common vocabulary for terms used in related literature and
throughout this dissertation.

e End User Development (EUD) — a set of methods, techniques, and tools that
enable users of software systems, who are acting as non-professional software
developers, to create, modify, or extend a software artifact (Lieberman et al., 2006)
(Chapter 1).

e Software Product Lines (SPL) — a set of software intensive systems sharing a
common, managed set of features that specify the specific needs of a particular
market segment or mission and are developed from a common set of core assets in
a prescribed way (Clements and Northrop, 2002) (Chapter 2).

e Smart Spaces — ordinary environments equipped with visual and audio sensing

systems, pervasive devices, sensors, and networks that can perceive and react to

people, sense ongoing human activities and respond to them (Singh et al., 2006).
Smart spaces are also referred to smart environments in part of the literature
(Chapter 2).

End User Development (EUD) Environments for Smart Spaces — provide user
interfaces for end users to create software applications and interconnect
applications with devices deployed in a smart space. (Chapter 2). EUD
Environments are also referred as platforms (Chapter 5) and as EUD Tools in
literature.

End User Product Lines (EU SPL) — product lines for smart spaces created by
technical end users and domain experts (Chapter 4).

End User (EU) Application — software application for smart spaces derived by
end users from the EU SPL (Chapter 4).

End User Product Line (EU SPL) Process — a systematic approach for EU SPL
designers who are technical end users and domain experts to design and develop
end user software product lines for smart spaces that end users can use to derive
applications for their smart spaces (Chapter 4). The EU SPL process consists of the
End User Product Line Engineering (EUPLE) process and the End User
Application Engineering (EUAE) process.

End User Product Line Engineering (EUPLE) — is the process that technical end
users and domain experts follow to develop EU SPLs (Chapter 4).

End User Application Engineering (EUAE) — is the process that end users follow

to derive applications from EUSPLSs for their smart spaces (Chapter 4).

EU SPL Meta-model — captures the underlying representation of end user product
lines and end user applications in terms of meta-classes and relationships (Chapter
5).

Platform Independent Model — is an end user application model that is
independent of the platform (EUD environment e.g., Jigsaw/TeC) and the
hardware/Operating System (OS) (Chapter 5).

Platform Specific Model — is an end user application model that is specific to an
EUD environment e.g., Jigsaw/TeC but independent of the hardware/OS platform
(Chapter 5).

Platform Independent Product Line (PIPL) Meta-model — captures the
underlying representation of EU SPLs in terms of meta-classes and relationships
independent of the platform (EUD environment. The meta-model contains
representations of EU SPL features, feature dependencies, and the component
architecture that realizes each feature. The meta-model is platform independent and
contains meta-classes that are common to event-driven EUD environments for
smart spaces (Chapter 5).

Platform Independent Product (PIP) Meta-model — provides the underlying
representation of end user applications in terms of meta-classes and relationships,
which are derived from the PIPL meta-model (Chapter 5).

Platform Specific Product Line (PSPL) Meta-model - similar to the PIPL meta-

model but is extended with platform specific meta-classes (Chapter 5). The TeC

PSPL and Jigsaw PSPL are examples of PSPL meta-models for the TeC and Jigsaw
EUD environments.

e Platform Specific Product (PSP) Meta-model — provides the underlying
representation of end user application in terms of meta-classes and relationships,
which are derived from the PSPL meta-model (Chapter 5). The TeC PSP and
Jigsaw PSP are examples of application models derived for the TeC and Jigsaw

PSPLs.

1.4 Problem Statement

End User Development (EUD) skills vary significantly among end users who want
to design, develop and deploy software applications for their smart spaces. Typical end
user development is opportunistic, requirements are usually unplanned and
undocumented, applications are simplistic in nature, design is ad-hoc, reuse is limited, and
software testing is typically haphazard, leading to many quality issues. On the other hand,
technical end users with advanced EUD skills and domain expertise have the ability to
create sophisticated software applications for smart spaces that are well designed and
tested. The problem to be solved is (a) enable technical end users and domain experts to
design and develop software applications for smart spaces that can be reused, and (b)
enable less technical end users to adapt software applications developed by technical end

users and domain experts to their spaces.

1.5 Thesis Statement

A systematic design approach and end user development environment can be
created to specify, design, implement, test and deploy end user applications for smart
spaces by using software product lines concepts. This will enable technical end users and
domain experts to utilize the design method and development environment to create end
user software product lines for smart spaces, from which end users will be able to derive

applications for their spaces.

1.6 Research Focus and Goals

The focus of this research is to develop an End User Software Product Line (EU
SPL) approach that extends existing EUD practices for smart spaces. The main concept of
this approach is having End User SPL Designers (who are technical end users and domain
experts) create EU SPLs for smart spaces and have end users derive their individual smart
space applications from these SPLs. Incorporating SPL concepts in EUD for smart spaces
makes it easier for novice end users to derive applications for their spaces without having
to interface directly with devices, networks, programming logic, etc. End users only have
to select and configure the EU SPL features needed for their space. Another benefit of this
approach is that it promotes reuse. End user requirements are mapped to product line
features that are realized by common, optional, and variant components available in smart
spaces. Product line features and the corresponding component product line architecture
can then be used to derive EU applications. Derived EU applications can then be deployed

to different smart spaces, thereby avoiding end users having to create EU applications from

scratch. Finally the proposed approach has the potential of improving software quality
since testing will be an integral part of EU SPL process.

The goals of this research are to investigate: (a) a systematic approach for End User
SPL designers to design and develop EU SPLs, (b) an EU SPL application derivation
approach to enable end users to derive software applications for their spaces, (c) an EU
SPL meta-model to capture the underlying representation of EU SPL and derived
applications, (d) an EUD development environment that supports EU SPL development
and application derivation, and (e) a testing approach and framework for testing EU SPLs

and derived applications.

1.7 Research Approach

This research addresses the lack of a systematic approach and development
environments to design and develop software applications for smart spaces that can be
reused by end users. The research approach is described in detail in Chapter 3. Below is a
summary of the research approach:

1. Define a comprehensive EU SPL process for (a) designing, developing and testing
end user product lines for smart spaces and (b) deriving applications that can be
that can be applied to different end user environments.

2. Define an EU SPL meta-model that extends existing meta-models of EUD
environments for smart spaces to provide product line support. The meta-model
captures the underlying representation of end user product lines and derived
applications in terms of meta-classes and relationships that support different EUD

platforms.

3. Develop a proof-of-concept End User Software Product Line Prototype (EUSPLP)
development environment based on the EU SPL Process and meta-model. The
environment supports the creation of end user product lines and application
derivation for smart spaces.

4. Validate this research by applying the EU SPL process and proof-of-concept
EUSPLP development environment to the Smart Home EU SPL case study. A
testing framework is provided to test the artifacts of the EUSPLP development
environment.

5. Deploy and execute TeC applications on the distributed TeC Android simulator

(Shen, 2014).

1.8 Importance and Rationale of this Research

The growing adoption of ubiquitous computing and the Internet of Things (loT)
have contributed to the advancement of smart spaces. In the context of smart spaces,
ubiquitous computing focuses on the interaction of end users with the environment whereas
the IoT focuses on the interconnection of devices and services using the internet for
connectivity. End user development environments for smart spaces aim to allow end users
to take advantage of the device connectivity and end user friendly user interfaces to create
applications for comfort, security, scheduling tasks, convenience through automation,
energy management efficiency, health and assisted living (Rashidi and Cook, 2009). Even
though EUD environments for smart spaces have made significant contributions for
enabling end users to create applications for their spaces, they do not account for reuse and

applications developed are platform (EUD environment) specific. For instance, TeC

10

applications can only be deployed to a TeC smart space and Jigsaw applications can only
be deployed to a Jigsaw smart space.

This research presents a systematic approach for adopting reuse in end user
development for smart spaces by using software product line concepts. Using product line
concepts for EUD, platform independent applications can be developed and then adapted
for different EUD platforms. This research approach extends EUD environments for smart
spaces with EU SPL support.

It should be noted that parts of the research described in this dissertation have been
published in international conferences and workshops (Sousa, Tzeremes and Masri 2010;
Sousa, Shen, Tzeremes and Hodum 2012; Tzeremes 2015; Tzeremes and Gomaa 2015;

Tzeremes and Gomaa 2016a; Tzeremes and Gomaa 2016b).

1.9 Organization

This dissertation is organized as follows. Chapter 2 surveys related work that form
the basis for this research. Chapter 3 details the research approach. Chapter 4 describes the
end user software product line process, including end user product line development and
application derivation. Chapter 5 describes the end user software product line meta-model
that captures the underlying representation of end user product lines. Chapter 6 presents
the EUSPLP development environment that supports product line development and
application derivation. Chapter 7 describes the validation and testing approach of this
research. Chapter 8 concludes the dissertation, outlines the contributions of this research,
and suggests future work. Finally, Appendix-A presents the complete design of the Smart

Home EU SPL case study used to validate this research.

11

2 RELATED WORK

2.1 Introduction

This chapter presents related research work that is the basis for the research
described in this dissertation. Section 2.2 describes ubiquitous computing. Ubiquitous
computing concepts and technologies are used to create smart spaces. Section 2.3 discusses
the Internet of Things (1oT). IoT utilizes existing internet protocols for the communication
of physical objects in smart spaces. Section 2.4 describes different development approaches
for end users to create software applications for smart spaces. Section 2.5 provides an
overview of software product lines. Section 2.6 discusses meta-modeling approaches for
creating software applications. Section 2.7 discusses the extent that software product lines
concepts have been applied to end user development. Section 2.8 discusses how this
research compares to the related research. Finally section 2.9 provides a summary of this

chapter.

2.2 Ubiquitous Computing

The term of ubiquitous, also known as pervasive, computing was first introduced
by Mark Weiser in 1991 (Weiser, 1991). Weiser used the word ubiquitous to describe the
concept of everywhere computing. Weiser believed that computing should be integrated
seamlessly in the background, allowing people to employ it when needed without shifting
their focus from their main tasks. The Olivetti Cambridge Research Labs active badge
project (Want et al., 1992) that took place between 1990 till 1992 was an example of a

ubiquitous computing environment at the time. The active badge project instrumented

12

people working on a building with smart badges. In the building itself a number of sensors
were deployed to read the badges. As a result, among others, doors were open to people
that were carrying the provisioned badges, rooms were greeting people with their name,
phones were transferred to a phone that the badge wearer was close and computers were
adjusted to the badge wearer preferences.

Computing has evolved over the years from mainframe computers that were
available in specific locations and supported multiple users, to personal computers where
each user mainly interacted with one computer, to pervasive computing where technology
is everywhere and supports multiple users. Satyanarayanan (Satyanarayanan, 2001)
describes the progress of distributed and mobile systems research in relation to pervasive
computing. Distributed systems are concerned with issues of remote communication
protocols, fault tolerance, high availability, and remote information access and secure
remote communication. Mobile computing builds on distributed systems and addresses
research problems for mobile networking, mobile information access, adaptive
applications, energy-aware systems and location sensitivity. Pervasive computing is the
natural progression of both distributed and mobile systems. Some of the main research
areas of pervasive technology are: (a) how to creating smart spaces that can react, send and
receive information, (b) how technology can be hidden to the background and its available
to users when needed, (c) how the environment can distinguish between different users that
exist on the same space, and (d) how applications are deployed to smart spaces that have

different technology support.

13

Pervasive environments, also known as smart spaces or smart environments, are
composed from devices, networking, middleware and applications (Saha and Mukherjee,
2003). There is a variety of heterogeneous devices available in a pervasive environment,
some examples are: mouse and keyboards, sensors and actuators embedded in the
environment, cell phones, computers, custom devices developed for a specific purposes
etc. Devices exchange data with other devices, software applications and the environment
seamlessly. Networks provide communication protocols, auto configuration, quality of
service, reliability, failover, lower bandwidths, lower transmission requirements, security
and routing algorithms to support pervasive computing. Pervasive middleware can be
thought as a distributed operating system. The middleware’s responsibilities are to perform
I/O operations, facilitate device communication, file system manipulation, application
execution, error detection and resource allocation. The middleware essentially needs to
present the heterogeneous environment as homogeneous to the applications. Pervasive
applications are aware of their environment and are able to recover from device and sensor
failures.

There have been several middleware architectures proposed for implementing
pervasive environments (Saha and Mukherjee, 2003; Whitmore et al., 2015). Some of those
initiatives are the ROS (Quigley et al., 2009), Aura (Sousa and Garlan, 2002), JCAF
(Bardram, 2005), Smart Products (Mihlhduser, 2008), UbiComp (Goumopoulos and
Kameas, 2009), ACOCO (Fortino et al., 2013) projects. The Robot Operating System
(ROS) is a middleware for creating smart spaces through the use of service robots. The

ROS architecture consists of nodes, messages, topics and services. Nodes are processes

14

that communicate with other nodes through messages. Messages can be send through topics
for public-subscribe communication or services for point-to-point synchronous
communication. The Aura project enables users to preserve continuity of their tasks across
environments. The Aura architecture is composed of user tasks, the task manager, the
context observer and the environment manager. A user task is composed from a collection
of services used to accomplish the task. The task manager is responsible for managing the
user tasks. The context observer based on the user context executes the appropriate user
task on the target environment. The environment manager keeps track of all the resources
in the environment. The Java Context-Awareness Framework (JCAF) is a context-
awareness environment with an Application Programming Interface (API) that supports
the creation of specific context-aware applications. The Smart Products initiative is based
on creating autonomous objects that can communicate with another through peer-to-peer
protocols to create smart spaces. The UbiComp middleware creates smart spaces through
the composition of artefacts. Artifacts in UbiComp are heterogeneous tangible objects
(sensors/actuators/devices) that can be combined together to achieve a task. UbiComp
provides an editor for composing and instructing artifacts (Mavrommati et al., 2004) in
smart spaces. ACOSO is agent-oriented event-driven architecture that reacts when changes
in the environment occur. The middleware supports message passing and publish/subscribe
mechanisms for agent communication.

There are several challenges for developing software for pervasive environments.
These challenges can be grouped in the following areas: (a) application development, (b)

user context, (c) data, (d) configuration, and (g) user interface (Henricksen et al., 2001;

15

Satyanarayanan, 2001). Application development challenges deal with the application
structure, component design and implementation, interaction sequence between
components, components states, application lifetime, concurrency, transactionality, device
interaction, transmission requirements, workflow, application goals and security. User
context gives the ability to applications to infer user activities based on spatio-temporal
data (Pereira and Loyola, 2012). For example consider a smart meeting room. When the
door is closed and they are people in the room the smart room can infer that there is a
meeting in progress. Thus pervasive applications need to capture in their design: time,
space, location, proximity to other devices, transition states, events of other applications,
and operational history characteristics. Data challenges for creating pervasive applications
deal with data storage, data dissemination, data security and data replication issues across
environments. Finally configuration challenge research issues deal with how pervasive
applications can be dynamically reconfigured based on the presence or absence of certain

devices.

2.3 Internet of Things (10T)

The Internet of Things (IoT) can be thought as a paradigm where every-day
physical objects (sensors, devices, vehicles, buildings) can be equipped with identifying,
sensing/actuation, storing, networking and processing capabilities that will allow them to
communicate with one another and with other devices and services over the Internet to
accomplish some objective (Whitmore et al., 2015). These objects are typically referred as
smart objects. Smart objects are everyday objects that are equipped with hardware

components such as a radio for communication, a CPU to process tasks, sensors/actuators

16

to be conscious of the world in which they are situated and to control it at a given instance
(Fortino and Trunfio, 2014). Smart objects can interact with other smart objects and people.
The term machine-to-machine (M2M) is used to describe the direct communication
protocols between smart objects (Yun et al., 2015). The idea of 10T was first introduced by
Kevin Ashton while working on the Auto-ID Center at the Massachusetts Institute of
Technology (MIT). Ashton originally used the term “Internet of Things” in 1999 in a
presentation he made to Procter and Gamble to introduce RFID technology to the
company’s supply chain management (Schneiderman, 2015).

Some of the drivers that contributed to the development of 10T are: (a) uniformity
of access, (b) logistics, (c) energy efficiency, (d) physical security and safety, (e) industrial
() medical, and (g) lifestyle (Kopetz, 2011). The internet provides uniform access to
different types of computing devices, with different architectures and communication
protocols. 10T takes advantage of the object interoperability over the internet and extends
its function to smart objects. Logistics is another driver for 10T. For example retail products
go through several steps in the supply chain before they make it to the market. The product
is created from raw material, then is transferred to the manufacturing warehouse, then is
transferred to the wholesaler warehouse and finally the product arrives at the retailer. This
process involved a lot of manual communication between the different business parties in
order to coordinate and keep track of the products. With the use of RFID tags on retail
products, 10T provides much more meaningful insight to the entire process. Manufacturers,
wholesalers and retailers have automated real time views of where products are in the

supply chain. In a smart space environment, RFID technology is used to track smart objects

17

https://en.wikipedia.org/w/index.php?title=Auto-ID&action=edit&redlink=1
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

throughout the environment. 10T has a major impact on energy efficiency. Smart objects
collaborate with each other to ensure that smart environments optimize their energy
consumption. Physical security and safety is another problem that 10T addresses. IoT
objects work with each other to ensure that smart environments are safe to operate while
providing access control to ensure that authorized resources are in the space. 10T plays a
significant role in industrial manufacturing process. Smart objects help verifying the
quality of manufactured products while monitoring the environment for failed machinery,
machinery maintenance etc. There are several medical devices that monitor people’s sugar
levels, blood pressure, heart rate etc. Medical devices can be in the form of wearable
technology or even internal to the patient’s body. Extending medical devices with IoT gives
the ability for medical devices to work together to diagnose patients and notify additional
help if needed. IoT can have a significant effect on people’s life styles. Smart objects can
collaborate to adjust smart environments based on people’s context. For instance, if a home
resident goes to sleep, smart objects can notify the environment to adjust the energy and
security objects in the environment.

Some of the current technical challenges current 10T research is investigating is (a)
Internet Integration, (b) Smart object identification, (c) Near Field communication, and (d)
Security (Kopetz, 2011). Adding internet connectivity to smart objects is a challenge.
Internet communication requires power and not all smart objects in 10T have the same
power capabilities. Furthermore as smart objects move potentially might lose internet
connectivity. Current research is working to develop new communication protocols to

minimize power consumption and address the offline challenges. For example the Internet

18

Engineering Task Force (IETF) has initiated a working group on IPv6 over Low Power
Wireless Area Networks to find an energy-efficient solution for the integration of the IPv6
standard with the IEEE 802.15.4 wireless near field communication standard. Smart object
identification is another challenge for 10T. According to forecasts from Cisco Systems, by
2020 more than 50 billion smart objects will be connected in the 10T (Fortino and Trunfio,
2014). Providing a common ontology to identify all these objects is a challenge. Smart
object identification can be even more challenging when you have composite smart objects
where a smart object is comprised of other smart objects. Near Field Communication
(NFC) (ISO/IEC 18092, 2013) is a high performance communication interface and
protocol for devices to communicate over a short range. One of the benefits of NFC is that
requires less power compared to Bluetooth and other similar protocols because of the short
range. One of the main challenges with NFC is security (Ji and Xia, 2016). Security overall
is another challenge for IoT. Some of the main security challenges in loT are:
communication confidentiality and integrity, device availability, device authentication and
access control, device computing limitations, heterogeneity in security protocols supported
by devices and enforcing security policies in IoT environments (Mahmoud et al., 2015).
Ubiquitous computing and 10T research areas are the building blocks for creating
smart spaces. Current ubiquitous computing research is focused on smart space
applications and Human-Computer Interaction (HCI) whereas the current IoT research
focus is to create the infrastructure and protocols for smart object communication (Ebling,

2016).

19

2.4 End User Development for Smart Spaces

Smart spaces are ordinary environments equipped with visual and audio sensing
systems, pervasive devices, sensors, and networks that can perceive and react to people,
sense ongoing human activities and respond to them (Singh et al., 2006). Examples of smart
spaces are homes, offices, hospitals, farms equipped with technology to sense and react to
environment changes. Applications for a smart home include energy efficiency, security,
entertainment, and utility automation. End User Development (EUD) environments for
smart spaces provide user interfaces for end users to create software applications and
interconnect applications with devices deployed in a smart space. The purpose of EUD
environments is to enable end users to develop software applications of their environments
to suit their needs. For example, consider an economy laundry end user application that
adjusts the operation of the washer and dryer during off peak hours when the power rates
are discounted and pause operation during hours that the power rates peak. Current EUD
approaches can be summarized in five general categories (Dimitris Kalofonos and Franklin
Reynolds, 2006): (1) Programming languages, (2) Natural language processing, (3) Direct

manipulation, (4) Programming by example, and (5) Visual programming.

2.4.1 Programming Languages

Programming languages have evolved over the years. Machine specific and
assembly languages have given their place to higher level languages that are less
demanding, easier to use and provide abstractions that make them almost hardware
independent. An example is the JAVA programming language with its motif of “Write

once, run anywhere” versus traditional languages that had to be compiled for different

20

environments. In JAVA, programs are compiled one time into byte code. There are
different byte code interpreters called Java Virtual Machines (JVMs) for different operating
systems this make it easier for end users to run their programs in different platforms.
Another advantage of higher level programming languages for end users is that Original
Equipment Manufacturers (OEM) expose functionality of their products as programming
APIs so end users can code to the API versus the internals of the devices. Programming
languages, even though they have become easier to use over the years, still require a

significant amount of training and computer science knowledge to be used by end users.

2.4.2 Natural Language Processing (NLP) EUD Environments

Natural Language Processing (NLP) approaches for end users are concerned with
enabling end users to program their environments using every day human speaking
languages. CAMP (Truong et al., 2004) and InterPlay (Messer et al., 2006) are some
examples of end user programming frameworks in this category. CAMP uses a magnetic
poetry metaphor for end users to program their environment. In CAMP, words are grouped
in the following categories: who, what, where, when and general. End users express tasks
by creating “poems” by combining words from different categories. An example of a
“poem” in CAMP is “Capture Joe’s dinner time conversations in the dining room.”
InterPlay provides the middleware for integrating consumer electronics in a smart home
and allows end users to control and coordinate those devices using “pseudo sentences.” A
“pseudo sentence” is a simpler form of a grammatically correct full sentence. It consists of
a verb, a subject and a target. The verb captures the activity that the user wants to perform.

The subject captures the content that the user wants to use. The target implies the device

21

that the user wants to perform a task. An example of a “pseudo sentence” is “Play big blue
at the home theater.” Even though NLP is very promising, there are limitations to the extent
that natural language processors can process complex end user input that deals with

programming a smart space.

2.4.3 Direct Manipulation EUD Environments

Direct Manipulation approaches allow end users to directly manipulate objects. The
Media Cubes (Blackwell and Hague, 2001) and FedNet (Kawsar et al., 2008) EUD
environments provide tangible user interfaces for end users to program their spaces by
direct manipulation. In Media Cubes, end users program their environment by
manipulating a set of physical cubes. A cube consists of sensors, a processor and batteries.
Cubes can be associated with devices and assume their functionality. For example a cube
can be associated with a DVD player and assume its “play” and “stop” functionality.
Cubes can sense and interact with other cubes by facing each other. End users can program
their environments by grouping cubes together. For example consider two cubes where one
of them represents a TV and the other one a DVD player. The DVD player cube, if it faces
the TV cube, implies that the DVD player streams its output to that TV. In FedNet, devices
and software applications come with RFID cards that embed remote URLS of where device
and application binaries can be downloaded. The FedNet deployment tool is used to install,
uninstall, start, stop, and associate devices and applications by scanning the corresponding
RFID cards. Direct manipulation can be easier to understand, since end users manipulate

directly physical objects versus having end users access physical objects through command

22

line or image representations. Similar to NLP, direct manipulations approaches are hard to

scale for complex end user applications.

2.4.4 Programming by Example EUD Environments

Programming by Example (PBE) and Programming by Demonstration (PBD)
approaches present the computer with examples of data that a program will process and
having the system automatically deduce the current program from the examples (Myers,
1990a). In the context of smart spaces end users demonstrate to their environments of how
to react when a certain conditions occur. The CAPpella (Dey et al., 2004) and Pervasive
Interactive Programming (PiP) (Chin et al., 2010) end user frameworks are examples of
this approach. CAPpella enables end users to create context-aware application through
programming by example. It uses machine learning and user input to build software
applications. End users train their environment with multiple examples that include a
situation and a corresponding action. After CAPpella gets trained, it will perform the
demonstrated action when the situation occurs. In PIP, the main concept is the
“Deconstructed Model” where devices advertise services they support. Users can create
virtual devices also called a MetaAppliance (MAp) that combine services provided by
different devices. End users construct MAps using a graphical user interface and
demonstrate behavior by physically interacting with the devices. Demonstrated behavior is
stored in the form of rules. During run time, PIP uses a rules engine to evaluate the rules.
Programming by example can be transparent to end users but the environment set up can
be challenging; also, altering the system behavior will require re-training of the system

model, which can be a complex task and time consuming.

23

2.4.5 Visual Programing EUD Environments

“Visual Programming” (VP) refers to any system that allows the user to specify a
program in a two (or more) dimensional fashion (Myers, 1990Db). Visual programming uses
visual elements (such as icons, drawings or gestures) to create programs. Visual
programming provides a natural way to program that helps users conceptualize what they
develop.

In the smart space area, several EUD environments have been proposed that use
visual programming. Some examples of visual programming frameworks are: Jigsaw
(Humble et al., 2003), Puzzle (Danado and Paterno, 2012), GALLAG Strip (Lee et al.,
2013), ICAP (Dey et al. 2006) and Team Computing (Sousa, 2010). Jigsaw and Puzzle
provide a user interface for reconfiguring and reorganizing devices in a smart space.
Devices appear as jigsaw pieces in the Jigsaw and Puzzle editors. End users can
dynamically combine the Jigsaw pieces to create applications for their environments.
GALLAG Strip enables users to create context aware applications through a sequence of
screens in a mobile device. ICAP provides a visual rule building approach for end users to
create context aware applications for their spaces. End users can specify rules from simple
logic to personal, spatial and temporal relationships. Team designs define teams and are
created in the TeC Editor. A team design is a collection of Activity sheets connected
together. Activities sheets represent software components, devices, and humans. During
the team deployment, activity sheets are mapped to players operating in the smart space.
Additional logic, conditions and output events can be added to activity sheets for

customization. Activity sheet outputs are connected to inputs of other activity sheets and

24

get activated when their holding condition is true. Activity sheets are visually represented
in the TeC Editor as big square boxes, inputs and output are smaller square boxes attached
to the activity sheets. TeC also supports input and output streams. Streams are represented
with small triangles attached to activity sheets. Figure 2.1 shows a “surveillance” team for
a small farm to illustrate the user interface of TeC. The purpose of the team is to monitor
the perimeter fence of a small farm. If an animal leans on, or breaks the fence, the owner
of the farm gets contacted with a live video stream. The team has three activity sheets
“monitor fence”, “film” and “phone.” The monitor fence activity sheet has an output event
named “call” that gets triggered when the lean or break event occurs. The “call” output
event is connected to the “on” input event of the “film” activity sheet, which turns on the
camera and the “issue call” input event of the “phone” activity sheet that calls the farm
owner. A video stream is sent from the “film” activity sheet to the phone of the farm owner.
Video streams in TeC are represented with triangles. The owner of the farm can press key
5 on the phone, indicating that no further action is required from the system. This will
trigger the “handled” output event of the “phone” to be true, which will send the “off” input

event to “film” that results in the camera turning off.

surveillance monitor fence: activity sheet
e call . lean | break
—— call issue call a phone handled dial 555 111 1234
vid in p msg | There's a possible break in the perimeter.

out evt out stream in evt in stream

film phene: activity sheet

on
[vid out handled keyPress(5)

off

out evt out stream in evt in stream
Figure 2.1 TeC User Interface

25

2.5 Software Product Line Approaches

A Software Product Line (SPL) is a set of software intensive systems sharing a
common, managed set of features that specify the specific needs of a particular market
segment or mission and are developed from a common set of core assets in a prescribed
way (Clements and Northrop, 2002). An SPL consists of a family of systems that share
common and variable functionality. Common functionality utilizes reuse among products
created from the product line. Variable functionality is what differentiates each of the
products. Product lines are ubiquitous and can be found in almost all software applications
that are offered in different editions. An example is the windows operating system.
Windows is distributed in different editions, home, professional and ultimate. All versions
share common features like mail, calendar and messaging but higher priced versions
contain additional features like enhanced data protection and remote desktop connection
features. Companies that adopted SPLs have experienced improvements in quality,
maintainability, productivity and reduced costs (Kakola and Leitner, 2014).

The Software Product Line (SPL) engineering process is the process for creating a
product line. Figure 2.2 shows a high level overview of the SPL engineering (Gomaa,
2005a) process. The SPL engineering process consists of two sub-processes: (a) product
line engineering (a.k.a. domain engineering) process in which the product line is created
and (b) the application engineering process in which software applications are derived. The
software product line creation process involves software engineers working with product
line stakeholders to define the product line requirements, the product line features. All

artifacts created from the product line engineering process are stored in the product line

26

Product Line Multi-View Model,

Product Line

3 Product Line Architecture,
Requirements Product Line Reusable Components Product Line
_— Engineering > Reuse Library
Application
\ Architecture/
Components
Application o
Requirements App.hcau.on
> Engineering
l Application

Unsatisfied Requirements, Defects, Adaptations

Figure 2.2 Process Model for Software Product Lines

reuse library. The application engineering process is the process for generating applications
from the product line features, architecture, and components. A product line feature is
realized by one or more components and satisfies a specific user requirement or set of
requirements.

Features are categorized as common, optional, alternative and parameterized.
Common features exist in all products of the product line. Optional features exist in only
certain products of the product line. Alternative features are features that can be selected
in place of each other, one of which can be a default feature. Finally, parameterized features
are SPL configuration parameters that are set during application derivation or at run time
initialization. In application engineering, product engineers specify the feature
requirements of the final product. The product line creation process maps the feature
requirements to the components that implement them and assembles the final product.

Product engineers communicate additional requirements and errors back to the SPL

27

engineers to include them in future releases. Some of the most common SPL approaches
are: The Software and systems engineering - Reference model for product line engineering
and management (ISO/IEC 26550:2016, 2016), PLUS (Gomaa, 2005a), CVL (Haugen et
al., 2013), COPA(America et al., 2000), FAST(Harsu, 2002), and KobrA (Atkinson and

Muthig, 2002).

2.5.1 Product line engineering and management (ISO/IEK 26550:2016)

The international standard for Software and systems engineering - Reference model
for product line engineering and management (ISO/IEC 26550:2016, 2016), aims to create
a common vocabulary and standard process for product line creation. The standard covers
domain and application engineering aspects for creating the product line. Domain
engineering covers product line scoping, domain requirements engineering, domain design,
domain realization and domain validation and verification. During domain engineering,
organizational management works with technical management to perform product line
scoping. Product line scoping involves identifying market groups, product categories,
common and variable features, functional domains for envisioned features that provide
sufficient reuse, reusable assets for creating products and cost benefit analysis for each
domain asset. After the product line is scoped domain requirements engineering is
performed that identifies the product line stakeholders and captures detailed requirements.
Domain design is used to perform commonality and variability analysis, feature modeling
and define the domain architecture. Domain realization is responsible for component
design and implementation. Domain validation and verification provide the quality

assurance aspect to the product line. All domain assets defined during domain engineering

28

are stored on the domain asset repository. The application engineering process in the ISO
involves application requirements engineering, application design, application realization
and application verification and validation. Application requirements engineering develops
application-specific requirements reusing common and variable requirements defined
during domain requirements engineering. Application design derives the application
architecture from the domain architecture in order to meet application requirements.
Application realization implements product line members by drawing upon the application
requirements and architecture; reusing and configuring domain components and interfaces.
Application verification and validation ensures that the right member product and the right
application assets have been modeled, specified, designed, built, verified, and validated.
All artifacts created by the application engineering process are stored in the application

asset repository.

2.5.2 Product Line UML-Based Software Engineering

Product Line UML-Based Software Engineering (PLUS) is defined as a design
method for software product lines that describes how to conduct requirements, analysis,
and design modeling for software product lines in UML (Gomaa, 2005a). PLUS
requirements phase identifies the product line use cases and tags them as kernel optional
and variant. Feature analysis identifies the product line features and maps them to the use
cases. During the analysis phase, PLUS examines the problem domain and develops the
system context diagram, collaboration/sequence diagrams and state diagrams. The analysis
phase concludes with feature/class dependency diagrams and tables that show the classes

that implement features. In the design phase, PLUS examines the solution domain and

29

develops the product line architecture and structures the system into subsystems and
components. The design phase ends with defining the communication interface of each
component. In the component implementation phase software engineers select a subset of
the designed functionality for development. The product line testing phase performs
integration testing among the components developed on the increment with the existing
components of the product line and functional testing that test the functionality of the
increment. All artifacts generated by PLUS are stored in the software product line

repository.

2.5.3 Common Variability Language

The Common Variability Language (CVL) (Haugen et al., 2013) is used to add
variability to MDA models. In particular CVL, is a Domain Specific Language (DSL) for
modeling variability in models that are based on Meta Object Facility (MOF) standard
defined by the Object Management Group (OMG) (Reinhartz-Berger et al., 2014). CVL
operates on three models: the base model, the variability model and the resolution model.
The base model is a domain model for a particular system. For example a base model can
describe a particular train control system deployed to a train station (Svendsen et al. 2010).
The variability model describes variations on the system. In the train control system
example there might be train stations with different number of tracks, different directions
etc. The train control variability model needs to capture different train control systems that
can be deployed to train stations with different configurations. The resolution model
captures a set of options on the variability model. In the train example a resolution model

can be the train control system supporting a train station with two tracks, one track going

30

east and another track going west. To create a new system CVL takes as input the three
models and generates new resolved models. Existing DSL tools can operate on the resolved

models that can transform them to runnable software.

2.5.4 Component-Oriented Platform Architecting

The Component-Oriented Platform Architecting (COPA) method is a component
based product line methodology that provides a set of (component-based) subsystems and
interfaces (with their associated processes, documentation and tools) from which a stream
of derivative and composite products (families) can be developed and produced according
to a domain specific architecture or product family architecture (America et al., 2000).
COPA uses the Business-Architecture-Process-Organization (BAPO) model to cover
multiple aspects of the product line lifecycle like business drivers, architecture, processes
and organization concerns. BAPO starts by identifying the business needs for the product
line which might be an improvement of an existing product line or the need for a new one.
After the business need gets identified, BAPO defines the product line architecture. There
the domain of the product line is defined. Systems and components are defined and
structured to fit the product line architecture. The process phase of BAPO creates the
architecture previously defined while identifying component dependency, commonality
and variability. The organization aspect of BAPO covers organizational support for the
product line. It ensures that the product line matches the organization’s business needs, it
provides management support and defines processes for product line maintainability and

evolution.

31

2.5.5 Family-Oriented Abstraction, Specification and Translation

Family-Oriented Abstraction, Specification and Translation (FAST) is a product
line methodology that abstracts the commonality of target software products and creates a
common platform for the creation of a family of software systems. Variability is addressed
through parameterization or conditional compilation (Harsu, 2002). The methodology has
two main phases: (1) Domain qualification (2) Domain Engineering and Application
engineering. During domain qualification product families are identified and justification
is made for their creation. Domain engineering covers analysis and implementation of the
domain. During domain analysis product line functionality is abstracted and a common
platform for product line family creation is designed. Domain implementation creates and
implements the common platform. Application engineering uses the platform created in
domain engineering to create product line family members.

Feature-Oriented Reuse Method for product line software engineering (FORM) is
a software product line methodology that supports architecture design and object oriented
component development while incorporating a design and analysis marketing perspective
(Kang et al., 2002). The FORM process has two sub processes: (1) Asset development and
(2) Product development process. The asset development process analyses the
commonality and variability of the product line and develops a component based
architecture based on the analysis performed. The product development process gathers
product requirements, selects features, adopts an architecture, adapts components and

generates code for the software product.

32

2.5.6 KobrA

KobrA (Atkinson and Muthig, 2002) is a component based approach for software
product line development. Software elements are created individually and get synthesized
in different ways to create different members of the product line. KobrA has two main
phases: Framework Engineering and Application Engineering. Framework engineering
analyses the commonality and variability of the product line and creates generic framework
that represents all variations of the product line while including information about the
common and variant features. Application engineering is responsible for instantiating the

generic framework and create different product variants based on customer specifications.

2.6 Meta-modeling

A model of a system is a description or specification of that system and its
environment for some certain purpose (OMG, 2003). A meta-model is a model that
describes a model (Kleppe, 2008). For example in EUD, end user applications created for
smart spaces can be thought as application models. Examples of application models are:
security, energy efficiency, and economics applications. Internally EUD environments
have developed a meta-model to describe the structure of these applications. Meta-
modeling is the process for creating a meta-model for a specific domain.

Many software specification and design methods advocate a modeling approach in
which, the developed system is represented by means of multiple-view meta-models.
Gomaa and Shin (Gomaa and Shin, 2008) proposed a multiple-view meta-modeling
approach for software product lines. Abu-Matar and Gomaa (Abu-Matar and Gomaa, 2012)

proposed a feature-based variability multi-view meta-modeling approach for service

33

oriented architectures. Model Driven Development (MDD) abstracts software
development life cycle by shifting its focus from code to models, metamodels and model
transformations. Blanc et al. (Blanc et al., 2005) propose extending MDD approaches with
meta-modeling approach for reuse. The UML4SPM (Bendraou et al., 2005) work proposes
a new UML based metamodel for software process modelling that support executable
models. Model Driven Architecture (MDA) (OMG, 2003) uses meta-modeling to define

the underlying representation of platform independent and platform specific architectures.

2.6.1 Model Driven Architecture

Model Driven Architecture (MDA) is a software development framework based
on automatic transformations of models (Debnath et al., 2008). The Object Management
Group (OMG) promotes model-driven architecture which UML models of the software
architecture are developed prior to implementation (Gomaa, 2016). The Unified Modeling
Language (UML) is a modeling language used to describe the results of object-oriented
analysis and design developed by different methodologies e.g, COMET (Gomaa, 2000),
PLUS (Gomaa, 2005a).

MDA separates business and application logic from underlying platform
technology, distinguishing the following models: Computation Independent Model (CIM),
Platform Independent Model (PIM), Platform Specific Model (PSM) and code. The most
common representation of these models is UML. However, other languages can be used if
they are based on Meta Object Facility (MOF) meta-model (Abu-Matar, Mohammad
Ahmad, 2011). The CIM is used to analyze the problem domain. The CIM captures

business processes, system requirements and functions independent of any system

34

implementation. The PIM is used for creating an abstract version of the system independent
of technology implementation (Singh and Sood, 2009). The PIM captures different aspects
of the system, identifies the system entities and operations needed to satisfy the
requirements described in CIM. The PSM augments the PIM with specific platform details
and implementation information such as .NET, J2EE, Webservices, etc. To create an
application for multiple platforms, a given PIM will have to be mapped to multiple PSMs.

The PSM model is used to generate code and deploy the application to the environment.

2.7 Software Product Lines for End Users

Current research on utilizing product lines for end users includes Monaco (Préhofer
etal., 2008), SimPL (Malaer and Lampe, 2008), MobiLine (Marinho et al., 2013) and Perez
et al. (Perez and Valderas, 2009). Monaco proposes a software development framework
for building end user programming environments. The problem that Monaco solves is that
Original Equipment Manufacturers (OEMSs) were spending significant effort to create end
user programming environments for similar products. Monaco abstracts end user
programming domain specific functionality and proposes a development framework for
the creation of end user programming environments that OEMs can reuse.

SimPL (Malaer and Lampe, 2008) provides product line tools for domain engineers
to set up an environment for end users to instantiate product line members. Domain
engineers in SimPL define a Domain Specific Modeling Language (DSML.) that describes
a specific domain. The SimPL editor translates the DSML created by domain engineers to
a set of graphical elements that can be grouped together by end users to create software

applications. The SimPL approach is closer to the ones examined in the end user

35

programming frameworks section. SimPL does not explicitly model product line
variability but it defers it to the DSML creators. DSML dictates which elements can be
connected together in the SImPL editor.

MobiLine (Marinho et al., 2013) developed a software product line for the domain
of mobile and context-aware applications. MobiLine identified multiple individual mobile
applications (games, mobile commerce, mobile guides, mobile learning) that involve
mobile devices and user context. MobiLine used existing applications as requirements
elicitation and created a domain model for mobile and context aware functionality. The
mobile and context aware domain model is combined with specific application domain
models (eg., mobile visit guides, financial applications, health care applications) to create
mobile and context-aware applications. The benefit of this approach is that mobile and
context aware functionality does not have to be replicated across different application
domain models.

Perez et al. utilize variability engineering for professional engineers to cooperate
with end users to create configurable applications for their smart spaces (Pérez et al., 2009;
Pérez and Valderas, 2009). Variability modeling is used as a requirements gathering tool
between professional engineers and end users. Based on the variability model, engineers
create environments that end users can reconfigure using existing end user programming

frameworks like Jigsaw.

36

2.8 Comparison with Existing Approaches
The following sections discuss how this research relates to the current research in
the areas of: (a) EUD environments for smart spaces, (b) Software product lines, (c) Meta-

models, and (d) SPL approaches for end users and smart spaces.

2.8.1 EUD Environments for Smart Spaces

The functionality provided by EUD environments for smart spaces can be grouped
in two general areas: Smart space configuration and context aware environments. Smart
space configuration environments enable end users to control and combine functionality of
devices. Jigsaw (Humble et al., 2003), and Puzzle (Danado and Paterno, 2012) are some
examples. Context aware environments create rules based on user context (activity,
location, identity, time) and device functions. PIP (Chin et al., 2010), FedNet (Kawsar et
al., 2008), iCAP (Dey et al., 2006), GALLAG Strip (Lee et al., 2013), and TeC (Sousa,
2010) are some examples. Current EUD environments for smart spaces do not account for
reuse. End user applications are created for specific environments and are not portable to
other environments. For instance an end user application for TeC is only applicable for the
TeC EUD environment and cannot be reused for Jigsaw.

The research described in this dissertation extends existing EUD environments for
smart spaces with product line support. Thus, this research extends visual languages used
by EUD environments and application models to create product line features. End users

can select features from the product line and derive applications for their smart spaces.

37

2.8.2 Software Product Lines

Software product line methods such as ISO ISO/IEC 26550 (ISO/IEC 26550:2016,
2016), PLUS (Gomaa, 2005b), CVL (Haugen et al., 2013), COPA(America et al., 2000),
FAST (Harsu, 2002), and KobrA (Atkinson and Muthig, 2002) address the problem of
modeling variability in product lines and provide processes to design SPLs and derive
applications from them.

The research described in this dissertation extended current software product line
approaches to provide support for EUD development and smart spaces. In particular this
research defined a lightweight product line approach for technical end users and domain
experts to design and develop EU SPLs that can be used by end users to derive
applications for different EUD environments. Furthermore this research extended the
design method and modeling techniques defined in PLUS to capture feature and component
platform dependencies. The product line design artifacts of the PLUS method were also
extended to capture the platform and component / connector architecture information

available in smart spaces.

2.8.3 SPL Approaches for End Users and Smart Spaces

Current research on utilizing product lines concepts for end users and smart spaces
includes SimPL (Malaer and Lampe, 2008), MobiLine (Marinho et al., 2013) and Perez et
al. (Perez and Valderas, 2009). As with this research, SImPL uses components, connectors
and triggers to create application logic. In SimPL domain engineers are responsible for

providing implementations of the components that realize each feature in the product line.

38

End users use the DSML to select different components applicable for each feature and
connect them together to form application logic.

This dissertation research describes a visual language for technical end users and
domain experts to create product lines. The implementation of the components is provided
by the EUD environments. In addition, features in this research are realized by components
connected together versus having features realized by a set of components that the end user
is allowed to connect as proposed in SimPL.

MobiLine extends SPL concepts to reuse mobile and context-aware functionality
for different application domains. The SPL process followed by MobiLine is complex and
requires the involvement of product line engineers, application engineers and domain
experts from different domains to create product lines and derive applications. This
dissertation research builds on extending SPL methods to address end user development
for smart spaces.

Perez et al. utilize variability engineering for professional engineers to cooperate
with end users to capture end user requirements for smart spaces (Perez and Valderas,
2009). Perez provides examples using Jigsaw and programming by demonstration. This
dissertation research extends Perez’s work beyond requirements elicitation for product
lines. This dissertation research utilizes visual languages and application models of EUD

environments to create product lines for smart spaces.

2.8.4 Meta-modeling
MDA separates business and application logic from underlying platform

technology. This dissertation research is influenced by the CIM, PIM and PSM concepts

39

but was expanded to end user development for smart spaces. Thus, this research
investigates the creation of platform independent and platform specific meta-models to
capture end user product lines that can be used to derive applications for different EUD

environments for smart spaces.

2.9 Summary

This chapter has described related work to this research. The ubiquitous computing
section and the Internet of Things sections described how the two concepts can be used to
create smart spaces, in particular the components of smart spaces, different smart space
initiatives, and challenges for creating software applications for smart spaces. The end user
development for smart spaces section covered the evolution of systems that enable end
users to develop software for their spaces. The software product line approach section
described the concept of software product lines and discussed different approaches for
creating software product lines. The software product lines for end users section described
current initiatives that show how software product line concepts can be adapted for end
users. Finally, this chapter described how the research described in this dissertation
compares to existing research on EUD environments, SPL methods, meta-modeling

approaches and current SPL approaches for end users.

40

3 RESEARCH APPROACH

3.1 Introduction

This chapter describes the research approach followed in this dissertation. In
summary, this research defines an EU SPL process that supports end user product line
development and application derivation for smart spaces. To support the EU SPL process,
an EU SPL meta-model is defined to capture the EUSPL meta-classes and relationships.
The EUSPLP development environment was created to enable the development of EU
SPLs and application derivation. Finally, a Smart Home EU SPL case study was used to
validate this research.

The chapter is organized as follows: Section 3.2 describes the overall research
approach. Section 3.3 describes the background and artifacts of the EU SPL process
defined in this research. Section 3.4 provides an overview of the EU SPL meta-model
defined for capturing the underlying representation of end user product lines and end user
applications. Section 3.5 describes the proof-of-concept EUSPLP environment created in
this research. Section 3.6 describes the validation approach for this research, including the
testing approach and framework. Section 3.7 describes the rationale of extending existing
EUD approaches for smart spaces with EU SPLs. Finally, section 3.8 summarizes this

chapter.

3.2 Research Approach

This research addresses the End User Software Product Line (EU SPL) process and

supporting development environment, which are used by technical end users and domain

41

experts to develop end user product lines for smart spaces. End users utilize the same
process and environment to derive applications from the EU SPL. The EU SPL process
provides: (a) technical end users and domain experts with a systematic approach to develop
end user product lines, (b) end users with an approach to reuse end user applications, and
(c) testing support to improve the quality of end user applications.

The EU SPL process consists of the (a) End User Software Product Line
Engineering (EUPLE), and (b) End User Application Engineering (EUAE) sub-processes.
EUPLE defines the process steps and process artifacts to create end user product lines.
EUAE defines the process steps for deriving applications from the product line. The EU
SPL process is tailored to address end user requirements for smart spaces. The Smart Home
EU SPL case study was created to verify each step of the EU SPL process.

The research defined a meta-model that is utilized to capture the underlying
representation of EU SPLs and derived EU applications in terms of entities meta-classes
and relationships. The EU SPL meta-model was derived from: (a) examining the end user
environments for smart spaces described on Chapter 2, and (b) the Smart Home EU SPL
case study. As part of this research the meta-models of the TeC and Jigsaw EUD
environments were designed. The meta-models contain meta-classes for representing EU
applications in the TeC and Jigsaw EUD environments. The TeC and Jigsaw meta-models
were used to form the EU SPL meta-model. In particular, the common meta-classes of the
TeC and Jigsaw meta-models were extracted to create platform independent meta-models
(PIPL/PIP). The PIPL/PIP meta-models provide the underlying representation for end user

product lines and derived applications that can be applied to any event driven EUD

42

environment for smart spaces. The meta-model was extended to create platform specific
meta-models (PSPL/PSP) that support end user product lines for specific EUD
environments for smart spaces.

The EUSPLP development environment was created to enable end users to design
product lines and derive applications for smart spaces. The environment was developed
based on the EU SPL process and meta-model. As part of the user interface for the EUSPLP
environment, a visual language was designed to enable: (a) technical end users and domain
experts to design EU SPLs, and (b) end users to derive applications.

To validate this research, a Smart Home case study (a) was created using the EU
SPL process, (b) was implemented using the EUSPLP environment, (c) the TeC PSPL was
tested using the EU SPL Testing process, (d) derived applications from the EUSPL were
tested using the EU Application Testing process, and (e) derived applications were
deployed to the TeC Android simulator and tested using the EU Application Deployment

Testing process.

