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Dissertation Director: Dr. Burak F. Tanyu 

 
 
 
The effects of landslides have been exponentially increasing due to the rapid growth of 

urbanization and global climate change. However, the methods to evaluate the effects of 

landslides on very large areas (such as an entire County or State) are still very limited. 

Forecasting landslides is a complex process, which involves (at a minimum) three different 

steps. First, inventory maps of the area that documents the extent of the existing landslides 

must be developed. Second, analyses must be conducted to understand the common 

features within the areas of landslides. Third, the susceptibility of the areas that may or 

may not have landslides must be determined at the moment to have the potential to be part 

of a landslide in the future (identifying the zones of high potential areas). Once the 

inventory maps and susceptibility analyses are completed, then hazard forecasting analyses 

must be conducted to evaluate the effects of external (triggering) factors on initiating future 



 
 

landslides both within the areas that had past landslides and no landslides. The research 

presented in this dissertation focused on studying all of these processes (steps) and provide 

new methods. The outcome of the research was to create a complete methodology of 

landslide forecasting that may be used by decision makers (such as Counties, State 

agencies, insurance companies, etc.) to evaluate large regions and use this information to 

help communities in terms of the potential dangers that may exist now and in the future as 

it relates to landslides. The results of this study are utilized to develop a complete and 

reliable framework of inventory, susceptibility, and hazard analyses. Consequently, the 

outcome of this research may serve as an early warning system for landslide prone and at-

risk regions throughout the world. 
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CHAPTER 1: RESEARCH OVERVIEW 

 

Landslides are mass movements that may consist of soil, rock, debris, organic 

matter, artificial fill, or combination of these materials and may be triggered by a variety 

of factors, such as rainfall (precipitation), seismic activity, ground water level change, 

storm waves or rapid stream erosion. These triggering factors cause a rapid increase in 

shear stress or decrease in shear strength of slope-forming materials. Combination of 

several different sources of data indicate that worldwide, landslides cause losses of around 

1,150 lives and $4 billion economic damage annually (IDD, 2018; WHO, 2017; Pardeshi 

et al., 2013). In the United States alone, annually, the economic losses from landslides were 

estimated as $1–2 billion and loss of lives as 50 (Based on the data from USGS). The 

number of loss of lives in the U.S. caused by landslides were estimated to be more than the 

average deaths caused by earthquakes (Highland et al., 2008). Additionally, Dilley et al. 

(2005) show that more than 300 million of the world’s population is exposed to landslides 

and 66 million people are living in high risk areas. Predicting landslides and analyzing 

potential risks can have major importance in minimizing losses from these natural hazards. 

Studying landslide risk will determine sufficient measures in different regions for 

improvement in hazard recognition, prediction, mitigation measures, warning systems, 

hazard mapping, and emergency preparedness response and recovery. 



2 
 

Terzaghi (1950) illuminated that landslide occurrence is dependent on the 

distinction between internal changes within a slope; for example, factors that induce shear 

strength reduction, and external causes, which give rise to an increased shear stress. It is 

necessary to note that the subaerial mass movements are mostly triggered by precipitation 

(rainfall and snowmelt), seismic activity, human interventions, volcanism, weathering, 

seepages and springs, and river erosion. There is no single factor that can accurately 

characterize landslide hazard; a collection of parameters should be analyzed interactively. 

Based on this in 1989, Crozier developed a classification and arranged influential 

parameters into four categories as (1) precondition (predisposing) factors, (2) conditioning 

factors, (3) triggering factors, and (4) sustaining factors. 

The first group includes inherent slope parameters which may not have direct 

effects but can precipitate the slide process as a catalyst (for example, soil or rock material 

characteristics). In the second group, preparatory factors are dynamic parameters, which 

reduce the margin of stability over time without initiating movement and as noted before, 

would be accelerated by precondition factors. The third group of this classification 

constitutes triggering factors, which initiate slope movement and initiate sliding. Most of 

the triggering parameters are external forces, and the initiating thresholds are thus referred 

to as extrinsic thresholds (Schumm, 1979). The sustaining factors cover the parameters 

which predicate the slides' behavior such as rate, duration, and form of movement. 

Landslide studies require a minimum of three steps: 
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• Inventory maps which classify and map the documentation of existing landslides. 

They can be either recently occurring or historic and pre-historic events (Barlow et al., 

2003; Glenn et al., 2006; Leshchinsky et al., 2015; Sato et al., 2007);  

• Susceptibility analysis which starts with landslide inventory maps and evaluates 

the soil and site conditions that indicate areas with high landslide potential. The results of 

this analysis can be projected into a landslide susceptibility map (Chen et al., 2017; Pham 

et al., 2017; Yeon et al., 2010); 

• Hazard forecasting which can be prepared by incorporating the external 

(triggering) factors (Baum & Godt, 2010; Dhakal & Sidle, 2004; Rossi et al., 2013). The 

most important difference between the hazard forecasting and susceptibility analysis is that 

the triggering sources are also included in the hazard forecasting. 

Investigation of landslide risk will determine sufficient measures in different 

regions for improvement in hazard recognition, prediction, mitigation measures, warning 

systems, hazard mapping and assessments, and emergency preparedness response and 

recovery. Development of landslide studies based on attaining a reliable framework of 

inventory, susceptibility, hazard analyses, and consequently an early warning system will 

be useful for landslide prone regions and at-risk countries. Based on landslide studies, 

many countries can be able to adopt powerful economic policies in order to support 

mitigation strategies against this hazard. On the other hand, development of landslide 

studies in countries with high frequency of occurrence and attaining a reliable framework 

will be useful for other regions. Consequently, developing countries will be able to adopt 

powerful economic policies in order to support mitigation strategies against this hazard.  



4 
 

Introduction to Problem Statement 

In general, there are two main groups of researchers who deal with landslide 

studies: geotechnical engineers and geologist/geography researchers. Each group utilizes a 

different approach in studying different aspects of landslide studies. Slope stability analysis 

is a method used by geotechnical engineers to estimate the potential failure mechanism of 

human-made or natural slopes (e.g., excavations, landfills, road-cuts, and landslides). The 

calculation of slope stability requires precise data in failure surface (slope cross sections) 

from field observations and topographical maps, soil shear strength parameters, and pore 

water pressure from multiple in-situ geotechnical tests. Therefore, one of the main 

disadvantages of this approach is that slope stability is evaluated by determining a worst-

case scenario where slope and the associated parameters and features are drawn as part of 

a specific cross section in great detail. Additionally, the factor of safety is computed 

individually for each cross section of the slope. Thus, predicting shallow landslides over 

large regions in real or near real time is an impossible task based on the deterministic 

approach (Baum & Godt, 2010). In other words, geotechnical engineers are able to conduct 

specific evaluations of a given slope. Therefore, the present study made an effort to expand 

this capability at a regional level (covering very large areas such as an entire County within 

a region). 

The second group is  geological and geographical scientists who look at the problem 

in a big and regional scale. While geotechnical engineers are more interested in the index 

and engineering properties of soils and their relationship with the failure scenarios, 
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geologists and geographers are more concentrated on topographical and geomorphological 

properties such as slope aspect, curvature, wetness index, distance to drainage, distance to 

fault, drainage density, fault density, and spring density maps (Ozdemir & Altural, 2013; 

Hong et al., 2015; Trigila et al., 2015; Youssef et al., 2016; Wu et al., 2020). On the other 

hand, the conventional approach for landslide inventory analyses involves using the data 

obtained through the field survey mapping and historical records, which is tedious to 

compile especially in heavily vegetated terrains (Pardeshi et al., 2013). New advancements 

in satellite imagery, LiDAR data acquisition, and GIS systems improve the landslide 

inventory techniques in different ways. However, all previously developed models utilize 

a supervised method to delineate existing landslides in a selected region. This means that 

the supervised method requires the user/operator to predefine landslide geometrical 

features (scarp, toe, and height of body) in a selected region. Moreover, these studies 

demonstrate the ability to detect existing landslides with well-defined features. In regions 

such as east coast of the U.S., landslides are often smaller in scale and sporadic; further, 

their features such as scarp and toe tend to be ill-defined. In these conditions, the previously 

determined landslide detection algorithms are not as effective because they require 

supervision wherein the user is expected to define features of the landslides (e.g., the height 

of the scarp, the slope of the body, and the toe of the landslide) in a given region.  

The purpose of this study was to develop a framework of inventory, susceptibility, 

hazard analyses, using Digital Elevation Model (DEM) data and landslide conditioning and 

triggering factors obtained from available resources. The study proposes a methodology to 

evaluate the risk of landslide prone areas in a given region by performing inventory, 
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susceptibility, and hazard analyses. Using this framework, the results for existing 

landslides and inventory analyses will be provided by quickly running the model on DEM 

data obtained for the selected study area.  

 

Outlining Gaps in the Literature - Brief Summary 

Landslide inventory maps are the simplest form of landslide information, which 

records the location, the date of occurrence, and type of landslides (Cruden, 1991). The 

results of the study by Galli et al. (2008) revealed that complete landslide inventory map 

provide high predictive power for further landslide susceptibility and hazard analyses. The 

conventional techniques such as field survey mapping and historical records are difficult 

to make for various reasons such as the size of the landslide, the viewpoint of the 

investigator, and the fact that old landslides are often partially or totally covered by forest, 

or have been partly dismantled by other landslides. One of the previously used methods in 

landslide inventory analysis is the interpretation of airborne or satellite imagery (Mwaniki 

et al., 2017). The most important challenge with using satellite imagery is to interpret the 

observed features in areas with heavy vegetation cover. The main technique used in 

interpreting satellite imagery involves in recognizing the difference in reflectance and 

shape of multiple colors and this can cause significant errors since many existing landslides 

are covered by dense vegetation. The use of light detection and ranging (LiDAR) data to 

create bare earth digital elevation models (DEM) is an effective means of mapping existing 

landslides in a given region (Barlow et al., 2003; McKean and Roering, 2004; Glenn et al., 
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2006; Booth et al., 2009; Leshchinsky et al. 2015; Li et al., 2016). One of the challenges 

with previously developed inventory analyses is that they require experience, training, a 

systematic methodology, and well-defined interpretation that relies on the expert’s opinion 

(Guzzetti et al., 2012). In regions such as east coast of the U.S. this becomes an issue since 

landslides are often smaller in scale and sporadic; further, their features such as scarp and 

toe tend to be not as well-defined.  

Landslide susceptibility analysis is the second step of the whole forecasting approach 

and is based on evaluating the likelihood of the occurrence based on the prelimina ry (or 

preparatory) factors. There are three components that determine the result of landslide 

susceptibility analyses: 1) features and dataset combination, 2) landslide observations, and 

3) algorithms used for evaluation. Change in these components may af fect the accuracy of 

landslide susceptibility analyses or the ability of landslide forecasting.  In general, the 

parameters used for landslide susceptibility analysis can be divided into categories, such 

as, geological, hydrological, topographical, and geotechnical features. However, all of the 

previous studies have mostly used geological and topographical parameters of the study 

area but have not included the geotechnical and hydrological parameters. In previous work, 

the observations are generally modeled as vector or point data on the area (Pham et al., 

2017b). This means that in LSA model, each landslide occurrence is represented as a point 

on a map and in the dataset. The modeling of the landslide observations also captures the 

proportions of the landslides within an area. Most of the studies have used this data to select 

areas for their analyses where proportion of landslide and non-landslide areas is equal to 

each other (Ozdemir and Altural, 2013, Chen et al., 2017). The primary reasons for this 
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approach are due to the ease of the computational efforts and the sensitivity of the 

assessment methods to the unbalance datasets. Previous studies have used multiple 

algorithms to perform susceptibility analyses. Frequency Ratio (Hong et al., 2015; Ozdemir 

and Altural, 2013), Logistic Regression (Oh et al., 2010; Ozdemir and Altural, 2013; 

Youssef et al., 2016), Random Forest (Chen et al., 2017; Trigila et al., 2015), Classification 

and Regression Tree (Chen et al., 2017), and Support Vector Machines (Colkesen et al., 

2016) are the methods that have been previously used for this purpose. However, d ue to 

the fact that using raster dataset would require algorithms that are not sensitive to 

unbalanced data, the present study utilized C4.5 and C5.0 algorithm to evalua te the 

landslide susceptibility analyses. The results of this analyses were compared against 

Random Forest analyses which is a standard method used previously by multiple studies.  

Hazard analyses consist of mapping and evaluating the potential for damage by 

incorporating external factors. Several hazard analyses approaches have been utilized 

previously to address landslide hazard analysis. SHALSTAB (Shallow Landslide Stability 

Model) is one of the grid-based approaches. However, this model is not appropriate to 

forecast the timing of slope failure based on the triggering mechanism (Dhakal and Sidle, 

2004). SINMAP (Stability Index Mapping) is a different method that works based on 

infinite slope stability model with groundwater pore pressures (Rossi et al., 2013). This 

method applies only to shallow transitional landslide phenomena controlled by shallow 

groundwater flow. It does not apply to deep-seated or rotational slides. Another 

disadvantage of this method is that the accuracy of output is heavily reliant on the accuracy 

of DEM (Yatheendradas et al., 2019). TRIGRS (Transient Rainfall Infiltration and Grid 
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based Regional Slope stability) is another approach developed in FORTRAN language, for 

computing the transient pore pressure distribution due to rainfall infiltration using the 

method proposed by (Iverson, 2000) (Baum and Godt, 2010. However, TRIGRS is very 

sensitive to initial conditions, therefore, if the initial water table depth is poorly 

constrained, it may produce questionable results. All of the above discussed approaches 

have a value to estimate landslide hazard analyses but they do not consider 

geotechnical/geological features within the landslide area (e.g., types of bedrock and soil, 

depths of stratigraphic layers, percentage of soils, and shear strength parameters of soil). 

Therefore, the analyses are predominantly solved by using rainfall data and topographical 

information of the slope alone, ignoring the rest of the very important properties. This 

approach potentially grossly limits the accuracy of the predictions.  

In summary, the following challenges remain unaddressed: 

- Detecting landslides at a regional scale without predefining geometrical features 

(e.g., the location of the scarp, toe, etc.) and using a technique that does not require 

supervision (e.g. revising the resolution of the scarp, or defining a minimum slope 

for the body of the landslide, etc.) to perform the analyses. 

