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Abstract

TREND DETECTION AND PATTERN RECOGNITION IN FINANCIAL TIME SERIES

Seunghye J. Wilson, PhD

George Mason University, 2016

Dissertation Director: Dr. James E. Gentle

One major interest of financial time series analysis is to identify changepoints of trends

and recognize patterns that can be used for classification and clustering of time series.

Because of the large amounts of data, nonlinear relationship of the data elements, and

the presence of random noise, some method of data reduction is necessary. The data re-

duction, however, must preserve the important characteristics of the original data. Many

representation methods in the time domain or frequency domain have been suggested to

accomplish efficient extraction of information. These include, for example, piecewise lin-

ear approximation, symbolic representation, and discrete wavelet transformation (DWT).

However, most of the existing methods do not take into consideration time information of

trends and/or depend on user-defined parameters, for example the number of segments for

piecewise approximation.

We introduce alternating trend smoothing (ATS) and piecewise band smoothing (PBS)

for data representation based on up/down direction change as it has h (step size) additional

data points and linear regression using small sets of current data points respectively. The

proposed method is flexible and interpretable in the sense that it allows the acquisition and

addition of new data points (online method) to detect meaningful trends and changepoints.



Changepoints are confirmed once new data points stray far enough outside of the band,

creating a reduced dataset of changepoints to utilize. Next, we define patterns from the

reduced data which preserve trends and the length of a trends duration. In addition to the

definition of patterns, some distance metrics are suggested as similarity measures that are

suitable for reduced data by our data representation. Finally, we demonstrate applications

of clustering, classification, indexing, and prediction using methods suggested, and discuss

conclusions and future work.



Chapter 1: Introduction

1.1 Problem Statement

Traditional financial times series models, such as an ARIMA and frequency domain model

approaches, assume underlying parametric models. These models describe the data gener-

ating process that governs the global datasets and also provide significant data reduction.

However, it is not feasible to describe data with a single global model as the size of data

dramatically increases. As a result, various methods for data reduction, or representation,

have been proposed; piecewise approximation, preserving critical points, symbolic transfor-

mation and so forth. One of the primary goals of these and other data reduction methods

is to adequately preserve the key information we want to analyze.

Considering that trends, generally “up” and “down”, and their changepoints are of ma-

jor interest in financial time series analysis, it is often desirable that the methods for data

representation preserve the information on trends and the changepoints of trends. Never-

theless, only a few existing methods for data representation seem to be able to approximate

data, preserving these trend characteristics. Bao (2008) [10] suggests critical points model

(CPM) for financial time series representation. CPM model smooths data by identifying

local minimal/maximal points based on some threshold criteria. Chung et al. (2001) [12]

propose a perceptually important point (PIP) method to represent financial data by preserv-

ing salient points that contribute to the shape of the data. Given datasets, these methods

can provide information on trends of data fairly well, however, the data is smoothed based

on the shape of batch data for trend changepoints or processed for trend information.

Once the original data is represented, we measure distance between time series for

classification or clustering. There are various methods to measure similarity/dissimilarity

1



between two time series: Lp, correlation, and dynamic time warping (DTW), to name a

few. The choice of similarity measure considerably relies on the structure of represented

data. For example, although Euclidean distance is one of the most widely used methods,

measuring similarity between two time series by directly using Euclidean distance may yield

counter-intuitive results because it is sensitive to noise. Rather DTW is often more popular

for comparing similarity among time series, such as pattern recognition. Of course, there is

no single distance measure that is superior over all other methods. The choice of distance

measure may not be the same depending on the purpose of the analysis even if the data

is approximated by the same representation methods. These are methods that treat data

representation and similarity/dissimilarity as one combined problem.

In this research, we introduce new methods of data representation (dimensionality re-

duction), defining financial data trends, and distance measures.

• Data Representation

Our data representation methods focus on detecting trends and trend changepoints.

We assume that the large size time series data consists of a sequential data generating

process over the sequence of non-overlapped time domain rather than governed by one

single model. By identifying trend changepoints, we find trend regimes sequentially.

To identify changepoints, we introduce parameters that set criteria of “change” and

define “trend” of the regime.

• Defining Patterns

The original data with length N becomes a sequence with length n (n� N) by data

representation. Each element in the sequence has some form of underlying model of

data generating process, a linear fit, on the non-overlapped piece of time domain, that

is called trend regime. From the coefficients of a linear function or the length of the

trend regime in the reduced datasets, we suggest various methods to define patterns

- numerical and categorical - and then derive some statistical properties of the length

of trend regimes and the changepoints.

2



• Distance Measures

We introduce new methods that measure the distance between two times series based

on their trends and trend changepoints over time corresponding to appropriate types

of patterns, and then discuss their properties.

• Applications

We demonstrate applications in classification, clustering, indexing, and prediction

with real-world financial data incorporating the methods suggested in this research.

1.2 Dissertation Outline

In Chapter 2, we will review background and relevant literature. Chapter 3 will provide

new methods of data representation for financial time series by identifying changepoints.

Also, parameters that define “change” of trends and their properties are addressed. Chapter

4 addresses various methods to define patterns from the reduced data and corresponding

distance measures, and statistical properties of the length of trends and changepoints. In

Chapter 5, we demonstrate applications examples, clustering, classification, indexing, and

prediction, using our new methods discussed in Chapter 3 and 4. Chapter 6, will provide

our conclusions, challenges, and future work.

3



Chapter 2: Background and Literature Review

2.1 General Approaches for Data Approximation

Function approximation has been widely used and developed in many applications. One

approach to find a simpler representation when the known underlying function is too com-

plicated for practical use. Another approach is to use nonparametric methods. Nonpara-

metric methods estimate the unknown function using interpolation and extrapolation given

observed data (Goodman (2006) [23]). For very large size datasets, it is not feasible to de-

scribe the character of the original data with one single global either parametric or nonpara-

metric model, thereby the sequence of local parametric functions may be a better approach.

We incorporate these methods to represent for lengthy and noisy financial time series. In

this section, we review function approximations according to the size and availability of

data, and loss function and regularization to find optimal parameters. The mathematical

notation follows that of Hastie, Tibshirani, and Friedman (2009) [25].

2.1.1 Global Models: Regressions

Linear Regression

Linear regression is one of the most extensively used statistical techniques for data de-

scription, parameter estimation, and prediction because of its interpretability, among other

reasons. Let XT = (X1, X2, · · · , Xp) and Y be an input vector and a real-valued output

vector respectively. Then the liner regression assumes the underlying model of data

Y = f(X) = β0 +

p∑
j=1

Xjβj + ε (2.1)

4



where the β0, βj ’s are unknown parameters and ε is independent random error vector

with zero mean and finite variance. Xj can be numerical data or basis expansions, such

as X2 = X2
1 , X3 = X3

1 in polynomial regression models. These unknown parameters are

generally estimated by ordinary least squares (OLS), that is by minimizing the residual sum

of squares (RSS),

RSS(β) =

N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

yi − β0 −
p∑
j=1

xijβj

2

(2.2)

and the best linear unbiased estimate β̂ =
(
XTX

)−1
XTy is obtained by normal equation

where y is a vector of observed responses corresponding to input vector X.

Regression Through the Origin

Consider simple linear regression with p = 1. Then in (2.1), the parameter β̂0 is the intercept

and β̂1 is the slope of the straight line in the X-Y plane. In some applications, a no-intercept

regression model is more appropriate providing sensible interpretation in analyzing data

(Eisenhauer (2003) [15]). In economics literature, Theil (1971) [57] also argues “From

an economic point of view, a constant term usually has little or no explanatory virtues.”

Nevertheless, careful data exploration is necessary to avoid misuse of the no-intercept model,

especially when the data lies at some distance from the origin because the relationship

between X and Y near the origin and distant from the origin may be different. Given N

observations (xi, yi) (i = 1, · · · , N), the simple linear regression model without intercept

has a form,

Y = f(X) = XTβ1 + ε (2.3)

where X and Y are an input vector and real-valued output vector respectively, and ε is

independent random error vector with zero mean and finite variance. The least-squares is

5



RSS(β) =

N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(yi − xiβi)2 (2.4)

and the least-square estimator of the slope is given by

β̂1 =

∑N
i=1 yixi∑N
i=1 x

2
i

. (2.5)

Note that by forcing the line to go through the origin, the sum of the residuals is not

zero, which implies the estimator in (2.5) is biased.

Figure 2.1: Linear regression with and without intercept, and polynomial regression

Polynomial Regression

Polynomial regression is the extension of simple linear regression to the extent where the

relationship between the predictors and the response is non-linear. The form of polynomial

regression is given by

yi = β0 + β1x1 + β2x
2
2 · · ·+ βdx

d
i + εi (2.6)

where εi is the i-th error term. Although the fitted line is allowed to be a non-linear curve

6



with high degree d, it is rare that d is higher than 3 or 4. The estimation of coefficients

in (2.6) is the same as that of ordinary linear regression in (2.2). Usually the individual

coefficients are not of interest in polynomial regression but rather the relationship between

the predictor and the response over the whole range of the predictor.

2.1.2 Piecewise Polynomials and Splines

Although linear or polynomial regression models have been popular because of many nice

statistical properties such as consistency, efficiency, and unbiasness of the estimates, it is

not likely possible to build a single global linear or polynomial regression model on very

large size datasets. Piecewise polynomial functions and splines are useful approximation

methods for lengthy and evolving data in random manners. They are obtained by dividing

the domain X into contiguous intervals and building local models.

Denote hm(X) : Rp 7→ R as the m th transformation of X, (m = 1, 2, 3 · · · ,M). Piece-

wise polynomial splines has a form,

f(X) =
M∑
m=1

βmhm(X) (2.7)

where {h1(x), h2(x), · · · , hM (x)} is a set of known linear basis functions. The form of bias

function hm is allowed to be various transformations of X, for example, log transformation

or indicator function that defines range of X. Here, we review some forms of basis function

hm(X) relevant to linear or cubic approximation functions of X. The piecewise constant
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polynomial is the simplest linear approximation of data. Its basis functions are,

h1(X) = I(X < ξ1)

h2(X) = I(ξ1 ≤ X < ξ2)

...

hM (X) = I(ξM−1 ≤ X)

(2.8)

The points ξ1, ξ2, · · · , ξM−1 are knots where the coefficients βi, (i = 1, 2, · · · ,M) change

and the new piecewise model starts. In piecewise constant splines, the coefficients βi, (i =

1, 2, · · · ,M) is the mean of data in the i-th interval (Figure 2.2 left).

Piecewise linear splines fits a linear models in each segment. Since two parameters,

intercept and slope, are required for the linear model per each segment, the total number of

parameters is simply 2M , where M is the number of segments (Figure 2.2 middle). With

continuity restrictions, there are constraints such that f(ξ−i ) = f(ξ+
i ), i = 1, 2, · · · ,M − 1

at every knot. For example, β1 +β4ξ1 = β2 +β5ξ1 at knot ξ1 and now we have three param-

eters to estimate for these two successive segments because of this restriction. Generally,

with continuity restrictions, the number of parameter (or degrees of freedom) for piecewise

approximation is

Mp− (M − 1)c (2.9)

where M is the number of segments, p is the number of parameters required per each

segment, and c is the number of constraint at each knot. Thus in the example of Figure 2.2

right, there are 4×2−3×1 = 5 parameters to estimate. Direct representation can be made

for piecewise approximation using truncated power basis functions.
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Definition 2.1. A n degree truncated power basis function is defined by

h(x− ξ) = (x− ξ)n+ =


(x− ξ)n, if x > ξ

0, otherwise.

(2.10)

The function in the right of Figure 2.2 can be written as a linear combination of h1(X) =

1, h2(X) = X, h3(X) = (X − ξ1)+, h4(X) = (X − ξ2)+, and h5(X) = (X − ξ3)+. These

piecewise approximations are able to be more smooth globally by increasing the order

of degree of polynomials. Use of cubic splines is a common approach to obtain a globally

smoothed function. In cubic splines each segment allows to fit cubic polynomials. Generally,

splines of orders higher than three (cubic) are seldom used for function approximation

because they tend to overfit and requires intensive computation. For continuity restrictions,

cubic splines may have two or three constraints at knots. The cubic splines with three

constraints at knot ξ,

(i) f(ξ−) = f(ξ+)

(ii) f ′(ξ−) = f ′(ξ+)

(iii) f ′′(ξ−) = f ′′(ξ+)

(2.11)

is called natural cubic splines. Cubic splines with two constraints (i) and (ii) does not guar-

antee a smooth connection at knots. Natural cubic splines can be optimized by satisfying,

minRSS(f, λ)
n∑
i=1

(yi − f(xi))
2 + λ

∫ (
f ′′(t)

)2
dt (2.12)

where λ is a fixed smoothing parameter (penalty for roughness). It is also known as regres-

sion splines when knots are fixed. Intuitively, knots should be located where the function

changes rapidly rather than where it is stable. There have been various ways suggested to
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determine the number of knots and their locations. The number of knots are not fixed in

penalized splines, or P-splines. Instead, they use fixed quantiles of independent variables

with fixed roughness penalty (Ruppert (2012) [51]). B-splines minimize the number of seg-

ments with respect to a given degree and smoothing penalty from the augmented knots (De

Boor (1978) [13]).

piecewise constant

ξ1 ξ2 ξ3

piecewise linear (discontinuous)

ξ1 ξ2 ξ3

piecewise linear (continuous)

ξ1 ξ2 ξ3

Figure 2.2: Piecewise linear approximation

2.1.3 Batch and Online Processing Methods

Datasets may be preprocessed in different ways based on the their availabilty. There are

three common processing methods; batch processing, online processing, and a combination

of the two processing methods (Shelly et al. (2009) [53]). Here, we discuss batch processing

and online processing related to our approaches to represent data introduced in Chapter 3

and Chapter 4.

Batch Processing

Batch processing may be used when all the data are available during all the computations.
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Therefore, it is possible to understand characteristics and structure of data before analyzing

it. Gentle (2016) [21] discusses two approaches of piecewise constant models by batch

method. One simple approach to approximate massive dataset is to take representative

values, for example means, sum of variations (Lee et al. (2003) [40]) or volatility, of each

segment and use sample quantiles of data corresponding models.

