

REALIZING CYBER RESILIENCE WITH HYBRID INTRUSION TOLERANCE

ARCHITECTURES

by

Ajay Nagarajan

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Computer Science

Committee:

 Dr. Arun Sood, Dissertation Director

 Dr. Duminda Wijesekera, Committee

Member

 Dr. Andrew Loerch, Committee Member

 Dr. Foteini Baldimtsi, Committee Member

 Dr. Sanjeev Setia, Department Chair

 Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date: Spring Semester 2017

George Mason University

Fairfax, VA

i

Realizing Cyber Resilience with Hybrid Intrusion Tolerance Architectures

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Ajay Nagarajan

Master of Science

George Mason University, 2010

Bachelor of Engineering

Anna University, Chennai, India, 2007

Director: Arun Sood, Professor

Department of Computer Science

Spring Semester 2017

George Mason University

Fairfax, VA

ii

Copyright © 2017 by Ajay Nagarajan

All Rights Reserved

iii

DEDICATION

For my parents Dr. Jagadha and Nagarajan who have provided me with every opportunity

to pursue my dreams. For my sister Dr. Aarthi and my life coach Dr. Krishna who have

inspired and supported me throughout this endeavor. For my loving wife Shruti who has

been my pillar of strength. For the memory of my grandmother Bagyam.

iv

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful to Dr. Arun Sood for guiding and mentoring me

throughout this process. Dr. Sood introduced me to Intrusion Tolerance and taught me

how to conduct research, present findings, write technical publications and think

critically. Dr. Sood has been an inspiration and a constant source of guidance and support

for me at all times.

I would also like to thank Dr. Duminda Wijesekera, Dr. Andy Loerch, Dr. Richard

Carver, Dr. Foteini Baldimtsi and Dr. Hakan Aydin for all their guidance and their time

serving on my dissertation committee. Their valuable mentorship and feedback helped

shape this dissertation to its current state.

I should also thank my sister Dr. Aarthi and my brother-in-law Dr. Krishna who were

monumental in me pursuing and completing my doctorate at George Mason University.

I would be remiss if I did not thank my wife Shruti who has constantly supported me and

stood by me at all times, good and bad through the years.

Finally, I would like to acknowledge the hand of God, without which none of this would

have been possible.

v

TABLE OF CONTENTS

Page

List of Tables ... ix

List of Figures ... x

Abstract ... ii

CHAPTER ONE - INTRODUCTION.. 1

1.1 Motivation ... 1

1.1.1Motivating Examples ... 4

1.2 Contribution .. 6

1.3 Significance ... 11

1.4 Dissertation Organization .. 13

CHAPTER TWO – RELATED WORK ... 15

2.1 Overview ... 15

2.2 Classical Fault Tolerance and Security ... 17

2.3 Intrusion Tolerance Concepts.. 18

2.3.1 AVI Composite Fault Model .. 19

2.3.2 Tolerance Techniques ... 20

2.3.3 Algorithms commonly used in Intrusion Tolerance Systems 29

2.3.4 Technologies commonly used in the implementation of Intrusion Tolerance

Systems .. 30

2.4 Intrusion Tolerance Systems Taxonomy ... 31

2.4.1 Hardware Based Intrusion Tolerance ... 31

2.4.2 Software Based Intrusion Tolerance... 33

2.4.2.1 Detection Triggered ... 33

2.4.2.2 Algorithm Driven .. 36

2.4.2.3 Recovery Based ... 39

2.4.2.4 Hybrid .. 41

2.5 Open Problems .. 43

vi

CHAPTER THREE – SCIT AND IDS ARCHITECTURES FOR REDUCED DATA

EX-FILTRATION .. 45

3.1 Overview ... 45

3.2 Motivating Examples ... 47

3.3 SCIT Framework ... 48

3.4 Methodology to calculate data ex-filtration costs ... 50

3.4.1 Overview .. 50

3.4.2 Assumptions ... 51

3.5 SCIT/IDS Scenarios .. 51

3.5.1 NIDS ... 52

3.5.2 SCIT.. 55

3.5.3 NIDS + HIDS ... 55

3.5.4 NIDS+SCIT .. 57

3.6 Monte Carlo Simulation .. 57

3.6.1 Probability values chosen for the simulation .. 58

3.6.2 Results of the Simulation .. 58

3.7 Summary ... 60

CHAPTER FOUR – COMBINING INTRUSION DETECTION AND RECOVERY

FOR ENHANCED SYSTEM DEPENDABILITY .. 61

4.1 Overview ... 61

4.2 Motivation ... 64

4.3 Intrusion Tolerance Approach ... 64

4.4 Receiver Operating Characteristics (ROC) ... 65

4.4.1 Using ROC to assess IDS quality ... 66

4.5 Cost Model .. 69

4.5.1 Expected Cost Calculation.. 69

4.5.2 Evaluating Classifiers using the proposed Cost Model 71

4.5.3 Results: Comparison of IDS’s .. 77

4.5.4 Results: Comparison of SCIT + IDS’s ... 77

4.5.5 General Observations (IDS and SCIT + IDS) .. 78

4.6 Summary ... 79

CHAPTER FIVE – SCIT BASED MOVING TARGET DEFENSE REDUCES AND

SHIFTS ATTACK SURFACE ... 81

vii

5.1 Overview ... 81

5.1.1 Common Security Evaluation Metrics and Attack Surface 82

5.2 Attack Surface Shifting/Reduction as a technique for Moving Target Defense 84

5.2.1 Dynamic Attack Surface ... 86

5.2.2 Impact of Dynamic Attack Surface on Intruder Work Factor 87

5.3 Test Bed Experiment ... 89

5.3.1 Attack Surface Components ... 90

5.3.2 Static Systems ... 92

5.3.3 Basic-SCIT Setup ... 93

5.3.4 Diverse-SCIT Setup .. 95

5.4 Summary ... 97

CHAPTER SIX – SCIT BASED MOVING TARGET DEFENSE: WORK FACTOR

ANALYSIS ... 99

6. 1 Overview .. 99

6.2 Related Work... 101

6.3 Foundations of Asymmetric Cyber Advantage ... 104

6.4 Technical and Architectural approaches to gaining asymmetric advantage 105

6.5 Cyber Economic Models ... 105

6.6 Optimal Balance between Resiliency and Security... 113

6.7 Use Cases for Defender and/or Intruder that include Work Factors 116

6.8 Summary ... 121

CHAPTER SEVEN: µ-SCIT – ADDING MODULARITY TO SCIT 123

7.1 Overview ... 123

7.2 Need for Modularity .. 124

7.2.1 Performance Argument: Exposure Time as a metric for proactive risk

management ... 124

7.2.2 Security Argument .. 127

7.3 Operating System Level Virtualization ... 129

7.3.1 Container Check-pointing and live migration .. 130

7.3.1.1 Container migration challenges and considerations 132

7.3.1.2 Minimizing Dump File Size .. 134

7.4 A comparison of SCIT with Container Migration ... 135

7.5 µ-SCIT – Adding Modularity to SCIT using OS-level virtualization 136

viii

7.6 Summary .. 138

CHAPTER EIGHT – RECOVERY BASED RESILIENT CYBER ECO-SYSTEM 140

8.1 Overview ... 140

8.2 Need for Adaptive SCIT ... 144

8.3 Use of Security Information and Event Management (SIEM) Solutions.............. 145

8.3.1 Use of information from SIEM solutions in building adaptive Intrusion

Tolerant Systems ... 146

8.3.1.1 Stand-alone Adaptive SCIT ... 147

8.3.1.2 Peer-to-peer Collaborative SCIT ... 148

8.4 Summary ... 149

CHAPTER NINE – EXPLORING GAME DESIGN FOR CYBER-SECURITY

TRAINING ... 151

9.1 Overview ... 151

9.2 Cyber Security Training .. 153

9.2.1 Awareness Topics ... 153

9.2.2 Existing Training .. 155

9.2.3 Shortcomings of the current techniques: [BCon2007, LAnn2010] 156

9.2.4 Interactive Computer-based training .. 158

9.2.5 CyberNEXS gaming ... 159

9.3 Computer Game Design .. 162

9.3.1 Game Genres .. 163

9.3.2 Game Dynamics ... 168

9.3.3 Game Mechanics .. 171

9.3.4 Learning and Training Games .. 171

9.4 Summary ... 172

CHAPTER TEN - CONCLUSIONS .. 174

10.1 Summary ... 174

REFERENCES ... 176

ix

LIST OF TABLES

Table Page

Table 3.1 Parameters used in the simulation .. 59
Table 3.2 Results of the Monte-Carlo simulation ... 59

Table 4.1 Metrics values used in the Cost Model 70

Table 4.2 Parameter values used in the Cost Model 74

Table 4.3 Minimal Cost Point values 78

Table 5.1 Possible Scenarios to Reduce and Shift the Attack Surface 86

Table 5.2 Attack Surface Size Comparison 91

Table 5.3 Security Issues that arose in various scenarios 94

Table 5.4 Security Issues unique to each configuration 95

Table 6.1 Defender Activity 103

Table 6.2 Technical Solutions Work Factors .106

Table 6.3 A Game Theoretic Attack/Protect Economic Model 112

Table 6.4 SCIT Temporal Configuration Variables 114

Table 6.5 SCIT Test Bed Configuration Variables 115

Table 6.6 Test Case Buffer Overflow Work Factors 118

Table 6.7 WAR backdoor test case work factors 120

Table 7.1 Sample Container dump file sizes 133

Table 7.2 Security comparison of SCIT and container migration 136

x

LIST OF FIGURES

Figure Page

Figure 3.1a SCIT State Diagram ... 49

Figure 3.1b SCIT Server Rotations 49

Figure 3.2 NIDS Decision Tree 52

Figure 3.3 SCIT Decision Tree 54

Figure 3.4 NIDS - HIDS Decision Tree 54

Figure 3.5 NIDS - SCIT Decision Tree 56

Figure 4.1 Receiver Operating Curves 72

Figure 4.2 IDS Case 1a 73

Figure 4.3 SCIT + IDS Case 1b 74

Figure 4.4 IDS Case 2a 75

Figure 4.5 SCIT + IDS Case 2b 75

Figure 4.6 IDS Case 3a 76

Figure 4.7 SCIT + IDS Case 3b 76

Figure 4.8 Minimal Cost Point Comparison 78

Figure 5.1 Attack Surface Shifting 84

Figure 5.2 Attacker and Defender Actions - Apache Tomcat Exploit 88

Figure 5.3 Apache System 94

Figure 5.4 Temporal Attack Surface - Basic SCIT and Diverse SCIT 96

Figure 5.5 Two virtual instances of the Diverse SCIT Setup 97

Figure 6.1 Adversary time expenditure 102

Figure 6.2 Generic State Transition Diagram and Costs 109

Figure 6.3 Samba test case exploit work flow 118

Figure 6.4 WAR Backdoor test case workflow 121

Figure 7.1 Vulnerabilities trend in Windows systems, 2006-2009 128

Figure 7.2 Sample Illustration of container 131

Figure 7.3 Representation of µ-SCIT Virtual Server (VS) instance 137

Figure 8.1 Security Information and Event Management Framework 146

Figure 8.2 Stand-alone Adaptive SCIT 147

Figure 8.3 Peer-to-peer Collaborative SCIT 148

ABSTRACT

REALIZING CYBER RESILIENCE WITH HYBRID INTRUSION TOLERANCE

ARCHITECTURES

Ajay Nagarajan, M.S.

George Mason University, 2017

Dissertation Director: Dr. Arun Sood

The current approach to security is based on perimeter defense and relies on

firewalls, intrusion detection systems (IDS), and intrusion prevention systems (IPS).

These systems require a priori information about attack patterns and system

vulnerabilities. With ever-increasing bandwidth and thousands of unique malware

signatures coming out every day, it is becoming impractical to prevent every intrusion.

And so, intrusion tolerance assumes that intrusions are inevitable and focuses efforts on

minimizing the impact of intrusions. The variety and complexity of cyber-attacks is

increasing. Various industry data breach investigation reports suggest that customized

malware are difficult to detect and data ex-filtration often occurs over a period of days,

weeks and months. The attackers’ strong motivation leads to organized and targeted

cyber-attacks. The current intrusion detection and prevention approaches are reactive in

nature and inadequate to prevent all attacks.

Given the clear need to design intrusion tolerant architectures, my work focuses

on extension and application of recovery driven intrusion tolerance systems that make the

attacker work harder by reducing the server’s exposure time to the internet. This

approach relies on using hybrid architectures that combine reactive and proactive systems

to protecting the cyber infrastructure. My research framework entails a) Proposing hybrid

architectures founded on SCIT, a recovery driven intrusion tolerance approach; b)

determining the influencing factors of each hybrid strategy and studying the impact of

their variations within the context of an integrated intrusion defense strategy; c) defining

economic models to assess the efficacy of proposed hybrid architectures; d) using

mathematical models to evaluate proposed hybrid architectures and assess optimal

operational parameters; and e) validating research using test bed experiments and

simulations outlining impact of proposed architectures on system attack surface and

intruder work factor.

To system architects and executive management alike, this work can constitute as

the basis for making informed decisions while piling layers of security as part of defense-

in-depth strategy.

1

CHAPTER ONE - INTRODUCTION

This Introduction Chapter describes the motivation for my research and the

contributions of this Dissertation in the areas of realizing cyber resilience using hybrid

intrusion tolerance architectures and evaluating their security benefits.

1.1 Motivation

Today’s approach to security is based on perimeter defense and relies heavily on

firewalls, Intrusion detection systems (IDS) and Intrusion prevention systems. Despite

years of research and investment in developing such reactive security methodologies, our

critical systems remain vulnerable to cyber-attacks. Present reactive security strategies

like Firewalls, Intrusion Detection Systems (IDSs) and Intrusion Prevention systems have

issues of false alarms, missed detections, inaccurate reports, and delays between

compromise and detection. The variety and complexity of cyber-attacks is increasing,

along with the number of successful intrusions to mission and business systems. Recent

breach reports like Office of Personnel Management [OPMB2015] reported system

compromise detection in July 2015, whereas the malware had resided in the system for

nearly a year before that. So we infer that not only the Intrusion Detection System /

Intrusion Prevention System (IDS/IPS) failed to prevent the intrusion, but current systems

were not able to detect the presence of the intruder long after the compromise.

2

Intrusion detection is known to be a hard problem, and current cyber defense

systems reportedly detect less than half the malware. Still servers and apps account for

majority of the total records compromised. Verizon DBIR 2015 [Veri2015] underscores

this problem by noting that only 9% of the compromises were detected within minutes or

seconds. The others took hours, days, weeks and in some cases months. Thus, current

cyber defenses cannot protect systems against customized malware and other zero day

attacks; once an attack is successful, it can persist for many weeks. This emphasizes the

need for a recovery-based Intrusion Tolerance approach since detection triggered

Intrusion Tolerance Systems (ITS) might again fall short of the needs.

Current Information Technology systems operate in a relatively static

configuration and primarily focus on intrusion avoidance. For example, names, addresses,

software stacks, networks, and various other configuration parameters remain static over

extended periods of time. At the same time the variety of malware is increasing -

Symantec reports [Syma2016] identifying more than a million new unique pieces of

malware each day. Thus preventing all intrusions is very hard. We believe that intrusions

are inevitable. Current experience shows that in spite of prevention devices, the criminals

are able to ex-filtrate data and damage systems. Industry studies by Verizon [Veri2015]

and Mandiant [Mand2013] show that criminals are often in the compromised systems for

months. According to the 2013 Verizon Business Data Breach Investigation Report

[Veri2013], the average time an intruder resides in a system from initial compromise to

the point of discovery is more than 34 days. The current static server approach is a legacy

3

design striving solely for simplicity and performance despite the increasing concern of

malicious exploitation of system vulnerabilities.

Moving Target Defense (MTD) is the idea of managing change across various

system and network dimensions in order to increase the intruder work factor by

increasing the intruder work complexity and decreasing visibility of systems to the

intruders. Traditionally MTD strategies have presented two significant challenges to

adoption. First, for the sake of security, MTD cannot ignore performance and end user

productivity. Most customer facing systems don’t have the luxury of adding security that

slows down performance. Customers tend to move on if the experience is slow and

tedious. Secondly, traditional MTD design generally consists of complex processes

involving memory address randomization, network address shuffling, instruction set

randomization and more [DEva2011]. All of these techniques are designed to prevent

attacks and have the potential to be resource hogs thereby slowing down throughput in

certain cases.

SCIT based Moving Target Defense acknowledges that trying to prevent each

intrusion is impractical. Therefore, we shift the emphasis to minimizing losses occurring

from intrusions rather than preventing intrusions. SCIT systems are designed to be

complementary to reactive systems [ANag2010]. Primary goal of SCIT-MTD is to reduce

the intruder’s window of opportunity to execute an attack and increase the costs of their

foot-printing, scanning and attacking efforts. Since by design, the SCIT-MTD attack

surface of the system is constantly changing, the system vulnerabilities are difficult to

exploit. The process of compromising a system involves identifying system

4

vulnerabilities and customizing attacks to exploit them. Ever-changing attack surface

presents a stiff challenge to the intruders. SCIT – MTD can be used with diversification

approaches to further increase the attacker difficulty.

1.1.1Motivating Examples

As cyber defense efforts increase, passive efforts such as establishing anti-virus

software, firewall protection, or improving password strength and encryption, and the

organization’s workload are constantly challenged by the need to apply patches

immediately. Symantec Internet Security Threat Report 2016 suggests that security

researchers are uncovering more than a million new unique pieces of malware every day,

overwhelming malware analysis resources [Syma2016]. Increasingly, automated analysis

technologies are used to keep up with the volume, but they still lack the precision to

decipher compressed, encrypted, and obfuscated malware [RBej2005]. McAfee crash of

tens of thousands of PCs globally illustrates the unpredictable system effects after

compromise and their collateral damage, which creates even more uncertainty and less

dependability for Enterprise Security [DKra2010].

The current reactive cyber defense approaches are expensive and inadequate. We

expect that, automated recovery and Intrusion Tolerance System (ITS) will be useful in

addressing the increasing malware and patch workload, but what are the cost impacts of

malicious threats and false positives on dependability and security attributes?

In reports of recent breaches, it has become clear that intruders were in the system

for long periods. Not only did the IDS/IPS fail to prevent the intrusion, these systems

5

were not able to detect the presence of the intruder. To illustrate this point, we refer to

the following data breach reports:

1. Verizon 2016 Data Breach Investigation Report [Veri2016] focuses on over

100,000 incidents that occurred in 2015. The report suggests that the average

time to compromise (time taken by the adversary to exploit a vulnerability and

compromise a system) is in the order of minutes, however, the average time to

discover (time taken by the defender to discover the compromise / breach) is still

in the order of days. Therefore, the intruder is in the compromised system for a

prolonged duration before the compromise is detected and system recovery

initiated.

2. Following are some recent security breach events that illustrate detection delay

when it comes to detecting compromise:

o Home Depot reported in September 2014 – Time to Discover 5 months

[Home 2014]

o PF Chang’s reported in July 2014 – Time to Discover 11 months

[PFCh2014]

o Sony reported in Nov 2014 – Time to Discover ~ 1 year [Sony2014]

o Office of Personnel Management (OPM) reported in July 2015 – Time to

Discover ~ 1 year [OPMB2015]

3. Network Solutions breach [NetS2009] of June - July 2009 resulted in 600,000

records compromised and the breach was detected after 2 months.

6

4. Wyndham Hotels breach [Wynd2010] was detected in January 2010, with an

estimated start date of October 2009.

From these typical data, we conclude that any strategy that will shorten the

duration of the breach would lead to better protection of services and data.

A new approach has slowly emerged during the past decade, and gained

impressive momentum recently: intrusion tolerance (IT). That is, handling— react,

counteract, recover, mask— a wide set of faults encompassing intentional and malicious

faults collectively called as intrusions, which may lead to failure of the system security

properties if nothing is done to counter their effect on the system state. In short, instead of

trying to prevent every single intrusion, these are allowed, but tolerated: the system has

the means to trigger mechanisms that prevent the intrusion from generating a system

failure. One such intrusion tolerance approach is Self-Cleansing Intrusion Tolerance

(SCIT) [YHua2006].

1.2 Contribution

Motivated by the challenges of providing practical intrusion tolerance solutions in

conjunction with existing detection and prevention strategies, the contributions of this

dissertation can be summarized as follows: “Apply Redundancy, Diversity and Re-

configuration techniques in proposing, designing and validating hybrid intrusion

tolerance architectures that extend traditional SCIT systems to enable resilience,

restoration and recovery of Information Systems at a granular level”.

7

Below is a summary of contributions made through each chapter in this

dissertation. Significance of these contributions and their practical applicability in the

space of information security is laid out in section 1.3 that follows.

a) Chapter 2: Survey intrusion tolerance architectures and classify them using a

taxonomy based on the algorithms and technology used to provide resilience to

systems, applications and services. Intrusion tolerance techniques are broadly

categorized as hardware and software based intrusion tolerance. Software based

intrusion tolerance is further categorized into detection-based, algorithm-based,

recovery-based and hybrid.

b) Chapter 3: Propose a framework to assess the performance of security

architectures in terms of reducing data ex-filtration. Propose hybrid approaches

that combine recovery-driven intrusion tolerant SCIT architecture with existing

IDS solutions as part of a multi layered defense strategy to protecting the cyber

infrastructure. Specifically, a comparison of the following 4 hybrid architectures

is performed from the perspective of minimizing data ex-filtration: (1) Network

IDS only; (2) SCIT only; (3) Network IDS + Host IDS; (4) Network IDS + SCIT.

The effectiveness of SCIT and IDS security architectures in terms of minimizing

data ex filtration losses is analyzed using decision trees and Monte Carlo

simulations. From the view point of reducing data ex-filtration we discover that

Network IDS + SCIT is the preferred solution. This contribution led to

publication [ANag2010].

8

c) Chapter 4: Establish a framework that uses Receiver Operating Characteristic

(ROC) curve analysis and damage cost models to trade-off the true positive rate

and false positive rate for comparing alternate security architectures. This

framework provides a baseline for making informed decisions and choosing

operating parameters for various architectures. In this work, the framework is

employed in performing a comparison between an IDS only solutions and an IDS

+ SCIT hybrid solution. This analysis provides optimal value(s) of Probability of

Detection by evaluating the potential damage from a missed intrusion and costs of

processing false positives. This research proposes an approach which involves

determining the influencing factors of each strategy and studying the impact of

their variations within the context of an overall integrated intrusion defense

strategy. This contribution led to publication [ANag2011].

d) Chapter 5: Leverage the concept of Attack Surface [15, 16] and its use as a

security metric to compare the relative security of multiple security architectures.

This research proposes the use of Attack Surface Shifting / Reduction as a metric

to compare Moving Target Defenses (MTD) by assessing its impact on intruder

work factors. As part of validating this hypothesis, a test bed experiment was

conceptualized and built to perform attack surface assessment and compare the

following architectures: 1) Static Systems; 2) Basic-SCIT (redundant, not-diverse)

and 3) Diverse-SCIT (redundant, diverse). A test-case for assessing impact of

dynamic attack surface on intruder work factor is also presented to back up

research claims. This contribution led to publication [ANag2014].

9

e) Chapter 6: Propose a game theoretic attack / protect cyber economic model to

facilitate designing architectures that are resilient and tilt the asymmetric cyber

economic costs in favor of the defender. This research formalizes system security

state transitions and intruder / defender work factors associated with all of those

state transitions. A series of test-bed experiments were designed to compare SCIT

and non-SCIT security architectures in the face of two sample real world exploits.

This component of my research incentivizes logical and architectural solutions

that create an ecosystem where the sum of all defender work factors in defending

an enterprise over a period of time is much less than the sum of all intruder work

factors involved in compromising the enterprise and ex-filtrating data.

f) Chapter 7: Propose µ-SCIT, a hybrid architecture that adds modularity to SCIT

using Operating System level virtualization. The proposed architecture is built on

top of OpenVZ container-based virtualization for Linux. The added modularity

affords the ability to perform more frequent targeted granular rotations at the level

of processes and applications. This in turn extends ability of SCIT to work with

long running applications and handle long transactions using container check-

pointing and migration.

g) Chapter 8: Propose a ‘stand-alone’ and a ‘collaborative’ architecture which make

use of information provided by the enterprise Security Information and Event

Management (SIEM) solution to perform adaptive intrusion tolerance in

unsupervised learning environments. Resilient systems need to be adaptive, and to

achieve this goal, this research shows how environmental information can be used

10

to adaptively change system and operational parameters. In this work, two hybrid

architectures a) Stand-alone adaptive SCIT and b) Peer-to-peer collaborative

SCIT are proposed that can perform adaptive intrusion tolerance on the basis of

real time enterprise health. This contribution led to publication [ANag2012a].

h) Chapter 9: Explored game design for cyber-security training. One of the

overlooked aspects of cyber-security is the human factor. Technologies cannot

account for human errors and lack of security hygiene. This can only be addressed

by security awareness and training. The objective of this research is to teach

everyday users the requisite cyber security skills through gaming, beyond the

current state-of-practice. Because the skill level of the trainees is also wide

ranging, from causal computer users, to software engineers, to system

administrators, to managers, the games must also be capable of training this wide

range of computer users. Computer games can provide a media for delivering

training in an engaging format at levels appropriate for the individual trainees.

This work entailed the following components: (1) describe the state of practice by

describing the gaming tool used in most cyber challenges at high schools and

colleges in the US, i.e., the cyber security gaming tool CyberNEXS, (2) outline

some of the additional topics that should be addressed in cyber security training

and (3) some other approaches to game design that might prove useful for future

cyber security training game development beyond CyberNEXS. This contribution

led to publication [ANag2012].

11

1.3 Significance

As cyber defense efforts increase, passive efforts such as establishing anti-virus

software, firewall protection, or improving password strength and encryption, and the

organization’s workload are constantly challenged by the need to apply patches

immediately. Security researchers are uncovering close to 55,000 new malware samples a

day, overwhelming malware analysis resources [McAf2010]. With ever growing

bandwidth and more people getting access to the internet, it is safe to assume that these

security concerns are here to stay.