- When conducting landslide prediction and hazard analyses, the ability to 

incorporate not only the geometrical features but also the geotechnical parameters 

to define the properties of the region. 

- Datasets created in previous landslide analyses are based on compiling data based 

on vector, which results in a point within a region for each location of interest. The 

analyses are conducted by creating equal amount of vector data to represent 
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landslide and non-landslide locations. However, in reality, in a given region, the 

areas covered by landslides are typically not equal to the areas covered by non-

landslides (i.e., referred as unbalanced datasets). This is best modeled with 

creating raster type data sets as opposed to vector type. The ability to model a 

region with raster dataset requires rigorous analyses and such path is not explicitly 

discussed in the previous literature. 

- For a given region that is well studied, predicting the future occurrence of a 

landslide based on a triggering factor (i.e., rainfall event). 

The goal of this research was to fill in the gap for the above-mentioned challenges and 

achieve the following objectives: 

1. Being able to develop a bare earth digital elevation model based on available 

LiDAR data and implement image segmentation method that is embedded in the 

existing and available GIS platform to very quickly and accurately map out the 

location of previously occurred landslides. This tool is envisioned to be as part of 

any initial site investigation efforts even in regions where the aerial photography 

cannot be used due to heavy vegetation cover.  

2. Develop a methodology to be able to create raster datasets that allow the region to 

be evaluated with millions of pixels (as opposed to vector data with single pixel 

representing given condition (being landslide or non-landslide)) where each pixel 

contains multiple dataset including parameters associated with both geotechnical 

and geological properties. The applicability of the methodology to be evaluated 

with select existing algorithms where the results from unbalanced and balanced 
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datasets are compared. The end result of this objective is envisioned to outline 

whether the end users should go through the extensive effort to evaluate the 

regions with raster datasets or is the existing way of modeling with vector datasets 

are considered sufficient enough. Such decision will either validate the approaches 

followed by previous studies or will demonstrate the significant shortcomings of 

the previous studies. 

3. Develop a methodology to estimate the probability of failure of previously existing 

landslides in a region based on infiltration of rainwater into the ground. Such tool 

is envisioned to be used by decision makers to develop early warning systems to 

identify potential conditions and areas that could be a treat for loss of property and 

life. The tool is not envisioned to be used for design but can also be used as part 

of site investigation to characterize the land prior to any decisions for 

development.  
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Research Questions 

Based on the extensive survey of present literature in inventory, susceptibility, and 

hazard analyses and by using the initial results of landslide forecasting models, four 

different research questions were developed in order to evaluate and test the validity of the 

proposed hypotheses. These research questions are as follows: 

Hypothesis 1: Can we detect distributed landslides using LiDAR (DEM) and 

image segmentation method without considering predefined geometrical parameters 

(scarp and toe)? 

Hypothesis 2: Is it possible and more applicable to develop a methodology to 

combine all parameters (Geotechnical and Geomorphological) in one dataset when 

evaluating landslide susceptibility? 

Hypothesis 3: If the landslide susceptibility analyses were performed by creating 

a raster (unbalanced) dataset, would the analyses be more accurate especially if such 

analyses were conducted with algorithms that are less sensitivity to dataset balance (such 

as C4.5 (J48) and C5.0? 

Hypothesis 4: Can we estimate the probability of future landslides in large areas if 

the modeled developed for susceptibility analyses were modified to evaluate the triggering 

of landslides based on rainfall infiltration? 
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Overall Summary of the Conducted Research 

In line with the motivation of the research, this study was conducted in three parts. 

Overall summary of each part is described below, following with sections of the 

dissertation that were written to present the details of each part.  

In the first part of the research, a new tool that is herein referred as Automated 

Landslide Detection Model (ALDM) has been developed. This tool is then tested within 

three different areas in Pennsylvania (one of the most landslide prone regions in the east 

coast of the United States) where the state has an extensive inventory of landslides created 

by the Pennsylvania Department of Conservation and Natural Resources (PDCNR) in 

2001. This dataset was created based on the traditional methods that involves surveying 

the area in the field (in-person) and interpretation of the available photogrammetric data. 

This approach works very well but it requires great amount of time, personnel, and budget 

as covering a large area in detail requires may people to be involved for many weeks and 

months. Also, although the observations at the time become absolute, any new landslide 

area that develops after these efforts are not incorporated into this database.  The ALDM 

analyses allow such evaluation to be completed in a matter of days. To test the validity of 

the developed ALDM in this study, LiDAR bare earth digital elevation models (DEMs) of 

three different areas within PDCNR inventory have been created and the ALDM analyses 

were performed on this dataset. Additionally, using the DEM of the area, Hill shade map 

of these three study areas were also created and following a similar approach as conducted 

for the photogrammetric data evaluation, landslides were visually identified. Therefore, 

three datasets from three different areas within PA could be compared against each other 
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(PA DCNR field data, visual interpretation of Hill shape map, and ALDM predictions). 

The results demonstrated that the new ALDM method was able to accurately capture both 

the landslides and non-landslides in all of the areas evaluated with accuracies of 70% and 

92% respectively when the result is compared against PA DCNR field data. The rate of 

accuracy is even higher when it is compared to visual detection method (86% for landslide 

and 94% for non-landslide areas). Additionally, the study showed that the proposed ALDM 

method could be implemented in different regions where landslides of different shapes, 

sizes, and abundance could be detected. The significance of the newly developed ALDM 

becomes evident when compared to the other existing computer-based analyses. The 

previously developed computer-based analyses require the user to obtain the specific code, 

to define the properties of the landslide prior to the search and require supervision and 

quality assurance. The newly developed ALDM can be implemented with readily available 

tools and datasets and does not need supervision for the analyses after the parameters 

regarding landslide morphology are defined for that region. Findings obtained from this 

part of the study allowed the confirmation of the Hypothesis 1. Details of this part of the 

study have been presented in Chapter 2. 

In the second part of the research, the focus was to conduct Landslide 

Susceptibility Analysis (LSA) that could be used to develop warning systems and 

mitigation measures. The purpose here is to evaluate the feasibility of implementing 

landslide susceptibility analysis to identify regions that are more likely to suffer landslides. 

The analyses conducted in this study included in evaluating three different components 

based on the following effects: (1) creating three different datasets (herein referred as 
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scenarios) based on four different feature selection methods (these datasets serve as 

landslide conditioning factors), (2) different ways of coding the datasets (observation 

types) for the analyses (raster versus vector approaches), and (3) different ways of 

conducting the susceptibility analyses based on three different algorithms (Random Forest, 

C4.5, and C5.0). In each scenario, thirteen different features with topographical, geologic, 

geotechnical, and hydrological features were included. In Scenario 1, the dataset was 

reduced by eliminating the least important factors/features (as identified by Information 

Gain, Chi-Square, and Gain Ratio measures). In Scenario 2, the dataset was also reduced 

but this time only the most important factors were selected (as identified by Random Forest 

measure). In Scenario 3, the data set included all available factors/features for the region 

(no feature selection method was applied to reduce the data). The study area for the LSA 

were kept the same as the one used for ALDM analyses, therefore the areas where 

landslides and non-landslides existed within the region were known. Thirty percent of the 

PDCNR data was used to train the machine learning algorithms to familiarize them for the 

common features observed in the areas of landslide and non-landslides. Once training was 

completed, the LSA analyses were conducted to test the validity of the proposed method. 

The remainder of the PDCNR data was used to check the accuracy of the LSA analyses 

conducted in this study. The results showed that the best prediction was obtained (where 

LSA outlines areas within the study area as most susceptible to landslide and the PDCNR 

data shows existence of landslides within that area) when the analyses were conducted with 

the Scenario 3 dataset that was coded as raster data and analyzed with C4.5 algorithm. Most 

studies in published literature choose the Random Forest algorithm to conduct landslide 
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susceptibility analyses and model their data as vectors. This study showed that modeling 

the dataset as raster and using a less commonly considered algorithm provides better 

results. It presents a methodology on how the data can be compiled, modeled, and analyzed 

as well as within the scenarios evaluated, the most accurate algorithm to be used. In the 

ALDM analyses, the results were only based on geometrical features, whereas in the LSA 

analyses, the algorithms outline the areas within the region for landslide susceptibility. The 

zones that overlap by the ALDM and LSA should be treated as the most important areas 

within the region for the next landslides to trigger. Findings from this part of the study are 

used to study research questions 2 and 3. Details of this part of the study have been 

presented in Chapter 3. 

Predicting the occurrence of the new landslides has always been a big challenge (if 

not impossible). In the third part of the research, the study focuses on developing an 

infiltration model for the study area (same as used in the first and second parts of the study) 

to determine the depth of rainfall penetrating into the ground. Although there could be 

many other triggering factors for a given landslide, in the study rainfall was chosen because 

it is regularly forecasted by the media and is widely available. The analyses conducted in 

this part of the study was based on the assumption that 100% of the rainwater infiltrates 

into the ground and depending on the intensity, the depth of infiltration increases. As the 

water infiltrates into the ground, it changes the geotechnical properties of the soil within 

the ground in terms of density and shear strength. These two properties are known to be 

most important for evaluating a specific slope for instabilities. Based on these changed soil 

properties, a new dataset of the region was created, modeled as raster data, and evaluated 
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based on C4.5 decision tree algorithm (the algorithm that was previously defined in this 

study as the most effective/accurate one). The analyses were performed to capture three 

different rainfall intensity (high, moderate, and no rainfall). The results obtained from the 

no rainfall analyses were used to evaluate the potential accuracy of the model as with no 

rainfall, no soil properties were changed, and therefore no areas should be identified to 

trigger future landslides. This evaluation indicated that the conducted analyses had a ±2.5% 

accuracy. The analyses showed that the percentage of triggering landslides in the future is 

directly related to the intensity of the rainfall events. Because the focus of this last part of 

the study was to make predictions for the future, it was not possible to ground truth the 

predictions within the duration of this study. However, the methodology presented in this 

study provides an opportunity to create an early warning system for regions that have 

concerns regarding landslides. Even if the predictions may not be 100% accurate, it could 

be used to flag certain regions, which may save lives. Findings from this part of the study 

answered research question 4. Details of this part of the study have been presented in 

Chapter 4. 

Study Area – Same for All Parts of the Study 

There have been numerous studies that focuses on the landslide features in the west 

coast less studies were conducted on the east coast. Majority of the slides in the west coast 

are deep seated and the elevation differences between the toe and scarp are high. This 

allows capturing the location of the landslides much easier. However, in the east coast, 

majority of the slides are shallow (mostly through colluvium soil layers), and much less 

defined in terms of the elevation height differences between the toe and scarp. Therefore, 
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to be able to better contribute to the existing knowledge, a study area in the east coast was 

selected. Detailed literature review indicated that the most active landslide areas within the 

east coast of the U.S. are within Commonwealth of Pennsylvania. However, Pennsylvania 

covers an area of approximately 45,000 square miles (117,000 square kilometers). 

Therefore, before selecting a specific region within Pennsylvania, an in-person meeting 

with the Pennsylvania Department of Conservation and Natural Resources (PADCNR) 

members took place in Harrisburg, PA. PADCNR team who has worked extensively over 

the years to map out the existing landslides provided insight information regarding the 

actual lay of the land and the extent of the publicly available dataset. Based on these 

considerations, the study area was selected as the Mansfield region of Pennsylvania (Fig. 

1.1). 

The Mansfield region not only covers areas of landslide and non-landslides but also 

has been extensively surveyed by LiDAR, which allowed the creation of a bare earth DEM 

for the study. Furthermore, PADCNR has an available dataset for the region showing the 

locations of the existing landslides that have been determined from ground observations 

and aerial photography. Therefore, the same area could be used for all three parts of the 

study.  

The Mansfield region is located within the Tioga County of the Williamsport 

quadrangle, which contains major portions of the geological formations such as Deep 

Valleys, Glaciated High Plateau, and Glaciated Low Plateau sections of the Appalachian 

Mountains. Tioga County is one of the landslide-dense regions within the Mansfield region 

(approximately 135 square kilometers with 67 pre-identified landslides). These landslides 
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are also relatively well-spaced from each other, providing the means to analyze wide 

spectrum of different cases as the site contains slump (rotational slides) and co mposite 

landslides (Delano and Wilshusen, 1999). The boundaries of the area are defined by the 

longitudes of -77.008657 to -77.185069 and latitudes of 41.769983 to 41.855648. The 

altitude within the area ranges from 329 to 565 m above mean sea level and decreases from 

west to east, where slope angles range between 0 and 69 degrees. The average slope in the 

area has been defined as approximately 35 degrees, which resembles an approximately 1 

vertical to 1.4 horizontal slopes. 

Slumps in the study have been defined by Delano and Wilshusen (1991) as 

rotational slides where the surface of rupture is concave-up. The head of the slump typically 

tilts back into the slope and the toe characteristically rises. Individual slumps commonly 

form segments of larger composite landslides and may exist by themselves as small discrete 

slope failures along a hillside. The slumps in the study area have been predominantly 

identified to occur in uniform fine-grained soil layers. The composite landslides in the 

study area are characterized by combination of different landslide types such as debris 

slides and slump or debris falls and debris flow.  

An inventory map of landslides within the study area was created by PADCNR. 

