

ANALYSIS OF TIME ACTIVITY DATA CHARACTERISTICS AND DATA

DEGRADATION IN DIGITAL FORENSICS

by

Andrew C. Smallman

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

_________________________________ Dr. James Jones, Dissertation Director

_________________________________ Dr. Gheorghe Tecuci, Committee Member

_________________________________ Dr. Daniel Carr, Committee Member

_________________________________ Dr. Duminda Wijesekera, Committee

Member

_________________________________ Mr. Robert Osgood, Committee Member

_________________________________ Dr. Deborah Goodings, Associate Dean

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Summer Semester 2020

 George Mason University

 Fairfax, VA

Analysis of Time Activity Data Characteristics and Data Degradation in Digital Forensics

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Andrew C. Smallman

Master of Science

Capitol College, 2005

Dual Bachelors of Science

University of Redlands, 1998

Director: Dr. James Jones, Associate Professor

Electrical and Computer Engineering

Summer Semester 2020

George Mason University

Fairfax, VA

ii

COPYRIGHT 2020 ANDREW C. SMALLMAN

ALL RIGHTS RESERVED

iii

Dedication

To Dar. Thank you for everything.

iv

Table of Contents

Page

List of Tables ... viii

List of Figures .. ix

List of Equations ... x

Abstract .. xi

Chapter One – Overview and Goals ... 1

Written Organization ... 3

Chapter Two – Background and related work .. 5

Categories of Digital Forensics Work ... 6

Investigative Digital Forensics .. 7

Phases of Digital Forensics Work ... 8

Response and Collection Phase ... 9

Extraction and Transformation Phase ... 10

Analysis Phase ... 11

Volatility and Data Degradation in the Forensic Context ... 12

Data Degradation over Time ... 15

Timeline Analysis ... 17

Errors and Inconsistencies in Time Records ... 19

Activity Modeling and Differential Forensic Analysis ... 22

Chapter Three – Time Activity Data .. 24

Introduction ... 24

Metadata Analysis and Characterization ... 24

Metadata Source .. 27

Metadata Location ... 28

Time Activity Data Definition and Structures .. 29

v

Why Computers Keep Records ... 30

A Simple Time-Activity Datum Source .. 31

A Slightly More Complex Log .. 34

Windows Event Log Time Datum Example ... 35

Chapter Four – Time Activity Data Collections ... 42

TAD Collection Definition .. 42

TAD Collection Types .. 43

TAD Collection Characteristics .. 45

Lifespan ... 46

Depth and Breadth ... 46

Granularity, Precision, and Accuracy .. 48

FAT-16 Granularity Example ... 49

Importance of Accurate Precision and the Risk of False Precision 50

Relative Ordering .. 51

Relative Ordering Analysis Example .. 51

Challenges for Complex Activity Analysis ... 52

Chapter Five – System States in Digital Forensics ... 54

Computer States and Complexity .. 54

Data States in Computers .. 55

Volatility as a Function of Storage Medium ... 57

Physical and Data States ... 58

Equivalent States Example .. 58

Availability of Previous Computer States in Digital Forensics................................. 60

Chapter Six – Activity Model for a Computer System ... 63

Definition and Boundaries .. 63

Abstraction of the User-Computer System Model for IDF Analysis 65

Data Degradation in TAD Collections .. 65

User Actions Trigger an Activity Cascade .. 67

Example Activity Cascade on a Simple System.. 68

Example Activity Cascade on a Single Computer .. 70

Temporal Separation Between Action and Change ... 71

vi

Activity cascade across multiple systems.. 73

Chapter Seven - Activity Cascades and Data States ... 76

Component State Changes Caused by User Actions ... 77

Mechanism of State Changes .. 79

Connected States and TAD Records ... 81

TAD States and Records ... 85

Decomposing TAD States into Subsets ... 87

Order of Operations when Combining TAD Sets ... 89

Recurrence of TAD Records ... 92

Decomposition of TAD States using an Initial State .. 93

Chapter Eight – Processing the M57-Patents Dataset... 96

The Digital Corpora Project and M57-Patents Dataset ... 96

Differences from Traditional IDF Processing and Analysis 99

Restrictions in Publishing M57 Answers .. 99

Quantitative Analysis of TAD Records .. 100

Data to be Analyzed .. 101

Inventory of Data ... 104

Data Processing Steps ... 105

TAD Data Extraction ... 106

Output File Normalization and Merging ... 107

Data Reduction and Hashing ... 108

Removal of Initial State ... 109

Decomposition of Remaining Records into New and Missing Subsets 110

Calculation of Lifespan for Each Record .. 111

Conclusion of Processing Phase .. 113

Chapter Nine – Data Degradation and Lifespan Analysis of M57-Patents 114

Fragility Revisited ... 115

Analysis of M57-Patents User Activity Records .. 117

Jo1 Analysis Results .. 117

Analysis of Jo-Combined Dataset ... 123

Analysis of Multiple Ten-Interval Sequences Across Multiple Systems 126

vii

Chapter Ten – Conclusions and Areas for Future Work... 129

Overview and Contributions ... 129

Areas for Future Research and Limitations ... 130

References ... 133

viii

List of Tables

Table Page

Table 1 Summary of Metadata Characteristics ... 27
Table 2 Data from SecureDoor1.csv ... 32

Table 3 Data from Alarm Company... 34

Table 4 Example Event Extracted and Parsed with Plaso .. 39
Table 5 Event Data Normalized to TAD Structure with Minimal Fields Shown 40
Table 6 Summary of Time Activity Datum Collection Characteristics 43
Table 7 Rough Order of Magnitude of Data in Modern Computers 56

Table 8 Rough Equivalents between OSI Model and Computer Activity Abstraction 64
Table 9 Example Activity Cascade on a Feature Cellular Phone 69

Table 10 Example Activity Cascade from Program Execution on a Desktop Computer 71
Table 11 Example Activity Cascade Involving Multiple Systems 74
Table 12 Decomposition of TAD states into shared subsets .. 88

Table 13 Decomposition of TAD States into Shared Subsets with Initial State 94
Table 14 List of M57-Patents Images to be Processed .. 102

Table 15 Collation and Renaming of Jo TAD Collections for Processing 108
Table 16 Jo1 Total Count and Percentage Record Lifespan by Successive Intervals ... 118

Table 17 Jo1 File Count and Percentage Record Lifespan by Successive Intervals 119
Table 18 Jo1 Registry Count and Percentage Record Lifespan by Successive Intervals

... 120
Table 19 Jo1 Web History Count Record Lifespan by Successive Intervals 121
Table 20 Jo1 Event Count Record Lifespan by Successive Intervals 121

Table 21 Jo1 Records Possible and Actual Survivor Count by Interval 122
Table 22 Jo1 Record Survival Percentage by Source per Interval 123
Table 23 JoC Total Record Lifespan in Intervals 5 through 11 124

Table 24 File Record Percentage Lifespan Across Multiple Ten Interval Sequences ... 126

ix

List of Figures

Figure Page

Figure 1 Example Event in Native View and XML .. 36
Figure 2 User-Computer System Model with Components .. 63

Figure 3 Preconfigured Disk Defragmentation in Windows 7... 72

Figure 4 Diagram of Subsets when Tn and Tn+1 Interact ... 86
Figure 5 Charlie Ten-Interval Survival Plot .. 127
Figure 6 Pat Ten-Interval Survival Plot... 128

file:///C:/Users/user/Google%20Drive/_Dissertation_Final_Final/Smallman_Dissertation_Final.docx%23_Toc47659239

x

List of Equations

Equation Page

(1) State Transformation by User Action……………….. .. 78
(2) State Transformation over Time Interval .. 78

(3) Pre- and Post- Action States ... 80

(4) Linked States from Initial to Collected .. 81
(5) Linked Sets of TAD Records from Initial to Collected .. 82
(6) Example Decomposition of Sets Including TAD Record Elements 90
(7) Ordered Construction of TAD Sets with Change Subsets ... 91

xi

Abstract

ANALYSIS OF TIME ACTIVITY DATA CHARACTERISTICS AND DATA

DEGRADATION IN DIGITAL FORENSICS

Andrew C. Smallman, Ph.D.

George Mason University, 2020

Dissertation Director: Dr. James Jones

Activity analysis is an increasingly common task in complex investigative digital

forensics examinations. This analysis relies on extracting data from a system and

projecting backwards to identify and explain events that took place in the past. There

have historically been two approaches: either examiners look at each log individually, or

all individual records are extracted from all available sources and combined into a

massive database for analysis. Either method ignores potentially relevant information

about the context of the individual records as well as the characteristics of their sources.

It is also challenging to identify if any records were once present but are now missing due

to either intentional obfuscation or simply routine system operation and interactions.

This work presents a taxonomy for describing time-activity data (TAD) and TAD

source characteristics and describes an inferential analysis strategy based on the

characteristics of TAD sources. This enables examiners to identify and describe the

characteristics for different sources and how they may enhance or complicate activity

xii

analysis conclusions. This work also presents a state-based approach to activity analysis.

This model for system state changes over time in response to user actions provides a

method for the analysis of TAD records from successive disk images. This method was

then applied to a series of images from the M57-Patents dataset to analyze the

degradation of TAD record data over time from a series of linked images from the same

system. The data was analyzed to see if the degradation varies by record source or type

and to look for variation across three separate systems.

1

Chapter One – Overview and Goals

All information, regardless of the medium, is fragile. Information transmitted by

spoken word persists only until the sound falls below the background noise and becomes

unintelligible. Words written on paper seem permanent, but on a long enough timeline

the ink will break down and the paper itself may degrades due to the environment, the

activities of other people, or simply the passage of time. Even engravings in stone tablets

eventually succumb to the passage of time.

At first, the degradation of the information medium does not interfere with our

ability to retrieve the information stored on the paper. As more time passes, some

portions may be harder to read and some content inferred, but most of the original

information can still be extracted. Specialized tools and techniques can potentially

recover more information than is visible to the unaided eye.

Left to its own devices the information on the paper will eventually be unreadable

due to natural degradation. It can also occur much sooner as a result of human actions

such as shredding, burning, or simply writing new information on top of the old

information.

Data stored on computers is affected by analogous processes. Once written to a

hard drive, data will persist until the media breaks down, is damaged, or until it is

partially or completely overwritten by new data. At a high level, the information on a

2

computer consists of the files the user places on the storage, plus the supporting

information that the operating system and other programs create and modify as they

perform actions as directed by the user.

Extracting and analyzing the time data from a computer system under

examination can be essential in understanding the pattern of life for both the system and

its users. This analysis of activities can give essential context to the content that is found

on the system. One particular challenge in understanding the full history of a system is

that data stored on the system is constantly changing, overwriting new files, changing

attributes, deleting old files, and so on. If the critical actions took place days or months

ago then some of the records are likely to be missing or otherwise changed. Different

time data sources have different characteristics which may allow you to infer if particular

records had ever existed on the system, confirming or invalidating your analytic

hypothesis.

Certain records are more likely than others to have been overwritten in the

intervening time. The fundamental question the case study attempts to answer is “how

much of evidence of those past actions will still persist after particular periods of time?”

The overarching goal for this work is to improve activity analysis in digital

forensics by formalizing existing ad-hoc concepts and building a state-change user

activity model. I will then validate these results by analyzing a realistic forensic dataset.

After building a foundation through a better understanding of the characteristics and

logical structures of time data sources, this lifespan analysis should help to inform

expectations for the survival of records of a particular type on a representative system.

3

Written Organization

 Chapter two provides a brief overview of the field of digital forensics, and

specifically the area of Investigative Digital Forensics (IDF), plus a more detailed

description of timeline creation and activity analysis. I also survey some of the related

and foundational work in the field as it relates to my work in later chapters.

Chapter three discusses general characteristics of metadata and looks at a

particular type of metadata in great detail, the Time Activity Datum (TAD). I define and

describe TADs and enumerate their characteristics.

Chapter four enumerates the details and characteristics of collections of TADs.

Taken together, chapters three and four establish a functional taxonomy for describing

time data records and sources in digital forensics.

Computers operate at the direction of their users. Chapter five details a

conceptual model for system states and their decomposition into corresponding physical

and data states. Chapter six expands this with user interactions into a system activity

model. Each user action causes changes to the physical characteristics of the computer,

which are translated by the operating system and applications into a cascade of actions

and changes to the computer components and storage.

Chapter seven builds upon the previous work and describes a logical method for

performing a differential analysis on data extracted from a series of images describing a

single system. Past efforts have looked primarily at the sector or file level, so I extend

these methods to analysis of all the TAD records extracted from a series of successive

system states.

4

Chapter eight applies this method to a series of images from the Digital Corpora

M57-Patents scenario. The data processing and extraction methodology is described, as

well as the process to calculate the lifespan for each record contained within each source

image. In chapter nine the data is dissected and analyzed in order to characterize the

degradation of TAD records related to user activities over the lifetime of the scenario,

and to see if any generalizations can be made regarding general and specific sources and

actions.

Chapter ten discusses the results of this work and suggests areas for future

research.

5

Chapter Two – Background and related work

Although this work is not intended to be a survey of the field of digital forensics,

a brief overview is helpful before getting too deep into my specific research area. Digital

forensics applies a scientific process to the analysis of digital items. It is also commonly

referred to as computer forensics, but I will use the term digital forensics as the

techniques can be applied to individual files, storage devices, phones, and many other

non-computer items as well. Jones et al. (2016) describes it concisely: “The practice of

digital forensics is the art and science of inferring and proving past activity given some

set of residual digital artifacts and traces.”

The concepts described are generally applicable regardless of the particular

operating systems and forensic tools used, and should remain so as technology

progresses. Only the case study in chapter nine is particular to the underlying tool and

operating system, although the findings should continue to be informative with newer

operating systems and applications as long as there is not a paradigm shift in how records

are managed by consumer operating systems.

First a note regarding verbiage. The descriptors “subject” and “suspect” are often

used interchangeably in forensic writing. I will use “subject” in my own writing, but

some quotes and references will use “suspect”. Subject in this context is “the subject of

the investigation or analysis” whether the subject is a person or a computer.

6

I will use the term investigator as a general term to refer to a member of the

investigative team. It could refer to a criminal investigator, technician, analyst, forensic

examiner, linguist, or any necessary specialty. Essentially investigator is shorthand for

“a member of the investigative team with the right training, knowledge, and experience to

make an appropriate decision”. Investigative digital forensics requires personnel with a

range of knowledge and skills, and one person cannot reasonably be expected to be an

expert in all necessary aspects of technology, law, investigations, and content analysis.

Categories of Digital Forensics Work

There are three broad but relatively distinct types of digital forensics work:

• Incident response and intrusion analysis

• Device and application analysis and characterization

• Investigative digital forensics

There is not a formal separation between these categories, and some matters may

have components from two or even all three types. These categories function as a logical

separation based on the particular approach taken by the practitioner in each and the

standard approach to the work.

Incident response is what most closely matches the Hollywood image of hackers

intruding into a corporate or government computer network. On the inside, specialists

identify and mitigate an intrusion by collecting and analyzing logs and other data from

network devices and compromised systems. An intrusion is tracked from the initial

foothold through multiple systems and devices. Incident response has an inherent tension

between the desire to mitigate the intrusion and get the network functioning properly and

7

securely while also collecting and analyzing the information to understand the attack

method and identify a specific attacker. Malware analysis is often performed as a part of

intrusion analysis, but it can also be performed as a separate function.

 Device and application analysis and characterization is commonly performed to

understand the capabilities and implementation of a device such as a cell phone,

embedded system, or software application. It may also address how to extract data from

a device in a forensically sound manner, as well as to characterize the data that is stored

and can be recovered for analysis. These techniques are almost always performed on an

exemplar or artificially created system.

Investigative Digital Forensics

In investigative digital forensics (IDF) the computer or other device is believed to

contain data (evidentiary or otherwise) about someone or something that is related to an

investigation. The computer itself could have been used to commit a crime, or it could

contain evidence related to a crime. In the first instance the computer could have been

used to send a threatening email or launch an attack on a government system. In the

second instance a business committing tax fraud could be keeping two sets of books, both

stored separately in accounting software on the computer. In investigative digital

forensics (IDF) the computer or other device is believed to contain data (evidentiary or

otherwise) about someone or something that is related to an investigation. The computer

itself could have been used to commit a crime, or it could contain evidence related to a

crime. IDF is inherently an interdisciplinary endeavor, combining computer science, data

analytics, psychology, and many other related fields and methods (Woods et al., 2011).

8

Even the most technical analysis needs to be able to be explained from the standpoint of

“what does it mean and why is important” to a reviewer or some other decision maker,

whether a jury, investigator, intelligence analyst, policymaker, etc. This work attempts to

avoid most technical jargon and specific low-level technical implementations of the items

discussed here. Most of the concepts can be applied across a wide range of systems and

technical implementations, and it is a task left up to the particular investigator or analyst

to determine exactly how these concepts map onto their particular technical problem set,

implementation, and investigative needs.

Historically most research effort related to IDF has been focused on evidence

preservation, extraction, and presentation (Garfinkel, Farrella, Roussev & Dinolt, 2009).

Extensive work has been published on deleted item recovery, file carving, decryption,

and other techniques that are necessary to collect, extract, and present the data for content

review. Some effort has been made towards developing more efficient triage (Roussev &

Quates, 2012) as well as statistical sampling techniques and feature extraction (Garfinkel,

2010), but efforts to make the content review process more efficient and effective remain

a fertile ground for research. In much of the published forensic research, there seems to

be a preference to attempt to answer a particular technical question or build a process to

perform a particular task. Chapters three through seven build a conceptual framework for

analysis before performing a case study of particular data in chapters eight and nine.

Phases of Digital Forensics Work

The digital forensics lifecycle can be broken down into three broad phases:

1. Response and collection

9

2. Extraction and transformation

3. Analysis, including technical analysis and content analysis

Response and Collection Phase

In the response and collection phase, personnel must identify items that may

contain relevant digital information and preserve it in a manner that will enable later

analysis. This phase is not always performed by the expert forensic examiner, rather in

many situations it is performed by system administrators, technicians, law enforcement

first responders, and the like. The term of art is to collect the data in “forensically sound”

manner, which can be colloquially described as acquiring the data in such a way as to not

prevent or interfere with any downstream forensics processing and analysis. Ideally this

acquires a bit-by-bit copy of the original data, but is impossible or impracticable in many

circumstances. Many devices and data sources require acquisition techniques that make

some changes to the underlying system in the process of extracting the data. As long as

this acquisition is well documented and performed using tools that are well understood,

tested, and verified, then provenance of the data will be known.

One example of unavoidable changes to a subject system caused by the

acquisition process occurs when system memory is acquired from a running system.

Setting aside the fact that even an idle system will have background processes and the

like that are making changes to the memory, storage, and system state, the act of

collecting the data from the memory will also cause changes to the system. At a

minimum, the responder must make their tools available to the subject system, either by

connecting a storage device or accessing a remote resource over the network. Then a

10

destination is required to store the extracted data, again either by connecting additional

storage or accessing networked storage. Then the acquisition program must be executed

which will place it in memory, overwriting what was previously there, as well as leaving

a record within the operating system housekeeping metadata.