The current reactive cyber defense approaches are expensive and inadequate. In

addition to the cost of licensing and implementing these tools, there is also an ever

increasing cost of administering and managing these security tools. All of the detection

triggered approaches such as IDS / IPS are plagued by false positives that demand man

hours for analysis. Given the number of unique malwares and amount of network traffic

today’s enterprises are faced with on a daily basis, it is impractical to build an ability to

deal with every one of the alerts generated by perimeter devices. As an inference, it is

essential to explore techniques that strive to secure an enterprise on an on-going basis

irrespective of environment changes or intruder actions.

My research in the area of recovery driven intrusion tolerance is significant due to

the following reasons:

a) Industry breach investigation reports consistently highlight the fact that an

intruder resides on a compromised environment for extended periods of time

(sometime months to years) while ex-filtrating sensitive data. The proposed

12

hybrid approaches and the results presented with respect to their abilities to

thwart data ex-filtration can assist system architects in revisiting their existing

enterprise security setups or in designing new ones ground up. The framework

presented to assess data ex-filtration potential in a current setup can be used as

a tool by system administrators in assessing the health of their environment.

b) The proposed framework that uses Receiver Operating Characteristic (ROC)

curve analysis and damage cost models to trade-off the true positive rate and

false positive rate for comparing alternate security architectures can be used as

an effective tool by system and network administrators in assessing operating

parameters for their various security tools. This framework provides a

baseline for making informed decisions. A major shortcoming of various

modern IDS / IPS solutions is the number of false positives that are generated.

These false positives demand substantial man hours in terms of analysis in

order to determine whether they are action worthy or not. Analysis using the

proposed framework can provide optimal value(s) of Probability of Detection

by evaluating the potential damage from a missed intrusion and costs of

processing false positives.

c) The proposed µ-SCIT architecture extends the capabilities of SCIT which is

currently being used for short to medium transactions to be able to

accommodate long running transactions. µ-SCIT also provides a technology

solution to perform targeted recovery at a more granular level than SCIT.

13

d) Models defined and presented as part of this research to assess the impact of

security architectures on system attack surface and intruder / defender work

factors can help

 system architects design resilient cyber ecosystems;

 system architects explore proactive recovery;

 system / network administrators with assessing efficacy of their

current security architecture;

 System / network administrators in performing system and service

configuration changes that have meaningful impacts on intruder and

defender work factors.

1.4 Dissertation Organization

This Dissertation comprises 10 chapters, including this Chapter 1. Chapter 2

introduces intrusion tolerance and traditional fault tolerance concepts. It classifies

intrusion tolerance architectures using a taxonomy that is based on techniques and

algorithms used to achieve tolerance. Chapter 3 proposes hybrid architectures that consist

of both IDS and Intrusion Tolerance Systems (ITS) and performs a comparison of the

proposed architectures using decision trees and Monte Carlo simulation from the

viewpoint of containing data ex-filtration. Chapter 4 defines a framework that uses

Receiver Operating Characteristic (ROC) curve analysis and damage cost models to

trade-off the true positive rate and false positive rate of detection solutions for comparing

alternative security strategies. This chapter presents an approach which involves

determining the influencing factors of each strategy and studying the impact of their

14

variations within the context of an overall integrated intrusion defense strategy. Chapter 5

investigates the impact of SCIT based moving target defense architectures (as proposed

in the previous chapters) on system attack surface. Chapter 6 highlights the impact of

SCIT based moving target defense architectures (as proposed in the previous chapters) on

intruder and defender work factors. Chapter 7 proposes µ-SCIT, an architecture which

adds modularity to SCIT using container-based virtualization. Chapter 8 introduces

intrusion tolerant architectures built on top of SCIT that are self-adapting based on real

time enterprise health and threat information feeds from SIEM. Chapter 9 explores the

applicability of game design to cyber security training – a key missing link in addressing

the human factor quotient of the cyber security paradigm. Chapter 10, in summary,

provides conclusions of my dissertation research.

15

CHAPTER TWO – RELATED WORK

This chapter presents related work from the recent past including a survey of

intrusion tolerance architectures that classifies them using a taxonomy based on the

algorithms and technology used to provide resilience to systems, applications and

services. The Intrusion tolerance techniques are broadly categorized as hardware and

software based intrusion tolerance. Software based intrusion tolerance is further

categorized into detection-based, algorithm-based, recovery-based and hybrid.

2.1 Overview

There is a significant body of research on distributed computing architectures,

methodologies and algorithms, both in the fields of dependability and fault tolerance, and

in security and information assurance. These are commonly used in a wide spectrum of

situations: information infrastructures; commercial web-based sites; embedded systems.

Their operation has always been a concern, due to the use of Commercial Off The

Shelves (COTS) products, compressed design cycles, openness. While they have taken

separate paths until recently, the problems to be solved are of similar nature: keeping

systems working correctly, despite the occurrence of mishaps, which we could commonly

call, faults (accidental or malicious); ensure that, when systems do fail (again, due to

accidental or malicious faults), they do so in a non-harmful way. In classical

dependability, and mainly in distributed settings, fault tolerance has been the subject of

16

the many solutions published over the years. Classical security-related work has on the

other hand privileged, with few exceptions, intrusion prevention, or intrusion detection

without systematic forms of processing the intrusion symptoms.

A new approach has slowly emerged during the past decade, and gained

impressive momentum recently: intrusion tolerance (IT). That is, the process of handling

(react, counteract, recover, mask) a wide set of faults encompassing intentional and

malicious faults collectively called intrusions, which may lead to failure of the system

security properties if nothing is done to counter their effect on the system state. In short,

instead of trying to prevent every single intrusion, these are allowed, but tolerated: the

system has the means to trigger mechanisms that prevent the intrusion from generating a

system failure.

The term "intrusion tolerance" has been used for the first time in [JFra1985], and

a sequel of that work lead to a specific system developed in the DELTA- 4 project

[YDes1991]. In the following years, a number of isolated works, mainly on protocols,

took place that can be put under the IT umbrella [MCas199, MRei1995, KKih2001,

LAlv2000, DMal2001, Gate2000, MHil2001], but only recently did the area develop

explosively, with two main projects on both sides of the Atlantic, the OASIS and the

MAFTIA projects, doing structured work on concepts, mechanisms and architectures.

One main reason is concerned with the fact that distributed systems present fundamental

problems in the presence of malicious faults. On the other hand, classical fault tolerance

follows a framework that is not completely fit to the universe of intentional and/or

malicious faults. These issues will be discussed below.

17

The purpose of this chapter is to make an attempt to systematize these new

concepts and design principles. The chapter describes the fundamental concepts behind

intrusion tolerance (IT), tracing their connection with classical fault tolerance and

security, and identifying the main delicate issues emerging in the evolution towards IT.

We discuss the main strategies and mechanisms for architecting IT systems, and report on

recent advances on distributed IT system architectures. For the sake of clarifying our

position, we assume an 'architecture' to be materialized by a given composition of

components. Components have given functional and non-functional properties, and an

interface where these properties manifest themselves. Components are placed in a given

topology of the architecture, and interact through algorithms (in a generic sense), such

that global system properties emerge from these interactions.

2.2 Classical Fault Tolerance and Security

Dependability has been defined as that property of a computer system such that

reliance can justifiably be placed on the service it delivers. The service delivered by a

system is its behavior as it is perceptible by its user(s); a user is another system (human

or physical) which interacts with the former [AAvi1986].

Dependability is a body of research that hosts a set of paradigms, amongst which

fault tolerance, and it grew under the mental framework of accidental faults, with few

exceptions [JFra1985, JDob1986], but we will show that the essential concepts can be

applied to malicious faults in a coherent manner.

Malicious failures make the problem of reliability of a distributed system harder:

failures can no longer be considered independent, as with accidental faults, since human

18

attackers are likely to produce "common-mode" symptoms; components may perform

collusion through distributed protocols; failures themselves become more severe, since

the occurrence of inconsistent outputs, at wrong times, with forged identity or content,

can no longer be considered of "low probability"; furthermore, they may occur at

specially inconvenient instants or places of the system, driven by an intelligent

adversary's mind. The first question that comes to mind when addressing fault tolerance

(FT) under a malicious perspective is thus: How do you model the mind of an attacker?

Traditionally, security has evolved as a combination of: preventing certain attacks

from occurring; removing vulnerabilities from initially fragile software; preventing

attacks from leading to intrusions. For example, in order to preserve confidentiality, it

would be unthinkable to let an intruder read any confidential data at all. Likewise,

integrity would assume not letting an intruder modify data at all. That is, with few

exceptions, security has long been based on the prevention paradigm. However, let us

tentatively imagine the tolerance paradigm in security [AAde2002]:

 assuming (and accepting) that systems remain to a certain extent vulnerable;

 assuming (and accepting) that attacks on components/sub-systems can happen and

some will be successful;

 ensuring that the overall system nevertheless remains secure and operational.

2.3 Intrusion Tolerance Concepts

What is Intrusion Tolerance? As said earlier, the tolerance paradigm in security

assumes that systems remain to a certain extent vulnerable; assumes that attacks on

components or sub-systems can happen and some will be successful; ensures that the

19

overall system nevertheless remains secure and operational, with a quantifiable

probability.

The following subsections outline the most commonly used intrusion tolerance

concepts, techniques, algorithms and technology implementations.

2.3.1 AVI Composite Fault Model

The mechanisms of failure of a system or component, security-wise, have to do

with a wealth of causes, which range from internal faults (e.g. vulnerabilities), to

external, interaction faults (e.g., attacks), whose combination produces faults that can

directly lead to component failure (e.g., intrusion). An intrusion has two underlying

causes:

 Vulnerability - fault in a computing or communication system that can be

exploited with malicious intention

 Attack - malicious intentional fault attempted at a computing or communication

system, with the intent of exploiting vulnerability in that system

Which then lead to:

 Intrusion - a malicious operational fault resulting from a successful attack on

vulnerability

This well-defined relationship between attack/vulnerability/intrusion is what we

call the AVI composite fault model. The AVI sequence can occur recursively in a

coherent chain of events generated by the intruder(s), also called an intrusion campaign.

For example, a given vulnerability may have been introduced in the course of an

intrusion resulting from a previous successful attack.

20

Vulnerabilities are the primordial faults existing inside the components,

essentially requirements, specification, design or configuration faults (e.g., coding faults

allowing program stack overflow, files with root setuid in UNIX, naïve passwords,

unprotected TCP/IP ports). These are normally accidental, but may be due to intentional

actions, as pointed out in the last paragraph.

Attacks are interaction faults that maliciously attempt to activate one or more of

those vulnerabilities (e.g., port scans, email viruses, malicious Java applets or ActiveX

controls). The event of a successful attack activating vulnerability is called an intrusion.

This further step towards failure is normally characterized by an erroneous state in the

system which may take several forms (e.g., an unauthorized privileged account with

telnet access, a system file with undue access permissions to the hacker). Intrusion

tolerance means that these errors can for example be unveiled by intrusion detection, and

they can be recovered or masked. However, if nothing is done to process the errors

resulting from the intrusion, failure of some or several security properties will probably

occur.

2.3.2 Tolerance Techniques

Redundancy, Diversity and Re-configuration are commonly applied principles for

fault tolerance against accidental faults. Their use in security is attracting increasing

interest; however it is less general and less of an accepted principle. The following

section helps better understand how the above principles can be applied to security.

a) Redundancy: Redundancy in general has been long understood to be a

valid defense against physical faults. Its application to security however has only become

21

popular recently. Security encompasses multiple attributes (confidentiality, availability

and integrity) and defending against multiple threats. Voted redundancy is often seen as

the stereo-typical form of redundancy. In this case, multiple replicas vote on a decision

and the decision’s outcome will reside upon the majority of the votes. Voted Redundancy

is applicable in scenarios where there is a low probability for majority of the replicas to

be compromised. Redundancy of Resources is another form of redundancy used in

security where ideally the intended service can be provided (possibly in a degraded

fashion) if at least 1 out of N redundant resources remains available. Security benefits in

terms of availability is quiet apparent in this case. Primary objection for the application of

redundancy to security has been that if an attacker can penetrate a certain defense, the

same attacker would have no problems penetrating two copies of the same. This leads us

to the second principle of diversity.

b) Diversity: Redundancy alone is not enough in most of the cases. Having

multiple copies of the same system/defense only creates slight separation. It is

straightforward for the attacker who has penetrated one copy to penetrate the other. To

avoid this, there is need for further isolation between two copies. Diversity provides this.

Diversity is the property that the redundant components should be substantially different

in one or more aspects, from hardware diversity and operating system diversity, to

software implementation diversity. Additionally, diversity is also applied to time and

space, in that diverse services should be co-located at multiple sites to protect against

local disasters, and that clients may use time diversity by requesting service at different

times. Diversity makes it unlikely for redundant components to be attacked / penetrated at

22

the same time. This also adds extra workload on the attacker with limited resources.

Although increased diversity reduces the risk of correlated faults, it increases the

complexity of the system.

c) Voting: Redundancy is a key component in providing any kind of

tolerance. As a consequence of having redundant components in ITS system, it is also

paramount that the systems’ non-faulty components can agree on valid output data in the

presence of the faulty components. While all the replicas of a response are considered

equally reliable, the output must be based on cross-comparison of available replicas,

possibly augmented by knowledge of the application. Voting is used to resolve any

differences in redundant responses and to arrive at a consensus result based on the

responses of perceived non-faulty components in the system. It has two complementary

goals: masking of intrusions, thus tolerating them, and providing integrity of the data.

The process involves comparing the redundant responses and reaching agreement on the

results to find the “correct” response. Common metrics for comparison are Edit Distance

and Hash Code. Edit Distance is useful for comparing data where we need to consider

modification (insert/delete/replace) costs. A number of variants of the edit distance

computations exist: simple edit distance, hamming distance, episode distance etc. The

common UNIX utility diff uses such an approach. Hash Code is a useful metric for large

data streams. When computing edit-distance is not-possible or computationally intensive,

a digest of the data can be used as a metric. The hash code can be computed using some

digest function such as CRC, MD5, or SHA. These metrics are used in agreement

23

algorithms to arrive at a plausible “correct” response. A leader/delegate usually passes on

the chosen replica to the client. Common voting algorithms [PLor1989] include:

 Formalized Majority Voting: This is the most commonly used algorithm, also

known as consensus or majority voting. Here, the replicas are partitioned such

that the difference between no two replicas in a partition is greater than a

threshold. If the partition with the highest number of replica entries forms the

absolute majority, one output from that partition is chosen as the final response.

 Generalized Median Voting: In this method, a middle value is selected from the

set of N replicas by systematically locating those which differ by greatest amount

and eliminating them from consideration.

 Formalized Plurality Voting: This algorithm is similar to formalized majority

voting algorithm but for the fact that a relative majority is considered instead of

absolute majority.

Voting can be applied at various layers of the networking stack including

application layer as well as the middleware layer [AFra2002]. SITAR [FWan2003] uses

edit distance comparison [Rupp2002] and formalized majority voting as the primary

algorithms. DIT [AVal2002] uses hash code comparison and formalized majority voting

in its architecture. However, both architectures adapt to different algorithms based on the

security posture at any given time. Some of the common mechanisms used to thwart

attacks against this mechanism include diversity, unpredictable leader election and more

redundancy.

24

d) Re-configuration: The occurrence of intrusions and the consistent isolation

of faulty components lead to a decrease in the number of available fault-free components.

Traditional intrusion detection systems are mostly reactive. The usual response after an

intrusion is detected is to perform a post-mortem and take corrective and recovery

actions. This is generally a manual task for the administrator and involves some

downtime for the server. Survivable systems on the other hand, aim to have none or

minimal downtime for the service as far as clients is concerned. They dynamically and

adaptively reconfigure the system so that the service can be uninterrupted.

Reconfiguration can be proactive or reactive and can help in prevention, elimination as

well as tolerance. Reconfiguration can be effected in several different forms:

 Rollover: The affected component is transparently replaced by a pristine replica

of it.

 Shifting: All the traffic directed to the affected server is routed to another safe

server.

 Load sharing: If the unavailability or degradation in performance is caused by

high load, some form of load sharing or balancing may be employed.

 Blocking: If a client is perceived to be offending or is suspicious, the system may

decide not to service it.

 Fishbowling: Fishbowling is similar to blocking. Unlike blocking, however,

fishbowling allows the targeted user to continue receiving service. But, it protects

normal users from being effected by the attacker’s intent.

25

 Changing the system’s posture: The system’s multiple layers of defense can be

turned off/on based on the current operating environments and threat indication.

 Rejuvenation: The affected component is restarted to restore it to a pristine state

wiping out any memory resident or volatile attacks.

e) Secret Sharing: Secret sharing (also known as Threshold Scheme) was

proposed by Adi Shamir in his classical paper “How to share a secret” [ASha1979]. The

general idea is to devise a method to divide data D into n pieces in such a way that it

needs k shares to reconstruct original data D, anything less reveals no information at all.

This elegant idea has found many applications in key management schemes as well as

cryptography. In terms of its application in Intrusion Tolerance Systems (ITS), there are

two primary ways of using it. First and in its very native form, data shares can be stored

in distributed physical locations such that even if n - k - 1 shares were attacked and

compromised, the confidentiality are still kept and original data can be reconstructed,

therefore the tolerance. In fact, this form not only employ threshold scheme, redundancy

technique also comes into play due to the nature of dispersion of data. Second, data itself

can be encrypted with a secret key, and this key is to be divided into n shares using

threshold scheme. This form doesn’t exactly provide any redundancy to the original data

per se, however, to gain access of the information, you do need k shares of encryption

key to construct original key, which essentially provide “joint control or custody” of

information.

Threshold schemes help ensure confidentiality and survivability. One of the most

representative projects is OASIS [JLal2003], a survivable storage system developed at

26

CMU. PASIS makes use of threshold schemes to analyze trade-offs among security,

availability and performance. Draper Laboratory’s CONTRA [JLep2003] provides

protection and tolerance by camouflaging the messages sent from the source to

destination using threshold schemes. COCA [LZho2002] also relies on threshold scheme

to tolerate faults.

f) Indirection: Indirection is a common technique in computer science. In

intrusion tolerance, it is often layered, and occurs at several levels. Indirection allows

designers to insert protection barriers and fault logic between clients and servers. Also,

since the indirection is hidden outside of the black box system, clients see only what

looks like a COTS server. There are at least four main types of indirection used by

intrusion tolerant systems: proxies, wrappers, virtualizations, and sandboxes. They are

briefly summarized below:

Proxies: A proxy server, usually transparent, is often the first line of defense of a

system. The proxy server accepts all client requests, and uses its own logic to perform a

variety of functions, including load-balancing, validity testing, signature based testing,

and fault masking. The proxy acts as the sole client access point, hiding all behavior

behind the proxy from clients. However, one caveat is that proxy efficiency is paramount

to prevent performance bottlenecks. A Scalable Intrusion Tolerance Architecture for

Distributed Services (SITAR) and Hierarchical Adaptive Control for QoS Intrusion

Tolerance (HACQIT) [HAcq2002] use proxies to export the server interface to clients,

protecting their many functions. Both are a kind of firewall and load balancing proxy.

Since the proxy is the client endpoint, it is a likely target of attack.

27

Wrappers: Wrappers are most commonly placed directly around servers (or other

wrappers), and inspect requests and responses before sharing them with other

components (but not end clients). The wrapper also differs from the proxy in its intimate

knowledge of the server. Though a single proxy/wrapper can be the sole line of defense,

commonly the wrapper is behind other indirections, and is used to add functionality to a

server without changing the COTS server itself. Wrappers are commonly employed, such

as in SITAR [FWan2003] and Willow [JKni2002]. SITAR uses wrappers to allow COTS

servers to speak a SITAR internal language, and Willow’s uses wrappers to augment the

abilities of servers. Since the wrappers are treated by the rest of the system as the COTS

servers, arguably this addition does not add substantial burden to protection of the COTS

servers.

Virtualizations: Generally speaking, virtualizations are naming indirections and

are often used subtly, without glorification. When requesting a new virtualized service,

the indirection happens as the virtual name is translated into a real name, allowing the

real service to be referenced. Thereafter, direct access is allowed, reducing the

performance cost of indirections (but then references are not moderated). Some examples

of common virtualizations include memory subsystems, the DNS system, and RPC. By

virtualizing the names, the details are delayed until needed, and changed as appropriate.

In our review, RFITS [RRam2000] and ITSI [DBri2003] exhibited noteworthy

virtualizations. RFITS is essentially based on virtualization (specifically, the existence of

a large namespace from which mappings can be dynamically created and changed

between an endpoints virtual channel and the actual channel they communicate with). By

28

detecting flood attacks and negotiating these changes unpredictably between endpoints,

RFITS can survive much denial of service flood attacks. RFITS uses cryptography to

protect these negotiations. ITSI also uses virtualization, as an alternative to a proxy, by

having multiple hardware interfaces share the same MAC address, and using another

technique to determine which interface is the true recipient. Since ITSI uses a hardware

implementation, its virtualization is not vulnerable to many types of attacks.

Sandboxes: Sandboxes are common tools used to separate users, servers, and

other untrusted components. Essentially, the idea is to run each untrusted component

within a sandbox, where all interactions with other systems and subsystems are

moderated (and usually significantly restricted). Faults can then be tolerated by the

sandbox, by rolling back system state, instantiating a new component to respond, or

rejecting the requester (or a variety of other methods). Sandboxes thus provide a window

between the untrusted execution, and its results taking effect. If a fault can be detected

before the results are committed, they can be safely aborted. Sandboxes are commonly

used to protect against faulty mobile code, and to test and diagnose suspected attacks,

because the faulty behavior can be limited to within the sandbox. Two of the projects

reviewed, ITSI and HACQIT, use sandboxes. ITSI’s fishbowling is one of the possible

outcomes of reconfiguration, where the communication with servers is protected within

its fishbowl. HACQIT uses a sandbox as an analysis workbench. Whenever a possible

intrusion is detected, the logs leading up to it and the compromised server are transferred

to the sandbox, and it determines an attack signature within the safety of a sandbox

without further risk to critical systems.

29

2.3.3 Algorithms commonly used in Intrusion Tolerance Systems

Byzantine Fault Tolerance: The object of Byzantine fault tolerance is to be able to

defend against Byzantine failures, in which components of a system fail in arbitrary

ways. Correctly functioning components of a Byzantine fault tolerant system will be able

to correctly provide the system's service assuming there are not too many Byzantine

faulty components. In the case of ‘f’ byzantine faulty nodes, at least ‘2f + 1’ total nodes

(f+1 good nodes) are required for the system to behave in a fault tolerant manner.

Fragmentation-Redundancy-Scattering: Fragmentation-redundancy-scattering

provides intrusion tolerance by assuring confidentiality, integrity and availability in the

case of an intrusion. Fragmentation – split the data into fragments such that isolated

fragments contain no significant information. Redundancy- add redundancy so that

fragment modification or destruction would not affect legitimate access. Scattering –

isolate individual fragments such that not all of them can be compromised at the same

time.

Markov Decision Process (MDP): MDP provide a mathematical framework for

modeling decision-making in situations where outcomes are partly random and partly

under the control of a decision maker. At each time step, the process is in some state, and

the decision maker may choose any action that is available in states. The process

responds at the next time step by randomly moving into a new state, and giving the

decision maker a corresponding reward. The probability that the process moves into its

new states' is influenced by the chosen action. Specifically, it is given by a state transition

function. Thus, the next states' depends on the current state sand the decision maker's

30

action a. In this manner, MDP’s help formalize the problem of intrusion tolerance by

adding model parameters like state transition probabilities and associated costs. For

example, an MDP can capture the cost of recovering a system from a ‘compromised’

state to a ‘clean’ state.

Artificial immune systems (AIS) are computational systems inspired by the

principles and processes of the human immune system. The algorithms typically exploit

the immune system's characteristics of learning and memory to solve a problem.

Artificial immune system is developed around defense similar to Intrusion Tolerance

Systems. The idea of applying artificial immune to intrusion tolerance systems is to make

ITS’ adjust and learn according to the extent of damage caused by an attack.

2.3.4 Technologies commonly used in the implementation of Intrusion
Tolerance Systems

Virtualization: The use of virtualization technology has become popular in the

recent years. There are now architectures which use virtualization for realizing intrusion

tolerance in network-based services. Furthermore, hypervisor allows the implementation

of efficient proactive recovery strategies to cope with undetectable intrusions.

Cloud Computing: Cloud computing distributes computing tasks to virtual

resource pools which are constituted of a large number of computers, and cloud

computing ensures that various applications can get access to computing power, storage

space and various software services when needed. Given the need for replication and

diversity to implement effective intrusion tolerance, ITS’ almost always are resource

demanding. Given the plethora of resources available in a cloud computing environment,

intrusion tolerance can be best executed.

31

Hardware Technologies like FPGA: With impressive advances in hardware

technology over the past few years, a new interest has developed in hardware based

intrusion tolerance. One such hardware technology is Field Programmable Gate Arrays

(FPGA). It is an integrated circuit which is designed to be configured by the

customer/end-user after manufacturing. The ability to update its functionality offers

advantages for many applications. With respect to intrusion tolerance, dynamically re-

configurable FPGA’s have been used to provide self-healing in the event of an intrusion.

Other hardware devices like security enhanced Chip Multiprocessor (CMP) have also

been used to achieve hardware based intrusion tolerance.

2.4 Intrusion Tolerance Systems Taxonomy

This section will employ the following taxonomy to classify intrusion tolerance

architectures:

 Hardware-based intrusion tolerance

 Software-based intrusion tolerance

 Detection-triggered

 Algorithm based

 Recovery based

 Hybrid

2.4.1 Hardware Based Intrusion Tolerance

In a modular and distributed systems context, hardware fault tolerance today

should rather be seen as a means to construct fail-controlled components, in other words,

components that are prevented from producing certain classes of failures. This

32

contributes to establish improved levels of trust-worthiness, and to use the corresponding

improved trust to achieve more efficient fault-tolerant systems. Distributed algorithms

that tolerate arbitrary faults are expensive in both resources and time. For efficiency

reasons, the use of hardware components with enforced controlled failure modes is often

advisable.

In [RSha2009], the authors propose a novel self-healing IDS using dynamically

reconfigurable FPGA based hardware to provide confidentiality, data integrity,

authentication and non-repudiation. To make the designed reconfigurable IDS fault

tolerant, a self-healing autonomous restructuring algorithm is used. The moment an

internal fault is detected, the faulty module is replaced by the spare unit both functionally

and structurally. This self-healing of hardware is implemented with the help of four

cores, doing the task of fault identification, spare module identification, and structural

and functional information detection and finally restructuring. Target application –

Shared internet resources; Technology used – FPGA hardware.