3.3 EU SPL Process for Smart Spaces

The EU SPL process described in this research provides a systematic approach for
creating end user software product lines and deriving applications for smart spaces. The
process is based on the PLUS method (Gomaa 2005) which was extended in this research
to include the design of end user product lines for smart spaces. The EU SPL method
consists of the End User Product Line Engineering (EUPLE) process in which the end user
software product line is designed and developed, and (b) the End User Application

Engineering (EUAE) process in which software applications are derived.

43

The following artifacts are created during the requirements, analysis and design phases of

the EUPLE process:

Use Case Modeling — Use cases are defined to capture end user requirements.
Feature Modeling — The EU SPL feature model is created.

Static Modeling — During static modeling, the components needed to realize each
feature are defined.

Dynamic Modeling — Sequence diagrams are defined for each feature defined in
the EU SPL.

Inter-feature Component Communication Modeling — Captures inter-feature
component communication.

Component Modeling — component diagrams and component input/output tables
are created for each feature to capture the component communication interfaces.
Platform Specific Feature/Component Modeling — Captures platform specific
component information that applies to platform specific features.

Feature-based Integration Test Cases — Capture component outputs / inputs /
triggering conditions and expected test results for testing the component

architecture of individual features and feature combinations.

The following artifacts are created during the requirements, application derivation and

testing phases of the EUAE process:

Application Derivation Feature Modeling — The subset of the feature model that

contains the selected features for the application.

44

e End User Application Architecture Modeling — The derived application component
architecture for the target in the end user environment.
e Feature-based Integration Test Cases — The Feature-based Integration Test Cases
that apply to the features that comprise the derived application.
From the above artifacts, certain artifacts are designed differently in this research to cover
the unique issues related to end user development for smart spaces: feature modeling, static
modeling, dynamic modeling, component modeling, platform dependent
feature/component modeling, test case format, application derivation feature model and
end user application architecture modeling. The Smart Home EU SPL case study was

created using the EU SPL process.

3.4 EU SPL Meta-model for Smart Spaces
The EU SPL meta-model designed in this research provides a meta-model for
representing end user product lines and derived applications for different EUD
environments for smart spaces. The EU SPL meta-model was used to support the EU SPL
process. The EU SPL meta-model is composed of the following meta-models:
e Platform Independent Product Line (PIPL) meta-model - provides the underlying
representation of EU SPLs independent of any platform (EUD environment).
e Platform Independent Product (PIP) meta-model - provides the underlying
representation of end user applications derived from the PIPL meta-model.
e Platform Specific Product Line (PSPL) meta-model - provides the underlying

representation of EU SPLs for specific EUD environments.

45

e Platform Specific Product (PSP) meta-model - provides the underlying
representation of end user applications derived from the PSPL meta-model.
The EU SPL meta-model also defines the relationships between the meta-classes

representing the different models.

3.5 Proof-of-concept EUSPLP Development Environment
A proof-of-concept End User Software Product Line Prototype (EUSPLP)
development environment was created to support this research. The EUSPLP environment
provides the functionality to (a) enable EU SPL designers to create end user product lines,
and (b) enable end users to derive and deploy applications for their smart spaces. Some of
the unique characteristics of the design and development of the EUSPLP environment are
that: (a) utilizes end user friendly interfaces for product line creation and application
derivation, (b) integrates with the TeC end user environment for application deployment,
(c) supports additional end user environments by developing different EUSPLP adaptors,
(d) remotely accessible to EU SPL designers and end users through the use of web
browsers, and (e) utilizes REST services and JSON format to communicate with remote
TeC end user environments. Below is an overview of each subsystem within EUSPLP:
e EU SPL Development Subsystem
- Allows EU SPL designers to visually create/edit the EU SPL feature model tree
and define feature and feature group relationships.
- Allows EU SPL designers to visually create/edit component architectures and
associate them with product line features. A drag and drop interface was created

for EU SPL designers to create component architectures.

46

Allows EU SPL designers to configure different parameters relating to the
feature component architecture.

Creates PIPL JSON representation of the EU SPL to store the product line
visual representation.

Creates TeC PSPL JSON representation of the EU SPL to store the product line

specification for TeC used for application derivation.

Application Derivation Subsystem

Allows end users to visually select different features from the EU SPL.
Allows end users to visually configure the component parameters of the
selected features.

Allows end users to visually derive applications for their spaces. The
environment derives a TeC PSP model from the TeC PSPL model based on the

end user selections. The TeC PSP model is stored in JSON.

Application Distributor Subsystem

Provides a REST service for distributing the TeC PSP to TeC EUSPLP

Adaptors deployed in different TeC environments.

TeC EUSPLP Adaptor Subsystem

Retrieves the TeC PSP specification and stores it in the TeC environment. The
end user interacts with the TeC environment to complete the deployment of the

application.

47

3.6 Validation

The validation of this research was performed through (a) the Smart Home EU SPL
case study, (b) the EUSPLP environment, (c) the EU SPL Testing framework and (d) the
deployment of derived applications to the TeC Android simulator.

The Smart Home EU SPL case study described in Appendix-A was created
following the EU SPL method described in Chapter 4. The case study includes features
from the domains of home automation, home security, home notifications, home
maintenance, resident comfort and energy conservation. Both End User Product Line
Engineering (EUPLE) and End User Application Engineering (EUAE) were applied to the
case study. EUPLE was applied to develop the EU SPL. EUAE was applied to derive end
user applications for two end user platforms, TeC and Jigsaw.

To validate the EUSPLP environment, the Smart Home EU SPL case study was
designed and implemented using the prototype environment. In addition, several
applications were derived from the Smart Home SPL implementation using the application
derivation interface of the prototype.

The EUSPLP environment was also used to validate the EU SPL meta-model and
meta-model mappings described in Chapter 5. Thus, the PIPL, TeC PSPL and TeC PSP
meta-models defined in the EUSPLP environment were derived from the EU SPL meta-
model. The meta-class mappings required by the application derivation process for the
conversion of a TeC PSPL model to a TeC PSP model, were derived from the EU SPL

meta-model mappings.

48

The EU SPL Testing, EU Application Testing and EU Application Deployment
Testing processes of the EU SPL Testing approach, were used to test TeC SPLs and TeC
applications developed using the EUSPLP environment. In particular, the EU SPL Testing
process was used to validate that the TeC SPLs developed using the EUSPLP environment:
(a) follow the EU SPL consistency rules, and (b) each feature / component architecture
executes as it was designed in the EUSPLP environment. The EU Application Testing
process was used to validate that the TeC applications derived using the EUSPLP
environment: (a) are composed of a valid feature combination, and (b) the application
component architecture executes correctly. The EU Application Deployment Testing
process was used to test that TeC applications were deployed successfully to the smart
space. The TeC Android Simulator created by Shen (Shen, 2014) was used to validate that
derived applications from the EUSPLP environment were deployed successfully to a
distributed Android platform. Thus, different experimental end user applications including
an end user application derived from the Smart Home EU SPL case study were deployed

to the TeC Android Simulator.

3.7 Rationale for Extending EUD Approaches with EU SPLs

There are several issues in developing end user applications for smart spaces using
current EUD approaches that can be addressed by applying the End User Software Product
Line (EU SPL) approach described in this research. Table 3.1 provides a summary of the
EUD issues, and compares how each of the issue is addressed utilizing current EUD

approaches for smart spaces versus using EU SPLSs.

49

Table 3.1 Benefits of Extending EUD Approaches for Smart Spaces with EU SPLs

EU Development Issue

Current EUD Approaches for
Smart Spaces

Utilizing the EU SPL Approach

EU Application
Development Cost

Costs depend on the ability of
each end user to develop EUD
applications versus outsourcing
the development to technical end
users and/or domain experts.

Higher application development
cost, since there is no reuse and
applications from the same
domain have to be re-developed
for different EUD environments
and smart spaces.

Initial cost to design and develop the
EU SPL.

Low EU application development
cost after the EU SPL has been
created, since applications can be
derived from the EU SPL to satisfy
end user requirements for individual
smart spaces.

EU Technical Background

Does not address variability in
end users technical backgrounds
and EUD capabilities.

EUD environments provide a
common user interface for all
end users to design and develop
applications for smart spaces.

Does not address non-technical
end users issues in developing
EU applications.

The EU SPL development
environment provides a different
user interface and workflows for
technical end users and/or domain
experts to create EU SPLs, whereas
it provides a simpler user interface
for end users to derive applications.

Software Reuse

Software reuse is limited. End
users do not develop applications
with a goal to reuse and even if
they do, current EUD
environments do not provide
mechanisms for application
reuse.

End user applications have to be
re-developed for different EUD
environments and smart spaces.

EU SPLs promote reuse by
designing and developing product
line features that are realized by
common, optional, and variant
components and connectors.

End user applications are derived by
selecting EU SPL features for
different EUD environments and
smart spaces.

EU Application
Requirements

Requirements are usually
unplanned and undocumented.

End user requirements are too
personalized to create
applications that can be reused
by other end users for different
EUD environments and smart
spaces.

Requirements are collected and
documented through the EU SPL
requirements elicitation process.

Requirements are used to define the
EU SPL features, feature groups and
feature dependencies. Features are
selected by end users to tailor the EU
application to their needs.

50

End users focus on
implementation without taking
the time to document
requirements.

EU Software Design

Software design of EU
applications is adhoc.

Non-technical end users are not
familiar with software design
methods.

Software design is an integral part of
the EU SPL process.

Technical end users and/or domain
experts design platform independent
and platform specific product line
features, feature dependencies,
feature groups and reusable
components that support different
EUD environments and smart spaces.
Non-technical end users can utilize
software design by selecting features
and reusable components to derive
applications for their smart spaces.

EU Software
Development

EUD is opportunistic.

Difficult for non-technical end
users to develop applications
utilizing existing EUD
environments for smart spaces.

EUD difficulty increases with the
complexity of the EU
application.

Software development is performed
by technical end users and/or domain
experts.

End users can derive complex
applications for their spaces by
selecting and configuring EU SPL
features

EU Application
Complexity

Applications are simplistic in
nature.

Limited user interfaces for
developing complex applications.

Variability in end user
application sophistication based
on the end user technical
background.

Application functionalities are
organized as EU SPL features that
are realized by common, optional,
and variant components and
connectors.

During application derivation,
selected features and their
corresponding component/connector
architecture can be used to compose
a highly complex and configurable
application.

EU Application Testing

Software testing is typically
haphazard, leading to quality
issues in applications developed
by end users.

The EU SPL process provides a
systematic testing approach that can
be used to test EU SPLs, derived
applications, and end user
application deployment in smart
spaces

51

3.8 Summary

This chapter provides a summary of the research approach followed in this
dissertation. The research approach include (a) definition of the EU SPL process, (b)
definition of the EU SPL meta-model, (c) design and development of the EUSPLP
environment, and (d) a testing process to validate the artifacts of the EUSPLP environment.
The Smart Home EU SPL case study was used to validate the different parts of this

research.

52

4 EU SPL PROCESS FOR SMART SPACES

4.1 Introduction

The Software Product Line (SPL) engineering process provides a systematic
approach for developing software product lines. The SPL engineering process consists of
two sub-processes: (a) the product line engineering (a.k.a. domain engineering) process in
which the product line is developed, and (b) the application engineering process in which
software applications are derived from the product line. The product line engineering
process involves software engineers defining the product line features and developing the
product line architecture to support them. The application engineering process involves
application engineers deriving applications from the product line features and SPL
architecture. The SPL engineering process involves requirements gathering, commonality
Ivariability analysis, feature modeling, variable architecture definition, component design
and implementation.

One of the issues with End User Development (EUD) for smart spaces is that there
is variability in the EUD environments and the components / devices supported by different
smart spaces. The SPL engineering process could be used for EUD but the problem is that
the SPL process targets professional engineers and can be complex for end users and
domain experts to use. This chapter presents an End User (EU) SPL process for developing
end user applications for smart spaces. The EU SPL process was defined as part of this
research and extends conventional SPL approaches to support the unique requirements of

EUD development for smart spaces. The EU SPL process provides a lightweight product

53

line approach for technical end users and domain experts to design and develop EU SPLs
that can be used by end users to derive applications for different EUD environments. As
part of the EU SPL process, conventional SPL design artifacts were extended to capture
information about platforms and component / connector architectures in smart spaces. The
Smart Home EU SPL case study was designed and developed using the EU SPL process
described in this chapter.

This chapter is organized as follows. Section 4.2 provides an overview of the EU
SPL process. Section 4.3 describes the end user product line engineering process including:
end user requirements elicitation, analysis modeling, design modeling, implementation and
testing. Section 4.4 describes the end user application engineering process including: end
user application requirements, application derivation, testing and application deployment.
Section 4.5 describes evolution of end user software product lines. Finally, section 4.6

summarizes this chapter.

4.2 End User SPL Process

End user development for smart spaces has several unique requirements that
differentiate it from traditional application development. Some of the differences are that
it targets end users to develop software and that applications can be highly personalized
with different smart space requirements (Dautriche et al., 2013). The End User SPL process
provides a systematic approach for EU SPL designers who are technical end users and
domain experts to design and develop end user software product lines for smart spaces that
end users can use to derive applications for their smart spaces. Figure 4.1 shows the End

User Software Product Line (EU SPL) process. Similar to the conventional SPL

54

Product Line Feature Model,
Product Line Product Line Architecture,

Requirements End Use'r Reusable Components End User
_— Product Line > SPL R ”
Engineering €pository
EU SPL 4
Designers Application
Architecture/
Components
End User Application .
Requirements End User
> Application
Engineering
End Users
Generation

l Application

New Requirements, Defects

End User
Application

Figure 4.1 End User Software Product Line Process

engineering process (Gomaa, 2005a), the EU SPL engineering process consists of two sub-
processes: (a) the End User Product Line Engineering (EUPLE) process in which the end
user software product line is created, and (b) the End User Application Engineering
(EUAE) process in which software applications are derived.

Figure 4.2 shows the different phases of the end user product line engineering
process. In detail, during end user product line engineering, EU SPL designers work with
end users to collect requirements, define the product line scope and create the product line
feature model using the EU SPL requirements elicitation process. The feature model
captures all the features of the product line and the dependency between them. After the
requirements are created, analysis modeling is performed to define: the components needed
to implement each feature, the component interactions needed to realize each feature and

the component relationships. Components are designed to be reusable to avoid duplication.

55

EU SPL Requirements |
Elicitation -

A

v

EU SPL Analysis
Modeling

A\ 4

EU SPL Design
Modeling

A

A

A\ 4

A

EU SPL Implementation

A\ 4

EU SPL Verification &
Testing

Figure 4.2 End User Product Line Engineering Phases

During design modeling, the EU SPL architecture is created, feature dependency resolution
is performed and the component interfaces are defined. During EU SPL implementation
the product line components are coded. Finally, during EU SPL testing test cases are
defined for the EU SPL features and feature combinations. As shown on Figure 4.2 there
is feedback between the different phases of EU Product Line Engineering. In particular,
issues and software defects identified during EU SPL testing are communicated to the
corresponding phases that the issue was introduced. For example if during testing, a
software defect is found that is caused by conflicting features, the issue will be
communicated to the EU Analysis Modeling, EU SPL Design Modeling and EU SPL
Implementation phases. All artifacts created during the EU SPL engineering are stored in

the End User SPL Repository. During end user application engineering, end users select

56

the product line features they need from the EU SPL and derive end user applications for
their smart spaces.

Figure 4.3 shows the different phases of End User (EU) Application Engineering.
In detail, during the End User Application Requirements Selection phase, end users select
the product line features from the EU SPL feature model that they need for their spaces.
During the End User Application Derivation phase, the end user application architecture,
components and test cases are derived from the EU SPL Repository. The EU Application
Testing phase ensures that the test cases are executed successfully against the derived
applications. Finally, during the “End User Application Deployment” phase, the derived
application is deployed to the end user smart space platform. End users communicate
defects and new requirements back to EU SPL designers for future product line releases as

shown in Figure 4.3.

4.3 End User Product Line Engineering (EUPLE)
This section describes the End User Product Line Engineering (EUPLE) process.
The section starts by discussing different EUPLE strategies for EU SPL designers to

develop EU SPLs and then proceeds with describing in detail each of the EUPLE phases.

4.3.1 Forward and Reverse EUPLE Strategy
There are two main EUPLE strategies for creating EU SPLs for smart spaces: (a)

forward engineering, and (b) reverse engineering. In the forward engineering strategy, EU

57

EU Application .
Requirements Selection |~

\ 4

EU Application

Derivation \

EU Application Testing
& Verification

A\ 4

A

EU Application
Deployment

A\ 4

Figure 4.3 End User Application Engineering Phases

SPL designers consider the product line in its entirety. EU SPL designers work with end
users to define the product line requirements.

The requirements are classified as kernel, optional or variant. Kernel requirements
are implemented by all members of the EU SPL. Optional requirements are implemented
by some of the applications derived by the EU SPL. Variant requirements are alternative
requirements that can be selected for EUSPL derived applications. An example of a variant
requirement is to have derived applications support different languages. Based on the
requirements classification: (a) the product line feature model is created, and (b) EUD
environment analysis is performed in which EU SPL designers make the determination,
based on the feature model, if the EU SPL is going to be applicable to a specific EUD
environment, for example Jigsaw or TeC, or if the EU SPL is going to be designed

independent of any specific EUD environments. The EU SPL analysis modeling phase

58

involves the creation of the static model, dynamic model and feature/component model.
Kernel requirements are considered first and then optional and variant requirements are
considered. During design modeling the EU SPL architecture is composed, the design
patterns are selected to resolve inter feature component communication, and the component
interface is designed. In the design phase kernel features are considered first, and then
optional and variant features are added. The implementation phase also starts with the
development of kernel features first, and then optional and variant features are
implemented. Finally during the testing phase, the product line is tested and verified against
the initial requirements.

The reverse engineering approach is used when there are already individual end
user applications in place. EU SPL designers derive the EU SPL requirements from the
developed end user applications, classify the requirements as common, optional and
variant, and create the feature model. The target end user smart space platform
determination is also derived by the environments that the existing end user applications
are created. During analysis modeling the static model, dynamic model and
feature/component model are derived from existing end user applications and
requirements. Similar to the forward engineering approach, kernel requirements are
considered first followed by optional and variant requirements. Depending on the feature
type they realize, components are classified as common, optional or variant.
Feature/component modeling is performed to associate features with components they
depend on, and these dependencies are depicted in a table view. During dynamic modeling,

the product line architecture, design patterns for inter-feature component communication

59

and component interfaces are developed by reverse engineering existing end user
applications. Finally, during feature implementation, test cases can also be derived to some
extent by reverse engineering and reusing test cases of existing EU applications. The
remainder of this chapter will discuss the end user product line engineering from a top

down approach.

4.3.2 EU SPL Requirements Elicitation

EU SPL requirements elicitation involves a set of activities to help define the
overall scope of the product line. EU SPL designers with domain expertise define the
overall road map for the EU SPL. Then EU SPL designers work with end users to collect
and document requirements. Based on product line scoping and requirements, the product
line feature model is defined. This section describes the end user requirement elicitation

process and provides examples for a smart home case study.

4.3.2.1Use Case Modeling for EU SPL

EU SPL designers can document end user requirements using Use Case modeling.
Use Cases describe the interactions between actors which are system external entities and
the smart space to achieve a goal. Typical actors in smart spaces are humans, animals,
sensors, actuators, devices, and external systems that initiate or detect external events that
cause the smart space to react. For example, consider a person entering a smart home.
Depending on whether the person is a home resident or an intruder, the smart home can
react in different ways. In addition to humans, smart spaces heavily depend on sensors,

actuators, devices, and external systems to identify changes to the environment. For

60

instance, a moisture sensor reading might be significant enough to notify a house resident
of a possible flood. Use cases for smart spaces should document all the actors that can
initiate or detect external events in the smart space. Typical use cases in smart spaces come
from the domains of security, automation, space notifications, energy conservation, and
ergonomics.
Use case modeling has been extended by the PLUS method to capture product line
requirements (Gomaa, 2005a). To document a Use Case for smart spaces using the PLUS
method the product line designers need to specify:
e Use Case Name - The name of the use case
e Reuse Category - Specifies weather the use case is kernel, optional or
alternative
e Summary - Provides the summary of the use case
e Actors - The actors of the use case (such as humans, animals, sensors,
actuators, devices, and external systems)
e Dependency - Use cases that this use case depends
e Preconditions - What conditions need to be true for the use case to execute
e Description - Sequence of events between the actor(s) and the system
e Alternatives - Description of alternatives to the mainstream sequence of
events
e Variation Points - Captures places that different functionality can be

performed by different members of the product line

61

e Post Condition - The state of the system after the successful execution of
the use case
e Outstanding Questions - Additional questions for end users
EU SPL designers should start documenting the kernel use cases first and then continue
with the optional and alternative ones. Table 4.1 shows an example of the Lawn Irrigation
Use Case from the Smart Home case study used in this research. The Lawn Irrigation Use

Case is part of the smart space automation domain.

Table 4.1 Example of a Lawn Irrigation use case for a smart space

Use Case Name Lawn Irrigation
Reuse Category Optional
Summary The user start/stops the sprinklers to water

the lawn. The smart space start/stops the
sprinklers and sends outcome notifications

Actors Home Resident
Dependency N/A
Preconditions 1. The sprinklers are off

2. The hose is connected to the sprinklers
and the water is on

Description 1. The home resident presses the start
irrigation button.

2. The smart space starts watering the lawn
and sends notifications that is started

3. The home resident presses the stop
irrigation button

4. The smart space stops watering the lawn
and sends notifications that is stopped

Alternatives N/A

Variation Points N/A

Post Condition The smart space has watered the lawn

Outstanding Questions Is automation desired? What type of
automation is preferred timer of weather
sensing?

62

4.3.2.2 Feature Modeling

Product line features are requirements or characteristics that are provided by one or
more members of the SPL (Gomaa, 2005a). Feature modeling is used to capture feature
commonality / variability and feature dependencies within the EU SPL. In addition, as part
of this research, feature modeling was extended to capture feature dependencies in EUD
environments (platforms). Product line features can be (a) platform independent to indicate
that a feature does not depend on components or functionalities of a specific EUD
environment, or (b) platform specific to indicate that a feature depends on components or

functionalities of a specific EUD environment e.g, TeC, Jigsaw.

Feature models are derived by use case modeling. In a feature model, features can
be organized (a) as common or variable, (b) in feature groups, and (c) as parametrized
features. Common features are features that exist in all products derived by the EU SPL.
Common features may dependent on other common features. Variable features exist only
in some product line members. Variable features can be further categorized as optional or
alternative features. Optional features are noncompulsory features that mainly depend on
other common or variant features. Alternative features are used to describe mutually
exclusive features. Feature groups are used for grouping similar features. Feature groups
can be classified as: (a) exactly-one-of, (b) zero-or-one-of, (c) at-least-one-of and (d) zero-
or-more-of. Exactly-one-of feature groups indicate that only one feature from a feature
group can be present in an end user application derived by the product line. Exactly-one-
of feature groups are mainly used to group alternative features, exactly one feature of the

group must be selected during application derivation. Zero-or-one-of feature groups are

63

also used to group alternative features but the feature selection from the feature group is
optional during application derivation. At-least-one-of feature groups are used to indicate
that at least one feature of the feature group must be selected during application derivation.
Zero-or-more-of feature groups are used to indicate that zero or more features of the feature
group can be selected from the feature group during application derivation. Parameterized
features are features that can be configured during the application deployment time. In the
feature model, features are decorated with the <<platform-specific>> and <<platform-
independent>> UML stereotypes to indicate whether a feature is platform specific or not.
If a feature is not decorated with any of the stereotypes, it implies that the feature is
platform independent. Figure 4.4 shows the feature model for the Smart Home EU SPL
case study developed in this research.

As shown in Figure 4.4 the feature model has one common feature called Smart
Home that all other features and feature groups depend on. There is one optional feature
Smart Irrigation that depends on the Smart Home feature. The Schedule and Smart Weather
Sensing features are also optional and depend on the Smart Irrigation feature. There is one
exactly-one-of feature group called Phone Alert that depends on the Smart Home feature.
The Phone Alert feature group has two mutually exclusive features Audio and Video. The
Audio feature is the default feature and Video is the alternative feature. Default features
are selected by default if no other feature in the feature group is selected. The Video feature
is platform specific.

The feature model also contains two at-least-one-of feature groups: Net

Notification and Home Security. Both of the feature groups depend on the Smart Home

64

<<optional feature>>
Email

<<default feature>>

Text

_’_1

<<at-least-one-of feature

<<platform-specific>>
<<optional feature>>
Energy Conservation

<<optional feature>>
Home Alarm

requires

requires

<<optional feature>>

<<optional feature>>

<<optional feature>>

<<optional feature>>

group>> Power Failure HVAC Filter Light Failure 011
Net Notification
\ [[[
<<zero-or-more-of
feature group>>
Home i
requires
requires r
] <<common feature>> requires
requires 1 Smart Home
requires .
requires
<<zero-or-more-of <<at-least-one-of
feature group>> feature group>>
Water Detector Home Security
<<optional feature>> <<optional feature>> <<default feature>> ional f > | | < | feature>>
Faucet Drip Flood Detector Door Motion Window
<<exactly-one-of

feature group>>
Phone Alert

<<optional feature>>
Smart Irrigation

requires requires

<<platform-specific>>
<<alternative feature>>
Video

<<default feature>>

<<optional feature>>
Audio P

Schedule

<<optional feature>>
Smart Weather Sensing

Figure 4.4 Smart Home Feature Model

common feature. The Net Notification feature group contains two optional features Email
and Text. Text is the default feature. The Home Security feature group contains three
optional features: Door, Motion and Window. Door is the default option of the feature
group. The Smart Home feature model also contains two zero-or-more-of feature groups:
Water Detector and Home Behavior. The Water Detector feature group contains two
optional features Faucet Drip and Flood Detector. The Home Behavior feature group
contains four optional features: Power Failure, HVAC Filter, Light Failure and 911. In

addition the Home Alarm optional feature depends on the Light Failure feature.

65

Furthermore the Energy Conservation optional feature depends on the HVAC Filter. The
Energy Conservation feature also is platform specific.

The Feature group / Feature dependency table is another view that captures the
relationship between product line features and feature groups. The Feature group / Feature
dependency table assists EU SPL designers to ensure consistency between features and
feature groups. As shown on Table 4.2 the table has four columns: (a) Feature Group Name,
(b) Feature Group Category, (c) Feature Name, and (d) Feature Category. The Feature
Group Category and Feature Category need to be compatible for example exactly-one-of
feature group needs to have a set of alternative features since only one can be selected.
Table 4.2 shows the Feature Group / Feature dependency table for the Smart Home case
study. For example as shown on Table 4.2 the Phone Alert exactly-one-of feature group
has two alternative features Audio and Video with the Audio feature being the default

option.

Table 4.2 Feature Group / Feature Dependency Table

Feature Group Feature Group Features in Feature Feature Category

Name Category Group

Phone Alert exactly-one-of Audio default
Video alternative

Home Security at-least-one-of Door default
Motion optional
Window optional

Water Detector zero-or-more-of Flood Detector optional
Faucet Drip optional

Home Behavior zero-or-more-of Light Failure optional
HVAC Filter optional
Power Failure optional
911 optional

Net Notification at-least-one-of Text default
Email optional

66

4.3.3 EU SPL Analysis Modeling
EU SPL Analysis modeling consists of static modeling, component structuring,

dynamic modeling and feature/component modeling.

4.3.3.1 Static Model

The EU SPL static model captures the product line components needed to realize
the use cases defined and feature model. In addition component structuring is performed
to capture the component reuse stereotype, role stereotype and platform dependencies. This
research used UML stereotypes to classify the EU SPL components. To capture component
reuse characteristics, the following reuse stereotypes are used <<kernel>>, <<optional>>,
<<variant>>, <<default>>. This research uses the PLUS method role stereotypes to capture
the application purpose of each component (Gomaa, 2005a). For example a component can
be <<interface>>, <<entity>>, <<control>>, <<application logic>>, <<timer>>, <<system
interface>>, <<coordinator>>, <<device interface>>, <<algorithm>>, <<message-
broker>>, <<input/output device interface>>, etc. Components that are only applicable to
specific end user environments are annotated with the <<platform-specific>> stereotype.

Figure 4.5 shows the static model and the component structuring for the
components used in the Smart Home case study used in this research. For example as
shown on the securityAlertHandler component is annotated with the <<kernel>>
stereotype to capture reuse category and the <<message-broker>> stereotype to capture the
component role category. Similarly the component videoCall is annotated with the

<<optional>> stereotype to capture the reuse category, the <<input / output device

67

<<kernel>>
<<message-broker>>
securityAlertHandler

<<kernel>>
<<message-broker>>
informationalAlertHandler

<<optional>>
<<coordinator>>
alertAudio

<<optional>>
<<input/output device interface>>
phone

<<optional>>
<<coordinator>>
alertVideo

<<platform-specific>>
<<optional>>
<<coordinator>>
cameraManager

<<platform-specific>>
<<optional>>
<<input/output device interface>>
camera

<<optional>>
<<input/output device interface>>
doorMonitor

<<optional>>
<<coordinator>>
breakinDoor

<<optional>>
<<coordinator>>
breakinMotion

<<optional>>
<<input/output device interface>>
motionDetector

<<optional>>
<<coordinator>>
breakinWindow

<<optional>>
<<input/output device interface>>
windowDetector

<<optional>>
<<system-interface>>
email

<<optional>>
<<system-interface>>
text

<<optional>>
<<timer>>
sprinklerTimer

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>
sprinkler

<<optional>>
<<coordinator>>
alarm911

<<optional>>
<<system interface>>
emergencyCall

<<optional>>
<<coordinator>>
alarmHome

<<optional>>
<<input/output device interface>>
smartLight

<<optional>>
<<input/output device interface>>
smartDisplay

<<platform-specific>>
<<optional>>
<<input/output device interface>>
videoCall

<<optional>>
<<input/output device interface>>
floodSensor

<<optional>>
<<input/output device interface>>
power failure sensor

<<optional>>
<<input/output device interface>>
faucetLeakSensor

<<optional>>
<<input/output device interface>>
moistureMonitor

<<optional>>
<<input/output device interface>>
smartHVAC

<<optional>>
<<platform-specific>>
<<coordinator>>
track

<<optional>>
<<coordinator>>
energyControl

<<optional>>
<<input/output device interface>>
smartAudio

Figure 4.5 Smart Home Case Study Static Model

interface>> stereotype to capture the role category and the <<platform-specific>>
stereotype to indicate that this component only applies to specific platforms.

The Platform Specific Feature / Component relationship table captures the
relationship between platform specific features and platform specific components. As
shown in Table 4.3 the platform specific feature / component relationship table has 4
columns: (a) Feature Name, (b) Platform Name, (c) Component Name and (d) Platform
Specific Name. The Feature Name column captures the name of the feature. The Platform
Name column captures the end user platform(s) that the feature applies. The Component

Name column captures the component name as it appears on the static model. The Platform

68

Table 4.3 Platform Specific Feature / Component relationship table
Feature Platform Name Component Name Platform Specific Name
Name
Energy Conservation Team Computing track tecTrack
Video Team Computing videoCall tecVideoCall
cameraManager tecCameraManager
camera tecCamera

Specific Name column captures the actual component name in the specific platform. For
example the Energy Conservation feature applies only to the TeC platform. The track
component of the Energy Conservation feature would have to be mapped to the tecTrack

component of Team computing during the end user application deployment process.

4.3.3.2 Dynamic Modeling

EU SPL designers use dynamic modeling to capture the object interactions needed
to satisfy EU SPL features. This research used UML sequence diagrams to model object
interactions. Sequence diagrams model the message interaction of objects based on a time
sequence (Rumbaugh et al., 2004). Sequence diagrams should be developed for all features
defined in the feature model of the EU SPL.

Figure 4.6 shows the sequence diagram for the Video feature that is part of the
Phone Alert feature group. The sequence interaction starts with the :alertVideo object that
after initialization [init=true] sends a message to the subscribe input of the
:securityAlertHandler object to receive security alert notifications. When a security alert is

detected by the :securityAlertHandler [sendAlert=true] it sends the security alert message

69

<<kernel>> <<optional>> <<optional>> <<optional>> <<optional>>
:securityAlertHandler :alertVideo :videoCall :cameraManager :camera

T T T T T
I

|
D subscribe [init=true]]

|
|
|
|
|
|
D [sendAlert=true] notify

[videoCall=true] startVideoStream|

[startVideo=true] startStream

stream_in stream_out

[endCall=true] stopVideoStream

[stopVideo=true] stopStream

-1

|
|
|
|
|
—T[videuca":true] makeVideoCall
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4.6 Sequence Diagram for the Video Feature

to the notify input event of the :alertVideo object. Upon receiving the security alert message
the :alertVideo object evaluates the [videoCall=true] condition and if true sends a message
to the makeVideoCall input of the :videoCall object. The :videoCall object represents a
smart phone device. When the makeVideoCall input is called a video call is initiated on
the smart phone device and the [videoCall=true] condition is evaluated and if true the
:videoCall object sends a message to the startVideoStream input of :cameraManager in
order to request a video stream. Upon receiving the message the :cameraManager evaluates
the [startVideo=true] condition and if true it sends a message to the startStream input of
the :camera object with the :videoCall object information. The camera will send the video
stream stream_out to the :videoCall object stream_in input in order for the video to be
displayed on the device. Upon the end of the phone call the [endCall=true] condition of the
:videoCall object evaluates to true and the :videoCall object sends a message to the

stopVideoStream input of the :cameraManager object. The stopVideoStream will evaluate

70

the [stopVideo=true] condition and if true the :cameraManager object will send a message
to the stopStream input of the :camera object to indicate that the :camera object can stop
sending the video stream to the :videoAlert object.

Similarly, Figure 4.7 shows the sequence diagram for the Energy Conservation
feature from the Smart Home EU SPL case study. The goal of the feature is to conserve
energy when the house residents are away by adjusting the home temperature. The
temperature will be adjusted back to normal when residents return home. The sequence
diagram starts with the :track object that sends a message to the econ input of the
-energyControl object when the house residents are away [away=true]. When the econ
input is received the [adjustHvacLevel=true] and [energyLevelNotification=true]
conditions are evaluated to true. The :energyControl object sends a message to the
setHvacLevel input of the :smartHVAC object with the desired temperature settings.
Furthermore the :energyControl objects sends a message to the receiveAlert input of the
-informationAlertHandler object with the energy level changes. When the residents are
back home the :track object [home=true] condition is evaluated to true, which causes the
‘track object to send a message to the norm input of the :energyControl object. When the
norm input is received the [adjustHvacLevel=true] and [energyLevelNotification=true]
conditions are evaluated to true. The :energyControl object sends a message to the

setHvacLevel input of the :smartHVAC object to adjust temperature settings back to

71

itrack :energyControl :smartHVAC :informationalAlertHandler

<<optional>> <<optional>> ‘ <<optional>> ‘ <<kernel>>

[away=true] econ

[adjustHvacLevel=true] setHvacLevel

[energyLevelNotification=true]

|
|
| receiveAlert
T
. . L]
| |
| |
| |

[home=true] norm

[adjustHvacLevel=true] setHvaclevel

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- I
[energyLevelNotification=true] : receiveAlert
T
T !
| | |
| | |
| | |

Figure 4.7 SequenAce Diagram for the Energy Conservation Feature

normal. In addition, the :energyControl objects sends a message to the receiveAlert input

of the :informationAlertHandler object with the energy level changes.

4.3.3.3 Feature / Component Dependency Table

The Feature / Component table describes in detail the EU SPL features and the
components needed to support the implementation of each of the features. The purpose of
the table is for EU SPL designers to ensure consistency between features and the
components that support them. For example a common feature cannot be implemented by
optional components. The Feature/Component table contains the following columns:

° Feature Name — The name of the Feature

72

o Feature Group — The name of the Feature Group that the Feature belongs

o Feature Category — The type of feature (common, optional, etc.)

o Component Name — The components names that implement each feature

o Component Reuse Category — The component type (kernel, optional, etc.)

o Component Parameter — Component Parameters needed by the Feature
Table 4.4 shows the Feature / Component Dependency Table that was developed for the
Smart Home EU SPL Case Study used in this research. For example the common feature
Smart Home is implemented by the securityAlertHandler and the
informational AlertHandler component that are kernel. Similarly the alternative Video
feature is implemented by the alertVideo, videoCall, cameraManager and camera optional
components. Since the Video feature depends on the Smart Home feature, the Video feature
will also be supported by the securityAlertHandler and informational AlertHandler kernel
components. Finally, the optional Energy Conservation feature is implemented by the
optional track and energyControl components. The component parameter residentIDs of
the track component indicate the smart home residents that need to be tracked by the

component.

4.3.4 EU SPL Design Modeling

While EU SPL Analysis modeling focus on the analysis of the problem domain,
EU SPL Design modeling maps the EU SPL Analysis model to the solution domain
(Gomaa, 2016). During EU SPL Design modeling the component inter-feature

communication, component relationships and component interface models are defined.

73

Table 4.4 Feature / Component Dependency Table for the Smart Home EU SPL Case Study

Feature Feature Feature Component Name Component Component
Name Group Category Reuse Parameter
Name Category

Smart Home common securityAlertHandler kernel
informational AlertHandler | kernel
Audio Phone Alert | default alertAudio optional
phone optional
Video Phone Alert | alternative alertVideo optional
videoCall optional
cameraManager optional
camera optional
Door Home default breaklnDoor optional
Security doorMonitor optional
Motion Home optional breakinMotion optional
Security motionDetector optional
Window Home optional breakInWindow optional
Security windowDetector optional
Smart optional sprinkler optional
Irrigation sprinklerControl optional
Schedule optional schedule optional timetorun :
String
Smart Weather optional moistMonitor optional
Sensing
Email Net optional email optional
Notification
Text Net default text optional
Notification
Flood Detector | Water optional floodSensor optional
Detector
Faucet Drip Water optional faucetLeakSensor optional
Detector
Home Alarm Home optional alarmHome optional
Behavior smartAudio optional
smartDisplay optional
911 Home optional alarm911 optional
Behavior emergencyCall optional
Light Failure Home optional smartLight optional
Behavior
HVAC Filter Home optional smartHVAC optional
Behavior
Power Failure Home optional powerFailureSensor optional
Behavior
Energy Home optional track optional residentIDs:
Conservation Behavior energyControl optional List<String>

4.3.4.1 Inter-Feature Component Communication

As EU SPL designers define features and the components that implement each

feature, they might determine situations where components of one feature need to

74

communicate with components of other features to accomplish a task. One solution to this
problem is to refactor the feature model to support this. Refactoring will work for smaller
feature models but as the model grows that might not be a viable option. This research
utilized the subscription/notification (Gomaa, 2016) design pattern for inter feature
component communication as an alternative option to feature refactoring. The idea is that
instead of components sending messages directly to each other, message broker
components are provided as intermediaries. Components can send messages to the message
broker, which then notifies components that have registered with the message broker to
receive messages. Some benefits of the public / subscribe design pattern for developing
EU SPLs are (a) promotes loose coupling between sender and receiver components and (b)
better scalability since newly created components can register with existing message
brokers to send and receive messages. The inter-feature component communication table
captures all product line components that send and receive messages through message

broker components. Table 4.5 shows the inter-feature component communication table

Table 4.5 Inter-Feature Component Communication Table for the Smart Home Case Study
Message Broker Subscribed Components Message Producer Components
securityAlertHandler alertAudio breakinDoor

alertVideo breakinMotion

alarmHome breakInWindow

alarm911

email

text

informational AlertHandler email schedule

text sprinklerControl
smartLight
smartHVAC
powerFailureSensor
energyControl
floodSensor
faucetlL eakSensor

75

that was created to support the Smart Home case study. There are following columns in the
table:

e Message Broker — The name of the message broker component

e Subscribed Components — The components subscribed to receive messages

e Message Producer Components — The components producing the messages

For example as shown on Table 4.5 the securityAlertHandler is a message broker
component. The components alertAudio, alertVideo, alarmHome, alarm911, email, text are
subscribed and receive messages from the securityAlertHandler. The breakinDoor,
breakInMotion, breakinWindow components send messages to the securityAlertHandler.
As shown on the second row of Table 4.5 the text component is also subscribed and receive
messages from the informational AlertHandler to support a different use case.

Figure 4.8 shows an example of component communication using
subscription/notification from the Smart Home EU SPL case study. In detail, when the
alertAudio component of the Audio feature initializes, it sends a message with its id to the
securityAlertHandler message broker component. Components that have subscribed to
receive messages from a message broker are shown in the Subscribed Components column
in the inter-feature component communication table. When there is a break-in activity, the
breakInDoor component of the Door feature sends alerts to the securityAlertHandler. When

there is a message available, the securityAlertHandler sends it to the alertVideo component.

76

<<optional>> <<kernel>> <<optional>>
:breakinDoor :securityAlertHandler :alertAudio

I I
init |

|
D‘ subscribe [startup:MD

| |
| |
| |
| |
| |
| |
] |

D [activity=true] receiveAlert :
|

|

|

|

|

|

|

|
|
|
|
| sendAlert
|
|
|
|

[messagelnQueue=true] notify |

| |
Figure 4.8 Subscribe and Receive Messages to a Message Broker

4.3.4.2 Component Relationships and Interface Design

UML component diagrams can be used by EU SPL designers to capture (a)
components available in a smart home, (b) component relationships, and (c) provided and
required interfaces needed for components to communicate. In an end user environment,
components communicate with other components through output/input ports. Figure 4.9
shows the component diagram of the Home Alarm Feature. The component diagram is
composed of the securityAlertHandler, alarmHome, smartAudio, smartDisplay and the
smartLight components.

The components are decorated with UML stereotypes to indicate whether a
component is kernel, optional, or variant. For example the securityAlertHandler is a
<<kernel>> component while alarmHome, smartAudio, smartDisplay and smartLight are

<<optional>> components. Furthermore additional stereotypes are used to capture the role

77

<<optional>> 1.*
<<input/output device
interface>>
smartAudio

receiveAlert
1

(] sendAlert notify
<<kernel>> <<optional>>
<<me§sage-broker>> subscribe init <<coordinator>>
securityAlertHandler alarmHome

<<optional>> 1 *
<<input/output device
interface>>
smartDispla

<<optional>> 1.*
<<input/output device
interface>>
smartLight

replace

setLightLevel

Figure 4.9 Component Diagram for the Home Alarm Feature

of each component. For example securityAlertHandler is a <<message-broker>>
component, alarmHome is a <<coordinator>> component while smartAudio, smartDisplay
and smartLight are input/output device interface components. Components may also have
a multiplicity indicator to indicate the number of component instances in a smart space.
For example the smartAudio, smartDisplay and smartLight components have 1...*
multiplicity that indicates that there are one or more smartLight, smartAudio and
smartDisplay component instance in the smart space. The connections between
components also indicate the required and provided interfaces between components.
Table 4.6 shows details about the components input and output messages. For
example the init output of the alarmHome component outputs the clientlD parameter to
indicate the component identification. The securityAlertHandler has a subscribe input and
expects as input the clientlD parameter to indicate the component that is subscribing to
receive messages. Similarly the securityAlertHandler has a sendAlert output that outputs a
message parameter to indicate the alert message. As shown on Figure 4.9 the sendAlert

output of the securityAlertHandler is connected to the notify input of the alarmHome. The

78

Table 4.6 Component Input / Output for the Home Alarm Feature

Component Name

Component Input

Component Output

Component Output
Triggering Condition

securityAlertHandler

receiveAlert(in message)
subscribe(in clientID)

sendAlert(out message)

messagelnQueue=true

alarmHome notify(in message) init(out clientID) startup=true
alarm(out message) message=true

smartAudio play(in message)

smartDisplay show(in message)

smartLight flash() replace(out lightID) light=out

setLightLevel(in lightLevel)

notify input expects as a parameter the message to distribute to the appropriate devices.
Parameters sent from outputs to inputs can be ignored by the inputs if the parameters are
not relevant. For instance the alarm output of the alarmHome component outputs a message
parameter. The play input of the smartAudio and the show input of the smartDisplay use
the message parameter to play the message over the house speakers or to display the
message to the house monitors. Figure 4.10 shows the component diagram of the Video
feature. The diagram contains the components: securityAlertHandler, alertVideo,
videoCall, cameraManager and camera that implement the Video feature. The components
videoCall, cameraManager and camera are annotated with the <<platform-specific>>
stereotype. The <<platform-specific>> stereotype indicates that the components are
specific to a specific EUD environment for smart spaces. The Platform Specific Feature
table contains additional details about the EUD environment and the applicable

components.

79

startVideoStream

=
L

<<platform-specific>> 1.* |startStream startVideo »
<<optional>> <<platform-specific>>
: P . <<optional>> stopVideoStream
<<input/output device .) [
interface>> stopStream stopVideo <<coordinator>>
camera cameraManager
1
Lr stream_out
receiveAlert notify stream_in endCall
<<kernel>> <<optional>> <<platform-specific>>
<<message-broker>> <<coordinator>> videoCall makeVideoCall <<optional>>
securityAlertHandler alertVideo <<input/output device

interface>>
videoCall

Figure 4.10 Component Diagram for the Video Feature

videoCall

4.3.5 EU SPL Implementation
EU SPL implementation is the process for implementing the code of the product
line components. The EUSPLP development environment created by this research can be

used to create EU SPLs. The EUSPLP is described in detail in Chapter 6.

4.3.6 EU SPL Testing
This research developed an EU SPL testing framework for testing end user product

lines. The EU SPL testing framework is described in detail in Chapter 7.

4.4 End User Application Engineering (EUAE)

End User Application Engineering (EUAE) is the process to derive end user
applications from the End User SPL and deploy end user applications to end user smart
spaces. The EUAE process can be broken down to the (a) End User Application
Requirements Selection, (b) End User Application Derivation, (c) End User Application

Testing, and (d) End User Application Deployment phases.

80

4.4.1 End User Application Requirements Selection

During the End User Application Requirements Selection phase end users specify
the required EU SPL features for their spaces. The selected features need to be compatible
with other features selected from the EU SPL. For instance an end user cannot select two
alternative features or select zero features form an at-least-one-of feature group. The
outcome of the EU application requirements process is a derived feature model that
captures the features that end users selected. Figure 4.11 shows an example of features that
an end user selected from the Smart Home case study used in this research.

As shown in Figure 4.11 the following features were selected: Smart Home, Audio,
Flood detector, Door, Smart Irrigation, Schedule, Text, HVAC Filter, Light Failure and
Home Alarm. The Smart Home is a common feature that all features depend on. The Audio
feature was selected as an example of a feature selected from an exactly-one-of feature
group (Phone Alert). The text feature was selected as example of a feature selected from
an at-least-one-of feature group (Net Notification). Similarly, the door feature was selected
from the at-least-one-of Home Security feature group. The HVAC Filter and Light Failure
features are selected from the zero-or-more-of Home Behavior feature group. The Flood
Detector is another zero-or-more-of feature selected from the Water Detector feature
group. The Smart Irrigation feature is an example of an optional feature. Finally the Home
Alert and Schedule are examples of optional features that depend on other optional
features. The features selected are compatible with each other. For instance there are no

mutually exclusive features selected etc.

81

<<default feature>> <<optional feature>>
Text Home Alarm

requires

<<at-least-one-of
feature group>>
Net Notification

<<optional feature>>| |<<optional feature>>
HVAC Filter Light Failure

<<zero-or-more-of
feature group>>
Home Behavior
requires
requires q l
i <<common feature>> requires
requires Smart Home
requires requires
<<at-least-one-of <f<zero-or-more-of
feature group>> VevatureDgroup»
Home Security ater Detector
<<default feature>> <<optional feature>>
etautt feature Flood Detector
Door
<<exactly-one-of
feature group>> <<optional feature>>
Phone Alert Smart Irrigation
require%
<<default feature>> <<optional feature>>
Audio Schedule

Figure 4.11 Example of an Instance of the Smart Home Feature Model based on End User Requirements

4.4.2 End User Application Derivation

The application derivation phase is responsible for deriving the end user application
based on the end user feature selections. In detail, the components, component connectors,
and component configuration parameters that realize the selected features are derived from
the EU SPL Repository. Then there is a component mapping process that maps the
components derived from the EU SPL Repository to the components of the target EUD
environment to create the application architecture. The component mappings from the SPL

to the EUD environment are described in detail in Chapter 5.