Another way is to build a model for the whole data and then detect outliers to iden-

tify influential points on the shape of data. By repeating this process recursively with

selected points and stopping based on optimization criteria, the full dataset can be approx-

imated preserving its shape character. Chung et al.[12] propose perceptually important

points (PIP) as a data reduction process to find technical analysis patterns in financial

applications. PIPs are detected based on the deviation from the most recently found PIPs

recursively. Generally, the computing cost of the batch method is less than that of online

method.

Online Processing

Online processing analyzes data immediately while datasets are provided, thus the user

obtains the results in less time. The online method is preferred in time series and massive

data mining because most data are accumulated continuously over time. Online processing

allows new datasets during all the computations. Online processing has an advantage that

no additional post-processing is necessary although it costs more than batch method for

computation.

2.1.4 Loss Function and Regularization

A loss function, also known as a cost function, provides a quantitative assessment of esti-

mates. Although we should be clear with the difference between estimation and approx-

imation of functions (Gentle (2002) [29]), we may use them interchangeably in the sense

that both aim to describe the characteristics of the original data in simpler and more ef-

ficient forms while minimizing the loss of information. The most popular loss function is
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squared-error loss. Squared-error loss function is defined by

L(y, f(x)) = (y − f(x))2 (2.13)

at point x.

Risk (or mean squared error (MSE)) is the expectation of squared loss. The solution that

minimizes squared error loss is f(x) = E(Y |x). Another popular loss function is absolute

loss

L(y, f(x)) =| y − f(x) | (2.14)

and its solution is given by f(x) = median(Y |x). With the finite number of samples,

squared-error loss is widely used because it yields unique unbiased estimates in closed form

while absolute loss may not have a unique solution and requires expensive computation

to obtain solutions in general. However, squared-error loss is sensitive to outliers in the

modeling process, and thus is less robust than absolute loss and poorly performs with long-

tailed error distributions. Often, the optimization problem is to balance between preserving

the information and overfitting. Generally, the objective function for optimization has the

form as follows

min
N∑
i=1

L (yi, f(xi)) + λR(f) (2.15)

where R(f) is regularization term and λ is a tuning parameter which determine the impor-

tance of the regularization.
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2.2 Time Series Data Representation

Before we define patterns of the data, data representation or data preprocessing is required

to reduce the dimension of data to manageable size. That is, the amount of data points

are reduced by data representation. Each element in this reduced data sequence may be

a transformed value that represents important features of the original data. Time series

data can be represented in time domain or frequency domain. The latter represents time

series data in frequency domain using discrete Fourier transforms (DFT) or discrete wavelet

transforms (DWT). Although frequency domain transformation methods have been popu-

lar for periodic data or for image data analysis since Agrawal et al. (1993) [6] proposed,

time domain models would be better approaches for up/down pattern analysis because time

information is an important feature with trends. In this chapter, time domain data repre-

sentation methods are discussed. We classify the data representation methods into three

categories based on the criteria of data reduction referring to Fu (2011)’s classification [18].

Figure 2.3: Data approximation by sampling with rate = 13/7
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2.2.1 Piecewise Approximation

Generally the first step of piecewise approximation is to divide the time series into some

number of non-overlapping segments. There might be two ways to represent each segment.

One method is using any statistic of the data within the segment. The other method is

fitting a straight line.

Piecewise Information Summary

The idea behind of piecewise information summary is to split the whole data into some

number of segments and use a representative information, for example mean value or vari-

ance, of each segment. Astrom (1969) [8] proposes sampling points at equal spacing h which

defines sampling rate N
h , where N is the length of time series and show there is an optimal

choice of h. A drawback of sampling method is when h deviates from the optimal value,

it misrepresents the shape of the original data. (Figure 2.3) Lee et al. (2003) [40] propose

SSV-indexing. They use segmented sum of variation (SSV) for data representation which

does not need vertical shifting for data registration. (Figure 2.4 left) Ratanamahatana et

al. (2005) [49] propose using bit level data for approximation. Bit level approximation

converts each data point,

pi =

 1 if pi > µ

0 otherwise
(2.16)

where µ is the mean of given time series, and then represents the converted binary data

by run length encoding (RLE). “@” and “!” are used to identify whether the converted

binary data begins with 0 or 1. For example, if we have converted data sequence of bit,

0001100011110, it can be represented as @3,2,3,4,1 which means that it starts with three

zeros, two ones, three zeros, and so forth (Figure 2.4 right). The mean value is also com-

monly used to represent each segment of data. Yi et al. (2000)[62] use segmented mean of

equal spaced intervals. Keogh et al. (2001a) [33] propose piecewise aggregate approximation
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(PAA) for large time series databases. It also divides the original sequence with length n

into equal sized N intervals (Figure 2.5). As an enhanced idea of PAA, adaptive piecewise

constant approximation (APCA) is proposed (Keogh et al. (2001a) [34]). APCA uses Haarr

wavelet transformation to identify breakpoints and thus allows various lengths of segmented

intervals.

time
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Sum of Variations

time
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mean of data

0 0 0 1 1 0 0 0 1 1 1 1 0

Bit Level

Figure 2.4: Sum of variations = (6,8,6) and bit level approximation

Piecewise Linear Approximation

Piecewise linear approximation is representing each interval as a line based on linear interpo-

lation or regression. In this sense PAA can be considered a piecewise linear approximation as

well. Piecewise linear representation (PLR) is linear interpolation proposed by Keogh (1997)

[32] and Smyth and Keogh (1997) [55]. PLR uses a bottom-up algorithm. The algorithm

divides the original data so that each segment contains a minimum of three data points,

and connects adjacent breakpoints. Then it keeps merging adjacent segments sequentially

based on a merging criteria, that is whether the standard deviation of total residuals is re-

duced by merging, recursively until the optimal number of segments is achieved. It chooses

two adjacent segments that yield the greatest reduction in the standard deviation of total
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residuals and repeats this process until the standard deviation of total residuals begins to

increase. Keogh and Pazzani [37] [38] enhance PLR idea combining weighting influence and

user feedback on segment. Shatkay and Zdonik (1996) [52] propose a notion of generalized

approximate queries which approximates time series data using linear regression by online

algorithm.

0 200 400 600 800 1000

-1
0

1
2

3

Amazon Inc. daily close price (scaled)

Figure 2.5: PAA for the daily stock price of Amazon Inc. (11/02/2011 − 10/25/2015)

2.2.2 Preserving Important Points

While piecewise approximation methods summarize a handful of data points in segments of

the original data and represent them as a subsequence of information, data representation

methods preserve important observations by selecting a group of meaningful points. Chung

et al. (2001) [12] introduce perceptually important points (PIP). Searching process for PIPs
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Perceptually Important Points (PIP)
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Figure 2.6: PIP by vertical distance (left) and Extrema (right)

is as follows. For time series data with length n, x1, x2, · · · , xn, the first and the last two

points P1 = x1 and P2 = xn are always PIPs. The third PIP P3 is the point that has the

maximum vertical distance from the straight line between P1 and P2. The fourth PIP is the

point that locates in the maximum vertical distance from either P1P3 or P2P3 where PiPj

is the straight line between Pi and Pj . In this fashion, it proceeds to search k-th PIP that

has maximum vertical distance from PiPi+1, i = 1, 2, · · · , k − 1 until it reaches predefined

number of PIPs (Figure 2.6, left). Fu et al. (2008) [19] employ Euclidean and perpendicular

distance to identify PIPs. This method is a batch process. Pratt and Fink (2002, 2003) [47]

[17] propose “important” points which cause major fluctuation and represent the original

time series for only these selected important points. Extracting important extrema can be

performed by batch or online method. Bao (2008) [10] represents financial data by connect-

ing critical points to identify technical patterns of stock prices. Critical points are selected

based on the amount of oscillation that exceeds the thresholds. In other words, these points

contribute most critically to summarize the shape of data.
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2.2.3 Discretizing Numeric Time Series

Data representation methods by discretizing numeric time series transform numeric data

into categorical data. It is also called symbolic representation because often, symbols are

used as categorical variables. Yang and Zhao (1998) [61] and Yang et al. (1999) [60] propose

a symbolic data representation technique that converts time series data into symbols, either

0 or 1, based on a threshold function. Shape Description Alphabet (SDA) is proposed by

Jonsson and Badal (1997) for blurry matching. SDA transforms data into a few number of

letters that represent magnitude of transition from one point to the next point using slope

value. Another popular symbolic representation method is symbolic aggregate approximation

(SAX) proposed by Lin et al. (2003) [42] [43]. SAX preprocesses the data in two steps. First,

it represents normalized data by PAA and next converts the sequence of PAA coefficients

into alphabetical strings. Hence, SAX representation depends on two parameters, symbol

size a and the dimension of the reduced data w � n (the length of PAA coefficients)

where n is a length of time series. Symbol size a is the number of letters available that

corresponds to the number of equal probability area under standard normal distribution and

the breakpoint set. Specifically, with symbol size a, we have a set of letters {L1, L2, · · · , La}

and a breakpoint set {β1, β2, · · · , βa−1} such that P (Z < β1) = P (β1 ≤ Z < β2) = · · · =

P (βi ≤ Z < βi+1) = · · · = P (βa−1 ≤ Z) where Z ∼ N(0, 1). In the second step of

SAX, the sequence of PAA coefficients {c̄1, c̄2, · · · , c̄w} are transformed to a string sequence

{ĉ1, ĉ2, · · · , ĉw} by the following (2.17).

ĉi = Lj if and only if c̄i ∈ [βj−1, βj) (2.17)

A new distance metric MINDIST in SAX has some advantages from the use of PAA (Fig-

ure 2.7).

Definition 2.2. Suppose a symbol size parameter is a. Given two time series Q and C

of the same length n, let Q̂ = {q̂1, q̂2, · · · , q̂w} and Ĉ = {ĉ1, ĉ2, · · · , ĉw} be transformed
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string sequences of Q and C respectively by (2.17), where w is a parameter the number of

segments. Then the MINDIST function is defined by

MINDIST(Q̂, Ĉ) ≡
√
n

w

√√√√ w∑
i=1

(dist(q̂i, ĉi))
2 (2.18)

where dist() is a function implemented by a r × c lookup table. The value in the cell (r, c)

for lookup table is decided by the following expression.

cell(r,c) =


0 : if |r − c|≥ 1

βmax(r,c)−1 − βmin(r,c) : otherwise

(2.19)

where β1, β2, · · · , βa−1 are breakpoints such that the area under the standard normal dis-

tribution from βi to βi+1 = 1/a (β0 and βa are defined as −∞ and ∞, respectively).

MINDIST lower bounds Euclidean distance, that is for two given time series Q and

C, MINDIST(Q,C) ≤ DEU (Q,C), where MINDIST(Q,C) and DEU (Q,C) are distances

between Q and C by MINDIST and Euclidean distance respectively. This is an impor-

tant property for indexing time series. For example, when a time series C in database is

very similar to the query series Q by true Euclidean distance, any distance measures that

do not lower bound Euclidean distance may fail to retrieve C (false-negative). MINDIST

guarantees no false-negative by lower bounding Euclidean distance. Additionally, symbolic

representation enables not only to save memory space efficiently but also to compute more

quickly by using bits (character) rather than double format (real-values).
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Figure 2.7: Coefficients from PAA approximation are mapped into SAX symbols. The
number of raw data points=128, w = 8, and alphabet size a = 3. The time series represented
by a sequence of string baabccbc (Lin et al. [43]).

2.3 Distance Measures and Pattern Recognition

The use of appropriate similarity/distance measures is crucial to obtain meaningful data

mining results. Indeed, the unique characteristics of time series data, large size and the

presence of noise, have led to various methods for measuring distance to be developed. In

time series data mining, the choice of distance measure is closely relevant to data repre-

sentation because we measure distance between two represented datasets not raw datasets.

Specifically, if the represented data are sequences of different length, one may have to look

for a distance measure that allows two objects with different lengths, for example dynamic

time warping (DTW) as I wil discuss on page 23, instead of Lp distance. In this section

we review several similarity/distance measures related to trends analysis of financial time

series and pattern recognition. More about distance measures of time series are discussed

in Liao (2005) [41] and Aggarwal et al. [5].

2.3.1 Metric and Distance Measures

The measures of the distance between two observations or variables are often a form of

metric function ∆ from Rm × Rm into R which satisfies the following properties (Gentle

(2002) [29]).
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• ∆(x1, x2) ≥ 0 for all x1, x2 ∈ Rm (non-negativity)

• ∆(x1, x2) = 0 if and only if x1 = x2 (Identity of indiscernibles)

• ∆(x1, x2) = ∆(x2, x1) for all x1, x2 ∈ Rm (symmetry)

• ∆(x1, x3) ≤ ∆(x1, x2) + ∆(x1, x2) for all x1, x2, x3 ∈ Rm (triangular inequality)

where x1, x2 and x3 are observed data points in Rm.

The Lp-norm is the most commonly used distance metric. There is no single superior

method over all others. The decision of the most appropriate distance measure in time

series mining depends on its form of representation and goal of application.

Lp Distance

The dimension of two data must be the same to use Lp norm. Let T1 and T2 each be a p

dimensional vector. The Lp norm distance between T1 and T2 is defined by

DL(p)(T1, T2) =

(
n∑
i=1

(T1i − T2i)
p

) 1
p

(2.20)

where Tki (k = 1, 2) is i-th element of vector Tk. Euclidean distance, maximum distance,

and Manhattan distance are special cases when p = 2, p→∞ and p = 1 respectively.

Distance Based on Pearson’s Correlation Coefficient

Correlation or covariance is a simple method to measure similarity for numerical data. To

use correlation coefficient, the length of data also must be the same. Let Ti and Tj each

be a p dimensional vector. Pearson’s correlation coefficient between Ti and Tj , ρ(Ti, Tj) is

defined by

ρ(Ti, Tj) =

∑p
k=1(Tik − T i)(Tjk − T j)

STiSTj
(2.21)
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where

T i =
1

p

p∑
k=1

Tik and STi =

(
p∑

k=1

(Tik − T i)

) 1
2

(2.22)

Golay et al. (1998) [22] propose two cross-correlation-based distances in the fuzzy c-

means algorithm as follows.

d1 =

(
1− ρ
1 + ρ

)β
β > 0 and d2 = 2(1− ρ) (2.23)

Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is a popular algorithm for measuring similarity in time series

data mining. It searches the optimal alignment between two time series by warping time

satisfying tree conditions, boundary, monotonicity, and step size conditions. Originally

DTW has been developed in studies of automatic speech recognition. DTW is a useful

method to compare two time dependent data with various time intervals.

