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Abstract

Most symboliclearningmethodsare concernedvith learningconceptdescriptions
in the form of a decisiontree or a setof rulesexpressedn termsof the originally
given attributes. For some practical problems, these methods are inadequate
becausethey cannot learn conditions that require counting of some object
properties. Such problems occtor example,in engineeringeconomy,medicine
and software engineering.This paper describesa method for learning hybrid
descriptionsthatcombinelogic-type and arithmetic-typeproperties.The presented
method builds hybrid descriptions in tfeem of conditional countingrules which
are logic-type (DNF) expressionswith counting conditions (expressing a
relationshipinvolving a countof someobject properties). The methodemploysa
constructiveinduction approachin which the learning system performs two
intertwined searches:.one—for the most appropriate knowledge representation
space, and second—for the "best" hypothesis irsplaee. The first searchis done
by determining maximum symmetojassef binary attributesin the initial DNF-
type hypotheses,and extending the initial representationspace by counting
attributes that correspondio thesesymmetryclasses.The searchfor the "best"
hypothesis in so extended representasipaceis doneby a standardAQ inductive
rule learning program. It our experiments, the proposed method learned aindple
accurate concept descriptions when conventional learning methods failed.



1 INTRODUCTION

Most inductive learning methodssearchfor the conceptdescriptionin the same
representatiorspacein which conceptexamplesare expressed.The underlying
assumptionis that the originally given representatiorspace—asdefined by the
attributesor termsusedin the examples—isadequatefor the problem at hand.
Therefore the learningprocessn thesemethodsconcentrate®n determiningthe

"best" hypothesis in the originally given space.

In many practicaproblems,however,the aboveassumptiordoesnot hold, asthe
original attributesor descriptivetermsmay be insufficiently relevantfor the given
learning problem. To address this problem, constructive induction learning methods
split the learning processinto two intertwined searches:one—for the most
appropriaterepresentatiospacefor the given learning problem, and second—for

the "best" inductive hypothesis in the newly created represensgtame(Michalski

and Wnek, 1993; Wnek and Michalski, 1994b).

The first searchis thus concernedwith the representationspace design or
improvement. This processis performed by applying constructive induction
operatorghat modify the representatiorspaceto maximize some measureof the
representation space qualityhis modification caninvolve a combinationof three
types of representatiorspace transformations:generatingnew, more relevant
dimensions(by inventing new descriptive concepts), removing less relevant
dimensiongrepresentatiospacereductionor “featureselection™)or changingthe
guantizationlevel of dimensiongdimensionabstraction) Becausethere are many
ways in which such operatorscan be applied (especiallyof the first type), the
search through thpossiblerepresentatiospacetransformationsan be potentially
unmanageableTherefore, the central researchissue in this approachis the

invention of meta-rules and heuristics for applying constructive induction operators.



This paperusesideasof constructiveinductionto developa methodfor a classof
learning problemsthat cannotbe satisfactorily solved by conventionalsymbolic
methodsthat constructDNF-type descriptions(decision trees or decisionrules).
Specifically, we addresgproblemsin which relevantdescriptiveconceptsinvolve
counting the presenceof someobject properties.Problemsof this class require
DNF-type descriptionsthat are prohibitively long. For example,a decisiontree
correctlyrepresentinghe so-calledMONK2 problemrequires434 nodes,while a

solution involving a counting property requires only one condition.

The presentednethodbuilds a form of hybrid descriptionsthat combinelogical-
type (DNF) and arithmetic-type conditions. Specifically, the method learns
conditional counting ruleswhich aredDNF descriptionswith “counting conditions”.
A simple exampleof a conditionalcountingrule is the M-of-N concept.Here, the
counting condition is “at leasl out of N propertiesof somekind mustpresentn
an object,” and the logic-type condition is null. Problemsof this type occurin
many real-worldporoblems for example,in medicine(Spackman;1988), planning
(Callan & Utgoff, 1991), game playing (Fawcett & Utgdif91), biology (Baffes
& Mooney, 1993) and biochemistry (Towell & Shavlik, 1994).

The proposedmethodcan learn DNF descriptions(decisionrules), one or more
countingconditions(e.g., M-of-N concepts)or any combinationof the logic-type
DNF descriptionswith countingconditions.Thus, it extendsthe classof learning
problems to which conventional symbolic learnmgthodsapply. The key ideaof
the method is to detect the ndied andthen constructa "counting attribute"that is
addedto the representatiorspace.The idea stemsfrom the early work on the

counting attribute generalization ruléMichalski, 1983).