82

Table 4.7 shows the application mapping for the Smart Home derived application to the

Table 4.7 Example of Derived End User Application Mapped to Jigsaw

ann=dnyrels (U212 1N0o)IuI (o8essaw ur)Anou 1Xa1 1X3L
ANI=)12] VIAWI] pAINpatos (28essaw 1no)uIa[yawn Jaw 1opyuLds a[npayas
(oFessol 1n0) jjo uny uonedLL]
(a8essow 1n0) uo uIny 1a1eMm [onuoIapuLids HBWS
1o dors uonegIL]
1918 MBS 1opyuLds uews
aNI=2InsIoW (uoneao| no)pooyy I0SUASPOO[] | 1019313(] JAlEAN | 1019219(] POO[q
(odAT201A0p
ann=aaouw N0 * (J[AILAIP 1NO)IUIWAAOUL uo IONUOI0OP | AJLINDAS WO loo(q
ann=uonow (o8essour 1no)Ayranoe
ann=dnuels J)BALIE (adA] 201A2p Ul “(I[221AP UL)UOIOE I00(Jupyealq | AILINDaS AWOH Jloo(]
(oFessow ur “raquinu” auoyd un)jeDeyew auoyd M3y auoy opny
ann=oFessoll | (adessaul jno ‘Taquinu auoyd jnoj[jes
ann=dnyels (nua1pd Mot (a8essow un)kjnou oIpnyLae M2]Y duoy olpny
(o8essaw un)moys KejdsiqUews | 101ABYSg SWOH | WLE[Y SWOH
(a8essaw un)Aeyd OIpNYLEBWS | JOIARYSY JWOH | WUE[Y SWOH
ANI=05erSSIW (o8essow no)uee
ann=dnuers ((Iua21[2 Mo)yut (agessaw unAnou SWOHUWLIE[E | JOIARYDY JWOH | WUE[Y SWOH
ann=13)[1,Jooe|dor (12eAY 012 1y aoe[dax DVAHMRWS | Jo1ARyag 2Wol | 12)[1I] DVAH
os[eJ=1ya1]| (anysi mo)aosejdax yseyy JSITURWS | JOIARYIE QWOH | am[ie WY31I]

ann=snandupaFessatu

(o5essow 1no) Ay puss

(dpuarpo urjaguosgns
(9B essou UI)IIA[VAAIR0AI

10 pURH [W [EUOTBULIO UL

JWOH Hes

ann=ananduagessa

(a8essouw o)Ay puss

(BRI UNaquUdsqns
(oSessou un)ua|yaAIddax

J2[pUBHMAVAILINDAS

SWIOH Jews

uonIpuo)) FuLRIGLLL Inding
wauodwo) 4Sd MVSOIr

nding yuauodwo) 4Sd MVSOIL

ndug uﬂuﬁc-—acu dSd MAVSOIr

QWEN
Jupuodwo) 4Sd MVSHIL

weN awmeN
dnoan dameay ERLILET |

83

Jigsaw EUD environment based on the features selected in Figure 4.11. The table shows

all the components, inputs / outputs and triggering conditions used to react to smart space

events. Figure 4.12 visualizes the derived end user application architecture as it would be

\Audio Feature

<<optional>>

<<input/output device

interface>>
phone

<<optional>>

... alertAudio
init———

makeCall

<<coordinator>> notify

call

Door Feature

il
<<optional>> activate
<<input/output device
interface>> ‘ ‘
doorMonitor

on

action

<<optional>>
<<coordinator>>
breakinDoor

| [movement

activity ‘

<<optional>>
<<system interface>>
text

notify

notify ‘

init

init

Text Feature

Smart Home Feature

Home Alarm Feature

alarm
[[ptay

init

H <<input/output device

1 *
<<optional>> -

interface>>
smartAudio

<<optional>>

1.*

C

alarmHome <<input/output device
interface>>
alarm smartDisplay
notify show |
alarm
Light Failure Feature

replace filter

<<optional>>

smartHVAC

<<input/output device interface>>

|
RN

|

|

HVAC Filter Feature

i
| | Flood Detector Feature

EU SPL Feature Color Codes

T

‘ Text

Audio

turn

on

turn
off

<<optional>>
<<coordinator>>
sprinklerControl

ot —

T

water

| turn
[on

startWater stopWater

<<optional>>
<<input/output device
interface>>
sprinkler

Smart Irrigation Feature

Schedule Feature

Figure 4.12 Example of Smart Home End User Application Architecture for Jigsaw

84

displayed to the Jigsaw editor. As shown in Figure 4.12, components are represented as

Similarly, Table 4.8 shows the

Jigsaw pieces put together to form application logic.

Table 4.8 Example of Derived End User Application Mapped to Team Computing

ann=dnyies

(dnuatjd moyut

(oSessaw un)&jnou

X9

XoL

AMN=}2]WIAWI] PA[NPAYIS

(a8essow 1no)a yawn

hUE_.—LhU_v_E_»_Qw

anpayos

(25essaw Jno) Jjo uim

(a8essow Jno) uo wny RITINY [onuoIapuLIds uoneF L] e
1 dois

19 A\ MIR)S 1pjuuds uonedL] pewg
ann=aImsiow (uo1BI0[INO)POO[] 10SUASPOO[] | 103001a(] JJBAL | 1010219(] OO
ann=oaow | (2dK1231A9p N0 * (J[PI1AIP INO)IUSWAAOW uo I0JIUOAI0Op | AJLINJ2S awoH 100(]

ann=uonou (o3essowr Jno)Kyianoe
ann=dnues JeALOR (adA 1 201A9p U1 1291A2p UTJUOIOR Io0uUPEAIq AILUM29S dWwoH 100(]
(oFessow u1 “roquinu” ouoyd ur)fe)ayew auoyd LAy auotJ olpny

ann=ofessow (oFessow no “Taquinu” auoyd no)jes
ann=dnues (gpusarpd mo)yur (oFessow un)Anou orpnyuafe LAy auotJ olpny
(oBessow ur)moys Kedsiquews | 1orAeydg oWoH e[y dwoH
(aessaw un)kerd OIpNY/BWS | IOIARYDE] QWO WLE[Y WO

AMNI=23essall (aSessaw no)uLrefe
ann=dmues (apuatjo mo)ut (aFessaw unAjnou QWOHUWIR[E | IOIARYDE] QWO We|y AWop|
anx=1a)1jaoedal (groeay no)a) iy aoefdar DVAHMEWS | IOIARYSE 2WOH 121 DVAH
as[e]=1y31| (apysi inojaoedar ysep} JYSITUEWS | IOIARYDE SWOH aIn[ie 1yar|

ann=anan)ujafessau

(aBessaul 1no)Ia[Vpuas

(CIpuarpd urjaquasqns
(aBessaw u1)1I9[yaAI202I

J9[PUBHIA[Y [EUONBULIO) U

QWO WEWS

(CIpuarpd urjaquasqns

onn=ananyuagessaw (afessaw 1no)ud[ypuas (oFessow u1)1I9[YoA10021 I[PUBHMR[VAILINoas JWOH WEWS
uonipuo’)

Sunpdday mdmmp meN aurey urey

yusuodwio)) 4Sd DAL mdng wauodwo) Jsd DAL mduy yusuodwo)) 4sd DAL yauodwo) 4sd DAL dnoan aanjeay anjeay

85

application mapping for Smart Home derived application to the Team Computing EUD

environment based on the feature selections shown in Figure 4.11. Figure 4.13 visualizes

activity—‘

|
! |
! |
! I
! I
! |
! - - |
! <goptional>> activate on <<optional>> 1. |
} Jii (] <<input/output device interface>> |
! I
! I
! |
! |
! I
! I

L

breakinDoor doorMonitor

action LHmovement

| Audio Feature |

receiveAlert

I I
I
| ; notify <<default>> '
| <<kernel>> - ; <<optional>> call makecall_| <<input/output device | !
| <<message-broker>> ribe nit c di [>] interface>> !
! securityAlertHandler ! alertAudio phone !
I ! L. _—_—_—_—_—¢ _
I Co LT T T T T -l
! ! ! HoFmetAIarm <<optional>> 1-* | |
! ! ! eature <<input/output device | |
| 1 b interface>> |
! ! | \ootify smartAudio 1
<<optional>> = i
i 1 | P N <<optional>> 1.*| |
	lind <<coordinator>> show .)		
		<<input/output device	
	i alarmHome N		
	interface>>		
! ! } smartDisplay			
	o o N -		
: : T et e N T .			
	i	i Light Failure Feature	
	nop -		}
! ! ! <<optional>> ! i <<optional>> 1.*			
! ! ini <<system-interface>> ! 1 <<input/output device			
! ;	text ! ! interface>> !		
} sendpbert L _ ! ! smartLight !			
' <<kernel>> ' 1 replace H			
! <<message-broker>> peribe - 1			
! infoAlertHandler 1"			
= I			
I 1"			
[y > /A \\\—— <<optional>> x			
. S			
} <<input/output device interface>>			
! sprinkler 1			
} startWater stopWater }			
T [
'Flood Detector ! THVAC Filter !	I		
Feature	I Feature Jace filt ! . U)		
! flood . replace filter	! ! Schedule Feature		
i _		turn on turn off	1 i
! <<optional>> 1.%] 1	<<optional>> 1 x	1	ional> ! - N i
	<<input/outputdevice	i	<<input/outputdevice
} interface>> } } interface>> } } " KlerG ! [; ; 1	<'<t	mer'>> 1	
1 flood-sensor ! 1 smartHVAC ! ! sprinklerContro ! ! sprinklerTimer !			
		—	
[e 1 L Smart Irrigation Feature | e I

Figure 4.13 Example of Smart Home End User Application Architecture for TeC

the derived application architecture as it would be displayed to the Team Computing
application editor.
4.4.3 End User Application Testing

End User (EU) Application is described in detail in Chapter 7 as part of the EU SPL

testing framework.

86

4.4.4 End User Application Deployment

End user application deployment involves end users deploying the derived
applications to their smart spaces. During application deployment, EUD environments map
the derived application to a set of devices available in the smart space. EUD environments
communicate with devices deployed in the smart space and provide them with application
instructions. It is the responsibility of the EUD environment to inform the end user if
devices that interface with components are not available during application deployment.
After derived applications are successfully deployed to the smart space, end users can use
the feature-based integration test cases used for EU application testing to test the successful

deployment of the application, as described in Chapter 7.

4.5 End User SPL Evolution

As end users derive and deploy applications to their smart spaces they might
identify product line defects and new product line requirements that want for their spaces.
End users communicate the new requirements and product line defects to EU SPL
designers. Similarly EU SPL designers might have new requirements and product line
defects identified by internal testing. All defects and new requirements are added to the EU
SPL repository. EU SPL designers prioritize, implement and test the new requirements
and/or defects using the EUPLE process shown in Figure 4.2 and Figure 4.3. EU SPL

updates can be communicated back to end users.

87

4.6 Summary

This chapter has described the end user software product line process that is used
by EU SPL designers to create end user product lines and end users to derive applications
for their spaces. The end user product line process consist of two phases: (a) end user
product line engineering, and (b) end user application derivation. During end user product
line engineering, end users perform product line requirements elicitation, analysis, design,
implementation and testing to develop the EU SPL. End user application engineering
involves end users selecting the smart space feature requirements they need, application
derivation, application testing, and application deployment to the smart space. This chapter
described the EU SPL process by providing examples for each phase from the Smart Home

case study developed for this research.

88

5 END USER SOFTWARE PRODUCT LINE META-MODEL FOR
SMART SPACES

5.1 Introduction

End User Development (EUD) environments such as Team Computing (TeC)
(Sousa et al., 2010), and Jigsaw (Humble et al., 2003) aim to enable end users to create and
deploy software applications for their smart spaces. EUD environments connect software
applications and devices deployed in the smart space while providing friendly user
interfaces for end users to create software applications. End User Software Product Lines
(EU SPLs) extend EUD environments with product line support to promote reuse and
software application portability. EU SPLs for smart spaces provide a lightweight approach
for SPL development while addressing the dynamic nature of these environments.

This chapter describes a meta-modeling approach for developing EU SPLs for
smart spaces. The meta-modeling approach provides platform independent and platform
specific EU SPL modeling support. A platform independent model is an end user
application model that is independent of the platform (EUD environment e.g., Jigsaw/TeC)
and the hardware/Operating System (OS). Platform independent modeling involves EU
SPL designers creating platform independent models that can be tailored to different EUD
environments through an application derivation process. A platform specific model is an
end user application model that is specific to an EUD environment e.g., Jigsaw/TeC but
independent of the hardware/OS platform. Platform specific modeling involves EU SPL
designers creating platform specific models that are bound to specific EUD environments

e.g., Jigsaw/TeC. Platform specific models provide an additional capability, since they

89

have access to platform specific functionality that is not available to the platform
independent models.

In detail, this chapter presents a meta-model as the basis for developing an EU SPL
development environment for creating EU SPLs and deriving End User (EU) applications.
The meta-model is composed of platform independent and platform specific meta-models.
This chapter describes in detail both parts of the meta-model and discusses the relationships
and mappings between them. This chapter is organized as follows. Section 5.2 describes
the overall EU SPL meta-modeling approach for smart environments. Section 5.3 presents
the platform specific meta-models for the TeC and Jigsaw EUD environments. Section 5.4
introduces the platform independent meta-model. Section 5.5 discusses the mapping of the
platform independent meta-model to the TeC and Jigsaw platform specific meta-models.

Finally, section 5.6 summarizes this chapter.

5.2 Overview of the EU SPL Meta-model for Smart Spaces

There are several common characteristics across EUD environments for smart
spaces. For example all event driven EUD environments consist of components that are
abstractions of devices, sensors, actuators, application, services etc. and connections
between the components to create application logic. There is also variability between EUD
environments. For example some end user environments provide specific functionality to
handle user-context, location, and temporal relationships while others do not. To address
the commonality and variability of EUD environments and provide a common approach
for the development of end user applications for smart spaces, the EU SPL meta-model is

designed.

90

Figure 5.1 shows the EU SPL meta-model for smart spaces. The meta-model
consists of platform independent and platform specific meta-models. The platform
independent meta-model is composed of the Platform Independent Product Line (PIPL)
and the Platform Independent Product (PIP) meta-models. The PIPL meta-model captures
the underlying representation of EU SPLs in terms of meta-classes and relationships
independent of the platform (EUD environment). The meta-model contains representations
of EU SPL features, feature dependencies, and the component architecture that realizes
each feature. The component architecture describes the smart space components,
connectors and other artefacts that are needed for the feature implementation. The PIP
meta-model provides the underlying representation of end user applications in terms of
meta-classes and relationships derived from the PIPL meta-model. To derive PIP models
end users select product line features from the PIPL model. The components and their
relationships that realize the selected features are used to derive the PIP model. Both PIPL
and PIP models are platform independent models that can be mapped to different EUD
environments e.g., Jigsaw/TeC for smart spaces.

The platform specific meta-model consists of the Platform Specific Product Line
(PSPL) and the Platform Specific Product (PSP) meta-models. The PSPL meta-model
captures the underlying representation of EU SPLs in terms of meta-classes and
relationships specific to platform (EUD environment). The meta-model contains

representations of EU SPL features, feature dependencies, and the component architecture

91

Platform Inder‘)endent 1 PIPL to PIP Platform Independent
Product Line L Product
(PIPL) " (PIP)
1 1
PIPL PIP
to to
PSPL PSP
1.* 1.*
Platform Sp.ecmc 1 PSPL to PSP Platform Specific
Product Line v Product
(PSPL) " (PSP)
Figure 5.1 End User SPL Meta-model

that realizes each feature. The PSPL meta-model is used for creating EU SPL models for
specific platforms. PSPL models are derived from PIPL models through meta-class
mapping discussed later in this chapter. The PSP meta-model captures the underlying
representation of end user application in terms of meta-classes and relationships derived
from the PSPL meta-model. As shown in Figure 5.1, PSP models can be derived from PIP
models in addition to PSPL models.

There is a one-to-many relationship between the platform independent and the
platform specific models. For instance, multiple PSPL models for different platforms can
be derived from the PIPL model. EU SPL designers can model platform independent EU
SPLs using the PIPL meta-model that can be map to PSPL models for different platforms.
Similar multiple PSP models can be derived from the PIP model. End users can derive PIP

models that can be mapped to PSP models for different platforms.

92

The PIPL to PIP and PSPL to PSP model relationships are one-to-many. For
instance, multiple PIP models can be derived from one PIPL model. Similar multiple PSP
models can be derived from one PSPL model. PSPL and PSP models are bound to a specific
EUD platform. For example a PSPL model designed for TeC can derive PSP models that
can only be deployed to TeC smart spaces. The following sections of this chapter describe

in detail the platform specific and platform independent meta-models.

5.3 Platform Specific Meta-models

This section describes the platform specific meta-models, for the Team Computing
(TeC) and Jigsaw end user environments, before describing how they can be integrated
into platform independent meta-models in Section 5.4. In particular, the section presents
the application meta-models of the (TeC) and Jigsaw end user platforms and explains how
they were extended to create platform specific product line meta-models that can be used
to create EU SPLs. Furthermore the component mappings of the product line meta-models
to the application meta-models needed to derive end user applications from the EU SPL
are also discussed for each EUD environment. Section 5.3.1 describes the platform specific

meta-models for TeC and section 5.3.2 for the Jigsaw end user environment.

5.3.1 Platform Specific Meta-models for TeC

This section describes the PSP and PSPL meta-models for the TeC end user
environment. In particular, section 5.3.1.1 introduces TeC and presents its application
(PSP) meta-model, and section 5.3.1.2 explains how the TeC application meta-model was

extended to create the TeC PSPL. The TeC PSPL can be used to create EU SPLs for the

93

TeC platform. Section 5.3.1.3 describes the meta-model component mapping between the

TeC PSPL and the TeC PSP meta-models.

5.3.1.1 Platform Specific Product (PSP) for TeC

Team Computing (TeC) is an event driven architectural style that enables end users
to design and deploy personalized software for their smart spaces (Sousa et al., 2010). A
detailed description of TeC is provided in section 2.4.5 of Chapter 2.

Figure 5.2 shows the application meta-model for TeC. The Team Design meta-class
captures information about TeC applications. A Team Design can be deployed to zero or
more Locations. The Location meta-class captures location information of a smart space.
For example, one Team Design might apply to devices available to the family room of a
smart home versus another one that applies to the entire house. A Team Design is realized
by one or more Activity Sheets. The Activity Sheet meta-class represents software
components, devices, and humans operating in ubiquitous computing environments.
Activity Sheets have zero or more Inputs and Outputs. The Input meta-class contains
information about the Activity Sheet required interfaces for receiving data. The Output
meta-class contains information about the Activity Sheet provided interfaces for sending
data. Outputs are bound by triggering conditions that when evaluated to true causes the
output to be send to the destination. In TeC, device connectivity can be achieved by having
outputs from one Activity Sheet send to inputs of another Activity Sheet. Inputs and

Outputs can contain zero or more Payloads. The Payload meta-class contains information

94

Activity
Parameter

*
0.%| 0.* - Activity
isConnected 0..* Connector

Activity Sheet

isSend isReceived

1.%

0.%

*
contains contains
X 0..* isDeployed . 0.4 0.4
Location Team Design Output - Payload Input

Figure 5.2 TeC Application Meta-model (PSP)

in the form of key-value pairs about the data send from Outputs to Inputs. The Activity
Connector meta-class contains information about the Activity Sheet’s connectivity within
a Team Design. Outputs send data to zero or more Activity Connectors and Inputs receive
data from zero or more Activity Connectors.

Figure 5.3 shows the Team Design of a “Flood Alert” TeC application deployed in
a smart home. The purpose of the application is to send text alerts to the home residents if
a flood is detected. The “Flood Alert” Team Design is realized of a flood detector and a
phone TeC Activity Sheets. The flood detector Activity Sheet represents moisture sensors
deployed in the smart home, and the phone Activity Sheet a house phone that supports
landline messaging. The flood detector Activity Sheet has an Output called “alert” that
sends flood notifications to the “text” Input of the phone Activity Sheet. The Activity
Connector meta-class for the Team Design contains information about the connection of
the “alert” Output and the “text” Input. The “alert” output has a triggering condition that is

evaluated to true when the flood detector detects moisture. When moisture is detected,

95

Flood Alert

[flood | alert text h
detector W Phone

Parameters

Output Output | Output Input Input | Parameter Name\Values
Activity | Name | Trigger Activity = Name

| flood | alert moisture=true | phone Ttext | phone_number= (305) 999996 |
detector message= Flood detected

Fiaure 5.3 Flood Alert — TeC Team

“alert” sends one message with two Payloads in the form of key-value pairs to the “text”
input. The keys of the payloads are phone_number and message. The phone Activity Sheet
will interpret the phone_number payload value as the number to text and the message
payload value as the contents of the message to send. An Activity Sheet is configured by
zero or more Activity Parameters. The Activity Parameter meta-class captures information
about configurable internal parameters of Activity Sheets. An example of an Activity
Parameter in the “Flood Alert” example are the moisture threshold values for the flood
detector Activity Sheet. When the moisture threshold values are exceeded then the sensor

can report moisture.

5.3.1.2 Platform Specific Product Line (PSPL) for TeC

To extend TeC with product line support, the TeC PSPL was created. The TeC
PSPL is used to derive applications for different TeC environments. In particular, The TeC
PSP model was extended with product line support to create the TeC PSPL meta-model
shown in Figure 5.4. The objective of the TeC PSPL meta-model is to derive multiple TeC
PSP models from one TeC PSPL model. The TeC PSPL meta-model is composed of the

Feature and the TeC Product Line (PL) Component meta-models. The Feature meta-model

96

Feature Meta-model

' |
I ZeroOrMoreOf AtLeastOneOF ExactlyOneOf ZeroOrOneOf |
| Feature Grou Feature Grou Feature Grou Feature Grou
P P P P |
|
I [I
| I
|
I
I v I
| Feature Group Common Optional Default Feature Alternative Parameterized |
Feature Feature Feature Feature |
| | |
| I
| J7 selected by |
I
| | v] :
I
| 1 1.* 1 from/to Feature Feature
| EU SPL isComposed Feature Dependency Condition I
L I
‘- - = T R N Y R e R (Yol - H
| isConnected o..* | PL Activity Sheet |
| o Connector |, . COmponent Meta-model |
| isParameterized . A I
| isDeployed I
|
I 0. Kernel Optional Variant . . |
I PL Activity Sheet PL Location isSend | | pL Activity Sheet || PL Activity Sheet || PL Activity Sheet | |iSReceived
| Parameter Connector Connector Connector I
I o eatined |
I I
| has I
| 1.% o0.* 0.4 |
| isConfigured has containal* Sgntalns I
| PL Activity Sheet PL Output PL Payload PL Input |
| A |
I I
| | | |
| Kernel Optional Variant |
I PL Activity Sheet | | PL Activity Sheet | | PL Activity Sheet |
I I

Figure 5.4 TeC Platform Specific Product Line (PSPL) Meta-model

is platform independent and describes the EU SPL and feature relationships. The TeC
Product Line Component meta-model is specific to the TeC platform and describes the
relationships between product line features and the TeC Product Line (PL) component
architecture that realizes each feature. The TeC PL meta-model extends the TeC meta-
model with product line support. The remainder of this section describes the meta-model
in detail.

As shown in Figure 5.4, an EU SPL is composed of one or more features. Each

Feature describes a specific functionality that the EU SPL supports. Features can be

97

common, optional, alternative, default or parameterized. Common are features that exist
in all products derived from the product line. Optional features are features that can be
found in only some products derived from the product line. Alternative features are features
that are mutually exclusive. Default features are one of a group of alternative features that
the EU SPL designer has pre-selected for product derivation. Parameterized features are
features that can be parameterized by end users during application derivation.

Features can belong to feature groups. Feature groups can be thought as a set of
features that share a common set of constraints. There are four types of feature groups: (1)
ZeroOrMoreOf, (2) AtLeastOneOf, (3) ExactlyOneOf, and (4) ZeroOrOne.
ZeroOrMoreOf is a feature group from which zero or more features can be selected.
AtlLeastOneOf is a feature group from which more than one feature must be selected.
ExactlyoneOf is a feature group from which only one feature can be selected. ZeroOrOne
is a feature group from which either no feature or one feature can be selected. Features can
be dependent on other features. For example consider three features {A}, {B}, {C} and
that {C} — {A} " {B}, this implies that feature {C} cannot exist if features {A} and {B}
do not exist. The Feature Dependency meta-class captures the dependency among features.
Feature conditions are an alternative way for expressing feature selection.

Features are realized by one or more PL Activity Sheets and are connected to zero
or more PL Activity Connectors. PL Activity Sheets can be kernel, optional or variant.
Kernel PL Activity Sheets are available to all PSPs derived from the PSPL. Optional PL
Activity Sheets are available to only some derived PSPs. Variant PL Activity Sheets are

mutually exclusive PL Activity Sheets. PL Activity Sheets can have zero or more PL Inputs

98

and PL Outputs. PL Inputs and PL Outputs can have zero or more PL Payloads. PL Activity
Connectors can also be kernel, optional or variant. A feature is parameterized by zero or
more PL Activity Parameters. Finally, a feature is deployed in zero or more PL Locations.
For example a product line feature can be applicable to components in a specific location

of the smart space. The PL Location meta-class captures the location info.

5.3.1.3 TeC PSPL to PSP Meta-model Mappings

To derive end user applications from the TeC EU SPL, the selected features and
components of the TeC PSPL need to be mapped to the features and components of the
TeC PSP model. Figure 5.5 shows the high-level meta-class mappings between the TeC
PSPL and the TeC PSP meta-models.

In detail, each PL Activity Sheet in the PSPL model is mapped to an Activity Sheet
in the PSP model. Similar each PL Activity Connector in the PSPL component model will
be mapped to an Activity Connector in the PSP model. PL Activity Parameters will be
mapped to Activity Parameters and PL Locations to Locations meta-classes in the TeC
component model. The PL Inputs, PL Outputs and PL Payload meta-classes from the TeC

PSPL model are mapped to Input, Outputs and Payload meta-classes in the TeC PSP.

5.3.2 Platform Specific Meta-models for Jigsaw

This section describes the PSP and PSPL meta-models for the Jigsaw end user
environment. In particular, section 5.3.2.1 introduces Jigsaw and presents its application
(PSP) meta-model, section 5.3.2.2 discusses how the Jigsaw application meta-model was

extended to create the Jigsaw PSPL. The Jigsaw PSPL can be used to create EU SPLs for

99

PSPL to PSP

TeC Platform Specific Product Line ie
P TeC Platform Specific Product
- 1
1.%4 PLActivity Sheet - A =3 Activity Sheet < Feature
isRealised 1.%
isCreated
isConnected 0...* L 1 1 x

Feature PL Activity R . Activity 0- _isConnected (Product)

Connector Connector Team Design
sParameterized isParameterizéd
isDeployed * ot isDeployed

PL Activity LA [1_ Activity or

0..* Parameter Parameter

. 1 1
PLLocation |———-—-ecem e e = = 3 Location

Figure 5.5 PSPL to PSP Meta-model Mapping for the TeC Platform

the Jigsaw platform. Finally, section 5.3.2.3 describes the meta-model mapping between

the Jigsaw PSPL and the Jigsaw PSP meta-models

5.3.2.1 Platform Specific Product (PSP) for Jigsaw

Jigsaw (Humble et al., 2003) is an EUD environment that enables end users to
configure devices, applications and services available to their smart space through a puzzle
like user interface. Figure 5.6 shows the Jigsaw meta-model that was developed as part of
this research. In detail, a Jigsaw Puzzle is realized by one or more Jigsaw Pieces. Each
Jigsaw Piece represents a device in the smart space. Examples of Jigsaw Pieces are a phone,
adoorbell, a camera etc. Each Jigsaw Piece can have zero or more Jigsaw Piece Parameters.

Jigsaw Piece Parameters represent device configuration parameters. For example a

100

Jigsaw Piece
Parameter

Jigsaw Piece
Connector isReceived

isSend

0..%

isConfugured

Jigsaw Piece

isParameterized 1.*

‘ 0.* 0.*

Jigsaw Piece Jigsaw Piece

Jigsaw Puzzle output Input

’ isConnected

Figure 5.6 Jigsaw Application Meta-model (PSP)

doorbell device might have different ring tones, a photo camera can have different light
settings and so on. Jigsaw Pieces have zero or more Jigsaw Piece Inputs and Jigsaw Piece
Outputs. Jigsaw Piece Inputs capture device inputs and Jigsaw Piece Outputs capture
device outputs. The Jigsaw Piece Connector meta-class captures the connectivity of Jigsaw
Pieces. In particular, the Jigsaw Piece Output of one Jigsaw Piece can be connected to the
Jigsaw Piece Input of another Jigsaw Piece. The Jigsaw Piece Output to Jigsaw Piece Input
relationship is captured by the Jigsaw Piece Connector meta-class. A Jigsaw Puzzle is
connected by zero or more Jigsaw Piece Connectors.

Figure 5.7 shows an example of a doorbell application using Jigsaw. The purpose
of the application is when a person rings the doorbell, the camera takes a picture and send
it to the resident smart phone. To create this application a Jigsaw Puzzle is created. The
Jigsaw Pieces of the puzzle are “Door Bell”, “Camera” and “Phone.” The “Door Bell”
Jigsaw Piece represents the house door bell device, the “Camera” Jigsaw Piece represents

a webcam device installed in the entrance and the “Phone” Jigsaw Piece represents the

101

Figure 5.7 Jigsaw Doorbell Application Example

resident’s smart phone. The “onRing” output of the “Door Bell” piece captures the event
of a person ringing the doorbell. The “onRing” output is connected to the “takePhoto” input
of the “Camera” Jigsaw Piece instructing the camera to take a picture. The “onRing” to the
“takePhoto” connectivity information is captured by the Jigsaw Activity Connector meta-
class. Finally the “sendPhoto” output of the “Camera” Jigsaw Piece is connected to the
“receiveData” input of the “Phone” Jigsaw Piece to indicate that the picture taken by the

camera needs to be send to the phone.

5.3.2.2 Platform Specific Product Line (PSPL) for Jigsaw

To extend Jigsaw with product line support the Jigsaw PSPL was created. The
Jigsaw PSPL is used to derive applications for different Jigsaw environments. In particular,
the Jigsaw PSP meta-model was extended with product line support to create the Jigsaw
PSPL meta-model. The Jigsaw PSPL meta-model consists of the Feature meta-model and
the PL Jigsaw Component meta-model. The Feature meta-model part of the Jigsaw PSPL
meta-model is the same as the TeC PSPL shown on Figure 5.4. Figure 5.8 shows the PL

Jigsaw Component meta-model part of the Jigsaw PSPL meta-model.

102

Feature
S B
I isConnected o.* | PLJigsaw Piece PL J'gsaw I
0| Connector |,. ComponentMeta-model |
| A |
| isParameterized |
| I
| 0..% Kernel Optional Variant . . |
I PL Jigsaw Piece isSend PL Jigsaw Piece || PL Jigsaw Piece || PL Jigsaw Piece isReceived |
| Parameter Connector Connector Connector I
| o isRealized |
: has I
I 1.4 0.* 0..4 :
I isConfigured PL Jigsaw Piece has PL Jigsaw Piece PL Jigsaw Piece |
| Output Input |
| A |
I ‘ I
|
I Kernel Optional Variant I
| PL Jigsaw Piece PL Jigsaw Piece PL Jigsaw Piece I
I
L - 1
Figure 5.8 PL Jigsaw Component Meta-model

The main meta-classes of the PL Jigsaw Component meta-model are the PL Jigsaw
Piece, PL Jigsaw Piece Parameter, PL Jigsaw Piece Connector, PL Jigsaw Input and PL
Jigsaw Output. The PL Jigsaw Piece abstracts Jigsaw Pieces that represent different devices
in a smart space. PL Jigsaw Pieces can be kernel, optional or variant product line
components. A PL Jigsaw Piece is configured by zero or more PL Jigsaw Piece Parameters.
PL Jigsaw Piece Parameters contain configuration parameters for the PL Jigsaw Piece. PL
Jigsaw Pieces can have zero or more PL Jigsaw Piece Inputs and PL Jigsaw Piece Outputs.
The PL Jigsaw Piece Input meta-class contains information about the PL Jigsaw Piece
required interfaces and the PL Jigsaw Piece Output meta-class contains information about
PL Jigsaw Piece provided interfaces. PL Jigsaw Piece Connector meta-class contains
information about the PL Jigsaw Piece’s connectors within a product line feature. PL

Jigsaw Piece Outputs send data to zero or more PL Jigsaw Piece Connector Connectors

103

and PL Jigsaw Piece Inputs receive data from zero or more Activity Connectors. PL Jigsaw
Piece Connector can be kernel, optional or variant. A product line feature is realized from
one or more PL Jigsaw Pieces, is parameterized by zero or more PL Jigsaw Piece
Parameters and is connected to zero or more PL Jigsaw Piece Connectors. During

application derivation PL Jigsaw meta-classes are mapped to the Jigsaw meta-classes.

5.3.2.3 Jigsaw PSPL to PSP Meta-model Mappings

Figure 5.9 shows the Jigsaw PSPL to PSP high-level meta-class mappings needed
to derive Jigsaw end user applications. In detail, all components that realize end user
selected features are derived from the Jigsaw PSPL. The derived PSPL components are
mapped to PSP components models during application derivation.

As shown in Figure 5.9 each PL Jigsaw Piece in the PSPL model is mapped to one
Jigsaw Piece in the PSP model. Similar each PL Jigsaw Piece Connector in the PSPL
component model will be mapped to a Jigsaw Piece Connector in the PSP model. PL
Jigsaw Piece Parameters are mapped to Jigsaw Piece Parameters. The PL Jigsaw Piece
Inputs and PL Jigsaw Piece Outputs are mapped to Jigsaw Piece Input and Jigsaw Piece

Outputs.

5.4 Platform Independent Meta-models

In order to develop end user applications that do not depend on any particular EUD
environment, the PSPL and PSP meta-models were extended to create the Platform

Independent Product Line (PIPL) and the Platform Independent Product (PIP) meta-

104

PSPL to PSP

Jigsaw Platform Specific Product Line Jigsaw Platform Specific Product

1.%

7 PL Jigsaw Piece | — — —[— ———————— = Jigsaw Piece \ﬂ Feature
isRealiz
isRealizel

isCreated

1.*

isConnected 0...* . 0.*
Feature PL Jigsaw Piece | _ _ | _ _____ __ -3l Jigsaw Piece (Product)

Connector Connector isConnected Jigsaw Puzzle

isParameterized,

IsParameterized
PL Jigsaw Piece | _ _ _|__ _ _ __ _ _ _ - = Jigsaw Piece

Parameter Parameter

Figure 5.9 PSPL to PSP Mapping for the Jigsaw Platform

models. The platform independent models apply to all EUD environments that support a

component and connector architecture.

5.4.1 Platform Independent Product Line (PIPL)

Similar to the PSPL, the PIPL meta-model consists of the Feature and the
Component meta-models. The Feature meta-model is the same as the PSPL shown on
Figure 5.4. The Component meta-model is designed to support common component
connector functionality across different EUD environments.

Figure 5.10 shows the PIPL component meta-model. In detail, each feature in the
PIPL is realized by one or more PL Components, is connected by zero or more PL
Component Connectors, and is parameterized by zero or more PL Component Parameters.
PL Components are similar to PL Activity Sheets in the TeC PSPL and PL Jigsaw Pieces

in the Jigsaw PSPL. PL Components represent software applications and devices that are

105

Feature

Kernel Optional
PL Component

| . |

isConnected o.* | PLComponent Compo nent Metamodel |
I 0.* Connector 0.* |
: isParameterized A |
| |
| 0.* Kernel Optional Variant A I
| PL Component isSend PL Comy PL Component || PL Component ed |
| Parameter Connector (o C |
| 0.* : lired |
I ‘ has :
| |

isConfigured

| g PLC has PL Output PL Input |
| |
| A |
| ‘ |
| |
| |
| |

Figure 5.10 Platform Independent Product Line (PIPL) Meta-model

part of the smart space. PL Components can be kernel, optional or variant and they have
zero or more PL Inputs and PL Outputs. The PL Input meta-class contains information
about the PL Component required interfaces and the PL Output meta-class about the PL
Component provided interfaces. PL Component Connectors indicate the way PL
Components within a product line feature are connected. For instance, PL Outputs of one
PL Component can be connected to PL Inputs of another PL Component. PL Inputs send
data to zero or more PL Component Connectors and PL Inputs receive data from zero or
more PL Component Connectors. PL Component Connectors can be kernel, optional or
variant. Finally, PL Components are configured by zero or more PL Component

Parameters.

106

5.4.2 Platform Independent Product (PIP)

The Platform Independent Product (PIP) meta-model provides the underlying
representation of end user applications in terms of meta-classes and relationships, which
are derived from the PIPL meta-model. Figure 5.11 shows the PIP meta-model. End user
applications in the PIP meta-model are represented by the Product meta-class. A Product
in the PIP meta-model is composed of one or more Components. Components represent
meta-classes of the smart space (devices, applications, sensors, etc.). Components of a
product are connected by zero or more Component Connectors. Components can have zero
or more Inputs to receive data and zero or more outputs to send data. The Component
connector meta-class contains information about interconnecting Component Outputs and
Component Inputs. Finally a Product in the PIP meta-model is parameterized by zero or

more Component Parameters.

Product
(End User Application)

isParameterized isConnected

0.

Component
Parameter 0.%

0.* isRealized Component N
isSend Connector isReceived as

0.* 0.*

isConfigured has g *
Component Output Input

Figure 5.11 Platform Independent Product (PIP) Meta-model

107

5.4.3 PIPL to PIP Meta-model Mappings

Figure 5.12 shows the PIPL to PIP meta-model component mappings needed to
derive end user applications from the product line. Similar to the PSPL to PSP meta-model
mappings, the components of the selected features are derived from the PIPL model. The
PIPL components are mapped to PIP models following the mappings shown in Figure 5.12.
In detail, PL Components that are part of each feature are mapped to Components in the
PIP model, PL Component Connectors are mapped to Component Connectors and PL
Component Parameters are mapped to Component Parameters in the PIP model. PL Inputs

and PL Outputs are mapped to the Input and Output meta-classes in the PIP model.

PIPL to PIP

—

Platform Independent Product Line Platform Independent Product

1
L PL Component | —— ——— ———— — — — I— 3 Product Component

Feature

isRealized 1.*
isRealized

isCreated

isC cted 0" 1 0..* isConnected
Feature [Stonnecte PLComponent | 1 | _______ | = 3 Product Component
Connector Connector

Product

isParameterize isParameterize

0..* 0.*

PL Component | *_ _{__ _______ .~ - Product Component
Parameter Parameter

Figure 5.12 PIPL to PIP meta-model mappings

108

5.5 Platform Independent to Platform Specific Mappings

Platform independent models need to be mapped to platform specific models in
order to be deployed to a specific end user environment. This section describes the
component meta-class mappings between platform independent and platform specific
meta-models. Figure 5.13 shows the platform independent to platform specific mappings
in the EU SPL meta-model.

The PIPL to PSPL meta-model mapping shown in Figure 5.13 enables EU SPL
designers to develop product lines that can be mapped to EU SPLs for different EUD
environments. Another benefit of the PIPL to PSPL meta-model mapping is that EU SPL
designers can develop basic EU SPL functionality as platform independent models, and
map the EU SPL to a platform specific model. At the platform specific layer the EU SPL
designers can extend the EU SPL with platform specific functionality. This allows EU SPL

designers to reuse and extend EU SPL models across different platforms. The following

Platform Independent Platform Independent
Product Line Product
(PIPL) (PIP)
1 1
PIPL PIP
to to
PSPL PSP
$1.F $ 1.
Platform Specific Platform Specific
Product Line Product
(PSPL) (PSP)

Figure 5.13 Platform Independent to Platform Specific Mappings

109

sections describes the PIPL to PSPL meta-model mappings for TeC and Jigsaw EUD
environments. The PIP to PSP meta-model mapping enables end users to derive platform
independent application models from the PIPL that are then mapped to specific end user
environments. This section describes the PIP to PSP meta-model mappings for the TeC

and Jigsaw architectures.

5.5.1 PIPL to TeC PSPL Meta-model Mappings

Figure 5.14 shows the component mapping of the PIPL meta-model to the TeC
PSPL meta-model. The component mapping can be used for converting platform
independent product line models to TeC platform specific product line models. In detail,
there is a one-to-one relationship between PL Components in the PIPL meta-model and the
PL Activity sheets in the TeC PSPL meta-model. Similarly, there is a one-to-one

relationship between PL Component Connectors and PL Activity Connectors in TeC PSPL,

PIPL to PSPL

Platform Independent Product Line TeC Platform Specific Product
Line
1 1 L
1.% PL Component |- —— —|— ——— ————— 2 PL Activity Sheet "
isRealized R N
isRealized
isConnected 0...* 1 1
PL Component | _* | _ ____ __ _ L o 0..* isConnected
Feature Connector > PL Activity Feature
Connector

isParametrized

o isParameterized isDeployed
0.*
1 1
PL Component | ——————__ =l PL Activity .

0..
Parameter Parameter

PL Location

Figure 5.14 PIPL to TeC PSPL Meta-model Mappings

110

and between PL Component Parameters in PIPL and PL Activity Parameters. PL Inputs
and PL Outputs in the in the PIPL meta-model are mapped to PL Inputs and PL Outputs in
the TeC PSPL meta-model. The PL Payload and PL Location are specific meta-classes of
TeC and do not map to PIPL. The PIPL meta-model was not extended with the PL Payload
and PL Location meta-classes because the PIPL to PSPL model mapping will not be

successful for EUD environments that do not support these meta-classes.

5.5.2 PIPL to Jigsaw PSPL Meta-model Mappings

Figure 5.15 shows the component mapping of the PIPL to the Jigsaw PSPL meta-
model. The component mapping can be used for converting platform independent product
line models to Jigsaw platform specific product line models. In particular, there is a one-
to-one relationship between PL Components in the PIPL and PL Jigsaw Pieces in the
Jigsaw PSPL. There is also a one-to-one relationship between PL Component Connector
meta-classes and PL Jigsaw Piece Connectors, and between PL Component Parameters
and PL Jigsaw Piece Parameters. PL Inputs, PL Outputs in the PIPL meta-model are

mapped to PL Inputs and PL Outputs in the Jigsaw PSPL meta-model.

5.5.3 PIP to TeC PSP Meta-model Mappings
Figure 5.16 shows the platform independent product to TeC platform specific
products component meta-model mappings. The component mapping can be used for

converting PIP models to TeC PSP models. In detail, there is a one-to-one relationship

111

PIPL to PSPL

Platform Independent Product Line) ")
Jigsaw Platform Specific Product Line

PL Component - —— —|- ———————— 3 PL Jigsaw Piece

>

isRealized
isRealized

isConnected 0...* 1 1
PL Com t . " ¥ ct
omponen: L 5| PL Jigsaw Piece 0 isConnected

Connector

Feature

Connector Feature

isParameterized B /
isParamegérized

0..* 0.%

PL Component | _1 [___ ____ V1,>

PL Jigsaw Piece
Parameter

Parameter

Figure 5.15 PIPL to Jigsaw PSPL Meta-model Mappings

between a Product in the PIP meta-model and a Team Design in TeC. Both the Product and
Team Design meta-classes represent end user applications. There is also a one-to-one
relationship between Components in PIP and Activity Sheets in the TeC PSP meta-model.
Similar there is a one-to-one relationship between Component Connectors and Activity
Connectors, and between Component Parameters and Activity Parameters. There is also a
one-to-one mapping between Inputs and Outputs in the PIP model and the corresponding
Inputs and Outputs in the TeC PSP meta-model. The Payload and Location meta-classes

are specific to TeC and there is no mapping to the PIP model.

5.5.4 PIP to Jigsaw PSP Meta-model Mappings
Figure 5.17 shows the platform independent product to Jigsaw platform specific
product meta-model mappings. The component mapping can be used for converting PIP

models to Jigsaw PSP models. In detail, there is a one-to-one relationship a Product in the

112

PIP to PSP
Platform Independent Product ie
P TeC Platform Specific Product
Component 1 1 - 1.*
Feature e —————— — > Activity Sheet Feature
1.*
isRealized L
isCreated isCreated
isConnected Component R I 1 Activit 0..* isConnected)
Product Connector 2 Connectyor Team Design
isParameterized isParameferized
N o* isDeployed
Component LY ___ _ A Activity 0%
Parameter Parameter
Location
Figure 5.16 PIP to PSP Mapping for the TeC EU Platform
PIP to PSP
Platform Independent Product Jigsaw Platform Specific
Product
Component 1 1 . . 1.*
Feature 1.* I 2 Jigsaw Piece Feature
Lr isRealized L
isCreated isCreated
isConnected 0...* 1 . . 0.%
product Component | 1 | ________ Iy Jigsaw Piece isConnected Jigsaw Puzzle
Connector Connector 9
isParameterized isParameteriz
0..* 0.*
Component I A [Jigsaw Piece
Parameter Parameter
Figure 5.17 PIP to PSP Mapping for the Jigsaw EU Platform

PIP meta-model with a Jigsaw Puzzle in Jigsaw. Both the Product and Jigsaw Puzzle meta-
classes represent end user applications. There is also a one-to-one relationship between

Components in PIP with Jigsaw Pieces in the Jigsaw PSP meta-model. Similar there is a

113

one-to-one relationship between Component Connectors with Jigsaw Piece Connectors and
Component Parameters with Jigsaw Piece Parameters. Finally, there is a one-to-one
mapping between Inputs and Outputs in the PIP model and the corresponding Inputs and

Outputs in the Jigsaw PSP meta-model.

5.6 Summary

As EUD environments for smart spaces expand, end users will be faced with the
challenge of having to develop the same type of applications for different environments.
EU SPLs for smart spaces enables end users to derive software applications for their
individual spaces. This chapter described the EU SPL meta-model for creating end user
product lines. The EU SPL meta-model consists of platform independent and platform
specific meta-models. The platform specific meta-models were discussed in context of the
TeC and Jigsaw end user environments. The platform independent meta-model is an
abstract meta-model for creating product lines for end user environments that supports
component and connector architecture. The chapter also presented the meta-model
mappings between platform independent and platform specific meta-models to indicate the

way platform independent models can be mapped to specific end user environments.

114

6 END USER SOFTWARE PRODUCT LINE PROTOTYPE (EUSPLP)
DEVELOPMENT ENVIRONMENT

6.1 Introduction

This chapter describes the End User Software Product Line Prototype (EUSPLP)
development environment created to validate this research. The EUSPLP environment was
designed to support end users and extend End User Development (EUD) environments for
smart spaces with product line support. The environment provides end user oriented
interfaces to enable EU SPL designers to develop End User (EU) Software Product Lines
(SPL) and end users to derive applications. The EUSPLP environment was created using
the EU SPL process and the EU SPL meta-models described in Chapters 4, and Chapter 5
respectively. In addition, the EUSPLP environment was used to implement the Smart
Home EU SPL case study described in the Appendix and to derive end user applications
for the TeC EUD environment.

The chapter is organized as follows: Section 6.2 describes the system use cases that
the EUSPLP implements. Section 6.3 discusses the overall EUSPLP system architecture.
Section 6.4 provides an overview of the physical meta-models developed for the EUSPLP
to represent EU SPLs for smart spaces and derived applications. Section 6.5 describes in
detail the EUSPLP EU SPL Development subsystem used to develop product lines. Section
6.6 discusses the EUSPLP Application Derivation subsystem used to derive applications
from the EU SPL. Section 6.7 describes the process for deploying EU SPL derived
applications to the Team Computing (TeC) environment. Finally section 6.8 provides a

summary of this chapter.

115

6.2 EUSPLP System Use Cases

There are five main use cases shown in Figure 6.1 that the EUSPLP development
environment supports: (1) Manage EU SPL, (2) Create EU SPL, (3) Edit EU SPL, (4)
Derive EU SPL Application, and (5) Import Derived Application. The use cases have two
main actors that interact with the EUSPLP environment: (1) the EU SPL designer, and (2)
the End user. The EU SPL designer is an advanced end user or domain expert who creates
and maintains the EU SPL. The end user derives an EU SPL application and initiates the
application deployment process to the EUD environment.

The Manage EU SPL use case captures the interactions between the EU SPL
designer and the EUSPLP environment to create and maintain the EU SPL. In particular,
during this interaction, EU SPL designers create product line features and develop the
component architectures to realize them. The EUSPLP environment stores the EU SPLs
created by EU SPL designers for application derivation. The Manage EU SPL use case
includes the Create EU SPL and Edit EU SPL use cases.

The Derive EU SPL Application use case captures the interactions between the End
user and the EUSPLP environment to derive applications from the EU SPL. In particular,
during application derivation, end users select and configure the EU SPL features needed
for their spaces. The EUSPLP environment, based on the end user selections, extracts the
components and component connectors for the selected features and generates the derived

application architecture.

116

End User Software Product Line Prototype
(EUSPLP)

Manage EU SPL

EU SPL <<include>> ,” \ g<include>>
Designer d N\

Create EU SPL

Derive EU SPL
Application

End User

Import Derived
Application

Figure 6.1 EUSPLP Use Cases

The Import Derived Application use case captures the interactions between the End
User and the EUSPLP environment to import a derived application to the end user
environment. In particular, the end user imports and stores the derived application from the
EUSPLP to the EUD environment. End users interact with EUD environment to deploy the

end user application to the smart space.

117

6.3 EUSPLP System Architecture

The EUSPLP development environment was created in Java and is packaged to be
deployed in any compatible Java Platform Enterprise Edition (Brock et al., 2014) (Java EE)
application server implementing the Java Servlet, Java Server Pages and Java Expression
Language specifications. In this research, EUSPLP was deployed in the Java EE Apache
Tomcat server that implements the required specifications. The reasons that motivated the
selection of Java and the Java EE platform were that the technologies are open source,
portable and provide web support.