In [SWei2005], the authors propose a system design using a chip multiprocessor

(CMP) to provide intrusion tolerance and self-recovery for server applications. It uses a

multi-point defense and recovery system to defeat remote exploits. A checkpoint based

approach is employed to recover server applications under attack. It takes a snapshot of

the application’s context and memory state before it handles the next request. If the

request turns out to be malicious, the system discards the malicious request and rolls back

the application’s state to a known good one through check-pointing. Target application –

Server applications; Technologies used – Multi-core processors, Virtualization.

33

Self-Cleansing Intrusion Tolerance/ Hardware Enforced Security (SCIT/HES)

[DArs2007] proposes a scalable hardware framework that complements the software

components of SCIT to enforce and guarantee the six SCIT primitives, also presented in

the paper. Non-violation of these SCIT primitives results in efficient intrusion tolerance.

2.4.2 Software Based Intrusion Tolerance

Software based intrusion tolerance can be classified into the following categories.

2.4.2.1 Detection Triggered

In these ITS architectures, recovery mechanism / tolerance is triggered on

detection of an intrusion / error. Most of these ITS’ depend on intrusion detection

systems for detection purposes. There are a number of ITS’ that are detection-triggered,

some of which are briefly explained below. The major drawback of such ITS

architectures is their dependence on the IDS. If the IDS does not happen to detect an

intrusion, the tolerance mechanism will not be triggered into place thereby failing to

tolerate that particular attack.

SITAR [FWan2003] proposes an intrusion tolerant architecture for distributed services,

especially COTS servers. Emphasis of SITAR is on providing continued availability.

SITAR employs redundancy, diversity and adaptive reconfiguration to achieve tolerance

with the use of byzantine fault tolerance algorithm and voting. SITAR is detection

triggered and depends on the ability to detect compromises.

DPASA [PPal2007] provides an architecture for survivable systems with multi-

layer defense for preventing intrusion and for detecting / responding to intrusions that

cannot be prevented. The system uses proxies to create a high barrier to entry for an

34

attacker, continually monitors all parts of the system at all layers and supports dynamic

reconfiguration of the system to recover from damages after the attack.

The Willow architecture [JKni2002] is a survivable architecture that combines

fault avoidance, elimination and tolerance. It has a powerful reconfiguration mechanism

along with a general control structure that continually monitors network state. Distributed

IDS monitors all components of the distributed computing environment and triggers the

tolerance mechanism once an error / intrusion is detected.

In DIT [AVal2003], the authors propose an adaptive architecture that triggers

response mechanisms on detecting intrusions. This architecture consists of hardened

intrusion tolerance proxies that mediate client-requests and also an alert management

system based on the EMERALD [PNeu1997] intrusion detection framework.

HACQUIT [JRey2003] performs online attack identification by using similarity

rules for generalization of attack signatures. HACQUIT claims to protect against

previously unknown attacks that are similar to existing attack signatures. COTS supplied

design diversity along with fault tolerant techniques are used in this paper to achieve

intrusion prevention.

ITSI [DBri2003] presents the approach taken on the Intrusion Tolerant Server

Infrastructure (ITSI). ITSI uses smart network interface controllers (NIC) in its

implementation to identify and isolate intrusions; prevent them from spreading and also

to provide service availability under attack and during recovery. Smart NIC’s are based

on distributed firewall technology developed by Secure Computing under DARPA’s

ADF program.

35

VM-FIT [HRei2007] architecture uses virtualization technology to realize

intrusion-tolerant network based services. In this case, the guest OS hosts the service and

distributes the requests to a cluster of replicas. The hypervisor is entirely isolated from

the guest OS such that an intrusion at the guest OS level would not affect the hypervisor /

other trusted components. Hypervisor has complete control over the guest OS such that it

can terminate / recover a guest OS if need be.

In [ASai2009], the authors propose an architecture that is based on fault tolerance

principles such as redundancy and diversity to improve system resilience to intrusions.

The paper proposes a generic intrusion tolerant architecture specifically for web servers

that involve a cluster of mediating proxies to handle client requests in order to provide

service availability and integrity.

Authors of [ZKal2008] propose a multi-layer architecture for intrusion tolerant

web services. The idea is to implement tolerance in case of malicious failures by the use

of software fault tolerance techniques. The architecture uses a single service

implementation (no redundant system components) and adds some functional capabilities

to build an intrusion tolerant web service. In this case, intrusion detection triggers

intrusion containment, system recovery and reconfiguration.

ITUA [MCuk2001] looks at developing a middleware based intrusion tolerance

solutions that would help tolerate staged attacks. Reconfiguration or adaptation is a key

component of how ITUA provides tolerance. It instills unpredictability at different levels

of adaptation with the motive to increase the length of time an application can survive an

attack.

36

Intrusion Tolerance model for E-commerce system [YKim2007] proposes an

adaptive intrusion tolerance technique for E-commerce systems in particular. In this

model, the authors propose an architecture where the application function is separate and

the middleware carries out the intrusion tolerance function.

Randomized Failover Intrusion Tolerant System (RFITS) [RRam2000] is a

research effort sponsored by DARPA/IPTO which developed survivability design

patterns for building Denial of Service (DoS) resistant information systems. Here, the

emphasis is on availability of the critical service. Randomized failover makes system

posture unpredictable thereby providing enough time for attack neutralization.

CoBFIT [HRam2004] presents a component based framework for building

intrusion tolerant distributed systems. In this paper, the authors describe the CoBFIT

implementation of a prototype intrusion-tolerant group communication system. The

design and implementation of CoBFIT framework include characteristics like portability,

re-configurability, flexibility and adaptability that are necessary for system dependability.

2.4.2.2 Algorithm Driven

As opposed to detection triggered intrusion tolerance architectures, the following

architectures do not depend on IDS to trigger recovery / tolerance. The following ITS

architectures depend on algorithms such as Byzantine Fault Detection, Fragmentation-

redundancy-scattering, Markov Decision Process algorithms and Artificial Immune

System for providing intrusion tolerance. Although Byzantine fault detection has been

commonly used for some time now, the implementation of other algorithms for intrusion

37

tolerance purposes is fairly recent. Some of the algorithm driven intrusion tolerance

techniques are briefly explained below.

OASIS [JLal2003] is a DARPA funded multi-layer intrusion tolerance technique.

The goal of OASIS is to “allow sustained operation of mission critical functions in the

face of known and future cyber-attacks against information systems”. As a part of

OASIS, close to 30 projects are funded – one of which is ITUA which was discussed

earlier; another project is the hybrid COCA [LZho2002] system which we will briefly

describe under Hybrid intrusion tolerance architectures.

MAFTIA [DPow2001] was the first project to use fault-tolerance techniques to

build intrusion tolerant applications. The biggest contribution of MAFTIA was proposing

an approach to tolerate both accidental faults and malicious attacks. MAFTIA employs

Byzantine agreement protocols, threshold cryptography and voting algorithms to tolerate

arbitrary failures.

In [MSli2009], authors propose an intrusion tolerance framework based on

intermediate signature verification protocol introduced in [MSli2008]. The framework

here is specifically meant for heterogeneous wireless sensor networks. In this

architecture, intermediate signature verification algorithm is used to detect compromised

nodes. Once detected, the compromised node is pushed into a tolerance state after which

it is either isolated or recovered.

[TZha2005] proposes a secret sharing based compiler solution to realize intrusion

tolerance in secure software. The major contribution of this paper is the introduction of

intrusion tolerance in secure software which is critical given their vulnerability. Here,

38

secret sharing provides better data confidentiality and integrity and the authors also

propose mechanisms to recover from data tampering and to achieve intrusion tolerance.

The Starfish System [KKih2003] intends to provide intrusion detection and

tolerance for middleware applications in an asynchronous distributed system. The system

contains a central highly secure trusted core which is surrounded by “arms” that have

fewer security guarantees. In case of a vulnerability / intrusion in an arm, it can be

removed from the trusted core. Similarly, new arms can be added to the trusted core as

well.

CC-VIT [YTan2010] uses virtualization to construct an intrusion tolerance system

for the cloud computing platform. CC-VIT is a modified Byzantine fault tolerant

architecture that allows the system to tolerate F faulty replicas in a total of N=2F+1

replicas. The system also ensures that only F+1 replicas are required for proper

functioning during the intrusion-free stage.

In the paper [FAnj2000], the author uses Fragmentation-Redundancy-Scattering

algorithm to realize intrusion tolerance in a mobile environment. The author also

considers the important factor of user mobility while proposing the intrusion tolerance

scheme.

Zhilei Cui et al [ZCui2009] look at applying artificial intelligence concepts to

intrusion tolerance. Based on artificial immune systems, the authors propose an intrusion

tolerant system that can adapt and learn depending on the extent of damage caused by an

intrusion. Authors also propose the construction of a behavioral database rather than

updating the huge virus database frequently.

39

Patrick Kreidl [OKre2010] proposes a simple Markov decision process model for

intrusion tolerance under the assumptions that every attack has to bypass a number of

steps before the system gets compromised and that the defensive systems in place cannot

prevent all the attacks. The author also uses simulation experiments to study costs

tradeoff between system performance and security.

Fault and Intrusion Tolerance in Object-Oriented Systems [BRan1991] briefly

discusses the technique called Fragmented Data Processing (FDP) which is used to

enhance the security of information in a distributed computing environment. This paper

proposes the application of FDP on object-oriented systems to better provide intrusion

tolerance to application programs. FDP here is strongly related to the traditional

Fragmentation Redundancy Scattering (FRS) fault tolerance technique.

Ineffective damage containment on a compromised critical database can

potentially make the database useless. To counter this problem, authors of [PLui2001]

present a multi-phase damage confinement approach with the first phase or the confining

phase aggressively confining the damage and the following un-confining phases

subsequently relax confinement. The aggressive confining phase makes sure that the

damage does not spread beyond the first phase and in the process can cause loss of

service availability.

2.4.2.3 Recovery Based

Recovery based systems are proactive intrusion tolerance systems. These ITS

architectures function under the assumption that every system that is exposed to the

internet is compromised. Irrespective of whether or not an IDS triggers an alert, recovery-

40

based ITS architectures periodically restore the system to the last known good

configuration to avoid sustained presence of attacker on the compromised system.

Although recovery based ITS architectures do not require an IDS as part of the

framework, they could complement each other to achieve defense in depth.

A Rejuvenation Methodology of cluster recovery [KAun2005] presents a cluster

recovery model based on concept of Software Rejuvenation. Software rejuvenation is a

technique for dealing with software faults and performance degradation by refreshing or

restarting it. The proposed model provides the luxury of deciding which application

components are vulnerable to longevity flaws and choosing them alone for rejuvenation.

This in turn increases the availability of the service as well as reduced losses due to down

time.

Self-Cleansing Intrusion Tolerance (SCIT) [YHua2006] employs a cluster of

servers each providing identical services. Using round-robin cleansing, at any point in

time, a server in the cluster can have one of three states: offline cleansing, offline spare

and online transaction processing. A SCIT server A is exposed to the internet for a period

of time known as “Exposure Time” after which another server B in the cluster takes its

place. Once server A comes offline, it is cleansed and restored to its last known good

configuration.

In FOREVER [PSou2008], the authors introduce a service that can be used to

improve the resilience of intrusion tolerant replicated systems by tolerating an arbitrary

number of faults. This is achieved by using both recovery and evolution techniques.

Recovery techniques in FOREVER include time-triggered periodic recoveries and event-

41

triggered recoveries. Once a recovery is performed, evolution techniques are used to

modify the respective vulnerabilities that may be exploited by a malicious attacker.

Hans P. Reiser and Rudiger Kapitza, the authors of [HRei2007] review the

benefits of using a hypervisor-based replication infrastructure for implementing proactive

recovery. They propose a proactive recovery system that uses virtualization to create a

new system image before shutting down the one to be recovered. This is a stateless

replication system, idea of which is to minimize system unavailability.

In SPARE [RKap2009], the authors propose an approach that uses virtualization

support as typically found in the cloud environment to reduce the resource demands of

performing Byzantine Fault Tolerance. They also propose the use of spare replicas that

are periodically updated in a suspended state to aid in proactive recovery which helps

maximize availability. There are a number of related publications by the authors under

the umbrella REFIT: Resource-Efficient Fault and Intrusion Tolerance [TDis2011]

[TDis2011a] [TDis2010] [RKap2010].

Worm-IT [MCor2007] proposes a new intrusion tolerant group communication

system with membership service. Worm-IT is a multi-node system and can tolerate an

arbitrary number of malicious nodes. Worm-IT does not require failure detection of

primary-members of the group communication system.

2.4.2.4 Hybrid

Some systems combine two or more of the techniques discussed above to provide

a hybrid solution for intrusion tolerance. We will briefly discuss some of these hybrid

intrusion tolerance solutions.

42

P. Sousa et al, the authors of [PSou2010] propose an approach where reactive

mechanisms would complement existing proactive recovery techniques to build an

intrusion tolerant replicated system that is highly resilient to faults. The reactive

mechanisms give the non-faulty replicas the capability to detect other replicas getting

compromised. The proactive-reactive recovery service is designed based on a hybrid

distributed system [PVer2006].

CloudFIT [HRei2011] is an effort to build an architecture for intrusion tolerant

applications that can be deployed dynamically in the cloud. Author also explores the

feasibility of applying existing BFT algorithms to increase security and availability in the

proposed architecture. In CloudFIT, recovery is handled by a component that can trigger

proactive recoveries and also handle event triggered recoveries.

EU CRUTIAL [PSou2009] presents a demonstration of a family of protection

devices for critical information infrastructures. These protection devices called

CRUTIAL Information Switches (CIS) are responsible for enforcing sophisticated access

control policies of both incoming and outgoing traffic. CIS by themselves are intrusion-

tolerant and self-healing in order to achieve high resilience. CIS are placed at network

boundaries similar to firewalls; however they are responsible for enforcing access control

policies on a global scale, all across the interconnected infrastructure.

Cornell Online Certification Authority (COCA) [LZho2002] is a fault-tolerant

and secure online certification authority. COCA uses threshold cryptography algorithm to

sign the certificates it generates for local and wide area networks. COCA also uses

redundancy in the form of server replicas to assure availability. Given there are ‘3t+1’

43

COCA servers up, COCA may tolerate up to ‘t’ faulty servers as per Byzantine Fault

Tolerance.

2.5 Open Problems

Let us analyze a few open problems that arise when intrusion tolerance is viewed

from a security or fault tolerance perspective. To start with, what contributes to the risk

of intrusion? Risk is a combined measure of the probability of there being intrusions, and

of their severity, that is, of the impact of a failure caused by them. The former is

influenced by two factors that act in combination: the level of threat to which a

computing or communication system is exposed; and the degree of vulnerability it

possesses. The correct measure of how potentially insecure a system can be (in other

words, of how hard it will be to make it secure) depends: on the number and nature of the

flaws of the system (vulnerabilities); on the potential for existing attacks on the system

(threats). Informally, the probability of an intrusion is given by the probability of there

being an attack activating a vulnerability that is sensitive to it. The latter, the impact of

failure, is measured by the cost of an intrusion in the system operation, which can be

equated in several forms (economic, political, etc.).

Should we try and bring the risk to zero? And is that feasible at all? This is

classical prevention/removal: of the number, power, and severity of the vulnerabilities

and the attacks the system may be subjected to. The problem is that neither can be made

arbitrarily low, for several reasons: it is too costly and/or too complex (e.g., too many

lines of code, hardware constraints); certain attacks come from the kind of service being

deployed (e.g., public anonymous servers on the Internet); certain vulnerabilities are

44

attached to the design of the system proper (e.g., mechanisms leading to races in certain

operating systems). And even if we could bring the risk to zero, would it be worthwhile?

It should be possible to talk about acceptable risk: a measure of the probability of failure

we are prepared to accept, given the value of the service or data we are trying to protect.

This will educate our reasoning when we architect intrusion tolerance, for it establishes

criteria for prevention/removal of faults and for the effort that should be put in tolerating

the residual faults in the system. Further guidance can be taken for our system

assumptions if we think that the hacker or intruder also incurs in a cost of intruding. This

cost can be measured in terms of time, power, money, or combinations thereof, and

clearly contributes to equating 'acceptable risk', by establishing the relation between 'cost

of intruding' and 'value of assets'.

A malicious-fault modelling methodology is required that refines the kinds of

faults that may occur, and one that does not make naïve assumptions about how the

hacker can act. The crucial questions put in this section will be addressed in the rest of

the dissertation.

45

CHAPTER THREE – SCIT AND IDS ARCHITECTURES FOR REDUCED DATA

EX-FILTRATION

This chapter proposes a framework to assess the relative performance of different

security architectures in terms of their effectiveness in reducing data ex-filtration. The

chapter explores various hybrid approaches that combine recovery driven SCIT

methodology with existing IDS solutions as part of a multi layered defense strategy to

enforce cyber resilience.

3.1 Overview

Today’s approach to security is based on perimeter defense and relies heavily on

firewalls, Intrusion detection systems (IDS) and Intrusion prevention systems. Despite

years of research and investment in developing such reactive security methodologies,

critical systems remain vulnerable to cyber-attacks. In this approach, it is assumed that

intrusions are inevitable and the effort is focused on minimizing losses. Towards this end

a recovery based limited exposure time system called Self Cleansing Intrusion Tolerance

(SCIT) is introduced. In this chapter, architectures that combine SCIT architecture with

existing IDS approaches are investigated. The effectiveness of SCIT and IDS security

architectures in terms of minimizing data ex filtration losses is analyzed using decision

trees and the results of Monte Carlo simulation is presented.

The variety and complexity of cyber-attacks is increasing. Verizon 2009 Data

Breaches Investigation Report [Veri2009] shows that customized malware is difficult to

46

detect and data ex-filtration often occurs over a period of days, weeks and months. The

attackers’ strong motivation leads to organized and targeted cyber-attacks. The current

intrusion detection and prevention approaches are reactive in nature and inadequate to

prevent all attacks. It is safe to conclude that intrusions are inevitable, and have adopted

an intrusion tolerance approach. In [YHua2006, ABan2009] a Self-Cleansing Intrusion

Tolerance (SCIT) approach is introduced. SCIT is a recovery driven intrusion tolerance

system that makes the attacker work harder by reducing the server’s exposure time to the

internet.

More recently, a combination of reactive and proactive systems has been

proposed [PSou2007]. Such hybrid approaches, with multiple layers of defense is seen as

a desirable approach to protecting the cyber infrastructure. In this chapter, the usefulness

of adding IDS systems to an intrusion tolerance approach is explored. Specifically, in

this chapter a combination of IDS and SCIT architectures is studied. 4 architectures are

compared: (1) Network IDS only; (2) SCIT only; (3) Network IDS + Host IDS; (4)

Network IDS + SCIT. From the view point of reducing data ex-filtration it is discovered

that Network IDS + SCIT is the preferred solution.

The rest of the chapter is divided into 6 sections. In the next section recent reports

to motivate this study are discussed. Section 3.3 provides an introduction to SCIT and

how it reduces losses. Section 3.4 presents the methodology utilized in this chapter to

gauge the effectiveness of a security strategy. Section 3.5 gives an overview of various

security architectures compared in this chapter along with decision trees representing

47

their functionality. Section 3.6 gives an account of the Monte-Carlo simulation, the

parameters used and the results obtained.

3.2 Motivating Examples

In reports of recent breaches, it has become clear that intruders were in the system

for long periods. Not only did the IDS/IPS fail to prevent the intrusion, these systems

were not able to detect the presence of the intruder. To illustrate this point, refer to the

following data breach reports:

Verizon DBIR [Veri2009] focuses on 90 studies conducted in 2008. 285 million

consumer records were compromised. Some of the parameters used in this chapter are

derived from this report. The average Intruder Residence Time (time between system

compromise and breach containment) was more than 28 days and on average 675 records

were compromised per day.

Following are some recent security breach events that illustrate detection delay

when it comes to detecting compromise:

o Home Depot reported in September 2014 – Time to Discover 5 months [Home 2014]

o PF Chang’s reported in July 2014 – Time to Discover 11 months [PFCh2014]

o Sony reported in Nov 2014 – Time to Discover ~ 1 year [Sony2014]

o Office of Personnel Management (OPM) reported in July 2015 – Time to Discover ~

1 year [OPMB2015]

From these incidents, it can be concluded that any strategy that will shorten the

duration of the breach would lead to better protection of data files. Consequently, in the

analysis, focus is on the estimated records ex-filtrated because of malicious activity.

48

3.3 SCIT Framework

In [YHua2006] SCIT, an intrusion tolerant technique that provides enhanced

server security was presented. SCIT research has focused on critical servers that are most

prone to malicious attacks. The technique involves multiple virtual instances of a server.

These are rotated and self-cleansed periodically irrespective of the presence or absence of

intrusions. Self-cleansing refers to loading a clean image of the server’s OS and

application into the Virtual Machine. Rotation here refers to the process of bringing an

exposed virtual server off-line, killing it, restarting it and in the meanwhile, bringing

another virtual server online to assure availability. By doing so, in the event of an

intrusion, the intruder is denied prolonged residence on the server. Once the virtual

server’s exposure time to the Internet is completed, the virtual server instance is

automatically rotated by a controller. This virtual instance of the server is what is referred

to as virtual server throughout this chapter.

Every virtual server is rotated through 6 states as shown in Figure 3.1a. Active

state (or) Exposed state is the state in which the virtual server is on-line. If the exposed

virtual server is busy processing an earlier query, the new incoming requests are put in a

queue. The queries that are in the queue of a virtual server and are not processed during

its exposed state are processed in its quiescent state / grace period. In grace period, no

incoming queries are accepted. The virtual server is killed and restarted in the Kill VM /

Start new VM states. A virtual server in Online-spare / Live-spare state suggests that it’s

ready to go on-line. In addition to the states mentioned, there is also an Archive state – in

49

this state a VM that is no longer exposed and is ready to be killed is archived for offline

forensics / future analysis / patching.

VMware is used in this implementation, though the SCIT approach is not reliant

on this virtualization approach. The SCIT Controller ensures the constant rotation of the

virtual servers.

Figure 3.1a: SCIT State Diagram

Figure 3.1b: SCIT Server Rotation

This illustrative example in Figure 3.1b shows 3 different time periods. At any

given time, there are five servers online and three servers being wiped clean. In each case

a different set of servers is being cleaned. Eventually every server will be taken offline,

cleaned and restored to its pristine state. SCIT technology can be used to build a variety

of servers that meet enhanced security requirements. It is best suited to servers that are

50

designed to handle short transactions – the lower the exposure time the shorter the

transaction.

3.4 Methodology to calculate data ex-filtration costs

3.4.1 Overview

Four SCIT / IDS architectures are considered. Two alternatives are standalone –

NIDS only and SCIT only. In PCI DSS [PCID2014] and in DODi 8500.2 [DoDi2003],

host IDS are suggested in addition to Network IDS, thus NIDS + HIDS systems are

considered. Finally, NIDS and SCIT are treated. To evaluate the potential losses from

each of these systems the approach of [JUlv2003] is followed. Decision trees are

developed that represent the functionality of respective security architectures. The

conditional probabilities in the decision trees help characterize their security properties.

These decision trees are translated into decision guidance systems (DGS) by modeling

them on Gnumeric - an open-source spreadsheet software suitable for Monte Carlo

simulation. There are 4 DGS' - one each for NIDS, SCIT, NIDS + HIDS, NIDS + SCIT

architectures.

The DGS built on top of the decision tree using Gnumeric takes incoming traffic

(in terms of queries) as input and divides the traffic into 4 categories: Confirmed

Intrusion (CI), Non-intrusions (NI), False Alarms (FA) and Missed Intrusions (MI).

Gnumeric's inbuilt Monte-Carlo simulation capabilities are used to generate incoming

network traffic. In the case of Intrusions and Missed Intrusions, there would be an

Intruder Residence time (IRT) associated with it. Section 3.6 expands on IRT and how it

is modeled in the simulation. Using this IRT and the parameters from Verizon DBIR

51

[Veri2009] from section 3.2, data ex filtration costs in terms of records compromised are

calculated.

3.4.2 Assumptions

In the analysis it is assumed that

 In the malicious data ex-filtration process, records are stolen at a uniform rate.

 No records are stolen if the IDS correctly identifies an intrusion.

 There is a constant cost associated with:

o Performing Intrusion Detection on a single query (incoming traffic) ---

C(I)

o SCIT processing of a query (incoming traffic) --- C(T)

o Responding to one intrusion alarm --- C(R)

Since the objective is to characterize the effectiveness of the security architecture

in terms of least data ex filtrated, constant costs are ignored. However, there is provision

in the decision guidance systems to include these costs if need be.

3.5 SCIT/IDS Scenarios

Each of the four SCIT / IDS architectures are considered and are explained

briefly. Decision tree representations of each of the architectures are discussed. The

decision trees provide a mechanism to estimate costs associated with each of the

outcomes (Confirmed Intrusion (CI), Non-intrusions (NI), False Alarms (FA) and Missed

Intrusions (MI)). This helps to get a better idea of data ex-filtration costs suffered in each

of the IDS and / or SCIT scenarios. It is emphasized that no loss occurs in the case of

confirmed intrusion, since IDS detects those.

52

A number of probability values (p1…p34); (q1…q6) make up the following

decision trees, however, it’s interesting to note that not all of them contribute equally in

determining the outcome. For example, sensitivity analysis performed on the NIDS

decision tree suggests that each of the possible outcomes (CI, NI, FA and MI) are most

sensitive to change in the value of p1. They are less sensitive to change in the values of

q1 & q2. They are least sensitive to change in the values of p4…..p13.

In all the decision trees that follow, (p1…pn) and (q1…qn) represent conditional

probabilities.

Figure 3.2: NIDS Decision Tree

3.5.1 NIDS

In this case, a stand-alone independent Network Intrusion Detection System

(NIDS) security architecture is considered. The decision tree in Figure 3.2 represents

NIDS functionality and its effectiveness in finding intrusions and minimizing data ex

53

filtration. In Figure 3.2, values within braces next to the probability variables represent

respective values considered to perform Monte-Carlo simulation. For instance, p1 (0.021)

indicates that a value of 0.021 has been utilized for probability variable ‘p1’ in the

simulation. Entire incoming traffic is monitored by the NIDS. Based on what it sees,

there is a probability p1 of NIDS triggering an alarm and a probability 1-p1 of NIDS

determining the traffic to be safe. In case of an Alarm, a probability q1 is associated with

initiating a response and a probability 1-q1 associated with ignoring the Alarm. For

instance, intrusions with severity (1, 2) are responded to and alarms with low severity

ratings (3 to 6) are ignored. Such decisions are often made in security operations centers

because of manpower limitations and the large number of alarms generated by the IDS.

