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Abstract 

ELEMENTARY MATHEMATICS SPECIALIST COACHES' CONSTRUCTION OF A 

HYPOTHETICAL LEARNING TRAJECTORY FOR RATIONAL NUMBER 

EQUIPARTITIONING 

Kimberly Morrow-Leong, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Margret Hjalmarson 

 

This qualitative study investigates how mathematics coaches use and refer to 

different sources of learning trajectories when examining written artifacts of student 

thinking. As an aspect of horizon mathematical knowledge for teaching, knowledge of 

learning trajectories reflects the mathematics coach’s personal amalgamation of different 

learning trajectories, which is used as a road map for student learning. Using the 

framework of professional noticing and Confrey’s (2012) framework for unpacking 

learning trajectories to guide the study design, mathematics coaches discuss and sort 

artifacts of student thinking and are then asked about their interpretation of student 

thinking. A qualitative design explores what features of the work mathematics coaches 

attend to, interpret, and plan to address in their coaching practice. A thematic network 

analysis method was used to map the coaches’ actions against references they make to 

existing learning trajectories. This study adds to the body of knowledge of how learning 

trajectories guide educators’ planning and assessment decisions and with implications for 
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understanding the identity language coaches use when discussing student work.  The 

variety and richness of justifications coaches cite for pairing and grouping students based 

on their work is an unexplored area of research that warrants further study. 

Keywords: Professional noticing, learning trajectories, hypothetical learning trajectory, 

grouping students, elementary mathematics specialist coach, equipartitioning, student 

work, mathematical knowledge for teaching, identity, evaluative language, thematic 

network analysis, commognitive theory, horizon content knowledge  
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Chapter One 

We cannot observe that which we do not see nor wish to see. 

Introduction 

Regina reached over and picked up Jessie’s assessment paper, glanced at it 

and placed it confidently in the advanced stack of student work saying, “Jessie knows 

this. She just forgot to write the answer. She had a bad day, but I know that she 

knows this.” 

Kelly picked up an assessment, scanned it in one glance, and dropped it in the 

progressing pile. “Can you tell me how you made that decision, Kelly?” I asked. 

“Well,” she said, “there are no numbers here. Leenah just doesn’t get it. She never 

does. She’s in my low group.” 

Sarah sat hunched over a single paper with her lips pursed in concentration. 

Her pencil moved back and forth across the paper as if ticking off a list and counting, 

but not making any marks. Then she looked up and said, “Look at this one, guys. I am 

not exactly sure what her thinking is yet, but it’s pretty cool. Take a look!”  

From the back of the room, Ken, distractedly shuffles through a stack of 

assessments, sighs loudly and directs his question to no one in particular. “Why are 

we doing this? All of my kids know how to solve this problem. Look, they just need 

to memorize their facts, and they’ll be fine!” 
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Lindsay, the school math coach, spoke next. She spoke softly, but confidently, 

“Let’s try something different. Regina, give your class’ papers to Ken. Ken, give yours to 

Sarah, and Sarah, you give yours to Regina.” As the teachers passed over their stacks, 

Lindsay distributed a set of post-its to each of them, and then began to speak again.  

As you look at each paper, write down observations on what you see. You don’t 

 have to evaluate or grade the work, but make a note of one thing you are pretty 

sure  each student understands. Make a note of it on a sticky note and then find 

evidence of  why you think that. Make a note of the evidence that convinced you. 

(Lindsay) 

While this is a fictional portrayal of actual teachers scoring problem-based 

mathematics assessments, the teachers’ words ring familiar for anyone who has engaged 

in such rubric-scored cognitively demanding tasks (Stein, Grover, & Henningsen, 1996; 

). It is traditionally a large part of a teacher’s job responsibilities to read and evaluate 

student work. What is different now is the expectation that teachers apply a rubric-scored 

approach to evaluate student work on open-ended and rigorous tasks, a type of evaluation 

process previously associated with instruction in writing (Carter, 2009). Rightness and 

wrongness of student responses becomes less important but the depth and connectedness 

of the students’ responses emerge as a more salient indicator of students’ growth and 

progress.  

Another thing that is different is the presence of a mathematics coach in this 

meeting. This math coach is part of the teaching faculty of the school, but he or she does 

not have any students assigned to them. Instead she spends her days in other teachers’ 
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classrooms or in planning or professional development sessions like the one represented 

here. Typically a mathematics coach is an experienced teacher who has taken additional 

courses to specialize in mathematics education in order to become a mathematics 

specialist (Virginia Mathematics and Science Consortium [VMSC], 2016). While some 

mathematics specialists may take other positions working directly with students, the 

mathematics coach has taken on the new goal of working with adult learners.  

The caricatures above demonstrate that teachers’ assessment of student thinking 

in mathematics can be non-specific, based on scant evidence, and worse yet, have little 

impact on instruction. On the other hand, their assessments can also be thoughtful and 

deep, reflecting on the gains students have made, and using this information to plan for 

future instruction. However, common grading practices often do not encourage teachers 

to record the profound understandings of the sometimes subtle growth students 

experience (MacMillan, Myran, & Workman, 2002).  

In these cases the teachers may rely on intuition rather than on evidence presented 

in the student work. One goal of assessment might be to focus on evidence of student 

thinking, target the needs of particular students, and finally act as a tool for instructional 

planning. 

One common reason that subtle student understandings are invisible is due to the 

nature of assessments. Another reason may be the lack of information or differing levels 

of fidelity in the hands of practicing teachers with differing priorities (Wilson, Mojica, & 

Confrey; 2013). Studies of teachers’ interactions with textbooks show that there is wide 

variability of fidelity and level of adaptation of the materials that accompany a standard 
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mathematics textbook. This variability included not just adherence to the intended use of 

certain tasks and activities but also to conceptions of the consistencies of  standards-

based l or problem-solving lessons (Remillard, 2005). Since such inconsistency 

manifested in a carefully designed textbook package, it is not a stretch to consider that 

they would also exist in learning trajectories that are not yet clearly defined by research 

(Lobato & Walters, 2017). 

The general idea of a learning trajectory (LT) is not a new one: it is a sequence or 

progression of learning that unfolds out of learning tasks. While this is oversimplified, it 

is consistent with any definition of the LT that exists. Lobato and Walters (2017), in their 

chapter in the decennary volume on the state of mathematics education, declined to offer 

a single definition of the LT, instead broadening the definition to include any sequence 

that describes consistent growth in mathematics learning. van Hieles described a 

hierarchical model of geometric thought (van Hiele, 2004) long before it might have been 

called a learning trajectory, although the current definition now includes levels of 

thinking. The developmental studies of children conducted by Piaget and Inhelder (1974) 

might also qualify as LTs under the current conception.  

However, the current phrase learning trajectory dates back to 1995 and Simon’s 

introduction of the hypothetical learning trajectory (HLT). With this term he was 

endeavoring to describe a stage in the instructional planning process whereby a teacher 

gathers information at her disposal, plans a lesson, teaches it, and then uses what she 

learns to plan the next lesson. The entire process was entitled the Mathematics Teaching 
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Cycle, but specifically, the HLT is the teacher’s most reasonable guess about the best 

lesson goal, plan of activities, and the learning process for a given group of students. 

Interestingly, this began as a plan for teaching, but as the idea gained momentum in the 

professional field, the term HLT became more reflective of the learning of students that 

takes place rather than of the teacher’s planning process. In a later article, Simon along 

with Tzur (2004) further drew emphasis away from the role of the teacher and directed 

the readers’ attention to a mechanism for outlining the connection between the learning 

task and the students’ conceptual learning, thereby reinforcing the turn to student 

learning, even while referencing the teacher as the supervisor and planner of these 

activities. Others adopted the HLT language as well (Clements & Sarama, 2004; 

Gravemeijer, Bowers, & Stephan, 2003; Hadjidemetriou & Williams, 2002; Jones et al., 

2001; Steffe, 2003), and with each reference, the term referred more and more to the 

prediction of a sequence of student learning in a given domain, accompanied by given 

tasks. As a result of this change in direction, from the teachers’ acts to the students’ 

learning, the community changed the focus. From the vantage point of many years later, 

Empson (2011) pointed out the contrast, which had previously been virtually overlooked, 

when she wrote: “a learning trajectory did not exist for Simon in the absence of an agent 

and a purpose and . . .  it was introduced in the context of a theory of teaching” (Empson, 

2011, p. 573).  

Empson’s intention was to critique the value of the learning progression as a 

practical concept, noting how dependent an LT is on the teaching environment and the 

tasks employed, as well as a concern about how tightly LTs are tied to specific domain, 
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limiting their value in broader problem solving contexts. Empson (2011) was not the only 

researcher to revisit the learning trajectory phenomenon. The science education 

community was investigating the same pedagogical problem and adopted the phrase 

learning progression to refer to a very similar idea (Corcoran, Mosher, & Rogat, 2003). 

But unlike the field of mathematics education, the science community was clear from the 

beginning that they were interested in the thought tendencies students exhibited as they 

learned concepts in science. As a researcher in mathematics education, Battista (2011)  

took a more positive view of learning trajectories than Empson, stating flatly that teachers 

need LPs (Battista opts for the term learning progression) Most recently, the summative 

chapter by Lobato and Walters (2017) collected and organized a broad swath of research 

related to all manner of student learning in mathematics and science that was presented as 

sequentially ordered. The taxonomy they created accommodates the broad collection of 

conceptions and potentially resolves the conflicting terms, collapsing learning trajectory 

and learning progression into an LT/P.  

One of the benefits of Lobato and Walters’ (2017) broad sweeping inclusionary 

stance in the learning trajectories taxonomy is a reconceptualization of standards and 

standards documents as a form of learning trajectory. A widely known and implemented 

set of standards is the Common Core State Standards (National Governors’ Association 

and Council of Chief State School Officers [CSSO], 2010). Since nearly all states and 

territories, and even the Department of Defense schools have adopted the Common Core 

Standards, Mathematics (CCSSM) standards, the impact of this particular learning 

trajectory is monumental in the United States (ASCD, n.d.). Even those states that did not 
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adopt (Virginia and Minnesota) and those who adopted and adapted the CCSSM (Indiana 

and North Carolina are just two examples) are all impacted by the prevalence of CCSSM-

based curricular materials and the de facto learning trajectory presented in them.  

From this point of view, the potential impact of this particular learning trajectory 

is even greater than that of other learning trajectories. The authors of the CCSSM 

document their interactions with authors of some of the most well-studied research 

trajectories in publication (Clements & Samara, 2004; Confrey, et al., 2014; Petit, Laird, 

Marsden, & Ebby, 2010; Steffe & Olive, 2010). They noted the impact these interactions 

had on the development of the CCSSM (Daro, Mosher, & Corcoran, 2011). In the end the 

authors stated that the standards are inspired by research on learning trajectories, but note 

that this not the same as the standards being based on research. As a matter of fact, Daro 

et al. clearly stated that the standards balance three often competing demands of standards 

for learning: 

the pull of three important dimensions of progression: cognitive 

development, mathematical coherence, and the pragmatics of instructional 

systems. The situation differs for elementary, middle, and high school 

grades. In brief: elementary standards can be more determined by research 

in cognitive development, and high school more by the logical 

development of mathematics. Middle grades must bridge the two, by no 

means a trivial span. (Daro et al., 2011, p. 41) 



 

 

8

 In sum, there is evidence that the CCSSM references current conceptions of 

developmental learning trajectories, but the discipline logic that intervenes in the upper 

grades references a different type of learning trajectory altogether.  

Despite the connection between the CCSSM and current learning trajectory 

research, it is important to note there is growing evidence that some standards may not be 

placed at the appropriate grade level, according to the cognitive development of most 

children in that age group (Steffe, Norton, Hackenberg, & Thompson, 2012). This is only 

problematic because the high stakes testing that is based on current standards demands 

that students meet grade level standards. This emphasis on “success” may incentivize 

short term and surface level procedural instruction in order for students to post better 

scores. Continued research into learning trajectories can continue to inform the content 

and leveling of standards, adaptations can be made, and more reasonable rigorous 

standards can be implemented in schools nationwide. It is important to note that the 

research into learning trajectories can continue to inform teacher and mathematics coach 

practice in other ways as well.  

A more focused issue is how teachers use their understandings of learning 

trajectories in instruction. Knowledge of mathematics on the horizon is one way to 

characterize how teachers’ awareness of students’ progress is seen throughout a 

mathematical domain (Ball, Thames, & Phelps, 2008). One of the components of subject 

matter knowledge, content horizon knowledge ties what students learn in earlier grades to 

what they learn in later grades. Teachers who do not engage horizon content knowledge 
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may teach students a grade-specific “rule” that later becomes obsolete, or “expires” 

(Karp, Bush, & Dougherty, 2014). For example, a second-grade teacher may say “You 

can’t subtract a higher number from a lower number.” The intent is to help students make 

sense of the practical use of the subtraction symbol: subtraction in second grade is only 

done by subtracting the lesser value from the greater value, as in 14 - 8 = 6. However, in 

seventh-grade students need to call upon a different understanding. They need to 

understand the subtraction operation and indeed will learn to subtract a greater value 

from a lesser value, such as 8 - 14 = -6. A teacher with horizon content knowledge makes 

pedagogical decisions with a mind toward communicating to students a more precise 

understanding of the subtraction operation rather than an expedient, but less than 

accurate, rule.  

Not only does a leading theory about teachers’ mathematical knowledge for 

teaching include a broad understanding of student learning (Ball, 1993), results from 

practice-based professional development also demonstrate the importance of teachers 

examining student learning across grade levels. One lesson study project showed that 

there are immense benefits for teachers working in multi-grade level teams (Suh & 

Seshaiyer, 2015). By selecting a single lesson or task and then adapting it for third-grade, 

sixth-grade, or even eighth-grade, each teacher on the team was challenged to consider 

the content vertically and recognize a wide range of mathematical thinking in more than 

one content domain. In this context, upper grade teachers can recognize learning 

milestones for their students whose mathematical thinking operates at a lower grade 

level. Lower grade teachers have the opportunity to connect the content they teach with 



 

 

10

the content that is coming in later years, which informs vertical lesson planning for all 

teachers. In both of these projects, teachers’ recognition of and work with content from 

another grade level not only informed them about the mathematical content of other 

grade levels, it helped them understand the progression of their own students.  

In the two studies described, the growth in teachers’ horizon content knowledge 

(Ball, 1993) was incidental to the goals of the research projects. In the lesson study 

example, the primary goal was to provide teachers with content-rich problems and ask 

them to engage students with a rich task that included algebraic thinking in an elementary 

school setting (Suh & Seshaiyer, 2015). That teachers gained knowledge of a broad swath 

of mathematical content knowledge was an additional positive outcome. The second 

study started as a vertical collaboration between multiple grade levels, but the result was 

essentially to standardize instruction in addition strategies in grades K-5 (Cameron, 

Loesing, Rorvig, & Chval, 2009). When the project began, teachers were using different 

approaches to teaching addition, had differing expectations for student success, and all 

were unclear when students should move to more sophisticated strategies. In essence, 

through the process of examining carefully culled samples of student work from each 

grade level, the team of teachers was able to construct a sequence of expected strategy 

use for addition on which each of them could agree. Additionally, the teachers came 

away with a deeper understanding of addition strategies and common student errors that 

occurred across all grade levels, and more importantly they came away with a sense of 

empowerment from identifying a school-wide problem and a solution of their own 

devising.  
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A more recent study had a different approach. The researchers purposefully 

engaged teachers in a study of the equipartitioning learning trajectory and then observed 

the changes in their instruction that resulted (Wilson et al., 2013). In this case the learning 

trajectory had already been derived through research and it was used as a teaching tool in 

a professional development setting. Nevertheless, the team of researchers found that the 

teachers not only understood their own students’ work more profoundly, they also began 

to reformulate their own understanding of the mathematics in light of the learning 

trajectory information. Deliberately augmenting teacher content knowledge for teaching 

was effective in improving the kind of specialized content knowledge that directly 

connects to student learning. The success of these three research projects in increasing 

teachers’ mathematical content knowledge for teaching supports the notion that 

investigating what teachers know about learning trajectories is an important line of 

inquiry. It may be even more important for their instructional coaches.  

It is exciting to consider the magnitude of influence these three studies had on the 

school learning teams where the projects unfolded (Cameron et al., 2009; Suh & 

Seshaiyer, 2015; Wilson et al.,2013). All three were led by university research teams, 

clearly a resource not available to every school. Additionally most, but not all, of the 

teachers involved in these innovative programs were teachers in grades K-5, which 

means that they were licensed to be generalist teachers, with many responsibilities in 

addition to knowing and teaching mathematics well. The National Mathematics Advisory 

Panel recognized this reality and made a recommendation that the nation’s elementary 

schools move toward a model of the expert teacher of mathematics, taking up the 
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responsibility of teaching all K-5 mathematics sections (National Mathematics Advisory 

Panel [NMAP], 2008). The change to the expert teacher model permits a school division 

to invest in the content knowledge and the pedagogical content knowledge more heavily, 

albeit for fewer teachers. While the Advisory Panel did not specify the path for these 

expert individuals, it did raise attention for the need for additional expertise in 

mathematics education in our nation’s schools. 

The state of Maryland had already started addressing the concern by writing and 

introducing legislation in support of the mathematics coach. The mathematics coach, 

unlike the expert teacher described above, would not be a teacher. Instead they would be 

a support for existing teachers, building the teachers’ capacity to be experts in 

mathematics teaching and learning. While the Maryland initiative was not able to get 

legislation for an Elementary Mathematics Instructional Leader (EMIL) passed until 

2010, the writers were able to introduce a version of the program in Virginia, and with 

funding from the National Science Foundation, the Commonwealth of Virginia 

introduced an Elementary Mathematics Specialist Master’s degree and license 

endorsement for practicing teachers in 2007 (Campbell, 2011). The coursework and 

preparation for the Mathematics Specialist in Virginia is arguably the strongest in the 

nation (VMSC, 2016), including five courses in elementary mathematics content and five 

courses in leadership, followed by an independent internship experience.  

By virtue of the additional coursework, Virginia mathematics specialists may be 

more likely to have the knowledge and expertise to work in schools and to implement 

versions of the programs described above or to support the professional growth of 
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teachers. But they may also have other roles in education, including district office 

positions or work to support Title I programs (Salkind, 2010). A mathematics coach is a 

mathematics specialist working in a school to support teachers (McGatha & Rigelman, 

2017). In the opening vignette, we met Lindsay, a mathematics coach who is leading a 

group of teachers reviewing a problem-based assessment that they had recently 

administered to their students. Lindsay’s goal in this interaction is to step into the 

teachers’ habitual practice of “grading” student work and refocus their efforts on 

identifying evidence of students’ progress along a LT within a mathematical domain. She 

recognizes the teachers’ familiar language and deftly steps in to focus the lens on the 

evidence of student thinking and away from the evaluative statements that characterized 

most of the opening comments (Davis, 1997). Another one of her strategies is to limit the 

teachers’ familiarity with the creators of the work samples, thereby limiting their 

references to prior performance. This is not because Lindsay does not have confidence in 

the teachers’ abilities to evaluate students’ progress, but rather she does this exercise so 

that they can learn to make even stronger assessments of their students’ work in the 

future, with more confident references to evidence and to the relevant learning trajectory.  

The use of learning trajectories in teachers’ professional development has a strong 

and growing body of research to support the practice. Whether the learning trajectories 

teachers and coaches reference have been determined by research and presented in a 

professional development setting, or determined by local curriculum and standards, or 

through teachers’ exploration of student thinking along with coaches, the results have 

shown productive gains in aspects of teacher practice (Franke, 2018; Krupa & Confrey, 
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2010; Sarama & Clements, 2009). Despite these positive outcomes, we do not know 

much about how teachers and coaches use the learning trajectory to assess and/or learn 

from student work. Moreover, because of the muddying influence of so many sources of 

knowledge, identifying the indicators of the sources which are referenced is challenging 

and even elusive. But given that learning trajectories influence the teachers’ and the 

coaches’ interpretations of student thinking and progress, this is valuable information.  

Statement of the Problem  

Learning trajectories are essentially a map of student learning; some are 

descriptive of student development and others are prescriptive sequences. Depending on a 

teacher’s pedagogical content knowledge (Shulman, 1986), the different trajectories that 

educators have access to may impact the decisions and judgments they make. The 

National Mathematics Advisory Panel (2008) emphasized the importance of teacher 

content knowledge in general in increasing student achievement, including knowledge of 

learning trajectories. At the time the panel advocated for more dedicated mathematics 

specialist elementary teachers with additional specialized training.  

Seven years after the NMAP report was released, a study of instructional quality 

found evidence that greater mathematical content knowledge, as measured by MQI 

metrics (Hill et al., 2008), is associated with greater teacher quality (Hill, Blazar, & 

Lynch, 2015). Virginia mathematics specialists, who have between 24-33 additional 

credits of mathematics content and leadership coursework, likely have higher 

mathematical content knowledge, despite no known study to explore whether this is true 
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or not. Specifically, we do not know much about how the additional coursework and 

knowledge in mathematics that Virginia mathematics specialists have acquired impacts 

their understandings of student learning trajectories. Curiously, the same large 

longitudinal study showed early on that increases in coaches’ content knowledge on an 

earlier version of the Mathematical Knowledge for Teaching assessment (Hill & Ball, 

2009) shows no correlation with any measures of teacher improvement in a variety of 

categories (Burroughs, Yopp, Sutton, & Greenwood, 2017). Although to be fair, 

Burroughs et al. admitted that it is not clear whether the lack of impact is because there 

actually is no effect or if it is the result of the content courses provided within the study. 

In either case, little is also known about how coaches, as mathematics specialists with 

additional training in content and leadership, use the knowledge they have in their 

professional practice when they are in the role of mathematics coach, in particular in the 

act of examining and assessing artifacts of student thinking. 

Research Questions 

The purpose of this study is to explore elementary mathematics specialist 

coaches’ references to learning trajectories as they examine artifacts of student thinking 

in order to understand what elementary mathematics coaches notice in student work, the 

resources they reference in order to make sense of the work and how they reference them, 

and how this information is used in practice. Using the professional noticing framework 

(van Es & Sherin, 2008) as a guide, engagement includes what coaches attend to in 

student work and the sources of the learning trajectories and learning progressions, 
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broadly defined, that inform their interpretations, and the instructional or coaching 

decisions they propose for the students or teachers.  

1. What evidence of students’ mathematical thinking do elementary 

mathematics coaches attend to while examining students’ written artifacts?  

2. What learning trajectories or other similar sequencing sources do 

elementary mathematics coaches reference in order to interpret students’ 

prior, current, and future understandings, based on an examination of 

student work? 

3. How do elementary mathematics coaches use knowledge of learning 

trajectories or other similar sequencing sources, along with evidence 

gathered from artifacts of student thinking, to make instructional and 

coaching decisions? 

Definitions 

Elementary mathematics coach (EMC). The elementary mathematics specialist 

(EMS) has had more education in elementary mathematics and mathematics pedagogical 

content knowledge than the average teacher. The amount of additional education varies. 

There are three varieties of specialization for an EMS: elementary mathematics coach, 

mathematics specialist teacher, and interventionist teacher (McGatha & Rigelman, 2017). 

This study focuses only on the elementary mathematics coach. 

Equipartitioning. Equipartitioning is the construct of ‘‘cognitive behaviors that 

have the goal of producing equal-sized groups (from collections) or equal-sized parts 
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(from continuous wholes), or equal-sized combinations of wholes and parts, such as is 

typically encountered by children initially in constructing ‘‘fair shares’’ for each of a set 

of individuals’’ (Confrey, Maloney, & Corley, 2014, p. 724).  

Learning trajectory/progression (LT/P). Narrowly defined, a learning 

trajectory consists of a mathematical goal, a developmental sequence of learning, and the 

tasks that moves students toward that goal (Clements & Sarama, 2004). Broadly defined 

the LT/P is any sequence that describes the order in which students learn a topic. This 

may include a variety of resources commonly available in schools, such as a state 

curriculum, a district pacing guide, or a commercial textbook. It may also include third 

party materials that reference research-based learning trajectories or similar online 

resources.    

Professional noticing (PN). Professional noticing is a construct that describes the 

unique character of the work that experts do in their field of expertise (Mason, 2011). 

Professional noticing consists of three separate phases. The first is what the individual 

attends to in the professional environment. The second phase can occur nearly 

simultaneously and it includes a judgment or interpretation of what has been observed, 

and finally, the third phase is responding and acting (Jacobs, Lamb, & Philipp, 2010). 

Virginia mathematics specialist. The Virginia Mathematics Specialist has 

completed enough coursework (at least 24 credits in mathematics content and leadership) 

in addition to their teaching license. Also required for the VA Mathematics Specialist 
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endorsement is a master’s degree and at least 3 years of teaching experience (VMSC, 

2016).  

Horizon content knowledge (HCK). Horizon content knowledge is a variety of 

mathematical knowledge for teaching (MKT). MKT includes knowledge that is unique to 

the art of teaching. It includes general content knowledge, knowledge of tools and 

strategies that is only used for teaching, and HCK. HCK is the awareness of the 

mathematics that is beyond a student’s immediate grade level. For example, intentionally 

selecting a model for multiplication that works for a third grader but which is also a 

reliable tool for a sixth grader demonstrates HCK (Ball, 1993). 
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Chapter Two 

Introduction 

This study was designed to examine how Virginia elementary mathematics specialist 

coaches who currently practice in an elementary school engage with the products of 

student thinking. Specifically, the study is designed to explore a representative sample of 

written work in order to delve into what the coaches attend to, note their understandings 

and use of any form of student learning trajectory or learning progression to interpret 

student thinking, and devise a plan for future instruction. It also explores the coaching 

actions that are inspired by the examination of student work samples. 

The role of the embedded mathematics coach puts them in a unique position in the 

school building. They are solely focused on mathematics instruction across all of the 

grades and even beyond (de Araujo, Webel, & Wray, 2017). Because they serve teachers 

across all grades, they are more likely to develop a working knowledge of all of the grade 

level standards, but a highly trained mathematics specialist is also knowledgeable of 

much more detail about student learning. For example, understanding more about how 

students learn mathematics, and in what sequence, may focus more attention on student 

thinking and learning, a generative change that positively feeds the cycle of learning 

about students’ understanding of mathematical ideas (Franke, Carpenter, Levi, & 

Fennema, 2001). As a matter of fact, in an analysis of the existing literature on 
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mathematics coaching, the authors identified two coaching practices directly related to 

mathematics as the most productive coaching activities for the mathematics coach: 

engaging in mathematics and examining student work (Baker, Bailey, Larsen, & Galanti, 

2017). Since “productive,” in the case of mathematics coaching, is having a positive 

impact on teacher practice and student achievement, it is reasonable to conclude that 

coaches zeroing in on students’ mathematical work and using the mathematical thinking 

to guide coaching practice is more likely to achieve the often elusive goal of professional 

development: to improve student achievement. 

The goals of this study lie at the intersection of at least four significant areas of 

educational research: mathematics coaching practice, the theoretical discussion of 

learning trajectories, the professional noticing construct, and protocols for examining 

student work. The first two areas address the choice of participants and the subject of the 

research. Focusing on the work of coaches, who practice a less explored form of teacher 

professional development, the framework begins by identifying the qualifications and 

work of mathematics coaching as form of professional development. Teachers’ 

professional development experiences are varied (Borko, 2004), but the most successful 

experiences follow a certain pattern: they are focused on content, engage active learning, 

are consistent with the teachers’ current beliefs and practices, endure over time, and are 

experienced collaboratively (Desimone, 2009). The practice of mathematics coaching is 

consistent with all of these features of successful professional development. A second 

area of exploration is that of learning trajectories, an idea broadly defined as a sequence 

of learning (Lobato & Walters, 2017). The variations in this definition will be explored in 
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this chapter and within this framework they will define the ways in which mathematics 

coaches decide how they know student learning is moving forward.  

The two additional areas that form this framework are professional noticing and 

protocols for looking at student work (LASW). If the first two areas reflect the who and 

what of the study, the final two areas frame what mathematics coaches say and do as they 

describe student work. Professional noticing separates the act of noticing into three 

separate but related steps: attending to details, interpreting details, and acting on the 

information (Mason, 2011). The framework makes the argument that examining student 

work not only occurs in-the-moment, but also in the less time-sensitive situation of 

reading student work samples. Finally, an analysis of protocols for examining student 

work, more commonly, and seemingly casually, referred to as looking at student work 

(LASW) provide a frame for the mindsets and dispositions of coaches as they examine 

samples of student work.  

To bound the task of reviewing the research literature relevant to this study, I chose to 

discuss studies first that broadly inform mathematics education. Based on searches done 

during the pilot study (Morrow-Leong, 2013), the literature search started with 

foundational books, articles, or studies and used these to search for broader uses in other 

studies as well as the most current information. For example, to begin a search on the 

concept of learning trajectories, a Google scholar search for what was already known to 

be the foundational article was entered (Simon, 1995), and all articles that cited that piece 

within the area of mathematics were examined. The combined collection of articles was 

sorted into groups, with six or seven research teams that were working on different 
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trajectory projects and domains identified. The literature citations in these studies then 

led to a review of learning trajectory research (Battista, 2004) and also within science 

education (Corcoran, Mosher, & Rognat, 2003). Finally, to obtain the most current 

developments, a recently published chapter (Lobato & Walters, 2017) was used as a 

reference to explore possible missed learning trajectory research. Similarly, two recently 

published edited volumes provided a current lens on the topics of professional noticing 

and elementary mathematics coaching (McGatha & Rigelman, 2017; Schack, Wilhelm, & 

Fisher, 2017). This supplemented the search that was first developed within the pilot 

study.  