The open source characteristics makes the EUSPLP environment to not depend on
any proprietary technologies. The EUSPLP can be deployed in any operating system that
runs Java. The Java EE web support is another feature that the EUSPLP prototype utilizes.
The EUSPLP user interface is written using HyperText Markup Language (HTML)
(Pilgrim, 2010), and JavaScript (Duckett, 2014) technologies. EU SPL designers and end
users, interface with the EUSPLP using web browsers. The EUSPLP user interface
communicates with the EUSPLP server using Representational State Transfer (REST)
services (Richardson and Ruby, 2007) over the HyperText Transfer Protocol (HTTP)
(Totty et al., 2002). REST is a client-server architecture which uses the HTTP protocol.
REST services are represented as different URIs in the server that represent different
resources. HTTP methods (POST, GET, PUT, DELETE) are used to create, update, modify
and delete server resources. JavaScript Object Notation (JSON) (Taylor, 2014) is used as
the format for messages exchanged between the EUSPLP client (user interface) and

EUSPLP server. JSON is a lightweight human readable data format. Data in JSON are

118

represented as nested key-value pairs. JSON is an alternative format to XML. XML uses a
rich markup language for data representation versus JSON that uses a simpler
representation. The JSON format is common across JavaScript frameworks used for
asynchronous browser / server communication. Similar TeC is communicating with the
EUSPLP using REST services and JSON messages over HTTP.

Figure 6.2 shows the EUSPLP subsystem architecture and processes. The EUSPLP
subsystem is composed of four subsystems developed as part of this research: (1) EU SPL
Development, (2) Application Derivation, (3) Application Distributor, and (4) TeC
EUSPLP Adaptor. EU SPL Development subsystem provides the user interface, services
and storage mechanisms for EU SPL designers to create and edit end user product lines.
The Application Derivation subsystem provides the user interface, services and storage
mechanisms for end users to derive TeC applications. The Application Distributor
subsystem provides services for external systems to query and retrieve the derived
application. . The TeC EUSPLP Adaptor subsystem is responsible for acquiring the
application derivation specification from the Application Distribution subsystem and
sending it to the target TeC environment to be stored in the TeC database. End users can

utilize the TeC environment to complete the application deployment.

119

EU SPL VIEW
(JSON)

EU SPL Development
Process

SPL

1. Submit EU
-

<<subsystem>>
EUSPLP

!

1.1 Store EU SPL Visual
Representation (PIPL)

A

EU SPL Designer

2.1 Extract TeC App
PSPL —» PSP) /

Application
Derivation Process

2. Submit keature

<<subsystem>>
EU SPL
Development

1.2 Store TeC PSPL

(

Components

i 2.2 Store TeC App

| $ __ Selegtion <<subsystem>> (Pse) TeC App

3 Application — (JSON)

: /\ Derivation

§ End User 3.2 Retrieve T

| Application X 3.3 TeCApp
Deployment Process

| <<subsystem>>

! Application

! Distributor

§ 3.4TeC App 3.1 Request

3 (JSON) TeC App

3 3. Import :<<operating-system>>

| Application to | Android

‘ <<subsystem>>

i TeC EUSPLP

! Adaptor

i End User

i 4 Depl%‘ l 3.5 Store

3 TeC App TeC App

i | 3.6 Store App TeC

i | P — Database
§ : <<subsystem>> 4.1 Retrieve

! | TeC TeC App

| ' Smart Space TeC
| ! Components/
| : 4.2 Instruct TeC Devices
1 |

Figure 6.2 EUSPLP Subsystem Architecture and Processes

120

The EUSPLP supports three major processes shown in Figure 6.2: (1) EU SPL
Development, (2) Application Derivation, and (3) Application Deployment. The EU SPL
Development process enables end users to develop and store EU SPLs that can be used for
deriving EU applications. In detail, after developing product line features, EU SPL
designers submit the EU SPL to the EU SPL Development subsystem for processing
(shown in step “1. Submit EU SPL” in Figure 6.2). The EU SPL Development subsystem
stores the EU SPL Platform Independent Product Line (PIPL) model (shown in step “1.1
Store EU SPL Visual Representation (PIPL)”) in JSON format. The PIPL captures the EU
SPL visual representation. The EU SPL Development subsystem converts the PIPL model
to the TeC Platform Specific Product Line (PSPL) model. The TeC PSPL is serialized as
JSON in the file system for long term storage, as shown in step “1.2 Store TeC PSPL.”

The Application Derivation process enables end users to derive applications for
their smart spaces. In detail, the Application Derivation process starts with the end user
selecting features from the EU SPL and submitting the selections to the Application
Derivation subsystem, as shown in step 2. Submit Feature Selection” in Figure 6.2. The
Application Derivation subsystem extracts the component architecture of the selected
features from the PSPL (shown in step “2.1 Extract TeC App (PSPL - PSP)”) and
generates the TeC App (PSP). The TeC App is serialized to JSON in the file system, as
shown in step “2.2 Store TeC App (PSP)” in Figure 6.2.

The Application deployment process enables end users to import derived
applications to the TeC environment and deploy them to their smart spaces. The

Application Deployment process starts with the end user interfacing with the TeC EUSPLP

121

Adaptor deployed in the target TeC platform e.g., Android. In detail, The TeC EUSPLP
Adaptor subsystem interacts with the Application Distributor to retrieve the derived
application (shown in steps “3. Import Application to TeC” through “3.4 TeC App (JSON)”
in Figure 6.2) and stores the derived application to the TeC environment (shown in steps
3.5 Store TeC App” through “3.6 Store Appp” in Figure 6.2). To complete the deployment
process of the derived application, the end user interacts with the TeC subsystem, as shown
in step “4. Deploy TeC App” in Figure 6.2. The TeC subsystem retrieves the TeC App, as
shown in step “4.1 Retrieve TeC App”, decomposes the TeC App into a set of individual
instructions for TeC components and devices available in the smart space and
communicates with the components / devices to provide them with application instructions

as shown in step “4.2 Instruct TeC Components” in Figure 6.2.

6.4 EUSPLP Meta-models

This section describes the physical meta-models created for the EUSPLP
development environment to represent: (a) EU SPLs for TeC (TeC PSPL), and (b) TeC
applications (TeC PSPs). The EUSPLP physical meta-models are based on the TeC PSPL
and PSP meta-models described in Chapter 5. In detail, this section describes how the TeC
PSPL meta-model described in Chapter 5 was implemented in the EUSPLP to represent
TeC EU SPLs. In addition, the section describes how the TeC PSP meta-model described
in Chapter 5 was implemented to represent a TeC application. The TeC PSPL meta-model
created for the EUSPLP was created as part of the development of the EUSPLP. The part

of the TeC physical meta-model used by the EUSPLP to represent the TeC application,

122

excluding the meta-classes used for TeC application deployment, was implemented as part

of this research.

6.4.1 EUSPLP TeC PSPL Meta-model

The EUSPLP TeC PSPL meta-model describes the meta-classes and their
relationships used to represent a TeC EU SPL. The EUSPLP TeC PSPL meta-model is
divided into three logical areas: (1) Feature meta-model, (2) Feature to TeC EU SPL
Component meta-model relationships, and (3) TeC EU SPL Component meta-model. The
sections below describe in detail each of the meta-models.

Figure 6.3 shows the TeC PSPL Feature meta-model. In detail, the EUSPL meta-
class is used to capture the TeC product line information. The EUSPL meta-class has one
or more Features. The Feature meta-class captures information about product line features.
Each Feature can be a member of zero-or-one FeatureGroup. The FeatureGroup meta-class
is used to group a set of related Features with a particular constraint on their usage in a
derived application. The feature group types supported by the EUSPLP are
AT_LEAST ONE_OF FEATURE_GROUP,

EXACLY_ONE_OF FEATURE_GROUP, ZERO OR ONE_OF FEATURE_GROUP
and ZERO _OR_MORE_OF FEATURE_GROUP. Each Feature meta-class contains
exactly one FeatureVariability meta-class to describe the variability of the Feature meta-
class. The variability types supported by the EUSPLP are COMMON, OPTIONAL,
DEFAULT_OPTIONAL, DEFAULT_ALTERNATIVE, ALTERNATIVE and
PARAMETERIZED FEATURE. A Feature can itself contain zero or more Features. This

relationship is shown in Figure 6.3 through the childFeatures attribute attached to the

123

cFeature

edu.gmu.cs.pl
+id: String
ejf;’nistp\ -parent_id: String °FeatureGroup

«id: String ‘name: String . ot gmcs. ¥ .
Ane.nme String -description: String “AT_LEAST ONE_OF FEATURE GROUP: ...
e “featureGroup: boolean “EXACLY_ONE OF FEATURE GROUP: Fe..

Do 9 «pl_activity_parameters: List<PL_Activity_Sheet_Param... “ZERO_OR_ONE_OF FEATURE GROUP: ...
“EUSPL() . -pl_activity_sheets: List<PL_Activity_Sheet> “ZERO_OR_MORE_OF FEATURE GROUP...
*getFeatures()-List<Feature> -pl_activity_connectors: List<PL_Activity_Sheet_Conne...| |¢FeatureGroup()
*setFeatures(List<Feature>).... -pl_locations: List<PL_Location> P
“getNextValue():String -platformDependent: boolean ~featureGroupType 0..1
"QelName()%lnng ~featufres | <Feature() ’
- setName(String)-void _»*y-isFeatureGroup()-boolean
- etDescriptiony-String vlselFeatureGmup(boolean):\rold
- setDescription(String)void «isPlatformDependent():boolean

= setPlatformDependent(boolean):void
= getPl_activity_connectors():List<PL_Activity_Sheet C...
+setP|_activity_connectors(List<PL_Activity_Sheet_Co...
«getParent_id():String
«setParent_id(String):void
= getFeatureGroupType():FeatureGroup
» setFeatureGroupType(FeatureGroup):void
+getChildFeatures():List<Feature>
« setChildFeatures(List<Feature>):void
= getld():String
+setld(String):void
«getName():String
~featureVariabilty 1.~ |*s&tName(String):void
= getDescription():String

oFeatureVariability «setDescription(String):void
edu.gmu.cs.pl « getFeatureVariability():FeatureVariability
“COMMON: FeatureVariability « setFeatureVariability(FeatureVariability):void
“OPTIONAL: FeatureVariability = getPl_activity_sheets():List<PL_Activity_Sheet>
“DEFAULT_OPTIONAL: FeatureVariability = setPl_activity_sheets(List<PL_Activity_Sheet>):void
“DEFAULT _ALTERNATIVE: FeatureVaria...| |*getPlatformName():String
“ALTERNATIVE: FeatureVariability - setPlatformName(String):void
“PARAMETERIZED FEATURE: Feature.. « getPl_activity_parameters():List<PL_Activity_Sheet_P...
F il - setP|_activity_parameters(List<PL_Activity_Sheet_Par...
FeatreVariabilty(= getPl_locations():List<PL_Location> N ~childFeatures
«setPl_locations(List<PL_Location>):void JUV "

Figure 6.3 EUSPLP TeC PSPL - Feature Meta-Model

Feature meta-class. Nested Features relationships are used in the EUSPLP to represent the
EU SPL as a Feature hierarchy.

Figure 6.4 shows the relationships between the Feature meta-class and the TeC EU
SPL Component meta-model. The TeC EU SPL Component meta-model contains the
meta-classes and relationships needed for the implementation of each Feature. As shown
on Figure 6.4 the component meta-classes associated to the Feature meta-class are:
PL_Activity_Sheet, PL_Activity_Connector, PL_Location, and PL_Activity Parameter.

The PL_Activity _Sheet meta-class represents TeC components extended with product line

124

~pl_activity_sheets A "'\‘_ \

/ \ —

‘-pijﬁcatmn_s‘)

<<Java Class>>
PL_Activity_Sheet
‘edu.gmu.cs.pl

\ ~ 0.

«id: String

-name: String

-location_name: String

description: String

=platform_name: String
-platform_specific_component_name: String
-type: ActivityType

~grouping: Grouping

variability: ComponentVariability
=pl_inputs: List<PL_Input>

-pl_outputs: List<PL_Output>
-pl_activity_parameters: List<PL_Activity_Sheet_Parameter=>

“PL_Activity_Sheet()

«getType():ActivityType
+setType(ActivityType):void

«getld():String

«setld(String):void

«getName():String

+setName(String):void

+getDescription():String
«setDescription(String):void
«getComponentVariability():ComponentVariability
«setComponentVariability(ComponentVariability):void
+getPl_inputs():List<PL_Input>
+setPl_inputs(List<PL_Input>):void
«getPl_outputs():List<PL_Output>
«setPl_outputs(List<PL_Output>):void
=getGrouping():Grouping
+setGrouping(Grouping):void
+getPlatform_name():String
«setPlatform_name(String):void
«getPlatform_specific_component_name():String
«setPlatform_specific_component_name(String):void
»getLocation_name():String
«setLocation_name(String):void
«getVariability():ComponentVariability
+setVariability(ComponentVariability).void

«getPl_activity_parameters():List<PL_Activity_Sheet_Parameter>
»setPl_activity_parameters(List<PL_Activity_Sheet_Parameter>):void

4
\
~pLacllvnyfcnnneclcrs'\..(] >
<<Java Class>>
=PL_Activity_Sheet_Connector
edu.gmu.cs.pl

-id: String

-pl_input: PL_Input

pl_output: PL_Output

- pl_payload: List<PL_Payload>
“PL_Activity_Sheet_Connector()

= getld():String

«setld(String):void
=getPl_input():PL_Input
+setPl_input(PL_Input):void
«getPl_output():PL_Output

« setPl_output(PL_Output):void
«getPI_payload():List<PL_Payload>
= setPl_payload(List<PL_Payload>):void

<<Java Class>>
@PL_Location
edugmu.cs.pl

<id: String
<name: String
description: String

Y ~pl_activity_parameters

“PL_Location()
=getld():String

+ setld(String):void

- getName():String

- setName(String):void

= getDescription():String

= setDescription(String):void

N <<Java Class>>
0.7 PL_Activity_Sheet_Parameter|
edu.gmu.cs.pl

«id: String

~name: String

value: String

~description: String
“PL_Activity_Sheet_Parameter()
«getld():String
«setld(String):void
=getName():String
«setName(String):void
«getValue():String
«setValue(String):void
«getDescription():String

= setDescription(String):void

Figure 6.4 Feature to TeC EU SPL Component Meta-Model Relationships

semantics to capture variability. TeC components represent devices and software available
in a TeC environment. Examples of PL_Activity Sheet meta-classes are phones, cameras,
motion sensors, etc. A Feature can have one or more PL_Activity Sheet meta-classes. The
PL_Activity _Connector meta-class captures connectivity of PL_Activity Sheet meta-
classes related to a Feature. Features can have zero or more PL_Activity Connector meta-
classes. The PL_Location meta-class captures location information applicable to a given

Feature. The PL_Activity Parameter meta-class captures configurable internal parameters

125

<<Java Class>>
“PL_Activity_Sheet <<Java Class>>
edu.gmu.cs.pl “PL_Input <<Java Class>>
«id: String £du.gmu.cs.pl =PL_Payload
SALDEET -name: String “id: String edugmu.cs.pl
=PL_Activity_Sheet_Parameter| .location_name: String -name: String — =t
edu.gmu.cs pl = R Py id: String
S -description: String pl_activity_sheet_name: String -name: String
+Id: String platform_name: String “PL_Input() Jue: St
<name: String y y . value: String
value: String - platform_specific_component_name: String - getPl_activity_sheet_name():String description: String
e “PL_Activity_Sheet() «setPl_activity_sheet_name(Strin - configAtRuntime: boolean
cesoripin-isting - getType():ActivityTy -getld():String rpayloads g
iPL Activity Sheet P gelType():ActivityType § = PL_Payload()
YPL_Activity_Sheel_Parametsr(} - setType(Activity Type):void - setld(String):void 0. =
=getld():String e ~pl_inputs =getld():String
g ol =getld():String 7| getName():String - setld(String):void
+setld(String).void P < setld(String)-void 07" | setName(String):void - getName(}:String
-getName():String G| getName() String «getStreamorevent(): StreamQrEv.. ‘SelNam(S'm.n i
. aelName(anng),vmd + setName({String) void - setStreamorevent(StreamOrEve . gewalue()'smgu
=getValue() String - getDescription():String *getPayloads():List<PL_Payload> - selValue(String):void
~selValue($tf\ng) V°"?' «setDescription(String):void - setPayloads(List<PL_Payload>):.. ConfigAtRuntime():bool
= getDescription():String 5 P T =isConf untime():boolean
sy _ = getComponentVariability(): ComponentVariability | . \ . :
setD: 1(String):void ~pl input 1 setConfigAtRuntime(boolean)..
+setComponentVanability(ComponentVariabilit. ~streamorevent|0..1 plLinput 1, -getDescription():String
+getPl_inputs():List<PL_Input> ‘ \ = setDescription(String):void
<<Java Class>> =setP|_inputs(List<PL_Input=):void <<Java Enumeration=> A
=Activity Type =getPl_outputs():List<PL_Output> oStreamOrEvent '-paymad.g.u * ~pl_payload|0..”
edu.gmu.cs1.data »setP|_outputs(List<PL_Output>).void edu.gmu.cs.pl
id: int .~ |*getGrouping():Grouping STREAM: StreamOrEvent
name: String +setGrouping(Grouping):void YEVENT: StreamOrEvent 7 '\‘
short_description: String =getPlatform_name():String “StreamOrEvent() / \
-long_description: String «setPlatform_name(String):void R / .
inputTypes: List<InputType> =getPlatform_specific_component_name():String |-, wstreamoreveml[) 1 N\
“ActivityType() ~seti\aIfotrm_spec|f::r;_5clomponenl_nametslnng. /
=getinputTypes():List<InputType> ~getLocation_name():string i
. ; -setLocation_name(String):void \ <<Java Class>> S e
getLong_description()-String o 3 ol outpu “PL_Output °PL_Activity_Sheet_Connector|
- getName() String . b - pLouty g T edugmucsal
B e use?é?namm?m"(‘;{ll.ﬂelngf”:m:“yl) Shest_p * Tiasmmg SN
-setinputTypes(List<InputType=.. *gelPl_parameters().List<PL_Activity_Sheet_P... "
vsetLopng :Zscl(’iption(sﬁmngy)p\?oid -setP|_parametersiList<PL_Activity_Sheet Pa... *name: String “PL_Aclivity_Sheet_Connector(}
=~ . i 1 “triger: String «getld().String
+setName(String)-void \ . Sl
i \ - pl_activity_sheet_name: String -setld(String):void
=setShort_description(String).void / \ PL_Output() ~pl_output |« getPl_input()PL_Input
»getld():int f 1 R ! _:,_,,--*' . o =
- setld(int):void / \ -gelPl_activity_sheet_name()... <3 VSE;E:_IH%UI(TLEJEPE)U:OI?
~variability ~grouping, 0.1 -setPl_activity_sheet_name(St . getPl_output():PL_Output
i A - getld():String «setPl_output(PL_Output)-void
<<Java Enumeration>> <<Java Enumeration=>| | setld(String):void *getP|_payload().List<PL_Payload>
oComponentVariability ©Grouping - getName():String +setPI_payload(List<PL_Payload=...
edu.gmu.cs.pl edugmu.cs.pl « setName(String):void
KERNEL: ComponentVariability “All: Grouping - getStreamarevent():StreamOr.
“OPTIONAL: ComponentVariability Location: Grouping = setStreamorevent(StreamOrE...
DEFAULT_VARIANT. ComponentVariability “Any: Grouping »getTriger():String
“VARIANT. ComponentVariability +Grouping() = setTriger(String):void
+ComponentVariability() getPayloads().List<PL_Payloa.
- setPayloads(List<PL_Payload .
Figure 6.5 TeC EU SPL Component Meta-Model

of the PL_Activity Sheet. Feature meta-classes can have zero or more
PL_Activity_Parameter meta-classes.

Figure 6.5 shows the TeC EU SPL Component meta-model. In detail, the
PL_Activity_Sheet meta-class has zero or more PL_Input and PL_Output meta-classes.
The PL_Input meta-class captures input events and the PL_Output meta-class captures
output events or data streams of the PL_Activity Sheet meta-class. Examples of data
streams can be audio or video data. The PL_Input events capture changes in the
environment and based on the input values can modify the internal state of the

PL_Activity_Sheet meta-class. The PL_Output events cause output events to be generated

126

when changes occur in the internal state of the PL_Activity_Sheet. The PL_Output events
have a triggering condition that is based on the PL_Activity_Sheet internal variables. The
PL_Payload meta-class captures the data elements send by output events to inputs.

As shown on Figure 6.5 the PL_Output and PL_Input events have zero or more
payload data. The PL_Output is connected to the PL_Input through the
PL_Activity_Connector meta-class in order to connect different components. The
PL_Activity_Connector meta-class combines inputs, outputs and payloads to ensure data
integrity. The PL_Activity_Connector meta-class has one PL_Output to indicate the
beginning of the component connection, one PL_Input to indicate the end of the component
connection and zero-or-one PL_Payload to indicate the data payload to be used between
the PL_Output and PL_Input events. Each PL_Activity Sheet meta-class can have zero-
or-one Grouping. The Grouping meta-class represents the way that the PL_Activity Sheet
is applied to the physical environment. For example a PL_Activity_Sheet with grouping
type “All” represents all devices/components in the physical environment that implement
the activity type that the PL_Activity_Sheet meta-class represents. The grouping type
“Location” represents all devices/components in a given location and “Any” represents any
device/component that implement the activity type that the PL_Activity_Sheet meta-class
represents. The ComponentVariability meta-class captures the PL_Activity Sheet
variability information. Finally each PL_Activity_Sheet meta-class belongs to one
ActivityType. The ActivityType meta-class is used to indicate the type of a
PL_Activity_Sheet. For example consider an ActivityType that represents a motion sensor.

The ActivityType for the motion sensor exposes an Application Programming Interface

127

<<Java Class>>

sLocation
~isDeployed _ edugmu st data
N g
~childTeams| - " <<Java Class>>
—parentTeamDe%gn:— =<Java Class>> B dactivityTypes <<,Ja.va Class>>
= =TeamDesign ctivityType i D g
0.1 edu.gmu.cs1.data edu.gmu.cs1.data 0 edu gmu.cs1.device
i : 7 —
dteam0.1% -activitytype 0.1 -
/
f
~isParameterized 0. f ~isRealized 1.°

<<Java Class>> [<<Java Class>> : <<Java Class>>
o ~isConfigured o -
@ActivityParameter %g | eActivitySheet g =Payload
edugmu.cs1.data 0 | edu.gmu cs1 data . § L edu.gmu cs1 data

+contains 0..° +contains 0.7

‘-‘ #activitySheet 0.1 ’ =iy
| / >

T #inEvisMap|0.*

{" N T - ' ""mpg"-fr- “<<Java Class>>
/ / e N . cInput

[TN ' #dzinput_ edugmu.cst.data
| / § . 0

#te?'mZFIayer 0 V_VjU,uLDUl's&."'"'{-J ~isConnected 0. +isReceived 0,.*"

<<Java Class>> | - <<Java Class>> . <<Java Class>>
oPlayer | #iriggerOutMap =Output ﬂ. =ActivityConnector
edu gmu.cs1 player 0.* edugmu.csi.data 0.. edu.gmu.cs1.data

Figure 6.6 TeC PSP Physical Meta-Model

(API) for TeC meta-classes to use. A PL_Activity Sheet meta-class that belongs to the
motion sensor ActivityType represents an instance of the ActivityType and inherits all API

functions from the type.

6.4.2 TeC Physical Meta-Model

This section describes the TeC Physical meta-model. The meta-model was used by
the EUSPLP development environment to represent derived applications for TeC. The TeC
meta-model excluding the DeviceManager / Player meta-classes and their relationships
were developed as part of this research. The meta-model is used by the TeC Android
simulator (Shen, 2014) (a) to capture the structure of TeC applications developed by end
users, and (b) to map TeC application components to devices in the TeC environment

during application deployment.

128

Table 6.1 TeC PSP Physical Meta-Model
Meta-Class Name | Meta-Class Description

ActivityType Captures the logical component type (phone, moisture sensor,
etc).

ActivitySheet Capture ActivityType instances in TeC applications

TeamDesign Captures a TeC Application

Location Captures the location of the TeC Application

Input Captures the input events of the ActivitySheet

Output Captures the output events of the ActivitySheet

Payload Captures the payload send between outputs/inputs

ActivityConnector | Captures the output/input connectivity

ActivityParameter | Captures the parameters of the ActivitySheet

DeviceManager Captures the device information that implement each
ActivityType. Each device has to extend the DeviceManager
class. For this research the TeC devices were extended to
support the Smart Home case study

Player Captures device instances of different devices that are part of a
TeC Application

The EUSPLP environment during application derivation, retrieves the components
and connectors that realize the selected features from the EU SPL and maps them to the
TeC meta-model in order to create the TeC application. The TeC application is stored in
the TeC environment during the application deployment process. Figure 6.6 shows the
meta-classes and relationships of the TeC physical meta-model. The main meta-classes of
the TeC meta-model are the: TeamDesign, Location, ActivityParameter, ActivitySheet,
ActivityType, Input, Output, Payload, ActivityConnector, DeviceManager and Player.
Table 6.1 provides a brief description for each meta-class. The EUSPLP uses the entire
TeC physical meta-model shown on Figure 6.6 to represent TeC applications, besides the
DeviceManager and the Player meta-classes. The DeviceManager and Player meta-classes

are used to capture low level application deployment information in the TeC environment.

129

<<subsystem>> <<entity>>

EU SPL Development EU SPL View
(PIPL)

1.2 Retrieve Visual 1.3 Visual

Representation of P”’LT Representation of PIPL
1. Create New <<user interface>> 3.2 Store PIPL (JSON) (JSON)

EU SP.L or Edit EU SPL Retriever
Exlstlng/v
1.1 Request
PIPL
3.3 Extract PSPL
] : o
2. Interact with EU SPL Editor <<business logic>> <<processor>>

to create/edit the EUSPL EU SPL Manager ;FCPSPL PIPLtoPSPLProcessor
EU SPL 3. Submit EU SPL for Storage ’
Designer V\\ 3.5 Store TeC PSPL
15 Displ:y\m 3.1 Submit PIPL 36 AY%
2.1 Respdnd to <<user interface>> —> <<entity>>
Designer input EU SPL Editor < EU SPL Storage
3.8 Ack 1.4 PIPL (TeC PSPL)

3.7 Ack

Figure 6.7 EU SPL Development Subsystem and Component Interactions

6.5 EUSPLP EU SPL Development Subsystem

Figure 6.7 shows the internal composition of the EU SPL Development subsystem
and the EU SPL designer interactions. The EU SPL Development subsystem is composed
of six components: (1) EU SPL Editor, (2) EU SPL Retriever, (3) EU SPL Manager, (4)
EU SPL View, (5) PIPLtoPSPLProcessor, and (6) EU SPL Storage. The EU SPL Editor
provides the user interface for developing EU SPLs. The EU SPL Retriever provides the
user interface to query existing EU SPLs. The EU SPL Manager provides the services for
creating and retrieving EU SPLs. The EU SPL View provides services for storing and
retrieving the visual representation (PIPL) of the EU SPL. The PIPLtoPSPLProcessor
generates the TeC product line model (TeC PSPL) from the visual representation (PIPL).
The EU SPL Storage provides services for storing and retrieving the TeC PSPL. The reason
for having different components is to have separation of concerns on the functionality

provided by each of the components. With this approach, components can be reused by

130

other subsystems. Another benefit is that internal updates of individual components do not
affect the rest of the components.

The remainder of this section discusses the EU SPL designer interactions and inner
workings of the EU SPL Development subsystem. In detail, the EU SPL designer interacts
with the EU SPL Retriever component to retrieve or create a new EU SPL, as shown in
steps “1. Create New EU SPL or Edit Existing” in Figure 6.7 through “1.5 Display PIPL.”
The EU SPL designer interacts with the EU SPL Editor to create or edit the EU SPL, as
shown in step “2. Interact with EU SPL Editor to create/edit the EUSPL” in Figure 6.7.
The EU SPL Editor responds to the EU SPL Designer inputs, as shown in step “2.1
Respond to Designer input.”

Next, the EU SPL designer submits the EU SPL to the EU SPL Editor, as shown in
step “3. Submit EU SPL for Storage” in Figure 6.7. The EU SPL Editor submits the EU
SPL to the EU SPL Manager in JSON format as shown in step “3.1 Submit PIPL.” The
communication between the EU SPL Editor and the EU SPL Manager is through REST
services. The JSON message that the EU SPL Editor sends contains PIPL with visual
representation constructs used by the user interface of the editor. The EU SPL Manager
sends the PIPL to the EU SPL View component to store the PIPL shown in step “3.2 Store
PIPL.” After the PIPL view is stored, the EU SPL Manager sends the PIPL to the
PIPLtoPSPLProcessor shown in step “3.3 Extract PSPL” to convert the PIPL to the TeC
PSPL. The PIPLtoPSPLProcessor extracts the TeC PSPL specification, as a Java Object
representation, from the PIPL. The PIPLtoPSPLProcessor sends the TeC PSPL

specification to the EU SPL Manager as shown in step “3.4 TeC PSPL.” The EU SPL

131

Manager sends the TeC PSPL representation to the EU SPL Storage component for storage
shown in step “3.5 Store TeC PSPL.” The EU SPL Storage component stores the TeC
PSPL representation on the file system in JSON format and sends an acknowledgement
message to the EU SPL Manager shown in step “3.6 Ack.” Upon successful storage of the
TeC PSPL, the EU SPL Manager sends an acknowledgement message to the EU SPL
Editor shown in step “3.7 Ack.” The EU SPL Editor shows an acknowledgement message
to the EU SPL designer that the EU SPL has been stored successfully, as shown in step
“3.8 Ack.” The EU SPL designer can repeat the processes shown in Figure 6.7 to continue

evolving the EUSPL.

6.5.1 EU SPL Editor

Figure 6.8 shows the user interface of the EU SPL Editor used to develop EU SPLs.
The user interface utilizes an interactive tree structure for representing the EU SPL feature
model and a drag and drop interface for component designs to make it more natural for EU
SPL designers to use. The user interface is divided in four main sections: (1) The Feature
Model section, (2) The Feature Architecture section, (3) The Component Types section,

and (4) The Parameter Table.

132

pues o) ebessapy D Bsw Anou lewe Jajypuas ans=enanpujebessaw Ja|pueHus|yojul
afesseus O SSaLppe |lews Aynou lews pe|ypuas ani=enanpujabessaw Je|pueHus|yojul
B pUes 0} SSeIppe |lews ay | :c— QQ
puas o} abessajy O Bsw Ajmou lews uejypuaes any=enanpujabessaw Ja|pueHua|yALNdes -H m
ebessaw =
» pliss 6] sseippe iews oyl O ssalppe”|lews Anou jlews Ue|ypues enj=enanpujebessew Jo|pueHua|yAIIN0esS —Qﬂucz thﬂﬂum
awiny uny anjep nduy indino jusauodwo)
uonduosag W Blyuos _ Auadoid awepN Apadoid 1oBie] juauodwo) jabie) s01n0g 1ab6u1) asinos 201n0g
adA)"suoyd uonebu| pews M\ -

uBisep Jnok o} ppe 0} adA | jusuodwo) a8jes)
L4 f J0819Q 191EM * W
Q—A.—-W.H. h@ﬂ@gﬁhﬂm :cmﬂgum WQQ%H‘ JoIneyag BWOH JOm=-;

H—hQ:CQEQU MOpUIM @ -

uonow & -1
uoS “h
°h=ﬁuoﬂm~—°o~< Qh:““oh s . Aunoeg swoH ¥ v
Kmnou (] jews &

;SN. 1

UONEOYNON 19N ¥ J‘
B 3 08pIA XK -

Mejypues " . aquasqns opny n m
H

aquosqgns
e sBossom ue|y auoyd il a
U r—
[ouiy QWoH :mee v
Ye|yenieoal |9POW @imead 1ds N3
ye|yeAleoel
1dS N3 @Aes
\A.\ - g e - ¥ + 0 82% Y2135 5 o 08150Y[ed0] (1) <

= X Joup3 1ds NI

Fiaure 6.8 EU SPL Editor User Interface
133

6.5.1.1 Feature Model Section

The Feature Model section is responsible for capturing the SPL feature model. The
Feature Model section was implemented in JavaScript by customizing and extending the
jsTree (Duckett, 2014) tree plugin of the jQuery technology. The EU SPL designer can
right click on the feature model section as shown in Figure 6.9 through Figure 6.11 to create
new features, platform dependent features and feature groups. The Feature Model is
represented as a hierarchical tree structure in the EUSPLP. The reason that a hierarchical
tree structure was used to represent the feature model versus a directed acyclic graph
normally used in traditional SPLs was to make it simpler for EU SPL designers to visualize
the product line features and their dependencies. Furthermore different icons were used as
a visual representation of different feature types. The visual representation of feature types
was used to simplify the user interface. The remainder of this section describes the visual
representations of the feature types.

The Feature Model section supports the creation of (a) common, (b) default
optional, (c) optional, (d) default alternative, and (e) alternative features. Common features
are represented with the exclamation mark @ icon in a black circle and represent features
that are required for application derivation. Default optional features are represented with
a white question mark i icon in a black background and represent the default features from
a set of optional features. Optional features are represented with a black question mark ?
icon and represent features that are optional. Default alternative features are represented

with the & icon and represent the default feature from a set of alternative features.

134

Save EU SPL
EU SPL Feature Model

.. Smart Home

oA\eﬁ
n Phone Alert

""" Create Feature Group » Zero-Or-More
Lo ? Create Feature » Zero-Or-One
Create Platform Dependent Feature » One-Or-More
Rename Node Exactly-One
Delete Node

T
Figure 6.9 Feature Group Menu in the EU SPL Editor

Save EU SPL
[EU SPL Feature Model

4. Smart Home

4 —omert
| n Phane Alert

Create Feature Group »

Create Feature 3 Commeon Feature

Create Platform Dependent Feature » Optional Default Feature
Rename Node Optional Feature

Delete Node Alternative Default Feature

Alternative Feature

Figure 6.10 Feature Menu in the EU SPL Editor

Save EU SPL
EU SPL Feature Model

i Smart Home

L@
: nphone Alert

b all Create Feature Group 3
e ? Create Feature L2
Create Platform Dependent Feature # PD Common Feature
Rename Node PD Optional Default Feature
Delete Node PD Optional Feature

PD Alternative Default Feature

PD Alternative Feature

Figure 6.11 Platform Dependent Menu in the EU SPL Editor

135

Alternative features are represented with * icon and represents mutually exclusive
features. The feature model also supports platform dependent features, which are features
that are only applicable to a specific end user environment.

The Platform dependent features supported by the prototype are (a) common, (b)
default optional, (c) optional, (d) default alternative, and (e) alternative features. The icons
representing platform dependent features are similar to regular features but in addition have
a dot indicator on the icon left corner. For example platform dependent common features
are represented with the exclamation mark @ icon having a white dot on the left corner.
Platform dependent default optional features are represented with a white question mark in
a back background H icon having a white dot on the left corner. Platform dependent
optional features are represented with the question mark “? icon having a black dot on the
left corner. Platform dependent default alternative features are represented with the &3
icon having a white dot on the left corner. Alternative features are represented with
having a black dot on the left corner.

The feature groups supported by the prototype are (a) zero-or-more (b) zero-or-one
(c) one or more and (d) exactly-one. The EUSPLP is using the crow’s foot notation (Barker,
1990) to capture the cardinality of a feature group. The reason that Crow’s foot notation
was used in the EUSPLP was because the notation is widely used to represent entity
relationships in data models. In detail, zero or more feature groups indicate that zero or
more features can be selected from the feature group during application derivation. Zero or
more feature groups are represented with the following icon —o€ that has a circle to indicate

zero features connected to three lines to indicate multiple features. Zero-or-one feature

136

groups indicate that zero or one feature can be selected from the feature group during
application derivation. Zero-or-one feature groups are represented with the following icon
—oF that has a circle to indicate zero features connected to vertical line to indicate one
feature. One or more feature groups indicate that one or more features can be selected from
the feature group during application derivation. One or more feature groups are represented
with the following icon #€ that has a vertical line to indicate one feature connected to three
lines to indicate multiple features. Exactly-one feature groups indicate that exactly one
feature can be selected from the feature group during application derivation. Exactly-one
feature groups are represented with the following icon —H that has two vertical lines to

indicate that minimum and maximum feature group cardinality is one. Table 6.2 displays

Table 6.2 EU SPL Editor Feature Model Notation
Feature Model Node Feature Model Node Description
Notation

common feature

optional default feature
optional feature
alternative default feature
alternative feature

platform dependent common feature
platform dependent optional default feature
platform dependent optional feature

platform dependent alternative default
feature
platform dependent alternative feature

zero-or-more feature group
zero-or-one feature group
one-or-more feature group
exactly-one feature group

FhSR x| BE® x BN

137

a summary of the EU SPL Editor Feature Model Notation used by the EUSPLP
environment.

Internally each node on the feature model that describes a feature or a feature group
has the following properties: id, icon, and data. The id property captures the unique id of
each node on the feature model. The icon property captures the location of the icon
representation of the node in the feature model. The data object captures the data needed
to realize a product line feature. To create the EU SPL the EU SPL designer submits the

feature model including feature nodes with their properties to the EU SPL Manager.

6.5.1.2 Feature Architecture Section

The Feature Architecture section shown in Figure 6.12 is used to capture the
component/connector specification that realizes each feature. This section utilizes a drag
and drop interface. Drag and drop interfaces are ubiquitous and used daily by end users.
For instance drag and drop is used to resize windows in personal computers, tablets,
navigate maps, to scroll up and down a document (Appert et al., 2015). Furthermore the
What You She Is What You Get (WYSIWYG) principal used for end user development
(Burnett, 2009) aims to have end users relate their programs to the end result. By utilizing
the drag and drop interface, EU SPL designers can drag and drop components to the feature
architecture section and connect them together. The feature architecture section was
created in this research by customizing and extending the community edition of the

jsPlumb (Porritt 2016) JavaScript Library.

138

——— receiveAlert
receiveAle —

securityAlertHandler

infoAlertHandler

Y kernel
kernel
message_broker_nype
message_broker_type

subscribe sendAlert

subscribe

pmail
optional

email_message_tvpe

Figure 6.12 EUSPLP Component Example

In detail, the Feature Architecture section contains components and component
connectors. The components are instances of TeC activity types. Components are
represented as rectangular boxes in the feature architecture section. Inputs of the
components are shown as gray boxes attached to the component box and outputs are shown
as orange boxes attached to the component box. Figure 6.12 shows an example of a
component design from the feature architecture section used to implement a feature. As
shown in Figure 6.12, there are three components, the infoAlertHandler, the
securityAlertHandler and the email. The infoAlertHandler and securityAlertHandler
components have two inputs: subscribe and receiveAlert and one output sendAlert. The
email component has one input notify and one output init. The design indicates that during
the initialization the email component subscribes to the infoAlertHandler and

securityAlertHandler components to receive messages. When a message is available the

139

infoAlertHandler and securityAlertHandler components send alert messages to the notify
input of the email component. The email will send email notifications upon the receipt of
the alert message.

The component internal representation contains the following properties:
comp_name, comp_type, variability_type, location, platform_name,
platform_specific_component_name, is_group, inputs, and outputs. The comp_name
property captures the component name. The comp_type property captures the activity type
of the component. The variability type property captures if the component is kernel,
optional, variant, or default variant. The location property specifies the location name of
the component. The platform_name property is applicable if the component is platform
specific and indicates the name of the end user environment that the component applies.
The platform_specific_component_name property is also applicable if the component is
platform specific and indicates the component name in the end user environment that the
component applies. The is_group property specifies if the component represents a grouping
of components that implement the same activity type. The inputs property of the
component is an array and specifies the input events of each component.

Inputs events are component notifications that can cause changes in a component
state that can lead to the execution of component outputs. For example consider a
component that represents a DVD player. The component can have an input event play that
causes the DVD player to play a movie and output a video stream or an error message if
there is no DVD in the player. Each object on the input events array contains the following

properties: name, type, and a payloadlist. The name property specifies the name of the

140

event type, the type property specifies if the input event is of type event or a video data
stream and the payloadlist property specifies the payloads that the component needs to
handle an event. Payload objects are mainly name-value pairs. For example consider an
input event called “send-text” on a component that represents a cell phone. The send-text
event will need to have a payload list that will consist of two payload objects. The first
payload object will have a name called “phone number” and value the actual phone
number for example “(999) 999-9999” that the text will be send. The second payload object
will have “message” as the name of the payload and the actual text that will be send as
value. In the EUSPLP all component inputs are inherited by the components type that they
represent. The outputs property of the component is an array and specifies the output events
of each component.

Output events are events generated by a component when it’s internal state changes.
For example consider a thermometer that makes a sound when a certain temperature gets
reached. The sound is the output event of the thermometer. To control output events there
are triggering conditions that when they are true the output event gets generated. Output
events are connected to input events of other components to create application logic. Each
object on the outputs array contain the following properties: name and triggering condition.
The name specifies the output name and triggering condition specifies the state of the
component that needs to be true in order for the output event to be generated. EU SPL
designers can specify component outputs during component designs. The component
connector object of the Feature Architecture section encapsulates the information needed

to connect two components.

141

6.5.1.3 Component Types Section

The Components Types section displays all available component types in the EU
SPL Editor that EU SPL designers can use to realize features. Since the EUSPLP targets
to derive applications that can be deployed to the TeC environment, the component types
used in the prototype are TeC activity types.

The properties of the component types are: id, name and inputTypes. The id and
name properties specify the id and name of component type. The inputTypes is an array of
input objects. To create or edit the component architecture of a feature, EU SPL designers
select the component type. Upon the component selection, the EU SPL Editor prompts the
EU SPL designer for additional component information (comp_name, variability type,
location, platform_name, platform_specific_component_name, and is_group) needed to
create the component instance as shown in Figure 6.13. The EU SPL Editor combines the
component type and the EU SPL designer entered information to create the activity
instance in the Feature Architecture section. The component type user interface was

developed by extending the JQuery Ul (Sarrion 2012) JavaScript libraries.

6.5.1.4 Parameter Table Section

The Parameter Table section specifies all parameters that need to be configured
either by the EU SPL designer or by the end users during application derivation. The
parameter table user interface is created by extending the editablegrid (Méaca, 2016)
JavaScript libraries. The Parameter Table displays all component connector properties
applicable to a selected feature from the feature model. The parameter table gets auto

populated as EU SPL designers connect components in the Feature Architecture section to

142

Configure Component - phone_type X

Please enter the component instance name:

Select the component reuse type:
‘ kernel v

If component platform specific, add the platform name

If component platform specific, add the platform component
name

Group:
ac Location

e rc
er al
=tn Create
-in=true notitv Phone Issue call dial

Figure 6.13 Component Type Configuration

implement a feature. The internal parameter table representation contains the following
properties: sourceactivityname, sourcetrigercondition, sourceoutput, targetactivityname,
targetinput, configuredRunTime, propertyname, propertyvalue and description. The
sourceactivityname specifies the name of the component name that that is the source of the
component connection. The sourcetrigercondition property specifies the triggering
condition that is needed for the output event to occur. The sourceoutput property specifies

the output name that the component connection starts. The targetactivityname property

143

specifies the target activity of the component connection. The target input property
specifies the name of the input of the target activity that the component connection ends.
The configuredRunTime property specifies if the parameter need to be defined during
application derivation or if the parameter need to be specified by the EU SPL designer
during feature creation. The propertyname specifies the name of the input parameter that
needs to be specified by the output event for the target component to process the input
event. The propertyvalue specifies the value of the propertyname property. The description
property provides additional information about the propertyname property. All entries of

the parameter table are stored on the feat_properties array specified for each feature.

6.5.2 Feature Creation in the EU SPL Editor

To create a feature, EU SPL designers create a node on the feature model by
selecting the appropriate feature type. The Feature Architecture section and the Parameter
Table are reset to accommodate the new feature architecture and parameters. Child features
can be added under a feature node. Kernel features exist in all products derived by the
product line, so they should not depend on non-kernel (optional/variant) features types.
Optional and variant features can depend on kernel features or other features. After the
feature node is created EU SPL designers select the component types and add them to the
Feature Architecture section. As the EU SPL designers connect components to develop the
feature architecture, the parameter table gets auto-populated based on the components
configuration parameters. EU SPL designers configure the parameter table to complete the

feature realization. When EU SPL designers select existing nodes on the feature model, the

144

Feature Architecture and the Parameter table sections are restored and show the selected

feature design and parameter values.

6.5.3 PIPL JSON Representation

The EU SPL designers select the “Save EU SPL” button in the user interface of the
EU SPL Editor, shown in Figure 6.14 to store EU SPLs to the EUSPLP server. Internally
the EU SPL Editor extracts from client memory the product line design (PIPL), serializes
it to JSON format and sends it to the EU SPL Manager component for processing in the
EUSPLP server. The PIPL captures the EU SPL representation in JSON combined with
visual elements needed by the EU SPL Editor to display the end user product line.

Figure 6.14 shows part of the PIPL JSON representation created for the Smart
Home EU SPL case study. The left side of Figure 6.14 displays the row JSON format of
the Smart Home PIPL that was submitted to the EUSPLP for processing. The right side of
Figure 6.14 displays the PIPL JSON in a human readable format.

In detail, the right side of Figure 6.14 shows that the PIPL is submitted to the
EUSPLP server as an array. The array has one node named Smart Home and it contains
eight properties: id, text, icon, li_attr, a_attr, state, data and children. The icon, li_attr, a_attr
and state properties capture user interface information needed by the EU SPL editor. The
data property captures the feature architecture of the Smart Home feature. The EU SPL
Manager sends the PIPL JSON to the EU SPL View meta-class for storage as shown in
Figure 6.14. The PIPL will be retrieved and sent to the EU SPL Editor when the EU SPL

designers requests to edit the product line.

145

14TV auoyd : 3xal

b pr
{8} o a
[9] usapTTy> 4
Joyoue-jutodpus-quntds(
moputm, \=sserd ,\‘xdgel :340T
fxdest :do3,\=a1A3s ATp>
u\<,\seAaued \=pT ,\uedou-sdesuns-31[
a2ejdns->3[owsp-dodp-8eup
SpPTM-SBAUED SEAUEBD-OWSP
=31, \=sse12 ATp> u\ : TWIYJBUUT Jea4
uowwo> : adA3 " 3eay
[e] setjuadoad ieas «
[6] 328uuc> 1e34 «
{8} 1 «
{8} o «
[z] Aeaue dwod 3e3) A
{s} eiep a
{r} @3e35 <«
{z} J13e7e «
{1} u3ze 1 «
Sud-uowwos /uo3T/" : UOIT
BWOH JJews : 3xa}
j00d @ pPIT
{8} o &
[1] Aeaue

! PT. €€

} - Z€

] :,3stTpeOTARd, - TE
©,2qTJosqgns, :,aueu, 14

} - 6T

] :,s3ndut, - 8T

“ Aug, 1 dnoudTsT fad

:Puweu jusuodwod 2T4T29ds wdao4ierd, 9z
Cw ,0WEU wuojietd, (14

<, TauJay, :,2dA3"A3TTTIQETJEA,, T
¢ .2dA3 " aaxouq aBessaw, :,2adA3, £T
¢ MBTPUBHIJTYALITUNDSS, !, 3Weu, zz
} -T2

] :,Aeaue dwos 3eay, - 97

} :.e3ep, ~6T

{ 8T

*uPRTAESTP, LT

‘ tuP333973s, 9T

¢ : pauado,, ST

‘ 14"

- €T
(43
LJoyoue 3004, @,PT,. IT
“uth, TuddY, et

boraaeTe, -6

{ 8

w3004, 1 ,PT. L

LEEPCEELIS S -9

¢ ,.8ud-uowwo> fuodt /", :,U0DT, [

¢ ,3WOH JJews, :,3IX33, t

f,3004, :,.PT, €

} .z

1-1

Figure 6.14 Sample PIPL JSON Representation

146

6.5.4 PIPL to TeC PSPL Processing

The PIPLtoPSPLProcessor generates, from the EU SPL visual representation
(PIPL), the TeC PSPL by following the PIPL to TeC PSPL mappings described in Chapter
5. The TeC PSPL created by the PIPLtoPSPLProcessor is distilled from visual elements
and is exclusively used to describe the end user product line for the TeC environment. The
separation of PIPL and TeC PSPL representations in the EUSPLP is used to decouple the
user interface from the core product line logic of storing /retrieving and deriving
applications form the TeC product line. This allows any updates to the user interface not
to affect the core product line logic and vice versa. Figure 6.15 shows the main methods of
the PIPLtoPSPLProcessor. In detail, the createPSPLfromPIPL method of the
PIPLtoPSPLProcessor starts the PIPL to TeC PSPL conversion. The createPSPLfromPIPL
method takes as input the JSON representation of the PIPL and returns the EUSPL object
that represents the TeC PSPL. The createPSPLfromPIPL method makes calls the

addFeaturetoPL method to extract the product line features from JSON and add it to the

<<Java Class>>
ePIPLtoPSPLProcessor

edu.gmu.eud.pl

¢PIPLtoPSPLProcessor()
¢createPSPLfromPIPL(String):EUSPL
sgetFeatureConnectors(Feature, JsonObject):List<PL Activity Sheet Connector>
sgetFeatureComponents(JsonObject):List
#getinputs(JsonArray,String):List<PL_Input>
sgetOutputs(JsonArray,String):List<PL Output>
sgetFeatureParameters(JsonObject):List
“addFeaturetoPL (JsonObject, String, EUSPL Feature):void
“addChildFeatures(String,JsonElement, String, EUSPL Feature):void
setVariability(Feature,String):void
“setComponentVariability(PL _Activity Sheet String):void
“setFeatureGroup(Feature,String):void

Figure 6.15 Methods of the PIPLtoPSPLProcessor Class

147

product line. The addFeaturetoPL method makes calls to: (1) the getFeatureComponents
method to extract from the PIPL model the components that realize each feature (2) the
getFeatureConnectors method to extract the component architecture of each feature (3) the
getFeatureParameters method to extract the parameters of each feature (4) the
setVariability method to extract the variability type and set it on each feature and (5) the
addChildFeatures method that processes the child features. For each child feature the
addChildFeatures calls recursively the addFeaturetoPL method. In addition to the methods
above, there are also a set of utility methods defined to further extract feature and
component meta-classes from the PIPL. In detail the utility method: (1) setFeatureGroup
sets the group type of each feature, (2) getinputs extract the inputs of each component from
the PIPL, (3) getlnputs extract the outputs of each component from the PIPL, and (4)

setComponentVariability sets the variability type of each component.