If the responder is using well established and understood processes and

documents their actions (Carvey, 2009, pp. 99), these changes will be able to be

identified and excluded as necessary during the extraction and analysis phases. Any data

that was overwritten by these changes will be lost, so the goal is to use the lightest

possible “touch” when acquiring data from a live system.

Extraction and Transformation Phase

Extraction and transformation occur when information is obtained from the

collected forensic data and, processed, categorized, indexed, and otherwise made

intelligible and understandable for analysis by the investigative team. In most instances

these tasks are done by forensic suites or other automated or semi-automated processes or

toolchains. File hashing and comparison to alert and ignore lists typically happens during

this phase as well. Alert lists are used to identify files that have previously been

associated with malware, contraband, anti-forensics tools, and the like. Ignore lists are

used to identify files associated with operating systems and common applications to

exclude them from further processing, as they likely have little probative value in more

circumstances. The extraction and transformation phase consumes a significant amount

of resources, including processing time, storage, and other infrastructure such as database

11

servers. Full processing of a modern hard drive can take several days or longer. In spite

of this, most of the time in a case is spent in the analysis phase.

Analysis Phase

Once processing is complete, or even while it is still ongoing in some instances,

the data is made available to the investigative team for analysis and review. Broadly

speaking there are two types of analysis that are performed: technical analysis and

content analysis.

Technical analysis is when an appropriately knowledgeable technical reviewer

will examine data on the system and determine some investigative meaning or relevance

from it. Often this involves analyzing items such as system settings, time stamps,

configuration files, and other system artifacts to determine a logical “real world” meaning

to the technical data. An examiner could look at certain registry keys, time stamps on

program files and folders, and an executable in the download folder and determine that a

particular program was downloaded and installed at a particular time. Technical analysis

can be thought of as “viewing and interpreting the data as the system or an application

would”. Some items such as web history that previously required technical analysis can

now be parsed and rendered “human viewable” by forensic software, allowing the

investigators to review it directly. For critical items a second review by a technical

expert is a good practice, rather than relying only on a tool’s interpretation of data.

Content analysis and review involves looking at the data and files as a user would.

Specific content can be prioritized for review using searches for key terms, starting with

likely drive locations, or filtering by particular types of content. Content analysis must be

12

performed by somebody who is knowledgeable about the particulars of the investigation

and some familiarity with computers, but it is not necessarily a technical expert.

Depending on the content, additional subject matter experts may need to be brought in,

such as linguists or forensic accountants.

Often technical analysis and content review may look at different facets of the

same item. Content review may identify a relevant email, and technical analysis may

show that the sending address for the email was spoofed to appear authentic when in fact

it came from a different address.

The phases in digital forensics are not always strictly linear. A new relevant data

source may be identified during the content analysis and lead the investigative team to

collect that source, which must then be processed and analyzed. A file or file fragment

may be encountered during content review that was damaged or otherwise not fully

parsed. After manual reconstruction and repair, the remaining content of the damaged

file is made available for content review.

At the conclusion of the analysis phase, some type of report is typically produced.

Volatility and Data Degradation in the Forensic Context

 In digital forensics the distinction between volatile and non-volatile information is

typically made between data (evidence) that will be lost when a system is shut down such

as memory contents, and information that will persist on storage after loss of power

(Carvey, 2009, pp. 3-4). After the system is powered down it can be transported back to

a controlled laboratory environment so the storage can be safely acquired using standard

forensic procedures and equipment. In this context data volatility guides the investigative

13

team in prioritizing the acquisition of data from memory. In an intrusion response

scenario, the bulk of the pertinent information may come from the system memory,

particularly running processes and open connections.

 The concept of a relative “order of volatility” is brought up multiple times in the

literature, with slightly different meanings. Casey (2009, pp. 4-7) discusses this as rough

order to collect data during a live response based on the expected lifespan of the data and

the risk of inducing changes to that data while interacting with the system to acquire it.

Farmer and Venema (2006) also discuss an ordering of volatility, but also associates the

particular data lifespan with the underlying physical storage medium. Shavers (2013, pp.

11-12) identifies that “all data is considered volatile, in that, at a point in time, that data

may not be available for recovery” and “data in RAM is susceptible to be destroyed by

natural processes of the operating system or user intervention in nanoseconds”. Although

in the text the author was specifically referring to the need to capture memory quickly in

a live response scenario, the statement is true for all data on a system, both in non-

persistent and persistent storage. Even if not directly changed non-persistent storage will

be lost if power is interrupted to the system, whereas persistent storage requires an

affirmative action to be changed.

Casey also conceptually applies Locard’s exchange principle to digital forensics.

In essence the principle states “when two objects come into contact, material is

exchanged or transferred between them.” The same principle applies to users and

computers, digital devices, and even subcomponents in a system.

14

Rather than two things coming “into contact” the exchange principle for digital

forensics can be rephrased as “when any two parts of a user-computer system interact,

they are likely to induce changes in each other, both obvious and subtle.” Change due to

user interaction with a system can occur whether the user is the owner of the system or an

investigator attempting to collect data. Presumably the investigator is using forensic best

practices to minimize the changes introduced to the system while interacting with it. No

similar assumption can be made about the regular user of a system. They may be

attempting to induce significant changes, particularly if they are attempting to erase

information or otherwise tamper with potential evidence.

In practice as a system responds to the interaction with a user, the user facing

components of the system will then interact with other components and system processes,

inducing changes in those components and their corresponding states, and so on. This

will be addressed in greater detail in chapter six with the activity model for a computer

system and activity cascades. Advances in virtual machines have made it technically

possible to immediately capture most parts of a virtualized system all at once, although

there is always some interaction with the host hardware and software that is more

challenging to completely capture.

Some of these interactions can be subtle, and it is the essential when acquiring

data to minimize the effects of these changes on the collected data. A write blocker will

prevent changes from being made to the content of a source hard drive, but the “Self-

Monitoring, Analysis and Reporting Technology” (SMART) on the drive controller will

continue to increment the “Power-On Hours” counter as long as the drive is powered.

15

Such a change is unlikely to affect the results of the forensic analysis, but the change is

still being made nonetheless.

Farmer and Venema (2006, p7) identify that in practice it is impossible to capture

all the data on a computer as the act of capturing it will necessitate changing other parts

of it. This is certainly true when performing data acquisition from a live running system,

and particularly in memory acquisition. They describe this as a version of “Heisenberg’s

uncertainty principle applied to data gathering and system analysis”.

One of the challenges peculiar to IDF is that in most cases a significant amount of

time has passed between the activity of interest and when the investigative team acquires

the data from the subject computer. Whether days, weeks, or months have passed, if the

computer was still being used then the data stored within is still being changed. Old files

are deleted, web history is overwritten by new browsing activity, and so on. In the

example of the threatening email, if it was sent through a web client in a fit of anger one

night and not repeated then it is likely that new activity over several months will

overwrite most if not all of the traces on the system. That is not to say that the evidence

will not exist on the system after a month or a year, as each case must be approached

individually. Instead it becomes less likely that any particular piece of data will be found

after a long interval. Most user actions trigger a cascade of changes to a system, so some

evidence may be recovered later even if portions are missing.

Data Degradation over Time

The concept and function of data degradation on a system over time has been

explored both conceptually and on exemplar datasets. Garfinkel (2012) explored the

16

factors affecting data decay, but admitted that “we currently do not understand them well

enough to come up with quantifiable numbers.” He primarily looks at the problem from

a filesystem and disk sector approach, where actions and interactions with files will

change the underlying storage, overwriting free space and leaving file residue behind.

A novel longitudinal study of filesystem metadata from Microsoft employee

desktop computers found that the median file ages ranged from 80 to 160 days across the

collected datasets (Agrawal, Bolosky, Douceur & Lorch, 2007). They also found that

less than 20% of the files were less than 30 days old. It is likely that this is a result of the

comparatively small amount of user-generated content on modern computer systems in

comparison to the number of operating system and application files. A user may spend

five minutes writing an email or an hour editing a document, but installing a program will

add hundreds or thousands of new files. User generated content is also more likely to be

modified or deleted during the system lifecycle than core system files.

A direct analysis approach looked at the traces left behind when applications are

installed and then uninstalled from an exemplar system (Jones et al., 2016). This

approach used the technique of sector matching, as well as removing the pre-usage drive

state from the analyzed dataset. They also use the M57-patents dataset in their work,

declaring them “sufficiently realistic”.

A different study (Roussev & Quates, 2012) also used the M57-patents dataset to

evaluate a triage technique based on similarity digests. In their work they identify a focus

on metadata as being a particularly efficient means of triage due to the relatively small

amount of metadata compared to content on a typical system. I agree with this, which is

17

why my work focuses on a particular subset of metadata, time-activity data. They also

state that “most metadata is for human use and tends to contain higher-level logical

information. The downside of metadata analysis is that it may not be complete, or

trustworthy.” I partially disagree with this, in that most metadata is not intended for

“human use”, at least not directly. Metadata is often used by the operating system to

provide assistance or information for the user in some manner, and it does typically

contain inherently meaningful content. Data manipulation is a concern for all forensic

data, whether metadata or traditional file content. Due to the way activity cascades and

secondary effects function, intentionally tampering with metadata is non-trivial and is

difficult to accomplish without leaving indications. In many situations metadata can

simply be overwritten with newer data. In the event there is intentional tampering, it will

be hard to conceal fully. Although the original data is likely to be unrecoverable, the

evidence of tampering is harder to successfully conceal. Jones et al (2016) notes:

In most cases, however, digital artifacts and traces are altered, destroyed, and

disassociated over time due to normal system operation and deliberate obfuscation

activity. As a result, analysts are often presented with partial and incomplete

artifacts and traces from which defensible conclusions must be drawn.

Timeline Analysis

Timeline analysis blends technical and content review in an attempt to create a

sequential list of relevant actions and events from the system being analyzed. Timeline

analysis can show patterns and trends on a computer system that may not be apparent

when performing a basic content review of the files contained on the system. Although it

18

is not necessary to conduct a timeline analysis in support of every investigation, many

complex investigations benefit from an understanding of the overall pattern of activity on

the system. The timeline is useful both for understanding the lifecycle of the system

itself, as well as placing relevant items identified during the review of files and other

content within the larger context of actions on the system.

Basic timeline creation and file system activity analysis in computer forensics

dates back to scripts created in 2000 by Rob Lee (Carvey, 2012, p. 196), and was

significantly advanced in 2010 with the creation of the Log2timeline tool and publication

of the corresponding whitepaper (Guðjónsson, 2010). Although there is some difference

of opinion regarding exactly how to integrate timeline creation and activity analysis with

traditional forensic content extraction and analysis (Carvey, 2012, p197), it is well

accepted within the forensic community that this analysis is an integral component of

many complex forensic analysis challenges.

One ongoing challenge in timeline creation and analysis is the sheer amount of

time records that are present on a typical personal computer. A narrowly targeted

analysis of a subset of records is relatively simple to analyze and understand and explain,

but runs the risk of missing relevant and potentially exculpatory information from other

sources. Most tools provide some capability to search, filter, and display a subset of the

collected time records, although finding relevant items within this large dataset is a non-

trivial task.

Current timeline creation tools like Plaso (formerly Log2timeline) are excellent at

identifying and extracting time-data records from a wide range of sources and compiling

19

them into a “SuperTimeline” (Guðjónsson, 2010), which is a monolithic combination of

time events from all sources within a single forensic image. Although this is an essential

and necessary step in assembling the time data understanding the complete lifecycle of a

system, simply combining all the records from multiple distinct sources discards critical

contextual information that can be leveraged to make conclusions and inferences than can

be made by only looking at the individual records. One technique that leverages this

contextual information to draw conclusions is called relative ordering which is described

in chapter four.

Errors and Inconsistencies in Time Records

 A significant amount of research has focused on seeming inconstant time stamps

on files and in other records. One interesting work attempts to identify logical

inconsistencies in sequences of time records such as a record of a user executing a

program on a system without a prior corresponding record of a successful login

(Marrington, Baggili, Mohay & Clark, 2011). There are applications of this formalized

logic to systems and processes where actions are fully logged and those records are well

maintained, but on a typical end-user system there will be insufficiently robust logs for

this type of analysis. The authors also identify that:

 The most common inconsistency in digital evidence is naturally occurring, that is

to say, inconsistency which is not the result of deliberate tampering. This includes

data pertaining to an event or file which simply is not recorded, or may have been

over-written during the normal operation of the computer system. It also includes

“naturally” erroneous or inaccurate data, perhaps due to a hardware characteristic,

20

software misconfiguration or bug. Such natural inconsistencies pose difficulties

for investigators, even if they are not the result of deliberate action taken by a

suspect.

Registry settings can affect system states and as well as the changes that result from

activities (Carvey, 2009, pp. 43). One setting disables the updating of the stored access

times when files are touched. Another setting causes the page file to be cleared on

shutdown. If enabled, this has two potential effects. First if a live system is encountered

during the acquisition phase, shutting it down would result in clearing the page file. As

the page file may contain older data than is present in RAM, this may result in the loss of

some historic information that is otherwise unavailable.

 An analysis of file times from a corpus of over 1000 drives (Rowe & Garfinkel,

2010) found that:

While timestamps provide valuable clues about the kind of usage of the drive and

the nature of the user, they pose challenges: There are default times, scheduled

times, bursts of events, erroneous clocks, inconsistencies in the meaning of

creation time, and a variety of other phenomena.

Temporal information can be particularly attractive for bulk or automated analysis

because it has relatively comparable values even across a wide variety of different files

and file types. Rowe and Garfinkel also identified that in some instances the usage of a

particular file could be inferred by the relative values of its various timestamps:

Our triage also identifies (but does not exclude from further analysis) those files

with special relationships between their timestamps: files modified before being

21

created, files accessed before being created, and files modified before being

accessed. Modification before creation is typical of purchased software, where the

modification time originates from the vendor. Access times before creation

indicate files that have been accessed without changing the metadata, perhaps to

reduce operating-system bookkeeping. Modification before access (when

modification is not before creation) indicates files that are probably read-only.

Other authors also emphasize the risk of severe clock skew or intentional tampering as a

potential cause for time stamps that appear incorrect or “out of order” (Raghavan, 2014).

Although tampering is technically possible and needs to be considered in complex

analysis, many of these supposed time inconsistencies are usually the result of a human

analyst interpreting time records differently from the actual purpose behind the recorded

time. In plain English this means the error lies in “what we think it should mean” rather

than “what the computer means with this time record, based on our training and

experience”. Unless extremely narrow intervals are critical for understanding particular

actions then for practical purposes clock skew can generally be ignored when examining

a single system, as well as the drift of the clock over time. Extreme clock changes should

be identifiable in the system logs or through other means. These changes are often the

result of time zone changes, loss of battery power for the onboard clock, or other loss of

the stored time value.

22

Activity Modeling and Differential Forensic Analysis

Modeling system interactions is common in many fields, but has not been

extensively applied to IDF. One paper describes a method to model user actions captured

in logs in an attempt to identify anomalous actions (Marrington, Baggili, Mohay & Clark,

2011). This does not attempt to analyze the full scope of time data from a system, rather

it looks for logged behavior without the corresponding pre-condition being logged, such

as a user executing a program without first logging onto the system. The authors also

admit that “there are, of course, many instances where an event may be missing as a

result of non-suspicious computer activity.” The tool they developed, CAT detect, leans

heavily on the characteristics of formal Windows logs, and thus can draw strong

inferences from that data. For data outside of formal logs, such as file MAC times, the

outcomes can only be inferred. They also had to modify the system configuration of their

exemplar for “maximum logging”. Most users will not do this, particularly if they are

conducting activities that may result in the attention of the authorities. Servers are a more

likely host to have more robust logging options enabled.

One effort attempts to formally model a system for event reconstruction through

state transitions and process algebra (Soltani & Seno, 2019). Even limiting the model to

a narrowly focused compromise of simplified system quickly runs into “state space

explosion” as the transitions make changes to the underlying storage. This model is

backwards looking, in that it takes the system in the final collected state and attempts to

project backwards and determine the actions that brought the system from a secure state

into the compromised state. The authors state that “although there are several attempts to

23

formally reconstruct events, it is still in its infancy stages. Many aspects of modeling

systems and specifying digital forensic requirements should be further explored.”

A different effort describes a formal model for intrusion analysis to support

timeline reconstruction and analysis (Chabot, Bertaux, Nicolle & Kechadi, 2014), which

attempts to project backwards to user actions from time records through an “event

reconstruction” process. Their model uses temporal closeness of particular events to

infer actions by a particular user, which is a technique used by most investigators,

although not a formally defined.

A model for differential forensic analysis and image differencing (Garfinkel,

Nelson & Young, 2012) establishes the basic model of user actions transforming a system

between two distinct states. They acknowledge that the “practice has been increasingly

used by digital forensic examiners but not formalized until now.” There are several

differencing strategies described in the article, including disk image comparison and

registry hive comparison. The general strategy described is in line with the sequential

state analysis described in chapter seven and the case study in chapters eight and nine.

24

Chapter Three – Time Activity Data

Introduction

 Before examine examining individual records, it is worthwhile to look at their

characteristics in a generalized manner, and similarities and differences between different

items and sources. This chapter will discuss characteristics that apply to individual

records as well as those that apply to collections of these records.

This chapter and the next provides a thorough taxonomy for describing temporal

record characteristics and how to leverage these characteristics when conducting activity

analysis. This work will also touch on some analysis techniques that integrate activity

analysis with the traditional forensic process to provide new insights for the overall

investigative digital forensic process. After first defining and describing the

characteristics of metadata and time activity data (TAD), a taxonomy will be established

for TAD collection types commonly encountered in computer forensics.

Metadata Analysis and Characterization

In the field of computer forensics, metadata is often identified as an essential

element in many investigations. Reviewing the literature provides an extensive

discussion of examples of metadata, emphasis on the importance of it, and techniques for

preserving, extracting, and analyzing it. There is little discussion of the characteristics,

classification, or categorization of metadata in generalized terms.

25

Carvey (2009, p299-300) reinforces the most common description, “the term

metadata refers to data about data” and “the most commonly known metadata about files

on Windows systems are the file MAC times.” MAC times refer to file modified,

accessed, and created times.

Occasionally metadata will be directly created or modified by a user, but most

often it will be generated by operating system processes or application settings and

incorporated into files and disk structures without specific user direction. Metadata can

be embedded within the structure of the file it describes, or it can be separate as part of

the filesystem structure. Metadata can describe a wide variety of characteristics of an

item. For this work I will focus primarily on items that contain a time reference or are

otherwise relevant to our activity analysis.

One particularly subtle insight on metadata comes from the ForensicsWiki

website (Https://Forensicswiki.Xyz):

Since metadata is fundamentally data, it suffers all of the data quality and

pedigree issues as any other form of data. Nevertheless, because metadata isn't

generally visible unless you use a special tool, more skill is required to alter or

otherwise manipulate it.

In most instances metadata is abstracted away from the user and managed by operating

system or application processes. User actions can and will change metadata, most often

this will be a side effect of other actions.

26

For the purposes of this work, I define metadata as data that contains information

either about itself or another distinct data item. A data item is defined as a discrete piece

of data in the total corpus of data being analyzed. This is typically a file, but could also

be a logical sub-section of a file, a portion of unallocated space on a drive or any arbitrary

portion of the source image bitstream. A particular data item does not necessarily need to

be contiguous on the drive image, but the investigator must be able to provide a rationale

or justification for collating disparate portions of the source image into a single logical

item.