To detectthe needfor a counting attribute, the method searchedor maximum

symmetry relations among attributes in theF conceptdescriptionsconstructedn



eachiteration of the method. For each maximum symmetry group, one new
counting attribute is constructed. Counting attributes are adbe representation
spaceanda new iterationbegins. The processendswhere a satisfactoryconcept
description (according tdomedescriptionquality criterion) hasbeenfound or the
allocated computational resourceshave been exhausted.The introduction of
"counting attributes"to the conceptrepresentatiortan be viewed as a conceptual
changefrom logic-styleto arithmetic-styledescriptionsThe next sectionexplains

briefly the origins of this method and characterizes its relation to other related work.
2. RELATION TO THE PAST WORK

This research was inspired by the failurenafl-known symboliclearningsystems
to solve the MONK2 problem usedin an international competition of learning
programs (Thrun et al, 1991; Wnek & Michalski, 1994a). Wibalik2 problem was
to learnfrom a setof exampleghe following targetconcept:"Exactly two of six

given attributeshavetheir first valuefor eachconceptinstance.” All conventional
symboliclearningmethods(which learna DNF-type description,such as decision

tree or a set of decision rules), performed poorly on this problem.

In order to solve this problem, a learning systeeedsto be ableto form whatwe
call a counting condition. There have beenseveralearly efforts in this research
direction. For example the CRLS systemlearnsM-of-N rules (a specialcaseof a
counting condition) by employing non-equivalencesymmetry bias and criteria
tables (Spackman, 1988). Time2-of-3 systemincorporatesvi-of-N testsin decision
trees (Murphy & Pazzani, 1991). Th@17-DCI program employs gariety of data-
driven operators to construct new attributes (Bloedorn & Michalski, 188Wcett
and Utgoff (1991) usedfeaturerepresentatiorsimilar to the Michalski's (1983)
counting argumentsrule to expanda representatiorspaceby summingup the

number of distinct values of the set of varialilest can satisfy a setof conditions.



Sucha modified representatiomllows the expressiorof the "numberof ways" in

which conditions can be satisfied.

Callan and Utgoff (1991) used a restricfedm of the countingargumentsulesto
createa numericfunction from a Booleanexpressiorthat beginswith a universal
guantifier. The function calculatesthe percentageof permutationsof variable
bindingssatisfyingthe Booleanexpression.Such a function is useful becausat
indicates the degree to whiarsubgoalis satisfiedin a given state.More recently,
the NEITHER-M-of-N systemrefined M-of-N rulesby increasingor decreasingeither

M or N (Baffes & Mooney, 1993).

The proposedmethodis basedon the ideaof "countingarguments’generalization
rule (Michalski, 1983)the algorithmfor detectingsymmetryin Booleanfunctions
of many variables (Michalski, 1969), and its subsequent implementationgiyithe
program(Jensen,1975). This work is alsorelatedto the work by Seshu(1989),
who studied the problem of learning concept descriptionsthat are logically
equivalent tca combinationof DNF andM-of-N rulesbut in the contextof decision
treelearning. He calls such learning problemsunsplittability or parity problems
Seshu'ssolution involves determining"best” XOR combinationsin a randomly
selectedsubsetof the original attributes.Seshuhas shown that such a method
improvesthe prediction accuracyof learneddescriptions.Disadvantage®f the
method are that it createsattributes without clear meaning and, due to the

randomness of attribute selection, it may miss important relationships.
3 THE AQ-HCI METHOD

An importantpropertythe proposedmethodis thatit is hypothesis-drivenywhich
means thathe changeof the conceptrepresentatiospaceis basedon the analysis
of hypothesegyeneratedn that space(in contrastto data-drivenmethodsthat

proposechangesn the representatiorspacebasedon the analysisof examples).



Another property is the way in which the method constructschangesof the
representation spackn eachiteration,the methodsearchegor attribute symmetry
patterns in the hypotheses generated in this iteration, and then uses these patterns to

modify the representation space for the next iteration.

The proposedmethodis a new versionof the AQ-HCI approachthat combinesan

inductive rulelearningalgorithm Ad (Michalski, 1969b)implementedn the AQ15c
system (Michalski et al., 1986; Wnek et al., 1995) witirocedurefor an iterative
hypothesis-drivertonstructiveinduction (HCI) for transformingthe representation
space.The AQ-HCI approachis basedon detecting patterns in the generated

hypotheses (concept descriptions).

