

OPTI-SOFT+: A RECOMMENDER FOR OPTIMAL SOFTWARE FEATURE
SELECTION AND RELEASE PLANNING

by

Fernando Boccanera
Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy in
Information Technology

Committee:
_________________________________ Dr. Alexander Brodsky, Dissertation

Director

_________________________________ Dr. Edward Huang, Committee Member

_________________________________ Dr. Thomas LaToza, Committee Member

_________________________________ Dr. Daniel Menascé, Committee Member

_________________________________ Dr. Deborah Goodings, Associate Dean

Date:_____________________________ Summer Semester 2022
 George Mason University
 Fairfax, VA

Opti-Soft+: A Recommender for Optimal Software Feature Selection and Release
Planning

A Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in in Information Technology at George Mason University

by

Fernando Boccanera
Master of Software Engineering
George Mason University, 1998
Bachelor of Computer Science

Campinas State University, Brazil, 1978

Director: Alexander Brodsky, Professor
Department of Computer Science

Summer Semester 2022
George Mason University

Fairfax, VA

ii

Copyright 2022 Fernando Boccanera

All Rights Reserved

iii

DEDICATION

I dedicate this dissertation to my wife, who encouraged me to pursue the PhD and who
supported me throughout all the years of my doctorate journey.

iv

ACKNOWLEDGEMENTS

I wish to thank my committee members, Dr. Thomas LaToza, Dr. Edward Huang and Dr.
Daniel Menascé, for their guidance and suggestions.

A special thanks to Dr. Alexander Brodsky, Committee Chairman, for his countless hours
of advising, reviewing and for his immensurate patience throughout the entire process.

v

TABLE OF CONTENTS

 Page
List of Tables ...xi

List of Figures ...xv

List of Abbreviations ... xvii

Abstract ... 0

1. INTRODUCTION... 2

1.1 The Problem ... 2

1.2 Research Gap .. 3

1.2.1 Value-oriented Approaches: Stakeholder and Non-financial Based............ 4

1.2.2 Value-oriented Approaches: Financial-based .. 5

1.2.3 Limitations of Existing Value-based Approaches 8

1.3 Research Challenges...10

1.4 Thesis Statement and Summary of Contributions...11

1.4.1 Thesis Statement ..12

1.4.2 Summary of Contributions ..13

1.5 Organization of the Dissertation..16

2. RELATED WORK ..17

vi

2.1 Agile Release Planning...17

2.2 Related Financial-based Approaches ...19

2.2.1 Incremental Funding Method ..19

2.2.2 F-EVOLVE* ..25

2.2.3 van den Akker et al. Approach ..27

2.2.4 Continuous Value-based IT Project Steering..29

2.2.5 Comparison of Related Approaches ..30

3. OPTI-SOFT+ MODEL OVERVIEW..34

3.1 Business Cost...36

3.2 BPN Modeling ...38

3.2.1 BPN Transition Based on Software Feature Implementation40

3.2.2 Generalized BSN Model ...45

3.3 BSN Cost/Benefit Model ..47

3.3.1 Labor Service Cost ...48

3.3.2 Non-labor Fixed Service Cost ...48

3.3.3 Non-labor Variable Service Cost ...48

3.3.4 Aggregated Cost of the BSN ...49

3.4 SDLC Cost/Benefit Model..49

3.4.1 Release Planning ..50

vii

3.4.2 SDLC Labor Cost ...51

3.4.3 Non-labor Cost of the SDLC ...52

3.4.4 SDLC Aggregated Cost ..53

3.5 Combining BSN and Software Cost ..53

3.6 Overview of the Mixed Integer Linear Program...53

4. OPTI-SOFT+ FORMAL ANALYTICAL MODEL ...57

4.1 Model Introduction...57

4.2 Release Scheduling Formalization ..61

4.3 Business Service Network Formalization ..65

4.4 Service Formalization...68

4.5 ANDservice Formalization ...68

4.6 ORservice Formalization ..73

4.7 InputDrivenAtomicService Formalization ...75

4.8 OutputDrivenAtomicService Formalization...80

4.9 Software Development Formalization ...85

4.10 Optimization Formulation...90

5. DECISION GUIDANCE SYSTEM AND METHODOLOGY92

5.1 Unity DGMS..92

5.2 Opti-Soft+ DGS ...98

viii

5.3 METHODOLOGY... 105

6. EXAMPLE .. 110

6.1 Parameters ... 114

6.1.1 Parameters - Release Schedule .. 114

6.1.2 Parameters - Business Service Network ... 115

6.1.3 Parameters – ANDService and ORService... 116

6.1.4 Parameters – InputDrivenAtomicService ... 117

6.1.5 Parameters – Software Development ... 122

6.2 Recommendation of the To-Be BSN ... 122

6.3 Computation of the To-Be BSN .. 125

6.3.1 Computation – Software Development .. 126

6.3.2 Computation – Atomic Service ... 127

6.3.3 Computation – OR Services .. 128

6.3.4 Computation – AND Service .. 128

6.3.5 Computation - Business Service Network .. 129

6.3.6 Computation - Release Schedule ... 130

6.4 Computation of the As-Is NPV ... 130

6.4.1 SoftwareDevelopment Computations .. 131

6.4.2 BSN Computations ... 131

ix

6.4.3 Release Schedule Computations .. 131

6.5 Total Benefit .. 132

6.6 Constraint Computation and Validation for the To-Be 132

6.6.1 Constraint Computation and Validation – Software Development 133

6.6.2 Constraint Computation and Validation – Atomic Service...................... 133

6.6.3 Constraint Computation and Validation – ORservice 134

6.6.4 Constraint Computation and Validation – ANDservice 136

6.6.5 Constraint Computation and Validation – BusinessServiceNetwork 137

6.6.6 Constraint Computation and Validation – ReleaseScheduling................. 138

7. SENSITIVITY ANALYSIS ... 140

7.1 Sensitivity Analysis 1 ... 141

7.2 Sensitivity Analysis 2 ... 143

8. EVALUATION.. 144

8.1 Case Study Description – Board of Professionals Web Portal....................... 144

8.2 Case Study – Opti-Soft+ Recommendation ... 147

8.3 Case Study – Revenue .. 150

8.4 Case Study – IFM Recommendation ... 153

8.5 Case Study – F-EVOLVE* Recommendation.. 155

8.6 Case Study – Comparison ... 158

x

9. COMPARISON OF OPTI-SOFT+ WITH RELATED APPROACHES 162

9.1 Comparison: Characteristics and Capabilities .. 162

9.2 Comparison: Closing the Limitation Gap .. 163

9.3 Comparison: Claims ... 164

10. CONCLUSION ... 165

11. Limitations and Future Work .. 168

APPENDIX 1 – DGS SOURCE CODE ... 170

APPENDIX 2 - DEFINITIONS ... 191

REFERENCES ... 194

PUBLISHED PAPERS.. 200

BIOGRAPHY ... 201

xi

LIST OF TABLES

Table Page

Table 1 - Limitations of Value-Oriented, Financial-based Approaches10

Table 2 Opti-Soft Contributions Comparing to Current Approaches16

Table 3 - Cash flow analysis for a software development project using traditional feature

delivery as presented in [15] ..20

Table 4 - Cash flow analysis for the same software development project using incremental

feature delivery as presented in [15] ...21

Table 5 - Sequence Adjusted NPV Example as presented in [15]22

Table 6 – WSANPV for Strands for Periods 1, 2 and 4 ...24

Table 7 - NPV of the sequence 1ACGD2EFB as presented in [15]25

Table 8 - Characteristics of the Related Approaches ...30

Table 9 - Summary of Limitations of Related Approaches ..32

Table 10 - Required Features to Activate a Service ...42

Table 11 - Application Adjudication BSN Configuration After Each Release42

Table 12 - Generalized Service Model for the Application Adjudication BSN45

Table 13 - Instantiation of the Binary Function for the As-Is BSN.................................46

Table 14 - Mapping of Formal Components to JSONiq AM Modules.......................... 100

Table 15 – Candidate Features ... 110

Table 16 - Release Scheduling Parameters ... 115

Table 17 - Business Service Network Parameters ... 116

xii

Table 18 – Composite Services Parameters .. 117

Table 19 - InputDrivenAtomicService Parameters Required Features and Cost per Day

 ... 117

Table 20 - InputDrivenAtomicService Parameter IOThruRatio 118

Table 21 - InputDrivenAtomicService Parameter RoleTimePerIO 118

Table 22 - InputDrivenAtomicService Parameter CostPerInput 119

Table 23 - InputDrivenAtomicService Parameter CostPerOutput 120

Table 24 - Decision Variable On(r) where s is the service id, and r is the release number

 ... 120

Table 25 - Decision Variable InputThru(s,i,r), where s is the service id, 121

Table 26 - Software Development Parameters .. 122

Table 27 - Release Scheduling Decision Variables ... 123

Table 28 - Service Decision Variable On(s,r), where s is the service id and r is the release

number ... 123

Table 29 - Example of the Configurations of the SN ... 124

Table 30 - Service Decision Variable InputThru(s, i,r), where s is the service id, 125

Table 31 - Software Development Computations .. 126

Table 32 - InputDrivenAtomicService Computations - TimePerDay 127

Table 33 - InputDrivenAtomicService Computation - CostPerDay.............................. 128

Table 34 - ORservice Computation - CostPerDay... 128

Table 35 - ANDservice Computation - CostPerDay.. 129

Table 36 - BusinessServiceNetwork Computation - CashFlow 129

xiii

Table 37 - ReleaseScheduling Computation - CashFlow ... 130

Table 38 - As-Is BSN CashFlow .. 131

Table 39 - As-Is NPV .. 132

Table 40 - Release Schedule for the Example ... 138

Table 41 - Constraint: FeatureDependenciesAreSatisfied .. 139

Table 42 - Results of the Sensitivity Analysis ... 142

Table 43 - Board of Professionals: Software Features ... 145

Table 44 - Board of Professionals: Processes and Enabling Features 146

Table 45 – Board of Professionals: Release Scheduling Parameters............................. 148

Table 46 - Board of Professionals: BSN Parameters ... 148

Table 47 - Board of Professionals: Composite Services Parameters 148

Table 48 - Board of Professionals: Atomic Services Parameters 149

Table 49 - Board of Professionals: Software Development Parameters 149

Table 50 - Board of Professionals: Release Plan and Corresponding BSN 149

Table 51 - Board of Professionals: Daily Cost Reduction per Feature 151

Table 52 - Board of Professionals: F1 Revenue if Developed in Release 1................... 152

Table 53 - Board of Professionals: Revenue per Feature per Release 153

Table 54 - Board of Professionals: IFM Selection of Feature in Release 1 154

Table 55 - Board of Professionals: IFM Selection of Feature in Release 2 154

Table 56 - Board of Professionals: IFM Selection of Feature in Release 3 154

Table 57 - Board of Professionals: IFM Release Plan.. 155

Table 58 - Board of Professionals: F-EVOLVE* Revenue per Feature per Release 157

xiv

Table 59 - Board of Professionals: F-EVOLVE* constraints 157

Table 60 - Board of Professionals: F-EVOLVE* Instantiated Decision Variables 158

Table 61 - Board of Professionals: Recommendations of the Three Methods 158

Table 62 - Board of Professionals: Cost Reduction per Feature (reproduction)............. 159

Table 63 - Characteristics of Prominent Approaches Compared to Opti-Soft+ 162

Table 64 - Limitations of Prominent Approaches Compared to Opti-Soft+ 163

xv

LIST OF FIGURES

Figure Page

Figure 1 - BPN Cost Reduction due to the Investment in Software Features38

Figure 2 – Initial Application Adjudication BSN0 ...41

Figure 3 - Final Application Adjudication BSN after 4 Releases43

Figure 4 - BSN Transitions and Dependencies Between Services and Features44

Figure 5 - Hierarchy of the Components of the Formal Model.......................................58

Figure 6 - Roll up of cost calculations from the bottom to the top..................................60

Figure 7 - Unity's Reference Architecture as presented in [29]93

Figure 8 - Annotated Decision Variables in Unity as presented in [10]95

Figure 9 - Schematic View of Unity’s Optimization Process as presented in [9].............96

Figure 10 - Example of Optimization of a Cost Metric, as presented in in [10]...............97

Figure 11 - DGS JSONic Modules ...99

Figure 12 - DGALMain.jq ... 101

Figure 13 - varInput.json File, which Contains Parameters and Decision Variables

 ... 102

Figure 14 - Snippet of SofDevModel.jq.. 103

Figure 15 - Feature Dependency Graph .. 111

Figure 16 - As-Is BSN Configuration ... 111

Figure 17 - Generalized BSN (Root Service) .. 112

Figure 18 - Generalized Service A ... 112

xvi

Figure 19 - Generalized Service B.. 113

Figure 20 - Generalized Service C.. 113

Figure 21 - Hierarchy of the Components of the Formal Model................................... 114

Figure 22 - To-Be BSN ... 124

Figure 23 - Plot of δ and UC(δ).. 143

Figure 24 – Board of Professionals: Processes .. 144

Figure 25 – Board of Professionals: Initial BSN and First Transition 147

xvii

LIST OF ABBREVIATIONS

AM ... Analytical Module

BSN.. Business Service Network

DGAL .. Decision Guidance Analytics Language

DGS .. Decision Guidance System

FLWOR... For, Let, Where, Order by and Return

IFM .. Incremental Funding Method

JSON ... JavaScript Object Notation

NPC.. Net Present Cost

NPV ... Net Present Value

PM ... Performance Model

SN .. Service Network

0

ABSTRACT

OPTI-SOFT+: A RECOMMENDER FOR OPTIMAL SOFTWARE FEATURE
SELECTION AND RELEASE PLANNING

Fernando Boccanera, Ph.D.

George Mason University, 2022

Dissertation Director: Alexander Brodsky

Many software development projects fail completely or partially because they do not

deliver much business benefit, that is, the return on the investment in the software is either

zero or not enough to justify the investment. Knowing the business value of a potential

software investment up front is a real challenge.

Multiple approaches have been proposed to increase the return on a software

investment. However, they (1) don’t have a valuation model, but instead rely on external

stakeholders to provide valuation estimations, (2) are inaccurate, (3) are not reusable from

one case to another, (4) require a high level of effort, and (5) are inflexible to changes.

To bridge this gap for the class of information systems that reduce the cost of the

operations of a business process, developed in this dissertation is a Decision Guidance

framework, called Opti-Soft+, to recommend a release schedule of software features that:

(1) minimizes the combined cost of software development and improved business

operations over the investment time horizon; and (2) outperforms the existing approaches.

1

Opti-Soft+ is unique in that it (1) is based on an accurate formal modeling of the BSN in

terms of net present value as a function of the BSN configuration, which is enabled by the

synergetic effect of multiple interrelated software features; and (2) completelyeliminates

manual, time-consuming and often inaccurate estimation of the BSN cost reduction.

In order to develop the Opti-Soft+ framework, the contributions of this dissertation

include: (1) a formal analytic model that accurately computes the Net Present Value of both

the software development and the improved business process operation over the time

horizon of the investment; (2) a decision guidance system and methodology that codifies

the formal analytic model and its inputs, formulates an optimization problem, solves it,

recommends an optimal release schedule of software features and guides a decision-maker

through the steps to setup and run the system; (3) methods for sensitivity analysis; and 4)

an evaluation through a case study.

2

1. INTRODUCTION

1.1 The Problem

Many software development projects fail because they do not deliver much business

benefit. Pucciarelli and Wiklund, [33], in a highly publicized report by the International

Data Corporation (IDC), estimate that 25% of projects fail and another 25% do not provide

any return on investment (ROI). The Standish Group, in their 2011 Chaos Report [42] had

similar findings: 29% of projects were successful, 49% were challenged and 22% failed.

Nine years later, the Standish Group Chaos Report for 2020 [41] still found only marginal

improvements: 31% of projects were successful, 50% were challenged and 19% failed.

Standish [42] also found that of the projects that do not fail, 45% of the functionality is

never used, resulting in zero business value.

Failure factors such as not providing any ROI, or delivering software that is largely

unused, are two sides of the same issue, which is that many projects do not seem to take

into consideration the value, aka benefit, of the delivered software to the business that

invested in it. Although many approaches have been developed to address this, they all

have strong limitations and imprecisions.

The problem then is how to design an approach that delivers value back to the

business that is commensurate to the investment, is accurate and has less limitations than

the current approaches. Such a value-oriented approach would need to have the following

characteristics: 1) a comprehensive model for understanding the investment environment,

including the valuation factors, 2) an analytical method for determining business value with

3

precision and another method for optimizing it, 3) a value-oriented software engineering

methodology that uses the model and the method in order to continuously and iteratively

make delivery decisions that generate the highest possible business value, and 4) addresses

the limitations of current approaches.

This dissertation provides a solution to this problem for a class of investments in

information systems that reduce the operations cost of a Business Service Network (BSN),

where a BSN is a network of service-oriented components that are linked together to

produce a business product. The solution, called Opti-Soft+, possesses all the

characteristics of the value-oriented approach described above. In addition, it completely

eliminates the effort to manually estimate or re-estimate valuation point, significant ly

reduces the effort to conduct ‘what if’ or sensitivity analysis and guides a decision maker

through the steps to utilize the framework.

1.2 Research Gap

As the previous section and statistics demonstrate, software projects that are completed

successfully and deliver a product that returns considerable value to the business are not

the norm.

It is clear that in order to increase the rate of project success, the resulting software

needs to deliver substantial business benefits, which requires a value-oriented approach.

Historically, the first attempt to address business benefits was to treat software as an asset

and include it in an organization’s capital budgeting process. This required projects to be

evaluated ex-ante through a business case, that is, prior to the decision to invest, and led to

4

the development of a strong body of knowledge and methods [45], [18], [24], [23]. In these

business-case oriented approaches, after the investment period ends, an evaluation is

conducted, ex-post, in order to verify whether the benefits from the business case were

actually realized. However, Lin et al. [25] and Song & Letch [40] found that ex-ante

business case and ex-post evaluations of software investments did not materially improve

the realization of business value.

One reason that business benefits were not realized is that often, the project

execution team is not driven by them; there is a disconnect between decisions made on

software functionality during project execution and the business case, creating a benefit

gap. In his seminal work, Boehm [8] observed that the value-neutral software engineering

practices of the time, seriously degraded project outcomes, and suggested that a value

perspective should be integrated into the practices.

In the past two decades, there has been considerable research to address the benefit gap

by adopting Boehm’s suggestion of embedding business value considerations into the

software development life cycle, resulting in the creation of many value-oriented

approaches [4], [1], [22], [15], [27], [43]. These value-oriented approaches can be

categorized as stakeholder-based, non-financial-based and financial-based.

1.2.1 Value-oriented Approaches: Stakeholder and Non-financial Based

In stakeholder-based approaches, the interest of stakeholders is assessed to determine the

value of software functionality. Bagnall et al. [4] assigns weights to customers based on

their importance to the organization, with the goal of finding a subset of customers whose

5

requirements are to be satisfied within the available cost of the software release. AlBourae

et al. [1] proposed a light re-planning model to select the most promising software features

with the goal of achieving higher stakeholder satisfaction. The main technique used was

stakeholders' voting.

Non-financial-based approaches use a non-financial metric as a proxy for value.

One example is the Benefit Points method proposed by Hannay et al. [22]. The method

assigns benefit points to user stories in a way similar to the assignment of story points in

Agile practices. Benefit points link the user story to the business case but they are relative,

not absolute and consequently cannot be compared across investments.

Both stakeholder-based and non-financial-based approaches are subjective, lack

consistency in assigning values and consequently are of limited use in realizing business

value.

1.2.2 Value-oriented Approaches: Financial-based

Financial-based approaches are the most widely used value-oriented methods [15],]27],

[43] and are discussed next. They draw from the field of finance and commonly adopt Net

Present Value (NPV) as a proxy to measure benefits of the investment in software, because

NPV is widely used in capital budgeting to analyze the profitability of potential

investments. NPV is the difference between the Present Value of cash inflows and the

Present Value of cash outflows over a period of time. Present Value is the current worth of

a future sum of money, given a specified rate of return. The rate used in capital budgeting

is called the hurdle rate, which is defined as the minimum rate that an entity expects to earn

6

from the investment. A pre-requisite to the calculation of NPV is the estimation of cash

flows over a number of accounting periods within the investment horizon. The cash flow

estimation can be conducted at many levels of granularity, with the lowest level being at

the software requirement level.

 Financial-based approaches are best suited to projects that deliver software in

increments called releases so that the business benefit can be harvested after each release.

The business benefit of each software functionality is evaluated and then used to make

decisions during the release planning phases of the software development life cycle. We

use the Agile term feature as synonym for software functionality or capability. A feature is

a group of requirements that when implemented, expose a piece of functionality, a

capability, that is beneficial to an end user.

Incremental Funding Methodology

The most popular and highly influential financial-based approach is the Incremental

Funding Methodology (IFM) proposed by Denne and Cleland-Huang [15], [14]. IFM

delivers software features as early as possible in order to maximize their business value. It

assumes a software development life cycle that delivers software continuously and

iteratively, consequently it can be utilized within the framework of modern Agile

methodologies like Scrum. IFM associates cash flows (revenue and cost) to each software

feature, but it does not provide any guidance on how to estimate the cash flows, it simply

assumes that they are given.

7

F-EVOLVE*

Another financial-based approach is F-EVOLVE*, proposed by Maurice et al. in [27].

F-EVOLVE* is an iterative and evolutionary approach that facilitates the involvement of

stakeholders to achieve increments (releases) that result in the highest degree of satisfaction

among different stakeholders. Multiple stakeholders estimate the revenue of each software

feature. Stakeholders are assigned a relative importance weight and the final revenue of

each feature is the weighted average of the stakeholder estimates for the feature.

The approach considers features, revenues, releases and development resources. It

provides decision support for the generation and selection of release plan alternatives, by

formulating an Integer Linear Programming (ILP) problem with the goal of offering the

most profitable sequence of features. It requires that the revenue as well as the cost of the

software be given by stakeholders as a single combined cash flow. Like IFM, it does not

provide any guidance on how to estimate the cash flows, it simply assumes that they are

given.

van den Akker et al.

In [43], van den Akker et al. proposes an approach and tool for the selection of requirements

for the next release, based on solving an ILP problem. The approach is very similar to

F-EVOLVE*, with two differences; 1) it does not recommend a release plan for the entire

software development project, it just recommends features for the next release; and 2) it

does not consider multiple stakeholders, each revenue has only one estimation point.

The approach assumes that a release’s best set of requirements is the set that results

in maximum projected revenue against available resources in a given time period. It takes

8

into account the total list of requirements, whether or not requirements are dependent on

one another, a requirement’s projected revenue, and a requirements resource claim per

development team.

1.2.3 Limitations of Existing Value-based Approaches

A major limitation of all the current value-based approaches is that they do not have a

method to estimate value points, they just expect that someone, e.g., stakeholders, provide

the data points. This leads to inconsistency, subjectivity, and imprecision.

A second limitation that leads to imprecision is the need to draw a direct correlation

between a benefit, like an increase in revenue, and a software feature. Such correlation is

not trivial and researchers have acknowledged this difficulty, e.g., Devaraj and Kohli [16]

noted that “the principal issue encountered is whether we can isolate the effect of IT on

firm performance. It does not have an easy answer, because it means disentangling the

effect of IT from various other factors such as competition, economic cycle, capacity

utilization, and many other context-specific issues.”.

A third limitation is that each and every unit of benefit like revenue, has to be

mapped to one and only one software feature. This is not a realistic assumption because

often, realizing a business benefit does require the implementation of more than one

software feature. The result of this assumption is imprecision, because in situations where

the benefit is caused by a group of features, the practitioner is forced to divide the value

among the features.

9

A fourth limitation is that the approaches do not consider the cost of maintaining

the software once it is implemented, leading to a major imprecision.

A fifth limitation is that the approaches require a considerable effort to estimate a

large amount of value points. In an example with 4 releases, 3 stakeholders and 50 features,

the number of estimation points in IFM and F-EVOLVE* would be 200, while in van den

Akker et al. would be 600.

A sixth limitation is that the approaches are not flexible; they demand manual

recalculations when any factor change such as labor rates, investment period, discount rate,

etc. This inflexibility also requires a significant manual effort to conduct ‘what if’ or

sensitivity analysis.

Value-oriented approaches like stakeholder and non-financial based are of limited

use, so we do not consider them further. For the financial-based approaches, Table 1

summarizes their limitations.

10

Table 1 - Limitations of Value-Oriented, Financial-based Approaches

Limitation IFM F-EVOLVE* van den Akker et al.

Characteristics that lead to
imprecision

1) lack of valuation model,
2) granularity,
3) one-to-one mapping
4) discounting method
5) software maintenance
cost not included

1) lack of valuation model,
2) granularity,
3) one-to-one mapping
4) discounting method
5) software maintenance
cost not included

1) lack of valuation model,
2) granularity,
3) one-to-one mapping
4) discounting method
5) software cost not included

Valuation effort to set the
method up (f=features,
r=releases, s=stakeholders,
c=factors)

High

(f * r* c) points manually
calculated

High

(f * r * s * c) points
manually calculated

High

(f * c) points manually
calculated

Valuation effort when factors
change

Very high

Manual recalculations
needed when any factor
change such as labor rates,
discount rate, investment
period, etc…

Very high

Manual recalculations
needed when any factor
change such as labor rates,
discount rate, investment
period, etc…

Very high

Manual recalculations needed
when any factor change such
as labor rates, discount rate,
investment period, etc…

Effort to conduct 'what if' or
sensitivity analysis

High

require manual
recalculations

High

require manual
recalculations

High

require manual recalculations

Reason discounting causes
imprecision

Done at the end of the
release

Done at the end of the
release Not done

Section 2 provides more details of the Financial-based approaches.

1.3 Research Challenges

The previous section examined the limitations of the current value-oriented, financial-

based approaches, and these limitations lead to the following research challenges:

1. How do we develop a formal valuation method that accurately computes the net present

value of both the software development and the improved BSN operation as a function

of (1) a release schedule of software features, (2) an implicitly defined set of feasible

BSN configurations that are enabled by implemented software features, (3) software

features that are required to enable each atomic BSN service, (4) software features

dependency graph, and (5) a range of cost and operation parameters; where the method

11

closes the research gap of imprecision and the inability to map a benefit to more than

one feature?

2. How do we develop a Decision Guidance System (DGS) and methodology that

recommends a release schedule of software features that minimizes the combined cost

of software development and the BSN operations over the investment time horizon;

where the DGS closes the research gap of high effort to estimate valuation points?

3. How do we develop a method for sensitivity analysis of the normalized cost per unit of

production, for a recommended release plan and associated improved BSN, as a function

of the BSN throughput, where the method closes the research gap of inflexibility and

requiring manual re-evaluations?

4. How do we develop an evaluation that demonstrates that Opti-Soft+ performs better

than the current approaches in some realistic cases?

1.4 Thesis Statement and Summary of Contributions

The limitations of the current approaches have shown that no approach is able to address

the above challenges. One reason is that the approaches don’t have a cost/benefit model of

the investment environment, they just assume that external stakeholders provide the

cost/benefit estimates. Developing such a model is challenging if the scope encompasses

all possible systems, but it is possible for a particular domain. In this dissertation, that is

the strategy that we adopt, that is, we propose a cost/benefit model and address the

limitations and inaccuracy of the current approaches for a specific class of systems.

12

The dissertation focuses on a class of information systems that reduces the cost a

Business Service Network (BSN), where a BSN is a network of service-oriented

components that are linked together to produce a business product, for example, a BSN

composed of 5 services, each performed by a person, that take a grant application as input

and produces, as output, a decision on the grant.

1.4.1 Thesis Statement

For a class of information systems that automate and reduce the cost of operation of a

Business Service Network (BSN), it is possible to develop a Decision Guidance (DG)

software framework, called Opti-Soft+, to recommend a release schedule of software

features that minimizes the combined cost of software development and the BSN

operations over the investment time horizon. It is also possible to demonstrate that the

framework outperforms the current approaches in terms of added business value and

required effort. In lifting current limitations of value-based software release approaches,

Opti-Soft+ is unique in that it (1) is based on an accurate formal modeling of the BSN in

terms of net present value as a function of the BSN configuration, which is enabled by the

synergetic effect of multiple interrelated software features; and (2) completely eliminates

manual, time-consuming and often inaccurate estimation of the BSN cost reduction. Opti-

Soft+ comprises of (1) a formal analytic model that computes the combined cost of the

BSN and software development, given a candidate release schedule and an implicit ly

defined space of BSN configuration alternatives and the software features that enable them;

(2) a decision guidance system that recommends an optimal release schedule, which is

13

produced by converting a formal analytic model and a library of components into a mixed-

integer linear programming (MILP) problem and solving it using an MILP solver; and (3)

a methodology to recommend software release schedules that does not require manual

estimations and is flexible to change valuation factors and conduct ‘what if’ or sensitivity

analysis. Opti-Soft+ moves the software investment benefit estimation from a manual,

subjective approach to a systematic, model-based methodology that we believe results in

considerably higher return on the software investment.

1.4.2 Summary of Contributions

The key contributions of this dissertation are as follows:

1. Formal Analytic Model: The design and development of a formal analytic model that

accurately computes the net present value of both the software development and the

improved BSN operation as a function of (1) a release schedule of software features, (2)

an implicitly defined set of feasible BSN configurations that are enabled by the

implemented software features, (3) software features that are required to enable each

atomic BSN service, (4) software features dependency graph, and (5) a range of cost and

operation parameters.

The analytical model is novel and unique in terms of the following: (1) it

completely eliminates manual, time-consuming and often inaccurate estimation of the BSN

cost reduction, by exposing valuation factors as parameters that can be easily changed prior

to using the DGS to re-compute the recommendation; (2) it provides the equations to

precisely compute the cost of the software and the business benefit due to improved BSN

efficiency instead of estimating them as in the current approaches; (3) it leverages the

14

insight that there is a direct correlation between the implementation of a set of software

features and the improvement in the BSN operational efficiency, and the degree of

improvement can be accurately calculated; (4) instead of estimating BSN improvement

value per feature, which may not be realistic, the model estimates the value at the level of

the business process, for the synergetic effect of features on the improved BSN

configuration and operation; and (5) it provides a more accurate and granular (daily) cash

flow discounting.

