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Abstract

Most symbolic learning methods are concerned with learning concept descriptions

in the form of a decision tree or a set of rules expressed in terms of the originally

given attributes. For some practical problems, these methods are inadequate

because they cannot learn conditions that require counting of some object

properties. Such problems occur, for example, in engineering, economy, medicine

and software engineering. This paper describes a method for learning hybrid

descriptions  that combine logic-type and arithmetic-type properties. The presented

method builds hybrid descriptions in the form of conditional counting rules, which

are logic-type (DNF) expressions with counting conditions  (expressing a

relationship involving a count of some object properties). The method employs a

constructive induction  approach in which the learning system performs two

intertwined searches: one—for the most appropriate knowledge representation

space, and second—for the "best" hypothesis in the space. The first search is done

by determining maximum symmetry classes of binary attributes in the initial DNF-

type hypotheses, and extending the initial representation space by counting

attributes  that correspond to these symmetry classes. The search for the "best"

hypothesis in so extended representation space is done by a standard AQ inductive

rule learning program. It  our experiments, the proposed method learned simple and

accurate concept descriptions when conventional learning methods failed.
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1 INTRODUCTION

Most inductive learning methods search for the concept description in the same

representation space in which concept examples are expressed. The underlying

assumption is that the originally given representation space—as defined by the

attributes or terms used in the examples—is adequate for the problem at hand.

Therefore, the learning process in these methods concentrates on determining the

"best" hypothesis in the originally given space.

In many practical problems, however, the above assumption does not hold, as the

original attributes or descriptive terms may be insufficiently relevant for the given

learning problem. To address this problem, constructive induction learning methods

split the learning process into two intertwined searches: one–for the most

appropriate representation space for the given learning problem, and second—for

the "best" inductive hypothesis in the newly created representation space (Michalski

and Wnek, 1993; Wnek and Michalski, 1994b).

The first search is thus concerned with the representation space design or

improvement. This process is performed by applying constructive induction

operators that modify the representation space to maximize some measure of the

representation space quality.  This modification can involve a combination of three

types of representation space transformations: generating new, more relevant

dimensions (by inventing new descriptive concepts), removing less relevant

dimensions (representation space reduction or "feature selection") or changing the

quantization level of dimensions (dimension abstraction). Because there are many

ways in which such operators can be applied (especially of the first type), the

search through the possible representation space transformations can be potentially

unmanageable. Therefore, the central research issue in this approach is the

invention of meta-rules and heuristics for applying constructive induction operators.



3

This paper uses ideas of constructive induction to develop a method for a class of

learning problems that cannot be satisfactorily solved by conventional symbolic

methods that construct DNF-type descriptions (decision trees or decision rules).

Specifically, we address problems in which relevant descriptive concepts involve

counting the presence of some object properties. Problems of this class require

DNF-type descriptions that are prohibitively long. For example, a decision tree

correctly representing the so-called MONK2 problem requires 434 nodes, while a

solution involving a counting property requires only one condition.

The presented method builds a form of hybrid descriptions that combine logical-

type (DNF) and arithmetic-type conditions. Specifically, the method learns

conditional counting rules, which are DNF descriptions with “counting conditions”.

A simple example of a conditional counting rule is the M-of-N concept. Here, the

counting condition is “at least M out of N properties of some kind must present in

an object,” and the logic-type condition is null.  Problems of this type occur in

many real-world problems, for example, in medicine (Spackman, 1988), planning

(Callan & Utgoff, 1991), game playing (Fawcett & Utgoff, 1991), biology (Baffes

& Mooney, 1993) and biochemistry (Towell & Shavlik, 1994).

The proposed method can learn DNF descriptions (decision rules), one or more

counting conditions (e.g., M-of-N concepts), or any combination of the logic-type

DNF descriptions with counting conditions. Thus, it extends the class of learning

problems to which conventional symbolic learning methods apply. The key idea of

the method is to detect the need for and then construct a "counting attribute" that is

added to the representation space. The idea stems from the early work on the

counting attribute generalization rule  (Michalski, 1983).

To detect the need for a counting attribute, the method searches for maximum

symmetry relations among attributes in the DNF concept descriptions constructed in
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each iteration of the method. For each maximum symmetry group, one new

counting attribute is constructed. Counting attributes are added to the representation

space and a new iteration begins. The process ends where a satisfactory concept

description (according to dome description quality criterion) has been found or the

allocated computational resources have been exhausted. The introduction of

"counting attributes" to the concept representation can be viewed as a conceptual

change from logic-style to arithmetic-style descriptions. The next section explains

briefly the origins of this method and characterizes its relation to other related work.

2. RELATION TO THE PAST WORK

This research was inspired by the failure of well-known symbolic learning systems

to solve the MONK2 problem used in an international competition of learning

programs (Thrun et al, 1991; Wnek & Michalski, 1994a). The MONK2 problem was

to learn from a set of examples the following target concept: "Exactly two of six

given attributes have their first value for each concept instance."  All conventional

symbolic learning methods (which learn a DNF-type description, such as decision

tree or a set of decision rules), performed poorly on this problem.