DTW is not a metric because triangular inequality is not satisfied. When a distance

measure does not satisfy triangular inequality, it may result in a false negative response.

However, this does not imply DTW is less appropriate than other distance metric consider-

ing its advantages and great performance in some applications such as speech recognition.

For two time series X = {x1, x2, · · · , xM} and Y = {y1, y2, · · · , yN}, DTW aligns two

time series to have the minimal distance between X and Y . To achieve this, we need local

cost measure. Formally, let F be sample space of time series data and Xm, Yn ∈ F and 1 ≤

n < N, 1 ≤ m < M . The local cost measure c is defined by

c : F × F → R+ (2.24)

Local cost measure evaluates the cost by calculating Euclidean distance between each

pair of X and Y and thus cost matrix C ∈ RM×N can be obtained from a local cost measure.

DTW searches the warping path that costs least from C11 to CMN where Cij is i-th row
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and j-th column of cost matrix C. There are three conditions for warping path alignment.

Müller (2007) [44] formalizes as follows.

Definition 2.3. Given time series data X = {x1, x2, · · · , xM} and Y = {y1, y2, · · · , yN}, a

warping path is a sequence p = (p1, p2, · · · , pL) with pl = (ml, nl) where 1 ≤ m ≤ M, 1 ≤

n ≤ N and 1 ≤ l ≤ L, satisfies the following three conditions.

• Boundary condition: p = (1, 1) and pL = (M,N)

• Monotonicity condition: m1 ≤ m2 ≤ · · · ≤ mL and n1 ≤ n2 ≤ · · · ≤ nL

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for 1 ≤ l ≤ L− 1

With three constraints in definition 2.3 DTW searches the warping path p∗ that has the

minimal cost among all possible paths. Hence the DTW distance is defined by

DTW (X,Y ) = cp∗(X,Y ) = min {cp(X,Y )| p is an (M,N)-warping path} (2.25)

where cp is the local cost measure cp(X,Y ) =
∑L

l=1 c(xml, ynl). It is a great advantage of

DTW to be able to apply different lengths of data and provide reliable time alignment for

pattern recognition. However, computational cost to search the optimal alignment among

all possible warping path is very high especially for large amounts of data. To speed up

computation in DTW algorithms, some variations have been proposed by modification of

step size condition or imposing global constraint regions. Sakoe-Chiba band and Itakura

parallelogram are two well-known global constraint regions.

Short Time Series Distance (STS)

Möller-Levet et al. (2003) propose short time series distance (STS) for data represented in

piecewise linear functions. STS defines the distance by the sum of the squared differences of

slopes given a sequence of segments of time. Let X = {x0, x1, · · · , xn} be a time series data

with length n and x(t) = mkt+bk be the linear function between two successive breakpoints
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tk and tk+1 where,

mk =
xk+1 − xk
tk+1 − tk

, and bk =
tk+1sk − tkxk+1

tk+1 − tk
(2.26)

The STS between two time series X = {x0, x1, · · · , xn} and Y = {y0, y1, · · · , yn} is

defined by,

d2
STS(X,Y ) =

n−1∑
k=0

(
yk+1 − yk
tk+1 − tk

− xk+1 − xk
tk+1 − tk

)2

(2.27)

STS is particularly suited for short-time series data with unevenly distributed sample

points and the same length. Standardization of the original data is recommended since the

STS and the Euclidean distance are both sensitive to scaling.

2.3.2 Pattern Recognition in Financial Time Series

According to the efficient market hypothesis, it is impossible to forecast asset prices because

they are fully determined by present information which neither can be known ahead of time

nor predictable from the past. That is, asset prices evolve in random manner, so-called

random walk (Bachelier (2011) [9]). Nevertheless, there have been continuous endeavors

to develop statistical forecasting models in the domain of finance and economics in the

belief of existence of rules or patterns in financial data, and some of the models seem to be

performing reasonably in practice. There are two main methods in financial market data

analysis; fundamental analysis and technical analysis.

Fundamental analysis requires fundamental indicators such as earnings and growth

which represent intrinsic values of companies to evaluate the values of the assets. The

actual values of assets, for example stock prices, would be compared to these fundamental

indicators so that investors determine their position to make profit. On the other hand,

technical analysis depends only on technical information generated from market activity

such as open, high, low, and close prices. Technical analysis does not use “fundamen-

tal” information. Instead, it uses technical indicators, for instance moving average, trend,
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volatility etc. Although technical analysis should be ineffective under the efficient market

hypothesis, it is believed that momentum caused by psychological, social and emotional

factors at times enables the prediction of asset prices and their trends by technical analysis

with some degree of accuracy. This behavioral economic theory has motivated researchers

to develop data-driven modeling with financial data.

Conventional parametric statistical ARIMA or GARCH types of models have been

broadly used for prediction and investigation of data generating process. However, these

methods do not seem plausible to predict long-term trends, a major interest of financial

data analysis. Thus, data mining techniques for trends analysis have been attracted along

with the enhancement of computing technologies. In this section we review methods of

pattern recognition in the context of financial data analysis.

Shape-Based Pattern Recognition

In financial times series data analysis, an overarching interest is to forecast trends. Gener-

ally trends of financial data are explained by directions of evolving data, for example “up”

, “down” and “stable”. Shape-based pattern recognition techniques aim to identify the

directions or patterns of data evolution based on the shape of the original data. As a re-

sult, in most shape-based pattern recognition the original data are represented by piecewise

function approximation or preserving important points that intend to contain the character-

istics of the shape. Guo et al. (2007) [24] represent data by piecewise linear approximation

by bottom-up algorithm and classify every seven segments (or less than seven) into one of

the eighteen typical technical patterns, for example descending triangle, head and shoulder

etc. Eight breakpoints including the starting and ending of the seven are used for input

feature for neural network classifier. Bao (2008) [10] uses critical points model (CPM) to

recognize three trend type patterns; the broadening pattern, the triangular pattern, and

the rectangular pattern.

Attribute-Based Pattern Recognition

Attribute-based pattern recognition models address patterns of some feature values rather
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than the “up” or “down” direction of data, for example ranges of daily returns or even raw

price. Thereby, in the attribute-based model, data representation depends on some statistics

of data for example piecewise volatility or variations, or some times immediately use raw

data values without data preprocessing. Moreover, while shape-based pattern recognition

model is unlikely to use fundamental information as a predictor, attribute-based models

often use fundamental indicators, such as dividend ratio and earning per share. Pathak

(2014) [46] uses open, high, low, close, and volume data for predictive model of stock

price using neural network. Quah (2008) [48] uses eleven fundamental indicators as input

variables of neural networks for classification of appreciation of equities.
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Chapter 3: Identification of Trend Changepoints

In piecewise function approximation, identifying breakpoints and fitting the local function

in each segment are closely related to the characteristics of data. In case all of the data

is available, it is possible to understand the underlying distribution of data so that we

may decide the breakpoints by predefined quantity or parameters. However, data repre-

sentation by predetermined breakpoints is not likely to represent suitable local trends and

features efficiently, particularly for continuously updated data with new observations. In

this chapter, we propose new data representation methods by piecewise linear smoothing;

alternating trends smoothing (ATS) and piecewise band smoothing (PBS), and introduce

important parameters and their properties. Then we discuss the extended basis function

to high degree polynomials and compare the empirical results of two data representation

methods; piecewise approximation (1) by linear basis and (2) by linear and quadratic basis.

3.1 Alternating Trends Smoothing

In technical analysis of financial market data, identifying “increasing” or “decreasing” trends

and their changepoints is of major interest. A point and figure chart is a primitive technical

analysis tool to represent price movements. The point and figure chart represents “up” and

“down” trends by rising “X” column and falling “O” column respectively as it is shown in

Figure 3.1 (right). While the point and figure chart is simple and efficient to represent “up”

and “down” direction of data and identify their changepoints, it does not contain the time

information between changepoints since it represents data based on price action not on the

time.

Gentle (2012) [20] introduces Alternating Trends Smoothing (ATS), a piecewise linear

smoothing method by alternating up and down trends. It detects trend changepoints by
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Figure 3.1: IBM stock price and point and figure chart

examining whether any point among newly updated h data points (a parameter of step

size) contributes to a change in the current trend direction. The algorithm of ATS is given

in Algorithm 3.1.

Given time series data X = {xt1 , xt2 , · · · , xtN } the output of Algorithm 3.1 is

(b1, c1), (b2, c2), · · · , (bn−1, cn−1), (n� N) (3.1)

where b1 = t1, b2 = t(2), · · · , bk = t(k), · · · , bn = t(n) and c1 = xt1 , c2 = xt2 , · · · , ck =

xt(k), · · · , cn = xt(n). That is, bk is the time when the (k − 1)-th trend change occurs, and

ck is the value at bk. Furthermore, we obtain the sequence of trends, S = {s1, s2, · · · , sn}

by defining

s1 =
c2 − c1

b2 − b2
, · · · , sk =

ck+1 − ck
bk+1 − bk

, · · · , sn−1 =
cn − cn−1

bn − bn−1
, (n� N). (3.2)

The sk is the slope of k-th trend regime by simply connecting two adjacent change-

points. The method approximates the original time series data by alternating increasing
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Algorithm 3.1 Alternating Trends Smoothing

1: Set d← 1 (changepoint counter)
2: Process data within first time step:
3: while more data do
4: for i = 1, 2, · · · ,m (m = h if h additional data available, or m is last data item) do
5: input xi;
6: bd ← 1; cd ← x1

7: Determine j+, j−, xj+ , xj− such that

8: xj+ = max(x1, x2, · · · , xh) and xj− = min(x1, x2, · · · , xh)

9: Set s = (xk − xi)/(k − i) and r = sign(s)
10: while r = 0 do
11: Continue inputting more data; stop with error at end of data
12: end while
13: end for
14: end while

15: Set j ← i (index of last datum in previous step); and set d← d+ 1
16: while more data do
17: for i = j + 1, j + 2, · · · , j +m (m = h if h additional data available, or j +m is last

data item) do
18: Input xi;
19: while sign(s) = r do
20: Set k ← min(i+ h, n) where n is the number of data points
21: if k=i then break
22: end if
23: Set s← (xk − xj)/(k − j)
24: Set j ← k
25: end while
26: Determine j+ such that rxj+ ← max(rxj+1, · · · , rxj+m)
27: Set bd ← j+; and set cd ← xj+
28: Set d← d+ 1; set j ← j+; and set r ← −r
29: end for
30: Set bd ← j+; and set cd ← xj+
31: end while
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and decreasing straight lines and reduces its original dimension N to n, (n � N) as seen

in (3.2), where n is the length of the reduced data.

Figure 3.2: IBM stock price with various step sizes of ATS

The Tuning Parameter: Step Size h

ATS approximates data based on the tuning parameter h which specifies “step size”. It

moves h data points at a time to look for changepoints and once it finds a changepoint, it

moves h steps again from the changepoint. The larger value h tends to find fewer change-

points because with a large step size, it has less opportunities to check if a point is change-

point. However, the distance between changepoints can be smaller than h even as small

as one step. Figure 3.2 shows ATS representations of daily closing prices of International

Business Machine Corporation (NYSE:IBM) from January 1, 2014 to December 31, 2014
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with h = 3, h = 10 and h = 30 respectively. There are only 6 changepoints in ATS rep-

resentation with h = 30 compare to 45 changepoints with h = 3. Note that the distances

between changepoints has a range from 5 (time point 45 to 50) to 61 (time point 81 to 242)

with h = 10 in Figure 3.2 (middle). Default step size is one tenth if all data is available,

however, other step sizes can be utilized based on experimental needs.

If the smoothed data still seems too noisy, we may apply ATS recursively instead of

increasing step size. That is, we smooth the changepoints obtained from smoothing the

original data in (3.1). Figure 3.3 shows a recursive smoothing example of time series data.

The data with 100 points is smoothed by ATS with h = 4 (red) and then 26 changepoints

obtained from the first smoothing is smoothed again by ATS with h = 4 (blue).

Figure 3.3: Time series with length 100 is recursively smoothed by ATS with h = 5.
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The Limitations and Extensions of ATS

Although ATS detects changepoints based on individual points, in the first regime the

aggregate behavior of data is more influential because there is no previous trend for trend

comparison given that ATS identifies changepoints based on changing trends. This may

result in the first simply being determined by connecting the first observation x1 and the

h-step ahead observation x1+h (Figure 3.4). This issue can be resolved with a simple

modification to ATS, that is, applying some other criterion to the first regime. For example,

least-squared linear fit through x1 - because of the continuity constraints - might be a

possible approach.

Figure 3.4: An issue in the first regime - ATS

Another possible issue is that ATS sometimes overshoots the peaks and valleys because

the identification of a changepoint is delayed until the trend change is confirmed by a true

trend as seen in Figure 3.2 (middle) and (bottom). This can be modified by post-processing

after ATS. One simple method is to identify changepoints based on the deviations from

the trend line and segment the regime into several sub-regimes within any regime. Or, the

algorithm might be modified to detect changepoints considering not only the direction of
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the trend change but the magnitude of the trends. This would require some additional

parameters that specify the “significant” quantity in change of the magnitude of trends.

However, then, the smoothed patterns of trends may no longer alternate because the algo-

rithm identifies changepoints where the magnitude of trends change significantly while the

signs may not. Piecewise Band Smoothing (PBS) in the next section, incorporates these

ideas for modification to ATS.

3.2 Piecewise Band Smoothing (PBS)

Although ATS is simple and efficient for data reduction of online data, there are some lim-

itations as discussed in Section 3.1. The patterns obtained by ATS is always alternating

because it detects the changepoints only when the direction of trends changes. Piecewise

band smoothing (PBS) considers more various quantities of trends to identify changepoints.

While the represented data by ATS has only alternating trends, from increasing to decreas-

ing or from decreasing to increasing, the smoothed data by PBS may have some partial

sequence of the same directional patterns. In this section, we introduce identification of

changepoints by PBS and its parameters, and discuss parameter selection based on good-

ness of fit of piecewise functions.

3.2.1 Detecting Trend Changepoints

Initial Window Size for Linear Regression (w)

The general approximation method of time series data proposed by Shatkay et al. (1996)

[52] is very efficient for data reduction, however, it still requires domain expertise to specify

criteria for identification of breakpoints and feature-preserving representation, and has been

rarely discussed in finance. Picewise band smoothing (PBS) is an online processing method

for piecewise linear approximation that detects changepoints where the trends change, not

only the directions but “significant” magnitude. It assumes that the entire set of time series

data consists of multiple data generating processes, trend regimes. Each trend regime has
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a linear underlying model, such that

xit = βi0 + βi1t+ εit (3.3)

for i-th trend regime, where εit’s are independent with zero mean and a finite variance

V ar(εi) = σ2
i .