2. Decision Guidance System (DGS) and Methodology: The design and development

of a DGS and a methodology, collectively called OptiSoft, to recommend a release schedule

of software features that minimizes the combined cost of software development and the

BSN operations over the investment time horizon. The methodology guides a decision-

maker through the steps to setup and run the DGS to get a recommendation. The DGS uses

the formal analytic model and the input of (1) an implicitly defined set of feasible BSN

configurations that are enabled by implemented software features, (2) a set of software

features required to enable each atomic BSN service, (3) a software feature dependency

graph, and (4) a variety of cost and operation parameters. The DGS machine-generates a

Mixed Integer Linear Programming (MILP) optimization problem and solves it using a

commercial solver (CPLEX or Bonmin) and recommends the optimized Release Schedule

to stakeholders. The DGS is unique and novel in the following ways: (1) it is based on an

extensible repository of component models, which are written in a high level query

language (JSONiq) rather than in a lower-level mathematical programming modeling

languages such as AMPL, yet achieves the performance of commercial MILP solvers (2)

15

it is modular, reusable and extensible, allowing development of new components that can

easily integrate with existing ones; and (3) it significantly reduces the effort to conduct

‘what if’ or sensitivity analysis, because different scenarios and sensitivities can be easily

analyzed by changing one or more parameters, rerunning the DGS and comparing the

results.

3. Methods for Sensitivity Analysis: The development of methods of sensitivity analysis

of the normalized cost per unit of production, for a recommended release plan and

associated improved BSN, as a function of the BSN throughput. The methods help

stakeholders make more informed decisions when cost factors may change.

4. Initial Evaluation that demonstrates that Opti-Soft+ performs better than the current

approaches in common situations where a benefit is driven by more than one feature. Given

two features A and B, in cases where Benefit(A, B)>Benefit(A)+Benefit(B), Opti-Soft+

correctly includes Benefit(A,B) in the total benefit while the current methods will, at the

most, include Benefit(A)+Benefit(B). In this case, Opti-Soft+ outperforms the current

methods by Benefit(A,B) - (Benefit(A)+Benefit(B)).

 Table 2 shows how Opti-Soft+ contributions compare with the current approaches.

Additional comparisons are discussed in Section 9.

16

Table 2 Opti-Soft Contributions Comparing to Current Approaches

 IFM F-EVOLVE*
van den
Akker et

al.

Opti-
Soft+

Recommend an entire release
schedule ✔ ✔ Only next

release ✔

Includes combined SW cost and
business benefits ✔ ✔ - (excludes

SW)

Applicable to general SW projects ✔ ✔ ✔

-

For BSN
only

Accurate formal model of business
benefit as a function of SW features
(vs. external manual valuation)

- - - ✔

Associate synergetic business value
with multiple features (as opposed to
silo features)

- - - ✔

Includes software maintenance cost
beyond the release where it is
developed

- - - ✔

Low effort, high flexibility and
scalability to conduct valuations - - - ✔

Support sensitivity analysis of
recommendations - - - ✔

Based on formal optimization (math
programming based) - - - ✔

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows: Section 2 discusses the work related to

our proposed framework; Section 3 explains the framework’s model; Section 4 presents

the formal analytical model; Section 5 describes the Decision Guidance System and the

methodology; Section 6 shows the approach through an example, Section 7 shows the

sensitivity analysis technique, Section 8 discusses an evaluation, Section 9 compares the

framework to the current approaches, and Section 10 concludes the dissertation.

17

2. RELATED WORK

In this section we start with a discussion of Agile Release Planning as a foundation to

discuss the related financial-based approaches and then cover some of them.

2.1 Agile Release Planning

Agile Release Planning is a technique used in Agile software development, which is an

approach where self-organizing teams collaborate with the customer to conduct

requirements analysis, design, development and implementation in short, timeboxed and

iterative periods where working software is delivered at the end of each period. Agile

software development has the potential to deliver software that is actually useful to the

customer because the customer is an integral member of the development team. Due to the

interactive participation of the customer, Agile is also geared towards rapid response to

changes.

The term was coined and popularized in the Agile Manifesto [19], which codifies

four values and twelve principles. Principle number one states that “Our highest priority is

to satisfy the customer through early and continuous delivery of valuable software”. This

principle adopts Boehm’s [8] suggestion of embedding business value considerations into

the software development life cycle.

In Agile, usually requirements are placed in a product backlog. Through a planning

process, product backlog items are removed from the backlog and assigned to timeboxed

iterations. Some Agile approaches like Scrum have two types of timeboxes: sprints and

18

releases. A sprint has a fixed number of weeks (usually 1 to 4) and a release contains a

fixed number of sprints. There are at least two types of items in the product backlog:

features and user stories. Features are at the granularity of the business, that is, they are a

self-contained piece of functionality that are identifiable by the customer to have business

value. Features are broken down into user stories, which are small units that can be

developed in a few hours.

There are two types of planning in Agile: Release and Sprint. Release Planning is

the process of assigning features to particular releases while Sprint Planning is the process

of assigning user stories to sprints.

Both features and user stories have their size estimated, usually in points. An Agile

point is a proxy for effort, that is, the higher the effort, the higher the number of points. For

each timebox (sprint or release), the capacity of the team is estimated in number of points.

The team’s capacity is a function of the duration of the timebox, the number of developers

and the average productivity of the developers. For example, in a team of 5 developers that

can produce, on average, 2 points per day, the team’s capacity for a sprint of 3 weeks is

5x2x15 or 150 points. The release capacity is a multiplier of the sprint capacity, for

example, if a release has 4 sprints, then the release capacity in our example is 600 points.

The estimation of capacity is central to Agile, because of the constraint of a fixed

timebox. Release Planning is then constrained by the release capacity, that is, no release

can have more feature points than the capacity of the release. After Release Planning, both

the duration and scope of the release is fixed.

19

Because decisions on which functionality to develop is made at Release Planning, this stage

is a prime target for methods that improve business value harvesting including Opti-Soft+.

In Scrum, the responsibility for benefit analysis is delegated to the Product Owner [35]. In

reality, the Product Owner faces enormous challenges in determining business values, and

the related approaches below try to address that.

2.2 Related Financial-based Approaches

In this section we discuss the following value-oriented, financial-based approaches that are

somewhat related to ours:

1. Incremental Funding Method

2. F-EVOLVE*

3. van den Akker et al.

4. Continuous Value-based IT Project Steering

Approaches other than the four above were not considered because they are not

comprehensive. For example, Riegel and Doerr [34] developed heuristics that can be used

to optimize requirements selection, but their cost metric only involves elicitation, not

development. Hannay et al. [22] used benefit points as a metric for business value but did

not propose a release scheduling approach. Elsaid et al. [17] used rule-based fuzzy logic to

prioritize requirements but did not consider the development cost.

2.2.1 Incremental Funding Method

The first value-oriented, financial-based approach related to Opti-Soft+ that we illustrate,

is the highly popular and influential approach called Incremental Funding Methodology

20

(IFM). Proposed by Denne and Cleland-Huang [15], [14], [12], IFM’s approach is to

deliver software features as early as possible in order to maximize their business value or

return. It assumes a software development life cycle that delivers software continuously

and iteratively, consequently it can be utilized within the framework of modern Agile

methodologies like Scrum. It also assumes that the business value of software, expressed

in terms of cash flows, is provided externally by a market analysis that precedes the

software development project, that is conducted as part of the business case.

In [15], the authors provide an example to demonstrate how the early delivery of

software features increases the positive cash flow. Table 3 shows the cash flows in a

traditional waterfall Software Development Life Cycle (SDLC) where the software is

delivered at the end. The project lasts one year while the investment period is two years,

and the accounting period is one quarter. The project requires an investment of $1.91M, it

starts producing revenue after 4 quarters when it ends. At the end of the two years

investment period, it returns $200K in undiscounted profit, with a ROI of 10%.

Table 3 - Cash flow analysis for a software development project using traditional feature delivery as
presented in [15]

21

Table 4 shows the cash flows if the application is partitioned into four equally

valuable features released independently during the first four quarters. Because revenue

starts accruing after the first quarter, when Feature 1 is delivered, the resulting profit at the

end of eight quarters is $475K, the investment is $1,675K and the ROI is 28%. The table

clearly shows that from a value perspective, delivering software in increments provides

significantly more financial benefits because value is harvested sooner than in the Waterfall

SDLC.

Table 4 - Cash flow analysis for the same software development project using incremental feature
delivery as presented in [15]

The IFM calls business features Minimum Marketable Features (MMFs) and

technical features are Architectural Elements (AEs) and it takes into account dependencies

22

among MMFs and AEs. It estimates the software development cost and the feature

financial benefit separately and then combines them into a single stream of cash flows, that

is, the software development cost has to be apportioned among the set of features. It then

discounts the cash flow of each feature and calculates the total NPV. Next, it takes each

feature total NPV and adjusts it to each accounting period. This is called Sequence

Adjusted NPV (SANPV). Table 5 shows the example from [15], for a project with a four

year investment period. In the example, AE1 is a precursor to MMF A, C and D, MMF A

precedes MMF B, AE2 is a precursor to MMF E and F, and MMF G has no dependency.

Also, MMF A requires two periods to be implemented while all others require only one

period. If MMF A is developed in quarter 1, its SANPV is $862K, while if it is developed

in quarter 8, it is only 257K.

Table 5 - Sequence Adjusted NPV Example as presented in [15]

Once the SANPV is determined, the IFM then chooses the sequence of features. It

employs a heuristic algorithm that uses a simple look-ahead approach. The algorithm views

23

sequencing options as strands, which are sequences of features linked by dependencies. In

step 1, it starts with strands that reflect the dependency graph with the first feature of each

strand being a feature that has no dependency. In the example, the sequence 1A., 1A.B,

A.B, 1C, 1D, 2E, 2F and G, where the dot after A means that MMF A requires two periods

to be developed. It then calculates the combined SANPV of the step 1 strands for period 1;

for strand 1A.B (feature AE 1 is developed in period 1, A in periods 2 and 3, B in period

4) , the SANPV=-$195K+$759K+$67K=$631K. Next it calculates the weighted SANPV

with the formula WSANPV=SANPV(1-WF(P-1)) where WF is the weighting factor and P

is the number of periods needed to develop the strand. The reason is that earlier developed

strands leave more time to develop other valuable features. WF is based on an empirical

study. For sequence 1A.B, the WSANPV is ($631K(1-(0.15(4-1)) or $347K. Then it

chooses the strand with the highest NPV for period 1, which according to Table 6, is 1A.,

which means that technical feature AE1 is developed in period 1.

24

Table 6 – WSANPV for Strands for Periods 1, 2 and 4

In step 2, it removes “1” from the step 1 strands and produces the second set of

strands: A., A.B, C, D, 2E, 2F, G. It then chooses the strand with the highest WSANPV,

which is A., that is, MMF A is developed in periods 2 and 3. The process is repeated until

the sequence contains all features. In the example, the heuristic selects sequence

1ACGD2EFB and Table 7 shows the NPV of the selected sequence, which is $1.1M. Note

that an IFM sequence is basically a release plan, where each letter represents the name of

the feature, and the letter position is the release (period) where the feature is developed.

25

Table 7 - NPV of the sequence 1ACGD2EFB as presented in [15]

The IFM innovated because it 1) combined the revenue and the cost of software

development at the feature level, 2) provided an algorithm for selecting a release plan and

3) demonstrated that the earlier a feature is released, the higher the NPV. However, its

application to projects with a large number of features is problematic because the number

of calculations grows exponentially. Also, IFM does not guarantee that the optimal

sequence is produced by the method.

2.2.2 F-EVOLVE*

In [36], Ruhe and Ngo-The propose EVOLVE*, an iterative and evolutionary approach

that facilitates the involvement of stakeholders to achieve increments (releases) that result

in the highest degree of satisfaction among different stakeholders. In [27], Maurice et al.

extend EVOLVE* by proposing F-EVOLVE*. In F-EVOLVE*, instead of voting,

stakeholders are asked to estimate the financial value of each software feature.

26

F-EVOLVE* provides decision support in the generation and selection of release

plan alternatives. The approach formulates an Integer Linear Programming (ILP) problem

with the goal of offering the most profitable sequence of features.

Given a set of features {F1,… Fn}, a set of stakeholders {S1, … Sq}, relative

importance 𝜆𝜆𝑝𝑝 for each Sp, and K releases, NPV(i,k,p) as the net present value of a cost

estimate for feature i in release k by Sp, the objective function is

���𝜆𝜆𝑝𝑝

𝑞𝑞

𝑝𝑝=1

𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑘𝑘,𝑝𝑝)
𝐾𝐾

𝑘𝑘=1

𝑥𝑥(𝑖𝑖, 𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

Where: x(i,k) is 1 if Fi is selected in release k or 0 otherwise

F-EVOLVE* has the following characteristics:

1. Multiple stakeholders estimate the revenue of each software feature. Stakeholders

are assigned a relative importance weight and the final revenue of each feature is

the weighted average of the stakeholder estimates for the feature.

2. Revenue estimates are projected over a fixed time horizon after the corresponding

feature is implemented. Changes in the time horizon would require re-estimating

each revenue.

3. The ILP formulation:

o Considers features, revenues, releases and development resources

o Maximizes the aggregate NPV

o Uses binary decision variables x(i,k) to map features to releases

o Produces a release plan by instantiating the binary decision variables,

subject to the following constraints:

27

 Development team capacity

 Dependencies among features

4. Provides a decision support system that:

o Solves the ILP problem

o Generates a set of alternative solutions from which the stakeholder can

make a decision.

2.2.3 van den Akker et al. Approach

In [43], van den Akker et al. propose an approach and tool for the selection of requirements

for the next release based on solving an ILP problem. The approach is very similar to

F-EVOLVE*, with two differences; 1) it does not recommend a release plan for the entire

software development project, it just recommends features for the next release; and 2) it

does not consider multiple stakeholders, each revenue has only one estimation point.

The approach assumes that a release’s best set of requirements is the set that results

in maximum projected revenue against available resources in a given time period. It takes

into account the total list of requirements, whether or not requirements are dependent on

one another, a requirement’s projected revenue, and a requirement’s effort to develop.

Given a set of requirements {R1, R2, … Rn} and their corresponding revenues {v1, v2, … vn},

the ILP formulation is shown below:

𝑚𝑚𝑚𝑚𝑥𝑥�𝑣𝑣𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 �𝑚𝑚𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

≤ 𝑑𝑑(𝑇𝑇)𝑄𝑄

28

𝑥𝑥 ∈ {0,1}
𝑥𝑥𝑗𝑗 ≤ 𝑥𝑥𝑘𝑘 𝑖𝑖𝑖𝑖 𝑅𝑅𝑗𝑗 𝑖𝑖𝑠𝑠 𝑑𝑑𝑠𝑠𝑝𝑝𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠 𝑡𝑡𝑑𝑑 𝑅𝑅𝑘𝑘

Where:

xj is 1 if Rj is selected or 0 otherwise

aj is the number of man-days to implement Rj

T is the development period

d(T) is the number of working days in the development period.

Q is the number of persons working in the development team

d(T)Q is the development team capacity in man-days.

The recommendation is a set of requirements for the next release that optimizes the

total revenue. In [44], the authors extend the original model to cover revenue-based

dependencies, i.e., a case where a set of requirements increase or decrease the revenue only

when they are combined in a package. Because the individual revenue of each requirement

in the package have already been considered, the extension reflects only the remaining

value. The extension models the case of increasing revenue separately from the case of

decreasing revenue. It adds one term to the objective function for the increase in revenue

and another for the decrease. It also adds two additional constraints, one for the increase

case and another for the decrease case.

The problem with this extension to handle revenue-based dependencies is that “if

part of the additional revenue is already obtained when a subset of the package is

implemented, the model becomes much more complex a.o. because we would have to

define variables for all subsets. If the packages are not disjoint, the additional revenue

might be reduced if two ‘overlapping’ packages are selected, which again complicates the

29

model.” The lack of independency between packages leads to imprecision because of

double counting.

2.2.4 Continuous Value-based IT Project Steering

The Continuous Value-based IT Project Steering approach by Fridgen et al. [21] has the

following steps:

1. Definition of project objectives

2. Derivation of specific requirements

3. Ex-ante evaluation and aggregation of cash flows for each requirement.

4. Continuous project success measuring and controlling

5. Ex-post measurement of cash flow realizations

The approach assumes that in step 3, cash flows cf(it) are initially evaluated for

each one of the requirements i in each period t with t = 0 . . . T. The method uses an interval-

based scheme for the evaluation of each cash flow. Because cash flows are assumed to be

normally distributed, the approach is able to derive expected value 𝜇𝜇𝑖𝑖𝑖𝑖 and standard

deviation 𝜎𝜎𝑖𝑖𝑖𝑖 for each requirement 𝑟𝑟𝑖𝑖 in each period 𝑠𝑠, which is then used to calculate the

distribution parameters of the Net Present Value for each requirement. The overall value

of the project is the aggregate NPV of all requirements. The standard deviation is used to

measure risk. Using these parameters, various methods of an integrated risk/return can be

applied to make an investment decision.

In step 4, at the end of every development period, the NPV is recomputed to account

for the fact that the cash flow for the requirements just implemented are not random

30

variables anymore because they are known with certainty. The approach then calculates a

metric called Project Success Measuring (PSM), which can be used to investigate the

deviations from the ex-ante business case.

In step 5, at the end of the project, the ex-post measurement of the total benefit is

compared with the ex-ante expected value, to gain insights that can be used in future

projects.

The authors claim that “treating cash flows as random variables clearly eases their

estimation, as no decision maker has to commit to exact values”. The approach might

provide a better treatment of the cash flows estimation, but they are still very subjective.

Also, it does not provide requirement prioritization, so its usefulness is largely diminished

by not influencing the order of the requirements. The PSM metric can be used to stop the

project if all high-value requirements have already been implemented, but this is the only

value-based decision allowed by the approach during project execution.

2.2.5 Comparison of Related Approaches

Table 8 summarizes the characteristics of each approach described above.

Table 8 - Characteristics of the Related Approaches

Characteristic IFM F-EVOLVE* van den Akker et
al.

4. Continuous Value-
based IT Project

Steering
Business benefit
metric Total NPV Total NPV Total Revenue NPV

Built in valuation
model

No, value estimates are
given

No, value estimates are
given

No, value estimates
are given

No, value estimates
are given

Value metric Projected Cash Flow Projected Revenue Projected Revenue Projected Cash Flow

Number of value
estimation points #features * #releases #features * #stakeholders

* #releases #features #features * #releases

31

Characteristic IFM F-EVOLVE* van den Akker et
al.

4. Continuous Value-
based IT Project

Steering
Granularity of value
estimation Feature Feature Feature Feature

Mapping of feature
to an estimation
point

One-to-one One-to-one

One-to-one
Many-to-many is

handled in a
complex way

One-to-one

Value estimation
incorporates
software
development

Yes Yes No No

Time horizon is built
into estimations Yes Yes Yes Yes

Discounting method Discount at the end of
each release period

Discount at the end of
each release period None Discount at the end of

each release period

Release schedule
recommendation

For the entire software
project

For the entire software
project

Only for the next
release

Does not recommend a
schedule.

Recommendation
method Heuristics ILP ILP

Total NPV is used ex-
ante to make a binary
investment decision

Supports feature
dependencies Yes Yes Yes No

Release size is
constrained by the
seize of feature

No more than 1 feature
per release Yes Yes N/A

Note that some of the characteristics in the previous table are actually limitations ,

for example, the second row shows that no approach has a built-in valuation model, they

all assume that value estimates are given.

Table 9 Summarizes the limitations.

32

Table 9 - Summary of Limitations of Related Approaches

Limitation IFM F-EVOLVE* van den Akker et
al.

Continuous Value-
based IT Project

Steering

Characteristics lead to
imprecision

1) lack of valuation
model,
2) granularity,
3) one-to-one mapping
4) discounting method
5) software
maintenance cost not
included

1) lack of valuation
model,
2) granularity,
3) one-to-one
mapping
4) discounting
method
5) software
maintenance cost
not included

1) lack of valuation
model,
2) granularity,
3) one-to-one
mapping
4) discounting
method
5) software cost not
included

1) lack of valuation
model,
2) granularity,
3) one-to-one mapping
4) discounting method
5) software cost not
included

Valuation effort to set the
method up (f=features,
r=releases, s=stakeholders,
c=factors, p=processes)

High,
(f * r* c) points

manually calculated

High,
(f * r * s * c) points
manually calculated

High,
(f * c) points

manually calculated

High,
(f * r * c) points

manually calculated

Valuation effort when
factors change

Very high.
Manual recalculations
needed when any
factor change such as
labor rates, discount
rate, investment
period, etc…

Very high.
Manual
recalculations
needed when any
factor change such
as labor rates,
discount rate,
investment period,
etc…

Very high.
Manual
recalculations
needed when any
factor change such
as labor rates,
discount rate,
investment period,
etc…

Very high.
Manual recalculations
needed when any
factor change such as
labor rates, discount
rate, investment
period, etc…

Effort to conduct 'what if'
or sensitivy analysis

High, require manual
recalculations

High, require
manual

recalculations

High, require
manual

recalculations
N/A

Reason discounting causes
imprecision

Done at the end of the
release

Done at the end of
the release Not done Done at the end of the

release

As the above table shows, a major limitation of all the current value-based

approaches is that they do not have a method to estimate value points, they just expect that

someone, e.g., stakeholders, provide the data points. This leads to inconsistency,

subjectivity, and imprecision.

A second limitation that leads to imprecision is the need to draw a direct correlation

between a benefit, like an increase in revenue, and a software feature. Such correlation is

not trivial and researchers have acknowledged this difficulty, e.g., Devaraj and Kohli [16]

noted that “the principal issue encountered is whether we can isolate the effect of IT on

firm performance. It does not have an easy answer, because it means disentangling the

33

effect of IT from various other factors such as competition, economic cycle, capacity

utilization, and many other context-specific issues.”.

A third limitation is that each and every unit of benefit like revenue, has to be

mapped to one and only one software feature. This is not a realistic assumption because

often, realizing a business benefit does require the implementation of more than one

software feature. The result of this assumption is imprecision, because in situations where

the benefit is caused by a group of features, the practitioner is forced to divide the value

among the features.

A fourth limitation is that the approaches do not consider the cost of maintaining

the software once it is implemented, leading to a major imprecision.

A fifth limitation is that the approaches require a considerable effort to estimate a large

amount of value points. In an example with 4 releases, 3 stakeholders and 50 features, the

number of estimation points in IFM and F-EVOLVE* would be 200, while in van den

Akker et al. would be 600.

A sixth limitation is that the approaches are not flexible; they demand manual

recalculations when any factor change such as labor rates, investment period, discount rate,

etc. This inflexibility also requires a significant manual effort to conduct ‘what if’ or

sensitivity analysis.

In the subsequent sections, we propose a framework to address the limitations of

the current related approaches.

34

3. OPTI-SOFT+ MODEL OVERVIEW

This section is an overview of the proposed approach hypothesized in the Thesis Statement.

The approach is called Opti-Soft+, and we show that it addresses the challenges described

in Section 1.2.

The accuracy of a method to recommend an optimal software delivery schedule can

be increased if the method is geared towards a class of software projects where the benefit,

as measured by the cash flows, can be isolated from other factors that influence the

financial performance of the organization. Such an isolation is possible in information

systems that improve the efficiency of a business process. A business process consumes

inputs and produces a product as its output, and the cost of a unit of the product is mostly

a function of the labor rates of the workstation workers and the time that each workstation

takes to produce the product.

Taking this concept one step further, the financial benefit of a software feature that

improves a business process can be determined by calculating the cost of the business

process before and after the software implementation. This means that there is a direct

correlation between a software feature and the business process improvement, and the

degree of improvement can be accurately calculated.

Together, the isolation and correlation properties above of information systems

basically say that the implementation of software features leads to more efficient business

processes, that is, the efficiency is a direct consequence of the availability of software

35

features. This efficiency is gained due to a reduction of the time a worker spends, or the

elimination of a portion of the process, or the utilization of workers with a lower labor rate.

The proposed framework, Opti-Soft+, recognizes the isolation and correlation

properties and takes advantage of them in order to calculate the potential business value of

software investment alternatives, and recommend a release plan, among many candidates,

that maximizes the investment

The uniqueness of the Opti-Soft+ framework is its accurate computation of the

value of the improvement, by formally modeling the Business Process Network (BPN) and

its associated costs over the investment time horizon, as a function of the software release

schedule. in Opti-Soft+, the estimation of the business value of software features is not

external, but instead, is at the heart of its cost/benefit model. The framework:

1. Has a built in, formal analytical model that encompasses all aspects of the investment

domain (business process, software development process, space of candidate release

plans).

2. Provides the equations to precisely compute the cost of the software and the business

benefit, instead of estimating them as in the current approaches.

3. Addresses the challenge of allocating value units by allocating value not at the level

of a feature, but at the level of a process.

4. Guides a decision maker through the steps to get a recommendation

5. Formulates and solves the MILP

36

6. Recommends an optimal release plan and business process configuration that

maximizes the net present value of the business cost aggregated with the software

development cost

Characteristics 1, 2 and 3 are novel and unique. Also novel and unique are the following

benefits:

• Significantly improves the precision of valuation points.

• Completely eliminates the effort to manually estimate or re-estimate valuation

points by exposing valuation factors as parameters that can be easily changed and

recomputed

• Significantly reduces the effort to conduct ‘what if’ or sensitivity analysis. Different

scenarios and sensitivities can be easily analyzed by changing one or more

parameters, rerunning the DGS and then comparing the results.

• Improves the precision of valuations even further by discounting monies on the day

that cash flows are incurred, instead of at the end of the release period. This is

accomplished by using a pay schedule.

We now provide an overview of the framework.

3.1 Business Cost

In order to maximize the business value from a software investment, we need to estimate

the cost of software development as well as the business benefit of the implementation of

the software. For a class of software projects that implement information systems that

37

improve a business process, the benefit of the software is the cost savings of the

improvement.

A business process consumes input flows, e.g., applications, and produces output

flows, e.g., grants. The cost associated with the business process is a function of the cost

drivers such as labor rates and time spent. This means that the benefit (savings) of an

investment in a software feature that improves a business process can be determined by the

difference in the cost of the process before and after the improvement induced by the

utilization of the software feature.

The above insight, that the implementation of a software feature allows the adoption

of more efficient business process networks (BPN) is key to Opti-Soft+, because each new,

more efficient BPN configuration can be identified, and its cost measured with precision.

In Figure 1, we have an initial BPN configuration, called BPN0 that can benefit from

automation and has a Net Present Cost NPC(BPN0). A cash investment NPC(SW1) is made

to implement software features SW1 in the first release (r=1). After release 1, the

availability of the software features SW1 allows process improvements, so BPN0 transitions

to BPN1, which has NPC(BPN1), which is lower than NPC(BPN0). The procedure

continues iteratively, with each investment NPC(SWr) in release r causing the BPNr-1 to

transition to BPNr, resulting in a lower NPC(BPNr).

38

Figure 1 - BPN Cost Reduction due to the Investment in Software Features

In order to calculate and optimize the cost savings, we need to model the BNP

transitions as well as the software features that enable them. In the following sections we

explain the underlying model for the BPN, its cost/benefit model and the cost/benefit model

for the software development.

3.2 BPN Modeling

To explain the BPN model, let’s start with the mechanics of a business process. Intuitively,

a business process is like a factory, where raw materials are incrementally transformed into

a finished product. A business process consumes inputs and produces a product and the

cost of a unit of the product is a function mostly of the labor rates of the workstation

workers and the time that each intermediate workstation takes to produce intermediate

products. This means that the cost, or cash outflow, of a BPN can be accurately determined

by computing its labor and any other non-labor cost.

39

We are interested in modeling the financial benefit, using cash flow as a proxy, of

a business process. The total benefit is the delta between the cash flow of the business

process before the system, the As-Is, and after, the To-Be. Because we want to influence

the software release schedule, that is, the sequence that the software features are

implemented, we need to consider the cash flow not at the end of the project, but at the end

of each release. This is because different release schedules produce different cash flows.

Consider a business process that takes as input a paper application and produces as

output an application decision. This simple process takes one single input and produces

one single output, although more generically, processes can have multiple inputs and

outputs. In this case, the process is driven by the input and there is a one-to-one relationship

between the input and the output. The unit cost, or cost outflow, is easily computed by

multiplying the labor rate by the time it takes to process a single application and adding

any other non-labor cost.

In the area of finance, the analysis of investment alternatives usually employs NPV

as the benchmark metric. The NPV of the As-Is BPN can be easily calculated by

multiplying the unit cost of each process by the number of times the process is executed,

summing and discounting. The same calculation applies to the To-Be BPN.

Now that we know how to accurately compute the NPV of a process, let’s examine

the link between a business process and the software features that make possible the

process to exist. In an incremental SDLC, each software feature is assigned to a specific

release and each release implements the assigned features and delivers them in the form of

business functionality. When a release is deployed, it can have a positive impact in the cost

40

of the business process. By positive impact we mean a reduction of the average labor rate

and/or a reduction of the time to produce one unit of the product or the use of workers with

a lower labor rate.

The Opti-soft+ approach uses the reduction in the labor cost to precisely calculate

the financial benefit of a software feature, as opposed to previous approaches that assume

the value of the benefit is given. To leverage this labor reduction, the initial BPN, the

As-Is, needs to change at the end of each release to take advantage of the software features

just implemented. This means that the BPN goes through several configurations until it

reaches the final, To-Be configuration.

The above insight, that the implementation of software features allows the usage of

more efficient business process networks is key to Opti-Soft+, because each new BPN

configuration can be modeled, and its cost measured and associated to a set of features.

Note that in this approach, there is no need to estimate the cost of individual features, a

feature is just a mechanism that triggers a change in the BPN configuration, while cost is

precisely calculated at the level of the BPN.

3.2.1 BPN Transition Based on Software Feature Implementation

We utilize a Service Network representation, as described in [11], to model the BPN. A

Service Network is a “network of service-oriented components that are linked together to

produce products”. Services can be composite, that is, have subservices or atomic, that is,

indivisible. We use the term Business Service Network (BSN) to refer to the representation

of a BPN as a Service Network.

41

We now show intuitively how processes called services, are modeled in a generic

way that allows them to be combined into a service network that can evolve with the

implementation of software features. We use an example of a BSN that takes a user

application as input, adjudicates the application and produces either a notice or a letter. For

this example, Figure 2 shows the initial BSN, the As-Is, which is composed of three

services in a sequence: AA, BA, CA. We call this configuration BSN0 and its Net Present

Cost (NPC) is NPC(BSN0).

AA.Manual
Application

Intake

BA. Manual
Adjudication

CA.Manual
Adjudication

Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User Application
Non

Compliance
Notice

Figure 2 – Initial Application Adjudication BSN0

Suppose also that feature F1 allows process, aka service, AA (Manual Application

Intake) to transition to AB (Electronic Application Intake), F2 allows BA (Manual

Adjudication) to transition to BB (Electronic Adjudication), F3 allows CA (Manual

Adjudication Review) to transition to CB (Electronic Adjudication Review) and F4 allows

AB to transition to AC (Self-service Application Intake). These dependencies between

services and features are summarized in Table 10.