In order to solve this problem, a learning system needs to be able to form what we

call a counting condition.. There have been several early efforts in this research

direction. For example, the CRLS system learns M-of-N  rules (a special case of a

counting condition) by employing non-equivalence symmetry bias and criteria

tables (Spackman, 1988). The ID-2-of-3 system incorporates M-of-N tests in decision

trees (Murphy & Pazzani, 1991). The AQ17-DCI program employs a variety of data-

driven operators to construct new attributes (Bloedorn & Michalski, 1991). Fawcett

and Utgoff (1991) used feature representation similar to the Michalski's (1983)

counting arguments rule to expand a representation space by summing up the

number of distinct values of the set of variables that can satisfy a set of conditions.
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Such a modified representation allows the expression of the "number of ways" in

which conditions can be satisfied.

Callan and Utgoff (1991) used a restricted form of the counting arguments rules to

create a numeric function from a Boolean expression that begins with a universal

quantifier. The function calculates the percentage of permutations of variable

bindings satisfying the Boolean expression. Such a function is useful because it

indicates the degree to which a subgoal is satisfied in a given state. More recently,

the NEITHER-M-of-N system refined M-of-N rules by increasing or decreasing either

M or N (Baffes & Mooney, 1993).

The proposed method is based on the idea of "counting arguments” generalization

rule (Michalski, 1983), the algorithm for detecting symmetry in Boolean functions

of many variables (Michalski, 1969), and its subsequent implementation in the SYM

program (Jensen, 1975). This work is also related to the work by Seshu (1989),

who studied the problem of learning concept descriptions that are logically

equivalent to a combination of DNF and M-of-N rules but in the context of decision

tree learning. He calls such learning problems unsplittability or parity problems.

Seshu's solution involves determining "best" XOR combinations in a randomly

selected subset of the original attributes. Seshu has shown that such a method

improves the prediction accuracy of learned descriptions. Disadvantages of the

method are that it creates attributes without clear meaning and, due to the

randomness of attribute selection, it may miss important relationships.

3 THE AQ-HCI METHOD

An important property the proposed method is that it is hypothesis-driven, which

means that the change of the concept representation space is based on the analysis

of hypotheses generated in that space (in contrast to data-driven methods that

propose changes in the representation space based on the analysis of examples).
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Another property is the way in which the method constructs changes of the

representation space. In each iteration, the method searches for attribute symmetry

patterns  in the hypotheses generated in this iteration, and then uses these patterns to

modify the representation space for the next iteration.

The proposed method is a new version of the AQ-HCI approach that combines an

inductive rule learning algorithm Aq (Michalski, 1969b) implemented in the AQ15c

system (Michalski et al., 1986; Wnek et al., 1995) with a procedure for an iterative

hypothesis-driven constructive induction (HCI) for transforming the representation

space. The AQ-HCI approach is based on detecting patterns  in the generated

hypotheses (concept descriptions).

By a     pattern     we mean a component of a concept description  (in this paper, a set of

decision rules) that covers a significant number of positive training examples and

only a small number of negative examples. The meaning of "significant" and

"small" is defined by a user-specified parameter. Our earlier work in this area

involved the search for three types of patterns: value-patterns, condition-patterns,

and rule-patterns. Value-patterns aggregate subsets of co-occurring attribute values

in a description into single, more abstract values. Condition-patterns represent a

conjunction of two or more elementary conditions that frequently occur in a ruleset

of a given concept. A rule-pattern consists of a set of rules. Detecting such patterns

and using them for expanding the representation space have proven to be highly

effective in improving the performance accuracy in DNF-type learning problems

(Wnek & Michalski, 1994b).

Following the scheme of different types of patterns, it was conjectured that there

may also exist class-patterns (Wnek, 1993). Such patterns would represent

relations that are common for subsets of learned classes (concepts). This led to the

introduction of XOR-patterns that represent a special case of class patterns. Such
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patterns facilitate the determination of M-of-N concepts, as well as their negation.

Concept learning from examples can be viewed as learning an incompletely

specified discrete function (Michalski, 1969; Michalski, Rosenfeld and Aloimonos,

1994). The function is incompletely specified because the set of examples usually

represents only a (small) subset of instances of that function. In single concept

learning, the function takes value 1 for any instance that belongs to the concept and

value 0, otherwise. In multiple-valued  concept learning,  the function to be learned

takes outcomes from a discrete set of values representing a degree to which an

instance satisfies the concepts.  In multi-concept  learning, the function takes a

vector of values (each value corresponds to one concept).

It has been observed that functions that are symmetrical with regard to some of its

variables may have a very complex DNF expression (Michalski, 1969a). A function

is symmetrical with regard to a set of attributes, if replacing any attribute by any

other from the set and vice versa does not change the function value for any

assignment of the input attributes. A set of attributes for which a function is

symmetric is called an attribute symmetry group  for this function.  Section 3.1

provides more details on this topic.

Although a concept may not be symmetrical with regard to a set of original

attributes, its projection on a subspace of the representation space may be

symmetrical. This leads to concept descriptions in which one part identifies such a

subspace and the other part represents a symmetrical function within that subspace.

Learning such conditional symmetrical descriptions is an objective of this research.