Consider a JPEG file (JPEG / Exif) created with a digital camera and now

contained on a hard disk image under examination. The file itself is a data item. The file

also contains two separate data items: the JPEG image stored with a particular

compression algorithm and the Exif tag structure that describes the JPEG and how it was

captured. The Exif data item contains metadata which describes the JPEG image sub

item. As the JPEG file itself is stored within a file system, there will be additional

metadata contained within the file system structure that describes it, such as created,

modified, and accessed times (MAC times). We will return to this JPEG example as we

continue to enumerate metadata characteristics.

 Metadata characteristics describe features or qualities of individual pieces of

metadata without necessarily being contained within the metadata itself. Two metadata

characteristics that are particularly relevant to activity analysis are source and location.

27

Table 1

Summary of Metadata Characteristics

Characteristic Possible Values

Metadata Source Primary or Secondary

Metadata Location Internal or External

Metadata Source

The metadata source describes where the metadata is contained relative to what it

describes, and can be either primary or secondary. Primary metadata is metadata that is

contained within the item(s) or container(s) being investigated or examined, or

algorithmically generated from it. This metadata is generally extracted from the item

using one or more forensic tools or processes, or it may be viewable using standard

system tools.

Secondary metadata describes a container or data item being examined that has

been generated or applied through a user-based process, usually by an investigator based

on analysis or outside knowledge. Examples of secondary metadata include the

collector’s biographic information, case number, date and time collected, image filename,

acquisition log, and surveillance log. When applying secondary metadata to an item it is

important to ensure that it remains non-prejudicial. When basing conclusions on

secondary metadata one must ensure both that the information is given proper weight

based on its source and that critical items are verified through other means whenever

possible.

28

Any dependencies for secondary metadata must also be noted. The calculated

MD5 or SHA1 hash of a file is primary metadata. When that hash is compared against a

hash database for contraband or malware then any positive or negative matches are

secondary metadata. The calculated hash itself insufficient to determine the

characteristics or content of a file without some external reference.

For the purposes of this work any data or metadata items that are contained within

the image file metadata or acquisition notes but were not part of the collected source

drive are considered secondary metadata. Examples of this may include the collecting

technician’s biographic information, date and time collected, or the physical description

and condition as found.

Metadata Location

Metadata location describes where the metadata itself is stored relative to the data

that it describes, whether internal to the file or elsewhere within the storage. Internal

metadata is metadata about a specific data item that is contained within that file, or is

generated algorithmically by analyzing only the data within the file. External metadata is

metadata about a file that is contained elsewhere.

Consider a JPEG file contained on a hard disk image under examination. The

EXIF information contained within is characterized as primary and internal metadata, as

is the calculated MD5 hash of the file. The filesystem-level created, modified, and

accessed time stamps stored in the directory listing are characterized as primary external

metadata. An investigator’s bookmark of the file and a comment “Subject’s Car” within

the forensic tool would be secondary external metadata. It is assumed in this instance

29

that the bookmark information is stored in the working database of the particular forensic

tool or in a report.

Time Activity Data Definition and Structures

A single time-activity datum (TAD) is a record that contains at a minimum a time

stamp (pre-normalization) and record source as mandatory components. Without a date

an item may still be metadata but it cannot be placed on a timeline. It is possible for a

TAD to consist of no other data other than a timestamp if the meaning of the timestamp if

the meaning is implied by the existence of the record, which will be shown in the

example in table two. Most TADs contain additional raw content from which additional

data components may be extracted or derived.

The time-activity data corpus is defined as the set of all collected and available

time-activity datums (TADs). This set can be constructed from multiple data sources,

including but not limited to:

• Computer hard drive image(s)

• External Servers and services (File server, email server, syslog service)

• Loose Media (disk images and individual files)

• Network Devices and Services (firewall logs, VPN concentrator)

• Peripherals and devices (printers, cameras, cell phones)

• Network captures

• Subject / Victim / Witness interviews, voice mails

• Subpoena Returns (business records, emails, provider logs)

• Alarm Systems / Door access controls

30

It is worth noting that this listing contains several items that are not typically

considered part of traditional computer forensics, though they are familiar to many

criminal investigators. Nonetheless they may still be useful collections of relevant

activity data, to which the techniques described below can be applied.

Why Computers Keep Records

Before going deeper into activity analysis, it is worth thinking about why

computers log or record time-activity data in the first place. In some circumstances the

operating system or applications create and maintain actual logs for security, audit, or

troubleshooting purposes. In most end-user systems these actual logs are the minority of

the time-activity data available to be analyzed. Contrast this with servers and network

devices where much of the available TADs come from actual logs. User-focused

operating systems are generally not designed with logging or security in mind. Creating

and maintaining logs takes storage space and CPU cycles that could otherwise be used for

data processing, user interface animations, and cat videos. In chapter four we will

discuss some distinctions between different types of TAD sources.

Most TAD sources on a user machine are not intended to directly log or track user

activities. They may store relevant temporal metadata to provide some functionality to

the user, or there may be seemingly innocuous data that is peripherally stored by low-

level system functions, such as filesystem timestamps. Storing web browsing history

allows a user to recall a site that was visited in the past, even though they may not

remember the exact date or web address. File modified-accessed-created (MAC) times

allow users to search for and find recently used documents that they have misplaced on

31

their increasingly large hard drives. Keeping track of modification dates allows software

to synchronize the contents of two directories (typically located on different computers

networked together) and update any changed files with the latest version.

Metadata fragility generally describes how likely a particular type of metadata is

to be changed through normal system activity. This type of fragility is distinct from loss

of data through file deletion where the metadata contained in a file is lost when the file

itself is lost. Metadata that is very fragile is easily changed through routine user actions

and system processes, such as updating file modified or access times. Slightly less fragile

would be the printed record in the of a document, which is only updated when the user

takes a specific relevant action. Even less fragile metadata is unlikely to be changed

without specific intentional user actions or special tools, such as the ‘Author’ field of a

PDF document. A combination of very fragile and less fragile metadata can describe a

particular file, and even coexist within a single file or source. Fragility does not have a

specific numeric value or scale, instead relative ordering is more appropriate. Fragility

itself and the relative ordering will also vary based on the particular system, user actions,

and the technical savvy of the system user.

A Simple Time-Activity Datum Source

Starting with an example of an extremely simple log will provide a base for

understanding source characteristics. This log is from an electronic lock on a secured

door at a business. There is only one code, shared between all authorized

employees. The lock is not connected to any external systems, and the log is stored in

internal memory. There is a clock chip inside which keeps accurate time according to the

32

manufacturer. Data is extracted using a serial cable and special maintenance

software. The contents of “SecureDoor1.csv” are below:

Table 2

Data from SecureDoor1.csv

Line Value

1 7/17/2017 07:54:33

2 7/17/2017 16:22:17

3 7/18/2017 08:03:57

4 7/18/2017 17:05:32

5 7/18/2017 22:16:03

6 7/19/2017 07:45:31

33

After collecting the data, the technician tests the lock with a known event by

opening and closing the door then extracting the record and determines that the internal

clock is accurate to within one second and that the times stored are Eastern Standard

Time. Reviewing the technical documentation revealed that the lock only records door

opening events, not closing events, and that only the six most recent events are

stored. Changing the door code or internal clock causes the log to be erased. The lock

does not record how long the door was open or how many people passed through while it

was open. Although it is not possible to tell from the logs if the door was left open for an

extended period of time, while collecting the data the technician notes that a separate

switch causes a loud and annoying buzzer to sound if the door is open for longer than 30

seconds.

Note that in this example there is no identifier for the specific door contained in

the log. Instead it is inferred from the collection source. If the identifier is left off or

marked incorrectly during collection there can be significant problems with later

analysis. The characteristics and capabilities of the door logging process were

determined by reviewing technical materials and verified experimentally. The specific

time offset for the door had to be determined experimentally. Even though this log was a

simple TAD source, multiple investigative, technical, and analytic steps were necessary

in order to extract and preserve the data, as well as to determine the additional

information necessary to place the extracted TADs in the proper context for the

investigation.

34

A Slightly More Complex Log

Now consider a centrally monitored alarm panel with cellular network

connectivity and multiple users with unique codes. The alarm company provides the log

displayed in the following table.

Table 3

Data from Alarm Company

Line Time Action User

1 6/17/2016 15:40:54 Disarm Alice

2 6/17/2016 20:08:22 Arm Alice

3 6/18/2016 16:22:03 Disarm Alice

4 6/18/2016 20:39:05 Arm Alice

5 6/19/2016 01:22:16 Disarm Bob

6 6/19/2016 01:35:45 Arm Bob

35

The alarm company informs the investigator that the records are stored in

UTC. The usernames were provided by the client when the system was installed.

Cellular network connectivity, third party monitoring, and offsite storage of logs provide

a level of external validation that was not present in our first example.

Windows Event Log Time Datum Example

Consider the following TAD extracted from a Windows 7 AppEvent log. The

source file was in the ‘charlie-2009-12-10.E01’ image, part of the M57-Patents dataset.

Within the disk image, the record was originally located in the

Windows\System32\Config folder on partition one in the AppEvent.Evt file.

Most TAD records and can be viewed with multiple different tools, on both the

live system and when extracted from a forensic image. The figure below shows the TAD

record as displayed using the native Windows event viewer software.

36

Figure 1

Example Event in Native View and XML

37

Most modern computer systems store time data in a UTC-based format and then

dynamically convert it to the local time for user display based off system settings or

geolocation. Time data extracted directly from logs will often be in a standardized time

format, while items displayed for user information will use local time, such as a chat

window. It is important to keep this in mind when cross correlating records from

different sources.

Internally most computer systems typically use an epoch-based time system,

where the system counts incrementally forward from a specific starting point. Each

integer in the count is one unit of time, and represents the maximum granularity of that

implementation. Two common epoch implementations used in modern systems are the

NT time epoch which counts forward from January 1st, 1601 and the Unix epoch (also

known as POSIX time) which counts forward from January 1st, 1970. Both have a base

granularity of one second but can use additional digits to subdivide into smaller intervals.

Microsoft Windows uses a 64-bit FILETIME structure that counts the number of 100

nanosecond intervals from January 1st, 1601. The IBM PC BIOS, DOS, FAT12, FAT16,

and FAT32 implementations use an epoch that starts on January 1st, 1980. We will see an

effect of this in chapter 5.

In this example, the TimeCreated entry for the event is stored in UTC time

represented by the ‘Z’ in the XML entry, but is displayed to the user in system local time

by converting it to EST, shown in the lower half of the figure. The same actual time can

be converted and displayed in different time formats shown below:

38

• Unix epoch: 1258077433

• Unix epoch with milliseconds: 1258077433000

• NT time epoch: 12902551033

• FILETIME epoch: 129025510330000000

• UTC: Friday, November 13, 2009 1:57:13 a.m.

• Local time: Thursday, November 12, 2009 8:57:13 PM GMT-05:00

Processing the disk image and extracting the record with Plaso yields the data in

the following table.

39

Table 4

Example Event Extracted and Parsed with Plaso

Field Name Value

Timezone UTC

Source EVT

Sourcetype WinEVT

Type Creation Time

User Charlie

Host M57-CHARLIE

description

[11707 / 0x2dbb] Source Name: MsiInstaller Message string: Product:

Python 2.6.4 -- Installation completed successfully. Strings: ['Product:

Python 2.6.4 -- Installation completed successfully.', '(NULL)', '(NULL)',

'(NULL)'] Computer Name: M57-CHARLIE Severity: Success Record

Number: 86 Event Type: Failure Audit event Event Category: 0

filename /WINDOWS/system32/config/AppEvent.Evt

inode 3665

format winevt

extra
facility: 0 message_identifier: 11707 recovered: False sha256_hash:

61478990af1284ce01e5bf894cdaaa54f1f71075fd44a6c0a0a15f6c0c26ca4d

datetime 2009-11-13 1:57:13

offset 14616

record_number 86

event_identifier 11707

event_type 4

source_name MsiInstaller

user_sid S-1-5-21-682003330-329068152-1644491937-1003

40

Normalized to the TAD record structure for analysis, the following fields would

be added to the record so that it can be combined with records from other data sources:

Table 5

Event Data Normalized to TAD Structure with Minimal Fields Shown

Field Name Value

Unique Record ID 32435457

Date-Time Group (epoch converted, ms) 1258077433 000

Data Source Container charlie-2009-12-10.E01

Data Source Path \Partition1\Root\Windows\System32\Config\

Data Source Filename AppEvent.Evt

41

The mandatory data source field is broken up into three sub-components:

container, path, and filename, to facilitate later analysis and review. The unique record

ID is programmatically generated by the software that combines records from multiple

data sources. The date-time is generated by converting the record’s specific time stamp

value into the Unix epoch format. Even though the stored value is only accurate to the

second, the converted epoch time is padded out to milliseconds so that it can be readily

analyzed along with other records that do have millisecond precision. The Windows

FILETIME epoch could also be used instead, as long as it is standardized throughout the

analysis dataset.

42

Chapter Four – Time Activity Data Collections

When combined with the proceeding chapter, the work in this chapter establishes

a functional taxonomy of time activity data for the field of investigative digital forensics.

TAD Collection Definition

A logical group of one or more time activity datums is called TAD

collection. TAD collections are often colloquially referred to as “logs”. In many

instances these TAD collections consist of metadata items, in others they contain a list of

activities or events that occurred on, by, or to the system.

 Most individual TADs are not independent items within a hard drive or disk

image. They are typically either embedded within other data items or part of a larger

collection of TADs, either physically or logically. Just as TADs have individual

characteristics, collections of TADs have an additional set of common characteristics.

The characteristics that are integral for activity analysis are listed in the following table.

43

Table 6

Summary of Time Activity Datum Collection Characteristics

Characteristic Possible Values

TAD Collection Type Actual, Functional, or Assembled logs

TAD Collection Location Internal or External

TAD Collection Ordinal Event Drive or Item driven

TAD Collection Depth
One or n (assembled logs),

N/A (actual logs)

TAD Collection Breadth
Size or Time range

(actual or functional logs only)

TAD Collection Lifespan Start and end Values (all logs)

TAD Collection Granularity Time Interval Value

TAD Collection Types

TAD Collections can be categorized into three distinct types: actual logs,

functional logs, and assembled logs. By characterizing and analyzing the time data

sources within specific collections we can often gain additional contextual information

about the activities and data on the system, which would be lost if we simply examined

the records individually or compiled them into a single monolithic list. Identifying the

exact characteristics and values for a specific TAD collection will generally be

determined by the analyst on a case-by-case basis at present. Tools could be developed

to extract and present many of these parameters for review and to support complex

analysis tasks. Each distinct source may have varying characteristics, and these will be

44

influenced by the operating system, version, applications, configuration, and user

activities.

Actual logs or formal logs are TAD collections that are maintained by

applications or operating system services and designed to log activities or events. They

are often stored in a structured database or other regular format such as a comma

separated variable (CSV), extensible markup language (XML) or text file, with new

TADs (log entries) appended sequentially to the end of the file. The Windows Event Log

is an example of an actual log.

Functional logs or informal logs are commonly created by end-user applications.

They have most of the characteristics and fidelity of actual logs, but were not necessarily

intended to be used explicitly for activity logging. Functional logs are typically

generated as a byproduct of enabling some user or system functionality, but the purpose

of collecting the data was not to log or audit the activity. A saved chat session or internet

history file is an example of a functional log. Functional logs are also commonly stored in

a structured or regular format such as a database or text file,

Both actual and functional logs are generally stored on a system as a single file or

logical entity. The data may be spread across multiple distinct files that are designed to

be processed together, such as internet browser caches.

Assembled logs or derived logs are created by parsing and collating data from

multiple sources and locations within a system or across multiple systems to create a

logical TAD collection. Once extracted and collated using appropriate tools, assembled

logs can be used for analysis in much the same manner as actual and practical logs.

45

Assembled logs are commonly created by extracting a common piece of metadata from

multiple distinct files and constructing a list of a particular type of activity on a system,

or activities across a subset of relevant or interesting files.

Some characteristics common to assembled logs can present challenges when

analyzing and drawing conclusions based on the data in assembled logs, including

coverage gaps and other issues typically not found in actual or functional logs. Even with

these weaknesses, assembled logs can be invaluable in analysis because they can capture

a wide array of information that would not typically be captured in an actual log on a

system.

Examples of assembled logs include a listing of file system MAC times, e-mail

time stamps, and registry key update times. Extracting and collating all of the last printed

time metadata items from all the Microsoft Word documents on a system creates an

assembled log of the printed documents. In these examples each metadata item with the

same characteristic is collated into a logical TAD collection.

TAD Collection Characteristics

Each TAD collection has its own set of characteristics which often relate closely

to the TAD collection type. These collection characteristics can be a powerful way to

answer otherwise difficult questions in the analysis of a system. These characteristics

help describe the data that is found within the TAD collection, as well as explain why

other data is not present in the collection and corpus. Guðjónsson alludes to some of this

with the term temporal proximity, which refers to records being close to other related

46

records in time, even if the specific record is missing, overwritten, or otherwise

untrustworthy. (2010)

The TAD collection location is comparable to the metadata location described

earlier. Internal TAD collections describe the system or container they are stored

within. External TAD collections describe a different, distinct system.

Lifespan

Each TAD Collection has a specific lifespan, which is the range of time that the

log provides activity records for. The most basic way to determine the lifespan for a

collection is to look at the earliest record and latest record chronologically. In some

circumstances we may be able to slightly extend the lifespan for a collection earlier than

the first record or later than the last record, based on an analysis of the overall system and

the way the logging was performed.

Consider a system log that tracks attempted and successful user logins. If the last

entry is on Tuesday but the investigator has determined through other analysis that the

system was powered on and running normally until Friday, they can reasonably conclude

that the lifespan of that log extends through Friday as it would have recorded any normal

logins. This may also allow the investigator to conclude that no user logged in to that

system through Friday using typical means.

Depth and Breadth

The depth of a collection describes the number of records that a TAD collection

can have about each particular item that it describes. Most assembled TAD collections

are one-deep because the data sources used to assemble the collections are usually

47

overwritten by new activity, only storing the most recent action for each item. Rowe and

Garfinkel (2010) note that information from log files “is more complete than file-

directory metadata for some files since it reports more than the last event of a type”,

identifying the essential characteristic of one-deep logs without formally naming it.

Some functional logs may store up to a fixed number of records per item, such as

the ten most recently accessed files or the last five times a particular website was

visited. If there are only three records for an item in a five deep log then you may

conclude that no other activities occurred relative to that item, at least within the

constraints of the collection breadth and lifespan. Most actual TAD collections usually

do not have a fixed depth per item, rather they maintain an overall size, number of

records, or time limit, where excess records are periodically deleted from the log as an

explicit or background function. In this case the TAD collection is not considered to

have a meaningful depth characteristic.