By apatternwe mean a component of a concept descripionthis paper,a setof
decisionrules)that coversa significantnumberof positive training examplesand
only a small number of negativeexamples.The meaningof "significant" and
"small" is definedby a user-specifiedparameter.Our earlier work in this area
involved the searchfor threetypes of patterns:value-patternscondition-patterns,
and rule-patterns. Value-patteraggregatesubsetsof co-occurringattributevalues
in a descriptioninto single, more abstractvalues. Condition-patterngepresenta
conjunction of two or more elementacgnditionsthat frequentlyoccurin a ruleset
of a given concept. A rule-pattern consists of ao$etiles. Detectingsuchpatterns
andusingthemfor expandingthe representatiorspacehave provento be highly
effective in improving the performanceaccuracyin DNF-type learning problems

(Wnek & Michalski, 1994Db).

Following the schemeof differenttypesof patterns,it was conjecturedthat there
may also exist class-patterns(Wnek, 1993). Such patterns would represent
relations that are common for subsetdearnedclasseqconcepts)This led to the

introductionof XOR-patternsthat representa specialcaseof classpatterns.Such



patterns facilitate the determinationnobf-N concepts, as well as their negation.

Concept learning from examplescan be viewed as learning an incompletely
specified discrete function (Michalski, 1969; MichaldRpsenfeldand Aloimonos,
1994). The functionis incompletelyspecifiedbecausehe setof examplesusually
representonly a (small) subsetof instancesof that function. In single concept
learning, the function takes value 1 for any instanceltblmingsto the conceptand
value 0, otherwise. Imultiple-valued concept learning, thieinctionto be learned
takesoutcomesfrom a discreteset of valuesrepresentinga degreeto which an
instancesatisfiesthe concepts. In multi-concept learning, the function takes a

vector of values (each value corresponds to one concept).

It has been observebat functionsthat are symmetricalwith regardto someof its
variables may have a very complaxr expressior(Michalski, 1969a).A function
is symmetricalwith regardto a setof attributes,if replacingany attribute by any
other from the set and vice versadoes not changethe function value for any
assignmentof the input attributes.A set of attributesfor which a function is
symmetricis called an attribute symmetrygroup for this function. Section3.1

provides more details on this topic.

Although a conceptmay not be symmetricalwith regardto a set of original
attributes, its projection on a subspaceof the representationspace may be
symmetrical. This leads twonceptdescriptionan which one partidentifiessucha
subspace and the other part represents a symmdtcdbn within that subspace.

Learning such conditional symmetrical descriptions is an objective of this research.

3.1 Symmetrical Functions And Concepts
The conceptof symmetryof a function hasbeenstudiedalreadya long time ago
(e.g., Michalski, 1969). For completeness, we will briefly revielnereand adapt

to the problems of concept learning.



A function f(x, X, ..., %) is symmetrical with respect to variablgs;, x} if

floos X o % ) =100 % o %, 00) (1)

where, n=2,0<i<n,0<jsn,i#].

It is assumedhat the domains(value sets)of the attributesx andy are the same.
For simplicity, we will assume henceforth thla¢ symmetricalvariablesare placed
at the beginning of the list of arguments of the function, and the remaisiradples
are denotedby R ("Rest"). Since conceptlearning can be viewed as learning a
function with a binary outputanddiscrete(or continuousinput), we introducethe
following definition. A conceptC(x, y, R) is called symmetrical (potentially
symmetrical)with respectto attributesx and y, if for all instances(all known
instance} of that concept:

C(x,y, R) = C(y, x, R) (2)
The idea of “potentially symmetrical” is very important for conceptlearning,

because here the set of training example (positive and negaiva)y represents
small subset of possible concept instances, and/itioée problemof learningis to
extrapolatethe information providedby the training set. Definition (2) appliesfor
single andmultiple-valuedconceptlearning. The symmetryof the conceptC(x, v,
R) with respectto attributesx andy implies existenceof a symmetricalrelation
betweeninstancesof that concept.Below we discusstwo basic classesof such

symmetry.
(1) Equivalence symmetry — EQ: (X &y or ~x & ~y)

Figure 1 illustrates the equivalensgmmetryof a conceptwith regardto attributes
by using a “generalizedlogic diagram” for visualizing discrete functions. The
representatiospacels definedby four binary attributes:x0, x1, x2 andx3. Each

cell of the diagram corresponddo a unique combinationof attribute values (a



concept example). Positive examples are marked by +, and negative exaynples
For example the negativeinstancesgl ande?2, in Figure 1a canbe describedby
the following VL1 expressions (VL1 stanfts variable-valuedogic 1—a form of
multiple-valued logic calculus; Michalski, 1975):

el <:: (x0=1) & (x2=1) & (x1=1) & (x3=0)

e2 <:: (x0=0) & (x2=0) & (x1=1) & (x3=0)

a) b)

X t-lo r-|o

| 1 |x3
1 x2

+- Positive and negative examples

Figure 1. An equivalence symmetry of a concept with respect to x0 and x2.