42

Table 10 - Required Features to Activate a Service

Service Required
Feature

AA
AB F1
AC F4
BA
BB F2
CA
CB F3

If F1, F3, F2 and F4 are implemented in releases 1, 2, 3 and 4 respectively, then

after release 1, BSN0 (AA, BA, CA) transitions to BSN1 with subprocesses AB, BA, CA

and NPC(BSN0) changes to NPC(BSN1). After release 2, BSN1 transitions to BSN2 with

subprocesses AB, BA, CB and NPC(BSN1) changes to NPC(BSN2). After release 3, BSN2

transitions to BSN3 with subprocesses AB, BB, CB and NPC(BSN2) changes to

NPC(BSN3). After release 4, BSN3 transitions to BSN4 with subprocesses AC, BB, CB and

NPC(BSN3) changes to NPC(BSN4). These transitions are shown in Table 11.

Table 11 - Application Adjudication BSN Configuration After Each Release

Release BSN
configuration

BSN
subprocesses

Implemented
Feature

NPC

Before Rel 1
(As-Is)

BSN0 AA, BA, CA NPC(BSN0)

After Rel 1 BSN1 AB, BA, CA F1 NPC(BSN1)
After Rel 2 BSN2 AB, BA, CB F3 NPC(BSN2)
After Rel 3 BSN3 AB, BB, CB F2 NPC(BSN3)
After Rel 4

(To-Be)
BSN4 AC, BB, CB F4 NPC(BSN4)

43

Because each subsequent BSN is more efficient than the previous one, each

NPC(BSNr) is less than its predecessor NPC(BSNr-1). The final BSN, the To-Be, is AC,

BB, CB, which is illustrated in Figure 3.

AC. Self-service
Application

Intake

 BB.
Electronic

Adjudication

CB.
Electronic

Adjudication
Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User Application
Non

Compliance
Notice

Figure 3 - Final Application Adjudication BSN after 4 Releases

Figure 4 shows a diagram of the BSN transitions and the dependencies between

services and features. The diagram demonstrates that BSN1 is enabled by F1, which is

developed in release 1 and consequently available during release 2.

44

Figure 4 - BSN Transitions and Dependencies Between Services and Features

Note that there is no need to estimate the benefit, that is, the NPC of each feature;

the benefit is determined at the BSN level. By not estimating the NPC at the feature level,

the end result is more precise and it also eliminates a key assumption of previous

approaches, which is that every dollar of benefit can be allocated to one and only one

feature. In Opti-Soft+ a BSN transition may require multiple features, which is a more

realistic assumption. It is also simpler, because it eliminates the need to estimate cash flow

at the feature level, which is really challenging and prone to subjectivity. In this section we

use NPC as a proxy for business value, but in future sections we show that the metric

actually used by Opti-Soft+ is NPV. The NPC is the total cost of the BSN discounted by

the hurdle rate while the NPV is the cash flow, that is, NPC with a negative sign.

45

3.2.2 Generalized BSN Model

We now show how to model a BSN. Continuing with the example in the previous section,

we generalize the entire BSN by modeling it as a top-level service called ADJ

(adjudication) whose subservices are A, B and C, shown in Figure 4. Service ADJ requires

subservices A and B and C, consequently the relationship between ADJ and its subservices

is of the type AND. Let’s now model service A. Figure 4 shows that service A can have

configurations AA or AB or AC, consequently the relationship between A and its

subservices is of the type OR. Services B and C are also of the type OR. Service B is the

parent of subservices BA and BB and service C is the parent of subservices CA and CB.

Services ADJ, A, B and C are composite, that is, they are composed of subservices, while

AA, AB, AC, BA, BB, CA, CB are atomic, that is, indivisible. Table 12 shows the

generalized model for the Application Adjudication BSN, as well as the required feature

for each service.

Table 12 - Generalized Service Model for the Application Adjudication BSN

Service Type Subservices Required Feature
ADJ AND A, B, C

A OR AA, AB, AC
B OR BA, BB
C OR CA, CB

AA Atomic
AB Atomic F1
AC Atomic F4
BA Atomic
BB Atomic F2
CA Atomic
CB Atomic F3

46

Note that the subservices of a composite service can also be composite. This

recursion makes the model very flexible because it supports as many hierarchy levels as

needed in a consistent way.

For composite services, we model the generalization relationship as a binary

function that is associated with each service. In an AND service, the value of the binary

function is 1 for every subservice while in an OR service, the value is 1 for one and only

one service and 0 for the others. For atomic services, we use the same binary function to

model their participation in a particular BSN configuration.

For the Application Adjudication example, the instantiation of the binary function

for the initial configuration AA, BA, CA is shown in Table 13. Note that A, B and C are

instantiated as 1 because ADJ is a type AND service that requires all three to be present.

Also note that the only atomic services instantiated are those that exist in the AA, BA, CA

configuration, that is, P(AA)=P(BA)=P(CA)=1 while all others are zero. The instantiation

also satisfies the OR type for services A, B and C because for each one of them, there is

only one activated atomic service.

Table 13 - Instantiation of the Binary Function for the As-Is BSN

Service
s

Participation
function

P(s)
ADJ 1

A 1
B 1
C 1

AA 1

47

Service
s

Participation
function

P(s)
AB 0
AC 0
BA 1
BB 0
CA 1
CB 0

Now that we covered how the BPN/BSN is modeled, let’s discuss how the BSN

cost and the software development cost are modeled.

3.3 BSN Cost/Benefit Model

The original framework, called Opti-Soft+, supported only labor costs because usually they

are the largest cost driver, if not the only one. Opti-Soft+ extends the original framework

by supporting non-labor costs.

The types of business service costs supported by Opti-Soft+ are: labor, non-labor

fixed and non-labor variable. These costs are first computed at the atomic service level for

each day of each release, and according to the formal analytical model described in Section

4, are captured in CostPerDay(s,r), where s is a service and r is the release. Note that each

release corresponds to a particular configuration of the BSN and because the configuration

does not change within a release, the cost for each day of a release is the same.

48

3.3.1 Labor Service Cost

As explained above, usually the largest, if not the only, cost component is labor. Each

atomic service of the BSN is performed by workers with well-defined roles. Each role has

a labor rate and each input processed or output produced by the role has a set duration.

Given a service s, where a worker of labor role l has to process n inputs per day, and spends

t hours for each input, the daily labor cost is:

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑠𝑠 ,𝑟𝑟) = 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝑅𝑅𝑚𝑚𝑠𝑠𝑠𝑠(𝑙𝑙) ∗ 𝑠𝑠 ∗ 𝑑𝑑

LaborCostPerDay(s,r) is a component of CostPerDay(s,r), which is the total daily cost of

service s for release r.

3.3.2 Non-labor Fixed Service Cost

Fixed non-labor costs are not driven by inputs or outputs, instead they are driven by the

services themselves. An example of a fixed cost associated with a particular service is rent.

In the formal model, parameter ServiceCostPerDay(s,r) captures the daily cost for each

atomic service s. It is a component of CostPerDay(s,r).

3.3.3 Non-labor Variable Service Cost

Variable, non-labor costs are associated with the amount of work produced by an atomic

service, that is, it is driven by the inputs or by outputs and are similar to the calculation of

labor costs.

Parameters CostPerInput(s,i) and CostPerOutput(s,o) capture the non-labor variable

costs for each input and output. These parameters are multiplied by the number of flows

49

(inputs or outputs) per day to compute FlowCostPerDay(s,r), which is a component of

CostPerDay(s,r).

3.3.4 Aggregated Cost of the BSN

The aggregated, total daily cost of each atomic service s, for release r, CostPerDay(s,r), is:

LaborCostPerDay(s,r)+FlowCostPerDay(s,r)+ServiceCostPerDay(s,r)

The CostPerDay(c,r) for a composite service c is the sum of the costs for the subservices:

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑠𝑠 ,𝑟𝑟) = �𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑠𝑠, 𝑟𝑟)
𝑠𝑠∈𝑐𝑐

The highest level of the BSN hierarchy is the root service, so the aggregated total

daily cost of the BSN for each release r is:

𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿(𝑟𝑟) = CostPerDay(root,r)

In order to calculate the NPV, we need to know the cash flow for each day d of the

investment period. To do that, we transform the BSN cost per day for each release into a

cash flow for each day, taking into consideration the start and end day of each release and

a payment schedule. For an investment time horizon th, the BSN cash flow is captured in

the metric below:

𝐵𝐵𝐵𝐵𝑁𝑁.𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) ∀ 𝑑𝑑 ∈ [1. . 𝑠𝑠ℎ]

3.4 SDLC Cost/Benefit Model

Opti-Soft+ assumes an Agile Software Development Life Cycle and Release Planning.

Similarly to the BSN cost/benefit model, the largest component of the SDLC cost is labor.

Another component is fixed cost such as office equipment. This section covers these two

50

types of costs which are summed up to compute the SDLC cost per day, called

SWCostForDay. This section starts by discussing release planning, which is a technique to

organize development over time.

3.4.1 Release Planning

Opti-Soft+ requires a SDLC that incrementally delivers functionality in releases and where

release planning is conducted at the feature level. Such approach is well documented in the

Agile practice literature [13] and is called feature-driven. In a feature-driven approach, the

product backlog contains two types of items at different levels of granularity: features and

user stories. Initially features are identified, estimated, and added to the backlog; later on,

they are broken down in user stories which are also identified, estimated and added to the

backlog.

In a feature-driven approach, release planning is conducted at the feature level, that

is, features are removed from the product backlog and assigned to releases. Usually, some

kind of prioritization is utilized to drive release planning; in our case, we use the NPV of

the benefit of the feature as the prioritization technique; the higher the NPV, the higher the

priority.

Features, like user stories, are customarily estimated in points, which are based on

the perceived effort to implement the features. There are many techniques to estimate user

story/feature points, but the proposed approach does not require the adoption of any one in

particular.

51

One important practice in Agile frameworks like Scrum, is the adoption of capacity

as a means of determining how many points can fit in a particular timebox (Sprint or

Release). Capacity is a function of the duration of the timebox, the size of the developer’s

team and the productivity of each developer.

Release Planning is the process of fitting features in a release in a way that it does

not exceed capacity. The size of each feature is estimated in effort points consequently the

total size of features assigned to a release, called the release size, cannot exceed the release

capacity. Release planning is at the core of the Mixed-integer Linear Programming

formulation because one of the results of solving the MILP problem is a release schedule.

3.4.2 SDLC Labor Cost

Once the release plan is known, the release size RS is calculated by adding the size of each

feature in the release. Given the release duration RD, the developer cost per point DC, the

development cost per day for each release r is:

𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) =
𝑅𝑅𝐵𝐵(𝑟𝑟)
𝑅𝑅𝐿𝐿(𝑟𝑟) × 𝐿𝐿𝐿𝐿

To make the framework more generic, the operations cost of the software, once the

release is deployed, is also considered. We address the cost of operations by estimating the

operations cost per point per day, multiplying it by the size of the operational software.

This is captured in 𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟). Next, we add the 𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) to the

𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) to get the total labor cost for the release and then transform it into a

cash flow for each day, taking into consideration the start and end day of each release and

52

a payment schedule. For an investment time horizon th, the labor cash flow of software

development is captured in the metric below:

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) ∀ 𝑑𝑑 ∈ [1. . 𝑠𝑠ℎ]

3.4.3 Non-labor Cost of the SDLC

Some non-labor costs can be experienced during software development. They are incurred

by resources such as a hardware server, a software tool, etc…Every feature may require a

set of resources. The full set of resources required by a feature f needs to be available prior

to the start of the release that implements f. A resource might be paid in the release that

implements f or in a prior release. We assume that resource costs are paid on the first day

of each release, consequently on the first day of a release, all resources needed by all

features in the release must be paid.

To be flexible, we allow multiple features to require the same resource, establishing

dependencies among features. Resource dependencies are handled by a Dependency

Graph. Assuming the following parameters:

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 is the set of all non-labor resources

• 𝑭𝑭𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 maps features to resources

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 maps a resource to its cost

The non-labor cost of software development resources is:

𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) ∀ 𝑑𝑑 ∈ [1. . 𝑠𝑠ℎ]

53

3.4.4 SDLC Aggregated Cost

The aggregated cost of software development is:

𝐵𝐵𝑆𝑆𝐿𝐿. 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹 (𝑑𝑑) + 𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) ∀ 𝑑𝑑 ∈ [1. .𝑇𝑇𝑇𝑇]

3.5 Combining BSN and Software Cost

Section 3.3 computed the cost of the BSN while section 3.4 computed the cost of the

software. Now we combine both into the metric

𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = 𝐵𝐵𝐵𝐵𝑁𝑁. 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝑖𝑖𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) + 𝐵𝐵𝑆𝑆𝐿𝐿.𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑)

The final metric, the 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁(𝑠𝑠), is the sum of the 𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑠𝑠)

for each day from 1 to t, divided by the discount rate.

3.6 Overview of the Mixed Integer Linear Program

The main goal of Opti-Soft+ is to recommend an optimal release plan and corresponding

BSN configuration, among many candidates. The recommendation is the result of solving

a Mixed Integer Linear Program (MILP) that maximizes the business value of the

investment, as measured by the TimeWindowNPV described above. Note that

TimeWindowNPV, being a cash outflow, is a negative number and consequently

maximizing the NPV is the same as minimizing the Net Present Cost. Section 4 describes

the formal analytical model and MILP in detail but in general terms, the MILP is as follows:

Given a set of decision variables,

Given a set of parameters such as the services in the BSN, their relationships, the

required BSN throughput, the features, number of releases, labor rates, etc.,

54

Maximize TimeWindowNPV

Subject to Constraints

Solving the MILP produces a recommendation by instantiating the decision

variables. The recommendation has the following parts:

1. A release plan where each feature is assigned to a particular release in an

optimal sequence.

2. An optimal BSN configuration to be adopted after each release

3. The required throughput of each service in the optimal BSN configurations

The decision variables that make up the recommendation are:

1. On(s,r) – a binary indicating whether service s is activated in the BSN

configuration during the development of release r.

2. IBF(r,f) - a binary indicating whether business feature f is implemented in

release r.

3. ITF(r,f) - a binary indicating whether technical feature f is implemented in

release r.

4. InputThru(s,i,r) – a real, indicating the number of inputs of type i that must go

through atomic service s during the development of release r, in order to satisfy

the required BSN throughput, which is a parameter called Demand.

The MILP constraints are:

• FeatureSetsForReleasesArePairwiseDisjoint

o A feature cannot be implemented in more than one release

55

• DependencyGraphIsSatisfied

o If feature F2 depends on F1, then F1 has to be developed in the same

release as F2 or in a prior release

• BSNDemandIsSatisfied

o The number of flows of input i through the root service is greater or equal

Demand(i), which is a given parameter

• BSNSupplyIsSatisfied

o The number of flows of output o through the root service is greater or

equal Demand(o), which is a given parameter

• AllSubServicesAreActivated

o All subservices of a composite service c of type AND have to be activated,

that is, On(s,r)=1 for every subservice s of c and for every release r

• OnlyOneServiceIsActivated

o Only one subservice of a composite service c of type OR can be activated,

that is, if On(a,r)=1 then On(s,r)=0 for every subservice s of c, s≠a, and

for every release r

• RootMustBeActivated

o The root service must activated, that is, On(BSN.rootID,r)=1 for every

release r

• TotalSupplyMatchesTotalDemand

o For composite services, the total flows through the BSN have to balance,

that is, for each flow f, the total supply of f is equal to the total demand of f

56

• FeatureDependencyIsSatisfied

o If an atomic service a is activated in release r, that is, On(a,r)=1, then

every feature f that is required by a has to be implemented in a release n,

n≤r

• DeactivatedServicesIsSatisfied

o If an atomic service a is deactivated in release r, that is, On(a,r)=0, then

nothing can flow through it, that is, the number of flows f through a in r

has to be zero, for every f

• ReleaseSizeCannotExceedCapacity

o The sum of the sizes of all features in a release r cannot exceed the

capacity of the team on release r

Now that we intuitively explained the modeling of the BSN, the cost/benefit

model, the decision variables of the MILP and the constraints, we are ready to cover the

formal analytical model.

57

4. OPTI-SOFT+ FORMAL ANALYTICAL MODEL

4.1 Model Introduction

In this section, we formally model the release scheduling problem as a set of tuples

𝑠𝑠⟨Parameters, DecisionVariables, Computation, Constraints, InterfaceMetrics⟩ where t is

the tuple name.

• Parameters are given

• DecisionVariables are the variables that control the performance of the model.

• Computation defines the equations to calculate the DecisionVariables, Constraints

and InterfaceMetrics.

• Constraints is the set {𝐿𝐿1(𝑁𝑁,𝐿𝐿𝑁𝑁), … 𝐿𝐿𝑛𝑛(𝑁𝑁,𝐿𝐿𝑁𝑁)}, where 𝐿𝐿1(𝑁𝑁,𝐿𝐿𝑁𝑁), … 𝐿𝐿𝑛𝑛(𝑁𝑁,𝐿𝐿𝑁𝑁)

are predicates, expressed as a function of parameters 𝑁𝑁 and decision variables 𝐿𝐿𝑁𝑁,

that need to be satisfied.

• InterfaceMetrics is the set {𝑀𝑀1(𝑁𝑁,𝐿𝐿𝑁𝑁), … , 𝑀𝑀𝑘𝑘(𝑁𝑁,𝐿𝐿𝑁𝑁)}, where 𝑀𝑀1(𝑁𝑁,𝐿𝐿𝑁𝑁),

… , 𝑀𝑀𝑘𝑘(𝑁𝑁,𝐿𝐿𝑁𝑁) represent metrics that can be interfaced among tuples. Interface metrics

are calculated in the Computation element.

Due to the complexity of the Release Scheduling problem, we model it as a

hierarchy of component tuples in a top-down fashion as shown in Figure 5. The hierarchy

establishes an inheritance relationship between the formalizations. A formalization A at

level n establishes a parent-child relationship to formalization B at level n+1 if A uses some

result of B like an interface metric. For example, the ReleaseScheduling formalization uses

58

BSN’s CashFlow interface metric, consequently all BSN tuples are available in

ReleaseScheduling. In addition, because BSN is a child of ReleaseScheduling, BSN inherits

its Parameters, DecisionVariables and InterfaceMetrics and consequently can refer to

them.

Release
Scheduling

Business
Service

Network

Software
Development

ServicesSet Service

ANDService

InputDrivenAtomic

ORService

Figure 5 - Hierarchy of the Components of the Formal Model

The components of the formal model are:

1. ReleaseScheduling is at the top of the hierarchy. It aggregates results from the other

components in order to compute the TimeWindowNPV(d) for each day d in the time

horizon. Its main parameters describe the features, their dependencies, sizes, time

horizon, number of releases and release duration. The decision variables are

IBF(r,f) and ITF(r,f).

59

2. BusinessServiceNetwork computes the BSN’s CashFlow(d), which is a term in the

computation of TimeWindowNPV(d). Its main parameters are the labor rates,

payment schedule and the set of services.

3. Service is a container for the various types of services. Every service is identified

by an id and has a type.

4. ANDservice describes a composite services of type AND. It aggregates the

CostPerDay(id,r) of all subservices, which is then used as a term in the computation

of BSN.CashFlow(d). The parameters are the id, type, set of inputs, set of outputs

and the set of subservices. The decision variable is On(s,r), a binary indicating

whether the service is activated or not.

5. ORservice is similar to ANDservice; the only difference is that the relationship with

its subservices is of type OR.

6. InputDrivenAtomicService models an atomic, (indivisible) service which’s

throughput is driven by the number of inputs that it needs to consume. Its main

parameters are the ratio of inputs to outputs, the time spent to produce one output

and the set of features required for the service to be activated. The decision

variables are On(s,r), a binary indicating whether the service is activated or not,

and InputThru(s,i,r), the required throughput. It computes the CostPerDay(id,r),

which is aggregated in the composite services.

7. OutputDrivenAtomicService models an indivisible service which’s throughput is

driven by the number of outputs that it needs to consume. Its main parameters are

the ratio of outputs to inputs, the time spent to produce one output and the set of

60

features required for the service to be activated. The decision variables are On(s,r),

a binary indicating whether the service is activated or not, and OutputThru(s,i,r),

the required throughput. It computes the CostPerDay(id,r), which is aggregated in

the composite services.

8. SoftwareDevelopment computes SWD.CashFlow(d), which is a term in the

calculation of TimeWindowNPV(d). Its main parameters are the size of the team,

productivity, and the cost per unit. It uses feature point as a unit of cost.

Figure 6 shows the roll up of the cost calculations from the bottom of the hierarchy to the

top.

BSN. SWD.

ReleaseScheduling

Business Service Network (BSN) SoftwareDevelopment(SWD)

Composite (AND, OR)

InputDrivenAtomic

Figure 6 - Roll up of cost calculations from the bottom to the top

61

In the next sections we describe each formalization component in detail.

4.2 Release Scheduling Formalization

ReleaseScheduling (RSch) formalization is a tuple ⟨Parameters, DecisionVariables,

Computation, Constraints, InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple ⟨Features, TH, DiscountRate, ReleaseInfo,

RestSet, ResCost, FeatureRes, BSN.Parameters, SWD.Parameters⟩

Where Features is a tuple ⟨BF, TF, DG, FS ⟩ where:

• BF is a set of business features

• TF is a set of technical features, such that

𝐵𝐵𝐹𝐹 ∩ 𝑇𝑇𝐹𝐹 = ∅

• DG, (Dependency Graph), is a partial order over F = BF ∪ TF, (f1, f2) ∈ DG also

denoted f1 ≺ f2, means that f2 is dependent on f1, that is, feature f1 is a pre-requisite for

feature f2.

• 𝑭𝑭𝑹𝑹:𝐹𝐹 → ℝ+ is a function described as follows: (∀ 𝑖𝑖 ∈ 𝐹𝐹), 𝐹𝐹𝐵𝐵(𝑖𝑖) gives the size, in

effort point, of each feature 𝑖𝑖.

• TH is the time horizon for analysis in days

• DiscountRate is the daily rate to discount cash flows.

• ReleaseInfo is a tuple ⟨NR, RD ⟩, where:

• NR is the number or releases

62

• 𝑹𝑹𝑹𝑹 ∶ [1. .𝑁𝑁𝑅𝑅] → ℝ+ is a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝑅𝑅𝐿𝐿(𝑟𝑟)

gives the maximum duration in days for release 𝑟𝑟.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 is a set of non-labor resources that have a fixed cost

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹: 𝑅𝑅𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠 → ℝ+ is a function described as follows: (∀ 𝑠𝑠 ∈ 𝑅𝑅𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠),

𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠(𝑠𝑠) gives the non-labor fixed cost for resource 𝑠𝑠.

• 𝑭𝑭𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 :𝐹𝐹 → 2𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖is a function described as follows: (∀𝑖𝑖 ∈ 𝐵𝐵𝐹𝐹 ∪𝑇𝑇𝐹𝐹,∀𝑠𝑠 ∈

𝑅𝑅𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠), 𝐹𝐹𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠(𝑖𝑖) gives a set of resources 𝑠𝑠 required by feature 𝑖𝑖.

• BSN.Parameters is defined in section 4.3

• SWD.Parameters is defined in section 4.9

DecisionVariables, also denoted DV, is a tuple ⟨𝐼𝐼𝐵𝐵𝐹𝐹, 𝐼𝐼𝑇𝑇𝐹𝐹,𝐵𝐵𝐵𝐵𝑁𝑁 .𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑁𝑁𝑚𝑚𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 ,

𝐵𝐵𝑆𝑆𝐿𝐿.𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑁𝑁𝑚𝑚𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠⟩

where:

• 𝑰𝑰𝑰𝑰𝑭𝑭 ∶ [1. .𝑁𝑁𝑅𝑅] → 2𝐵𝐵𝐵𝐵 is a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) gives

a set of business features planned to be implemented in release 𝑟𝑟.

• 𝑰𝑰𝑰𝑰𝑭𝑭 ∶ [1. .𝑁𝑁𝑅𝑅] → 2𝐵𝐵𝐵𝐵 is a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝐼𝐼𝑇𝑇𝐹𝐹(𝑟𝑟) gives

a set of technical features planned to be implemented in release 𝑟𝑟.

• 𝑰𝑰𝑹𝑹𝑵𝑵.𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫𝑹𝑹𝑫𝑫𝑫𝑫𝑭𝑭𝑭𝑭𝑫𝑫𝑭𝑭𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 is defined in section 4.3.

• 𝑹𝑹𝑺𝑺𝑹𝑹.𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑹𝑹𝑫𝑫𝑹𝑹𝑫𝑫𝑫𝑫𝑭𝑭𝑭𝑭𝑫𝑫𝑭𝑭𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 is defined in section 4.9.

63

Computation

1.Let 𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹: [1. .𝑁𝑁𝑅𝑅 + 1] → 2𝐵𝐵𝐵𝐵 be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) gives the set of all business features implemented up to

release 𝑟𝑟 or the period after the last release, computed as follows:

𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) = �𝐼𝐼𝐵𝐵𝐹𝐹(𝑖𝑖)
𝑟𝑟−1

𝑖𝑖=1

2.Let 𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹: [1. .𝑇𝑇𝑇𝑇] → ℝ be a function described as follows: (∀ 𝑑𝑑 ∈

[1. . 𝑇𝑇𝑇𝑇]),𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) gives the combined income/expenditure of both the

Business Service Network and the Software Development, (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]), computed

as follows:

𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = 𝐵𝐵𝐵𝐵𝑁𝑁. 𝐼𝐼𝑀𝑀. 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝑖𝑖𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) + 𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑀𝑀. 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑)

where:

• BSN.IM.CashFlow is defined in section BSN.InterfaceMetrics of section 4.3

• SWD.IM.CashFlow is defined in section Software.InterfaceMetrics of section 4.9.

Note that a negative cash flow means that it is a cash outflow.

3. Let 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁: [1. . 𝑇𝑇𝑇𝑇] →ℝ be a function described as follows: (∀ 𝑑𝑑 ∈

[1. .𝑇𝑇𝑇𝑇]), 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑) gives the Net Present Value (NPV) of the

CombinedCashFlow for the time investment window[1. .𝑑𝑑], computed as follows:

𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁(𝑑𝑑) = �
𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑖𝑖)

(1 + 𝐿𝐿𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑑𝑑𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑠𝑠)𝑖𝑖

𝑑𝑑

𝑖𝑖=1

4.Let F = BF ∪ TF

5.Let 𝐼𝐼𝐹𝐹(𝑟𝑟) = 𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) ∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑟𝑟), (∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅])

64

6.FeatureSetsForReleasesArePairwiseDisjoint constraint is:

𝐼𝐼𝐹𝐹(𝑖𝑖) ∩ 𝐼𝐼𝐹𝐹(𝑠𝑠) = ∅ (∀ 𝑖𝑖 , 𝑠𝑠,∈ [1. .𝑁𝑁𝑅𝑅], 𝑖𝑖 ≠ 𝑠𝑠)

7.DependencyGraphIsSatisfied constraint is:

(∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅])(∀ 𝑖𝑖1, 𝑖𝑖2 ∈ 𝐹𝐹),

(𝑖𝑖1 ≺ 𝑖𝑖2 ∧ 𝑖𝑖2 ∈ 𝐼𝐼𝐹𝐹(𝑟𝑟)) → (𝑖𝑖1 ∈ �𝐼𝐼𝐹𝐹(𝑖𝑖)
𝑟𝑟

𝑖𝑖=1

)

Constraints

1. FeatureSetsForReleasesArePairwiseDisjoint is defined in computation #6 above.

2. DependencyGraphIsSatisfied is defined in computation #7 above.

3. BSN.Constraints is defined in section 4.3.

4. SWD.Constraints is defined in section 4.9.

InterfaceMetrics, also denoted IM, is a tuple

⟨𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹, 𝐿𝐿𝑡𝑡𝑚𝑚𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹, 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁, 𝐵𝐵𝐵𝐵𝑁𝑁. 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠 ,

𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠 ⟩,

where:

• 𝑹𝑹𝑹𝑹𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫𝑹𝑹𝑪𝑪𝑹𝑹𝑭𝑭𝑹𝑹𝑪𝑪𝑭𝑭𝑫𝑫𝑹𝑹𝑪𝑪 is defined in computation #2 above.

• 𝑰𝑰𝑫𝑫𝑪𝑪𝑹𝑹𝑺𝑺𝑫𝑫𝑫𝑫𝑪𝑪𝑹𝑹𝑪𝑪𝑵𝑵𝑻𝑻𝑫𝑫 is defined in computation #3 above.

• BSN.InterfaceMetrics is defined in section 4.3

• SWD.InterfaceMetrics is defined in section 4.9

65

4.3 Business Service Network Formalization

BusinessServiceNetwork formalization, also denoted BSN, is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints, InterfaceMetrics⟩, where:

Parameters, also denoted Parm, is a tuple ⟨LaborRates, LaborPaySched, BSNDemand,

ServicesSet, rootID⟩,

where:

• LaborRates is a tuple ⟨LR, Rate⟩ where:

• LR is a set of labor roles

• 𝑹𝑹𝑭𝑭𝑹𝑹𝑹𝑹 :𝐿𝐿𝑅𝑅 → ℝ+ is a function described as follows: (∀ 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅),𝑅𝑅𝑚𝑚𝑠𝑠𝑠𝑠(𝑙𝑙) gives the daily

rate for labor role 𝑙𝑙.

• LaborPaySched, the labor cost payment schedule, is a tuple ⟨𝑁𝑁𝐿𝐿𝑁𝑁, 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑠𝑠⟩ ,

where:

• 𝑵𝑵𝑵𝑵𝑻𝑻 ∈ ℝ+is the number of labor payments over the entire time horizon

• 𝑵𝑵𝑭𝑭𝑫𝑫𝑹𝑹𝑭𝑭𝑻𝑻𝑭𝑭𝑳𝑳𝑹𝑹𝑭𝑭𝑳𝑳: [1. .𝑁𝑁𝐿𝐿𝑁𝑁] → [1. .𝑇𝑇𝑇𝑇] is a function described as follows: (∀ 𝑝𝑝 ∈

 [1. .𝑁𝑁𝐿𝐿𝑁𝑁), 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑝𝑝) gives the day, relative to the first day of the time

horizon, on which a payment 𝑝𝑝 is made.

• BSNDemand, is a tuple ⟨𝐵𝐵𝐵𝐵𝑁𝑁𝐼𝐼 ,𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵,𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑⟩,

where:

• BSNI is a set of input flow ids that have to be processed by the Service Network.

• BSNO is a set of output flow ids that have to be produced by the Service Network.

66

• 𝑹𝑹𝑹𝑹𝑪𝑪𝑭𝑭𝑫𝑫𝑪𝑪: 𝐵𝐵𝐵𝐵𝑁𝑁𝐼𝐼⋃𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵 → ℝ+ is a function described as follows: (∀ 𝑠𝑠 ∈

𝐵𝐵𝐵𝐵𝑁𝑁𝐼𝐼 ⋃𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵), 𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑠𝑠) gives for every flow 𝑠𝑠, the required processing

throughput per day.

• ServicesSet is the set of all services in the Service Network, defined in section 4.4.