3.1 Symmetrical Functions And Concepts

The concept of symmetry of a function has been studied already a long time ago

(e.g., Michalski, 1969). For completeness, we will briefly review it here and adapt

to the problems of concept learning.



8

A function f(x1, x2, ..., xn) is symmetrical with respect to variables {x i, xj} if  

f(..., xi, ..., xj, ...) = f(..., xj, ..., xi, ...) (1)

where, n ≥ 2, 0 < i ≤ n, 0 < j ≤ n, i ≠ j.

It is assumed that the domains (value sets) of the attributes x and y are the same.

For simplicity, we will assume henceforth that the symmetrical variables are placed

at the beginning of the list of arguments of the function, and the remaining variables

are denoted by R ("Rest"). Since concept learning can be viewed as learning a

function with a binary output and discrete (or continuous input), we introduce the

following definition. A concept C(x, y, R) is called symmetrical  (potentially

symmetrical) with respect to attributes x and y, if for all instances (all known

instances) of that concept:

C(x, y, R) = C(y, x, R) (2)

The idea of “potentially symmetrical” is very important for concept learning,

because here the set of training example (positive and negative) usually represents a

small subset of possible concept instances, and the whole problem of learning is to

extrapolate the information provided by the training set. Definition (2) applies for

single and multiple-valued concept learning. The symmetry of the concept C(x, y,

R) with respect to attributes x and y implies existence of a symmetrical relation

between instances of that concept. Below we discuss two basic classes of such

symmetry.

(1) Equivalence symmetry — EQxy :  (x & y  or  ~x & ~y)

Figure 1 illustrates the equivalence symmetry of a concept with regard to attributes

by using a “generalized logic diagram” for visualizing discrete functions. The

representation space is defined by four binary attributes: x0, x1, x2 and x3. Each

cell of the diagram corresponds to a unique combination of attribute values (a



9

concept example). Positive examples are marked by +,  and negative examples by –

For example, the negative instances, e1 and e2, in Figure 1a can be described by

the following VL1 expressions (VL1 stands for variable-valued logic 1—a form of

multiple-valued logic calculus; Michalski, 1975):

e1 <:: (x0=1) & (x2=1) & (x1=1) & (x3=0)

e2 <:: (x0=0) & (x2=0) & (x1=1) & (x3=0)

a)                                           b)

Not applicable area+- Positive and negative examples

e2

e1

---- ++++
++++ ++++

---- ++++
++++ ++++

---- ++++
++++ ++++

---- ++++
++++ ++++

Figure 1. An equivalence symmetry of a concept with respect to x0 and x2.

The concept, as defined by the shown examples, is symmetrical with regard to x0

and x2 in the subspace described by  (x0=0) & (x2=0) v (x0=1) & (x2=1).  The gray area

denotes the part of the concept (or its negation) that is may be or may not

symmetrical with regard to x0 and x2. Figure 1b has a different arrangement of

attributes (attributes x0 and x2 were switched), but the projection of the function on

the non-gray area is the same.

(2) Exclusive-or symmetry — XORxy: (x & ~y or ~x & y)

Figure 2 illustrates the exclusive-or symmetry. It shows a projection of three

concepts (C1, C2, C3) into the subarea described by (x0 & ~x2) or (~x0 & x2).

The gray area in the diagram marks the parts of the concepts that may or may not be

symmetrical with regard to x0 and x2.
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a)                                           b)

 E
Not applicable areaC1, C2 , C3 - concepts

CCCC1 CCCC2

CCCC3 CCCC3

CCCC1 CCCC2

CCCC3 CCCC3

e2

e1

CCCC1 CCCC2

CCCC3 CCCC3

CCCC1 CCCC2

CCCC3 CCCC3

Figure 2. An exclusive-or symmetry of concepts C1, C2, and C3 with respect to

attributes x0 and x2.

An important property of a symmetrical relation between two attributes of a concept

(either EQ or XOR symmetry) is that it is transitive. The following theorem defines

this property precisely.

Theorem. Let SYM: Ck(x, y, R) stand for an expression stating that concept Ck is

symmetrical with regard to attributes x and y (R stands for other concept attributes).

Then we have:

∀ x, y, z  SYM: Ck(x, y, R)  &   SYM: Ck(y, z, R)   ⇒   SYM: Ck(x, z, R)        (3)

Proof.

By definition, the  SYM: Ck(y, z, R)  is logically equivalent to SYM: Ck(z, y, R).

Therefore, in any description of Ck, every occurrence of attribute y may be replaced

by attribute  z, and vice versa.  If a replacement of y by z is done in Ck(x, y, R),

then SYM: Ck(x, y, R) becomes SYM: Ck(x, z, R).                                    Q.E.D.

3.3 Maximum Symmetry Classes

A decision rule is meant here as an expression:

DECISION  <::   CONDITION

where DECISION is an assignment of a specific value to a decision variable (or
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variables,  <::  is a decision assignment operator, and CONDITION is a conjunction

of unary relational expressions, each stating a condition on values of a single

attribute. Examples of unary relational expressions are:  xi = 5, xi > 3 and xi = 2..5

(in the latter, xi takes a value between 2 to 5, inclusively).  A general form of a

unary relational expression is:

[xi  REL Values]   (4)

where REL is one of  {=, <>, <, >, >= or <=}, and Values stand for one or more

values of the attribute linked by the internal disjunction or the range operator ("..").