In the case of responding to an alarm and analyzing it, there is a probability p2

that the alarm ends up being categorized as an intrusion and a probability 1-p2 of it being

safe. Again, no security procedure in place is ideal, there is an error rate associated with

it. For example, traffic which is categorized as an intrusion, in reality could be an

intrusion (confirmed intrusion) with a probability of p4 or could be a false alarm (error on

NIDS's part) with a probability of 1-p4. A similar explanation follows anything that is

categorized as a non-intrusion. On ignoring an Alarm, incoming traffic is let through

without further analysis. This traffic in reality could be an intrusion (error on system

administrator’s part – ignoring the alarm) or a non-intrusion (error on NIDS’ part). In

this case, intrusions are characterized as Misses and non-intrusions as False Alarms.

In the case of a No-Alarm; the system administrator can still opt to analyze the

traffic just to make sure the system is functioning the way it is supposed to. This could be

54

on the basis of his / her suspicion or could be a random check to determine if all things

are well. The procedure that follows is similar to the one discussed in the case of an

Alarm.

In cases of Missed Intrusion traffic, damage is done to the system. In these cases,

an intruder remains in the system for IRT duration of time causing damage, where IRT is

the intruder residence time. In the simulation, the IRT-Probability Density Function

(Section 3.6) is used to estimate IRT. In this scenario the amount of damage that could be

caused to the system is unbounded, since IRT is unbounded.

Figure 3.3: SCIT Decision Tree

Figure 3.4: NIDS – HIDS Decision Tree

55

3.5.2 SCIT

The security architecture in this case consists of a standalone SCIT system. There

is no intrusion detector in the system. In other words, all potential attacks are successful

since there are no IDS / IPS to check for them. Figure 3.3 represents SCIT's decision tree.

The incoming traffic is classified as either being a successful attack or not. This is not

done by the system since SCIT treats all incoming traffic in the same manner. There is a

probability ‘s1’ associated with the incoming traffic being an attack and a probability ‘1-

s1’ associated with it being safe traffic. In the case of an attack, the intruder remains in

the system for IRT duration of time causing damage.

In the case of incoming traffic being safe, there is no IRT associated with it.

Estimation of IRT is provided in section 3.6. In the case of an attack, estimated cost is

C(T)+C(DX(irt,e)), where C(T) is the cost of SCIT implementation and C(DX(irt,e)) is

the cost of data ex filtrated by the intruder in IRT duration of time. Since SCIT is in

place, IRT can never be greater than SCIT's exposure time 'e'. And so the maximum

possible damage that can be caused to the system by the intruder is now C(DX(e)) where

‘e’ is the Exposure Time. In the case of safe (no attack) traffic, estimated cost is C(T) and

no data loss occurs.

3.5.3 NIDS + HIDS

This architecture is an extension of NIDS. An additional layer of security in the

form of Host IDS (HIDS) is added to the system. NIDS+HIDS systems could either have

two IDS's running in parallel or have one followed by the other. NIDS+HIDS is

considered to be serial, with the NIDS tuned to the network needs, and HIDS tuned to the

56

specific needs of the host. The first IDS (NIDS) performs its task exactly in the manner

illustrated in the case of NIDS in section 3.5.1. If IDS 1 does not trigger an alarm or if

IDS 1 alarm is ignored then IDS 2 (HIDS) is run to see if it triggers an alarm (Note, there

is a small probability ‘q4’ of system administrator analyzing the traffic even though IDS

1 does not trigger an alarm. IDS 2 is not run in these cases). This adds another layer of

security in the sense that IDS 2 could pick up an intrusion that IDS 1 had missed.

According to [JUlv2003], unless one of the IDS’ is worthless, it is better to use both in

combination than to use single IDS. They suggest that since there is no incremental cost

to getting IDS2 report, the expected cost from using an IDS composed of two

independent detectors is the same regard-less of whether the response decision is made

sequentially or in parallel. In a serial IDS-IDS setup, it is advisable to have the better

performing IDS as IDS 1.

Figure 3.5: NIDS – SCIT Decision Tree

57

3.5.4 NIDS+SCIT

The system here is an extension of a previous case, NIDS. An additional layer of

security - SCIT - is added to the NIDS. In cases where an intruder resides on the system

for IRT duration of time, SCIT comes into play. As pointed out, in the case of NIDS,

potential damage that can be caused to the system is unbounded. This is primarily

because IRT remains unbounded in NIDS. On adding SCIT, IRT is no longer unbounded.

SCIT introduces a metric called 'Exposure Time'. Since SCIT is pro-active and performs

self-cleansing after time 'e', where 'e' is the Exposure Time; an upper bound is set on IRT.

With SCIT the maximum damage C (DX (irt)) that can be caused to the system is C (DX

(e)) since (irt <= e). NIDS+SCIT performs better than standalone SCIT since NIDS helps

identify certain intrusions before they can cause damage and have to be tolerated.

3.6 Monte Carlo Simulation

Methodology as presented in section 3.4 was followed to perform the Monte-

Carlo Simulation. The decision trees represented above are captured in the simulation.

The values used for the probabilities have been chosen on the basis of discussions with

experienced managers. Certain assumptions were made in the process of simulating the

decision trees based on these discussions: A) There are nearly twice as many False

Alarms as Confirmed Intrusions and B) Out of the 50,000 incoming queries – 500 are

potential attacks (as shown in Figure 3.3). Once the decision trees are incorporated in the

Gnumeric spreadsheet format with all probability values plugged in, the inbuilt Monte-

Carlo simulation feature in Gnumeric can be used to simulate the incoming traffic. Table

3.1 summarizes the parameters used in the simulation. Primary objective of the

58

simulation was to compute a mean / total damage cost (in terms of records lost) in each of

the SCIT / IDS cases given incoming traffic of 50,000 queries.

The Intruder residence time used in the simulation is modeled as a Pareto

distribution. It is assumed that IRT can take values between 0 hours and 2 months with

mean being 48 hours. As compared to the examples in Section 3.2, this is a very

conservative choice. Using the 28 days average, noted in Section 3.2, would be even

more advantageous to SCIT. This average is incorporated in Intruder Residence Time

Probability Density Function (IRT-PDF), which gives a relation between IRT values and

their respective probabilities of occurrence.

3.6.1 Probability values chosen for the simulation

The values of (q1...q2) and (p1...p13) are the same for NIDS and NIDS+SCIT.

These values are presented in Figure 3.2 within parenthesis next to respective variables.

In the case of SCIT, probability values are presented in Figure 3.3. In case of NIDS +

HIDS, the probability values are given below – variables followed by their value:

q1 (0.35) | q2, q5 (0.1) | q3, p7 (0.01)

p8, p9 (0.95) | p18, q4, q6, p23 (0.001) | p33 (0.9999)

p1 (0.021) | p2,p6,p22,p19 (0.05) | p5,p21 (0.3)

p4,p12,p14,p20,p28,p30 (0.8) | p16,p32 (0.7)

p17,p3,p10,p11,p13,p15,p24,p25,p26,p27,p29,p31 (0.9)

3.6.2 Results of the Simulation

Data loss measured in number of records is the metric for assessing effectiveness

of security architecture. The results in Table 3.2 show data ex filtration costs in records.

59

This table shows that the potential for damage is high for NIDS only and NIDS + HIDS

alternatives. The records ex-filtrated are about the same for both scenarios. If SCIT is

deployed then the ex-filtration losses are significantly reduced. The loss rate is

dramatically impacted by the exposure time chosen. To illustrate this feature, the result

for the case of 4 minute and 4 hour exposure times1 is reported. The best scenario is a

combination of NIDS and SCIT. For NIDS+SCIT (ET 4 minutes) the records lost are

less than 0.16% of the NIDS only loss and 0.19% of NIDS+HIDS loss.

Table 3.1: Parameters used in the simulation

Simulation metrics Value (units)

Number of queries used 50,000

Query Inter Arrival Time 10 ms to 18 ms

Intruder Residence Time (IRT) 0 minutes to 2 months

Mean IRT (modeled as Pareto distribution)

against respective probabilities of occurrence.

48 (hrs)

Exposure time of SCIT (ET) Case 1: 4 (hrs)

Case 2: 4 (minutes)

Mean number of records stolen per day 675.4 records / breach

Mean number of records stolen per hour 28.15 records / breach

Table 3.2: Results of the Monte-Carlo simulation

Case Total Damage

(records)
No. of
Breaches

Mean Damage

(records/breach)

NIDS 245,962 (100%) 192 1,281

SCIT: ET 4h
SCIT: ET 4m

55,364 (23%)
1,015 (0.4%)

508
508

109
2

NIDS+HIDS 210,578 (86%) 164 1,284

NIDS+SCIT: ET 4h
NIDS+SCIT: ET 4m

20,931 (9%)
383 (0.16%)

191
191

110
2

1 The prototypes that are have built have an Exposure Time (ET) of 1 minute, but in this analysis a higher ET is taken to

show the effectiveness of SCIT architecture.

60

3.7 Summary

The SCIT architecture provides a robust security mechanism that guarantees

certain security properties by limiting the exposure time. An important advantage of

SCIT compared to IDS solutions is that SCIT does not generate false alarms, and thus can

help reduce the intrusion alerts management costs. Thus SCIT also provides

administrative and economic benefits which make it a reasonable choice to be included in

security architecture. In particular, this is expected to be of interest in environments

where technical skills are limited. Examples of such environments are found in military

tactical settings, in remote and rural locations, small organizations and in newly emerging

countries. The simulation studies presented suggest that a combination of an NIDS with

SCIT on host servers provides a robust architectural solution in the face of new attacks.

61

CHAPTER FOUR – COMBINING INTRUSION DETECTION AND RECOVERY

FOR ENHANCED SYSTEM DEPENDABILITY

This chapter presents a framework that uses Receiver Operating Characteristic

(ROC) curve analysis and damage cost models to trade-off the true positive rate and false

positive rate for comparing alternate detection based security architectures. In this work,

the framework is employed in performing a comparison between IDS only solutions and

an IDS + SCIT hybrid solution. This analysis provides a strategy for optimizing

configuration of intrusion detection systems by evaluating the trade-off between potential

damage from a missed intrusion and the costs of processing false positives.

4.1 Overview

Current cyber defenses are reactive and cannot protect against customized

malware and other zero day attacks which persist for many weeks. Using Receiver

Operating Characteristic curve analysis and damage cost models, the true positive rate

and false positive rate are traded-off to compare alternative architectures. This analysis

provides optimal value(s) of Probability of Detection by evaluating the potential damage

from a missed intrusion and costs of processing false positives. In this chapter, an

approach which involves determining the influencing factors of each strategy and

studying the impact of their variations within the context of an integrated intrusion

defense strategy is proposed. The goal is to manage the intrusion risks by proactively

scheduling recovery for dependable networks.

62

The variety and complexity of cyber-attacks are increasing, along with the

number of successful intrusions to mission and business systems. Recent breach reports

like Wyndham Hotels [Wynd2010] reported system compromise detection in February

2010, whereas the malware had resided in the system since October 2009. So it is

inferred that not only the Intrusion Detection System / Intrusion Prevention System

(IDS/IPS) failed to prevent the intrusion, but current systems were not able to detect the

presence of the intruder long after the compromise.

Motivated by the above observations, this research focus has been on a method

which consists of two important approaches to enhance cyber defense. First, recognizing

that intrusion detection is a hard problem, can the focus be shifted to minimizing losses

resulting from intrusions? If this strategy is successful, it is anticipated that the reduced

demands on the IDS will in turn lead to fewer false positives. Second, this model uses

real world data from recent breach reports and their average costs to evaluate the cost

reductions that can be achieved by using a combination of intrusion detection and

tolerance architectures. Previously, the classical approach to assess architectures has been

based on Single Loss Expectancy and Annual Loss Expectancy. More recently decision

trees have been used [JGaf2001]. In the former, many assumptions are required, and in

the latter a lot of data have to be collected. These approaches are good for analyzing

systems for which past data can be used. But is this useful for architectural decisions for

the future? The use of ROC (Receiver Operating Characteristic) curve based analysis is

proposed, which is a powerful tool system administrator can use with enterprise specific

data to build economic models and to compare alternate architectures. DARPA funded

63

Lincoln Lab IDS evaluation [RLip2000] was a pioneering paper that evaluated many IDS

by generating normal traffic similar to that seen on Air force bases. They used ROC

curves to present their results. McHugh [JMcH2000] published a critique of Lincoln

Lab’s work in 2000 which primarily considered issues associated with Lincoln’s

experimental dataset. McHugh pointed out the following problems in Lincoln’s

application of ROC analysis to IDS evaluation, which are a lack of “appropriate units of

analysis, bias towards possibly unrealistic detection approaches and questionable

presentation of false alarm data” [JMcH2000]. In Section 4.4, these issues are treated.

In this chapter, an IDS only solution is compared with IDS and SCIT (Self

Cleansing Intrusion Tolerance) combination, SCIT being the approach to intrusion

tolerance which is classified in the recovery-based category [QNgu2010]. From this

assessment, optimal value(s) of Probability of Detection and other operational parameters

can be selected to balance the potential damage from a missed intrusion and the cost of

false positive processing. In this approach, it is stipulated that providing an upper bound

on the time between the compromise and recovery has many advantages since it does not

require the assumption that the system will be able to detect either the intrusion attempt

or the compromise.

The rest of the chapter is organized as follows. In Section 4.2, the motivation for

dependability recovery requirements is developed. Section 4.3 briefly reviews the

intrusion tolerance approach. Sections 4.4, explains ROC Analysis usefulness to assess

IDS architectures. . Sections 4.5, applies a cost model to evaluate how three different

cases behave for a set of hypothetical ROC curves. Section 4.6 is the conclusion.

64

4.2 Motivation

As cyber defense efforts increase, passive efforts such as establishing anti-virus

software, firewall protection, or improving password strength and encryption, and the

organization’s workload are constantly challenged by the need to apply patches

immediately. Security researchers are uncovering close to 55,000 new malware samples a

day, overwhelming malware analysis resources [McAf2010]. Increasingly, automated

analysis technologies are used to keep up with the volume, but they still lack the

precision to decipher compressed, encrypted, and obfuscated malware [RBej2005].

McAfee recent crash of tens of thousands of PCs globally illustrates the unpredictable

system effects after compromise and their collateral damage, which creates even more

uncertainty and less dependability for Enterprise Security [DKra2010].

The current reactive cyber defense approaches are expensive and inadequate. It is

expected that, automated recovery and Intrusion Tolerance System (ITS) will be useful in

addressing the increasing malware and patch workload, but what are the cost impacts of

malicious threats and false positives on dependability and security attributes?

4.3 Intrusion Tolerance Approach

ITS architecture objective is to tolerate unwanted intrusions and restore the

system to its normal state. Various ITS approaches are reviewed by Nguyen and Sood

[QNgu2010]. In this paper, the recovery-based SCIT (Self-Cleansing Intrusion

Tolerance) model is used [QNgu2010], which is applicable to servers that are open to the

Internet, such as Web, and DNS servers [ABan2009]. Using round-robin cleansing, at

any point in time, a server in a SCIT cluster can have one of the three states: offline

65

cleansing, offline spare and online transaction processing. The duration that a SCIT

server is exposed to the Internet is called its Exposure Time. The architecture is simple,

and does not rely on intrusion detection. Implementation of SCIT scheme can be based

on virtualization. The interfaces between controller and the group of servers to be

protected are trusted.

Another benefit of a recovery-based ITS is to shrink down breach duration, which

has the effect of reducing losses and their costs. Indeed, this intrusion tolerance strategy

would mitigate the effects of malicious attacks. Intrusion detection is known to be a hard

problem, and current cyber defense systems reportedly detect less than half the malware.

Still servers and apps account for 98% of the total record compromised. Verizon DBIR

2010 [Veri2010] underscores this problem by noting that only 11% of the compromises

were detected within minutes or hours. Thus, current cyber defenses cannot protect

systems against customized malware and other zero day attacks; once an attack is

successful, it can persist for many weeks. This emphasizes the need for a recovery-based

Intrusion Tolerance approach since detection triggered ITS might again fall short of the

needs.

4.4 Receiver Operating Characteristics (ROC)

ROC analysis has been long used in signal detection theory to present the tradeoff

between hit-rates and false-positive rates of classifiers. ROC analysis was initially used

during World War II in the analysis of radar signals to differentiate signal from noise. It

was soon introduced in Psychology to map the perceptual detection of signals

[JSwe1996]. ROC curves are useful for assessing the accuracy of predictions. A ROC

66

curve plots the fraction of true positives (hits) versus the fraction of false positives, and

hence has a direct relationship with diagnostic decision making. The ideal prediction

method would yield a co-ordinate (0, 1) on the ROC curve. This represents 100 % true

positives and zero percent false-positives, and is referred to as the perfect classification.

4.4.1 Using ROC to assess IDS quality

The most attractive feature of ROC analysis is the fact that the tradeoff between

probability of detection and probability of false positive can be derived directly. This

allows a system administrator to instantly determine how well a classifier performs and

also to compare two classifiers. We care about false positives in addition to the

probability of detection since there is a need to characterize human workload involved in

analyzing false positives generated by traffic. According to [RLip2000], false positive

rates above 100’s per day could make IDS almost useless even with high probability of

detection since security analysts must spend hours each day investigating false positives.

DARPA funded Lincoln Lab IDS evaluation [RLip2000] appears to be the first to

perform tests to evaluate many IDS by generating normal traffic similar to that on a

government site. McHugh [JMcH2000] reviews and analyzes the validity and adequacy

of artificial data used to estimate real world system performance. In this chapter, a

methodology to compare various IDS’s, each of which is represented by a ROC curve is

presented. Verizon’s 2010 results representing a cross section of multiple industries are

utilized. Furthermore, these data validate firsthand real world evidence over a broad five

year range from 2004-2009 with the addition of US Secret Service confirmed cases.

67

The Lincoln Lab experiment used ROC for presenting the results of the

evaluation. McHugh [JMcH2000] criticized Lincoln Lab’s use of ROC curves primarily

on the following grounds. It is attempted to address each of these concerns in this work:

Determining appropriate units of analysis: Unit of analysis is the quantity of input

on which a decision is made. Lincoln lab used sessions as the unit of analysis, the

problems of which were outlined in [JMcH2000]. McHugh also emphasized the need for

using similar units of analysis across all IDS’s to be evaluated. In this case, a simple

system and consistently use query / packet is considered as the unit of analysis across all

IDS’s.

Errors per unit time: In [RLip2000], a pseudo-ROC curve with x-axis as False

Positives per day instead of Percentage False Positives was used. This led to two

incomparable units being used on two axes, and the results in turn became strongly

influenced by factors like the data rate that should typically be irrelevant. In this chapter,

the probability of detection and that of false positives for all ROC curves are consistently

used. In such a case, given that the distributions of signal and noise are realistic, McHugh

[JMcH2000] recognizes that the ROC presentation should give a good account of

detector performance in similar environments. Given enough characterizations of the

signal and noise distributions, McHugh further acknowledges that it is even possible to

investigate optimal detectors.

McHugh [JMcH2000] criticizes Lincoln Lab’s methods of scoring and

constructing ROC curves which lead to problems like bias towards unrealistic detection

approaches, but not the use of ROC curves itself. In this case, the emphasis is not on

68

constructing ROC curves but on comparing IDS’s using the cost-model once they have

their respective ROC curves. While there is a need for alternative taxonomies, the scoring

method from the attacker’s perspective is still utilized for real world incidents.

According to [RLip2000], there have been a number of similar efforts. In order to

be able to compare multiple IDS systems, the ROC curves should be generated using

similar or preferably same test data. According to Orfila et al. [AOrf2006], if two ROC

curves intersect at some point, there is no way of claiming that one is better than the other

since some system administrators might want high probability of detection (top right

corner of ROC curve) and some might want low probability of false positive (bottom left

corner of ROC curve).

Stolfo et al. [FSto2000] presents an alternative method to perform evaluation

based on cost metrics. Authors help formalize the costs involved in evaluating an IDS

into three types: 1) Damage cost, 2) Challenge cost or Response cost and 3) Operational

cost.

In [CDru2004], Drummond et al. propose the use of cost curves for evaluating

classifiers. Cost curves plot expected cost vs. Probability Cost Function (PCF). Here PCF

is a function of probability of detection, probability of false positive and its

corresponding costs. Although cost curves are good to compare classifiers, the

representation does not provide for the system administrator to quickly see the cost trend

of operating at different points (Pf, Pd) on the ROC curve. Also [CDru2004] does not

suggest a way to determine the expected cost of operating at a point on ROC curve.

69

In [JGaf2001], Gaffney et al. argued that both ROC analysis and cost analysis

methods are incomplete. They used decision analysis techniques and provide an expected

cost metric that reflects IDS’s ROC curve based on a decision tree approach. This cost

model requires a lot of data to be collected and does not reflect the magnitude of actual

costs associated with breach events. For this, a cost-model for the calculation of expected

cost of operating at any point on the ROC curve is proposed.

4.5 Cost Model

In this section, it is aimed to overcome each of the shortcomings of earlier

approaches by proposing a cost model that consists of two elements:

 A formula for the expected cost of operating at any point on the ROC curve

 Cost metrics derived from published breach investigation reports

4.5.1 Expected Cost Calculation

The cost of operating IDS at any point on the ROC curve (Pf, Pd) is a combination

of the following:

 Operational Costs – Cost involved in operating the IDS and keeping it running.

 Damage Costs – the amount of damage caused by an intruder in case of a

successful attack.

 Response Costs – the cost involved in responding to a potential intrusion on

detection.

Out of the three costs mentioned above, operational costs and response costs

greatly vary from organization to organization based on a number of factors like size of

the organization, type of organization etc. Since these two costs are not entirely

70

quantifiable, for the purposes of this chapter, the objective function proposed in

[JHan1966] is employed:

Expected Cost of operating at any point on the ROC curve = Cost of Misses + Cost of

False Positives

Thus, for every point on the ROC curve (Pf, Pd), there is an expected cost:

Expected Cost = (Cm*p*Pm) + (Cf*(1-p)*Pf),

Where

Cm – Cost of a miss p – Prior probability of Intrusion

Cf – Cost of a false positive Pd – Probability of detection

Pm – Probability of a miss = (1-Pd)

Pf – Probability of a false positive

Note that this expected cost is for one incoming query. If there are ‘n’ incoming

queries, the above expected cost must be multiplied by ‘n’. The value of metrics used in

the cost model is summarized in Table 4.1.

Table 4.1: Metrics values used in the Cost Model

Metrics Value Explanation Ref

Median number of records lost per

breach (M)
1,082 Removes outliers.

Better estimate of the

“typical value”

[Veri2010]

Average cost of compromised record (D) $ 204 Direct Cost: $ 60 +

Indirect Cost: $144
[SWid2010]

Cost of a Miss (Cm) $220,000 M * D = 1082 * $ 204 [Veri2010],

[SWid2010]

Cost of a False Positive (Cf) $ 400 Assumption: Labor

Cost + Overhead Cost

= $ 400

Median Compromise Duration per breach 14 days Compromise to [Veri2010]

71

In this chapter, the probability of detection Pd and that of a false positive Pf will

constitute the operational parameters.

The median number of records lost for assessing damage is used. In many cases,

the outliers in breach data can skew the data, because most of the losses come from only

a few breaches. Therefore, the Mean becomes highly skewed and is not a good estimate

of the typical number of records lost per breach. Median is a better estimate of the typical

value [SWid2010].

4.5.2 Evaluating Classifiers using the proposed Cost Model

For the purposes of this chapter, it is not addressed how the ROC curves are

constructed. Proper construction and use of ROC curves in Intrusion / Anomaly detection

have been addressed in [RMax2004]. It is just shown how the cost model can be

implemented once they are constructed. Figure 4.1 gives a family of hypothetical ROC

curves, each representing a classifier. The cost model will be implemented on these ROC

curves in three different cases to evaluate the classifiers’ behaviors:

Discovery time +

Discovery to

Containment time

72

Figure 4.1: Receiver Operating Curves

Table 4.2 provides the values of the parameters used in the cost model in each of

the three cases. Within each case, the value of ‘p’ remains the same for both IDS and

SCIT+IDS. Therefore, the number of intrusions that occur in each of these architectures

are the same since Number of intrusions = [Number of incoming queries * Prior

probability of intrusion (p)]. The baseline IDS and SCIT+IDS scenarios are provided for

Case 1. Case 2 and Case 3 help investigate the impact of ‘Cm’ and ‘p’ on system cost and

security. Figures 4.2 through 4.7 illustrate this. It is noted that the y-axis scale is different

in Figure 4.6.

CASE 1a. IDS: (Figure 4.2)

This is a stand-alone IDS system. The cost keeps decreasing as Probability of

Detection (Pd) is increasing. As Pd increases, number of misses decrease along with the

significant associated costs. However, after a threshold, if the value of Pd is increased, the

73

expected cost stops decreasing and starts increasing rapidly. At this point, the cost of

False Positives exceeds the cost of misses and so the gains from containing misses start

diminishing. This point is known as the “minimal cost point on the ROC curve (MCP)”.

For e.g., in Case 1a, the MCP for Series 1 is 70 and it occurs at (Pf, Pd) = (0.20, 0.85).

MCP for each series of every case evaluated is tabulated in Table 4.3.

CASE 1b. SCIT + IDS: (Figure 4.3)

Now SCIT is added to existing IDS and the system is evaluated using the Cost

Model. It is assumed that the exposure time of SCIT is 4 hours2. This reduces the

compromise duration of the system from 14 days to 4 hours. It is assumed that data is ex-

filtrated uniformly over time. Since the cost of a miss was $220,000 earlier with

compromise duration of 14 days, now it significantly reduces to $2,620 for compromise

duration of 4 hours.

2 The SCIT servers tested in our lab and independently tested at Lockheed Martin and Northrop Grumman

have Exposure Times of 1 or 2 minutes. Here, larger values of Exposure Time are used to emphasize the

advantage of the concept.