Initially, some number of observations, x1, x2, · · · , xw, are required to fit a linear line,

x̂t = β̂0 + β̂1t (3.4)

to determine the trend (β̂1) of the current regime. Once the trend of the current regime is

determined, PBS examines whether the next point xw+1 is under the current trend regime

or not by comparing the value of |xw+1 − x̂w+1| and bandwidth (B > 0), the admissible

deviation range.

|xw+1 − x̂w+1|≤ B : if xw+1 holds the current trend.

|xw+1 − x̂w+1|> B : if xw+1 does not hold the current trend.

Bandwith (B) is a predefined parameter, a tolerable range of data fluctuation. That is, if

xw+1 does not fall in the range between x̂w+1−B and x̂w+1 +B, we consider that the trend

change has occurred between time w and w + 1, identifying xw as a changepoint. If xw+1

falls in the range between x̂w+1 −B and x̂w+1 +B, xw+1 is considered to hold the current

trend and PBS examines the next points xw+i, i = 2, 3, · · · until it identifies a changepoint

that deviates more than B from its fitted value by (3.4).

Initial window size, w > 3, is a parameter to specify the number of observations used for

linear fit. Smaller w tends to find more changepoints than ATS does. However, unlike ATS,

the length of any trend regime is always greater or equal to w because once the current

trend is determined using w observations, PBS does not look back at these w points to

identify changepoints.
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Choice of Bandwidth: Adaptive vs. Constant (B)

Since PBS identifies changepoints by comparing the deviation of the observation from its

fitted value of the current trends line to the bandwidth B, a wide bandwidth tends to

identify fewer changepoints than a narrow bandwidth. The data representation results by

PBS with bandwidth 6 and 2 are shown in Figure 3.5. PBS detects 6 and 14 changepoints

when bandwidth are 2 and 14 in USD respectively.

Figure 3.5: Data representation by PBS with bandwidth 6 (left) and 2 (right) - IBM daily
closing price from January 13, 2012 to October 26, 2012

In financial data time series data, we often observe the variation of data is not constant

but rather it varies over time. Especially, very large sized datasets usually do not maintain

a constant range of data variation over time. So, it is difficult to choose one single “good”

bandwidth to identify trend regimes for long time periods. Thus, PBS allows using an

adaptive bandwidth.
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Definition 3.1. (Adaptive Bandwidth) Let L = {l1, l2, · · · , lm} be a set of the fitted

piecewise linear lines such that

li : x̂it = αi + βit, ei = {εi1, εi2, · · · , εini}

where x̂it and ei denote the fitted value at t and the residuals in the i-th regime respectively.

ni is the number of observations in the i-th regime (ni > 3). Then the adaptive bandwidth

of (i+ 1)-th regime B
(i+1)
a is

B(i+1)
a =

ni∑
j=1

ε2j
(ni − 2)

(3.5)

The Adaptive bandwidth uses the information from the most recent trend regime, that

is, the standard deviation of the residuals from the linear model in the previous regime. In

this frame, it is assumed that the variation pattern of the observations in the most recent

regime tends to continue in the current regime. Hence, the bandwidth keeps changing over

time as the data evolves, and thereby the adaptive bandwidth works more flexibly to identify

up/down trends for lengthy and noisy datasets.

If the variations of observations are relatively small and consistent over the entire time,

using a constant bandwidth might yield a good approximation by PBS. However, in practice,

especially non-stationaty financial time series data, it is unlikely that datasets are generated

within constant variation rather the variation of data tends to evolve over time [58]. Fig-

ure 3.6 illustrates the represented data by PBS with constant bandwidth (left) and adaptive

bandwidth (right). The constant bandwidth identifies 4 changepoints between time 16 and

47 although the data points between 16 and 47 seem to be under the same trend regime with

a high bit of variation. This is because the constant bandwidth does not recognize that the

variation of observation has changed in that time interval. Thus, using adaptive bandwidth

in PBS approximation would be more appropriate for datasets with various variations of

observations over time. The procedure for PBS with the parameters initial window size (w)

and the bandwidth(B) is given in Algorithm 3.2.
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Figure 3.6: Data representation by PBS with constant bandwidth (left) and adaptive band-
width (right) - IBM daily closing price from March 25, 2014 to August 14, 2014

Sometimes, adaptive bandwidth has similar issues as the constant bandwidth does when

the variation of data changes dramatically. For example, if the variation of observations in

the current regime is very small compared to that in the previous regime, PBS with adap-

tive bandwidth possibly fails to identify the changepoint in the end of the current regime

because the bandwidth is too wide. To resolve these remaining issues, we introduce param-

eters change ratio (R), and angle restriction (A).
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Algorithm 3.2 Piecewise Band Smoothing with B and w

1: Set i← 1 (index of data points)
2: Set d← 1 (changepoint counter, the first data point at t = 1)

3: Specify bandwidth option (band.wd), either “adaptive” or “constant”.
4: Specify bandwidth quantity B > 0
5: Specify initial window size w > 0

6: while more data do
7: Set j ← 1
8: Fit the linear trend line with w initial data points {xi, xi+1, · · · , xi+w−1}
9: while |xi+w+j−1 − x̂i+w+j−1|< B, where x̂i+w+j−1 is the fitted value of the trend

do
10: Set j ← j + 1
11: end while

12: Save i+ w + j − 2 as an index of changepoint and d← d+ 1
13: Set i← i+ w + j − 2, a new starting point of new trend regime
14: Go to 7
15: end while
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Trend Change Ratio (R)

The change ratio (R) is a constraint on the magnitude of change when two adjacent regimes

have the same direction in trend. As mentioned, it is possible that PBS miss the change-

points when the variations of data in two contiguous trend regimes are very different. For

example, if the standard deviation of the residuals in the linear model of the i-th regime σi

is much larger than that of the linear model of the next (i + 1)-th regime σi � σi+1, PBS

might miss some important changepoints because of too wide a bandwidth. For the other

way around, σi � σi+1, PBS possibly identifies wrong points as changepoints. The change

ratio (R) specifies the ratio of the magnitudes of two contiguous trends that is considered

a “meaningful” change.

Definition 3.2. (Change Ratio) Let A = {α1, α2, · · · , αm} be a set of the trend (slope

values) by piecewise banding smoothing from 3.1. When two contiguous trends sign(αi) =

sign(αi+1), then the change ratio R > 1 is

R = min

(
αi+1

αi

)
if

(
αi+1

αi

)
> 1

= min

(
αi
αi+1

)
if

(
αi+1

αi

)
< 1

equivalently,

1

R
= max

(
αi+1

αi

)
if

(
αi+1

αi

)
< 1

(3.6)

A larger value of the change ratio R tends to identify fewer number of changepoints.

Figure 3.7 shows the results of data representation by PBS with the change ratio R = 2

(left) and R = 5 (right). PBS approximation with smaller change ratio R = 2 results

in identifying 32 changepoints while PBS with R = 5 identifies 27 changepoints. These

5 changepoints (circled) additionally identified by PBS with R = 2 does not seem to be

turning points where the linear trends are changing, but rather the trends before and after
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these points seem to be the same or very similar. These issues can be relieved considerably

by change ratio constraint.

Figure 3.7: Data representation by PBS with the change ratio R = 2 (left) and R = 5
(right) - IBM daily closing price from March 27, 2012 to January 11, 2013
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Angle Restriction for Small Magnitude Trends (A)

When the magnitude of the trends are very small (close to zero) or very large, even large

value of change ratio does not differentiate trend change clearly as seen in Figure 3.8. This

issue leads to the requirement of angle restriction since the angle between two trends varies

for the same change ratio. The angle restriction A is the maximum angle θ∗ (0 < θ∗ < π)

between two trend lines. Some degree of “visual” significance in trend change is guaranteed

by angle restriction.

Figure 3.8: For the same R = 4, the angles are different.

Definition 3.3. (Angle Restriction) Let θi be the angle between i-th trend line li and

time axis such that αi = tan θi where αi denotes the slope value of li. Then the angle

between two contiguous lines li and li+1 is

γi =
∣∣tan−1(αi+1)− tan−1(αi)

∣∣ , 0 < γi < π

and the angle restriction A is defined by
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A = max (π − γi) (3.7)

The angle restriction is particularly useful when the signs of trends change but the mag-

nitudes of the trends are very small. The issue that PBS may fail to identify the important

changepoints or misidentify changepoints can be resolved by employing angle restriction.

The PBS algorithm including all parameters, initial window size w, bandwidth B, change

ratio R, and angle restriction A is given in Algorithm 3.3

42



Algorithm 3.3 Piecewise Band Smoothing with B,w,R and A

1: Set i← 1 (index of data points)
2: Set d← 1 (changepoint counter, the first data point at t = 1)
3: Specify bandwidth option (band.wd), either “adaptive” or “constant”.
4: Specify B > 0, w > 0, R > 1 and A
5: where B,w,R and A is bandwidth, initial window size, change ratio and angle restriction

respectively.

6: Fit the first linear trend line l1 with {x1, x2, · · · , xw}
7: if bandwidth option = adaptive bandwidth then

8: B(1) ← residual standard deviation of l1
9: end if

10: if bandwidth option = constant bandwidth then

11: B(d) ← c for all d ∈ N, where c is specified in line 4.
12: end if
13: while more data do
14: Set j ← 1

15: while |xw+j − x̂w+j |< B(1) do
16: where x̂w+j is the fitted value of the line l1 at t = w + j
17: Set j ← j + 1
18: end while
19: Save (w + j − 1) as the first changepoint; d← d+ 1
20: Set i← (w + j − 1) a starting point of new trend regime
21: Set j ← 1
22: Fit the linear trend ld with {xi, xi+1, · · · , xi+w−1}
23: while |xi+w+j−1 − x̂i+w+j−1|< B(d−1) do
24: where x̂i+w+j−1 is the fitted value of the line ld at t = i+ w + j − 1
25: Set j ← j + 1
26: end while

27: if d < 3 then
28: go back to 14
29: end if
30: if d ≤ 0 then
31: if sign(slope of d-th regime) = sign(slope of (d− 1)-th regime) then

32: if
(
sd+1

sd
> R or

sd+1

sd
< 1

R

)
and θd < A then

33: where sd = the slope of d-th regime and θd = angle between sd and sd+1

34: Confirm and save (i+ w + j − 2) as a (d− 1)-th index of changepoints
35: Otherwise, delete (i+ w + j − 2) from the changepoint sequence
36: end if
37: end if
38: if sign(slope of d-th regime) != sign(slope of (d− 1)-th regime) then
39: if θd < A then
40: confirm and save (i+ w + j − 2) as a (d− 1)-th index of changepoints
41: Otherwise, delete (i+ w + j − 2) from the sequence of changepoints.
42: end if
43: end if
44: end if
45: end while
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Continuity Constraint - Linear Regression without Intercept

The fitted lines by least-squared method may or may not have the intercept. Although

generally the fitted line with intercept is recommended when behavior of data near the

origin is uncertain, in PBS fitting the line without intercept provides more sensible because

otherwise every changepoint has two fitted values. Also, by fitting the line without intercept

(Regression Through Origin, RTO), the continuity constraint of smoothing can be achieved.

Note that in RTO fitting the mean of residuals is non-zero because the regression line is

generally inconsistent with the best fit [15]. However, with the finite number of data points

within the regime, in practice the use of RTO is more beneficial for interpretablity in the

context with adjacent regimes at changepoints (Figure 3.9).

Figure 3.9: Piecewise linear lines with and without intercept
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3.2.2 Criterion of Data Representation

In piecewise band smoothing for financial time series data, our objective is not only to iden-

tify trend changepoints but also to reduce the original data to a manageable size. Selecting

parameters that yields the smallest squared sum of residuals (SSR) might be considered a

decision criteria in terms of goodness-of-fit, but this criteria will always choose the smallest

window size and bandwidth, and as a result there are too many trend regimes, or always

more than a certain number of regimes in the reduced data. Therefore the regularization on

the number of trend regime is necessary to reconcile our objectives, preserve the informa-

tion of the original data, and reduce dimensionality efficiently. The criterion of parameter

selection can be given as follows: let X = {xik | x11, x12, · · · , x1n1 , · · · , xi1, · · · , xini , · · ·} be

a set of original time series data indexed by PBS such that xik denotes the k-th point in

i-th trend regime.

min
∞∑
i=1

(SSR per trend in i-th regime) + λ (the number of changepoints)

= min

∞∑
i=1

ni∑
k=1

{
(xik − x̂ik)2

ni
+ λI(xik = xi1)

} (3.8)

where x̂ik is the fitted value of k-th point, ni is the number of data points in i-th regime

and λ is a tuning parameter of regularization term. The first term of (3.8) implies the

loss function of the data while the second term penalizes for the number of changepoints

to approximate smoothing. Figure 3.10 and Figure 3.11 show the changes of SSR and the

number of the changepoints as the initial window size w and the bandwidth B increase

(IBM daily closing price from October 15, 2012 to October 15, 2015). X axis in Figure 3.10

implies that k-fold adaptive bandwidth. In Figure 3.10, the SSR tends to increase and the

number of the changepoints decrease as the bandwidth broadens although both tendencies

are not quite monotonic. Similarly, the SSR tends to increase as the initial window size

w increases while the number of the changepoints decreases. Note that the number of the
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trend regimes, or changepoints, decrease as the initial window size w increases.