A relational expression defined by (4), called for short RE, evaluates to 1 or 0,

depending on whether the value of the attribute in an input example satisfies or does

not satisfy, respectively, the expression. If the attribute in a relational expression is

binary, then there are only two relational expressions possible: xi=1, written briefly

as xi,  and  xi=0, abbreviated as ~xi. Unary relational expressions were originally

defined in the variable-valued logic system VL1 (where they are called selectors;

Michalski, 1975). They are building blocks of decision rules generated by the AQ-

type rule learning system employed in the method described here.

Let C1 and C2 be condition parts of two decision rules in a ruleset representing a

concept description. Suppose C1 is in the form  REi & ~REj & CTX1 and C2 is in the

form  ~REi & REj & CTX2, where REi and REj are relational expressions, and CTX1

and CTX2 are "context" conditions that are conjunctions of zero or more relational

expressions.  It is said that REi and REj represent a binary XOR-symmetry class for

the concept description, if CTX1 and CTX2 are in a subsumption  relation, that is,

CTX1 = CTX2 & CTX3  or  CTX2 = CTX1 & CTX3, where CTX3 is a context condition.

If C1 is in the form REi & REj & CTX1 and C2 in the form  ~REi & ~REj & CTX2, then

REi and REj represent a binary EQ-symmetry class for the concept description. If REi

and REj are in a XOR- or EQ- symmetry relation, then we say generally that they are

in a symmetry relation.
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Due to the transitivity of the symmetry relation, a set of k binary symmetry classes

of REs can be combined into one k-ary symmetry class (SC), if they can be ordered

into a chain in which every two neighboring relational expressions have a non-

empty intersection. For example, if SC1 = {RE1, RE3} and SC2 = {RE1, RE2} then they

can be combined into a larger symmetry class SC3 = {RE1, RE2, RE3}. A symmetry

class to which no additional expressions can be added is called a maximal symmetry

class.

3.4  Generating Counting Attributes

Suppose a k-ary maximum symmetry class {RE1, RE2, ....REk} has been formulated

for a set of decision rules constituting a concept description. The counting attribute

generation rule  is a constructive induction operator that creates a counting attribute,

defined by the arithmetic sum {v(RE1)+ v(RE2) +...+ v(REk)}, where v(REi) is the value

of REi  for the object to which the attribute is applied; thus, it can be 1 or 0. The

counting attribute represents the number of relational expressions that hold for the

given concept example and its domain (value set) is the set of integers from 0 to k.

The counting attribute thus sums up the "evidence" contributed by each relational

expression in a given symmetry class. The so created counting attribute is added as

a new dimension to the representation space. The following general notation is

introduced for a counting attribute:

#AttrIn{Attribute Set: IREL VAL}     (5)

where, Attribute Set  is a list of attributes, IREL  specifies an internal  relation: EQ,

NEQ, GT, LT, GE or LE, and VAL  is a value from the domain of the attributes  on the

list. The attributes in the set may be (binary) relational expressions, as discussed

above, or they can be multi-valued. The counting attribute has the following

meaning: "The number of attributes in the Attribute Set  that are in relation IREL

with VAL ." If attributes are binary (as in the case of relational expressions), then the
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notation for the counting attribute is simplified to:  #AttrIn{Attribute Set}. A

counting attribute is treated as any other discrete attribute, and thus can be used to

create relational expressions in the form defined by (4).  For example              

 #AttrIn{x1, x4, x5, x6}:  >  4}  =  2      (6)

denotes a relational expression stating that there are 2 attributes from the set {x1,

x4, x5, x6} that have the value greater than 4 in an example or examples of a

concept). As one can see, relational expressions with counting attributes can

express complex relations, but nevertheless are easy to comprehend. 

Using a counting attribute, the well-known M-of-N  concept ("At least M out of N

properties from {P1, P2, ...PN} hold") can be represented:  #AttrIn{P1, P2,

...PN} ≥ M. To express the condition  "Between 2 and 4 (non-binary) attributes in

the set {A2, A3, A5, A7, A9, A12} have value greater than 5, one can write:

#AttrIn{A2, A3, A5, A7, A9, A12:  GT  5} = 2.. 4.  To illustrate the usefulness of

a  counting attribute, let us describe the concept represented in Fig. 3E. The

   simplest    DNF description of this concept is:

~x0 & ~x1 & ~x2 &   x3  or
~x0 & ~x1 &   x2 & ~x3  or
~x0 &   x1 & ~x2 & ~x3 or
  x0 & ~x1 & ~x2 & ~x3  or
~x0 &   x1 &   x2 &   x3  or
  x0 & ~x1 &   x2 &   x3  or
  x0 &   x1 & ~x2 &   x3  or
  x0 &   x1 &   x2 & ~x3            (7)

Using the counting attribute, we can write a logically equivalent expression in the

form:                           [ #AttrIn{x0,x1,x2,x3} = 1 v 3]        (8)

which is both shorter and easier to understand (it reads: "Either one or three

attributes from among x0, x1, x2, x3 take value 1").