6.5.5 TeC PSPL JSON Representation

The output of the PIPLtoPSPLProcessor is the Java object representation of the
TeC PSPL. The EU SPL Manager sends the TeC PSPL java representation to the EU SPL
Storage class. The EU SPL Storage class converts the TeC PSPL java representation to
JSON and stores it to the file system.

Figure 6.16 shows part of the TeC PSPL JSON representation created for the Smart
Home EU SPL case study. The left side of Figure 6.16 displays the row JSON format of
the Smart Home TeC PSPL as it is stored in the file system. The right side of Figure 6.16

displays the TeC PSPL JSON in a more readable format.

148

[@] sJo3drsuuod™A3TAT30e Td <«

[e] s3says A3taT3oe 1d <«

[2] sadanieadpITy> <«

[6] sdJo3aweded A3TAT30 Td <«
: dnodgaunieay
dNOY¥9 3UNLYI4 40 INO” A1D¥X3 : adA1dnougaunieay
1431y 2uoyd : uotidrdosap
JJaTVY auoyd : aweu
ztl: pt

{t1} o a

[9] saunieadpTry> 4
[6] sdJojaweded A3T1AT30E Td <«
O: dnougaunieay
NOWWOD : A3TTTqeTJepadnieay
aWoH jJews : uoTidradsap
3WOH 3}JEBuwS : Jweu
joo0d @ pT

{t1} o a

[T] seuniea; a

1dSN3 SWOH JJews : EOan_ﬂLumwu
1dSN3 SWOH 3jJews : aweu

1 JauTeluod” auwoy 3Jews : pT

{¥} 372lqo a

juapuadaquJojieTd,
“[1 :,suotyedor 1d,

“[] :,s40328uu0d” A3TATIOE Td,

‘[1 :.s398ys A3TATIOE Td,

[1 :,s9dn3eadpTTYd,

“[] :,sdo3oweded A3TAaTioe Td,

‘ . :,dnounaunieas,

IAILYNYALTY LINv43d, :.AITTTgeTJepaun ey,
£, 01Tpny, :,uotidrassap,

£,0Tpny, :,aweu,
L8 1L, PT.

}

] t.S8un3eRPTTYd,

“[] :,sJa30weded A3TATIOE Td,

¢) dnodgaunieays,

dNo¥9 ™ 3¥NLYI4 40 INO ATDWX3, :,2dA1dnodnaaniesy,
f,3JaTy auoyd, :,uotidrudsep,

© .43y auoyd, :,Bweu,

R -

}
] :.saunjeadprryd,
] :,suo1oweded K31AaTioe 1d,
- .dnounaunieay,,
©uNOWWOD, ¢, AITTTqETJEABUNIESY,
f,3WoH jJews, :,uoT3drddsap,
¢,8WOH JJews, :,aweu,
‘3004,

| :.saanjeas,

1dsn3 awoH 3jJews, :,uoTidraisap,
“.1dSN3 sWoH 3Jeus

¢, T JauTeluod awoy JJews,

»

»
L L T T R N -)

b

Figure 6.16 Sample TeC PSPL JSON Representation

149

For instance, the right side of Figure 6.16 shows that the TeC PSPL is contained in
the Smart Home EUSPL object. The Smart Home EUSPL has one common feature named
Smart Home which is the root feature of the product line. The Smart Home feature is
common and is not a feature group. The Smart Home feature contains six childFeatures.
The six childFeatures are the Phone Alert, Net Notification, Home Security, Home
Behavior, Water Detector and Smart Irrigation features which in return have their own
features. Each feature on the EU SPL has the following properties: id, name, description,
featureVariability, featureGroup, pl_activity parameters, childFeatures,
pl_activity sheets, pl_activity_connectors, pl_locations, and platformDependent that
capture the architecture of each feature. The JSON TeC PSPL is stored on the file system
and gets accessed by the Application Derivation subsystem to derive the TeC Applications

(PSP) based on the end user selections.

150

6.6 End User Application Derivation

Figure 6.17 shows the internal composition of the Application Derivation
subsystem and the end user interactions needed to derive an application from the product
line. The Application Derivation subsystem is composed of six components: (1)
Application Derivation Editor, (2) EU SPL Derivation Loader, (3) Application Derivation
Manager, (4) EU SPL Storage, (5) ApplicationDerivationProcessor, and (6) TeCApp. The
Application Derivation Editor provides the user interface for deriving end user
applications. The EU SPL Derivation Loader provides the user interface for selecting EU
SPLs for application derivation. The EU SPL Manager provides the services and
coordinates the interactions of components for creating and retrieving EU SPLs. The
Application Derivation Manager provides services for retrieving the EU SPL and
deriving/storing end user applications. The EU SPL Storage provides services for storing

and retrieving the EU SPL. The ApplicationDerivationProcessor is used to derive

.<<SU.b5yStem.>>) <<entity>>
Application Derivation EU SPL Storage
(TeC PSPL)
1.2 Retrieve T 13TeCPSPL
3 Te
1. Request the EU <<user interface>> TeCPSPL l
SPL for Appligation EU SPL Derivation
Derlvatlcn/' Loader 1.1 Request 3.2 Extract Derived
i TeC PSPL Application Specification
- - from TeC PSPL
2. Interact with Application <<busmgss |.°g|C>> <.<prqcesso.r>>.
-) Application ApplicationDerivation

Derivation Editor to Select Derivation Manager — Processor

Features g 3.3 TeCApp
End User 3. Submit Feature Selections

V\ 3.1 Feature \ 3.4 Store TeC App
1.5 Display TeC << ; o Selections 3.5 Ack
user interface — <<entity>>

PSPL Application Derivation y
2.1 Respond to Editor «— TeCApp
the End User 1.4 TeCPSPL (TeC PSP)
Input 3.6 Ack
3.7 Ack

Figure 6.17 Application Derivation Subsystem and Component Interactions

151

applications from the EU SPL. The TeCApp is used to store the derived applications in the
file system as JSON. The different components were created to organize the application
derivation logic and obtain separation of concerns. Thus each component is responsible for
specific functionality. The sections below describe the interactions of the end user with the
Application Derivation subsystem in detail.

The application derivation process starts with the End User that requests from the
EU SPL Derivation Loader the EU SPL to derive applications shown in step “1. Request
the EU SPL for Application Derivation.” The Application Derivation subsystem retrieves
the EU SPL (shown in steps “1.2 Retrieve TeC PSPL” through “1.4 TeC PSPL” in Figure
6.17) and populates the Application Derivation Editor user interface with the TeC PSPL
shown in step “1.5 Display TeC PSPL.”

The End User interacts with the Application Derivation Editor to select the features
needed for his/her smart space shown in step “2. Interact with the Application Derivation
Editor to Select Features” in Figure 6.17. The Application Derivation Editor responds to
the End User inputs shown in step “2.1 Respond to End User Input” with additional
configuration details for selected features

The End User submits his/her feature selections to the Application Derivation
Editor shown in step “3. Submit Feature Selections” in Figure 6.17 to derive an application
for his/her smart space. The Application Derivation subsystem derives the application and
stores it in the on the file system in JSON format (as shown in steps “3.1 Feature

Selections” through “3.7 Ack” in Figure 6.17).

152

6.6.1 Application Derivation Editor
Figure 6.18 shows the user interface of the Application Derivation Editor. The user
interface is divided in three main sections: (1) The Feature Selection, (2) The Application

Architecture, and (3) The Application Parameter table.

6.6.1.1 Feature Selection Section

The Feature Selection Section displays the end user view of the EU SPL feature
model called feature selection model. During application derivations the icon
representation used during product line creation is transformed to actionable checkboxes
and radio buttons that end users can use to select features for their smart spaces. The feature
selection model is similar to the feature model on the EU SPL Editor and is represented as
a tree data structure. The feature selection model was implemented in JavaScript by
customizing and extending the TreeView (Livingston, 2002) JavaScript library. The JsTree
library was also evaluated since it was used for the Feature Model Selection section of the
EU SPL Editor but does not support combinations of HTML checkboxes ¥ /J and radio
buttons ®/O.

In detail, the nodes of the feature selection model represent features and feature
groups. Common features are not selectable and only their name is displayed on the node.
The Smart Home feature shown on the Feature Selection Section in Figure 6.18 is an

example of a common feature.

153

quinu suoyd ayr [lelp jledaxjew 11es 11e> ann=abessaw olpnyusje olpny| uonebrLuy Jews] &
puas 03 abessaw [] abessaw Ajnou olpnyua|e M3|ypuas ansy=ananpuabessalu ia|pueHa|yAIIND3as olpny 1019912Q J918M D
+
doj abessaw ayL [] o1doy aquIsgns Is|pueHMR|YAILINDAS AUl ansn=dnyuesys olpnyuaje oipny 11607
ayrjoaweuayl [7] aweujuauodwod 3quUISgNs J3|pue IvAjundas Ul anu=dnyueys olpnyyaje oipny i
awiy a4njieqd Jamod []
uonduosaq :.“M_ EMMH_MD awenN Apadold jnduj jabie) AjAnoy yebael M”N”M 1a66u) 9sinog AiAnoy a21nos Eﬂ“ﬂﬂ ainjied uzm_u_ D £
Byuon U—Dﬂ.—. LQ#WEW&N& :O_HNU__QQ< uoneasasuo) Abisug D
193114 DVAH[] =
Joineyag SWoH
s uonIAg MOpPUIM[]
uondo puondo puondo |
> oj1u0p.100p CO_QUW_QW UOnoW]
Aou i uo _:wEw>m | mhq‘ﬂmwm
: " AJIN23S BWOH
/ lrew3]
aquosqns aquosans SuonedlynoN IeN =
A . ajeAnoe uonoe 03pIA O
Jouay
Ad|pupyia)poful PG sownupa00” upyog O_U—._(@
i [puondo B) auo L
Ha|yaneoal . J€ooqqupyaIq M3V Ud =
! CO_HUOW We|yone08) 3WOH MewS o
1U01303|3S =a.njes
24n323)yduy uonediddy °s 4 1dS N3
))) uonedliddy 1dS N3 dALRQ
9 .82 - ® ¥ *+ 8% pis Yy D #dslpe/1dsan3/0gogIsoyiedo] (@ &

+ X "AuQ uonedyddy adeds yews

Figure 6.18 Application Derivation Editor User Interface

154

Optional default and platform dependent optional default features are displayed as
checked checkboxes on the Feature Selection Section. The Text and Door features shown
on the Feature Selection Section in Figure 6.18 are examples of optional default features
displayed as checked checkboxes. Similar optional features and platform dependent
optional features are displayed as non-checked checkboxes. The Email and Motion features
shown in Figure 6.18 are examples of optional features displayed as non-checked
checkboxes.

Alternative default features and platform dependent alternative default features are
displayed as selected radio buttons. The Audio feature shown in Figure 6.18 is an example
of an alternative default feature. Alternative features and platform dependent alternative
features are displayed as non-selected radio buttons. The Video feature shown on Figure
6.18 is an example of a platform dependent alternative feature.

Feature groups appear as non-selectable and are used for grouping a set of features.
The Phone Alert, Net Notifications, Home Security, Home Behavior and Water Detector
feature groups shown on Figure 6.18 are examples of how features groups are displayed
on the feature selection model. End users can change the default options and select the

feature combinations needed for their spaces.

6.6.1.2 Application Architecture Section

The Application Architecture section is used to display the cumulative
component/connector architecture for all features selected by the end user. This section
utilizes the same interface as the one used on the Feature Architecture Section of the EU

SPL editor. As end user select features in the feature selection section of the Application

155

Derivation Editor the application architecture is shown in the Application Architecture
section shown in Figure 6.18 In detail, the EUSPLP environment derives the
component/connector architecture for the selected features and sends them as JSON objects
to the Application Derivation editor. The editor draws the components and connectors on

the Application Architecture section using the jsPlumb JavaScript framework.

6.6.1.3 Application Parameter Table

The Application Parameter Table section specifies all the derived application
parameters that need to be configured by end users. Similar as the parameter table in the
EU SPL Editor the application parameter user interface is created by extending the
editablegrid JavaScript libraries. The Application Parameter Table displays all component
connector properties applicable to the selected features in the feature selection model. The
parameter table gets auto-populated as end users select features in the Feature Selection

section.

6.6.2 Application Derivation Processor

The purpose of the ApplicationDerivationProcessor is to compose the Java object
representation of the TeC application architecture based on features selected by end users.
This section describes the approach followed to compose the TeC application architecture.
In detail, the Application Derivation Manager sends the EU SPL and feature name
selections to the ApplicationDerivationProcessor class to extract the TeC Application
model. Figure 6.19 shows the main methods of the ApplicationDerivationProcessor. In

detail, the createApplication method starts the TeC Application extraction. The

156

<<Java Class>>

eApplicationDerivationProcessor
edu.gmu.eud.pl

-app_component_counter: int

<ApplicationDerivationProcessor()
eaddConnectors(List,PL_Architecture_Connector_Map):void
+addActivityType(List,ActivityType):void

= getActivitySheet(List,PL_Activity_Sheet, TeamDesign):ActivitySheet
»getinput(ActivitySheet,PL_Input):Input
+getOutput(ActivitySheet,PL_Output):Output

= createApplication(EUSPL,List<String>):void
»addInputConnections(List<PL_Architecture_Connector_Map>,PL_Input,Input):void
+addOutputConnections(List<PL_Architecture_Connector_Map>,PL_Output,Output):void
> getFeaturefromEUSPLRecursive(String,Feature):Feature
»getNextAppCompld():int
sextractPayloadFromPL_Output(PL_Input):Map<String,String>
sextractPayloadFromPL_Output(PL_Output):Map<String,String>
sgetCommonFeaturesRecursive(List,Feature Feature):List

Figure 6.19 Methods of the ApplicationDerivationProcessor Class

createApplication calls the getCommonFeaturesRecursive method to get the Java object
representation of the product line common features. After the common features are
retrieved the getFeaturefromEUSPLRecursive method is called to get the Java object
representation of the selected features. For each feature the activity sheet is extracted from
the PL_Activity _Sheet through the addActivitySheet method. For each activity sheet the
activity type is extracted through the addActivityType method. In addition for each activity
sheet inputs and outputs are extracted through the getinput and getOutput methods. The
payloads for inputs and outputs are extracted through the extractPayloadFromPL_Output
and extractPayloadFromPL_Input methods. The addIinputConnections and the
addOutputConnections methods add other activity sheets connecting output and input ids
respectively. The addConnectors method adds all activity sheet connectors to the TeC
application. The getNextAppCompld method generates temporary IDs for

components/inputs/outputs and payloads needed to link them together.

157

6.6.3 TeC Application JSON Representation

The ApplicationDerivationProcessor sends the derived Java object representation
of the TeC application to the Application Derivation Manager which then get Serialized as
JSON in the file system. Figure 6.20 shows part of the TeC Application JSON
representation created by the feature selections shown in Figure 6.18. The left side of
Figure 6.20 displays the row JSON format of the TeC Application as it is stored in the file
system. The right side of Figure 6.20 displays the TeC Application in a more readable
format. The main properties of the TeC application JSON shown in Figure 6.18 are:
teamdesign, team_activities, activity types and activity_connectors. The team design
captures the ID and the name of the TeC application. As shown in Figure 6.20, the name
of the team is Smart Home EUSPL. The team_activities property is an array that contains
activity sheets. Activity sheets are TeC components. The team_activities array contains
seven activity sheets: securityAlertHandler, infoAlertHandler, alertAudio, call, text,
doorMonitor, breakinDoor shown on the Application Architecture section in Figure 6.18.
The activity_types array captures the types of the activity sheets. Figure 6.20 shows that
there are six activity types in the activity_types. The message-broker activity type is being
used by the securityAlertHandler and the infoAlertHandler activity sheets. The
activity_connectors array capture the input/output connectivity information between
activity sheets. Figure 6.20 shows ten activity connectors which are consistent with the
connectors shown on in Figure 6.18. The JSON TeC Application representation is stored
on the file system and gets accessed by the Application Distribution subsystem to distribute

the TeC Application to the end user TeC platform.

158

| sJoldauuod”A1TATIOE «

[9] sadAy A3taTioe «

{8} 9 «
{8} s «
{8} v «
{8} € «
{g} 7z «
{8} 1 «

[1] sandino «
[z] sandut «
adA3 uesouq a8essaw : adK1A3TATIOR
o : pradA1AyTaTioe
@ : 9zZTISWea]
JOTPUBHIJATYALTUNIAS : Buweu
T : pIweal
[PT
{8} o a
[/] S8TITATIOE WEB] A
1dsSn3 SWoH JJEews : dweu
T: PT
{z} uBtsepuesl A

{¥} 108lqo a

ST
] :.spIandanpuuod,
JUSAIJQWEDJ]S,
JPI329ysAiTATIOE,
v .PT.
‘ wIBTVOATadad aueu,,
}
of
{
wa fw2TdO3,
‘un n8Weu jusuodwod,
} :,peoTAed,
‘
i3
‘T
1 :.sp1andinpuuod,
“LIN3AT, L 3USAZJQWESUIS,
‘e :,PI123YsA1TATIOE,
‘€ tuPT.
f,99qTJosqgns,, aweu,,
}
| :,sandut
‘,8dA1 uadouq eBessaw, :,adALA1TATIOE,
‘@ :,pIadALA3TATIOE,
‘@ :,2zTSweay,
‘ _,LWHEENI#LWth#MLJuWM: H :WENF_..
‘T i.pIweay,
‘T ,.PT,
}
_ :m@ﬂkﬂazﬂu.umlsmw”—:
A
» 1dSN3 SWOH 3JJews, QENC:
‘T “uPT.

} :,uBTsapuesay,

Figure 6.20 Sample TeC PSP JSON Representation

159

6.7 End User Application Deployment

During application deployment, end users deploy the derived application from the
EUSPLP to their TeC environment. Figure 6.21 shows the physical deployment of the
different systems used in this prototype and the event sequence between the different
subsystems to deploy an end user application. As shown on Figure 6.21, the EUSPLP is
deployed on the Tomcat JEE container. Tomcat is deployed in a Windows environment.
The Application Distributor subsystem handles requests to distribute the derived
application specification through REST services. The Application Distributor subsystem is
composed of two components, ApplicationPublisher and TeCApp. The
ApplicationPublisher provides services for sending the TeC application (PSP) to an
external system. The TeCApp is used to retrieve a derived application from the file system.

The TeC EUSPLP Adaptor and the TeC simulator are deployed to the end user
environment on an Android platform. The TeC EUSPLP Adaptor subsystem is designed to
be an extension to TeC environments. The purpose of the TeC EUSPLP Adaptor is to
retrieve, configure and store the TeC applications (PSPs) derived from the EUSPLP
environment to the TeC simulator. The EUSPLP adaptor subsystem is composed of two
components, EUSPLP Manager and TeCApplmporter. EUSPLP Manager provides the
user interface to end users to import derived applications form the EUSPLP. The
TeCApplmporter provides the services for communication with the EUSPLP to retrieve

the EU SPL and the TeC environment to store the derived application.

160

<<operating-system>>

Windows
<<JEE Container>>
Tomcat
<<subsystem>>
EUSPLP
1.4 Get
<<Asub|§yst§m>> <<entity>> Tefiap TeC AP
pplication TeCA
Distributor o oeh 1 (JSON
(TeC PSP) 15 Te
1.3 Retrieve T il.e TeC App
TeC App App
<<system-interface>>
ApplicationPublisher
1.2 Request l1.7 TeC App
TeC App T (JSON)
<<operating-system>>
Android
<<subsystem>>
TeC EUSPLP
Adaptor
1.1 Get TeC App
2.1 Store TeC App
<<user-interface>> . <<coordinator>>
1. Import EUSPLP Manager H:EA’) TeCApplmporter }
Applicatign to 2.6 Ack |
TeC i
2. Configyre
TeC App dnd
Store 1.9 TeC App
Configuration
Page 25 l 2.2 Store
2.7 Ack Ack T TeC App
End 3. peploy <<subsystem>>
User TeC App TeCc
3.9 Ac:x 2.3 Store
<<subsystem>> App -
Team Manager 3.3 Retrieve <<operating-
<<entity-storage>> App Teo
TeCStorageManager N D SyStem>>
2.4 Ack atabase .
3.4 App Android
3.2 Get is 5A
TeC App - App
3.1 Deploy 3.6 Instruct TeC
<<user-interface>>| M, [<<coordinator>> Components <<device>>
TeCEditor 3.8 Ack TeamManager <3T TeCDevices
Ack

Figure 6.21 Application Deployment Diagram

161

The TeC simulator (Shen, 2014) used in this research simulates TeCDevices
running as different Android instances. The TeC database used by the simulator is also
running in Android. For application deployment there are three components used in the
TeC simulator: (1) TeCEditor, (2) TeCStorageManager, and (3) TeamManager. The
TeCEditor provides the user interface for designing and deploying TeC applications. The
TeCStorageManager is used for the storage and retrieval of TeC applications. The
TeamManager is responsible for deploying TeC devices deployed in a smart space with
application instructions. There are several reasons for separating the Application
Distributor and TeC EUSPLP Adaptor subsystems. One of the main reasons is the
separation of concerns between retrieving the derived application and configuring/storing
it to the target system. By separating the two subsystems the Application Distributor does
not need to have information about how to store derived applications to different TeC
environments. Another reason is that the EUSPLP Adaptor can be specific to an operating
system, hardware etc. For example consider an EUSPLP Adaptor for a TeC system
deployed in Windows versus Android. Finally the EUSPLP Adaptor could be extended to
map TeC applications to other EUD environments for smart spaces similar to Jigsaw. The
sections below discuss in detail the application deployment process.

Application deployment starts with end users that interact with the TeC EUSPLP
Adaptor to import an application from EUSPLP to TeC as shown in steps “l. Import
Application to TeC” through “1.9 TeC App Configuration Page” in Figure 6.21 End Users
configure the derived application and submit their selections to the TeC EUSPLP Adaptor

to store the application to the TeC environment shown in step “2. Configure TeC App and

162

Store” through “2.7 Ack” in Figure 6.21. End Users interact with the TeC subsystem to
deploy the derived application to the TeC environment as shown in steps “3. Deploy TeC

App” through 3.9 Ack” in Figure 6.21.

6.8 Summary

This chapter has described the EUSPLP development environment that was created
as part of this research and described how it can be used to support the development of EU
SPLs, application derivation and application deployment for end user smart spaces. In
summary, the chapter described the use cases that EUSPLP implements. The overall
EUSPLP subsystem architecture was presented to show the interactions between different
subsystems that implement the use cases. The EUSPLP and TeC physical data model
sections described the meta-classes and their relationships used by the prototype to capture
end user product lines and derived applications. The EUSPLP EU SPL Development
section described the processes, user interface and artifacts used by EU SPL designers to
create or edit EU SPLs. The End User Application Derivation section describes the
processes, user interface and artifacts used by End Users to derive applications from EU
SPLs. Finally the End User Application Deployment section described the deployment of

derived applications to the TeC environment.

163

7 RESEARCH VALIDATION

7.1 Introduction

This chapter describes the validation approach used in this research. The Smart
Home EU SPL case study was used in the validation of: the End User Software Product
Line (EU SPL) Process and the EUSPLP development environment. The EUSPLP
environment was used to validate the EU SPL process and meta-model by enabling the
creation of the EU SPL, from which EU applications were derived.

As part of this research an EU SPL Testing Approach was defined with
corresponding tool support to test the TeC EUD platform specific SPL and TeC EUD
platform specific applications. The testing approach consists of: (a) EU SPL Testing to test
the TeC SPL, (b) EU Application Testing to test the derived TeC application, and (c) EU
Application Deployment Testing to test the deployment of the TeC application. To perform
EU SPL Testing and EU Application Testing the following tools were developed by this
research: (a) ConsistencyRuleChecker, (b) FeatureBasedTestDriver, and (c) TeC
interpreter. Finally, as part of EU Application Deployment Testing, the TeC Android
simulator (Sousa et al., 2012) was used to test the distributed deployment and execution
of derived applications in the TeC platform.

The chapter is organized as follows: section 7.2 describes the overall validation
approach as it relates to the research problem. Section 7.3 describes the testing framework
developed by this research to test EU SPLs and derived applications. Section 7.4 describes

the overall EU SPL testing approach used in this research. Section 7.5 describes the testing

164

process for testing the EU SPL created by using the EUSPLP environment. Section 7.6
describes the testing process for testing end user applications derived using the EUSPLP
environment. Section 7.7 describes the deployment, execution and testing of derived end
user applications by the TeC Android simulator. Finally section 7.8 provides a summary

of this chapter.

7.2 Research Validation Approach
This research is validated through the implementation and testing of the Smart
Home EU SPL case study described in Appendix A. The case study was designed using
the EU SPL process described in Chapter 4 and was implemented using the EUSPLP
environment described in Chapter 6. The remainder of this section describes the validation
process:
1. Designed the Smart Home EU SPL case study using the End User Product Line
Engineering (EUPLE) process described in Chapter 4. The design included:
e Feature Modeling — A feature model was created for the Smart Home
EU SPL case study. (Section 4.3.2.4 - Chapter (4).
e Static Modeling — A static model was created with all components that
realize the Smart Home EU SPL. (Section 4.3.3.1 - Chapter (4).
e Dynamic Modeling — Sequence diagrams and a Feature / Component
relationship table was developed for each feature defined in the Smart
Home EU. (Sections 4.3.3.2/4.3.3.3 - Chapter (4).
e Component Modeling — Component diagrams were developed for all

features of the Smart Home EU SPL. A Component Input / Output table

165

was created to capture the input / output parameters and triggering
conditions of each component. (Section 4.3.4.2 in Chapter (4).

e Inter-feature Component Communication Modeling — A component
association table was created to capture components of the Smart Home
case study that use the subscription/notification design pattern to
communicate with components that realize other features. (Section
4.3.4.1 in Chapter (4).

e Platform Specific Feature/Component Modeling — A Feature /
Component association table was created that captures platform specific
component information for platform specific features in the Smart
Home EU SPL. (Section 4.3.4.3 in Chapter (4)

2. Derived two end user TeC applications from the Smart Home EU SPL case study
developed in the previous step. For the first end user application the application
models (PSPs) were created for both the TeC and Jigsaw end user platforms
(Section 4.4 in Chapter (4). The second end user application was platform specific
and the application model was developed for the TeC platform (Sections A.5.4 and
A.5.5in Appendix-A).

3. Developed the EUSPLP development environment, which supports the
development of EU SPLs, and application derivation. The EUSPLP was created
based on the EU SPL process and meta-models described in Chapters 4 and 5.

The EUSPLP environment was used as follows:

166

e To implement several experimental EU SPLs, including the Smart
Home EU SPL case study, using the EU SPL Editor subsystem of the
EUSPLP environment. The EUSPLP environment produces Platform
Independent Product Line (PIPL) and TeC Platform Specific Product
Line (PSPL) specifications to store the EU SPLs created by the EU SPL
Editor.
e Toderive applications from several EU SPLs including the Smart Home
EU SPL case study using the Application Derivation Editor subsystem
of the EUSPLP environment. During application derivation, the
EUSPLP environment produces the TeC Platform Specific Product
(PSP) specification.
4. Developed a testing approach to test TeC PSPLs and TeC PSPs created by the
EUSPLP environment. The testing approach is used to perform EU SPL Testing,
EU Application Testing and EU Application Deployment Testing. During EU SPL
Testing, EU SPL Feature-based Consistency and Feature-based Integration test
cases are used to test the TeC SPL. During EU Application testing, EU Application
Feature-based Consistency and Feature-based Integration test cases derived from
the EU SPL are used to test the TeC PSP. During EU Application Deployment
Testing Feature-based Integration tests are executed to deployed application. The
TeC PSPL created using the EUSPLP environment to represent the Smart Home
EU SPL was tested using EU SPL Testing. Two end user applications (TeC PSPs)

derived from the Smart Home EU SPL were tested using EU Application Testing.

167

In addition a third end user application was derived from the Smart Home EU SPL
that was tested using EU Application deployment testing. The remainder of this
chapter describes the testing framework in detail.

5. Deployed several experimental applications (TeC PSPs) to the TeC Android
simulator. In addition a TeC PSP derived from the Smart Home EU SPL case study

was also deployed to the TeC Android simulator.

7.3 EU SPL Testing Framework

To validate that the EUSPLP development environment produces valid EU SPL
specifications (PSPLs) and derives applications (PSPs) that can be executed by a TeC
platform, a testing framework was created. The testing framework is composed of a set of
tools to assist with test automation. The tool set can be divided into two categories: (1)
Consistency rule checking and (2) Feature-based integration testing.

Consistency rule checking is used to ensure that the structure of the EU SPL is
compliant with the product line consistency rules described in detail in section in 7.5.1 and
that features selected from the EU SPL during application derivation are compliant with
the feature set consistency rules described in section 7.6.1. As part of this research, the
ConsistencyRuleChecker Java program was created to execute consistency rule checks on
the EU SPL and features selected. To perform consistency rule checking on the EU SPL,
the ConsistencyRuleChecker program takes as input the EU SPL JSON representation and
executes the product line consistency rules. To perform consistency rule checking for an
EU SPL feature selection, the ConsistencyRuleChecker program takes as input: (a) an

array containing the names of the selected features and (b) the EU SPL JSON

168

representation. The ConsistencyRuleChecker program checks that the selected features do
not violate any of the feature dependency and feature group relationships in the EU SPL.

Feature-based integration testing is used to test the implementation of the
component architecture of: (a) EU SPL features and feature combinations, (b) applications
derived from the EU SPL, and (c) application deployment. As part of this research, two
tools were developed to support the automation of Feature-based integration testing for EU
SPL features and derived applications: (1) FeatureBasedTestDriver and (2) TeC
interpreter. The FeatureBasedTestDriver is a Java program developed in Windows that
reads feature-based test cases from the file system, instantiates the corresponding
component architecture in the TeC interpreter, executes the test cases in the TeC
interpreter, and evaluates the test results. The TeC interpreter is a Java program that
instantiates and executes the component implementation of EU SPL features and derived
applications. The FeatureBasedTestDriver is used to execute feature-based test cases by
simulating external events input to the TeC interpreter. The TeC interpreter, based on each
event, executes the appropriate components and component connectors.

To perform feature-based integration testing on a distributed platform, the TeC
Android simulator (Sousa et al., 2012) was used. Tzeremes developed the user interface
(TeCEditor) and TeC meta-model to develop end user applications in the TeC Android
simulator. In particular, the TeCEditor provides user interfaces to create, display and edit
available TeC applications in the simulator and their component architecture. Applications
derived from the EU SPL and imported in the TeC Android simulator appear in the

TeCEditor. During application deployment testing, the TeCEditor was used to ensure that

169

derived applications were imported correctly into the TeC Android simulator. Shen and
Hodum developed the TeC application execution. Shen developed a testing interface in the
Android simulator to simulate external events. Shen’s user interface was used to manually

execute feature-based integration tests in the TeC Android platform.

7.4 EU SPL Testing Approach

As part of this research an overall testing approach was defined to test EU SPLs
and derived applications. The EU SPL Testing Approach is a hybrid approach that builds
on the testing methods described in the theses of (Abu-Matar, Mohammad Ahmad, 2011)
and (Olimpiew, 2008). Abu-Matar used static defined SPL consistency test cases to test
SPLs and derived applications created in his research (Abu-Matar and Gomaa, 2013).
Olimpiew described an approach for defining test cases for each feature that can be
retrieved and executed during application derivation (Olimpiew and Gomaa, 2009).
Similarly, the test cases created in this research consist of: consistency test cases for testing
the EU SPL and the derived applications; and test cases for each feature that can be
executed during product line creation, application derivation and application deployment.

Figure 7.1 shows the overall EU SPL Testing Approach used to test EU SPLs and
derived applications. The testing approach is composed of: (a) the EU SPL Testing, (b) the
EU Application Testing, and (c) the EU Application Deployment Testing processes. The
EU SPL Testing process is responsible for testing the product line. The EU SPL Testing
process performs EU SPL Feature-based Consistency Checking and Feature-based

Integration Testing. EU SPL Feature-based Consistency Checking executes static test cases

170

EU SPL Testing Process

% Feature Tests Feature-based | regture-based ation Test Cases
Integration Testing

EU SPL

Designer \ EU SPL

Feature-based
Consistency Checking

EU SPL Feature Model
EU SPL Component Architecture

EU SPL Repository

EU Application EU Application Deployment
Testing Process Testing Process

Derived
Application

Feature-based
Integration

Test Cases .
Consistency Checking End User Application

Endijsen‘k (PSP) Feature-based
Integration Test Cases
EU Application EU Application Deployment

Feature-based Feature-based Integration
Integration Testing Testing

EU Application
— Feature-based

Figure 7.1 Overall EU SPL Testing Approach

to verify feature and feature group dependencies. Feature-based Integration consists of
integration test cases defined by EU SPL designers to test the EU SPL. In particular,
integration test cases are developed for every feature and feature combination in the EU
SPL to test the component interconnections. As shown in Figure 7.1 Feature-based
Integration test cases are stored in the EU SPL Repository for later usage during application
derivation.

The EU Application Testing Process is responsible for testing the applications
derived from the EU SPL based on feature selected from the product line. The EU
Application Testing consists of EU Application Feature-based Consistency Checking and
EU Application Feature-based Integration Testing. EU Application Feature-based

Consistency Checking contains static test cases used to verify the compatibility of features

171

that comprise the derived application. EU Application Feature-based Integration involves
executing integration test cases to test the component architecture and implementation of
the derived application. The integration test cases are a subset of the EU SPL integration
test cases that are based on the selected features that comprise the derived application. As
shown in Figure 7.1, Feature-based Integration test cases to test the derived application are
selected from the EU SPL Repository corresponding to the features selected by the end
user.

The EU Application Deployment Testing Process shown in Figure 7.1, is
responsible for testing the distributed deployment and execution of the TeC derived
application. In detail, during the deployment testing process, EU Application Deployment
Feature-based Integration Testing involves executing integration test cases to test the
deployment and execution of components and their interconnections in the environment.
The integration test cases are the same ones used during EU Application Feature-based
Integration Testing. The integration test cases are reused to test the deployment of the
derived application.

The Feature-based integration test cases provide test coverage of each feature and
component during EU SPL Testing, EU Application Testing and EU Application
Deployment Testing. In particular test cases are developed to: (a) test each component (b)
test each feature by testing the components and connectors that realize the feature (c) If a
feature depends on other features, test the feature in combination with the features it
depends on. Detailed examples of the execution of feature-based integration test cases and

test criteria are described in sections 7.5.2, 7.6.2, 7.6.3 and 7.6.4

172

7.5 End User Software Product Line (EUSPL) Testing Process

There were two types of tests performed on the EU SPL (PSPL) produced by the
EUSPLP environment: (a) EU SPL Feature-based Consistency Checking, and (b) Feature-
based Integration Testing. EU SPL Feature-based Consistency Checking ensures that the
EU SPL is a valid product line. For instance these types of tests validate: (a) the consistency
between the product line features and the components that realize them, (b) the consistency
between feature groups and the features they contain, and (c) the consistency between
features and features they depend on. Feature-based Integration Testing ensures that: (a)
the visual EU SPL representation in the prototype is consistent with the TeC SPL model
produced by the EUSPLP environment, and (b) the component architecture functions as

the EU SPL designer intended.

7.5.1 EU SPL Feature-based Consistency Checking

To perform the EU SPL Feature-based Consistency Checking, three types of EU
SPL Feature-based Consistency Test Cases were developed: (1) Feature to Component
Consistency tests, (2) Feature Group to Feature Consistency tests, and (3) Feature
Dependency Consistency tests. All test cases execute independently of each other. Table
7.1 to Table 7.3 show the test cases in detail. Each of the tables has 3 columns: (1) Test
Case, (2) Expected Result, and (3) Test Result. The Test Case column shows the test case.
The Expected Result column shows the expected result of the test case after it executes.
The Test Result column shows the result found when the test case was executed.

Feature to Component Consistency tests verify that the feature type variability is

consistent with the component types that realize each feature. For instance, an optional

173

feature should not contain kernel components. Feature Group to Feature Consistency tests
verify that the feature group type is consistent with each feature variability type contained
in that group. For instance none of the following feature groups: At-least-one-of, Exactly-
one-of, Zero-or-more-of and Zero-or-one-of should contain common features. Table 7.2
show all the feature group to feature consistency tests Feature Dependency Consistency
tests verify that each feature depends on a feature with compatible feature type. For
instance it is not valid to have a common feature depend on an optional feature. Table 7.3
shows all the feature dependency consistency tests.

To test that the EU SPL Feature-based Consistency Test Cases themselves execute
correctly, a“Valid EU SPL” and an ““Invalid EU SPL” were defined. The “Valid EU SPL”
contained valid feature to component dependencies, valid features under feature groups
and valid feature to feature dependencies. The purpose of the “Valid EU SPL” was to

evaluate that all positive tests defined in Table 7.1 to Table 7.3 were executed correctly.

Table 7.1 Feature to Component Consistency Tests
Test Case Expected Result | Test Result
Common Feature contains Kernel Pass Pass
Component
Common Feature contains Optional Fail Fail
Component
Common Feature contains Variant Fail Fail
Component
Optional Feature contains Kernel Fail Fail
Component
Optional Feature contains Optional Pass Pass
Component
Optional Feature contains Variant Fail Fail
Component
Alternative Feature contains Kernel Fail Fail
Component
Alternative Feature contains Optional | Pass Pass
Component or Variant Component

174

Table 7.2 Feature Group to Feature Consistency Tests

Test Case

Expected Result

Test Result

At-least-one-of Feature Group
contains one Default Optional
Feature

Pass

Pass

At-least-one-of Feature Group
contains zero or more than one
Default Optional Feature

Fail

Fail

At-least-one-of Feature Group
contains Common, Default
Alternative or Alternative
Features

Fail

Fail

At-least-one-of Feature Group
contains Common, Default
Alternative or Alternative
Features

Fail

Fail

Zero-or-more-of Feature Group
contains Common Feature

Fail

Fail

Zero-or-more-of Feature Group
contains Optional Feature

Pass

Pass

Zero-or-more-of Feature Group
does not contain Optional
Feature

Fail

Fail

Zero-or-more-of Feature Group
contains Common, Default
Optional, Default Alternative or
Alternative Features

Fail

Fail

Zero-or-one-of Feature Group
contains Alternative Feature

Pass

Pass

Zero-or-one-of Feature Group
does not contain Alternative
Feature

Fail

Fail

Zero-or-one-of Feature Group
contains Default Optional,
Optional or Alternative Feature

Fail

Fail

Exactly-one-of Feature Group
contains Default Alternative
Feature

Pass

Pass

Exactly-one-of Feature Group
does not contain Default
Alternative Feature

Fail

Fail

Exactly-one-of Feature Group
contains Common, Default
Optional or Optional Features

Fail

Fail

Exactly-one-of Feature Group
contains zero or more than one
Default Alternative Feature

Fail

Fail

175

Table 7.3 Feature Dependency Consistency Tests
Test Case Expected Result Test Result
Common Feature depends on Pass Pass
Common Feature
Optional Feature depends on Pass Pass
Common Feature
Alternative Feature depends on | Pass Pass
Common Feature
Common feature depends on False False
Optional feature
Optional Feature depends on Pass Pass
Optional Feature
Alternative Feature depends on | Pass Pass
Optional Feature
Common Feature depends on False False
Alternative Feature
Optional Feature depends on Pass Pass
Alternative Feature
Alternative Feature depends on | Pass Pass
Alternative Feature

The “Invalid EU SPL” contained invalid feature to component dependencies,
invalid features under feature groups and invalid feature dependencies. The purpose of the
“Invalid EU SPL” was to evaluate that all negative tests defined in Table 7.1 to Table 7.3
were executed correctly. After each test case was verified against the “Valid EU SPL” and
the “Invalid EU SPL,” EU SPL Feature-based Consistency Checking was performed
against the EU SPL produced by the EUSPLP environment for the Smart Home Case study.
All positive tests defined on Table 7.1 to Table 7.3 were executed correctly. Figure 7.2
shows the output of the ConsistencyRuleChecker executing EU SPL Feature-based

Consistency Checking test cases to the Smart Home EU SPL.

176

Starting Feature/Component Consistency Checks

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS

Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature

Smart Home - Test Common Feature contains Kernel Component Test
Audio - Test Alternative Feature contains Optional Component or Variant Component Test
Video - Test Alternatiwve Feature contains Opticnal Component or Variant Component Test

Text - Test Optional Feature contains Optional Component Test

Email - Test Optional

Feature contains Optional Component Test

Door = Test Optional Feature contains Opticnal Component Test

Motion - Test Opticnal Feature contains Optional Component Test
Window - Test Opticnal Feature contains Optional Component Test

HVAC Filter - Test Optional Feature contains Optional Component Test

Energy Conservation -

Test Optional Feature contains Optional Component Test

Light Failure - Test Opticnal Feature contains Optional Component Test
Home Alarm - Test Opticnal Feature contains Optional Component Test
Power Failure - Test Optional Feature contains Optional Component Test
911 - Test Optional Feature contains Optional Component Test

Faucet Drip - Test Optional Feature contains Optional Component Test

Flood Detector - Test

Opticnal Feature contains Optional Component Test

Smart Irrigation - Test Optional Feature contains Optional Component Test
Schedule - Test Optional Feature contains Optional Component Test

Smart Weather Sensing

- Test Optional Feature contains Optional Component Test

Ending Feature/Component Consistency Checks

Starting Feature Group Consistency Checks

PASS
PASS
PASS
PASS
PASS

Feature
Feature
Feature
Feature
Feature

Ending Feature

Phone Alert - Test Exactly-one-of Contains Default Alternative Feature
Net Notification - Test At-least-one-of Contains One Default Optional
Home Security - Test At-least-one-of Contains One Default Optional
Home Behavior - Test Zero-or-more Contains Optional Feature

Water Detector - Test

Zero-or-more Contains Optional Feature

Group Consistency Checks

Starting Feature Dependency Checks

PASS
PASS
PASS
PASS
PASS

Feature
Feature
Feature
Feature
Feature

Ending Feature

Parent Feature: HVAC Filter - Child Feature: Energy Conservation - Test Opticnal Feature

Parent Feature: Light
Parent Feature: Smart
Parent Feature: Smart
Parent Feature: Smart

Dependency Checks

Failure - Child Feature: Home Alarm - Test Optional Feature Depend
Home - Child Feature: Smart Irrigation - Test Optional Feature Dep
Irrigation - Child Feature: Schedule - Test Optional Feature Depen
Irrigation = Child Feature: Smart Weather Sensing - Test Opticnal

Figure 7.2 ConsistencyRuleChecker Output of executing EU SPL Consistency Test Cases to the Smart

Home EU SPL

177

7.5.2 Feature-based Integration Testing

Feature-based Integration Testing is used to test the component architecture of each
feature. Feature-based Integration Test Cases defined for features and feature combinations
were used to perform Feature-based Integration Testing. Table 7.4 shows the attributes of
each Feature-based Integration Test Case. Feature-based Integration Test Cases were
defined for each connector available in each feature. The connector tests ensure that the
output / input interfaces between components are consistent, and the triggering conditions
are executing correctly. In addition, Feature-based Integration Test Cases were defined to

test the interaction sequence of multiple components.

Table 7.4 Feature-Based Integration Testing — Test Case Attributes

Test Case Element Description

Test Case The test case id

Feature Name The name of the feature that the test applies

Feature Type The expected feature variability type

Source Component The name of the component that initiates the component

communication by sending a message when the output
triggering condition is true

Source Output The name of the source component output sending the
message

Source Output Parameters The output message parameters

Source Trigger The trigger that activates the output on the source
component

Target Component The name of the component that receives the message

Target Input The name of the target component input receiving the
message

Test Case Result The expected test result

178

For example consider the “Audio” feature defined in the Smart Home EU SPL case
study. As shown in Figure 7.3 the “Audio” feature has three components: “alertAudio”,
“phone” and “securityAlertHandler.” The “Audio” feature contains three connectors: the
“audioAlert” to “securityAlertHandler” connector, (2) the “securityAlertHandler” to
“audioAlert” connector, and (3) the “audioAlert” to “phone” connector. The first three
rows of Figure 7.4 shows the Feature-based Integration Test Cases defined for each
connector. For instance, the first row tests the “audioAlert” to “securityAlertHandler”
connector. When the source trigger “startup=true” is true in the “alertAudio” component,
the source output “init” is executed that sends parameters “component name=alertAudio,
topic=security” to the input “subscribe” of the target component “securityAlertHandler.”
If the test case is executed correctly the “subscribe” input of the “securityAlertHandler”
component should receive a message with parameters “component name=alertAudio,
topic=security.”

The integration test case shown in the fourth row of Figure 7.4 tests a sequence of
component connectors triggered by an external event. The source component of the test
case is the “securityAlertHandler” and the target component is the “phone” component.
This test case tests two component connectors: (1) the “securityAlertHandler” to
“audioAlert” connector, and (2) the “audioAlert” to “call” connector shown in Figure 7.3.
The purpose of this test case is to test that when there is a security alert, a call is made to
the house residents. This test case exercises a set of inputs, outputs, and triggering

conditions in all participating components for the test case to complete successfully. For

179

<<kernel>> <<optional>> <<optional>>

:securityAlertHandler :alertAudio :phone
T T
|) |
: init
I:}‘ subscribe [startup=true] D
| |
| |
| |
' sendAlert '

|

[

[

|

|

[

[

|

|

[messagelnQueue=true] notify | call |
I;} 'L—‘ [message=true] makeCall ‘D

[

[

|

|

Figure 7.3 Smart Home EU SPL: Audio Feature

Feature Name Source Component Source Output Source Trigger Target Component Target Input Test Case Result

Audio alertAudio init startup=true securityAlertHandler subscribe input=subscribe, component_n:
Audio securityAlertHandler sendAlert messagelnQueue=true alertAudio notify input=notify, message=security,
Audio alertAudio call message=true phone makecCall input=makecall, dial=70354555:
Audio securityAlertHandler sendAlert messagelnQueue=true phone makecCall input=makeCall, dial=70354555

Figure 7.4 Audio Feature Test Cases

instance as shown in Figure 7.3, the “securityAlertHandler” needs to send a message to the
“alertAudio” component. The “alertAudio” component evaluates the message and sends a
message to the “phone” component.

As part of this research, a FeatureBasedTestDriver and a TeC interpreter were
developed to perform feature-based testing. The FeatureBasedTestDriver is used to
execute the integration test cases. The TeC interpreter is used to execute the component
implementations of features and feature combinations. For example, to test the “Audio”
feature shown in Figure 7.3 three testing components “securityAlertHandler,”
“alertAudio”, and “phone” were implemented and executed by the TeC interpreter. Each

component implementation contains: (a) methods that simulate the component inputs, (b)

180

a method ‘“evaluateTrigeringConditions” that executes the component triggering
conditions, and (c) a “testResult” variable that captures the parameters passed in each
component input. For example, for the “securityAlertHandler” component shown in Figure
7.3, an input “subscribe” was created and a method “evaluateTrigeringConditions” that
executes the “messagelnQueue=true” triggering condition. The “subscribe” input when
called populates the “testResult” variable with the parameters that were passed to the input.

The FeatureBasedTestDriver for each integration test case extracts the component
implementations of the corresponding feature(s) from the TeC PSPL. It then interfaces with
the TeC interpreter to provide the test components with outputs, triggering conditions and
component connectors that realize each feature.