74

Figure 4.2: IDS Case 1a

Figure 4.3: SCIT + IDS Case 1b

Table 4.2: Parameter values used in the cost model

 p Cm Cf Compromise

Duration

Case 1a: IDS 0.001 $220,000 $400 14 days

Case 1b: IDS+SCIT 0.001 $2,620 $400 4 hours

Case 2a: IDS 0.001 $60,000 $400 14 days

Case 2b: IDS+SCIT 0.001 $715 $400 4 hours

Case 3a: IDS 0.005 $220,000 $400 14 days

Case 3b: IDS+SCIT 0.005 $2620 $400 4 hours

75

Figure 4.4: IDS Case 2a

Figure 4.5: SCIT + IDS Case 2b

76

Figure 4.6: IDS Case 3a

Figure 4.7: SCIT + IDS Case 3b

CASE 2. (Figures 4.4 & 4.5)

Assumption: As compared to the baseline (Case 1), IDS cost of a miss is reduced from

$220,000 to $60,000.

77

CASE 3. (Figures 4.6 & 4.7)

Prior Probability of Intrusion is increased fivefold from p = 0.001 to p = 0.005.

4.5.3 Results: Comparison of IDS’s

Figure 4.8 compares the MCP’s of 3 IDS' whose performances are indicated by

the ROC curves in Figure 4.1.

 Series 1 IDS clearly outperforms all the other IDS’ in all three cases.

 It is most expensive to operate the IDS’ in case 3 since prior probability of

intrusion is high which in turn leads to more misses.

4.5.4 Results: Comparison of SCIT + IDS’s

Figure 4.8 also presents the minimal cost points for IDS + SCIT. An exposure

time of 4 hours is used. It is noted that as compared to the IDS only case, the costs are

much lower. The minimal cost points are achieved using a much lower value of

Probability of Detection which in turn leads to a lower Probability of False Positive. It

can be concluded that this makes the IDS design much easier and the system easier to

operate. The reliability of the IDS results also increase.

From the results, it can be seen that the benefits of adding SCIT are as follows:

 Cost of a miss is greatly reduced. As the compromise duration / exposure time of

SCIT is reduced, cost of a miss further reduces.

 A larger number of misses can be tolerated now that the cost of a miss is reduced.

78

Table 4.3: Minimal Cost Point values

Figure 4.8: Minimal Cost Point Comparison

4.5.5 General Observations (IDS and SCIT + IDS)

As the cost of miss decreases, more misses can be tolerated and so probability of

detection for achieving minimal cost point can now take lower values.

CASES

IDS Only IDS + SCIT

(ET=4hrs)

IDS only IDS + SCIT

(ET=4hrs)

IDS Only IDS + SCIT

(ET=4hrs)

CASE 1 70 2 102 3 135 3

CASE 2 28 0.5 43 1 45 1

CASE 3 170 7 218 12 386 12

Minimal Cost Point for Figure 1 ROC Curves - Cost ($)

SERIES 3 SERIES 2 SERIES 1

79

As Cm decreases, Cf has a greater influence on the expected cost and so there is an

increased need to contain false positives. Note that the Probability of False Positives for

achieving minimal cost point now decreases.

As prior probability of intrusion ‘p’ increases:

 The total number of misses’ increases and so does the expected cost.

 To combat this, probability of Detection for achieving minimal cost point

increases thus reducing the number of misses. (Note: Number of misses =

Number of incoming queries * p * Pm).

4.6 Summary

Intrusion detection is a hard problem, making intrusions inevitable. Consequently,

containing losses by an upper bound on the time between compromise and recovery

shows many advantages. ROC analysis, supplemented with cost analysis using median of

lost records and average cost of compromised records per breach, reveals tradeoff

between high probability of detection, and low probability of false positive. This

approach reduces the cost of a miss; and tolerating a larger number of misses’ leads to

lower false positive costs.

The SCIT architecture provides a robust security mechanism that guarantees

certain security properties by limiting the exposure time. In addition, SCIT does not

generate false positives and thus reduces the intrusion alerts management costs. Thus

SCIT also provides administrative and economic benefits which make it a reasonable

choice to be included in security architecture. In particular, this is expected to be of

interest in environments where technical skills are limited. The analysis presented

80

suggests that a combination of IDS with SCIT on host servers provides a robust

architectural solution in the face of new attacks.

81

CHAPTER FIVE – SCIT BASED MOVING TARGET DEFENSE

REDUCES AND SHIFTS ATTACK SURFACE

This chapter leverages the concept of Attack Surface [15, 16] and its use as a

security metric to compare the relative security of multiple hybrid security architectures.

This work proposes the use of Attack Surface Shifting / Reduction as a metric to compare

Moving Target Defenses (MTD) by assessing its impact on intruder / defender work

factors.

5.1 Overview

In this chapter, Attack Surface assessment is used to evaluate SCIT. A system’s

attack surface is the subset of its resources that an attacker can use to attack the system.

Manadhata [PMan2008, PMan2013] uses attack surface reduction / shifting as means of

assessing MTD. In this chapter, the dynamically changing Attack Surface for three

system architectures (1) Static Systems; (2) Basic-SCIT and (3) Diverse-SCIT are

compared.

Moving Target Defense (MTD) is the idea of managing change across various

system and network dimensions in order to increase the intruder work factor by

increasing the intruder work complexity and decreasing visibility of systems to the

intruders. Traditionally MTD strategies have presented two significant challenges to

adoption. First, for the sake of security, MTD cannot ignore performance and end user

productivity. Most customer facing systems don’t have the luxury of adding security that

82

slows down performance. Customers tend to move on if the experience is slow and

tedious. Secondly, traditional MTD design generally consists of complex processes

involving memory address randomization, network address shuffling, instruction set

randomization and more [DEva2011]. All of these techniques are designed to prevent

attacks and have the potential to be resource hogs thereby slowing down throughput in

certain cases.

SCIT based Moving Target Defense acknowledges that trying to prevent each

intrusion is impractical. Therefore, the emphasis is to minimize losses occurring from

intrusions rather than prevent intrusions. SCIT systems are designed to be complementary

to reactive systems [ANag2010]. Primary goal of SCIT-MTD is to reduce the intruder’s

window of opportunity to execute an attack and increase the costs of their foot-printing,

scanning and attacking efforts. Since by design, the SCIT-MTD attack surface of the

system is constantly changing, the system vulnerabilities are difficult to exploit. The

process of compromising a system involves identifying system vulnerabilities and

customizing attacks to exploit them. Ever-changing attack surface presents a stiff

challenge to the intruders. SCIT – MTD can be used with diversification approaches to

further increase the attacker difficulty.

5.1.1 Common Security Evaluation Metrics and Attack Surface

Measurement of security has been a challenge and is of practical importance to

software industry. Today two measurements are commonly used to determine the security

of a system: (1) at the ‘code level’, the number of bugs found (or fixed from one version

to the next) are counted; (2) at the ‘system level’, the number of times a system version is

83

mentioned in CERT advisories, security bulletins and vulnerability databases like MITRE

CVE are counted. Manadhata [PMan2008, PMan2013] proposed Attack Surface as a

security metric that focuses at the ‘design level’ of a system: above the level of code,

but below the level of the entire system. Attack Surface is a metric to compare the

relative security of two versions of the same system rather than the absolute security of a

system. Given two versions, A and B, of a system, one could measure the security of A

relative to B with respect to the system’s attack surface. Intuitively, higher the attack

surface, more the chances of the system getting compromised e.g., eliminating certain

system features potentially makes it more secure.

Attack Surface assesses (a) system ‘actions’ externally visible to the system’s

users; and (b) system ‘resources’ accessed or modified by each action. The more actions

available to a user or the more resources accessible through these actions, the more

exposed the attack surface. The more exposed the attack surface, the more likely the

system could be compromised.

The Formal Definition of Attack Surface is [PMan2008] “The set M of entry

points and exit points, the set C of channels and the set I of un-trusted data items are the

system’s resources that can be used by the attacker to compromise the system. Therefore,

given a system S and its environment, the system’s attack surface can be represented as

the triple <M, C, I>”.

Attacks carried out over the years, however, show that certain system resources

are more likely to be opportunities, i.e., targets or enablers, of attack than others. This

leads to the idea of ‘Weighted Attack Surface’. For example, services running as the

84

privileged user root in UNIX are more likely to be targets of attack than services running

as non-root users. Since every system resource contributes unequally to the system’s

attack surface, author of [PMan2008] proposes the use of ‘Damage Potential – Effort

ratio’. The amount of damage that can be done to the system by exploiting a particular

resource is the damage potential of that resource. Similarly, the amount of work that the

attacker would have to put in to use that resource as an attack tool defines the effort.

5.2 Attack Surface Shifting/Reduction as a technique for Moving Target
Defense

In [PMan2008] Manadhata formalized the notion of a software system’s attack

surface and proposed the use of system’s attack surface measurement as an indicator of

the system’s security. Intuitively, a system’s attack surface is the set of ways in which an

adversary can enter the system and potentially cause damage. Hence larger the attack

surface, the more insecure the system.

Figure 5.1: Attack Surface Shifting

Awad A. Younis et al [AYou2012] establish that there is a relationship between

Attack Surface Size and Vulnerability Density. The authors also performed a case study

on two different versions of Apache HTTP Server. They concluded that the version with

85

the bigger attack surface had more vulnerabilities as well as vulnerability density. This

further supports the use of Attack Surface size as a security metric.

In [PMan2013], the author considers a scenario where system administrators are

continuously trying to protect their systems from attackers. As shown in Figure 5.1, if a

defender shifts a system’s attack surface, then old attacks that worked in the past, e.g.,

attack 1, may not work anymore. Hence the attacker has to spend additional effort to

make past attacks work or find new attacks, e.g., attack 4. Hence, the interaction between

the defender and the intruder here can be viewed as a two player game where the action

of one player has a consequence on the other. Thus, reducing or shifting a system’s attack

surface functions as MTD. This works in favor of the defender to increase the intruder’s

work factor randomly.

Attack Surface of a system can be reduced or shifted by disabling, modifying and

/ or enabling the system’s features [PMan2013]. Disabling the existing features reduces

the number of entry points, exit points, channels, and data items, and hence reduces the

number of resources that are part of the attack surface. Modifying the features changes

the damage potential-effort ratios of the resources that are part of the attack surface, e.g.,

lowering a method’s privilege or increasing the method’s access rights reduces the

resources’ contributions to the attack surface measurement. The enabled features

increase the attack surface measurement by enabling new features and adding more

resources to the attack surface. When existing features are disabled and new features

enabled, the attack surface shifts. Table 5.1 presents four illustrative scenarios to

86

highlight the possible impacts of disabling, enabling or modifying features on a system’s

attack surface:

Table 5.1: Possible Scenarios to Reduce and Shift the Attack Surface

Scenarios Features Attack Surface

Reduction

Attack Surface

Shift

A Disabled Existing Yes Yes

B Enabled New No No

C Enabled New

Disabled Existing

Yes Yes

D Enabled New

Disabled Existing

No Yes

5.2.1 Dynamic Attack Surface

The Attack Surface of a production system increases with time. For example, the

number of open sockets may increase because of programming oversight. In typical

operations, the application of a security patch reduces the Attack Surface, while a patch

that increases functionality increases the Attack Surface. Similarly, in cases of a Web

Server serving dynamic content; the contents of dynamic web pages change in response

to different client requests. Use of additional web service extensions and client side plug-

ins are generally required to facilitate the use of dynamic content thereby leading to an

increase in the Attack Surface. Thus, the Attack Surface is a dynamic property. The SCIT

approach constantly restores software to a pristine state, and thus dynamically reduces the

Attack Surface.

87

5.2.2 Impact of Dynamic Attack Surface on Intruder Work Factor

Information assurance mechanisms are designed to frustrate the adversary and

make it difficult to launch a successful attack. There is a need to quantify the impact of a

given mechanism on a particular adversary. In the age of unknown attacks, the goal of

sound security architecture should be: (a) to significantly increase the intruder work factor

for successful attacks. Intruder work factor is the amount of work an intruder has to put in

to accomplish an attack (eg: mean time to compromise a system) and (b) To significantly

increase the ratio of the attacker’s work factor to generate successful attacks to the

defender’s work factor for responding to successful attacks [JJust2003].

In order to measure the impact of Dynamic Attack Surface on Intruder Work

Factor (IWF), a test bed experiment [ANag2013] was developed. This effort was not

meant to be exhaustive but representative. As part of the experiment, vulnerable versions

of Apache Tomcat and Samba were exploited using pre-loaded exploits in the Metasploit

Framework. Since pre-loaded exploits were used, the experimental results did not

account for ‘Exploit Development Time’ which is often a large chunk of the time for

compromising a system. Address Space Layout Randomization (ASLR) and SCIT

techniques of Moving Target Defense were implemented to make the Attack Surface

more dynamic. Two sample exploit conditions were used to assess the impact of

Dynamic Attack Surface on IWF: (a) Remote root buffer overflow exploit of Samba and

(b) WAR backdoor exploit of Apache Tomcat.

88

Figure 5.2: Attacker and Defender Actions – Apache Tomcat Exploit

Sample Results [ANag2013]: Figure 5.2 presents the attacker and defender

actions for Case (b): the Apache Tomcat Exploit. Red circular nodes here indicate

intruder activity with associated IWF in seconds, and blue dashed arrows show the

transitions between intruder actions. Green solid arrows indicate impact of SCIT rotation

on each intruder activity. Defender Work Factor (DWF) in this case is 44 seconds per

rotation – the time taken to switch an exposed virtual instance of server with a pristine

copy. This process not only moves the target but also self-cleanses the system. SCIT

rotation and self-cleansing is independent of attacker activity and so it can occur at any

89

point of the attack life cycle. Example scenario: if SCIT rotation happens while the

intruder is performing his ‘Dictionary Attack’ – then the attack is interrupted and the

intruder would have to redo the following: (a) Scan to identify the new target and (b) Re-

launch the dictionary attack on the newly identified target. In effect, a DWF of 44

seconds induces an additional IWF of 166 seconds.

Under these sample exploit conditions, the key findings of the experiment were:

(a) ASLR increased the IWF and at best case, had an iterative impact on IWF. ASLR

with periodic re-randomization induced a higher IWF than ASLR w/o re-randomization.

(b) SCIT, at best, had a cumulative impact on IWF. These further support the notion that

dynamic attack surface frustrates the adversary and increases the work required for a

successful attack.

5.3 Test Bed Experiment

In this chapter, Attack Surface assessment is used to evaluate impact of the MTD

solutions. The dynamically changing Attack Surface for three security configurations (1)

Static systems; (2) Basic-SCIT and (3) Diverse-SCIT are compared. Static systems adopt

traditional reactive systems; they are sitting ducks that are indefinitely online. System

cleansing and recovery is generally manually triggered or by an IDS/IPS. Static systems

with two flavors of SCIT – MTD are compared: Basic-SCIT which loads the same

pristine image every-time a virtual server is self-cleansed; and Diverse-SCIT loads clean

images of diverse implementations of the same service during the SCIT cycle. Microsoft

Attack Surface Analyzer is used for ease of use to perform all attack surface assessment.

Configuration of System used for Test Bed Experiment:

90

 Gateway P-7805u

 Intel Core 2 Duo CPU P8400 @ 2.26GHz

 4 GB RAM

 64-bit Windows Vista Home Premium Service Pack 2

This setup is not intended to emulate real world server system configuration. This

is merely a test-bed configuration used to evaluate the dynamic attack surface of varying

system architectures in sample scenarios.

Assumptions made for analysis:

Since it is not plausible to determine the ‘Damage Potential - Effort Ratio’ of

every existing system resource (there are hundreds of them); it is assumed they are all

equal. This is similar to the approach taken in [PMan2008]. And so, it is arrived that

Attack Surface Size = Total Number of Attack Surface Components

5.3.1 Attack Surface Components

For the purposes of the Test Bed Experiment, the Microsoft Attack Surface

Analyzer is used. In the experiment it is assumed that the following components make up

the Attack Surface of a system. This is not intended to be comprehensive but summarizes

the key components of any system’s attack surface: (a) Running Processes – Process is an

executing program; (b) Executable Memory Pages – Data Execution Prevention (DEP) is

a system-level memory protection feature which enables the system to make one or more

memory pages non-executable. Non-executable memory pages make it harder for the

exploitation of buffer overruns. Therefore, fewer executable memory pages is better; (c)

Windows – In a graphical Windows-based application, window is the area of the screen

91

which interacts with the user by receiving input and displaying output; (d) Kernel Objects

– An object is a collection of data that the OS manages. Kernel Objects are objects that

are part of the kernel-mode operating system, for example: symbolic links, registry keys;

(e) Services- Windows service is a program running in the background similar to a UNIX

Daemon; (f) Drivers – Software that enables the functionality of a physical or virtual

device; (g) Ports – Ports are process specific communication endpoints of a system. Ports

are associated with host IP addresses and the type of protocol used for communication as

in TCP or UDP; (h) Named Pipes – A named pipe is a one-way or duplex pipe for

communication between a pipe server and one or more pipe clients. A named pipe can

facilitate inter process communication; (i) RPC Endpoints – Remote Procedure Call is an

inter-process communication that allows a program to execute a procedure on a remote

computer over the network. RPC Endpoints facilitate such communication; (j) Objects

with weak Access Control List (ACL): These can be files, executables, registry entries

etc. One example of a weak ACL is allowing non-administrators to modify files. Sum of

all of these components make up the Attack Surface Size of a system.

Table 5.2: Attack Surface Size Comparison

Attack

Surface

Component

Pristine

Apache

System

Apache

System after

32 days

Apache System

after 4 hour

Exposure

Pristine

Nginx

System

Nginx System

after 4 hour

Exposure

Running

Processes

76 79 77 76 77

Executable

Memory Pages

25 46 27 21 26

Windows 183 265 199 180 189

Kernel Objects 513 520 513 513 516

Services 182 189 182 181 181

92

5.3.2 Static Systems

Static systems are systems that do not incorporate proactive security strategies. In

such systems, cleansing is generally triggered manually or by an alarm on discovering

malicious activity. According to Verizon’s Data Breach Investigation Report 2013

[Veri2013], the average time an intruder resides on the system from the point of initial

compromise to the point of intrusion discovery is more than 34 days. In the case of a

Static System, since there is no periodic self-cleansing or restoration, the attack surface of

the system keeps on increasing with time as a result of normal system use.

To illustrate this, the attack surface size of an Apache System (a) before use

(pristine) and (b) after random usage for 32 days are compared. Figure 6.4 illustrates the

setup of the Apache System. Table 5.2 presents results from the attack surface analysis

report. Columns 2 and 3 of Table 5.2 show the growth in Attack Surface Size of the

static Apache system during usage.

Table 5.3 section (a) summarizes the security issues that were introduced during

the 32 day usage. In other words, these security issues were not present in the Pristine

Apache System but appeared in the Apache System after 32 days.

Drivers 274 284 274 274 274

TCP/UDP

Ports

118 138 124 101 115

Named Pipes 133 146 136 133 134

RPC

Endpoints

33 35 33 33 33

Attack

Surface Size

1537 1699 1565 1512 1545

93

5.3.3 Basic-SCIT Setup

In the Basic-SCIT setup, there are multiple virtual instances of the server of which

one or more are online at any given time. Once every period of time known as ‘Exposure

Time’, the system proactively self-cleanses and rotates. Every time this happens, the

Pristine Apache Image is loaded into the virtual instance that is about to go online. Figure

5.3 presents one such instance. This setup is providing a Pet Store e-commerce

application service through iBatis JPetStore 4.0.5. In the experiment, the ‘Exposure

Time’ is 4 hours. The attack surface size of the system can only increase till the point of

self-cleansing. Thus there is an upper bound on the growth of the Attack Surface Size.

After 4 hours, on self-cleansing, the size of the attack surface is reduced back to that of

the Pristine Apache Image. This is cyclical and so the size of the attack surface is

periodically reduced and kept manageable.

Table 5.2 (columns 2 and 4) compares the Attack Surface Size of a Pristine

Apache System with that of the Apache System after 4 hour use. After the system has

been exposed for 4 hours, it is self-cleansed and rotated thereby reducing the Attack

Surface Size back to that of the Pristine Apache System. From columns 2, 3 and 4, it can

be emphasized that the growth in Attack Surface Size is much less in 4 hours as opposed

to 32 days. Similarly, from Table 5.3 section (a) and section (b) it is apparent that the

count of security issues that arose over 32 days far outnumbered issues that arose in 4

hours.

94

Figure 5.3: Apache System

Figure 5.4 (black series) presents the temporal attack surface of the Basic SCIT

setup for the first 40 hours. The size of the system’s attack surface increases for 4 hours

when it is exposed and is reduced to that of the pristine Apache image on self-cleansing

periodically.

Table 5.3: Security Issues that arose in (a) the Apache System during 32 day usage; (b) the Apache System

during 4 hour usage and (c) the Nginx System during 4 hour usage

Security Issues on System Usage Count

(a) Pristine Apache System VS Apache System after 32 days

Executables with weak ACLs 17

Directories containing objects with weak ACLs 10

Registry Keys with weak ACLs 10

Processes with NX disabled 1

Services vulnerable to tampering 3

Services with Fast Restarts 1

Vulnerable Named Pipes 26

(b) Pristine Apache System VS Apache System after 4 hours

Directories containing objects with weak ACLs 3

Processes with NX disabled 2

Services vulnerable to tampering 1

95

(c) Pristine Nginx System VS Nginx System after 4 hours

Directories containing objects with weak ACLs 4

Services vulnerable to tampering 1

5.3.4 Diverse-SCIT Setup

In Diverse-SCIT, a system with two diverse implementations of the iBatis

JPetStore service is used. Virtual Server 1 uses the Apache Load Balancer with Apache

Tomcat 7.0.41 and Terracotta Big Memory Go Caching; whereas Virtual Server 2 uses

the Nginx HTTP Server with load balancer along with MemCached v1.4.15 to provide

service.

Table 5.4: Security Issues unique to each configuration

Security Issues Count

Issues present in Apache System but not in Nginx System

Directories containing objects with weak ACLs 4

Processes with NX disabled 1

Services vulnerable to tampering 1

Issues present in Nginx System but not in Apache System

Directories containing objects with weak ACLs 1

Processes with NX disabled 1

Figure 5.5 presents two such virtual instances of the server, one with each

configuration. In this setup, virtual servers are rotated in such a manner to alternate

between the two configurations. As shown in Figure 5.4 (red series), on each self-

cleansing, the size of the system’s attack surface alternates between that of Pristine

Apache image and Pristine Nginx image. Table 5.2 (columns 5 and 6) compares the

96

Attack Surface Size of the Pristine Nginx System with the Nginx System after 4 hour use.

Table 5.3 section (c) lists the security issues that arose during exposure. In addition to

reducing the Attack Surface Size periodically, this setup also shifts it. Table 5.4

emphasizes this shift by presenting security issues that are unique to each setup. This

adds another layer of complexity to the intruder since identifying system vulnerabilities

with ever changing attack surface is a challenge. An attack that used to work with the

previous configuration no longer works on rotation.

Figure 5.4: Temporal Attack Surface – Basic SCIT and Diverse SCIT

97

Figure 5.5: Two virtual instances of the Diverse SCIT Setup

5.4 Summary

In this chapter, Attack Surface assessment is used to evaluate the impact of the

SCIT MTD solutions. The dynamically changing Attack Surface Size for (1) Static

Systems; (2) Basic-SCIT and (3) Diverse-SCIT were compared using a test bed

experiment. Results of the experiments that show changes in attack surface size along a

timeline for the three different security configurations are presented. The results support

the hypothesis that SCIT is an effective means to provide MTD by reducing / shifting

attack surface periodically, thus making the hacker’s task harder. With Basic-SCIT, by

moving the target virtual server, the intruder is forced to restart the attack all over again.

Furthermore with Diverse-SCIT, due to Attack Surface shifting, some of the attacks that

worked before no longer work after self-cleansing and restoration. Traditional reactive

98

systems are generally static and are indefinitely online. If not for periodic management,

the system attack surface size tends to keep growing with time. Gains of SCIT are further

highlighted when compared to traditional static systems.

99

CHAPTER SIX – SCIT BASED MOVING TARGET DEFENSE: WORK FACTOR

ANALYSIS

This chapter proposes a game theoretic attack / protect cyber economic model to

facilitate designing architectures that are resilient and tilt the asymmetric cyber economic

costs in favor of the defender. This work formalizes system security state transitions and

intruder / defender work factors associated with all of those state transitions. This

component of my research incentivizes logical and architectural solutions that create an

ecosystem where the sum of all defender work factors in defending an enterprise over a

period of time is much less than the sum of all intruder work factors involved in

compromising the enterprise security and ex-filtrating data.

6. 1 Overview

This chapter explores the metrics, measures, and economics of cyber resiliency

and asymmetric effects. The chapter examines an approach to shifting adversaries’

current advantage in cyber conflicts in favor of defenders. If the economic drivers can be

understood, which increase an adversary costs in time, it can then reduce the asymmetry

impacts for cyber economic value and resiliency. If progress is to be made, cybersecurity

experts will also need to view solutions in economic and policy terms, rather than just

technology. Nevertheless, systems will need to integrate cyber resiliency and asymmetry

with their co-dependent infrastructures.

100

Cybersecurity imbalance limits current solutions to an increasing rate and severity

of attacks. BIGDATA volume, velocity, variety and complexity are beyond the ability of

commonly used tools that capture, process and analyze these security incidents. The

Internet of Things is just one example that’s driving this new cyber economics. Another

seeks incentives for a global security from the insider out of "like-minded, like-valued

nations” for new international norms. This chapter explores the metrics, measures, and

economics of cyber resiliency and asymmetry effects on the asymmetric balance and

examine an approach to shift adversaries’ current advantage in cyber conflicts in favor of

defenders.

Today, cybersecurity needs a fourth generation cyber security approach focused

on Resilience, Restoration and Recovery. Moving Target Defense (MTD) concepts that

control changes across multiple system dimensions in order to increase the costs of

adversary probing and attack efforts; thus, reducing the window of opportunity and

increasing the uncertainty and apparent complexity for attackers. If it is assumed that

perfect security is unattainable and that all systems are compromised, MTD research

focuses on enabling continued safe operations in a compromised environment and to have

systems that are defensible rather than perfectly secure. Self-Cleaning Intrusion

Tolerance (SCIT) integrates cyber resiliency and asymmetry with their co-dependent

infrastructures.