The concept, adefinedby the shownexamplesjs symmetricalwith regardto x0
and x2 in the subspace described&y=0) & (x2=0) v (x0=1) & (x2=1) The gray area
denotesthe part of the concept(or its negation) that is may be or may not
symmetricalwith regardto x0 and x2. Figure 1b hasa different arrangemenof
attributes (attributes x0 and x2 were switched), but the projection &irthgon on

the non-gray area is the same.
(2) Exclusive-or symmetry — XOR: (X & ~y or ~x & y)

Figure 2 illustrates the exclusive-orsymmetry. It shows a projection of three
conceptqC1, C2, C3) into the subarealescribedoy (X0 & ~x2) or (~x0 & x2).
The gray area in the diagram marks the parts of the concepts that mayrartrbay

symmetrical with regard to x0 and x2.
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1]06 |1 |x3

[
1 x2

|
e

Ci1, C2, C3 - concepts Not applicable area

E

Figure 2. An exclusive-or symmetry of concepts C1, C2, and C3 with respect to
attributes x0 and x2.

An important property of a symmetrical relation between two attrilaftasconcept
(either EQ or XOR symmetry) is that it is transitiVée following theoremdefines
this property precisely.

Theorem. Let SYM: G(X, y, R) stand for an expression stating ttatceptC, is
symmetrical with regard to attributes x and y (R stands for other coataptites).

Then we have:
Ox,y,z SYM: G(X,y,R) & SYM: G(y,z, R) O SYM:C(x, z, R) 3)
Proof.
By definition, the SYM:C,(y, z, R) is logically equivalentto SYM: C,(z, y, R).
Therefore, in any description of,@&very occurrence of attribute y miag replaced
by attribute z, andvice versa. If areplacemenbf y by z is donein C, (%, y, R),
then SYM: G(x, y, R) becomes SYM: (X, z, R). Q.E.D.
3.3 Maximum Symmetry Classes
A decision rule is meant here as an expression:

DECISION <:: CONDITION

where DECISION is an assignmenbdf a specific value to a decision variable (or
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variables, <::is adecisionassignmenbperator,and CONDITION is a conjunction
of unary relational expressions.each stating a condition on values of a single
attribute. Examples of unary relational expressions are: xi =5, xi >8and..5
(in the latter, xi takesa value between?2 to 5, inclusively). A generalform of a
unary relational expression is:

[xi REL Values] 4)

whereREL is oneof {=, <>, <, >, >= or <=}, andValuesstandfor one or more

values of the attribute linked by the internal disjunction or the range operator ("..").

A relational expressiondefined by (4), called for shortRE, evaluateso 1 or O,
depending on whether the value of the attribute in an input example satigfessor
not satisfy, respectively, the expression. If the attrilbuterelationalexpressiors
binary, then there are only two relational expressions possible:writien briefly
as xi, and xi=0, abbreviatedas~xi. Unary relationalexpressionsvere originally
definedin the variable-valuedogic systemvL1 (wherethey are called selectors;
Michalski, 1975). They arbuilding blocks of decisionrulesgeneratedy the AQ-

type rule learning system employed in the method described here.

Let c1 and C2 be condition partsof two decisionrulesin a rulesetrepresentinca
concept description. Supposeis in the formREi & ~REj & CTX1 andcC2 is in the
form ~REi & REj & CTX2, whereREi and REj arerelationalexpressionsand CTX1
andCTx2 are"context" conditionsthat are conjunctionsof zeroor more relational
expressions. It is said thRiEi andREj represent binary XOR-symmetryclassfor
the conceptdescription,if CTX1 andCTx2 arein a subsumptionrelation, that is,
CTX1=CTX2 & CTX3 Or CTX2 =CTX1 & CTX3 whereCTx3 is a contextcondition.
If C1is in the formREi & REj & CTX1 andc2 in the form ~REi & ~REj & CTX2, then
REi and REjrepresent a binasQ-symmetry class for the concegscription.f REi
andREj are in axOR- or EQ- symmetry relation, then w&ay generallythatthey are