Mathematics Coaches and Specialists  

A mathematics specialist is a relatively new idea – an educator whose professional 

time is devoted to improving mathematics instruction in schools. What is a mathematics 

specialist? Many states have adopted some form of teacher licensure that includes 

specialized training in mathematics pedagogy and which is more likely to address the 

area of elementary education. As of this writing, 19 states have adopted a licensing option 

for a specialty endorsement in mathematics, and eight more are in the process of doing so 

(Elementary Mathematics Specialist & Teacher Leaders [ems & tl], 2019). In part, this is 

in response to the 2009 report from the NMAP report which identified a need for more 

teachers with expertise and additional training in elementary mathematics education. 

Clearly there is recognition of the need for focused attention on the improvement of 

mathematics education. 
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History of the mathematics specialist in Virginia. For many years there was 

disagreement about the name and role of a specialist who works in mathematics 

education. In a 2009 position statement for the National Council of Teachers of 

Mathematics, McGatha (2009) referred to the mathematics specialist as an educator who 

works directly with students and reserved the “coach” title for the educator who worked 

directly with teachers (McGatha, 2009). In Virginia, where the first full scale degree and 

endorsement program originated (Campbell, 2011), the mathematics specialist role was, 

and is, not that strictly defined. By 2017, McGatha and Rigelman (2017) had established 

a nomenclature that seems to have been adopted by many in the community. The 

mathematics specialist is an umbrella term for individuals who have the requisite extra 

training, but who could serve as a coach, an interventionist, or in the specialist teacher 

role identified by the National Math Advisory Panel. In this study we will specifically 

address the elementary mathematics specialist serving in the role of a mathematics coach 

in an elementary school. 

The commonwealth of Virginia was one of the first states in the nation to offer a 

mathematics specialist endorsement to the professional teaching license (Campbell, 

2011). Originally part of a National Science Foundation grant through the Virginia 

Mathematics and Science Initiative , the mathematics specialist degree program is now 

offered through 12 universities in Virginia (Virginia Mathematics and Science Coalition 

[VMSC], 2016). The course requirements for the program include five content area 

courses in K-8 mathematics, including number and operations, rational numbers and 

proportional reasoning, algebra and functions, geometry and measurement, and 
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probability and statistics. The course sequence also includes a series of leadership courses 

specific to mathematics education that include topics such as learning theory, diagnosis 

of student understanding, formative assessment, access for diverse learners, adult 

learning, instructional decision making, data analysis and discussion, lesson studies, and 

the development of effective task-based mathematics (VMSC, 2016). While there are still 

few job positions posted that require this specific coursework, in some areas it is 

becoming more of an expectation that candidates for instructional support positions in 

mathematics will have earned the degree or endorsement. 

Despite the robust support from the Virginia Mathematics and Science Coalition, the 

role of the mathematics specialist, once hired into a school still remains unclear. In an 

early survey of coaches and their principals, Salkind (2010) found that principals and 

coaches did not share the same view of what the coach’s role and responsibilities in the 

school should be. This often resulted in conflicts, which impacted efforts to impact 

instruction. Data collection and identification is also complicated by the titles and 

funding sources for mathematics specialist coaches. For example, “mathematics resource 

teacher” is a common title, however, the job description varies across counties, and more 

importantly, as Salkind (2010) showed, the expectations of school administrators varied, 

even when job descriptions remained consistent.  

Elementary mathematics specialists in schools. Once a licensed mathematics 

specialist is installed in an elementary school context and is given responsibility for 

supporting the instruction of teachers of mathematics, the impact can be significant but 

slippery to measure because current research on the effectiveness of coaches in the school 
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environment is still sparse. In part, this may be because the “coach” in the research 

literature often holds another title and is a supporting resource for a larger-scale project 

with separate goals, such as described by Cobb and Jackson (2011). Another reason for 

the sparse literature is the relative newness of the role, but results of studies on the impact 

on teacher practice and student achievement are starting to emerge more frequently. For 

example, one study showed that the mathematics coach can impact student achievement 

but that this effect can take as long as 3 years to emerge (Campbell & Malkus, 2009). 

Other studies can more confidently point to changes in teacher instructional practices that 

have been shown elsewhere to result in greater student achievement. McGatha, Davis, 

and Stokes-Levine (2017) highlight studies that show the coach’s impact on teacher 

practice, including teachers engaging in less directive instruction (Polly, 2012), coaching 

acts that evoke teachers’ pedagogical curiosity about student learning (Olson & Barrett, 

2004), and teachers’ engagement in more frequent best teaching practices (Race, Ho, & 

Bower 2002). As research continues into what impact coaches have on the success of 

students and their teachers, the question remains: What do mathematics specialists need 

to know in order to be successful? 

What do elementary mathematics specialists need to know in order to be successful? 

Clearly they need a knowledge of K-8 mathematics content that exceeds that which is 

required for general teacher licensure, but they also need knowledge that is specific to 

working with adult learners (teachers), and for working with leaders in a school context. 

In 2013, the Association of Mathematics Teacher Educators (AMTE, 2013) published 

guidelines for the preparation of elementary mathematics specialists, setting the bar for 
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preparation. One standard in the AMTE guidelines is a fuller understanding of the 

specific knowledge needed for understanding children’s mathematics and for teaching 

children, often referred to as pedagogical content knowledge (Shulman, 1986). This 

knowledge is different from, and distinguished from, the mathematics required to do 

everyday mathematics or secondary and college mathematics (Ball et al., 2008). The 

National Council of Teachers of Mathematics’ (NCTM) accreditation standards from the 

Council for the Accreditation of Educator Preparation (CAEP, 2012) reflect a similar 

vision of the teacher knowledge required to perform the duties of the mathematics 

specialist, including the work of the specialist serving in a departmentalized teaching 

context. These standards show that elementary mathematics specialist coaches should not 

only possess the knowledge expected of the classroom teacher, but should also have 

additional training that supports mathematics instructional practice with adult learners 

across a school building or district.  

Coaches in practice. The daily work of coaches varies greatly. One impact that 

coaches can have on the school environment is focusing attention on longer term goals, 

including long-term planning or on the long arc of student learning in a particular 

domain, both across and within a grade level. For example, one coach in an early study of 

mathematics coaches encouraged teachers to focus more on planning content and units 

into the future (Becker, 2001). This long-term planning may have been partly because of 

the coach’s schedule of visits. There were breaks of several weeks between the coach’s 

visits, during which time the teacher continued the work the coach began during model 

lessons. The situation illustrated the impact a coach can have on teachers’ longer term 



 

 

27

planning. In another more recent study, Krupa and Confrey (2010) conducted a detailed 

analysis of how coaches spend their time working within a school environment. Digging 

deep into the categories of coaching work, they identified at least two categories that 

show that long term planning or a focus on students’ learning sequences was exclusively 

part of their practice for 7.5% of their time. Another 6.6% of the time focused on 

assessment rubrics or on discussing content, which may also address some of the bigger 

ideas that span whole school years or across grades. As a matter of fact, given their work 

with teachers at different grade levels, McGatha (2008) found that coaches focus more on 

the reasoning behind the sequence of student activities, tasks, and standards than teachers 

do. Coaches appear to focus more on broader swaths of mathematical content knowledge 

than the average teacher might.  

The far-reaching visions shown by coaches may also have an impact on teachers’ 

practices, causing them to be more attuned themselves to long term goals for student 

learning. In the early Becker (2001) study, one finding was that no matter the style of 

coaching, teachers with coaches had a more coherent view of their curriculum and were 

more prone to focus on the big ideas important to a grade level than previously. As a 

matter of fact, Kazemi & Franke (2004) directly attributed teachers’ greater capacity to 

formulate their own hypothetical learning trajectories (HLT) for their students to 

facilitate sessions devoted to looking carefully at student work and reflecting on student 

thinking. While these sessions were not with school-based coaches, the facilitators led the 

session in the way a coach might. Not only did the teachers develop their own 

hypothetical learning trajectories based on close examinations of student thinking, they 
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also formulated instructional trajectories that extended beyond immediately upcoming 

lessons.  

Coaches’ mathematical knowledge for teaching. The coaches’ broader view of 

content and curriculum may come from the fact that their practice focuses on a range of 

grade levels, but it also may originate in a greater mathematical knowledge specific to the 

domain of teaching in general. The idea of pedagogical content knowledge (PCK) 

existing as separate from general content knowledge was a radical, yet obvious, idea 

when it was first introduced (Shulman, 1986). Teachers need to know a different variety 

of content than the general public needs because they have the unique role of supporting 

student learning. Ball and Cohen (1999) referred to this knowledge specifically in the 

domain of mathematics as mathematical knowledge for teaching (MKT). MKT includes 

two dimensions, one related to the subject itself and the other related to instruction within 

the discipline.  

Because coaches’ responsibilities span so many grades there are two sub-domains 

of mathematical content knowledge that may figure more prominently in a coaching 

practice. HCK addresses MCK as it spans the grades. As the word “horizon” implies, 

HCK includes a broader view, recognizing that choices made in kindergarten about 

models and representations may have implications far beyond that grade level. Similarly, 

knowledge of content and curriculum may also be of critical importance for coaches not 

only because they work with all grades, but as the Becker (2001) study, previously 

described, teachers who work with coaches may be more attuned to their own curriculum. 
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It is interesting that coaching programs and initiatives do not always assume that 

the coach has greater knowledge than the teacher. In fact, one comprehensive study of 

coaching programs noted that only half of the programs studied assumed or provided 

extensive extra training for the coaches. The other half assumed no extra training in 

mathematics or leadership than that which the classroom teacher commonly has (Yopp, 

Burroughs, Sutton, & Greenwood, 2017). On the other hand, Campbell and Malkus 

(2011) described another program that includes extensive extra training for coaches, 

including content and leadership courses that lead to a post-graduate degree. This 

program includes PCK as well as the specialized mathematics knowledge for teaching 

unique to teaching mathematics. While the knowledge that teachers need in order to do 

their work shares properties with the knowledge coaches need to do their work: coaches 

may even require more, although the list of what is necessary for teachers is already 

lengthy! It is logical to assume that the knowledge required to engage in a productive 

coaching practice includes at least the same level of knowledge of mathematics and 

pedagogy as teaching does.  

Professional Noticing 

The subject of this study is the knowledge and practices of elementary mathematics 

specialist coaches. In order to explore aspects of the coaching process, it is important to 

identify an approach that can focus attention on important coaching moves and actions. 

The professional noticing framework recognizes expertise and provides a tool for 

unraveling the choices made as the professional makes split second decisions in the 

context of working in their profession. Recognizing the mathematics coach as a 
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professional with the skills of a teacher, but also with the additional skills required to 

coach adults, the work of coaches warrants another level of study.  

Artifacts of students thinking are likely the most plentiful and arguably the most 

valuable resource in a school building, so it is important for teachers and elementary 

mathematics specialists to recognize the value of this plentiful classroom resource, as 

there are always opportunities to listen to students do mathematics, and to look at the 

work they do. However, if teachers do not systematically use the student work artifacts 

that are generated in the classroom to explore the thinking that students are doing, this 

value is lost. The construct of professional noticing offers a framework for describing 

what coaches and teachers pay attention to when they engage with student thinking in the 

course of their teaching or coaching practice.  

“Noticing” is a common English word, but it also describes specific acts of a 

professional working within their field (Sherin, Jacobs, & Philipps, 2011). While noticing 

is not generally done consciously or mindfully, the professional noticing construct is 

more complex. Logically, what one notices in normal circumstances is only marginally 

within the realm of their control (Mason, 2011), but with attention and focus, 

professionals can learn to engage more mindfully and focus their attention on targeted 

aspects of practice (Gawande, 2017). Professional noticing in education is a fertile field 

for researchers exploring the practice of teaching precisely because what one notices is 

intimately tied to many other constructs related to the practice of teaching and coaching 

(Mason, 2011). Specifically, professional noticing focused on assessment of student 



 

 

31

thinking and their progress toward learning goals is one aspect of practice that promises 

to be fruitful.  

Professional noticing (PN) consists of three separate but related acts (Sherin et 

al.,2011). While the acts are separate in the PN construct, in reality the three often occur 

nearly simultaneously in the most accomplished practitioners. The first is what we 

commonly think of as noticing: (1) seeing and attending to certain features within the 

classroom setting. The first act is instigated by something outside of the observer.(2) The 

second act is an interpretive process that takes place entirely within the mind of the 

observer, and therefore, the interpretation is subject to the varied experiences of each 

observer. (3) In the third phase, teachers make informed decisions about the next course 

of action (van Es & Sherin, 2008). In terms of noticing student thinking, van Es (2011) 

outlined a framework that was conceived to apply to the live classroom environment. 

Indeed much of the professional noticing literature in mathematics education targets 

episodes that occur while a teacher is engaged in the classroom (Luna & Sherin, 2017; 

McDuffie et al., 2014; Walkoe, 2015). While the live classroom is a vital grain size and 

locus for study, professional noticing can also reasonably apply to teacher and coach 

activities that take place outside of the highly reactionary and fast-paced classroom 

environment.  

Levels of professional noticing. The video club format of professional development 

frames a study that applies the same professional noticing framework to teacher practice 

(van Es & Sherin, 2008). The video club engaged teachers in monthly meetings where 

they watched videos of each other teaching within the context of the professional 
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development session. The whole program’s focus was on children’s mathematical 

thinking. While the discussions of teacher and student interactions took place once a 

month with a live gathering of participants, the groups nevertheless responded to the 

events that had been filmed live. One step removed from a live response, the video club 

study (van Es & Sherin, 2008) recorded and then classified the teachers’ talk about 

student actions into three categories. These categories reveal a window into what teachers 

noticed as they listened to the classroom interactions as well as how they responded. 

Teacher statements in the grounded narrative category offered a sequential description of 

the events in the classroom setting. These comments generally did not hold an evaluative 

overtone, but read more like the plot sequence or other kind of story line. The narrative; 

however, did not typically focus on content or pedagogical content-related details.  

Another category of teacher statement does reflect a dive into discussions of teaching 

and learning, but these statements take on an evaluative note. Evaluative discourse 

describes the judging behaviors of teacher-observers as they comment on both students 

and teachers, describing what the teacher should have done, what did not go well, how 

students performed, etc. (van Es & Sherin, 2008) The third discourse category is 

interpretive discourse and it is most closely tied to the act of professional noticing. The 

teacher-observer cites evidence of student thinking and then makes inferences about the 

student’s thought process or current understanding. This sequence of actions precisely 

corresponds to components that describe professional noticing. The important outcome is 

that not all teacher interaction with student work or with students in the classroom 

engages the mindful and informed decision-making that characterizes the mature stage of 
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professional noticing. The study concludes that teachers can develop these skills and 

learn to attend more to evidence of student thinking, interpret the evidence rather than 

evaluate it, and respond mindfully. There is no known research on what the highly trained 

mathematics specialist notices and how they respond in similar contexts. 

While one might think that years of teaching experience would have an impact on 

teacher reactions, this may not necessarily be the case. A study of preservice teachers 

used a similar video club format to determine if the acts inherent to professional noticing 

were something that could be cultivated in teachers with little to no experience in the 

classroom. Students in methods classes examined four or five video clips of instruction 

through a variety of lenses. Three of the lenses focused on teaching, learning, and tasks, 

and the fourth included a social justice lens (McDuffie et al., 2014). What is notable is 

that this study identified reactions from preservice teachers similar to those identified in 

the van Es (2011) video study, despite the different experience levels of the teachers. 

Responses primarily included evaluative statements or were simply narrative statements 

of what happened. Interestingly, Jacobs, Lamb and Philip (2010) noted in their 

methodology that they consciously decided not to sample research participants based on 

years of experience, noting that more years of experience had not previously been a 

significant predictor of teachers’ capacity to engage in productive professional noticing 

of children’s mathematical thinking. It would be reasonable to assume that more years of 

experience would cause teachers to be more responsive to the evidence contained in 

student thinking and displayed in student artifacts. This is either not the case, or there is 

another explanation for why teachers did not show evidence of responsiveness.  
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In the end, the McDuffie et al. (2014) study identified four levels of noticing. The 

baseline level generally matches the grounded narrative from Sherin et al., (2011) in that 

it includes general descriptions of the teaching vignette that are vague and lack details. At 

the other end of the spectrum, the making connections level roughly corresponds to the 

behaviors identified in the interpretive discourse type of engagement. Both interpretive 

discourse and the making connections level describe teacher statements that highlight 

aspects of student thinking or that make explicit connections between teaching moves and 

student thinking. The differences fall in the middle. While the van Es et al. (2008) study 

focused exclusively on teacher discourse after viewing the video clips, the McDuffie et 

al. study looked beyond discourse to attentional behaviors as well. The attention level 

represents emergent pedagogical practices: in this case the preservice teachers (PST) 

began to notice teacher moves or attend to students’ mathematical thinking in ways they 

had not done previously. The awareness level represents a more targeted level of 

noticing. The PSTs operating at this level cite evidence for their observations and discuss 

why certain outcomes occurred. This is similar to the results Crespo (2000) found when 

she asked preservice teachers to engage with students via a letter writing exchange. 

Initially they focused on errors, but as the project progressed they began paying attention 

to features of student work and then started to show awareness of the children’s 

mathematical thinking.  
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Table 1 

Responses to Observations of Teaching Videos  

van Es et al. (2011) McDuffie et al. (2014) 

Grounded Narrative Baseline 

Evaluative Discourse 

Attention 

Awareness 

Interpretive Discourse Making Connections 

 

Curiously, McDuffie et al. (2014) observed that most PSTs began their study 

already comfortably operating at the attention level. An interesting, and contrasting, 

finding in the van Es (2008) study was observed when teachers in the video club watched 

the video clip of their own classroom. The teachers almost exclusively commented on 

their own videos at the most basic and descriptive level. They described what was present 

in the clip, but they did not engage in a higher level analysis of either their teaching or 

their students’ mathematical thinking. We are left to wonder about the impact of 

watching one’s own teaching and whether it prevents the individual from engaging in 

productive discussions about instruction, at least initially. It is also a reason to reconsider 

whether teacher learning can sometimes be more fruitful when teachers engage in 

observing the work of other teachers instead of their own.  

The progression of teacher engagement with student thinking and student work from 

superficial observations to reflective discussions of children’s mathematical thinking is 

not unique. Generally, both of the progressions described a similar pattern, beginning 
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with fact-based accounts of what took place, to evaluative reports on the quality of 

student work or teacher action, and finally leading to an interpretive response that centers 

on evidence and is grounded in content. But as we have seen, experience alone does not 

lead teachers to engage productively with student thinking.  

A professional development experience was required for some teachers to focus their 

attention on the details related to student thinking. In other words, connected and 

interpretive professional noticing is not a natural byproduct of years of teaching 

experience. The second phase of the professional noticing framework described by Sherin 

et al.  (2011) seems to be the pivotal moment. When teachers engage in interpretive, 

rather than narrative or evaluative behaviors or statements, the act of professional 

noticing becomes a productive and generative process. It is useful to unpack and look 

separately at each of the three components of professional noticing in order to identify 

aspects of practice that may be relevant. 

Attending to children’s mathematical thinking. When teachers begin to attend to 

the mathematical thinking of students, they are turning attention to the lived experiences 

in the classroom. They may attend only to narrations of the general action in the 

classroom (van Es, 2011) or remain centered on the teacher’s actions. Chamberlin (2003) 

named “de-centering” as a the primary challenge for teachers learning to more deeply 

engage with student thinking. De-centering means that the teacher subsumes their ever-

present thoughts about the practice of teaching and focuses instead on the process of 

learning that is happening in the students, particularly when the students’ thinking seems 

illogical to the observer. Not surprisingly, Empson and Jacobs (2008) specified a 
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complementary teacher behavior that is present before teachers engage in de-centering. 

As a teacher responds to a student’s explanation of their thinking, the directive teacher 

listening stance is characterized by the teacher who directs the student’s thinking to the 

expected outcome rather than taking the student explanation at face value. They cite a 

particularly vivid example from another study: “I immediately doubted his accuracy 

because it did not concur with what I had in my mind” (Nicol, 1998, as cited in Empson 

& Jacobs, 2008, p. 268). Baldinger (2015) noted a similar phenomenon in secondary 

teachers who were engaged with analyzing student work. She noted that the majority of 

the preservice teacher participants in her study considered the work of students through a 

lens of what she termed mathematical analysis. The teachers focused entirely on the 

mathematical accuracy, even painting broad generalizations about accuracy based on 

scant evidence. The piece of work was treated only as mathematics rather than as the 

product of a student. In some cases, it was mathematics that the PST was still struggling 

to understand. The student work could have been a textbook entry, and the response 

might have been the same. Baldinger also noted PSTs directly comparing the student 

work to their own work on the same problem, and interestingly, she noted this action as 

further toward sophisticated teaching practice than the mathematical analysis. The 

practices described here are of teachers (or PSTs) who are not yet attending to children’s 

mathematical thinking: they may be looking at student work, but they are attending to 

mathematical accuracy and not attending to the origin of the thinking that produced the 

work.  
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In order for teachers to attend to students’ thinking, they must first de-center from 

their own practice and focus on students. They may start to identify features and details 

of the mathematics with which students struggle (Chamberlin, 2003; Talanquer, Bolger, 

& Tomanek, 2015). Or they may engage in observational listening (Empson & Jacobs, 

2008) where teachers listen to students’ explanations of their thinking, but do not pursue 

that line of thought. Instead the teacher begins to mold and form the students’ thinking 

into an expected response. Only one teacher in Baldinger’s (2015) study engaged with the 

student work from a pedagogical point of view. None of these studies makes any 

suggestion for why an examination of student thinking would not center on the students 

themselves. Proximity, or the fact that student performance may be perceived to be 

closely tied to teacher behavior may play a role. But it raises interesting questions about 

whether a mathematics coach would have the same perspective while examining student 

work.  

Interpreting children’s mathematical thinking. The second part of the professional 

noticing construct describes teachers’ actions as they begin to interpret students’ thinking. 

In a fascinating study, a researcher conducted a case study of an early career teacher as 

she began a journey of self-reflection and professional change (Davis, 1997). In some 

respects the study was also a form of self-study in that through collaboration the 

researcher also delved into his own beliefs about teaching and learning. Davis zeroed in 

on the listening practices of the teacher, using classroom incidents to characterize the 

purposes of her listening to student responses. He identified the evaluative listening 

stance which is characterized as “limited and limiting” (Davis, 1997, p. 359) to both 
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teachers and students. The teacher is not listening openly but rather is listening for an 

expected response of some sort. Alternative responses are jarring and unexpected and are 

therefore distractions.  Talanquer, Bolger, and Tomanek (2015) invoked the same 

evaluative frame when they described teachers’ responses to written work that showed 

very few inferences about student thinking. In contrast, the movement of teacher 

comments from evaluative to interpretive is noted as progress toward a more thoughtful 

analysis of student work (van Es & Sherin, 2008). Evaluative comments rush to judge, 

often with little or no evidence. In schools, this may be heard in comments such as these: 

“This is good work,” “Joey’s last homework was just great,” or the less complimentary, 

“Frances’ last paper was terrible.” The comments are not accompanied by evidence to 

justify the opinion and curiously in some communities, none may be expected.  

By contrast, Davis’ interpretive stance demands evidence. He described the teacher’s 

questioning patterns at this stage as information-seeking rather than as response-seeking. 

This may seem insignificant, but the change from the teacher’s point of view is profound. 

She was no longer seeking pre-determined answers, but rather was looking to understand 

what her students were thinking, and the questions were tinged with genuine curiosity. 

Olson referred to this strategy as “evoking pedagogical curiosity” (2005). Empson and 

Jacobs (2008) further stated that this curiosity about the possible strategies, approaches, 

and thoughts of students can be a powerful hook to motivate teachers to learn even more 

about children’s mathematical thinking. In their work, they referred to this productive 

variety of listening as responsive, indicating that the teacher responds to students by 

eliciting even more information. The interpretive listening stance is an integral part of the 
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professional noticing framework because it establishes the necessary prerequisite 

awareness of and curiosity about students’ individual thinking that maintains the 

educator’s focus on the data they will need for the next stage. They are now ready for 

what Kazemi and Franke (2004) call a transformation of participation, a shift from an 

insular view of what they know and of what students can do to one that is open to new 

ideas. Is there evidence of transformation of practice in the views of coaches as well as 

they engage with student work? 

Deciding how to respond on the basis of children’s understandings. The third 

phase of the professional noticing process reflects a new engagement with the work that 

students do, either live in the classroom (Liu, 2014), or with student work samples. These 

samples may have been examined either in collaborative teams (Brodie, 2014; Kazemi & 

Franke, 2004; McDuffie, 2014; van Es & Sherin, 2008), in an interview setting (van den 

Kieboom, Magiera, & Moyer, 2017), or as an individual activity (Baldinger, 2015; Son, 

2013).  

One of the most fruitful avenues for examining student thinking is through the 

mistakes they make. There isn’t widespread agreement in the literature on the definitions 

of a mistake, with “errors,” “mistakes,” “misconceptions,” or “slips” all appearing 

throughout. To simplify matters for our purpose, I will decide on a distinction and use it 

throughout. There are four basic types of errors: one sort is a conceptual error (Son, 

2013). The conceptual error is based on a student’s misconception of a primary 

mathematical concept. It appears pervasively and repeatedly, in many different 

representations. The second is a procedural error. Educators often confuse the two 
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varieties of errors. In Son’s (2013) study, 56% of the preservice teachers examined a 

sample of student work that showed the student’s lack of a conceptual understanding of 

similarity and suggested procedural assistance, particularly related to how the student 

might solve the proportion, ignoring the fact that the student did not show evidence of 

understanding the concept of similarity! A procedural error is a miscue in the 

individual’s algorithm. In the similarity example given above, the student may correctly 

describe what sides are similar in a given figure yet incorrectly use the proportion 

structure to represent those relationships. Brodie (2014) adopted the term slip to refer to 

the kind of mistake that is a cognitive gaffe. It is characterized by its sudden appearance, 

and the individual’s quick response to step in and fix it. Another source of errors are 

omissions. For example, in a problem describing two groups of students sharing a certain 

number of sandwiches and comparing which group got more, the student may give two 

accurate representations of sharing and then fail to answer the final comparison by saying 

which group got more. Mistakes, errors, or “forgettings” are commonplace in a 

classroom, but refining the identification of these incorrect outcomes can focus educator 

attention on the source of the outcome, and facilitate an effective plan to address it. 

In my practice, different sources of incorrect responses often fall under the umbrella 

of student forgetfulness. The student “forgot” some detail and for that reason they made a 

mistake. I always wonder if the student “forgot” or if they simply did not understand 

something well enough in the first place to use it meaningfully. For this reason, errors 

due to forgetting might also be classified as a slip, as a conceptual error, as a procedural 

error, or as an omission. Either way, forgetting something is often a teacher’s 
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characterization of students’ errors, and it may not be based on how student themselves 

might be thinking. 

Table 2 

Description of Error Types 

Error Type Description Examples, using 2 x 3 = 5  

as the error. 

Slip 

(Brodie, 2014) 

The mistake does not reflect the 

student’s understanding, but 

instead can be characterized as 

an unexpected drop in 

awareness. The individual 

quickly resolves the mistake 

when it is pointed out or they 

notice it themselves. 

Oops! I wrote a five. I meant 

to write six! I saw a six in my 

head and then somehow I still 

wrote a five! 

Procedural error 

(Son, 2013) 

A procedural error may be the 

result of overgeneralizing a 

pattern from one operation to 

another, or any variety of 

mistakes that come from 

misapplying or executing a 

procedure in the wrong context. 

 
 

“I counted 1,2,3, then 3,4,5. 

That’s two threes.” 

This error is a procedural 

misunderstanding of counting 

three on a number line. The 

student counted tick marks 

using one-to-one 

correspondence rather than 

counting intervals between 

them. 

 

Conceptual error 

(Son, 2013) 

A conceptual error is a 

misunderstanding of a 

fundamental idea underlying the 

mathematics. For example, the 

misunderstanding may be in not 

understanding the meaning of an 

operator. 

“Show me 2 x 3” 

 
This is a conceptual error 

because the student shows 

each factor as a quantity, 

rather than showing one as a 

group and the other as how 

many groups. 
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Table 2 (continued). 

 

Error Type Description Examples, using 2 x 3 = 5  

as the error. 

Omission 

An omission occurs when a 

student fails to include a key 

piece of an answer. They may 

put a group of base 10 blocks 

together to show two addends, 

but not give the sum. It would be 

inappropriate to assume that they 

can find the sum, and it would 

also be inappropriate to assume 

they can’t. 

 

3 

 

   

2 

   

 

This is an error of omission. 

The student has drawn an 

accurate representation of 2 x 

3, but has not shown that they 

understand that the product is 

6. 

 

In summary, the terms “error,” “mistake,” and even “misconception” alone have 

no meaning because they do not indicate the origin of the incorrect response. Without 

carefully examining student work and asking for more details it may be impossible to 

classify student errors accurately. However, addressing student errors offers teachers the 

opportunity to target their interpretation of student work and helps them move from a 

focus on correctness to a focus on the meaning of student thinking (Crespo, 2000) and to 

the potential for professional growth. 

A teacher acting on their interpretation of student thinking is the least well-

developed phase of the literature on professional noticing. Leatham, Peterson, Stockero 

and van Zoest (2014) admitted that the work of interpreting accurately and then acting on 

what one has heard is complicated work, and of course highly variable in situ. Their 
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study’s focus was to identify moments during teaching that were the richest opportunities 

for what one might term a “teachable moment,” but which they called a MOST 

(mathematically significant pedagogical opportunities to build on student thinking). They 

began the investigation because they noted that many of these MOST moments, or 

moments to further student thinking, went unnoticed by teachers. These lost moments 

were also lost opportunities for learning, so their goal was to understand the kinds of 

student thinking that are the most necessary for teachers to understand and therefore, 

respond to. Moreover, they also wanted to discover how teachers can generate MOST 

moments with students and how teachers can best capitalize on these moments. In other 

words, they wanted to increase the effectiveness of the teachers’ professional noticing.  