The breadth of a TAD collection is important when the amount of data in a TAD

Collection is affected by system or application settings. System settings or defaults may

have a maximum size for actual and functional logs, causing the oldest data to be lost as

new data is written and the log size is over a set amount or over a certain age, such as

50MB or six months. Other implementations may stop recording new data once the log

hits a certain size. This is sometimes used in network devices to prevent new data from

pushing out early items, and as a security measure to prevent an attacker from flooding

the logs with activity after a system compromise and pushing out the initial attack. These

are configurable settings in many systems which may require an analysis of the source

48

item or configuration files to determine. Assembled TAD Collections do not have a

meaningful breadth characteristic.

Granularity, Precision, and Accuracy

For a TAD collection the granularity is a measure of how precise the stored time

values are. In this use case precision, which is the narrowness of the potential

observation or occurrence window, is distinct from accuracy.

The accuracy of a TAD is the offset between the true occurrence time and the

time that the system recorded as the time of the action or event. Accuracy in computer

forensics is commonly influenced by misconfigured internal clocks, errors in initial

system configuration, clock drift over time, or particular time zone settings on a source

device. Accuracy is usually consistent within a particular TAD collection, but in some

instances may change due to user actions or as a result of clock drift over a TAD

Collection with a very long lifespan.

Drifting clocks or an incorrectly set time zone can cause accuracy issues, which

can be corrected for using a source-derived offset when normalizing for analysis. A

common way to observe the current accuracy of a given system is to boot it into BIOS

and compare the internal clock to a known accurate source. Although this will not

confirm the accuracy of the clock at any particular point in the past it can still be a useful

reference point.

In some investigations the true accuracy of a source may never be known. The

relative accuracy of a system at a particular time can be observed from storage alone by

49

comparing a stored time with a closely associated event with an external time reference,

such as an email with headers from an external mail server.

The granularity of a data source is not always obvious when looking at the TAD

collection values. Sometimes it can be deduced by looking at the underlying source time

stamps and how they are stored, other times it can be discovered by reviewing reference

materials and standards. In some instances, it must be experimentally discovered by

setting up a comparable exemplar system and testing specific relevant actions and events.

FAT-16 Granularity Example

In the FAT-16 filesystem standard, there are different granularities for stored

TADs for different types of file activities (Carvey, 2009, pp. 300). Called date

resolution, they are:

• 2 seconds for last modified time

• 10 milliseconds for creation time

• 1 day for access time

Suppose a FAT-16 source partition has a file with a stored Modified time of

December 10th, 2007 at 6:16:02 p.m. It would not be uncommon for a forensic tool to

prompt the analyst for the BIOS time zone setting of the system (EST in this case) and

report the normalized time as December 10th, 2007 at 23:16:02.00 UTC. We are now

faced with a dilemma regarding how to record this value and combine it with other TAD

collections to perform activity analysis. Lacking any additional information from other

sources, we have no way of knowing if the file was last modified at exactly at 6:16:02.00

p.m. or as late as 6:16:03.99 p.m. One possible solution is to look for any relevant

50

primary metadata (data inside the file) as that granularity and precision is controlled by

the file type and the program that modified it, not the host file system implementation.

Importance of Accurate Precision and the Risk of False Precision

In many instances the granularity of records will be sufficient to answer relevant

investigative questions, but if more precision is necessary then additional analysis will be

needed before conclusions can be reached. Most forensic tools do not explicitly call out

the granularity of the underlying data source. Conversion from one recorded timestamp

to a normalized epoch time will typically pad the values with additional digits. In

traditional science the concept of precision is tracked using scientific notation and

significant figures (e.g. 6.02 x 1023) but there is not an equivalent notation currently in

computer forensics. Even if only part of the value is displayed for analyst review, the

entire overly precise value is stored in the analysis tool and used when records are sorted

by time or otherwise subject to computational processes.

Most modern operating systems implement time granularity as a floor function,

where additional digits of precision are truncated. Times manually recorded by humans

will often be rounded instead. This difference is worth keeping in mind if one or more of

your data sources is human-derived, such as a surveillance log or physical sign-in

sheet. A specific machine generated timestamp can be interpreted as “not earlier than the

minimum possible value and not as late as the start of the next possible value.” Low

granularity is commonly the result of an attempt by designers to save storage space, such

as in FAT16 filesystems, or by parsing output intended for human review rather than

machine consumption, such as a chat log.

51

Relative Ordering

In many instances, the granularity of TAD collections is sufficient to order

significant user events correctly. When the granularity causes the exact times of critical

TAD items to be uncertain, leveraging external sources can provide more precision.

Relative ordering is a technique that can be used when multiple TADs from the same

TAD collection have identical timestamps. Relative ordering allows you to infer the

order that different TADs actually occurred by their ordering in the file itself. This is

often seen in functional logs where the time granularity may be in minutes. Further

precision and specificity can be gained if some actions in the less granular TAD

collection can be correlated with items from other data sources with higher granularity.

These more precise external correlations can be used to narrow down the possible

occurrence window for other TADs with more precision than allowed by the initial TAD

collection analysis.

Analysis using relative ordering is typically only possible for actual or functional

logs. The item ordering in assembled logs is usually an artifact of their extraction and

compilation and not the actual recording order on the system being analyzed.

Relative Ordering Analysis Example

Suppose a chat log is stored as a text file where each message is prefaced by the

received time with a granularity of one minute. There is a sequence of ten messages that

are all logged as received at 8:33 UTC. Although each stored time stamp is identical, you

can determine the relative ordering based on positioning in the log. Suppose the fifth

message is “File 1234.txt received and saved to C:\Stuff”, which also has a timestamp of

52

8:33 UTC. Locating the specified file within the disk image, the investigator observes a

creation time of 8:33:34.5 UTC, stored on a FAT-32 partition which has 10ms granularity

for creation times. They can now conclude that the file was received at 8:33:34.5 UTC,

that the four prior messages in the log occurred between 8:33:00 and 8:33:34.5, and that

the five messages afterwards occurred between 8:33:34.5 and 8:34:00. In this example

we are discounting any delays for file transmission and waits for user interaction, such as

a confirmation message. In a situation where these small clock differences are critical to

reaching an analytic conclusion then an exemplar system could be configured to

determine the probable system behavior under different scenarios.

Analytic refinement using relative ordering and other logic-based techniques will

not always be possible or practicable to do for all items or in scale, but for critical

questions it can prove invaluable. Differences in granularity between different sources

and record types can also explain seemingly impossible actions, such as files being

modified on a drive before they appear to have been created or received.

Challenges for Complex Activity Analysis

A fundamental challenge for activity analysis is how to collate and present data

from multiple distinct TAD collections with different characteristics such as lifespan and

granularity. Historically most activity analysis and related tools commit the dual errors

of discarding useful information and introducing potentially erroneous information. Each

log file would be reviewed individually, or all possible time records would be extracted

and combined into a system- or investigation-wide SuperTimeline (Guðjónsson,

2010). This practice ignores limitations introduced by granularity by taking the event

53

times extracted by each tool and converting that precise value to the equivalent in the

time system being used for analysis.

TAD Collection Granularity can make analysis challenging if there is a large

potential window when critical events may have occurred and the TAD collection sources

lack sufficient granularity. For smaller amounts of data and limited spans of time,

spreadsheet-style analysis where each TAD collection source is a distinct column can be

used to deconflict differing granularity from different TAD collections.

In some instances critical events from TAD collections with low granularity

(imprecise times) can be properly interleaved within the events from TAD collections

with high granularity (precise times) through relative ordering, external data sources, or

other case specific analysis, but this is a manual process that is not possible in all

situations due to lack of necessary supporting data.

Using the established TAD taxonomy, investigators can make stronger

conclusions in their analysis by leveraging the characteristics and making inferences

about other data that may not be present. Previously TAD records were generally viewed

as individual events, or at best this inference was done on an ad-hoc basis.

54

Chapter Five – System States in Digital Forensics

This chapter first establishes a conceptual model for system states and activity. I

will then leverage that model to describe how user actions trigger changes in these states.

In later chapters I will utilize a subset of the model to perform differential activity

analysis on a series of linked images.

Although investigators often examine them in laboratory settings, computers do

not exist in a vacuum in Investigative Digital Forensics, nor are they stationary and

immutable. Computers exist in the real world and are acted upon by users, with both

known and unknown (or unforeseen) interactions.

For the purposes of this work I define a computer a single personal computer,

server, or other self-contained computing device, as well as all the components and

peripherals that are directly connected to it. Connections made over a network (either

wired or wireless) are made between two distinct computers. This seemingly simplistic

definition does not limit the capability to conduct advanced analysis.

Computer States and Complexity

A computer is a complex machine. Components of a computer include the central

processing unit (CPU), motherboard, memory, storage, input / output devices, display,

and other items. Conceptually a computer is also an electromechanical device that

consists of generally fixed logic and a diverse array of data storage capabilities, often

55

referred to as either memory or storage, depending on the underlying technology. Each

bit of data in memory or storage represents either a value of 1 or 0. The collection of all

these data bits plus the physical characteristics of a computer represents the state of the

computer at any given point in time.

A computer also is a deterministic device, meaning that performing an identical

action on a computer in the same state will produce in the same results. Getting a real-

world computer into a completely identical state in multiple distinct instances is non-

trivial. Most actions do not interact with all the components of a computer. Two distinct

computer states are said to be equivalent with respect a particular action or activity if the

result of that action is the same, including any relevant state changes. Outside of digital

forensics and testing, this is commonly used when troubleshooting system and software

errors.

This work will not attempt to capture or model human actions or states directly

but will consider how their actions change the computers they interact with.

Data States in Computers

The rough sizes and orders of magnitude of data capacities on a modern computer

are shown in the following table.

56

Table 7

Rough Order of Magnitude of Data in Modern Computers

Component Typical Data Capacity

CPU Registers Bytes (8 bits per byte)

CPU Cache Kilobytes (103) to Megabytes (106)

Device Buffers Bytes to Megabytes (106)

Video Memory Megabytes (106) to Gigabytes (109)

System Memory Gigabytes (109)

Solid State Storage Gigabytes (109) to Terabytes (1012)

Hard Drives Terabytes (1012)

Removable Media Kilobytes (103) to Terabytes (1012)

In addition to the locations listed above, there is also data capacity in system

boards and add-in cards to hold BIOS, card logic, and to act as buffers. These typically

require specialized tools and knowledge to access, and do not factor into most IDF

examinations. If an investigator suspects that it may contain relevant information, then

this storage can be extracted and included with the rest of the computer data. Garfinkel

(2010) identifies these components as an ongoing challenge to forensics as “the persistent

memory inside GPUs, RAID controllers, network interfaces … is routinely ignored

during forensic investigations.”

The data state of a computer is the collection of all data within the computer at a

particular point in time. The data state is subdivided into the memory state and the

57

storage state. The memory state is made up of all the volatile data from the computer,

typically memory, cache, buffers, registers, and the like. The data state is made up of all

the persistent (or non-volatile) data.

Volatility as a Function of Storage Medium

Data in memory and memory-type locations is generally fast to access but

contains less data capacity than storage. Most memory is volatile in that it retains its

contents only as long as system power is maintained. Once power is interrupted the data

contained in volatile storage degrades relatively quickly cannot be reliably recovered

using traditional forensic techniques.

Storage is slower to access than memory, but has the advantage of persisting

across reboots. Programs and data are generally loaded from storage into memory to be

executed, displayed, or manipulated, and changes are saved back onto the storage.

Storage and storage-type locations include hard drives, removable media, and various

types of solid-state storage.

Removable media can be treated either as a component of a computer, or as its

own separate computer system, at the discretion of the investigator. Connected but

removable storage should generally be considered part of the system storage along with

internal storage unless there is a compelling reason to treat it as distinct computer system

connected across a system boundary. As a rule of thumb if there is any indication the

media was connected to multiple systems then it should be logically handled as an

independent system used for transferring data between two or more other systems for the

purpose of activity analysis.

58

There are some technologies that offer memory-like speeds while also being non-

volatile. If data can be recovered from these devices it can be treated as storage and

analyzed, regardless of the underlying technology.

Physical and Data States

The physical state of the computer system is the combination of the all the

physical components and the physical characteristics. The physical characteristics of a

computer, such as the lifespan of capacitors on the motherboard and power supply, may

cause a computer to behave differently at different times even under an identical data

state. Capacitors that are near the end of their usable lifespan could cause a computer to

malfunction under heavy load where a new computer in an identical or equivalent data

state would function properly.

As described earlier, the collection of all discrete data storage inside a computer is

the data state. In many instances adding a device to a computer will change both the

physical and data state, as devices may have some amount of data storage capability.

Newly connected devices will often be detected by the operating system, which will also

trigger changes to configuration files and related items.

Equivalent States Example

 As a child I had access to an IBM PC/XT desktop computer. There was a

shareware program installed that was configured to automatically run on boot which

asked for a “randomly generated” three digit code before proceeding. When booting the

system from a cold state (completely powered off) the random number was always the

same. When performing a warm reboot, which is restarting a system after it had already

59

been powered on without interrupting power, I observed that the number asked for

seemed random. As best as I could determine, this difference in behavior was caused by

the lack of an onboard battery to store the current date and time when the system was

powered down. When the computer was initially powered on, the system clock assumed

the default time of midnight on January 1st, 1980 and began counting forward. When the

shareware program executed, it used the value of the onboard clock as entropy to

generate a random number. Since the initial state of the onboard clock was always the

same after a cold boot, the algorithm produced the same number each time. Moving that

particular piece of software to a different order in the startup batch file would cause it to

generate a different (but still repeatable) random number, as a different amount of time

had elapsed since the clock had started.

This example demonstrates the difficulty of getting a computer into an equivalent

state, even on a comparatively simple computer by modern standards. These states are

equivalent rather than identical because many items had changed, such as the data

contained on the onboard storage. The two data states were functionally equivalent from

the perspective of the piece of shareware, because it only looked at the value of the

system clock. Changing the order of startup programs caused the time of execution to

shift enough to produce a different generated random number.

The complexity of computer states is why a common and often successful

computer troubleshooting step is to “clear the Internet cache, delete temporary files, and

restart the system”. This has the effect of eliminating many variables caused by previous

60

user activities. Powering off a router or similar electronic device for 30 seconds will

allow onboard capacitors to discharge and clear any volatile storage.

Availability of Previous Computer States in Digital Forensics

In IDF investigators typically have access to a collected disk image, which is a

portion of the data state of a computer from one point in time. The physical connections

and condition of components may be directly observed or it may be inferred by analyzing

the contents of the collected data. Depending on the specific computing environment

there may also be system backups and relevant logs from other systems available.

Although the state of RAM, running programs, user displays, IO, and connected

devices could be relevant to an investigation, they are usually not readily available in

IDF. Most analysis is performed on a forensic image of a subject computer. An

investigator may also have access to the physical computer itself to inspect, or at least

photographs depicting how it was found and collected. Even if the physical and data

state is meticulously documented during acquisition, with RAM captured, all open

windows and running programs documented, and so on, that information may be of little

value to answering many important investigative questions. In most instances the activity

that is most relevant and led to the investigative interest in the system took place days,

weeks, or even months prior. The computer’s memory, storage, and configuration will

have changed over that intervening time. As discussed earlier, this data did not

spontaneously degrade or decay. Instead it was changed by user actions.

Some files on a system contain information that describes a previous state of that

system. On a modern Windows system this may include system restore points, volume

61

shadow copies, temporary files, hibernation files, memory swap files, and web history,

among others. All of these items exist in the current data state of the system while also

providing information about a prior state from some point in the past. Windows crash

dumps are also a way for a prior memory state to exist on the collected storage state

(Carvey, 2009, pp. 114). It is up to the investigative team to determine based on their

particular needs whether or not to pull out these items and analyze them as part of a

distinct past state separate from the final collected state.

Contrast this with a routine intrusion response incident where in-house or

contracted security personnel are responding to a potentially compromised machine on

the corporate network. Malicious software may still be resident in memory. Logs

containing critical information are still present on the computer, not overwritten by

months of additional activity. RAM can be captured, and in many situations a full

forensic image of the storage is neither necessary nor practical. Instead a subset of files

and metadata is extracted for further analysis. Data from the corporate router, firewall,

and other security devices can be correlated with data extracted from the compromised

machine.

Laboratory-based malware analysis provides for an even more controlled scenario

(Carvey, 2009, pp. 366-369). A cloned virtual machine in a controlled environment is

isolated from the host system and virtually powered on. Any external connections are

simulated or carefully controlled. Tools running on the virtual machine monitor for any

changes to files, registry settings, external connections, and so on. The virtual machine

itself can be suspended and any point, cloned, or reverted back to its initial data

62

state. The memory and storage can be accessed and extracted via the host system without

interacting with the virtual machine running the malware. The system clock can even be

manipulated.

In IDF the memory images, storage state, and configuration from particular states

in the past would undoubtedly be interesting, useful, and relevant. The circumstances of

investigative data acquisition make it unlikely that the computer will be found in the most

relevant data state. Instead previous storage states can be inferred by analyzing files,

logs, and metadata. Even if not collected directly, portions of the memory state can be

inferred by analyzing swap space and temporary files as they are stored on the disk and

may persist long after the memory has been overwritten.

63

Chapter Six – Activity Model for a Computer System

Definition and Boundaries

Creating a conceptual model for a complex system is useful for analytic purposes,

as abstracting away some of the complexity allows us to focus on the more relevant

aspects. I define a user-computer system herein for the purposes of activity analysis as

the combination of a computer (defined previously) and a particular user interacting with

the system. I define the system boundary as encompassing the user and computer,

including all its subcomponents (Neelamkavil, 1994, p. 30).

Figure 2

User-Computer System Model with Components

64

The systems environment includes all things outside the particular user-computer

system that may interact with or otherwise be affected by the it. Any interactions with

other computer systems, such as a mail server, router, and so on, occur within the overall

systems environment. These other computer systems will have their own system

boundary.

Not explicitly depicted in this diagram is the software that is running on this

hardware. Software runs on the hardware, processing data and interacting with the user,

system components, and other systems. These interactions are what changes the state of

each component. The software can be thought of as a virtual or logical layer above the

physical. The OSI reference model for protocol architectures depicts the software

applications operating above the physical layers. Although this model was intended for

network communications, it can be conceptually extended to communication within the

directly attached system components as well.

Table 8

Rough Equivalents between OSI Model and Computer Activity Abstraction

OSI Model Computer System

Host

Layers

7 Application
Application

6 Presentation

5 Session
Operating System

4 Transport

Media

Layers

3 Network IO / System Bus

2 Data Link Memory

1 Physical CPU

65

Abstraction of the User-Computer System Model for IDF Analysis

In this model I am going to focus on two specific areas that are particularly

relevant in investigative digital forensics, user actions and storage contents. I will also

only include computer system components that have storage which can be reasonably and

reliably collected in the Investigative Digital Forensics context. As described earlier, this

collected data makes up the storage state of the system at a particular time.

The memory state and other excluded items are still part of the computer system,

but rather than attempt to analyze them directly I will look for their interactions with

other components that we can more readily observe such as storage. This model is a

simplified representation, but it is still useful to aid further analysis (Neelamkavil, 1994,

p. 30). Rather than use the model to simulate the system, I will instead use it to abstract

away many components to focus on ones that are both available and pertinent.

Data Degradation in TAD Collections

User actions often create records that provide an investigator with a wealth of

historic and relevant information. After the initial record creation, subsequent system

activities and user actions can also modify, overwrite, or completely erase these records

of past actions.