in a symmetry relation.
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Due to the transitivity of the symmetrglation,a setof k binary symmetryclasses
of REscan be combined into one k-ary symmetry cl(@s3, if they canbe ordered
into a chainin which every two neighboringrelational expressioniave a non-
empty intersection. For examplesit1 = {RE1, RE3}andscC2 = {RE1, RE2}then they
can be combined inta larger symmetryclassscs = {RE1, RE2, RE3}. A symmetry
class to which no additional expressions can be added is aattegimal symmetry

class

3.4 Generating Counting Attributes

Suppose a k-ary maximum symmetry cl@&si, RE2, ....REk} hasbeenformulated
for a set of decision rulesonstitutinga conceptdescription.The countingattribute
generation ruleis a constructive induction operator that createsuntingattribute
defined by the arithmetic SUWRE1)+ v(RE2) +...+ v(REK)} wherev(REi) is thevalue
of REi for the objectto which the attributeis applied;thus, it canbe 1 or 0. The
countingattributerepresentshe numberof relationalexpressionghat hold for the
given concept example and its domain (value sehesetof integersfrom 0 to k.
The countingattributethus sumsup the "evidence"contributedby eachrelational
expression in a given symmetry class. The so createqdtingattributeis addedas
a new dimensionto the representatiorspace.The following generalnotation is

introduced for a counting attribute:

#Attrin{Attribute Set: IREL VAL} (5)

where Attribute Setis a list of attributes,|REL specifiesaninternal relation EQ,
NEQ, GT, LT, GEor LE, andVAL is a value from the domain of the attributes on the
list. The attributesin the setmay be (binary) relational expressionsas discussed
above, or they can be multi-valued. The counting attribute has the following
meaning:"The numberof attributesin the Attribute Set that are in relation IREL

with VAL ." If attributes are binary (as in the case of relational expressions)ththen
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notation for the counting attribute is simplified to: #Attrin{Attribute Set}. A
counting attribute isreatedas any other discreteattribute,andthus canbe usedto
create relational expressions in the form defined by (4). For example
#Attrin{x1, x4, x5, x6}. > 4} = 2 (6)
denotesa relationalexpressiorstatingthat thereare 2 attributesfrom the set {x1,
x4, x5, x6} that have the value greaterthan 4 in an exampleor examplesof a
concept).As one can see, relational expressionswith counting attributes can

express complex relations, but nevertheless are easy to comprehend.

Using a countingattribute,the well-known M-of-N  concept("At leastM out of N
propertiesfrom {P1, P2, ...PN} hold") can be represented: #Attrin{P1, P2,
...’} = M. To express the conditiofiBetween2 and4 (non-binary)attributesin
the set{A2, A3, A5, A7, A9, Al12} havevalue greaterthan5, one can write:
#Attrin{A2, A3, A5, A7, A9, A12: GT 5} =2.. 4. To illustrathe usefulnesof
a counting attribute, let us describethe conceptrepresentedn Fig. 3E. The

simplestDNF description of this concept is:

~x0 & ~x1 & ~x2 & X3 or
~x0 & ~x1 & X2 & ~x3 or
~x0 & x1 & ~x2 & ~x3 or
x0O & ~x1 & ~x2 & ~x3 or
~x0 & x1 & X2 & X3 or
x0O & ~x1 & X2 & X3 or
x0 & x1 & ~x2 & X3 or
xXO & x1 & X2 & ~x3 (7)

Using the countingattribute,we canwrite a logically equivalentexpressionn the
form: [ #Attrin{x0,x1,x2,x3} =1 v 3] (8)
which is both shorterand easierto understand(it reads:"Either one or three
attributes from among x0, x1, x2, x3 take value 1").

The above example show that the counting attrilsug@werful descriptiveconcept
that allows one to expressconcisely a wide range of relationsfor which an

equivalenDNF expression would be very long. If tkeuntingattributeinvolves N
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binary attributes, it allow$o representll combinationsof countsof N properties.

There are 21 such combinations {2subsets multiplied by two attribut@luesfor
eachsubset). Figure 3 illustrates six out of 32 possible conceptsthat can be
expressedby a unary relational expressioninvolving the counting attribute

#Attrin{x0,x1,x2,x3}.