Segments of the inventoried sections are shown in Fig. 1.2a. For the purposes of this study, 

the information provided by the PADCNR has been digitized and used for comparison of 

landslide mapping (Fig. 1.2b). Based on the inventory conducted by PADCNR, of the 47 

areas of the 67 (70.1%) landslides are considered as slumps and 20 areas (29.9%) are 

composites. It is also important to mention that 55.2% of the existing landslides are 
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considered historic while 44.8% of them have been listed to occur in early 1991 (Delano 

and Wilshusen, 1991). The active or recent landslides show clear, fresh scarps, distributed 

vegetation, fresh deposits at the toe, or other evidence of recent movement (Delano and 

Wilshusen, 1991). In order to capture the variety of the landslide regions within the study 

area, three different DEM tiles have been created. This was important to demonstrate that 

the proposed model could work in areas with abundance of landslides and with no 

landslides. Fig. 1.2b shows the created DEM tiles within the study area. These tiles were 

obtained from the PADCNR’s data repository where each tile is referred as 59002140, 

60002140, and 60002160. In order they are listed herein, each tile consisted of 15 

(abundant landslide areas), 8 (Medium-range landslide areas), and 0 (no landslide) 

landslide areas in a given region respectively. Variation of landslide distributions and types 

within the selected area allowed a spectrum of terrain to be used in validation of the 

developed method.  
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Figure 1.1. Location of the study area used in this study  (adapted from Delano and Wilshusen, 

1999)
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                           (a)      (b) 

 

Fig.1.2. Locations of existing landslides within Mansfield area used in this study as shown in (a) 

PADCNR locations that have been defined by numbers (Delano and Wilshusen, 1999) and (b) 

digitized version on DEM map 
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CHAPTER 2: Automated Landslide Detection Model to Delineate the 

Extent of Existing Landslides1 

Introduction 

Landslide inventory analysis is the first and foremost step in landslide studies. The 

success of susceptibility and hazard analyses lies within the proper identification of the 

existing landslides. There are several recently-proposed methodologies to delineate 

landslides (Guzzetti et al., 2012; Bolstad, 2012; Pardeshi et al., 2013). The conventional 

approach for landslide inventorying involves using the data obtained through the field 

survey mapping and historical records, which is tedious to compile and difficult especially 

in heavily vegetated terrains (Pardeshi et al., 2013). Major challenges associated with 

conducting field surveys include the size of the landslide (often too large to be seen 

completely in the field), the viewpoint of the investigator (often inadequate to see all parts 

of a landslide with the same detail), and the fact that old landslides are often partially- or 

completely-covered with vegetation, or have been partly dismantled by other landslides, 

erosion processes, and human actions (Guzzetti et al., 2012). Visual interpretation and 

analysis of aerial photographs also has its own challenges as this approach requires 

experience, training, a systematic methodology, and well-defined interpretation that relies 

on the expert’s opinion (Guzzetti et al., 2012). Although the traditional means of field 

 
1 The research described in this chapter has been submitted as a journal manuscript  in February 2020. 
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survey is critically important, the availability of new remote technologies and satellite data 

offers an important opportunity to improve landslide inventory mapping. 

One of the previously used methods in landslide inventory analysis is the 

interpretation of airborne or satellite imagery (Mwaniki et al., 2017). This interpretation in 

previous studies has been conducted by utilizing the geographical information systems 

(GIS) (Barlow et al., 2003; Colombo et al., 2005; Bolstad, 2012). However, there are 

challenges with using satellite imagery as this approach requires the users to specifically 

define the geometrical features seen in the image (implementation of supervised method) 

and to interpret the observed features even in areas with heavy vegetation cover. It is worth 

noting that the supervised classification requires predetermined specifications, defined by 

the operator in each area. Therefore, it is not an entirely automated means of mapping 

landslide features in a given area. On the other hand, the main technique used in 

interpreting satellite imagery involves in recognizing the difference in reflectance and 

shape of multiple colors. This technique sometimes causes significant errors since many 

existing landslides are covered by dense vegetation, and it is difficult to detect them by 

utilizing satellite imagery. Therefore, vegetated, older, dormant slides with subdued 

topography may be unrecognizable from air photos or multispectral digital imagery 

(McKean & Roering, 2004). 

The use of light detection and ranging (LiDAR) data to create bare earth digital 

elevation models (DEM) is an effective means of mapping existing landslides in a given 

region. LiDAR works by emitting laser pulses at defined, horizontal and vertical angular 

increments to produce a 3D point cloud, containing XYZ coordinates that return a portion 
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of the light pulse within range of the sensor (Leshchinsky et al. 2015). Various studies have 

utilized LiDAR data to evaluate topographical properties of landslide-prone terrain such as 

surface roughness, slope variance, and fractural dimension (Barlow et al., 2003; McKean 

and Roering, 2004; Glenn et al., 2006; Booth et al., 2009; Leshchinsky et al. 2015; Li et 

al., 2016). These studies demonstrate the ability to detect existing landslides with well-

defined features. However, in regions such as east coast of the U.S., landslides are often 

smaller in scale and sporadic; further, their features such as scarp and toe tend to be not as 

well-defined. In these conditions, the previously determined landslide detection algorithms 

are not as effective because they require supervision wherein the user is expected to define 

features of the landslides (e.g., the height of the scarp, the slope of the body, and the toe of 

the landslide) in a given region. Therefore, without the proper training or site-specific 

knowledge about the study area, accurate delineation of the existing landslides becomes 

challenging and inconsistent. 

In this study, a methodology to quickly identify the locations of the existing 

landslides using readily-available GIS tools and image processing algorithms without the 

need for any supervision from the user is presented. The presented methodology is 

evaluated by comparing the results against the ground truth defined by the trained landslide 

experts.  

 

 

Development of Automated Landslide Detection Model (ALDM) 
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The automated landslide detection model (ALDM) is based on assessing a selected 

area to identify surficial geometric properties that characterize the roughness of the surface 

associated with recent landslides. The steps used to identify landslides are presented in Fig. 

2.1. First, a bare earth digital elevation model must be used to identify the locations and 

features of the existing slopes within the selected areas. Using the focal statistics tool 

(Bolstad, 2012), the roughness of the terrain was quantified and converted into a binarized 

form. This information provided a quantitative means to evaluate whether the surface was 

smooth or hummocky, which was used to identify the location of the existing landslides. 

Unlike previous versions of the existing landslide delineation methods, the method 

described herein does not require any pre-defined landslide characteristics by expertise. 

However, as in all tools, the validation of the identified landslides must be confirmed by 

the ground truth defined by the trained landslide experts. Therefore, in this study  such 

validation has also been performed to present the accuracy of the presented methodology. 

Step 1: LiDAR data acquisition and development of DEM: 

The first step of the ALDM requires the user to obtain a DEM of bare-earth surface 

elevation created from representative LiDAR points. In this study, a 1 m2 pixel resolution 

DEM for the study area was obtained from PADCNR’s map repository (PADCNR, 2019). 

Each pixel within the DEM represents an interpolated elevation between contours that were 

defined in a contour map. The DEM data of the study area is shown in Fig. 2.2.  

In order to increase the speed of analyses, the DEM was reclassified to a 6 m2 pixel 

resolution. The sensitivity of the results to the revised resolution was not investigated but 
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the accuracy of the results with the reclassified resolution has been evaluated based on the 

landslides that occur both on east and west coast of the U.S. This evaluation was conducted 

to confirm the suitability of the proposed method to apply to the landslide features that are 

very different from each other (i.e. west coast landslides are typically deep -seated with 

well-defined scarps and the landslides in the east coast are shallow without as well-defined 

features). 

Step 2: Slope Analyses  

For each pixel in the DEM, slope was calculated based on finite difference 

approach, which is a standard algorithm tool embedded in most GIS platforms (Burrough 

et al., 2015).  In this study, the angle of the slope of each neighborhood is computed using 

a 3 by 3pixel square. This is the smallest (highest resolution) option to compute slope 

angles as the process requires the pixel in the middle to be surrounded by equal number of 

pixels  

Step 3: Roughness Analyses 

After performing the slope analyses, the DEM is then analyzed using the Focal 

Statistics tool (Bolstad, 2012) of the GIS to determine the roughness.  The output raster 

from roughness analyses is the result of a statistical function in a specific shape of 

neighborhood defined by the user. These analyses are performed to calculate the statistical 

value for each pixel within a specific neighborhood to determine the roughness of each 

pixel. The concept relies on the common knowledge of landslide analyses, where the older 
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landslides would typically have a smoother surficial features and newer landslides have 

rougher, more well-defined features.  

In Focal Statistics analyses, the neighborhoods can overlap with the neighborhood 

of another processing pixel. The size and type of this processing neighborhood can be 

selected as a factor of annulus, circle, rectangular, wedge, and user-defined shape analyses. 

In this study, 136 analyses were performed with annulus, circular, rectangular, and wedge 

shapes that consisted of 3, 5, and 7-pixel sizes. The most accurate results as defined by 

texture segmentation (the next step in these analyses) were obtained based on circular shape 

neighborhoods that consisted of 7 pixels. Fig. 2.3a depicts this configuration. In addition 

to the shape of the neighborhood, the Focal Statistics analyses require the user to define 

the function of the analyses, where the datasets are evaluated based on Majority, 

Maximum, Mean, Median, Range, and Variety functions. In this study, the most accurate 

results were obtained when the datasets were evaluated based on the “variety function”. 

This function calculates the variety (the number of unique values) of the cells in the 

neighborhood. For instance, if there are seven unique values (cells) in the neighborhood of 

a processing cell, the value for this cell would be seven (Fig. 2.3b). 

Step 4: Texture Segmentation Analyses 

Texture segmentation is a process of classifying multiple sets of pixels into 

segments to make imagery more meaningful and easier to analyze. Based on Malik et al. 

(2001), image segmentation can be classified into two broad categories as region -based 

and contour-based approaches. In region-based approach, image properties such as 
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brightness, color, and texture are used to define partitions of pixels. Contour-based 

approach starts with edge detection to catch the contours of different partitions (as 

commonly used in facial recognition tools). In this study, the texture segmentation is 

conducted with region-based Image Binarizing technique (Mathworks, 2019) that is an 

available tool in MATLAB software.  

The tool is used to first convert the results from Focal Statistics (that comes as a 

color map) into a grayscale image. The converted image is then processed to develop a 

binary image based on luminance threshold. This is achieved by replacing all pixels in the 

input image with a number of 0 or 1. In this method, the value of 1 represents the white 

color pixels (which indicated the location of the landslide features) and 0 represents the 

different shades of gray scale (indicating the location of non-landslide features). The 

luminance threshold for this study was selected to be 0.65 indicating that the pixels with 

the values below this threshold is depicted as black and above as white. After the binarizing 

(Mathworks, 2019) step, the texture segmentation analyses is continued based on a function 

that removes small features from the binary image (in Mathlab software this function is 

referred as bwareopen (Mathworks, 2019)).  Each tile selected in this study approximately 

consisted of 9,765,625 pixels. As a result of bwareopen function, the features shown on the 

binary image with less than 50 pixels were removed. This step helped removing what may 

be considered as a noise in defining the landslide and non-landslide features. These features 

were then used to create the actual areas, which is obtained by using imclose f unction of 

the Mathlab image processing toolbox (Mathworks, 2019), where the open circles are 

closed. 
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Methodology Followed on Validation of the Developed ALDM 

To be able to validate the results obtained from ALDM, landslide data directly 

obtained from PADCNR has been compared against detections obtained from the model 

developed in this study. Additionally, based on the Hill Shade maps of the study area, the 

authors have visually depicted the locations of the existing landslides manually. This 

approach herein is referred as Visual Detection (VD) analyses. Fig. 2.2 shows the transition 

of the DEM data (Fig. 2.2a) within the study area to Hill shade map (Fig. 2.2b) that is 

created by utilizing ArcGIS. LiDAR data from 2008 has been utilized to create the Hill 

shade map for this area. Comparison of the Hill shade map (Fig. 2.2b) with the ortho-

photograph of the area (Fig. 2.2c) shows that the geometrical features of the study area.   

Overall, the analyses performed for validation were conducted based on the  Set 

Theory and Venn diagram that allows the users to compare all possible logical relationships 

between the existence and non-existence of landslides in a given region. A Venn diagram 

consists of multiple overlapping closed circles each representing a data set (Fig. 2.4). The 

interior part of the circle symbolically represents the elements of the set (i.e., circles A and 

B in Fig. 2.4), while the exterior part represents elements that are not members of the given 

set (i.e., area D in Fig. 2.4).  The Intersection of two circles (1 ∩ 2) is the area covered or 

the shared results between two sets (i.e., area C in Fig. 2.4).  Based on this information, a 

confusion matrix may be created where accuracy of the predictions can be validated. Data 

that falls within the area of false negative (FN) would indicate that although a landslide 

exists, the model captures it as a non-landslide area. False positive (FP) would mean the 

opposite of FN where a non-landslide area is incorrectly captured as a landslide area. High 
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values of true predictions (positive – TP or negative TN) would indicate accurate results 

meaning both the landslides and non-landslides are predicted correctly. 

ALDM Results Obtained within the Study Area and Validation 

ALDM analyses were conducted with three tiles (i.e., one with abundant landslide 

areas, one with modest landslide areas, and one with no landslide areas). The results 

obtained from each tile have been compared against the PADCNR field data and VD to 

check the validation. Below, describes the results and validation comparisons for each tile 

used in this study. 

Abundant landslide areas: Fig. 2.5a shows the detection of the landslides in the area 

that is referred as “abundant landslide areas - tile no. 59002140” from the ALDM 

developed in this study. Figs. 2.5b and 2.5c show the results obtained from PADCNR and 

VD analyses respectively. Comparison of the ALDM results and the data for the validation 

has been gathered for a visual presentation in Fig. 2.5d. Using GIS as a tool, PADCNR and 

VD data have separately been compared against the detection results from ALDM and the 

outcome of these comparisons have been tabulated in Table 2.1. In this comparison, the 

TPR value (as defined in Fig. 2.4) is considered as the indicator of the accuracy to capture 

the existence of the landslides within the area. The results show that when the ALDM is 

compared against the PADCNR data, the accuracy of the predictions is within 74%. 

Although there is no threshold value that defines an acceptable range of accuracy in  these 

types of analyses, when the percentages of true landslide locations predicted by ALDM are 

compared with other types of automated methods, 74% is considered as very accurate 



32 
 

(Leshchinsky et al., 2015). In the same analyses, the accuracy of predicting non-landslide 

areas was even higher with the TNR values (as defined in Fig. 2.4) being in the range of 

93%. When the ALDM results were compared against the VD data, the accuracy of the 

predictions was also high. This is because the VD data at this location was similar to those 

captured by the original PADCNR survey data.  

Modest landslide areas: A similar figure as Fig. 2.5 has not been presented herein 

but following the same technique, the ALDM data from the tile number 61002140 have 

been compared against the PADCNR inventory data. The overall accuracy of ALDM 

obtained from this area was similar to the results obtained from the area with abundant 

landslides (i.e., TNR values of 95% vs. 93% and TPR values of 78% vs. 74% respectively). 

However, when the same comparison was made based on VD data, the accuracy of the 

predictions was slightly higher for the non-landslide areas but lower for landslide areas. 