The FeatureBasedTestDriver executes the triggering condition defined in the test
case by calling the “evaluateTriggeringConditions” method on the source component in
the TeC interpreter. The “evaluateTriggeringConditions” method will evaluate the
triggering conditions of each output and if the condition is true it will execute the output.
After the TeC interpreter executes the triggering condition, the FeatureBasedTestDriver
will query the “testResult” of the target component in TeC interpreter. The
FeatureBasedTestDriver compares the “testResult” variable with the expected test case
result defined in the test case to verify that the parameters passed to the target object are
what were expected.

For example, for the FeatureBasedTestDriver to execute the first test case shown in
Figure 7.3, the three “securityAlertHandler”, “alertAudio”, and “phone” test components

need to be instantiated and executed by the TeC interpreter. The FeatureBasedTestDriver

181

interfaces with the TeC interpreter to execute the “message=true” triggering condition on
the “alertAudio” component and retrieve the “testResult” variable on the “phone”
component that contains the test results. The FeatureBasedTestDriver compares the
“testResult” variable with the test case expected result to ensure that the correct input was
called and the correct parameters were passed to it.

The execution of the feature-based test cases ensures that: (a) the visual
representation of the component designs that realize each feature in the EU SPL is
consistent with the TeC PSPL specification produced by the EUSPLP environment, (b) the
component architecture is communicating as expected, and (c) the component
implementations in the TeC interpreter are consistent with the component interfaces in the
EUSPLP environment. To evaluate the execution of the FeatureBasedTestDriver and the
TeC interpreter, valid and invalid test cases were developed. Valid test cases contained
features, components, inputs, outputs and triggering conditions consistent with the TeC
PSPL. Invalid test cases contained features that did not exist, components with incorrect
inputs, outputs and triggering conditions. All valid test cases executed correctly and invalid
test cases failed as expected. The FeatureBasedTestDriver and TeC interpreter helped to
identify issues with (a) missing inputs from the component implementations, (b) triggering
conditions not implemented correctly, and (c) PSPL specifications that were invalid (such
as missing PL_Activity_Sheets, component connectors, inputs, outputs, output parameters,
invalid JSON etc.).

To validate the Smart Home EU SPL case study, Feature-based Integration Test

Case Test Cases were defined for (a) testing all connectors on all features defined in the

182

Smart Home EU SPL, (b) testing multi-component interactions of dependent features, and
(c) testing multi-component interactions of features that are not dependent in the feature
model level but an event on one feature affects the other. The Feature-based Integration
Test Case Test Cases were executed using the FeatureBasedTestDriver and the TeC
interpreter. All test cases were executed successfully. Figure 7.5 shows part of the

FeatureBasedTestDriver output of the Smart Home EU SPL case study.

7.6 End User Application Testing Process

There are two types of tests performed to applications derived from the EUSPLP
environment: (a) EU Application Feature-based Consistency Checking, and (b) EU
Application Feature-based Testing. EU Application Feature-based Consistency Checking
ensures that the feature selection is valid and the features selected are compatible with each
other. For example, a feature selection that contains two mutually exclusive features is not
valid. EU Application Testing ensures that: (a) the derived application component
architecture adheres to the selected feature component architectures, and (b) the application
component architecture functions correctly. To validate the application derivation process
of the EUSPLP environment, EU Application Testing was performed on the “Smart Home
Example 1 for TeC” and “Smart Home Example 2 for TeC” end user applications derived
from the Smart Home EU SPL. The end user applications are described in detail in

Appendix A.

183

1 - Feature Audio - Status Succ
2 - Feature Audio - Status Suc
3 - Feature Audio - Status Success
5 - Feature Email - Status Success
6 - Feature Email - Status Succ
7 - Feature Email - Status Success
8 - Feature : Email - Status Success
9 — Feature : Text - Status Succ
10 - Feature : Text - Status
11 - Feature Text -
12 - Feature Text - Success
13 - Feature Door - Success
14 - Feature Door - Success
15 - Feature : Door -] Success
16 - Feature : Motion - Status : Success
17 - Feature : Motion - Status Success
18 - Feature : Motion - Status Success
19 - Feature Window - Status Success
20 - Feature Window - Status Success
21 - Feature Window - Status : Success
22 - Feature Faucet Drip - Status Success
23 - Feature Flood Detector - Status Success
24 - Feature Smart Irrigation - Status : Success
25 - Feature Smart Irrigation - Status Success
26 - Feature Smart Irrigation - Status Success
27 - Feature Smart Irrigation - Status Success
28 - Feature Schedule - Status Success
29 - Feature Smart Weather Sensing - Status Success
30 - Feature Video - Status : Success
31 - Feature Video - Status Success
32 - Feature : Video - Status Success
33 - Feature : Video - Status Success
34 - Feature : Video - Status Success
35 - Feature : Video - Status
36 - Feature : Video - Status =55
37 - Feature : Video - Status : Success
38 - Feature HVAC Filter - Status : Success
39 - Feature Light Failure - Status Success
40 - Feature Power Failure - Statu Success
41 - Feature Home Alarm - Status : Success
42 - Feature Home Alarm - Status Success
43 - Feature Home Alarm - Status Success
44 - Feature Home Alarm - Status Success
Test : 45 - Feature : Home Alarm - Status : Success
Figure 7.5 Output of the FeatureBasedTestDriver for the Smart Home EU SPL

7.6.1 EU Application Feature-based Consistency Checking

Table 7.5 shows the EU Application Feature-based Consistency test cases for
validating the compatibility between features that comprise the derived application. To
ensure that the consistency checking process used to execute the consistency test cases
functions correctly, valid and invalid feature selection sets were evaluated. The feature sets

were derived from the Smart Home EU SPL case study. The valid feature set contained

184

Table 7.5 EU Application Feature-Based Consistency Tests

Test Case Expected Test Result
Result

All Common Features were selected | Pass Pass
Not all Common Features were Fail Fail
selected
More than one Feature was selected | Fail Fail
form Exactly-one-of Feature Group
Zero Features were selected form Fail Fail
Exactly-one-of Feature Group
One Feature was selected from Pass Pass
Exactly-one-of Feature Group
More than one Feature was selected | Fail Fail
from Zero-or-one-of Feature Group
Zero or one Feature was selected Pass Pass
from Zero-or-one-of Feature Group
Zero or more Features were selected | Pass Pass
from Zero-or-more-of Feature
Group
Zero Features were selected form Fail Fail
At-least-one-of Feature Group
One or more Features were selected | Pass Pass
from At-least-one Feature Group
For each Feature selected the entire Pass Pass
parent Feature hierarchy was
selected
For each Feature selected the parent | Fail Fail
Feature hierarchy were not selected
Mutually Exclusive Alternative Fail Fail
features were selected

features that are compatible with each other. The invalid feature set contained features that
cannot exist together in a derived application.

Figure 7.6 shows the output the output of the ConsistencyRuleChecker executing
consistency test cases on the invalid feature set. The invalid feature set contains features:
Audio, Video, Abs and Energy conservation from the Smart Home EU SPL. As shown in
the output of Figure 7.6 there are several issues with the invalid feature set for instance:
the Smart Home common feature is not available, there are required features missing from

the Net Notifications and Home Security feature groups, there are mutually exclusive

185

Starting Feature Selection Consistency Checks For Feature Set:Audio , Video , Abs , Energy Conservatio

1
FAIL
ATL ‘ y ,]
1 Features: Abs are not part of the EUSPL.

Ending Feature Selection Consistency Checks

Figure 7.6 ConsistencyRuleChecker Output of executing EU Application Feature-Based Consistency
Tests on an invalid Feature Set from the Smart Home EU SPL

1, HVAC Filter , Door , Text , Smart

mp: Phone Alert
up: Net Notification
ure Group: Home Security

All Feature Pa
Mutually Exclus
All Features

Ending Feature Selection Consistency Checks

Figure 7.7 ConsistencyRuleChecker Output of executing EU Application Feature-Based Consistency
Tests on a valid Feature Set from the Smart Home EU SPL

features present in the set, there are features missing that features in the set depend on and

there is an Abs feature available in the set that is not available in the Smart Home EU SPL.

Similar, Figure 7.7 shows the output of the ConsistencyRuleChecker testing the valid

feature selection set. The valid feature set contains features: Audio, Energy Conservation,

HVAC Filter, Door, Text and Smart Home from the Smart Home EU SPL. As shown in

Figure 7.7 this feature set is valid. It contains all product line common features and required

feature dependencies. The consistency checking process evaluated all test cases

successfully for both feature selection sets.

7.6.2 EU Application Feature-based Testing

EU Application Feature-based Testing is used to test the component architecture

and implementation of the end user derived application. In detail, for each feature that is

186

part of the feature selection the corresponding integration test cases are selected from the
EU SPL Repository. The integration test cases test the component architecture and
implementation of the derived application. The test cases are executed using the
FeatureBasedTestDriver and a TeC interpreter tools.

To execute an integration test, the TeC interpreter reads the derived application
specification (TeC PSP) that was created by the EUSPLP environment and instantiates the
TeC component implementations of the derived application. Each TeC component in the
interpreter is assigned with TeC application instructions based on the derived application.
The FeatureBasedTestDriver executes the triggering condition in the source component
defined in the test case and evaluates the target component “testResult” variable with the
expected result defined in the test case. The execution of the feature-based test cases
ensures that the application component architecture derived by the EUSPLP environment
is consistent with the component architecture of each feature that comprises the application.

Figure 7.8 shows an example of the FeatureBasedTestDriver output of executing
feature-based tests to a derived application that contained the “Audio” and “Smart
Irrigation” features. The tests executed by the FeatureBasedTestDriver included: (a) The
test cases defined for the “Audio” and “Smart Irrigation” features, and (b) The test cases
defined for the “Email”, “Text”, “Door”, “Motion”, “Window”, “Faucet Drip” and “Flood
Detector” features that did not apply to the derived application. As expected the test cases
of the “Audio” and “Smart Irrigation” features executed correctly. The test cases of the

additional feature test cases failed as expected since components and connectors of these

187

Test : 1 - Feature : Audio - Status : PASS
Test : 2 - Feature : Audio - Status : PASS
Test : 3 - Feature : Audio - Status : PASS
est 5 - Feature : Email- Status : FAIL Missing components: email
Tes 6 - Feature : Email- Status : FAIL Mi ing components: email
Tes 7 - Feature : E Status : FAIL Missing components: email
3 § - Feature : E Status : FAIL Mic nents: email
: 9 - Feature : .4 Status : FAIL Mi text
10 - F e tatus : FAIL Mic nents: text
11 - Feature : =] Status : FAIL Mizc ne s: text
2 - Feature : Te Status : FAIL Missing components: text
13 - Feature : Door- Status : FAIL Mi ing components: breakInDoor , doorMonitor
14 - Feature : Door- : FAIL Missing components: doorMonitor , breakInDoo:
5 - Feature : Door- s : FAIL Missing components: breakInDoor
16 - S - tus : FAIL Mi g ts: breakInMotion , motionDetector
17 - s : FAIL M SHE De , breakInMotion
18 - Feature : M : FATIL Mi s: breakInMotion
19 - Feature : W : FAIL M ne breakInWindow , windowDetector
20 - Feature : Window : FATL Mi ne vindowDetector , breakInWindow
Test 21 - Feature : Winc : FAIL Mi I s: breakInWindow
Test : 22 - Feature : Status : FAIL Missing components: fauce 15¢
Test : 23 - Feature : [s)e} Status : FAIL Missing components: floods or
Test : 24 - Feature : Smart Irrigation - Status : PASS
Test : 25 - Feature : Smart Irrigation - Status : PASS
Test : 26 - Feature : Smart Irrigation - Status : PASS
Test : 27 - Feature : Smart Irrigation - Status : PASS
Figure 7.8 FeatureBasedTestDriver Output executing Feature-Based Integration Test Cases to a Derived
Application that contains the Audio and Smart Irrigation Features

features were not available in the derived application. Feature-based testing using the
FeatureBasedTestDriver and the TeC interpreter helped to identify issues with (a) the
component implementation (b) thread issues between components and (c) PSP
specifications that were invalid (missing Activity Sheets, component connectors, inputs,
outputs, output parameters, invalid JSON etc.).
7.6.3 EU Application Testing for Smart Home End User Application 1

This section describes the EU Application Testing process applied to the “Smart
Home Example 1 application described in Appendix A. The application was derived from
the Smart Home EU SPL case study using the application derivation process of the

EUSPLP development environment. Figure 7.9 shows the Feature Model of the derived

188

<<optional feature>>

<<default feature>> Home Alarm
Text
requires
<<at-least-one-of N . N .
>>
feature .gljouP HVAC Filter Light Failure
Net
requires
<<zero-or-more-of
feature group>>
Home Behavior
requires
<<common feature>>
requires Smart Home requires
requires
requires
<<zero-or-more-of <<at-least-one-of i
feature group>> feature group>> S<<t:;p:|o'nal>.>
Water Detector Home Security mart Irrigation
requires
<<optional feature>> <<default feature>> <<optional feature>>
Flood Detector Door Schedule

<<exactly-one-of
feature group>>
Phone Alert

—

<<default feature>>
Audio

Figure 7.9 Smart Home Example 1 Application — Feature Model

Starting Feature Selection Consistency Checks For Feature Set:
Smart Home , Audic , Door , Text , Light Failure , Home Alarm , Smart Irrigation , Schedule , HVAC Filter , Flood Detector

- All Common Features are part of the features selected

- Exactly one Feature was i from EXACTLY ONE_OF FEATURE_G ure Group: Phone Alert

- At Least one Feature was =d from AT_LEAST ONE_OF FEATURE_ roup: Net Notification

g - At Least one Feature was selected from AT_LEAST FEATURE_GROUFP Feature Group: Home Security
3 - All Feature Parents are sel d

- Mutually Exclusive fe res were not selected
5 - All Features are part of the EUSPL
Ending Feature Selection Consistency Checks

Figure 7.10 ConsistencyRuleChecker Output of executing EU Application Consistency Tests to the Features
selected for the Smart Home Example 1 Application

application. The derived application consists of the following features: “Smart Home”,

“Audio”, “Door”, “Text”, “Flood Detector”, “Smart Irrigation”, “Schedule”, “HVAC

189

Filter”, “Home Alarm” and “Light Failure.” Figure 7.10 shows the output of executing EU
Application Feature-based Consistency Test Cases to the features that comprise the “Smart
Home Example 17 application. The selected features for the “Smart Home Example 17
passed all the EU Application Feature-based Consistency tests.

Figure 7.11 shows the application architecture of the “Smart Home Example 17
application. Figure 7.12 shows the Feature-based Integration Test Cases derived for the
“Smart Home Example 1” application to support EU Application Testing. To perform EU
Application Testing of the “Smart Home Example 1” application, three types of Feature-
based Integration Test Cases were executed: (1) component interface test cases defined for
every connector in the derived application, (2) multi-component interaction sequence test
cases of dependent features, and (3) multi-component interaction sequence test cases for
features that don’t explicitly depend on each other in the feature model but an event in one
feature affects the other. Below are examples of each test case type. Test case 2, defined
for the “Audio” feature shown in Figure 7.12, is an example of component interface testing.
This test case tests the connector of the “sendAlert” output of the “securityAlertHandler”
component to the “notify” input of the “alertAudio” component. There are two components
tested, the “securityAlertHandler” component of the “Smart Home” feature and the
“alertAudio” component of the “Audio” feature. The scenario that this test case evaluates
is that when a security alert is available in the “securityAlertHandler” component queue, a
message is send to the “notify” input of the “alertAudio” component to notify the house

residents.

190

|
! |
| |
1 activitﬂr‘ !
i <goptional>> activate on <<optional>> 1.% |
| coordinator>> [=[] <<input/output device interface>> !
i breakinDoor doorMonitor '
! I

Smart Home Feature

i

! |

Potify <<default>> '

<<kernel>> =0 ptional call makeCall <<input/output device | |

<<message-broker>> ini <<coordinator>> interface>> }

securityAlertHandler alertAudio phone !
Home Alarm

<<optional>> 1-*
<<input/output device
interface>>
smartAudio

Feature

<<optional>>
<<coordinator>>
alarmHome

<<optional>> 1.*
<<input/output device
interface>>
smartDisplay

Text Featu

<<optional>>

<<optional>> 1.*
<<system-interface>>

<<input/output device

text interface>>
777777777777777777777777 smartLight
<<kernel>> replace
<<message-broker>> gseribe o |
infoAlertHandler i]
= 1 I
L T XS ,,,,:,J} <<optional>> P
| <<input/output device interface>> i
! sprinkler |
! startWater stopWater 1
|Flood Detector ~~~~~_~ ! |HVACFilter "~ /"~~~ ! | i
| Feature flood || Feature ! ! e, ,
| i | | ! ! Schedule Feature |
| i i} 1 | turn on turn off | | |
! <<optional>> 1.* } ! <<optional>> 1 + } ! <<optional>> | ! dimeAlert <<optional>> !
! <<input/output device ! } <<input/output device ! ! <<coo’:dinat0r>> water | | timeAle «':_' > |
} interface>> | } interface>> | } sprinklerControl ! 1 S| rinl:::f;imer 1
| flood- ! | smartHVAC ! ! ! ! P! !
Lo . i ! Smart Irrigation Feature | b !

Figure 7.11 Smart Home Example 1 - Application Architecture for TeC

The test case 16 shown in Figure 7.12 is an example of multi-component interaction
sequence test case. The test case source component is the “doorMonitor” of the “Door”
feature and the target component is the “securityAlertHandler” of the “Smart Home”
feature. The scenario evaluated is that when a door break-in is detected a message will be
send to the “securityAlertHandler.” For the test to be successful the “breakInDoor”
component of the “Door” feature shown Figure 7.11 needs to send a message to the
“receiveAlert” input of the “securityAlertHandler” with the parameters shown in the test

case.

191

y3je=8sw ‘Aejd=ynduy Aeyd Aejdsiguiews 3N11=3A0W A1 32IN3P TI00P=PI_ 3JIN3P JuawWanow J0jlUONJ00p e/u wue|y 3wWoH / Jooqg 09
8555HSEOL "auoyd‘ua)yojul=5: Ayt duy Aynou X3 N0=3y8d)| TewWs=3aweu Juauodwod aoejdas wydnuews e/u a1 / ainjie4 3y8n 65
85SSYSE0/=1aquinu”auoyd‘uajyojui=8sw ‘Ayou=nd Ajnou way ansj=1a))1420e[dal {]eWs=aweu Juauodwod adejdas IVAHUeWS e/u a1 / 1314 IVAH 85
8SSSYSEOL=1aquinu”auoyd uajyojul=8sw ‘Ayou=indu; Aynou ey anuj=wiee ul=Fsw’aniy=}e}s‘an}=uo Majyawn a|npayds e/u/ uonesiu| yews / anpayas £
—auoyd‘uajyojui=8sw ‘Al duy Aynou w3 n. 1 POO}:) pooyy 10SUS-POOY} e/u Ixa) /1032333 poold 95
8555YSE0L=1aquinu~3uoyd pajyAlndas=8sw ‘Ajou=indu; Aynou w3 ann=anow Ay 30Nap TI00p=pI 32IA3p juawanow JoyuopI00p e/u X3 /1ooqQ S5
19|e=85W gSSSYSEOL=(BIP ||BD duy JleD@%ew I1ea ann=anow A1"30Inap’ TJ00p=pI_ N3P Juawanow 10}jUOI00P e/u olpny /100Q ¥§
ann=pes Jalemuels=indul Jslemuels 1apuuds ann=uuee ann=peisani=uo vs|yawn 3jnpayds e/u uonediu| Lews / 3Npayds €5
paje=8sw ‘Aejd=ynd Aeyd Aejdsiquews ans=ananpujadessaw sw ‘UajyAlundas=adessaw u3|ypuas iajpueHuajyAlundas |euondo wie|y WOoH 7§
anu=yse‘ysey=ind! yseyy WyBuews ann=ananpujadessawieyy ‘LajyAiundas=adessaw Ma|ypuas JajpueHua|yAILNDas |euondo wie|y aWoH 15
yaje=3sw ‘Aejd=ynduy Aeyd olpnyyews ans=ananpujadessaw sw ‘UajyAiunias=adessaw M3ypuas JajpueHua|yAiundas |euondo wie|y 3WoH 05
yaje=3sw ‘Aejd=ynduy Aeyd olpnylews ann=adessaw wsje=Gsw wieje 3woHw.ele |euondo WJe|y 3WOH 6t
yaje=3sw ‘Aejd=nduy Aeyd Aejdsiguews ann=afessaw yaje=Gsw wueje awoHw.eje [euondo we|y 3WOH 8t
anu=ysel‘ysey=ndul yseyy Wwdnuews ann=afessaw ann=ysey} wueje awoHwJeje |euondo WJe|y WOH /Lt
va|yAL 32/ Ay dui Apou + {1 pYETIATE) U3|ypuas Ia|pueHu|yAIINAS |euondo wie|y 3WoH 9t
Aunsas=oidoy'oipnyaje=aweu juauodwon ‘aquasgns=ind aquasqns JajpueHMIayAIINIaS AVET I wul awoHweje |euondo wie|y 3WOH Sy
o y8r) RVCTEVNERETES L (TR VETEINERES] 13|puBHM3|YOjUI IN0=3y31| Tuews=aweu Juauodwod aoeidas y8ruews |euondo ainjiey4 y8n gy
0ju=21d0YIVAHL. i RICIVENN LTI VEITEY I3|puBHU3| YOI [ECELICEVEN)) aoe|das JVAHMEWS |euondo 13314 DVAH T¥
anxn=uo Ja1em=indu; Ja1em jonuoapjunds ann=wieje ann=uo usjyawn 3jnpayds |euondo 3INPayds 1€
anin=doys ‘Jaremdors=indul 1a1emdoys Japjuuds ann=yo anun=dos Houn |onuodapuLds |euondo uonediu| Lews o
ann=pels Jajemuels=indul Jajemuels 1apjuuds ann=uo ann=pes uo uiny |ouodiapuuds |euondo uonesiu| Lews 67
Jul=21d0}’|013U0; ud:] RYEIVEIT dul u3|yandal Ja|pueHMalyo Ul 4401 }uLd: i o uny |osuodapuLds |euondo uonesiu| Jews gz
0jul=21doy’|013u0DIBPjuLIdS=3weu JuauodWO) ‘PI|YaARIAI=INdUl J3|YINIRI3L J3|pueHuI3|yojul 1! & uo wny |osuodIapjuLds |euondo uonediu| Jews /7
Jui=21doy". Pooyy B ‘Walyanidas=Indul US|YRAIRI3) J3jpueHu3|yOul 1 1y I pooyy 105U3s-pooyy |euondo 1032333 POOl4 9T
A 1dol‘iooquiyealq I RICTENN [(VTR VETIVET 13jpueH} AL n. A1"201nap TI00p=pI~321A3P Juawanow Joyuopoop |euondo ynejap JooQ 91
Aundas=a1doy‘ooquyeaiq ¥ “Lia)yans andul UajyaA J1a|pueHMI3|YALINDAS ! B Auanoe Jooquiyealq |euondo ynejap JooQ ST
J10suas=adAy"321A3p'T100p=pi~21ap ‘Uonde=1ndul uonoe Jooqupjeasq anuy=anow Ay adInap’ T400p=pi~ MNP Juawanow JoyuopI00p |euondo jjnejap 100Q T
anJ3=uo uiny ‘vo=indul uo ! di ani=uo uny eAnde Jjooqupyealq |euondo jjneyap JooQ €1
quinu~auoyd‘uiajyojui=Bsw ‘A du Ajiiou w31 ~auoyd‘ua|yoyui=Ss! VP 1P IWojul |euondo 3jnejap wal zT
8555PSE0L=12quinu” suoyd uajyAindas=8sw ‘Ajnou=indu; Ayiou 31 ann=ananpujadessaw - auoyd ua|yAindas=Ssw UIBJYpUIs I3|pueHUR|YAILINDAS |euondo jnejap wal 1T
Oju=d) B ‘aqu: dul 1 J3|pueH3|YOJuI di 03] i3 nu a1 |euondo Jjnejop ™al 01
Aundas=oy B ‘aquasq du quIsq JajpueHua|yAIINdaS di % 3 nu w3y |euondo yjnejop wal 6
y3|e=! =[e1p ‘||eDayi duy lleDaxew (182 ann=ananpujadessaw eip ‘pajyAyundas=adessaw VP |pueHM3|YAILINIaS ! Jnejap olpny ¢
Aundas=aidoy‘oipny;.] duy 1 13|pueHua)yAIINIaS d v B 3 olpnyuaje aAneusd|e ynejap olpny €
u3)vAlundas=agessaw ‘Ajnou=indu) Aynou olpnyuaje ani=ananpujafessaw W3|yAINdas=adessaw UB|YPUIS IB|PUBHUIIVAIUNIAS IARUIAIE INeyap opny 7
yaje= =[eIp ‘|[eDaN; du lledew I1e> B uaje= =[eip 1e> olpnyuale 3Aneule JnejIp opny T
ynsay ased3sa) anduj3adie) juauodwo) 3a8ie) 13881 32inos sweied ndinQ 324nos IndinQ 3unos Juauodwio) 321Nos adAj aimeay Jwep ainjeas Isedsay

Application

Figure 7.12 Featured-Based Integration Test Cases for the Smart Home Example 1 EU
192

This test case tests the interaction of the “doorMonitor”, “breakInDoor” and
“securityAlertHandler” components.

Test case 54 defined for the “Door” and “Audio” features shown in Figure 7.12 is
an example of multi-component interaction sequence test case across features that are not
dependent in the feature model but an event on one affects the other. The scenario that this
test case evaluates is that when there is a door break-in, a security message notification is
send to the resident’s phone. Although the components of the “Door” are not
communicating with the “Audio” feature directly, they communicate through the “Smart
Home” feature. For instance, when a door break-in is detected, the “securityAlertHandler”
receives a security alert. The “securityAlertHandler” sends the security alert to the
“alertAudio” component that is subscribed to receive messages. As shown in Figure 7.12
when the “alertAudio” component receives the security alert message, it will evaluate the
corresponding triggering condition and send an alert message to the “makeCall” input of
the “phone” component to contact the house resident. This test case tests the interaction
sequence of the “doorMonitor”, “breakInDoor”, “securityAlertHandler”, “alertAudio” and
“phone” components.

All test cases have the same format shown in Table 7.4. Triggering conditions were
used to simulate external events. The “Source Trigger” column in Figure 7.12 shows all
the triggers executed in the derived application. The test case execution starts with a
triggering condition that evaluates to true. Triggering conditions are evaluated to true when
an external event occurs. For example, when there is a break-in detected, the triggering

condition “move=true” of the “doorMonitor” component evaluates to true, which causes

193

the “movement” output to get executed. To ensure that the test cases executed correctly,
the “testResult” attribute of the test case target component was compared with the expected
results of the test case shown in the “Test Case Result” column. The “testResult” attribute
contains: (a) the component input that was called and (b) the parameters that were passed
to the target component. Separate test cases were created to test a triggering condition that
causes inputs on different components to get triggered. For example, as shown in Figure
7.11 the “alertHome” component sends three independent messages to the “smartLight”,
“smartDisplay” and “smartAudio” components when it receives a message from the
“securityAlertHandler” component. To test this scenario, three test cases were created test
cases 50, 51and 52 shown in Figure 7.12. System traces were also used to verify that all
three events executed when the “alertHome” component received a message from the
“securityAlertHandler” component.

EU Application Testing validated (a) that all application components were derived
from the features selected and (b) the connectivity between components worked as
designed in the EU SPL. Figure 7.13 shows the output of executing the Featured-Based
Integration Test Cases against the derived application. The output shows that all tests
executed successfully, which indicates that the expected test result in the test case is
consisted with the “testResult” attribute values found in the target component. In addition
to the test cases that relate to the features selected, all Feature-based Integration Test Cases
defined for the Smart Home EU SPL were executed to verify that no additional components
or component connectors were introduced. All test cases defined for features that were not

part of the “Smart Home Example1” application failed as expected.

194

Test : 1 - Feature : Audio - Status : PASS
Test : 2 - Feature : Audio - Status : PASS
Test : 3 - Feature : Audio - Status : PAS

Test : 4 - Feature : Audioc - Status PASS

Test : 9 - Feature : Text - Status : PASS

Test : 10 - Feature : Text - Status : PASS

Test : 11 - Feature : Text - Status : PAS

Test : 12 - Feature : Text - Status : PASS

Test : 13 - Feature : Door - Status : PASS

Test : 14 - Feature : Door - Status : PASS

Test : 15 - Feature : Door - Status : PASS

Test : 16 - Feature : Door - Status : PASS

Test : 26 - Feature : Flood Detector - Status : PASS
Test : 27 - Feature : Smart Irrigation - Status : PASS

Test : 28 - Feature : Smart Irrigation - Status : PASS
Test : 29 - Feature : Smart Irrigation - Status : PASS
Test : 30 - Feature : Smart Irrigation - Status : PASS

Test : 31 - Feature : Schedule - Status : PASS

Test : 42 - Feature : HVAC Filter - Status : PASS
Test : 43 - Feature : Light Failure - Status : PASS
Test : 45 - Feature : Home Alarm - Status : PASS
Test : 46 - Feature : Home Alarm - Status : PASS
Test : 47 - Feature : Home Alarm - Status : PASS
Test : 48 - Feature : Home Alarm - Status : PASS

Test : 49 - Feature : Home Alarm - Status : PASS
Test : 50 - Feature : Home Alarm - Status : PASS
Test : 51 - Feature : Home Alarm - Status : PASS
Test : 52 - Feature : Home Alarm - Status : PAS

Test : 53 - Feature : Schedule / Smart Irrlgatlon - Status : PASS

Test : 54 - Feature : Door / Audio - Status : PAS

Test : 55 - Feature : Door / Text - Status : PASS

Test : 56 - Feature : Flood Detector / Text - Status : PASS

Test : 57 - Feature : Schedule / Smart Irrigation / Text - Status : PASS
Test : 58 - Feature : HVAC Filter / Text - Status : PASS

Test : 59 - Feature : Light Failure / Text - Status : PASS

Test : 60 - Feature : Door / Home Alarm - Status : PAS

Figure 7.13 FeatureBasedTestDrlver Output of executing the Featured- Based Integration Test Cases to the
Smart Home Example 1 EU Application

7.6.4 EU Application Testing for Smart Home End User Application 2

This section presents the EU Application Testing process applied to the “Smart
Home Example 2” application described in Appendix A. The application was derived from
the Smart Home EU SPL case study using the application derivation process of the EUSPL
development environment. Figure 7.14 shows the Feature Model for the derived
application. The derived application consists of the following features: “Smart Home”,

“Video”, “Door”, “Motion”, “Window”, “Email”, “HVAC Filter”, “Energy Conservation”

195

<<platform-dependent>>
<<optional feature>>
Energy Conservation

requires
<<optional feature>> <<optional feature>> <<optional feature>>
p P P
Email HVAC Filter 911
<<at-least-one-of <<zero-or-more-of
feature _gl_'ou|.)>> feature group>>
Net Notification Home Behavior
requires
requires
<<common feature>>
requires Smart Home
requires
<<exactly-one-of <<at-least-one-of
feature group>> feature group>>
Phone Alert Home Security

<<platform-dependent>>
<<alternative feature>>
Video

Figure 7.14 Smart Home Example 2 Application — Feature Model

<<default feature>> <<optional feature>> <<optional feature>>
Door Motion Window

Starting Feature Selection Consistency Checks For Feature Set:
Smart Home , Video , Door , Motion , Window , Email , HVAC Filter , Energy Conservation , 911

PASS - All Common Features are part of the features selected

PASS - Exactly one Feature was selected from EXACTLY_ ONE_OF FEATURE_GROUP Feature Group: Phone Alert

PASS - At Least one Feature was selected from AT_LEAST_ONE_OF FEATURE_GROUP Feature Group: Net Notification
PASS - At Least one Feature was selected from AT LEAST ONE OF FEATURE GROUP Feature Group: Home Security
PASS - All Feature Parents are selected

PASS - Mutually Exclusive features were not selected

PASS - All Features are part of the EUSPL

Ending Feature Selection Consistency Checks

Figure 7.15 ConsistencyRuleChecker Output of executing EU Application Consistency Tests to the Features
selected for the Smart Home Example 2 Application

and “911.” Figure 7.15 shows the output of executing EU Application Feature-based

Consistency Tests to the features that comprise the “Smart Home Example 2” application

196

to test if the features are compatible. As shown in Figure 7.15 all EU Application Feature-
based Consistency Tests executed successfully.

Figure 7.16 shows the application architecture of the “Smart Home Example 2.”
Figure 7.17 shows the Feature-based Integration Test Cases derived for the “Smart Home
Example 2” application to support EU Application Testing. To perform EU Application
Testing to the “Smart Home Example 2” three types of Feature-based Integration Test
Cases were executed: (1) component interface test cases defined for every connector in the
derived application, (2) multi-component interaction sequence test cases of depend
features, and (3) multi-component interaction sequence test cases of independent features
that an event on one feature affects the other. Below are examples of each test case type.
Test case 8 defined for the “Email” feature shown in is an example of component interface
testing. This test case tests the connector of the “sendAlert” output of the
“infoAlertHandler” component to the “notify” input of the “email” component. The
scenario that this test case evaluates is that when an informational alert is available in the
“infoAlertHandler” component queue, a message is sent to the “email” component to notify

the house residents.

197

u:tEa:uE}

1033838QMOpUIM
<<arepB]

aoaap ndino findup>> uo

1 <<[euopdo>>

Jopeaguopow
<<adRpEIU)

adaap indinofindurs> uo
<<jeuondos>

Pl

103juopi00p
<<

eaynep andino/indup>> o
<<jeuondos>

-1

Jlehouediawa

<<cadepau) waysAs>> T Am

CTTT T Tt T T T T T T T T a
uopoe I i I
Lu_ " Yoo i _+>3uu>:ﬁ:w1u jonuodAdiaus
1 L
MOPULMUuP ESIq 1 @nep andinofaindug>> 1 \,,._H <<I0JRUIPIOI>>
<<I0JBUIPIOOI>> | : |]
H + T <<|euopdoss> 1
ajeAnsE <<euondos> | TPAITIEAHIPS i i uode
1241 DVAH | |
||||||||||||||||||||||||| |
:o:ﬂ,:_—oz_uz.;u..v:o
l
|
s_.a} . [} \\\\\\\\\\\
I H 1
I ! 1
uonopupealq | Irewa ! 18|pUBHIB|Y|BUOITEULIOJU)
_H T | <<caoepRu-Wwayshs>> Hul -a_b-a_-.- <<19jo1q-aBessaw>>
a1eAnIe] <<jeuondos> <<|euopdos> ! <cjouIaY>>
| Heyp
Anoe 1] |
I |]
|| | eumesy pewy 1
sl it ! |
woroe ! _
| 1
100qupfeaiq) 1
I > I !
L | 1
sjenpIE] <<|euopdos> " !
e i !
IL,.II\I{ !
\\\ .
... . — “
| I 1 - us|yenedal
TrGWIee T . B [—
<<I0RUIPIOOI>> R o s9|pueHMRyAlINes
I DT s <<iaoig-adessaws>
.r:_: o g <<puIg>>
|| — |
— ! ainjesy swoy pews |
II " ——— e m e
e \\\\
— H

l1eJ03piA

liedoapInIe}
<carepaqu)
e2inep ndino /indu>>,
<<|euondos>
<<ayeds-uuope|ds>

u weans

lIEdospiASEw I[E08pIR

oapinMeEe
<<I0}EUIPIOIS>
<<|euondos>

asolsuobmn_J

IeBeuepyeIowe)e}

e ——.

<<aypads-wiopeds>>
oBpIAL

1J
eiswede)
<<@rRpBI}
®d1Aep ndino/indul>>

1_% weanspes]

<<caypads-uiope|ds>

—
= -

weaxsoapinLels

ain3eay ua|y 09pIA

JaeapImy
<<I0)BUIPIDDI3>
<<aypreds-uoge|ds>
<cwesed-jeuopdos>

Figure 7.16 Smart Home Example 2 - Application Architecture for TeC

198

ann=weans ‘ui- weans=ndul u"weans I1eJ03piA 235=0} | 2 Auanoe MOpUIMUINe3Iq e/u 03PIA / MOPUIM TL
ann=weans ‘ul”weans=inds "weans lle03pin =0 ! ™ Ayanse uonowueaiq e/u 03pIA / UOROW 0L
ann=weans ‘Ui weans=ind ul”weans |1eD03pIA = Ayanoe Jooqupjeasq eju 116/ 400Q 69
djay=5: dut 23s=0l I ¥ Ayanoe MOpuUIMupye3Iq e/u 116/ MOpUIM 89
djay=gsw duy = ! P Ayanoe uonoWueaIq e/u 116/ UOROW £9
djay=3: duy D 1doysooq E Aunnoe Jooqupyeaiq e/u 116/ 1000 99
juf ppejews’ Jut=Bsw ‘A dut Aynou rews A I It " |lewa’y. Jut p Aeme yoen e/ulew3 / uoneaasuo) A8iau3 §9
|013U0; i~ “Ua|yaaRd3s=3nd RETNEIERE) J3|pueHU3 YOI B ‘ann=isnipe awoy yoen |euondo uoneasasuo) ABiau3 p9
[ewou=dwa) ‘|9Aa1deAHIBS=INdUl [2A3TIRAHIBS |ewsou=dway ‘ann=isnipe awoy yoen |euondo uopeasasuo) Afiau3 €9
0juI=21d03'|0.AUO; [‘Yajyanidas=Indul UB|YaAIRIA J3|pueHu3|YOUI A 153 0130 B] Aeme yoen |euondo uoneasasuo) Adiau3 z9
Moj=dwa) [2A31IRAHIBS=INdUI [3ASTIRAHIAS A I Mmoj=dway ‘ansy=3snipe Aeme yoen |euondo uoneasasuo) Adiau3 19
ojui=1doy’jonuo:; B ‘Y3jyanadas=Indul U3|YaARIA 13|pueHLI3|YOUI fpe ojui=21doy‘|013uo; I D 1A813ua jonuodA8iaua |euondo uoneasasuo) A8iau3 09
moj=dway ‘janadeapias=ind [ELEARLIEN J0suasiayy. ann=jsnipe moj=dway snipe |os3uodA8iaua |euonndo uoneasasuo) A81au3 65
wiou=3snfpe ‘wiou=3nd wiou |josuodA8iaua BNN=aWOHSIUAPISAS wiou=jsnfpe awoy yoen |euondo uonjeasasuo) A8sau3 g5
u02a=)snipe ‘Uoda=indul U029 losuoABiaua ans=Aemysiuapisal uoda=ysnipe Aeme yen |euondo uoneasasuo) ABiau3 £§
djay=3: duy [[Cs y=8sw 192135 YIOT U0 Ldje Aindas=adessaw Ualypuas JapueHua|yAIINdaS |euondo 11695
djay=5: dut e 8 djay=8sw T161281U0D TI6WelR |euondo 116 5§
192115 YI0T U0 L3je Aiundas=adessaw ‘Ajnou=1nd Ajnou TIewiele ann=ananpujadessaw 192115 YI0T U0 L3je Alndas=adessaw UB|ypuas JajpueHua|yAILINIGS |euondo 116 ¥S
A 1doYTT6Y £ I 1l 1 13jpueHU3vAIUN23S ann=dnues A IdoY T T B U] Tr6wWee |euondo 116 €5
1=21doy’. 2 ‘Yajyani@das=indul UB|YaAIR3) J3|pueH3|yoju! ann=13)|14a2e(das 0jui=1doy105U3S I3} |Y=3weu Juauodwod aoejdas J0SUISIAIY |euondo 1314 DVAH ¥
ann=weans ‘u”weans=yndu; u"weans 112203pIA ann=weans ann=weans N0 weans elawed angewsayje 03pIA T
d d ejawed ann=dojs anij=weasnsdoys IAd ! 03pIA OF
duy elawed ann=yeys ann=weansuels oapiAuels safeuepesawed anewsayje 03pIA 6E
pInd d dul d ann=pua ann=o0apindors llepua 11e203pIA anewsalje 03pIA BE
IALILS | dui anu=0apin ann=0apiALelS 1eD03pIA |1e209pIA anjewdye 03PIA LE
dut d elawed ann=pua ann=weasnsdols’ann=0apindors lleopua l1e203piA aneusayje 03PIA 9E
anu=weans ‘v weans=yndul 1T Wweans |1eD03pIA = =|ep Ayl 31 U3|YpuUSs J3|PueHL A I 03pIA S
vajyAlundas=adessaw ‘Ajnou=indui Ayjnou 03pIAL3e ann=ananpujafessaw wua|yAundas=adessaw M3|ypuas I3|pueHu|yAILINDBS 3Aneuwsye 03PIA PE
Andas=ou = 1. duy [JREL] J3jpueHuR)yAILINDAS ann=dnuels AJundas=21doy'oapiaLIaje=aweu Juauodwod R} 03pIAVIR[e aAneusaye 03PIA €€
A3an2as=oi I R k! i duy 13pueH 3 VAL LISRERTIET R ¢ IM=pl”22IA3p JUBWAOW 1032313gMOpuUIM |euondo MOPUIM HT
Ay = > ‘payani@das=Indul LB|YaAIR0a) 1a|pueHu3|vAIUNdas 23s5=0) ! = Ayanoe MOpUIMUPieaIq euondo MOPUIM £2
10su3s=3dA] " 2I1A3P TMOPUIM=PI 2d1A3p ‘Uode=1ndul uonoe MopuIMuEaIq Ay 3913 TMOPUIM=PI 391A3P Juawanow J0p313gMOpUIM |euondo MOPUIM 7T
ann=uo uiny ‘vo=induy uo 1032339aMOPUIM ann=dnuejs anj=uo uiny ajeade mopuimupiealq |euondo MOPUIM TZ
Ajundas=oi 0 B RYEIVENT dul it J3|pueH}. Ay I 1 22IAap Juawanows J0p939QUONOW |euondo UONOW 0Z
Aundas=oi [‘pajyan@das=ind RIEINEIERE) JajpueHua|yAILINdaS =0l ! ¥ Auanoe oujealq |euondo UOOW 6T
dA1"a21Aap TUON: I"321A3p “UOL! dui uonoe UOnOWU[YeaIq dA)"3o1nap Tuor; 1-22IA3p JuaWanow 103333QUONOW Jeuondo UOROW 8T
ann=uo win} ‘vo=induy uo 1019313qUOROW ann=dnuels ann=uo wny aeande uonoWueasq |euondo UOROW £T
A i B 1 It dur i J3|pueH} AL 3N=3A0W uodwoI0sUas=adA) 3IN3P TI00P=PI 3IIN3P Juawanow Joyuopso0p [euondo ynejap 100Q 91
A 1do3‘100(! E ‘UapyaaRI=Indul IB|YAAIRIA) Ja)pueHu3|vAiUNdas 0 1 1doy‘s00Q)! = Auanoe Joogupiealq jeuondo jnejap 100Q ST
105uas=adA}"32IA3P TI00P=PI 3JIA3P ‘UoRIe=3nd uonoe Jooquiyeasq ann=arow 105Uas=3dA}"3INap TI00P=pI” 3JIA3P Juawanow Joyuopioop [euondo ynejap 100Q v1
anx=uo uiny ‘vo=ind uo J03uopI00p ann=dnuejs anj=uo wny ajeande Jooqupjessq [euondo yneap 1000 €1
npa'nwi@yywl: jut=8su ‘A dut Aynou jlewa il pe”|iewa 1= M3|ypuas 13|pueHIR|YOUI |euondo llews g
npa'nwi@yiwl: pp! vAIN2as= gt duy Aou Jrewa 3 - ppe”|lewaajyAiundas=8sw valypuas JajpueHUa|vAILINaS |euondo |rews £
1=a1doy’|s) 1 dui 1 Ja|pueHLa|YOul ann=dnuejs ojui=aidoyjlewa=aweuuauodwod] rewa |euondo rews3 g
Aunoas=a1doy|] 1195q] dul 1. JajpueHua|vAILINIaS ann=dnues A { 1 i Wy [rews |euondo lrews g
ynsay ase) 3sa) Indujjadie) jusuodwio) jediel 1988111 22105 sweued IndinQ 221n0s Inding 22inos Jusuodwio) @3inos adAj aimeay awey ainjeaj asedlsa)

Figure 7.17 Featured-Based Integration Test Cases for the Smart Home Example 2 EU Application

199

Test case 35, defined for the “Video” feature shown in Figure 7.17, is an example
of multi-component interaction sequence test case. The test case source component is the
“securityAlertHandler” component of the “Smart Home” feature and the target component
is the “videoCall” component of the “Video” feature. The scenario tested is that when a
security alert is detected, a video call is placed and the resident gets a live video feed of the
events in the house. This test case tests the connectors between components:
“securityAlertHandler”, “alertVideo”, “videoCall”, “cameraManager” and “camera”
required to complete the scenario.

Test case 65 defined for the “Energy Conservation” and the “Email” features shown
in Figure 7.17 is an example of multi-component interaction sequence test case across
features that are not dependent. The scenario tested is that when the residents are away, the
house energy consumption gets adjusted and an informational email is send to the house
resident. Although, the components of the “Energy Conservation” are not communicating
directly with the components of the “Email” feature, they communicate through the
components of the “Smart Home” feature. For instance, when the “away” output of the
“tecTrack” component gets triggered, the “energyControl” component will send a
notification to the “infoAlertHandler” component. The “infoAlertHandler” component will
send a notification to the “email” component to notify the house residents. This test case
tests the interaction sequence of the following components: “tecTrack”, “energyControl”,
“infoAlertHandler”, and “email.”

The “Source Trigger” column of the test cases in Figure 7.17 shows all the triggers

executed in the “Smart Home Example 2” application. Triggers are used to simulate

200

external events in the smart space. For example as shown on test case 55 in Figure 7.17
when the “messageInQueue=true” triggering condition is true, the “sendAlert” output gets
executed and through a sequence of component interactions, the “emergency” input is
executed on the “emergencyCall” component. To verify that the test case executed
successfully, the testResult attribute of the “emergencyCall” component was compared to
the expected test result of the test case. For this test case it was found that (a) the input
captured in the testResult attribute was emergency and (b) the parameter passed to the
“emergency” input was “msg=help.” Separate test cases were created to test triggering
conditions that send messages to multiple inputs on different components. For example as
shown in Figure 7.16 the “energyControl” component sends two independent messages
when it receives a message from the “tecTrack” component. One message is to the
“infoAlertHandler” component and another message is to the “smartHVAC.” To test this
scenario, two test cases were created: test case 61 and test case 62 shown in Figure 7.17
EU Application logging messages were also used to confirm that both events occurred
when the “energyControl” component received a message from the “tecTrack” component.

EU Application Testing validated that all application components were derived for
the features that comprise the “Smart Home Example 2” application, and the connectivity
between components worked as were designed in the EU SPL development environment.
Figure 7.18 shows the EU Application Testing output that executed the Derived Feature-
based Test Cases against the component architecture of the “Smart Home Example 2”

application. All Feature-based Integration Test Cases were executed successfully.

201

Test : 5 - Feature : Email - Status : PASS
Test : 6 - Feature ; Email - Status : PASS
Test : 7 - Feature : Email - Status : PASS
Test : 8 - Feature : Email - Status : PASS
Test : 13 - Feature : Door - Status : PASS

Test : 14 - Feature : Door - Status : PASS

Test : 15 - Feature : Door - Status : PASS

Test : 16 - Feature : Door - Status : PASS

Test : 17 - Feature : Motion - Status : PASS
Test : 18 - Feature : Motion - Status : PASS
Test : 19 - Feature : Motion - Status : PASS
Test : 20 - Feature : Motion - Status : PASS
Test : 21 - Feature : Window - Status : PASS
Test : 22 - Feature : Window - Status : PASS
Test : 23 - Feature : Window - Status : PASS
Test : 24 - Feature : Window - Status : PASS
Test : 33 - Feature : Video - Status : PASS
Test : 34 - Feature : Video - Status : PASS
Test : 35 - Feature : Video - Status : PASS
Test : 36 - Feature : Video - Status : PASS
Test : 37 - Feature : Video - Status : PASS
Test : 38 - Feature : Video - Status : PASS
Test : 39 - Feature : Video - Status : PASS
Test : 40 - Feature : Video - Status : PASS
Test : 41 - Feature : Video - Status : PASS

Test : 42 - Feature : HVAC Filter - Status : PASS
Test : 53 - Feature : 911 - Status : PASS

Test : 54 - Feature : 911 - Status : PASS

Test : 55 - Feature : 911 - Status : PASS

Test : 56 - Feature : 911 - Status : PASS

Test : 57 - Feature : Energy Conservation - Status : PASS
Test : 58 - Feature : Energy Conservation - Status : PASS
Test : 59 - Feature : Energy Conservation - Status : PASS
Test : 60 - Feature : Energy Conservation - Status : PASS
Test : 61 - Feature : Energy Conservation - Status : PASS
Test : 62 - Feature : Energy Conservation - Status : PASS
Test : 63 - Feature : Energy Conservation - Status : PASS
Test : 64 - Feature : Energy Conservation - Status : PASS
Test : 65 - Feature : Energy Conservation / Email - Status : PASS
Test : 66 - Feature : Door / 911 - Status : PASS

Test : 69 — Feature : Door / 911 - Status : PASS

Test : 67 - Feature : Motion / 911 - Status : PASS

Test : 68 - Feature : Window /[911 - Status : PASS

Test : 70 - Feature : Motion / Video - Status : PASS
Test : 71 Feature : Window / Video - Status : PASS

Figure 7.18 FeatureBasedTestDriver Output of executing the Featured-Based Integration Test Cases to the
Smart Home Example 2 EU Application

7.7 Application Deployment Testing Process

The deployment of a derived application from the EUSPLP environment to the TeC
EUD platform is a multi-step process. As described in Chapter 5, the first step of the
deployment process is for the TeC EUSPLP Adaptor deployed in the TeC EUD
environment to retrieve the TeC PSP for the derived application from the Application
Distributor subsystem of the EUSPLP. The second step of the process is for the TeC

EUSPLP Adaptor to store the derived application to the TeC platform. Finally the TeC

202

environment deploys the derived application to the TeC devices of the smart space. To test
each step of the application deployment process, a third application, “Smart Home
Example 3” was derived from the Smart Home EU SPL that was deployed to the TeC
Android simulator. To support the deployment and execution of “Smart Home Example
3”, this research extended the TeC Android simulator with additional TeC devices from
the Smart Home domain.