Capturing and responding to students in the live classroom environment is not just 

challenging for decision-making on a class-level, it is also challenging in the one-on-one 

interactions that teachers have with students. In the course of their investigation, 

Schneider and Gowan (2013) noted one critically important observation: it was more 

difficult for teachers to give feedback that helps students learn than it was to analyze a 

student response and plan the next instructional step. They hypothesized that formative 

assessment targeted specifically at one student’s needs was more challenging because the 

teachers in this study were perhaps not yet able to identify the actual reasons for students’ 

errors. This failure to understand students’ actual misconception shortcut their efforts to 

provide feedback. It also may explain globally why the last phase of the professional 

noticing framework is less developed than the other two; it is necessary that teachers have 
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the capacity to accurately interpret student thinking before one can study what they do 

next.  

Professional growth while engaged with student work. Nevertheless, there is 

some evidence that significant professional growth can take place in teachers who have 

learned to focus deeply on children’s mathematical thinking. Teachers have been 

observed productively adding to their repertoire of understandings of student thinking 

during a particular lesson (Doerr, 2006). The change in teacher behavior based on the 

process of closely examining student work and responding productively can also be 

persistent, lasting even years after the professional development that effectuated the 

change in the first place. For example, Franke et al. (2001) followed up with a group of 

teacher-participants and found that they had not only maintained their focus on student 

thinking, they had also experienced generative change, or change that compounds into 

even greater change. These changes reflected continued growth in understanding the 

development of student thinking and a focus on evidence of that thinking, which 

continued at least 4 years into the future. Furthermore, they continued to seek out 

colleagues who wished to do the same! 

The previously described project, Cognitively Guided Instruction (Empson & 

Levi, 2011), has experienced great success over the years, both in impacting teachers, but 

also in contributing to the body of knowledge on student thinking. In the descriptions of 

their methodologies, they state that they provide professional development to teachers 

that includes doing mathematics, reading research, and analyzing videos, in addition to 

the time spent discussing what they have learned along with other teachers as we also 
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saw in Jacobs, Lamb, and Philip (2010). What stands out as atypical is the task of reading 

research, specifically research that is targeted to understanding children’s mathematics. 

Interestingly, the research area of professional noticing has recently taken a turn toward a 

similar goal. One study of preschool teachers’ professional noticing narrowed the focus 

of the study to the specific mathematical practice of problem solving (Fernández, 

Llinares, & Valls, 2013). Another study that limited and specified a targeted domain of 

mathematical thinking was the study of similarity discussed earlier (Son, 2013). Another 

study featured the topic of relational thinking, specifically the role of the equal sign, and 

gave PSTs the opportunity to analyze videos of master teachers engaged with students 

(van den Kieboom et al., 2017). One of the findings of this study is that the participants 

reported a stronger knowledge of relational thinking and felt better prepared to teach it. 

This was a direct result of several exercises in professional noticing targeted to this area 

of mathematics. As more studies explore the direct impact of professional noticing within 

particular domains of mathematics, specific details of the necessary pedagogical content 

knowledge required to teach or coach also promises to grow. 

Finally, Spitzer, and Phelps-Gregory (2017) addressed the issue of mathematical 

domains more broadly. They described a methodology for analyzing teachers’ 

professional noticing of any mathematical domain, a process that begins with identifying 

a mathematical goal. By deconstructing the goal into sub goals, the teacher can use the 

sub goals to identify students’ understanding of mathematical ideas at a very precise 

level, and focus their professional noticing onto these smaller grain size ideas. With 

enough detail and enough time deconstructing mathematical goals relevant to their 
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teaching, teachers can essentially create a form of learning progression that will inform 

the connections they can make to their observations of student thinking. This approach 

shows promise, not just for teachers, but also for researchers who can identify 

problematic mathematical topics and explore both teacher noticing of student thinking as 

well as student thinking itself. Ironically, this reflects a return to a model of a learning 

trajectory that is more about the act of teaching just as Simon (1995) originally 

described..  

LTs and Learning Progressions  

As the discipline of professional noticing begins the process of drilling down 

farther into the details of what teachers notice and to what they respond, the study of 

what students do, and should  know becomes more critical, as these understandings 

become important data sources. Learning trajectories (and learning progressions) 

formally present what students know and therefore, become important tools.  

Students’ growth and development can take surprising twists and turns, 

sometimes following the curriculum set for them and at other times meandering around 

important ideas without achieving the objective of the day, week, or even of the year. 

Nevertheless, teachers still hold the key to guiding students toward a more robust 

understanding of mathematics. With the introduction of the CCSSM (NGA, 2010) a close 

examination of learning paths may be more feasible, as much of the U.S. population is 

following the same curricular sequence. However, a sequence of content presented by 

grade is no guarantee that each level of content is appropriate for the students in that 

grade to learn. Much research is needed in order to conclude definitively that, for 
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example, modeling the division of fractions in sixth-grade is appropriately accessible for 

every student in the United States. In the meantime, learning trajectories and progressions 

may become key tools for assisting teachers as they learn more details about the means 

by which students learn mathematics. 

The information shared in learning trajectories research varies widely, each 

having a different focus and emphasis. These might include what aspect of mathematics 

is studied, the age of the students, the data collection strategies, the goals of the research, 

and much more. Each choice profoundly determines the outcome of the research. Some 

projects have a narrow but detailed focus on the early understandings of fractions (Steffe 

& Olive, 2010), while others take on an entire mathematical domain (Battista, 2011).  

Sequences provided for teaching within content area domains is not a uniquely 

modern phenomenon: any teaching or training activity must include some form of a plan 

that leads students from the beginning to a mature understanding of the domain content 

and skills. This is not only true for school learning. Lave (2011) described the process as 

apprentice tailors enter the community of practice (Wenger, 1998) and begin to engage. 

The strict sequence of mastery skills and assessment routines followed by the male tailors 

within the Vai and Gola community of Liberia are notable. The sequence of skills that are 

learned on the periphery include sewing on a button, but eventually move to full 

participation when the apprentice earns the opportunity to tailor a suit. Students learning 

mathematics are also on an apprenticeship path. The Common Core specifically identifies 

that path by stating that the goals of the standards are “college and career readiness” 

(NGA & CCSSO, 2010). It is beyond the scope of this paper to argue whether this is an 
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appropriate set of standards and goals for moving students toward the stated goals; 

however, an understood set of goals, tasks, and a predictable sequence of expected 

competencies guide the master’s efforts to mold the apprentice. 

The unfolding of topics and content that students learn in a classroom is not an 

obvious sequence, and opinions about this progression vary greatly. One of the key 

considerations for describing the sequence students follow is the focus and intent of the 

sequence. One of the outcomes of the research done by Confrey and colleagues (2014) as 

part of the development of the equipartitioning learning trajectory is a clear distinction 

between a sequence of content based on mathematical ideas that originate from an 

idealized version of mathematics as an end goal, and a view of mathematics as something 

that is created within the individual (Confrey, 2012; Wilson et al.,2013). In other words, a 

mathematics learning sequence can be derived as a top-down model, where the content 

that students must learn is derived from a vision of what mastery of that content looks 

like. Because this vision of mathematical learning is conceived by those who have 

already achieved mastery, the content looks much like the mature version. On the other 

hand, a developmental view of mathematics learning builds from the earliest conceptions 

of number and space and assumes that learning will unfold in fairly predictable ways, 

given that students have exposure to productive mathematical tasks. In this view, student 

thinking and learning unfolds in “stages” or “levels” that have been shown empirically to 

be predictable (Sarama & Clements, 2009).  

Origins of learning trajectories. When Simon (1995) published this article he 

casually mentioned the hypothetical learning trajectory. A careful reading shows that he 
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may well have preferred that the mathematics education community instead elect to study 

the model of the iterative teaching decision-making process that he called the 

Mathematics Teaching Cycle. Beginning with a reasonably educated guess about the 

interactions between a lesson’s goal, the activities of the lesson, and the thinking and 

learning in which the student might engage, the teacher lays out how a lesson might 

unfold: it’s this part of the iterative design cycle that was called the hypothetical learning 

trajectory (HLT). The rest of the cycle is concerned with the changes in lesson design 

both live in the class and also for future instruction. But this is not what caught fire. 

It is clear that Simon’s focus in 1995 was on the individual teacher’s work within 

a single classroom, even within a short time frame. He specifically referred to “the 

teacher’s prediction as to the path by which learning might proceed” (Simon, 1995, p. 

135). In the ensuing years, the “H” has largely been dropped, and more definitive 

statements about the learning trajectory for certain content domains have emerged. Few 

writers retain what I believe is Simon’s original meaning within the context of this paper, 

including perhaps Simon himself (Simon and Tzur, 2004). In this piece, the authors 

present the HLT as a “vehicle” for instructional planning. The importance of tasks and a 

focus on students’ understanding remain. For example, the lesson shared in Simon’s 

original piece begins as an exploration of the “multiplicative relationships involved, not 

to teach about area” (Simon, 1995, p. 123), but eventually he admitted “Although my 

primary focus was on multiplicative relationships, not on area, it seemed clear that an 

understanding of area was necessary in order for students to think about constituting the 

quantity (area) and evaluating that quantity” (Simon, 1995, p. 127). In this responsive 
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shift in focus, the hypothesized learning trajectory for the group of students changes 

significantly, even in some sense shifting domain, and the hypothesis about the students’ 

learning path changes. But in 2004, Simon and Tzur used the more utilitarian word 

“vehicle” to describe the elaborated hypothetical learning trajectory, conveying the idea 

that the HLT “carries” the lesson instead of driving it. The agency appears less in the 

hands of the teacher and is more dependent on the sequence of activities designed to elicit 

activity-effect in students. Despite this subtle but noticeable shift in emphasis from the 

teacher as the author of the HLT to a research-determined HLT, the authors 

acknowledged that as knowledge of student learning processes grows, learning 

trajectories in general can become more precise and predictive than they have been in the 

past. However the HLT, as originally presented, has evolved significantly in the 

intervening years. 

Currently, Confrey and her colleagues (Confrey et al., 2014) have outlined 

learning trajectories for all of the mathematical domains presented in the Common Core 

standards, building on current empirical research on student learning, particularly in the 

area of rational number understandings. They use the term “learning trajectory” in a 

definitive way. The LT is a “researcher-conjectured, empirically-supported description of 

the ordered network of constructs a student encounters through instruction (i.e., activities, 

tasks, tools, and forms of interaction), in order to move from informal ideas, through 

successive refinements of representation, articulation, and reflection, towards 

increasingly complex concepts over time” (Confrey, Nguyen, Mojica, & Meyers, 2009, p. 

347). Where the Common Core omits intermediary standards they deem necessary, they 
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have added “bridging standards” to complete the connections (Maloney, 2013). In some 

ways the bridging standards are reminiscent of the sub goals proposed by Spitzer and 

Phelps-Gregory (2017) in that they identify points between the major mile markers and 

benchmarks toward a learning goal or between standards. However, in all cases, the LT 

from Confrey et al. (n.d.) is not an individual teacher construction as the sub goals are but 

rather a compilation of extant research in the domain.  

A research taxonomy of learning trajectories. Lobato and Walters (2017) 

compiled a long list of separate and distinct learning trajectories, sorted them, and created 

a taxonomy of existing learning trajectories for mathematics and science learning. Some 

of the features used to sort the learning trajectories they examined included the object of 

learning, the target phenomenon studied, the theoretical perspective that informed the 

work, and the scale (scope) of the content addressed. The objects of learning may best be 

described as the source data for the conjectures. For example they name cognitive 

conceptions, textbook tasks, and observable strategies (Lobato & Walters, 2017) as 

sources of information used to craft a learning trajectory. Each of these objects is 

explored in detail in order to craft the sequence of the learning trajectory. The target 

phenomenon of the study is not specifically named by the authors, but they refer to the 

subjects of study. For example they name individuals’ learning, the practices of a 

mathematics classroom, or the intertwining of teaching and learning as phenomena 

studied in relation to learning trajectories. In other words, the target is the place to look 

for data to craft a learning trajectory. The theoretical perspective is typically well-defined 

in a research environment, as is the last topic, scale, which takes in anything from a 
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single fraction-related topic to a broad, sweeping survey that includes many domains and 

grade levels.  

Perhaps more importantly, the authors pointed out that the audience of a learning 

trajectory is important information for determining how the learning trajectory is 

presented. Their audience is clearly the field of researchers engaged in learning more 

about learning trajectories because the suggested approaches to learning trajectories or 

learning progressions (LT/Ps) that they present are broad categories that are useful for 

this audience. There are seven approaches to LT/Ps. Approach one describes any 

sequence that identifies cognitive levels through which students pass. The hierarchy of 

each level may be strong or weak, which refers to how rigid the progression through the 

milestones is purported to be. The van Hiele (2004) levels are an example of a strong 

hierarchy in that a student at level 3 is assumed to have passed through levels 0, 1, and 2. 

In contrast, Battista’s levels of sophistication in spatial reasoning are far more flexible 

and students are expected to move around levels: the assigned level is more of a tendency 

(Battista, 2004).  

Approach 3 reflects a Piagetian perspective as LT/Ps in this category explore 

students’ construction and reconstruction of schemes through the vehicle of the teaching 

experiment. This work contributes important understandings to our collective theoretical 

knowledge of student learning in mathematics. However the controlled experimental 

conditions do not contribute immediately to our understanding of learning in the 

classroom environment. Conversely, Approach 4, the Hypothetical Learning Trajectory 

(HLT), is dependent on the classroom teacher’s predictions about student learning, their 
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interpretations of student thinking during the lesson, and their subsequent modifications 

to the unfolding of the mathematical content. Learning trajectories in the HLT approach 

are highly dependent on the choices teachers make, although critics point out that 

teachers often are not given adequate information and resources to do this work 

productively.  

Two of the approaches identified by Lobato and Walters (2017) relate to the 

process-oriented development of mathematics. Approach 2 focuses attention on the level 

of student discourse in the classroom environment. The LT/Ps classified under the second 

approach may refer to the quality of a student’s narrative in describing a concept or it 

may reflect the budding sophistication of students’ argumentation skills. On the other 

hand, Approach 5 describes the progression of a community, specifically that of the 

interdependent classroom environment. As a matter of fact, the unit of analysis is a group 

of students and their teacher in the class, but not the individual students or teachers 

involved. LT/Ps in this category identify the nature of group interactions and consider 

how the group transforms collectively. Both of these approaches provide frameworks for 

making sense of effective processes that support mathematics learning, which is 

integrated with, yet distinct from, mathematical content. 

Approach 6 is arguably the most impactful approach in that it is identifying a 

category of learning sequences that directly impacts state and local policies and therefore, 

classroom practice: disciplinary logic and curricular coherence. The term disciplinary 

logic refers to a top-down approach, where the discipline under study determines the 

most “logical” sequence for learning tasks. Lobato and Walters( 2017) make an 
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interesting distinction that is at the root of this approach: “These LT/Ps are typically 

informed by research versus being the product of research” (emphasis in the original), 

unlike the others (Lobato & Walters, 2017, p. 87). While the research about students’ 

anticipated progression through a topic can have some influence on the creation of the 

sequences formed through curricular coherence approach, the logic of the discipline takes 

a lead role. Experts determine the order in which content will be taught. The learning 

progressions associated with the Common Core are an example of an LT/P from this 

approach, to which the CCSS authors readily admit (Daro et al., 2011). Most other 

standards of learning align with this approach as well. The inclusion of standards in a 

taxonomy that describes learning trajectories or learning progressions is a new 

connection, linking standards to an idea that traditionally reflected only a research-

informed area of study. Interestingly, including standards under the LT/P umbrella may 

put pressure on the standards writers to be more responsive to the research agenda that 

informs them.  

With a lens toward the approaches to LT/Ps that are most impactful in the 

classroom environment, Approach 7 stands out. Focused on observable strategies and 

learning performances, LT/Ps in this approach are recognizable as similar to rubric-

scored tasks or other similarly scored assessments. Typically these tasks are accompanied 

by student work samples that serve as exemplars. Because communication is through 

student work, exemplars are familiar to practicing teachers and comfortable places to 

engage with a learning trajectory. A typical drawback is also familiar to teachers. 

Assessment of student thinking can result in a false positive assessment: the student can 
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produce a correct answer but does not necessarily possess the expected underlying 

conceptual understanding of the mathematical relationships. The reverse may be true as 

well.  

Learning trajectories in practice. Lobato and Walters (2017) have nudged the 

research field to view the entirety of learning trajectory research as connected. They 

identified common themes worthy of reframing and exploring. With its focus on a 

theoretical frame, the taxonomy reflects a research lens, in particular a lens on 

cataloguing existing LT/P research, which is appropriate for its intended audience. 

However, what lens is useful to investigate the sway learning trajectories have, or might 

have, at the school or local level? If we were to study the use of learning trajectories “in 

the wild,” what would be important constructs to help understand the phenomenon? 

Despite the fact that teachers make daily decisions about what their students 

should learn, it is not entirely clear how those decisions are made (Regis, 2008; 

Shavelson & Borko, 1979). Some teachers use textbooks, but others are following a plan 

for mastery that is independent of what is in the book (Fuson, Carroll, & Drueck, 2000). 

Even in a study that details an examination of science teachers’ processes for planning 

inquiry-based lessons (Mangiante, 2012), not much detail emerges to address the 

anticipated path of student learning during the inquiry lesson. On the other hand, the 

Anticipation practice, the first of the five practices indicated for productive classroom 

discussions (Stein & Smith, 2011) challenges teachers during their lesson planning to 

anticipate the responses students might produce during the lesson. Teachers who 

participate in specific curricular programs built to represent targeted learning trajectories 
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may be more likely to anchor their planning and instruction based on anticipated stages of 

student thinking (Franke et al., 2001; Clements & Sarama, 2007), but most teachers do 

not fall into that category. For most teachers, their references to any classification of 

learning trajectory is unidentified. Not enough is known about what knowledge of 

learning trajectories coaches possess, nor how they use this information in their coaching 

practice.  

The lack of clarity around the role of LTs in the field of practice with coaches, 

and teachers, contrasts sharply with the seven categories in the taxonomy proposed by 

Lobato & Walters (2017). Many of the categories in the taxonomy are not relevant to the 

practitioner, which then poses the question – what is an effective strategy to understand 

the learning trajectories/progressions importance and relevance to practitioners?  

Rational number learning trajectories.  The topic or content of a learning 

trajectory is the mathematics to be learned. Another name for this characteristic of a 

learning trajectory can be a domain or even a strand. Two good examples that identify 

the content of a learning trajectory come from very different research projects. First, the 

van Hieles (2004) outlined a series of levels of geometric thinking that count as one of 

the earliest conceptualizations of understanding children’s unique mathematical thinking 

(Steffe & Olive, 2010). While van Hieles had one of the first descriptions of 

mathematical thinking from the child’s point of view, Empson and Levi (2011) offered 

one of the most surprising results. One of the first fraction tasks they found that very 

young students could do was partition an area model into fractional parts, as long as each 

sharer got at least a one unit whole. For example, the classic brownie problem states that 
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four students are sharing seven brownies. Despite the fact that most curricula would 

classify this task as a division of fractions task and place it in fifth- or sixth-grade, 

Empson and Levi found it to be conceptually (if not notationally) accessible to first and 

second graders. The domain of fractions/rational numbers is broad and complex 

(Vergnaud, 2004) and is united in that it is uniquely distinguished from the field of 

counting or additive activity (Confrey & Smith, 1995). Beyond that, the characteristics of 

the projected or hypothetical learning path for fractions varies considerably. Highlighting 

features of some of the most influential conceptions, recognizing that some have been 

omitted because they do not hold as much sway in schools in the geographic region 

where this study takes place. However, non-traditional sources of learning trajectories 

such as state standards are included, following the lead of Lobato & Walter (2017) who 

classified standards of learning as such.  

Equal sharing: Cognitively Guided Instruction. Empson and Levi (2011) 

approached the study of rational number learning from the perspective of student thinking 

as students work on carefully selected tasks. Beginning with a task that innocuously 

begins with two whole numbers, commonly people sharing something that resembles an 

area model. The classification of the child’s progression along the equal sharing learning 

path is determined by the actions of the child rather than an outcome of their work. Since 

equal sharing is a common activity, there is an entry point for every student. In one study, 

the team identified an early stage called “No-Coordination.” The No-Coordination 

strategy involved a sharing of a quantity with no regard for recognizing the relationship 

between the number of objects and the number of sharers, often disregarding any 
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remaining whole pieces rather than partitioning them. The child operating at the next 

stage (Non-Anticipatory Sharing) will partition the leftover pieces, but may not be able to 

name them as they do so, using terms like “some more” rather than an actual fractional 

quantity. Once the student starts relating the partitioned pieces to the number of sharers, 

they begin to move closer to Additive Coordination, beginning to reference the number of 

sharers as they name new pieces (Hunt & Empson, 2015). The student using the Ratio 

equal sharing strategy is able to abstract co-varied quantities, using a subset of the entire 

set to represent the quantities. A simple example of this strategy is recognizing that if 200 

students share 500 cupcakes at an event, the problem can be simplified to 2 students 

sharing 5 cupcakes, with each child getting 2 1/2 cupcakes. Finally, the Multiplicative 

Coordination strategy does not require a drawn representation because the student 

recognizes the relationship can be solved with division.   

Partitive fraction scheme: Steffe and Olive (2010). The grain size of a learning 

trajectory describes how broad or how narrow the learning goals are. For example, 

Norton and Wilkins (2010, 2012) studied a very fine grained learning trajectory that 

described students’ progression through a short but important list of fraction partitioning 

and iteration schemes. The experiments were originally designed by Steffe (2010). Based 

on the theories of Piaget and Inhelder (1973), Steffe and Olive (2010) structured the 

children’s learning itinerary based on observations of students as they encounter new 

tasks and progressively reorganize their current mental schemes to accommodate new 

challenges. The work is intricate as the authors hypothesize and then validate the 
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existence of certain patterns of actions. The subset of schemes relevant to the task used in 

this study are described and demonstrated in the table below. 

 

Table 3   

Equipartitioning Schemes (Steffe, 2010) 

Scheme Task Example 

 

Equipartitioning 

Partitioning and 

iterating occur 

sequentially. 

Jason “partitioned the stick into four parts by using his 

concept of four as a template for partitioning” (Steffe, 

2010, p.  316). 

 
 

PUFS 

Partitioning and 

iterating are done only 

with the whole and a unit 

fraction. 

PUFS is the first genuine fraction scheme because it 

includes both partitioning the whole and iterating pieces to 

check the relationship to the whole. 

 
 

Splitting 

Partitioning and 

iterating occur 

simultaneously. 

Splitting requires the student to partition a piece and also 

consider how many are required to reform the whole. 

 
 

PFS 

Partitioning and 

iterating are done for 

unit fractions and proper 

fractions. 

Students make a proper fraction by recognizing that it is 

composed of iterations of a unit fraction. In this case they 

partition the whole into fifths and then iterate it three times 

to create 3/5. 
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While these studies outline subtle details of how students learn certain ideas, the 

drawback to these findings is that it is challenging to apply the new information to the 

broader case of classroom use. 

Equipartitioning: Confrey (2012). Confrey’s interest and investment in learning 

trajectories related to rational numbers spans the grades, from preschool years into high 

school. The unifying conceptual ideas is that of the splitting conjecture, or 

equipartitioning. Equipartitioning is a non-additive process for subdividing a unit whole 

into equal sized pieces. With area models, this may be achieved by folding or by cutting 

and arranging to form equal portions. With a discrete model, even the youngest child can 

using distribution strategies to fair share a collection of objects without even knowing 

how many objects are present in the collection. Equipartitioning is a prerequisite to the 

task of naming the fractions that are formed by the action.  

One of the most important contributions Confrey (n.d) has made is the addition of 

bridging standards. A bridging standard unpacks a standard of learning at one grade and 

matches it to a standard in the next grade (Confrey, et al., 2014). When the leap in 

learning is too wide, she and her team have identified skills and understandings that 

logically must be built in the intervening year and amend the standards document to 

reflect the missing stepping stones. Her team has done this specifically for the Common 

Core (Confrey, et al., 2014), but the principle is broader than its application in one 

standards document. As students move towards any mathematic goal, what are the 

anticipated (and not anticipated) student responses to tasks that outline a pathway to the 

final goal. At any given step along the way, what skills and understandings are in place, 
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and which are likely to be acquired next? Bridging standards can help teachers identify a 

progressional view of learning that focuses more on what is going well and identifying a 

path forward. 

Common Core State Standards and other standards documents. When Lobato 

and Walters (2017) expanded the conception of a learning trajectory it broadened the 

concept wide enough to include trajectories that are referred to as guided by discipline 

logic (Stzajin, Confrey, Wilson, & Edington; 2012). Discipline logic is a top-down 

learning trajectory, indicating that the learning milestones are set by the goals outlined for 

students. Curriculum standards are typically prescriptive and oriented from the top down 

because they reflect what students should achieve. In contrast, a developmental logic 

view describes the learning that is taking places and uses that information to predict what 

might come next in a learning sequence. The learning trajectory that describes young 

students’ acquisition of shape composition skills is an example of a learning trajectory 

based on the domain development of children (Clements, Swaminathan, Hannibal, & 

Sarama, 1999). The trajectory describes how and through what tasks students learn to 

compose geometric shapes to form new ones. This process is distinctly different from the 

goals of curriculum standards, which may not take individual differences into account. 

Most standards are separated into domains, such as those presented in Principles 

and Standards (2000) or by the Common Core (CCSSO-NGA, 2010). As with other 

broad topics or domains, domains span multiple grades and may be represented in a 

variety of tasks from other domains. For example, the Common Core does not technically 

introduce Numbers and Operations in Fractions until Grade 3, but a careful look at a 
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subset of standards in the primary grades reveal that standards related to partitioning 

shapes in the geometry domain foreshadow the equal partitioning that is necessary for 

working with fractions.  

Looking at Student Work 

Despite the fact that mathematics specialists may not have training above and 

beyond that of the teachers they serve (Campbell & Malkus, 2009), this may be more a 

reflection of reality rather than an aspiration. Their distance from the classroom 

environment gives coaches the opportunity to step back and consider artifacts of student 

thinking as both an insider and as an outsider. The professional noticing construct 

establishes the importance of the teachers being aware of student thinking and strategies, 

relying on evidence rather than on making assumptions about performance. As a matter 

of fact, Jacobs, Lamb, and Phillip (2010) pointed out that developing the expertise to 

recognize and attend to students’ different strategies and make sense of them is the 

foundation of learning how to respond appropriately to those strategies.  

Recognizing and responding to students’ thinking seems an obvious requirement 

for educators, but it is not always what happens in classrooms. In classrooms that are not 

student-centered, discussions can unfold in the manner Davis (1997) described: the 

teacher listens to respond to the student, rather than listening to understand the student’s 

thinking. Hufferd-Ackles, Fuson, and Sherin (2004) described a similar condition: at the 

lowest level of productive classroom discourse, the teacher’s questions serve to maintain 

behavioral control and to go only in the direction of teacher to student. Similarly, certain 

kinds of questions and questioning patterns funnel student thinking to mimic the teacher’s 



 

 

64

own (Wood, 1994). These patterns of action in a classroom are anathema to the student-

centered classroom. Learning to attend productively and astutely to student strategies is 

part of the professional noticing construct. The same is expected of the mathematics 

coach.  

Best practices in mathematics coaching. Frameworks for identifying and 

clarifying best practices for mathematics teachers are more available than they were even 

10 years ago. Principles to Actions, released in 2014, describes eight practices that 

exemplify the productive teaching actions that are most supported by research on 

mathematics teaching. The last of the list calls for teachers to “elicit and use evidence of 

student thinking” (Leinwand et al., 2014, p. 53). This practice puts student thinking 

squarely as a focus area for teaching and therefore coaching practice.  

Coaching is a different role than teaching, however, calling for an additional list 

of best practices. The existing research is not broad enough to state definitively what 

these practices might be; however, an examination of the features of success professional 

development along with a review of the existing coaching practice literature shows a list 

of seven coaching practices that show the greatest promise for positively impacting 

learning in the classroom (Gibbons & Cobb, 2017). Most notable is coaches engaging 

teachers in the act of looking at student work, with the intent of focusing on a range of 

student ideas and for devising community-generated terms to name student strategies. 

Often focused sessions examining student work are facilitated in order to direct attention 

to student work and the mathematical goals of the student work sessions (Bella, 2004; 

Blythe, Allen, & Powell, 2008; Daehler & Folsom, 2014; Goldsmith & Seago, 2011, 
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2013). Coaches can press teachers to be more specific about their comments, cite 

evidence, and encourage teachers to consider how to respond to student thinking 

(Gibbons & Cobb, 2017). Interestingly, Jacobs and colleagues (2010) observed that while 

over half of the teachers observed in one of their studies did attend to the students’ 

strategies, less than a fifth of the group provided any evidence to support their assessment 

of student thinking. More importantly, about one quarter of the participants referred to 

the students’ understanding of the mathematics in order to formulate a response (Jacobs, 

Lamb, & Phillip, 2010). This is a curious outcome, as one might assume that it is the 

work of teachers to listen and respond to student thinking! Clearly there is more to 

understand about teachers’ interactions with artifacts of student thinking. The role of the 

coach is to facilitate focused efforts examining student thinking as an assessment tool, but 

also as a tool for planning instruction. The anecdote that opened Chapter 1 describes a 

coach beginning to lead teachers in a reflective analysis of student work.  