+ + + + i o — | — + i o — o | o — i o
++ |+ - = +[+|- ===+
+[+[+ =] [o] | [=[+]+]=] [o],| [=]=[=[+] [¢],
+ - | - 1 + o — 1 —-— + + + 1
x1 (%@ x1|x0 x1 %@
8 |1 |8 |1 |x3 8 [1 ]88 [1 |x3 8 |1 ]0 |1 [x3
a 1 x2 a 1 x2 a 1 *x2
A. At most 2-of-4 B. Exactly 2-of-4 C. At least 3-of-4
[ #Attrin{x0,x1,x2,x3} <= 2 ] [ #AttrIn{x0,x1,x2,x3} = 2 ] [ #AttrIn{x0,x1,x2,x3} >= 3]
(standard M-out-of-N concept)
=[+[+[=] [e].] [=[#][+]=] [e].] [F[=]=]#] [=].
+ — o — i . + — | — + i . — + + — i .
— | — + 1 — + + — 1 + - — + 1
x1|x8 x1 %@ x1|x@
8 |1 |6 |1 |x3 8 [1 |6 |1 |x3 8 |1 |6 |1 |x3
) 1 x2 e 1 x2 2] 1 x2
D.1or4of4 E. odd number of-4 F. Even number of-4
[ #AttrIn{x0,x1,x2,x3} = 1,4 ] [ #AttrIn{x0,x1,x2,x3} = 1,3 ]  [#AttrIn{x0,x1,x2,x3}=0,2,4 ]

Figure 3. Examples of relations that can be represented by using the counting
attribute #Attrin{x0,x1,x2,x3}

In order to establishthe value of a conceptfor a given instance(a cell in the
diagram),the numberof occurrence®f value"1" in the vectorof attribute values
that characterizeghis instanceis counted.If this number satisfiesthe concept
descriptionthenthe instancebelongsto the conceptandis markedby "+" in the

diagram; otherwise it does not belong to the concept, and is marked by "-".
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Decision rules that combine conventionallogic-type relational expressionswith
arithmetic-type expressionsare called generally hybrid decision rules. The
presentednethodbuilds hybrid rulesthat involve only countingattributes(if it is
importantto distinguishsuchrules from more generalhybrid rules, we will call

them thecounting hybrid rules)

Fig. 4 shows examples of concept descriptions in the form hybrid decision rules.

Conditional Parity 5 defined on 10 binary attributes: x0-x9.
[#Attrin {x1, x2, x3, x4, x5} =0v2v4] & [x7=0]

The parity-5 concept involves 5 binary attributes. [x7 = 0] specifies condition under which the parity is
satisfied.

MONK?2 problem "exactly two of six attributes have their first value"

[#Attrin{First(x1), First(x2), ...., First(x6)} = 2]

Conditional XOR defined on 10 binary attributes: x0-x9.
[#Attrin {x1, x2} = 1] & [x0 = 1] & [x8 = 0]

CR10 a conditional M-of-N rule defined on 10 binary attributes
[ #AttrIn{x0,x2,x4,x6,x8} >= 3] & [ #AttrIn{x1,x3,x5,x7} >=2] & [x9=1]

Figure 4. Concept descriptions in the form of counting hybrid rules (only the
condition part of the rules is shown).

3.5 LEARNING COUNTING HYBRID RULES: AQ17-HCI

This sectionpresentsan algorithmfor learningcountinghybrid descriptions(Fig.
5) that was implementedin the AQ17-HCI program. It is basedon detecting
symmetrypatternsin the DNF conceptdescription(a setof decisionrules) created
by an AQ-type learningprogram(the currentversion of the programdetectsonly

XOR-symmetry patterns).
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1. Determinea DNF conceptdescriptionfrom training examplesprojectedinto the current
representatiorspace. If the expressionis "sufficiently" simple (accordingto a given

criterion), then STOP.
2. Detect symmetry patterns in the learned concept description.
3. If there are no such patterns, then STOP. Otherwise:

Build the maximum symmetry class (MSCs) for each pattern. For each MSC-class,
introduce a "counting attribute," ardidthe attributeto the representatiospace.Project

the training data into the new representation space.

Go to step 1.

Figure 5. Algorithm for Learning Counting Hybrid Descriptions

Suppose, for example, that the followixgR-symmetrypatternswere detectedx1
XOR x3, x1 XOR x5, andx1 XOR x7. The following MSc-classis created{x1, x3,
x5, x7}. For eachMsc-class a counting attribute is createdand addedto the
representatiospace.In the aboveexample the attribute #Attrin{x1,x3,x5,x7} is
created. Its domain is an integer interval from 0 to 4. Training examplesaaed

into the new representation space, and a new rule learning iteration is performed.