The rest of this chapter is divided into 8 sections. In the next section, related

works for the motivation of this study are discussed. Section 6.3 presents market

characteristics for the asymmetric cyber advantage. Section 6.4 introduces SCIT technical

101

and architectural methodology for gaining an asymmetric advantage. Section 6.5 presents

a Cyber Economic Model. Section 6.6 applies SCIT resiliency and security for an optimal

balance. Section 6.7 shows case studies of the defender and/or adversary with pre-loaded

exploits, and then compares an attacker’s work factor to a defender’s. Section 6.8

Conclusions of SCIT architecture asymmetric cyber advantage to provide “Security-

Driven Resilience”.

6.2 Related Work

Cyber Economics is a developing field of study that requires the multi-

disciplinary research of social and behavioral scientists, as well as, lawyers and

technologists. Ponemon Institute 2015 [Pone2015] annual research provides several

takeaways for better understanding the factors that can minimize the financial

consequences after a data breach. Littlewood identifies the intruder work factor as a

fundamental quantitative measure of security [BLit1993]. Marn-Ling Shing et al

proposes the use of game theory concepts (a game matrix) for assessing the Intruder

Work Factor likelihoods [SMar2011]. DARPA attempted observing Intruder Work factor

in collaboration with Sandia National Labs [GSch2000]. Collectively, they are

progressive efforts of the metrics for cyber costs but lack an integrated analyses for

today’s need of cyber resiliency and asymmetry. So research by Professors Lawrence

Gordon and Vernon Loeb on the impact of investments in cyber security measures, cost

of responding to security breaches, and impact of a publically acknowledged security

breach on stock valuation was assimilated [LGor2002].

102

This integrated analysis begins with the intruder security work factors for

fundamental quantitative measurements. Figure 6.1, shows a breakout of Adversary Time

Expenditure - 95% of the attack is preparation for an attack execution; thereby, changing

it would impact the asymmetric costs in today’s traditional defensive secure systems

[JLow2004].

Cyber resiliency and asymmetry economics needs integrated analyses inclusive of

measurement that demonstrate greater value. The Ponemon Institute research reveals that

the Mean Time To Identify (MTTI) and Mean Time To Contain (MTTC) the data breach

are linearly related to data breach costs. However, today’s reactive policies and isolated

technologies have only reduced the breach discovery from 234 days to 178 days, and the

time for breach containment is reduced from 83 days to 55 days [Pone2015]. If the

economic drivers can be understood, which increase an adversary costs in time, the

asymmetry impacts for cyber economic value and resiliency can be reduced.

103

Figure 6.1: Adversary time expenditure

Defenders maintain separate technologies for their activities over multiple layers

that attempt to block malicious activities across the attack space. In the cases studies, this

attack space is used to apply a variant of a Root Exploit, Brute Force attack, and

Dictionary attack to measure some of the activities over the layer space, shown in Table

6.1 [GSchu2000]. Metrics of their resiliency in an asymmetry environment are measured.

The goal is to demonstrate that cyber economics decisions should assess Intruder and

Defenders Work Factors; consequently, drive the practical constraints of cost, risk, and

benefits.

Table 6.1: Defender Activity

104

6.3 Foundations of Asymmetric Cyber Advantage

Cyber economics aids in the asymmetric balance between the attackers and

defenders; whether with a choice of technologies or procedures that prevent and respond

or determine an attack type and their efforts to success. Political economists Christopher

Coyne and Peter Leeson [CCoy2005] characterize the current defensive strategy as

“simply the sum of dispersed decisions of individual users and businesses.” For instance,

in the Market for Lemons: Quality Uncertainty and the Market Mechanism presents the

information asymmetry between buyers and seller. This examines how the quality of

goods traded in a market can degrade, leaving only "lemons" behind. The economist

George Akerlof presents an adverse selection problem in how high-quality is driven from

the market, which leads to a market collapse [GAke1995]. A similar problem exist in

today’s internet, where information asymmetry exchanges with bad actors and lower

quality goods.

Similarly, Jack Hirshleifer’s story on the “Island of Anarchia” represents today’s

internet defenses, where individual families each constructed and maintained a section of

the flood wall. Thus, the island's flood defenses is dependent on the weakest link, that is,

the laziest family [GHir1983]. Cyber espionage takes advantage of the asymmetric

weaknesses, where an individual gains access to intellectual property and exploits this

advantage at the market expense.

Cyber defenders bear these asymmetric costs in traditional defensive secure

systems, when playing by the attacker’s rules. SCIT reverses the advantages for the

defenders to reduce the work factors by working with known host system properties –

105

while an intruder work factor increases in working with unknowns in the target

environment. In the case of SCIT, the controllable environment is independent of the

previous attacker activities.

6.4 Technical and Architectural approaches to gaining asymmetric
advantage

SCIT is a fourth generation cyber security approach with a focus on Resilience,

Restoration and Recovery. SCIT research focuses on the critical servers most prone to

malicious attacks.

Table 6.2 shows a comparison of security solutions to highlight their different

defender work factors [ANag2013]. These factors drive decisions of cyber economics in

traditional perimeter defenses for more effective and efficient solutions.

Address Space Layout Randomization (ASLR) improves the effectiveness, when

applied to every application to protect binaries from code-injection attacks and obfuscate

a process system language to presents an ever-changing target. SCIT also presents an

ever-changing target that increases the cost of their probing and attack efforts. Together,

SCIT + ASLR improves the asymmetric balance effectiveness though with the added cost

and reduced efficiency.

6.5 Cyber Economic Models

In the absence of other comparable economic analysis, the Gordon-Loeb Model

[LGor2002] has become the “gold standard” in the area of cyber economic models. They

developed an economic model for cyber security based on an analysis of organization

spending as well as marginal effectiveness and return on investment of cyber

106

investments. Among the many findings of their research, the Gordon-Loeb Model makes

two important assertions:

Table 6.2: Technical Solutions Work Factors

 Incremental additional investment in security provides additional benefit by

reducing the potential of successful attack up to a point. Beyond this point, there

is diminishing (or no) additional benefit for additional investment.

 An organization should not invest more in cybersecurity protection measures than

37% of the expected potential loss due to successful cyberattack.

Using these as baseline for cyber investment hygiene, a case can be presented for

using intruder and defender work factors to quantify intruder efforts in compromising a

target system and defender efforts in protecting the system. The relevance of the

107

following vulnerability life cycle is also taken into consideration in presenting a generic

state transition diagram that represents one cycle of transition from a vulnerable state to a

known good state for the target system.

A Typical Vulnerability Life Cycle is presented below:

 Discovery

 Disclosure

 Release of Patch

 Availability of Exploit

Couple of examples illustrating relevance of relationship between Vulnerability

life cycle and Attacker / Defender Work Factor are presented below:

 Disclosure of a vulnerability without a patch decreases Intruder Work Factor

 Release of a Patch increases Intruder Work Factor and decreases Defender Work

Factor

The state transition diagram below (Figure 6.2), in addition to representing

transition between various system security states, also assign intruder and defender costs

for each transitions. Intruder (or) defender actions trigger state transitions represented

below and the individual costs for performing such actions.

Costs to the Intruder:

 CAR – Performing target environment reconnaissance

 CAA – Attacking and exploiting target

 CAAN – Attacking and exploiting target w/ no protections

 CAAP – Attacking and exploiting target w/ protections

108

 CAAS – Attacking and exploiting target within a short exposure window when

SCIT is in place along with other protections

 CAE – Ex-filtrating data from target post compromise

Costs to the Defender:

 CDP – Updating services patching security issues periodically

 CDT – Performing testing on updates and patches before deploying them to

production environment

 CDD – Monitoring and detecting intrusions and other malicious activities

 CDI – Performing incident response

 CDR – Remediating and recovering systems reactively to last known good secure

state as a response to a security incident. Cost is dependent on severity of security

incident and assets compromised.

 CDS – Recovering systems periodically using SCIT proactively. Fixed cost

independent of malicious event severity.

CAAS >> CAAP >> CAAN

109

Figure 6.2 - Generic State Transition Diagram and Costs

* State transitions costing the defender CDS are only applicable in the case of architectures employing Self-

Cleansing Intrusion Tolerance (SCIT)

 CDV – Cost to the defender in performing periodic vulnerability assessments,

keeping up with security updates and using threat intelligence to proactively

identify security issues

CA – Sum of all attacker costs

CD – Sum of all defender costs

110

Primary Objective of the cyber economic model from the defender’s standpoint is

the following:

Sum of defender work factors across the timeline must be much less than the sum of

attacker work factors.

In order to build an attack / protect economic model, a few parameters are defined

in addition to the ones discussed above:

 CCA – the value of the critical assets (it is assumed it is the same for both the asset

owner and the intruder). The cost to protect an asset should never be greater than

the value of asset itself.

 CP – total cost of protecting the critical assets (CDV + CDD + CDP + CDT), per unit,

together with a possible amortization of the protection technology’s cost over the

number of units to be protected.

 PC – the probability of intruder exploiting the target systems and compromising

the critical assets (if no protections are applied)

 PE – the probability of intruder exploiting the target systems and compromising

the critical assets (if protections are applied)

 PS – the probability of intruder exploiting the target systems and compromising

the critical assets within a short exposure window (if SCIT is in place in addition

to protections applied)

CD <<CA

PS << PE << PC

111

An attack / protect economic model based on simple game theoretic formulation

is presented below in Table 6.3. Each cell in the game table has two entries:

D – Defender’s value, A – Intruder’s value

Observations from Table 6.3:

Defender Perspective: It is reasonable for the defender to try and maximize the

minimal advantage the defender has over the intruder, namely (D-A). For the value of (D-

A) to be high, from the equations in Table 6.3, the following conditions need to be met:

 The cost of protecting the critical assets, CP in architecture 2 (or) CP + CDS in

architecture 3 need to be lower than 37 % of the value of CCA. The defender cost

in performing SCIT (CDS) is a small fixed cost that is neutral to the asset’s threat

environment. This fixed defender work factor however has an iterative effect on

CAA making the intruder’s compromise the system ‘n’ times to achieve their

goals. ‘n’ here is the ratio (Total Intruder Attack Duration / SCIT Exposure

Window)

 Probability of intruder exploiting the target Pi needs to be low. Lower the better.

 Cost (CAR + CAA) needs to be high. Higher the better.

Table 6.3: A Game Theoretic Attack / Protect Economic Model

112

All the above conditions are best met by Architecture 3 – Defense in Depth

Protection + SCIT (CDS). Therefore, Architecture 3 presents the best platform for the

defender to maximize his advantage over the intruder.

Intruder Perspective: It is reasonable for the intruders to maximize their value,

namely A. For the value of A to be high, from the above equations, the following

conditions need to be met:

 Probability of intruder exploiting the target system (PC or PE or PS) needs to be

high. Higher the better.

 Cost (CAR + CAA) needs to be low. Lower the better.

 In the case of Architecture 3, the value of ‘n’ needs to be low, meaning that the

total duration of attack must not be much larger than the SCIT exposure window.

113

Intruder loses his advantage as the SCIT exposure window gets smaller or as the

total attack duration gets bigger.

6.6 Optimal Balance between Resiliency and Security

Resiliency notions have increasingly adopted and resemble security concerns,

thus constituting the growth of Security-Driven Resilience. Security has pulled away

from its traditional bias and focuses upon the everyday needs of people and population;

and in doing so remap its scale in security. Today, the concept of resilience incorporates a

vast range of contemporary risks and security challenges [UNIS2012]. Since 9/11,

resiliency has increasingly become a central organizing metaphor within the expanding

and multi-scale institutional framework of national security and emergency preparedness

[PAde2012]. Hence, what the resilience is – becomes less important – than what it does.

Today, cyber defenders bear these asymmetric costs, and need to reduce their

work factors for resiliency and security of known's like host system properties. Moving

Target Defenses enable practical cyber resiliency, which reverses to a defender’s

advantage the everyday needs of security personnel and end users. SCIT increases the

attacker costs of their probing and attack efforts; while, enabling the continued safe

operation in a potentially compromised environment. Their benefit is to have defensible

systems, rather than hoping for perfectly secure systems. Cyber resiliency and asymmetry

needs integrated analyses of the economics drivers, which show that increase an

adversary costs in time reduces the asymmetry impacts for cyber economic value and

resiliency.

114

In order to achieve this balance between Resilience and Security in the context of

SCIT, a formal model for the SCIT controller was developed which provides a

framework for flexibility in the application of SCIT to facilitate meeting target

environment requirements when it comes to security, resilience and performance. The

SCIT controller handles the rotation of the virtual machines and is the engine behind the

SCIT environment.

A formal representation was important to understand the relationships between

the various temporal variables that drive the configuration and by extension, the security

and performance of a SCIT environment.

Table 6.4: SCIT Temporal Configuration Variables

TE Exposure time (s)

TS Service time + Switch time (s)

TI Query inter arrival time (ms)

TR Time taken to restart server (s)

V Number of virtual servers used

TQ Time spent in quiescent state (s)

Qi(t) Service requests received till time t.

Qp(t) Service requests processed till time t.

N(t) Service requests queued at time t.

VO(t) Number of Virtual Servers online at

time t.

VR(t) Number of Virtual Servers restarting at

time t.

115

Based on the temporal variables defined above in Table 6.4, the following

relationships in Table 6.5 were developed and validated with test-bed experiments.

Table 6.5: SCIT Test Bed Configuration Variables

N(t) = Qi(t) - Qp(t)

Qi(t) = t / TI

Qi(t) = Qi(t-1) + (1 / TI)

TQ = N(t) * TS

Qp(t) = Qp(t-1) + x

where x = [VO(t) - VR(t)] / [VO(t) * TS]

TR + TQ < TEmin * (V – 1)

TQmax <= [TE * (V-1)] - TR

VO(t) ∝ TS / [TI * TE]

VR(t) ∝ 1 / TE

These relationships help in configuring parameters like Exposure Time, Quiescent

Time and Number of Virtual Servers that need to be online at any given time to be able to

meet the security and performance requirements of an environment. These relationships

also provide flexibility in terms of configuring parameters to assure resilience as deemed

necessary in an environment.

Adaptive SCIT:

 Having these metrics handy helps to take a step towards Adaptive SCIT - adding

Resilience to SCIT.

 High compute environments are generally resource intensive and computing

needs vary greatly with time. Above established metrics and relationships give the

116

ability to dynamically adapt SCIT working parameters on perceived system

environment changes.

 Misconfigurations such as having too large an exposure window could impact

system security. Similarly having too few virtual machines online could impact

performance. There is a need to continuously monitor service demands and threat

landscape in order to strike a balance between usability, performance and security

at all times.

6.7 Use Cases for Defender and/or Intruder that include Work Factors

Hypothesis: “Intruder and Defender Work Factor” are quantifiable metrics. With

100K+ new unique malware samples per day [McAf2013], the goal of a security strategy

should be: Increase the ratio of the attacker’s work factor to the defender’s work factor.

In order to validate the goal, test bed experiments were performed for which two

architectures were considered: Non-SCIT and SCIT architectures.

 Test Bed Setup: Apache Tomcat 5.5.36, Gateway p7805u FX – 2.26 GHz Intel

Core 2 Duo P8400; 4GB 1066 MHz DDR2 RAM, Windows Vista Premium 64 bit

OS

 Pre-loaded exploits in the Metasploit Framework used – hence the results do not

account for ‘Exploit Development’ time

Two use cases are presented, both of which show quantifiable metrics and an

asymmetric cyber advantage for the Defender Work Factor against the Intruder

[ANag2013].

117

Table 6.6 timeline of a samba remote root exploit for a buffer overflow attacks

shows an asymmetric cyber advantage for an exploit in 1/2 the time of intruder work

factors. An ASLR configurations slightly increases an intruder’s workload, but the

combination with randomization more than doubles the ratio of intruder work factor to

defender work factor. Randomization increases the uncertainty and apparent complexity

for attackers, shown in figure 6.3. This reduces their window of opportunity and increases

their costs of probing and attack efforts. Similarly, SCIT technical and architectural

approach also gains an asymmetric advantage that interrupts the Buffer Overflow. SCIT

provides security and resiliency, which interrupts and forces a restart that loads a clean

image of the server’s operating system and application into the Virtual Machine.

Thereby, provides an optimal balance between resiliency and security.

Table 6.7 WAR Backdoor use case represents the earlier Adverse Time

Expenditure breakout [ANag2013]. The intruder work load factors on an Apache Tomcat

is 95% of an attack’s execution. Even though an intruder asymmetric cyber advantage is

executing the exploit in 11 seconds, the missed opportunity is disrupting the work load

factors over their 134 seconds of preparation.

Further, the cost model defined above was applied to the Apache Tomcat test bed

experiment to investigate the impact of SCIT on intruder costs.

118

Table 6.6: Test Case Buffer Overflow Work Factors

Figure 6.3: Samba test case exploit work flow

119

SCIT technology implements defensive side of procedures, which prevent and

respond to cyber-attacks. SCIT technical and architectural approach interrupts the

attacker, as shown in table 6.7 WAR Backdoor chart and Figure 6.4 flow diagram shows

seven stages to force a restart and reload the server’s operating system and application

into the Virtual Machine. An optimal balance between security and practical cyber

resiliency, where resiliency tool supports the economic work load factors for defender at

an adversary expense. SCIT resilience, restoration and recover increases the uncertainty

and apparent complexity for attackers, reduce their window of opportunity and increase

the costs of their probing and attack efforts.

Furthermore, defensive opportunities that disrupt an intrusion are not limited to

the initial beach exploit activities. For example, South Carolina Department of Revenue

malicious (phishing) emails, where one user click on the embedded link unwittingly

executed a malware. Over the next two months, attacker’s compromised 44 systems with

one malicious backdoor software to steal three database files, and another to send data

out. Additionally, there were at least 33 more unique pieces of malicious software,

password tools, batch scripts and administrative utilities, which executes commands to

perform the attack and data theft activities [MHei2012]. Blocking these sequence, in

additional to the initial, not only increases the intruder work factors but the likelihood of

an intruder success.

The foundational and applied advances effect the asymmetry and resiliency in

cyber economics. Collectively, they drive essential system requirements for cyber

120

systems, which includes traditional IT, cloud platforms, cyber-physical systems, and

critical infrastructure.

Table 6.7: WAR backdoor test case work factors

121

Figure 6.4: WAR backdoor test case workflow

6.8 Summary

SCIT “Security-Driven Resilience” architecture provides a robust security

mechanism that guarantees certain security properties by limiting the exposure time. It is

a cyber- resiliency tool guided by economic factors for defender and/or intruder. SCIT is

an optimal balance between resiliency and security that provides administrative and

economic benefits as a reasonable choice to be included in security architecture.

Additionally, SCIT does not generate false alarms, an important advantage of SCIT

compared to traditional reactive solutions like IDS, which helps reduce the intrusion

alerts management costs. SCIT provides a cyber-advantage that benefits environments

where technical skills are limited; for examples, environments of remote and rural

locations, small organizations, tactical military settings, and emerging countries. The

122

simulation studies presented suggest that an implementation of SCIT on host servers

provide a robust architectural solution in the face of new attacks.

123

CHAPTER SEVEN: µ-SCIT – ADDING MODULARITY TO SCIT

This chapter proposes µ-SCIT, a hybrid architecture that adds modularity to SCIT

using Operating System level virtualization. The proposed architecture is built on top of

container-based virtualization technology. The added modularity affords the ability to

perform more frequent targeted granular rotations at the level of processes and

applications. This in turn extends ability of SCIT to work with long running applications

and handle long transactions using container check-pointing and migration.

7.1 Overview

In previous chapters, we have defined Self-Cleansing Intrusion Tolerance (SCIT),

a recovery based intrusion tolerance technique that comprises of rotating Virtual Servers

(VS) once every period of time known as the ‘exposure window’. Rotating a virtual

server here entails killing a virtual server and restarting it using a last known good

configuration ‘golden image’. Needless to say, there are certain challenges in performing

such SCIT rotations, some of them being:

1. Resource intensive – depending on the size of the VS, killing it and restarting

it once every period of time (especially if the exposure window is small) could

have an impact on the performance of the system. Also, the number of virtual

machines that need to be delegated to perform SCIT tasks depend on a) time it

takes to do a single SCIT rotation (greater the time, more number of VS’

124

required) and b) target ‘exposure time’ (smaller the exposure time, more

number of VS’ required).

2. Wasteful – it is well documented that most of the vulnerabilities that exist and

those can be exploited are application vulnerabilities and not Operating

System vulnerabilities. In order to cleanse applications that may have been

compromised, it is wasteful to rotate the entire VS along with its’ operating

system components.

3. Persisting long running applications – although SCIT (as is) works well for

systems that perform relatively small transactions (example: E-commerce), it

faces challenges in environments where there is a need to persist long running

transactions (example: media, critical military applications). Persisting such

long running transactions across a full VS rotation without downtime is a

tough ask.

To address these challenges, this chapter proposes µ-SCIT that extends traditional

SCIT by adding modularity to it. Goal here is to perform micro level rotations that are at

a more granular level than full VS rotations.

7.2 Need for Modularity

7.2.1 Performance Argument: Exposure Time as a metric for proactive risk
management

Security and performance must be dealt within one framework – high security

with low performance is as unacceptable as low security and high performance. In this

chapter, we assess the effectiveness of using exposure time as a metric to tradeoff

125

between security and performance. This metric exacerbates the need for adding

modularity to SCIT.

Lower exposure times mean lower intruder residence times leading to less

damage inflicted. Although reducing the exposure time increases security, it also

increases computing overhead thus reducing service throughput. It is essential to strike a

balance. We use throughput and response time to assess service performance.

We now introduce the term ‘Exposure Factor’:

Exposure Factor (EF) = percentage loss if a threat is successfully realized

The following observations must be kept in mind while configuring an exposure time:

 Given intrusion has not occurred, penetration risk increases with time – indicates

a need for low ‘exposure time’;

 Given intrusion has occurred, progress of intrusion increases with time – indicates

a need for low ‘exposure time’;

 Low exposure times lead to low exposure factor thereby resulting in minimum

losses;

SCIT Controller Model:

The SCIT controller is the despatcher that keeps all the virtual servers in order by rotating

them in and out to maintain exposure window and perform self-cleansing. The SCIT

Controller model ‘S’ can be formally represented using the following:

S V1V2V3…Vn S

Where V1…Vn stand for ‘n’ Virtual Servers respectively

126

Virtual Server 1 gets exposed first. Once the exposure time of Virtual Server 1 runs out,

dispatcher switches control to Virtual Server 2. Now, Virtual Server 2 becomes exposed

and Virtual Server 1 is pushed into quiescent state before restarting. Once all virtual

servers have been exposed once, it is Virtual Server 1’s turn to be exposed again.

Despatcher maintains this cycle.

Having formalized that, here are some general observations:

 Higher number of virtual servers gives the flexibility to attain lower exposure

times.

 Managing large number of virtual servers take up a lot of CPU cycles thereby

leading to poor query response times.

 More virtual servers lead to more frequent server rotations meaning more

processing.

 It is relatively simple and inexpensive to manage a small number of virtual

servers; however this results in larger exposure times and more risk of

penetration.

 In this framework, number of VS on-line simultaneously has an impact on

throughput and response times.

 From Simulation runs, we infer that having more number of VS on-line

simultaneously results in a healthy increase in throughput. This we believe is

primarily caused by the VS's in the quiescent state.

 Having more number of VS on-line leads to higher response times. This is not a

desirable effect.

127

Taking all these observations into consideration, although lower exposure times

lead to more secure servers, they also use up a lot of CPU cycles performing frequent full

VS rotations thereby bringing down the service throughput. In order to address the

conundrum of providing low exposure times as well as having low performance impact,

this work proposes adding modularity to SCIT where critical applications are rotated on a

more frequent basis thereby addressing low exposure time targets as well as not having to

rotate the entire VS to achieve the same thereby addressing low performance impact

requirements.

7.2.2 Security Argument

From Figure 7.1, Microsoft Security Intelligence Report Volume 8, 2009 suggests

that most of the vulnerabilities that lead to intrusions are in fact application

vulnerabilities and not operating system vulnerabilities. SCIT performs full virtual server

rotations thereby rotating operating system components as well periodically, while in

reality, these operating system components and other system software are least

susceptible to compromise. To overcome such wasteful rotations, my research proposes

adding modularity to the current model that treats the entire virtual server as one gigantic

program.

128

Figure 7.1: Vulnerabilities trend in Windows systems, 2006-2009 [MSSI2009]

Micro-SCIT (µ-SCIT) proposes a different design that adds granularity to the

SCIT rotations by extending the base operating system functionality by means of user-

space servers (or) modules (or) containers. By splitting a running virtual server into

small, independent parts, the system becomes less complex and more robust, because the

smaller parts are more manageable and help to isolate faults. Advantages of such a

modular approach over a traditional monolithic approach are as follows:

 First, by splitting up the virtual server into multiple isolated modules or

containers, we are not reducing the number of bugs but we are significantly

reducing the damage that each bug can cause.

 Second, by breaking the operating system into many processes, each with its own

boundaries, we greatly restrict the propagation of faults. A bug in a running

application cannot inadvertently wipe out the file system by accident. This hugely

helps in isolation of faults and prevention of malware propagation.

129

 Third, by constructing the system as a collection of modules, the functionality of

each module can be clearly determined, making the entire system much easier to

implement and secure.

 Fourth, this design facilitates long transactions. Persisting a long running

application is now a matter of check-pointing and restoring a module specific to

that application and does not involve the other components of the virtual server

that are constantly being restored to last known good configuration by SCIT.

In order to add said modularity, the use of OS-level virtualization is proposed.

7.3 Operating System Level Virtualization

Operating system level virtualization is a server virtualization method where the

kernel of an operating system facilitates the use of multiple isolated user-space instances,

instead of just one. Such instances are called Containers or Virtual Environments (VE) or

Virtual Private Servers (VPS) or Jails. A sample illustration of a container is provided in

Figure 5.2. Operating systems that support container based virtualization facilitate:

 Running multiple isolated sets of processes under a single kernel instance

 Check pointing – saving complete state of container and later restarting

 Check pointing and restarting are implemented as loadable kernel modules

From kernel view, containers is a separate set of processes completely isolated from other

containers and host systems. Container is an isolated entity (all inter-process

communications (IPC) and parent-child relationships are within the container

boundaries). Traditional h/w virtualization approaches like Xen and VMWare only

support check pointing / restarting of an entire OS environment; they do not support

130

check pointing and restarting of a small set of processes as required by the µ-SCIT

proposed above.