• 𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑰𝑰𝑹𝑹 is the id of the Service, in the ServicesSet, which is designated to be the “root”.

The definition of a Service is given in section 4.4.

DecisionVariables is the set {𝑠𝑠.𝐿𝐿𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑁𝑁𝑚𝑚𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 | 𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠}. See section 4.4.

Computation

1. Let root be a Service in ServicesSet with id=rootID

2. 𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝐼𝐼𝑠𝑠𝐵𝐵𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑑𝑑 constraint:

(∀ 𝑖𝑖 ∈ 𝐵𝐵𝐵𝐵𝑁𝑁𝐼𝐼) (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),

𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀. 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿, 𝑖𝑖, 𝑟𝑟) ≥ 𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 (𝑖𝑖)

• 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀. 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿,𝑟𝑟) is defined in section 4.4.

3. 𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿𝐼𝐼𝑠𝑠𝐵𝐵𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑑𝑑 constraint:

(∀ 𝑡𝑡 ∈ 𝐵𝐵𝐵𝐵𝑁𝑁𝐵𝐵) (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),

𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀.𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿, 𝑡𝑡,𝑟𝑟) ≥ 𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 (𝑡𝑡)

• 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀.𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿, 𝑡𝑡, 𝑟𝑟) is defined in section 4.4.

4. Let 𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. . 𝑇𝑇𝑇𝑇]→ ℝ+be a function described as follows: (∀ 𝑑𝑑 ∈

[1. .𝑇𝑇𝑇𝑇]), 𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑) gives the service network labor cost accrued for day

𝑑𝑑 computed as:

𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑) = 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀. 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿, 𝑟𝑟)

67

Where:

• r is the release period (or period after the last release) where day d appears, i.e.,

𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑀𝑀.𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑀𝑀. 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟)

• 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠. 𝐼𝐼𝑀𝑀.𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿, 𝑟𝑟) is defined in section 4.4.

• 𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑀𝑀.𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿 and 𝐵𝐵𝑆𝑆𝐿𝐿. 𝐼𝐼𝑀𝑀. 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿 are defined in section 4.9.

5. Let 𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠: [1. .𝑁𝑁𝐿𝐿𝑁𝑁] → ℝ be a function described as follows: (∀ 𝑝𝑝 ∈

[1. .𝑁𝑁𝐿𝐿𝑁𝑁]), 𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑝𝑝) gives the service network labor payment in dollars, for

each scheduled payment 𝑝𝑝, computed as:

𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑝𝑝) =

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=1

 ∀𝑝𝑝 = 1

� 𝐵𝐵𝐵𝐵𝑁𝑁𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑)
∀𝑝𝑝 = [2. .𝑁𝑁𝐿𝐿𝑁𝑁]

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝−1)+1

6. Let 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+ be a function described as follows: (∀ 𝑑𝑑 ∈

[1. .𝑇𝑇𝑇𝑇]), 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) gives the cash flow for the entire Business Service Network

for day 𝑑𝑑, computed as follows:

𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = �−𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑝𝑝) 𝑖𝑖𝑖𝑖 ∃𝑝𝑝|𝑑𝑑 = 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑝𝑝)
0 𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

Constraints

1. 𝑰𝑰𝑹𝑹𝑵𝑵𝑹𝑹𝑹𝑹𝑪𝑪𝑭𝑭𝑫𝑫𝑪𝑪𝑰𝑰𝑹𝑹𝑹𝑹𝑭𝑭𝑹𝑹𝑫𝑫𝑹𝑹𝑩𝑩𝑫𝑫𝑹𝑹𝑪𝑪(see Computation #2)

2. 𝑰𝑰𝑹𝑹𝑵𝑵𝑹𝑹𝑭𝑭𝑩𝑩𝑩𝑩𝑫𝑫𝑳𝑳𝑰𝑰𝑹𝑹𝑹𝑹𝑭𝑭𝑹𝑹𝑫𝑫𝑹𝑹𝑩𝑩𝑫𝑫𝑹𝑹𝑪𝑪 (see Computation #3)

3. 𝑹𝑹𝑹𝑹𝑭𝑭𝑺𝑺𝑫𝑫𝑫𝑫𝑹𝑹.𝑰𝑰𝑰𝑰(𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑰𝑰𝑹𝑹,𝑭𝑭).𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑹𝑹𝑭𝑭𝑭𝑭𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹 (See section 4.4)

68

InterfaceMetrics, also denoted IM, is a tuple ⟨𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹⟩, where:

• 𝑹𝑹𝑭𝑭𝑹𝑹𝑪𝑪𝑭𝑭𝑫𝑫𝑹𝑹𝑪𝑪 is defined in computation #6 above.

4.4 Service Formalization

ServicesSet formalization is a set of Service , where:

Service is a tuple ⟨Parameters, DecisionVariables, Computation, Constraints,

InterfaceMetrics⟩, defined separately for each 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑇𝑇𝐿𝐿𝑝𝑝𝑠𝑠 ∈ {𝐴𝐴𝑁𝑁𝐿𝐿𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠,

𝐵𝐵𝑅𝑅𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠, 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝐿𝐿𝑟𝑟𝑖𝑖𝑣𝑣𝑠𝑠𝑑𝑑𝐴𝐴𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑠𝑠𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠,𝐵𝐵𝑠𝑠𝑠𝑠𝐿𝐿𝑟𝑟𝑖𝑖𝑣𝑣𝑠𝑠𝑑𝑑𝐴𝐴𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑠𝑠𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠}

Every service has an id and a ServiceType. We denote by 𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) the service with

identifier id. Service is a container for the service types below and inherent their tuples.

• ANDservice type is defined in section 4.5.

• ORservice type is defined in section 4.6.

• InputDrivenAtomicService type is defined in section 4.7.

• OutputDrivenAtomicService type is defined in section 4.8.

4.5 ANDservice Formalization

Intuitively, an ANDservice is a composite service, that is, an aggregation of sub-services

such that all sub-services are activated.

ANDservice formalization is a tuple ⟨Parameters, DecisionVariables, Computation,

Constraints, InterfaceMetrics⟩

where:

69

Parameters, also denoted Parm, is a tuple ⟨id, ServiceType(id), I(id), O(id),

Subservices(id)⟩

where:

• id is the Service id, which must be unique across all services in the ServicesSet.

• I(id) is a set of inputs

• O(id) is a set of outputs

• Subservices(id) is a set of the ids of the sub-services.

• ServiceType(id) is ANDservice.

DecisionVariables, also denoted DV, is a tuple ⟨𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)⟩

where:

• 𝑶𝑶𝑫𝑫(𝑫𝑫𝑪𝑪): [1. .𝑁𝑁𝑅𝑅 + 1] → {0,1} is a function that determines whether the Service id is

activated or not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑟𝑟), also

denoted by On(id,r) is as follows:

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑟𝑟) = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑑𝑑 𝑖𝑖𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑚𝑚𝑠𝑠𝑠𝑠𝑑𝑑 𝑖𝑖𝑑𝑑 𝑟𝑟𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑟𝑟
0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

Computation

1.AllSubservicesAreActivated constraint:

Let n be the cardinality of Subservices(id). Then the constraint is:

� 𝐵𝐵𝑑𝑑(𝑖𝑖, 𝑟𝑟) = 𝑑𝑑 ∗ 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑟𝑟), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

2. Let 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑) be a set of inputs and outputs, computed as follows:

70

𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑) = 𝐼𝐼(𝑖𝑖𝑑𝑑)�𝐵𝐵(𝑖𝑖𝑑𝑑)⋃� � 𝐼𝐼(𝑖𝑖)
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

�

⋃� � 𝐵𝐵(𝑖𝑖)
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

�

3.Let 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑):𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵× [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows:(∀𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑), ∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]) 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑠𝑠, 𝑟𝑟), also

denoted 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟), gives the internal supply of flow 𝑠𝑠 during release 𝑟𝑟

(and the period after the last release), computed as follows:

𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) = � � 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑠𝑠 , 𝑠𝑠,𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐵𝐵(𝑠𝑠)
𝑠𝑠 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)
 0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

4.Let 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑): 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵× [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows:(∀𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑), ∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1])𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑠𝑠,𝑟𝑟), also

denoted 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟), gives the internal demand of flow 𝑠𝑠 during release

𝑟𝑟 (and the period after the last release), computed as follows:

𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) = � � 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑠𝑠, 𝑠𝑠,𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐼𝐼(𝑠𝑠)
𝑠𝑠 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)
 0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

5.Let 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] →ℝ+ be a function described as follows:

(∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑖𝑖, 𝑟𝑟), also denoted

71

𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖,𝑟𝑟), gives the throughput of 𝑖𝑖 (or quantity per day) during release 𝑟𝑟 or

the period after the last release, computed as

 ∀𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑),∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟) = 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑖𝑖,𝑟𝑟) − 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟)

6.Let 𝐵𝐵𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑): 𝐵𝐵(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ be a function described as follows:

(∀ 𝑡𝑡 ∈ 𝐵𝐵 (𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑡𝑡 ,𝑟𝑟), also denoted

𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡, 𝑟𝑟), gives the throughput of 𝑡𝑡 (or quantity per day) during release 𝑟𝑟 or

the period after the last release, computed as

 ∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡,𝑟𝑟) = 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑡𝑡,𝑟𝑟) − 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑡𝑡, 𝑟𝑟)

7.Let 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑):𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵× [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows: (∀𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑),∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]) 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑠𝑠, 𝑟𝑟), also

denoted 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟), gives the total demand of flow 𝑠𝑠 during release 𝑟𝑟 (and

the period after the last release), computed as follows:

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) = �𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) + 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑)
𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

8. Let 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑): 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵× [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows: (∀𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑), ∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]) 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑠𝑠,𝑟𝑟), also denoted

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟), gives the total supply of flow 𝑠𝑠 during release 𝑟𝑟 (and the period

after the last release), computed as follows:

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠 , 𝑟𝑟) = �𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) + 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)
𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟) 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

72

9. TotalSupplyMatchesTotalDemand constraint is:

∀ 𝑠𝑠 ∈ 𝐵𝐵𝑠𝑠𝑠𝑠𝐴𝐴𝑙𝑙𝑙𝑙𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟) = 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟)

10. Let 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟), gives the total

dollar cost per day during period r and the period after the last period, computed as:

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑,𝑟𝑟) = � 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠 . 𝐼𝐼𝑀𝑀.𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖, 𝑟𝑟)
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

11. RootMustBeActivated constraint is:

𝐵𝐵𝑑𝑑(𝐵𝐵𝐵𝐵𝑁𝑁 .𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿,𝑟𝑟) = 1 ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]

Constraints are as follows:

1.AllSubservicesAreActivated (see computation #1)

2.TotalSupplyMatchesTotalDemand (see computation # 9)

3.RootMustBeActivated (see computation # 11)

InterfaceMetrics, also denoted IM, is a tuple ⟨CostPerDay(id), InputThru(id),

OutputThru(id)⟩

where:

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳(𝑖𝑖𝑑𝑑) is defined in computation #10 above.

• 𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #5 above.

• 𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #6 above.

73

4.6 ORservice Formalization

Intuitively, an ORservice is a composite service, that is, an aggregation of sub-services

such that only one sub-services is activated.

ORservice formalization is a tuple ⟨Parameters, DecisionVariables, Computation,

Constraints, InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple ⟨id, ServiceType(id), I(id), O(id),

Subservices(id)⟩

where:

• id is the Service id, which must be unique across all services in the ServicesSet.

• I(id) is a set of inputs

• O(id) is a set of outputs

• Subservices(id) is a set of the ids of the sub-services.

• ServiceType(id) is ORservice.

DecisionVariables, also denoted DV, is a tuple ⟨𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑⟩

where:

• 𝑶𝑶𝑫𝑫(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → {0,1} is a function that determines whether the Service id is

activated or not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑟𝑟), also

denoted by On(id,r) is as follows:

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑑𝑑 𝑖𝑖𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑚𝑚𝑠𝑠𝑠𝑠𝑑𝑑 𝑖𝑖𝑑𝑑 𝑟𝑟𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑟𝑟
0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

74

Computation

1.OnlyOneServiceIsActivated constraint:

� 𝐵𝐵𝑑𝑑(𝑖𝑖 ,𝑟𝑟) = 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

2. Same as ANDservice computation #2

3. Same as ANDservice computation #3

4. Same as ANDservice computation #4

5. Same as ANDservice computation #5

6. Same as ANDservice computation #6

7. Same as ANDservice computation #7

8. Same as ANDservice computation #8

9. Same as ANDservice computation #9

10. Same as ANDservice computation #10

11. Same as ANDservice computation #11

Constraints are as follows:

1. OnlyOneServiceIsActivated (see computation #1)

2. TotalSupplyMatchesTotalDemand (see computation # 9)

3. RootMustBeActivated (see computation # 11)

InterfaceMetrics, also denoted IM, is a tuple ⟨CostPerDay(id), InputThru(id),

OutputThru(id)⟩

where:

75

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳(𝑖𝑖𝑑𝑑) is defined in computation #10 above.

• 𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #5 above.

• 𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #6 above.

4.7 InputDrivenAtomicService Formalization

Intuitively, an InputDrivenAtomicService is an indivisible, atomic service which’s

throughput is driven by the number of inputs that it needs to consume, for example, a

process that receives applications and adjudicates them.

InputDrivenAtomicService formalization is a tuple ⟨Parameters, DecisionVariables,

Computation, Constraints, InterfaceMetrics⟩

Parameters, also denoted Parm, is a tuple ⟨𝑖𝑖𝑑𝑑, 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑇𝑇𝐿𝐿𝑝𝑝𝑠𝑠(𝑖𝑖𝑑𝑑), 𝐼𝐼(𝑖𝑖𝑑𝑑), 𝐵𝐵(𝑖𝑖𝑑𝑑),

𝑅𝑅𝐵𝐵𝐹𝐹(𝑖𝑖𝑑𝑑), 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑), 𝐼𝐼𝐵𝐵𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑), 𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑),

𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿 , 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠 ,𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠⟩

where:

• id is the Service id.

• I(id) is a set of inputs

• O(id) is a set of outputs

• 𝑹𝑹𝑰𝑰𝑭𝑭(𝑖𝑖𝑑𝑑) ⊆ 𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑑𝑑𝑠𝑠𝑙𝑙𝑖𝑖𝑑𝑑𝑔𝑔.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 .𝐵𝐵𝐹𝐹 is a set of business features required by

Service id

• 𝑹𝑹𝑹𝑹𝑭𝑭𝑺𝑺𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑹𝑹(𝑖𝑖𝑑𝑑)⊆ 𝐵𝐵𝐵𝐵𝑁𝑁.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 . 𝐿𝐿𝑅𝑅 is a set of roles involved in the business service.

76

• 𝑰𝑰𝑶𝑶𝑹𝑹𝑪𝑪𝑭𝑭𝑭𝑭𝑹𝑹𝑭𝑭𝑹𝑹𝑫𝑫𝑹𝑹(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) × 𝐵𝐵(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: �∀ 𝑖𝑖 ∈

𝐼𝐼(𝑖𝑖𝑑𝑑)�, �∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑)�, 𝐼𝐼𝐵𝐵𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑)(𝑖𝑖, 𝑡𝑡) also denoted as 𝐼𝐼𝐵𝐵𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑡𝑡),

gives for input 𝑖𝑖 and output 𝑡𝑡, the ratio of output throughput based on the input

throughput.

• 𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑰𝑰𝑫𝑫𝑪𝑪𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑰𝑰𝑶𝑶(𝑖𝑖𝑑𝑑):𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) × (𝐼𝐼(𝑖𝑖𝑑𝑑)⋃𝐵𝐵(𝑖𝑖𝑑𝑑)) → ℝ+ is a function

described as follows: (∀ 𝑙𝑙 ∈ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑), ∀ 𝑠𝑠 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)⋃𝐵𝐵(𝑖𝑖𝑑𝑑)),

𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑)(𝑙𝑙 , 𝑠𝑠), also denoted as 𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑠𝑠), gives the amount

of time, in hours, that role 𝑙𝑙 spends per flow 𝑠𝑠.

• 𝑹𝑹𝑹𝑹𝑭𝑭𝑺𝑺𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳: 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠 → ℝ+ is a function described as follows: (∀ 𝑠𝑠 ∈

𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠), 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑠𝑠) gives the non-labor fixed cost of service s for

each day.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)),

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑖𝑖), also denoted as 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖), gives the non-labor fixed

cost for each input i processed by the service id.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹(𝑖𝑖𝑑𝑑): 𝐵𝐵(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: (∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑)),

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑡𝑡), also denoted as 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡), gives the non-labor

fixed cost for each output o processed by the service id.

• ServiceType(id) is InputDrivenAtomicService

DecisionVariables, also denoted DV, is a tuple ⟨𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑), 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)⟩

where:

77

• 𝑶𝑶𝑫𝑫(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → {0,1} is a function that determines whether the Service id is

activated or not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑟𝑟), also

denoted by On(id,r) is as follows:

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑑𝑑 𝑖𝑖𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑚𝑚𝑠𝑠𝑠𝑠𝑑𝑑 𝑖𝑖𝑑𝑑 𝑟𝑟𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑟𝑟
0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

• 𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ is a function described as follows: (∀ 𝑖𝑖 ∈

𝐼𝐼 (𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑖𝑖,𝑟𝑟), also denoted 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟),

gives the throughput of 𝑖𝑖 (or quantity per day) during release 𝑟𝑟 or the period after the last

release.

78

Computation

1. FeatureDependencyIsSatisfied constraint:

 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑟𝑟) = 1 → 𝑅𝑅𝐵𝐵𝐹𝐹(𝑖𝑖𝑑𝑑) ⊆ 𝑅𝑅𝐵𝐵𝑠𝑠ℎ. 𝐼𝐼𝑀𝑀.𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]

2. DeactivatedServicesIsSatisfied constraint:

∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑),∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) = 0 → 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟) = 0

3. Let 𝐵𝐵𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑):𝐵𝐵(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ be a function described as follows:

(∀ 𝑡𝑡 ∈ 𝐵𝐵 (𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑡𝑡, 𝑟𝑟), also denoted

𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡,𝑟𝑟), gives the throughput of 𝑡𝑡 (or quantity per day) during release

𝑟𝑟 or the period after the last release, computed as

∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑,𝑡𝑡, 𝑟𝑟) = � (𝐼𝐼𝐵𝐵𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑡𝑡) × 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟)
𝑖𝑖∈𝐼𝐼(𝑖𝑖𝑑𝑑)

)

4. Let 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] × 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) → ℝ+ be a function

described as follows: (∀ 𝑙𝑙 ∈ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑), 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),

𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑙𝑙, 𝑟𝑟), also denoted 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑 , 𝑙𝑙, 𝑟𝑟), gives the total duration

per day for role 𝑙𝑙 and release 𝑟𝑟 (and the period after the last release), computed as:

𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑟𝑟)

= � (𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑 , 𝑙𝑙, 𝑠𝑠) × 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟))
𝑗𝑗∈𝐼𝐼(𝑖𝑖𝑑𝑑)

+ � (𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝐵𝐵(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑠𝑠) × 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟))
𝑗𝑗∈𝑂𝑂(𝑖𝑖𝑑𝑑)

79

5. Let 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows:(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑,𝑟𝑟), gives the total labor cost per day during release r, computed

as follows:

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

= � (𝐵𝐵𝐵𝐵𝑁𝑁. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚. 𝑅𝑅𝑚𝑚𝑠𝑠𝑠𝑠(𝑙𝑙) × 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑙𝑙 ,𝑟𝑟)
𝑙𝑙∈𝑅𝑅𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑅𝑅𝐿𝐿𝑙𝑙𝑅𝑅𝑠𝑠

)

6. Let 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as

follows:(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted

𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟), gives the total non-labor cost per day for all input and output

flows processed during release r, computed as follows:

𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑,𝑟𝑟)

= � (𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠) × 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟))
𝑗𝑗∈𝐼𝐼(𝑖𝑖𝑑𝑑)

+ � (𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠) × 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠,𝑟𝑟))
𝑗𝑗∈𝑂𝑂(𝑖𝑖𝑑𝑑)

7. Let 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ be a function described as follows:(∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟), gives the total

cost per day during release r, computed as follows:

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑,𝑟𝑟)

= 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑 ,𝑟𝑟) + 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

+ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑) × 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)

80

Constraints are as follows:

1. FeatureDependencyIsSatisfied (see computation #1)

2. DeactivatedServicesIsSatisfied (see computation #2)

InterfaceMetrics, also denoted IM, is a tuple ⟨CostPerDay(id), InputThru(id),

OutputThru(id)⟩

where:

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳(𝑖𝑖𝑑𝑑) is defined in computation #7.

• 𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in DecisionVariables.

• 𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #3.

4.8 OutputDrivenAtomicService Formalization

Intuitively, an OutputDrivenAtomicService is an indivisible, atomic service which’s

throughput is driven by the number of outputs that it needs to produce, for example, a

service that produces a report.

OutputDrivenAtomicService formalization is a tuple ⟨Parameters, DecisionVariables,

Computation, Constraints, InterfaceMetrics⟩

Parameters, also denoted Parm, is a tuple ⟨𝑖𝑖𝑑𝑑, 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑇𝑇𝐿𝐿𝑝𝑝𝑠𝑠(𝑖𝑖𝑑𝑑), 𝐼𝐼(𝑖𝑖𝑑𝑑), 𝐵𝐵(𝑖𝑖𝑑𝑑),

𝑅𝑅𝐵𝐵𝐹𝐹(𝑖𝑖𝑑𝑑), 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑), 𝐵𝐵𝐼𝐼𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑), 𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝐼𝐼(𝑖𝑖𝑑𝑑)⟩

where:

• id is the Service id.

• I(id) is a set of inputs

81

• O(id) is a set of outputs

• 𝑹𝑹𝑰𝑰𝑭𝑭(𝑖𝑖𝑑𝑑) ⊆ 𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑑𝑑𝑠𝑠𝑙𝑙𝑖𝑖𝑑𝑑𝑔𝑔.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 .𝐵𝐵𝐹𝐹 is a set of business features required by

Service id

• 𝑹𝑹𝑹𝑹𝑭𝑭𝑺𝑺𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑹𝑹(𝑖𝑖𝑑𝑑)⊆ 𝐵𝐵𝐵𝐵𝑁𝑁.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 . 𝐿𝐿𝑅𝑅 is a set of roles involved in the business service.

• 𝑶𝑶𝑰𝑰𝑹𝑹𝑪𝑪𝑭𝑭𝑭𝑭𝑹𝑹𝑭𝑭𝑹𝑹𝑫𝑫𝑹𝑹(𝑖𝑖𝑑𝑑):𝐵𝐵(𝑖𝑖𝑑𝑑) × 𝐼𝐼(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: �∀ 𝑡𝑡 ∈

𝐵𝐵(𝑖𝑖𝑑𝑑)�, �∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)�,𝐵𝐵𝐼𝐼𝐵𝐵𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑)(𝑖𝑖, 𝑡𝑡) also denoted as 𝐵𝐵𝐼𝐼𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑡𝑡),

gives for output 𝑡𝑡 and input 𝑖𝑖, the ratio of input throughput based the output throughput.

• 𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑰𝑰𝑫𝑫𝑪𝑪𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑶𝑶𝑰𝑰(𝑖𝑖𝑑𝑑):𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) × (𝐵𝐵(𝑖𝑖𝑑𝑑)⋃𝐼𝐼(𝑖𝑖𝑑𝑑)) → ℝ+ is a function

described as follows: (∀ 𝑙𝑙 ∈ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑), ∀ 𝑠𝑠 ∈

𝐵𝐵(𝑖𝑖𝑑𝑑)⋃𝐼𝐼(𝑖𝑖𝑑𝑑)), 𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝐼𝐼(𝑖𝑖𝑑𝑑)(𝑙𝑙, 𝑠𝑠), also denoted as 𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝐼𝐼(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑠𝑠),

gives the amount of time, in hours, that role 𝑙𝑙 spends per flow 𝑠𝑠.

• 𝑹𝑹𝑹𝑹𝑭𝑭𝑺𝑺𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳: 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠 → ℝ+ is a function described as follows: (∀ 𝑠𝑠 ∈

𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠), 𝐹𝐹𝑖𝑖𝑥𝑥𝑠𝑠𝑑𝑑𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑠𝑠) gives the non-labor fixed cost of service s for

each day.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)),

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) gives the non-labor fixed cost for each input i processed by the

service id.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹(𝑖𝑖𝑑𝑑): 𝐵𝐵(𝑖𝑖𝑑𝑑) → ℝ+ is a function described as follows: (∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑)),

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) gives the non-labor fixed cost for each output o processed by the

service id.

• ServiceType(id) is InputDrivenAtomicService

82

DecisionVariables, also denoted DV, is a tuple ⟨𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑),𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)⟩

where:

• 𝑶𝑶𝑫𝑫(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] → {0,1} is a function that determines whether the Service id is

activated or not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)(𝑟𝑟), also

denoted by On(id,r) is as follows:

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) = �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠 𝑖𝑖𝑑𝑑 𝑖𝑖𝑠𝑠 𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑣𝑣𝑚𝑚𝑠𝑠𝑠𝑠𝑑𝑑 𝑖𝑖𝑑𝑑 𝑟𝑟𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑟𝑟
0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

• 𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑): 𝐵𝐵(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ is a function described as follows:

(∀𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑),∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑡𝑡, 𝑟𝑟), also denoted

𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡, 𝑟𝑟), gives the throughput of 𝑡𝑡 (or quantity per day) during release 𝑟𝑟 or

the period after the last release.

Computation

1.FeatureDependencyIsSatisfied constraint:

 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑟𝑟) = 1 → 𝑅𝑅𝐵𝐵𝐹𝐹(𝑖𝑖𝑑𝑑) ⊆ 𝑅𝑅𝐵𝐵𝑠𝑠ℎ. 𝐼𝐼𝑀𝑀.𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]

2.DeactivatedServicesIsSatisfied constraint:

∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑), ∀𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) = 0 → 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑡𝑡,𝑟𝑟) = 0

3.Let 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑): 𝐼𝐼(𝑖𝑖𝑑𝑑) × [1. .𝑁𝑁𝑅𝑅 + 1] →ℝ+ be a function described as follows:

(∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑),∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), In𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑)(𝑖𝑖 ,𝑟𝑟), also denoted

𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖,𝑟𝑟), gives the throughput of 𝑖𝑖 (or quantity per day) during release 𝑟𝑟 or

the period after the last release, computed as

∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑),∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1],

83

𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖,𝑟𝑟) = � (𝐵𝐵𝐼𝐼𝑠𝑠ℎ𝑟𝑟𝑠𝑠𝑅𝑅𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡(𝑖𝑖𝑑𝑑, 𝑡𝑡, 𝑖𝑖) × 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑,𝑡𝑡, 𝑟𝑟)
𝐿𝐿∈𝑂𝑂(𝑖𝑖𝑑𝑑)

)

4.Let 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] × 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) → ℝ+ be a function

described as follows: (∀ 𝑙𝑙 ∈ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑),𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]),

𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑙𝑙, 𝑟𝑟), also denoted 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑙𝑙 ,𝑟𝑟), gives the total duration per

day for role 𝑙𝑙 and release 𝑟𝑟 (and the period after the last release), computed as:

𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑟𝑟)

= � (𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝐼𝐼(𝑖𝑖𝑑𝑑, 𝑙𝑙 , 𝑠𝑠) × 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟))
𝑗𝑗∈𝐼𝐼(𝑖𝑖𝑑𝑑)

+ � (𝑅𝑅𝑡𝑡𝑙𝑙𝑠𝑠𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝐼𝐼(𝑖𝑖𝑑𝑑, 𝑙𝑙, 𝑠𝑠) × 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟))
𝑗𝑗∈𝑂𝑂(𝑖𝑖𝑑𝑑)

5. Let 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] →ℝ be a function described as

follows:(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟), gives the total labor cost per day during release r, computed

as follows:

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

= � (𝐵𝐵𝐵𝐵𝑁𝑁. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚. 𝑅𝑅𝑚𝑚𝑠𝑠𝑠𝑠(𝑙𝑙) × 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑙𝑙 ,𝑟𝑟)
𝑙𝑙∈𝑅𝑅𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑅𝑅𝐿𝐿𝑙𝑙𝑅𝑅𝑠𝑠

)

6.Let 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] →ℝ be a function described as follows:(∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟),

gives the total non-labor cost per day for all input and output flows processed during

release r, computed as follows:

84

𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

= � (𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) × 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟))
𝑗𝑗∈𝐼𝐼(𝑖𝑖𝑑𝑑)

+ � (𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑) × 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑠𝑠, 𝑟𝑟))
𝑗𝑗∈𝑂𝑂(𝑖𝑖𝑑𝑑)

7.Let 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑): [1. .𝑁𝑁𝑅𝑅 + 1] →ℝ be a function described as follows:(∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑)(𝑟𝑟), also denoted 𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟), gives the total

cost per day during release r, computed as follows:

𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

= 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟) + 𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑, 𝑟𝑟)

+ 𝐵𝐵𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑖𝑖𝑑𝑑) ∗ 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑)

Constraints are as follows:

1. FeatureDependencyIsSatisfied (see computation #1)

2. DeactivatedServicesIsSatisfied (see computation #2)

InterfaceMetrics, also denoted IM, is a tuple ⟨CostPerDay(id), InputThru(id),

OutputThru(id)⟩

where:

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑻𝑻𝑹𝑹𝑭𝑭𝑹𝑹𝑭𝑭𝑳𝑳(𝑖𝑖𝑑𝑑) is defined in computation #7.

• 𝑰𝑰𝑫𝑫𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in DecisionVariables.

𝑶𝑶𝑭𝑭𝑹𝑹𝑩𝑩𝑭𝑭𝑹𝑹𝑰𝑰𝑪𝑪𝑭𝑭𝑭𝑭(𝑖𝑖𝑑𝑑) is defined in computation #3.

85

4.9 Software Development Formalization

SoftwareDevelopment formalization, also denoted SWD, is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints, InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple ⟨TS, DP, DC, OC, SS, SWPaySched⟩,

where:

• 𝑰𝑰𝑹𝑹 ∶ [1. .𝑁𝑁𝑅𝑅] → ℝ+ is a function that gives the team size, in full time equivalents, for

each release.

• 𝑹𝑹𝑻𝑻 ∶ [1. .𝑁𝑁𝑅𝑅] → ℝ+ is a function that gives the developer productivity for each release

in effort points per day.

• DC ∈ ℝ+ is the developer cost in dollars per effort point.

• OC ∈ ℝ+ is the operations cost in dollars per effort point per day.

• SS ∈ ℝ+ is the size, in effort points, of the As-Is system (prior to development).

• SWPaySched, the software cost payment schedule, is a tuple ⟨𝑁𝑁𝐵𝐵𝑁𝑁,𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿𝑠𝑠⟩ ,

where:

• 𝑁𝑁𝐵𝐵𝑁𝑁 ∈ ℝ+is the number of payments to the software team over the entire time

horizon.

• 𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿 : [1. .𝑁𝑁𝐵𝐵𝑁𝑁] → [1. . 𝑇𝑇𝑇𝑇] is a function, i.e. (∀ 𝑝𝑝 ∈ [1. .𝑁𝑁𝐵𝐵𝑁𝑁]),

𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑝𝑝) gives the day (relative to the first day of the software

development project) where payment 𝑝𝑝 is made.