The algorithm describedabove is independentof the learning program used.
However, systemthat usedifferent representationgbrmalismsfor examplesand
conceptdescriptions(unlike the AQ-type learning programs)may have difficulty

detectingsymmetry patternsin generatedconcept descriptions.In such cases,
symmetry patterns can lgetectedoy a data-drivenapproachthatis be examining
training examplesin AQ learningsystemshat use the VL1 descriptionlanguage

both for dataandrules, patternscan be easily detecteckitherby a data-drivenor a
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hypothesis-driverapproach.An examinationof descriptionsgeneratedby FOIL
(Quinlan,1990) for the MONK2 problem and other problemsindicatesthat these
descriptionscanbe usedfor detectingsymmetry-patternsThe symmetry patterns

are a form of class-patterns. They are different from the intra-construction and inter-
constructionoperatorsused in Duce and CIGOL systems (Muggleton, 1987;
Muggleton & Buntine, 1988), which are forms of rule-patternan Horn-clauses

(Wnek & Michalski, 1994b).

4 AN ILLUSTRATIVE EXAMPLE: THE MONK2 PROBLEM

The conceptto be learnedis the MONK2 problem (Thrun et al., 1991; Wnek &
Michalski, 1994a). Figure 6A shows a diagram visualizheyrepresentatioispace
with indicatedtargetconceptandtraining examplesThe total numberof possible
instancesn the spaceis 432. In the diagram,the targetconceptis representedy
142 instances (shaded area). The remainingrg@ncegepresenthe negationof
the concept. The training setrepresentedby 64 positive (+) and 105 negative(-)

examples. The data contain no noise.

4.1 Learning In The Original Representation Space

The MONK2 problemposesa difficult problemfor conventionakymbolic learning
systems. In factpnoneof the 18 conventionalsymboliclearningsystemgdecision
tree or rule learning programs that did not cgestructiveinduction) that took part
in the international competition wableto learnthe MONK2 concept(Thrunetal.,
1991). The descriptionsgeneratedby these programsall have the following
characteristics:a relatively low prediction accuracy (about 75%) and high
complexity (manydecisionrules or nodesin the decisiontree; rulesinvolve many
conditions). Asmanyas 16 decisionruleswere neededo characterizés4 positive
examples. Almost all rulesinvolved all six attributesin describingthe concept,

which meansthat all attributesare consideredmportant. This result meansthat
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representatioispaceor the representatiotanguageis inadequateor learning this

Concept.
A. MONK2 problem in the original RS TR B. After iteration #1  [GTo Ia
_.___._ +:_. u— — _: ;71 -——-—+%1
- 1] - T Vvalue -:-__::F 1 1
— - = _ 2 patterns 0
S E T A 2 1 o [ | [ =] | O
=== |+ - -] 173 = -----+i1
FAREAES +- ¥ - 2 = = [F|=[*]F =| 0
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I T s 1]0 1 0 |« Fewer unknown ex.
e = - i | S oA 1 0 « Complex DNF descr.
- = T — +J i .- + i 2 * 93% accuracy
3
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[] Target concept: exactly two of the six attributes have their first value
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Figure 6. Learning a description for the MONK2 problem in two iterations of the

AQ17-HCI method.

4.2 Representation Space Transformation: lteration #1

ProgramAQ15 was usedto learnthe initial conceptdescriptionfrom the given
training examplesThis descriptionwas theninspectedor the presenceof XOR-
symmetry patterns. In many conditions involving the sattréutethe samesetof
attributevalueswas present.Suchsetsform value-patterngWnek and Michalski,
1994a), which were used to transform ihigal representatiospace(Fig. 7). The

learningtask in the new spaceis visualizedin Fig. 6B. The new representation
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space has become significantly smaller; there are only 64 instancesiewtspace
versus 432 instancas the original representatiospace.The numberof attributes

is the same, but all of them are binary.

(c1=1) < [HS=r] (c2=1) <:: [BS=r] (c3=1) <:: [SM=y]
(cl =0) <:: [HS=s,0] (c2=0) <:: [BS=s,0] (c3=0) <:: [SM=n]
(c4 =1) <:: [HO=5] (c5=1) <:: [IC=r] (c6=1) <:: [TI=y]
(c4 = 0) <:: [HO=f,b] (c5=0) <:: [JC=y,g,b] (c6=0) <:: [TI=n]

Figure 7. Attributes Constructed From Value-patterns.

The number of instances representing the target concept is now 15, thénetoze,
worst case,the numberof rulesrequiredto describethe conceptis 15. This is a
reductionin descriptioncomplexity in comparisonto the original representation
space Eachinstancein the new spacerepresentbetweenl and 24 instancegshat
were mapped from the original space. The transformationrduesauseambiguity
in the new representation space, ieachnew instancerepresentsnstanceof the
same class, either positive or negative. In the new represergptiorall possible
positive examples aneow presentandonly 13 of the possiblenegativeexamples
are missing (the original spacehad only 64 positive examplesout of a possible
142). Although the representation space was simplified, AQ15 still generategl a
and inaccuratedescriptionof the concept.Errors were causedby overly general
decisionrules. Theserules coverednot only two positive examplesbut also two

negative examples. For more details see (Wnek, 1993).