Imagine a person walking along a beach, which leaves footprints in the sand.

Beach activity, tides, time of day, and other factors will affect how clearly these

footprints are recorded in the sand and how long they will remain on their initial

condition. These steps may make fresh impressions that clearly stand out against the

smooth sand of a receding tide, like TAD records written to the mostly empty hard drive

66

from a fresh operating system installation. They may be mixed in among the existing

footprints of hundreds of beachgoers on dry sand, like TAD records on a system shared

by multiple users and running for years. Even footprints that are initially clear and easy

to identify will become degraded over time due to wind, waves, and the actions of other

beachgoers. A skilled tracker or naturalist with training, experience, and a bit of luck will

still be able to identify particular tracks, age them, tell human from animal, and so on,

although likely with less confidence as more time passes and the tracks continue to

degrade.

Before moving on from this analogy, keep in mind that any individual TAD

record does not degrade over time in the same sense as a footprint. A specific piece of

data is either present on the computer system, or it is not. Fortunately, an individual user

action typically causes multiple changes to the state of a computer system. The user may

not have intended to cause multiple changes or even been aware of them, but most

actions will cause a cascade of changes through different components of a computer

system, some of which will result in changes to the data state. Changes from a single

action are likely to be spread out across many different TAD collections. Records in

different TAD collections with different characteristics (described in chapter four) will be

affected differently as activities continue on the system. This may result in some records

of an activity persisting even after additional actions occur on the system and other

records have been overwritten. To circle back to the beach analogy, some of the

footprints may still be visible after a period of time, allowing you to infer the path of the

tracks.

67

User Actions Trigger an Activity Cascade

An activity cascade describes the observation that on a modern computer system,

a single user action will tend to trigger multiple changes to the state of that system. A

single user action will cause actions and state changes to cascade through the system they

interacted with, and often other connected systems. These effects may be separated by

both time and distance, but are all caused by the initial user action.

All activity on a computer has a human-initiated root cause. Examples of this

include but are not limited to:

• A program installer executing because a user double clicked on the corresponding

icon in the user interface.

• A program executing automatically as a scheduled task that was configured when

the user initially installed it (e.g. scheduled to run by default, like an automatic

daily virus scan).

• Operating system updates downloading and automatically installing at a pre-

determined time, including system reboots.

• A user copies a file to a shared folder on a file server.

• A hostile user on a remote computer connects to a computer system, triggering

remote code execution due to an unpatched operating system vulnerability, which

downloads and installs a malicious payload without further user interaction.

• A hacker exploits a vulnerability to remotely deliver and execute their malware

payload on a target computer system.

68

Automatic system updates may not initially appear to be triggered by a user, but consider

that users configure their preferences and thus are responsible for causing the action to

happen. Even if a user installs the operating system and leaves all settings at their default

value, the user caused those settings to be in place by installing the software, even if it

was only done passively. The purpose of identifying this causal relationship is not to

necessarily assign blame or responsibility; rather it is to reinforce that computers do not

spontaneously perform activities on their own, even if the user that caused it is far

removed from the eventual action. The user who initiates the activity does not

necessarily have to be the owner or authorized user of the computer, as shown by the file

server and malware examples above, respectively.

Another way to conceptualize user-based causality on a computer system is

through the plain English construction “but for this specific user action, that particular

activity on the computer would not have happened”. An activity cascade typically affects

multiple components and sometimes multiple systems, causing changes to their

respective data states. If some records are missing due to intentional destruction,

overwritten by new data from further use, or the complete loss of the system, some of the

missing records and corresponding user activity can often be inferred from the data that is

available.

Example Activity Cascade on a Simple System

Consider an extremely simple computing device, a feature phone. A feature

phone is a cellular phone that is not a smart phone. It does not run applications the way a

smart phone does, rather it has a simple embedded operating system that is capable of

69

making phone calls and sending SMS messages but not much more. A feature phone has

many characteristics and components in common with a computer system as we

described earlier, namely: a CPU, memory, network connectivity (cellular), a display, and

a keypad.

Consider the following cascade of actions and state changes that occur when a

person powers on their feature phone and makes a phone call.

Table 9

Example Activity Cascade on a Feature Cellular Phone

User Action Phone Action(s) Data State Changes

User powers on phone,
waits for signal.

Bootstrap process reads
storage and boots.

Phone stores boot log

User waits
Phone searches for cell

tower, connects to network
Phone updates internal time

from cell network

User waits
Phone identifies itself to cell

network, registers with carrier
Cell company logs phone

location via tower

User waits
Phone receives stored SMS
from cell network, displays to

user.

Phone records SMS in
storage. Cell company logs

SMS as delivered.

User dials phone
number

Phone communicates with
cell tower

Call attempt logged by cell
provider

Receiving user

answers call
Voice call begins

Call logged by calling phone,
receiving phone and receiving

provider

70

Even if a user deletes the logs on their phone, overwrites the records with new

activity, or destroys it beyond recovery, records of the actions may persist on other

systems that the calling phone interacted with. In this example that would be the

receiving phone and at least one cellular service provider.

In this example many of the user’s actions can be inferred solely from data stored

with the cell provider, without analyzing the phone itself. This data does need to be

recovered in a timely manner, as third parties cannot be expected to store data

indefinitely. Although a feature phone is itself a relatively simple computer system, it

still has extensive interactions with other systems when performing its core functionality.

Example Activity Cascade on a Single Computer

Desktop computers are more complex devices than feature phones, therefore more

significant internal state changes can be expected as a result of user actions. On a typical

home computer, changes from a single user action quickly cascade throughout the data

state of the system, across memory and storage, including multiple files and TAD

collections. The table below describes an example activity cascade that occurs when a

user double clicks an icon on their desktop to execute a program. In this example all of

the activities are performed in the background by the computer after the user has

triggered the initial action.

71

Table 10

Example Activity Cascade from Program Execution on a Desktop Computer

Computer Action(s) Data State Changes

Operating system (OS) reads
program into memory

Memory state updated, old data overwritten.

Filesystem updates from read
action

Last accessed time on program file updated

OS reads prefetch, reads
additional data into memory

Prefetch file read from disk, updated or created;
Data blocks read into memory

OS executes program in
memory

Program reads configuration files from disk into
memory

Program displays splash
screen to user

Video memory updated with graphics, program
continues reading files into memory

Program completes loading,
waits for user input

Operating system and program continues to
execute background tasks

Temporal Separation Between Action and Change

It is possible for a user to cause an action to occur at some future time even

without directly interacting with the system at that time. This could be achieved by

explicitly configuring a scheduled task to occur at some future date. It is also possible for

these future unattended actions to occur indirectly. A user could install a program with

some particular default behavior specified by the developer which will trigger future

actions without further user interaction. Some older versions of Microsoft Windows

were pre-configured run a disk defragmentation process every 1 a.m. each Wednesday by

default, as shown in the following figure.

72

Figure 3

Preconfigured Disk Defragmentation in Windows 7

This defragmentation process can cause significant changes to the storage state of

the system. The placement of data blocks on the defragmented storage will change,

although the underlying logical file content remains the same. Defragmentation on some

operating systems can also update the last accessed MAC time for each file, overwriting

the prior value. Although the user may not have specifically configured this process

themselves, they still caused it to occur as a result of their action of installing the

73

software. The state changes that now occur to the storage every Wednesday at 1 a.m. is

attributable to the action of the user. Automated backup programs and virus scans can

also cause widespread system changes, depending on the operating system configuration

and specific implementation.

Intent or awareness that the user caused the change is not required. Critical

investigative information is often obtained from system artifacts that the user was

unaware that they created through their actions and corresponding activity cascades.

Activity cascade across multiple systems

A single user action can also set off activity cascades across multiple computers

with a single action. Consider a user Alice that composes and sends an email to Bob

using client software on their workstations, described in the table below.

74

Table 11

Example Activity Cascade Involving Multiple Systems

User Action System Action and Data State Changes

Alice composes an email on
her computer

Alice’s mail client is run, updating prefetch and access
times for files. Email saved in ‘draft’ folder within client

Alice addresses draft email to
Bob and sends it

Mail client copies email to outbox folder, deletes draft

 Mail client contacts configured mail server, passes
credentials and sends message to server

Mail client moves email from outbox to sent folder,

updates time stamps

Mail server parses email, adds headers, determines

destination mail server, and sends email

Destination mail server receives email, adds headers,

copies email to destination client mailbox

Bob opens email client on his
computer

Mail client is run, updating prefetch and accesses

Bob’s mail client contacts configured mail server,

passes credentials and receives message from server

Bob’s mail client copies message to inbox folder,

displays “new mail” notification

Bob opens new mail in his
email client

Bob’s mail client displays message on screen, marks
email as read.

In this instance the action of Alice sending the email triggered the activity cascade

across multiple computer systems even though the direct changes she made were only to

her system. It is worth noting that although Alice caused this specific activity cascade,

many other people contributed to the effects. A system administrator in Alice’s IT

department installed and configured their mail server to work properly. Bob’s IT

75

department did the same. Bob provided his credentials to log into his email so that the

message could be retrieved from the server and delivered onto his workstation.

76

Chapter Seven - Activity Cascades and Data States

As discussed previously, a computer in state n is composed of corresponding

physicaln and datan states. The datan state is composed of the corresponding states

memoryn and storagen. For most of this work I will focus on the storage portion and infer

the other portions as necessary.

In IDF, investigators usually only have the most recent storage state available for

analysis. At the most basic level the storage state consists of all the data from all the

persistent storage in the computer system, represented as a series of binary streams, one

from each data source. For both convenient handling and to preserve data integrity, this

data is usually acquired and handled as a raw bitstream such as DD or RAW, or placed

into a containerized format such as E01 or AFF. The data is also sometimes acquired as a

collection of logical files instead, owing to technical, logistical, or legal limitations.

Numerous forensic tools can take these raw bitstreams and parse them, interpret

the partitions and filesystems into files and other artifacts, extract metadata, create text

indexes, hash files, algorithmically recover file fragments from free space, and so on.

Alternately, if logical files or a subset of files are collected directly from the system they

can be analyzed or reviewed directly. Care must be taken to ensure that the collected

files are not inadvertently modified during the analysis process. A subset of these

77

extracted items is the time-activity data corpus (defined in chapter four) which consists of

all the extracted time-activity data collections.

Suppose Alice sends a threatening email to a government official. Prior to this

action her computer was in state0. The activity cascade from her action “sending a

threatening email” causes her computer to change from state0 to state1. At some later

time, the computer is seized and forensically imaged, which is the last state where Alice’s

actions could have affected it, statecollected. The next section will examine what this means

from an IDF and activity analysis perspective.

The analysis in this work will focus primarily on the TAD corpus contained

within each storage state. It is beyond the scope of IDF to analyze the user’s actual state

pre-and post-action. Instead the focus is on the storage post-action to see what can be

inferred about the pre-action storage state as well as the particular user actions which

caused that transition.

Occasionally changes to the physical state of a system will come up during this

work, but the analysis will focus primarily on the data state subcomponents. A physical

state change could the result of adding or removing a component, such as an add-in card,

inserting removable media, or connecting a peripheral. A physical change could also be

as simple as powering on the computer or turning it off. Physical state changes can often

be inferred from effects captured within the data state.

Component State Changes Caused by User Actions

 Let there be a user|computer system in state n, depicted as computern. Computern

consists of components CPUn, RAMn, HDDn (hard disk drive), and so on. The user

78

performs an action on computern which transforms it into computern+1 as shown in

equation (1).

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑛 → (𝑈𝑠𝑒𝑟 𝐴𝑐𝑡𝑖𝑜𝑛) → 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑛+1 (1)

Alternately a time interval passes, with one or more user actions potentially taking place

as shown in equation 2.

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑛 → (𝑇𝑖𝑚𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) → 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝑛+1 (2)

Computern+1 consists of physical components CPUn+1, RAMn+1, Hard Driven+1,

and so on. In a particular computer system RAMn could consist of 16 Gigabytes of data

reflecting the contents at 12:01am and RAMn+1 could be the content of the same 16

gigabytes of memory at 1:01am the same day, with a one-hour time interval between n

and n+1. Rather than continuing to specify each distinct component of the computer in

this decomposition, they will be logically combined into the data state. The data state is

then subdivided into the memory state and the storage state. When describing the data

state of a system or subcomponent of that system it is actually the data stored within that

is being discussed. The physical characteristics of that subcomponent are part of the

physical state.

Definitions and Decomposition

The following definitions and labels will be used for the system activity model

decomposition and analysis:

• Given a user-computer system Y

• Y consists of computer C and user U

79

• U may perform actions on C

• C consists of a physical state P and a data state D

• D consists of a memory state M and a storage state S

• Subscripts are used for C, P, D, M, and S to indicate a specific instance of a state

When decomposing components from a particular state, the sub-components retain the

state designation subscript from the main item. D1 consists of M1 and S1, and so on.

Mechanism of State Changes

 There are two ways of describing the mechanism through which the Cn state

becomes Cn+1: action change and temporal change. The amount of time that elapses

between Cn and Cn+1 is called the time interval.

 An action change occurs when a user U interacts with a computer C in the same

user|computer system Y and causes the state to change from Cpre to Cpost. There is no

fixed time interval for action changes, merely the requirement that all actions in the

cascade complete prior to entering the new state. The user’s interaction may cause one or

more actions (or activity cascades), but an action change requires some interaction on the

part of the user. The technique of analyzing action changes to computer states is

commonly used in debugging, system troubleshooting, malware analysis, and related

activities, although it is not described using the same terms used here.

 A temporal change occurs when a period of time passes on a computer C that was

previously in an identified state n. After that period of time Cn is said to be in a new state

Cn+1. It is not necessary for any user actions to have occurred during this interval. Even

if no changes were made to the physical or data states of a system during the time, they

80

are still designated as two distinct states. As a result, it is possible for the contents of Dn

and Dn+1 to be identical.

An adjacent state is the state that immediately proceeds or follows a particular

state, with no intervening state. Although integers are often used for simplicity to

indicate adjacent states, descriptive terms such as Sinitial and Scollected can also be used as

long as their meaning and order are well documented. When analyzing action changes

the two states can be thought of as the pre-action state and post-action state, or Cpre and

Cpost, as depicted in equation 3.

𝐶𝑝𝑟𝑒 → (𝑈𝑠𝑒𝑟 𝐴𝑐𝑡𝑖𝑜𝑛) → 𝐶𝑝𝑜𝑠𝑡 (3)

Theoretically, there are a nearly infinite number of intermediate states that can be

located between any two states, down to the granularity of CPU clock cycles. In practice,

there is no issue in choosing any arbitrary interval that works with the available data.

The intervals do not need to be regular; the only requirement is that they are ordered in

strictly increasing sequence according to time.

The granularity of the intervals in temporal changes will be a function of the

storage states available for analysis or the experimenter’s ability to capture those states.

In practice this will depend on the ability to collect the data, either based on the inherent

characteristics of the system under analysis or the design of the experiment. The ordering

and adjacency of the available individual states should be readily apparent. In some

circumstances this may require a review of the contents of the states if the collection

process was not sufficiently well documented.

81

Connected States and TAD Records

As mentioned earlier this work will focus on components where the contents are

both available and relevant. In IDF this is most commonly the storage subcomponent.

Sinitial is the data contained on the storage components of a system in its initial state.

Scollected is the data contained on the storage components of a system when it is collected.

The designation of “initial” may seem arbitrary in some cases, but it can be thought of as

“the state prior to any user actions that are interesting or which may affect the

investigation”. Initial may be the earliest available state, or it may be a notional

placeholder for a state prior to all the available data.

Collected in most instances is when storage is forensically imaged by

appropriately trained personnel, or otherwise collected by the investigator. Working

backwards from Scollected, a series of prior states can be constructed connecting back to the

initial state of the storage. This is shown in equation 4.

𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⟶ 𝑆1 ⟶ ⋯ ⟶ 𝑆𝑛 ⟶ ⋯ ⟶ 𝑆𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑−1 ⟶ 𝑆𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 (4)

SCollected represents the all the binary data on the storage capable components in

the computer system at the time it was collected by the investigator. It is well understood

that “file systems evolve significantly with use” (Woods et al., 2011) and this a more

explicit and granular depiction of that effect.

To perform activity analysis the TAD records contained within the storage are

then extracted, analyzed, and reviewed using various tools. A set of TAD records is

considered “stored” on a device or component when that the data is present in the storage

82

component and can be extracted for analysis using one or more appropriate tools and

techniques.

Let T be the collection of TAD records that are stored on or can otherwise be

extracted from storage S. Tn is the collection of TAD records from Sn. Tinitial is

transformed into TCollected by a series of user actions and / or time intervals and through

intermediate states, shown in equation 5.

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⟶ 𝑇1 ⟶ ⋯ ⟶ 𝑇𝑛 ⟶ ⋯ ⟶ 𝑇𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑−1 ⟶ 𝑇𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 (5)

It is worth nothing that although Tn represents the collection of TAD records

extracted from Sn, it is possible for changes to be made to Sn (transforming it into Sn+1)

that do not directly change the TAD records Tn+1. TAD records consist of data extracted

and parsed from metadata and logs, so if a change is made to file or disk contents without

changing any metadata or TAD records on the entire system then the TAD records in the

Tn+1 state will be the same as the prior Tn state.

TAD records consist of extracted and parsed metadata, as well as data contained

in logs and other similar sources. If a change is made to a file’s contents without

changing any TAD records on the storage, then the TAD records in the new state will be

unchanged. This is unlikely in most typical user interactions with a system, but it is

technically possible, and does get more likely as the time interval (or amount of user

actions) between Sn and Sn+1 decreases.

83

Analysis of Sequential Collections

 Returning to the storage component, suppose there are two adjacent storage states

Sn and Sn+1, separated by a temporal interval. When Sn and Sn+1 are compared in their

entirety, only two results are possible:

• Sn = Sn+1

• Sn ≠ Sn+1

If two states are identical then all decomposable components (memory, storage,

etc.) from that state are also identical. The reverse is not necessarily true, as it is possible

for one component to be identical between states while other components are different.

It may seem initially simplistic, but it is important to deconstruct this. If Sn and Sn+1

are identical, then either no changes were made to the storage during the temporal

interval, or changes were made that we then changed back to their original value during

the temporal interval. Although it is possible to change storage contents without

affecting TAD records, it is not possible to change TAD records without also changing

storage contents, as long as those records are contained within the storage component.

If Sn and Sn+1 are different, then all possible cases can be enumerated. Since multiple

actions and changes can occur during a particular temporal interval these cases are non-

exclusive, i.e. one or many of these may have happened if changes are detected between

the two adjacent states:

• new time records were added during the interval between Sn and Sn+1

• existing records in Sn were removed during the interval between Sn and Sn+1

• the storage contents were changed in a way that did not affect time records

84

At least one of these cases must be true if there are differences between two adjacent

states Sn and Sn+1. It is also possible for multiple cases to be true. Data could be changed

that created new time records, while also changing unrelated data that did not affect the

time records. The storage state is represented as a fixed length string of binary 1s and 0s.