Although it should be noted that the comparison of the ALDM and VD results is qualitative 

because the accuracy of the VD data highly depends on the interpretation of the person 

who evaluates the features of the Hill shade map. This comparison was conducted because 

VD analyses is one of the viable tools that are utilized by the DCNR agencies to assess the 

delineation of landslides from LiDAR data (Delano and Wilshusen, 1999). 

Non-landslide areas: Tile number 61002160 was used to perform the ALDM 

analyses in an area with no landslides to evaluate the performance of the predictions when 

no landslides should be detected. Since there were no landslide data available at this 

location, the accuracy of the predictions of non-landslide areas were primarily based on the 

TNR values. The comparison of the ALDM and PADCNR data shows the TNR values 
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being in the order of 99%, which shows agreement with what is predicted and observed in 

the field. As for the other locations, when the ALDM was also compared against the VD 

data, however the accuracy of this comparison was not as high as was for the PADCNR 

data. This is because during the VD, the authors have interpreted some of the areas as 

landslides but the computer-generated interpretation via ALDM did not capture those 

features.  

Testing of the ALDM Detection Results from Areas Outside of the Study 

Area: Oso Region of the Washington State 

The results shown in Table 2.1 presented the validity of the method described in 

this study. However, to test the performance of the ALDM in other parts of the world, 

where the type and size of the landslides may differ than the ones evaluated in this study, 

testing of the model has to be checked. To achieve this goal, predictions obtained from the 

ALDM method described in this study was compared with the landslide that has occurred 

in March 2014 at the infamous Oso landslide in Washington State. This area was 

particularly selected because there are several landslide areas identified by USGS in this 

area with significant age differences (i.e., ranging from as old as 14,000 years to the 

youngest era between 2006 and 2014) (Haugerud, 2014) and the size and shape of those 

landslides also significantly differ from the ones evaluated at the study area.  

The results of the ALDM analyses in the Oso landslide area are shown in Fig. 2.6, 

which is projected over the Hill shade map created from United States Geological Survey 

(USGS) dataset (Haugerud, 2014). When compared, the area identified by the ALDM very 

closely match with the area identified by USGS where the 2014 Oso landslide has occurred. 



34 
 

However, the area that is captured by the ALDM does not cover the entire area that is 

defined by USGS as the footprint of the Oso landslide. Also, the previously defined 

landslides within the region have not been captured by the ALDM (Fig. 2.6). This shows 

that the selection of roughness analyses and the luminance thresholds have an affect over 

the results. The results shown in Fig. 2.6 are based on the parameters that were determined 

from the analyses performed for the study area (Fig. 1.2). These parameters were based on 

the size and shape of the neighborhood as circular with 7 pixels (as shown in Fig. 2.3a), 

the function of the roughness analyses based on the feature referred in ArcGIS as “variety 

function” (Fig. 2.3b), and the luminance threshold as 0.65. The effects of the age of the 

landslide on the computer-generated predictions have previously been discussed by 

Leshchinsky et al. (2015), where the older landslides show smoother surfaces and the 

younger ones contain more hummocky areas.  

The results shown in Fig. 2.6 indicate that the ALDM analyses performed in this 

study was accurate in predicting the hummocky areas (which is the area of the newest 

landslide) but not so much in predicting the areas with the smoother surfaces that are 

associated with the landslides that occurred thousands of years ago . To demonstrate the 

practical implications of the ALDM method, the luminance thresholds of the roughness 

analyses that were previously used for the area where the Oso landslide has occurred were 

adjusted. Fig. 2.7 shows the outcome of these analyses where the size and shape of the 

neighborhood was selected as circular 5 pixels, the function of the roughness analyses was 

based on range, and the luminance threshold was 0.5. The results show a good agreement 

between what would be the visually detected landslides and the landslides detected by 
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ALDM. It is claimed that once the user fine tunes these adjustments, the ALDM method 

described in this study could be used in any parts of the world to depict the locations of the 

existing landslides. However, it is important to note that the users of such automated 

landslide detection methods must understand the specific features exist in landslide areas. 

The advantage of the method described in this study compared to the other existing 

computer-based methods is that, the effort required to fine tune the ALDM is very minimal 

and very straightforward and all of the tools are readily available through ArcGIS, 

MATLAB image processing toolbox, and existing LiDAR data. The method proposed does 

not need supervision, meaning once the model is fine-tuned to a region, other adjustments 

are not required to obtain reasonably high accurate results (as shown in Table 2.1 and Fig. 

2.7). 

Conclusions 

This study demonstrated the use of the automated landslide detection model 

(ALDM) that utilizes the DEM created from LiDAR based data, readily available GIS 

tools, MATLAB software, and statistical validation methods. The concept of the ALDM is 

to identify the roughness of the slope surfaces and use the image processing techniques to 

delineate the extent of the existing landslides. It is developed as a simple but effective tool 

that is based on readily available software packages. The analyses require the user to 

initially set thresholds for roughness and texture segmentation analyses, however once 

these thresholds are established, the analyses are conducted in large areas without 

supervision and the need to re-define these thresholds. However, if the characteristics of 

the landslides from one region to another varies significantly (for example sh allow 
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landslides vs. deep seated landslides), revisions to the thresholds might be necessary as 

demonstrated in this study.  

Three areas with LiDAR bare earth digital elevation models (DEMs) have been 

used to test the proposed approach, each consisting of a varying range of mapped landslide 

features in Pennsylvania. The results obtained were compared against data from PDCNR 

and landslides that were determined visually from the Hill shade map (a technique that is 

implemented by some of the DCNR agencies to delineate landslides). The results 

demonstrate that the proposed ALDM method was able to accurately capture both the 

landslides and non-landslides in all of the areas evaluated with accuracies of 70% and 92% 

respectively. This allows the users to evaluate large areas with minimal effort in very short 

time as compared to visual detection methods.  

Additionally, the study also showed that the proposed ALDM method could be 

implemented in regions where the landslide sizes and features could be significantly 

different. To present this demonstration, several landslides that have occurred in the west 

coast of the U.S. at significant time differences have been selected. The results showed that 

even if the analyses are conducted with the pre-defined thresholds from other regions (i.e., 

the thresholds defined from the analyses conducted with landslides in PA) the remnants of 

the landslides are detected. However, more accurate delineation requires these thresholds 

to be re-defined. The results also showed that although the ALDM was effective in 

capturing the younger landslides (i.e., less than 25 years), the method is not as effective in 

capturing the older landslides (landslides that have occurred 500 years or older). This is 

because although the thresholds could be redefined, the texture segmentation analysis has 
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a limitation. Considering that in most cases the real dangers of landslides are associated 

with younger landslides that can remobilize, the proposed method is a viable technique to 

delineate landslides.  
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Tables 

 

Table 2.1. Comparison of the Results Obtained from ALDM, PADCNR and VD Methods 

Tile No. Area (m2) Mode TNR FPR TPR FNR 

590021401 9289996.30 

ALDM vs. 
PADCNR 

92.55% 7.45% 74.03% 25.97% 

ALDM vs. VD 94.35% 5.65% 86.88% 13.12% 

610021402 9290340.57 

ALDM vs. 
PADCNR 

94.63% 5.37% 78.07% 21.93% 

ALDM vs. VD 96.26% 3.74% 68.69% 31.31% 

610021603 9290315.73 

ALDM vs. 
PADCNR 

99.20% 0.80% N/A N/A 

ALDM vs. VD 99.73% 0.27% 20.06% 79.94% 
 

Notes: ALDM: Automated landside detection method 
 PADCNR: Field surveyed landslide locations 

 VD: Landslide locations identified by the authors based on visual detection 

 N/A: Not applicable 

 1Area with abundant landslides 

 2Area with moderate abundant landslides 
 3Area with no landslides 
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Figures 

 

 

Figure 2.1. Overall steps used to develop automated landslide detection model 
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  (a)    (b)   (c) 

Fig. 2.2. PADCNR data showing (a) DEM created from LiDAR data of the study area, (b) Hill 

shade model of the DEM from LiDAR, and (c) ortho-photograph of the area shown in DEM. 
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                                  (a) 

 

                                                                      (b) 

Fig. 2.3. Pixel configurations used in this study for (a) 7-pixel circular neighborhood and (b) 

roughness analyses with variety function 
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Notes: Circle 1 - Ground truth based on known landslide locations 

Circle 2 – Results from Automated Landslide Detection Model 

Area shown in A - Represents False Negative (FN) 

Area shown in B - Represents False Positive (FP) 

Area shown in C - Represents True Positive (TP) 

Area shown in D - Represents True Negative (TN)  

 

(a)      (b) 

Fig. 2.4. Validation analyses based on (a) Venn diagram and (b) confusion matrix created from 

Venn diagram 
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Notes: 

Red color: ALDM predictions 
Turquoise color: PADCNR predictions 

Yellow color: VD predictions 

 

Fig. 2.5. Detections in area considered with abundant landslides based on (a) ALDM, (b) 

PADCNR, (c) VD, and (d) all three methods: ALDM, PADCNR, and VD. 
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Notes:  The above figure has been re-created based on USGS identified landslides (Haugerud, 

2014) 

Red Hatched color: ALDM predictions obtained in this study 

Yellow color: Oso Landslide mapped by USGS (most recent, landslide occurred in 2014) 

Blue color: Pre-Oso Landslide, less than 500 years old mapped by USGS 

Violet color: Pre-Oso Landslide, 500 – 2000 years old mapped by USGS 

Green color: Pre-Oso Landslide, more than 5000 years old mapped by USGS 

 

Fig. 2.6. Comparison of the ALDM results with landslides identified by USGS in Stillaguamish 

Valley in Washington. 
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Notes:  Yellow color: Oso Landslide 

Blue color: Pre-Oso Landslide, less than 500 years old 

Violet color: Pre-Oso Landslide, 500 – 2000 years old 

Green color: Pre-Oso Landslide, more than 5000 years old  

 

Fig. 2.7. ALDM results of the Stillaguamish Valley in Washington (a) obtained after site specific 

revisions and (b) superimposed over the landslides delineated by VD method in this study. 
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CHAPTER 3: LANDSLIDE SUSCEPTIBILITY ANALYSES BASED 

ON RANDOM FOREST, C4.5, AND C5.0 ALGORITHMS USING 

BALANCED AND UNBALANCED DATASETS 2 

 

Introduction 

The focus of this study was to develop a landslide susceptibility analysis (LSA) 

approach to evaluate the likelihood of landslide occurrence based on the conditioning (or 

preparatory) factors and to compare the performance of different LSA algorithms against 

multiple datasets and observation types (raster vs vector). Through the use of more 

accessible data and processing systems such as GIS (Geographical Information System), 

landslide hazard assessment and risk reduction can provide more useful and accurate 

information to the public and private sectors, governmental agencies, and the scientific 

community (Shahabi and Hashim, 2015). There are three components that determine the 

result of LSA: 1) features and dataset combination (Yalcin, 2011), 2) landslide 

observations (Trigila et al., 2015), and 3) algorithms used for evaluation 

(Alimohammadlou et al., 2014; Saito et al., 2009; Yeon et al., 2010). Change in these 

components may affect the accuracy of LSA or the ability of landslide forecasting. 

Accordingly, the main objective of this study was to evaluate the performance of three 

 
2 The research described in this chapter has been submitted as a journal manuscript  at the beginning of 

April 2020. 
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different landslide susceptibility algorithms based on the variation in features and dataset 

combinations. Previous research on different features, and dataset combinations, as well as 

different landslide algorithms evaluated to date are summarized in the subsequent sections. 

Features and dataset combinations 

Critical in studying LSA is the evaluation of the most effective causes and triggers. 

Landslide process never occurs from a single cause, and to achieve an accurate 

understanding, a collection of parameters should be analyzed interactively. Many 

researchers have discussed these parameters. Crozier (1986) categorized landslide factors 

into preparatory (or conditioning) factors and triggering factors. Popescu (1994) divided 

the conditioning factors into: geomorphological processes, physical processes, and human 

influences. Wu and Sidle (1995) categorized the preparatory factors as geology, slope 

gradient and aspect, elevation, soil geotechnical properties, vegetation cover and long-term 

drainage patterns, and weathering. These views have been extended by Yalcin (2011), who 

described the conditioning factors as lithology, slope, aspect, elevation, vegetation cover, 

discontinuity, and the location of a nearby river or road.  

In landslide susceptibility analysis, the quality of the evaluation depends on both 

the selected models and the quality of the input data.  Ozdemir and Altural (2013) used the 

topographic factors (derived from a map based on Digital Elevation Model (DEM)), 

geology, land use/land cover, and precipitation data to create a landslide susceptibility 

mapping of Turkey. In another study, Pham et al. (2017b) assessed landslide susceptibility 

in India based on the topographic map, soil map, land cover map, and meteorological data. 
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In a study of landslide susceptibility analysis in the Shaanxi Province, China, Chen et al. 

(2017) used the topographic features of the slope, the lithology, land use, and the rainfall, 

to predict landslides. In general, the parameters used for landslide susceptibility analysis 

can be divided into categories, such as, geological, hydrological, topographical, and 

geotechnical features. However, all of the previously mentioned studies have mostly used 

geological and topographical parameters of the study area but have not included the 

geotechnical and hydrological parameters (Ozdemir and Altural, 2013; Chen et al., 2017). 

These studies would have been more accurate if they would have also included 

geotechnical parameters (such as soil engineering and index properties) and hydrological 

parameters (such as groundwater level, hydraulic conductivity, and soil moisture). Our 

study examines a larger set of landslides’ contributing factors, including geological, 

geotechnical, and hydrological parameters. 

Landslide Observations  

The landslide inventory map is the first step in the analysis because it is believed 

that the past landslides are the indicators for the future events ((Guzzetti et al., 1999). 

Therefore, using an inventory map with detailed and accurate information will improve the 

accuracy of the results. In general, the inventory map and the existence of landslides in a 

given region is used a response/predictor in the landslide susceptibility model (Chen et al., 

2017). In previous work, the observations are generally modeled as vector or point data on 

the area (Pham et al., 2017b). This means that in LSA model, each landslide occurrence is 

represented as a point on a map and in the dataset. The modeling of the landslide 
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observations also captures the proportions of the landslides within an area. Most of the 

studies have used this data to select areas for their analyses where proportion of landslide 

and non-landslide areas are equal to each other ((Ozdemir & Altural, 2013). The primary 

reasons for this approach are due to the ease of the computational efforts and the sensitivity 

of the assessment methods to the unbalance datasets. One approach used by researchers to 

alleviate this limitation is by choosing random points on the source data (map) to create 

vector datasets ((Trigila et al., 2015), Hong et al., 2015, (Youssef et al., 2016) Pham et al., 

2017b). 