Figure 7.19 shows the Feature Model for the “Smart Home Example 3” derived
application. As shown in Figure 7.19, the “Smart Home Example 3” application consists
of the following features: “Smart Home”, “Audio”, “Text”, and “Door.” Figure 7.20 shows
the application architecture of the derived application. EU Application Feature-based
Consistency Checking and EU Application Testing were performed on the “Smart Home
Example 3 application. Figure 7.21 shows the Feature-based Integration Test Cases
related to the derived application. All test cases performed on the “Smart Home Example
3” application executed successfully.

The “Smart Home Example 3 derived application was imported successfully by
the TeC EUSPLP Adaptor to the TeC simulator. Figure 7.22 shows three Android windows
related to the application importing process. The left Android window shows the TeC
EUSPLP Adaptor Android device retrieving the “Smart Home Example 3” derived
application (PSP) from the Application Distributor subsystem. The two Android windows

on the right show the imported application as it appears in the TeCEditor. The TeCEditor

203

<<default feature>>

Text

]

<<at-least-one-of
feature group>>
Net Notification

requires

requires

<<exactly-one-of
feature group>>
Phone Alert

<<common feature>>
Smart Home

requires

<<at-least-one-of
feature group>>
Home Security

—

<<default feature>> <<default feature>>
Audio Door

Figure 7.19 Smart Home Example 3 Application — Feature Model
Deployed to the TeC Android Simulator

is used to develop TeC applications for the TeC Android platform. The TeCEditor was
created as part of this research. In detail, the middle Android window of Figure 7.22 shows
the ActivitySheet objects that the TeC EUSPLP Adaptor stored in TeC. The last Android
window in Figure 7.22 shows all the ActivityConnector objects that were stored in TeC. In
addition to verifying the TeCEditor, the TeC database entries were also verified to confirm
that the Smart Home derived application was stored correctly. Finally to verify that the
derived application functions as intended, the application was deployed to the TeC Devices
that are part of the TeC Android simulator to simulate the execution of ActivitySheet

objects. The TeC Device simulators provide a testing user interface for executing triggering

204

! Door Feature

|
| |
I

‘ :

! activity, |
I i -

1 <<optional>> 1.* }

| <optional>> activate on <<input/output device |

| : [=] N |

| <coordinator>> LI =1 interface>> |

} breakinDoor doorMonitor |

|

| |

} w action L‘Jmovement |

‘ l

[~ SmartHome /"7 =TT e e e — ==&

Feature receiveAlert | L Audio Feature |

| notify !

sendAlert | <<ontional>> " <<default>> }

optional " .

<<kernel>> ptic ca makeCaﬂ_ <<input/output device |

<<message-broker>> <<coordinator>> = interface>> !

securityAlertHandler alertAudio phone }

|

|

|

<<optional>>
<<system-interface>>
text

<<kernel>>
<<message-broker>>
informationalAlertHandler

u receiveAlert

L 1

Figure 7.20 Smart Home Example 3 - Application Architecture for TeC

conditions for the ActivitySheet deployed in the devices. The testing interface of the TeC
Device simulators was used to execute the test cases shown in Figure 7.21. All test cases
were executed successfully. Figure 7.23 shows an example of executing the first test case
in Figure 7.21 between two TeC Devices, “Coordinator” and “Notify”, that simulate the
“alertAudio” and “phone” components respectively. When the “message=true” trigger
executes in the “alertAudio” component, the “call” output executes, which causes the "Dial
is: 703545558 and Message: securityAlert” message to be displayed by the “phone”
component. Similarly, all the other test cases shown on Figure 7.21 were executed

successfully.

205

Aundas=a1doy100qujyeaiq=aweuuauodwod ‘ajyanadai=indu
Aynoas=o1doysooquiyeaig=aweu jJuauodwod ‘Yajyan@dal=indul
105U3s=3dA}”32IA3P TI00P=PI 32A3P ‘uoide=3ndu|

anu3=uo winy ‘uo=yndu}

=saquinu”auoyd ‘uajyojui=8sw ‘A d
8G5SPSE0L=Jaquinu”auoyd‘pajyAiundas=8sw ‘Ajnou=yndul
OJul= 3 % ‘aql duy
Aundas=ol » I di
Haje=8swI'gSSSHSEOL=(ep |ledayew=indul
Aunoas=ay i) % qLISq! duy
pajyAyundas=adessaw ‘Ajnou=yndul
| =[e1p jeda! duy

Jjnsay ase) 1sa)

B dAY"221A9p T400p=]

Yajyanadal
uopoe

uo

Ajnou
Aou
3quasqns
aquasqns
Jleda%ew
aquasqns
Aou
[eD3yew
Induj 3a8ie)

J3|pueHUR|YAILNDAS
J00qupyeaiq
Joyuopy00p

3

ey
J3|pueHLI3|YOUI
JapueHUaIYAILINIAS
1e>
J3pueHUIRYAILINIAS
olpnyyaje

2]

juauodwo) 1asie]

anJj=uonow Awndas=aidoysooquyy!])
ans=anow J05uas=adA} 321Aap ' TI00p=pI 3IM3P
ann=dnyels ans=uo wny

nij= =J3quinu”3auoyd‘uajyojui=8:

ann=ananpu|adessaw
ann=dnuels
anj=dnye)s

8SSSPSE0L=Jaquinuauoyd LajyAlundas=8sw
0juI=21do) IXa1=aweujuauodwod
Anas=2ido)‘1xa)=aweujuauodwod

ann=
ann=dnuers
ans=ananpu|adessaw
ann=ajessaw
1388u) 321n0s

yajes=] =|eip ‘pajyAiundas=adessaw
Awindas=21doy‘oipnyssje=aweujuauodwod
wa|yAiundas=adessaw
UBJe=BsWI'BSSSHSEOL=RIP

sweJed yndinQ 321nos

JuBWAOW
Kunnoe
JuawWanow
ajeAnde
U3|vpuas
Ya|ypuas
]

W
Majypuas
Hu
ya|ypuas
e
ndinQ aunog

10U 100p
J100quiyeasq
J10}UON100p
Jooqupealq
J3[pUBHY3|VOJuI
JajpueHua|yAundas
w3

way
JajpuerpalyAILINIaS
olpnyuaje
J1ajpueHualyAILNIaS
olpnyiisje
juauodwo) 321nos

feuondo ynejap 1000 9T
{euondo ynejap 100Q ST
{euondo 3jnejap 1000 T
[euondo ynejap 1000 €1
feuondo 3ynejap waLTT
leuondo ynejop waL TT
[euondo ynejap w3 0T
|euondo ynejap waL6
anyewsayje ynejap olpny ¢
aAneusalje Jjnejap opny £
anjewsalje ynejap oipny 7
3Aneusa|e ynejap olpny T

adA] aimjeay awep ainjeaj ase)lsa)

Figure 7.21 Derived Featured-Based Integration Test Cases for the Smart Home Example 3 EU Application

206

) Genymotion for personal use

192.168.40.

{
“teamname”: “Smart Home
EUSPL_Application”,
"teamdesign": {
midms 1,
"name": "Smart Home EUSPL"
b
"team_activities": [

tidv:o2,

"teamId": 1,

“name”: "securityAlertHandler”,

"teamSize": 0,

"activityTypeld": 0,

"activityType":
"message_broker_type”,

“inputs”: [
{
"name”: "subscribe”,
widn: 3

"d(tlvlllyﬁheetld" 0,
“streamOrEvent™: "EVENT",
"connOutputIds”: [

12,
18

1.

*payload”: {
"component_name": "',
"topic": ""

}

.
"name": “receiveAlert",

O Genymotion for personal use

Genymotion for personal use -...

. Team Description

Smart Home EUSPL

e ACTIATIES o, CONNECTORS
Select Activity to view:

rtHandler

Genymotion for personal use -..

. Team Description

N Smart Home EUSPL

ACTIVITIES e CONNECTORS oy
Select Connector to view:

2rtHan

ifoAlertHandler

Figure 7.22 Smart Home Example 3 Derived Application Stored in TeC Android

Genymotion for personal use ... - u] X

Figure 7.23 Executing a Test Case Example in TeC Device Simulators

-
Submit Restart Restart Exit
o
all output
]
age -

CONTROLS

207

7.8 Summary

This chapter has provided an overview of the validation process for this research.
In summary, the Smart Home EU SPL case study was developed to validate: (a) the
proposed design method for creating end user product lines, (b) the end user application
derivation process, (c) the EUSPLP development environment for the product line creation
process, (d) the EUSPLP environment for the application derivation process, and (e) the
application deployment process. The EUSPLP environment was used to validate the EU
SPL process and meta-model. To validate the TeC PSPLs produced by the EUSPLP
environment, EU SPL Testing was performed. EU SPL Testing consisted of executing EU
SPL Feature-based Consistency and Feature-based Integration Test Cases for the Smart
Home EU SPL case study. All EU SPL Testing test cases executed successfully. In
addition, to verify the TeC applications derived by the EUSPLP environment, EU
Application Testing was performed. EU Application Testing consisted of executing EU
Application Feature-based Consistency and Feature-based Test Cases to test two
applications derived from the Smart Home EU SPL case study. All EU Application Testing
test cases executed successfully in both derived applications. Finally to test the application
deployment process a third application was derived from the Smart Home EU SPL that
was deployed to and executed by the TeC Android simulator. The author of this dissertation

developed and executed all test cases described in this chapter.

208

8 CONTRIBUTIONS AND FUTURE RESEARCH

8.1 Introduction

This dissertation has described a systematic approach and development
environment for designing, developing and testing End User Software Product Lines (EU
SPL) that end users can use to derive applications for their smart spaces. This research
investigated the EU SPL process for technical end users and domain experts to create EU
SPLs, which provides a step by step process for designing, developing and testing EU
SPLs. The EU SPL process has extended existing product line approaches to end user
development and smart spaces, as well as for deriving EU applications from the EU SPL.
The EU SPL meta-model was designed to capture the underlying representation of end user
product lines in terms of meta-classes and their relationships. The EUSPLP development
environment was developed to enable the implementation of EU SPLs and application
derivation for smart spaces. Finally a testing framework was developed to test the EU SPL
and application models created using the EUSPLP development environment.

The remaining sections of this chapter describe the contributions of this research
and future work. Section 8.2 describes the contributions of this research. Section 8.3
discusses areas where this research could be extended. Finally, section 8.4 provides a
summary of this chapter.
8.2 Research Contributions

This section discusses the contributions of this research as they relate to the research

goals described in Chapter 1. The overall contributions of this research are: (a) the End

209

User Product Line Engineering (EUPLE) process, (b) the End User Application
Engineering (EUAE) process, (c) the EU SPL meta-model, (d) the EUSPLP development
environment, and (e) the EU SPL Testing framework. The following subsections briefly

detail the contributions of this research.

8.2.1 End User Product Line Engineering (EUPLE) Process

The End User Product Line Engineering (EUPLE) process for designing,
developing and testing EU SPLs for smart spaces, is one of the contributions of this
research. The EUPLE process is part of the EU SPL process. In particular, the EUPLE
process provides EU SPL designers with a systematic approach for designing and
developing EU SPLs. The EUPLE process extended conventional Product Line
Engineering (PLE) approaches (Gomaa, 2005a) to account for EUD development and
smart spaces. SPL design artifacts were extended by the EUPLE process to capture
platform and component / connector architecture information available in smart spaces.
The EUPLE process provides a lightweight product line approach for technical end users
and domain experts to design and develop EU SPLs that can be used to derive applications

for different EUD environments.

8.2.2 End User Application Engineering (EUAE) Process

The End User Application Engineering (EUAE) process for deriving end user
applications from the EU SPL is another contribution of this research. The EUAE process
is part of the EU SPL process. In particular, the EUAE process enables end users to derive

software applications for their smart spaces. The EUAE process extended conventional

210

Application Engineering approaches (Gomaa, 2005a) to account for end users and smart
spaces. In conventional Application Engineering, application engineers and application test
engineers work with end users to derive and install applications from the product line. The
EUAE process is executed by end users. EUAE provides sub-processes for collecting end
user requirements for smart spaces, deriving the EU application architecture, testing the
application, and deploying the application to the smart space. The EUPLE process provides
a lightweight approach for end users to derive applications from the EU SPLs for their

spaces.

8.2.3 EU SPL Meta-model

The EU SPL meta-model is another contribution of this research. The EU SPL
meta-model is used to capture the underlying representation of EU SPLs and derived
applications artifacts in terms of meta-classes and relationships. The EU SPL meta-model
extended conventional SPL meta-models with support for EUD environments. In addition,
the EU SPL meta-model contains platform independent and platform specific meta-
models. Platform independent meta-models are used to capture the underlying
representation of end user product lines and applications in terms of meta-classes and
relationships independent of the EUD environment. Platform independent product lines are
beneficial because they can be reused to derive applications for different EUD
environments. Platform specific meta-models are applicable to specific EUD
environments. Platform specific meta-models are beneficial when designing an end user

product line that uses exclusive functions of a specific EUD environment.

211

8.2.4 EUSPLP Development Environment

The End User Software Product Line Prototype (EUSPLP) development
environment used to validate this research is another contribution. This development
environment enables: (a) EU SPL designers to develop end user product lines, and (b) End
users to derive and deploy applications for their smart spaces. The EUSPLP environment
is different from conventional SPL environments as it is based on the EU SPL process and
targets end users. The EUSPLP provides different user interfaces for supporting EU SPL
development and application derivation. EU SPL designers use the EU SPL development
user interface to design and implement end user product lines. End users use the application
derivation user interface to derive applications for their spaces. The EUSPLP is integrated
with the TeC Android environment for application deployment. The EUSPLP design
supports the deployment of derived applications to additional EUD environments by
developing EUSPLP adaptors for each different end user development environment. The
EUSPLP environment was implemented using open source technologies and is web-based.

As part of the EUSPLP environment, an end user oriented visual language was
defined to support the development of EU SPLs and application derivation. In particular,
during EU SPL design, the feature model is represented as a tree structure to capture feature
and feature group dependencies. During application derivation, end users are presented
with a different view of the feature model applicable for feature selection. The visual
language is beneficial for developing end user product lines since it uses simple visual

representations and symbols to capture complex product line terminology.

212

8.2.5 EU SPL Testing Approach

The EU SPL Testing Approach is another contribution of this research. The testing
approach extended conventional SPL testing approaches for end user product lines and
derived applications. In particular, the testing approach consists of three sub-processes: (1)
EU SPL Testing, (2) EU Application Testing, and (3) EU Application Deployment Testing.
The EU SPL testing process executes at the product line level, and tests feature
dependencies and component interconnections of the EU SPL. The EU Application Testing
process executes applications derived from the EU SPL, and tests the validity of each
feature combination that composes the derived application in addition to the application
component interconnections. The EU Application Deployment Testing process executes
during the application deployment to the smart space and tests that the application has been
deployed successfully and executes correctly. The EU SPL Testing framework is beneficial

since it provides testing throughout the EU SPL process.

8.3 Future Research
This section discusses possible future research for extending this work. The
proposed future work in this section can further promote the adoption of end user software

product lines for end user development of smart spaces.

8.3.1 Smart Space Security models for End User Software Product Lines
There are several security challenges in multi-user smart spaces. Some of the issues
involve authentication, access control, privacy and confidentiality of communication (Jani

Suomalainen and Pasi Hyttinen, 2011). Each EUD environment has its own mechanisms

213

for addressing these challenges. Additional research can be conducted to create a security
meta-model that addresses the authentication, access control, privacy and confidentiality
security attributes of smart spaces, which can be used in the design, implementation and
testing of EU SPLs. The security meta-model could be mapped to security models of
different EUD environments. In addition, different design artifacts that address each of the

security attributes could be used to expand the EU SPL process.

8.3.2 End User Visual Languages for End User Software Product Lines

A visual language was developed as part of the EUSPLP development environment
to enable technical end users and domain experts to create EU SPLs and end users to derive
applications for their environments. This research performed a preliminary user study
(Tzeremes and Gomaa, 2016Db) to investigate (a) different visual symbols for representing
feature types, and (b) user interfaces for creating EU SPLs and deriving applications for
smart spaces. An extension of the original user study could be conducted to ensure that the
visual language and user interface created in the EUSPLP is sufficient for (a) technical end

users and domain experts to create EU SPLs, and (b) end users to derive applications.

8.3.3 Enhancements to the EUSPLP Development Environment

The EUSPLP development environment provides functions for creating EU SPLs
and deriving applications for the TeC EUD environment. The prototype can be extended
to support additional EUD environments for smart spaces using the meta-models described
in Chapter 5. A conversion mechanism could be investigated to convert EU SPLs created

by the EUSPLP to different EUD smart spaces. Additional research can be performed in

214

the area of addressing conflicts between the smart space security policy and the EU SPL
features. Finally, additional research can be conducted in extending this prototype to other

domains of end user development and product line development.

8.3.4 Testing of End User Software Product Lines

This research developed a testing approach and framework for testing end user
product lines for smart spaces. The testing framework could be enhanced by investigating
approaches to automatically generate test cases based on feature dependencies and
component relationships, in addition to test cases provided by EU SPL designers. Another
area that needs additional research is automated methods for testing mobile systems
(Canforaet al., 2013) that can be integrated with the EU SPL process. For instance the TeC
Android simulator (Shen, 2014) could be extended with an automated method for software
testing. Furthermore additional research is needed in incorporating usability testing
(Brinkman et al., 2008) in the EU SPL process. Usability testing can assist EU SPL
designers to ensure that feature designs are easy to use and increase the satisfaction of end

users.

8.3.5 Evolution of End User Product Lines for Smart Spaces

As part of this research a manual process was created for EU SPL designers to
communicate with end users to address the evolution of EU SPL. New requirements are
identified by end users, defects are addressed, and new features are added and other features
are retired. An automated process could be investigated that (a) informs end users about

updates in features that are part of derived applications deployed in their spaces, (b) informs

215

end users about new features that are applicable to their spaces, (c) tests and deploys

enhancements to derived applications, and (d) reports defects back to EU SPL designers.

8.4 Summary

This dissertation has described an approach for designing, developing and testing
end user product lines for smart spaces. This research investigated an EU SPL process for
creating EU SPLs and deriving applications for smart spaces. This research also defined a
meta-model that captures the underlying representation of the commonality and variability
of EUD smart spaces and product lines. A prototype was created to validate the approach
and to enable EU SPL development and application derivation. The Smart Home EU SPL
was created as a case study to validate the different parts of this research. A testing
approach and supporting testing framework was developed to test end user product lines
and derived applications. Security for smart spaces, visual languages for EU SPLs,
EUSPLP enhancements, extensions to the testing framework and EU SPL evolution are

some areas that could further enhance this research.

216

A APPENDIX: SMART HOME EU SPL CASE STUDY

A.1 Introduction

The Smart Home EU SPL case study presented in this appendix was developed in
this research following the EU SPL Process described in Chapter 4 and was used to validate
this research. Smart homes are physical environments equipped with sensors, actuators,
appliances and devices that can react proactively or reactively to environment changes.
End User Development (EUD) environments for smart homes integrate sensors, actuators,
appliances and devices and provide end user friendly interfaces to allow ordinary end users
to create applications for their environments. As smart homes evolve and get additional
instrumentation they become complex and it can be difficult for ordinary end users to create
software applications using EUD environments. By adopting the EU SPL process
described in this research advanced end users and domain experts can develop end user
product lines for smart spaces. Ordinary end users can use end user product lines to select
features, derive and deploy applications for their homes.

The Smart Home EU SPL case study presents an end user product line created for
a complex smart home. The case study includes features from the domains of home
automation, home security, home notifications, home maintenance, resident comfort and
energy conservation. The case study was developed following the EU SPL Process. In
particular, the End User Product Line Engineering (EUPLE) process was used to design
and develop the case study and the End User Application Engineering process was used to

derive applications.

217

The appendix is organized as follows. Section A.2 describes the EUPLE process
(requirements elicitation, feature modeling, analysis modeling and design modeling) used
to create the Smart Home EU SPL. Section A.3 describes how the EUAE process was used
to derive end user applications from the Smart Home EU SPL for the TeC and Jigsaw EUD

environment. Finally, section A.4 summarizes this chapter.

A.2 End User Product Line Engineering (EUPLE)

End User Product Line Engineering (EUPLE) is the process that EU SPL designers
(technical end users and domain experts) follow to develop EU SPLs. This section
describes the EU SPL Requirements Elicitation, EU SPL Analysis modeling and EU SPL

Design modeling as related to the Smart Home EU SPL case study.

A.2.1 EU SPL Requirements Elicitation

EU SPL requirements elicitation involves a set of activities to help define the
overall scope of the product line. EU SPL designers with domain expertise define the
overall road map for the EU SPL. Then EU SPL designers work with end users to collect
and document requirements. Based on product line scoping and requirements, the product
line feature model is defined. This section describes the end user requirement elicitation
process and provides examples for a smart home case study. In detail section A.2.1.1
describes the Smart Home EU SPL features. Section A.2.1.2 presents the Smart Home EU
SPL feature model. Section A.2.1.3 shows the product line features groups and their

features in a tabular view.

218

A.2.1.1 Smart Home EU SPL Feature Description

Table A.1 provides a summary of the features that comprise the Smart Home EU SPL

case study.

Table A.1 Smart Home EU SPL Feature Description

Feature Name Feature Description

Smart Home Provides common mechanisms for informational and security notifications

Audio Provides audio notifications to the home residents phone when there are
security alerts

Video Provides video notifications to the home residents smart phone when there are
security alerts

Home Alarm The siren, flashing Lights and smart displays get activated when a security
bridge is detected

911 The police is notified when a security bridge is detected

Door Door sensors send security notifications that the doors have been bridged

Motion Motion sensors send security notifications that the doors have been bridged

Window Window sensors send security notifications that the doors have been bridged

Smart Irrigation Controls the sprinkler system

Schedule Starts the sprinkler system based on a schedule

Smart Weather Starts the sprinkler system based on the soil moisture

Sensing

Email Provides email notifications to the home residents phone when there are
informational or security alerts

Text Provides text notifications to the home residents phone when there are
informational or security alerts

Light Failure Light sensors send informational notifications when a light bulb need to be
changed

HVAC Filter HVAC filter quality sensors send informational notifications when the filter
needs to be changed

Power Failure Power Failure sensors send informational notifications when a device has no
power

Energy Conservation | When the home residents are away the home adjusts the home appliances to
lower energy consumption. The home adjust to normal energy levels when the
home residents are back in the house

Flood Detector Moisture sensors send informational notifications when a flood is detected

Faucet Drip Faucet sensors send informational notifications when a faucet keeps dripping

A.2.1.2 Smart Home EU SPL Feature Model

Feature modeling is used to capture feature commonality/variability and feature

dependencies within the EU SPL. In a feature model, features can be organized (a) as

219

common or variable, (b) in feature groups, and (c) as parameterized features. Figure A.1
shows the feature model for the Smart Home EU SPL case study. As shown in Figure A.1
the smart home feature model has one common feature called Smart Home that all other
features and feature groups depend on. There is one optional feature Smart Irrigation that
depends on the Smart Home feature. The Schedule and Smart Weather Sensing features
are also optional and depend on the Smart Irrigation feature. There is one exactly-one-of
feature group called Phone Alert that depends on the Smart Home feature. The Phone Alert
feature group has two mutually exclusive features Audio and Video. The Audio feature is
the default feature and Video is the alternative feature. Default features are selected by
default if no other feature in the feature group is selected. The Video feature is platform
specific.

The feature model also contains two at-least-one-of feature groups: Net
Notification and Home Security. Both of the feature groups depend on the Smart Home
common feature. The Net Notification feature group contains two optional features Email
and Text. Text is the default feature. The Home Security feature group contains three
optional features: Door, Motion and Window. Door is the default option of the feature
group. The Smart Home feature model also contains two zero or more feature groups:
Water Detector and Home Behavior. The Water Detector feature group contains two

optional features Faucet Drip and Flood Detector. The Home Behavior feature group

220

<<optional feature>>
Email

<<default feature>>

Text

<<at-least-one-of feature
group>>
Net Notification

requires

<<platform-specific>>
<<optional feature>>
Energy Conservation

<<optional feature>>
Home Alarm

[requires

requires

<<optional feature>>
Power Failure

<

HVAC Filter

Light Failure

| feature>>
911

<<zero-or-more-of
feature group>>
Home Behavior

requires

requires

<<common feature>>

Smart Home

| eauires

requires

<<z

feature group>>
Water Detector

ero-or-more-of

requires

<<at-least-one-of
feature group>>
Home Security

<<optional feature>>

<<optional feature>>

<<default feature>>

<<exactly-one-of
feature group>>
Phone Alert

!—‘—V

<<default feature>>
Audio

Faucet Drip Flood Detector Door Motion Window
<<optional feature>>
Smart Irrigation
requires, requires
<<platform-specific>>
<<alternative feature>> | feature>>
Video Schedule Smart Weather Sensing

Figure A.1 Smart Home EU SPL Feature Model

contains four optional features: Power Failure, HVAC Filter, Light Failure and 911. In

addition the Home Alarm optional feature depends on the Light Failure feature.

Furthermore the Energy Conservation optional feature depends on the HVAC Filter. The

Energy Conservation feature also is platform specific.

A.2.1.3 Smart Home EU SPL Feature Group / Feature Dependency Table

The Feature group / Feature dependency table is another view that captures the

relationship between product line features and feature groups. The Feature group / Feature

221

dependency table assists EU SPL designers to ensure consistency between features and
feature groups.

Table A.2 shows the Feature Group / Feature dependency table for the Smart Home
case study. The table captures the Smart Home EU SPL feature groups with features
dependencies. The purpose of this table is to ensure consistency between each feature
group and the features it contains. Table A.2 the table has four columns: (a) Feature Group
Name, (b) Feature Group Category, (c) Feature Name, and (d) Feature Category. The
Feature Group Category and Feature Category need to be compatible for example exactly-
one-of feature group needs to have a set of alternative features since only one can be
selected. For example as shown in Table A.2 the Phone Alert exactly-one-of feature group
has two alternative features Audio and Video with the Audio feature being the default

option.

Table A.2 Smart Home EU SPL Feature Group / Feature Dependency Table

Feature Group Name Feature Group Category | Features in Feature Group | Feature Category
Phone Alert exactly-one-of Audio default
Video alternative
Home Security at-least-one-of Door default
Motion optional
Window optional
Water Detector zero-or-more-of Flood Detector optional
Faucet Drip optional
Home Behavior zero-or-more-of Light Failure optional
HVAC Filter optional
Power Failure optional
911 optional
Net Notification at-least-one-of Text default
Email optional

222

A.2.2 EU SPL Analysis Modeling

EU SPL Analysis modeling consists of static modeling and component structuring,
dynamic modeling and feature / component modeling. Section A.2.2.1 describes the Smart
Home EU SPL static model and component structuring. Section A.2.2.2 captures the Smart
Home EU SPL dynamic modeling in the form of sequence diagrams. Section A.2.2.3

provides details about the feature/component dependencies.

A.2.2.1 Smart Home EU SPL Static Model and Component Structuring

Figure A.2 shows the static model and the component structuring for the
components used in the Smart Home case study. The Smart Home EU SPL static model is
composed of the platform specific feature / component table and the components diagram.
The components diagram shown in Figure A.2 captures all the components used on the
Smart Home EU SPL annotated with the reuse, role and platform dependency UML
stereotypes. For example as shown on the securityAlertHandler component is annotated
with the <<kernel>> stereotype to capture reuse category and the <<message-broker>>
stereotype to capture the component role category. Similar the component videoCall is
annotated with the <<optional>> stereotype to capture the reuse category, the <<input /
output device interface>> stereotype to capture the role category and the <<platform-

specific>> stereotype to indicate that this component only applies to specific platforms.

223

<<kernel>>
<<message-broker>>
securityAlertHandler

<<kernel>>
<<message-broker>>
informationalAlertHandler

<<optional>>
<<coordinator>>
alertAudio

<<optional>>
<<input/output device interface>>
phone

<<optional>>
<<coordinator>>
alertVideo

<<platform-specific>>
<<optional>>
<<coordinator>>
cameraManager

<<platform-specific>>
<<optional>>
<<input/output device interface>>
camera

<<optional>>
<<input/output device interface>>
doorMonitor

<<optional>>
<<coordinator>>
breakinDoor

<<optional>>
<<coordinator>>
breakinMotion

<<optional>>
<<input/output device interface>>
motionDetector

<<optional>>
<<coordinator>>
breakinWindow

<<optional>>
<<input/output device interface>>
windowDetector

<<optional>>
<<system-interface>>
email

<<optional>>
<<system-interface>>
text

<<optional>>
<<timer>>
sprinklerTimer

<<optional>>
<<coordinator>>
sprinklerControl

<<optional>>
<<input/output device interface>>
sprinkler

<<optional>>
<<coordinator>>
alarm911

<<optional>>
<<system interface>>
emergencyCall

<<optional>>
<<coordinator>>
alarmHome

<<optional>>
<<input/output device interface>>
smartLight

<<optional>>
<<input/output device interface>>
smartDisplay

<<platform-specific>>
<<optional>>
<<input/output device interface>>
videoCall

<<optional>>
<<input/output device interface>>
floodSensor

<<optional>>
<<input/output device interface>>
power failure sensor

<<optional>>
<<input/output device interface>>
faucetLeakSensor

<<optional>>
<<input/output device interface>>
moistureMonitor

<<optional>>
<<input/output device interface>>
smartHVAC

<<optional>>
<<platform-specific>>
<<coordinator>>
track

<<optional>>
<<coordinator>>
energyControl

<<optional>>
<<input/output device interface>>
smartAudio

Figure A.2 Smart Home Case Study Static Model

The Platform

Specific Feature / Component relationship table captures

the

relationship between platform specific features and platform specific components. As
shown in Table A.3 the platform specific feature / component relationship table has 4
columns: (a) Feature Name, (b) Platform Name, (c) Component Name, and (d) Platform
Specific Name. The Feature Name column captures the name of the feature. The Platform
Name column captures the end user platform(s) that the feature applies. The Component
Name column captures the component name as it appears on the static model. The Platform

Specific Name column captures the actual component name in the specific platform. For

example the Energy Conservation feature applies only to the TeC platform.

224

Table A.3 Platform Specific Feature / Component relationship table
Feature Platform Name Component Name Platform Specific Name
Name
Energy Conservation Team Computing track tecTrack
Video Team Computing videoCall tecVideoCall
cameraManager tecCameraManager
camera tecCamera

The track component of the Energy Conservation feature would have to be mapped to the
tecTrack component of Team computing during the end user application deployment

process.

A.2.2.2 Smart Home EU SPL Dynamic Modeling

EU SPL designers use dynamic modeling to capture the object interactions needed
to satisfy EU SPL features. This research used UML sequence diagrams to model object
interactions. Sequence diagrams model the message interaction of objects based on a time
sequence (Rumbaugh et al., 2004). Figure 4.3 to Figure A.20 show the sequence diagrams
developed for each feature defined in the feature model. The components
securityAlertHandler and informational AlertHandler are kernel components and support

the Smart Home Feature. The kernel components support all sequence diagrams.

225

<<kernel>>
:securityAlertHandler

subscribe

<<optional>>
:alertAudio

[init=true]

[sendAlert=true]

notify

.D<
i

<<optional>>

:phone

SR B

Figure A.3 Sequence Diagram for the Smart Home EU SPL Audio Feature

<<kernel>> <<optional>>
:securityAlertHandler :alertVideo
T T
|
Ij subscribe [init=true]
—
|
|
|
|
|
1
notify
[videoCall=true]

|
|
|
|
|
|
Ij [sendAlert=true]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'

I
|
|
|
|
|
|
|
|
|
[call=true] makeCall ‘D
|
|
|
|

<<optional>>

<<optional>>

<<optional>>

________-_______l

:videoCall :cameraManager :camera
T T T

| |
| |
| |
makeVideoCall | |
| |
[videoCall=true] startVideoStream[| !
[startVideo=true] startStream
stream_in T stream_out
T
[endCall=true] stopVideoStream
[stopVideo=true] stopStream

Figure A.4 Sequence Diagram for the Smart Home EU SPL Video Feature

226

<<optional>>
:breakinDoor

<<optional>>
:doorMonitor

<<kernel>>
:securityAlertHandler

I

|

|
.

I

|

|

|

|

|

|

i |
[activate=true] on
| action [movement=true]

[activity=true] receiveAlert R

T
|
|
|
|

Figure A.5 Sequence Diagram for the Smart Home EU SPL Door Feature

<<optional>>
:breakinMotion

<<optional>>
:motionDetector

<<kernel>>
:securityAlertHandler

I

|

|
-

I
|
|
|
|
|
[
. |
[activate=true] on
| action [movement=true]
[activity=true] receiveAlert N

L
|
|
|
|

, .
Figure A.6 Sequence Diagram for the Smart Home EU SPL Motion Feature

227

<<optional>>
:breakinWindow

<<optional>>
:windowDetector

<<kernel>>
:securityAlertHandler

I

|

|
1

[activate=true]

on

action
<
<

[movement=true]

[activity=true]

receiveAlert

T
|
|
|
|

Figure A.7 Sequence Diagram for the Smart Home EU SPL Window Feature

<<kernel>>
:securityAlertHandler

<<kernel>>

<<optional>>

:informationalAlertHandler text
| . |
subscribe | [init=true]
< f
[sendAlert=true] ! notify
T Ll
I
I
I
| L
| |
|_subscribe [init=true] —
[sendAlert=true] notifyk
|
I T

Figure A.8 Sequence Diagram for the Smart Home EU SPL Text Feature

228

<<kernel>>
:securityAlertHandler

<<kernel>>
:informationalAlertHandler

<<optional>>
:email

[init=true]

subscribe
<

[sendAlert=true]

notify

subscribe
<

[init=true]

-

«

[sendAlert=true]

notify

Ll

T

Figure A.9 Sequence Diagram for the Smart Home EU SPL Email Feature

<<optional>>
:sprinklerControl

<<optional>>

<<kernel>>
:informationalAlertHandler

[turn off=true]

:sprinkler
I I
| |
— |
|
[turn on=true] startWater '
> |
|
[turn on=true] receiveAlert D
|
|
|
[turn off=true] stopWater :
v |

L
I

L
I

receiveAlert D
.
Ll

Figure A.10 Sequence Diagram for the Smart Home EU SPL Smart Irrigation Feature

229

<<optional>> <<optional>>
:sprinklerTimer :sprinklerControl

[timeAlert=true] water

I

—— I
I I

I I

I I

]

I
Figure A.11 Sequence Diagram for the Smart Home EU SPL Schedule Feature

<<optional>> <<optional>>
:moistureMonitor :sprinklerControl

I
I
D [drySoil=true] water []
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L
I
I
I
I
I
I
I
I
I
I

Figure A.12 Sequence Diagram for the Smart Home EU SPL Smart Weather Sensing Feature

230

<<optional>> <<kernel>>
:floodSensor :informationalAlertHandler

I
|
|
[flood=true] receiveAlert ‘D
|
|
!
!
!
!
!
!
|
|
!
|

Figure A.13 Sequence Diagram for the Smart Home EU SPL Flood Detector Feature

<<optional>> <<kernel>>
:faucetLeakSensor :informationalAlertHandler

|
[
[

[leak=true] receiveAlert |
[
[
[
[
[
[
[
[
[
[
[

I I
Figure A.14 Sequence Diagram for the Smart Home EU SPL Faucet Drip Feature

231

<<optional>> <<kernel>>
:smartLight :informationalAlertHandler

[replace=true] receiveAlert

I

I

I

I

1 I
I I
I I
I I
I I
I I
I I
I I

Figure A.15 Sequence Diagram for the Smart Home EU SPL Light Failure Feature

<<optional>> <<kernel>>
:smartHVAC :informationalAlertHandler

[replace filter=true] receiveAlert

I

I

I

I

1 I
I I
I I
I I
I I
I I
I I
I I

Figure A.16 Sequence Diagram for the Smart Home EU SPL HVAC Filter Feature

232

<<optional>> <<kernel>>
:powerFailureSensor :informationalAlertHandler

I
|
|
[failure=true] receiveAlert
|
|
|
|
|
|
|
|
|
|
|
|

Figure A.17 Sequence Diagram for the Smart Home EU SPL Power Failure Feature

<<optional>> <<optional>> <<optional>> <<kernel>>

itrack :energyControl :smartHVAC :informationalAlertHandler

T T T T

| | | |

] |

|

[away=true] econ !

> |

|

|

|

[adjustHvacLevel=true] setHvacLevel :

| I

|

|

|

|

|
|
[energyLevelNotification=true] | receiveAlert
' =]
|
|
|
|

-~

[homes=true] norm

[adjustHvacLevel=true] setHvacLevel |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|

[energyLevelNotification=true] : receiveAlert

T >
T !

| | |
| | |
| |

! |
Figure A.18 Sequence Diagram for the Smart Home EU SPL Energy Conservation Feature

233

<<kernel>> <<optional>> <<optional>>
:securityAlertHandler :alarmHome :smartAudio

T
|
D subscribe [init=true

alarm=true]

<<optional>>
:smartDisplay

<<optional>>
:smartLight

[alarm=true]

|
l
|
|
[[alarm=true] Plal_!_:l
1

D [sendAlert=true] notify_
|
|
|
|
|
|
|
|
|
|

T
|
|
I
I
|
|
|
|
|
|
|
|
1

show ‘D
]
|
|
T
I
|

Figure A.19 Sequence Diagram for the Smart Home EU SPL Home Alarm Feature

<<kernel>> <<optional>> <<optional>>
:securityAlertHandler :alarm911 :emergencyCall
subscribe [init=true]
notify

I

|
)
<

|

|

|

|

D [sendAlert=true]

|

|

|

|

|

|

|

|

|

1

et B S o

I
|
|
|
|
|
|
|
|
|
[contact911=true] emergency
»
|
|
|
|
|
|
|
|
|
\

Figure A.20 Sequence Diagram for the Smart Home EU SPL 911 Feature

234

A.2.2.3 Smart Home EU SPL Feature/Component Dependency Table

The Feature / Component table describes in detail the EU SPL features and the
components needed to support the implementation of each of the features. The purpose of
the table is for EU SPL designers to ensure consistency between features and the
components that support them.

Table A.4 shows the Feature / Component Dependency Table that was developed
for the Smart Home EU SPL Case Study used in this research. For example the common
feature Smart Home is implemented by the securityAlertHandler and the
informational AlertHandler component that are kernel. Similarly the alternative Video
feature is implemented by the alertVideo, videoCall, cameraManager and camera optional
components. Since the Video feature depends on the Smart Home feature, the Video feature
will also be supported by the securityAlertHandler and informational AlertHandler kernel
components. Finally, the optional Energy Conservation feature is implemented by the
optional track and energyControl components. The component parameter residentIDs of
the track component indicate the smart home residents that need to be tracked by the

component.

235

Table A.4 Smart Home EU SPL Feature/Component Dependency Table

Feature Feature Feature Component Name Component Component
Name Group Category Reuse Parameter
Name Category

Smart Home common securityAlertHandler kernel
informational AlertHandler | kernel
Audio Phone Alert | default alertAudio optional
phone optional
Video Phone Alert | alternative alertVideo optional
videoCall optional
cameraManager optional
camera optional
Door Home default breaklnDoor optional
Security doorMonitor optional
Motion Home optional breakinMotion optional
Security motionDetector optional
Window Home optional breakInWindow optional
Security windowDetector optional
Smart optional sprinkler optional
Irrigation sprinklerControl optional
Schedule optional sprinklerTimer optional timetorun :
String
Smart Weather optional moistureMonitor optional
Sensing
Email Net optional email optional
Notification
Text Net default text optional
Notification
Flood Detector | Water optional floodSensor optional
Detector
Faucet Drip Water optional faucetLeakSensor optional
Detector
Home Alarm Home optional alarmHome optional
Behavior smartAudio optional
smartDisplay optional
911 Home optional alarm911 optional
Behavior emergencyCall optional
Light Failure Home optional smartLight optional
Behavior
HVAC Filter Home optional smartHVAC optional
Behavior
Power Failure Home optional powerFailureSensor optional
Behavior
Energy Home optional track optional residentIDs:
Conservation Behavior energyControl optional List<String>

236

A.2.3 EU SPL Design Modeling

EU SPL Design modeling maps the EU SPL Analysis model to the solution domain
(Gomaa, 2016). During EU SPL Design modeling the component inter-feature
communication, component relationships and component interface models are designed.
Section A.2.3.1 describes the inter-feature component communication table. Section
A.2.3.2 presents the component relationships and component interfaces in the form of
component diagrams. Section A.2.3.3 provides additional details about the component

inputs/outputs and component output triggering conditions that initiate an event.

A.2.3.1 Smart Home EU SPL Inter-Feature Component Communication Table

The inter-feature component communication table captures all product line
components that send and receive messages through message broker components. Table
A.5 shows the inter-feature component communication table that was created to support

the Smart Home case study.

Table A5 Inter-Feature Component Communication Table

Message Broker Subscribed Message Producer Components
Components
securityAlertHandler alertAudio breakinDoor
alertVideo breakinMotion
alarmHome breakInWindow
alarm911
email
text
informational AlertHandler email schedule
text sprinklerControl
smartLight
smartHVAC
powerFailureSensor
energyControl
floodSensor
faucetLeakSensor

237

A.2.3.2 Smart Home EU SPL Component Diagrams

UML component diagrams can be used by EU SPL designers to capture (a)
components available in a smart home, (b) component relationships, and (c) provided and
required interfaces needed for components to communicate. The components diagrams are
developed based on the sequence diagrams shown in Figure A.21 to Figure A.38 during
EU SPL Analysis phase. Figure A.21 to Figure A.38 show the component diagrams
developed for the Smart Home EU SPL case study.

Figure A.37 shows the component diagram of the Home Alarm Feature. The
component diagram is composed of the securityAlertHandler, alarmHome, smartAudio,
smartDisplay and the smartLight components. The components are decorated with UML
stereotypes to indicate whether a component is kernel, optional, or variant. For example
the securityAlertHandler is a <<kernel>> component while alarmHome, smartAudio,
smartDisplay and smartLight are <<optional>> components. Furthermore additional
stereotypes are used to capture the role of each component. For example
securityAlertHandler is a <<message-broker>> component. Components may also have a
multiplicity indicator to indicate the number of component instances in a smart space. For
example the smartAudio, component has 1...* multiplicity that indicates that there are one
or more smartAudio in the smart space. The connections between components also indicate

the required and provided interfaces between components.

238

receiveAlert notify

sendAlert

<<optional>>

<<kernel>> <<optional>> call makeCall <<input/output device
<<message-broker>> subscribe i <<coordinator>> interface>>
securityAlertHandler alertAudio phone
Figure A.21 Component Diagram for the Audio Feature
startVideoStream
=
1+) LT
<<platform-specific>> ~ _|startStream startVideo .
<<optional>> <<platform-specific>>
<<in ut/‘c))ut ut device <<optional>> [stopVideoStream
pinterfaze» stopStream stopVideo <<coordinator>>
camera camer M
1
T stream_out
[_rleceiveAIert notify stream_in endCall
d .
<<kernel>> <<optional>> videoCall

<<platform-specific>>
<<optional>>
<<input/output device

<<coordinator>> videoCall makeVideoCall
alertVideo

<<message-broker>>
securityAlertHandler

interface>>
videoCall

Figure A.22 Component Diagram for the Video Feature

receiveAlert activity
dAlert L] . <<optional>> L
<<kernel>> <<optional>> activate on <<input/output device
<<message-broker>> subscribe <<coordinator>> interface>>
securityAlertHandler breakinDoor doorMonitor
1 1

7\—/ action j—‘ movement

Figure A.23 Component Diagram for the Door Feature

239

activity

receiveAlert
dAlert L . <<optional>> L=
<<kernel>> <<optional>> activate on <<input/output device
<<message-broker>> subscribe <<coordinator>> interface>>
securityAlertHandler breakinMotion motionDetector
1 1

7\—’ action IW—I movement

Figure A.24 Component Diagram for the Motion Feature

receiveAlert activity
sendAlert L <<optional>> - *
<<kernel>> <<optional>> activate on <<input/output device
<<message-broker>> subscribe <<coordinator>> interface>>
securityAlertHandler breakinWindow windowDetector
1 1

IT action IW’I movement

Figure A.25 Component Diagram for the Window Feature

receiveAlert

D sendAlert notify

<<kernel>>
<<message-broker>>
informationalAlertHandl

<<optional>>
<<system-interface>>
text

subscribe

receiveAlert
]
L

<<kernel>>
<<message-broker>>

securityAlertHandler
subscribe

Figure A.26 Component Diagram for the Text Feature

240

] sendAlert noti
L fy

<<optional>>
<<system-interface>>
email

<<kernel>>
<<message-broker>>
informationalAlertHandler

subscribe

receiveAlert
I

L

<<kernel>>
<<message-broker>>
securityAlertHandler

subscribe

Figure A.27 Component Diagram for the Email Feature

<<optional>>
<<coordinator>>
sprinklerControl

—

turn off

turn on

startWater stopWater

receiveAlert

sendAlert

L

. 1.*
<<optional>> -

<<input/output device interface>>
sprinkler

<<kernel>>
<<message-broker>> subscribe
informationalAlertHandler

Figure A.28 Component Diagram for the Smart Irrigation Feature

241

<<optional>> timeAlert water <<optional>>
<<timer>> <<coordinator>>
sprinklerTimer sprinklerControl

Figure A.29 Component Diagram for the Schedule Feature

*
<<optional>> water drySoil <<optional>> L.
<<coordinator>> <<input/output device interface>>

sprinklerControl moistureMonitor

Figure A.30 Component Diagram for the Smart Weather Sensing Feature

1.*
<<optional>>

<<input/output device interface>>
floodSensor

flood
receiveAlert
sendAlert
L
<<kernel>>
<<message-broker>> subscribe

informationalAlertHandler

Figure A.31 Component Diagram for the Flood Detector Feature

242

1 *
<<optional>>

<<input/output device interface>>

faucetLeakSensor
1

leak

receiveAlert

sendAlert
L1
<<kernel>>
<<message-broker>> subscribe

informationalAlertHandler

Figure A.32 Component Diagram for the Faucet Drip Feature

setLightLevel

flash |—' 1.% .
<<optional>> replace receiveAlert

<<input/output device interface>!
smartLight

<<kernel>>
<<message-broker>>
informationalAlertHandler

Figure A.33 Component Diagram for the Light Feature

setHvaclLevel
1

L 1*
<<optional>> "
<<input/output device interface>
smartHVAC

replace filter receiveAlert
<<kernel>>

<<message-broker>>
informationalAlertHandler

Figure A.34 Component Diagram for the HVAC Filter Feature

sendAlert

subscribe

sendAlert

subscribe

243

1.* . receiveAlert, sendAlert
<<optional>> failure

<<input/output device interface>
powerFailureSensor

<<kernel>>
<<message-broker>> subscribe
informationalAlertHandler

Figure A.35 Component Diagram for the Power Failure Feature

sendAlert
<<kernel>>
<<message-broker>> subscribe
informationalAlertHandler

receiveAlert

energylLevelNotification

LT
<<optional>> <<optional>>
<<coordinator>> <<input/output device interface>:
energyControl adjustHvacLevel smartHVAC

<<optional>>
<<platform-specific>>
<<coordinator>>
track

replace filter|

Figure A.36 Component Diagram for the Energy Conservation Feature

<<optional>> 1.*
<<input/output device
interface>>
smartAudio

receiveAlert
1

sendAlert notify

<<optional>> 1 *
<<input/output device
interface>>

L]
<<kernel>> <<optional>>
<<me.ssage-broker>> subscribe init <<coordinator>>
securityAlertHandler alarmHome

<<optional>> 1.*
<<input/output device
interface>>

replace

setLightLevel
Figure A.37 Component Diagram for the Home Alarm Feature

244

receiveAlert

sendAlert R
<<optional>> <<optional>>

[l :
notify
<<kernel>> . . contact911 emergency
<<message-broker>> <<coordinator>> y interface>>
securityAlertHandler . . alarm911 emergencyCall

Figure A.38 Component Diagram for the 911 Feature

A.2.3.3 Smart Home EU SPL Component Input / Output Table

Table A.6 and Table A.7 shows component input / output table developed
for the Smart Home EU SPL. The component input / output table describes all the inputs,
outputs and triggering conditions of each component in order to support the features
described in the product line. The input / output table has four columns: (1) Component
Name, (2) Component Input, (3) Component Input, and (4) Component Output triggering
condition. For example the alarm911 has one input called notify that takes as a parameter
a message. The alarm911 has two outputs: (1) init, and (2) contact911. The init output
sends the component clientID when the triggering condition “startup=true.” This indicates
that this output executes during initialization. The contact911 output sends a message out
when the “message=true” condition is true. The Component Input / Output Table gets

mapped to specific platform during application derivation.