Skillful use of artifacts. The “skillful use of artifacts” can be presented in two 

different lines of thinking (Goldsmith & Seago, 2013). The focus on evidence of student 

thinking is a key part of the skillful use of artifacts, more specifically it is part of the 

educators’ attention to student thinking. Also included in the attention to thinking 

category is the distinction between describing student work and interpreting their 

thinking based on the evidence they find (Blythe et al.,2008). Goldsmith and Seago 

(2013) also suggested that during a productive study of student work teachers examine 

student work samples and use evidence to devise multiple plausible interpretations of the 

inscriptions on the artifact of student work. Engaging in hypothetical work like this not 
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only focuses attention on different solution strategies, it also engages teachers in the 

mathematics of the task students completed in a different way.  

Attention to mathematical content. Attention to the mathematical content of the 

task and of the student work is another promising addition to the list of best coaching 

practices (Gibbons & Cobb, 2017). Engaging teachers with the mathematical content of a 

task not only activates their thinking as teachers, it also places them in the position of 

learner, for some offering them the opportunity to construct a mathematical concept for 

the first time, rather than taking it as a given fact or procedure. Doing the work of the task 

in a setting with the coach and a team of teachers also gives teachers the opportunity to 

anticipate student responses and consider how to respond to student errors and 

misconceptions with the team of colleagues. Additionally, a focus on anticipating student 

responses to a task gives teachers and coaches collectively an opportunity to map the task 

and possible responses back to a learning trajectory, identifying critically important 

(“big”) mathematical ideas, as well as the separate skills and understandings that 

undergird broad standards or learning goals. It may also be true that student work is a 

neutral place to engage in challenging coaching conversations, particularly if the samples 

are mixed or completely anonymous, as it allows the difficult conversations about 

improving teaching practice to be de-personalized (Chamberlin, 2003).  

Coaches as content leaders. The concept of the mathematics instructional coach 

as a leader (Bitto, 2015) as well as a mathematics specialist (McGatha & Rigelman, 

2017) communicates the critically important role this professional can play in 

effectuating the scope of change that is needed in mathematics education in order for 
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students to become productive, numerate citizens of the 21st century (NMAP, 2008). 

Under the guidance of the mathematics coach using best teaching and best coaching 

practices, the careful and structured examination of student work can not only impact 

teachers’ pedagogical knowledge, it can also offer opportunities for teachers to build their 

mathematical knowledge for teaching, particularly as it refers to their understanding of 

students’ learning trajectories in the different domains of mathematics. This begs the 

question – what do the coaches know about students’ learning trajectories themselves? In 

the digitally connected world of social media and teacher marketplaces offering “take-

away” quick lessons, what information do coaches use to vet and test materials against 

their understood progression of students’ mathematical ideas? Finally, coaches may 

choose to conduct structured examinations of student work, a coaching practice that is 

well-documented, but they may also reference the same knowledge of student learning 

trajectories as it informs other aspects of their practice.  
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Conceptual Framework 

 

Figure 1. Projection of knowledge of learning trajectories/progressions onto the process 

of professional noticing and the unpacking of learning trajectories  

 

The conceptual framework that guides this study is an application of the professional 

noticing framework. Professional noticing is the result of professional knowledge gained 

only with experience and knowledge of the domain in question (Mason, 2011). Because 

of this distinction, identifying what the professional attends to is of great significance, as 

it is more likely to indicate its value in practice. By focusing the professional, in this case 

the mathematics coach, on student thinking, on the student misconceptions and the 

representations that draw their attention, we can tentatively assume that these areas of 

focus have merit. Although there are a number of areas of focus that this framework 
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could have centered on, the application and impact of learning trajectories is currently a 

relevant topic. Since the introduction of common standards across most of the United 

States (CCSSM, 2010), the content of the grade level mathematics can therefore be 

explored in more depth. The learning trajectories that are emerging from research 

promise to guide this process. Using the professional noticing framework to identify what 

coaches notice and respond to in student work promises to offer information on how 

these trajectories are currently used in schools, in this case in the hands of likely the most 

knowledgeable of mathematics educators. In order to give coaches time to reflect and 

respond, examining student work in the interview setting gives a context for examining 

the professional noticing of the elementary mathematics coach  

Research Purpose  

The purpose of this study is to explore elementary mathematics specialist 

coaches’ references to learning trajectories as they examine artifacts of student thinking 

in order to understand what elementary mathematics coaches notice in student work, the 

resources they reference in order to make sense of the work and how they reference them, 

and how this information is used in practice. For the purposes of this study, learning 

trajectories are defined in a manner consistent with Lobato and Walters’ (2017) 

conception, sometimes called LT/P, which includes resources that describe in what order 

mathematical content should be sequenced. A distinction is made between an implicit and 

an explicit learning trajectory. An explicit learning trajectory refers to a source to which 

the coach gives the authority to sequence content. In order to be explicit, the source will 

be specifically mentioned by the coach. The implicit learning trajectory is one that shapes 
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the coach’s thinking, indicating some order of topics that is not specifically referenced. In 

order to elicit more information, implicit learning trajectory references will need to be 

uncovered. Finally, this study seeks to explore how mathematics coaches might use their 

knowledge of students’ learning trajectories in their coaching practice. 

Summary 

 Chapter 3 shares the design and procedures of the study, including the plan for 

exploring coaches’ engagement with student work samples and the references to and use 

of learning trajectories that frame their thinking. Using the conceptual framework as a 

guide, the analysis of the data in Chapter 4 will revisit the phases of the professional 

noticing framework and report on the data within that frame. Chapter 5 will discuss the 

results of the data and share the implications for practice and make recommendations for 

further research. 
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Chapter Three 

Introduction  

This chapter describes the methodology used to investigate elementary 

mathematics coaches’ engagement with student work. It begins with identifying the 

purpose of the study and the research questions. The chapter will include methodology; 

the rationale for using this methodology; and will present study methods, including 

descriptions of the participants, the setting of the study, the different data sources that 

were collected and analyzed, and data analysis. This chapter will also address threats to 

validity.  

Purpose of the Study 

The purpose of this study is to explore elementary mathematics specialist 

coaches’ references to learning trajectories as they examine artifacts of student thinking 

in order to understand what elementary mathematics coaches notice in student work, the 

resources they reference in order to make sense of the work and how they reference them, 

and how this information is used in practice. This is a critical awareness for coaches in 

the regular course of their work with teachers and students; however, how coaches do this 

and the knowledge base they access as they examine student work is not well understood. 

Broadly classified by Lobato and Walters (2017), the term learning trajectory (LT; 

progression) reflects a whole taxonomy of approaches to learning sequences in 
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mathematics and science. The taxonomy includes many of the resources commonly 

available to teachers, and certainly to coaches, but also some sources that may only be 

available to some. One way to unearth how these reference sources are used by 

mathematics coaches, particularly those who are highly educated in this specialty, is to 

engage coaches in the act of examining student work and study their responses. The 

framework of professional noticing provides a means for understanding the possible 

mechanisms, including identifying what coaches notice, how they interpret it, and what 

they do in response. To that end, forming a picture of a coach’s response is an essential 

understanding.  

Research Questions 

The purpose of this study is to explore mathematics coaches’ references to 

learning trajectories as they examine artifacts of student thinking in order to understand 

what elementary mathematics coaches notice in student work, the resources they 

reference in order to make sense of the work and how they reference them, and how this 

information is used in practice. 

1. What evidence of students’ mathematical thinking do elementary mathematics 

coaches attend to while examining students’ written artifacts?  

2. What learning trajectories or other similar sequencing sources do elementary 

mathematics coaches reference in order to interpret students’ prior, current, and 

future understandings, based on an examination of artifacts of student thinking? 
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3. How do elementary mathematics coaches use knowledge of learning trajectories 

or other similar sequencing sources, along with evidence gathered from artifacts 

of student thinking, to make instructional and coaching decisions? 

Methodology 

In deciding on the methodology for this investigation, the first decision was to 

select a general approach. A quantitative approach was immediately dismissed because 

not enough is known about the process of coaches’ engagement with student work 

exemplars to assign any quantifiable units of measure. Moreover, the investigation 

focused on examining an under-studied sense-making process, which also made it 

unsuitable for a quantitative design. A mixed methods approach does not meet the study’s 

objectives for the same reasons.  

Rationale for methodology. A qualitative research design not only allows a 

clearer avenue to explore what is currently an open question, a qualitative research design 

is also consistent with the researcher’s constructivist philosophy, as it also a form of 

constructing a reality (Saldaña, 2015), this time the reality of mathematics coaches in a 

particular context. The qualitative research design also meets the five features of 

qualitative research set out by Yin (2011). First, the topic of the study is meaningful to 

the professional lives of mathematics coaches, as well as to those who are debating 

whether to expend valuable resources on coaching positions in K-8 schools. 

Understanding the impact of a coaching practice in a school is of interest to both parties. 

EMCs have the potential to facilitate improved instruction, specifically as they facilitate 

teacher understanding of the progression of student learning. Secondly, this study is 
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focused on the views and perspectives coaches have on student learning, which span a 

broader age range than those of a single classroom teacher. School coaches uniquely have 

a mathematics-centered view on student learning and sources for understanding it. Third, 

the study will focus on the work coaches do in schools so it is wholly based in the context 

in which the coaches work, including acknowledgment of the resources provided by their 

local situation and within the execution of their daily duties. Fourth, the understanding 

that children’s learning progresses in somewhat predictable ways is not new. While there 

is some evidence of what coaches should know (AMTE, 2013; Burroughs et al.,2017; de 

Araujo, Webel, & Wray, 2017), it is unclear what knowledge and understandings they 

have about students’ learning trajectories globally and how this information might be 

used to support teachers. What is new in this study is the exploration of what coaches 

know about the progression of student learning, how they reference that information, and 

how they use the understandings they have of student learning to guide their coaching 

practice. In short, how do they form working hypothetical learning trajectories (HLTs) 

for students and use this to inform their practice with teachers? And lastly, this study will 

include multiple sources of evidence, including written work, an assessment activity, and 

an interview.  

A qualitative study design allows a “customized, inductive, emergent process that 

permits more of a researcher’s personal signature in study design, implementation, and 

write-up“ (Saldaña, 2015). Having served as a mathematics coach in three different 

variations of the job, the researcher’s perspective on what a coach does is broad and 

encompasses many tasks, so it uniquely informed the interview design, anticipated 
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categories of responses, and allowed more probative questioning based on background 

knowledge of the systems and expectations in local contexts. In this respect an emic 

approach to the study was unavoidable. Of course this is also a potential threat to validity, 

and the issue is addressed throughout. Because the purpose and context of the study 

closely align with Yin’s (2011) features of qualitative research studies, this served as 

confirmation that the research purpose is well-suited to a qualitative study. 

Researcher identity statement and approach to research. The researcher’s 

epistemological stance and identity also play critical roles in the selection of a 

methodological approach. I am a White, cis-gender, married, mother, daughter, sister, 

female, early researcher and mathematics education leader, as well as a former 

mathematics coach and teacher. I prefer the pronouns she and her. I am mostly trilingual 

and have co-built a family unit that blends three cultures, and as such, I do not fully fit 

into any one of these cultures. The experience of being a language learner in many 

different contexts makes me more sensitive to the acknowledgment of the challenges of 

students who are new to American culture and English. As a White female I am aware 

that this category overpopulates the field in which I work and the field in which this study 

will be conducted, education.  

As an educator I subscribe to a constructivist philosophy (Bruner, 1996), that each 

individual constructs knowledge through their actions and interactions to varying degrees 

with the physical world and within the social world. In this regard, I do not hold a fully 

sociocultural view of learning (Cobb, 1994; Vygotsky, 1980). While we all certainly 

learn from others, I hold that each individual can learn ideas formulated apart from her 
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interaction with others. In my philosophical view, each individual creates an ontological 

version of reality, which shares properties with the reality composed by others. This 

differs from the radical constructivist view (von Glasersfeld, 1995), who posited as many 

different constructs of the world as there are individuals. Although I find his work 

persuasive, there is too much that is observable, tangible, and agreed upon by human 

beings for each person to be generating a fully different version of reality. This view is 

consistent with Sfard’s (1991) view of the simultaneous existence of the personal 

“conception” and the “reified concept” that are both associated with the same 

mathematical idea. This vision of some common ontological reality between individuals 

implies that the analysis of the data collected within this study is the result of the 

construction of both the mathematics coach being interviewed and myself as the 

researcher. It was my responsibility as the researcher to work to align my construction of 

their experiences as closely to their recounting as possible, and not over-impose my 

version of reality into the analysis. Mindful of my identity as someone who has 

performed the job of mathematics coach in the past and has more recently participated in 

the education of other elementary mathematics specialists (EMSs), I actively took care 

not to impose my assumptions about the data onto participants’ statements. On the other 

hand, the same experience did inform the follow up questions that I asked during an 

interview. The impact of various relevant aspects of my identity were scrutinized within 

the context of bias and validity checks at regular intervals during the data collection and 

analysis (Maxwell, 2005). 
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Methods 

The phenomenon addressed is not teachers or coaches, nor is it coaches doing 

assessment. The phenomenon is more exactly the process that coaches follow when they 

examine student work, interpret that work by placing it along some form of continuum of 

learning, make instructional recommendations, and use that information to engage their 

teachers in learning more about students. Specifically, the phenomenon of interpreting 

student work against the backdrop of some form of professional knowledge of students’ 

learning paths is part of the lived experience of all educators, including coaches. 

However, the unit of analysis in this study is not the coach and the coach’s lived 

experience. The unit of analysis, rather, is the link between student thinking and a 

learning trajectory through the eyes of an elementary mathematics coach, and not 

necessarily on the lived experience as recounted by the coaches. The point of view that 

this study seeks to illuminate comes from outside the coach’s experience. 

Study design. One of the principal tools in the mathematics education literature for 

close examinations of teachers’ professional noticing is the video club format (Gamoran 

& van Es, 2008; Luna & Sherin, 2017; van Es & Sherin, 2008; Walkoe, 2015). Teachers 

take turns sharing lessons they teach on video, and the group discusses what they see in 

the classroom. It is a revelatory tool that leads to teachers engaging more productively 

with student thinking. However, there are some drawbacks to this approach. The primary 

drawback is securing the time teachers need to devote over several months, but also 

problematic is the response of the teacher whose video is being examined. They tend to 

offer cursory, narrative descriptions of the actions in the classroom, not focused on work 
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of students themselves (van Es & Sherin, 2008). For this study, the problematic factor in 

deciding on a study design for examining student work is the fact that coaches do not 

have students of their own. For these reasons the video club format was considered and 

rejected.  

Another setting considered for examining the coaches’ professional noticing was 

the live coaching session. This was rejected for two reasons. The first reason is the focus 

of the coaching session – the work of coaches is teacher-centric. The coach’s role is to 

bring out the thinking and beliefs of teachers and hold them up for the teacher’s own 

professional growth (McGatha et al., 2017). This puts the coach in the secondary focus 

position, which will not help achieve the purpose of this research study, which is to study 

a coaches’ engagement with student thinking. The second reason for rejecting the live 

meeting is the hectic and rushed aspect of in-the-moment examinations. In a similar case 

with teachers, Liu (2014) found that in-the-moment noticing was profoundly impacted by 

teachers’ own beliefs, knowledge, and goals, rather than by the student thinking taking 

place in the classroom. Of course this was a study of teachers, but it is possible that a 

coach’s in-the-moment reactions during a coaching event with teachers may also be more 

oriented to the teachers’ experience. For these reasons, observation of coaches working 

with teachers in situ and in practice was determined to be of less value than a session 

focused entirely on the coaches’ beliefs, noticings, and understandings. The coaches’ 

reactions to written artifacts of student thinking are the unit of analysis. 

Phases of the study. There were four phases of data collection. First, the coach 

participants completed demographic and practice-related survey items through an online 
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Google survey at their convenience. As part of this phase, participants also engaged with 

the mathematical task at the center of the project (see Appendix A), sharing multiple 

strategies to solve it, followed by a written account of a mathematical goal of the task, 

and their predictions of what students might do to solve the same problem. The second 

phase of the data collection was a 30-min voice recorded one-on-one interviews with the 

researcher. In two cases the interviews took place at the participants’ school and in one 

case at a local library. The third phase took place during the same location visit and 

included a video recorded student work sorting session. The final location was in an 

online room through Blackboard Collaborate (2019), where the participants member 

checked the transcripts of their interviews and answered follow up questions that were 

clarifications following their initial interviews. 

Participants 

The focus of the study is on practicing elementary mathematics coaches because 

coaches have a view on a school context that differs from that of a typical teacher, 

although it is important to note that this is not always the case with teachers (Suh & 

Seshaiyer, 2015). Coaches have awareness of the vertical progression of mathematics 

topics by virtue of their training and because they work with multiple grades on a daily 

basis (Gibbons, 2017). The job responsibilities for some coaches may include substantial 

work with students, in a role more akin to that of an interventionist. For this reason, 

participants indicated in the initial survey what percentage of time in a typical week is 

spent working with teachers and working with students. Coaches should indicate that 
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they spend 85% of their time working directly with teachers to improve practice, even if 

that includes being in a teacher’s classroom to co-teach or model.  

Recruitment. Recruitment was done via email. Mathematics leaders sent an 

email to local coaches and invited them to participate in an intake survey. To ensure that 

participants met the eligibility criteria, the recruitment survey verified that participants 

met the eligibility as a Virginia Mathematics Specialist coach, as well as serving as a full 

time mathematics coach. This is another opportunity for a validity check. As a former 

mathematics coach, it would be easy to select individuals whose coaching practice looks 

like the one I had. The initial recruitment survey gathered some basic demographic data 

so that selection could be conscious and mindful of creating diverse representation in the 

sample of participants. Recruitment was conducted in four school divisions, and ten 

individuals expressed an interest through the recruitment survey. Only three met the 

recruitment criteria and they were all coaches in the same county. 

The three coaches selected for this study represent a specifically focused and 

theoretically selected sample of professional educators (Bloomberg & Volpe, 2012). 

They are all elementary mathematics specialist coaches (EMC), and were recruited based 

on the level of their experience and formal education in the area of elementary 

mathematics. Each of the coaches has worked as an elementary mathematics coach for at 

least 6 years and each has completed the coursework in their state that qualifies them for 

the elementary mathematics specialist endorsement to their elementary teaching license. 

They practice at different K-6 elementary schools that are part of the same large Mid-

Atlantic suburban county. Due to the relatively small population of elementary 
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mathematics coaches, this report will not reveal non-essential demographic information 

about the coaches or their schools so that their privacy is not jeopardized. Some 

information, such as years of experience or special licensure, has been generalized also in 

order to conceal participants’ identities. All names of participants and schools are 

pseudonyms.   

Rationale for the selection of participants. Each mathematics coach participant 

holds a K-8 Virginia Mathematics Specialist endorsement to an existing teaching license. 

Finally, each participant has completed their preparation as a mathematics specialist at a 

Virginia college or university that follows the program outlined by the Virginia 

Mathematics and Science Coalition (VMSC, 2016). These programs require at least 24 

graduate credit hours in coursework focused on mathematics content and leadership. (See 

Appendix B for the full endorsement requirements). This program also meets the 

standards laid out by the Association of Mathematics Teacher Educators standards for 

elementary mathematics specialists (AMTE, 2013). A detailed description of the 

mathematics coach is taken from the EMS framework developed by McGatha & 

Rigelman (2017), and is described in detail in Chapter 2.  

Currently the list of universities offering this program includes the following 

institutions: George Mason University, Virginia Commonwealth University, Virginia 

Polytechnic Institute and State University, Norfolk State University, James Madison 

University, The College of William & Mary, Old Dominion University and Longwood 

University (VMSC, n.d.). For more information on programs outside of Virginia, see 

Rigelman & Wray (2017).  
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Data Sources 

The data sources for this research project were determined by the purpose of the 

project and the conceptual framework that defines the purpose. The purpose was to 

explore the mathematics coaches’ recognition, understanding, and use of learning 

trajectories in their coaching practice. The conceptual framework proposes that the 

professional noticing construct offers recognizable behaviors that can be observed, so the 

three components of professional noticing create three categories that govern the 

collection of data (van Es & Sherin, 2008). These categories include: what individuals 

attend to, how they interpret it, and how they respond. The learning trajectory component 

of the conceptual framework offers a lens on the participants’ references to the 

mathematical sequence of student learning. Learning trajectories have three parts 

(Sarama & Clements, 2009): the mathematical goal, the developmental path to that goal, 

and the tasks that can help students move toward the goal. Because these are very 

different goals, the sources of data are also varied. 

Appendix C includes a detailed table that maps the research questions to the data 

sources and to the specific questions on the survey, in the interview protocol, during the 

student work sorting, and at the conclusion of the student work sort.  In summary, the 

demographic survey is designed  to verify that the coach’s work situation matches the 

eligibility requirements and informs the researcher’s understanding of the coach’s 

context. The completion of the task and reflection on student understanding of the task is 

important for orienting the coach to the task before sorting the work and for accessing 

information about the coach’s existing hypothetical learning trajectory around this task. 
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The face-to-face interview questions replicated some of the questions asked during the 

demographic survey in order to solicit additional information and to triangulate data 

already provided. It also asked about the coach’s practice, the coach’s impressions of the 

task, and any follow up questions from the demographic survey. The student work sorting 

task had opening requests for the coach to examine the work and to think out loud as they 

look at the samples. After all samples had been addressed, they are asked to sort the 

samples using “whatever criteria” they would like. Finally, the questions after the sort 

asked coaches to reflect on the task and about their thoughts on using work samples like 

this during professional development with their teacher-clients. A copy of the 

Institutional Review Board Exempt status statement is provided in Appendix D. 

Additional survey details are also shared below.   

Questionnaires. The first questionnaire participants completed was for recruitment. 

The primary role of the initial contact was to determine the initial eligibility of the 

participant. The second questionnaire collected more detailed information in four 

categories:  

1. Personal Demographic – This is data that relates to the coaches’ identity, 

as a mathematics learner, as a former teacher, and as a coach. This also 

includes information about licensure, as one of the requirements for 

eligibility is holding a VA Mathematics Specialist endorsement.  

2. School Demographic Information – This includes the coach’s current 

school, the school population, the number of teachers in the coaching 

practice, and how the coach’s position is funded. This information is 



 

 

84

collected in order to understand whether a county, state, or federal agency 

may be having an impact on the coach’s mathematical learning goals. 

3. The Coach as Learner – This section gathered information about the 

coach’s identity as a learner of mathematics. This includes questions 

about their past experiences in mathematics classes, the mathematics 

courses they have taken (other than the VA MS courses), and their current 

disposition toward mathematics. This data is gathered in order to 

determine the quantity and nature of general mathematics knowledge 

(Ball, 1993) they may have.  

4. Job experiences as a coach – Gibbons (2017) outlined a list of potential 

best practices for coaches. A portion of those potentially related to 

focusing on student learning or on long-range academic goals for students. 

These categories are directly related to the examination of the coach’s 

references and uses of learning trajectories in their practice. The questions 

in this part of the questionnaire asked for a percentage of time dedicated to 

a variety of coaching tasks (the list should add up to 100%). Questions 

also asked about the coach’s favorite professional resources. 

Questionnaire responses were collected using a Google Form managed only by the 

researcher and stored in an Excel spreadsheet protected by a password. 

Mathematics task. The choice of mathematical task was pivotal in this study. 

The task is a high cognitive demand task – there are many ways students can approach it, 

and it is accessible to many grade levels (see Appendix A). As presented on paper, the 
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task does not rely solely on procedures (Stein et al., 1996). The content of the task relates 

to rational number understandings, and in terms of the Common Core progressions, it is 

accessible to elementary students as part of Numbers and Operations and Fractions, but it 

is also meaningful for middle school students under the Ratio and Proportional 

Relationships domain. The problem is also very well-known and was proven to be a 

fruitful source of data in the pilot study (Morrow-Leong, 2014), as well as in another 

study (Suh, Birkhead, Galanti, & Seshaiyer, 2019; Suh, Birkhead, Farmer, Galanti, 

Nietert, Bauer & Seshiayer,  2019). The rational number domain was selected as the 

source for the mathematical task because it is an area with a varied and sometimes 

contradictory body of research (Behr, Cramer, Harel, Lesh, & Post, 2010; Confrey & 

Smith, 1995; Empson & Levi, 2011; Lamon, 2012; Petit et al.,2010; Steffe & Olive, 

2009). Despite the depth and breadth of knowledge, it remains unclear what an optimal 

learning trajectory for this domain might be.  

The mathematics task has two roles in this study. The coach completed the task 

and anticipated what students might do with the task. It is important for the coach to 

engage with the mathematics first and then anticipate what students might do when they 

solve the task (Stein & Smith, 2011). Moreover, the coach solved the problem first in 

their preferred way and then showed two additional representations. This step took place 

before the interview. During the interview, the coach examined examples of student work 

on the exact same task. The coach’s solutions to the task were collected, as well as their 

predictions of what students would do with the task. Paper copies are stored in a locked 

file cabinet in a home office and in the advisor’s office. 
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Voice recording of the interview. The 30-min interview was conducted face-to-face 

using VoiceMemo on an iPad mounted on an overhead stand. The interview took place at 

a location convenient to the participant. The questions asked during the interview in some 

cases duplicated the questions asked during the demographic survey. Other questions 

asked about the coaches’ practice with teachers, including school-wide initiatives and 

coaching activities. The detailed interview protocol can be found in Appendix E. The 

initial interview was 30 min long and led immediately into the work sorting session. This 

interviewed was transcribed. 

Video recording of the student work sorting activity. The student work sorting 

activity was 45 min as the coach actively interacted with 12 student work samples. At the 

table were colored markers, white paper, sticky notes, and the video equipment described 

earlier. This interview segment was recording using the standard video recording 

software installed on the iPad. Using a fly-on-the-wall strategy the interviewer 

encouraged the coach to think out loud as they examined the student work and made 

notes. The list of probing questions is noted in the interview protocol in Appendix E. 

Because the first step of professional noticing is noting what individuals attend to when 

they look at artifacts of student thinking. What do they see? What do they choose to talk 

about? What do they consider actionable? The purpose of the interview is to listen closely 

to how the coach attended to student thinking and interpreted it. Most importantly, what 

learning trajectories did coaches use to anchor their descriptions of student thinking? The 

video recorded interviews featured only the participants’ hands and the papers to which 

they were referring. The discussion was transcribed. Informed consent was gathered for 
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each step of the study, and more specifically for the video and audio recordings. See 

Appendix F for IRB audio and video approval documentation. 

Student work samples. The core of the sorting portion of the interview is a set of 12 

student work samples. Ten samples are student work samples from another study (Suh, 

Birkhead, Galanti, et al., 2019) taken in their entirety or in part. Samples were 

abbreviated, traced, recolored, and cleaned for legibility but remained true to the 

students’ depictions. Two additional samples were inspired by student work from the 

pilot study (Morrow-Leong, 2013). These solutions were pared down from a four-field 

trip location problem to a two-field trip location problem, while still maintaining the 

integrity of the students’ solution strategies. The samples were chosen from a much larger 

set in order to target common student solution strategies and errors on the task. There is 

very little redundancy but the collection also represents a set smaller than most 

classrooms would generate. The 12 samples were randomly lettered for easy reference 

and were printed one sample per page. Each participant was provided their own unique 

set of samples so that they could write on them if desired. Participants were advised that 

the students were assumed to all be in one class, that the thinking on the work samples 

was original, and that although a light box had been used to retrace the work for greater 

clarity, it was still genuine student thinking. See Appendix G for details about the 

samples, including a mathematical summary of the salient mathematical features.  

Results of the sort. After the participant examined the student work samples, the 

interviewer asked them to sort the set using any reasoning they wished, talking through 

their reasoning as they went. Once the sorting was completed, the participants’ sorting 
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order was preserved and recorded, including their written comments on the student work, 

when it was  applicable. Finally, the interviewer asked what was an important next task 

for the entire class of sample students, based on these work samples. The coach’s 

suggestion and their reasoning for it were noted. The work samples were collected, the 

teachers’ notes on the samples coded, and the discussion pairings that the teacher shared 

were recorded. If any other notes or solutions were presented during the interview and 

sort, they were gathered as well.  

Procedures 

The data collection took place in four phases following recruitment. The 

recruitment letter can be found in Appendix H. The first phase was a survey and 

exploration of a mathematics task. The second and third phase took place in person and 

consisted of a semi-structured individual interview and a sorting activity with various 

student work samples selected for their variety of strategies, placements along a rational 

number learning trajectory, and degree of accuracy. The final phase was conducted online 

primarily for member checking transcripts and other information. Below is additional 

detail on the different phases. 

Phase 1. The demographic survey gathered information about the individuals’ 

experiences with mathematics and the school context. Appendices F and G show a 

complete listing of the questions to be asked, but they can be grouped into four 

categories: 

1) Demographic information about licensure, preparation, years teaching, 

years coaching, and ethnicity (U.S. Census Bureau, n.d.), experiences in 
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other mathematics courses and disposition towards mathematics. Contact 

information. 

2) Identity as a mathematics teacher and learner 

3) School context, location, and time spent weekly in activities as 

mathematics coach  

4) Directions for the mathematics task to be completed 

Demographic information is collected in order to assure that the mathematics coaches 

meet the study parameters and to gather information about their experience teaching and 

coaching mathematics, including the number of years, grade levels, as well as any 

additional courses they have taken in mathematics. The second category gathered 

information about the coach’s school. This information included the number of teachers 

and the range of grades for which they coach, the number of students, and the name of 

the school. The name of school and principal was collected so that I was able to later look 

up the school data made available by the district and describe the school population. 