Algorithms 

The landslide susceptibility models can be qualitative or quantitative. The 

qualitative approaches rely only on expert judgment and involve directly mapping the 

geomorphology to assess the susceptibility based on factors defined by the expert (Aleotti 

and Chowdhury, 1999). The quantitative approaches are primarily based on statistical and 

machine learning methods, such as  Frequency Ratio (Ozdemir and Altural, 2013; Hong et 

al., 2015b), Logistic Regression (Oh et al., 2010; Ozdemir and Altural, 2013; Youssef et 

al., 2016), Random Forest (Trigila et al., 2015; Chen et al., 2017), Classification and 

Regression Trees (Chen et al., 2017; Wu et al., 2020), Artificial Neural Networks 

(Alimohammadlou et al., 2014; Bui et al., 2016; Pham et al., 2017a), and Support Vector 

Machines (Colkesen et al., 2016). Frequency Ratio (FR), Logistic Regression (LR), and 

Random Forest (RF) are ones of the most commonly considered methods. 

  The Frequency Ratio is a simple method of calculating the probabilistic relationship 

between dependent and independent variables such as multiple maps. In landslide 
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susceptibility analysis, FR is the ratio of the area where landslides have occurred to the 

total study area and the ratio of the landslide occurrence probability to the non-occurrence 

for a given attribute (Ozdemir and Altural, 2013). Although it is an easy to use model, the 

FR analysis only estimates the performance of a single factor and does not produce the 

whole range of predictors.  

The Logistic Regression method uses the values of a set of predictors identified 

within the landslide areas to predict susceptibility for landslides in other areas. Oh et al. 

(2010) show that this method has higher prediction accuracy than the frequency ratio and 

the artificial neural network methods. However, this method is not very suitable for 

unbalanced data where the number of non-landslide observations (pixels) is greater than 

the observations in the landslide area. The Random Forest method first classifies the 

characteristics of different areas to create a set of trees that are aggregated to compute 

landslide classifications.  It then resamples this data and randomly replaces and changes 

the predictive set of variables over the diff erent tree induction processes to create the 

landslide susceptibility model. The predictive variables used in this model can be based on 

numerical or categorical data. In recent years, Youssef et al. (2016) and Chen et al. (2017) 

are among the researchers who have implemented this method to predict landslide 

susceptibility in Saudi Arabia and China, respectively, with claimed range of success rates 

of 78% to 83%.  They used vector and balanced datasets to perform their analyses.  

Purpose of the Study for Landslide Susceptibility Analyses 

The purpose of this study was to evaluate the effectiveness of the methods used to 

predict the susceptibility of an area to future landslides. The study included the evaluation 
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of three different components of landslide susceptibility analysis: (1) input data associated 

with past landslide observations; (2) characterization of the study area based on geo -

features such as geotechnical, geomorphological, and hydrological properties; and (3) 

suitability of performing the analysis with different data analyses algorithms. The 

importance of this study as it relates to each of these components is discussed below. 

The previous literature predominantly indicates that susceptibility analyses were 

conducted with characterizing the input and output parameters as multiple vector layers 

representing different features (Ozdemir and Altural, 2013; Hong et al., 2015a; Trigila et 

al., 2015; Youssef et al., 2016; Chen et al., 2017; Shirzadi et al., 2019; Wu et al., 2020). 

This means, random points are selected from both landslide and non-landslide regions to 

represent the variables for each dataset. This approach is used frequently in regions where 

the amount of data is limited. In this study, a region with a more detailed data set was 

selected and the landslide and non-landslide areas were characterized based on both the 

vector and the raster datasets. Unlike the randomly chosen points, the raster dataset 

includes features associated with every point within a region. This allowed the study to 

compare the performance of LSA with vector versus raster datasets. 

LSA is frequently conducted without considering the detailed geo-features of the 

area of interest, although it is known that specific geo-features play a major role in landslide 

occurrence. Geotechnical engineers typically deal with this problem by performing specific 

stability analyses on a very small area (measured in meters or feet), where the properties 

and dimensions are well-known. This approach is not suitable when the area of interest is 

a city or a large region (where the dimensions are within hundreds of square kilometers or 
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miles). In this study, we integrated the important geo-features into the LSA by modeling 

the areas with datasets including digital elevation model, soil properties, and groundwater 

levels with depth. These datasets are then modeled both as vector and raster in the LSA. 

The study also focused on determining the importance of the specific geo-features by using 

four different feature selection models: information gain, chi-square, random forest, and 

gain ratio. 

There are many different data analysis algorithms available in the literature. These 

algorithms may be used for many different purposes one of which being to perform LSA. 

In this study, three different algorithms, Random Forest (RF), C4.5, and C5.0 (which is the 

newer version of the C4.5), were evaluated to conduct LSA. The RF algorithm has been 

used in different LSA studies as a standard method to evaluate the results of landslide 

susceptibility analyses (Chen et al., 2017; Trigila et al., 2015; Youssef et al., 2016). In this 

study, the accuracy and error rates of the C4.5 and C5.0 methods have been compared to 

those of the RF algorithm. Overall, comparison of these three different approaches allowed 

the study to evaluate the performance of different algorithms to estimate the accuracy of 

the LSA model with different input parameters and their combinations. Both C4.5 and C5.0 

were included in this study because they have different sensitivity to dataset balance (Saito 

et al., 2009). Although the findings of this study are associated with a specific dataset 

obtained from a given region, the methodology presented herein may be applied to other 

regions as well. This research identified the best approach to conduct LSA. 
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Components of the Model Built for This Research 

Inventory Maps 

  Landslide inventory maps for the study area were obtained from the Pennsylvania 

Department of Conservation and Natural Resources (PADCNR). They were created based 

on the actual field surveys and visual interpretations conducted by PADCNR. The study 

area contains 67 landslide locations of different sizes and types. According to Delano and 

Wilshusen (1999), most of these landslides are considered active. The location of each 

landslide has been used in the model built for this research to differentiate between  the 

properties of the regions with and without landslides. 

Conditioning Factors 

Conditioning factors refer to the properties of the area that are associated with 

landslides. As shown in the left-hand side of Fig. 3.1, in this study, the conditioning factors 

included the geological properties (i.e., type of bedrock at depth and at surface), 

hydrological properties (i.e., groundwater level, hydraulic conductivity of the ground, 

Skempton value – indicator of pore pressure in the ground), geotechnical properties (i.e., 

soil type, the percentage of the sand, silt, and clay size fractions within the soil, the density 

of the soil, and Atterberg limits), and geometrical properties (i.e., elevation of the ground 

as determined from the digital elevation map created in this study and slope percentage). 

When combined, these factors capture a comprehensive range of information that is critical 

for any slope instability evaluation. All of this information was obtained from PADCNR 
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and the United States Department of Agriculture (USDA), being readily available for the 

region within the study area. 

The data for the geotechnical/geological properties were provided in the database 

as a function of depth from the ground surface. For the purpose of this study, the 

conditioning factors were categorized for two different layers. The first layer is from the 

ground surface (0) to the depth of 30 centimeter (12 inches) which is also considered as the 

topsoil layer. The second layer is from the 30 cm to a depth until the bedrock is reached. 

This approach is justified by the fact that most of the landslides in this region were 

previously identified to be surficial, where the surface conditions of the slope impact the 

stability (Delano and Wilshusen, 1999). 

The topographical parameters were derived from the DEM that was available 

through PADCNR to create parcels with 20 ft. × 20 ft size. Based on this DEM, using the 

ArcGIS platform, a map of slope angles has been created for the entire study area. The 

groundwater level in the study area has also been mapped out based on the static water 

levels (feet below the surface) provided by the Pennsylvania Spatial Data Access (PASDA) 

from each of the wells located within the study area. The static water level (feet below the 

ground surface) has been added to the ArcGIS as a vector layer with the location and depth 

of each well. This information was then used to create a contour map and raster layer of 

the groundwater level.  

The study area has 15 different types of surficial geological features, which ranged 

from what is referred as Wisconsin, glacial, and re-sedimented tills to alluvium that 
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contained stratified silt, sand, gravel, and boulder size particles. There were three different 

types of bedrock identified at the site consisting of Huntley Mountain Formation, Catskill 

Formation, and Lock Haven Formation. All the conditioning factors identified in this study 

and the location of the landslides from the inventory maps have been characterized as both 

vector and raster dataset. This is shown in the middle-top of Fig. 3.1, under Input. 

Methods of Analyses 

  The combinations of all the conditioning factors have been used to create twenty-

two layers of raster and vector data, which were utilized to perform the analyses. One of 

these layers was allocated to identify the areas with and without the landslides and the 

remaining twenty-one layers were developed as the predictors (or variables) for the 

analyses (see Fig. 3.1 – the variables column in the right side). Each raster layer was created 

from 3,645,234 pixels covering the entire study area, and each of the vector layers was 

created based on randomly chosen points from the dataset.  

  The analyses were performed by dividing the dataset into two groups, for training 

and testing, with a 70/30 ratio. In the first (training) group, 70% of the randomly selected 

data from landslide and non-landslide observations were evaluated as part of the analyses 

performed with the susceptibility algorithms (see the middle of Fig. 3.1). This information 

was used to train the model to predict the regions of landslides. The second (testing) group 

(30%) was used to test the effectiveness of the model (i.e., the output of the landslide 

susceptibility analyses – LSA, see Fig. 3.1). Unlike the previous studies, the research 

presented in this study has been verified not by generating random field/site conditions but 

by using the actual data that was directly obtained from the specific site that was used for 
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the study. Therefore, this study not only presents the methodology for the analyses but also 

an actual evaluation of a real case study. 

  The dataset combinations (i.e., data generated both with vector and raster layers) 

have been evaluated by implementing three different scenarios, which involved utilizing 

four different feature selection methods (FSMs) (see the upper-right side of Fig. 3.1). In 

Scenario 1, the dataset was processed to eliminate the variables that were identified as the 

least important factors based on information gain, gain ratio, and chi-squared FSMs. The 

goal was to reduce the size of the dataset by eliminating the predictors that were within the 

bottom 2% of importance. In Scenario 2, the most important predictors were identified 

based on random forest FSM and only these predictors were used in the susceptibility 

analyses. The most important factors in this scenario were determined with a consistent 

approach as in Scenario 1, where approximately 2% was used as the threshold to separate 

the variables from least to more important. In Scenario 3, no FSM has been utilized to 

screen the dataset. Therefore, the analyses were performed with the entire dataset. Details 

on the FSM used in this study are provided in the next section. 

Feature Selection Methods 

Four feature selection methods have been used in this study to identify the most 

important variables to evaluate the landslide susceptibility in a given region, as discussed 

below.  

Information Gain  
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Information Gain (IG) is an entropy-based feature evaluation method. It is defined 

as the amount of information provided by the feature items for the landslide susceptibility 

analysis. In other words, it measures the information obtained for category prediction by 

defining the presence or absence of a term (Forman, 2003). The formula for information 

gain is as follows: 

Info Gain (Class, Attribute) = H (Class) – H (Class | Attribute)    Equation. 3.1 

Where H is the Entropy of the set and is defined as follows: 

𝐻(𝑆) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  −  ∑ 𝑃𝑗
𝑗=𝑚
𝑗=1 log2 𝑃𝑗      Equation. 3.2 

Where P is the probability with which a particular value occurs in the sample space S. 

Entropy ranges from 0 (all instances of a variable have the same value) to 1 (equal number 

of instances of each value). Higher Entropy means the distribution is more uniform. 

Gain Ratio 

The Gain Ratio (GR) algorithm is a normalized version of the IG algorithm. The 

normalization is done by dividing the information gain by the entropy of the attribute 

with respect to the class, because it is claimed that this reduces the bias of the information 

gain algorithm. The formula for GR is as follows:  

Gain Ratio (Class, Attribute) = (H (Class) – H (Class | Attribute)) / H (Attribute)   

                                                                                                 Equation. 3.3 

Although GR is closely related to the IG algorithm, in this study a comparison was 

made to demonstrate the effect of normalization of gains in each attribute (or conditioning 
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factor). The analyses were conducted to evaluate the effect of increased number of 

attributes in the subset to the difference in results from the GR and IG analyses.  

Chi-Squared 

Chi-Squared (CS) is another statistical method that is applied to test the 

independence of two events, where two events A and B are defined to be independent if 

P(AB) = P(A).P(B) or, equivalently, P(A|B) = P(A) or P(B|A) = P(B). 𝑋2 in this method is 

calculated to show the difference between each feature and target. The higher X 2 values 

indicate features with higher importance. The formula on how the X2 is calculated is as 

follows: 

𝑋2 =  ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1  Equation. 3.4 

where Oi is the observed frequency (number of observations) in class I, and E i is the 

expected frequency if NO relationship existed between the variables.  

Random Forest Importance 

Random forest importance (RFI) is another feature evaluation method that can be 

used to rank the importance of variables.  The RFI technique is described by Breiman L 

(2001), which involves first calculating the importance of each variable (predictor) and 

then normalizing these variables based on standard deviation of the differences in out-of-

bag (OOB) error before and after the variables are permuted and compared within the 

training data.  The OOB is a technique to measure the prediction error of RFI using the  
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bootstrap aggregating (bagging) method in training samples and sub-samples of the dataset. 

During this process, error for each data point is recorded and averaged over the forest.  

 

 

Susceptibility Algorithms 

Three different algorithms have been used in this study. The input variables for 

these analyses were selected based on the feature selection results performed with four 

different methods as discussed previously. Analyses were compared both by selecting the 

top most important variables that were determined as a result of feature selection methods 

and by evaluating all of the variables (i.e., 21 predictors). Fig. 3.1 shows the application of 

these algorithms to evaluate the three different scenarios outlined in this study. Below 

provides brief description for each of these methods. 