Figure 3.10: SSR per regime and the number of regimes for various B

Figure 3.11: SSR per regime and the number of regimes for various w
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Figure 3.12: SSR per regime and the number of regimes for various B and w

Figure 3.13: Criteria function combining the loss function and regularization (λ = 3.5)
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In financial time series data, the range of SSR of individual assets varies. For example,

from January 13, 2012 to January 12, 2015, the range of IBM daily closing prices is 53.81

USD while that of Microsoft Corporation (NASDAQ:MSFT) is 23.57 USD. Thereby, the

range of the individual asset prices should be considered to choose an effective tuning pa-

rameter λ in (3.8). Standardization of the data can be one approach. Or we can use the

equivalent form to the (3.8) as follows:

min
∞∑
i=1

ni∑
k=1

(xik − x̂ik)2

ni
subject to d1 ≤

∞∑
i

ni∑
k=1

I(xik = xi1) ≤ d2 (3.9)

The price variation of assets also influences the choice of the angle restriction. The

smaller variation of data is more robust to the angle restriction. Thus, a larger angle is

recommended for the data with small variation. Table 3.2 shows the result of parameter

selection with d1 = 60 and d2 = 70 based on the criteria shown in (3.8) for stock prices

of nine companies and Dow Industrial Average data from January 13, 2012 to January 12,

2015. Stock prices of Pfizer Inc. (NYSE:PFE) shows the smallest SSR per regime after data

representation, and it requires the largest angle parameter (A = 44
45π) for PBS smoothing

since the standard deviation of Pfizer stock price is the smallest. On the other hand, a

smallest angle ( 9
10π) is enough to smooth the stock price of Goldman Sachs Group, Inc.

(NYSE:GS) because its standard deviation is the largest among nine asset prices except

Dow Jones Industrial Average (DJI: DJIA).
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Table 3.2: Parameter selection based on criteria given in (3.8)

SSR/regime No. changepoints (w,B,A) std(x)

IBM 49.78 69 (5, 1.6, 11
12π) 9.73

ORCL 2.50 69 (6, 0.8, 23
24π) 4.79

MSFT 2.50 70 (5, 0.8, 19
20π) 6.70

PFE 0.84 68 (6, 0.6, 44
45π) 3.67

GSK 2.44 68 (6, 0.8, 29
30π) 4.41

JNJ 5.84 68 (4, 1.0, 11
12π) 15.17

VISA 6.45 70 (4, 1.6, 11
12π) 10.70

JPM 5.54 67 (5, 0.6, 11
12π) 8.83

GS 48.33 69 (6, 0.6, 8
9π) 28.93

DJIA 261033 63 (6, 1.4, 9
10π) 1654239

Table 3.3: Stock symbols

Symbol Company

IBM International Business Machine (NYSE)
ORCL Oracle Corporation (NYSE)
MSFT Microsoft Corporation (NASDAQ)
PFE Pfizer Inc. (NYSE)
GSK GlaxoSmithKline (NYSE)
JNJ Johnson & Johnson (NYSE)
VISA Visa Inc. (NYSE)
JPM JPMorgan Chase (NYSE)
GS Goldman Sachs (NYSE)
DJIA Dow Jones Industrial Average
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Figure 3.14: Daily stock closing prices: PFE vs. GS

3.3 Extend to Higher Degree Polynomials

Instead of a linear line, higher degree polynomial functions such as quadratic and cubic

polynomials may be considered for piecewise functions (Figure 3.15). This approximation

does not require two parameters, change ratio R and angle restriction A. Of course as the

degree of polynomials increases the SSR per regime decreases and thus representation is

closer to data with reasonable number of trend regimes. Nevertheless, it is not feasible to

identify patterns of the regimes while applying continuity restrictions. Moreover, it might

be less meaningful in the viewpoint of financial data trend analysis because two or more

directions can exist within a regime.

Higher degree polynomials can be modified by flexible choice of piecewise functions. For

example, given initial w points in the beginning of the regime, PBS fits both quadratic and

linear models. Then it compares F-statistics or p-value of two models and chooses the more
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significant one but in case that the quadratic fit is more significant it also must be mono-

tonic, otherwise it chooses the linear fit. Figure 3.16 shows represented data of Dow Jones

Industrial Average (INDEXDJX:DJIA) from January 13, 2012 to January 11, 2013 by this

“flexible” algorithm. Not surprisingly given the reasons discussed earlier, every represented

regime is fitted by a linear line. This might imply that linear representation is sufficient to

summarize trend sequences from financial data but further research is required.

Figure 3.15: Piecewise higher degree polynomials
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Figure 3.16: Piecewise flexible approximation
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Chapter 4: Patterns of Trends and Distance Measures

Pattern recognition for large size data consists for two important steps, (1) data repre-

sentation and (2) similarity/disimilarity measures. The most important reason for data

representation is to reduce the dimensionality of data substantially since measuring simi-

larity between two lengthy time series directly is usually not feasible. Another important

reason would be to find patterns efficiently from the reduced data. There are some patterns

used widely such as trend and seasonality. Besides, patterns can be defined based on the

purpose of the analysis. For example, in technical analysis of financial market data, various

patterns are discussed to look for trading opportunities (Figure 4.1).

Figure 4.1: Various patterns used in stock market analysis. http://www.forexblog.org [2]

Well-defined patterns from the reduced data and similarity measures can result in good

performance in data analysis, such as classification and clustering. In this chapter, we dis-

cuss defining two types of patterns, continuous and discretized, and propose some methods

for similarity measures motivated by Müller (2007) [44] and Lin (2007) [43].
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4.1 Sequence of Local Functions

Alternating trends smothing (ATS) or piecewise band smoothing (PBS) reduces the dimen-

sionality of data a substantially by by fitting sequential local models.

Mathematically, the data reduction process by ATS or PBS can be addressed as follows.

Let X = {xt1 , xt2 , · · · , xtN } be the original time series data and φ be an operation of ATS

or PBS. Then φ maps the original data X ∈ X to the reduced space Xre. That is,

φ : X −→ Xre (4.1)

where X ∈ RN Xre ∈ Rn, (n� N). and . Each element in Xre = {xb1 , xb2 , · · · , xbn} ∈ Xre,

where bi’s are the i-th changepoint, can be decomposed to X-Y cartesian coordinates, for

example,

Xre = {xb1 , xb2 , · · · , xbn} = {(b1, c1), (b2, c2), · · · , (bn, cn)} (4.2)

where bk and ck are the time index of k-th changepoints and the value at time bk respectively.

Patterns can be defined using some features of a local function µi(t) for i-th regime defined

between bi and bi+1. Local µi(t) can have various forms of functions. For piecewise constant

modeling,

µi(t) = αiI[bi, bi+1](t) (4.3)

where IA(t) = 1 if t ∈ A and IA(t) = 0 otherwise. For piecewise linear approximation by

ATS or PBS, µi(t) can be written as

µi(t) = (αi + βi(t))I[bi, bi+1](t) (4.4)

where

αi = ci, βi =
ci+1 − ci
bi+1 − bi

, and bi < bi+1 for all i.

αi is the value at the starting point of i-th trend regime and bi is the trend (slope).
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Obviously the global model of the represented data can be written as

n∑
i=1

µi(t) (4.5)

4.2 Types of Patterns and Distance Measures

Well-defined patterns that describe interesting features of data enable effective similarity

measures between two time series and lead to valid classification or clustering. The features

can be obtained from piecewise local functions. In piecewise constant approximation in

(4.3), there are two pieces of information available in each regime: (1) the representative

constant αi and (2) the length of the regime (duration) bi+1− bi. Similarly, piecewise linear

representations in (4.4), provide three pieces of information in each regime: (1) the constant

αi, (2) a slope (trend) βi, and (3) the length of the regime (duration) bi+1−bi. Although the

piecewise local function contains multiple pieces of information, it is not easy to incorporate

all the information for a similarity measure. Rather it might be more efficient to use just

one or two important features of the regime.

4.2.1 Numerical Patterns and Distance Measures

In financial data analysis, it is obvious that the major interests are “up/down trend” and

“the length of the trends.” The sequence of the trends and the length of trends can be

written as the slope of the linear fit and the difference between the starting and the ending

times of the regime.

Now, we address transforming a time series data with length N into the reduced

sequence of trends, and measuring distance between two reduced data in detail. Let

T = {xt1 , xt2 , · · · , xtN } and Q = {yt1 , yt2 , · · · , ytN } be two time series with the same length

N . By piecewise linear smoothing, T and Q are mapped to T̂ and Q̂ such that,
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T̂ = {(s1, d1), (s2, d2), · · · , (sm, dm)} , (m� N)

Q̂ = {(v1, l1), (v2, l2), · · · , (vn, ln)} , (n� N)

(4.6)

where (si, di) and (vj , lj) are the trend slope and the length of the trend in the i-th and the

j-th regime of T and Q respectively. The i-th length of the trend, di, can be written using

changepoints as well, that is, di := (bi−1, bi) where bi−1 is the starting point and bi are the

last point of the i-th trend regime. Then another form of (4.6) is possible as follows.

T̂ = {(s1, d1), (s2, d2), · · · , (sm, dm)}

= {(s1, (b0, b1)), (s2, (b1, b2)), · · · , (sm, (bm−1, bm))}

Q̂ = {(v1, l1), (v2, l2), · · · , (vn, ln)}

=
{

(v1, (b0, b
∗
1)), (v2, (b

∗
1, b2)), · · · , (vn, (b∗n−1, b

∗
n))
}

(4.7)

where {b0, b1, b2, · · · , bm} and {b∗0, b∗1, b∗2, · · · , b∗n} are sets of the identified changepoints of T

and Q (b0 = b∗0 = t1, bm = b∗n = tN ).

Now, for similarity measure between T̂ and Q̂, the short time series distance (STS)

method [44] can be extended by allowing the different lengths of reduced data. We define

the step functions of the trends over time for given smoothed time series T̂ and Q̂,

f
T̂

(t) = siI([bi−1, bi]), i = 1, 2, · · · ,m (4.8)

f
Q̂

(t) = vjI(
[
b∗j−1, b

∗
j

]
), j = 1, 2, · · · , n (4.9)

where IA(t) = 1 if t ∈ A; otherwise IA(t) = 0. The trends step function (TSF) distance
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between T and Q is defined by

TSF(T̂ , Q̂) =

(
m+n∑
i=1

∫ ai

ai−1

(
f
T̂

(t)− f
Q̂

(t)
)2
dt

) 1
2

=

(
m+n∑
i=1

(
f
T̂

(ai)− fQ̂(ai)
)2

(ai − ai−1)

) 1
2

(4.10)

where {a0, a1, a2, · · · , am+n} , (a0 = t1, am+n = tN , ai ≤ ai+1 for all i) is the combined

set of changepoints of T̂ and Q̂ in order. Figure 4.2 illustrates the smoothed time series

by PBS T̂ and Q̂ (top) and the step functions transformed of T̂ and Q̂. The TSF distance

between T and Q is described as the summation of square of the differences between two

step functions (bottom). The TSF distance in (4.10) allows two reduced datasets to have

different lengths. Also, it is a metric function discussed in Section 2.3.1 of Chapter 2.

We prove triangular inequality of TSF here since it is obvious that TSF distance satisfies

properties of the metric, non-negativity, identify of indiscernibles, and symmetry.

Claim 1. The trends step function (TSF) distance in (4.10) satisfies triangular inequality,

TSF(T̂ , R̂) ≤ TSF(T̂ , Q̂) + TSF(Q̂, R̂) (4.11)

where T̂ , Q̂ and R̂ are smoothed time series by ATS or PBS.

Proof: Let T = {xt1 , xt2 , · · · , ttN } , Q = {yt1 , yt2 , · · · , ytN } and R = {zt1 , zt2 , · · · , ztN }

be time series with length tN . Suppose each time series is smoothed by ATS or PBS

and we obtain the sets of changepoints Tb = {b0, b1, b2, · · · , bl} , Qb = {b∗0, b∗1, · · · , b∗m},

and Rb = {b′0, b′1, · · · , b′n} for T,Q and R respectively. Let A = {a0, a1, · · · , al+m+n}

denote a combined set of Tb, Qb and Rb in order, where a0 = b0 = b∗0 = b′0 = t1 and

al+m+n = bl = b∗m = b′n = tN . Then the sum of distances between T̂ and Q̂, and Q̂ and R̂

satisfies
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TSF(T̂ , Q̂) + TSF(Q̂, R̂)

=

(
l+m+n∑
i=1

(
f
T̂

(t)− f
Q̂

(t)
)2

(ai − ai−1)

) 1
2

+

(
l+m+n∑
i=1

(
f
T̂

(t)− f
Q̂

(t)
)2

(ai − ai−1)

) 1
2

=

(
l+m+n∑
i=1

((
f
T̂

(ai)− fQ̂(ai)
)√

ai − ai−1

)2
) 1

2

+

(
l+m+n∑
i=1

((
f
Q̂

(ai)− fR̂(ai)
)√

ai − ai−1

)2
) 1

2

≥

(
l+m+n∑
i=1

(√
ai − ai−1

(
f
T̂

(t)− f
Q̂

(t) + f
Q̂

(t)− f
R̂

(t)
))2

) 1
2

by Minkoski inequality

=

(
l+m+n∑
i=1

(
f
T̂

(t)− f
R̂

(t)
)2

(ai − ai−1)

) 1
2

= TSF(T̂ , R̂)

(4.12)

�

Another possible approach to measure distance for numerical patterns is to compare

the change amounts in values and length of the trend regimes for all pairs. To use this

similarity measure, two reduced datasets must be the same length. In (4.6), si and vj can

be substituted for ∆T
i = xbi − xbi−1

and ∆Q
j = yb∗j − yb∗j−1

respectively then the sequence of

the patterns becomes

T̂ = {(s1, d1), (s2, d2), · · · , (sm, dm)}

:=
{

(∆T
1 , d1), (∆T

2 , d2), · · · , (∆T
m, dm)

}
Q̂ = {(v1, l1), (v2, l2), · · · , (vn, ln)}

:=
{

(∆Q
1 , l1), (∆Q

2 , l2), · · · , (∆Q
m, lm)

}
(4.13)

and thus the distance by change amounts comparison in the length of trends and range of

the values in a trend regime is given by
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Dist∆(T̂ , Q̂) =
m∑
i=1

√
(∆T

i −∆Q
i )2 + (di − li)2. (4.14)

Since the distance in (4.14) is based on the Euclidean distance metric, it satisfies the

properties of metric function given in Section 2.3.1 of Chapter 2.