DecisionVariables, also denoted DV, is an empty tuple.

86

Computation:

1. Let 𝑅𝑅𝐵𝐵 ∶ [1. .𝑁𝑁𝑅𝑅] →ℝ+ be a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝑅𝑅𝐵𝐵(𝑟𝑟)

gives the actual size, in effort points, of release 𝑟𝑟, once features are assigned to it. The

computation is as follows:

𝑅𝑅𝐵𝐵(𝑟𝑟) = � � 𝑅𝑅𝐵𝐵𝑠𝑠ℎ. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 .𝐹𝐹𝐵𝐵(𝑠𝑠)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑐𝑐ℎ.𝐿𝐿𝐷𝐷.𝐼𝐼𝐵𝐵𝐵𝐵(𝑟𝑟)

+ � 𝑅𝑅𝐵𝐵𝑠𝑠ℎ.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 . 𝐹𝐹𝐵𝐵(𝑠𝑠)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑐𝑐ℎ.𝐿𝐿𝐷𝐷.𝐼𝐼𝐼𝐼𝐵𝐵(𝑟𝑟)

�

2. Let 𝑅𝑅𝐿𝐿 ∶ [1. .𝑁𝑁𝑅𝑅] → ℝ+be a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝑅𝑅𝐿𝐿(𝑟𝑟)

gives the maximum capacity, in effort points, for release 𝑟𝑟 computed as:

𝑅𝑅𝐿𝐿(𝑟𝑟) = �𝑇𝑇𝐵𝐵(𝑟𝑟) × 𝐿𝐿𝑁𝑁(𝑟𝑟) × 𝑅𝑅𝐵𝐵𝑠𝑠ℎ. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚. 𝑅𝑅𝐿𝐿(𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑅𝑅𝐵𝐵(𝑅𝑅) > 0
0 𝑖𝑖𝑖𝑖 𝑅𝑅𝐵𝐵(𝑅𝑅) = 0

3. 𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑖𝑖𝑅𝑅𝑠𝑠𝐿𝐿𝑚𝑚𝑑𝑑𝑑𝑑𝑡𝑡𝑠𝑠𝑅𝑅𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝐿𝐿𝑚𝑚𝑝𝑝𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠𝐿𝐿 constraint:

0 ≤ 𝑅𝑅𝐵𝐵(𝑟𝑟) ≤ 𝑅𝑅𝐿𝐿(𝑟𝑟) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]

4. Let 𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) gives the day when release 𝑟𝑟 actually starts, computed

as:

𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) = �
1 𝑟𝑟 = 1

𝑅𝑅𝑠𝑠𝑠𝑠ℎ. 𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚. 𝑅𝑅𝐿𝐿(𝑟𝑟) + 𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟 − 1)∀ 𝑟𝑟 = [2. .𝑁𝑁𝑅𝑅 + 1]

5. Let 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) gives the day when release 𝑟𝑟 ends, computed as:

87

𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) = �
𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟 + 1) − 1 𝑟𝑟 = [1. .𝑁𝑁𝑅𝑅]

𝑅𝑅𝐵𝐵𝑠𝑠ℎ. 𝑇𝑇𝑇𝑇 (𝑟𝑟 = 𝑁𝑁𝑅𝑅 + 1)

6. Let 𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅 + 1]), 𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) gives the dollar cost of development per day for

release 𝑟𝑟, computed as:

∀ 𝑟𝑟 = [1. .𝑁𝑁𝑅𝑅 + 1],

𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) = ��
𝑅𝑅𝐿𝐿(𝑟𝑟)

𝑅𝑅𝐵𝐵𝑠𝑠ℎ.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 . 𝑅𝑅𝐿𝐿(𝑟𝑟) × 𝐿𝐿𝐿𝐿� (∀𝑟𝑟 = [1. .𝑁𝑁𝑅𝑅])

0 (𝑟𝑟 = 𝑁𝑁𝑅𝑅 + 1)

7. Let 𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. .𝑁𝑁𝑅𝑅 + 1] → ℝ+ be a function described as follows:

(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]), 𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) gives the dollar cost of operations per

day for release 𝑟𝑟, and the period after the last release, computed as:

𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) = �

(𝐵𝐵𝐵𝐵× 𝐵𝐵𝐿𝐿) 𝑟𝑟 = 1

((�𝑅𝑅𝐿𝐿(𝑖𝑖)) + 𝐵𝐵𝐵𝐵) × 𝐵𝐵𝐿𝐿 ∀ 𝑟𝑟 = [2. .𝑁𝑁𝑅𝑅 + 1]
𝑟𝑟−1

𝑖𝑖=1

8. Let 𝐵𝐵𝑆𝑆𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿 ∶ [1. .𝑇𝑇𝑇𝑇] → ℝ+be a function described as follows: (∀ 𝑑𝑑 ∈

[1. .𝑇𝑇𝑇𝑇]), 𝐵𝐵𝑆𝑆𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑) gives the software cost accrued for each day 𝑑𝑑 in the

time horizon, computed as:

𝐵𝐵𝑆𝑆𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑) = 𝑑𝑑𝑠𝑠𝑣𝑣𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) + 𝑡𝑡𝑝𝑝𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟)

where r is the release period (or period after the last release), where day d appears, i.e.,

𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟)

88

9. Let 𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠: [1. .𝑁𝑁𝐵𝐵𝑁𝑁] → ℝ be a function described as follows: (∀ 𝑝𝑝 ∈

[1. .𝑁𝑁𝐵𝐵𝑁𝑁]), 𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑑𝑑) gives the software payment in dollars, for each

scheduled payment 𝑝𝑝, computed as follows:

𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑝𝑝) =

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝐵𝐵𝑆𝑆𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑)
𝑅𝑅𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=1

 𝑝𝑝 = 1

� 𝐵𝐵𝑆𝑆𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝐿𝐿(𝑑𝑑) 𝑝𝑝 = [2.𝑁𝑁𝐵𝐵𝑁𝑁]
𝑅𝑅𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=𝑅𝑅𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝−1)+1

10. Let 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇]→ ℝ+, be a function described as follows:

(∀ 𝑑𝑑 ∈ [1. .𝑇𝑇𝑇𝑇]), 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) gives the cash flow of software labor cost

for day 𝑑𝑑, is computed as:

𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = �−𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝑚𝑚𝑠𝑠𝑑𝑑𝑠𝑠(𝑝𝑝) 𝑖𝑖𝑖𝑖 ∃𝑝𝑝|𝑑𝑑 = 𝐵𝐵𝑆𝑆𝑁𝑁𝑚𝑚𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑝𝑝)
0 𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

11. Let 𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠: [1. .𝑁𝑁𝑅𝑅] → 2𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖 be a function described as follows: (∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]),

𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) gives the set of all resources required by release 𝑟𝑟, computed as:

𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) = � 𝑅𝑅𝐵𝐵𝑠𝑠ℎ.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 . 𝐹𝐹𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑅𝑅𝑠𝑠𝑠𝑠(𝑖𝑖)
𝑓𝑓∈𝐼𝐼𝐵𝐵𝐵𝐵(𝑟𝑟)⋃𝐼𝐼𝐼𝐼𝐵𝐵(𝑟𝑟)

∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]

12. Let 𝐿𝐿𝑠𝑠𝑚𝑚𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠: [1. .𝑁𝑁𝑅𝑅] → 2𝑅𝑅𝑅𝑅𝑐𝑐ℎ.𝐿𝐿𝐿𝐿𝑟𝑟𝑃𝑃.𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖 be a function described as follows:

(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]), 𝐿𝐿𝑠𝑠𝑚𝑚𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) gives the cumulative set of resources required

by all releases up to 𝑟𝑟, computed as:

𝐿𝐿𝑠𝑠𝑚𝑚𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) = �

∅ 𝑖𝑖𝑖𝑖 𝑟𝑟 = 0

�𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑟𝑟 > 0
𝑟𝑟

𝑖𝑖=1

89

13. Let 𝑁𝑁𝑠𝑠𝐹𝐹𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠: [1. .𝑁𝑁𝑅𝑅] → 2𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖 be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅]), 𝑁𝑁𝑠𝑠𝐹𝐹𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) gives the set of new resources required by release 𝑟𝑟 that

were not paid in a previous release, computed as:

𝑁𝑁𝑠𝑠𝐹𝐹𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) = 𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟) −𝐿𝐿𝑠𝑠𝑚𝑚𝑅𝑅𝑠𝑠𝑙𝑙𝑅𝑅𝑠𝑠𝑠𝑠(𝑟𝑟 − 1) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]

14. Let 𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝑅𝑅𝑠𝑠𝑙𝑙 ∶ [1. .𝑁𝑁𝑅𝑅] →ℝ+be a function described as follows: (∀ 𝑟𝑟 ∈

[1. .𝑁𝑁𝑅𝑅]), 𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝑅𝑅𝑠𝑠𝑙𝑙(𝑟𝑟) gives the cost of all resources that need to be paid in

release r and were not paid in a previous release, computed as:

𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝑅𝑅𝑠𝑠𝑙𝑙 (𝑟𝑟) = � 𝑅𝑅𝐵𝐵𝑠𝑠ℎ.𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚 .𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠(𝑠𝑠) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]
𝑅𝑅∈𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅𝑅𝑅𝑠𝑠(𝑟𝑟)

15. Let 𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹 ∶ [1. .𝑇𝑇𝑇𝑇] → ℝ+be a function described as follows: (∀ 𝑑𝑑 ∈

[1. . 𝑇𝑇𝑇𝑇]), 𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) gives the resource cash flow for each day 𝑑𝑑 in the

time horizon, computed as follows:

Let r(d) be a release during which day d occurs, i.e., firstDay(r(d))≤ d ≤ lastDay(r(d))

𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = �
−𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑡𝑡𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑟𝑟𝑅𝑅𝑠𝑠𝑙𝑙(𝑟𝑟) 𝐹𝐹ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑑𝑑 = 𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿(𝑟𝑟(𝑑𝑑))

0 𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]

16. Let 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹 ∶ [1. .𝑇𝑇𝑇𝑇] → ℝ+, be a function described as follows: (∀ 𝑑𝑑 ∈

[1. .𝑇𝑇𝑇𝑇]), 𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) gives the total cash flow of software cost for day 𝑑𝑑, is

computed as:

𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) = 𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) +𝑅𝑅𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹(𝑑𝑑) ∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]

90

Constraints

1. 𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑭𝑭𝑫𝑫𝑫𝑫𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑫𝑫𝑹𝑹𝑹𝑹𝑪𝑪𝑹𝑹𝑭𝑭𝑩𝑩𝑭𝑭𝑫𝑫𝑫𝑫𝑹𝑹𝑳𝑳 (defined in computation #3)

InterfaceMetrics, also denoted IM, is a tuple ⟨𝐿𝐿𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝐿𝐿𝑚𝑚𝑠𝑠ℎ𝐹𝐹𝑙𝑙𝑡𝑡𝐹𝐹, 𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿, 𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝐿𝐿𝑚𝑚𝐿𝐿⟩,

where:

• 𝑹𝑹𝑭𝑭𝑹𝑹𝑪𝑪𝑭𝑭𝑫𝑫𝑹𝑹𝑪𝑪(𝑑𝑑) is defined in computation #16.

• 𝑩𝑩𝑫𝑫𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑭𝑭𝑳𝑳(𝑟𝑟) is defined in computation #4.

• 𝑫𝑫𝑭𝑭𝑹𝑹𝑹𝑹𝑹𝑹𝑭𝑭𝑳𝑳(𝑟𝑟) is defined in computation #5.

4.10 Optimization Formulation

The formalizations in the previous sections are building blocks; we now use them to

formulate the optimization of the NPV of the BSN configurations. Given the top-level

formal optimization model

𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑑𝑑𝑠𝑠𝑙𝑙𝑠𝑠⟨𝑁𝑁𝑚𝑚𝑟𝑟𝑚𝑚𝑠𝑠,𝐿𝐿𝑁𝑁𝑠𝑠 ,𝐿𝐿𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑,𝐿𝐿𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑖𝑖𝑑𝑑𝑠𝑠𝑠𝑠, 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠⟩ ,

The optimal NPV for a time horizon of 𝑠𝑠ℎ days, is:

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑅𝑅𝑠𝑠 𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑑𝑑𝑠𝑠𝑙𝑙𝑠𝑠. 𝐼𝐼𝑀𝑀. 𝑇𝑇𝑖𝑖𝑚𝑚𝑠𝑠𝑆𝑆𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁(𝑠𝑠ℎ)

𝑠𝑠. 𝑠𝑠 . 𝑅𝑅𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠ℎ𝑠𝑠𝑑𝑑𝑠𝑠𝑙𝑙𝑠𝑠.𝐿𝐿𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑚𝑚𝑖𝑖𝑑𝑑𝑠𝑠𝑠𝑠

Note that ReleseSchedule.Constraints is a roll up of all constraints from all

components. Solving the MILP above produces:

• Optimal NPV that satisfies the Demand parameter

• A release schedule, which is the result of the Solver instantiating IBF(r,f) and

ITF(r,f).

91

• The BSN configuration at the end of each release, which is captured by the

instantiated variables On(s,r).

92

5. DECISION GUIDANCE SYSTEM AND METHODOLOGY

The Opti-Soft+ framework includes a Decision Guidance Systems (DGSs) that is

implemented in JSONiq and uses the Unity platform [29], [30], so we now describe Unity.

5.1 Unity DGMS

Decision Guidance Systems (DGSs) are an advanced class of Decision Support Systems

(DSS) that are designed to provide “actionable recommendations, typically based on

formal analytical models and techniques” [9]. DGSs usually employ one or more models

and techniques from the following categories: descriptive, predictive and prescriptive.

Because these categories cover a wide range of techniques like database, stochastic

simulation, statistical learning, optimization and machine learning among others,

historically DGSs have been custom built to solve a particular problem. The challenge in

developing a DGS is that it has to be developed from scratch and requires significant

domain-specific expertise with mathematical modeling and Operations Research.

Opti-Soft+ DGS relies on the Unity platform [29], [30], which addresses the built-

from-scratch problem by providing a platform for building DGSs from reusable analytical

models. Modular, reusable and composable models, called analytical models (AMs), are

created and stored in a repository. The AMs are at a high level of abstraction and are

translated by Unity into low level code that is specific to a particular mathematical tool.

Figure 7 shows Unity’s reference architecture. Unity serves as a middleware

between the client layer and the external tool layer.

93

Figure 7 - Unity's Reference Architecture as presented in [29]

The following are some characteristics of Unity:

• Reusable Analytical Modules that are stored in the Analytical Management layer

• Unified, high-level language to develop the AMs that supports data manipulation,

deterministic and stochastic computation, decision optimization based on

Mathematical Programming/Constraint Programing and statistical/machine

learning. The language provides a level of abstraction to hide the complexities of

dealing with a diverse range of lower-level tools that are needed to implement a

DGS.

94

• An algebra of operators that can be applied to AMs. The operators are in the

Analytics Services layer

• The analytics management layer contains a compiler that uses the AMs to generate

code for the tool management layer.

• The tool layer contains a wide range of tools that are invoked by the Analytical

Services but are transparent to the end user, who writes code in the high-level

language.

Unity’s unified, high-level language is Decision Guidance Analytics Language

(DGAL) [9], which is used for defining AMs and for executing analytical services against

those models. DGAL is based on the JSON Query Language (JSONiq), which is a query

and processing language for manipulation of JSON structures. JavaScript Object Notation

(JSON) is a simple language that uses human-readable text to express complex data

structures. JSON expressions are either key-value pairs, e.g. “firstName”:”John”, sequence

of key-value pairs or arrays of key-value pairs. JSON is highly used as a simpler alternative

to XML.

In Unity, a Performance Model, which is basically a DGS, has three parts: 1) fixed

parameters P, 2) decision variables V and 3) an analytical model AM. P and V are coded as

JSON expressions while AM is a coded in JSONiq. To perform maximization, the Unity

function argmax is invoked while for minimization, the function argmin is used.

Internally, Unity invokes a mathematical programming solver to compute the optimizat ion.

The parameters in P are regular key-value expressions, while the decision variables in V

are annotated key-value pairs, where the key part contains the name of the decision

95

variable, and the value part contains a question mark. Both are combined in a parameter

file, which is then input to the AM program.

Figure 8, presented in [10], shows an example of a Unity input parameter file in

JSON with annotated Vs. The parameters demand, ppu and available have fixed values

while the decision variables chair and table are annotated with question marks. The

example is a simple Linear Program to determine the optimal purchase of tables and chairs

to fulfil a demand of 4 tables and 16 chairs so that the cost is minimized. There are two

suppliers; supplier1 has the best cost for chairs while supplier2 has the best cost for tables.

There are no constraints, so the constraints variable on the right pane is set to true. Note

that the objective function result is also annotated with question marks.

Figure 8 - Annotated Decision Variables in Unity as presented in [10]

Figure 9, also presented in [10], shows a schematic view of the optimization process

in Unity. The parameters, annotated decision variables, objective function and analytical

module are provided as input to Unity’s argmax/argmin function. Unity then generates

96

code in the low-level language for the optimizer, runs it, and the optimizer determines the

optimal values for the decision variables and instantiates them.

Figure 9 - Schematic View of Unity’s Optimization Process as presented in [9]

Once the decision variables are instantiated, they are then provided as input to the

analytical module (AM), which then computes the objective function. Figure 10 from [10]

shows the result for the example, but it does not show the code to compute the objective

function, which is in the AM file. The decision variables are instantiated for an optimal

purchase of 10 chairs and 2 tables from supplier1 and 20 chairs and 2 tables from supplier2,

at a cost of 2120.

97

Figure 10 - Example of Optimization of a Cost Metric, as presented in in [10]

The Analytical Module is written in DGAL and a DGAL module is a JSONiq

module with specialized functions that extend the semantics of JSONiq. DGAL’s

specialized functions have two properties: 1) the input and output of the function must be

an indexable object, and 2) the output object must contain the key constraints with a value

of type Boolean. The bottom right pane in Figure 10 shows the output object of a DGAL

AM. The constraints key is an integrity constraint on the input module on the left of the

figure and must result in true.

The JSONiq language, which is the basis for DGAL, processes and produces JSON

data structures. Based on XQuery, it is set-oriented and declarative, that is, it does not

describe how, it describes what to compute. It is also functional; every construct is an

98

expression, a program is an expression and the result of a program is an expression. The

language contains very powerful expressions, from simple JSON key/value pairs to

programmatic expressions such as let, if, and the XQuery FLWOR (For, Let,

Where, Order by and Return) construct, which corresponds to SQL's SELECT-FROM-

WHERE statements, but is more general and more flexible.

Now that we described the underlying technology used by Unity, we describe the Opti-

Soft+ DGS, or Performance Model.

5.2 Opti-Soft+ DGS

In Unity, a Performance Model, which is basically a DGS, has three parts: 1) fixed

parameters P, 2) decision variables V and 3) an analytical model AM. P and V are coded as

JSON expressions while AM is a module coded in JSONiq. To perform maximization, the

Unity function maximize is invoked while for minimization, the function minimize is used.

Internally, Unity invokes a mathematical programming solver to compute the optimizat ion.

A Performance Model (PM) formally describes feasibility constraints and metrics of

interest, such as cost, as a function of fixed parameters and decision variables.

In Section 4, we showed that the Opti-Soft+ formal model is made of eight

components and broke down each component in the subparts: parameters, decision

variables, computation, constraints and interface metrics. Our strategy for implementing

the Opti-Soft+ formal components in Unity is to map each component to a Analytical

Module and then to develop a Performance Model that combines all the AMs. A single

JSON module encodes all parameters P and decision variables V, while every formal model

99

component (tuple) corresponds to a JSONiq/DGAL analytical module AM that encodes its

computations, constraints and metrics. The resulting set of JSON and JSONiq modules

comprises the Opti-Soft+ DGS. Figure 11 below shows the JSONic/DGAL analytical

modules, while Table 14 shows the mapping of analytical modules programming files to

formal components. Files with extension .jq are JSONiq programs while files with

extension .json are JSON files.

Figure 11 - DGS JSONic Modules

100

Table 14 - Mapping of Formal Components to JSONiq AM Modules

Formal Component JSONiq AM Module
ReleaseScheduling ReleaseSchedulingModel.jq
BusinessServiceNetwork BSNModel.jq
Service SvcModel.jq
ANDservice CompositeService.jq
ORservice CompositeService.jq
InputDrivenAtomicService InputDrivenAtomicService.jq
OutputDrivenAtomicService OutputDrivenAtomicService.jq
SoftwareDevelopment SofDevModel.jq

Because the formalization of ANDservice and ORservice are very similar, we

combine them in one module, CompositeService.jq. Note that the formal model allows a

composite service to be comprised of composite services. To implement this,

CompositeService.jq, uses recursion to call itself.

JSONiq module DGALMain.jq, shown above, is the DGS Performance Module,

which encompasses the parameters P, decision variables V and the highest level analytical

module ReleaseSchedulingModel. We reproduce it below, where:

• P and V are in varInPut.json

• AM = ReleaseSchedulingModel.jq

101

Jsoniq version "1.0";
import module namespace a = "http://dgms.io/modules/analytics";
import module namespace fetch = "http://zorba.io/modules/fetch";
import module namespace rs =
"http://kb.dgms.io.lib/softwareFeatureSelection/ReleaseSchedulingModel
.jq";

let $varInput :=
 jn:parse-json(fetch:content("varInput.json"))

let $optResult := a:maximize({
 model: rs:ReleaseSchedulingModel#1,
 input: $varInput,
 objective: function($output) {
 $output.metrics.timeWindowNPV[][520]},
 options: {
 solver: "cbc"
 }
})

return {
 varInput: $varInput,
 optResult: $optResult
}

Figure 12 - DGALMain.jq

The DGALMain.jq program above, which is the DGS Performance Module, runs

under Docker and does the following:

1. Defines the project environment where the files are contained

2. Reads file varInput.json, parses it as a JSON expression and stores it

in $varInput

3. Invokes Unity function a:maximize with the following parameters:

• Analytical Module = ReleaseSchedulingModel.jq,

• Input structure = $varInput,

• Objective function = timeWindowNPV[][520], which is based

on the example in section 3.2.

102

• Optimizer solver = cbc

4. Returns as output, the original input structure as well as the result of the

optimization.

We now show, in Figure 13, a snippet of the varInput.json file for the example

in section 3.2. It contains both parameters and decision variables, and the snippet declares

service “AB” of type “InputDrivenAtomic”. Service “AB” requires business feature “BF1”

and has a decision variable “onDV” for each of five investment periods.

 "AB": {
 "serviceType": "InputDrivenAtomic",
 "requiredBusinessFeature": ["BF1"],
 "onDV": [
 {"integer?": null},
 {"integer?": null},
 {"integer?": null},
 {"integer?": null},
 {"integer?": null}
]
 …

Figure 13 - varInput.json File, which Contains Parameters and Decision Variables

Below we show a snippet of the analytical module SofDevModel.jq, which is the

implementation of the formal model SoftwareDevelopment from section 4.9. The third line

computes the release capacity for every release; it corresponds to computation #1 (RC) in

the formal model. The snippet also shows computation #16 for CashFlow. The last 4 lines

show that it outputs the metric CashFlow as well as one single constraint called

releaseSizeCannotExceedCapacity. The full source code is in Appendix 1.

103

declare function sd:SofDevModel($inpData) {
 (:-- Calculate release capacity --:)
 let $relCapacity := [
 for $r in 1 to $noRel
 return
 $inpData.SofDev.teamSize[[$r]] *
 $inpData.SofDev.devProductivity[[$r]] *
 $inpData.RelSch.releaseDuration[[$r]]
]
 ...
 (:-- Calculate Cash Flow --:)
 let $cashFlow := [
 for $d in 1 to $timeHorizon
 return $laborCashFlow[[$d]] + $resCashFlow[[$d]]
]
 return {
 constraints : $releaseSizeCannotExceedCapacity,
 metrics: {cashFlow: $cashFlow}
 }

Figure 14 - Snippet of SofDevModel.jq

The program ReleaseSchedulingModel.jq, being the top-level AM

invoked by the PM DGALMain.jq, concatenates the constraints from all children

modules with an AND operation. Because a solution to the MILP guarantees that

ReleaseSchedulingModel.constraints is true, it indirectly guarantees that

each constraint for each of the other seven AMs is also true.

 Unity supports a large number of solvers via CasADi and Pyomo. Opti-Soft+ DGS

is translated into Pyomo into a MILP that is then executed by the solver. The solver is CBC,

which is open-source and uses a branch and cut method. Pyomo is a Python-based open-

source software package that supports a diverse set of optimization capabilities for

formulating, solving, and analyzing optimization models. Its core capability is modeling

structured optimization applications, and it can be used to define general symbolic

104

problems through its high-level programming language. Unity compiles DGAL code into

Pyomo and feeds it into the solver.

The use of Pyomo restricts the JSONiq code that can be used in the DGS in two

ways: 1) only one decision variable can be used in a conditional statement and 2) the use

of arrays of decision variable is not supported in some situations.

As in any MILP program, the constraints that the objective function is subject to

have to be expressed in equalities or inequalities. Below is a sample of the constraints:

Constraint 1 Name: ReleaseSizeCannotExceedCapacity

Equation: 0 ≤ 𝑅𝑅𝐵𝐵(𝑟𝑟) ≤ 𝑅𝑅𝐿𝐿(𝑟𝑟) ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅]

Constraint type: simple inequality

Constraint: relSize ≤ relCapacity

Code: every $r in 1 to $noRel

satisfies $relSize[[$r]] <= $relCapacity[[$r]]

Constraint 2 Name: DeactivatedServicesIsSatisfied

Equation:

Constraint type: If-then

Constraint: -M * On(id,s) ≤ InputThru

InputThru ≤ M * On(id,s)

 Where M is an arbitrarily large number

105

5.3 METHODOLOGY

The goal of the methodology is to guide a decision-maker through the steps to setup and

run the DGS to get a recommendation. The methodology contains the following major

steps:

1. Generate candidate software features to be implemented

2. Capture the As-Is BSN configuration, and alternative BSN configurations that can

be enabled by candidate software features

3. Gather and instantiate input parameters for the optimization model as described in

Section 4, including the set of features, their dependencies, time horizon, number

of releases, BSN services, etc…

4. Run the DGS to compute the baseline NPV for the As-Is BSN

5. Perform DGS optimization to come up with a recommended Release Plan

(including chosen software features in each release) and the associated optimal

BSN configuration (To-Be)

6. Calculate the savings, which is the NPV of the To-Be minus the NPV of the As-Is

7. During Release 1, use the recommendation in the previous step to:

a) Operate the BSN according to the optimal BSN configuration.

b) Implement the recommended software features for Release 1

8. For each release r = 2,…,n

a) Update existing software features to include those implemented in the previous

release

106

b) For the updated software features and refined demand/throughput requirements,

run the DGS to recommend a new Release Plan and BSN configuration for the

remaining releases (starting from Release r + 1)

c) Implement recommended software features and operate the BSN according to

recommendation.

In step 1, the candidate software development features are determined, and each

feature has its size estimated in effort points. Also the dependency graph is defined. The

parameters that capture features are:

Parameter Content
BF Set of business features from the Product Backlog
TF Set of technical features
DG The feature dependency graph
FS Maps each feature to a size in points

In step 2, a model of the Business Service Network is created. The first task is to

create a diagram of the As-Is service network showing each subservice, its inputs and

outputs. Then for each subservice, the following is determined: labor roles, the amount of

time that each role spends to process one unit of input or to produce one unit of output, and

the ratio between input and output. Each subservice as well as the entire As-Is service

network are given identifiers. The type of each subservice is set to

InputDrivenAtomicService or InputDrivenAtomicService and the type of the As-Is service

network is set to ANDservice.

107

Next, the impact of each feature in the business network is analyzed with the goal

of determining whether the feature, once delivered, would have a positive effect either by

reducing the production time or by allowing that a role with a lower rate be employed. If a

feature f has a positive impact in service s then a new service s1 is created, and its labor

role, rate, time and ratio parameters are determined. A new composite service of type

ORservice is created where s and s1 are its subservices. Also feature f is added to the set

of required business features for service s1. This process continues until the impact of all

features is fully modeled.

The complete service model has the following parameters for each composite service:

Parameter Content
Id Identifier of the service
I Set of inputs
O Set of outputs

ServiceType ORservice or ANDservice
Subservices Set of ids of the subservices

The complete service model has the following parameters for each atomic, that is,

non-composite service:

Parameter Content
Id Identifier of the service
I Set of inputs
O Set of outputs

ServiceType InputDrivenAtomicService or InputDrivenAtomicService

108

Parameter Content
RBF Set of business features required by the service

ServiceRoles Set of roles involved in the business service
IOthruRatio The amount of time in hours that each role spends to process one

unit of input or output.
RoleTimePerIO The amount of time in hours that each role spends to process one

unit of input or output
ServiceCostPerDay Non-labor fixed cost of the service for each day

CostPerInput Maps each input to their non-labor fixed cost
CostPerOutput Maps each output to their non-labor fixed cost

In step 3, the following global parameters are determined for the release schedule

and the business service network:

Parameter Content
TH The investment time horizon

DiscountRate The daily rate to discount the cash flows
NR The number of releases
RD The duration of each release in days

ResSet Set of non-labor resources that have a fixed cost
ResCost Maps each non-labor resource to a fixed cost

FeatureRes Maps each feature to a set of resources
LR Set of labor roles

Rate Maps labor rates to labor roles
NLP The number of labor payments over the entire investment time

horizon
LaborPayDay A vector of the days when a labor payment is made

BSNI Set of input items that have to be processed by the BSN
BSNO Set of input items that have to be processed by the BSN

Demand The required processing throughput per day
RootID The id of the top-level BSN

109

Also in step 3, the software development parameters described in section 4.9 are

instantiated. These parameters describe the size of the team, cost, productivity, etc…

Below is the full list of software development parameters:

Parameter Content
TS Team size in full time equivalents
DP The expected developer productivity in points per day
DC The developer cost in dollars per effort point
OC The operations cost in dollars per effort point per day.

SS
The size, in effort points, of the As-Is system (prior to
development).

NSP
The number or payments to the software team over the entire
time horizon.

SWPayDay A vector of the days when a software labor payment is made

Also in step 3, the values of the parameters above are codified as a single JSON

object. In the following steps the DGS is ran to produce the As-Is NPV, the optimal NPV

of the To-Be and the release schedule.

110

6. EXAMPLE

We now give an example of the formalization. The example is a continuation of the

Application Adjudication from section 3.2.1.

In step 1 of the methodology, we identify the candidate features. The candidate

features for the example are TF1, BF1, BF2, BF3 and BF4. Below are their descriptions

and sizes.

Table 15 – Candidate Features

id Type Functionality Size in
points

TF1 Technical Establish technical infrastructure: servers, database,
environments, developer tools, application architecture 140

BF1 Business
eApplication. Capability to create and edit an electronic
application. Edits enforce data types, consistency and
completion rules.