Random Forest 

Random forest (RF) is one of the algorithms used to estimate landslide 

susceptibility analysis that can be applied to the classification and regression (Breiman, 

2001). For each variable, the function determines model prediction error if the values of 

that variable are permuted across the out-of-bag observations (Trigila et al., 2015). In this 

study, the dependent variable has been represented by 0 and 1 for landslide and non-

landslide pixels on the map, respectively. The RF feature selection method uses the bagging 

technique to select, at each node of the tree, random samples of variables and observations 

as the training dataset for model calibration. Since the random selection of the training 
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dataset may affect the results of the model, using numerous trees help to balance the 

stability of the model. Unselected cases (out of the bag) are used to calculate the error of 

the model (OOBError), equal to the standard deviation error between predicted and 

observed values, and to establish a ranking of importance of the variables. It holds true that 

the greater the prediction error, the greater the importance of the variable. 

Decision Tree C4.5 and C5.0 

C4.5 is one of the most widely-used algorithms to classify the examples in a 

decision tree. This algorithm is designed to develop a tree for the binary dependent variable 

(landslide and non-landslide) (Quinlan, 1986). The decision tree is based on a multistage 

or hierarchical decision scheme (tree structure). The tree is composed of a root node, a set 

of internal nodes, and a set of terminal nodes (leaves). Each node of the decision -tree 

structure makes a binary decision that separates either one class or some of the classes from 

the remaining classes. The processing is carried out by moving down the tree until the 

terminal node is reached that only contains elements of a class. In a decision tree, features 

that carry maximum information are selected for classification, while remaining features 

are rejected, thereby increasing computational efficiency (Saito et al., 2009). The attribute 

selection measure uses the concept of entropy, which is defined as the degree of disorder. 

Thus, a tree grows by selecting an attribute with the smallest entropy or highest information 

gain (Yeon et al., 2010).  

C5.0 is an updated version of C4.5. This model extends the C4.5 classification 

algorithms described in (Salzberg, 1994). Based on Kuhn and Johnson (2013), the updated 

version has been improved in terms of speed, memory usage, the size of the decision tree, 
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boosting (improves the trees accuracy), and weighing which allows the user to weigh 

different cases and misclassification types. In a comparison study of the top 10 algorithms 

of data mining, (Wu et al., 2008) introduced C4.5 as the most influential data mining 

algorithm. In this study, both versions of this decision tree models were used and the results 

were compared. 

Results and Discussion 

Figure 3.2 presents the results of the application of the feature selection methods. 

The results from the IG, GR, and CS algorithms were similar. All these methods identified 

the slope percentage, the type of bedrock, and the percentage of sand in the first layer as 

the least important factors (see Figures 3.2a, 3.2b, 3.2c). A potential reason for eliminating 

slope percentage from the dataset combination based on FSM analyses could be the high 

percentage of clay in the landslide areas within this region. Based on results of Tommasi 

et al. (2012), in landslides with over-consolidated clays, slope percentage does not play an 

important role in triggering landslides. Figure 3.2d presents the evaluation of the factors 

based on the random forest features selection method. The least important factors identified 

with this method are different from those identified with the other three FSMs. Therefore, 

we considered two scenarios: Scenario 1 corresponding to the features selected by the IG, 

GR, and CS algorithms, and Scenario 2 corresponding to the features selected by the 

random forest algorithm (see the right-hand side of Fig. 3.1). In order to evaluate the impact 

of these FSMs to the output of the landslide susceptibility analyses (LSA), each scenario 

has been evaluated by itself (raster vs. vector data). The results were then compared with 

the existing landslide information that was available for the study area. This information 
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was then used to quantify the accuracy and error associated with each LSA. Also, to 

determine the performance of each dataset, the outcomes obtained from the three different 

scenarios were compared to each other.  

The results of the LSA were evaluated for the areas both within and outside of the 

regions where the landslides existed. The results from areas with landslides were presented 

as true positive ratio (TPR) and false negative ratio (FNR). The TPR values represent the 

correct prediction of the analyses and FNR values represent the incorrect prediction of the 

analyses. Hence, as the TPR values increased, the FNR values are expected to decrease for 

a more accurate result. The results from areas without landslides were also evaluated 

similarly, however; in that comparison the used terms were true negative ratio (TNR) and 

false positive ratio (FPR). Therefore, the increase in TNR value represents the correct 

interpretation of the non-landslide areas. As the TNR increased, FPR is expected to 

decrease. The approach on how the predictions have been validated is shown in Fig. 3. The 

next sections describe the results of these comparisons obtained from each of the three 

algorithms.  

Prediction Analyses Results with Random Forest for All Scenarios 

Table 3.1 presents the results of all the analyses conducted with the random forest 

algorithm. When the results from the data generated by raster and vector approaches were 

compared, the accuracy of the results varied within and outside of the landslide areas. In 

the landslide area, the results (as indicated by TPR) showed that the vector dataset led to 

better predictions on the existence of the landslides within the given area (i.e., high TPR 

and low FNR values). All the scenarios showed similar results although the results from 
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scenarios 1 and 3 were slightly better than those from scenario 2. In the non-landslide area, 

the results from the raster dataset led to better predictions, as indicated by the very high 

TNR and very low FPR values. There were no significant differences between the 

predictions obtained from the three scenarios. 

Prediction Analyses Results with C4.5 Algorithm for All Scenarios 

Table 3.2 indicates the results for all analyses performed with the C4.5 LSA model. 

Comparing the results from both data sets generated by using raster and vector approaches 

showed that the percentage of correct predictions of landslides was higher with vector 

dataset. Also, among the three scenarios, the Scenario 3 had the highest TPR value for 

predicting landslide areas. In the non-landslide areas, the performance of raster data had a 

higher edge as compared to the vector dataset generated for this analysis. The results from 

Scenario 1 and Scenario 3 showed better results than the results from Scenario 2.  

Prediction Analyses Results with C5.0 for All Scenarios 

Table 3.3 presents the obtained results. When results from different datasets (vector 

and raster datasets) were compared, the order of the quality of predictions with C5.0 

algorithm was similar to that obtained with C4.5algorithm. However, in terms of the TPR 

and TNR percentages, the results from C4.5 algorithm were better than those from 

C5.0algorithm. 

Accuracy and Error Comparisons of Results from All Scenarios 

Table 3.4 presents the overall accuracy and errors of all the scenarios evaluated 

based on both vector and raster datasets from all three LSA models and all three scenarios. 

The accuracy of the results presented in this table is defined by the ratio of correct 
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predictions (i.e., combination of the number of  true negative - TN and true positive – TP 

values) to the total number of predictions. In other words, it is determined from the ratio 

of the total number of correctly predicted landslide and non-landslide areas to the total 

number of observations. The misclassification error is determined by the ratio of the total 

number of false negative (FN) and false positive (FP) predictions to the total number of 

observations. It could also be computed by the complement of the estimated accuracy of 

the results. The values for TN, TP, FN, and FP were all presented in Tables 3.1, 3.2, and 

3.3 for each scenario and each algorithm used in this study. Therefore, the data for Table 

3.4 have been obtained from these tables. In this study, the total number of observations 

with the raster dataset was 3,645,234, and with vector dataset was 300. Therefore, there 

was a major difference between these two types of datasets. In the raster dataset, the 

number of data points that represented the non-landslide areas was 3,593,353 and the 

landslide areas was 51,881. The ratio between the non-landslide and landslide data points 

was approximately 69 to 1, which is considered as an unbalanced dataset. However, for the 

vector dataset, this ratio was 1 to 1, which is considered as a balanced dataset.   

The results presented in Table 3.4 show the following: 

• Even though the raster dataset is unbalanced, comparing the outcomes from all 

three LSA models, the results using the raster dataset had higher accuracy than 

those with vector datasets. 

• When the outcomes from all three LSA predictions with raster dataset were 

compared, the accuracy of all analyses was close to each other, although the results 
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from C4.5 algorithm (especially for scenario 3) were better than all others. Also, 

for this particular case, the % error was the lowest. 

• In all the LSA predictions with raster dataset, the results from scenario 3 were better 

than the results from the other two scenarios. 

Conclusions 

This study presented an experiment of performing landslide susceptibility analyses 

based on three different algorithms (RF, C4.5, and C5.0), two different data types (raster 

and vector), and three different data combinations (scenarios 1, 2, and 3) that were 

determined by using four different feature selection methods (IG, GR, CS, and RF). 

Identifying the locations of existing landslide areas by spending time in the field is a major 

task which is not always granted in large projects. The study made an attempt to identify a 

single algorithm as well as a dataset combination with the highest accuracy and prediction 

capacity. The following are the specific findings and limitations of the study: 

• The results presented in Table 3.4 for vector dataset show that RF has lower 

accuracy than C4.5 and C5.0. These findings indicate that although RF is a standard and 

common algorithm to estimate landslide susceptibility analyses, the C4.5 and C5.0 

algorithms have much more accurate outcomes.  

• Even for the RF algorithm that has lower accuracy than C4,5 and C5.0algorithms, 

the results for raster data has a higher edge to the vector dataset. This indicates that raster 

data improves the results for the RF algorithm by taking thousands of pixels into account 

for the study area. 
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• Although using raster data has improved the results in RF analyses, this change of 

data type may not be as significant when it comes to C4.5 and C5.0. The main reason for a 

higher accuracy of the C4.5 and C5.0 algorithms might be the better performance for 

handling unbalanced data sets. 

• Comparison of the results between different scenarios of raster data indicates that 

scenario 3 from all algorithm has a slightly higher accuracy. This finding shows that 

combining all parameters collected for the study has been helpful to increase the 

performance of the landslide susceptibility analyses. 

A limitation of this study lies in the fact that the massive dataset of the susceptibility 

models requires high-performance computers to run the algorithms and compute the 

accuracy and misclassification errors which might be difficult in larger study areas. Thus, 

the size of the area to be evaluated has to be considered when selecting the computational 

process. 

 Finally, this study illustrates a methodology on how to compile the data for analysis, 

how to model the data within the analysis, and how to determine the most accurate 

algorithm for predicting the most probable landslide areas. 
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Tables 

 

Table 3.1. Results of Analyses from Random Forest with All Scenarios 

Random Forests 

Prediction Models 

No. of 

Observations 

TPR (%) FNR (%) TNR (%) FPR (%) 

Landslide area Non-landslide area 

Raster data 

Scenario 1 

3,645,234 

52.00 48.00 95.08 4.92 

Scenario 2 73.80 26.20 96.76 3.24 

Scenario 3 61.32 38.68 96.87 3.13 

Vector data 

Scenario 1 

300 

84.00 16.00 88.67 11.33 

Scenario 2 82.41 17.59 85.39 14.61 

Scenario 3 84.67 15.33 90.00 10.00 

 

Notes: TPR: True positive ratio (correct prediction of landslides),  

FNR: False negative ratio (incorrect prediction of landslide), 

TNR: True negative ratio (correct prediction of non-landslides), and 

FPR: False positive ratio (incorrect prediction of non-landslides). 
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Table 3.2. Results of Analyses from C 4.5 with All Scenarios 

C 4.5 

 Prediction Models 

No. of 

Observations 

TPR (%) FNR (%) TNR (%) FPR (%) 

Landslide area Non-landslide area 

Raster data 

Scenario 1 

3,645,234 

86.16 13.84 99.90 0.10 

Scenario 2 83.12 16.88 99.90 0.10 

Scenario 3 91.82 8.18 99.92 0.08 

Vector data 

Scenario 1 

300 

96.67 3.33 96.67 5.33 

Scenario 2 93.74 6.26 91.07 8.93 

Scenario 3 97.33 2.67 94.67 5.33 

 

Notes: TPR: True positive ratio (correct prediction of landslides),  

FNR: False negative ratio (incorrect prediction of landslide), 

TNR: True negative ratio (correct prediction of non-landslides), and 

FPR: False positive ratio (incorrect prediction of non-landslides). 

 

 

  



69 
 

 

 

Table 3.3. Results of Analyses from C 5.0 with All Scenarios 

C 5.0 

 Prediction Models 

No. of 

Observations 

TPR (%) FNR (%) TNR (%) FPR (%) 

Landslide area Non-landslide area 

Raster data 

Scenario 1 

3,645,234 

85.05 14.95 99.90 0.10 

Scenario 2 81.22 18.78 99.73 0.27 

Scenario 3 90.38 9.62 99.92 0.08 

Vector data 

Scenario 1 

300 

93.33 6.67 91.33 8.67 

Scenario 2 90.78 9.22 89.37 10.63 

Scenario 3 94.67 5.33 92.00 8.00 

 

Notes: TPR: True positive ratio (correct prediction of landslides),  

FNR: False negative ratio (incorrect prediction of landslide), 

TNR: True negative ratio (correct prediction of non-landslides), and 

FPR: False positive ratio (incorrect prediction of non-landslides). 
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Table 3.4. Comparison of the Accuracy and Error Percentages from All Scenarios 

 

Prediction 

Models 
Scenario 

Data 

Type 
Accuracy % 

Error  

% 

Data 

Type 

Accuracy 

% 

Error 

% 

RF 

1 

Raster 

98.67 1.32 

Vector 

86.33 13.67 

2 97.32 2.68 86.33 13.67 

3 98.58 1.42 87.33 12.67 

C4.5 

1 99.72 0.28 95.67 4.33 

2 98.23 1.77 94.32 5.68 

3 99.82 0.18 96.00 4.00 

C5.0 

1 99.69 0.31 92.33 7.67 

2 98.48 1.52 91.31 8.69 

3 99.78 0.21 93.33 6.67 
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Figures 

 

 

 

Fig. 1.1. Procedure of landslide susceptibility analysis using Feature Selection Methods 

and Decision Trees 
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Fig. 3.2. Results of the Feature Selection Methods 

A - Information Gain 

B – Gain Ratio 

C – Chi Squared 

D – Random Forest 
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CHAPTER 4: Use of C4.5 Machine Learning Algorithm to Predict 

Rainfall Induced Landslides3 

Introduction 

Hazard analyses consist of mapping and evaluating the potential for damage by 

incorporating external factors. Hazard analyses differ from susceptibility analyses by 

incorporating the factors that result in triggering landslides. Examples of previously 

conducted analyses with different approaches can be found in Dhakal and Sidle (2004), 

Baum and Godt (2010), and Rossi et al. (2013). 