Data is not added to or deleted from the storage state, rather some of the 1s were changed

to 0s and vice versa as TAD records are added or removed. The binary data stream is

changed so that some TAD records are no longer retrievable or new records are found. A

record is considered to have been “removed” from a set if the data that represented that

record is no longer present or able to be parsed from the data.

When collecting data states sequentially, such as in an application

characterization experiment, it is important to ensure that the collection method itself

does not introduce changes to the data. If this is not practicable then those changes must

be identified and not incorrectly attributed to the user or to the activity under analysis.

Care must also be taken to ensure that similar logic errors are not introduced during the

analysis portion of the investigation.

When comparing two records from separate TAD collections it is essential to only

compare primary metadata, which is metadata that is contained within the item being

investigated. Descriptors such as date collected or image file name are secondary

metadata which are applied as part of the acquisition and analysis and would cause

otherwise identical records or states to be incorrectly flagged as “different” if they are

considered as part of the comparison. This could occur if the “data source container” is

85

part of the normalized TAD data record as shown in chapter three and included in the

fields being compared.

 TAD States and Records

 A TAD state, Tn, is the collection of TAD records that can be extracted and parsed

from the corresponding storage state Sn. Tn and Tn+1 are the adjacent TAD states from Sn

and Sn+1, respectively.

 Consider two adjacent TAD states, Tn and Tn+1. For each record in either Tn and

Tn+1 one and only one of the following conditions is true:

• the record is present in both Tn and Tn+1 (unchanged)

• the record is present in Tn+1 but not in Tn (new)

• the record is present in Tn but not in Tn+1 (missing)

These three subsets completely describe the interaction between Tn and Tn+1. To refer to

these specific subsets later we will designate them as Unchangedn,n+1, Newn,n+1, and

Missingn,n+1.

86

Figure 4

Diagram of Subsets when Tn and Tn+1 Interact

It has been previously established that only user actions can change the state of

the storage component. Unless both the Missing n,n+1 and New n,n+1 sets are empty, user

actions must have occurred or resolved in the temporal interval between Sn and Sn+1. The

inverse is not necessarily true; even if Tn and Tn+1 have identical sets of records it is

possible for an action to occur that did not change any records, or for an action to have

created new records and then a subsequent action deleted those new records before the

collection of the Tn+1 state could occur.

It is possible in practice for an action to be initially triggered in an earlier time

interval than the one where the causal changes are made to the storage and TAD states.

87

This can happen if states are captured while actions are still occurring, or if there is a

significant delay between when an action is triggered and when it resolves. This can be

handled by assessing the action to have occurred when the activity cascade resolved,

rather than at the moment the user performed the triggering action. In practice this serves

as a reminder to carefully assess all available data before drawing conclusions about the

actual incidence time for user activities. This also means that a single user action can

cause changes across multiple future states as the activity cascade continues to resolve.

Decomposing TAD States into Subsets

 Suppose a researcher has three sequential storage states, S1, S2, and S3. Each was

collected from a single computer as part of a forensic experiment at the end of the first,

second, and third days, respectively. During each temporal interval a student assistant

performed a series of actions on the computer according to an assigned script from the

lead researcher. At the end of each day the computer was shut down and forensically

imaged. The disk images were processed and three sequential TAD states were extracted

for analysis, T1, T2, and T3.

 Beginning with T1, each TAD state is decomposed into three subsets by

comparing the record in that state (T1) with the records in the next adjacent state (T2).

This subdivides the records into distinct sets as unchanged, new, or missing for each

comparison of adjacent states. After comparing T1 and T2, the same comparison is

performed between T2 and T3. Referring back to the Venn diagram and the three subsets,

the three adjacent states are decomposed as shown in the table below.

88

Table 12

Decomposition of TAD states into shared subsets

 Contribution from TAD State

Subset Type T1 T2 T3

Base Set T1 T1 T2

New Set n/a New12 New23

Missing Set n/a Missing12 Missing23

Each successive TAD collection contains the records that are unchanged from the

prior collection, adding the records that were newly created during the interval, and

removing the records that were missing when compared to the prior set. The first state

(T1) contains all the records from the initial configuration of the computer prior to the

experiment, plus any records created during the first day, minus any records from the

initial configuration that are missing due to activity on the first day. Without information

from a prior state T1 cannot be decomposed any further.

When T2 is decomposed with respect to T1, the three subsets are the unchanged

records from T1 plus the new records from T2 that are not in T1 (New12), and subtracting

records that are present in T1 that are not found in T2 (Missing12). Continuing this

decomposition into T3 and beyond reveals a method to represent any future TAD state as

a combination of the earliest available state and all of the changes that took place during

each temporal interval. The T2 base component of T3 can now be further decomposed,

89

showing that T3 can be represented as T1 with the New12, New23, Missing12, and

Missing23 sets representing the changes that happened during each temporal interval.

If an existing TAD record is modified by user actions, it would be considered

both “deleted” as the prior record is missing and “created” as a new distinct record exists.

Changes to a particular file’s metadata could be the result of editing the file during the

interval, or the prior file could have been deleted and a new file with the same name

could have been created and stored in the same location. A modified item cannot be

positively identified solely through set analysis, rather it requires further content analysis

and inference.

Order of Operations when Combining TAD Sets

 The previous example demonstrates that a large number of subsets are identified

from the decomposition of just a few adjacent TAD state comparisons. In a slight

departure from basic set operations, the Missingn,n+1 sets can be thought of as a negative

set in that it is removed from the previous set. In traditional set theory that is

accomplished by the intersection of the complement of the set, but with multiple sets

being removed it quickly gets messy and awkward. Fortunately for the field of IDF,

these comparisons are fairly straight forward to execute using modern database software

as demonstrated in chapter eight. The next example populates these sets with example

records and repeats the previous decomposition to validate the logic and identify any

pitfalls regarding the order of operations If the set operations are not ordered properly

there may be spurious records included in the sets after decomposition that should not be

present or elements excluded where they should not be.

90

The previous decomposition of T3 offers several possible orders of operations

when the re-composed later states are generated from the first state and the new and

missing subsets. Consider the following example of adjacent TAD states which contain

the following elements (TAD records):

• T1 contains elements A,B,C, and D

• T2 contains elements A,B,E, and F

• T3 contains elements A,C,E, and G

The adjacent state decomposition logic yields:

• T2 is composed of T1 + New12 – Missing12

• T3 is composed of T2 + New23 – Missing23

The full expansion of T3 yields:

• T3 is composed of T1 + New12 – Missing12 + New23 – Missing23

Directly performing adjacency comparisons between T1, T2, and T3 shows that:

• New12 contains elements E and F

• New23 contains elements C and G

• Missing12 contains elements C and D

• Missing23 contains elements B and F

Decomposing T3 and appending the contents of each subset yields equation 6.

T3 = T1(ABCD) + New12(EF) + New23(CG) - Missing12(CD) – Missing23(BF) (6)

The order of operations becomes very important, as element C is part of T1,

New23, and Missing23. Element F is part of New12 and Missing23. Normally addition and

subtraction are transitive but they behave somewhat differently in set theory. To identify

91

the proper application, we will enumerate several related sets and observe the results of

follow four different ordering options:

1. Additions first, lowest to highest by set number

2. Subtractions first, lowest to highest by set number

3. Addition then subtraction by paired set number, from lowest to highest

4. Subtraction then addition by paired set number, from lowest to highest

When the sets from the example are combined according to the different ordering options

to generate T3 from the decomposed sets, the problem becomes obvious:

1. Performing addition first yields T3 = A, E, G.

2. Performing subtraction first yields T3 = A, C, E, F, G.

3. Addition first by temporal pairs yields T3 = A, C, E, G.

4. Subtraction first by temporal pairs yields T3 = A, C, E, G.

Note that options 3 and 4 yield the correct result for T3. Option 1 is missing records, and

option 2 has extra records that should not be included. This shows that addition and

subtraction of sets are transitive in this case, provided we process them in pairs from

oldest to newest. Written in the order to be executed from left to right, the correct

equation to reconstruct or deconstruct T3 is shown in equation 7.

T3 = T1 + New12 - Missing12 + New23 – Missing23 (7)

Any particular Newn,n+1 can be exchanged in execution order with the corresponding

Missiningn,n+1 only. The corresponding Newn,n+1 and Missingn,n+1 are transitive because

they are each mutually exclusive subsets of the union of Tn and Tn+1, because a single

record cannot both be missing and new within the same set Tn. These sets can be

92

described as temporal pairs in that they are the change sets that derive from a single state

transition.

Recurrence of TAD Records

On a typical system it would be unusual for a missing TAD record to re-appear in

a later state if that record was from an actual or functional log, if for no other reason than

a normally occurring event would be recorded with the current time. In an assembled log

there are several common actions that would cause an otherwise identical TAD record to

recur in a later state. A file could be removed from the system and then re-introduced.

Many file operations preserve some if not all of the existing file metadata (Garfinkel,

Nelson & Young, 2012). Alternately a different file with the same name in the same

location could appear to be a recurring TAD record with a changed time. Default

filenames and locations for many programs as well as temporary working files make this

occurrence more common than it would otherwise initially appear.

 For a granular example of how basic file system actions cause records to be added

and deleted, consider the following example. Suppose in T1 there are TAD records for to

the MAC times for a Microsoft Word document. These are three distinct records, even

though they describe the same file. During the T1-T2 temporal interval the user edits the

document and saves the changes to storage. This leaves the created timestamp

unchanged, but updates the accessed and modified timestamps to the current system time.

When the changes that occurred in the T1-T2 interval are analyzed, the original created

record will still be present, the original modified and accessed records from T1 will be

missing, and the updated modified and accessed times will show up as new records.

93

Consider an alternate scenario where the file is not edited at all, but simply

renamed through the operating system. On a default Windows 10 configuration this does

not update any of the time stamps, so the three MAC times of the original file will be

missing, and all three MAC times for the same file with the new name will be new.

 This is not a bad or incorrect result. It indicates that something happened to that

particular file during the T1-T2 interval. It may not be known exactly when the file was

renamed, only that it occurred within that particular temporal interval, and the fact that

the new records have a timestamp from outside the interval may also be a useful

indicator, as the created record for that “new” file will be prior to the T1-T2 interval.

Decomposition of TAD States using an Initial State

 In most investigations where activity analysis is important, the initial system state

contains a numerous TAD records that is not particularly pertinent, such as dates from

system files and default configuration settings. Forensic programs will generally attempt

to exclude known operating system files from further processing based on hash values

and a comparison with National Institute of Standards and Technology (NIST) or

developer-specific hash lists, but there is not currently a tool-level equivalent capability

specifically for TAD records.

 Suppose that the in the previous example the student assistant who set up the

computer for the experiment kept a copy of the initial image so that the experiment could

be repeated. This image will be designated S0 with corresponding T0 and is deconstructed

into subsets as shown in the table below.

94

Table 13

Decomposition of TAD States into Shared Subsets with Initial State

 TAD Subsets

 T0 T1 T2 T3

Unchanged

Records
T0 T0 - Missing01

T0 - Missing01

 - Missing02

T0 - Missing01

 - Missing02

 - Missing03

New

Records

New01
New01

New12

New01

New12

New23

Missing

Records

Missing01
Missing01

Missing12

Missing01

Missing12

Missing23

The T0 (initial state) component is a contributor, at least partially, to all the

successive TAD states shown above. It is only partially contributing because some

elements of the T0 state might have been deleted in later states. These deleted records

would be identified in one of the Missingn,n+1 sets. As the focus of this work is the user

actions and their effects on TAD records, T0 data can be safely excluded from the activity

analysis. The initial state typically includes the initial operating system installation,

program configuration, and the like. The contents of the files in the corresponding S0

state are still available for review during the analysis if necessary, and any changes to

these initial TAD records will be identified in the Newn,n+1 subset.

95

Logically, ignoring the initial TAD records should make sense, as items that pre-

date the period of investigative interest and do not correspond to any activity during the

lifespan of the acquired data are unlikely to shed any insight into actions on the system

during that time. In most investigations the initial set (T0) can be removed from all the

subsequent TAD states prior to further activity analysis. This can greatly decrease the

amount of records that need more detailed analysis and review. These set operations can

be accomplished with basic database commands.

96

Chapter Eight – Processing the M57-Patents Dataset

 This chapter details the M57-Patents dataset and the steps needed to process it and

prepare the data for analysis. The characterization of the activity data contained within

the dataset as the qualitative analysis of the record lifespan and data degradation follows

in chapter nine.

The Digital Corpora Project and M57-Patents Dataset

 When conducting forensic research, one of the recurring challenges is obtaining

realistic and representative data. There are privacy and human studies restrictions on

actual user data in the classroom or for research, and actual investigative data or

unknown sources may have issues with contraband and other dangerous materials. Self-

created datasets run the risk of not being representative of real-world data and have their

own problems with sharing and reproducibility.

Substantial headway in this area has been made through the Digital Corpora

project. The project contains representative sets of particular file types such as

documents and pictures, as well as exemplar forensic disk images and complete

investigative scenarios. (Garfinkel, Farrella, Roussev & Dinolt, 2009). These datasets are

commonly used in forensic education, training, and tool testing.

 One robust Digital Corpora scenario is M57-Patents, which involves a notional

patent search company “m57.biz” with four employee personas. The role for each

97

employee persona was either performed directly by a researcher or by scripts that

performed actions for that persona. User actions on the systems were both nefarious and

innocent. The computer data and user actions in the scenario “were designed to closely

replicate many of the properties of real-world data” (Woods et al., 2011). The timeline of

the creation is also relevant:

The M57-Patents scenario took place within a 17-day period between November

16th and December 11th 2009. Within the scenario, a workday started at 9:00am

and ended at 4:00pm. Each day was marked in the timeline by a small number of

primary objectives to be completed by research assistants playing the company

personas. In addition to these objectives, each persona performed some normal

background activity–web browsing, emailing friends and co-workers, patent

searches, and writing word-processing documents.

The complete M57 Patents dataset contains 79 images from five different

computer systems, four USB drive images, 67 memory images, 49 network captures,

fictious investigative materials, and other classroom aids. This chapter and the next

contains the application of differential activity analysis techniques described previously

to three sets of computer images from the M57-Patents dataset. The images from

computer systems are captured as a sequence of daily images from each scenario

computer system, with an initial and final image as well. The images incorporated

realistic “wear patterns and depth” and contain “realistic background data” (Woods et al.,

2011).

98

There is an overarching investigative scenario for the M-57 Patents dataset with

multiple distinct areas of investigative interest. Criminal and otherwise suspicious

behavior by the personas is captured in the data. In order to create a more realistic

scenario and challenging analysis for students the noteworthy activities and files are

comingled with a significant amount of innocuous or otherwise normal activity and data.

By design, the disk images are free from personally identifiable information (PII),

copyrighted materials, are unencumbered by human studies restrictions, and can be

widely distributed for further in-depth analysis, which is rarely the case for real world

forensic data (Garfinkel, Farrella, Roussev & Dinolt, 2009). By creating a realistic

corpus sufficient for education and tool validation, it can also be used for forensic

research (Woods et al., 2011).

As discussed in chapter two, it is functionally impossible to separate evidence

related to nefarious activity from innocent activity without analyzing the content and

fully understanding its context within the larger investigation. It is also not unreasonable

to assume that stored TADs will be naturally changed through routine user activities at a

comparable rate regardless of whether the records are innocent or incriminating. User

actions that attempt to obfuscate incriminating actions are likely to trigger their own

activity cascade, leaving additional incriminating information behind even though the

targeted records may be erased.

To focus primarily on the effects of user actions on TAD record degradation and

decrease any variation caused by different operating system implementations, the three

systems selected for analysis from the M57-Patents scenario are all Windows XP based.

99

There will still be variation caused by the “choices” the user personas made and variation

from the applications used. Additionally, although it will not be specifically analyzed

here, I expect that TAD records relating to nefarious actions will degrade at roughly the

same likelihood as their innocent counterparts of a similar characteristics. This remains

an area for further research.

Differences from Traditional IDF Processing and Analysis

 In a traditional forensic examination for M-57 Patents scenario, after processing

the raw data with one or more forensic tools the investigative team (or students) would

search, filter, and review the content to find the relevant investigative information among

the chaff of irrelevant or innocuous data. This is distinct from my analysis in this work.

For the purposes of characterizing TAD sources and determining the effective lifespan of

activity data on a representative system, the relevance of any particular item to a criminal

investigation is irrelevant. When processing the items from the M57-Patents dataset I

will generally ignore any relevance to the investigative scenario and treat all extracted

TAD records equally.

Restrictions in Publishing M57 Answers

I have obtained and reviewed the instructor solutions for the scenario which goes

into significant detail on the ground truth for the scenario and subject actions, as well as

detailing how the images were created. As part of the agreement to access the solutions I

cannot publish these details but have reviewed them. I am confident that the forensic

images from the scenario provide a representative baseline to validate the analysis

techniques and provide meaningful information regarding the degradation of time-

100

activity data as a system continues to be used, and to investigate differences in these

effects based on the type of TAD record source. As described in the scenario materials,

the disk images “are big enough to be realistic” and small enough to be processed in a

reasonable amount of time.

To preserve their utility as educational tools, I strictly limit any discussion of

items related to the actual investigative scenario, nor will I be publishing any of the actual

content from the processed images. The solutions were reviewed after processing was

complete to validate the relative ordering of the disk images and to verify that the

activities in the drive images were reasonable and representative of user activities.

Quantitative Analysis of TAD Records

The techniques that I developed to identify changes in the TAD collections

extracted from sequential storage states generally do not require a manual review of the

content of the TAD records, nor a review of the content of the underlying files they

describe. This is both fortunate and necessary, as the smallest TAD collection extracted

from a single image in the set contains nearly one million TAD records, and many

contain two to three million TADs. Most of the new and missing subsets generated from

differential activity analysis contain over one hundred thousand TAD records. I will use

quantitative data analysis techniques to reach conclusions from the processed data.

One note regarding nomenclature before proceeding. It should be clear from the

system activity model that a user is not their computer. When a system is described as

“Jo’s computer”, it is meant as shorthand for “the computer that is owned, primarily used

by, or is otherwise associated with Jo.” For the remainder of this work, whenever I refer

101

to Jo, Charlie, Pat, or any of their characteristics, I am referring to their computers, the

corresponding acquired data states, or the extracted collections of TAD records.

Data to be Analyzed

From the full M57-Patents corpus, I selected three image series corresponding to

three different users and at least three different computers. The filenames are listed in the

following table. All of the files listed are E01 files, which is a compressed image format

common to digital forensics.