245

ann=Aip

11osAip

JoJIuoAlaJnisiow

(abessaw 1n0) Jo uim
(abessaw 1n0) Uo wIN

Jojem

JosuoDIspiuLIds

anJ}=awi] pu3pa|npays
anJ}=aWi | LeISP3a|Npayds

(abessaw 1n0) o uim
(abessaw 1n0) uo uiny

Jawi sapjunids

(abessaw 1no)Jerepndors
(abessaw 1n0)Js1eANLIRIS

Japjunds

an=anow (dA1821A8p 1IN0 * Q1821A3P IN0)IUSISAOW uo 1019919QMOPUIM
ann=uonow (abessaw n0)Annnae
ann=dnyuels ajeAnoe (adA 1 821n8p Ul ‘@l891nap ur)uonoe MOPUIAMU[YB3Iq
anJ=anow (dA1221n8p 1IN0 * Q1321A3P IN0)IUBIBAOW uo J10308)9QUONOW
ans=uonow (abessaw 1n0)ANAnoe
ann=dnyuels aleAloe (adA 1821n8p U1 ‘Ql921A3P UI)UORIR UONOAUYeaIq
ann=anow (adA1821n8p N0 * Q]991ASP IN0)IUBWIBAOW uo J10}1UOINJoop
ans=uonow (abessaw 1n0)A1AIoE
ann=dnyels aleAIoR (adA1821n8p Ul ‘@Jad1Asp ul)uonoe looquiealq
(ebessaw ur)Aouabiawa 1leDAdusbIswa
anJ1=abessal (abessaw 1n0) TTE10€IU0D
ann=dnyels (@nuaipo no)ul (abessaw ur)Anou TT6Waele
(1nayB1| un)jeAeTIYBITIeS
no=1yl1 (anypbi) 1no)sae|dal ysed Wb UewWs
(eBessaw ur)moys Aejdsigquews
(abessaw ur)Aeld oIpny/LIewWs
anJj=abessaw (abessaw no)wiee
ann=dnyuels (@nuaipo no)uul (abessaw ur)Anou awoHwJepe
(ssauppe™ d1 1ualjd Ino)weansdols
(wea1s 0apIA IN0)IN0 WealIS (ssaippe™ d| 1ual]d IN0)WeaISue]s eJaWe)
(ssaippe dI usld Ino)ospiAdols (ssalppe d| 1uald ur)weansoapiAdols
(ssaippe™ | 1ual|d IN0)03PIALILIS (Ssaippe ™ d| 1ua1|d ul)WwealISoapIALIE]S Jabeue|\rIowed
ann=uonngjjeppu3passaid (ssalppe d| 1ual|d 1N0)|[eDpuUd (wreanis oapIA Unul” Weans
aNN=11U]03PIA (ssaippe™ d| U819 IN0)|[eD08PIA (abessaw u1 ‘Jaquuinuauoyd ul)jjeD03pIAN W 11eD03pIA
an.Jj=abessaw (abessaw 1n0 “Jaquinuauoyd 1n0)|[e203pIA
ann=dnyels (@nuaijo no)ul (abessaw ur)Anou 03pIAMBIR
(abessaw ul ‘Jaquinu suoyd ut)|jeDaxew auoyd
an.Jj=abessaw (ebessaw 1n0 ‘Jaquinu auoyd In0)|Jed
ann=dnyuels (@nuaijo no)uul (abessaw ur)Anou olpnyuse

ann=anandujabessaw

(aBessaw 1n0)UI8|\pUBS

(anuao uaquosgns
(aBessaw ul)1IB]\aAI8dal

Ja|puBHUB|\/[_UOITRWIOJUI

ann=anandujabessaw

(abessaw 1no)us|wpuasS

(@nusid ur)aquosans
(abessaw u1)1s|yanI18281

Ja|pueHua|\A1Ndas

uonipuo) burisbbia
1ndinQO jusuodwo)

1ndinQO jusuodwo)

1ndu] wsuodwod

aweN jusuodwo)

8|qeL IndinO 7 Induj Jusuodwod TdS NI SWOH Mews 9'y ajqe L

246

anN1=pajo91ad>es|

(Q1891A8p 1N0)e8)

10sUaSyeaTI80Ne)

ann=ainsiow

(uoneao| 1no)poojs

10SU3SPOO[)

9NJl=|]ATTWIOU {QO anJ}=|]ATU0I3

(dw1 1n0) JaneoeAHISNIpE

3NA=|ATWIOU YO 8NI=|AU0ID (19A8TyBi 1n0) j8nsyBIsnlpe waou

aNN=|ATWIoU YO aNI}=|]AU02d (abessaw 1n0) uonealoNeAa]ABIaU uoda jonu0DABIsUB
aNJ1=3WOHSIUPISAI awoy

ann=AeMy/Siuapisal Aeme Moes
ann=ainjre4lemod (@1991n8p 1N0)ain|Iey Jlosuasainjre41amod
ann=Jayj1430e|dal (@19eny no)iay 1y aoedal (dwiay ur)jansoeAHISS DV AHUeWS
ann=dnyuels (@nwuaijo no)ul (abessaw ur)Anou @l
ann=dnyuels (@nuaijo no)uui (abessaw ur)Aynou |rews
uonipuo) buiaabbia | aweN
1nd1nQO 1wsuodwo) 1ndinQO 1usuodwo) 1ndu] wsuodwo)d 1usuodwo)

(uonenunuo)) sjgel indinoanduy usuodwo) /v 9jqel

247

A.3 End User Application Engineering

End User Application Engineering (EUAE) is the process to derive end user
applications from the End User SPL and deploy them to end user smart spaces. This
section, describes two application derivation examples, “Smart Home Example 17 and
“Smart Home Example 2” from the Smart Home EU SPL. In particular, the feature
selection for the “Smart Home Example 17 does not contain any platform specific features
and application derivation examples are given for both the Jigsaw and TeC EUD
environment. The “Smart Home Example 2” is platform specific in which the application
is derived for the TeC EUD framework. The remainder of this section describes the EUAE
process for both examples. Section A.3.1 describes the “Smart Home Example 17

application and section A.3.2 describes the “Smart Home Example 2” application.

A.3.1 Smart Home Example 1 - End User Application Engineering

The “Smart Home Example 17 is an example of an application derived from the
Smart Home EU SPL based on the end user requirements. Figure A.39 shows the Feature
Model of the derived application. The derived application consists of the following
features: “Smart Home”, “Audio”, “Door”, “Text”, “Flood Detector”, “Smart Irrigation”,
“Schedule”, “HVAC Filter”, “Home Alarm” and “Light Failure.” The feature model
follows the feature and feature group consistency rules. For example there is only one
feature selected form the “Phone Alert” exactly-one-of feature group, there is one feature
selected from the “Home Security” and “Net Notification” at-least-one-of feature groups.
Also all parent features that other features depend on are also available. Some examples of

parent features are the “Smart Home” common feature that all other features depend on,

248

<<optional feature>>
Home Alarm

<<default feature>>

Text
requires
<<at-least-one- : :
fe:ttulf:“r::e:f <<optional feature>> <<optional feature>>
group: HVAC Filter Light Failure
Net
requires
<<zero-or-more-of
feature group>>
Home Behavior
requires
<<common feature>>
requires Smart Home requires
requires]\
requires
<<zero-or-more-of <<at-least-one-of i
feature group>> feature group>> S<<np:|o.nal>'>
Water Detector Home Security mart Irrigation
requires /
<<optional feature>> <<default feature>> <<optional feature>>
Flood Detector Door Schedule

<<exactly-one-of
feature group>>
Phone Alert

—

<<default feature>>
Audio

Figure A.39 Smart Home Example 1 — Feature Model

the “Light Failure” feature that the “Home Alarm” depends on and the “Smart Irrigation”
feature that the “Schedule” feature depends on. As shown in Figure A.39 there are not any
platform specific features selected, thus the derived application can be deployed to either
the Jigsaw or TeC EUD environment. Table A.8 and Figure A.40 describe the
deployment of the derived application to the Jigsaw EUD environment. Table A.8
shows the mapping of the “Smart Home Example 1” features to the Jigsaw architecture. In

detail Table A.8 has six columns: (1) Feature Name, (2) Feature Group Name, (3) Jigsaw

249

Component Name, (4) Jigsaw Component Input, (5) Jigsaw Component Output, and (6)
Jigsaw Component Output Triggering Condition. For example, the first row of shows that
the feature “Smart Home” is implemented by one component the “securityAlertHandler.”
The “securityAlertHandler” component contains two inputs: (1) “receiveAlert (in
message)”, and (2) “subscribe (in clientlD).” The “receiveAlert” input is used to receive
security alerts from other components and expects a parameter called “message.” The
“subscribe” input is used for other components to register to the “securityAlertHandler.”
The “subscribe” input and expects a parameter called “clientID” with the identification
name of the component that needs to be registered. The “securityAlertHandler” component
contains one output called “sendAlert (out message).” The output send alerts to registered
components. The output sends one parameter to registered components called “message”
that contain the alert details. The “sendAlert (out message)” output of the
“securityAlertHandler” component is executed when the ‘“messagelnQueue=true”
triggering condition evaluates to true. Figure A.40 visualizes the derived end user
application architecture as it would be displayed to the Jigsaw editor. As shown in Figure
A.40 components are represented as Jigsaw pieces put together to form application logic.
Similarly, Table shows the application mapping for Smart Home derived application to the
Team Computing EUD environment based on the feature selections shown in Figure A.41
visualizes the derived application architecture as it would be displayed to the Team

Computing application editor.

250

UOIEIRIION
ann=dnyels (@nuaid no)uui (abBessaw ur)Asnou 1Xa) BN Xol
anJ1=all| pu3pa|npayds (abessaw 1n0) JJo uIny
anJ1=aWi] 1IeISpajnpayos (sBessaw 1n0) Uo uIn Jawi] Japjurids a|npayas
(abessaw 1n0) Jo uiny uolebiu|
(abessaw 1no) uo uiny Jayem |JouoDIapjuLIds uews
Jayepndols uonebLu|
Ia1eANLIR]S Japjuuds uews
10108190
ans=ainisiow (uonedo| 1no)pooyy 10SuUaspooy) | 10109189 JBTRMN pool4
(adA1821n8p N0
ani=aAow | ‘ @JadIAap IN0)IUBWBAOW uo JojuolnJoop | Auindas awoH looQ
anJj=uonow (abessaw 1no)A1AnIe (dA1891n8p
ann=dnuels dleANnde ul ‘@adinsp urjuonae Jooqupyeslq | A1ndss swoH Jo00Q
(abessaw
ur ‘Jaquinu—suoyd
un)|jeDaxew auoyd Moy auoyd opny
(abessaw 10
anJ)=abessaw ‘Jaquinuauoyd 1n0)|ed
ann=dnurels (@nusaid no)uui (abessaw ur)Asnou olpnywuse 193]V auoyd olpny
lo1neyag wely
(aBessaw ur)moys Aejdsiguews aWwoH awoH
loineyag wJely
(abessaw un)Aeld olpnyylewS aWwoH awoH
anJ)=abessaw (abessaw 1n0)w.iepe Jolneyag wepy
ann=dnurels (@nusaid no)uui (abessaw ur)Asnou swoHwJele 3WOoH SWOoH
loineyag JETTE
anJ1=Jay|14a0e|das | (@loeAy 1no)saljiy adejdal DV AHURWS 3WoH JOVAH
loineyag ain|re
8s[ey=1yb1| (anybij 1no)aoejdai usel wbirews 8WOH Wb
(@nusarpo ur)aguasgns 3WOH
ann=ananQujabessaw (ebessaw 1no)uigwpuas | (abessaw ul)1a|\aAIadal | Ja|pueHLIS|W[eUOIIBWLIOLUI Hews
(@nusarpo ur)aguasgns 3WOH
ann=ananQujabessaw (abessaw no)uaypuas | (sBessew ul)ua|aAIB8) Ja|pueHUIB|AI1IN28S 1ewsS
uonipuo) buiaabbia |
1ndinQ 1usuodwo) 1ndinQ 1usuodwo) 1ndu| wsuodwo)d aweN uauodwo)d aweN dnoio aweN
dSd MVSOIC dSd M\VSOIC dSd M\VSOIC dSd M\VSOIC ainjea ainjea

mesbic 01 padden uonedijddy paalteg N3 — T ojdwex3 swoH 1ews 8V a|geL

251

\Audio Feature

<<optional>>
<<input/output device

Door Feature

1.*
activate

. on
<<optional>>

<<input/output device
interface>>
doorMonitor

<<optional>>
‘ ‘ <<coordinator>>
breakinDoor

activity

<<optional>>
<<system interface>>
text

notify

init

init

Text Feature

interface>>
phone makeCall
call
<<optional>>
<<coordinator>> potify
alertAudio
L——init——MM—
Home Alarm Feature
q Tl
<<optional>> .
<<input/output device
nit alarm interface>>
| play smartAudio
<<optional>> 1.*
<coordii p
alarmHome <<input/output device
interface>>
alarm smartDisplay
notify show
alarm
Light Failure Feature

Smart Home Feature

i
i

replace filter 1.* i i —)
| ! on off

<<optional>> i

<<input/output device interface>> | |! <<optional>>
i
smartHVAC i <<coordinator>> water
i sprinklerControl
!
i turn
HVAC Filter Feature il Flood Detector Feature - turn off———
startWater stopWater

EU SPL Feature Color Codes

‘ ‘ HVAC Filter

Audio

‘ Text

Figure A.40 Smart Home Example 1 - EU Application Architecture for Jigsaw

<<optional>>

interface>>
sprinkler

<<input/output device

Smart Irrigation Feature

Schedule Feature

252

ann=dnyrels (@nuand 1no)uul (aBessaw un)Apnou 1X81 | UuOIeJIHION 18N el
anJ)=awil| pu3pajnpayds (abessaw 1n0) o uin
anJ1=aw1] 1eISpa|npayos (ahessaw 1n0) Uo uINy Jawip Jspjunids 3|npayas
(abessaw 1n0) Jo uim uonebLu|
(aBessaw 1n0) uo uin 191eMm JoauoDIapjuLIdS ews
Jarepndols uonebiu|
lalepnuels Japjuuds Uews
10109190
ans=ainjsiow (uonedso| 1no)pooly losuaspooly | J019919Q Jaren pool4
(adA1921n8p N0
ani=aAoW | ‘]991A3P IN0)IUBWIBAOW uo J10}IUOIALI00P A11In2as awoH looQ
ann=uonow (abessaw 1n0)A1IAN0R (adA1821n8p
ann=dnyuels dJeAINOe u1 ‘Q|e91Aap ur)uonoe looqupealq A1InJas swoH looQ
(abessaw
ur ‘Jaquinusuoyd
unjredaxew auoyd 13|V auoyd olpny
(abessaw 1n0
anJ=abessawl ‘JIaquinu”auoyd 1no)|jed
anJ=dnyels (@nuand no)uul (abessaw ur)Aynou olpnyuse 13|V auoyd olpny
(abessaw ur)moys Aejdsiguews | Joineysg swoH w.ie|y awoH
(abessaw ur)Aejd olpnyueWS | Joineyag swoH Wwie|y aWoH
anJ1=abessaw (abessaw 1no)w.rele
ann=dnyrels (@nuand 1no)uul (abessaw ur)Aynou aWOoHWwJele | JolAeysg swoH Wwe|y aWoH
ann=Jay14aoe|das | (QloeAy 1no)iay iy aoejdal JVAHMews | Joineyag awoH | J8)ji4 DVAH
8s[ey=1ybi| (anypi) 1no)aoe|dal ysery ybiuews | Joineyag swoH | ainjre4 y6i
(@nuarfo uraquasans a|pu
ann=ananQujabessaw (aBessaw 1no)ugwpuas | (abessaw Ul)LB|\aAIadal | BHUS|W|RUOIIRWIOUI 3WOH Mews
(@nuarfo uraquasans
ann=ananQujabessaw (aBessaw 1no)ug|puas | (sbessaw ul)us|aAladal | Js|pueHLIS[wA11INdaS 3WOH Uews
uonipuod
Buriabbri] Indino 1ndino nduj awep usuodwo)d aweN aweN
1uauodwo) dSd D91 juauodwo)d dsd D91 juauodwo) dsd D2l dSd D81 | dnouo aunyesad ainjeaH

Do 01 paddey uoneaiddy paallag N3 — T ojdwex3 awoH 14ews 6V 9|qel

253

|
! |
| " |
| activity !
i <goptional>> | activate oﬂ <<optional>> 1.% i
| coordi > [T <<input/output device interface>> 1
| breakinDoor doorMonitor 1
! |

LT Audio Feature |

<<default>> '

<<kernel>> <<optional>> call makecall__| <<input/output device | |

<<message-broker>> C inator>> j 4’7 interface>> !

securityAlertHandler alertAudio phone !
Home Alarm

<<optional>> 1-*
<<input/output device
interface>>
smartAudio

Feature

play

<<optional>>
<<coordinator>>
alarmHome

<<optional>>
<<system-interface>>

<<optional>> 1.*
<<input/output device
interface>>

777777777777777777777777 smartLight
<<kernel>> replace
<<message-broker>> pertoe . i

infoAlertHandler i |

= i I

[y > S <<optional>> T

1 <<input/output device interface>> i

! sprinkler |

! startWater stopWater |

'Flood Detector —~~~—_~ U /HVACFilter —~ /"=~~~ ! | i
[Feature | | Feature replace filter | ‘ | T T T T T T T e e !
| I | | | | Schedule Feature |
| [- | | turnon turn off | | |
! <<optional>> 1.* i <<optional>> 1 » ! ! tional | " A !
| <<input/output device |i 1| <<input/output device | | <<op fona >> |ater | | “mEAIe,ﬁ <<op't|onal>> !
! interface>> 0 interface>> | i << T ! = <<timer>> |
} flood- i smartHVAC ! ! sprinklerControl ! ! sprinklerTimer }
e I i i Smart Irrigation Feature | b i

Figure A.41 Example 1 - Smart Home Example 1 - EU Application Architecture for TeC

A.3.2 Smart Home Example 2 - End User Application Engineering

The “Smart Home Example 2” is an example of an application derived from the
Smart Home EU SPL based on the end user requirements. Figure A.42 shows the Feature
Model of the derived application. The derived application consists of the following
features: “Smart Home”, “Video”, “Door”, “Motion”, “Window”, “Email”, “HVAC
Filter”, “911”and “Energy Conservation.” The feature model follows the feature and

feature group consistency rules. For example there is only one feature selected form the

254

<<platform-specific>>
<<optional feature>>
Energy Conservation
requires
<<optional feature>> <<optional feature>> <<optional feature>>
Email HVAC Filter 911

<<at-least-one-of <<zero-or-more-of

feature group>> feature group>>

Net Notification Home Behavior

requires
requires
<<common feature>>
requires Smart Home
requires
<<exactly-one-of <<at-least-one-of
feature group>> feature group>>
Phone Alert Home Security
«platf""_“'s"edﬁc» <<default feature>> | | <<optional feature>> | | <<optional feature>>
<<alternative feature>> Door Motion Window
Video
Figure A.42 Smart Home Example 2 — Platform Specific Feature Model

“Phone Alert” exactly-one-of feature group, there is one feature selected from the “Home
Security” and “Net Notification” at-least-one-of feature groups. Also all parent features
that other features depend on are also available. This feature model contains two platform
specific features: (1) “Video”, and (2) “Energy Conservation.” The features are platform
specific to the TeC platform. This means that the features are realized by TeC components.

During the application derivation the EU SPL Platform Specific Feature / Component

255

Table is consulted to get the platform specific components for the platform specific
features.

Table A.10 shows the application mapping for Smart Home Example 2
derived application to the Team Computing EUD environment. The components: tecTrack,
tecCamera, tecCameraManager, tecVideoCall in Table A.10 are specific only to TeC.
Figure A.43 visualizes the derived application architecture as it would be displayed to the

Team Computing application editor.

256

ann=dnye)s (@nuaipo no)ul (abessaw ur)Aynou TENE] UOIeIIIION 19N TENE]
ani=|Auwiou
HO 8n1=]ATu029
ani=|Awliou
HO ani=|JATu0%9 (dwsa1 1n0) Jana1oRAHISNIpE uone
ani=|Awliou (19A8TyBi 1n0) 19AsIyBImsnlpe wiou AJBSU0D
HO ani=]Au0%9 (abessaw 1n0) uoeaIyON|3Aa1ABIBUS uoJa |jouoDABIsUB JoIneYag SWOH AB1sug
uolye
aNJ)=aWOoHsIUaPISaI awoy AJ3SU0D
ann=AeMy/Sjuapisal Aeme 3Jel] 99} JoIARYag SWOH ABisug
Ik
an.=Ja}j14aoe|dal (@roeay 1no)uay1s a9ejdal (dway ur)|ana19eAHI9S OV/AHUeWws JoINRYag SWOH OVAH
(ssaippe”d| el
no)weansdols
(ssa1ppe”dI wua1p0
(Weans~08pIA IN0)INO™ WeaNS 1N0)WeasISUels eIBWEDID) 13|V auoyd 03pPIA
(ssaippe™d| el
ur)weansoaspiAdols
(ssaippe™d| 1uald Ino)oapiAdors (ssaippe d| sl
(SSa1ppe™d| 1112 1N0)0aPIALEIS U1)Weas1SoapIALEeIS JaBeue|\RIaWER)IB) 13|V auoyd 03pPIA
anl=uo (weans 0apIA unul weans
nngjeopu3passald (ssaippe™ d| 1ualjd no)jjedpus | (sbessaw ul ‘laquinu”suoyd
an.=11uj03PIA (ssaipped1 1ual|2 In0)|[eD0PIA un)|reospIAaXew 1[2D08PIAJ3) M3V suoyd 03PIA
an.J)=abessaw (abessaw 1no ‘Jaquinu auoyd 1n0)|[I03PIA
ann=dnyuels (@nuaijo no)uui (abessaw ur)Aynou 09pIAMSIR H8|Vv auoyd 093pIA
(abessaw ur)Aousbiawa 1189 Aousbiswa J0IARYDg SWOH 116
anJ=abessall (abessaw 1n0) TTE10€IU0D
ann=dnyuels (anuaijo no)uui (abessaw ur)Aynou 116 W.efe Joineyag swoH 116
anJ=anow (adA1891n8p N0 * Q1821ABP IN0)IUBLUBAOW uo 1032319@MOpUIM A1nJas swWoH | mopuip
ans=uonow (abessaw 1n0)AnAnoe (adA 1901n8p
ann=dnyels aleAloR u1 ‘@I9d1Asp uruonoe MOPUIAUIEaI] AJUN23S BWOH | MOPUIM
an=anow (dA 1921n8p 1N0 * Q1821A3P IN0)IUBIBAOW uo J10)9919QuUONOW A1n2as awoH UONON
ans=uonow (abessaw 1n0)AnAnoe (adA 1801n8p
ann=dnyels aleAloR u1 ‘@I921Asp uruonoe UonoNuIXeaIq A1N2as sWoH UONON
an=anow (adA1821n8p 1N0 * Q1821A3P IN0)IUBIBAOW uo JojuojJoop A1un2as awoH J00Q
anj=uonow (abessaw 1n0)AuAROE (adA1821n8p
ann=dnyels aleAloR u1 ‘@I921Asp uruonoe looqupeaiq A1IN2aS sWOH JooQ
an (@nuaid ur)aquasgns 19 awoH
J=ananpujabessaw (abessaw 1no)us\vpuas (abessaw ul)uB|eAIadel | puBHLB|Y[RUOHEWIOLUI Hews
an (anuana ur)aquasgns 3WOoH
J=anandujabessaw (abessaw 1n0)Ls|pUS (abessaw u1)us|yaAIadal J3|pueHUa\YAIIN8S Hews
uonipuod
Burisbbra] Indino
jusuodwo) nduj aweN asweN asweN
dSd o3l ndinQ wsuodwo) dsd O3.L Juauodwo) dsd D31 | jusuodwo)d dsd 031 dnoJo aunyesd | adnjesd

D91 01 paddepy uonesijddy N3 ouiseds wiopeld — z 9

wexs swoH Jews 0TV 9|geL

257

D91 40J 81n109Y24y uonealddy N3 a1410ads wiaofe|d — Z ajdwex3 awoH Jews gy aanbi4

uIWBAOW W_ uone }

Jo13313gmOpuImM mopuimupeaiq

<<arepiaiul = < 1 >
331A3p Indynofindui>> uo sz&@ <<|euondos>
L1 <<jeuondos>

iopalaguonow
<<adejiaul

aanap indinofindui>> uo

w1 <<jeuondoss

uonoWupE.q

aense] <<jeuondos>

Jojuopioop
<<@Iep3I]
aanap indino/indup>>

L1 <<levondo>>

Jooqupyealq
1 25>
<<jeuondo>>

uo 21en3¢]

i
1
“ lleyhauaiiawa TI6WEE
! <<atepIIUl WaIshs>> # n <<I0JRUIPIOOI>> iy
i <<lpuondos> uadwa TI61EIUCY <<jeuoidos>
1 Hou
| imead 116 f E
1IED08pIAI®}
<<adepaul
@a1nap ndino findu>>, ﬂ o3pIAMRe
<<I0JEUIPI0OIS>
- e; eJ03pIn
<<aypads-wiope|d>> " " P <<|euondo>>
lE203pIA

Anou

uj weans

elawe)ay
<<@IepRI|

2323
<<I01RUIPI00>$PINAOF]
<<|euondos>
<caypads-wiopeidss
oapjauEs

a1ap andyno/indurs>

weansoapindols

<<ad: d:

T

WeangoapIAvers

JVAHEWS
<<azepia
221n3p Indyno/indui>>

|enuosAiiaua
<<I0JEUIPIOOI>> uuou
<<jeuondoz>

rewa
<corrpBII-WBISAS>>
<<jeuondos>

J3|PUBHB|Y[EUCHEWLIO]
S

<<ifoIq
<<pus>>

FYCIVERTESET)

J3|puBHLIB|YAYINIBS
<<13)04g-38es5aW>>
<<jauIaN>>

ypesLay
<<I0JRUIPI00I>>

<<aypads-unopelds>

<<wiesed-jeuoiidos>

258

A4 Summary

This appendix has described the analysis and design of the Smart Home EU SPL
case study that was used in this research. In detail, the chapter described (a) the Smart
Home EU SPL requirements that included the Smart Home EU SPL features, feature model
and feature group / feature dependencies, (b) the Smart Home EU SPL analysis model that
included the EU SPL static model, component structuring, platform dependent component
analysis, dynamic modeling through the use of sequence diagrams and features to
component relationships, and (c) the Smart Home EU SPL design model that included the
EU SPL inter-feature component communication analysis, component relationships,
component interfaces and component input / output details. Finally the appendix provided
two application derivation examples from the Smart Home EU SPL. The first example of
the derivation process was for the Jigsaw and TeC EUD environments. The second
example was platform specific and the application derivation process was for the TeC EUD

environments.

259

REFERENCES

Abu-Matar, M. and Gomaa, H. (2013), “An Automated Framework for Variability
Management of Service-Oriented Software Product Lines”, Proceedings of the
2013 IEEE 7th International Symposium on Service Oriented System Engineering
(SOSE), San Francisco Bay, USA, pp. 260-267.

Abu-Matar, M. and Gomaa, H. (2012), “Feature-based Variability Meta-Modeling for
Service-Oriented Product Lines”, Proceedings of the 2011 Models in Software
Engineering, Workshops and Symposia (MoDELS), Springer LNCS 7167, pp. 68-
82,2012

Abu-Matar, Mohammad Ahmad. (2011), “Variability Modeling and Meta-Modeling for
Service-Oriented Architectures”, Doctoral Dissertation, George Mason University.

America, P., Obbink, H., Muller, J. and Ommering, R.V (2000), “COPA: A Component-
Oriented Platform Architecting Method for Families of Software Intensive
Electronic Products”, Proceedings of the First Conference on Software Product
Line Engineering, Denver, Colorado.

Appert, C., Chapuis, O., Pietriga, E. and Lobo, M.-J. (2015), “Reciprocal Drag-and-Drop”,
ACM Transactions on Computer-Human Interaction (TOCHI), Vol. 22 No. 6, p.
29:1-29:36.

Atkinson, C. and Muthig, D. (2002), “Component-Based Product-Line Engineering with
the UML”, Software Reuse: Methods, Techniques, and Tools, Vol. 2319, Springer
Berlin / Heidelberg, pp. 155-182.

Bardram, J.E. (2005), “The Java Context Awareness Framework (JCAF) — a Service
Infrastructure and Programming Framework for Context-aware Applications”,
Proceedings of the 3rd International Conference on Pervasive Computing,
Springer-Verlag, Berlin, Heidelberg, pp. 98-115.

Barker, R. (1990), Case Method: Entity Relationship Modelling, 1st ed., Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Beckwith, L. and Burnett, M. (2004), “Gender: An important factor in end-user
programming environments?”, Proceeding of 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, Rome, Italy, pp. 107-114.

Bendraou, L., Gervals, M., and Blanc X. (2005), “UML4SPM: A UML2.0-Based
Metamodel for Software Process Modeling,” Proceedings of the ACM/IEEE 8th

260

International Conference on Model Driven Engineering Languages and Systems,
Montego Bay, Jamaica, pp. 17-38.

Blackwell, A.F. and Hague, R. (2001), “AutoHAN: An architecture for programming the
home”, Proceedings of the 2001 IEEE Symposia on Human-Centric Computing
Languages and Environments, Stresa, Italy, pp. 150-157.

Blanc, X., Ramalho, F. and Robin, J. (2005), “Metamodel Reuse with MOF,” Proceedings
of the ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica, pp. 17-38.

Brinkman, W.P., Haakma, R. and Bouwhuis, D.G. (2008), “Component-Specific Usability
Testing”, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, Vol. 38 No. 5, pp. 1143-1155.

Brock, J., Gupta, A. and Wielenga, G. (2014), Java EE and HTMLS5 Enterprise Application
Development, 1st ed., McGraw-Hill Education Group.

Burnett, M. (2009), “What Is End-User Software Engineering and Why Does It Matter?”
Proceedings of the 2nd International Symposium on End-User Development (1S-
EUD), Siegen, Germany, pp. 15-28.

Burnett, M. and Scaffidi, C. (2014), End-User Development. In “The Encyclopedia of
Human-Computer Interaction, 2nd Ed. ” Aarhus, Denmark: The Interaction Design
Foundation. Available Online at https://www.interaction-
Design.org/Encyclopedia/End-User_development.html.

Burnett, M.M. and Myers, B.A. (2014), “Future of End-user Software Engineering:
Beyond the Silos”, Proceedings of the 2014 of the Future of Software Engineering
(FOSE), Hyderabad, India, pp. 201-211.

Canfora, G., Mercaldo, F., Visaggio, C.A., DAngelo, M., Furno, A. and Manganelli, C.
(2013), “A Case Study of Automating User Experience-Oriented Performance
Testing on Smartphones”, Proceedings of the 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation (ICST), Luxembourg,
Luxembourg, pp. 66-69.

Chin, J., Callaghan, V. and Clarke, G. (2010), “End-user Customization of Intelligent
Environments”, Handbook of Ambient Intelligence and Smart Environments,
Springer US, Boston, MA, pp. 371-407.

Clements, P. and Northrop, L.M. (2002), Software Product Lines: Practices and Patterns,
Addison-Wesley.

261

Danado, J. and Paterno, F. (2012), “Puzzle: a visual-based environment for end user
development in touch-based mobile phones”, Human-Centered Software
Engineering, Springer, pp. 199-216.

Dautriche, R., Lenoir, C., Demeure, A. and Coutaz, J. (2013), “End-User-Development for
Smart Homes: Relevance and Challenges”, Proceedings of the 2013 Workshop
“EUD for Supporting Sustainability in Maker Communities”, 4th International
Symposium on End-user Development (IS-EUD), Eindhoven, Nederland, p. 6.

Debnath, N., Leonardi, M.C., Mauco, M.V., Montejano, G. and Riesco, D. (2008),
“Improving Model Driven Architecture with Requirements Models”, Proceedings
of the 5th International Conference on Information Technology: New Generations
(ITNG), Las Vegas, Nevada, USA, pp. 21-26.

Dey, A.K., Hamid, R., Beckmann, C., Li, I. and Hsu, D. (2004), “a CAPpella: programming
by demonstration of context-aware applications”, Proceedings of the 2004 Special
Interest Group on Computer-Human Interaction Conference on Human Factors in
Computing Systems, Vienna, Austria, pp. 33-40.

Dey, A.K., Sohn, T., Streng, S. and Kodama, J. (2006), “iCAP: Interactive prototyping of
context-aware applications”, Pervasive Computing, Springer, pp. 254-271.

Dimitris Kalofonos and Franklin Reynolds. (2006), “Task-Driven End-User Programming
of Smart Spaces Using Mobile Devices”, NRC-TR-2006-001, Technical Report,
Nokia.

Duckett, J. (2014), JavaScript and JQuery: Interactive Front-End Web Development, 1st
ed., Wiley Publishing.

Ebling, M.R. (2016), “Pervasive Computing and the Internet of Things”, IEEE Pervasive
Computing, Vol. 15 No. 1, pp. 2-4.

Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M. and Russo, W. (2013), “An Agent-Based
Middleware for Cooperating Smart Objects”, Proceedings of the 2013 Highlights
on Practical Applications of Agents and Multi-Agent Systems: International
Workshops of PAAMS, Salamanca, Spain, pp. 387-398.

Fortino, G. and Trunfio, P. (2014), Internet of Things Based on Smart Objects: Technology,
Middleware and Applications, Springer.

Gomaa, H. (2000), Designing Concurrent, Distributed, and Real-Time Applications with
UML, Addison-Wesley Professional.

262

Gomaa, H. (2005a), Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison-Wesley Professional.

Gomaa, H. (2005b), “Software Product Line Engineering for Web Services and UML”,
The 3rd ACS/IEEE International Conference on Computer Systems and
Applications, Cairo, Egypt, pp. 110-114.

Gomaa, H. (2016), Real-Time Software Design for Embedded Systems, Cambridge.

Gomaa, H. and Shin, M.E. (2008), “Multiple-View Modeling and Meta-Modeling of
Software Product Lines”, Journal of IET Software, Volume 2, Issue 2, Pages 94-
122.

Goumopoulos, C. and Kameas, A. (2009), “Smart objects as components of ubiquitous
computing applications”, International Journal of Multimedia and Ubiquitous
Engineering, Special Issue on Smart Object Systems, Vol. 4(3), SERSC Press, pp.
1-20.

Harsu, M. (2002), “FAST product-line architecture process”, Technical Report, Institute
of Software Systems, Tampere University of Technology.

Haugen, @., Wasowski, A. and Czarnecki, K. (2013), “CVL: Common Variability
Language”, Proceedings of the 17th International Software Product Line
Conference, ACM, New York, NY, USA, pp. 277-277.

Henricksen, K., Indulska, J. and Rakotonirainy, A. (2001), “Infrastructure for Pervasive
Computing: Challenges”, Proceedings of the 2001 Workshop on Pervasive
Computing Informatik, Vienna, Austria, pp. 214-222.

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.P., Koleva, B., Rodden, T. and
Hansson, P. (2003), “Playing with the Bits User-Configuration of Ubiquitous
Domestic Environments”, Proceedings of the 5th International Conference in
Ubiquitous Computing, Springer LNCS, Seattle, WA, USA, pp. 256-263.

ISO/IEC 18092. (2013), Information Technology — Telecommunications and Information
Exchange between Systems — Near Field Communication—Interface and Protocol
(NFCIP-1), Standard No. ISO/IEC 18092:2013, International Organization for
Standardization, Geneva, CH.

ISO/IEC 26550:2016. (2016), Software and Systems Engineering — Reference Model for

Product Line Engineering and Management, ISO No. ISO/IEC 26550,
International Organization for Standardization, Geneva, Switzerland.

263

Jani Suomalainen and Pasi Hyttinen. (2011), “Security Solutions for Smart Spaces”,
Proceedings of the 11th IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT), Munich, Germany, pp. 297-302.

Ji, Y. and Xia, L. (2016), “Improved Chameleon: A Lightweight Method for Identity
Verification in Near Field Communication”, Proceedings of the International
Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, pp. 387—
392.

Kakola, T. and Leitner, A. (2014), “Introduction to Software Product Lines: Engineering,
Services, and Management Minitrack”, Proceedings of 47th Hawaii International
Conference on System Sciences (HICSS), Hawaii, USA, pp. 5048-5048.

Kang, K.C., Lee, J. and Donohoe, P. (2002), “Feature-oriented product line engineering”,
Software, IEEE, Vol. 19 No. 4, pp. 58-65.

Kawsar, F., Nakajima, T. and Fujinami, K. (2008), “Deploy Spontaneously: Supporting
End-Users in Building and Enhancing a Smart Home”, Proceedings of the 10th
International Conference in Ubiquitous Computing, Seoul, South Korea, pp. 282—
291.

Kleppe, A. (2008), Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels, 1st ed., Addison-Wesley Professional.

Ko, AJ., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S., Abraham,
R., et al. (2011), “The State of the Art in End-User Software Engineering”, ACM
Computing Surveys, Vol. 43 No. 3, pp. 1-44.

Kopetz, H. (2011), Real-Time Systems: Design Principles for Distributed Embedded
Applications, 2nd ed., Springer Publishing Company, Incorporated.

Lee, J., Gardufio, L., Walker, E. and Burleson, W. (2013), ““A Tangible Programming Tool
for Creation of Context-Aware Applications”, Proceedings of the 2013
International Joint Conference on Pervasive and Ubiquitous Computing, Zurich,
Switzerland, ACM Press, p. 391.

Lieberman, H., Paterno, F., Klann, M. and Wulf, V. (2006), “End-User Development: An
Emerging Paradigm”, in Lieberman, H., Paterno, F. and Wulf, V. (Eds.), End User
Development, Vol. 9, Springer Netherlands, pp. 1-8.

Livingston, D. (2002), Advanced Javascript, Prentice Hall PTR, Upper Saddle River, NJ,
USA.

264

Méca, P. (2016), “Editablegrid”, JavaScript Library, available at:
http://www.editablegrid.net/en/.

Mahmoud, R., Yousuf, T., Aloul, F. and Zualkernan, 1. (2015), “Internet of things (IoT)
security: Current status, challenges and prospective measures”, Proceedings of the
10th International Conference for Internet Technology and Secured Transactions
(ICITST), London, UK, pp. 336-341.

Malaer, A. and Lampe, M. (2008), “SimPL: A Simple Software Production Line for End
User Development”, Proceedings of the 15th Asia-Pacific Software Engineering
Conference, Beijing, China, pp. 179-186.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S.,
Teixeira, E., Filho, J.B., Dantas, V., Lima, F., Aguiar, S., (2013), “MobiLine: A
Nested Software Product Line for the Domain of Mobile and Context-aware
Applications”, Science of Computer Programming, Vol. 78 No. 12, pp. 2381-2398.

Mavrommati, ., Kameas, A. and Markopoulos, P. (2004), “An Editing Tool That Manages
Device Associations in an In-home Environment”, Personal Ubiquitous
Computing, Vol. 8 No. 3-4, pp. 255-263.

Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P., Nguyen, P. and Yi,
K. (2006), “InterPlay: A Middleware for Seamless Device Integration and Task
Orchestration in a Networked Home”, Proceedings of the 4rth Annual IEEE
International Conference on Pervasive Computing and Communications
(PERCOM), Pisa, Italy, pp. 298-307.

Miihlhduser, M. (2008), “Smart Products: An Introduction”, Constructing Ambient
Intelligence: Workshops Darmstadt, Germany (AMI), Revised Papers, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 158-164.

Myers, B.A. (1990a), “Creating User Interfaces Using Programming by Example, Visual
Programming, and Constraints”, ACM Transactions on Programming Languages
and Systems, Vol. 12 No. 2, pp. 143-177.

Myers, B.A. (1990b), “Taxonomies of Visual Programming and Program Visualization”,
Journal of Visual Languages and Computing, Vol. 1 No. 1, pp. 97-123.

Olimpiew, E.M. (2008), “Modeling-Based Testing For Software Product Lines”, Doctoral
Dissertation, George Mason University.

Olimpiew, E.M. and Gomaa, H. (2009), “Reusable Model-Based Testing”, Formal
Foundations of Reuse and Domain Engineering: Proceedings of the 11th

265

International Conference on Software Reuse (ICSR), Falls Church, VA, USA, pp.
76-85.

OMG. (2003), MDA Guide Version 1.0.1, edited by Miller, J. and Mukeriji, J., available at:
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

Pereira, D. and Loyola, L. (2012), “Inferring User Context from Spatio-Temporal Pattern
Mining for Mobile Application Services”, Proceedings of the 2012
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology (WI-IAT), Macau, China, Vol. 2, pp. 450-457.

Pérez, F., Cetina, C., Valderas, P. and Fons, J. (2009), “Towards End-User Development
of Smart Homes by means of Variability Engineering”, Proceedings of the 3rd
International Workshop on Variability Modelling of Software-Intensive Systems,
Seville, Spain, pp. 103-110.

Perez, F. and Valderas, P. (2009), “Allowing End-Users to Actively Participate within the
Elicitation of Pervasive System Requirements through Immediate Visualization”,
Proceedings of the 4th International Workshop on Requirements Engineering
Visualization, Atlanta, Georgia, USA, pp. 31-40.

Pérez, F. and Valderas, P. (2009), “A Tool-supported Natural Requirements Elicitation
Technique for Pervasive Systems centered on End-users”, Proceedings of the 14th
Jornadas de Ingenieria del Software y Bases de Datos (JISBD), San Sebastian,
Spain, pp. 115-120.

Pilgrim, M. (2010), HTML5: Up and Running, 1st ed., O’Reilly Media, Inc.

Préhofer, H., Hurnaus, D., Schatz, R. and Wirth, C. (2008), “Software support for building
end-user programming environments in the automation domain”, Proceedings of
the 4th International Workshop on End-User Software Engineering, Leipzig,
Germany, pp. 76-80.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., et al.
(2009), “ROS: an open-source Robot Operating System”, Proceedings of the 2009
International Conference in Robotics and Automation (ICRA) Workshop on Open
Source Software, Kobe, Japan

Rashidi, P. and Cook, D.J. (2009), “Keeping the Resident in the Loop: Adapting the Smart
Home to the User”, Journal of IEEE Transactions on Systems, Man, and
Cybernetics Part A, Vol. 39 No. 5, pp. 949-959.

Reinhartz-Berger, 1., Figl, K. and Haugen, @. (2014), “Comprehending feature models
expressed in CVL”, Proceedings of the 17th International Conference Model-

266

Driven Engineering Languages and Systems (MODELS), Valencia, Spain, pp. 501—
517.

Richardson, L. and Ruby, S. (2007), Restful Web Services, 1st Edition, O’Reilly.

Rumbaugh, J., Jacobson, I. and Booch, G. (2004), The Unified Modeling Language
Reference Manual, 2nd Edition, Pearson Higher Education.

Saha, D. and Mukherjee, A. (2003), “Pervasive computing: a paradigm for the 21st
century”, Computer, Vol. 36 No. 3, pp. 25-31.

Satyanarayanan, M. (2001), “Pervasive computing: Vision and challenges”, |IEEE
Personal Communications, Vol. 8 No. 4, pp. 10-17.

Schneiderman, R. (2015), “Internet of Things/M2M - (Standards) Work in Progress”,
Modern Standardization: Case Studies at the Crossroads of Technology,
Economics, and Politics, Wiley-IEEE Standards Association.

Shen, X. (2014), “A Team Computing Implementation on the Android Platform”,
Engineering Thesis, George Mason University.

Singh, R., Bhargava, P. and Kain, S. (2006), “State of the art smart spaces: application
models and software infrastructure”, ACM Ubiquity, September, Vol. 2006 No.
September, p. 7:2-7:9.

Singh, Y. and Sood, M. (2009), “Model Driven Architecture: A Perspective”, Proceedings
of the 2009 IEEE International Advance Computing Conference, (IACC) Patiala,
India, pp. 1644-1652.

Sousa, J.P. (2010), “Foundations of Team Computing: Enabling End Users to Assemble
Software for Ubiquitous Computing”, Proceedings of the 2010 International
Conference on Complex, Intelligent and Software Intensive Systems (CISIS),
Krakow, Poland, pp. 9-16.

Sousa, J.P. and Garlan, D. (2002), “Aura: an architectural framework for user mobility in
ubiquitous computing environments”, Software Architecture: System Design,
Development and Maintenance: IFIP 17th World Computer Congress--TC2
Stream/3rd Working IEEE/IFIP Conference on Software Architecture (WICSA3),
Montréal, Québec, Canada, Kluwer Academic Publishers, p. 29.

Sousa, J.P., Shen, X., Tzeremes, V. and Hodum, F. (2012), “TeC apps for smart spaces:

simple, decentralized, resilient, and self-healing”, Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, Pittsburgh, PA, USA, pp. 637-638.

267

Sousa, J.P., Tzeremes, V. and El Masri, A. (2010), “Space-aware TeC: End-user
Development of Safety and Control Systems for Smart Spaces”, Proceedings of
2010 Systems Man and Cybernetics, IEEE International Conference on, Istanbul,
Turkey, pp. 2914-2921.

Taylor, M. (2014), Introduction to JavaScript Object Notation: A To-the-Point Guide to
JSON, CreateSpace Independent Publishing Platform, USA.

Totty, B., Gourley, D., Sayer, M., Aggarwal, A. and Reddy, S. (2002), HTTP: The
Definitive Guide, O’Reilly & Associates, Inc., Sebastopol, CA, USA.

Truong, K.N., Huang, E.M. and Abowd, G.D. (2004), “CAMP: A Magnetic Poetry
Interface for End-User Programming of Capture Applications for the Home”,
Proceedings of the 6th International Conference in Ubiquitous Computing,
Nottingham, UK, pp. 143-160.

Tzeremes V (2015), “End User Software Product Line Support for Smart Spaces” In:
Doctoral Symposium, International Conference on Software Reuse (ICSR), Miami,
USA

Tzeremes, V. and Gomaa, H. (2015), “A Software Product Line Approach for End User
Development of Smart Spaces”, Proceedings of the 5th International Workshop on
Product LinE Approaches in Software Engineering (PLEASE), IEEE Press,
Piscataway, NJ, USA, pp. 23-26.

Tzeremes, V. and Gomaa, H. (2016a), “A Multi-platform End User Software Product Line
Meta-model for Smart Environments”, Proceedings of the 11th International Joint
Conference on Software Technologies (ICSOFT) - Volume 1: ICSOFT-EA, Lisbon,
Portugal, pp. 290-297.

Tzeremes, V. and Gomaa, H. (2016b), “XANA: An End User Software Product Line
Framework for Smart Spaces”, Proceedings of 49th Hawaii International
Conference on System Sciences (HICSS), Hawaii, USA, pp. 5831-5840.

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992), “The Active Badge Location
System”, ACM Transactions on Information Systems, Vol. 10 No. 1, pp. 91-102.

Weiser, M. (1991), “The Computer for the 21st Century”, Scientific American (Special
Issue: Communications, Computers, and Networks), VVol. 265 No. 3, pp. 94-104.

Whitmore, A., Agarwal, A. and Xu, L. (2015), “The Internet of Things—A Survey of Topics
and Trends”, Information Systems Frontiers, VVol. 17 No. 2, pp. 261-274.

268

Yun, J., Choi, S.-C., Sung, N.-M. and Kim, J. (2015), “Demo: Towards Global
Interworking of loT Systems — oneM2M Interworking Proxy Entities”,
Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, ACM, New York, NY, USA, pp. 473-474.

269

BIOGRAPHY

Vasilios Tzeremes is a senior software engineer with over 17 years of technical experience
and founding partner of a software consulting company operating in Northern Virginia.
Throughout his career, Vasilios has developed numerous software solutions for private and
government organizations. His area of expertise is in enterprise software design and
development. Vasilios has an undergraduate degree in Business from the Technological
Educational Institute of Athens and an M.S. degree in Information Systems from American
University. He continues to learn and develop in his field by completing a PhD in
Information Technology with concentration in Software Engineering from George Mason
University. Vasilios research interests include software design and development, software
product lines, end user development, software and enterprise design patterns, distributed
systems, human computer interaction and enterprise systems.

270