Finally, there were three questions that addressed the coach’s experience with 

mathematics and as a coach. These questions gave insight into the coach’s relationship to 

mathematics. 

The third set of questions asked about the coach’s average allocation of time across a 

normal week. The purpose was to anticipate the kinds of activities the coach engages 

teachers in so that I could adjust the interview questions to target those activities. It also 

reassured me that the coach spends at least 85% of their time working with teachers. The 

full set of interview questions is in Appendix E. 
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Finally, participants were given the task from which the student work samples have 

been drawn. There were directions to complete the task using at least three different 

solutions (see Appendix I). It also asked the coach to anticipate the responses students 

might give and identify their reasons for each prediction, including incorrect solutions 

(Stein & Smith, 2011). Additional questions asked the coach to give information about 

possible student responses to it and a reasonable mathematical goal for using the task in 

class. Coaches completed this task so that they were familiar with the mathematics 

behind the student work they would be examining during the interview. It was also 

another way to determine what resources coaches referenced when predicting and 

describing anticipated student responses.  

During the first phase of the research procedure, participants received a link to 

additional survey questions, a consent form, instructions for the mathematics task, and 

finally an invitation to make an interview appointment. Respondents who were not 

selected received a gracious thank you note, appreciative of their willingness to 

participate, yet declining it at that time. Directions on the mathematics task asked 

participants to return their solutions by scanning their work and sending it to me via 

email. This was the first opportunity to analyze data from participants. Research memos 

were written following the first reading of the participants’ presentation of the solution to 

the mathematics task and prediction of student responses. 

Phase 2. The second phase of data collection consisted of conducting individual 

interviews. Consistent with qualitative research practice, interviews of the selected 

teachers took place at a convenient, comfortable, and quiet place for the coach in order to 
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capture a natural setting for the phenomenon (Kvale & Brinkmann, 2009). The live 

interview had the primary purpose of asking questions about the coach’s practice with 

teachers and the resources that inform their practice. An iPad mounted on a 4-ft stand sat 

on the table with the arm extended over the work space in front of the participant. A 

microphone hung from the extension arm. The first part of the interview began with 

questions about the coach’s practice and was recorded using the VoiceMemo application 

and lasted from 20-30 min. 

Phase 3. The second part of the interview used the standard video recording 

application installed on the iPad and lasted 45 min. The goal in this phase was to conduct 

a student work sort, probe the coaches to understand the details that inform their sorting 

of the tasks in more depth, and discover his or her suggestion of what this group of 

students might do in the lesson that immediately follows the task (see Appendix E for the 

questioning protocol). 

The visual frame for video was measured ahead of time and included a space that 

captured three standard 8 ½ x 11 papers wide and two papers tall and only included the 

participants’ hands, forearms, and the papers they were sorting. Their voices were also 

recorded so that participants’ references to work samples could later be identified: “this 

student,” “ . . . put in a group with that one,” etc.  Figure 2 is an example of the overhead 

screen view. 
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Figure 2. Overhead view of the process of sorting student work.  

 

During the student work sort, the researcher handed the teacher a set of 12 work 

samples from students the teacher did not know and asked the teacher to take a quick 

glance at the work samples and share their initial observations about them. Consistent 

with the “deliberate naïveté” interviewer stance (Kvale & Brinkmann, 2009), the initial 

directions were deliberately left open so that the researcher’s comments did not interfere 

with the coach’s initial thoughts. As the coaches’ statements and observations about the 

student work began to narrow, the interviewer prompted the teacher to describe details 

and supply evidence of what they were seeing (Appendix E). The questions provided in 

the semi-structured interview were prepared in anticipation of needing probing questions, 

but not all of them were asked.  
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After the initial examination, the participant was asked to sort the student work 

according to any rules that they thought were important.  

o Could you sort these papers? You can use whatever criteria you would like, but 

please share your thinking with me as you are sorting. I’d like to know your reasons.  

o Could you explain how you are sorting the papers? What are you looking for? How 

are you making your decisions?  

For all participants, their choice was to form groups for instruction the next day. As they 

described their groupings, they were asked to use a sticky note to record their reasoning 

for each of their groupings. At times, the researcher asked questions to further understand 

the reasoning behind their pairings and groupings. 

At the conclusion of each interview, the video and audio files were sent to a third-

party transcribing company and were completed within 24 hr. In the meantime, the 

researcher completed a researcher memo following each interview, reflecting on the 

presence of all of the predicted or current code categories and noting any in vivo codes to 

use during the analysis. Once the transcripts were returned, they were reviewed for 

accuracy. The video transcripts were also reviewed in order to make references to student 

work samples clear. For example, if the coach said, “This student should be paired with 

this student.” They were referring to a paper they held in their hand. All such references 

were clarified, using parentheses to note which student work sample was indicated. The 

format of the transcription company product streamlined this process, showing video 

along with a moving cursor indicating that place in the transcript. Once the references in 
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the transcript were resolved, the transcripts were downloaded and saved to a word 

processing program.  

Phase 4. The final phase of the data collection process included member checking the 

gathered data with participants for accuracy and fidelity, as well as asking some 

clarification questions unique to each participant. Triangulation of data (Creswell, 2008) 

was achieved by comparing the coach’s anticipated student responses, their statements 

during the sorting portion of the interview, and in the final phase: member checking 

(Creswell, 2008). The meeting was scheduled with participants and took place using 

Blackboard Collaborate Ultra (2019) and Google docs (Google, n.d.) for sharing 

information. This too was recorded for later reference but was not transcribed.  

Analysis 

Data collection in this study was inherently sequential. The mathematics coach 

completed a survey and did the student mathematics task prior to the interview and 

sorting activity with the researcher. Because of this dual stage process, there was a space 

of time to read the initial data and establish in vivo codes for analysis before collecting 

the second phase of data (Creswell, 2008). Because there were multiple participants, the 

schedule of interviews also contributed to data coming in at irregular intervals, allowing 

time and space for the researcher to code transcripts, write analytical memos, and 

consider choices for probative questions in subsequent interviews (Campbell, 2013). 

However, the conceptual framework offered a way to frame the investigation and offered 

a set of priori codes to begin the first round of coding (Miller, 1992 as cited in Bloomberg 

& Volpe, 2012). Saldaña (2014) suggests in vivo coding on the first pass through the data, 
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but it is also reasonable that some structure be provided through a small collection of a 

priori codes that are derived from the conceptual framework and the task itself (Glaser, 

1992). The conceptual framework of coaches referencing learning trajectories to inform 

practice includes two functional frames: professional noticing (van Es & Sherin, 2008) 

and the working definition of a learning trajectory (Sarama & Clements, 2009).  

Professional noticing includes three sometimes simultaneous actions. First, the 

observer attends to some aspect of practice. Second the observer interprets what they see, 

and finally they act in response to what they have seen. This yielded three initial a priori 

codes for analyzing data: attending to, interpreting, and acting in response to. The use of 

gerunds as a morphological structure for the a priori code names reminds us that noticing 

and responding to student work is a dynamic process and that the codes should also be as 

dynamic (Nathaniel & Andrews, 2007). These codes were eventually rejected as not 

useful in shedding light on the process (Bloomberg & Volpe, 2012), however; they were 

intimately tied to the conceptual framework, so the initial choice was logical. In the end, 

these a priori codes instead became organizing principles for reporting the results, which 

will become evident in Chapter 4. 

The learning trajectory construct is built from three separate and distinct components. 

A learning trajectory (Sarama & Clements, 2009) starts with a mathematical goal to set 

the learning path, a developmental sequence that describes the stages of learning along 

that path, and finally it includes the tasks that students work through in order to move 

along the learning trajectory. This construct yields three a priori codes that focus on the 

specifics of the mathematics and student work: mathematical goal, developmental 



 

 

96

sequence, and tasks. If the professional noticing codes address the how of coaches’ 

interactions, learning trajectory codes reflect with what the coaches are interacting. These 

a priori codes also proved to be too broad and all-encompassing to be codes or even 

themes. Instead they too were incorporated into the organization of the analysis.  

Starting to code. These two sets of broad themes became two nodes in the 

thematic network analysis of the data (Attride-Stirling, 2001). The thematic network 

analysis tool is a six step process for analyzing the data. The first step in the process is 

deciding on the level of text in which to divide the material. There were many different 

types of data collected for the study, so each needed to be treated differently. For 

example, coding the interviews was facilitated by the transcripts. The transcripts provided 

by the transcription company presented the text in coherent paragraphs. Other data 

sources included examples of the participants’ work done by hand which were captured 

with screen grabs and saved directly into the coding structure of Dedoose (2019). On the 

other hand, some of the data was much more formulaic and could be coded by matching 

the codes directly to the questions. Creating workable units of analysis was the first step 

in coding a thematic network analysis. The second step was organizing the data in order 

to code the text segments. 

Since the demographic data came in early, the next set of codes created allowed 

that data to be coded by question. This included basic demographic data as well as the 

school information. The next set of data to be entered was the participants’ work on the 

task, including their solutions, the mathematical goals of the task, the prerequisite skills, 

future skills, and the set of anticipated student strategies. During these initial coding 
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sessions in vivo codes began to emerge and were created as needed and in response to the 

data. For example codes for mathematical strategies and representations were added as 

they were encountered in the participants’ work. The audio taped interviews were coded 

by question, but as the interviews began, new coding strategies were needed, and in vivo 

codes were allowed to emerge from the responses. For example, one of the questions 

asked participants which resources they always bring to their planning meetings. The 

entire response to this question was coded as Resources, but it also led to a new list of 

codes identifying individual resources, added as participants mentioned them.  

Coding the live interviews. Based on data from the pilot study (Morrow-Leong, 

2013). I anticipated possible open codes that focused on the tools and resources 

commonly used in schools, the mention of standards or learning progressions, as well as 

language used to describe student thinking. Although I hesitated to color the field by 

imagining any other codes before data collection even began, some of the mathematical 

codes were predictable based on the task in question 

The sorting portion of the interview offered the richest view of the mathematical 

thinking of the coach participants and was the source of much of the primary data, 

leaving the additional data sources as points of triangulation. The first pass on this data 

included cleaning the transcript, identifying acronyms and clarifying participant 

statements. Transcripts of the sorting interviews were filled with many grammatical 

pointers that referred to the work samples participants were holding or were moving 

around. The second pass on transcripts needed resolving these grammatical pointers such 

as “this one,” “that one,” and other such visual cues. This was simply done with 
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parenthetical references to the appropriate sample(s), and it became a critically important 

source of data. Without these resolved pointers, the participants’ statements were nearly 

meaningless. For example, this statement was nearly meaningless until it was modified 

with the appropriate pointers resolved: 

I don't think I’d do either of those (Samples I, H, F). This one’s not really right 

(Sample F). Probably this one (Sample L, K). Not necessarily that it’s least 

sophisticated but I feel like . . . Or this one (Sample B). This one actually shows it 

being . . . It’s dividing. (Isabella) 

The primary source of codes was the collection of 12 work samples and as such 

were established as a priori codes. Each utterance was coded for the work samples to 

which it referred. This coding was done at the larger grain size of an utterance rather than 

at the sentence or phrase grain size. This decision later allowed for code co-occurrences 

of work samples to emerge from the data.  

The sorting portion of the interview offered many additional opportunities for 

codes taken directly from participants’ words. Coding for the mathematical strategies 

students in the work samples used added to the codes established while reviewing 

participants work. Another area that emerged was the coaches’ references to problem 

solving or communication or other mathematical behaviors and codes for mathematical 

practices were added and later collapsed into a theme for practices and processes.  

While coding the coaches’ engagement with student work samples, it became 

apparent that participants were at times making instructional decisions, pairing or 

grouping students for future discussion or activity. Because this seemed to be a universal 
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practice across coaches, the sorting transcripts were revisited and coded again with 

references to grouping or pairing of students. Another possible area of interest were the 

coaches’ references to the act of looking at students’ work, either as an individual activity 

or as team-based activities with teachers at their schools. These were coded for future 

exploration. 

The third pass at coding revisited previous interviews and documentation sources 

in order to apply the newly devised codes referring to groupings and pairings and looking 

at student work. Additionally the participant work was revisited in order to apply any of 

the new references to mathematical strategies or to the process or practice standards that 

may have been miss on the first passes. After coding the interviews, I printed a codebook 

list and began grouping similar codes into themes. From these themes came several 

clusters.
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Figure 3. Thematic network analysis.
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Clustering and constructing networks. In the third step of the thematic network 

analysis approach themes were organized into a hierarchy that generates broader themes. 

Figure 3 shows the basic themes in the bubbles of the network, which then are clustered 

into the basic or global themes of mathematical strategies, sorting task, emotional 

hue/language of identity, and resources for planning. Learning trajectories is the broader 

theme that linked together the Resources and Mathematical Strategies nodes, indicating 

that these two categories contribute to our broader understanding of the impact of 

learning trajectories in analyzing a task like this one.  

The remaining two broader nodes connect only in that they are not strictly based 

on mathematics. Recognizing that Processes/Practices, Problem Context, and 

Mathematizing are indeed considered mathematics, this seems contradictory. To clarify, 

the codes in this branch of the network did not arise organically out of the student work 

samples. Instead they were researcher-created codes that reflect ideas the surfaced in the 

data, not expressed by the coaches or the students through their work samples. For 

example, “Answers” is a code created by the researcher/analyst to highlight the coachers’ 

reactions to incorrect or incomplete answers offered by the students. In the end the 

finding seemed incomplete and was abandoned, but the code remains as a curious 

possible path for future exploration.   

 Analyzing the Work Samples  

Although the work samples were coded during the analysis, they were not 

included in the thematic network because the work samples appeared to be more of a 

resource than an actual theme in the data. That does not mean that they did not offer 
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interesting and valuable insight. The code co-occurrence analysis tool in the qualitative 

software tool yielded even more interesting patterns by providing a visual image of the 

relationships between the work sample codes. This image shed light on how the coaches 

made sense of the sorting task and in the end, what they determined to be a grouping and 

pairing for instruction task. The chart that was generated provided information that 

indicated what samples were often grouped together.  

This data was input into Kumu, software that generates a graphical representation 

of relationships between pieces of data (Mohr & Mohr, 2019). The software generated a 

weighted network analysis map of the relationships between all 12 work samples. The 

global map is presented in Figure 4, but individual work sample maps are later displayed 

as referenced in chapter four in order to highlight important connections. Both of these 

tools combined offered a graphical conceptualization of the relationships between work 

samples that emerged during the interviews.  

In the weighted network analysis map in Figure 4, each of the circles is a node 

that represents one of the labeled work samples (see Appendix G to see details of the 

work samples and corresponding letters). The arcs between each node are connections 

between each of the work samples. A connection was made when a participant 

deliberately made an instructional grouping or pairing of the work samples from each of 

those student work samples. The weight of each line and the depth of the color indicated 

the frequency of the connection between each work sample, across all three coach 

participants. 
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 Figure 4. Weighted network analysis of co-occurrence of work sample codes. 

 

Table 4 below shows an example of how each utterance mentioning a work 

sample was coded for sample co-occurrences.  
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Table 4   

Network Connections Made between Nodes 

Utterance 

 

Connections and nodes 

Who do I want to pair these guys (Samples D, B) up 

with? 

 

Sample D and Sample B 

 

. . .I had a hunch as to what this person (Student I) was 

thinking. I might group this person (Sample F). 

Because he’s got great modeling but just isn’t sure 

what to call this piece, and I feel like this (Sample I) is 

a representation of that (Sample F). 

 

Sample F and Sample I 

So I might just bring him (Sample F) in here with this 

person (Sample K) to try and get more explanation and 

have him listen and then say, “Well, I’m wondering 

that you had mentioned this is one-fifth. 

 

Sample F to Sample K 

What do you think about what this person (Sample I) 

was explaining, or something. I might actually put it in 

here (Samples F, G, E, D). 

 

Sample I to Sample F 

Sample I to Sample G 

Sample I to Sample E 

Sample I to Sample D 

Sample F and Sample G 

Sample F and Sample E 

Sample F and Sample D 

Sample G and Sample E 

Sample G and Sample D 

Sample E and Sample D 

 

Note: In some cases the connection is directional, which is indicated by the preposition 

“to.” In other cases, no direction is implied. These are shown using the conjunction 

“and.” 

 

The fourth pass. At a certain point, after the initial data analysis had been 

completed, an interesting phenomenon kept appearing in the participants’ words. The 

words that the participants were saying appeared to be qualitatively different. A review of 

a short segment of one transcript sparked an early labeling of utterances as distinct from 
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each other. In short, some utterances referred to the students’ mathematical work, and 

other utterances referred to the student as the doer of mathematics. Determined to 

understand this phenomena, more reading about engagement with student thinking and 

student work helped frame the issue more clearly. The details about the new framework 

helped to distinguish between utterances  that subjectify and those that mathematize are 

included in Chapter 4;however  it is important to mention that this discovery lead to a 

fourth pass to look at all of the data related to student work. The four additional codes 

provided data in the texts on what the authors call emotional hue (Heyd-Metzuyanim & 

Sfard, 2012). 

Checking validity.  

As previously mentioned, the fact that I had previously been an elementary 

mathematics coach increased the risk of validity threats. After listening to the first 

interview, I realized that I had perhaps contributed too much to the conversation with the 

coach in order to show solidarity as a fellow coach. This realization allowed me to check 

that instinct and in subsequent interviews, my voice as the interviewer was far more 

neutral.  

Summary 

Gathering data for this research study occurred in four phases. The first phase was 

a demographic survey exploring the work of the elementary mathematics specialist 

coach, including the resources they employ in their practice. The second and third phases 

took place in a live interview format. Much of the second phase was used to triangulate 

data gathered during the initial demographic survey and data that was later gleaned from 
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the sorting interview. It also provided a picture of the coaching practice and of the 

coaches’ interactions with artifacts of student thinking. The final phase of the study was 

primarily designed as a member check to confirm that the researcher had appropriately 

recorded the participants’ thoughts and actions, but it also served as a venue for clarifying 

some questions and probing a little deeper in others. Since data collection was completed 

over a span of a few weeks, analysis occurred in conjunction with the data collection in 

most cases. Chapter 4 will explore more details of the data analysis process. 
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Chapter Four 

The findings of this study will be organized into four separate sections. The first 

section (meet the coaches) describes the three coach participants, their backgrounds, and 

descriptions of their current coaching practice, including professional resources on which 

they rely. The remaining three sections (coaches’ resources, coaches attending to student 

thinking, coaches interpreting student thinking, and coaches acting on student thinking) 

will be organized according to the professional noticing framework, identifying the 

nature of coaches’ interactions with written artifacts of student thinking and relating their 

actions to the components of the professional noticing framework. Broadly, the findings 

show that coaches engage in practices of observation that reflect the outcomes described 

in the professional noticing literature (Mason, 2011; Sherin et al., 2011; Sherin & van Es, 

2002, 2008).  

Another focus of the study is the coaches’ awareness and use of learning 

trajectories in practice, therefore the report will explore the coaches’ references to any 

assumed sequence of learning. The discussion will draw upon a structure for 

systematizing the understanding and unpacking of learning trajectories in order to inform 

instruction, both for coaches and for teachers (Confrey, 2012; Confrey et al., 2014). 

Additionally, Confrey’s structure for unpacking and understanding learning trajectories 

will also frame the data as the discussion addresses evidence of the coaches’ constructed 
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and hypothetical learning trajectories as evidenced in their engagement with the 

mathematical task and with the students’ work samples. But first, a detailed look at the 

coaches’ description of their practice offers a basic understanding of their work as 

context to explore their learning trajectories. 

 

Meet the Coaches 

Participants in this study were all coaches in a K-6 school, and have worked as 

coaches for at least 6 years. In addition to an elementary state teaching license, each 

participant also has an additional endorsement as a mathematics specialist. Additional 

information on the coaches below offers a view on their experiences with mathematics as 

well as resources that they use in their practice. The data will help inform our 

understanding of the coaches’ engagement with the mathematics in the task. 

Rachel. Rachel taught in an upper elementary grade level for 6 years before she 

accepted a coaching position at Rhodes Elementary School. She has been coaching 

teachers in grades K-6 in elementary schools for 6 years now. Rachel completed her 

mathematics specialist degree program entirely within the state that offers the program. 

Currently she holds an elementary teaching license, with a K-8 mathematics specialist 

endorsement added on to that license. In high school, Rachel took mathematics courses 

up through Precalculus, as an undergraduate took two mathematics-for-educators courses, 

but otherwise described no other university mathematics training. Rachel, however, has 

had extensive experience with local professional development opportunities, both with 
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her district and at a local university. Her disposition towards mathematics as a child was 

positive, and remains so into adulthood.  

Like most mathematics coaches, Rachel’s job includes many different tasks, but 

more typically she co-teaches with the classroom teachers to model and develop best 

practices. Through co-teaching she is able to support first-year teachers as well as other 

teachers given the “gift” of a coach by the principal. Her role as a coach in this school 

seems to be both as a “fixer,” and as a change agent. For example she works weekly with 

students, using a mathematics “recovery “program, as well as pulling groups of 

kindergarten students into the hallway to work on specific skills. She has the advantage 

of working with instructional assistants whom she guides in a kindergarten ”pullout” 

program two or three times a week. On the other hand, her school is in the process of 

thinking through its philosophy regarding fact fluency. Before her arrival at Rhodes, 

teachers believed that they were not allowed to emphasize fluency with their students, an 

idea that Rachel believed originated in a movement to eliminate timed tests. She was able 

to act as a change agent by sharing the article Fluency without Fear from Boaler (2015), 

a resource that she learned about through the regularly scheduled meetings of 

mathematics coaches held by the county mathematics office. This resource allowed her to 

guide teachers in the school to understand and promote fact fluency with more depth. 

Apart from the district pacing guide, three other resources important to Rachel were the 

extended curriculum framework and lessons provided by the state department of 

education, a planning and resource book for coaches, and a popular website that offers 

ready-made ideas for daily number routines.  
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Rachel shared that her biggest goal of the current year was working 

collaboratively with teachers to create quarterly assessments, which is the result of the 

recent adoption of revised state standards. She indicated that the best part of her coaching 

work was watching teachers make significant shifts in their thinking. The most 

challenging aspect of her coaching practice was working with teachers, or teams of 

teachers, who were not yet willing to question their practice. One way she was able to 

work around that constraint was to work with one teacher in one classroom in order to 

show success. When other teachers see the teachers experience success, they seek out the 

assistance of the coach themselves.  

Faith. During her 12 year teaching career before becoming a mathematics coach, 

Faith taught in the primary grades. She entered the work of coaching when she was 

invited by administration to try a new position the district had created to find and share 

the mathematics successes happening throughout the district. This early experience 

coaching in another county has given her a longer career as a mathematics coach than 

many others. Currently Faith coaches at Cushing Elementary School, a pre-kindergarten 

to Grade 6 school. She holds a license in elementary education from her state, and 

currently holds an additional endorsement in another specialty area, as well as the 

endorsement as a mathematics specialist, which she has held for a number of years, She 

completed the coursework for this endorsement through a university degree program 

within her state.  

Faith had positive experiences with mathematics up through Algebra 1, but does 

not remember much about her high school courses, with the exception of an unfortunate 
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experience in a high school Geometry course that she still associates with unpleasant 

memories. As an undergraduate in college, Faith recalled taking a mathematics methods 

course for teaching but does not recall any others. Like the other participants in the study, 

Faith has also had extensive experience taking courses through her district, as well as 

through a third party consulting company that once offered professional development 

through the district. She often teaches summer workshops as well.  

In a typical week, Faith spends over 50% of her time either coaching teachers or 

co-teaching. For her personally, the goal of coaching was to ensure that teachers 

recognize that all students can learn, and she focused her coaching activities on that goal. 

In the past she has had the freedom to build her own coaching practice, but at other 

schools this has not necessarily been the case: principals often decide who needs her 

assistance. At other times she has taught one grade or a class of mathematics when there 

was a need.  

Faith frequently used the state’s curriculum framework to unpack and understand 

the standards with teachers and the district’s pacing guide to assure that teachers 

recognize the progression and flow of the lessons. She also referenced Elementary and 

Middle School Mathematics (Van de Walle, Karp, & Bay-Williams, 2010) as a source for 

both content and pedagogy, Content-Focused Coaching (West & Staub, 2003) for her 

own reference as a coach, and the trio of Empson and Levi’s (2011) Cognitively Guided 

Instruction books (Carpenter, Franke, Levi, & Ferguson, 1999;  Carpenter, Franke, 

Johnson, Turrou, & Wager, 2016; Empson & Levi, 2011), primarily to view the clips of 

student thinking and to understand the continuum of computation strategies explicated in 
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these volumes. In team meetings, Faith’s emphasis was on using student thinking to plan 

instruction or to design problems for future lessons. Specifically, she worked with 

teachers to select numbers for different problems so that they can have experiences with 

the problems before their students do them. Even after naming this extensive list, Faith 

still asserted that “less is more” at a grade level team meeting. 

For Faith, the best part about being a mathematics coach was doing mathematics 

with teachers. She loved leading other teachers in professional development, especially 

when they have ”lightbulb” moments. She said the most challenging aspect of her 

practice was helping school administration understand their role in supporting 

mathematics coaches and their teachers. From these experiences with principals, Faith 

has learned how to address teachers’ concerns when principals similarly place similar 

strict controls on the teachers’ actions: it allows her to better understand and support 

teachers in that situation.  

Isabella. During her 10 year career as a teacher, Isabella taught at grade levels 

that span the entire elementary school are range. She has been coaching for over 10 years 

in grades K-6 schools, all within the same district. Isabella holds an elementary license 

from her state with a specialty area endorsement beyond the standard license. This also in 

addition to the mathematics specialist endorsement, which she has held for 5 years. All of 

the coursework for her mathematics specialist endorsement was completed within the 

recommended state program. As a child, Isabella found mathematics to be easy and quite 

pleasant. Her high school courses included mathematics up through Calculus, which was 

followed by additional Calculus courses as an undergraduate. As with other participants, 
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Isabella has taken extensive coursework through her district, and has even facilitated 

courses for other teachers and coaches. She, too, has participated in district professional 

development, which in the past included extensive training with Developing 

Mathematical Ideas (n.d.) and another third party consulting organization. She has even 

taught courses for teachers within the district.   

Isabella’s coaching practice at Waverly Elementary School consists primarily of 

working with teachers. She noted that she spends 20% of her time on average planning 

with collaborative grade level teams and another 35% of her time either conducting 

professional development with the teachers or co-teaching in their classrooms. Because it 

is a large school she has to make careful choices on how she spends her time, but she 

appears to make these decisions herself. In the past she has taught a mathematics class for 

an over-enrolled grade level, but primarily spends her time with teachers. She and the 

teachers have systematized their planning process, incorporating an online system 

document system to do their lesson planning, including a process for reflecting on a unit 

and making changes for the following year. Because of a recent standards update, much 

of the most recent year has been focused on understanding and unpacking the new 

standards and adjusting the planning materials. She says that the best part of her job is 

working with teachers to help them better understand the mathematics they teach so that 

they have the tools they need to help students learn. To Isabella, balancing her time poses 

the most challenge, but she also admitted that working with teachers who are not ready to 

change their practice can be challenging.  
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Coaching Resources 

Data about coaches’ use of instructional resources was triangulated through 

several different data sources. In the initial survey, the following two questions were 

asked, with the purpose of discovering what constituted coaches’ daily resources as well 

as the resources they seek out when teachers are looking for new ideas.   

What are your three most important go-to professional resources? Why did you 

choose those resources? 

What resources do you bring with you when you do planning with teachers, either 

long term or short term planning? Why? 

 The face-to-face interview questions about the coaches’ planning meetings with 

teachers again sought information about common resources and new resources. A final 

question allowed follow up questions to the information already provided. Additionally, 

more information about common resources often arose during the student work sorting 

potion of the interview, as coaches mentioned lessons or strategies that they work with in 

their practice with teachers.  

Two of the coaches have had extensive additional training or courses in addition 

to the degree program. For example, the Developing Mathematical Ideas (n.d.) series of 

courses was referenced, as was Cognitively Guided Instruction (Empson & Levi, 2011). 

These two resources offered more than simply instructional activities. The instruction and 

content was shared as meaningful formative experiences. For example, one coach said, 

“Anyway, then we came across CGI and we started learning about kids’ thinking. We had 

a person come in and train us and we just started like that, just started to take off.” CGI 
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also serves as a source for coaches and teachers to sequence students’ calculation 

strategies during collaborative team meetings with teachers.  

Alternatively, the coaches mentioned resources in both their surveys and in the 

face-to-face interview that figured less prominently as inspiration but rather as sources of 

tasks or activities to serve immediate needs. Each of the coaches listed quick reference 

sources of activities that they provided for teachers, sometimes looking them up online, 

such as various number routines and tasks, or specific lessons taken from activity books 

referenced in the county’s Planning and Pacing Guide (2016), all in addition to coach-

made activities. Notably, no coach mentioned the use of teacher open source/inexpensive 

materials as a source of information, nor did they mention the official adopted textbook 

as a resource. 

Another level of resource that coaches use with teachers is not simply a collection 

of activities, but also resources that teaches mathematics along with pedagogical 

information. Elementary and Middle School Mathematics (Van de Walle et al., 2010) is a 

good example. This resource contains hundreds of useful activities, but it also shares 

information teachers need in order to understand the mathematics they teach, otherwise 

known as specialized content knowledge and pedagogical content knowledge (Ball, 

Thames, & Phelps, 2008). The district planning and pacing guide (PPG) was also 

highlighted as a source of valuable information about student learning and student 

misconceptions. Both of these resources were mentioned in the survey, in the interview 

portion, as well as during the sorting portion of the interview. Additionally, the 

Investigations in Number, Data, and Space textbook series (Russell, et al. 2012) and the 



 

 

116

fact fluency resources from Boaler (2015) were similarly cited as informative and useful 

beyond providing useful classroom activities. In one case, the Boaler materials were used 

to transform habits and expectations in the school community. These resources were 

shared as part of the face-to-face interview, primarily while explaining aspects of the 

coaches’ practice.  