The above example show that the counting attribute is powerful descriptive concept

that  allows one to express concisely a wide range of relations for which an

equivalent DNF expression would be very long. If the counting attribute involves N
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binary attributes, it allows to represent all combinations of counts of N properties.

There are 2N+1 such combinations (2N subsets multiplied by two attribute values for

each subset).  Figure 3 illustrates six out of 32 possible concepts that can be

expressed by a unary relational expression involving the counting attribute

#AttrIn{x0,x1,x2,x3}.

A. At most 2-of-4 B. Exactly 2-of-4 C. At least 3-of-4

[ #AttrIn{x0,x1,x2,x3} <= 2 ] [ #AttrIn{x0,x1,x2,x3} = 2 ] [ #AttrIn{x0,x1,x2,x3} >= 3 ]

(standard M-out-of-N concept)

D. 1 or 4 of-4 E. Odd number of-4 F. Even number of-4

[ #AttrIn{x0,x1,x2,x3} = 1,4 ] [ #AttrIn{x0,x1,x2,x3} = 1,3 ] [#AttrIn{x0,x1,x2,x3}=0,2,4 ]

Figure 3. Examples of relations that can be represented by using the counting

attribute #AttrIn{x0,x1,x2,x3}

In order to establish the value of a concept for a given instance (a cell in the

diagram), the number of occurrences of value "1" in the vector of attribute values

that characterizes this instance is counted. If this number satisfies the concept

description, then the instance belongs to the concept and is marked by "+" in the

diagram; otherwise it does not belong to the concept, and is marked by "-".
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Decision rules that combine conventional logic-type relational expressions with

arithmetic-type expressions are called generally hybrid decision rules. The

presented method builds hybrid rules that involve only counting attributes (if it is

important to distinguish such rules from more general hybrid rules, we will call

them the counting hybrid rules) .

Fig. 4 shows examples of concept descriptions in the form hybrid decision rules.

Conditional Parity 5 defined on 10 binary attributes: x0-x9.

 [#AttrIn {x1, x2, x3, x4, x5} = 0 v 2 v 4]  &  [x7 = 0 ]

The parity-5 concept involves 5 binary attributes. [x7 = 0] specifies condition under which  the parity  is

satisfied.

MONK2  problem "exactly two of six attributes have their first value"

[#AttrIn{First(x1), First(x2), ...., First(x6)}  =  2 ]

Conditional XOR defined on 10 binary attributes: x0-x9.

 [#AttrIn {x1, x2} = 1] & [x0 = 1] & [x8 = 0]

CR10 a conditional M-of-N rule defined on 10 binary attributes

[ #AttrIn{x0,x2,x4,x6,x8} >= 3]  &  [ #AttrIn{x1,x3,x5,x7} >= 2]  &  [ x9 = 1 ]

Figure 4. Concept descriptions in the form of counting hybrid rules  (only the

condition part of the rules is shown).

3.5 LEARNING COUNTING HYBRID RULES: AQ17-HCI

This section presents an algorithm for learning counting hybrid descriptions (Fig.

5) that was implemented in the AQ17-HCI program. It is based on detecting

symmetry patterns in the DNF concept description (a set of decision rules) created

by an AQ-type learning program (the current version of the program detects only

XOR-symmetry patterns).
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1. Determine a DNF concept description from training examples projected into the current

representation space.  If the expression is "sufficiently" simple (according to a given

criterion),  then STOP.

2. Detect symmetry patterns in the learned concept description.

3. If there are no such patterns, then STOP. Otherwise:

Build the maximum symmetry class (MSCs) for each pattern. For each MSC-class,

introduce a "counting attribute," and add the attribute to the representation space. Project

the training data into the new representation space.

Go to step 1.

Figure 5. Algorithm for Learning Counting Hybrid Descriptions

Suppose, for example, that the following XOR-symmetry patterns were detected: x1

XOR x3, x1 XOR x5, and x1 XOR x7. The following MSC-class is created {x1, x3,

x5, x7}. For each MSC-class a counting attribute is created and added to the

representation space. In the above example, the attribute #AttrIn{x1,x3,x5,x7} is

created. Its domain is an integer interval from 0 to 4. Training examples are mapped

into the new representation space, and a new rule learning iteration is performed.

The algorithm described above is independent of the learning program used.

However, systems that use different representational formalisms for examples and

concept descriptions (unlike the AQ-type learning programs) may have difficulty

detecting symmetry patterns in generated concept descriptions. In such cases,

symmetry patterns can be detected by a data-driven approach, that is be examining

training examples. In AQ learning systems that use the VL1 description language

both for data and rules, patterns can be easily detected either by a data-driven or a
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hypothesis-driven approach. An examination of descriptions generated by FOIL

(Quinlan, 1990) for the MONK2 problem and other problems indicates that these

descriptions can be used for detecting symmetry-patterns. The symmetry patterns

are a form of class-patterns. They are different from the intra-construction and inter-

construction operators used in Duce and CIGOL systems (Muggleton, 1987;

Muggleton & Buntine, 1988), which are forms of rule-patterns in Horn-clauses

(Wnek & Michalski, 1994b).