102

Table 14

List of M57-Patents Images to be Processed

Charlie Pat Jo

charlie-2009-11-12start pat-2009-11-12start jo-2009-11-12start

charlie-2009-11-12 pat-2009-11-12 jo-2009-11-12

charlie-2009-11-16 pat-2009-11-16 jo-2009-11-16

charlie-2009-11-17 pat-2009-11-17 jo-2009-11-17

charlie-2009-11-18 pat-2009-11-18 jo-2009-11-18

charlie-2009-11-19 pat-2009-11-19 jo-2009-11-19

charlie-2009-11-20 pat-2009-11-20 jo-2009-11-20-oldComputer

charlie-2009-11-23 pat-2009-11-23 jo-2009-11-20-newComputer

charlie-2009-11-24 pat-2009-11-24 jo-2009-11-23

charlie-2009-11-30 pat-2009-11-30 jo-2009-11-24

charlie-2009-12-01 pat-2009-12-01 jo-2009-11-30

charlie-2009-12-02 pat-2009-12-02 jo-2009-12-01

charlie-2009-12-03 pat-2009-12-03 jo-2009-12-02

charlie-2009-12-04 pat-2009-12-04 jo-2009-12-03

charlie-2009-12-07 pat-2009-12-07 jo-2009-12-04

charlie-2009-12-08 pat-2009-12-08 jo-2009-12-07

charlie-2009-12-09 pat-2009-12-09 jo-2009-12-08

charlie-2009-12-10 pat-2009-12-10 jo-2009-12-09

charlie-2009-12-11 pat-2009-12-11 jo-2009-12-10

 jo-2009-12-11-001

 jo-2009-12-11-002

103

From the public scenario information, it is known that:

Friday, 13 November has no images, because the scenario did not officially start

until the following Monday (16 November). Your data may contain drive images

from Thursday, 12 November. These are for reference (e.g. prior to any employee

activity). Friday, 20 December has images for two separate drives for Jo…

Based on this information, observing the file naming conventions, and looking at the

Charlie image listing, we can identify that the Charlie-2009-11-12start image corresponds

to CharlieInitial. The other image from November 12th, prior to the start of the scenario, is

Charlie1. This convention continues according to the recorded date until the last image in

the series, Charlie18. The same process is applied to the Pat image series.

 The Jo image series presents some potential problems. There are two images

from November 20th, one designated “newComputer” and the other “oldComputer”.

Based solely on this secondary metadata (see chapter three) it is reasonable to infer from

that the computer that user Jo began using a new computer that day, either as part of the

scenario or due to equipment failure. The published scenario information confirms this

(Woods et al., 2011). In many situations an investigator could interview a system

administrator or examine the content on the images before and after this transition to

confirm this theory.

 As discussed in chapter six, it is up to the investigator’s discretion whether two

distinct systems used by the same person should be analyzed together or independently.

If there was not a hint in the file names there would be no reason to separate these image

104

series into two sets. As this work is attempting to draw conclusions based solely on the

TAD corpus, the Jo series of images will be processed two theoretical arrangements.

One scenario will assume that there are two distinct computers for Jo. Jo-2009-

11-12start will be the Jo1Initial state and six following daily images including the “old

computer” image will be the Jo11 through Jo16 adjacent states. The remaining fourteen

images will be processed separately as a distinct set Jo2. The “newComputer” image will

be Jo2Initial, followed by Jo21 through Jo213. There are two separate images for Jo on the

last day of the scenario, so both will be included as Jo212 and Jo213, respectively.

 The second scenario ignores the possibility of a replacement computer for Jo and

treats the entire series as a coming from a single computer system, designated as JoC for

“Jo combined”. I suspect that the correct interpretation of the Jo images will be apparent

solely from looking at the pattern of surviving TAD records in this series.

Starting with the adjacent state deconstruction detailed in the previous chapters, I

conducted a census of the TAD records in each state, characterized them, calculated the

lifespan for each record, and analyzed the overall survival rates of TAD records. This

analysis was done both across the entire TAD corpus and also across subsets based on

source type and other TAD collection characteristics.

Inventory of Data

The scenario began on November 16th, which corresponds to the Charlie2, Pat2,

Jo12, and JoC2 states. The adjacent state comparisons to identify the new and missing

subsets began by comparing Charlie1 and Charlie2 to determine Charlie-New1,2, Charlie-

Missing1,2, and so on for each series. For a plain English description of these subsets,

105

remember that Charlie-New1,2 contains the records that are present in Charlie2 but were

not present in Charlie1, and Charlie-Missing1,2 contains the records that were present in

Charlie1 but were missing in Charlie2.

The processed data consists of 59 individual disk images totaling approximately

243 GB compressed, 697 GB uncompressed. Although images from the Jo series are

present in multiple logical collections, for the purpose of this inventory each image is

only counted once here.

Data Processing Steps

The following steps were used to process the data:

1. TAD data was extracted from each source disk image.

2. The name of each output file was normalized to facilitate automated processing

and clearly identify the temporal adjacency within the set.

3. Additional copies of the Jo output were made to establish distinct sets of output

files for both the Jo1 / Jo2 (two computers) and JoC (combined) scenarios.

4. Each series of database files was combined into a single file with individual tables

for each TAD state.

5. Database fields that were blank across the entire corpus were removed.

6. A unique hash value was generated for each record in each database and table.

7. The records in each series’ initial image were removed from the successive TAD

collections, leaving only the records associated with user actions.

8. For each adjacent pair of TAD states, the items for the corresponding New and

Missing subsets were identified.

106

9. Using the New and Missing subsets, the lifespan for each record was calculated

10. The results were collated and analyzed (see chapter 9).

Each step was automated as much as practicable using Python scripting. Most steps were

well suited to batch processing using SQLite to provide database functionality. Although

the overall volume of data and records was large, the batch processing methodology was

able to handle all the data in a reasonable amount of time on a robust modern

workstation. This eliminated the need to build, license, and maintain a separate database

server, as well as avoiding the challenges of parallel processing. The initial data

extraction step was primarily CPU-bound, while the remaining steps were primarily IO

bound.

TAD Data Extraction

As described in chapter two, Plaso and its associated sub-programs are an

effective and widely used open source tool for timeline data extraction and processing.

Plaso also has robust capabilities to search and filter the output interactively, which can

be useful in a traditional IDF scenario or incident response. In normal forensic analysis

the volume of TADs extracted from a source would be impossible to manually review

without extensive filtering. For the intended analysis in this work, all records need to be

exported in order to perform the differential activity analysis and qualitative analysis of

the TADs.

Each image was processed using Plaso / Psteal version 20190708 using default

(maximal) options and output was saved in the “4n6time SQLite” format. 4n6time is a

now-deprecated timeline analysis tool, but this was the only option to directly generate a

107

SQLite output database without converting through an intermediate format. This output

format did add several fields to each database which would have been utilized for by the

4n6time tool to store secondary metadata applied by the reviewer. These fields were

identified and were removed during the data reduction step.

Output File Normalization and Merging

Before proceeding to the next step, the SQLite files were manually renamed to the

format [name]-initial and [name]-Snap## to facilitate the scripted batch processing. As

discussed earlier the exact temporal spacing between each image is not critical as long as

they are placed in strictly increasing order. Most of the images have an interval of one

workday between them, as the longer intervals correspond to weekends during the

scenario period. The Jo image set has two images from the last day of the scenario,

which will be placed in numeric order.

After processing and renaming the files to the standardized format there was

269GB of SQLite output across 79 files, plus and additional 25GB of duplicated data

across 21 files in the Jo-Combined set. A master SQLite file was created for each set,

with the data from each TAD collection in a separate table. Across the entire corpus

there were over 129 million TAD records to be analyzed.

108

Table 15

Collation and Renaming of Jo TAD Collections for Processing

Data Reduction and Hashing

Using a script that determined the number of unique values for each field in each

table and across the full corpus, I identified several fields that were entirely blank as well

as other that had a single value for all fields. The notes, reportnotes, inreport, tag, and

evidence fields were artifacts of the 4n6time output format and were removed. These

Source File Jo1 Set Jo2 Set JoC Set

jo-2009-11-12start jo1-initial joc-initial

jo-2009-11-12 jo1-snap01 joc-snap01

jo-2009-11-16 jo1-snap02 joc-snap02

jo-2009-11-17 jo1-snap03 joc-snap03

jo-2009-11-18 jo1-snap04 joc-snap04

jo-2009-11-19 jo1-snap05 joc-snap05

jo-2009-11-20-oldComputer jo1-snap06 joc-snap06

jo-2009-11-20-newComputer jo2-initial joc-snap07

jo-2009-11-23 jo2-snap01 joc-snap08

jo-2009-11-24 jo2-snap02 joc-snap09

jo-2009-11-30 jo2-snap03 joc-snap10

jo-2009-12-01 jo2-snap04 joc-snap11

jo-2009-12-02 jo2-snap05 joc-snap12

jo-2009-12-03 jo2-snap06 joc-snap13

jo-2009-12-04 jo2-snap07 joc-snap14

jo-2009-12-07 jo2-snap08 joc-snap15

jo-2009-12-08 jo2-snap09 joc-snap16

jo-2009-12-09 jo2-snap10 joc-snap17

jo-2009-12-10 jo2-snap11 joc-snap18

jo-2009-12-11-001 jo2-snap12 joc-snap19

jo-2009-12-11-002 jo2-snap13 joc-snap20

109

reduced datasets were stored in a single file for each image set, using the same naming

convention previously used, adding the master reduced (MR) designation.

One particular challenge to matching records individual between different states is

that there is not a common index or other built-in method of identifying the same record

across multiple sets without comparing each individual field. When repeated across

millions of records per set this lookup process took too long to be practicable in scale.

Borrowing the idea of a hash table from computer science, I combined each field in a

record into a single monolithic bitstream and then calculated the SHA1 value for that

bitstream, which was then added as a new field for that record. As long as the same

fields were combined in the same order for each record across different sources, the hash

values will match for identical records. After making the hash field an index in the

database, performing the record set comparison between two adjacent TAD sets could be

completed in a reasonable amount of time.

 Even with automation and batch processing, efficiencies in the logical analysis

process and data management were necessary in order to complete the analysis in a

reasonable amount of time.

Removal of Initial State

As shown in chapter six, the initial state in a linked series of adjacent TAD states

can be removed from later states, leaving only the TAD records caused by user actions

and the associated activity cascades. A second advantage of removing the initial state

from later states is that it leaves many fewer records that need to be analyzed. The initial

state for each TAD series was removed from each TAD state using SQL “Select Except”

110

commands automated with scripting. Removing the initial state from the later states

removed up to 90% of the records in some states. These reduced datasets were stored in

a single file for each image set, using the same naming convention previously used,

adding the less initial (LI) designation.

Decomposition of Remaining Records into New and Missing Subsets

For each image series other than Jo2, the first day of scenario activity is

represented by the Snap02 set. The TAD record changes caused by user actions on the

first day will be found in the New1,2 subset for new records and the Missing1,2 subset for

missing records. A useful memory aid for the contents of a particular subset New A,A+1 is

“NewA,A+1 contains all the records in set A+1 that were not present in set A.” The plain

English description of MissingA,A+1 is “MissingA,A+1 contains all the records from set A

that were not present in set A+1.” Since the Jo2 series began activities immediately

without an intervening idle day that we know about before the scenario began, the first

state after the initial one is the first scenario day with activities for that system.

Leveraging a somewhat more complex SQL “Select Except” construction, the

previously generated “master reduced less initial” (MR-LI) daily sets were decomposed

into new and missing subsets by comparing them with the next adjacent daily set, starting

with the first snapshot. These decomposed datasets were stored in a single file for each

image set, using the same naming convention previously used, adding the SnapA,A+1

designation.

111

Calculation of Lifespan for Each Record

 The lifespan for a given TAD record in this scenario is the number of future states

that the particular record was still present in. As the analysis is limited to only the

records that were created by user actions after the start of the scenario, it is possible to

determine the lifespan for any record by examining the contents of each successive

MissingA,A+1 subset. The following logical construction establishes the basis for this

calculation.

 Given a record in a NewA,A+1 set, the lifespan of the record can be determined by

incrementally searching through each adjacent MissingB,B+1 set, going forward in time.

Stop when either the record is found in a MissingB,B+1 set or all available sets have been

searched. The lifespan is the number of Missing sets between the NewA,A+1 set that

contains the record and the MissingB,B+1 set that contains the record. If the record is not

found in any following MissingB,B+1 sets, then the lifespan is the number of sets that were

searched. The shortest possible lifespan for a record is zero, which happens when a

record in NewA,A+1 set is also in the adjacent MissingA+1,A+2 set. The maximum possible

lifespan in this experiment is equal to the number of states after the first state containing

the record. A Boolean field was used to track whether a record survived to the end of the

available data in addition to the numeric lifespan value.

 If a record was contained in a NewA,A+1 set, that means the record was contained

within the snapshot for A+1 but not in A. By first removing unchanged records from the

search space, searching through the New and Missing subsets for a particular record

becomes roughly analogous to looking through the transaction logs for that record. If the

112

record has not been removed, then it can be inferred that the record is still present in that

state. Stopping the search as soon as a particular record is found in a Missing subset

effectively short circuits the search process, preventing the algorithm from continuing to

search through up to a dozen additional subsets with hundreds of thousands of records

each when it is already known that the particular record was no longer be present on the

system. In the edge case where that record reappears unchanged in a later state, there will

be a corresponding entry in the NewC,C+1 set. Searching for an individual record is also

accelerated by the presence of the unique hash for each record in the database. After the

lifespan for each record was calculated, the record was copied to a corresponding output

table in a single database file for each image set, using the same naming convention as

before and adding the survival analysis designation. Each record had the calculated

lifespan recorded as an additional integer field, and a Boolean field recorded if the

particular record survived through the last image in that particular series.

 When using complex select statements to perform set logic with multiple tables,

the inherent optimizations of modern database systems and indexed fields were able to

compute subsets of tables in a reasonable amount of time without needing to leverage

specialized acceleration techniques. It was only when searching for each individual

record across a dozen different TAD collections with hundreds of thousands of records

each that it became essential to use the unique hash for each record as the identifier to

search for. This optimization was necessary in order to compute the lifespan for each

record in a reasonable amount of time.

113

Conclusion of Processing Phase

 At this point a series of sequential disk images from three (or four) separate

computers had been processed. All of the TAD records contained within have been

extracted, including metadata fields that characterize the source and type of each record.

The lifespan of each record within the dataset has been calculated and individually

recorded. The next chapter contains the quantitative analysis, characterization of specific

TAD sources, and conclusions about the degradation of time-activity data in the M57-

Patents dataset. The mystery of how to properly group the Jo images will also be

resolved.

114

Chapter Nine – Data Degradation and Lifespan Analysis of M57-Patents

In the context of investigative digital forensics, data does not “degrade” the way

that physical items decay over time or radioactive isotopes decay into other elements

(Garfinkel, 2012). Rather data from a previous storage state Sn is changed so that the

data is not present or otherwise recoverable on Sn+1. Data from the previous state is

replaced by new data. As time goes on and the system continues to be used, more data

from previous states will continue to be overwritten by new data.

Data destruction is distinct from data degradation. Data destruction is the

intentional act of rendering some or all of the data on a system unavailable to the

investigator, whether through physical destruction, logical erasure, or the like. Data

degradation occurs when a user or system, performing regular activities and processes,

causes previously existing records to be changed, erased, or otherwise becomes

unrecoverable. In the context of TAD records, data degradation occurs when existing

records are overwritten with new data or when the file containing the records is removed

from the system. These records could be log entries, log-like content, or pieces of file

metadata within the storage state.

Analysis of data degradation in the IDF context attempts to understand how long

potentially relevant information from the past can be expected to survive under normal

system activity. Fragility is a TAD source characteristic that describes how easily a

115

particular TAD record can be changed through regular system usage. Analyzing the

TAD record loss over time is a first attempt at characterizing and quantifying this loss.

As described in chapter five, a computer is a deterministic device. In order for the

data on a computer to change it must be affected by an external actor. A single action

can cause multiple distinct state changes through an activity cascade, described in chapter

six. In most IDF circumstances the event(s) of investigative interest occurred at some

point in the past, prior to the collection of data. Any changes that are introduced during

this interval can affect the ability to recover the relevant data from that system.

Fragility Revisited

File content placed on a system through user actions generally does not change

without additional direct and intentional user interaction. A recorded video or

downloaded file will remain where the user placed it until they interact with it again.

System files, configuration data, and similar items will tend to change with more

frequency as applications make records for user convenience or performance

optimization and operating system patches are downloaded and applied in the

background. These actions are recorded in prefetch files and lists of recently opened

documents, among other sources. These records are metadata, and thus will have varying

fragility based on how, where, and why the record is stored.

For an example of actual differences in fragility (defined in chapter three),

consider the MAC (modified, accessed, and created) times and other metadata for a

Microsoft Word document on a Windows 10 system. The MAC times are stored in the

filesystem structures, external to the file, while other metadata is stored within the file

116

itself. The created time is normally set when the file is first created, although a file

downloaded from the Internet will typically have the created time set to when the copy of

the file was received on the local computer. Making a new copy of the document under a

different file name through either the operating system or the application “File | Save As”

menu option will result in an updated creation date while preserving the modified date

from the original file. This results in a file that appears to have been modified before it

was created, at least under a naive interpretation. Both methods to make a new copy of

the file will preserve the internal “last printed” metadata record. Interestingly the “total

editing time” value stored in the document metadata is cleared if the application menu

option was used to create the new file. Using the operating system commands to make a

new copy of the file preserves the “total editing time” metadata as it is internal metadata

stored within the file content itself. This was likely an intentional design choice by the

application authors. This demonstrates how a file could appear to have been modified or

even printed before it was created (Rowe & Garfinkel, 2010).

This microcosm of forensic analysis shows that actions that seem similar from an

end user perspective can have different results based on the specific actions performed

and the implementation within the application and operating system. It is a good practice

whenever a key investigative finding depends on the interpretation of a few pieces of

metadata to experimentally verify the investigative hypothesis on a controlled exemplar.

This can be used to both experimentally confirm analytic findings as well as exclude

alternate hypotheses, as appropriate.

117

Analysis of M57-Patents User Activity Records

The vast majority of the TAD records across the processed M57-Patents dataset

were file times (hereafter referred to as file records) and registry record times. The

Windows registry is a database-like structure that stores configuration information for the

operating system and installed applications as well as considerable information about

user activities (Carvey, 2009, pp158). One relevant feature of the registry is that two

versions of many configuration items are stored across two “control sets”. One control

set is “current” while the other control set acts as a backup in case there are system errors

and the previous configuration needs to be restored.

Portions of the processed data is presented in tables in this chapter. Full tables for

the Jo1 series are presented in the chapter to demonstrate the structure of the data,

followed by summary tables for the larger datasets.

Jo1 Analysis Results

The Jo1 series contains six sequential TAD states. The following summary of the

Jo1 analysis shows the per-interval lifespan for TADs from each incremental data state.

After removing the initial state records from each image, the count of records still present

in each state is shown in the total column in the table below. Each table shows the total

count of records from a particular source type, as well as the count of those records that

survived through each successive interval. The following three pairs of tables show the

total record count from each state in the Jo1 series as well as the number of records from

each that persisted into each successive interval.