Figure 4.2: Step functions of the trend sequences
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4.2.2 Discretized Patterns and Distance Measures

The numerical patterns in Section 4.2.1 can also be transformed to the discretized patterns

by categorization of the data. We categorize the numerical sequences of patterns in order

since our interests of financial time series are ordinal. We use two alphabet symbols, conso-

nant and vowels, to represent each trend regime. A pair of consonant and vowel represent

the direction, the length of the trend, and the magnitude of the trend respectively. For

example, with trend size = 3, consonant “J”, “K”, and “L” are assigned on the decreasing

trends for short period, moderate length of period, and long period respectively. Similarly,

so are ‘P”, “Q”, and “R” assigned for the increasing trends. With the magnitude size = 3

three vowels “A”, “E”, “I” are used to represent the magnitude of the trends in order (Ta-

ble 4.1). The trend size c and magnitude size v are predefined parameters. The trend size c

and magnitude size v separate categories according to i
c , (i = 1, · · · , c) and j

v , (j = 1, · · · , v)

quantiles of the distribution of c and v values. By discretization function D with the pa-

rameters c and v, a pair of numerical trends (si, di) in (4.6) is mapped to a pair of symbols

that consists of a consonant and a vowel.

D : (si, di) −→ (Ci, Vi) ≡ CiVi (4.15)

where

Ci ∈ C+ or Ci ∈ C−, and Vi ∈ V

C+ =
{
C+

1 , C
+
2 , · · · , C

+
c

}
C− =

{
C−1 , C

−
2 , · · · , C

−
c

}
V = {V1, V2, · · · , Vv}

C+
i (i = 1, 2, · · · , c) and C−i (i = 1, 2, · · · , c) are consonants to represent the increasing and

decreasing trends according to the length of their trends respectively. Vi (i = 1, 2, · · · , v) is

a vowel to represent the magnitude of the i-th trend regime. The value for the consonant

Ci of (si, di) is determined by the direction of si and the location of the duration di among
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c− 1 quantile values of the distribution of di. Specifically, symbol values, Ci and Vi, can be

written as follows.

Ci =I(sign(si) ≥ 0)

{
C+

1 I

(
di < Qd

(
1

c

))
+ C+

2 I

(
Qd

(
1

c

)
≤ di < Qd

(
2

c

))
+ · · ·

+ C+
c I

(
Qd

(
c− 1

c

)
≤ di

)}

+ I(sign(si) < 0)

{
C−1 I

(
di < Qd

(
1

c

))
+ C−2 I

(
Qd

(
1

c

)
≤ di < Qd

(
2

c

))

+ · · ·+ C−c I

(
Qd

(
c− 1

c

)
≤ di

)}

= I(sign(si) ≥ 0)

{
c∑

k=1

C+
k I

(
Qd

(
k − 1

c

)
≤ di < Qd

(
k

c

))}

+ I(sign(si) < 0)

{
c∑

k=1

C−k I

(
Qd

(
k − 1

c

)
≤ di < Qd

(
k

c

))}
(4.16)

where Qd
(
i
c

)
(i = 1, 2, · · · , c−1) is the i-th quantile value of distribution of dis and I(·)

is an indicator function. Similarity, Vi can be written as follows.

Vi = V1I

(
|si|< Qs

(
1

v

))
+ V2I

(
Qs

(
1

v

)
≤ |si|< Qs

(
2

c

))
+ · · ·

+ VvI

(
Qs

(
v − 1

v

)
≤ |si|

)

=
v∑
k=1

ViI

(
Qs

(
k − 1

v

)
≤ |si|< Qs

(
k

v

))
(4.17)

where Qs
(
i
v

)
(v = 1, 2, · · · , v − 1) is the i-th quantile value of distribution of si and I(·) is

an indicator function. The example is shown in Figure 4.3.

Since the symbolic patterns are discretized based on the ordinal categories, some ordinal

numbers may be assigned on these categories for similarity measure. Also (+) or (−) sign
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can be used to identify the trend direction. In the example, 1, 2, and 3 are assigned on

“J”, “K”, and, “L” respectively as they are sorted by the length of trends. Similarly,

−1,−2 and −3 are assigned for “P”, “Q”, and, “R” since they represent decreasing trends.

The numbers to represent the magnitude of the trends also can be chosen in the same

way as they were for the length of the trends, but their signs should coincide with the

sign of the trends (Figure 4.4). For two sequences T ∗ =
{

(C1
i , V

1
i )| i = 1, 2, · · · ,m

}
and

Q∗ =
{

(C2
i , V

2
i )| i = 1, 2, · · · ,m

}
transformed by D in (4.15), the discrete pattern (DP)

distance can be written as follows.

DP distance =
m∑
i=1

√
(C1

i − C2
i )2 + (V 1

i − V 2
i )2 (4.18)

The distance measure in (4.18) does not satisfy identity of indiscernables property of

metric function because we aggregate various patterns based on some cutoff values to the one

category. Nevertheless, the distance measure in (4.18) has some advantages. It facilitates

simple and fast computation for similarity measure between large scale data. Moreover, it

does not require that two time series have the same length as long as the number of trend

regimes by ATS or PBS is the same while TSF distance and the distance by change amount

comparison are valid for the data registered with respect to time.

Table 4.1: Symbolic Discretized Patterns

J Up short length P Down short length A Small in magnitude

K Up moderate length Q Down moderate length E Medium in magnitude

L Up long length R Down short long I Large in magnitude
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Figure 4.3: Discretized Symbol Patterns

Figure 4.4: Distances for discretized patterns
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Example: Matching Discrete Patterns

Figure 4.5 is the result of indexing the best matching sequence of patterns using discrete

patterns. Daily closing price data of International Business Machine Corp. (IBM) from Oc-

tober 15, 2010 to October 15, 2015 is used to find two types of patterns, M and W patterns.

First of all, the stock data is smoothed by PBS and transformed to a pair of sequences, the

sequence of slope values and the sequence of the length of the trend regimes. Two param-

eters, trend size (c) = 4 and magnitude size (v) = 4, are specified to discretize patterns as

seen in Table 4.2. Based on Table 4.2, M pattern can be described {MO,SO,MO,SO}

while a sequence {MA,RO,LI, SO} indicates W pattern. To find the best matching sub-

sequence of M or W patterns, we searched sequentially all subsequences (sliding windows)

and measured distance using discrete pattern (DP) distance in (4.18).

Figure 4.5: Search M and W patterns from the stock price data (IBM).
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Table 4.2: Discretized Patterns for pattern matching

J Up for very short length P Down for very short length A Very small in magnitude

K Up for short length Q Down for short length E Small in magnitude

L Up for long length R Down for long length I Large in magnitude

M Up for very long length S Down for very long length O Very large in magnitude

4.2.3 Adjustments of the Length of the Reduced Data

The distance measures for smoothed data by piecewise linear representation, TSF distance

(DTSF ) in (4.10), the distance by change amount comparison (D∆) in (4.14), and the

distance of discrete patterns (DDP ) in (4.18) require some conditions about data registration

and the dimension equality as shown in Table 4.3. In case that the length of the two

smoothed sequence of data are not equal, we may adjust one of the sequences so that they

have the same length by some post-process. As it has been suggested in many literature,

we propose a merging method based on a bottom-up algorithm. Let T̂ = {s1, s2, · · · , sm}

and Q̂ = {v1, v2, · · · , vn} be sequences of the trends smoothed by ATS of PBS where m < n.

Then by removing one changepoint from the longer sequence Q̂, the length of Q̂ is reduced

to n − 1. The step is applied recursively until the lengths of Q̂ is equal to that of T̂ . The

removal changepoints is based on the perpendicular distance Pd, from the i-th changepoint

to the line between (i− 1)-th and (i+ 1)-th changepoints (Figure 4.6).

Table 4.3: Distance Measures for Smoothed Data

Required T̂ and Q̂ to be

registered w.r.t time the same length

DTSF (T̂ , Q̂) Yes No

D∆(T̂ , Q̂) Yes Yes

DDP (T̂ , Q̂) No Yes
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Figure 4.6: Merging two trend regimes

4.3 Properties of the Length of the Trend Regime

In piecewise band approximation, the quantities that describe a trends of a regime such as

the direction and magnitude of the linear slope, and the lengths of trends can vary based

on the choice of parameters, initial window size w, bandwidth B, change ratio R, and angle

restriction A. It is observed that when we smooth a time series data by PBS with initial

window size w, the lengths of the trend regime often tend to have close values to w, while

the the trends (slopes values) show a consistently similar distribution, symmetric with zero

mean regardless of the choice of parameters. In this section, we investigate the properties

of the length of a trend regime given initial window size w.

67



4.3.1 Assumptions about Data and Models

As mentioned in Chapter 1, we assume that a large size time series data consists of non-

overlapping sequential data generating processes, such as linear models. Specifically, sup-

pose a time series T consists of K linear trend regimes,

T = {x11, x12, · · · , x1n1 , · · · , xK1, xK2, · · · , xKnK
} .

Assume that each trend regime has a underlying linear model for all K as follows.

xitj = βi0 + βi1tj + εitj (i = 1, 2, · · · ,K and j = 1, 2, · · · , nK) (4.19)

where εitj ’s are independent with zero mean and finite variance V ar(εi) = σ2
i <∞. Hence,

each trend regime can be fitted by

x̂itj = β̂i0 + β̂i1tj (i = 1, 2, · · · ,K and j = 1, 2, · · · , nK) (4.20)

and we have residuals ritj = xitj − x̂itj from the fitted model. Recall that given the initial

window size w > 3 and bandwidth B > 0, we compare the residual of the observation xw+1,

|xw+1 − x̂w+1| to B to determine if xw is the trend changepoint or not. Therefore, the

probability of the length of a trend regime L = w can be written by

Pr(L = w) = Pr(|xw+1 − x̂w+1|> B)

= Pr(|rw+1|> B)

= p

(4.21)

where 1 − p = Pr(|xw+1 − x̂w+1|≤ B) = Pr(|rw+1|≤ B). Similarly, the probability of the

length of a trend regime L = w + 1 is,
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Pr(L = w + 1) = Pr(|xw+2 − x̂w+2|> B) Pr(|xw+1 − x̂w+1|≤ B)

= Pr(|rw+2|> B) Pr(|rw+1|≤ B)

= p(1− p)

(4.22)

because ri’s are independent.

In the same fashion, the probability of the length of a regime L = w + l (l ≥ 0) can be

written by

Pr(L = w + l) = p(1− p)l (4.23)

Therefore, given an initial window size w, the length of a trend regime L(≥ w) follows

geometric distribution with p = Pr (|xw+i − x̂w+i|> B) where i ≥ 0. Figure 4.7 illustrates

the distribution of trend regimes after smoothing IBM daily closing price data from January

13, 2005 to January 12, 2015 by PBS with w = 4 and constant bandwidth B = 2. The

distribution of the length of trend regimes seems to be approximately geometric distribution

with p = 0.21.

4.3.2 The Properties of p

Based on the assumption that we made about data in Section 4.3.1, the probability that

PBS identifies the true changepoint can be estimated as follows. Suppose there are two

trend regimes,

Trend 1 (l1) : x1tj = β10 + β11tj + ε1tj

Trend 2 (l2) : x2tj = β20 + β21tj + ε2tj

(4.24)

where εitj has a zero mean and a finite variance σi (i = 1, 2), and Trend 1 changes at time

c; that is xc is the true changepoint. To satisfy the continuity constraints, we will consider

only βi1, (i = 1, 2) for a trend in the i-th regime. Let p be the probability of xc being
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Figure 4.7: The distribution of the length of a trend regime with w = 4

identified as the trend changepoint by PBS. Since PBS determines a changepoint based on

the distance between the future observation xc+1 and the current trend line l1, the farther

distance of the xc+1 from l1 implies the higher probability of xc+1 being identified as a

changepoint. That is, as the difference between two trends d = |β21 − β11| increases, p also

increases (Figure 4.8).

Suppose εitj (i = 1, 2) is an identically independent normal distribution with zero mean

and variance σi (i = 1, 2), and β11 6= β210. Then, the observation at c+ i can be written as

xc+i = β20 + β21(c+ i) + ε2,c+i (i > 0) and xc+i = β10 + β11(c+ i) + ε1,c+i (i ≤ 0).

Let

Y =

{
1 if x̂c = xc|x̂c 6= xp (p = w,w + 1, · · · , c− 1)

0 if x̂c 6= xc|x̂c 6= xp (p = w,w + 1, · · · , c− 1)
(4.25)

where x̂t is a changepoint identified by PBS at t. Consider how p changes when d = B,

where d = |β21 − β11| and B are the difference between two trends and the bandwidth of
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Figure 4.8: The probability that PBS identifies a true changepoint

the first regime respectively. Given the bandwidth B, Y = 1 when xc+1 < β20 + β21(c+ 1),

that is ε2,c+1 < 0. Therefore Y = 1 with probability 0.5. If d < B, Y = 1 when xc+1 <

β20 + β21(c+ 1)− d′ (d′ > 0), that is εc+1 < −d′ < 0 and thus Y = 1 with probability less

than 0.5. Similarly, if d > B, Y = 1 with probability greater than 0.5. Hence, it is easily

inferred that,

Pr(Y = 1) −→ 1 as (d−B) −→∞ (4.26)

and

Pr(Y = 1) −→ 0 as (d−B) −→ −∞ (4.27)

Indeed, P (Y = 1), the probability that PBS identifies true changepoint, has a logic

regression curve as seen in Figure 4.9 and Figure 4.10. The graphs on the left side in

Figure 4.9 and Figure 4.10 show the simulation results about the change of the probability
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P (Y = 1) as d increases given B = 3 and B = 5 respectively. The red curves indicate the

logistic regression curve,

p = P (Y = 1) =
ed−B

1 + ed−B
or log

p

1− p
= d−B (4.28)

The graphs on the right side are simulation results when PBS identifies changepoints with

change ratio constraints. With change ratio constraints, the probability p is always lower

than the curve by (4.28). This is because PBS rejects any identified points that do not

satisfy change ratio constraints although they fall outside of the bandwidth.

Figure 4.9: The distribution of p with bandwidth B = 3 (left) and with change ratio
restriction (right)
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Figure 4.10: The distribution of p with bandwidth B = 5 (left) and with change ratio
restriction (right)

Now, we consider p for more general cases. Let pk = Pr(x̂c = xc+k) be the probability of

xc+k being identified as a changepoint by PBS (c+k ≥ w), where xc is the true changepoint.

Specifically, k < 0 implies that PBS identifies a trend changepoint in k advance of true

changepoint xc, and k > 0 implies that the k ahead point is identified as a changepoint.