140

BF2 Business eAdjudication. Capability to annotate aspects of the
application that pass or does not pass adjudication rules 280

BF3 Business eReview. Capability to review adjudication decision and
annotate issues that do not pass review. 280

BF4 Business
Self-service. Capability to allow an Applicant to submit
an application on-line, update it, and monitor its
workflow

280

The features dependency graph is shown below, where BF2 depends on BF1:

111

TF1 BF1 BF2

BF3 BF4

Figure 15 - Feature Dependency Graph

In step 2, we model the BSN. The As-Is BSN shown in Figure 2 is reproduced

below. It is composed of three services: AA, BA and CA.

AA.Manual
Application

Intake

BA. Manual
Adjudication

CA.Manual
Adjudication

Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User Application
Non

Compliance
Notice

Figure 16 - As-Is BSN Configuration

We generalize the BSN with the model below, which covers the entire space of

alternatives. In the generalized service, called Adj, the BSN is comprised of composite

services A, B and C and all these services need to be present because the type of the top-

level service, aka, the root service, is AND.

112

Service: Adj

A.
Application

Intake

B.
Adjudication

C.
Adjudication

Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User Application
Non

Compliance
Notice

AND

Figure 17 - Generalized BSN (Root Service)

Generalized, composite service A is comprised of subservices AA, AB and AC and

its type is OR because only one subservice can be present, that is, A can have AA as a

configuration, but not “AA, AB”.

AA.
Manual

Application
Intake

User Application

Non-
compliance

Notice

Compliant
Application

AB.
Electronic

Application
Intake

AC.
Self-service
Application

Intake

OR

Figure 18 - Generalized Service A

By the same token, B is comprised of subservices BA and BB and its type is OR.

113

BA.
Manual

Adjudication

Adjudicated
Application

BB.
Electronic

Adjudication

OR

Compliant
Application

Figure 19 - Generalized Service B

C is comprised of subservices CA and CB and its type is also OR.

CA
Manual

Adjudication
Review

CB.
Electronic

Adjudication
Review

OR

Adjudicated
Application

Adjudicated
Application

Letter

Figure 20 - Generalized Service C

In step 3, we identify and codify all the parameters for each of the components of

the formal model in Figure 5, which we reproduce below:

114

Release
Scheduling

Business
Service

Network

Software
Development

ServicesSet Service

ANDService

InputDrivenAtomic

ORService

Figure 21 - Hierarchy of the Components of the Formal Model

6.1 Parameters

6.1.1 Parameters - Release Schedule

Below is the codification of the candidate features, the dependency graph and the other

remaining parameters for the Release Scheduling Component, like investment period,

discount rate, number of releases, release duration, resources used by features. Note that

IBF (Implemented Business Features) and ITF (Implemented Business Features) are

vectors of decision variables and are initialized with “integer?” to denote to Unity that

they are decision variables of type integer. The null indicates that initially they don’t

have any value, but rather, the solver instantiates them. Each vector has 5 entries, one for

each of the 4 releases and one for the period after the last release.

115

Table 16 - Release Scheduling Parameters

BF= {BF1, BF2, BF3, BF4}
TF= {TF1}

DG= {(TF1,BF1), (BF1,BF2), (TF1,BF3), (BF1, BF4)}

FS=

TF1 140
BF1 140
BF2 280
BF3 280
BF4 280

TH= 520
DiscountRate= 0.0192%

NR= 4
RD= 60

ResSet= {softwareLicense1}
ResCost= SoftwareLicense1 20,000

FeatureRes

TF1 {}
BF1 {}
BF2 {}
BF3 {}
BF4 {softwareLicense1}

IBF=

1 integer? null

2 integer? null
3 integer? null

4 integer? null

5 integer? null

ITF=

1 integer? null

2 integer? null

3 integer? null
4 integer? null

5 integer? null

6.1.2 Parameters - Business Service Network

The BSN parameters shown in the table below, determine the labor rates, payment

schedule, the inputs and outputs of the BSN, the throughput demand required by the BSN,

the set of services and the id of the root service. Note that the BSN’s demand, i.e., the

116

number of input flows that it must process per day is 100. This value has a profound effect

on the instantiation of the decision variables.

Table 17 - Business Service Network Parameters

LR= {Intake Officer, Adj Officer,
Applicant, System}

Rate=

Intake Officer $160
Adj Officer $400
Applicant $0

System $0

NLP= 5
LaborPayDay= 60,120,180,240,520

BSNI= {User Application}
BSNO= {}

Demand= User Application 100

ServicesSet= {Adj, A, B, C, AA, AB, AC, BA, BB, CA, CB}
rootID= Adj

Note that although the labor cost of the service network accrues each day, we only

pay on the days of the LaborPayDay schedule above. The schedule in the example has only

5 payments to simplify the calculations, but the model accepts any number of payments.

6.1.3 Parameters – ANDService and ORService

Below are the parameters for the composite services of type AND and OR, showing their

type, I/Os and subservices.

117

Table 18 – Composite Services Parameters

id ServiceType Input/Output Subservices

Adj ANDservice
User Application Adjudicated Application

Letter
User Application Non-compliance Notice

{A, B, C}

A ORservice
User Application Compliant Application
User Application Non-compliance Notice

{AA, AB, AC}

B ORservice Compliant Application Adjudicated Application

{BA, BB}

C ORservice Adjudicated Application Adjudicated Application
Letter

{CA, CB}

6.1.4 Parameters – InputDrivenAtomicService

Below are the parameters for the atomic services, like AA. Table 19 shows the business

features required by each service and the fixed cost per day for the service.

Table 19 - InputDrivenAtomicService Parameters Required Features and Cost per Day

id RBF ServiceCostPerDay
AA 200.00
AB {BF1} 200.00
AC {BF1, BF4} 200.00
BA 200.00
BB {BF1, BF2} 200.00
CA 200.00
CB {BF3} 200.00

Table 20 below shows the inputs, outputs, and the ratio of input to output. The ratio

is important so that the Solver can calculate the correct number of flows given the demand

on the BSN.

118

Table 20 - InputDrivenAtomicService Parameter IOThruRatio

id ServiceType Input/Output/IOThruRatio

AA InputDrivenAtomic
User Application Compliant Application 70%
User Application Non-compliance Notice 30%

AB InputDrivenAtomic
User Application Compliant Application 70%
User Application Non-compliance Notice 30%

AC InputDrivenAtomic
User Application Compliant Application 70%
User Application Non-compliance Notice 30%

BA InputDrivenAtomic Compliant Application Adjudicated Application 100%

BB InputDrivenAtomic Compliant Application Adjudicated Application 100%

CA InputDrivenAtomic Adjudicated Application Adjudicated Application
Letter 100%

CB InputDrivenAtomic Adjudicated Application Adjudicated Application
Letter 100%

Table 21 below shows the time in hours to process each input and produce the

corresponding output and identifies the role of the worker.

Table 21 - InputDrivenAtomicService Parameter RoleTimePerIO

id Role I O RoleTime
PerIO

AA Intake Officer User Application 0.250
AA Intake Officer Compliant Application 0.125
AA Intake Officer Non-compliance Notice 0.219
AB Intake Officer User Application 0.145
AB System Compliant Application 0.000
AB System Non-compliance Notice 0.000
AC Applicant User Application 0.063
AC System Compliant Application 0.000
AC System Non-compliance Notice 0.000
BA Adj Officer Compliant Application 0.042
BA Adj Officer Adjudicated Application 0.208
BB Adj Officer Compliant Application 0.021
BB Adj Officer Adjudicated Application 0.143

119

id Role I O RoleTime
PerIO

CA Adj Officer Adjudicated Application 0.021
CA Adj Officer Adjudicated Letter 0.167
CB Adj Officer Adjudicated Application 0.017
CB Adj Officer Adjudicated Letter 0.083

Table 22 below shows the fixed cost per input for service AA, which is 2.00, which

is in addition to the labor cost required to process the inputs. The other services don’t have

this cost.

Table 22 - InputDrivenAtomicService Parameter CostPerInput

id Input CostPerInput
AA User Application 2.00
AB User Application
AC User Application
BA Compliant Application
BB Compliant Application

CA Adjudicated
Application

CB Adjudicated
Application

Table 23 below shows the fixed cost per output for service AA. The other services

don’t have this cost.

120

Table 23 - InputDrivenAtomicService Parameter CostPerOutput

id Output CostPerOutput
AA Compliant Application 3.00
AA Non-compliance Notice 1.00
AB Compliant Application
AB Non-compliance Notice
AC Compliant Application
AC Non-compliance Notice
BA Adjudicated Application
BB Adjudicated Application
CA Adjudicated Application Letter
CB Adjudicated Application Letter

Table 24 below shows that each atomic service has a decision variable On(s,r),

where s is the service id and r is the release number, that indicates whether the service is

activated or not in each release. The type of On is integer but additional constraints in the

DGS forces it to be binary.

Table 24 - Decision Variable On(r) where s is the service id, and r is the release number

Service
Id On(1) On(2) On(3) On(4) On(5)

AA Integer? Integer? Integer? Integer? Integer?

AB Integer? Integer? Integer? Integer? Integer?

AC Integer? Integer? Integer? Integer? Integer?

BA Integer? Integer? Integer? Integer? Integer?

BB Integer? Integer? Integer? Integer? Integer?

CA Integer? Integer? Integer? Integer? Integer?

CB Integer? Integer? Integer? Integer? Integer?

121

Table 25 below shows that each atomic service has a decision variable

InputThru(s,i,r), where s is the service id, i is the input and r is the release number, that

captures the throughput of the services, i.e., the number of inputs that flow through them.

The InputThru(i,r) value is chosen by the MILP Solver and is constrained by IOThruRatio

in Table 20 and Demand in Table 17.

Table 25 - Decision Variable InputThru(s,i,r), where s is the service id,
i is the input and r is the release number

Svc
Id Input InputThru

Type
InputThr

u Rel 1
InputThru

Rel 2
InputThru

Rel 3
InputThru

Rel 4
InputThru
after Rel 4

AA User Application decimal? null null null null null

AB User Application decimal? null null null null null

AC User Application decimal? null null null null null

BA Compliant Application decimal? null null null null null

BB Compliant Application decimal? null null null null null

CA Adjudicated
Application

decimal? null null null null null

CB Adjudicated
Application

decimal? null null null null null

The labor rates in Table 17, the ratio of input output in Table 20, the time per input

in Table 21 and the throughput in Table 25 are used to compute the labor cost per day for

each service.

The service cost per day in Table 19, the cost per input in Table 22, and the cost

per output in Table 23 are used to calculate the fixed cost for each service.

122

6.1.5 Parameters – Software Development

Table 16 above shows parameters that impact the software releases such as the number of

releases and their duration. Table 26 below shows the remaining parameters for the

development of the software such as the team size, developer productivity in points per

day, development cost/point/day, operations cost/point/day, size of the initial system in

points and payment schedule.

Table 26 - Software Development Parameters

TS= 5
DP= 1
DC= $1,040
OC= $0.25
SS= 0

NSP= 5
SWPayDay= 60,120,180,240,520

6.2 Recommendation of the To-Be BSN

Step 4 of the methodology is covered in section 6.4. In step 5, we run the DGS with

the parameters in the previous section in order to produce a recommendation, that is, the

Solver instantiates the decision variables.

Decision Variables - Release Scheduling

Below are the instantiations of the decision variables IBF and ITF, which assign features

to releases, and consequently make up the release plan. It shows, for example, that in

release 1, both TF1 and BF1 are developed.

123

Table 27 - Release Scheduling Decision Variables

 Rel 1 Rel 2 Rel 3 Rel 4
TF1 1
BF1 1
BF2 1
BF3 1
BF4 1

Decision Variables - Services

The table below contains the instantiations for the Decision Variable On.

Table 28 - Service Decision Variable On(s,r), where s is the service id and r is the release number

Service Rel 1 Rel 2 Rel 3 Rel 4 after Rel 4
Adj 1 1 1 1 1
A 1 1 1 1 1
B 1 1 1 1 1
C 1 1 1 1 1

AA 1 0 0 0 0
AB 0 1 1 1 0
AC 0 0 0 0 1
BA 1 1 1 0 0
BB 0 0 0 1 1
CA 1 1 0 0 0
CB 0 0 1 1 1

The above Table 28 determines the instantiation of each service in each release, for

example, AA is instantiated in release 1 but not in any other release. Table 29 below

translates those instantiations into BSN configurations. Row 1 shows that the initial BSN,

prior to the software being developed, is AA, BA, CA and it matches the As-Is

124

configuration in Figure 16. Per Table 27 , in release 1 features TF1 and BF1 are developed

and according to Table 19, they allow service AB to be activated, consequently after release

1 the configuration is AB, BA, CA.

Table 29 - Example of the Configurations of the SN

Period Configuration
Before release 1 AA, BA, CA
After Release 1 AB, BA, CA
After Release 2 AB, BA, CB
After Release 3 AB, BB, CB
After Release 4 AC, BB, CB

After release 4, the final To-Be BSN configuration, depicted in Figure 22 below, is

AC, BB, CB.

AC. Self-service
Application

Intake

 BB.
Electronic

Adjudication

CB.
Electronic

Adjudication
Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User Application
Non

Compliance
Notice

Figure 22 - To-Be BSN

125

The table below contains the instantiations for the Decision Variable InputThru,

which have a direct impact in the calculation of the labor cost of each service.

Table 30 - Service Decision Variable InputThru(s, i,r), where s is the service id,
i is the input and r is the release number

id Input R=1 R=2 R=3 R=4 R=4+

AA User Application 100 0 0 0 0

AB User Application 0 100 100 100 0

AC User Application 0 0 0 0 100

BA Compliant
Application 70 70 70 0 0

BB Compliant
Application 0 0 0 70 70

CA Adjudicated
Application 70 70 0 0 0

CB Adjudicated
Application 0 0 70 70 70

6.3 Computation of the To-Be BSN

Once the decision values are instantiated, the next step for the DGS is to perform the

computations according to the formal model in section 4. The computations are performed

bottom up according to the hierarchy in Figure 21. First, the software computations are

performed, then the atomic component, then the OR, then the AND, then the BSN and

finally the Release Schedule.

126

6.3.1 Computation – Software Development

First the software computations are performed. The release size in points is calculated, as

it drives the costs. The final calculation is the software CashFlow per day, which is the sum

of LaborCashFlow and the cashflow spent by the resources, that is, the features. CashFlow

is the interface metrics for the SoftwareDevelopment component, consequently it is rolled

up the hierarchy to ReleaseScheduling.

Table 31 - Software Development Computations

 RC: 300 RS: 300

 R1 R2 R3 R4 After R4
ImplementedFeatures= TF1, BF1 BF3 BF2 BF4

Service Network= AA, BA, CA AB, BA, CA
AB, BA,

CB AB, BB, CB
AC, BB,

CB
relRes= softwareLicense1

First Day= 1 61 121 181 241
Last Day= 60 120 180 240 520

devCostPerDay= $5,200 $5,200 $5,200 $5,200 $0
opsCostPerDay= $0 $75 $150 $225 $300

SWCostForDay $5,200 $5,275 $5,350 $5,425 $300
CostPeriod= [1..60] [61..120] [121..180] [181..240] [241..520]
SWPayDay= 60 120 180 240 520
FeatureRes= {softwareLicense1}

ResCost= $20,000
SWLaborPayment= $312,000 $316,500 $321,000 $325,500 $84,000
LaborCashFlow(last

day Rel)= -$312,000 -$316,500 -$321,000 -$325,500 -$84,000
ResCashFlow:(lastday

Rel)= $0 $0 -$20,000 $0
CashFlow(last day

Rel)= -$312,000 -$316,500 -$341,000 -$325,500 -$84,000
CashFlow(other days)= 0 0 0 0 0

127

6.3.2 Computation – Atomic Service

Second, the atomic services are computed. The first calculation is of the OutputThru. Then,

TimePerDay is computed by multiplying RoleTimePerIO by InputThru, and adding the

multiplication of RoleTimePerIO times OutputThru. The result is shown in Table 32.

Table 32 - InputDrivenAtomicService Computations - TimePerDay

 TimePerDay

id Role R=1 R=2 R=3 R=4 R=4+ Rate
AA Intake Officer R=1 R=2 R=3 R=4 R=4+ Rate
AB Intake Officer 40.32 0.00 0.00 0.00 0.00 160.00
AB System 0.00 14.50 14.50 14.50 0.00 160.00
AB System 0.00 0.00 0.00 0.00 0.00 0.00
AC Applicant 0.00 0.00 0.00 0.00 0.00 0.00
AC System 0.00 0.00 0.00 0.00 6.30 0.00
BA Adj Officer 0.00 0.00 0.00 0.00 0.00 0.00
BB Adj Officer 17.50 17.50 17.50 0.00 0.00 400.00
CA Adj Officer 0.00 0.00 0.00 11.48 11.48 400.00
CB Adj Officer 13.16 13.16 0.00 0.00 0.00 400.00

Once TimePerDay is known, LaborCostPerDay is calculated by multiplying

TimePerDay by the labor rate. Next, FlowCostPerDay is calculated by multiplying

CostPerInput by InputThru and adding to CostPerOutput times OutputThru. The interface

metric CostPerDay is the sum of LaborCostPerDay plus FlowCostPerDay plus parameter

ServiceCostPerDay from Table 19.

128

Table 33 - InputDrivenAtomicService Computation - CostPerDay

id R=1 R=2 R=3 R=4 R=4+
AA $7,091.20 $0.00 $0.00 $0.00 $0.00
AB $0.00 $2,520.00 $2,520.00 $2,520.00 $0.00
AC $0.00 $0.00 $0.00 $0.00 $200.00
BA $7,200.00 $7,200.00 $7,200.00 $0.00 $0.00
BB $0.00 $0.00 $0.00 $4,792.00 $4,792.00
CA $5,464.00 $5,464.00 $0.00 $0.00 $0.00
CB $0.00 $0.00 $3,000.00 $3,000.00 $3,000.00

6.3.3 Computation – OR Services

The CostPerDay of an OR service, shown below, is the sum of the CostPerDay of the

subservices in Table 33.

Table 34 - ORservice Computation - CostPerDay

id R=1 R=2 R=3 R=4 R=4+
A $7,091.20 $2,520.00 $2,520.00 $2,520.00 $200.00
B $7,200.00 $7,200.00 $7,200.00 $4,792.00 $4,792.00
C $5,464.00 $5,464.00 $3,000.00 $3,000.00 $3,000.00

6.3.4 Computation – AND Service

The CostPerDay of an AND service, shown below, is the sum of the CostPerDay of the

subservices in Table 34.

129

Table 35 - ANDservice Computation - CostPerDay

id R=1 R=2 R=3 R=4 R=4+
Adj $19,755.20 $15,184.00 $12,720.00 $10,312.00 $7,992.00

6.3.5 Computation - Business Service Network

The BSNCostForDay is the CostPerDay of the root service Adj, shown in Table 35.

BSNPayment is the number of days in the period, times the BSNCostPerDay, and it is paid

according to the payment schedule. In the example, payments are made on the last day of

the period. The total cashflow of the BSN during the 60 days in release 1 is -$1,185,312. 00

while during the same 60 days in release 4 is -$618,720.00. The large savings in release 4

is due to the utilization of the BSN configuration AB, BB, CB, which is much less costly

than AA, BA, CA, because there is less time spent processing inputs due to some tasks

being partially or fully automated by the implemented system.

Table 36 - BusinessServiceNetwork Computation - CashFlow

 Rel 1 Rel 2 Rel 3 Rel 4 After Rel 4
First Day= 1 61 121 181 241

Last Day= 60 120 180 240 520

BSNCostForDay $19,755.20 $15,184.00 $12,720.00 $10,312.00 $7,992.00

CostPeriod= [1..60] [61..120] [121..180] [181..240] [241..520]

LaborPayDay= 60 120 180 240 520

BSNPayment= $1,185,312.00 $911,040.00 $763,200.00 $618,720.00 $2,237,760.00

CashFlow(last day Rel)= -$1,185,312.00 -$911,040.00 -$763,200.00 -$618,720.00 -$2,237,760.00

CashFlow(other days)= 0 0 0 0 0

130

6.3.6 Computation - Release Schedule

In the ReleaseScheduling module, the cashflow of the BSN from Table 36 is combined

with the cash flow of the software from Table 31. They are then discounted based on the

payment schedule, resulting in TimeWindowNPV, which is also the objective function.

Table 37 below shows that the NPV of the combined BSN and software development for

the entire investment period of 520 days is -6,748,777.45.

Table 37 - ReleaseScheduling Computation - CashFlow

d= 60 120 180 240 520
BSN.IM.CashFlow= -1,185,312.00 -911,040.00 -763,200.00 -618,720.00 -2,237,760.00

SWD.IM.CashFlow= -312,000.00 -316,500.00 -341,000.00 -325,500.00 -84,000.00
Combined

Cash Flow= -1,497,312.00 -1,227,540.00 -1,104,200.00 -944,220.00 -2,321,760.00
Discounted CF=

TimeWindowNPV= -1,480,136.25 -2,679,675.43 -3,746,306.93 -4,647,941.93 -6,748,777.45

6.4 Computation of the As-Is NPV

In step 4 of the methodology, we compute the NPV of the As-Is. To do that we set the

parameters as follows:

1. The IBF and ITF decision variables are set to 0 for all releases

2. The On decision variables are set to indicate that the As-Is atomic services (AA,

AB, CA) are activated for all releases while all the other atomic services are not

activated at all.

131

6.4.1 SoftwareDevelopment Computations

Because the IBF and ITF are set to 0, there is nothing to be developed consequently the

cost of software is zero.

6.4.2 BSN Computations

The cost of the BSN is calculated, and the results are shown below.

Table 38 - As-Is BSN CashFlow

 R1 R2 R2 R4 After R4

First Day= 1 61 121 181 241

Last Day= 60 120 180 240 520

BSNCostForDay $19,755.20 $19,755.20 $19,755.20 $19,755.20 $19,755.20

CostPeriod= [1..60] [61..120] [121..180] [181..240] [241..520]

LaborPayDay= 60 120 180 240 520

BSNPayment= $1,185,312.00 $1,185,312.00 $1,185,312.00 $1,185,312.00 $5,531,456.00
CashFlow

(last day Rel)= -$1,185,312.00 -$1,185,312.00 -$1,185,312.00 -$1,185,312.00 -$5,531,456.00
CashFlow

(other days)= 0 0 0 0 0

6.4.3 Release Schedule Computations

The aggregated cost of the As-Is is the same as the cost of the BSN in Table 38 because

the cost of software is zero. The total NPV of the As-Is is, shown in Table 39 below, is

-9,611,947.49.

132

Table 39 - As-Is NPV

d= 60 120 180 240 520

BSN.IM.CashFlow= -1,185,312.00 -1,185,312.00 -1,185,312.00 -1,185,312.00 -5,531,456.00

SWD.IM.CashFlow= 0.00 0.00 0.00 0.00 0.00

Combined Cash Flow= -1,185,312.00 -1,185,312.00 -1,185,312.00 -1,185,312.00 -5,531,456.00

Discounted CF= -1,171,715.22 -1,158,274.42 -1,144,987.79 -1,131,853.58 -5,005,116.48

TimeWindowNPV= -1,171,715.22 -2,329,989.64 -3,474,977.43 -4,606,831.01 -9,611,947.49

6.5 Total Benefit

Now we can calculate the total benefit of the implementation of the software, by

subtracting the NPV of the As-Is from the NPV of the To-Be as shown in the equation

below:

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙 𝐵𝐵𝑠𝑠𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇𝑡𝑡 −𝐵𝐵𝑠𝑠) − 𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴𝑠𝑠 − 𝐼𝐼𝑠𝑠) =

−6,748,777.45 − (−9,611,947.49) =2,863,170.04

We conclude that the release plan [{TF1, BF1}, BF3, BF2, BF4] saves

2,863,170.04 over the time horizon of 520 days. Note that this is the maximum savings,

i.e., there is no other release plan and BSN configuration that produces a higher savings.

6.6 Constraint Computation and Validation for the To-Be

In the previous sections we showed the calculations of the total NPV for the To-Be and the

As-Is. We now show the constraints for the To-Be for the same example. All constraints

must evaluate to true in order for the recommendation described in section 0 to be feasible.

133

6.6.1 Constraint Computation and Validation – Software Development

Constraint: ReleaseSizeCannotExceedCapacity

The calculation of Release Size (RS) results in 280 points and that is also the value of the

Release Capacity (RC), consequently RS≤RC holds for every release.

6.6.2 Constraint Computation and Validation – Atomic Service

Constraint: FeatureDependencyIsSatisfied

The constraint states that if the value of the On decision variable is 1 for service s and

release r, then the required business feature (RBF) for service s must be implemented in a

prior release, that is, must be a subset of SoFarIBF(r-1), which is the set of implemented

business features up to r-1. Table 28 shows the value of On. Take service AB, for example,

which is active in release 2, that is, On(AB,2)=1. According to the RBF column in Table

19, AB requires business feature BF1, i.e., RBF(AB)={BF1}. The release schedule in Table

27 shows that BF1 is implemented in release 1, consequently SoFarIBF(2-1) =

SoFarIBF(1) = {BF1}. The constraint below:

 𝐵𝐵𝑑𝑑(𝐴𝐴𝐵𝐵, 2) = 1 → 𝑅𝑅𝐵𝐵𝐹𝐹(𝐴𝐴𝐵𝐵) ⊆ 𝐵𝐵𝑡𝑡𝐹𝐹𝑚𝑚𝑟𝑟𝐼𝐼𝐵𝐵𝐹𝐹(1)

holds because RBF(AB)={BF1} is a subset of SoFarIBF(1)={BF1}. Following the

same logic, the constraint also holds for AB in releases 2 to 4 and holds for the other atomic

services as well.

134

Constraint: DeactivedServicesIsSatisfied

The constraint, shown below, says that if a service is deactivated, then no input can flow

through it.

𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑, 𝑟𝑟) = 0 → 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑖𝑖𝑑𝑑, 𝑖𝑖, 𝑟𝑟) = 0

Table 28 shows the value of On. Take service BB, for example, which is

deactivated in release 1, that is, On(BB,1)=0. Table 30 shows that InputThru(BB,Compliant

Application,1)=0, which satisfies this constraint.

6.6.3 Constraint Computation and Validation – ORservice

Constraint: OnlyOneServiceActivated

The constraint, reproduced below, states that the value of On(o,r) for ORservice o is equal

to the sum of On(s,r) for all its subservices s. If On(o,r)=1, then one subservice must have

On(s,r)=1 while all others must be zero. If On(o,r)=0, then all subservices must have

On(s,r)=0

� 𝐵𝐵𝑑𝑑(𝑖𝑖 ,𝑟𝑟) = 𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟), ∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅 + 1]
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

Take service B, for example, which is activated in release 1, that is, On(B,1)=1.

Table 28 shows that On(BA,1)=1 and On(BB,1)=0 consequently

On(BA,1)+On(BB,1)=1=On(B,1) and the constraint holds.

Constraint: TotalSupplyMatchesTotalDemand

This is a very important constraint because it balances the BSN, guaranteeing that the

number of inputs matches the number of outputs at every level. This constraint, together

135

with the BSN constraints in the next section, satisfy the required BSN throughput demand

while at the same time guaranteeing that the number of input and output flows through the

BSN are correct. Take ORservice B, for example, the constraint is reproduced below.

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵 , 𝑠𝑠,𝑟𝑟) = 𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵 , 𝑠𝑠,𝑟𝑟)

Where:

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) = �𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) + 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐼𝐼(𝐵𝐵)
𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵,𝑠𝑠, 𝑟𝑟) 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

𝑇𝑇𝑡𝑡𝑠𝑠𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) = �𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝐵𝐵,𝑠𝑠, 𝑟𝑟) + 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵,𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐵𝐵(𝐵𝐵)
𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝐵𝐵, 𝑖𝑖, 𝑟𝑟) = 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵, 𝑖𝑖, 𝑟𝑟)− 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵,𝑖𝑖, 𝑟𝑟) ∀𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑑𝑑)

𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝐵𝐵,𝑡𝑡, 𝑟𝑟) = 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵,𝑡𝑡, 𝑟𝑟)− 𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵,𝑡𝑡, 𝑟𝑟) ∀ 𝑡𝑡 ∈ 𝐵𝐵(𝑖𝑖𝑑𝑑)

𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐿𝐿𝑠𝑠𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑(𝐵𝐵, 𝑠𝑠, 𝑟𝑟) = � � 𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑠𝑠, 𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐼𝐼(𝑠𝑠)
𝑠𝑠 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝐵𝐵)

0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

𝐼𝐼𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟𝑑𝑑𝑚𝑚𝑙𝑙𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑙𝑙𝐿𝐿(𝐵𝐵,𝑠𝑠, 𝑟𝑟) = � � 𝐵𝐵𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝑠𝑠, 𝑠𝑠, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑠𝑠 ∈ 𝐵𝐵(𝑠𝑠)
𝑠𝑠 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝐵𝐵)

0 𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝐹𝐹𝑖𝑖𝑠𝑠𝑠𝑠

Using InputThru instantiation from Table 30, here are the computations for input flow

‘Compliant Application’, or ‘CA’ in release 1.

InternalDemand(B,CA,1)=70+0=70

InternalSupply(B,CA,1)=0

InputThru(B,CA,1)=70-0=70

OutputThru(B,CA,1)=0

136

TotalSupply(B,CA,1)=70+0=70

TotalDemand(B,CA,1)=70

The computations show that TotalSupply(B,CA,1)=70=TotalDemand(B,CA,1)

consequently the constraint holds.

6.6.4 Constraint Computation and Validation – ANDservice

Constraint: AllSubservicesAreActivated

The constraint, reproduced below, states that the value of On(a,r) for ANDservice a is

equal to the sum of On(s,r) for all its subservices s, multiplied by the number of

subservices. If On(a,r)=1, then all subservices must have On(s,r)=1, and if On(a,r)=0,

then all subservices must have On(s,r)=0.

� 𝐵𝐵𝑑𝑑(𝑖𝑖 ,𝑟𝑟) = 𝑑𝑑𝐵𝐵𝑑𝑑(𝑖𝑖𝑑𝑑,𝑟𝑟) 𝐹𝐹ℎ𝑠𝑠𝑟𝑟𝑠𝑠 𝑑𝑑 = cardinality of 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑑𝑑)
𝑖𝑖 ∈ 𝑅𝑅𝑆𝑆𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑆𝑆𝑖𝑖𝑐𝑐𝑅𝑅𝑠𝑠(𝑖𝑖𝑑𝑑)

Take service Adj, for example, which has 3 subservices, A, B and C, and is

activated in release 1, that is, On(Adj,1)=1. Table 28 shows that On(A,1)=1, On(B,1)=1

and On(C,1)=1 consequently On(A,1)+On(B,1)+On(C,1)=3=3(On(A,1))=3(1)=3 and the

constraint holds.