7.3.1 Container Check-pointing and live migration

In order to achieve the goals of µ-SCIT as outlined in Section 7.1, it was

necessary to achieve container check-pointing and live migration. OpenVZ, which is a

container based virtualization technology for Linux was used to implement a test bed

version of µ-SCIT and to assess its effectiveness.

Basic requirements for container-based operating system virtualization to

facilitate check-pointing and live migration can be outlined as follows:

 Process Id (PID) virtualization – same PID has to be assigned to a process as it

had before check-pointing

 Process group isolation – make sure parent child relationships will not lead to

outside a container

 N/W isolation and virtualization – all networking connections will be isolated

from all other containers and host OS

 Resource virtualization – to be independent from hardware and able to restart

container on a different server

In addition to the basic requirements outlined below, in order to persist a transaction /

application through a SCIT rotation across servers, there is a need to maintain system

consistency – meaning all relevant state information and application specific private data

need to be carried over:

 Register set, address space

131

 Allocated resources, network connections

 Per-process private data

 Process-hierarchy, IDs

A typical container check-point / restore life cycle would go through the following:

 Freeze processes (source)

 Dump container to dump file (source)

 Stop the container (source)

 Restart the container (destination)

 Restart the processes (destination)

 Resume processes within the container (destination)

Figure 7.2: Sample illustration of container

132

7.3.1.1 Container migration challenges and considerations

Like any technology solution, container migration has its own sets of challenges

and considerations. As noted earlier in this section, the crux of container migration is in

dumping the container to a dump file and moving the dump file to target destination.

Needless to say, the performance of this container migration / restoration strategy hinges

on the size of the dump file. We noted in Section 7.3.1 that all container private data and

relevant state information needs to be carried over to facilitate seamless resumption of

long running transaction / applications without loss of availability. To achieve this goal,

dump file size needs to be minimal.

As part of validating the practicality of this approach, a test-bed experiment was

conceptualized and built to simulate use case scenarios. The configuration of the system

used to build the test-bed is presented below. It needs to be noted that the system specs

are well below current state of the art servers and this was deliberate to portray

performance efficacy of this approach.

Configuration of System used for Test Bed Experiment:

 Gateway P-7805u

 Intel Core 2 Duo CPU P8400 @ 2.26GHz

 4 GB RAM

 CentOS 6

As a result of performing multiple test bed experiments, find below a summary of dump

file sizes that needed to be moved to destination in order to perform respective container

migrations under various scenarios using OpenVZ.

133

Table 7.1: Sample container dump file sizes

Size, Mb Scenario

0.9 1 Bash

1.2 Bash + SSH Daemon

2 Bash + Idle Apache Tomcat

2.4 POSTGRESQL Server Running with Table of 300 entries open

3 6 Bashes

3.6 MySQL Daemon

16 Acrobat Reader with an open 12 Mb file

26 Bash + Mozilla Firefox (Default Home Page) + Java VM

The test bed experiments were not meant to be complete or to represent every

possible scenario. It was meant to illustrate the sample dump file sizes in scenarios while

attempting to migrate some fairly common applications. As can be noted from our

results, the dump file sizes are manageable and should not cause any noticeable

performance impacts given today’s network bandwidth and data transfer rates.

It is recognized that the scenarios highlighted above are not complete and that

more resource intensive applications could lead to larger dump file sizes. In order to

address those scenarios, some potential options to minimize dump file sizes are presented

in the following subsection.

134

7.3.1.2 Minimizing Dump File Size

In order to minimize dump file sizes and facilitate seamless rotation of Virtual

Private Servers, following tweaks could be effectively performed as was learned in the

process of running multiple test bed experiments.

In the context of using OpenVZ in CentOS Linux for my test bed experiments,

one of the options to minimize dump file size is to avoid carrying over unnecessary

container private data and folders. This can be achieved by creating a file

/tmp/exclude.txt in the destination VPS with entries to exclude migrating. Sample file can

contain entries like:

 /tmp

 /boot

 /lib/modules

 /etc/blkid

 /etc/mtab

 /etc/lvm

 /etc/fstab

 /etc/udev

In addition to excluding migration of unnecessary folders, certain system services

can also be disabled / uninstalled since they will not be required in the context of a

container. Sample list provided below:

 acpid, amd (not needed)

 checkfs, checkroot (no filesystem checking is required in container)

135

 clock (no clock setting is required/allowed in container)

 consolefont (container does not have a console)

 hdparm (container does not have real hard drives)

 klogd (unless you use iptables to LOG some packets)

 keymaps (container does not have a real keyboard)

 kudzu (container does not have real hardware)

 lm_sensors (container does not have access to hardware sensors)

 microcodectl (container can not update CPU microcode)

 netplugd (container does not have real Ethernet device)

 irqbalance (this is handled in host node)

 auditd (not needed in container)

 lvm2-monitor (no LVM in containers)

 ntp/ntpd (clock taken from host node)

7.4 A comparison of SCIT with Container Migration

Container Migration is not meant to be a substitute for SCIT. It is meant to be

complementary. Although SCIT is more resource intensive than container migration, it

assures sanctity of the new virtual server going online by employing the use of an internal

‘golden image’ that is not public facing and hence not accessible from the internet. With

regard to container migration, although it has its performance benefits of facilitating

micro-rebooting and security benefits of performing targeted actions, there are no

guarantees when it comes to the security posture of the container. Having made those

136

distinctions, our research proposes the use of these two solutions together complementing

one another.

A brief security comparison of SCIT and container migration is provided below:

Table 7.2 Security comparison of SCIT and container migration

 SCIT Container Migration

Restore to clean state

(no malicious activity detected)

Yes No. State information + potential

malicious data carried over

Restore to clean state

(malicious activity detected)

Yes Yes, can go back to a previous clean

checkpoint (if known)

Malware propagation within

applications

Does not

prevent

Prevents – due to use of isolated

containers

7.5 µ-SCIT – Adding Modularity to SCIT using OS-level virtualization

µ-SCIT is an architecture that brings together the two technology solutions

presented in the previous section – SCIT and container migration. Every virtual server in

the resulting µ-SCIT architecture would resemble the illustration in Figure 7.3. It is a

representation of a µ-SCIT virtual server built on top of OpenVZ virtualization for Linux.

OpenVZ provides the ability to build isolated containers (or) Virtual Private Servers

(VPS) that independently contain within them all the processes, child processes, network

dependencies, application software and relevant container private data to function on its

own. This in turn provides an ability to be able to kill, restart or migrate the VPS without

having to deal with the other components and layers.

When SCIT and container migration work in tandem and as a complement to one

another, the resulting µ-SCIT architecture would perform two levels of rotations as

summarized below:

137

1. Once every ‘exposure time’, VMM kills the virtual server (say VS #1) that is

exposed and starts another virtual server (say VS #2) that was in live spare.

During this process, the VS is self-cleansed and is loaded from a ‘golden image’

next time it goes online. Meanwhile, VS #2 is exposed and this cycle goes on.

2. Within every virtual server (say VS #2) that is currently exposed, all critical

Virtual Private Servers are rotated once every ‘container lifetime’.

Critical Virtual Private Servers are the VPS’ that have been identified beforehand

during an audit or by system / network administrators to be

 Critical to services provided and/or

 Have an escalated threat posture with a potential for compromise

 Candidates for long running transactions

 Figure 7.3: Representation of µ-SCIT Virtual Server (VS) instance

138

Once such a determination has been made, these VPS’ go through rotations once

every period of time known as ‘container lifetime’. In the context of VPS, rotations

imply:

 being migrated meaning check-pointed and restored (or)

 be self-cleansed meaning VPS gets replaced by a known-good version of

the same

In µ-SCIT architectures, use of ‘Container Lifetime’ that is much smaller than

‘Exposure Time’ is strongly recommended thereby creating an ecosystem where critical

VPS rotations take place far more frequently than SCIT rotations.

7.6 Summary

In this chapter, we proposed µ-SCIT – a hybrid approach that combines SCIT and

container-based virtualization. By adding modularity to SCIT, µ-SCIT can be

summarized as follows:

 Offers another layer of rotation in addition to the existing SCIT rotations

o More granular – rotation happens at the level of VPS and not VS

o More frequent – since the size of the VPS is relatively small compared

to the VS in most cases, this affords an opportunity to perform targeted

cleaning and migration on a more frequent basis

o VPS rotations happen once every ‘Container Lifetime’ where Container

Lifetime << Exposure Time

 Facilitates long transactions / long running applications

139

o Long running application needs to be identified beforehand and placed

into a dedicated VPS

o VPS is migrated (check-pointed and restored) once every ‘Exposure

Window’ from source server to destination server in order to persist full

SCIT rotations.

140

CHAPTER EIGHT – RECOVERY BASED RESILIENT CYBER ECO-SYSTEM

This chapter proposes a ‘stand-alone’ and a ‘collaborative’ architecture which

make use of information provided by the enterprise Security Information and Event

Management (SIEM) solution to perform adaptive intrusion tolerance in unsupervised

learning environments. Resilient systems need to be adaptive, and to achieve this goal,

this research shows how environmental information can be used to adaptively change

system and operational parameters.

8.1 Overview

Today’s approach to security is largely based on perimeter defense and reactive

strategies like IDS / IPS systems, Firewalls and Anti-virus products. Past experience has

repeatedly shown us that this strategy is not complete and secure. Intrusion tolerance is

an approach which treats intrusions as inevitable and shifts the focus from detection and

prevention to containing losses and rapid recovery. It can be suggested that a complete

security strategy is one which does defense in depth and involves both traditional security

strategies and intrusion tolerance. Security Information and Event Management (SIEM)

is a framework which consolidates the plethora of information available from all of the

network and security devices into useful information. In this chapter, a stand-alone and a

collaborative architecture is proposed which make use of information provided by the

SIEM framework to perform adaptive intrusion tolerance in unsupervised learning

141

environments. Resilient systems need to be adaptive, and to achieve this goal it is shown

how environmental information can be used to adaptively change system parameters.

The variety and complexity of cyber attacks are ever increasing. Verizon Business

2012Data Breaches Investigation Report [Veri2012] shows that customized malware is

difficult to detect and data ex-filtration often occurs over a period of days, weeks and

months. The current intrusion detection and prevention approaches are reactive in nature

and depend on a priori information which is inadequate to prevent all attacks. Events

such as the VeriSign security breach [VSig2012] and the Playstation Network breach

[Play2011] reinforce two notions: 1) even the most sophisticated IDS / IPS systems fail to

detect / prevent every intrusion and 2) once the system is compromised, the intruder stays

in the system doing damage for extended periods of time.

In addition to the shortcomings of IDS / IPS systems, the costs of operating them

are high and increasing. To illustrate the issue the example of an enterprise with an

average of 1,000,000 raw events occurring per day is considered. About 10,000 alerts are

generated by perimeter defense systems. Out of these, 100 alerts are correlated on the

basis of severity and other considerations. Assuming it takes 1.5 man hours to handle one

alert, a total of 150 man hrs is required per day to handle alerts generated. The cyber

security requires 365 days 24 hours per day support and in general about 30 people are

required to carry out this task. How many large companies can afford such an allocation

of manpower – in companies we talk to, only 2 or 3 people perform this task. What’s

worse, 50 % of the alerts are false positives – a tremendous waste of resources. With ever

142

increasing bandwidth and millions of new malware created every day, these numbers are

bound to increase.

Despite years of research and investment in developing such reactive security

methodologies, our critical systems remain vulnerable to cyber attacks. The reactive

perimeter defense approach relies heavily on threat modeling and vulnerability

elimination. It is suggested that additional attention should be given to the consequences

of a successful attack. In the proposed approach, the focus is on limiting the

consequences, like reducing the losses that are induced. It is believed that we must make

our cyber systems more proactive and resilient. Such systems will have the property of

(1) supporting continuity of operations – working even in the presence of an intruder; (2)

losses, if any, must be limited; (3) systems must resume full operations, i.e. system must

be restored to a known good state; and (4) the resilient system operations should be

independent of the threat.

To design such a system, it is assumed that intrusions are inevitable. Therefore,

the focus is shifted from modeling threats / vulnerabilities to developing methods that

will minimize the consequences of an intrusion, increase the work effort of the adversary

and increase the visibility of the adversary to the defenders. For this, a ‘Moving Target

Defense’ approach to computer security is developed. The focus is on building mission

resilient systems that are able to work through an attack. To ensure reliable operations,

the system is restored to a pristine state once every short period of time known as the

‘exposure time’ – thus negating any malicious action performed by the adversary and

minimizing consequences. In addition to this, redundancy is used to provide

143

uninterrupted service and increase overall system availability. The more frequent the

computer restoration the less likely it is for the intruder to do damage. The restoration

frequency can be random to confuse the adversary and increase his work effort. The

shortest time between restorations is a trade-off between available system resources and

the throughput of the computer. This intrusion tolerant technology is called Self

Cleansing Intrusion Tolerance (SCIT) [YHua2006]. The recovery driven approach of

SCIT is compared to the detection driven and other intrusion tolerance approaches in

[QNgu2011].

Consistent with CrossTalk’s theme for the September/October issue, in this

chapter, a resilient cyber eco system is proposed in which every member is able to work

together and learn from one another in near-real time to predict and prevent cyber-

attacks, limit propagation of attacks across participating entities, minimize losses

occurring from successful attacks and rapidly recover to a pristine state. To build such a

system which is resilient to a variety of sustained attacks, a model is proposed that

integrates tools and mechanisms that provide protection and detection as well as adaptive

tolerance. Rest of the chapter is organized as follows: Section 8.2 provides a brief

overview of how SCIT works and motivates the rest of the chapter by presenting the need

for adaptive SCIT, Section 8.3 introduces Security Information and Event Management

(SIEM) solutions and presents the idea on how information from SIEM solutions can be

used to build adaptive intrusion tolerance systems. Two scenarios will be reviewed –

stand-alone adaptive intrusion tolerance architecture and a peer-to-peer collaborative

intrusion tolerance architecture.

144

8.2 Need for Adaptive SCIT

Resilient systems have to exhibit adaptive and recovery behavior. SCIT is

recovery driven, and in this section it is shown how SCIT can be made more adaptive to

the ongoing changes in the environment.

At any point of time, the resilience of a SCIT system is affected by (1) the current

attacks; (2) the current workload; (3) the current data integrity level; (4) the current data

availability level; and (5) the current behavior of the system [PLue2003]. The first four

factors together make up the environment of the SCIT system. Two SCIT systems with

different behaviors can yield different levels of resilience. This suggests that as the

environment and the behavior of the system changes, the effectiveness of SCIT changes

as well. To achieve the maximum amount of resilience, the SCIT system must adapt itself

to its environment. Through an architecture for adaptive SCIT, we can (1) adapt SCIT to

different application semantics; (2) significantly improve the cost-effectiveness of SCIT;

(3) prevent dramatic performance degradation due to system environment changes; and

(4) maintain trade-off between system security and system performance [PLue2003].

In the case of SCIT, the primary metric is “Exposure time”. In [ANag2010], the

relationship between exposure time and security of a system is illustrated in terms of data

compromised. In [QNgu2009], the SCIT approach was discussed from the perspectives

of effectiveness, tunable parameters, performance impact, and integration to application

systems. From the derived expression for MTTSFSCIT, it was conjectured

mathematically that decreasing the exposure time window will improve the resilience of a

SCIT-based system. To adapt SCIT we will need to adapt the exposure time in response

145

to systems parameters. Increasing MTTSFSCIT would require decreasing the exposure

window; hence the cycle that a SCIT server has to go through will become shorter. In this

space, there is a tradeoff between system security, performance and cost. Adaptive SCIT

could help balance this trade-off in real time with the use of a dynamic exposure time

window given the current operating environment and system behavior.

8.3 Use of Security Information and Event Management (SIEM) Solutions

“The term Security Information Event Management (SIEM), describes the

product capabilities of gathering, analyzing and presenting information from network and

security devices; identity and access management applications; vulnerability management

and policy compliance tools; operating system, database and application logs; and

external threat data”. [SIEM2012]

In addition to receiving inputs from IDS / IPS systems, a SIEM solution will be

used to collect and correlate data from all the other sources mentioned in Figure 8.1 to

characterize overall network behavior. This behavioral pattern is then compared with a

database of normal network behavior patterns to identify irregularities. Based on the

findings of this comparison and the severity of the irregularities, the SCIT controller

tunes the “exposure time” of the SCIT-ized system to adapt to the current environment.

Similar iterative periodic comparisons will help guide the unsupervised learning and

automatic adaption of the SCIT-ized system.

146

8.3.1 Use of information from SIEM solutions in building adaptive Intrusion
Tolerant Systems

In this section, the idea of using aggregated information from SIEM solutions to

build adaptive intrusion tolerant systems is expanded on. For the purposes of this chapter,

SCIT is the intrusion tolerance architecture of choice.

To address the needs outlined in section 8.2, an adaptive SCIT framework must

do the following:

Figure 8.1: Security Information and Event Management Framework [MARS2010]

 Employ a dynamic exposure-time - the exposure window must keep changing

with time as the SCIT environment and the system behavior changes.

147

 Constantly receive input from the SIEM framework on the current SCIT

environment and state of behavior to make informed alterations to the exposure

window.

Two adaptive SCIT architectures are presented with a common assumption that

SCIT is deployed at Enterprise level.

8.3.1.1 Stand-alone Adaptive SCIT

Figure 8.2: Stand-alone adaptive SCIT

In this architecture, SIEM is constantly monitoring the SCIT-ized node and

periodically generates consolidated reports based on the information it has gathered and

correlated from varying sources. These reports are fed into the Statistics Aggregator

which converts massive information obtained from SIEM into meaningful metrics and

148

their respective values. Further, the classifier compares pre-defined Normal Behavior

Model (in terms of metrics and values) with the current values obtained from the

Statistics Aggregator. The classifier then feeds the results of the comparison to the Tuner

of the SCIT Controller. Based on this, the Tuner makes an informed decision on whether

or not to alter the existing “exposure time”.

For example, if the results from the classifier identify malicious behavior that

points to a Distributed Denial of Service (DDoS) attack, then the SCIT Controller can

now reduce the “exposure time” thereby hardening the system against such an attack.

8.3.1.2 Peer-to-peer Collaborative SCIT

Figure 8.3: Peer-to-peer collaborative SCIT

149

This architecture is an extension of the stand-alone architecture. It is meant to

mimic a cyber-eco-system with multiple participants in the community that offers

recovery based resilience. In this case, there are ‘N’ SCIT-ized nodes that are online

concurrently. SIEM solutions of each individual node namely SIEMA, SIEMB so on till

SIEMN generate reports individually and keep forwarding them to the Statistics

Aggregator periodically. The advantages of collaborative SCIT are straight forward:

 There is more information to work with – the Statistics aggregator is now fed with

useful information from ‘n’ different SIEM solutions.

 Acts as a pre-warning system: malicious behavior in any one of the nodes in the

community can now be used to warn / harden rest of the community.

 Unsupervised Learning – malicious behavior in any one node in the community

can help teach an attack pattern to the rest of the community.

 Fewer chance of false positives since isolated events now carry less weightage.

8.4 Summary

Cyber-attacks are becoming more wide spread, sophisticated and consequential

with time. However, detecting, handling and identifying the consequences of an intrusion

are still persistent problems. This is partly due to the lack of trust between the members

of the cyber eco system which impedes information sharing and collaboration. If every

entity of the cyber eco-system were to collaborate with one another and took co-ordinated

security decisions, it could lead to unsupervised learning systems that provide hardened

proactive defense.

150

In this chapter, two such recovery based cyber resilient adaptive SCIT

architectures were proposed. One is a stand-alone system and another is a collaborative

system that encourages information sharing and promotes cyber health among

communities. In addition to the periodic system self-cleansing done proactively, the

system constantly part takes in unsupervised learning from other members of the eco-

system to adapt to the current environment and system behavior.

151

CHAPTER NINE – EXPLORING GAME DESIGN FOR CYBER-SECURITY

TRAINING

This chapter explores game design for cyber-security training. The objective of

this research is to teach everyday users the requisite cyber security skills through gaming,

beyond the current state-of-practice. Because the skill level of the trainees is also wide

ranging, from causal computer users, to software engineers, to system administrators, to

managers, the games must also be capable of training this wide range of computer users.

9.1 Overview

Cyber security awareness and training are vitally important and challenging. A

huge number of attacks against everyday users occur routinely. Prevention techniques

and responses are wide ranging but are only effectively if used effectively. The objective

of this research is to teach everyday users the requisite cyber security skills through

gaming, beyond the current state-of-practice. Because the skill level of the trainees is also

wide ranging, from causal computer users, to software engineers, to system

administrators, to managers, the games must also be capable of training this wide range

of computer users. Computer games can provide a media for delivering training in an

engaging format at levels appropriate for the individual trainees. In this chapter (1) the

state-of-practice is described by describing the gaming tool used in most cyber challenges

at high schools and colleges in the US, i.e., the cyber security gaming tool CyberNEXS,

(2) some of the additional topics that should be addressed in cyber security training are

152

outlined and (3) some other approaches to game design that might prove useful for future

cyber security training game development beyond CyberNEXS are discussed.

Cyber security training is becoming more and more vital to global security. The

large number of network intrusions and malicious attacks that have taken place over the

past several years only re-assures the growing need. Some of these events include:

massive data breaches of consumer information at Sony and Sony PSN [Sony2011];

Stuxnet worm’s stealthy attack on the Iranian nuclear program [Stux2010] and the

Chinese electronic break-in at Google [GMai2011].

Intrusions are becoming more and more accepted as a norm. Ever increasing

bandwidths, the phenomenon of social networking and the accessibility of mobile devices

are part of the reason for this growing cyber-attack problem. Given that cyber security is

a real and near threat, it demands comprehensive training in a variety of areas. Games can

help here by providing an engaging interface that enhances training, draws more trainees

in and simulates a variety of scenarios.

The idea of using games to support health, education, management and other

sectors have already yielded positive results [MPre2001] The application of gaming

concepts to training can also be equally fruitful. Furthermore, research is advancing in

modeling and simulation that seems potentially applicable to cyber security and defense

(cyber war) gaming [BotN2008].

153

9.2 Cyber Security Training

9.2.1 Awareness Topics

The goal is to train the next generation the skills necessary to attain highest

achievable level of cyber security and defense against cyber-attacks. Defending against

cyber-attacks in near real time is highly stressful. Typically, higher user stress levels lead

to more user errors. The game design should put the player in a range of stress levels,

thus enabling the user to function more effectively in real life.

Password usage and management – In today’s world, passwords protect your

computers, data and online accounts. Hackers are becoming increasingly sophisticated at

cracking passwords using techniques like brute force attacks, dictionary based attacks and

Phishing. It is therefore important to create awareness about making strong passwords the

first line of defense. Techniques for creating, using and frequently changing strong

passwords can be presented.

Protection from malware and spam – A recent New York Times report

[SANS2002] has the Microsoft Internet Safety Enforcement team stating that the “mean

time to infection of an unprotected computer on the internet is less than 5 minutes”.

Viruses, Worms and Trojans are the most common forms of infection and are designed to

inflict loss of productivity / economic damage to the target. According to a study

conducted by Ferris research, the annual worldwide economic damages from malware

exceeded $130 billion in 2009. Therefore, any effective cyber security awareness session

must cover the use of anti-virus / anti-malware tools along with training on scanning and

updating definitions.

154

Patch management – Patches are additional pieces of code developed to address

problems in software post-release. They enable additional functionality or fix security

flaws within the software. These security flaws / vulnerabilities can be exploited if left

unpatched at a later time thereby making your system open to compromise. Timely

patching of security issues is critical to maintaining service / operational availability,

confidentiality and integrity of the system. New patches are released on a daily basis and

it often becomes difficult even for experienced system administrators to keep track of all

important patches. Training on effective patch management should hence form an

important part of the cyber security awareness program.

Social engineering phishing techniques – Phishing based social engineering are

attacks on human judgment as opposed to software vulnerabilities and so these attacks

pose a threat to unsuspecting users. As more and more users continue to access the

internet daily, they become susceptible to Phishing which is a form of electronic

deception. Social engineering is evolving so rapidly that security policies alone cannot

protect critical infrastructures any more. Even with rigid safeguards, hackers manipulate

employees using social engineering phishing techniques into compromising personal,

social security and other sensitive information. Hence, it becomes important to develop a

security-aware culture that keeps users / employees abreast of latest security threats. This

can only be achieved through periodic cyber security training and awareness programs.

Some of the other cyber-security training and awareness topics that need to be

presented are:

 Awareness of compliance policy and implications of noncompliance

155

 How to handle e-mails / attachments from unknown senders and SPAM.

Malicious emails coming from recognizable emails are a particular challenge.

 Implementation of new technology

 Awareness on allowed and prohibited web usage – a system to monitor user

activity

 Data backup and storage procedures – do’s and do not’s.

 Responsibility transfer between employees – how to handle?

 Incident response awareness procedures and trigger points - preliminary user steps

 Implications of shoulder surfing

 Use of personal system/ software in work environment

 Education on access control issues – separation of duties, least privilege, privilege

escalation etc.

 Individual responsibility and accountability

 Physical access to spaces based on work demands

 Incentive schemes (if any)

9.2.2 Existing Training

A number of techniques exist to get cyber security awareness material

disseminated through an agency. The technique chosen depends on resources available

and also the type of cyber security message that is being sent out. Some of the most

common techniques used are:

 Web-based awareness session – virtual classrooms

 Computer based awareness sessions – computer labs or CD-ROMs

156

 Teleconferencing sessions

 Instructor-led sessions

 IT security days, Cyber Security awareness week and similar events

 Posters with do’s and do not’s list

 Screensaver and warning banner / messages

 Periodic Newsletters

 Agency wide e-mail messages / alerts

 ‘Brown bag’ seminars

 Awards / Incentives program

9.2.3 Shortcomings of the current techniques: [BCon2007, LAnn2010]

 30 minutes of information about why security is important is not going to change

how users behave daily. It should be a continuous process. Most of the awareness

programs now happen to be onetime a year events. Users cannot be expected to

retain the information from this session and change their daily behavior.