Figure 4.11, Figure 4.12, and Figure 4.13 illustrate simulation results of the change of pk

under three different scenarios, (i) σ1 = σ2, (ii) σ1 > σ2, and (iii) σ1 < σ2. For all three

scenarios, p0 = Pr(x̂c = xc) - the probability that PBS identifies a changepoint correctly -

increases as d increases. Note that PBS sometimes identifies points as changepoints before

it reaches the true changepoint. This is because we use only w points to fit the current

trend line. Thus, the gap between the true trend and the fitted trend is getting larger as

PBS moves forward along with the fitted line, the points in the current trend regime are

possibly identified as changepoints (see Figure 4.14 left). Under the scenarios σ1 = σ2 and
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σ1 < σ2 when d is small, PBS tends to identify changepoints far after it passes the true

changepoint (Figure 4.11 and Figure 4.13 left). It can be easily understood from Figure 4.14

(middle). When d is small, the bandwidth in the first regime possibly covers many points

in the second regime near the true changepoint, then PBS cannot identify any point as a

changepoint until it moves further toward the end of the second regime. Under the scenario

σ1 > σ2, when d is small, PBS tends not to identify any points even until it moves to the

end of the second regime (Figure 4.12 left). This is because of the same reason as the case

in Figure 4.14 middle. Additionally the wider bandwidth in the first regime embraces most

points in the second regime, therefore PBS may not identify any deviated points outside of

the bandwidth (Figure 4.14 right). These issues may be alleviated by some modifications

in defining adaptive bandwidth as we will discuss in Chapter 6.

Figure 4.11: The probabilities of the points being identified as the changepoint with d = 1, 5
and 10.
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Figure 4.12: The probabilities of the points being identified as the changepoint with d = 1, 5
and 10.

Figure 4.13: The probabilities of the points being identified as the changepoint with d = 1, 5
and 10.
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Figure 4.14: The fitted trend line using w points (top), small d (middle), and small d and
σ1 > σ2 (bottom).
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Chapter 5: Application Examples and Experimental

Evaluation

In this chapter, we demonstrate two examples of pattern recognition in time series using

alternating trends smoothing (ATS) and piecwise band smoothing (PBS) for stock price

datasets [1]. The two datasets used in the examples were selected subjectively and grouped

based on the similarity of their up and down trends over time. The purpose of these

application examples is not to evaluate the performance of ATS and PBS.

After these application examples, we evaluate our methods for classification and seg-

menting by comparing other methods. The evaluation is performed based on Keogh et al.

(2003, 2004) [35] [36] and Ding et al. (2008) [14].

5.1 Application Examples

5.1.1 Example 1: Clustering Groups with Similar Trends

Clustering, also known as unsupervised learning, aims to categorize the observations into

natural groups by minimizing intra-cluster distances and maximizing inter-cluster distances.

The members categorized in the same group are desirably homogeneous. The number of

categories may or may not be pre-determined. If there are the labels of the natural groups,

the labels are not used in the clustering. In time series analysis, partitioning and hierarchical

clustering are the most popular approaches for clustering [50]. Here, we use hierarchical

clustering.

The purpose of the example is to illustrate a method of clustering of time series; not to

evaluate the performance of the method.
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Hierarchical Clustering

While the widely-used K-means clustering method requires a pre-specified number of clus-

ters, hierarchical clustering does not require information on the number of clusters or the

initial conditions. Hierarchical performs clustering either in an agglomerative (bottom-up)

or divisive (top-down) way. Here, we discuss agglomerative clustering. Agglomerative clus-

tering starts from individual observations and keeps merging them to the nearest cluster

based on similarity. The steps for agglomerative clustering are described as follows [30].

1. Begin with n observations and measure distances between all possible

(
n

2

)
= n(n−1)

2

pairs of observations. Treat each observation as its own cluster.

2. For i = n, n− 1, · · ·:

a. Measure all pairwise inter-cluster dissimilarities among i clusters, identify the

pair of clusters that has the minimum inter-cluster distance, and then combine

these two clusters.

b. Compute the new pairwise inter-cluster dissimilarities among the i−1 remaining

clusters.

Generally, Euclidean distance is used as the distance measure in step 1 while there are

several methods of measuring inter-cluster dissimilarities, referred to linkage, in step 2a.

Some commonly used linkages are as follows:

• Complete linkage: Maximal inter-cluster dissimilarity.

• Single linkage: Minimal inter-cluster dissimilarity.

• Average linkage: Mean inter-cluster dissimilarity.

• Ward’s method: The sum of squared deviations from points to centroid.

The hierarchical clustering represents the result of a tree-based diagram branching out

downward, called a dendrogram. The dendrogram not only provides a record of the cluster-

ing process but also facilitates the choice of the number of clusters, by cutting off the links
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at some height. Note that the proximity among observations along the horizontal axis in a

dendrogram does not indicate the degree of similarity, but rather the degree of similarity is

indicated by vertical distances among clusters.

Datasets (1): Daily stock price data from two industries (2 clusters)

As an example, we perform hierarchical clustering with stock price data from two industries,

airlines and restaurants. Each time series is smoothed by alternating trends smoothing and

transformed to a sequence of the magnitude of its trends. The motivation for choosing

this example is that prices of stocks in similar industries may exhibit similar patterns of

price movements. Prices of stocks in different industries may reflect different sensitivities

to market changes. Daily closing price data of 24 stocks listed on major stock exchanges

from January 1, 2014 to December 31, 2014 are used for clustering analysis. Twelve stocks

are from the airline industry and twelve from the restaurant industry. The length of each

time series is 252. The datasets from these two industries are presented in Figure 5.1. The

name and group of data are referred to in Appendix A Table A.1.

Datasets (2): Daily stock price data from four industries (4 clusters)

As a second example, we use daily closing price data for 27 companies listed in NYSE from

October 15, 2010 to October 15, 2015, and each time series belongs to one of four market

sectors, Utilities-Electricity (U), Finance Insurance (F), Investment Mortgage & Bank (M),

and Drug Manufacturer (D). The original data are shown in Appendix A Table A.2. The

length of each time series is 1,259. The plots of datasets are shown in Figure 5.2.

Data Representation using (ATS) and the Choice of Parameters

We represent these stock prices by, the alternating trends smoothing (ATS) method to

transform the original data to a sequence of the magnitude of their trends; that is, the

absolute values of their slopes. The step size parameter (h) is 4 for 2-cluster example as a

week step size, and 20 is used for 4-cluster example based on the relative size of the datasets.
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Similarity Measure and Linkage for Hierarchical Clustering

We use the agglomerative method for hierarchical clustering of our data. In most of our

work, we measure dissimilarities between time series by simple Euclidean distance but here

we measure similarities of all the pairwise transformed sequences using dynamic time warp-

ing (DTW) with a Sakoe-Chiba band instead of simple Euclidean distance because (1) the

length of transformed sequences may be different and (2) we suppose that the overall shape

evolving the trends’ magnitudes in the same sector are similar by warping the horizontal

axis. For linkage, we use Ward’s method which clusters based on “information loss” by

minimizing the sum of squared errors of any two clusters.

Results of Hierarchical Clustering

Figure 5.3 shows the results of clustering using ATS representation. Based on the clustering

of smoothed data, 8 out of 12 stock data in airline companies are clustered in the same group.

For the restaurants’ stock data, 10 out of 12 are grouped in the same cluster. This seems

to work quite well although the size of the dataset is small. Note that the variation of

vertical distances in the right cluster (airline industry) seems to be smaller than that in the

left cluster (restaurant industry). This is relevant to the compactness of clusters. Indeed,

the intra-cluster distance for airline group is 0.072 and that of restaurants is 0.141. P -

values via bootstrap resampling for clusters are shown in Figure 5.5 to assess the clustering

analysis results. The numbers on the left (red) and right (green) are approximately unbiased

(AU) p-values and bootstrap probability (BP) obtained by ordinary bootstrap resampling

respectively. AU is calculated by multiscale bootstrap resampling, and it is superior over

BP in bias. See [54] for details. AU can have a value between 0 and 100, and a higher AU

indicates that the cluster is strongly supported by data.

In the result of the 4-cluster problem (Figure 5.4), an outlier (Goldman Sachs Group

Inc.) in Mortgage group (the first cluster from the left) influenced the clustering process.
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Figure 5.1: Daily closing prices from airline and restaurant industries.

Except for this outlier, the datasets in Mortgage and Drug groups seem to be more ho-

mogeneous compared to the other two groups. Based on our assumption and motivation,

this result may be interpreted that stocks in the same industry might tend to react and

evolve similarly given the market condition. The purpose of this example, however is just

to illustrate how our smoothing and data reduction techniques can be used to cluster time

series data.
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Figure 5.2: Daily closing price of 27 stocks in 4 market sectors
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Figure 5.3: Hierarchical clustering (2 clusters)
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Figure 5.4: Hierarchical clustering (4 clusters).
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Figure 5.5: Assessment of the clustering of smoothed data by ATS with DTW distance.
Airline stocks are from 1 to 12 and restaurant stocks are from 13 to 24.
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Figure 5.6: Assessment of the clustering of smoothed data by ATS with DTW distance.
From 1 to 7 are stocks for Utilities-Electricity group, from 8 to 14 for Finance-Insurance
group, from 15 to 21 for Investment Mortgage & Bank group, and from 22 to 27 for Drug-
Manufacturer group.
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5.1.2 Example 2: Stock Market Sector Classification

Classification is another important technique for learning about relationships in data. Clas-

sification assigns observations to one of the pre-defined (or labeled) groups. Some sets of

labeled data are used to train the classifier. Many classifiers have been used in time series,

including K-nearest neighbors (K-NN), support vector machine (SVM), decision trees, and

so forth. Here we utilize the simplest classification approach K-NN and demonstrate the

result of stock market sector classification using the 1-nearest neighbor method.

Again, as we stated in the beginning of Chapter 5, this classification example is not

intended to be an evaluation of the performance of piecewise band smoothing (PBS). For

this example, we selected some subsets of stocks that have “visually similar” patterns of

prices. The purpose of this example is to illustrate our method for classification and to see

if our smoothing method would detect this similarity.

K-Nearest Neighbors

The K-nearest neighbors (K-NN) method of classification assigns a new observation x0 to

the class corresponding to the most frequent class of the K-nearest classified observations

to x0. Let C = {cj | j = 1, 2, · · · , J} be a set of classes. Then K-NN identifies K closest

data to x0 based on the given distance measure, denoted by ν, and estimates the conditional

probability of class j from the proportion of classes in ν as follows.

P (Y = j|X = x0) =
1

K

∑
i∈ν

I(yi = j) (5.1)

In time series analysis, 1-NN with DTW has been widely used for classification [16] [14].

In this section, we show the result of stock market sector classification using 1-NN with

transformed step function (TSF) distance.

Datasets: Daily stock price data from four market sectors

We perform 4-trend class classification using 1-NN transformed step function (TSF) in
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(4.10). Datasets in each class are chosen based on their “visual similarity” of pattern from

a market sector. Of course, in practice, prices of stocks in the same sector do not always

evolve with the same or even similar patterns for a given time period. However, in the

belief that there might exist some industry-characterized patterns given the same market

condition, for example how sensitively an industry reacts to a news story, we collect stock

price datasets from four different sectors because it is easy to find a group of stocks that

show “visually similar” patterns in the same sector.

For the classification example, the datasets used were from the 4-cluster example in

Section 5.1.1. The “visual trend similarities” are determined based on local features of time

series data at specific time intervals. Local features of time series in each class are as follows.

• Stock price data in Utilities-Electricity class have local features (Figure 5.7)

1. a sharp valley around time 200

2. slow increase after short drop and then a “M” pattern between time 500 and 700

(“M” pattern means that the data is shaped similar to the letter “M”)

3. a sharp peak around time 1100

• Stock price data in Finance-Insurance class have local features (Figure 5.8)

1. a drop - short flat - jump pattern between time 190 and 270

2. short drop and increasing pattern between time 800 and 850

• Stock price data in Investment-Mortgage & Bank class have local features (Figure 5.9)

1. a peak between time 270 and 410

2. a “W” pattern between time 950 and 1150 (“W” pattern means that the data is

shaped similar to the letter “W”)

(Without Goldman Sachs, the detail shape of other stock price data seen in Fig-

ure 5.10)

• Stock price data in Drug-Manufacturer class have local features (Figure 5.11)

1. a jump - flat - drop pattern between time 100 and 200

2. two sharp drops (a “W” pattern) between time 970 and 1020
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Figure 5.7: Local features of data in Utilities-Electricity class

Figure 5.8: Local features of data in Finance-Insurance class
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Figure 5.9: Local features of data in Investment-Mortgage & Bank class

Figure 5.10: Local features of data in Investment-Mortgage & Bank class (without Goldman
Sachs data)
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Figure 5.11: Local features of data in Drug-Manufacturer class

Data Representation using PBS and the Choice of Parameters

Each dataset is smoothed by piecewise band smoohting (PBS) based on the smoothing

criteria in (3.8) with d1 = 60 and d2 = 70, and using the adaptive bandwidth and the

change ratio R = 3.5. Adaptive bandwidth is the standard deviation of the residuals of

the linear line in the previous trend regime. For the first regime, the standard deviation

of the residuals of linear line fitted by the initial w points is the adaptive bandwidth. For

initial window size w and bandwidth multiplier k, we chose w ∈ S and k ∈ K , where

S = {w | 4 ≤ w ≤ 15, w is an integer} and K = {0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, that

yield the smallest sum of the squared error in (3.8). In summary, each stock price data

is smoothed using parameters initial window size w, k×(adaptive bandwidth), and change

ratio R = 3.5 under the constraint 60 ≤ d ≤ 70 where d is the number of changepoints in

the smoothed data.
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Similarity Measure for 1-Nearest Neighbor Classification (1-NN)

We classify times series data using 1-NN and the transformed step function (TSF) distance

in (4.10) is used as the similarity measure between two reduced datasets (the sequence of

slopes). This method is applied to the raw data and normalized data. To compare perfor-

mance of our smoothing methods and similarity measure, we perform classification using

Euclidean distance on the normalized data to remove the effect of amplitude scale.