Constraint: TotalSupplyMatchesTotalDemand

Same as in ORservice.

137

Constraint: RootMustBeActivated

The constraint, reproduced below states that the On(rootID,r) for ANDservice rootID has

to be 1 for every release. This guarantees that the BSN top level service is always activated,

which has a downstream effect to its subservices and their subservices, that is.

𝐵𝐵𝑑𝑑(𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠𝐼𝐼𝐿𝐿,𝑟𝑟) = 1

6.6.5 Constraint Computation and Validation – BusinessServiceNetwork

Constraint: BSNDemandIsSatisfied

For root service Adj in release 1 and Demand(“User Application”)=100 as shown in Table

17, the constraint is:

𝐼𝐼𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑇𝑇ℎ𝑟𝑟𝑠𝑠(𝐴𝐴𝑑𝑑𝑠𝑠,𝑈𝑈𝑠𝑠𝑠𝑠𝑟𝑟 𝐴𝐴𝑝𝑝𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝑚𝑚𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑, 1) ≥ 100

Using the InputThru instantiations in Table 30 and the equations from section

6.3.3Constraint Computation and Validation – ORservice, we compute:

InternalDemand(Adj,User Application,1)=100+0+0=100

InputThru(Adj,User Application,1)=100

As InputThru=100 and 100≥100, the constraint holds.

Constraint: BSNSupplyIsSatisfied

In the example, the BSN does not have a demand for output flows, that is, BSNO is the

empty set consequently the constraint does not apply.

138

6.6.6 Constraint Computation and Validation – ReleaseScheduling

Constraint: FeatureSetsForReleasesArePairwiseDisjoint

The constraint is reproduced below. It states that feature sets are pairwise disjoint

across releases, that is, a feature can only be assigned to one release.

(𝐼𝐼𝐵𝐵𝐹𝐹(𝑖𝑖) ∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑖𝑖))∩ (𝐼𝐼𝐵𝐵𝐹𝐹(𝑠𝑠) ∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑠𝑠)) = ∅ (∀ 𝑖𝑖, 𝑠𝑠, ∈ [1. .𝑁𝑁𝑅𝑅], 𝑖𝑖 ≠ 𝑠𝑠)

To calculate the constraint, we use the values in Table 27, Release Schedule,

which we reproduce below:

Table 40 - Release Schedule for the Example

 Rel 1 Rel 2 Rel 3 Rel 4
TF1 1
BF1 1

BF2 1
BF3 1
BF4 1

Below we calculate the constraint, starting with i=1 and j=2.

{𝑇𝑇𝐹𝐹1,𝐵𝐵𝐹𝐹1}⋂{𝐵𝐵𝐹𝐹3} = ∅ for i=1, j=2

{𝑇𝑇𝐹𝐹1,𝐵𝐵𝐹𝐹1}⋂{𝐵𝐵𝐹𝐹2} = ∅ for i=1, j=3

{𝑇𝑇𝐹𝐹1,𝐵𝐵𝐹𝐹1}⋂{𝐵𝐵𝐹𝐹4} = ∅ for i=1, j=4
{𝐵𝐵𝐹𝐹3}⋂{𝐵𝐵𝐹𝐹2} = ∅ for i=2, j=3

{𝐵𝐵𝐹𝐹3}⋂{𝐵𝐵𝐹𝐹4} = ∅ for i=2, j=4

{𝐵𝐵𝐹𝐹2}⋂{𝐵𝐵𝐹𝐹4} = ∅ for i=3, j=4

The values above show that the constraint holds for all cases.

139

Constraint: FeatureDependenciesAreSatisfied

The constraint is reproduced below. It states that if a feature f1 precedes f2 and f2 is

scheduled in release r, then f1 must be scheduled in release r , or in a prior release.

(𝑖𝑖1 ≺ 𝑖𝑖2 ∧ 𝑖𝑖2 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) ∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑟𝑟)) → (𝑖𝑖1 ∈ �𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟) ∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑟𝑟)
𝑟𝑟

𝑖𝑖=1

)

(∀ 𝑟𝑟 ∈ [1. .𝑁𝑁𝑅𝑅])(∀ 𝑖𝑖1, 𝑖𝑖2 ∈ 𝐵𝐵𝐹𝐹 ∪ 𝑇𝑇𝐹𝐹),

where f1≺f2 are elements of the Dependency Graph from Table 16, which we reproduce

here: DG={(TF1,BF1), (BF1,BF2), (TF1,BF3), (BF1, BF4)}

Below we compute the constraint, using the release schedule from Table 40. and the

Dependency Graph:

Table 41 - Constraint: FeatureDependenciesAreSatisfied

r (𝑖𝑖1 ≺ 𝑖𝑖2 ∧ 𝑖𝑖2 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(𝑟𝑟)∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑟𝑟)) → (𝑖𝑖1 ∈ ⋃ 𝐼𝐼𝐵𝐵𝐹𝐹(𝑖𝑖)∪ 𝐼𝐼𝑇𝑇𝐹𝐹(𝑖𝑖)𝑟𝑟
𝑖𝑖=1) Result

1 𝑇𝑇𝐹𝐹1 ≺ 𝐵𝐵𝐹𝐹1∧ 𝐵𝐵𝐹𝐹1 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) 𝑇𝑇𝐹𝐹1 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) TRUE

2 𝑇𝑇𝐹𝐹1 ≺ 𝐵𝐵𝐹𝐹3∧ 𝐵𝐵𝐹𝐹3 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) 𝑇𝑇𝐹𝐹1 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) TRUE
3 𝐵𝐵𝐹𝐹1 ≺ 𝐵𝐵𝐹𝐹2∧ 𝐵𝐵𝐹𝐹2 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(2) 𝐵𝐵𝐹𝐹1 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) TRUE
4 𝐵𝐵𝐹𝐹1 ≺ 𝐵𝐵𝐹𝐹4∧ 𝐵𝐵𝐹𝐹4 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(4) 𝐵𝐵𝐹𝐹1 ∈ 𝐼𝐼𝐵𝐵𝐹𝐹(1) TRUE

The computations show that the release schedule satisfies the constraint in all cases.

140

7. SENSITIVITY ANALYSIS

Because businesses are dynamic and changes happen all the time, stakeholders

need to know the sensitivity of the recommendation to the main driver of cost, which is the

demand on business process throughput. Knowing the sensitivity has the potential to

increase the confidence in the recommendation and also help stakeholders make more

informed decisions. To answer this, we developed a technique for sensitivity analysis as

follows.

The objective function is the NPV of the cash outflow of the service network (SN)

plus the cash outflow of developing the software features that allow the SN to transition to

more efficient processes. Opti-Soft+ has several parameters that influence the NPV, but

the one with the most impact is the demand, which is the required throughput of the SN. In

our example, the required demand is 100 applications per day.

The required demand, used as a parameter in the DGS, is an estimation and if there

is a high degree of uncertainty in the estimation, a decision maker might not have a lot of

confidence in the recommendation. That’s why a sensitivity analysis based on the demand

parameter is so valuable because it helps to understand risk.

In our sensitivity analysis technique, we use the NPC instead of the NPV because

it is more intuitive. The goal is to determine the NPC delta, that is, the additional cost for

an increase of one unit of demand. Given d0, the original demand through the SN, we vary

d, the new demand by 1. The delta of the demand is δ=d-d0. We then calculate UC, the cost

per unit of demand d as follows:

141

𝑈𝑈𝐿𝐿(𝛿𝛿) =
𝑁𝑁𝑁𝑁𝐿𝐿(𝑑𝑑0 + 𝛿𝛿)

𝑑𝑑0 + 𝛿𝛿

We can utilize the above technique to conduct two analyses for a range of δ: 1)

fix the release plan and the BSN configuration, and 2) fix the release plan, allowing the

BSN configuration to be optimized. The first analysis shows how the unit cost varies with

each δ, while the second shows the unit cost variation and the stability of the BSN

configuration.

7.1 Sensitivity Analysis 1

The steps to conduct analysis number 1 are as follows: 1) determine a range of δ, above

and below d0, to conduct the analysis, 2) run the DGS optimization with demand=d0 to get

a recommendation and the value of NPV0, 3) instantiate the ITF(r,f), IBF(r,f) and On(s,r)

decision variables with the release planning schedule and SN configuration recommended

by the DGS in the previous step, leaving InputThru(s,i,r) as a DV, 4) set the demand

parameter to d0+δ1, where δ1, is the first value in the δ range, and run the DGS to get the

value for NPC1, 5) repeat steps 2-4 (i.e., now performing operational optimization when

software features available are fixed) for all δi in the range, i >1, 6) calculate the

values of UC(δ i), and 7) plot a chart with the values of δi and UC(δ i).

We now apply our sensitivity analysis technique to the example in Section 4. In

step 1, we determine that the estimated demand d0=100 has an error or 10%, so we set the

range of δ to -10 to +10. In step 2 we run the DGS with demand=100 and produce the

recommendation and NPC0=$6,748,777.45, described in Section 4. In step 3 we instantiate

the release planning schedule and SN configuration DVs with the recommendation in

142

Section 4. In step 4, we take the first value in the δ range (-10) and set demand=100-10=90

and run the DGS, getting NPC1=$6,236,485.38. In step 5, we repeat steps 2-4 for all the

other values in the δ range and produce the NPC results in Table 42. In step 6, we calculate

UC(δ i), also shown in Table 42. In step 6 we plot the chart shown in Figure 23.

Table 42 - Results of the Sensitivity Analysis

d δ NPC(d0+ δ) UC(δ)
90 -10 $6,236,485.38 $69,294.28
91 -9 $6,287,714.60 $69,095.76
92 -8 $6,338,943.82 $68,901.56
93 -7 $6,390,173.05 $68,711.54
94 -6 $6,441,402.27 $68,525.56
95 -5 $6,492,631.49 $68,343.49
96 -4 $6,543,860.71 $68,165.22
97 -3 $6,595,089.93 $67,990.62
98 -2 $6,646,319.15 $67,819.58
99 -1 $6,697,548.37 $67,652.00

100 0 $6,748,777.45 $67,487.77
101 1 $6,800,006.67 $67,326.80
102 2 $6,851,235.89 $67,168.98
103 3 $6,902,465.11 $67,014.22
104 4 $6,953,694.33 $66,862.45
105 5 $7,004,923.56 $66,713.56
106 6 $7,056,152.78 $66,567.48
107 7 $7,107,382.00 $66,424.13
108 8 $7,158,611.22 $66,283.44
109 9 $7,209,840.43 $66,145.33
110 10 $7,261,069.65 $66,009.72

143

Figure 23 - Plot of δ and UC(δ)

The table and the chart show that as the demand d increases, the UC, which is NPC

per unit of d, decreases. For a decision maker, this is a desirable behavior because the initial

demand d0 is just an estimation. If d0 was underestimated, then the optimal NPC is even

better than the value provided by the original recommendation. If d0 was underestimated,

it is easy to determine the reduction in NPC. This would help a decision maker to manage

the estimation risk of the demand and consequently yield a higher degree of confidence in

the DGS recommendation.

7.2 Sensitivity Analysis 2

To perform analysis number 2, we use the same steps as analysis number 1 with one

change. In step 3, we do not instantiate On(s,r), that is, we do not fix the BSN configuration,

allowing it to be optimized.

We run all the steps, and for every δ in the range -10 to +10, the results are the same as

in analysis number 1. In addition, the recommended BSN configuration is also the same.

This means that for a delta in the range of -10 to +10, the recommendation is stable.

144

8. EVALUATION

We now evaluate Opti-Soft+ and compare it with the two prominent methods IFM and

F-EVOLVE* using a realistic case study.

8.1 Case Study Description – Board of Professionals Web Portal

There are many professions including accountants, nurses and teachers that have a board

that certifies practitioners. Our case study is for a Board of Professionals that 1) provides

certification exams and 2) registers those professionals who pass the exam, that is, certifies

them.

 Figure 24 shows the two processes: Exam Application (EA) and Board Registration

(BR). Initially, there is no software system; consequently, applications for exams and

registrations are done manually using paper forms.

Figure 24 – Board of Professionals: Processes

145

An information system is planned to be developed to automate the manual

processes and ultimately provide a Web portal where both registrations and exam

applications can be conducted online. Table 43 shows all the software features that are

considered to be developed.

Table 43 - Board of Professionals: Software Features

Feature Capability Dependency
F1 Online Exam Application

F2 Online Exam Application with
Document Upload

F1

F3 Online Board Registration

Table 44 shows that the initial, manual, paper processes are EA1 (Exam

Application Paper Processing) and BR1 (Board Registration Paper Processing). Each

Exam Application takes 50 minutes to process in EA1 while each Board Registration takes

30 minutes to process in BR1. Processes are enabled by certain implemented software

features. Once feature F1 is implemented, EA1 transitions to EA2 (Exam Application

Online Processing), which takes only 24 minutes as opposed to 50. Feature F2 enables EA2

to transition to EA3 (Exam Application Online with Doc Upload); feature F3 enables BR1

to transition to BR2 (Board Registration Online Processing); and the availability of both

F1 and F3 enables BR2 to transition to BR3 (Application and Registration Online

Processing). Table 44 shows all the processes in the business service network and the

146

features that enable them. Because automation brings efficiencies, each subsequent process

takes less time than the preceding one. Note that BR3 takes much less time than BR2; the

reason is that once F1 and F3, their synergetic interaction allows the following efficiencies:

• Many fields become pre-populated, completely eliminating common errors that take

time to resolve,

• All the paper operation is removed, which:

o Saves labor time to create a physical folder, which has to be created if at least

one process is on paper,

o Saves labor time maintaining paper boxes in a warehouse, and

o Saves labor time processing paper documents back and forth from warehouse.

Table 44 - Board of Professionals: Processes and Enabling Features

Id Process Enabling
Feature

Time
(min)

EA1 Exam Application Paper Processing 50

EA2 Exam Application Online Processing F1 24

EA3 Exam Application Online with Doc Upload F2 12

BR1 Board Registration Paper Processing 30

BR2 Board Registration Online Processing F3 19

BR3 Application and Registration Online Processing F1, F3 6

The initial Business Service Network (BSN) is EA1, BR1, and once F1 is

developed, the BSN becomes EA2, BR1. These BSNs are shown in Figure 25.

147

Figure 25 – Board of Professionals: Initial BSN and First Transition

8.2 Case Study – Opti-Soft+ Recommendation

We now set Opti-Soft+ up to return a recommendation on an optimal release schedule

of software features for the Board of Professionals case study. The parameters, in

addition to the ones depicted in Section 8.1, are described in the following tables. In

order to provide a fair comparison with the prominent methods, we set the discount rate

to 0% to be compatible with IFM and F-EVOLVE* methods, which only discount at

the end of each release, as opposed to daily discounting in Opti-Soft+. Another

simplification is that all features are set to have the same size and the team capacity is

such that only one feature can be developed per release.

148

Table 45 – Board of Professionals: Release Scheduling Parameters

BF= {F1, F2, F3}
TF= {}

DG= {(F1, F2)}

FS=
F1 300
F2 300
F3 300

TH= 520
DiscountRate= 0%

NR= 3
RD= 60

Table 46 - Board of Professionals: BSN Parameters

LaborRate: {"Admin": 160}
NLP= 4

LaborPayDay= [60,120,180,520]
BSNI= ["App Input","Reg Input"]

BSNO= {}
Demand(User
Application)= {"App Input": 100,"Reg Input": 100}
ServicesSet= {BoardProf,EA, BR, EA1, EA2, EA3, BR1, BR2, BR3}

rootID= BoardProf

Table 47 - Board of Professionals: Composite Services Parameters

id Input Output ServiceType Subservices

BoardProf App Input
Reg Input

Application
Registration ANDservice {EA, BR}

EA App Input Application ORservice {EA1, EA2, EA3}
BR Reg Input Registration ORservice {BR1, BR2, BR3}

149

Table 48 - Board of Professionals: Atomic Services Parameters

id RBF I
RoleTime

PerIO Role
EA1 {} App Input 0.833 Admin
EA2 {F1} App Input 0.4 Admin
EA3 {F2} App Input 0.2 Admin
BR1 {} Reg Input 0.5 Admin
BR2 {F3} Reg Input 0.3125 Admin
BR3 {F1, F3} Reg Input 0.1 Admin

Table 49 - Board of Professionals: Software Development Parameters

TS= 5
DP= 1 (points/day)
DC= $1,040 ($/point)
OC= $0.25 ($/point/day)
SS= 0 (points)

NSP= 4
SWPayDay= 60,120,180,520

Solving the optimization problem in Opti-Soft+ with the parameters in the tables

above, produces an NPV of -$5,281,680.00 and the following software release schedule

recommendation for the To-Be state.

Table 50 - Board of Professionals: Release Plan and Corresponding BSN

Release Feature BSN
1 F1 EA1, BR1
2 F3 EA2, BR1
3 F2 EA2, BR3

3+ EA3, BR3

150

We also calculate the NPV for the As-Is, which has the BSN EA1, BR1 for the

entire time horizon of 520 days, resulting in -$11,090,560.00. The difference between the

NPV of the To-Be and the As-Is is -$5,808,880.00. This means that if the software system

is developed according to the release plan in Table 50, the cost savings, or net return on

investment is $5,808,880.00 over the investment period of 520 days.

The total cost of the software calculated by Opti-Soft+ is $1,026,000. This

investment, divided by the net return of $5,808,880 produces an ROI of 566%.

8.3 Case Study – Revenue

The next sections will apply the prominent methods IFM and F-EVOLVE* to the Board

of Professionals case study. Both methods require that the revenue be externally calculated

for each feature in each release. Opti-Soft+ associates a cost per BSN process, not per

feature, but the feature revenue can be calculated.

The revenue of a process is the cash flow generated by the process. In the case of

the Board of Professionals case study, the business processes generate a cash outflow. A

feature e1, once implemented, allows a process a1 to transition to a more efficient process

a2, with a lower Net Present Cost, that is, NPC(a2)<NPC(a1). The cost reduction of

implementing e1 is NPC(a1)-NPC(a2), while the revenue of e1 is the cost reduction minus

the software development cost. This is the approach we take so that we can compare Opti-

Soft+, which is based on the cost of a process, with IFM and F-EVOLVE*, which are based

on the revenue of features.

151

For the case study, the Opti-Soft+ DGS calculated the cost per day for each process,

which is shown in the second column of Table 51. The last column is the daily cost

reduction, for example, the cost reduction of F1, which activates process EA2, is the cost

per day of EA1 ($13,328) minus the cost per day of EA2 ($6,400), resulting in $6,928.

Note that BR3 requires F1 and F3 but the corresponding cost reduction of $3,400 cannot

be assigned to either F1 or F3. This is a limitation of IFM and F-EVOLVE*, where each

revenue is associated with one and only one feature. In IFM and F-EVOLVE* there is no

way to map the $3,400 revenue produced when both F1 and F3 are implemented; the

revenue of F1 is $6,928 and the revenue of F3 is $3,000.

Table 51 - Board of Professionals: Daily Cost Reduction per Feature

Cost per Day Required

Feature
Daily Cost
reduction

EA1 $13,328.00 $0.00
EA2 $6,400.00 F1 $6,928.00
EA3 $3,200.00 F2 $3,200.00
BR1 $8,000.00 $0.00
BR2 $5,000.00 F3 $3,000.00
BR3 $1,600.00 F1, F3 $3,400.00

Now we consider the software development and operations cost. According to the

DGS output, the cost of developing a 300 points feature is $5,200/day while the cost to

operate a feature after it is developed is $75/day.

With the information above, we can now calculate the revenue for each feature in

each release. Let’s start with F1. If F1 is developed in release 1, then the initial version of

the EA process is EA1, so during the release 1 period, which is the first 60 days of the time

152

horizon, the revenue per day is the cost reduction of EA1, which is zero, minus the software

development cost, which is $5,200. The total revenue for the release, which lasts 60 days

is then -$312,000, showing in column 2 of Table 52.

In release 2, the daily revenue for F1 is $6,928 in cost reduction for EA2, minus

$75, which is the operations cost, resulting in $6,853 per day and $411,180 for the entire

period. The calculations for all 3 releases and the period after release 3 are shown in Table

52. The total revenue for F1, if it is developed in release 1, is the sum of all periods,

resulting in $2,840,380.

Table 52 - Board of Professionals: F1 Revenue if Developed in Release 1

 Rel 1 Rel 2 Rel 3 Rel 3+
Active process: EA1 EA2 EA2 EA2
Cost reduction

/day: $0.00 $6,928.00 $6,928.00 $6,928.00
Soft Cost/day $5,200.00 $75.00 $75.00 $75.00

Revenue/day: -$5,200.00 $6,853.00 $6,853.00 $6,853.00
Days in period: 60 60 60 340

Revenue for
period: -$312,000.00 $411,180.00 $411,180.00 $2,330,020.00

 TOTAL: $2,840,380.00

Applying the same method, the revenues for the other features are calculated and

shown in Table 53.

153

Table 53 - Board of Professionals: Revenue per Feature per Release

Rel F1 F2 F3
1 $2,840,380 $1,125,500 $1,033,500
2 $2,429,200 $938,000 $858,000
3 $2,018,020 $750,500 $682,500

8.4 Case Study – IFM Recommendation

As described in Section 2.2.1 and in [15], the Incremental Funding Method (IFM) starts by

calculating the revenue of each feature in each period. It then sequence-adjusts them, that

is, calculates the total revenue for the entire time horizon based on the release when the

feature is developed. This Sequence-Adjusted NPV (SANPV) is what we calculated in

Section 8.3 and is shown in Table 53.

 Once the SANPV is determined, the IFM then chooses the sequence of features. It

employs a heuristic algorithm that uses a simple look-ahead approach. The algorithm views

sequencing options as strands, which are sequences of features linked by dependencies. In

step 1, it starts with strands that reflect the dependency graph with the first feature of each

strand being a feature that has no dependency. In our case study, there are three releases,

three features and one dependency where F1 is a predecessor of F2. The possible strands

for release 1 are then 1, 12 and 3. Table 54 shows the SANPV for each strand as well as

the Weight-average SANPV, which is calculated according to the formula.

𝑆𝑆𝐵𝐵𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐵𝐵𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 × (1 −𝑆𝑆𝐹𝐹 × (𝑁𝑁 − 1))

where WF is the weighting factor, generally 0.15, and P is the number of periods needed

to develop the strand.

154

Table 54 - Board of Professionals: IFM Selection of Feature in Release 1

 Release 1

Strand SANPV WSANPV Max WSANPV Feature
Selected

1 $2,840,380.00 $2,840,380.00
12 $3,778,380.00 $3,211,623.00 $3,211,623.00 F1
3 $2,018,020.00 $2,018,020.00

The strand selected is the one with the highest WSANPV. In release 1, the highest

WSANPV corresponds to strand 12, so the feature selected to be developed is F1. In release

2, the strands are 2 and 3 and their SANPV and WSANPV are calculated and shown in

Table 55.

Table 55 - Board of Professionals: IFM Selection of Feature in Release 2

 Release 2

Strand SANPV WSANPV Max
WSANPV

Feature
Selected

2 $938,000.00 $938,000.00 $938,000.00 F2
3 $750,500.00 $750,500.00

In release 2, the highest WSANPV corresponds to strand 2, so the feature selected

to be developed is F2. In release 3, the only strand available is 3 and its SANPV and

WSANPV are calculated and shown in Table 56.

Table 56 - Board of Professionals: IFM Selection of Feature in Release 3

 Release 3

Strand SANPV WSANPV Max WSANPV Feature
Selected

3 $682,500.00 $682,500.00 $682,500.00 F3

155

Based on the steps above, the release plan recommended by IFM for the case study

is shown in Table 57. Also shown are the total SANPV, aka cost reduction, which is

$4,460,880.

Table 57 - Board of Professionals: IFM Release Plan

Release Feature SANPV
1 F1 $2,840,380.00
2 F2 $938,000.00
3 F3 $682,500.00

 Total NPV: $4,460,880.00

 The ROI of IFM is 435% ($4,460,880/1,026,000), as opposed to 566% in
Opti-Soft+.

8.5 Case Study – F-EVOLVE* Recommendation

As described in Section 2.2.2, F-EVOLVE* formulates an Integer Linear Programming

(ILP) problem with the goal of offering the most profitable sequence of features. Given a

set of features {F1,… Fn}, a set of stakeholders {S1, … Sq}, relative importance 𝜆𝜆𝑝𝑝 for each

Sp, and K releases, NPV(i,k,p) as the net present value of a cost estimate for feature i in

release k by Sp, the objective function is

���𝜆𝜆𝑝𝑝

𝑞𝑞

𝑝𝑝=1

𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖, 𝑘𝑘,𝑝𝑝)
𝐾𝐾

𝑘𝑘=1

𝑥𝑥(𝑖𝑖, 𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

Where: x(i,k) is 1 if Fi is selected in release k or 0 otherwise

Assuming only one stakeholder with a relative importance 𝜆𝜆𝑝𝑝=1, the objective function

becomes:

156

��𝑁𝑁𝑁𝑁𝑁𝑁(𝑖𝑖 ,𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

𝑥𝑥(𝑖𝑖,𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

The constraints are as follows:

1. ∑ 𝑥𝑥(𝑖𝑖, 𝑘𝑘) ≤ 1𝐾𝐾
𝑘𝑘=1

2. ∑ 𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠(𝑖𝑖 , 𝑟𝑟)𝑥𝑥(𝑖𝑖, 𝑘𝑘) ≤ 𝐿𝐿𝑚𝑚𝑝𝑝(𝑘𝑘, 𝑟𝑟) ∀𝑘𝑘 = 1. .𝐾𝐾, 𝑟𝑟 = 1. . 𝑅𝑅𝑛𝑛
𝑖𝑖=1

3. ∑ (𝐾𝐾 + 1− 𝑘𝑘)�𝑥𝑥(𝑖𝑖1, 𝑘𝑘) − 𝑥𝑥(𝑖𝑖2,𝑘𝑘)� ≥ 0𝐾𝐾
𝑘𝑘=1 if feature i1 precedes feature i2

Constraint #1 guarantees that every feature is implemented only once. Constraint #3

guarantees feature dependencies, which in our case is F1 precedes F2. Constraint #2

guarantees that the sum of all development resources r for all features i developed in release

k, cannot exceed the capacity of resource r in release k. We consider only one resource, the

development team, which in the case study, has a capacity of 300 Agile points per release.

Features consume points based on their size and only one feature can be developed in each

release, so the constraint #2 formula can be simplified as:

𝑠𝑠𝑖𝑖𝑅𝑅𝑠𝑠(𝑖𝑖, 𝑘𝑘)𝑥𝑥(𝑖𝑖 ,𝑘𝑘) ≤ 𝐿𝐿𝑚𝑚𝑝𝑝(𝑘𝑘)

Where: size(i,k) is the size in points of feature i if implemented in release k and

Cap(k) is the capacity in points of release k .

The first step in F-EVOLVE* is to calculate the NPV for each feature in each release, and

that was already done in Section 8.3, and it is displayed in Table 53 and reproduced in

Table 58.

157

Table 58 - Board of Professionals: F-EVOLVE* Revenue per Feature per Release

k NPV(F1,k) NPV(F2,k) NPV(F2,k)
1 $2,840,380.00 $1,125,500.00 $1,033,500.00
2 $2,429,200.00 $938,000.00 $858,000.00
3 $2,018,020.00 $750,500.00 $682,500.00

The second step is to formulate the constraints, shown in Table 59.

Table 59 - Board of Professionals: F-EVOLVE* constraints

𝑥𝑥(1,1) + 𝑥𝑥(1,2)+ 𝑥𝑥(1,3) ≤ 1 F1 can only be implemented once
𝑥𝑥(2,1) + 𝑥𝑥(2,2) + 𝑥𝑥(2,3) ≤ 1 F2 can only be implemented once
𝑥𝑥(3,1) + 𝑥𝑥(3,2) + 𝑥𝑥(3,3) ≤ 1 F3 can only be implemented once

�𝑠𝑠𝑖𝑖𝑅𝑅𝑠𝑠(𝑖𝑖, 1)𝑥𝑥(𝑖𝑖, 1)
3

𝑖𝑖=1

 ≤ 300 Release 1 points can't exceed capacity

�𝑠𝑠𝑖𝑖𝑅𝑅𝑠𝑠(𝑖𝑖, 2)𝑥𝑥(𝑖𝑖, 2)
3

𝑖𝑖=1

 ≤ 300 Release 2 points can't exceed capacity

�𝑠𝑠𝑖𝑖𝑅𝑅𝑠𝑠(𝑖𝑖, 3)𝑥𝑥(𝑖𝑖, 3)
3

𝑖𝑖=1

 ≤ 300 Release 3 points can't exceed capacity

�(𝐾𝐾+ 1− 𝑘𝑘)�𝑥𝑥(1,𝑘𝑘)− 𝑥𝑥(2,𝑘𝑘)�
3

𝑘𝑘=1

 ≥ 0 F1 precedes F2

𝑥𝑥(1,1),𝑥𝑥(1,2),𝑥𝑥(1,3),
𝑥𝑥(2,1),𝑥𝑥(2,2),𝑥𝑥(2,3),
𝑥𝑥(3.1),𝑥𝑥(3,2),𝑥𝑥(3,3)

 int All decision variables are integer

Solving the integer linear program above produces the decision variables

instantiations in Table 60. The recommended release plan is identical to the one produced

by IFM and shown in Table 57.

158

Table 60 - Board of Professionals: F-EVOLVE* Instantiated Decision Variables

k X(F1,k) X(F2,k) X(F2,k)
1 1 0 0
2 0 1 0
3 0 0 1

The value of the objective function, according to the solver, is $4,460,880.00,

which is the sum of the values in the diagonal of Table 58. This value is also identical to

the one produced by IFM.

8.6 Case Study – Comparison

Table 61 summarizes the recommendations from IFM, F-EVOLVE* and Opti-Soft+ for

the case study. IFM and F-EVOLVE* produce exactly the same release plan and cost

savings, while Opti-Soft+ produces a different release plan, a 30% higher cost savings and

a 131% higher ROI.

Note that even though IFM and F-EVOLVE* do not have a method for estimation

of the revenue, we used Opti-Soft+ method in order to be able to compare the three

approaches, that is, IFM and F-EVOLVE* benefited from Opti-Soft+ built-in cost model.

Table 61 - Board of Professionals: Recommendations of the Three Methods

Release Plan Cost Savings

(Net Return on Investment)

ROI
IFM F1, F2, F3 $4,460,880 435%

F-EVOLVE* F1, F2, F3 $4,460,880 435%
Opti-Soft+ F1, F3, F2 $5,808,880 566%

159

To understand the reason that Opti-Soft+ outperforms IFM and F-EVOLVE*,

look at Table 62, which is a reproduction of Table 51. The key difference happens in release

2; IFM and F-EVOLVE* choose F2, while Opti-Soft+ chooses F3. Note that F2 activates

process EA3, which has a cost reduction of $3,200 while F1 and F3 activate BR3, which

has a higher cost reduction of $6,400 ($3,000+$3,400). Opti-Soft+ chooses the highest cost

reduction produced by F1, F3 but IFM and F-EVOLVE* are not able to ever activate BR3,

because they do not have a mechanism for mapping a revenue to a group of features. In

general, Opti-Soft+ will outperform whenever there is a synergy among a set of features

like F1 and F3 above, and the cost reduction of the set is higher than the cost reduction of

each feature in the set.