4  AN ILLUSTRATIVE EXAMPLE:  THE MONK2 PROBLEM

The concept to be learned is the MONK2 problem (Thrun et al., 1991; Wnek &

Michalski, 1994a). Figure 6A shows a diagram visualizing the representation space

with indicated target concept and training examples. The total number of possible

instances in the space is 432. In the diagram, the target concept is represented by

142 instances (shaded area). The remaining 290 instances represent the negation of

the concept. The training set is represented by 64 positive (+) and 105 negative (-)

examples. The data contain no noise.

4.1 Learning In The Original Representation Space

The MONK2 problem poses a difficult problem for conventional symbolic learning

systems. In fact, none of the 18 conventional symbolic learning systems (decision

tree or rule learning programs that did not use constructive induction) that took part

in the international competition was able to learn the MONK2 concept (Thrun et al.,

1991). The descriptions generated by these programs all have the following

characteristics: a relatively low prediction accuracy (about 75%) and high

complexity (many decision rules or nodes in the decision tree; rules involve many

conditions). As many as 16 decision rules were needed to characterize 64 positive

examples. Almost all rules involved all six attributes in describing the concept,

which means that all attributes are considered important. This result means that



18

representation space or the representation language is inadequate for learning this

concept.

Positive example Negative example Unknown example

Target concept: exactly two of the six  attributes have their first value

2
1

1
2
1
2

1

2

3
1

x6 x4x5

2
1

1
2
1
2

4

1

2

2
1

1
2
1
2

3

4

1

2

2
1

1
2
1
2

2

3

4

3

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

3 2 1 3 2 1 3 2 1
3 2 1

x3

x1
x2

A.  MONK2 problem in the original RS

1 0 1 0 1 0 1 0
1 0 1 0

1

c6

c4
c5

0

0
1

1
0
1
0

1

0

1

1

c3 c1c2

0
1

0
0

B. After iteration #1

0 1 2 3 4 5 6CA

C. After iteration #2

[ CA = 2 ]
CA <:: #AttrIn {c1,c2,c3,c4,c5,c6}

Value
patterns

XOR
patterns

• Abstract repr. space
• Fewer unknown ex.
• Complex DNF descr.
• 93% accuracy

• Simple DNF descr.
• 100% accuracy

• Complex DNF descr.
• 77 % accuracy

Figure 6. Learning a description for the MONK2 problem in two iterations of the

AQ17-HCI method.

4.2 Representation Space Transformation: Iteration #1

Program AQ15 was used to learn the initial concept description from the given

training examples. This description was then inspected for the presence of XOR-

symmetry patterns. In many conditions involving the same attribute the same set of

attribute values was present. Such sets form value-patterns (Wnek and Michalski,

1994a), which were used to transform the initial representation space (Fig. 7). The

learning task in the new space is visualized in Fig. 6B. The new representation
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space has become significantly smaller; there are only 64 instances in the new space

versus 432 instances in the original representation space. The number of attributes

is the same, but all of them are binary.

(c1 = 1) <:: [HS=r] (c2=1) <:: [BS=r] (c3=1) <:: [SM=y]

(c1 = 0) <:: [HS=s,o] (c2=0) <:: [BS=s,o] (c3=0) <:: [SM=n]

(c4 = 1) <:: [HO=s] (c5=1) <:: [JC=r] (c6=1) <:: [TI=y]

(c4 = 0) <:: [HO=f,b] (c5=0) <:: [JC=y,g,b] (c6=0) <:: [TI=n]

Figure 7. Attributes Constructed From Value-patterns.

The number of instances representing the target concept is now 15, therefore, in the

worst case, the number of rules required to describe the concept is 15. This is a

reduction in description complexity in comparison to the original representation

space. Each instance in the new space represents between 1 and 24 instances that

were mapped from the original space. The transformation does not cause ambiguity

in the new representation space, i.e., each new instance represents instances of the

same class, either positive or negative. In the new representation space, all possible

positive examples are now present, and only 13 of the possible negative examples

are missing (the original space had only 64 positive examples out of a possible

142). Although the representation space was simplified, AQ15 still generated a long

and inaccurate description of the concept. Errors were caused by overly general

decision rules. These rules covered not only two positive examples but also two

negative examples. For more details see (Wnek, 1993).

4.3  Representation Space Transformation: Iteration #2

The description obtained after the first transformation of the representation space is

more accurate but still very complex (Fig. 6B). Therefore, the search for a better
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representation is continued, and the XOR-patterns are found (Wnek and Michalski,

1994c). All six attributes form a MSC class. From this class a new counting

attribute is constructed. It is defined as #AttrIn{c1,c2,c3,c4,c5,c6}. Its domain is

an integer interval from 0 to 6. Summing up values in the XOR-patterns always

gives the exact value 2. The final concept description was

[#AttrIn{c1,c2,c3,c4,c5,c6}=2], i.e., exactly two of the six attributes are present.

Fig. 6C visualizes the final representation space and the final concept learned.