One of the basic techniques of landslide hazard analyses is to conduct an evaluation 

of the slope stability. This approach is heavily used by geotechnical engineers to estimate 

potential failure mechanisms of human-made or natural slopes (e.g., excavations, landfills, 

and roadways). Slope stability analysis may be classified into deterministic (factor of 

safety) and probabilistic approaches. The deterministic methods are mainly calculated 

based on a specific mathematical model and the physical properties of the slope. Most 

deterministic models utilize a limit equilibrium analysis for a defined failure surface (e.g., 

Swedish slip circle, modified Bishop, Spencer’s method, etc.). These models are 

commonly used in geotechnical investigation as mono- bi- and tri-dimensional approaches. 

The calculation of the factor of safety requires precise data on slope geometry, shear 

 
3 The research described in this chapter has been submitted as a journal manuscript in March 2020. 
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strength properties of the soil, and pore water pressure. Therefore, one of the main 

disadvantages of this approach is that the slope stability is evaluated by determining a 

worst-case scenario where slope and the associated parameters and features are drawn as 

part of a specific cross section in great detail. Additionally, the factor of safety is computed 

individually for each cross section of the slope. Thus, predicting shallow landslides over 

large regions in real or near real time is an impossible task based on the deterministic 

approach (Baum & Godt, 2010). The probabilistic methods include the analyses to be 

conducted with variety of geotechnical properties (i.e. cohesion, angle of internal friction, 

undrained shear strength) but is still based on a given cross sectional area (not covering 

large areas/regions). Therefore, whether the slope stability evaluation is conducted based 

on deterministic or probabilistic approaches, in both methods, the extent of the area 

included in the analyses is very limited and not suitable for a regional evaluation.   

Physically based landslide analyses are more suited to evaluate larger areas. The 

appearance of geographical information system (GIS) and high computational ability of 

computers ease applying algorithms to every cell of the grid-based dataset to analyze 

distributed slope stability model. Several physically based approaches have been utilized 

previously to address landslide hazard analysis. SHALSTAB (Shallow Landslide Stability 

Model) is one of the grid-based approaches, which involve a hydrological flux coupled 

with an infinite slope analysis. However, this model is not appropriate to forecast the timing 

of slope failure based on the triggering mechanism (Dhakal and Sidle, 2004). SINMAP 

(Stability Index Mapping) is a different physically-based method that works based on 

infinite slope stability model with groundwater pore pressures. In this method, the required 
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data for pore pressure are obtained from a steady state model. SINMAP allows an 

uncertainty of the variables through the specification of lower and upper bounds of each 

conditioning factors (Rossi et al., 2013). This method applies only to shallow transitional 

landslide phenomena controlled by shallow groundwater flow. It does not apply to deep-

seated or rotational slides. Another disadvantage of this method is that the accuracy of 

output is heavily reliant on the accuracy of DEM (Yatheendradas et al., 2019). TRIGRS 

(Transient Rainfall Infiltration and Grid based Regional Slope stability) is another 

approach developed in FORTRAN language, for computing the transient po re pressure 

distribution due to rainfall infiltration using the method proposed by (Iverson, 2000) model 

(Baum and Godt, 2010). The results are stored in a distributed map of the factor of safety. 

However, TRIGRS is very sensitive to initial conditions, therefore, if the initial water table  

depth is poorly constrained, it may produce questionable results. All these approaches have 

a value to estimate landslide hazard analyses but they do not consider 

geotechnical/geological features within the landslide area (e.g., types of bedrock and soil,  

depths of stratigraphic layers, percentage of soils, and shear strength parameters of soil). 

Therefore, the analyses are predominantly solved by using rainfall data and topographical 

information of the slope which significantly limits the accuracy of the predictions. 

The importance of rainfall to trigger landslides is a known fact (Iverson, 2000). 

However, if the rainfall intensity that might have caused a specific landslide in a region is 

known, this information can then be used to estimate the possibility of landslide occurrence 

in that region in the future. The purpose of this study was to determine such relationship 

between the rainfall intensity and the occurrence of landslides. To the best of the authors’ 
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knowledge no previous study has used such approach that is defined in this study to achieve 

this goal. In this study a region with known landslide locations and extensive dataset of 

soil properties associated with and without landslides were used to first train the machine 

learning algorithm and then to re-perform the analyses based on the new datasets that were 

created based on the rainfall infiltration effect. This approach allowed the estimation of the 

rainfall intensity that might have most likely caused the landslides that were observed in a 

specific region. The approach followed in this study considered geological, geotechnical, 

and hydrological properties, which in itself makes this study unique. 

Model Development 

Fig. 4.1 describes the approach used in this study to relate the intensity of the precipitation 

into surface water infiltration and triggering of the landslides that have previously been 

identified (or mapped). In order to conduct this study, following assumptions had to be 

made: 

• All precipitation infiltrates into the soil layers (no runoff); 

• Only two layers of soil exists in the region; 

• Shear strength and density of the regions with no landslides initially had similar 

properties in terms of shear strength and density. 

• Shear strength and density of the soil layers change as each layer gets inundated 

with water based on the estimated depth of infiltration; and 

Properties of the study area 
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  The analyses were performed by first developing a digital elevation model (DEM) 

of a region. This DEM was then used as a scale raster data set to embed all available 

properties within the region including areas with and without landslides. Raster data is a  

form of data set that contains pixels (cells).  

  The soil properties that are used in this study are shown in Fig. 4.1 as slope, 

elevation, surficial geology, bedrock geology, soil type, Atterberg limits (this information 

states about the consistency of the clayey soil), and different percentages of sand, silt, and 

clay sized particles within each soil layer. The study area consists of 15 different types of 

surficial geological features, ranging from what is referred as Wisconsin, glacial, and re -

sedimented tills to alluvium that contained stratified silt, sand, gravel, and boulder size 

particles. There were three different types of bedrock identified at the site consisting of 

Huntley Mountain Formation, Catskill Formation, and Lock Haven Formation. All of  this 

data has been obtained from PADCNR (Delano and Wilshusen, 1999; Pennsylvania 

Department of Conservation and Natural Resources, 2019) and USDA (United State 

Department of Agriculture, 2019) in different depths, which allowed the model to be 

formulated to have two different layers. The first soil layer has a thickness of 30 cm (12-

inches) and the thickness of the second layer is assumed to extent all the way to the top of 

bedrock. The definition of these thicknesses was defined based on the available data and is 

supported by the fact that most of the landslides in this region were previously identified 

to be surficial, where the surface conditions of the slope impact the stability (Delano and 

Wilshusen, 1999). Although the properties of the soil were dif ferent with depth, they also 

varied spatially. However, once they were assigned to a pixel, these properties stayed the 
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same throughout the analyses. Additionally, all pixels that were located within non-

landslide areas were represented by an effective peak friction angle and pixels within 

landslide areas were represented by residual friction angles. This approach is consistent 

with what is typically observed by geotechnical engineers in their probabilistic analyses 

(Duncan 2014). All layers without groundwater were represented by moist density 

(Tarboton, 2003). Table 4.1 shows the range of the friction angle and moist density values 

that were obtained from the literature based on the soil type at a given location (Loehr et 

al., 2017).  

  The hydrological properties of the study area are also shown in Fig. 4.1 as 

groundwater level, hydraulic conductivity, soil porosity, effective porosity, wetting front 

soil suction head, and initial effective saturation. The groundwater level in the study area 

was mapped out based on the static water levels (meter below the surface) provided by the 

Pennsylvania Spatial Data Access (PASDA) from each of the wells located within the area. 

The static water level was added to the ArcGIS as a vector layer with the location and depth 

of each well. This information was then used to create a contour map and raster layer of 

the groundwater level. The rest of the hydrological properties have been obtained from the 

literature based on the type of soil defined at each location. Table 4.2 presents the range of 

hydrological properties data based on the soil type at a given location (Tarboton, 2003).  

Rainfall scenarios considered within the study area 

  Rainfall and precipitation are the major triggering factors in this study area (Delano 

and Wilshusen 1999). To study the effect of different historic rainfall on the hazard 
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analyses, the precipitation data were collected from Tioga Hammond Dam data 

accumulation center from 2000 to the late 2018 (United States Geological Survey, 2019). 

This data center is in approximately 10 kilometers of the Mansfield city. Fig 4.2 shows the 

precipitation data plotted based on the accumulative rate centimeter per day. For the 

purpose of this study, three different scenarios were selected to represent the intensity of 

the rainfall in different ranges: 1) intense rainfall, 2) medium-range rainfall, and 3) No 

rainfall. The rainfall data for intense, mid-range and no rainfall days were collected on 

9/8/2011 at 104.6 mm, 5/22/2018 at 23.9 mm, and 12/20/2006 at 0 mm respectively. These 

days have been selected randomly from the data acquired from Tioga Hammond Dam data 

accumulation center (Fig. 4.2). By selecting these three rainfall scenarios, the goal of the 

study was to estimate their infiltration rate into the ground and evaluate the hazard analyses 

in three different rainfall conditions. 

Methodology Used to Estimate Depth of Rainfall Infiltration 

  Depth of rainfall infiltration has been estimated based on the Green-Ampt (GA) 

infiltration model. The GA model is a simplified representation of the infiltration process, 

which solves the Richard’s equation used to estimate the water infiltration rate into the soil. 

This model assumes a homogenous soil profile and a uniform distribution of initial soil 

water content. Based on different soil types, GA model uses soil porosity (𝜀), effective 

porosity (𝜃e), wetting front soil suction head (𝜓), initial effective saturation (𝜎e), and 

hydraulic conductivity (K) to calculate the infiltration rate (f). Hence these properties had 

to be pre-defined for the region where the landslides and no landslides exist. Table 4.2 

based on previous literature is created for this purpose (Tarboton, 2003).  
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The infiltration rate (f) (cm/hr) is estimated by the GA model based on the equation 4.1 as 

provided below: 

 𝑓 = 𝐾 [
𝜓Δ𝜃

𝐹𝑝
+ 𝑡] Equation 4.1 

 where equation 4.1 is a function of equations 4.2 through 4.4: 

 𝛥𝜃 = 𝜃e (1 - 𝜎e) Equation 4.2 

 𝐹𝑝 = 𝑖𝑡𝑝 Equation 4.3 

 𝑡𝑝  =
𝐾ΨΔ𝜃

𝑖(𝑖−𝐾)
 Equation 4.4 

 𝛥𝜃: difference between initial and the moisture content equivalent to effective 

porosity 

 Fp: depth of cumulative infiltration from the ponded water (cm) 

 i: rainfall intensity that is of interest based on different scenarios (cm/hr) 

 tp: time of ponding of the water at the surface (hr) 

 t: duration of interest for the infiltration rate (hr) 

Once the infiltration is known then the infiltration depth F(t) is calculated as shown in 

equation 4.5 as a function of t: 

 𝐹𝑡 = 𝑓 × 𝑡 (ℎ𝑟) Equation 4.5 
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  In the overall model developed for this study, at each pixel within each soil layer, 

the equation for the GA model has been coded in order to estimate the depth of infiltration 

(Eq. 4.5). To simulate the effects of the different rain intensity, the corresponding rainfall 

data is also model at each pixel level. Based on this information, the GA model estimated 

the depth of infiltration. After this information is obtained, again at each pixel level, the 

estimated depth of infiltration was compared against the thickness of soil layers. If the 

depth of the rainfall infiltration was estimated to be greater than the thickness of the first 

layer then the friction angle was revised from being effective to residual and the density 

from moist to saturated. In this process, the existence of the pre-determined landslide 

locations have been disregarded in regards to the friction angle and density. This approach 

was necessary to create a new dataset with newly assigned friction angle and density values 

but by keeping all other pre-assigned soil properties constant (see Fig. 4.1 for the logic 

order). This approach was necessary because the purpose of this study was not to predict 

the existing locations of the landslides but to predict the potential to trigger new landslides 

even in areas where in the past landslides have occurred.   

Decision Tree Model to Predict New Landslides 

  The field study conducted by PADCNR shows the locations of existing landslides. 

However, the rainfall conditions that might have triggered these landslides are not known. 

The goal of this study was to determine the most likely rainfall scenario that can trigger 

these landslides. It is almost impossible to predict the future, however, if the rainfall 

intensity that might have triggered the existing landslides in a given region is known, then 

this information may lead to estimate future occurrence of landslides. This is based on the 



82 
 

assumption that the rainfall intensity that caused landslides in the past may also cause 

landslides in the future. To perform such analyses, a machine learning algorithm is needed. 

In this study, such analyses have been conducted with C4.5 algorithm (Quinlan, 1993). 

This algorithm was selected because the previous study conducted by Alimohammadlou 

et. al (2020) has showed that C4.5 algorithm had the best accuracy to be used in studies 

that required the use of machine learning approaches in landslide analyses.  

  The working principles of C4.5 algorithm is based on developing a tree for the 

binary dependent variables (landslide and non-landslide).  The decision tree is based on a 

multistage or hierarchical decision  scheme that is based on nodes. These nodes composed 

of a root node, a set of internal nodes, and a set of terminal nodes (leaves). Each node of 

the decision-tree structure makes a binary decision that separates either one class or some 

of the classes from the remaining classes. The processing is carried out by moving down 

the tree until the terminal nodes are reached. In a decision tree, features that carry maximum 

information are selected for classification, while remaining features are rejected, thereby 

increasing computational efficiency (Saito et al., 2009). Thus, a tree grows by selecting an 

attribute with the smallest entropy or highest information gain (Yeon et al., 2010).  

  In this study, a model has been created with C4.5 algorithm that included all of the 

dataset with soil properties of the regions with and without landslides. This model was used  

to train C4.5 algorithm to differentiate between the properties that are observed in areas 

with and without landslides. This trained model was then used to predict the occurrence of 

new landslides based on the dataset that was created as a result of the GA infiltration 

analyses (see Fig.4.1 for the logic order). If the results of these analyses showed no new 
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landslides, this meant that the selected rainfall intensity was not high enough to infiltrate 

into the soil layers or changing the soil properties. In the case where the rainfall intensity 

resulted in infiltration into the soil layers and changing the soil properties, the results 

showed new landslides. In the case where the new landslides occurred at the same locations 

that were previously defined by PA DCNR, the results were interpreted as the rainfall 

intensity that was simulated in this study to be similar to the rainfall events that might have 

happened in the past that have resulted in forming the landslides  

Results and Discussion 

Fig. 4.3 shows the outcome of the GA model in all three regions in this study. The 

figure shows the areas within each region where surface infiltration has affected the soil 

properties.  As can be seen from the figure, there was no effect on soil properties when 

there was no rainfall (as expected). However; with the increase of rainfall intensity, the 

surface water has penetrated further into the soil layers and traveled deeper into the ground. 