4.3 Representation Space Transformation: Iteration #2

The description obtained after the filinsformatiorof the representatiospaceis

more accuratebut still very complex(Fig. 6B). Therefore the searchfor a better
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representation is continued, and the XOR-patternsoared (Wnek and Michalski,
1994c). All six attributesform a MSC class. From this classa new counting
attributeis constructedIt is definedas#Attrin{c1,c2,c3,c4,c5,c6}Its domainis
anintegerinterval from 0 to 6. Summingup valuesin the XOR-patternsalways
gives the exact value 2. The final concept description was
[#AttrIn{c1,c2,c3,c4,c5,c6}=2], i.e.exactlytwo of the six attributesare present.

Fig. 6C visualizes the final representation space and the final concept learned.

5 EXPERIMENTAL RESULTS

We have conducteda set of experimentswith the proposedmethod to learn
concepts from examples of different complexity (involvéh, 10, and 16 binary
attributes).Figure 8 summarizeghe results. They demonstrateéhat the AQ-HCI

methodis capableof learning counting hybrid descriptionsvery effectively. The
MONK?2 learningproblem(Thrun et al., 1991) was solved with 100% accuracy
and produceddescriptionsexactly equivalentto the target description. When
applied to more complex conceptsthe program produced significantly better
descriptions in terms of both prediction accuracy and simplicitgoagparedo the

original AQ15 system.

Concept: "More than 3 and more than 2"
[#AttrIn{x0,x2,x4,x6,x8}>= 3] & [ #Attrin{x1,x3,x5x7}>=2]

Domain: 9 binary attributes (x0, x1, ..., x8)

Training set 50% of all examples

AQ15: Prediction accuracy 78% 42 rules

AQ17-HCI: Prediction accuracy 100% 1 rule

Concept: "More than 3 and more than 2 when x9 holds"
[#AttrIn{x0,x2,x4,x6,x8}>=3] & [ #Attrin{x1,x3,x5x7} >= 2]

& [x9= 1]

Domain: 10 binary attributes (x0, x1, ..., X9)

Training set 20% of all examples

AQ15: Prediction accuracy: 96 % Complexity: 22 rules

AQ17-HCI: Prediction accuracy: 100% Complexity: 1 rule
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Target Concept: "More than 3 and more than 2 when x9 holds, or Equal 2"
[#AttrIn{x0,x2,x4,x6,x8} >= 3] & [#AttrIn{x1,x3,x5,x7}>= 2]
& [ x9=11] or [ #AttrIn{XC xD xEXF} = 2 ]

Domain: 16 binary attributes (x0, x1, ..., x9, XA, ..., xF)
Training set 10% of all examples

AQ15: Prediction accuracy 93% Complexity: 92 rules
AQ17-HCI: Prediction accuracy 100% Complexity: 5 rules

Figure 8. Summary of experiments on learning hybrid descriptions.

7 CONCLUSION

The presentednethodaddresses classof learningproblemsthat require concept
descriptions that combine logic-type descriptions with counting conditions.
Conventional symbolic learning methogioduceprohibitively long andinaccurate
descriptionsfor such problems. The method, basedon ideas of constructive
induction, works iterativelyln eachiteration, it searchegor symmetrypatternsin

the descriptionsgeneratedoy an AQ-type learning program.In the implemented
method, detectingsymmetry was basedon detecting XOR-symmetry patterns.
Detectedpatternsare usedto createnew dimensionscalled countingattributes,in

the knowledgerepresentatiorspace.Adding thesedimensionsrepresentsa task-
orientedadaptatiorof the representatiospace Experimentsdemonstratedhat the

method was very effective in solving testing problems that required learning

counting hybrid descriptions.

The methodcanbe appliedto a wide rangeof domainswhere logical conditions
needto be combinedwith simple arithmetic relations (counting) to capturethe
essence of the target concept. Sdomainsinclude economy,medicine,computer

vision, biochemistry and others.

Future researchneedsto addressother classesof problemsfor which symbolic

methodsare not adequateif applieddirectly, such as learning conceptsrequiring
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logical and complex arithmetic expressionsor detecting geometrical object

properties.
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