5 EXPERIMENTAL RESULTS

We have conducted a set of experiments with the proposed method to learn

concepts from examples of different complexity (involving 6, 9, 10, and 16 binary

attributes). Figure 8 summarizes the results. They demonstrate that the AQ-HCI

method is capable of learning counting hybrid descriptions very effectively. The

MONK2 learning problem (Thrun et al., 1991) was solved with 100% accuracy

and produced descriptions exactly  equivalent to the target description. When

applied to more complex concepts the program produced significantly better

descriptions in terms of both prediction accuracy and simplicity, as compared to the

original AQ15 system.

________________________________________________________
C o n c e p t : "More than 3 and more than 2"

[#AttrIn{x0,x2,x4,x6,x8}>= 3] & [ #AttrIn{x1,x3,x5,x7}>=2]

Domain: 9 binary attributes (x0, x1, ..., x8)

Training set 50% of all examples

A Q 1 5 : Prediction accuracy 78% 42 rules

AQ17-HCI: Prediction accuracy 100%  1 rule

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C o n c e p t : "More than 3 and more than 2 when x9 holds"

[#AttrIn{x0,x2,x4,x6,x8}>=3] & [ #AttrIn{x1,x3,x5,x7} >= 2] 

   & [x9= 1 ]

Domain: 10  binary attributes (x0, x1, ..., x9)

Training set 20% of all examples

A Q 1 5 : Prediction accuracy:  96 %    Complexity:   22 rules

AQ17-HCI: Prediction accuracy:  100%   Complexity:      1 rule
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________________________________________________________
Target Concept: "More than 3 and more than 2 when x9 holds,  or Equal 2"

 [#AttrIn{x0,x2,x4,x6,x8} >= 3] & [#AttrIn{x1,x3,x5,x7}>= 2] 

   & [ x9= 1 ] or   [ #AttrIn{xC,xD,xE,xF} = 2 ]

Domain: 16 binary attributes (x0, x1, ..., x9, xA, ..., xF)

Training set 10% of all examples

A Q 1 5 :   Prediction accuracy    93%  Complexity: 92 rules

AQ17-HCI: Prediction accuracy  100%  Complexity:   5  rules

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 8. Summary of experiments on learning  hybrid descriptions.

7 CONCLUSION

The presented method addresses a class of learning problems that require concept

descriptions that combine logic-type descriptions with counting conditions.

Conventional symbolic learning methods produce prohibitively long and inaccurate

descriptions for such problems. The method, based on ideas of constructive

induction, works iteratively. In each iteration, it searches for symmetry patterns in

the descriptions generated by an AQ-type learning program. In the implemented

method, detecting symmetry was based on detecting XOR-symmetry patterns.

Detected patterns are used to create new dimensions, called counting attributes, in

the knowledge representation space. Adding these dimensions represents a task-

oriented adaptation of the representation space. Experiments demonstrated that the

method was very effective in solving testing problems that required learning

counting hybrid descriptions.

The method can be applied to a wide range of domains where logical conditions

need to be combined with simple arithmetic relations (counting) to capture the

essence of the target concept. Such domains include economy, medicine, computer

vision, biochemistry and others.

Future research needs to address other classes of problems for which symbolic

methods are not adequate, if applied directly, such as learning concepts requiring
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logical and complex arithmetic expressions or detecting geometrical object

properties.

ACKNOWLEDGMENTS

The authors thank Eric Bloedorn and Ken Kaufman for useful comments and

criticism.  This research has been conducted in the Center for Machine Learning and

Inference at George Mason University. The Center’s research is supported in part

by the National Science Foundation under grants No. CDA-9309725, IRI-

9020266, and DMI-9496192, in part by the Advanced Research Projects Agency

under the grant No. N00014-91-J-1854, administered by the Office of Naval

Research, the grant No. F49620-92-J-0549, administered by the Air Force Office

of Scientific Research, and in part by the Office of Naval Research under grant No.

N00014-91-J-1351.

REFERENCES

Baffes, P.T. & Mooney, R.J. (1993). Symbolic Revision of Theories with M-of-N

Rules. In Proceedings of the 2nd International Workshop on Multistrategy Learning

(pp. 69-75). Harpers Ferry, WV: Morgan Kaufmann.

Bloedorn, E. & Michalski, R.S. (1991). Data Driven Constructive Induction in

AQ17-PRE: A Method and Experiments. In Proceedings of the Third International

Conference on Tools for AI  (pp. 25-35). San Jose, CA.

Callan, J.P. & Utgoff, P.E. (1991). A Transformational Approach to Constructive

Induction. In Proceedings of the Eighth International Workshop on Machine

Learning (pp. 122-126). Evanston, IL: Morgan Kaufmann.

Fawcett, T.E. & Utgoff, P.E. (1991). A Hybrid Method for Feature Generation. In

Proceedings of the Eighth International Workshop on Machine Learning (pp. 137-

141). Evanston, IL: Morgan Kaufmann.

Jensen, G.M. (1975). Determination of Symmetric VL1 Formulas: Algorithm and

Program SYM4. Master's thesis. (Tech. Rep. No. UIUCDCS-R-75-774). Urbana-

Champaign: University of Illinois, Department of Computer Science.