Finally, coaches called upon district and state resources for information on the 

learning standards that are assessed at the end of the school year. In addition to standards 

documents, coaches also used the state’s lesson resources and the state’s expanded 

information on standards. Additionally, the district planning and pacing guide was 

mentioned numerous times by each participant as frequent resource. Coaches report that 

the PPG is used not only to help sequence and pace instruction in schools, but it also 

contains information about student learning sequences, common student misconceptions, 

and strategies for using a variety of representations and manipulates. Since the district’s 

planning and pacing guide was mentioned frequently as a valuable resource, it may 

warrant further investigation. 

Coaches Engaged in Professional Noticing 

Professional noticing is a phenomenon identified as part of the practice of an 

expert in a professional arena (Mason, 2011). In this study, the professionals were former 

teachers who transitioned to practicing elementary mathematics coaches. Not only were 

they licensed and professional teachers, their education, experience, and expertise 

qualifies them as experts in mathematics education, therefore the observations made by 

these individuals can be considered under the category of “expert.” As experts, coaches 
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draw upon a variety of resources to make sense of aspects of teaching and learning. 

According to Mason (2011), the expert has enough experience and awareness of a 

situation to filter out the irrelevant details and focus only on the ones that matter. Of 

course in the filtering process the choices made gradually reveal the priorities and 

character of the expert, perhaps even revealing a unique professional “voice” (Beijaard, 

Meijer, & Verloop, 2004). A professional voice unique to the elementary mathematics 

specialist coach, that differs from the teacher’s and the administrator’s voice, may also be 

recognizable.  

Professional noticing is really a three-part phenomenon that can sometimes unfold 

nearly simultaneously. In this reporting, each element will be deliberately shared as 

distinct from the other two in order to frame results from the data. The first engagement 

of PN is attending to a situation and deciding what is notable and important. Even in the 

controlled environment of looking at student work in a quiet room, attending to what is 

important can be rife with complications. Multiple representations, multiple 

misconceptions, and simply the variety of thought that emerges from an open task can 

thwart a focused reading.  

Once the expert makes clear where their attention is directed, they focus on 

making sense of what they see or hear (Berliner, 2001). In the professional noticing 

framework this is referred to as interpreting what is seen or noticed. Interpreting is not 

just making sense of student thinking, it is also making connections to broader ideas that 

may be applicable. In other words, it is considering, “What is this a case of?” (Shulman, 

as cited in Sherin & Van Es, 2002). The elementary mathematics coach can look at this 
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from two points of view. They may interpret student work from the perspective of 

understanding student thinking. On the other hand, the coach may interpret the work 

samples as a reflection of the instruction and classroom environment from which the 

work samples came. Often they may be thinking of both tasks. In the final step of PN, the 

expert takes action, in this case making connections between details in the student work 

and the broader principles that govern teaching and learning, all within the constraints of 

the local school environment (van Es & Sherin, 2008). Again in the case of mathematics 

coaches, this action may be related to student instruction, or to the mentorship of 

teachers. 

In this study, EMCs were asked to carefully examine student work and to share 

their thoughts out loud as they worked. What they noticed, how they chose to reflect on 

what they saw, and how then to respond depicts an expert view of these student work 

samples.  

Coaches attending to student thinking. Attending to the details of student work 

on a task like the sandwich task is surprisingly challenging. Interpreting a variety of 

strategies and making sense of different representations calls on extensive specialized 

content knowledge that is used strictly in teaching, but not in other fields that frequently 

use mathematics (Ball & Cohen, 1999). Appendix G provides a list of all of the student 

work exemplars accompanied by a description of the mathematical features that were 

planned and intentionally inserted, as well as others that were anticipated for the 

sandwich task. Samples that exemplify learning trajectories and other learning sequences 

were included in order to determine which ones coaches noticed or identified. 
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Predicting or anticipating student strategies. In anticipation of the sort and the 

interview, participants solved the sandwich task and then predicted the strategies that 

students might use. Their predictions were remarkably uniform. All three participants 

anticipated an equal sharing strategy that Confrey et al. (2014) would call “Split All” and 

Empson and Levi (2011) would call “Additive Coordination.” The first two are examples 

of the “one item at a time” variety and the last shows the “sharing groups of items” 

variety. The anticipated solutions look remarkably similar even if none used a formal 

nomenclature (see Figure 5.  

In this case the coaches each described an implied sequence of topics for content 

that they expected students to progress through in relation to this task. In effect, the 

coaches formed a hypothetical learning trajectory (Simon, 1995) for the students around 

this task. Additionally, the students’ answers to this sandwich task figured prominently in 

all three coaches’ discussions, but for different reasons. 
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Figure 5. Additive coordination by Isabella, Faith, and Rachel, respectively. 

 

In this case the coaches each described an implied sequence of topics for content 

that they expected students to progress through in relation to this task. In effect, the 

coaches formed a hypothetical learning trajectory (Simon, 1995) for the students around 

this task. Additionally, the students’ answers to this sandwich task figured prominently in 

all three coaches’ discussions, but for different reasons. 

Coaches’ hypothetical learning trajectories (HLTs). A hypothetical learning 

trajectory describes the detailed plan teachers create as they examine their students’ 

current understandings, gather data and evidence, and make decisions for future lessons. 

It is a trajectory because students are moving forward in their learning and teachers are 

drawing from evidence in the past to predict future needs. It is hypothetical because, 
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despite multiple sources and resources, teachers still can only make educated guesses of 

what skills and information students need to experience next in order to continue their 

learning. Some of the resources that teachers and coaches used were quite detailed. For 

example, the learning trajectory from Confrey et al. (2014) contains a detailed analysis 

and sequencing of what students can be expected to do as they learn to partition shapes 

and lines into equivalent fractional parts, otherwise known as equipartitioning. On the 

other hand, resources like a standards document, are more broad. For example, a first-

grade standard might indicate that students should count to 100, while a second-grade 

standard might indicate that students add double digit numbers within 100. There are 

many sub skills and understandings that must be in place for a first grader to move from 

the first-grade standard to the second-grade standard. Filling in the spaces between 

standards requires a deeper mathematical knowledge for teaching (Ball et al., 2008).  

The evidence of the coaches’ hypothetical learning trajectories emerged not just 

in their overt mapping and sequencing of the instructional goals of this task. Their HLTs 

also became evident in the nature of what they noticed and attended to in the students’ 

work and the references they made to other guiding resources. Two of the coaches made 

additional references to the strategy sequencing embedded in the CGI framework, another 

to the state standards, and yet another relied on her experience to suggest an extension of 

the task. Rachel suggested the following: “This group of kids (Samples I, F, K, L, H), I 

mean, could possibly even be ready to think about what if I have two-and-a-half 

sandwiches shared by five students? And just think of it like an extension.” While Rachel 

herself did not mention the connection, her instinct to change a dividend from a whole 
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number to a non-whole number is also indicative of a higher level of sophisticated 

thinking within the CGI equal groups framework. Rachel is not alone in thinking that this 

is an extension to the current task (Empson & Levi, 2011).  

All three coaches identified the sandwich task as primarily a comparison task, 

specifically the comparison of fractions, which anchors the task in either third- or fourth-

grade, depending on local standards. Within these coaches’ curriculum, a fourth-grade 

standard is applicable. Using “Compare Fractions” as an anchor, the coaches 

hypothesized the following trajectories as seen in Chapter 5. 

 

Table 5 

Hypothetical Learning Trajectories (HLTs) Presented by Each Coach 

 Prerequisite Skill Mathematical Goal Future Lesson Goal 

Isabella • Equipartitioning 

• “halving” (non-

anticipatory 

sharing) 

 

• Compare Fractions • Fractions as Division 

Rachel • Modeling Fractions 

• Equipartitioning 

• Equal pieces  

• Compare Fractions  

(VA 4.2, 5.2) 

• Equal Sharing  

(VA 2.4, 3.2) 

• Fractions as Division 

(VA 4.2)   

 

• Ordering Fractions 

• Mixed Numbers 

• Problem Solving 
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Table 5 (continued). 

 

 Prerequisite Skill Mathematical Goal Future Lesson Goal 

Faith • Quantities to 5 

• Equal share 

problems 

• Understand “most”  

“least” 

• Part/Whole 

interpretation of 

fractions 

• Compare Fractions 

• Part/Whole 

interpretation of 

fractions 

• Equivalence 

• Relational Thinking 

• Relational Thinking 

 

Coaches’ next steps. At the conclusion of each interview participants were asked, 

“What do you think the lesson goal should be for the next day?” Isabella had 

hypothesized that students working on this task would be moving to lessons on fractions 

as a division operation, based on the hypothetical learning trajectory she had envisioned 

for this task. After examining the work samples, her HLT was adjusted. She did not at all 

mention fraction division as a future goal, but instead focused her instructional 

recommendations on further practice equipartitioning and the skill of presenting a 

complete answer to a problem.  

Rachel envisioned the students ordering fractions, working with mixed numbers, 

and an unspecified goal of problem solving. At the conclusion of the student work sorting 

interview, Rachel had refined the HLT of these students to include skills that she had 

noted previously as either a lesson goal or as prerequisite knowledge: equipartitioning 

with concrete objects for some and for others, answering the question, which she reports 

this way: “. . . They've got the stuff split up, but they might be struggling with answering 
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the questions (Samples B, C, E)?” She was prepared to extend the task, but not by 

moving to a fraction division or an ordering of fractions task as she had hypothesized. 

Instead she suggested that students extend their knowledge of equipartitioning by doing a 

task with a fractional quantity in the dividend instead of a whole number.   

Faith predicted that students would move to learning relational (or algebraic) 

thinking for comparing quantities. At the end of the task she adjusted her HLT for this 

group of students to include topics of equivalence, writing answers, and explaining their 

reasoning. This excerpt sums up her position well. 

Now that I’ve talked this through a little bit, I’m feeling like, let’s go back to the 

question. Let’s look at the goal. Let’s see if we can just take this one idea and see 

if we can get the kids to understand, okay when we answer the question, get that 

comprehension piece and ensure that they understand what’s happening in this 

story. Did we get all the parts? Let’s go back and check. That could be one avenue 

we could go. (Faith) 

Despite the fact that coaches do not generally teach students, previous studies 

have noted that coaches are school leaders in focusing attention on the long arcs of 

mathematical content development across the grades and beyond (Becker, 2001). This 

knowledge may help coaches, for example, work to negotiate school-wide initiatives in 

mathematics. Rachel described her efforts to provide alternatives to timed tests while still 

promoting fluency throughout the school:  
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And we’ve done a huge shift away from timed tests, . . . And we had a big 

conversation about, the way the standards are worded now is that fluency is 

important, but what does that mean? What does fluency mean? (Rachel)  

This is similar to the school-wide examination of addition strategies that helped one 

school agree on what to expect as students moved through the grades (Cameron et al., 

2009).    

A hypothetical learning trajectory is a teacher’s prediction of what students will 

learn from a given lesson. It informs instruction and planning, and it is drawn from 

evidence from instruction and planning. The HLT set in the morning before a lesson is 

amended with each passing moment in the lesson, and at the end it might be an utterly 

unrelated topic the next day. In this case, each coach abandoned their predicted lesson 

trajectory (or rather they modified it) and set their sights on understandings previously 

thought to be in place. In this case, the coaches uniformly mentioned equipartitioning as a 

skill students needed to revisit.  Conceptual principles. “Compare Fractions” is a stated 

mathematical goal of this task for all three coaches, and all three coaches also noted the 

conceptual idea of equipartitioning as a prerequisite skill or experience required to do the 

task, even if they called it by slightly different names (equal pieces, equal share 

problems). Making comparisons is an important content goal and standard, but it may not 

rise to the level of conceptual principle. A conceptual principle is “an underlying 

cognitive principle, identified by research, that supports the development of ideas” 

(Confrey, 2012, p. 724). It is also “a big idea” and a generalization that has multiple 

meanings for experts, but which may be collapsed into a single category for the general 
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public (Confrey, et al., 2014). Equipartitioning meets the criteria for a big idea, an 

assertion which is also backed by the research of Empson and Levi (2011). For example, 

Sample B demonstrated that the student could equipartition into three equal shares, even 

distributing a whole sandwich to each individual rather than dividing up each sandwich 

before distributing. Hunt and Empson (2015) distinguished the equal sharing work on 

Sample B from the equal sharing work on Sample G; Sample G partitions equally, but 

uses knowledge of simple fractions (or trial and error) to create fourths, a fraction that is 

easily done by repeated halving. They call this Non-Anticipatory Sharing because it does 

not take into account the number of sharers as Sample B does. Moreover, Confrey et al. 

(2014) is more likely to highlight the fact that Sample B is partitioned, but is not 

equipartitioned, given that the root of the equipartitioning conceptual principle is 

equality. The shape of the bread would make each partition different from the others. 

Interestingly, none of the coaches noted the irregularity of the shape of the object being 

subdivided in Sample B, nor did they recognize the incorrect partitioning in the last 

sandwich shown in Sample E. On the other hand, only Isabella noticed that Sample G 

showed evidence of the Non-Anticipatory strategy of making familiar cuts in the square 

(in half and then in half again).  
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Figure 6. Samples B, G, and E show subtle variations of equipartitioning.  

 

Task goals. There is not universal agreement on the goal of this task. Rachels’ 

goals are highly dependent on the state standards, which is evidenced by the fact that she 

listed all relevant standards when setting the mathematical goal of the task. Because of 

Rachel’s focus on the state standards, she also noted that recognizing fractions in the role 

of a division statement (Kieren, 1980) is an appropriate goal in the same grade level 

standards as the comparison of fractions, while Isabella saw that as a future goal, and 

Faith did not note it at all. Interestingly, Faith did cite “relational thinking” as a current 

and future goal for this task and gave this example of evidence of relational thinking in 

her own work in advance of the sorting interview. From Faith’s anticipated student 

strategies: “They (Washington Monument) get less because they won’t have a whole 

sandwich.” And from Faith’s own solution we saw, “The students sharing sandwiches at 

the White House get more food because there are more sandwiches than students.” 
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Relational thinking is not named as part of the state standards, but it is an end goal in the 

CGI developmental sequence for tasks, which is evidence that the source of Faith’s 

hypothetical learning trajectory for a partitioning task may include principles from the 

CGI framework. It is important to note that the term relational thinking applies to a 

certain kind of algebraic-like reasoning (Empson, Levi, & Carpenter, 2011). Rachel noted 

that the task could be solved without calculation, which she referred to as 

“Words/Reasoning,” but the two coaches’ meanings were the same. Given her use of the 

word “reason” it seems likely that Rachel might refer to this strategy as more evidence of 

the process standard Reasoning & Proof (NCTM, 2000), than as a specific goal within an 

equal groups or equipartitioning learning trajectory itself.  

There are other notable differences that emerged between the three coaches’ 

HLTs. Isabella and Faith recalled ideas that were not present in their state curriculum 

standards, and which echo language found in the Cognitively Guided Instruction 

literature. For example, Isabella mentioned that students will often partition shapes into 

halves first, expanding the meaning of “half” to refer to all fractional pieces. “Halving, so 

yeah, he ran out and divided that into three equal parts. Okay, so what I’ve seen is that 

this is uncommon because a lot of times they just start with halves is what I’ve seen.” 

(Isabella). While the state standards do mention splitting into two pieces, they do not 

identify it as a common overgeneralization when students are tasked with partitioning 

into another quantity. Isabella attributed her awareness of this common student 

misconception to CGI materials, where it is identified as indicative of the “Non-

Anticipatory” equal sharing strategy (Empson & Levi, 2011).  
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Despite the presence of CGI-influenced elements in both Isabella and Faith’s 

hypothetical trajectories, neither of the coaches highlighted the difference between 

sample K and sample L.  

 

 

Figure 7. Samples K and L show two varieties of Additive Coordination. 

 

Sample solutions K and L were intentionally selected in order to contrast Additive 

Coordination (while sharing one item at a time) and Additive Coordination (while sharing 

a group). In Sample K the student shares 1/5 from each of the two sandwiches to arrive at 

a portion of 2/5. In Sample L,	2/5 is taken as a group from one sandwich, continuing on 

linearly. Interestingly, Samples K and L had the highest rate of co-occurrence of any of 

other pair of samples in the sorting tasks because they tended to be grouped together as 

equal exemplars. This may be an example of coaches not recognizing or lending value to 
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the distinction between the two different strategies, despite their familiarity with the CGI 

sequences of strategies for equal groups partitioning. 

Faith and Isabella’s approach to stating learning goals differed in another 

important way from Rachel’s. Rachel set the goal of problem-solving as a future lesson 

topic to follow the sandwich problem. However Faith and Isabella place problem-solving 

at the center of the task goal. For example, Faith frequently referred to the context of the 

problem as she was examining the student work samples, as we can see in the excerpt 

below. As she speaks, Faith is grouping students according to their partitioning strategy. 

She noted that not one of them had arrived at an answer to the task as it was asked. “I 

think that this group too, they’ve got the stuff split up, but they might be struggling with 

answering the questions (Samples B, C, E). So who got more in those two scenarios? 

Which group of kids got more?” Her questions are directed at the students, who are of 

course not present.  

That which coaches attend to can be found in their hypothetical learning 

trajectory, but what coaches do with this information follows. 

Coaches interpreting student thinking. The second phase in the process of 

professional noticing is interpreting or making sense of events or details in the 

professional setting. The expert draws upon their stores of knowledge and experience in 

order to apply meaning to whatever is happening in the situation (van Es & Sherin, 

2008). In a sense, this is a form of interpretation, especially when the pertinent details are 

presented in static written form. As coaches began the sorting phase of the interview, they 

were given the set of 12 work samples, two pens, and were asked to look at the work 



 

 

131

samples, note what they saw, and then speak out loud about what they noticed. Attending 

to and interpreting student thinking are often intimately linked, so coaches may do both 

acts in quick succession in this interview context. The area of interest here remains the 

interpretations that coaches make and the sense they make of the student work samples.  

Coaches grouping work samples mathematically. In all three interviews, the 

coaches started with Sample A, tried to make sense of it, and then moved on to Sample B 

because some samples were easier to understand than others. As they progressed through 

the stack of work samples, they began to make connections between students’ 

representations and strategies that were mathematical in nature.  

Tens, tenths, 0.1, and 
�

��
. The student whose work is shown in Sample H (figure 

8) shared an answer that is a study in contrasts: the answer itself was expressed as a 

decimal, even a repeating decimal, which was a response that does not appear in any 

grade associated with the sandwich task. On the other hand, the student’s response did 

not actually answer the question posed by the task: Which students got more? He simply 

said that they didn’t get the same, with the actual comparison left unsaid.  

The coaches’ responses varied in significant ways. Rachel interpreted this work as 

an example of a student who “gets it,” “got the right answer,” and she then grouped it 

with samples K and L as the group who “understands division and the equal groups and 

kind of naming the pieces.” She did state that she would like to see another strategy but 

accepted the response in Sample H as progressive enough to warrant an extension task. 

Isabella was far less accepting of the response as given. Acknowledging that Sample H 

has a correct answer, she twice said that it “needs more explanation,” and therefore she 
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could not hold it up as a “model for discussion,” implying that samples with drawn 

models would be more appropriate for classroom discussion.  

 

 

Figure 8. Samples H, C and D as examples of equipartitioning by tenths. 

 

Faith went a step further and focused on two features of the work in Sample H. 

First, she noted that the student did not offer a complete answer to the task and might 

possibly be incorrectly interpreting the task. More importantly she made a connection 

between Sample H and Samples C and D for a mathematical reason. Reading the 

numbers in Sample H as “four tenths” and “one and three tenths, repeating” reminded her 

that the implied partitioning was into tenths (although the student showed no evidence of 

making that connection), and she immediately made a connection to Sample C, who had 

explicitly made partitions of one tenth.  

This guy (Sample H) needs to be up with this guy (Sample C) because this could, 

they could see the tenths, the four-tenths. It could also extend their thinking into 
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some decimal work possibly, if he could explain (Sample H) where did that come 

from? How did he think about it? (Faith)      

Not only would the focus on tenths encourage student C to consider why she chose to 

name the pieces tenths, it would also encourage students C and H to “do some 

comparison work . . . because we can see the four-tenths and the one and a third kind of 

sort of.” (Faith). Similarly, Faith made a connection between Sample C and Sample D 

using the same rationale as she used for matching Sample H with Sample C: a focus on 

tenths. However, this connection was less sure, but she recognized that there may be 

commonalities in the discussion of ten pieces.  

(Sample D) One, two, three, four, five, six, seven, eight, nine, ten. Which is what 

this little friend is wanting to do into pieces (Sample C), but. They break it up into 

five pieces (Sample D). If they have two sandwiches, then they’d have 10 pieces. 

They’ve broken each sandwich into fifths, possibly if these are all fifths.” 

This is in contrast with Rachel, who observed that Sample D was broken into “lots of 

little pieces,” showing no reference to the fact that there are 10-15 pieces. Is this an 

important detail? It depends on the situation of course, but there is far more potential for 

targeted teaching and learning when the teacher or educator recognizes specific details in 

student work and links it to student thinking.    

Seeing fifteenths. In the previous discussion, coaches recognized and highlighted 

tenths in the student work samples and used this common feature to tie together some of 

the most and least sophisticated student samples. An exploration of representations of 

fifteenths is equally interesting. All three coaches looked at Sample F and tried to make 
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sense of how the student named the fraction using the denominator 15. Isabella observed 

that the student’s model was drawn accurately in that there was a third for each student in 

the group and the final third was shared by all five students at the Washington 

Monument. Faith recognized that the drawing was accurate as well, but shared that she 

would ask the student the next day to try drawing another model, with the thought that 

they would recognize the value of each sector in the circle they sketched.  

 

 

Figure 9. Samples F and I as examples of equipartitioning by fifteenths. 

 

Naming and recognizing the value of each of the five students’ share of two 

sandwiches highlights a key difference in the responses of the three coaches. The table 

below outlines their verbal responses, and the discussion that follows will show that the 

manner in which the reader describes an error like this one is a reflection of their 
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interpretation of the student’s understanding of the mathematics. In chapter two we 

clarified the difference between types of errors. A conceptual error indicates a 

misunderstanding of a concept while a procedural error is a missed or incorrect step in a 

process. A slip is a true accident and is typically noticed quickly, and an omission occurs 

when the learner fails to include something that is critically important in the context.  

 

Table 6  

Classification of Error Types by Coach 

 Utterance Presumed error type 

 
Rachel They’re understanding that they gave them 

each one-third, and then they split this into 

fifths, but they called it one-fifth instead of 

one-fifteenth because they split this third into 

fifths. So this would be fifths, fifths, fifths. 

 

 

Possibly Procedural 

Possibly Conceptual 

Faith . . . We’re getting thirds and fifths and 

fifteenths. Where’s that coming from? 

. . . Just looking to see why he went back to 

the fifteenths (Sample F). Unless he was just 

trying to get them all into fifteenths . . .  

he (Sample F)was trying to get a fifth of the 

third (I think). . .  

 

 

Procedural (35:37) 

moving later to 

Conceptual (41:54) 

Isabella . . . then they’re really giving each person a 

fifth of a third and they somehow are trying 

to . . .  I don’t know where this is coming 

from. How are they seeing fifteenths, or is it 

just because one-third plus one-fifth? Are 

they adding? So, is this one-third plus one-

fifth equals eight-fifteenths is what they’re 

thinking that's how much that is. So then it 

really should be one-fifth of one-third is what 

each of them is getting, not one-fifth. 

Procedural (28:15) 

moving quickly to 

Conceptual (28:51) 
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Rachel immediately recognized that student F had assigned the incorrect value to 

sectors of the circle, assigning them the value of one-fifth, when the actual value of a 

sector was 1/5 of 1/3. Rachel’s response to the error makes it appear that she might 

believe that this error is in name only. In other words, “. . . but they called it one-fifth 

instead of one-fifteenth . . .”  (emphasis added) reflects a procedural error implying that 

the student incorrectly named the portion of the sandwich. Yet, it is also possible that she 

interpreted this as a conceptual error because she said, “They split this third into fifths.” It 

is clear that the coach understands the student’s error, but it is less clear how she 

interpreted the nature of the student’s error. The evidence appears to show that the 

student does not have an understanding of unitizing and naming fractional parts that 

allows them to accurately identify a fifth of a third as a fifteenth. In isolation, identifying 

a portion of the circle as a fifth is correct. In this context, it is not, so this would be 

classified as a conceptual error. The distinction is important because a mini-lesson the 

next day would include either a lesson on two levels of unitizing (Steffe & Olive, 2010) 

or a procedural lesson on naming fractions.  

Faith grappled with the student work in Sample F and came back to it several 

times in her attempt to make sense of the student’s thinking. Initially she appeared to 

believe that the student began with trying to find a common denominator of 15 in order to 

compare the fractional values. She even noted that this is a skill that fourth graders 

commonly learn so it was not surprising to see evidence of this on the student’s paper. In 

this case, the error was procedural because the student was not successfully finding the 

right numerator needed to compare. In the final utterance, she hesitantly observed that the 
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student was trying to find a fifth of a third, her change of thought marked by a 

parenthetical “I think” at the end. This change of interpretation changed not just her 

window into the problem but also her perception of the student’s conceptions of 

equipartitioning: the student’s error was no longer to be remedied by a tutorial in 

common denominators but instead called for a mini-lesson in accurately naming a 

fraction of a fraction for which an accurate model already exists. In terms of addressing 

misunderstandings, this is a profound shift in approach for the teacher.  

Isabella worked through the same process Faith did, making sense of the student 

work finding a common denominator before recognizing that the error was a conceptual 

error. For Isabella, she made sense of that after about 30 s examining the student work 

compared to the 6 min it took Faith. This is not meant to imply that speed in reading 

student work is required: it is not. But it does show that sometimes reading a student’s 

work in depth takes longer than is typically allotted to do so. Faith spent all of those 

intervening 6 min exploring the work in Sample F, considering the pedagogical 

opportunities it afforded for a whole class discussion.  

Strategies, representations, and misconceptions. The framework for unpacking 

learning trajectories (Confrey, et al., 2014) starts with understanding the importance of 

identifying the core conceptual principles that thread throughout the K–8 curriculum. 

This was explored earlier, within the context of exploring hypothetical learning 

trajectories. The framework also highlights the importance of students having a flexible 

understanding of different strategies and representations. It also calls on teachers and 

coaches to identify and respond appropriately to the misconceptions that may arise while 
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students are exploring these different strategies and representations. The three coaches in 

this study were tasked with making sense of twelve different solutions. In the previous 

section, their interpretation of student misconceptions/errors shed light on the nature of 

the students’ grasp of the conceptual principle of equipartitioning. In this section we will 

explore how the coaches were able to recognize a “kernel of right thinking” (Confrey, 

2012) and leverage this information to inform a plan for instruction.   

In the final phase of the sorting, all three coaches assigned Samples F and I to the 

same group because both of the representations presented the shares of sandwich in terms 

of fifteenths. A quick look at these two samples might not necessarily show a similarity. 

The representation in Sample F is an example of an equipartitioned figure, demonstrating 

a life-like distribution of equal portions of two sandwiches. In this respect it is an equal 

groups model (cite). Sample I, however, is an array model of a single serving of sandwich 

– it does not show the unit whole of two full sandwiches (Lamon, 2012). In essence the 

arrays are a re-presentation of the answer to the task rather than a representation of a 

process that led to that solution (Moore, Morrow-Leong, & Gojak, 2020). The array is 

arranged as 3 x 5 and each cell represents a fifteenth. The appropriate number of cells is 

shaded to show the correct answer.  
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Figure 10. Sample I is paired with Sample F for one reason and with Sample H for 

another reason. 

 

In contrast, Isabella’s first sort paired Sample I with Sample H because she 

believed that each sample represented the work of students in higher grades than the 

others. Faith said the same plainly but clearly:  

So they found equivalent denominators or a common denominator. Interesting. I 

don’t know. I feel like these guys are older grades who have done this before and 

have probably been told in order to compare you have to have common 

denominators so, figure out a way to make them common. (Faith)     

As the interview progressed, all three coaches moved Sample F and Sample I away from 

other groups in order to pair them together because they shared a common denominator-

dependent strategy. Isabella created categories using sticky notes and the change in 

placement she made was physically obvious during the interview. Originally, Sample I 

was in the category of most successful solutions she titled, “Got it! Has an answer” 

because she had associated the array and common denominator with the work of a 
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successful older child. However, after further consideration, Sample I was moved to join 

Samples F, H, and J in the category entitled, “Got it! Needs more explanation:”  

I feel like this (the array in Sample I) is a representation of that (the drawn model 

in Sample F) . . . So, I might just bring him (Sample F) in here with this person 

(Sample I) to try and get more explanation and have him (Sample F) listen. 

(Isabella)    

 Isabella believed the partitioning representation in sample F would complement 

the abstract array representation in sample I, and that the 3 x 5 array in Sample I could 

help student F make sense of the fractional value of 1/5 of 1/3 that was accurately 

modeled but incorrectly named. Reconciling the similarities between an array and a 

partitioned pictorial model in the sandwich task requires a certain degree of flexibility 

and a deep specialized content knowledge (Ball et al., 2008). There is evidence that the 

coaches in this study demonstrated this depth of knowledge and flexibility and are well-

prepared to facilitate the act of unpacking the learning trajectories that inform instruction.  