Fig. 4.3a, 4.3b, and 4.3c show the extent of the infiltration after medium and high intensity 

rainfall events in three different regions respectively. As can be seen from Fig. 4 .3a for the 

abundant landslide area, in the case of the medium intensity rainfall only 22.18% of the 

area had rainfall infiltration into the first layer (top surface layer) and 10.64% into the 

second layer. During the high intensity rainfall, these percentages increase to 57.25% and 

28.76% respectively. These changed conditions, create a new dataset for the regions where 

the soil friction angles and the density are changed due to the fact that the layers got 

inundated with infiltrated water.  
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Fig. 4.4 shows the newly predicted landslides in all three regions after the new 

dataset that is developed based on infiltration model (and the changed soil density and 

friction angle) are compared to the original dataset that was used to train the C4.5 model. 

Keeping mind that the analyses were performed on a pixel level, each white pixel (or cell) 

indicates a location where a new landslide is predicted. The triggering factor in these 

analyses is the infiltration of water into the soil layers as this resulted in changing soil 

properties. However, the actual determination of where a new landslide may or may not 

occur is much more complex. This is because C4.5 model incorporates all landside features 

that it has been trained with to determine the prediction of the new landslide locations. 

Therefore, such analyses require a similar model that is developed in this study.   

The results of the C4.5 model based on no rainfall scenario is presented in Fig. 4.4a 

and summarized in Table 4.3. Because there is no infiltration in this rainfall scenario, no 

changes have occurred in the soil properties, therefore it is expected that no newly 

developed landslide areas should be predicted. When the results were compared from the 

three different regions (as defined by three different tiles), in all regions some pixels show 

new predictions. However, the percentage of these newly predicted landslides are 0.61, 

0.89, and 2.26% of the overall study area in no-landslide, medium-range, and abundant 

landslide areas respectively. These predictions are considered as the noise (i.e., the 

misclassification of the C4.5 algorithm), resulting in false positives. Therefore, when 

interpreting the overall results from this study, it should be kept in mind that the accuracy 

of the predictions may possibly range ±2.5%. Based on the previous study conducted by 

Alimohammadlou et. al (2020), the overall accuracy of the C4.5 model for landslide 
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analyses was estimated as 99.82% when the model was used to estimate the susceptibility 

of existing landslides. Therefore, it is not of surprise to observe some false positives that 

occur in analyses conducted to predict new landslides.  

The effect of the rainfall to trigger new landslides become evident even in the 

medium rain intensity scenario (Fig. 4.4b) as can be seen by the coverage of the white 

pixels in the areas. In the case of abundant landslide areas, the model predicts the triggering 

of some of the existing areas that already have landslides as well as a small percentage of 

new areas to also trigger landslides. The newly triggered landslides cover 4.14 percent of 

the total area of the tile. However, in the case of medium-range landslide areas, the percent 

of newly triggered landslides is much less and only appearing to cover the area with 

previously existing landslide regions. This area covers 1.92 percent of the area of tile 

number 61002140. In the area where no previous landslides exist, the model still predicts 

that in some areas new landslides will trigger. The percentage of these newly triggered 

areas cover 1.33 percent of the total area of the tile number 61002160. Considering that the 

possible accuracy of the model is ±2.5%, predicted percentages less than 2.5% may also 

be considered as false positives but at this stage without being able to compare the 

predictions with an actual event (where medium intensity rainfall hits the area of medium 

range landslide area), it is impossible to differentiate the magnitude of this difference. 

However, the model indicates that there could be a potential risk for the triggering of 

landslide even in areas that previous landslides have not been reported.  

The extent of the newly predicted landslide areas with high intensity rainfall 

scenario is shown in Fig. 4.4c. When compared with results from the medium intensity 
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rainfall scenario two observations are noted: (1) the coverage of the newly predicted 

landslides increases dramatically and (2) the definition of the newly predicted landslide 

areas become more evident (the white pixels in each location become larger and better 

defined). Overall, as in the case with medium intensity rainfall scenario, new landslides 

have been predicted even in the area where previously no landslides were reported (Table 

4.3). The predicted percentages in high intensity rainfall event at all areas were larger than 

the false positive threshold (i.e., 2.5%) indicating that a potential risk of occurring new 

landslides increases dramatically with the increase in rainfall intensity.  

Conclusions 

This study presented a methodology where a machine learning algorithm can be 

used to predict the possible future occurrence of landslides in a given region that is 

triggered by the rain events. The results presented in this study were not meant to be an 

absolute outcome as the predictions cannot be verified unless an actual new landslide 

occurs in the future within the specified study area. However, the study presented herein 

demonstrates that such methodology can be used to make predictions and also assess  the 

potential bias within the predictions (i.e., predicting landslides in no rain events). Although 

not demonstrated herein, these predictions can then be used as early warning systems for 

the residents and municipalities that are located in landslide prone regions. This study 

specifically differs from the previous studies in many ways, where in this study, the 

predictions are based on the combination of actual geological, geotechnical, and 

hydrological properties of the region. Previous studies primarily focus on changes of the 

geometrical features based on rainfall events. Geotechnical engineers are able to conduct 
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specific evaluations of a given slope but this study expands this capability at a regional 

level (covering very large areas such as an entire County within a region). The following 

are the specific findings and limitations of the presented study: 

• The intensity of the rainfall plays a major role in terms of the depth of infiltration 

of the surface water into the geological formations. 

• The geotechnical properties of the ground are complex and the properties that 

represent each geological layer must be selected by the trained person who 

understands the meaning of these properties. 

• The infiltration of the rainfall may be predicted by an existing model, however 

hydraulic properties of the geological layers must be carefully evaluated/selected.  

• Predicting of landslides require the machine learning algorithm to be trained based 

on the actual landslide data set prior to be relied on. 

• C4.5 algorithm has been used in this study based on the previous findings of another 

study that has compared the accuracy of different decision tree algorithms. C4.5 

algorithm was pointed out as the most accurate of previously tested algorithms for 

landslide studies. 

• The methodology presented herein was kept simplistic by design to make the 

analyses less sophisticated (easier to implement), however, the results obtained 

with these simplifications might affect the accuracy. For example, the infiltration 

model used in this study was a simplified version of the Richard’s equation (Ross, 

1990) that has been generally used to estimate the water infiltration in semi-

saturated media.  



88 
 

• Although two rainfall intensity scenarios were evaluated in this study, the 

methodology presented would allow the user to input any rainfall intensity event in 

the analyses. 
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Tables 

Table 4.1. Estimation of residual friction angle for clayey soils in the study area 

Soils with clay fraction equal or less than 20 % 

LL 
Residual Phi 

Prime 

80 17.5 

60 22 

40 26.5 

20 32 

 

Soils with clay fraction between 20 % and 45% 

LL 
Residual Phi 

Prime 

140 9 

120 10 

100 12 

80 16 

60 19 

40 24 

 

Soils with Clay Fraction equal or greater than 45% 

LL 
Residual Phi 

Prime 

290 3.5 

280 4 

260 5.5 

240 6 

220 6 

200 6.5 

180 7.4 

160 8 

140 9 

120 9.5 

100 10 

80 12 

60 17 

40 20 
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Table 4.2. Green – Ampt infiltration parameters for various soil classes. 

soil texture 
Porosity 

(n) 

Effective 

porosity 

(θe) 

Wetting 

front soil 

suction 

head (ψ) 

(cm) 

Hydraulic 

conductivity 

(K) (cm/hr) 

Sand 0.437 0.417 4.95 11.78 

Loamy sand 0.437 0.401 6.13 2.99 

Sandy loam 0.453 0.412 11.01 1.09 

Loam  0.463 0.434 8.89 0.34 

Silt loam  0.501 0.486 16.68 0.65 

Sandy clay 0.398 0.33 21.85 0.15 

Clay loam  0.464 0.309 20.88 0.10 

Silty clay loam 0.471 0.432 27.30 0.10 

Sandy clay 0.43 0.321 23.90 0.06 

Silty clay  0.479 0.423 29.22 0.05 

Clay  0.475 0.385 31.63 0.03 
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Table 4.3. Percentage of areas covered by new landslides as predicted based on C4.5 
model as a function of three different rainfall scenarios. 

 

 
High Intensity 

Rainfall 
Medium Intensity 

Rainfall 
No Rainfall 

Abundant Landslide 10.78% 4.14% 2.16% 

Mid-Range Landslide 6.18% 1.92% 0.89% 

No Landslide 3.06% 1.33% 0.61% 
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Figures 

 

 

 

Fig. 4.1. Procedure of landslide hazard analysis using Green-Ampt infiltration model and 
Decision Tree C4.5 
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Fig. 4.2.  Rainfall Data – Collected from Tioga Hommand Dam Data Center 
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(a)        (b)             (c) 

Notes: Dark blue color shows the rainfall infiltration into the first (surficial) layer and 

light blue color represents rainfall infiltration into the second ground 

Fig. 4.3.  Rainfall infiltration rate as interpreted by the outcome of the Green-Ampt 

model in all three regions in this study area based on two different rainfall intensities 
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Fig. 4.4. Newly predicted landslides in all three regions within a) abundant (Tile No. 

59002140), b) medium range (Tile No. 61002140), and c) no (Tile No. 61002160) 

landslide areas 
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CHAPTER 5: FINAL REMARKS AND CONCLUSIONS 

 

Based on the findings and results discussed in the previous chapters, the initial 

hypotheses which this research was based on might be addressed with following 

conclusions: 

The results of the landslide inventory analyses for the selected region reveals that 

the automated landslide detection model (ALDM) was able to capture both the landslides 

and non-landslides areas with accuracies of 70% and 92% respectively. This allows the 

evaluation of large areas with minimal effort in very short time as compared to visual 

detection methods. The results obtained were compared against data from PADCNR and 

landslides that were determined visually from the Hill shade map (a technique that is 

implemented by some of the DCNR agencies to delineate landslides). These findings 

support the first hypothesis. The study also reveals that the proposed ALDM method could 

be implemented in regions where the landslide sizes and features could be significantly 

different. This method requires the user to initially set thresholds for roughness and texture 

segmentation analyses, however once these thresholds are established, the analyses are 

conducted in large areas without supervision and the need to re-define these thresholds. On 

the other hand, although the ALDM was effective in capturing the younger landslides (i.e., 
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less than 25 years), the method is not as effective in capturing the older landslides 

(landslides that have occurred 500 years or older). This is because although the thresholds 

could be redefined, the texture segmentation analysis has a limitation. Considering that in 

most cases the real dangers of landslides are associated with younger landslides that can 

remobilize, the proposed method is a viable technique to delineate landslides. 

The results of landslide susceptibility analyses for comparing the raster versus 

vector data set reveals that predictions made with raster datasets provide a much more 

accurate outcome, even though raster datasets are considered as imbalanced data set. 

Therefore, the accuracies of all LSA results were high and the errors were low with raster 

dataset and this shows the importance of using raster datasets for landslide analyses. When 

compared, being able to implement all of the available variables (without eliminating any 

variable) into creating a dataset also improves the accuracy of the model. In all cases, the 

results obtained from scenario 3 (all landslide parameters included) had demonstrated this 

importance. This study aimed to evaluate the performance of decision tree algorithms (C4.5 

and C5.0) in imbalanced data sets and compare the results to Random Forest model which 

is a standard and commonly used method in landslide susceptibility analyses. Comparison 

of the results from raster datasets with scenario 3 from all algorithms showed that the C4.5 

algorithm had a higher percentage of being able to correctly predict both landslide and non-

landslide areas. Therefore, the second and third hypotheses have been supported by these 

findings. It should be noted that the massive dataset of the susceptibility models requires 

high-performance computers to run the algorithms and compute the accuracy and 
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misclassification errors which might be difficult in larger study areas. Thus, the size of the 

area that will be evaluated has to be considered when selecting the computational process. 

The results presented in the hazard analyses demonstrate that methodology can be 

used to make predictions and also assess the potential bias within the predictions (i.e., 

predicting landslides in no rain events). This study specifically differs from the previous 

studies in many ways, where in this study; the predictions are based on the combination of 

actual geological, geotechnical, and hydrological properties of the region. Previous studies 

primarily focus on changes of the geometrical features based on rainfall events. 

Geotechnical engineers are able to conduct specific evaluations of a given slope but this 

study expands this capability at a regional level (covering very large areas such as an entire 

County within a region). Although this study were not meant to be an absolute outcome as 

the predictions cannot be verified unless an actual new landslide occurs, these predictions 

can then be used as early warning systems for the residents and municipalities that are 

located in landslide prone regions. Based on the fact that this study presented a 

methodology to predict possible future occurrence of landslides in a given region by using 

machine learning algorithm, the fourth hypothesis has been supported. 

Limitations of this study and suggestions for future studies 

The present study has been conducted in a study area located in Mansfield region 

of Pennsylvania. The goal was to develop a framework to quickly perform landslide 

inventory, susceptibility, and hazard analyses using machine learning algorithms and based 

on obtained DEM and landslide data. The findings of this study are inevitably limited to 
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the accuracy of the data obtained from multiple resources, despite the fact that every effort 

was made to perform an accurate data pre-processing step. An attempt was made to validate 

the results of each section against the ground truth data obtained from Pennsylvania 

Department of Conservation and Natural Resources. Additionally, the results from 

inventory analyses were compared against the visual detected method. These comparisons 

were limited and might be a source of limitation for this study. 

The hazard analyses were conducted by using three historical rainfall scenarios to 

predict potential future landslide in the given region. Real time rainfall scenarios are 

suggested for future researches to confirm the accuracy of landslide predictions. Although 

this study was conducted based on the soil data in two different depth s, for the future 

studies, one suggestion is to increase the information within the database by adding soil 

data from additional depths. This could very well be achieved in the future for example, if 

any given particular county with the landslide active regions in the U.S. starts to create a 

repository of all of their boring logs used in their site investigations. Perhaps such efforst 

could be initiated as the study herein outlines a methodology on how to utilize such data 

for forecasting landslides. However, such effort would require machine learning algorithms 

perhaps using millions of data on supercomputers. 
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