23

Michalski, R.S. (1969a). Recognition of Total or Partial Symmetry in a Completely

or Incompletely Specified Switching Function. In Proceedings of the IV Congress

of the International Federation on Automatic Control (IFAC), 27, (pp. 109-129).

Michalski, R.S. (1969b). "On the Quasi-Minimal Solution of the General Covering

Problem, Proceedings of the V International Symposium on Information

Processing (FCIP 69),Vol. A3 (Switching Circuits), (pp. 125-128), Yugoslavia,

Bled, October 8-11.

Michalski, R.S. (1975). "Variable-valued Logic and Its Application to Pattern

Recognition and Machine Learning." In D. Rine (Ed.) Computer Science and

Multiple-Valued Logic Theory and Applications, North-Holland Publishing, 1974.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. In

R.S. Michalski, J.G. Carbonell & T.M. Mitchell (Eds.), Machine Learning: An

Artificial Intelligence Approach, Palo Alto CA: TIOGA Publishing.

Michalski, R.S., Mozetic, I., Hong, J. & Lavrac, N. (1986). The Multi-Purpose

Incremental Learning System AQ15 and its Testing Application to Three Medical

Domains. In Proceedings of AAAI-86 (pp. 1041-1045). San Mateo, CA: Morgan

Kaufmann.

Michalski, R.S., Rosenfeld, A. & Aloimonos, Y. (1994). Machine Vision and

Learning: Research Issues and Directions (Tech. Rep. No. MLI 94-6). Fairfax,

VA: George Mason University, Center for Machine Learning and Inference. (Tech.

Rep. No. CAR-TR-739, CS-TR-3358). College Park, MD: University of

Maryland, Center for Automation Research.

Muggleton, S. (1987). Duce, an Oracle-Based Approach to Constructive Induction.

In Proceedings of IJCAI-87 (pp. 287-292). San Mateo, CA: Morgan Kaufmann.

Muggleton, S. & Buntine, W. (1988). Machine Invention of First Order Predicates

by Inverting Resolution. In Proceedings of the 5th International Conference on

Machine Learning (pp. 339-352). San Mateo, CA: Morgan Kaufmann.

Murphy, P. M. & Pazzani, M. J. (1991). ID2-of-3: Constructive Induction of M-

of-N Concepts for Discriminators in Decision Trees. In Proceedings of the 8th

International Workshop on Machine Learning (pp. 183-187). Evanston, IL:

Morgan Kaufmann.

Quinlan, J.R. (1990). Learning Logical Definitions from Relations. Machine

Learning, 5, 239-266.



24

Seshu, R. (1989). Solving the Parity Problem. In Proceedings of EWSL-89 (pp.

263-271). Montpellier, France.

Spackman, K.A. (1988). Learning Categorical Decision Criteria in Biomedical

Domains. In Proceedings. of the 5th International Conference on Machine Learning

(pp. 36-46). San Mateo, CA: Morgan Kaufmann.

Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnink, B., Cheng, J., DeJong,

K.A., Dzeroski, S., Fahlman, S.E., Hamann, R., Kaufman, K., Keller, S.,

Kononenko, I., Kreuziger, J., Michalski, R.S., Mitchell, T., Pachowicz, P.,

Vafaie, H., Van de Velde, W., Wenzel, W., Wnek, J. & Zhang, J. (1991). The

MONK's Problems: A Performance Comparison of Different Learning Algorithms.

(Tech. Rep. December). Pittsburgh, PA: Carnegie Mellon University, School of

Computer Science.

Towell, G. G. & Shavlik, J. W. (1994). Refining Symbolic Knowledge Using

Neural Networks. In R.S. Michalski & G. Tecuci (Eds.), Machine Learning: A

Multistrategy Approach, Vol. IV (pp. 405-429). San Mateo, CA: Morgan

Kaufmann.

Wnek, J. (1993). Hypothesis-driven Constructive Induction. (Doctoral

Dissertation, George Mason University, School of Information Technology and

Engineering, Fairfax, VA). Ann Arbor, MI: University Microfilms Int.

Wnek, J. & Michalski, R.S. (1994a). Comparing Symbolic and Subsymbolic

Learning: Three Studies. In R.S. Michalski & G. Tecuci (Eds.), Machine Learning:

A Multistrategy Approach, Vol. 4, San Mateo, CA: Morgan Kaufmann.

Wnek, J. & Michalski, R.S. (1994b). Hypothesis-driven Constructive Induction in

AQ17-HCI: A Method and Experiments. Machine Learning, 14, 139-168.

Wnek, J. & Michalski, R.S. (1994c). Discovering Representation Space

Transformations for Learning Concept Descriptions Combining DNF and M-of-N

Rules. In Working Notes of the ML-COLT'94 Workshop on Constructive

Induction and Change of Representation (pp. 61-68). New Brunswick, NJ.

Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R.S. (1995). "Selective

Induction Learning System AQ15c: The Method and User’s Guide," Reports of

Machine Learning and Inference Laboratory, MLI 95-4, George Mason University,

Fairfax, VA.