118

Table 16

Jo1 Total Count and Percentage Record Lifespan by Successive Intervals

Record

Origin

State

Total

Records

Count of Surviving Records by State – All Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 277135 277135 115695 115049 114259 114204 114120

Jo1_02 365568 365568 203232 202461 202432 202268

Jo1_03 241161 241161 67821 67763 67736

Jo1_04 234858 234858 143483 74428

Jo1_05 160433 160433 65900

Record

Origin

State

Total

Records

Percentage of Surviving Records by State – All Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 277135 100 41.75 41.51 41.23 41.21 41.18

Jo1_02 365568

100 55.59 55.38 55.37 55.33

Jo1_03 241161

100 28.13 28.10 28.09

Jo1_04 234858

100 61.09 31.69

Jo1_05 160433

100 41.08

119

Table 17

Jo1 File Count and Percentage Record Lifespan by Successive Intervals

Record

Origin

State

File

Records

Count of Surviving Records by State – File Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 151730 151730 53843 53204 52416 52361 52279

Jo1_02 107031

107031 17619 16854 16825 16661

Jo1_03 105613

105613 5792 5736 5709

Jo1_04 96500

96500 80356 11317

Jo1_05 22502

22502 3637

Record

Origin

State

File

Records

Percentage of Surviving Records by State – File Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 151730 100 35.49 35.06 34.55 34.51 34.46

Jo1_02 107031

100 16.46 15.75 15.72 15.57

Jo1_03 105613

100 5.48 5.43 5.41

Jo1_04 96500

100 83.27 11.73

Jo1_05 22502

100 16.16

120

Table 18

Jo1 Registry Count and Percentage Record Lifespan by Successive Intervals

Record

Origin

State

Registry

Records

Surviving Records by State – Registry Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 121171 121171 60970 60970 60970 60970 60970

Jo1_02 244318

244318 183976 183976 183976 183976

Jo1_03 121957

121957 61473 61473 61473

Jo1_04 122255

122255 61656 61656

Jo1_05 122376

122376 61728

Record

Origin

State

Registry

Records

Percentage of Surviving Records by State – Registry Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 121171 100 50.32 50.32 50.32 50.32 50.32

Jo1_02 244318

100 75.30 75.30 75.30 75.30

Jo1_03 121957

100 50.41 50.41 50.41

Jo1_04 122255

100 50.43 50.43

Jo1_05 122376

100 50.44

Over this set, the registry records appear to operate and survive in a block size of

just over 60,000 records. These large record changes are likely related a software or

hardware installation which caused an update to the current control set backup scheme.

Extensive content analysis and record similarity comparisons would be necessary to

verify this, which is beyond the scope of this work. It remains an area for future research.

121

Table 19

Jo1 Web History Count Record Lifespan by Successive Intervals

Record

Origin

State

Web

Records

Surviving Records by State – Web History Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 1978 1978 228 228 226 226 226

Jo1_02 10999

10999 61 61 61 61

Jo1_03 11354

11354 14 14 14

Jo1_04 12887

12887 13 13

Jo1_05 13234

13234 5

Table 20

Jo1 Event Count Record Lifespan by Successive Intervals

Record

Origin

State

Event

Records

Surviving Records by State – Event Records

Jo1_01 Jo1_02 Jo1_03 Jo1_04 Jo1_05 Jo1_06

Jo1_01 1022 1022 0 0 0 0 0

Jo1_02 1112

1112 0 0 0 0

Jo1_03 1162

1162 0 0 0

Jo1_04 1210

1210 0 0

Jo1_05 1260

1260 0

Several TAD sources had unexpected lifespan results. The Windows event logs

are an actual log, storing activity until overwritten by large amounts of data or

deliberately cleared. The Internet history is composed of functional logs which allow a

user to recall websites visited in the past, as well as cache web page components for

122

faster load times in the future. Both of these sources showed almost no persistence of

records from one interval to the next. These results were consistent across all datasets.

There were several other categories of records that contained only had a handful

of records. Their numbers will be included in the total count but there were not enough

records to characterize specific patterns with any confidence. The table below combines

the counts of each record in the Jo1 set over its potential and actual lifespans. The

potential lifespan for any record is the number of intervals for which data was available

in the dataset after the record occurred.

Table 21

Jo1 Records Possible and Actual Survivor Count by Interval

 Number of Intervals

 1 2 3 4 5

Total Possible Count 1279155 1118722 883864 642703 277135

Total Actual Count 596131 459701 384427 316472 114120

Total Percent Survived 46.603 41.092 43.494 49.241 41.178

 Number of Intervals

 1 2 3 4 5

File Possible Count 483376 460874 364374 258761 151730

File Actual Count 161247 87111 74950 69022 52279

File Percent Survived 33.359 18.901 20.57 26.674 34.455

 Number of Intervals

 1 2 3 4 5

Registry Possible Count 732077 609701 487446 365489 121171

Registry Actual Count 429803 368075 306419 244946 60970

Registry Percent Survived 58.71 60.37 62.862 67.019 50.317

123

Table 22

Jo1 Record Survival Percentage by Source per Interval

Intervals

Survived
Total File Registry Web History Event

1+ 46.60 33.36 58.71 0.64 0

2+ 41.09 18.90 60.37 0.85 0

3+ 43.49 20.57 62.86 1.24 0

4+ 49.24 26.67 67.02 2.21 0

5 41.18 34.46 50.32 11.43 0

In the Jo1 dataset only one sequence extends for a full five intervals, which is not

enough samples for a meaningful result. The file records from the first state also appear

to be more persistent than the ones from later states, at least across this small sample.

This may be a result of initial system configuration tasks and program installation

performed on the first interaction with a new computer. These records appear to be more

persistent while the events from the second interval onward may be more consistent with

routine daily system usage. This may be a result of the initial configuration tasks

performed on the first interaction with a new computer, while the records from the

second state onward show a somewhat more consistent decline of surviving records over

time.

Analysis of Jo-Combined Dataset

Recall that the JoC dataset is the concatenation of the seven Jo1 images (Jo1Initial

plus Jo11 through Jo16) with 14 Jo2 images to see if there were any TAD record linkages

between the “old computer” and “new computer”. If two images had not been labeled

124

“old computer” and “new computer” then there would have been no reason to separate

the images into two separate collections. The portion of the lifespan table that shows the

transition from “old” to “new” is shown in the table below.

Table 23

JoC Total Record Lifespan in Intervals 5 through 11

Record

Origin

State

Total

Records

Surviving Records by State – All Records

JoC_05 JoC_06 JoC_07 JoC_08 JoC_09 JoC_10 JoC_11

JoC_04 234858 143483 74428 0 0 0 0 0

JoC_05 160433 160433 65900 0 0 0 0 0

JoC_06 402799 402799 0 0 0 0 0

JoC_07 920797 920797 774676 739964 717118 696992

JoC_08 565571 565571 437440 434337 434302

JoC_09 324410 324410 154318 154302

JoC_10 759781 759781 667034

125

Reviewing the data there is a clean break between the two systems in that no

records from activities on the first computer were found on the second computer. This

does not mean that there were no TAD records in common between the two systems.

The initial state of the first computer (Jo1) was removed from all the JoC datasets.

JoCInitial contained 1.3 million records. JoC4 contained 1.75 million records. JoC4 with

the initial set removed left 619,339 records. When JoC3 and JoC4 were compared to

determine newly created records, only 234,858 records were new in JoC4.

This reinforces the impact in processing and analysis efficiency as a result of

eliminating the initial state from the successive data states. The number of total records

identified as “new” is highest on the first snapshot of the new computer. This is because

there is not a specific “initial” image of this computer to remove the records prior to user

activity. In the JoC dataset the Jo2 states all had the initial state of the “old” computer

removed. Subtracting the Jo1Initial state from the first state of Jo2 still removed some TAD

records but not as many as were removed from images with the correct corresponding

initial state. The full TAD state of JoC7 contained 949,092 million records initially,

reduced to 920,797 when the JoCInitial state was removed. All of the remaining records in

JoC7 were new, and none of those records were present in the JoC6 state.

Although a manual review of the content of the images would also likely also

show that the images were from different computers, the TAD adjacency comparison can

be automated without much difficulty. If a series of images were unlabeled then this

analysis could be used to identify states that came from the same or different systems.

126

Based on this finding, the Jo1 and Jo2 sets should be treated as separate systems, with no

further analysis on the JoC set.

Analysis of Multiple Ten-Interval Sequences Across Multiple Systems

Operating under the hypothesis that the activities from the initial system

configuration tasks on the first day are not representative of routine daily usage, there

remain 18 distinct ten-interval sequences that do not include the first day of each set.

These sequences begin with Jo22 and Jo23, Charlie2 through Charlie8, and Pat2 through

Pat8. Using each of these states as the start of a ten-interval sequence the lifespan of the

file and registry records were analyzed.

Table 24

File Record Percentage Lifespan Across Multiple Ten Interval Sequences

System
Number of Intervals

1 2 3 4 5 6 7 8 9 10

Pat 48.05 33.97 27.08 25.82 24.87 24.65 24.47 24.40 24.26 23.73

Charlie 48.24 22.79 14.05 13.28 12.58 12.37 12.07 11.80 11.09 10.53

Jo2 58.88 39.05 35.13 30.24 30.16 29.76 29.02 28.87 28.83 28.83

Overall 50.31 30.94 23.98 22.16 21.48 21.23 20.89 20.73 20.41 19.97

Registry Record Percentage Lifespan Across Multiple Ten Interval Sequences

System
Number of Intervals

1 2 3 4 5 6 7 8 9 10

Pat 67.15 67.05 67.05 67.05 67.05 67.05 67.05 67.05 67.05 62.22

Charlie 68.59 68.51 68.51 68.51 68.51 68.51 68.51 64.06 46.07 32.60

Jo2 83.35 83.35 83.35 83.35 83.35 83.35 83.35 83.35 83.35 83.35

Overall 71.31 71.24 71.24 71.24 71.24 71.24 71.24 69.46 62.25 55.03

127

Reviewing the file record lifespan across all three systems, the data degradation is

relatively consistent across all three computer systems. The largest loss of file records

occurred during the first interval after record creation, with smaller losses of the

remaining records each interval until the end of the sequence.

Plots of the ten-interval sequences from Pat and Charlie are plotted in the figures

below. Each sequence follows roughly the same pattern across, albeit with some local

variations. The individual sequences are shown with shaded blue lines, while the average

is in orange.

Figure 5

Charlie Ten-Interval Survival Plot

128

Figure 6

Pat Ten-Interval Survival Plot

The registry records show a similar block size in many of the ten interval periods

as were seen did in the Jo1 series as well as a wide variation in behavior between the

three different systems. Although the most of the records do remain unchanged, it is an

area for future work to look at the registry records that were changing to identify any

patterns, as they are the closely linked with user activities.

129

Chapter Ten – Conclusions and Areas for Future Work

Overview and Contributions

Activity Analysis is an increasingly common task in complex investigative digital

forensic examinations. This analysis relies on extracting data from a system and

projecting backwards to identify and explain events that took place in the past. A shared

common language for describing temporal metadata is essential for making strong,

evidence-backed conclusions and reporting the results of a forensic examination, whether

for academia, an investigative team, or for a legal proceeding.

Although examples of metadata are well understood within the forensic

community, there had not previously been a concerted effort to define the characteristics

of temporal metadata. By identifying and classifying metadata source characteristics

stronger inferential conclusions can be made especially in situations where some

pertinent pieces of data are missing. The time-activity data taxonomy is a key component

of this.

Some prior efforts in the forensic community have discussed high level

conceptual models for system activities, while other efforts performed sector level

analysis for small system changes. The system-activity model presented in this work

supports the analysis of real-world data collections from successive system states

represented by disk images.

130

Understanding a user-computer model with both physical and data state

components, as well as a user that triggers cascading changes through interaction, allows

investigators to consider state changes in the past that they can no longer directly

observe, and project backwards through incomplete data.

The analysis of sequential images from the M57-Patents scenario validated the

approach described in the activity model and system state decomposition. It also

provided some initial insights into the decay of activity records on an in-use system and

suggested enhancements for a more deliberate data collection and analysis effort.

Similarities in the lifespan trends across the three distinct computers indicated that the

findings are generally consistent, though the three sources were all created under similar

artificial circumstances. Significant record degradation and distinctions in lifespan by

type of record were observed and are likely transferrable to inferences about other

sources and systems.

Even if a user is careful and actively attempts to hide or erase the evidence of

their actions, it is likely that the corresponding activity cascades will leave some traces of

the original action, or at least leave indications of obfuscating activity. These traces may

be detectable through differential state analysis if they effect a large amount of records.

Otherwise a careful content analysis will be required to detect the actions, although

leveraging the TAD taxonomy can help as well.

Areas for Future Research and Limitations

The next logical step for the time-activity data taxonomy is to take the conceptual

structure and map real-world metadata sources onto the characteristics to populate a

131

reference library. Further analysis of record degradation to identify trends in lifespan

based on record type, location, and the like would strengthen the applicability of the

findings.

Automated tools could be developed to extract and present a list of TAD sources

found on a system under examination and display their characteristics to the investigative

team to assist their analysis efforts. Visualization tools and techniques could assist the

team in understanding the pattern of life for the system in question, or for a subset of

activities.

Requiring an exact match for the record lifespan analysis excluded several record

sources where the older data was likely present but was not an exact match to the

previous record. Using the characteristics from the TAD reference library would allow

the development of techniques to link changed records from one data state to the next. A

more complex survivor analysis based on sub-characteristics such as location on disk,

resource described, and so on would be possible. Identifying functionally equivalent

records which contain the same substantive content across multiple images would allow

those records to be properly identified at unchanged as appropriate. This would be

particularly helpful for Internet history, registry, and event log files.

The extraction, analysis, and differencing techniques could also be applied to

sequential data sources other than full forensic disk images, such as volume shadow

copies, system backups, online data repositories, and mobile devices. Future work could

also look at the relative persistence of records based on the actions performed on the

computer and the technical sophistication of the user. Larger datasets with more

132

“typical” user activity such as extended web browsing over a period of months would

provide expected lifespan information and allow a more robust statistical analysis.

The ability to perform lifespan analysis on extracted TAD records without

needing access to the underlying content may make the acceptance of the anonymized

data collection more palatable in an academic or governmental network environment.

There is also room to optimize the code and workflow used for the processing and

analysis to make better use of parallel processing which would enable it to be used as a

triage tool as well.

133

References

1. Agrawal, N., Bolosky, W., Douceur, J., & Lorch, J. (2007). A five-year study of

file-system metadata. ACM Transactions on Storage, 3(3).

2. Altheide, C., & Carvey, H. (2011). Digital forensics with open source tools.

Syngress Pub.

3. Carvey, H. (2009). Windows forensic analysis: DVD toolkit 2E. Syngress Pub.

4. Carvey, H. (2011). Windows registry forensics: Advanced digital forensic

analysis of the windows registry. Syngress Pub.

5. Carvey, H. (2012). Windows forensic analysis toolkit: Advanced analysis

techniques for Windows 7 3E. Syngress Pub.

6. Casey, E., Rose, C., Altheide, C., Holley, J., Luehr, P., Smith, J., Schwerha, J.,

Daywalt, C., Johnston, A., Pittman, R., Shaver, D., Kokocinski, A., Van, D. K., R,

Maguire, T., Forte, D., De, D., & A. (2013). Handbook of digital forensics and

investigation. Academic Press.

7. Chabot, Y., Bertaux, A., Nicolle, C., & Kechadi, M. (2014). A complete

formalized knowledge representation model for advanced digital forensics

timeline analysis. Digital Investigation, 11.

8. Farmer, D., & Venema, W. (2006). Forensic discovery. Addison-Wesley.

9. Friedenthal, S., Moore, A., & Steiner, R. (2009). A practical guide to sysML: The

systems modeling language. Morgan Kaufmann Object Management

Group/Elsevier.

10. Garfinkel, S. (2010). Digital forensics research: The next 10 years. Digital

Investigation, 7, 64-73.

11. Garfinkel, S. (2012). Factors affecting data decay. Journal of Digital Forensics,

Security and Law, 7(2), 7-10.

12. Garfinkel, S., Farrella, P., Roussev, V., & Dinolt, G. (2009). Bringing science to

digital forensics with standardized forensic corpora. Digital Investigation, 6.

13. Guðjónsson, K. (2010, August 1). Mastering the Super Timeline With

log2timeline. Retrieved from SANS: https://www.sans.org/reading-

room/whitepapers/logging/mastering-super-timeline-log2timeline-33438.

14. Harichandran, V. S., Walnycky, D., Baggili, I., & Breitinger, F. (2016). CuFA: A

more formal definition for digital forensic artifacts. Presented at the DFRWS

USA 2016.

15. Horsman, G. (2020). Digital evidence certainty descriptors (DECDs). Forensic

Science International: Digital Investigation, 32.

16. Jones, J., Kahn, T., Kathryn, L., Nelson, A., Laamanen, M., & White, D. (2016).

Inferring previously uninstalled applications from residual partial artifacts Annual

134

ADFSL Conference on Digital Forensics, Security and Law (pp. 113-130).

https://commons.erau.edu/adfsl/2016/wednesday/3

17. Jones, K., Bejtlich, R., & Rose, C. (2015). Real digital forensics: Computer

security and incident response. Addison-Wesley.

18. Kornblum, J. (2002). Preservation of fragile digital evidence by first responders

Digital forensics research workshop.

19. Mandia, K., Prosise, C., & Pepe, M. (2003). Incident response and computer

forensics. McGraw-Hill.

20. Marrington, A., Baggili, I., Mohay, G., & Clark, A. (2011). CAT detect

(Computer activity timeline detection): A tool for detecting inconsistency in

computer activity timelines. Digital Investigation, 8, 52-61

21. Neelamkavil, F. (1994). Computer simulation and modelling. Wiley.

22. Oh, J., Lee, S., & Lee, S. (2011). Advanced evidence collection and analysis of

web browser activity. Digital Investigation, 8, 62-70.

23. Roussev, V., & Quates, C. (2012). Content triage with similarity digests: The m57

case study. Digital Investigation, 9, 60-68

24. Rowe, N. C., & Garfinkel, S. (2010, May). Global analysis of drive file times.

Presented at the Systemic Approaches to Digital Forensic Engineering.

25. Schum, D. (2001). The evidential foundations of probabilistic reasoning.

Northwestern University Press.

26. Shavers, B., &. (2013). Placing the suspect behind the keyboard: Using digital

forensics and investigative techniques to identify cybercrime suspects. Syngress

Pub.

27. Garfinkel, S. (2014). The prevalence of encoded digital trace evidence in the

nonfile space of computer media. Journal of Forensic Sciences, 59(5), 1386-1393

28. Garfinkel, S., Nelson, A., & Young, J. (2012). A general strategy for differential

forensic analysis. Digital Investigation, 9, 50-59

29. Soltani, S., & Seno, S. (2019). A formal model for event reconstruction in digital

forensic investigation. Digital Investigation, 30, 148-160

30. Stallings, W. (2007). Data and computer communications. Pearson Prentice Hall.

31. Studiawan, H., Sohel, F., & Payne, C. (2019). A survey on forensic investigation

of operating system logs. Digital Investigation, 29.

32. Woods, K., Lee, C. A., Garfinkel, S., Dittrich, D., Russell, A., & and Kearton, K.

(2011, May 26). Creating realistic corpora for security and forensic education.

Presented at the Annual ADFSL Conference on Digital Forensics, Security and

Law. https://commons.erau.edu/cgi/viewcontent.cgi?article=1161&context=adfsl

135

Biography

Andrew C. Smallman graduated from Villa Park High School, Villa Park, California, in

1994. He received his Bachelor of Science degrees in Computer Science and

Mathematics from the University of Redlands in 1998. He received his Master of Science

in Network Security from Capitol College in 2005. He is currently employed by the

United States Government.

The views and opinions expressed within this work are that of the author and not that of

any U.S. Government agency.