Mathematizing or subjectifying.  Focusing on the mathematics that underlies 

student work is more than just an aspect of assessment. Within the professional noticing 

framework, the interpretation stage is a locus for understanding the depth of teachers’ 

knowledge, but more importantly, their responsiveness to evidence of student thinking 

and resistance to snap judgments about student performance (Mason, 2002). Furthermore, 

it is important to acknowledge the importance of the mathematical identity of the students 

behind the work. While the study of identity is less important for coaches examining the 

work of students they do not know, it is still true that habits of behavior and language 
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patterns might reveal distinctions between the work and the individual. Heyd-

Metzuyanim and Sfard (2011) acknowledged the interplay between the mathematizing as 

subjectifying. Mathematizing is referring to the mathematical content and understanding 

in the student work. Subjectifying addresses issues of identity as well as other affective 

characteristics of student behavior. In the absence of live students, subjectifying is 

grounded in the language of the coach (or teacher) who is reading the work. Heyd-

Metzuyanim and Sfard identified three levels of generality. In one sense, subjectifying is 

transferring from the centrality of the mathematics to the centrality of students. There are 

three levels of subjectifying. The first level refers to a specific act or action of the student. 

In contrast, the second level refers to the act of ascribing a word like “always” or “never” 

to a student behavior. A student may do this themselves, and say something like, “I can’t 

do this!” or, “She is gifted,” or “He’s a level 2.” These statements are not flexible; they 

are assigned to the student and there is no indication that the student  can move out of that 

identity. 

 

Table 7 

Understanding Utterances as Mathematizing or Subjectifying 

Classification 

 

Utterance 

Mathematizing And hopefully here (Sample K) you can see there's 

one whole and one-third, here's one whole and one-

third. Oh look, if I put this here, that's another whole 

and one-third which they can see here as well. 
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Table 7 (continued) 

  

Classification 

 

Utterance 

Level 1 

Subjectifying 

This one was able to partition three or deal three 

wholes and then only have to partition the one leftover 

whole (Sample K). (Isabella) 

 

Level 2 

Subjectifying 

I put these guys together because they understand 

equal groups, but they . . . I don't really know what’s 

going on with this one because it seems like they only 

answered half the question (Sample A).(Rachel)  

 

Level 3 

Subjectifying 

 

This one (Sample C) might be a little younger. (Faith)  

 

All of the coaches’ utterances were coded as mathematizing or subjectifying. 

Utterances categorized as subjectifying were further categorized as either level 1, level 2, 

or level 3. In some cases a sentence was coded in both categories if the focus of the 

utterance changed mid-sentence. The raw data was converted to a percentage because 

interview lengths varied significantly. The results are displayed in Figure 11. 
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Figure 11. Comparison of mathematizing and subjectifying in utterances, displayed by 

coach 

 

Notably absent were level 3 subjectifying utterances, with the exception of two 

estimations of the students’ ages. Another interesting result is that Faith’s statements 

about the work samples were almost exclusively mathematizing, but the manner in which 

she speaks might be interpreted differently by another researcher. Faith often spoke about 

the students using third person pronouns (they, them), but her statements remained 

focused on the mathematics. Grammatically, the subject of her sentences were often the 

creator of the sample, but the subject of the utterance was nearly always the mathematics. 

It seems as if she was reenacting the scene with the student doing the work. The 

following excerpt is indicative of this phenomenon. 
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(Sample D) Extra sandwiches. All right so what did they do there? One, 

two, three, four, five. One, two, three. There’s my five students. Three 

students. They’ve taken the sandwich and cut it up. Extra sandwiches. 

Okay. I’m guessing he’s saying, “remainder one.” (Faith) 

For Faith and Isabella, the proportion of mathematizing utterances exceeded the total 

of all subjectifying utterances. This was not the case for Rachel. It is important to note 

that Rachel spoke far less than the other two coaches (n = 16), partly because of the 

technical issues with video recording her session but also because she spent long 

stretches of time thinking and considering the student work. But, on the other hand, 

Rachel’s language often spoke more to the student and their apparent level of 

understanding rather than to the mathematics itself. In this excerpt note the confidence 

Rachel has in her global assessments of the student’s understanding of the task.   

I think that they (Sample A left) don’t understand what's going on with . . 

. Well, they split the sandwich into fifths and they gave each person two 

of the fifths. So they get two fifths. They understand that. And then they 

understand that this is the white that they get. It seems like they just have 

a misconception of who gets . . . Of what the question is asking. But they 

understand the two fifths and the one-and-one-third. (Rachel) 

In this excerpt, note the frequent use of the word “understand,” a contention that is 

impossible to make with surety based on a single work sample. Furthermore, the word 

“misconception” dangles without a specific reference point.  
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In the professional noticing framework, attending to the conditions in the 

professional environment is markedly different for professionals and experts that it is for 

novices. In their study of teachers, Jacobs et al. (2010) reported instances of over-

attribution and generalization of student understanding, particularly in preservice teachers 

and teachers just beginning in the professional development program. With more 

experience in the professional development program, the teachers’ expertise increased, 

and they were less likely to generalize about student thinking. The coaches in the present 

study focused on evidence of student thinking in a manner and frequency that was more 

consistent with the emerging teacher leaders in the Jacobs et al. study.  

Coaches acting on student thinking. An act of professional noticing begins 

when the expert makes note of a detail in a complex situation, makes sense of what they 

see, and acts. Using years of experience and education, coaches in this study looked at 

examples of student work and reflected on what came to their attention. What these 

coaches noted about this task and the hypothetical learning trajectories around this task, 

adjusted following their engagement with 12 work samples. The second phase of noticing 

requires the expert to interpret, reflect on, or otherwise see their observations in context. 

In this study, we turned the lens on the coaches’ engagement and interpretation of the 

mathematics in the students’ work. Considering the second element critical for unpacking 

learning trajectories, we noted how coaches connected surprisingly different strategies, 

representations, and misconceptions across the set of exemplars. Focusing on the details 

of the mathematics is also pivotal to recognizing the importance of establishing dialogue 
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about learners that recognizes the difference between the learner and the mathematics 

they learn.      

Meaningful distinctions and multiple models. The cognitive principles of the 

mathematics curriculum are the big ideas that thread through a learning trajectory 

(Confrey, et al., 2014). As students move toward a goal they pass through intermediary 

steps, and at multiple points along the way formulate working models and strategies they 

may not be viable in later years. Some standards represent giant leaps of conceptual 

development from one grade level to the next, and the end result is a lack of a road map 

for teachers to follow as students move from one standard to the next grade level, 

particularly if they are new teachers. For example, CCSS 2.G.3 (NGA &CCSSO, 2010) 

indicates that students will partition circles and rectangles into two, three, or four equal 

partitions. In third grade (3.G.2), the standard not only does not specify a specific number 

of partitions, it also asks that students name the fraction. Bridging standards serve as a 

roadmap between the big leaps like this between standards (Maloney, 2013). Confrey et 

al. (n.d.) have written bridging standards designed to slip seamlessly between the 

Common Core standards, but other bodies of research have stages of development of 

mathematical reasoning that could serve the same role. Confrey et al.’s bridging 

standards and the strategy progression from CGI (Empson & Levi, 2011) will be used to 

explore the intervening learning goals required by the sandwich task. This choice was 

made because Confrey et al.’s bridging standards are comprehensive for the 

equipartitioning learning trajectory and because some of the CGI strategies were 

explicitly referenced by participants during their interviews. 
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Meaningful distinctions tap into mathematical as well as cognitive conceptions 

and make distinctions between some mathematical behaviors that are recognizable by 

mathematics educators even if they are not meaningful to non-educators. For example, 

Hunt et al. (2015) distinguished between Non-Anticipatory and Emergent Anticipatory 

equal sharing. The functional difference between the two is to tell the difference between 

the student who cannot yet consistently name the fractional amount a sharer gets in an 

equal groups problem, and one who recognize that the fraction name is directly related to 

the number of sharers. Outside the classroom, this may be irrelevant information, but it is 

important information for those invested in assessment and instructional planning.  

Groupings and pairings.  The examination of student work began as a “talk 

aloud” activity as the participants began to describe what they saw in the student work. 

As part of adhering to the noticing framework, the interviewer asked the participants to 

make decisions about grouping or sorting the students as a form of acting on their 

interpretations of student thinking. Some samples of student work were frequently paired 

as potential discussion “partners” and will be explored in the context of the coaches’ 

comments about that work. Further, some samples had greater, or more connections, to 

all of the others, which will lead to an exploration of the stated reasons for either frequent 

or infrequent instances of pairings with other work samples. Keeping in mind that the 

student work sample is a proxy for a real student in a classroom, the pairings of work 

samples are done with a live pairing for discussion in mind.    

Samples L and K. Work sample K is an example of additive coordination, sharing 

one item at a time. Work sample L is also additive coordination, but sharing groups of 
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items at a time. In sample K one fifth is taken from each of the two sandwiches while in 

sample L a group of two fifths is taken from only one sandwich until that one is 

exhausted. Recognizing that both fifths form a group is an important bridging standard, 

and a step toward a mature equipartitioning. 

 

 

Figure 12. Samples K and L demonstrate two versions of Additive Coordination. 

 

The participants’ pairing of student L and student K is in part uninteresting, and 

fascinating. Faith hesitated to put both students in the same discussion group because 

their strategies were “too much alike” or “the same,” referring to their value to the other. 

At one point in the discussion Faith mentioned pairing sample K with sample H, and 

sample L with sample D, but when pressed for her reasoning, she replied,  “I'm not 100% 

clear on that. I'm still trying to figure will it go here?” More importantly, Faith did not 
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engage with the differences between the student strategies, despite the fact that the two 

strategies represent a meaningful distinction in the CGI strategy sequence.  

Isabella had a similar reaction, but spoke more of the students’ competency on the 

task, saying that they “explained well,” “had the same level of education,” and had the 

“most sophisticated” strategies. Like Faith, Isabella did not distinguish between the 

students. Of greater note is the degree of subjectification of these two students. One 

participant even said, “These guys are easy.” In a similar vein, Rachel made subjectifying 

statements about these students as well, saying, “So this group (Samples H, K, L), they 

understand the division and the equal groups and kind of naming the pieces...”  On the 

other hand, Rachel did mention that she would change the values in the problem and 

encourage the students to come up with another strategy to solve this task.  

 

 

Figure 13.  Samples K and L were paired more frequently than any other pair. 
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The network density map pictured in Figure 13 demonstrates the relative weight of the 

connection using both depth of color and line weight as an indicator of the strength of 

their connection. After coding for any instance of grouping or pairing of two work 

samples, the instances were counted and graphed to show the strength of the connection. 

In this case the connection between sample K and L is strong while the connection 

between K and A is weak. Samples K and L are notable because the students who 

produced the work were paired to be in the same discussion group more frequently than 

any other two samples in the set. However, using the participant statements as a guide, 

the instructional “action” in this case may not represent thoughtful and considered 

decisions. Other pairings may be less frequently mentioned, but they are possibly more 

meaningful.    

Samples E and G.  Samples E and G are noteworthy subjects for examination 

because the coaches frequently treated them as a pair of related exemplars. As a matter of 

fact these samples were paired together almost as frequently as samples K and L. The 

students who created samples E and G demonstrate similar skills and challenges with 

equipartitioning. 
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Figure 14.  Samples G and E were paired frequently for a similar partitioning error. 

 

Figure 14 shows the network density map for Sample G. The arrows indicate that 

students A, D, F, C, and particularly E were purposefully placed in groups with student 

G.  The weight and intensity of the shading indicate how frequently the coaches signaled 

their intention to pair those students in a discussion group. Digging a little deeper into the 

coaches’ statements can illuminate more detail about their intentions in placing student E 

in a group with student G, as well as the role of the other students’ thinking.  



 

 

152

 

  Figure 15.  Samples E and G demonstrate three instructional cues. 

 

Samples E and G demonstrate three areas of interest. First, sample E only shows 

half of the answer, modeling just one of the equal sharing situations of the comparison. 

Second, sample G shows a Non-Anticipatory sharing strategy, which is evidenced first by 

the fact that he partitions the sandwiches at the Washington Monument into fourths when 

the task indicates that there are five sharers, and also by the fact that the fourth sandwich 

at the White House does not get distributed to the students. The groupings and pairings 

suggested by the coaches varied in their level of productivity with respect to addressing 

specific student learning needs. The least productive comments come from observations 

but lack detail, do not connect to conceptual principles, and do not offer a path forward. 

This excerpt is one of few examples observed in the three coach interviews: “So I think 

these guys (Samples E & G) maybe are struggling with equal groups or what to do with 
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leftovers” (Rachel). In contrast, this excerpt from Isabella’s interview offers evidence, but 

still does not reference a standard or a bridging standard that could help place this piece 

of work in a learning trajectory:  

Okay. These guys (Samples F, E, D, G) modeled it but had a problem 

naming it and also with what to do with the extra (Samples G, E ... This 

one  

also had an extra sandwich. I don't know if I would put him with them. 

He just didn't do anything with the extras (Sample G). (Isabella) 

Because E and G have similar early concepts of the “big idea” there are many 

opportunities to pair them for learning. The first observation is that both student E and 

student G may not understand the comparison context, particularly student E. Faith 

targets this concern and prioritizes a plan to ensure their understanding of the context, 

saying: 

So, let's think about the comprehension piece to ensure that everybody 

understands what the question is asking. Then, we'll come and start to 

talk about a couple of the strategies. We'd never share all of these, but 

then we have to think about how we are going to pull in this child 

(Sample G) and this child (Sample E). Seems like they had a way to get 

started, then they weren't real sure what's next. (Faith) 

Samples E and G show evidence of similar approaches and Isabella intentionally 

pairs them together so that four students could share strategies that are complementary. 
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She groups them and gives their group a directive: “clarify thinking through questions.” 

Here is the full statement, that better shows her purposeful planning. 

So then it's one whole and then the last one in thirds which is the same 

as this person (Sample E) and then this person (Sample G) could hear 

what they did with that extra one. So I kind of like this group together. 

(Samples A C E G) I don't know what to call them. Clarify thinking 

through questions. (Faith) 

 A bit later Isabella elaborated on her thinking, specifying the exact connections 

she hopes students will make. “I would probably put this person (Sample D) in here 

(Samples A, C, E, G) just because this one (Sample G), he has a remainder and doesn't 

want to do anything with it . . .” After matching sample G to sample D, who discussed the 

idea of remainders, she considered the group as a whole and decided that student G 

would benefit from working with students A, C, and E.  

just because this one (Sample G), he has a remainder and doesn't want to 

do anything with it, but then I also feel like he's a little close to this one 

(Sample A) in that he counted wrong and here he has good thinking, but 

he counted wrong or divided it up wrong. So I feel like he (Sample G) 

would fit there. (Isabella) 

The differences between the most responsive and least responsive instructional 

planning action may lie in the attention to details, including an interpretation of the work 

that focuses on the kernel of students’ “right thinking” (Confrey et al., 2014). It is also 

grounded in a deep knowledge of meaningful distinctions of mathematical content along 
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a learning trajectory that includes bridging standards, all of which inform the next steps 

that are taken.  The case of sample B.  After many passes through the data it became 

apparent that sample B captured a great deal of attention from the coaches and deserved a 

closer look. Sample B was connected with every student work sample. More importantly, 

student B was not always paired with another student because the work was wanting, nor 

because it was exemplary.  

 

 

Figure 16.  Sample B as mentor and Sample B as partner. 

 

The focus of the pairing was sometimes because of the answer in Sample B, or 

because of the representation of the partitioning in it, or because of the written 

explanation given. It’s important to note that at times the coaches positioned the work in 

Sample B as that of a mentor and in other pairings as that of the mentee.  For example, 

Faith paired Sample B with Sample E the strategies in Sample E and Sample B were 
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similar, although Sample E had not shown a completed representation, as Sample B 

showed:  

(Samples) B and E, if these guys work together they kind of have this 

sense of this idea, and they are similar strategies where they might work 

well together and this would pull this little guy (Sample E) up to 

continue. (Isabella) 

While this partnership was based on similar strategies and designed to mentor student E, 

Isabella suggested pairing student B with student J so that student B could see an 

alternative approach. She said, “I think this person (Sample J) needs to talk to this person 

(Sample B) and see which one is the right answer.” Faith made the same observation, 

saying, “. . . in this case, I might say, ‘Can you prove to me that five halves is the same as 

two-fifths or is it?’" This was a strategic pairing so that student J could see a visual 

representation of how student B arrived at an answer of 2/5. She was firm in this 

decision, reiterating it by saying “He (Sample J) needs to see the two-fifths. He (Sample 

J) needs to be able to see that one.” 
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Figure 17.  Sample B Links Three Other Strategies. 

 

The work in Sample B also contributed to the variety of approaches or strategies 

placed in a discussion group. For example, Faith added Sample B to a group with 

Samples A, F, and G because her strategy was noticeably different from theirs, yet still 

similar enough to have productive conversations:  

I’m feeling like we need another person. And the reason, oh wait, I did 

say I would pull this guy. I would pull another person like these 

(Samples C or B) in because I want to have a mix of strategy levels . . . 

so that they can build on each other. (Faith) 

Despite the fact that Sample B was often held as a potential productive contributor to 

discussion groups, Sample B also had an answer that challenged the coaches. Rachel was 

particularly concerned that Sample B did not share an expected answer to the task, 

despite the mostly appropriate drawn representation of the situation. In Sample B’s 

surprising interpretation of the problem, the students at both field trip destinations had the 
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same amount of food for what was generally considered a comparison task across the two 

destinations. For example, if there are two sandwiches for five people to share at the 

Washington Monument, everyone will get the same amount. The other two coaches noted 

the unexpected answer and also recognized the same answer in Sample J. So while Faith 

put Sample B with Sample J so that Sample J could have a model for creating a visual 

representation, Isabella chose to place Sample B in a group with Samples K and L so that 

they could share their more expected interpretation of the problem situation.  

 

  

Figure 18. Samples K and L serve as exemplars. 

 

It is important to reiterate that the directions for the sorting did not specify that the 

coaches sort the samples for instructional purposes, but they all gradually drifted in that 

direction as they became more familiar with the details of the student work. Sample B 

stood out during the interviews as a pivotal exemplar because it could be paired so many 



 

 

159

different ways. The flexibility of its connections to the other samples is visible in the 

network density map. Only Sample C was connected objectively more times with other 

samples than Sample B was. Sample C was intentionally paired with Sample H so that 

they could share their symbolic and pictorial representations of tenths of a sandwich, but 

Sample C was mostly put in groups because every sample had to be assigned a discussion 

group. That is what educators do; they make sure every student participates. Sample C 

was often put just anywhere another representation was needed.  

 

 

Figure 19.  Sample B weighted network analysis.  
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The network density map for Sample B shows the strength of its connection to 

Sample E to whom student B served as a mentor. It also shows the strength of its 

connection to Sample J, as both offered the same unusual interpretation of the problem 

situation and were paired by the coaches to address that concern. It also shows Sample 

B’s “convenience” connection to Sample C, often tied together because their strategies 

looked similar but over all were not compatible. The rest of Sample B’s connections were 

weaker, but it is more important to note that Sample B had a connection to every other 

work sample by at least one of the coaches. 

As the coaches made groupings and pairings of student work samples, their 

reasoning shed light on how they used their current understandings of the mathematical 

topics that underlie this task. When coaches made note of subtle differences between two 

work samples, they showed evidence that these differences had instructional import. 

Similarly, when they did not place two samples in the grouping or a pairing, they were 

indicating that the students were less likely to offer contributions to a productive 

conversation. While there is evidence for every pairing noted in this study, it is possible 

that the order in which the samples were presented, for example A, B, C, may also have 

had undue influence on the pairings. A clear example is Sample B and Sample C. In the 

previous network density map, Samples B and C were frequently matched, but there were 

no statements from the coaches that make a strong argument for why this was true. In 

future studies it would be advisable to re-letter Samples B and C, and likely samples H 

and I, and K and L. Or, alternatively, one might offer the stack of papers to teachers out 

of alphabetical, or in random order, to see if the same pairings were prevalent. 



 

 

161

Chapter Summary 

The purpose of this study was to explore elementary mathematics coaches’ 

references to learning trajectories as they were examining artifacts of student thinking. 

The first results reported were the resources coaches used in their practice. The sources 

varied from entire programs that encourage different ways of thinking about 

mathematics, but they also included resources used to locate daily use activities for 

classroom teachers. What was not mentioned may be even more important: the coaches 

did not mention the use of the adopted textbook nor did they mention the use of open 

source outlets for lesson materials. For these participants the county pacing guide as well 

as the states curriculum resources were also noted as critically important. 

The professional noticing framework provided a lens for reporting additional 

results from the data. Using information gathered from the participants reflections on the 

task at the center of the study, including the mathematical goals they assigned to it, the 

prerequisite skills, and the next steps for that lesson combined to create a hypothetical 

learning trajectory for each coach. Although there were differences between the three 

coaches HLTs, the more important finding is that student performance on the task caused 

each coach to modify their lesson goals significantly, in response to details in the student 

work. Because most students did not demonstrate skills in equipartitioning that are 

needed to solve this task, the coaches quickly revised their learning goals, modifying 

their original proposed learning trajectory, generating a new learning goal. Interestingly, 

despite the fact that two of the coaches had extensive experience with CGI, they did not 

make a note of every distinction that is meaningful in that sequence of strategies, as 
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represented in the student work. They both did, however, reference the idea of relational 

thinking, and end goal for CGI. The coach without those experiences relied on her 

extensive knowledge of the state content standards to inform her hypothetical learning 

trajectory.  

The second phase of the professional noticing framework encouraged a look at 

how these coaches interpreted the thinking of the students whose work samples they 

explored. One interesting finding is that coaches often noticed similarities between 

students’ work samples that were unexpected. The connections they maintained were 

based on mathematical features in the written work that might have seemed unrelated to 

the untrained eye, but which nevertheless shared important mathematical details that later 

proved to be productive connections for grouping students for instruction. Because 

coaches focused so singularly on mathematics in the student work samples, an additional 

level of coding explored this language feature in depth. Making the distinction between 

mathematizing, focusing on the mathematics, and focusing on the subject of the student, 

quantified and verified the researchers’ initial observations about the coaches’ focus on 

mathematics. In general, coaches did not use the students’ mathematical work to 

categorize the students themselves as “deficient” or “successful.” Instead altogether these 

coaches focused a large majority of their time either on the mathematics or on the work 

presented in that single sample. They did not generalize the students overall competency 

based on this single sample.  

After coaches were asked to interpret the student work, they were asked to sort 

the papers according to a set of criteria that they established. The similarities and 
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differences that they highlighted for fronted mathematical features that were interesting 

to them, and meaningful distinctions between samples of student work emerged. Some of 

the meaningful differences that coaches noted were described and patterns emerged. 

Some groupings were done for convenience and without thought, but these were the 

exception and not the rule. Other groupings addressed particular student needs, and these 

groupings seemed to fall into predictable categories. The pairing and grouping 

approaches used by the coaches in this study included students whose thinking is similar, 

while other groupings matched students whose thinking was in stark contrast to each 

other’s’. Even more interesting are the pairings specifically designed to complement each 

student’s demonstrated need, sometimes making pairings that provided each student a 

partner whose strength complemented another’s area for growth. Finally, some 

partnerships were established so that one student could mentor another, but these 

partnerships varied widely. In summary, the coaches’ pairings and groupings were 

thoughtful and primarily established in order to meet the needs of each student.  



 

 

164

 

 

 

 

Chapter Five 

The purpose of this study was to explore elementary mathematics specialist 

coaches’ references to learning trajectories as they examined artifacts of student thinking 

in order to understand what elementary mathematics coaches noticed in student work, the 

resources they referenced in order to make sense of the work and how they referenced 

them, and how this information is used in practice. Using the professional noticing 

framework (van Es & Sherin, 2008) as a guide, engagement includes what coaches attend 

to in student work and the sources of the learning trajectories and learning progressions, 

broadly defined, that inform their interpretations, and the instructional or coaching 

decisions they propose for the students or teachers.  

1. What evidence of students’ mathematical thinking do elementary 

mathematics coaches attend to while examining students’ written artifacts?  

2. What learning trajectories or other similar sequencing sources do 

elementary mathematics coaches reference in order to interpret students’ 

prior, current, and future understandings, based on an examination of 

student work? 

3. How do elementary mathematics coaches use knowledge of learning 

trajectories or other similar sequencing sources, along with evidence 
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gathered from artifacts of student thinking, to make instructional and 

coaching decisions? 

Discussion 

This study was unique in that it engaged in an exploration of the mathematical 

content knowledge of elementary mathematics specialist coaches. Using the 

categorization of the Elementary Mathematics Specialist laid out by McGatha and 

Rigelman (2017), the three participants were all elementary mathematics specialist 

coaches. Although many coaches have some additional training in mathematics and 

leadership, the participants in this study not only had a teaching license, they also have 

earned a graduate level degree in mathematics education (VMSC, 2016). Although these 

individuals serve in the role of EMS coaches, the manner in which the coaches 

approached this task was more akin to the approach teachers might take. This is 

important because the responses the coaches gave in most cases reflected a teacher 

perspective rather than that of a teacher leader, therefore, the results can reasonably offer 

a lens on the expert teacher’s approach to the tasks rather than that of the coach. 

The data in this study was collected in four different phases. Phase 1 included a 

demographic survey that gathered information about the elementary mathematics 

specialist coaches’ coaching practice, the instructional resources on which they rely, and 

additional experiences that may influence their understandings of mathematics. At the 

conclusion of the survey coaches completed a mathematics task and then recorded how 

they anticipated students would respond to the task. Coaches were also asked to describe 

a mathematical goal for the task, name the prerequisite skills, and a possible follow up 
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lesson. The task ended with solutions the coaches anticipated students would share. 

Phases 2 and 3 took place in a live interview setting. Phase 2 continued the survey during 

the interview to probe deeper into the coaches’ practice with teachers and the resources 

they use in that practice. Phase 3 asked coaches to examine and sort student work and 

think aloud about what they were seeing and thinking. Phase 4 was a follow up meeting 

for clarifying any remaining concerns.  

Coaches and their resources. The data showed that coaches relied heavily on 

state-produced materials, third party materials like Cognitively Guided Instruction 

(Empson & Levi, 2011) resources, and the local district pacing guide. The instructional 

resources which coaches count on in their practice and referred to by name during the 

interview fell into four identifiable categories.  

The most common resources cited came from either state or local district sources. 

The state materials included standards for learning but also included a curriculum 

framework and lessons that address specific standards. The pacing guide from this county 

was also cited frequently as an important resource. One coach even stated the planning 

and pacing guide was “like our bible,” while another indicated that the document 

contained much more useful information than just a pacing guide and standards. It was 

apparent that these coaches relied heavily on resources from both the county and the 

state.  

The second category of resource was broad: it included the kinds of resources that 

provide teachers with daily tasks and activities that serve a particular need. Daily number 

routines, sources for cognitively demanding tasks, and other quickly available resources 
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fill out this category. It should be noted, however, that many of the resources cited in this 

category are also referenced in the county planning and pacing guide described 

previously. 

The third and fourth categories are uniquely distinguished by the roles they play 

in guiding practice rather than by the information they provided. It might be more 

accurate to call the third group “thought guides” than “resources.” For example, the 

Developing Mathematical Ideas (DMI) texts (DMI, 2019) are a resource for professional 

development, not specifically for classroom use, and it was mentioned as part of one 

coach’s training yet was also shared as a resource. In the fourth category of resource, 

there are sources of tasks and activities for students, but the resource is used primarily for 

information, and guidance and inspiration. The most typical example in the fourth 

category is the book often called the “Van de Walle book” (Van de Walle, 2010). It not 

only offers productive activities, it also offers guidance on teaching and learning. In this 

respect, resources like this one encompass categories two and three, with the notable 

exception that it is contained within a single resource. 

Elementary mathematics specialist coaches formulate hypothetical learning 

trajectories based on the resources they have available. The resources to which coaches 

refer directly impact what details they attend to in students’ work, whether those are 

resources that represent practical daily activities or resources that guide and inspire.  

What these data do not tell us are what philosophical or pedagogical sources have 

impacted the coaches’ practices in the past and influence their current behaviors. With the 

exception of the CGI materials and the mindset materials from Boaler (2016), the 
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majority of the resources named or referenced were practical. They filled a need in the 

classroom environment, and defined coaches as resource providers. Yet, despite many 

similarities in their practice and in their education, the coaches still described school-

based practices that differed widely. 

Coaches’ hypothetical learning trajectories. The hypothetical learning 

trajectories of coaches are drawn from their general experience teaching and coaching, 

from specific resources, and of course from local standards, forming a hypothetical 

learning trajectory that guides both instruction and coaching. What coaches notice and 

attend to in student work is also a reflection of their understandings and beliefs, which are 

in turn impacted by the education, training, and other professional activities that built 

their career.  

Despite the fact that coaches cited the same mathematical goal for the sandwich 

task at the center of this study, their individual hypothetical learning trajectories differed 

significantly. One coach devised an HLT that drew heavily from the state standards to list 

prerequisite content, as well for possible current task goals the task addressed. The 

lessons that should come next were also heavily influenced by the sequence laid out in 

the state standards. On the other hand, the other coaches drew from the state standards to 

create an HLT but also drew from strategy sequencing information influenced by 

Cognitively Guided Instruction (Empson & Levi, 2011). Perhaps more importantly, all 

three coaches referenced the district pacing guide as an important tool for planning with 

teachers, specifically citing the additional content that had been added to elucidate the 

mathematical content.  
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More generally, elementary mathematics specialist coaches formulate 

hypothetical learning trajectories based on the resources they have available, and the 

resources to which they refer directly impact the details they attend to in students’ work. 