Table 62 - Board of Professionals: Cost Reduction per Feature (reproduction)

Cost per Day

Required
Feature Cost reduction

EA1 $13,328.00 $0.00
EA2 $6,400.00 F1 $6,928.00
EA3 $3,200.00 F2 $3,200.00
BR1 $8,000.00 $0.00
BR2 $5,000.00 F3 $3,000.00
BR3 $1,600.00 F1, F3 $3,400.00

To resolve this simple example in IFM, stakeholders had to provide

12=(features*(releases+1)) estimations and 5=(releases*2*dependencies) calculations. In

F-EVOLVE*, stakeholders had to provide 12=(features*(releases+1)*stakeholders)

estimations, and the Integer Linear Programming had to be formulated from scratch with

160

7=(features*releases) constraints. For a medium-size project with 40 features, 20 releases,

15 dependencies and 2 stakeholders, IFM would require 1,680 stakeholder-provided

estimations and 50 calculations while F-EVOLVE would require 1,680 stakeholder-

provided estimations and the ILP would have 75 constraints that involve 61 calculations.

While the effort to use IFM and F-EVOLVE* has a cubic growth (f*r*s), Opti-Soft+ effort

grows linearly according to the formula f+4a+7, where f is the number of features, r is the

number of releases, s is the number of stakeholders and 4 is the number of atomic processes.

For the medium size project, Opti-Soft+ would require the estimation of 207 cost factors,

as opposed to F-EVOLVE which would require 1,741 estimations to determine the

revenues and constraints. Note that a cost factor estimation in Opti-Soft+ requires low

effort because it is a single measurable number like labor rate, while each revenue

estimation in IFM or E-EVOLVE* require considerable effort to calculate because they

are based on multiple cost factors. This basically means that effort wise, it might not be

realistic to use IFM and F-EVOLVE* in large projects.

In addition, IFM requires the formulation of a new ILP for every problem while

Opti-Soft+ only requires the setup of parameters describing the problem, because the DGS

adapts to the particular parameter configuration.

This leads to the conclusion that IFM and F-EVOLVE* might not be practical for

a high number of releases and features.

We did not apply the case study to van den Akker because it is very similar to

F-EVOLVE* and would produce the same recommendation. van den Akker does have an

extension of the basic model that allows a revenue to be mapped to a pair of features but

161

that complicates the model by forcing the decision variable to have 2 dimensions instead

of one and by adding two summation terms to the objective function, one that increases the

revenue and another that decreases the revenue. Also, this extension does not change the

fact that the revenue must be externally estimated and provided, whereas Opti-Soft+

supports many-to-many mapping of features to revenues in a standard way.

162

9. COMPARISON OF OPTI-SOFT+ WITH RELATED APPROACHES

We now continue comparing Opti-Soft+ with the prominent approaches, which we started

in Section 1.4.2. We start with characteristics or capabilities.

9.1 Comparison: Characteristics and Capabilities

Table 63 below compares the characteristics of the approaches; it shows that Opti-Soft+

not only aggregates the best characteristics of each approach but is the only approach that

has a built-in valuation model and allow a many-to-many mapping of features to

estimations in a native way.

Table 63 - Characteristics of Prominent Approaches Compared to Opti-Soft+

Characteristic IFM F-EVOLVE* van den Akker
et al. Opti-Soft+

Business benefit metric Total NPV Total NPV Total Revenue Total NPV

Built in valuation model
No, value

estimates are
given

No, value
estimates are

given

No, value
estimates are

given
Yes

Value metric Projected Cash
Flow

Projected
Revenue

Projected
Revenue

Calculated Cash
Flow

Granularity of value
estimation Feature Feature Feature Business Process

Mapping of feature to an
estimation value One-to-one One-to-one

One-to-one
Many-to-many
is handled in a
complex way

Many-to-many

Value estimation
incorporates software
development

Yes Yes No Yes

Time horizon is built into
estimations Yes Yes Yes Yes

Discounting method
Discount at the

end of each
release period

Discount at the
end of each

release period
None Discount when a

payment is made

163

Characteristic IFM F-EVOLVE* van den Akker
et al. Opti-Soft+

Release schedule
recommendation

For the entire
software project

For the entire
software project

Only for the
next release

For the entire
software project

Recommendation method Heuristics ILP ILP MILP

Supports feature
dependencies Yes Yes Yes Yes

Release size is constrained
by the size of feature

No more than 1
feature per

release
Yes Yes Yes

We now look into the limitations of the current methods and how Opti-Soft closes the

limitation gap.

9.2 Comparison: Closing the Limitation Gap

Table 64 below shows that Opti-Soft+ addresses the limitations of the prominent

approaches, which closes the research gap.

Table 64 - Limitations of Prominent Approaches Compared to Opti-Soft+

Limitation IFM F-EVOLVE* van den Akker
et al. Opti-Soft+

Characteristics that
lead to imprecision

1) lack of
valuation model,
2) granularity,
3) one-to-one
mapping
4) discounting
method
5) software
maintenance cost
not included

1) lack of
valuation model,
2) granularity,
3) one-to-one
mapping
4) discounting
method
5) software
maintenance cost
not included

1) lack of
valuation model,
2) granularity,
3) one-to-one
mapping
4) discounting
method
5) software cost
not included

None

Effort to produce the
recommendation
(f=features, r=releases,
s=stakeholder,
d=dependencies)

(f*r*s)
stakeholder-

provided
estimations +

(r+2d) calculations

(f*r*s)
stakeholder-

provided
estimations +

(f+r+d)
constraints to
setup the ILP +

running ILP

(f*r)
stakeholder-

provided
estimations +

(f+r+d)
constraints to
setup the ILP +

running ILP

9 cost
parameters +
running DGS

164

Limitation IFM F-EVOLVE* van den Akker
et al. Opti-Soft+

Valuation effort when
factors change

Very high.
Manual
recalculations
needed when any
factor change
such as labor
rates, discount
rate, investment
period, etc…

Very high.
Manual
recalculations
needed when any
factor change
such as labor
rates, discount
rate, investment
period, etc…

Very high.
Manual
recalculations
needed when
any factor
change such as
labor rates,
discount rate,
investment
period, etc…

Low,
just change the

affected
parameter and
rerun the DGS

Effort to conduct 'what
if' or sensitivity
analysis

High, require
manual

recalculations

High, require
manual

recalculations

High, require
manual

recalculations

Low, any change
is exposed as a

data point
Reason discounting
causes imprecision

Done at the end of
the release

Done at the end
of the release Not done None

9.3 Comparison: Claims

For an important and very common class of information systems that improve a Business

Service Network, we make the following claims about Opti-Soft+:

• Claim 1: it is as good as the current methods for all cases and outperforms them in cases

of synergy among features. The reason is that it solves for optimality, like the best

methods, and allows many-to-many mapping of feature to benefit, while the others are

limited to one-to-one mapping.

• Claim 2: it outperforms in accuracy, due to its comprehensive cost/benefit model, while

others rely on subjective, external estimations.

• Claim 3: it requires considerably less effort and is applicable to large projects, because

it is reusable and parameterized, while others require a MP formulation for each use

case and cost estimations are done manually.

165

10. CONCLUSION

The motivation for this dissertation is that many projects fail because they don’t deliver

value back to the business that is commensurate to the investment. One strategy to improve

the failure rate is to treat software development as an investment by adopting a value-

oriented approach. Of the many types of approaches that arouse, the financial-based

approach is the most successful. Several financial-based approaches were proposed but all

of them, including the most popular, the Incremental Funding Method (IFM), have lots of

limitations, the main one being inaccuracy, because they lack a built-in cost/benefit model

of the investment environment, they just assume that external stakeholders provide the

cost/benefit estimates. They are also very inflexible because they require all estimates to

be recalculated manually whenever a single cost factor, like a labor rate, is changed.

 In this dissertation, we addressed the above problem by focusing on a specific class

of information systems that reduce the operations cost of a Business Service Network

(BSN). For this class of systems, we developed a value-oriented, financial-based

framework that (1) delivers business value commensurate to the investment, and (2) is

accurate and has less limitations than the prominent methods.

 The framework is composed of a formal model, a DGS and a methodology for

recommending a release schedule that optimizes the overall business value, i.e., minimizes

the aggregate cost of the BSN operations and the development of the software. The DGS,

given parameters and decision variables as input, and the analytical model, which is

automatically translated into a MILP formulation, uses a MILP solver to produce the

166

recommendation. The release schedule recommendation (1) is optimal, i.e., there is no

other release schedule that has a lower total cost; (2) covers all aspects of the investment

domain including the BSN, the software development process, and the savings achieved

due to automation; (3) is accurate, because it is based on the analytical model, which

contains all the necessary factors and equations to precisely compute valuation points,

decision variables, constraints, and the objective function; (4) associates benefits to a set

of interacting software features instead of only one as in the prominent approaches; (5)

lacks manual estimations; and (6) is flexible to change valuation factors and conduct ‘what

if’ or sensitivity analysis.

The framework is novel and unique in many ways, such as (1) it significant ly

improves the precision of the valuation points, because it (a) encompasses all aspects of

the investment domain (business, software, release plan) and (b) includes all necessary cost

factors and equations to precisely compute valuation points, decision variables, constraints,

and the objective function; (2) it leverages the insight that there is a direct correlation

between the implementation of a set of software features and the improvement in a business

process, and that the degree of the improvement can be accurately calculated; (3) it

completely eliminates the effort to manually estimate or re-estimate valuation points by

exposing valuation factors as parameters that can be easily changed prior to using the DGS

to re-compute the recommendation; (4) it significantly reduces the effort to make changes

or conduct ‘what if’ or sensitivity analysis, because different scenarios and sensitivities can

be easily analyzed by changing one or more parameters, rerunning the DGS and comparing

the results; (5) it is written in a high level, general purpose language, not requiring expertise

167

in Mathematical Programming; and (6) it is modular, extensible and reusable, not requiring

the formulation of a new MILP model for each use case.

For an important and very common class of information systems that improve a

Business Service Network, we claim that Opti-Soft+: (1) is as good as the current methods

for all cases and outperforms them in cases of synergy among features; (2) outperforms in

accuracy; and (3) requires considerably less effort and is applicable to large projects.

The contributions of the dissertation are: 1) the formal analytical model, 2) the

methodology and the DGS, and 3) a technique for sensitivity analysis, and 4) an evaluation.

We conclude that the dissertation fulfils the thesis, because the Opti-Soft+

framework (1) recommends a release schedule of software features; (2) minimizes the

combined cost of software development and improved business operations; and (3)

outperforms the existing approaches in terms of added business value and required effort.

168

11. LIMITATIONS AND FUTURE WORK

In terms of limitations, the major one is the scope of software projects that Opti-Soft+

supports, which are projects that implement information systems that improve a business

service network.

 This limitation is not as strong as it seems because it can be applied to any domain

that can be modelled as a business service network. The most common BSN is an internal

company’s process that is labor intensive. Other examples of a BSN is a manufacturing

process where robots would be used to reduce the cost and time.

 A second limitation is that it clumps all developers into one group and models them

as a single team with a single set of cost factors, e.g., developers’ productivity and labor

cost. Many projects do involve multiple development teams, so Opti-Soft+ forces the user

to provide a single set of numbers, probably the average, of all teams. If there is a large

cost disparity among teams, this could be problematic.

 A third limitation is that it covers only developers, even though in many projects,

other professionals like UX designers, testers and business analysts are part of the team.

 Future work could remove the second and third limitations. The software

development formal model could be extended to support multiple teams with multiple

types of professionals. This level of granularity would have the following impact:

1. In the software formal model, the following parameters would have to be extended

to support multiple teams: team size, developer productivity, developer cost,

operations cost and system size

169

2. The feature size parameter would have to be extended because different teams

might estimate the size of the feature differently.

3. The recommendation would have to be extended to assign features to a specific

team in a particular release

Future work could relax the first limitation. One improvement would be for the

BSN to generate revenue instead of consuming labor. This improvement would allow Opti-

Soft+ to support a wide-range of applications, for example, a free application, web-based

or mobile, that has several potential use cases where each use case would bring an expected

revenue through ads. Each use case would be mapped to a BSN atomic service that would

be activated by the development of a set of features.

170

APPENDIX 1 – DGS SOURCE CODE

ReleaseScheduling.jq

171

172

BSNModel.jq

173

174

175

SvcModel.jq

176

CompositeService.jq

177

178

179

180

InpDrivenAtomicService.jq

181

182

183

SofDevModel.jq

184

185

186

187

188

CommonOperations.jq

189

190

191

APPENDIX 2 - DEFINITIONS

Capacity is the quantity of points that a particular Agile development team is estimated to

be able to accomplish in a particular timebox.

Decision Guidance System is an advance class of Decision Support Systems that are

designed to provide actionable recommendations, typically based on formal

analytical models and techniques.

DGAL, Decision Guidance Analytics Language, is a language used by Unity for the

definition and manipulation of analytical modules.

Effort point, usually called point in Agile projects, is a metric that estimates the relative

size of software functionality. The metric takes into consideration the size, effort

and complexity of the software.

Feature is a slice of business functionality that is meaningful to the customer or user [35]

and consequently delivers value to the business when released. In the context of

this dissertation, a feature is small enough to fit in one single release.

Feature-driven project is a project where each release deploys a set of features according

to a prioritization that takes into consideration the business value of each feature.

FLWOR is a XQuery and JSONiq programming construct that correspond to SQL's

SELECT-FROM-WHERE statements, but are more general and more flexible.

Full time equivalent is the equivalent of one full time worker.

JSON is a simple language for expressing complex, semi-structured data.

JSONiq is a language for the manipulation of JSON structures

192

Performance Model formally describes feasibility constraints and metrics of interest, such

as cost, as a function of fixed and control parameters.

Product Backlog is a prioritized inventory of yet-to-be-worked-on product backlog items

[35].

Product Owner is the central point of product leadership, responsible for defining what to

do and in what order [35].

Release is a container of features that are deployed as a single unit, that is, once deployed,

all the features in a release are available to the customer. A release has a certain

size capacity, determined by its duration, the size and productivity of the

developers’ team. Following Agile principles, Releases, like Sprints, have a fixed

duration, called a timebox.

Release Plan specifies the set of features that are expected to be developed in each release.

The output of release planning.

Release Schedule is the same as Release Plan

Scrum is a term borrowed from the sport of rugby. It is a lightweight, Agile, iterative and

incremental approach to developing products and managing work [35].

Service Network, as defined in [11], is a network of service-oriented components that are

linked together to produce products. A service is a synonym for a process. Services

can be composite, that is, have subservices or atomic, that is, indivisible.

Sprint is a short-duration, timeboxed iteration, typically between one and four weeks,

“during which the Scrum team is focused on producing a potentially shippable

product increment” [35].

193

Stakeholder is a “person, group, or organization that affects or can be affected by an

organization’s actions” [35].

Timebox “is a fixed-length period of time during which an activity is performed” [16]. In

Scrum, both sprints and releases are timeboxed.

Unity is a platform for building DGSs from reusable analytics models.

194

REFERENCES

[1] T. AlBourae, G. Ruhe, and M. Moussavi, “Lightweight Replanning of Software

Product Releases”, in 2006 International Workshop on Software Product Management

(IWSPM’06 - RE’06 Workshop), 2006, pp. 27–34.

 [2] D. Ameller, C. Farré, X. Franch, A. Cassarino, D. Valerio, and V. Elvassore. "Replan:

A Release Planning Tool", IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER), 516–520, 2017.

 [3] F. B. Aydemir, F. Dalpiaz, S. Brinkkemper, P. Giorgini, and J. Mylopoulos. "The Next

Release Problem Revisited: A New Avenue for Goal Models", IEEE 26th International

Requirements Engineering Conference (RE), 5–16, 2019.

 [4] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, “The next release problem”,

Information and Software Technology, vol. 43, no. 14, pp. 883–890, 2001.

 [5] F. Boccanera and A. Brodsky, “Decision Guidance on Software Feature Selection to

Maximize the Benefit to Organizational Processes”, in 22nd International Conference on

Enterprise Information Systems (ICEIS), 2020, pp. 381-395.

 [6] F. Boccanera and A. Brodsky. “Opti-Soft: Decision Guidance on Software Release

Scheduling to Minimize the Cost of Business Processes”, in Enterprise Information

Systems: 22nd International Conference, ICEIS 2020, Revised Selected Papers (2021).

Springer, pp. 184-216.

195

 [7] F. Boccanera and A. Brodsky. "Opti-Soft+: A Recommender and Sensitivity Analysis

for Optimal Software Feature Selection and Release Planning", in 24th International

Conference on Enterprise Information Systems (ICEIS), 2022

 [8] B. Boehm. “Value-based software engineering”, GSOFT Software Engineering Notes,

Vol. 28, No. 2, pp. 1-12, March 2003

 [9] A. Brodsky and J. Luo, “Decision Guidance Analytics Language (DGAL)-Toward

Reusable Knowledge Base Centric Modeling”, in 17th International Conference on

Enterprise Information Systems (ICEIS), Barcelona, Spain, 2015, pp. 67–78.

 [10] A. Brodsky, “Decision Guidance Systems and Applications To Manufacturing,

Power Grid, Supply Chain and IoT”, in 20th International Conference on Enterprise

Information Systems (ICEIS), Funchal, Portugal, 2018, p. 92.

 [11] A. Brodsky, M. Krishnamoorthy, M. O. Nachawati, W. Z. Bernstein, and D. A.

Menascé, “Manufacturing and contract service networks: Composition, optimization and

tradeoff analysis based on a reusable repository of performance models”, in IEEE

International Conference on Big Data (Big Data), 2017, pp. 1716–1725.

 [12] J. Cleland-Huang, and M. Denne. "Financially informed requirements prioritization",

in 27th International Conference on Software Engineering, 2005. ICSE 2005.

 [13] M. Cohn, “Agile Estimating and Planning”, Prentice Hall, 2005.

 [14] M. Denne and J. Cleland-Huang, “Software by Numbers: Low-Risk, High-Return

Development”, Prentice Hall, 2003.

 [15] M. Denne and J. Cleland-Huang, “The incremental funding method: data-driven

software development”, IEEE Software, vol. 21, no. 3, pp. 39–47, May 2004.

196

 [16] S. Devaraj and R. Kohli, “The IT Payoff: Measuring the Business Value of

Information Technology Investments”, FT Press, 2002.

 [17] A. Elsaid, R. Salem, and H. Abdelkader "Proposed framework for planning software

releases using fuzzy rule-based system" in IET Software, 13(6), 543–554, 2019

 [18] G. J. Fell, “Decoding the IT value problem: an executive guide for achieving optimal

ROI on critical IT investments”. Wiley CIO Series, Hoboken, New Jersey, 2013.

 [19] M. Fowler and et al., “The Agile Manifesto”, Software Development Magazine,

August 2001.

 [20] X. Franch, and G. Ruhe. "Software Release Planning", IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-C), 894–895, 2016.

 [21] G. Fridgen, J. Klier, M. Beer, and T. Wolf, “Improving Business Value Assurance

in Large-Scale IT Projects—A Quantitative Method Based on Founded Requirements

Assessment”, ACM Transactions on Management Information Systems, vol. 5, no. 3, pp.

12:1–12:17, Aug. 2014.

 [22] J. E. Hannay, H. C. Benestad, and K. Strand, “Benefit points—the best part of the

story”, IEEE Software, Vol 34, Issue 3, 73-85, May 2017.

 [23] Z. Irani and P. Love, “Evaluating information systems: public and private sector”,

Elsevier/Butterworth-Heinemann, 2008.

 [24] J. M. Keen, “Making Technology Investments Profitable: ROI Road Map from

Business Case to Value Realization”, 2 edition. Hoboken, N.J: Wiley, 2011.

197

 [25] C. Lin, G. Pervan, D. McDermid. "IS/IT Investment Evaluation and Benefits

Realization Issues in Australia", Journal of Research & Practice in Information

Technology, August 2005

 [26] K. Marner, S. Wagner, and G. Ruhe. "Stakeholder identification for a structured

release planning approach in the automotive domain", Requirements Engineering, 27(2),

211–230, 2022.

 [27] S. Maurice, G. Ruhe, O. Saliu, and A. Ngo-The, “Decision Support for Value-Based

Software Release Planning”, in Value-Based Software Engineering, Springer, Berlin,

Heidelberg, 2006, pp. 247–261.

 [28] D. Mougouei. "Factoring requirement dependencies in software requirement

selection using graphs and integer programming", 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), 884–887, 2016.

 [29] M. O. Nachawati, A. Brodsky, and J. Luo, “Unity: A NoSQL-based Platform for

Building Decision Guidance Systems from Reusable Analytics Models”, George Mason

University, Technical Report GMU-CS-TR-2016-4, 2016.

 [30] M. Nachawati, A. Brodsky, and J. Luo. "Unity Decision Guidance Management

System: Analytics Engine and Reusable Model Repository", in 19th International

Conference on Enterprise Information Systems (ICEIS), 312–323, 2017.

 [31] M. Nayebi, and G. Ruhe. "Asymmetric Release Planning: Compromising Satisfaction

against Dissatisfaction", IEEE Transactions on Software Engineering, 45(9), 839–857,

2019.

198

 [32] O. Oni and E. Letier. "Analyzing Uncertainty in Release Planning: A Method and

Experiment for Fixed-Date Release Cycles", ACM Transactions on Software Engineering

and Methodology (TOSEM), 2021.

 [33] J. Pucciarelli and D. Wiklund, “Improving IT Project Outcomes by Systematically

Managing and Hedging Risk,” IDC Report, 2009.

 [34] N. Riegel, and J. Doerr. "An Analysis of Priority-Based Decision Heuristics for

Optimizing Elicitation Efficiency", in Requirements Engineering: Foundation for Software

Quality (pp. 268–284), Springer International Publishing, 2014.

 [35] K. S. Rubin, “Essential Scrum: a practical guide to the most popular agile process”,

Upper Saddle River, NJ: Addison-Wesley, 2012.

 [36] G. Ruhe and A. Ngo The, “Hybrid Intelligence in Software Release Planning,”

International Journal of Hybrid Intelligent Systems, vol. 1, no. 1–2, pp. 99–110, Sep. 2004.

 [37] T. Şahin, T. Huth, J. Axmann, and T. Vietor. "A Methodology for Value-oriented

Strategic Release Planning to Provide Continuous Product Upgrading", 2020 IEEE

International Conference on Industrial Engineering and Engineering Management

(IEEM), 1032–1036, 2020.

 [38] N. Salleh, F. Mendes, E. Mendes. "A Systematic Mapping Study of Value-based

Software Engineering", 45th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2019

 [39] R.S. Sangwan, A. Negahban, R.L. Nord, and I. Ozkaya. "Optimization of Software

Release Planning Considering Architectural Dependencies, Cost, and Value", IEEE

Transactions on Software Engineering, 48(4), 1369–1384, 2022.

199

 [40] X. Song and N. Letch, “Research on IT/IS evaluation: a 25 year review”, Electronic

Journal of Information Systems Evaluation, vol. 15, no. 3, pp. 276–287, 2012.

 [41] The Standish Group, “CHAOS 2020.” 2020.

 [42] The Standish Group, “CHAOS Manifesto 2011.” 2011.

 [43] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal, "Determination

of the Next Release of a Software Product: An Approach using Integer Linear

Programming." in CAiSE Short Paper Proceedings, 2005.

 [44] M. van den Akker, S. Brinkkemper, G. Diepen and J. Versendaal. "Software product

release planning through optimization and what-if analysis" in Information and Software

Technology (pp. 101-111), 2008

 [45] W. Van Grembergen, “Information Technology Evaluation Methods and

Management”, Hershey, Pa, IGI Global, 2001.

 [46] S. Walter, T. Spitta. "Approaches to the ex-ante evaluation of investments into

information systems" in Wirtschaftsinformatik 46, 171–180, 2004.

 [47] K. Wnuk, T. Gorschek, D. Callele, E.-A. Karlsson, E. Åhlin, and B. Regnell.

"Supporting Scope Tracking and Visualization for Very Large-Scale Requirements

Engineering-Utilizing FSC+, Decision Patterns, and Atomic Decision Visualizations ",

IEEE Transactions on Software Engineering, 42(1), 47–74, 2016.

200

 PUBLISHED PAPERS

F. Boccanera and A. Brodsky, “OptiHealth: A Recommender Framework for Pareto

Optimal Health Insurance Plans,” in 19th International Conference on Enterprise

Information Systems (ICEIS), Porto, Portugal, 2017, pp. 599–609.

F. Boccanera and A. Brodsky, “Decision Guidance on Software Feature Selection to

Maximize the Benefit to Organizational Processes”, in 22nd International Conference

on Enterprise Information Systems (ICEIS), 2020, pp. 381-395.

F. Boccanera and A. Brodsky, “Opti-Soft: Decision Guidance on Software Release

Scheduling to Minimize the Cost of Business Processes”, in Enterprise Information

Systems: 22nd International Conference, ICEIS 2020, Revised Selected Papers (2021).

Springer, pp. 184-216.

F. Boccanera and A. Brodsky, Opti-Soft+: A Recommender and Sensitivity Analysis for

Optimal Software Feature Selection and Release Planning. in 24th International

Conference on Enterprise Information Systems (ICEIS), 2022.

201

BIOGRAPHY

Fernando Boccanera received his Bachelor of Computer Science from Campinas State

University, Brazil in 1978 and his Master of Software Engineering from George Mason

University in 1998. He has worked his entire career in organizations that develop software

or market tools for software development, where he held positions as programmer, systems

administrator, technical support, data base administrator, IT project manager and IT

manager. Since 2015 Mr. Boccanera has worked for the United States Patent and

Trademark Office, an agency of 12 thousand employees that issues patents and trademarks,

which collectively drive innovations and have a major impact in the US economy. USPTO,

an agency of the Department of Commerce, is regarded as the premier Intellectual Property

organization in the world and is recognized within the Federal Government as a model and

innovative IT office.

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	1. INTRODUCTION
	1.1 The Problem
	1.2 Research Gap
	1.2.1 Value-oriented Approaches: Stakeholder and Non-financial Based
	1.2.2 Value-oriented Approaches: Financial-based
	Incremental Funding Methodology
	F-EVOLVE*
	van den Akker et al.

	1.2.3 Limitations of Existing Value-based Approaches

	1.3 Research Challenges
	1.4 Thesis Statement and Summary of Contributions
	1.4.1 Thesis Statement
	1.4.2 Summary of Contributions

	1.5 Organization of the Dissertation

	2. RELATED WORK
	2.1 Agile Release Planning
	2.2 Related Financial-based Approaches
	2.2.1 Incremental Funding Method
	2.2.2 F-EVOLVE*
	2.2.3 van den Akker et al. Approach
	2.2.4 Continuous Value-based IT Project Steering
	2.2.5 Comparison of Related Approaches

	3. OPTI-SOFT+ MODEL OVERVIEW
	3.1 Business Cost
	3.2 BPN Modeling
	3.2.1 BPN Transition Based on Software Feature Implementation
	3.2.2 Generalized BSN Model

	3.3 BSN Cost/Benefit Model
	3.3.1 Labor Service Cost
	3.3.2 Non-labor Fixed Service Cost
	3.3.3 Non-labor Variable Service Cost
	3.3.4 Aggregated Cost of the BSN

	3.4 SDLC Cost/Benefit Model
	3.4.1 Release Planning
	3.4.2 SDLC Labor Cost
	3.4.3 Non-labor Cost of the SDLC
	3.4.4 SDLC Aggregated Cost

	3.5 Combining BSN and Software Cost
	3.6 Overview of the Mixed Integer Linear Program

	4. OPTI-SOFT+ FORMAL ANALYTICAL MODEL
	4.1 Model Introduction
	4.2 Release Scheduling Formalization
	4.3 Business Service Network Formalization
	4.4 Service Formalization
	4.5 ANDservice Formalization
	4.6 ORservice Formalization
	4.7 InputDrivenAtomicService Formalization
	4.8 OutputDrivenAtomicService Formalization
	4.9 Software Development Formalization
	4.10 Optimization Formulation

	5. DECISION GUIDANCE SYSTEM AND METHODOLOGY
	5.1 Unity DGMS
	5.2 Opti-Soft+ DGS
	5.3 METHODOLOGY

	6. EXAMPLE
	6.1 Parameters
	6.1.1 Parameters - Release Schedule
	6.1.2 Parameters - Business Service Network
	6.1.3 Parameters – ANDService and ORService
	6.1.4 Parameters – InputDrivenAtomicService
	6.1.5 Parameters – Software Development

	6.2 Recommendation of the To-Be BSN
	6.3 Computation of the To-Be BSN
	6.3.1 Computation – Software Development
	6.3.2 Computation – Atomic Service
	6.3.3 Computation – OR Services
	6.3.4 Computation – AND Service
	6.3.5 Computation - Business Service Network
	6.3.6 Computation - Release Schedule

	6.4 Computation of the As-Is NPV
	6.4.1 SoftwareDevelopment Computations
	6.4.2 BSN Computations
	6.4.3 Release Schedule Computations

	6.5 Total Benefit
	6.6 Constraint Computation and Validation for the To-Be
	6.6.1 Constraint Computation and Validation – Software Development
	6.6.2 Constraint Computation and Validation – Atomic Service
	6.6.3 Constraint Computation and Validation – ORservice
	6.6.4 Constraint Computation and Validation – ANDservice
	6.6.5 Constraint Computation and Validation – BusinessServiceNetwork
	6.6.6 Constraint Computation and Validation – ReleaseScheduling

	7. SENSITIVITY ANALYSIS
	7.1 Sensitivity Analysis 1
	7.2 Sensitivity Analysis 2

	8. EVALUATION
	8.1 Case Study Description – Board of Professionals Web Portal
	8.2 Case Study – Opti-Soft+ Recommendation
	8.3 Case Study – Revenue
	8.4 Case Study – IFM Recommendation
	8.5 Case Study – F-EVOLVE* Recommendation
	8.6 Case Study – Comparison

	9. COMPARISON OF OPTI-SOFT+ WITH RELATED APPROACHES
	9.1 Comparison: Characteristics and Capabilities
	9.2 Comparison: Closing the Limitation Gap
	9.3 Comparison: Claims

	10. CONCLUSION
	11. Limitations and Future Work
	APPENDIX 1 – DGS SOURCE CODE
	APPENDIX 2 - DEFINITIONS
	REFERENCES
	PUBLISHED PAPERS
	BIOGRAPHY