Results of 1-NN Classification

The results of the classification for three cases are shown in Table 5.1, Table 5.2, and

Table 5.3. All methods seem to perform fairly well, particularly it is noticeable that the

TSF distance for normalized data outperforms with accuracy 1. Using the raw data with the

same method, PBS smoothing and TSF distance works less well than when using normalized

data because the distance measurements are highly influenced by the amplitude scale of

data. These results suggest that standardization of data is necessary to classify data merely

based on the similarity of patterns excluding the effect of their units.
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Table 5.1: The result of 1- NN classification for raw data by Euclidean Distance

Predicted row
U F M D total

Actual

U 7 0 0 0 7
F 0 4 3 0 7
M 0 0 7 0 7
D 0 2 0 4 6

total 27

Error Rate = 0.19

Table 5.2: The result of 1-NN classification for raw data by PBS with TSF distance

Predicted row
U F M D total

Actual

U 6 0 1 0 7
F 1 3 3 0 7
M 1 0 6 0 7
D 0 0 1 5 6

total 27

Error Rate = 0.26

Table 5.3: The result of 1-NN classification for normalized data by PBS with TSF distance

Predicted row
U F M D total

Actual

U 7 0 0 0 7
F 0 7 0 0 7
M 0 0 7 0 7
D 0 0 0 6 6

total 27

Error Rate = 0.00
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5.2 Experimental Evaluations

Although the examples of clustering and classification in the previous section yielded re-

sults that are consistent with our knowledge and understanding of the datasets chosen, it is

worthwhile to evaluate their performance by comparing other methods with objective mea-

surements. Practically, it is impossible to compare all the methods or algorithms for time

series data mining. Nevertheless, we evaluated our methods for classification, clustering,

and segmentation against benchmarks from several papers for time series data mining ([36]

[35] [14]).

5.2.1 Evaluation: Similarity Measure for Classification and Clustering

Classification and clustering problems are closely connected with the similarity measures

used. If the similarity measures fail to capture the characteristics of the original time series,

the classification and clustering results are meaningless. As discussed in Chapter 2, there

have been many similarity measures and methods for data representation suggested, there

is no one superior measure of method. Rather, because of the unique characteristic and

variety in types of time series, some methods perform better for some specific types of time

series while others do better for others. Therefore, we performed classification using TSF

distance in (4.10) for two publicly available datasets [4] [3] and compared the result with

12 other methods.

Datasets for Benchmarks

• Cylinder-Bell-Funnel: This dataset contains 30 and 900 observations in the training

set and test set respectively. Each observation belongs to one of three classes, cylinder,

Bell or Funnel, based on its shape (Figure 5.12). The length of each individual time

series is 128. This dataset is available in the UCR Time series data archive [4].

• Synthetic Control: This dataset contains 600 observations with length 60. There

are 6 classes as seen in Figure 5.13. This dataset is available in the UCI Data Archive
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[3].

1-Nearest Neighbor Classification

We perform 1-Nearest Neighbor (1-NN) classification, evaluated using leaving-one-out cross

validation and compared 12 other methods for similarity measure including Euclidean dis-

tance as Keogh (2003, 2008) suggested. Before using TSF distance, we represented data by

piecewise band smoothing (PBS).

Evaluation Results

The results of classification for Cylinder-Bell-Funnel (CBF) datasets and synthetic control

dataset are summarized in Table 5.4 and Table 5.6. It is noticeable that TSF distance

performs poorly, particularly for “flat” patterns such as “cylinder” and “normal” patterns.

This result is somewhat natural because piecewise band smoothing and TSF distance relies

on the change of slopes of piecewise linear lines, “flat” patterns are not captured as often as

“up” of “down” patterns. Therefore, its performance for datasets without “cylinder” and

“normal” patterns is better as seen in Table 5.5 and Table 5.7.

Sometimes PBS misses changepoints where sudden jumps or drops occur within the

initial w points for current trend fitting. For this reason many observations in the “cylinder”

class seem to be misclassified as a “Bell” or “Funnel” pattern. Likewise, many observations

with “normal” patterns in the synthetic control dataset are misclassified as other patterns.

In Bell-Funnel pattern classification in Table 5.5, the accuracy for the “Bell” pattern is

only 0.52 while it classifies “funnel” patterns perfectly. This is reasonable for the following

two reasons: (1) there can be higher probability that the initial w for current trend fitting

covers the sudden dropping point as PBS moves farther from the first time index, and (2)

the length of each observation is not long enough for PBS to distinguish overall patterns thus

it becomes sensitive to noises from the main trend lines. Among various types of synthetic

datasets, TSF distance seems to perform best for “cyclic” data based on the results in

Table 5.6 and Table 5.7.
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Figure 5.12: Cylinder-Bell-Funnel datasets
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Figure 5.13: Synthetic control datasets

96



Table 5.4: Classification result for Cylinder-Bell-Funnel datasets using TSF distance

Predicted row
Cylinder Bell Funnel total

Actual
Cylinder 124 55 121 300

Bell 131 126 41 300
Funnel 80 2 220 300

total 900

Error rate = 0.477

Table 5.5: Classification result for Bell-Funnel datasets using TSF distance

Predicted row
Bell Funnel total

Actual
Bell 157 143 300

Funnel 0 300 300

total 600

Error rate = 0.238
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Table 5.6: Classification result for Synthetic Control datasets using TSF distance

Predicted row
C1 C2 C3 C4 C5 C6 total

Actual

C1 27 3 18 14 27 11 100
C2 3 93 2 0 1 1 100
C3 2 0 63 1 31 3 100
C4 0 0 1 81 2 16 100
C5 1 0 24 1 73 1 100
C6 3 0 1 21 1 74 100

total 600

Error rate = 0.315

C1: Normal C2: Cyclic C3: Increasing
C4: Decreasing C5: Downward Shift C6: Upward Shift

Table 5.7: Classification result for Synthetic Control datasets without Normal patterns
using TSF distance

Predicted row
C2 C3 C4 C5 C6 total

Actual

C2 96 2 0 1 1 100
C3 0 64 1 32 3 100
C4 0 1 81 2 16 100
C5 0 25 1 73 1 100
C6 0 1 23 1 75 100

total 500

Error rate = 0.222

C2: Cyclic C3: Increasing C4: Decreasing
C5: Downward Shift C6: Upward Shift
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Table 5.8: The error rate of various similarity measures for Cylinder-Bell-Funnel and Syn-
thetic Control datasets [36]

Distance measure Cylinder-Bell-Funnel Synthetic Control

Euclidean Distance 0.003 0.013
Aligned Subsequence (M1) [45] 0.451 0.623
Piecewise Normalization (M2) [28] 0.130 0.321
Autocorrelation Functions (M3) [59] 0.380 0.116
Cepstrum (M4) [31] 0.570 0.458
String (M5) [26] 0.206 0.578
Important Points (M6) [47] 0.387 0.478
Edit Distance (M7) [11] 0.603 0.622
String Signature (M8) [7] 0.444 0.695
Cosine Wavelet (M9) [27] 0.130 0.371
Hölder (M10) [56] 0.331 0.593
Piecewise Probabilistic (M11) [39] 0.202 0.321
Trend step function (TSF) 0.477 0.315

Figure 5.14: The error rate of various similarity measures for Cylinder-Bell-Funnel and
Synthetic Control data
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5.2.2 Evaluation: Identification of Changepoints (Segmentation)

Piecewise linear or polynomial representation methods are usually introduced for segmen-

tation or used as a subroutine [36]. When these representation methods aim to segment

large size time series, often segmentation is performed by detecting changepoints. Most

segmentation algorithms can be grouped in one of three types of algorithms; (1) sliding

windows, (2) bottom-up, or (3) top-down. To evaluate the quality of a segmentation, we

perform segmentation for a fixed number of regimes using PBS and other segmentation al-

gorithms, and then obtain the sum of squared errors (SSE) for all algorithms. These SSEs

were compared to evaluate how well the algorithm detects changepoints. The lower SSE

indicates the better an algorithm performs for segmentation.

Datasets for Benchmarks

We use six different types of time series data as seen in Figure 5.15. The length of each

dataset is 1,024. These datasets are publicly available [4].

Algorithms for Segmentation

PBS belongs to the sliding windows algorithm. We use top-down and bottom-up algorithms

for piecewise linear approximation shown in Keogh et al. (2004) [35], and perceptually

important points (PIP) (bottom-up). Each time series is segmented to 64 pieces by all

algorithms and the sum of squared errors are compared to evaluate performance.

Evaluation Results

Table 5.9 shows the sum of squared errors by four different segmentation algorithms. PBS

does not perform well for “flat” pattern datasets such as Balloon datasets in this bench-

mark. We can conclude that PBS performs best for “PH data” data because SSEs of seg-

mented data by PBS and by bottom-up algorithm are not significantly different although

the bottom-up algorithm performs slightly better. Overall, PBS seems to perform fairly well

particularly for datasets with “cyclic” or “up/down” patterns, Soil Temperature, Darwin,
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PH data, and Winding, except datasets with “flat” patterns.

From the results, it can be concluded that there is no superior segmentation algorithm

over others like there was for the similarity measure benchmark, but rather each algorithm

has its own advantages for specific types of time series.

0 200 400 600 800 1000

Soil Temperature

0 200 400 600 800 1000

Darwin

0 200 400 600 800 1000

PH data

0 200 400 600 800 1000

Winding

0 200 400 600 800 1000

Balloon

0 200 400 600 800 1000

Network

Figure 5.15: Datasets used for segmentation evaluation
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Table 5.9: Sum of squared errors of approximated data by various algorithms for segmen-
tation

Dataset PIP (TD) PLA (TD) PLA (BU) PBS (SW)

Soil Temperature 1307.66 536.99 559.79 656.33
Darwin 9364.29 6064.15 9122.203 6463.66
PH data 848.34 981.15 347.644 397.12
Winding 152.09 266.313 83.67 143.58
Balloon 14.45 18.60 18.64 21.6
Network 3598.98 836184.4 115148.1 302426.2

TD: top-down BU: bottom-up SW: sliding-windows

Figure 5.16: The sum of squared errors for approximated data by various segmentation
algorithms
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Chapter 6: Conclusions and Future Work

In this dissertation, we researched various problems in smoothing time series, including

piecewise smoothing, pattern recognition, classification, and clustering. An important con-

sideration in modeling time series is detection of points in time at which the underlying

data generating process changes (“changepoints”). Detection of changepoints is inextrica-

bly associated with the process of building models or smoothing of the time series on either

side of the changepoints. Following identification of changepoints at smoothing, we can

continue the analysis of the time series data by identifying patterns in the data, and then

further by associating a given time series with other time series exhibiting similar patterns.

Contributions

Contributions made in this research are as follows:

• We developed and studied two new methods of smoothing and identification of change-

points in time series. They are piecewise linear smoothing methods, alternating trends

smoothing (ATS) and piecewise band smoothing (PBS). The represented data by ATS

and PBS is a sequence of linear trends.

• Assuming the time series is a sequence of realizations of a random variable, the iden-

tified changepoint is a discrete random variable. We determined the probabilistic

distribution of the random variable defined as the difference between two successive

changepoints (the length of the trend regime) under various scenarios for the under-

lying data generating process.

• We suggested defining patterns: the sequence of numerical patterns and discrete pat-

terns. These patterns contain the trend and time information.
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Future Work

• In this research, we assumed that a large time series dataset consists of many data

generating processes, trend regimes, and the observations are independent within the

regime. However, in practice, observations in financial time series data more likely

correlated. Moreover, the variance of data, or volatility, evolves rather than stays

constant or stable over time. Thus, the models can be modified to be suitable for

practical data in the future.

• In piecewise band smoothing (PBS), we used only w initial points to fit the current

trend line. Obviously, w > 3 might not be enough points to fit the current trend

as discussed in Section 4.3.2. One possible approach is updating the fitted trend

line as we add more data points after initial w points. This may complement the

drawback that the current trend overly depends on w points except when a trend

changes gradually (Figure 6.1).

• The length of trends cannot be less than w in represented data since PBS does not

look back at those initial w points for fitting the current trend to identify potential

changepoints. This drawback may cause missing identification of real changepoints

that might be included in w points. This issue can be resolved by modification of

determining a changepoint step in the algorithm.

• The adaptive bandwidth can be determined in various ways rather than just depending

on the previous regime. For example, all residuals in the past k previous regimes can

be used. Or w residuals in the current regime also can be used with the residuals in

the previous regimes.

• Models for multivariate time series data can be researched.
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Issue: updating trends (slope)

w=5
w=15

w=18

Figure 6.1: Gradually changing trend
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Appendix A: An Appendix

Table A.1: Ticker symbols of stocks (clustering using ATS)

Airline Industry

ALK Alaska Air Group, Inc.
AAL American Airlines Group Inc.
DAL Delta Air Lines, Inc.
DLAKY Deutsche Lufthansa Aktiengesellschaft
HA Hawaiian Holdings Inc.
JBLU JetBlue Airways Corporation
LUV Southwest Airlines Co.
CEA China Eastern Airlines Corp. Ltd.
ZNH China Southern Airlines Co. Ltd.
AFLYY Air France-KLM SA
SKYW SkyWest Inc.

Restaurant Industry

BJRI BJ’s Restaurants, Inc.
CAKE The Cheesecake Factory Incorporated
CHUY Chuy’s Holdings, Inc.
DRI Darden Restaurants, Inc.
DPZ Domino’s Pizza, Inc.
DNKN Dunkin’ Brands Group, Inc.
DAVE Famous Dave’s of America Inc.
MCD McDonald’s Corp.
NDLS Noodles & Company
PZZA Papa John’s International Inc.
SBUX Starbucks Corporation
TXRH Texas Roadhouse, Inc.
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Table A.2: Ticker symbols of stocks (classification using PBS)

Sector (U): Utilities - Electricity

EDE The Empire District Electric Company
PCG PG & E Corporation
GXP Great Plains Energy Incorporated
ETR Entergy Corporation
AEE Ameren Corporation
LNT Alliant Energy Corporation
AEP American Electric Power Co., Inc.

Sector (F): Finance Insurance

CNA CNA Financial Corporation
AXS The Cheesecake Factory Incorporated
TRV The Travelers Companies, Inc.
ALL The Allstate Corporation
HIG The Hartford Financial Services Group, Inc.
SLF Sun Life Financial Inc.
PGR Progressive Corp.

Sector (M): Investment Mortgage & Bank

GS The Goldman Sachs Group, Inc.
SCHW The Charles Schwab Corporation
AMTD TD Ameritrade Holding Corporation
MS Morgan Stanley
JMP JMP Group LLC
ETFC E∗TRADE Financial Corporation
JPM JPMorgan Chase & Co.

Sector (D): Drug Manufacturer

PFE Pfizer Inc.
NVS Novartis AG
MRK Merck & Co. Inc.
JNJ Johnson & Johnson
LLY Eli Lilly and Company
BMY Bristol-Myers Squibb Company
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