Additionally, what coaches understand about learning trajectories impacts how they 

interpret the work they see. In other words, that which is named is acknowledged. 

The importance of the mathematics. The second component of the professional 

noticing framework moves experts from attending to details in student work to 

interpreting what they see or hear. The coaches identified significant mathematical details 

in the student work samples, and in the end, grouped them according to fine-grained 

mathematical details. In some cases, it is likely that the students would not immediately 

recognize why they had been grouped together. For example an array representation of 

fifteenths was paired with a representation of an equipartitioned model. Because of the 

difference between the two models, it was not immediately apparent why those two 

students had been grouped, yet the connection was deep and was enough for students to 

engage in a productive discussion about the mathematics at the core of each 

representation. 

Confrey’s (2012) framework for unpacking learner trajectories also underscores 

the importance of mathematics. The framework acknowledges that when students learn 

new ideas they approach the learning with existing knowledge and must make sense of 

and integrate the new information. This inevitably ends in students making 

developmentally appropriate mistakes and demonstrating common misconceptions. 
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Educators must be able to anticipate and should be able to find the "kernel of right-

thinking” (Confrey, 2012, p. 7) and respond appropriately. 

Focusing on the mathematics in student work may be a more productive 

instructional strategy than simply evaluating students, as evaluating students is fraught 

with challenges related to equity and identity in the mathematics classroom (Davis, 

1997). The coaches in this study demonstrated a deep and connected understanding of the 

mathematical content in the student work samples. Since these participants were 

purposely selected as experts, this may imply that experts are more finally attuned to the 

details in student work. It may also speak to the complexity of the coaches’ work with 

students of all ages. Not only do they have the obligation to understand fine details of 

student work, they also have the obligation to use that information in their work with 

teachers and with other stakeholders in the school community.  

Mathematizing and subjectifying. The analysis of mathematizing or subjectifying 

utterances was presented as part of the interpreting phase of the professional noticing 

framework. An exploration of the coaches’ interpretations of students’ mathematical 

thinking, based on the written work samples, shed light on the importance of 

understanding students’ strategies, both the common and the unexpected. Directing 

attention to the mathematics in student work is accomplished through mathematizing 

utterances, ones that focus on the details of the mathematics. In contrast, at times the 

focus was not directed at the mathematizing work but rather at the student who generated 

the mathematics. An utterance that refers to the student and his or her actions is a 
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subjectifying utterance. An utterance that holds the mathematics in focus is a 

mathematizing utterance (Heyd-Metzuyanim & Sfard, 2012).  

Heyd-Metzuyanim and Sfard’s study (2012) focused on the critical role that 

identity plays in the formation of students’ mathematical experiences. Language that 

assigns judgment or intrinsic personal value to the students’ work can hinder a less 

successful student from achieving eventual success. They may begin to believe that their 

success is an innate part of their identity, rather than simply being the outcome of a single 

event or assignment. Perhaps more importantly, teachers may begin to assign traits and 

values to the individual that they have generalized from the category that labeled them. 

Subjectifying language is indicative of something Gee (2018) would call a “categorical 

error” in his interpretation of Ryle’s writings (Gee, 2018). A categorical error assigns a 

student to a category based on a single metric or score and then erroneously ascribes all 

properties of the category to the student. This is problematic because one single result 

from an assessment does not imply that the student embodies all of the qualities one 

might ascribe to that category. Categorical errors are the inherent risks of the use of 

subjectifying language. In this study, coaches with some variation, were far more likely 

to use mathematizing language, thus setting students in the position of being learners and 

doers, rather than embodying performance on one task.  

Overall, when coaches are able to name and describe the details in student work 

with precision they may be more likely to focus on the evidence of mathematical learning 

and not subjectify the student as the doer of mathematics. 
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Responding to student thinking. The final phase of the professional noticing 

framework is the response. Once the educator has attended to details in student work and 

interpreted the work, the next natural step is to respond. Because this study involved 

coaches working in a very controlled environment, they could respond to student work 

more deliberately and thoughtfully than in a hectic planning or professional development 

session. The coaches in this study demonstrated a deep and connected analysis of the 

student work samples that focused heavily on the mathematical details. 

Recognizing that students’ progression along a learning trajectory occurs in 

smaller steps than state standards often indicate, it is important for educators to recognize 

the smaller steps and intricacies of students learning ”between the standards” (Confrey, 

2012). In other words, there are distinctions that must be made between mathematical 

ideas in order to distinguish the different responses that students offer. The coaches in 

this study recognized connections between strategies, connections between models, and 

found strengths in student thinking that might surprise others and used these connections 

to create productive parings and groupings of students for future discussion or 

instruction. 

Grouping and pairing strategies. The coaches demonstrated five different 

strategies for creating these pairings and groups of students based on the details in their 

mathematical thinking (see table 8). 
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Table 8 

Classifying Utterances as Mathematizing or Subjectifying 

Grouping 

Strategy 

Excerpt 

Mentor He (Sample J) needs to be able to see that one (Sample B). 

Connector Well, maybe these two (Samples G, E) could be together just 

because they're both doing the same thing … 

Contrastor I'm feeling like we need another person. And the reason, oh 

wait, I did say I would pull this guy. I would pull another person 

like these (Samples C or B) in because I want to have a mix of 

strategy levels … they can build on each other. 

Complementor Yeah. I'm just coming back to see the different things here that I 

wanted to make sure that Student J is able to understand where 

the five halves. They've got five halves and we've got two-fifths 

(Samples J B). So, I want to be able to compare. 

… 

I might say, "Can you prove to me that five halves is the same as 

two-fifths or is it?" (Samples J B) You know? That's why I put 

compare strategies. 

Social So this one (a group) has three students and this one (another 

group) has three students. In which case I would look, 

personality wise, which group would fit best. There you have it. 

I don't know. 

 

One of the categories is familiar to most readers. Some students were paired 

together because one student appeared to have greater knowledge and as such would be 

able to share their understanding with other students. This is an unbalanced grouping 

because some students are intended to bring more of a contribution than others. This is a 

Mentor pairing. 
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The remaining three pairing strategies are balanced pairings, meaning that each 

student is placed in a group because the teacher intends for them to make a specific 

contribution to the discussion and not to be tutored or to teach. 

The first strategy in this group is the Connector strategy. The Connector strategy 

places students in groups because their strategies (or other features) are similar. We often 

saw work Samples A, B, and C grouped together because each of the students partitioned 

their sandwiches similarly. Interestingly, their mathematical thinking may still be 

meaningfully different, but the intention of the teacher is for the students to come 

together to share their similar approaches. 

The second strategy in this balanced group is the Contrastor strategy. Students are 

placed in Contrastor groups so that they can be exposed to a very different idea than the 

one they themselves produced. For example, Sample B was often grouped with Sample C 

because each had equipartitioned the area models of the sandwiches in significantly 

different ways. Note that Samples A and C were paired using both the Connector and the 

Contrastor strategies by the coaches. This is not to be taken as a contradiction, but rather 

as an illustration of the intentionality of the coaches in their pairings. The strategy applies 

to the coaches’ intention in making the pairing decision.  

The third strategy in the balanced group was originally part of the Contrastor 

group, but it became apparent that the coaches had different intentions when pairing the 

students together. Drawing on the connection to the definition of a set of angles that make 

a sum of 90°, the Complementor groupings intentionally group students together because 

their strategies are complementary: one student’s thinking fills a need for the other with 
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the reverse true as well. While a normal Contrastor grouping could be more or less 

balanced, the Complementor grouping is intentionally balanced equally. A good example 

is pairing together Sample C with Sample H, with the goal of ensuring that Sample C 

offer strategies for modeling the actual sandwich situation, but also with the intention that 

Sample H would share their understanding of generating a decimal response. This is a 

balanced Complementor strategy for grouping rather than a Mentor grouping because 

Sample H, despite the beyond-grade-level response, shows no evidence of understanding 

how to generate a visual model of the situation. The model in sample C has modeling 

strengths to draw from, but it also has vagaries in the drawn models that could stimulate 

conversation. The coach’s intention in this pairing was to spur student H to think about a 

model, while it pushed Sample C to defend their less than accurate equipartitioning and 

to move toward recognizing these fractions in decimal form. 

The final strategy for grouping is based on the reality of the classroom situation. 

At one point in the sort Isabella is holding Sample J in her hand and is unsure where to 

place that student. She stated that she would make note of who was friends with student J, 

how they worked together in class and then place the student accordingly. This is the 

Social strategy. The strategy is mentioned here not because it is mathematically relevant, 

but rather because it acknowledges that there often are many reasons for grouping 

students when all else is equal. But the intention for including Social groupings is to 

foreground the mathematical strategies in contrast, and therefore highlight a 

mathematical focus as a favored strategy for grouping learners. It is important to note that 
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while these strategies for grouping students were observed in coaches in the interview 

environment, they are also applicable for classroom teachers as well. 

Implications 

This study showed that elementary mathematics specialist coaches drew upon a 

variety of resources in order to support their planning with teachers, but showed a marked 

preference for state and local resources. If elementary mathematics coaches frequently 

draw upon state and local resources, these divisions should recognize their obligation to 

provide access to rich and exemplary resources. 

Learning trajectories can be derived from a variety of sources, but often the 

sources are presented in ways that are elusive to the school-level practitioner. They may 

be hidden behind journal paywalls, concealed by technical language, or overlooked 

because they conflict with current standards. That does not mean that coaches (and 

teachers) choose their content freely - standards therefore become the sole determiner of 

the sequence of student concept development. But standards were not designed to be a 

fine-tuned tool. What coaches understand and describe about learning trajectories impacts 

how they interpret the work they see. After all, that which is named is acknowledged. An 

understanding of learning trajectories can help coaches and teachers move from general 

statements about students’ mathematical work to targeting students’ specific strengths 

and needs. 

If attention to details of student thinking can result in more thoughtful 

instructional planning, in this case for pairings for discussion groups, then details about 

student thinking should be a greater focus for professional development. Even standards 
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documents can incorporate exemplars of student work in order to illustrate common 

strategies, representations, and misconceptions, building this awareness into coach and 

teacher planning. 

Grouping students for discussion using a variety of pairing techniques has the 

potential to give students opportunities to serve as both mentor and mentee. By naming 

strategies for grouping students in pairs or groups for discussion, there is an additional 

advantage of identifying categories that can be used with intentionality. These grouping 

strategies for student discussions can offer teachers and coaches, who may still be 

grouping solely based on the Mentor strategy, a workable set of alternatives. The 

categories may also be used and further research may determine if and when each 

strategy is effective. 

Limitations 

One clear limitation of this study is the limited sample size of three coaches, 

which is much too small to generate broad conclusions. Similarly, this study was not able 

to draw conclusions about the elementary mathematics specialist coach in general. 

Because participants in this study had a wide variety of experiences outside of the 

mathematics specialist degree program, there were many more sources from which they 

drew their understandings of learning trajectories to interpret student work, which 

impacted the data.  

This study only addresses one conceptual principle: equipartitioning. Additional 

study would be needed to verify the findings in other domains. The equipartitioning 

principle is unique in that it was mapped out by a scholar who has spent a career studying 
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related learning trajectories (Confrey et al., 2014). It is unclear whether there is sufficient 

detail in other domains to make this possible. Nor is it clear if there is widespread 

agreement on the nature of bridging standards between grade level standards. 

This study positioned the elementary mathematics specialist coach, educated in a 

specific master of education curriculum, and currently serving as a full time mathematics 

as an expert. There are certainly many other definitions of “expert” that would yield 

different results and outcomes. Even the CAEP (2019) and AMTE (2013) standards are 

not sufficient for encompassing the variety of means by which educators become 

specialists in elementary mathematics education.  

An additional limitation is that this study only addressed elementary mathematics 

specialist coaches in a single county, which limits its broader applicability. The resources 

available in every county vary, even in states that share the same common set of 

standards, and this factor may have been critically important to the results of this study, 

given the frequency with which the coaches mentioned the county planning and pacing 

guide. 

Next Steps  

This study could be replicated with participants from other school divisions which 

use different planning and pacing guides. While this study was focused on elementary 

mathematics specialist coaches, positioned as experts, the next phase might explore the 

engagements of individuals who either are not currently coaches, or have not completed 

the degree program that these individuals have. Similarly, extending this exercise to 

practicing teachers may offer a lens on teachers’ hypothetical learning trajectories. It may 
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even demonstrate whether coaches and teachers, because of their job descriptions, have 

different views on what constitutes a hypothetical learning trajectories.  

The depths of mathematical understanding that were revealed by this study show 

that there is great promise in exploring student work as a tool for professional 

development, either with coaches or not. Realistically, student work is the most plentiful 

resource in a school building, and coaches can easily design and create discussion 

protocols or use existing resources for protocols for looking at student work (Baldinger, 

2015; Bella, 2004; Blythe et al., 2008; Cameron et al., 2009; Daehler & Folsom, 2014; 

Kazemi & Loef Franke, 2004). These discussions can take advantage of the plentiful 

resource and build teachers’ understanding of bridging standards, and their skills in 

recognizing details in student work. 

Finally, the student work analysis strategy may also serve as a potential 

assessment tool for coaches’ mathematical knowledge for teaching, as it may go into 

more depth than the other assessment tools currently available. 
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Appendix A 

The Task 

 

The Sandwich Problem 

8 students from Ms. Sandoval’s class took a field trip to Washington, D.C. They only 

packed 6 sandwiches for lunch! 

• At the Washington Monument, 5 students shared 2 

sandwiches 

• At the White House, 3 students shared 4 sandwiches 

Who got the most food? Who got the least? How do you 

know? 

Explain your thinking using pictures, numbers, and words. 
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Overview of the Virginia Mathematics Specialist Preparation Program 

 

Twelve Virginia universities currently offer a master’s degree program to prepare mathematics 

specialists, core mathematics, and leadership courses make up the programs in addition to some 

unique set of program expectations defined by the university. What follows is a description of 

the core courses as developed and piloted with support through the series of four five-year NSF 

projects, listed previously, during the collaborative efforts of Virginia Commonwealth University 

(VCU), University of Virginia (UVA), Norfolk State University (NSU), and Longwood 

University (LU) under the VMSC Statewide Master Degree Programs initiative (VMSC, n. d.). 

 

Mathematics Content and Leadership Courses 

 

From the beginning, designers of the VMSPP realized that teaching courses to prepare teachers 

for a mathematics specialist role would be unique; instructors would be teaching the coaches of 

the mathematics teachers. The 2002 Task Force Report highlighted, modifying existing college 

mathematics courses such as number theory, geometry, or algebra would not meet the needs of 

mathematics specialists (VMSC, 2005, p. 16). New 3-hour graduate level mathematics and 

mathematics education leadership courses needed to be created. Courses were needed that 

connected mathematics content knowledge to content pedagogical knowledge and that allowed 

teachers to understand the developmental progression of mathematical ideas necessary for 

planning instruction and assessment. In addition, these future leaders would need to recognize 

how the information from their coursework bridged to their own teaching practices and how 

information from their coursework would be reflected in the coaching practice. The Middle 

School Mathematics Specialist Task Force (2008) supported the recommendations made by the 

2002 Task Force and reiterated that, "helping participants recognize how assignments from their 

coursework translated into their practice both as teachers and as coaches is a critical obligation of 

the curriculum and the course instructors" (VMSC, n. d., p. 16-18).  

 

A brief description of six mathematics content and three mathematics education leadership 

courses follow. An annotated syllabus for each of these courses is located in the following 

section of this report. 

 

Numbers and operations. This introductory course addresses fundamental mathematical ideas 

concerning the operations of arithmetic and the base-ten number system. Connections between 

the operations are explored in various contexts including whole numbers, problem solving, 

decimals, and fractions. The structure of the number system is used to develop understandings of 

our base-ten system. The course also uses cases about students’ thinking and the computational 

methods they use and episodes in the history of the number system that illuminate the 

developmental progression of the mathematics and the learning trajectories of children.  

 

Rational numbers and proportional reasoning. In this course, students explore the conceptual 

and procedural basis of rational numbers; fractions, decimals, and percents as well as the 

essential role that proportional reasoning plays in mathematics. The logic, estimations, 

interpretations, and procedures used when ordering and computing with fractions and decimals 

are explored using multiple interpretations and representations including visual and physical 
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representations. Episodes from the history of the number systems are explored and compared 

with the developmental sequence and learning trajectories of children learning this material.  

 

Algebra and functions. Students develop skills in representation, generalization, and 

development of mathematical arguments through the exploration of the properties of arithmetic 

operations, the relationship between operations and operating on particular numbers. Additional 

topics from algebra that are explored are variables, patterns, and functions; modeling and 

interpretations of graphs; linear functions and non-linear functions, including quadratics and 

exponentials.  

 

Algebra for middle school specialists. This course extends the understanding of topics 

introduced in the Functions and Algebra I course, introduces new topics from secondary 

mathematics, and integrates graphing technology into the study of the algebra topics. Class 

activities focus on extending students' skills in representation, generalization, and developing 

mathematical arguments. Topics include but are not limited to linear equations and inequalities; 

modeling and interpreting graphs; linear and non-linear functions; logarithms; factoring, zeros, 

and intercepts; domain and range; exponents and radicals; and some number theory related to the 

real number system. 

 

Geometry and measurement. This course explores the foundations of informal geometry and 

measurement in 1, 2, and 3 dimensions. The van Hiele model for geometric learning is used as a 

framework to explore how children build their understandings of length, area, volume, angles, 

and geometric relationships. Visualization, spatial reasoning, and geometric modeling are 

stressed along with transformational geometry, congruence, and similarity.  

 

Probability and statistics. Various elementary statistical measures and graphical representations 

are used to describe, compare, and interpret data sets. The basic laws and concepts of probability 

are explored including sample spaces, probability distributions, and random variables. A 

statistical project is required that uses hypothesizing, experimental design, the collection of data, 

and comparisons of different populations.  

 

Leadership I. This introductory course is designed to build an understanding of the content and 

process standards identified by the National Council of Teachers of Mathematics (NCTM) 

Principals and Standards for School Mathematics (2000) and the K-8 Virginia Mathematics 

Standards of Learning and Curriculum Framework. In addition, connections are made within the 

mathematics content as participants develop their knowledge about mathematics, mathematics 

content pedagogy and diagnosing student understanding. A focus is given to students as 

mathematics learners with attention to learning theory, formative assessment, and diverse 

learners; teachers as learners through study groups and observation of another teacher’s 

classroom; and the instructional program through the design, teaching, and evaluation of student-

centered lessons. 

     

Leadership II. This course is designed to build skills, understandings, and dispositions required 

for optimal mathematics education leadership roles in K-8 schools; in particular the different 

roles of the school-based mathematics specialist. The course develops skills to coach and work 
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with adult learners, understanding mathematics content pedagogy necessary to support teachers, 

using research in selected topics for instructional decision making, and building deeper 

understandings of the mathematics that underpins the K-8 mathematics curriculum. 

 

Leadership III. This course builds skills, understandings, and dispositions required for optimal 

mathematics education leadership roles in K-8 schools; attention is given to data analysis and 

collaborative data-driven discussions for instructional planning and for mathematics program 

decision making. In addition, students engage in learning to participate in and to facilitate the 

Lesson Study process; to develop and use formal and informal formative assessments to guide 

instruction; to develop or modify tasks for effective task-based mathematics instruction, and to 

support other teachers effective mathematics lesson planning.  

 

Considerations when Planning a Course 

 
Courses in the VMSPP have been taught in various formats, and each format presents different 

advantages and challenges to the students and the instructors. As part of the VMSI, courses have 

been offered in residential summer institutes with about 55 hours of class time and significant 

daily in class and homework assignments including readings, doing mathematics, and writing 

reflection papers. As traditional semester classes, taught in 15 three-hour weekly sessions each 

with homework assignments including readings, doing mathematics, writing reflection papers, 

and writing cases. A third option, more often used with the leadership courses was to split the 

time between summer sessions and Saturday classes.  

 

Summer residential institute format. Students who participated in a program offered entirely 

as residential institutes took courses each of three consecutive summers. Content courses were 

taught simultaneously during the first summer institute so that on a given day participants 

experienced one course in the morning and another in the afternoon for the five weeks. Feedback 

on this schedule was not as positive, so the schedule was adjusted to have one course follow the 

next. In the following summer institutes, two content courses were offered in succession over a 

five week period. Specifically, the two content courses were offered in intense 2½-week sessions 

designed for two 3 ½ hour blocks per day. 

 

In addition, to the two content courses each summer, the first half of a leadership course was also 

scheduled, held four times spread out over the five-week institute. The second half of the 

leadership course was held on four Saturdays spread throughout the fall semester for 6 hours 

each time. This allowed participants to work with students and teachers in their schools when 

completing class projects.  

 

Semester format. Students enrolled in a semester content course met one night a week for 3 

hours. During the summer, the course was taught either for two full weeks or for two or three 

days spread over several weeks. Leadership courses were generally offered in the fall semester 

sometimes overlapping into the second semester which gave participants more time to work with 

students and teachers in completing class projects. 
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Blended learning format. The core courses in the Mathematics Specialist Program were 

originally designed to be face- to-face courses. However, in reaching out to rural school districts 

across Virginia in one of the NSF grants, Research the Expansion of K-5 Mathematics Specialist 

Program into Rural School Systems, it was evident that travel to class would be a major obstacle 

to teachers who wanted to participate. In an effort to address the travel challenge or teachers, the 

program was offered in a combination of the hybrid formats; blended and residential summer 

institutes as well as blended semester courses.  

 

Technology allowed the face-to-face courses to be repurposed to fit a blended format. To 

maintain the cohesiveness of a cohort, the blended courses met twice for a 2-day, Friday and 

Saturday, face-to-face meeting, at the beginning and then midway through the course, with the 

remainder of the classes meeting synchronously online. The sequence of courses remained 

similar to the original design with a few exceptions. Each cohort began with the Number and 

Operations course. The use of Digimemo L2, while not without challenges, in conjunction with a 

universities online collaboration platform allowed students to share work and to participate in 

small group chat rooms. This allowed online classes to be dynamic and interactive. The online 

classes used whole-group and small-group real-time discussions in class. Group projects were 

assigned with the expectation that students would use the online infrastructure to meet with their 

groups online. Formative evaluation reports from Horizon Inc. made to the course development 

teams about the change in students' knowledge as measured on pre- and post-course assessments 

in the blended courses revealed no significant difference from students who participated in the 

face-to-face course. 

 

The cohort program for the K-5 Mathematics Specialist Program into Rural School Systems 

grant included three face-to-face mathematics content classes, and three other core content 

classes were offered as blended classes. The face-to-face class offered the first summer was 

Geometry and Measurement; the second summer was Algebra and Functions, and the third 

summer was Mathematics for Diverse Populations. An additional course was taught in the 

blended format each of the first two summers; Rational Numbers and Proportional Reasoning 

and Probability and Statistics. All three leadership courses were taught in a blended format 

during the school year. Leadership I and II were taught the fall and spring semester following the 

first and second summers respectively and Leadership III followed the third summer institute 

during the fall semester.  

 

The format in which a course is offered impacts participant experiences in different ways. In the 

summer residential institute format, students are immersed in the work and have the opportunity 

for additional collaboration with their peers after class hours. Participants do not, however, have 

the opportunity, as they do in the school year semester format, to do the mathematics with their 

own students, to interview students about their understanding of the mathematics, or write their 

own case studies. During the school-year format, there may be more time between classes for 

reflection and making connections than is readily available during the residential institutes when 

classes meet all day on consecutive days. Some participants reported, however, that the 

residential institutes allowed them to focus on the coursework, and they were not interrupted by 

the daily demands of home or work. Time can become an issue in any format, so careful 

planning and pacing are essential.  
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Alignment of Research Questions to Data Collection 
 

Research Questions 

Data to be collected 
Questions and Tasks 

Data Sources 

• Interview questions regarding 

coaches’ recommendations for 

future work 

• Video recording of coach  

 

After the Sorting 

Reflecting on the Task 

o Was it important for you to solve the 

problem first before looking at this student 

work? What did you learn from it?  

o Have you reconsidered the big 

mathematical concepts after looking at 

these samples? For which grade levels?  

o What concepts do you now think the 

teacher was trying to assess with this task? 

Why?  

o As a coach, what would you like to hear 

the teacher talk say about these samples?  

Using the student work in the coaching 

practice 

o How would you use this set of student 

work while working with a teacher or team 

of teachers as their coach? What goal 

would you want to achieve? How would 

you use this set of samples help you to 

achieve that goal? 

o Have you used student work during CLT’s 

or team meetings before? 

o Is there anything else that you want to 

share?  
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Appendix E  

Semi-Structured Interview Protocol 

 

Thank you for agreeing to take part in this study. I appreciate your willingness to 

share your thinking with me, and to contribute to our understanding of the work of 

mathematics coaches. 

I am not evaluating any student’s, teacher’s, or coach’s performance, but rather I am 

trying to understand the process of assessing student learning through their written work 

and using it for professional development.  

 

Do you mind if I record our session? 

 

Questions to ask first (before looking at samples): 

 

Planning 

o When you plan with teachers, what resources to you keep at the ready? Why? 

o If you finish working with a teacher or a CLT and promise to send a resource to 

them, where is it likely to come from, and why? 

o In your survey you mentioned __________ , can you tell me more about it? 

 

The Task 

o Tell me what you were thinking about as you were working on the task on your 

own? You can talk about either the task or the goals or the anticipated student 

approaches. 

o What would surprise you to see on a student’s paper? Why? 

Introduce Work Samples 

o I have 12 examples of student work on the sandwich. I am asking you to look at 

these samples just as if these were students in your own school, and you need to 

assess this task along with your teachers.  

o You can write comments on the work.  

o Please share your thinking with me as you are looking at the work. I am 

interested in what you are thinking 

o Could you explain how you are sorting the papers? What are you looking for? 

How are you making your decisions?  
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Semi-Structured Interview Protocol 

 

o As individual student work samples are considered, ask these questions:  

o What would you say if you approached this student’s desk and saw this paper?  

o Could you tell me more about why you think that?  

o What might this student be thinking? What do you think they understand? What 

understandings are they still working on? How do you know?  

After the Sorting 

Reflecting on the Task 

o Was it important for you to solve the problem first before looking at this student 

work? What did you learn from it?  

o Have you reconsidered the big mathematical concepts after looking at these 

samples? For which grade levels?  

o What concepts do you now think the teacher was trying to assess with this task? 

Why?  

o As a coach, what would you like to hear the teacher talk say about these samples?  

 

Using the student work in the coaching practice 

o How would you use this set of student work while working with a teacher or team 

of teachers as their coach? What goal would you want to achieve? How would 

you use this set of samples help you to achieve that goal? 

o Have you used student work during CLT’s or team meetings before? 

o Is there anything else that you want to share?  

Are you ready to begin? 
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Appendix F 

Informed Consent 
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Appendix F (Continued) 

 

Informed Consent 
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Appendix F (Continued) 

Informed Consent 
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Appendix G 

Student Work Samples 

 

 
 

 
 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

 
 

 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 
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Appendix G (Continued) 

Student Work Samples 

 

 
 

 
 

Student work from Morrow-Leong, 2013; Suh, Birkhead, Galanti, et al. 2019; Suh, 

Birkhead, Farmer, et al., 2019 

 

  



 

 

206

 

 

 

 

Appendix H  

Recruitment Survey 

 

(Any answer of “No” to questions 1 -4 will redirect the individual to a slide thanking 

them for considering participation.) A yes to all four leads to the basic contact 

information collection. 

 

1. Do you currently hold an endorsement on your license as a Virginia Mathematics 

Specialist or are you eligible for one? 

2. Do you work in an elementary school as a mathematics coach, Math Resource 

Teacher, Title I coach, or do the work of a mathematics coach for teachers under 

any other title? 

3. Is your primary job responsibility supporting teachers? 

4. Are you willing to participate in this research study? The commitment will 

include doing a math task, thinking about and recording how students might 

approach the task, and answering some informational and demographic questions 

about your experience as a mathematics specialist/coach (~20 minutes). It will 

also include a 75-minute interview that includes examining samples of student 

work. This will be arranged in a place and time convenient for you.  

 

Please enter your contact information.  

o Last Name 

o First Name 

o Phone number where you can be reached (please specify if you prefer text or 

voice) 

o Personal email address  

o Gender: M F Other _____ OR  Decline to say 
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Appendix H (Continued) 

Recruitment Survey 

 

o Ethnicity: (Check as many as apply) 

o White 

o Black or African American 

o American Indian or Alaska Native 

o Asian 

o Native Hawaiian and Other Pacific Islander 

o Other _______ 

o Hispanic or Latino 

o Decline to say 

**These are US Census categories. This survey allows for multiple ethnicities 

to be checked.  

o In what county do you work? 

o What school(s) do you support? 

o What is your job title? 

o What grade level teachers do you serve? 

o What percentage of your time is dedicated to supporting teachers (not students) in 

a normal week? 

 

Thank you! I appreciate your time. I will be in touch with you soon. 

Your participation is entirely voluntary and you may decline to participate at any time. 

o  
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Appendix I 

Task Directions 

 

Here is a link to a task designed for students in grades 3- 6.  

 

 

1) Please complete the task as it is designed for students. Please show your preferred 

solution strategy and at least two additional solutions or representations.  

2) On the second page please state the mathematical goal for which this task is 

appropriate, and for what grade(s). You may have more than one answer to this 

question.  

3) Record the strategies and approaches that you expect students would use to solve 

the task. Please include reasons for your thoughts. For example, what tells you 

that students would solve the task that way?  

 

*Final thank you screen. 
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