Awareness must be a continuous life cycle where users must be trained, updated

and reinforced periodically. User’s retention capacity must be taken into account;

 Too many topics discussed in too little time – users cannot be expected to

understand / retain all of them;

 Training environments are not realistic – different stress levels have an impact on

how users act;

157

 Most awareness programs are presented by security professionals who are bad

communicators. Instructor led training headed by security professionals turn out

having long information sessions that end up overwhelming people and not

getting the intended point across. These sessions cannot afford to be boring; they

must be involving and fun;

 If users make the same mistake a number of times even after training and

reinforcement – there has to be some sort of disciplinary action. And similarly,

there must be incentives for users with good security hygiene;

 One must be able to perform a measurement of user behavior (some sort of score

maybe) before and after training to actually see if the training has had a positive

impact. Techniques used in current security awareness programs do not facilitate

this. They require an additional survey for the same;

 Except for the instructor led session, the rest of them all are passive and do not

facilitate interaction with the user. Most of the time the question “Why should I

be doing this?” goes un-answered;

 A successful awareness program must be able to do two things – one is to get and

retain the user’s attention for a span of time and two is to communicate the

awareness material to the user effectively in that span of time. Current techniques

are found lacking in achieving both.

158

9.2.4 Interactive Computer-based training

To overcome these shortcomings, the use of Interactive Computer-based training

like video games for cyber awareness training is now gaining momentum. Given the

current landscape, such games generally fall into two broad classes: [LAnn2010]

 First-person interaction games – Example: first person games where the user is

confronted by an adversary / problem and must take a proper course of action else

is penalized severely;

 Resource management simulation games – manage a virtual online environment

with provided limited resources. Good choices result in a richer environment and

additional resources, bad choices result in diminishing resources.

Motivation for the games is either recognition (i.e., if you do well and play fair,

you will receive recognition) or certification to enhance your professional career. It is

conceivable that cyber games of the future might offer financial or other incentives like

prizes for first, second and third places in the competition. In regard to the later, a high

quality, valued certification from a game probably does lead to career growth and the

corresponding increased salary.

The primary objective of such games is cyber training. Some of the games teach

advanced cyber defense concepts and penetration testing in addition. Some such existing

games are:

 CyberProtect – Developed by DoD in 1999. It teaches information assurance

concepts [LAnn2010];

159

 CyberCIEGE – Developed by Naval Postgraduate School in 2005. The game

employs resource management and simulation to illustrate information assurance

concepts for training and education [LAnn2010];

 Multiple micro-games by Wombat security technologies for cyber security

awareness and training of US Air force personnel. Eg: Anti-Phishing Phil.

Wombat is currently developing a dozen more similar micro games;

 NetWars – NetWars is an offense-oriented cyber security completion that is held

completely online and made available to high school students as well. It is an

online game where the primary objective is to penetrate into systems, gain access

to files and provide proof for the same. It is conducted by the SANS institute and

is a player in training and certification of cyber security professionals;

 CyberNEXS – is an example of a simulation game for multiple aspects of cyber

security, e.g., activities that revolve around protecting systems from penetration

attacks.

A brief look at CyberNEXS follows.

9.2.5 CyberNEXS gaming

CyberNEXS is considered somewhat of a de facto standard in cyber defense

competitions – due to its wide spread adoption as the cyber security training and as a

game for professional cyber security certification. Thousands of students have used

CyberNEXS. It has a client-server architecture that provides game access to anyone with

Internet access. One such training exercise is the SAIC High School 12-week Cyber

Security e-Learning Pilot which makes use of the CyberNEXS training platform to

160

educate high school students on advanced cyber defense techniques. These students have

gone on to participate in a number of cyber defense competitions over the past four years.

Some such notable competitions are the Air Force Association (AFA) Cyber Patriot

National High School Cyber Defense Competition, the Maryland Cyber Challenge, the

State of Maine High School Competition and the San Diego Mayor’s Cyber Cup.

CyberNEXS has five different models of operation, they are:

 On-site training

 Remote training

 Certification

 Competition / Gaming

 Licensing

Gaming is facilitated through the ‘competition’ model. Here the objective of all 5

gaming modes is to teach cyber defense and penetration testing skills to participants.

There are 5 CyberNEXS gaming modes:

CyberNEXS-CND (Computer Network Defense Centralized) – CyberNEXS-

CND is a realistic cyber defense exercise in which the participants (blue team) are tasked

with defending their network while under attack from the red team. Blue team’s primary

objective is to ensure availability of their critical services and secure their host

throughout the duration of the attack. Blue team also has to detect and mitigate red team’s

attack and communicate its findings to the administrator (white team).

161

CyberNEXS-CND Lite – This game mode is similar to CyberNEXS-CND.

However, here the objective is only to maintain availability of critical services and secure

hosts. There is no need to detect or mitigate the incoming attacks from red team.

CyberNEXS-Forensics – In this game mode, a series of cyber forensic challenges

are given to the participants. The objective of the participants here is to find evidence of

intrusions, discover malware, analyze payloads, analyze log and audits and trace attacks

back to attackers. It is also important for the participants to effectively communicate all

of their findings with the white team.

CyberNEXS-CAN (aka Computer Network Attack or Penetration testing) – The

objective of this game mode is for the participants to assess a network of computers for

vulnerabilities and successfully exploit the vulnerabilities to gain user or administrative

control of the system. Participants can use any of the network assessment tools that are at

their disposal for this. It is also important to effectively communicate their progress to a

“white team”, which is basically an observer team.

CyberNEXS-CTF (Capture the flag) – The Capture the Flag mode is similar to the

CTF modes found in first person shooter / strategy games. There are two parts to this

game. First, the participants have to assess a network of computers for vulnerabilities,

exploit them and take over a series of target hosts. Secondly, once the hosts are

compromised and are under control, the participants are now required to defend these

hosts against other incoming attacks while maintaining availability of their critical

services.

162

Moving forward, it is desired to build on this to develop games that are even more

engaging, entertaining, and educational. Some of the things that can be done to improve

on the current de facto standards are:

 Motivate participation by creating a broader certification program that could

further better employment opportunities;

 Make the game even more scalable and flexible. Present optional game modes

where the participant is in full control of the environment, not requiring a white

team. This helps participant understand the working of the network.

 In real world, both the attacker and the defender get to make moves all the time.

There is no constraint. Attacker adapts to defenders move and vice versa.

Similarly, an expert system or a learning engine could potentially help in student-

system game, by the system learning and adapting to the user’s moves. This

requires the development of a front end learning management system.

9.3 Computer Game Design

When designed well, video games can enthrall players, drawing them into a

virtual world, motivating them, and challenging them. Research has also shown that

games can support and enhance learning and training [BCon2007]. In this section, some

important elements of game design are discussed with enhancing cyber security training

in mind.

Good game designs focus on the player experience. They create goals that a

player feels motivated to reach and rules that must be followed in pursuit of those goals.

They are also formulated to match the knowledge and skill level of their target audience

163

(though it may be a wide range). Furthermore, games designed for education and training

must be focused on the training goals. What do you want the player to learn? Do you

want them to learn a specific procedure for patching an operating system? Do you want

them to learn how to think rationally under stressful conditions? Do you want them to

learn the mindset and tools of their combatant? Having a clear understanding of who the

player is and what you want them to learn will help you design a game that provides both

the player and instructor feedback about the player’s progress.

There are several approaches to and decompositions of game design that can help

jump start to the design process. Themes can provide a narrative for the game and begin

to immerse the players into an alternate world. This immersion can strengthen the

training results [BCon2007]. Themes can include a specific story, such as a plumber

searching through a Mushroom Kingdom to save a princess (i.e. Super Mario Bros) or a

less specific feel, such a dark, dangerous world or a fast paced, cartoon kingdom. When

chosen well, themes make the mechanics of a game feel more natural.

In the next couple of sub-sections, other breakdowns of game design, including

genres, dynamics, and core mechanics are discussed.

9.3.1 Game Genres

Game genres provide both the designers and players an instant idea about the

nature of the game and the type of skills required. It should be noted that games can be a

hybrid of multiple genres. Below a number of different game genres and their potential

applicability to cyber awareness training are reviewed:

1) Action Games

164

Action Games keep the player moving and involved at all times providing an

adrenaline rush. They often include a lot of hand/eye coordination and quick reflexes.

First Person Shooters (FPSs), such as Quake, fall into this genre. Actions in games of this

type are not complex and do not require a lot of deliberation. In cyber security, one might

imagine a game to train end users to quickly recognize the subject lines of phishing

emails.

Applicability Example: In cyber security, one might imagine a game to train end

users to quickly recognize the subject lines of phishing emails.

2) Role Playing Games (RPGs)

RPGs generally have more developed stories and are played for longer spans of

time in more expansive worlds. These games also tend to focus on character growth. As

the game progresses characters obtain more experience, capabilities, and weapons. The

outcome of actions in this genre can include an element of chance. Even if the player

performs an action perfectly, it could still fail. Final Fantasy is an example of a game

from this genre. A game for cyber security training could easily involve the player taking

on the role of a system administrator to defend a group of servers that are critical to the

future of the country or even a hacker that needs to break into a series of systems to

obtain the information needed to save a hostage. As the player’s knowledge and skills

increase, they would be given more sophisticated tools and also bigger challenges to

further develop their abilities.

Applicability Example: A game for cyber security training could involve the

player taking on the role of a system administrator to defend a group of servers that are

165

critical to the future of the country or even a hacker that needs to break into a series of

systems to obtain the information needed to save a hostage. As the player’s knowledge

and skills increase, they would be given more sophisticated tools and also bigger

challenges to further develop their abilities.

3) Adventure Games

Adventure games are somewhat similar to RPGs, in that, they also focus on story,

but generally adventure games also include more exploration and a number of puzzles.

Myst, for example, involved exploring the world, encountering puzzles, and attempting to

solve the puzzles so that additional areas could be explored. Along the way, the player

pieces together the story of what has taken place in this world. This genre of games might

fit quite nicely with training recovery operations after an intrusion.

Applicability Example: Possibly to training recovery operations after an intrusion.

4) Strategy Games

In strategy games, the key is balance. There are at least two opposing teams each

with an equal chance of winning. There may be different units, weapons, resources, and

goods available to the opponents, but they must be balanced. In strategy games, there is

not a single right way to do things. Multiple strategies can be successfully enacted. There

are normally also a series of different missions that lead a final completion. Command

and Conquer requires players to construct bases, acquire resources, and attempt to

conquer opponent bases.

Applicability Example: It is easy to see how this paradigm could be used in cyber

security training. Players might use different strategies and priorities in defending

166

penetration attacks. If trying to train administrators through better knowledge of a

hacker’s mind set, players might take on the role of hacker and use different strategies to

try to breach a system.

5) Sports Games

The genre of sports games might seem irrelevant to cyber security, but in fact

there are possible parallels. Many sports games involve deciding on formations and

calling plays. We could imagine training managers to handle security attacks in a similar

fashion. What skills should his team have (or what can he afford)? What should each

member of the team be doing as an attack progresses? The members of the team could be

Non- Player Characters (NPCs) or real players in an asynchronous game.

Applicability Example: Students could play war games that are time constrained.

This adds a dimension of stress and necessity for effective time / resource management.

6) Fighting Games

Fighting games are simple and direct, but engaging. In fighting games, the action

is swift and intense and the moves are usually easy to learn. Tekken and Mortal Kombat

are examples of fighting games. Opponents battling to deface and restore a website might

fit in this genre.

Applicability Example: Students could play war games to compete for points for

defensive blocking, and offensive cyber-attacks. A student could play cyber war against

the computer or another student, or teams could play each other.

7) Casual Games

167

Casual games tend to be easy to learn and not difficult to master. They include

video game versions of card games and board games, as well as games created just for

computers, such as Tetris. Generally, a player starts a new game each play session as

opposed to continuing a mission from their last session. Any number of casual games

could be designed to help familiarize people with cyber security terminology and train

them on more rudimentary techniques such as creating secure passwords.

Applicability Example: Any number of casual games could be designed to help

familiarize people with cyber security terminology and train them on more rudimentary

techniques such as creating secure passwords.

8) Sandbox Games

Finally, in sandbox or God games, there is no preset win condition. A player is

provided a variety of building blocks and constructs their virtual life or virtual

environment. The game system causes different events to occur that affect (positively or

negatively) the player’s world. For example, in The Sims, a player’s kitchen might catch

on fire or they might be promoted. In terms of cyber security, the player might setup a

system, be it a single computer or an entire network, with various precautions and then

the game could prompt changes to the system based on hardware failures, attacks,

consumer complaints, etc.

Applicability Example: In terms of cyber security, the player might setup a

system, be it a single computer or an entire network, with various precautions and then

the game could prompt changes to the system based on hardware failures, attacks,

consumer complaints, etc.

168

9) Simulations

Simulations normally focus on one piece of equipment or activity. The resulting

experience can be true to life or exaggerated. For example, many racing game allow the

players to maneuver the vehicles around the course at speeds that would not normally be

possible. CyberNEXS is an example of a simulation game for cyber security

(http://www.saic.com/cybernexs/), where the activity revolves around protecting systems

from penetration attacks.

Applicability Examples: Both CyberNEXS and Netwars

(http://www.sans.org/cyber-ranges/netwars/) are simulation games for cyber security

where the activity revolves around protecting systems from penetration attacks.

9.3.2 Game Dynamics

Game dynamics are a particular pattern of play within a game and are tied to core

mechanics, which will be discussed in the next section. They focus the type of actions a

player can take.

1) Territorial Acquisition

Territorial acquisition revolves around a limited resource that may or may not be

a land mass. The main focus of the game is to acquire as much of the limited resource(s)

as possible and strategically control it. Risk and some FPSs have the territorial

acquisition dynamic. In cyber security, the limited resource might be memory, network

bandwidth, or entire servers.

2) Prediction

169

The prediction dynamic is simply prompting the player to guess what will happen

and rewarding them if they guess correctly. Roulette and Rock-Paper-Scissors are

examples of prediction games. A training game is unlikely to focus solely on the

prediction dynamic, but it does still have a place. For example, guessing the nature the

next attack to try to defend against it.

3) Spatial Reasoning

Spatial reasoning often involves puzzles (e.g. Tetris, Tic-Tac-Toe, and Connect

Four). A cyber-security game might include the notion of lining up security elements to

form a continuous shield from attacks and strategizing about where the next attack might

come from.

4) Survival

The survival dynamic taps into the instinctual need for self-preservation. There is

a constant life and death struggle that is the focus of the game. Here we could imagine a

player becoming a server or router and struggling to survive against constant attacks.

5) Destruction

Every FPS includes the destruction dynamic. With this dynamic, the goal is

basically to wreck everything in sight. Consider a game set in a computer, where the

player uses different weapons (i.e. security techniques) to destroy various attacks he

encounters.

6) Building

Because of their focus on character development, RPGs often have a building

dynamic. The main objective of these games is to build a better character or in the case of

170

the sandbox game SimCity, a better world. How about a better network or computer

system?

7) Collection

The collection dynamic can be found in card games and many platformers (e.g.

collect rings, bolts, gold coins, etc.). In these games, getting the most of a resource is

what determines the winner. A cyber-security parallel might involve collecting passwords

or other user data.

8) Chasing and Evading

In chasing and evading games, the goal is to capture prey or escape predators.

Pac-Man is a good example. In cybersecurity, a hacker might be attempting to gain

control of a system or data while evading detection.

9) Trading

Trading requires cooperating with others. There are normally multiple kinds of

resources that can be exchanged between players. This is common in card games. We

could imagine a game where tokens corresponding to security software and techniques

are traded. When someone has a full set, their system is secure and they have won the

game. This would increase the trainees’ awareness of cyber-security.

10) Race to the End

The race to the end dynamic has the player or players focusing on getting to a

certain location first or learning a technology first. The applications to cyber security

training are straightforward.

171

9.3.3 Game Mechanics

Game mechanics are essentially the rules of a game. They describe how the game

state changes. For example, in Monopoly, if you land on an un-owned property, then you

can buy it.

There are a few common classes of mechanics. The setup mechanic is at least one

rule describing how the game begins. Victory conditions describe how the game is won.

Not all games have victory conditions. For example, RPGs tend to have smaller goals

along the way, but no explicit victory condition. Progression of play mechanics include a

description of whether it is a turned based or real time game, who goes first and how, and

how conflicting, simultaneous actions get resolved. Naturally, player actions are also a

common class of mechanics. What actions can a player perform and how? What affect do

player actions have on the game state? The final class of mechanics is a definition of

game views. This is a description of exactly what information each player knows about at

any given time. Some mechanics might change this view as the game progresses (e.g.

lifting the fog of war).

Like game dynamics, these mechanics can help focus a game design and ensure

that it is consistent and coherent.

9.3.4 Learning and Training Games

In educational games, the goal is to teach a body of knowledge. Before beginning

the game design process, there should be a clear outline of exactly what the player should

learn from playing the game. The game itself should motivate and reward the player to

keep them playing the game and as a consequence acquiring more information or skill.

172

According to Annetta, there are six principles to follow when designing games for

education [BCon2007]. Players should have a unique identity in the game world. This

promotes them getting more emotionally involved in the game and caring about the

consequences, which leads to immersion. Immersion is a heightened sense of presence

that leads to the player being more engaged in the content and motivated to succeed.

Interactivity further involves players in the game world by allowing them to interact with

other players or NPCs. Increased Complexity keeps players challenged. Game levels can

provide a platform for increasing the complexity of content and concepts, keeping players

from getting bored. Informed Teaching focuses on providing feedback to the instructors.

These games should track players’ performances and record timings, actions, and

mistakes and provide feedback to both the instructors and the players. Finally,

educational games should be instructional. Players should be able to assimilate the

knowledge and skills they are acquiring in the game with their existing knowledge and

experiences.

9.4 Summary

Although many of the topics presented as part of the cyber security awareness

program are universal, such training must always be tailored to address the needs and

security policies of a particular organization. A major shortcoming of most of the current

forms of cyber awareness training is that they don’t require participants to think on their

feet and apply security concepts in real time. And although theoretical knowledge of

security concepts is important, handling a security event in a stressful environment

173

demands prior hands-on experience. A flexible, scalable and highly interactive video

game could help simulate a similar environment for the trainees.

174

CHAPTER TEN - CONCLUSIONS

10.1 Summary

As part of this research, a framework to assess the performance of security

architectures in terms of reducing data ex-filtration was defined. Multiple hybrid

approaches were proposed that combine recovery-driven intrusion tolerant SCIT

architecture with existing IDS solutions as part of a multi layered defense strategy to

protecting the cyber infrastructure.

A framework was established that uses Receiver Operating Characteristic (ROC)

curve analysis and damage cost models to trade-off the true positive rate and false

positive rate for comparing alternate security architectures. This framework provides a

baseline for making informed decisions and choosing operating parameters for various

architectures.

As part of my research, I also proposed the use of Attack Surface Shifting /

Reduction as a metric to compare Moving Target Defenses (MTD) by assessing its

impact on intruder work factors.

A game theoretic attack / protect cyber economic model was developed to

facilitate designing architectures that are resilient and tilt the asymmetric cyber economic

costs in favor of the defender. This research formalizes system security state transitions

and intruder / defender work factors associated with all of those state transitions.

175

I also proposed µ-SCIT, a hybrid architecture that adds modularity to SCIT using

Operating System level virtualization. The added modularity affords the ability to

perform more frequent targeted granular rotations at the level of processes and

applications. This in turn extends ability of SCIT to work with long running applications

and handle long transactions using container check-pointing and migration.

Finally, in order to perform adaptive intrusion tolerance that constantly learns

from its ecosystem, I conceptualize and present architectures for a ‘stand-alone’ and a

‘collaborative’ architecture which make use of information provided by the enterprise

Security Information and Event Management (SIEM) solution.

176

REFERENCES

[AAde2002] Adelsbach, A., Alessandri, D., Cachin, C, Creese, S., Deswarte, Y.,

Kursawe, K., Laprie, J.C., Powell, D., Randell, B., Riordan, J., Ryan, P.,

Simmonds, W., Stroud, R., Verissimo, P., Waidner, M., Wespi, A.: Conceptual

Model and Architecture of MAFTIA. Project MAPTIA IST-1999-11583

deliverable D21. (2002)

[AAvi1986] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of

dependability. Technical Report 01145, LAAS-CNRS, Toulouse, Prance (2001)

[ABan2009] Anantha K. Bangalore and Arun K Sood. “Securing Web Servers Using Self

Cleansing Intrusion Tolerance (SCIT)”, DEPEND 2009, Athens, Greece. 2009.

[AFranz2002] A. Franz, R. Mista, D. Bakken, C. Dyreson, and M. Medidi, “Mr. fusion:

A programmable data fusion middleware subsystem with a tunable statistical

profiling service,” in Proceedings of the InternationalConference on Dependable

Systems and Networks (DSN-2002), pp. 273– 278, 2002.

[ANag2010] Ajay Nagarajan and Arun Sood, “SCIT and IDS Architectures for Reduced

Data Ex-filtration” 4th Workshop on Recent Advances in Intrusion-Tolerant

Systems, Chicago, USA, June 2010.

[ANag2011] Ajay Nagarajan, Quyen Nguyen, Robert Banks and Arun Sood “Combining

Intrusion Detection and Recovery for Enhancing System Dependability” 5th

Workshop on Recent Advances in Intrusion-Tolerant Systems, Hong Kong,

China, June 2011

[ANag2012] Ajay Nagarajan, Jan Allbeck, Arun Sood and Terry Janssen “Exploring

Game Design for Cyber Security Training” IEEE Cyber 2012, Bangkok,

Thailand, May 2012

[ANag2012a] Ajay Nagarajan and Arun Sood “Recovery-based Resilient Cyber

Ecosystem” – appeared in Crosstalk Magazine (The Journal of Defense Software

Engineering) Sept/Oct issue 2012

177

[ANag2013] Ajay Nagarajan and Arun Sood “Measuring Work Factor in a Moving

Target Host Architecture: The SCIT Case” MIT Think-shop on Multi-spectrum

metrics for Cyber Defense, MIT CSAIL, Cambridge, MA, Oct’ 2013

[ANag2014] Ajay Nagarajan and Arun Sood “SCIT Based Moving Target Defense

Reduces and Shifts Attack Surface” 11th International Workshop on Security in

Information Systems, Lisbon Apr’ 2014

[AOrf2006] Orfila, Augustin. Carbo, Javier. And Ribagardo, Arturo. “Advances in Data

Mining, volume 4065, chapter Effectiveness Evaluation of Data Mining based

IDS, pages 377-388. Springer Berlin Heidelberg. 2006.

[ASai2009] A. Saidane et al “The Design of a Generic Intrusion-Tolerant Architecture

for Web Servers” Dependable and Secure Computing, IEEE Transactions Jan-

March 2009

[ASha1979] Adi Shamir “How to share a secret?”, Communications of the ACM,

Volume 22, Issue 11, Nov 1979.

[AVal2002] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H.

Saidi, V. Stavridou, and T. E. Uribe, “An architecture for an adaptive intrusion

tolerant server,” Springer-Verlag, 2002.

[AVal2003] Alfonso Valdes et al. “An Architecture for an Adaptive Intrusion-Tolerant

Server”. LNCS Springer/Berlin, Volume 2845/2003, pp. 569-574.

[BCon2007] Benjamin D. Cone et al “A video game for cyber security training and

awareness” Computers and Security 26 (2007)

[BLit1993] Littlewood, Bev et al. “Towards Operational Measures of Computer

Security” Journal of Computer Security, pp. 211-229, 1993.

[BotN2008] “A robot network seeks to enlist your computer” – NY Times,10/20/2008

[Bran1991] B. Randell and J.C. Fabre “Fault and intrusion tolerance in object-oriented

systems” International workshop on Object Orientation in Operating Systems,

1991.

[CCoy2005] Coyne, Christopher J. and Leeson, Peter T., “Who's to Protect Cyberspace?”

Journal of Law, Economics and Policy, 2005.

[CDru2004] Drummond, Chris. Holte, Robert C. “What ROC Curves can’t do and Cost

curves can”. 2004.

178

[CRus2002] Russell, C. Security Awareness--Implementing an Effective Strategy, SANS

Institute InfoSec Reading Room, 2002.

[DArs2007] David Arsenault, Arun Sood, and Yih Huang, "Secure, Resilient Computing

Clusters: Self-Cleansing Intrusion Tolerance with Hardware Enforced Security

(SCIT/HES)" Proceedings Second International Conference on Availability,

Reliability and Security (ARES 2007), Vienna, Austria, April 2007.

[DBri2003] D. O’Brien et al “Intrusion tolerance via network layer controls” Proceedings

of the DARPA Information survivability conference and exposition, 2003.

[DEva2011] David Evans, Anh Nguyen-Tuong, John Knight “Effectiveness of Moving

Target Defenses” Chapter 2, Moving Target Defense: Creating Asymmetric

Uncertainty for Cyber Threats 2011

[DKra2010] Kravets, David. “McAfee Probing Bungle That Sparked Global PC

Crash”.Threat Level. http://www.wired.com/threatlevel/2010/04/mcafeebungle/.

2010.

[DMal2001] Malkhi, D., Reiter, M.K., Tulone, D., Ziskind, E.: Persistent objects in the

Fleet system. In: Proceedings of the 2nd DARPA Information Survivability

Conference and Exposition (DISCEX II). (2001)

[DoDi2003] DoDi 8500.2 Information Assurance Implementation

http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf

[DPow2001] Powell, D. et al. “MAFTIA (Malicious- and Accidental-Fault Tolerance for

Internet Applications)” Proceedings of the 2001 International Conference on

Dependable Systems and Networks (DSN2001), Goteborg (Sweden), 1-4 July

2001

[FAnj2000] F. Anjum “Intrusion tolerance schemes to facilitate mobile e-commerce”

IEEE international conference on Personal Wireless Communications 2000.

[FSto2000] Stolfo, S. Fan, W. Lee, W. Prodromidis, A. and Chan, P. “Cost-based

modeling for Fraud and Intrusion Detection: Results from the JAM Project”

Proceedings of DISCEX 2000, Los Alamitos, CA. 2000.

[FWan2003] Feiyi Wang et al “SITAR: A scalable intrusion tolerant architecture for

distributed services” Proceedings of DARPA Information survivability

conference and exposition, 2003

http://www.wired.com/threatlevel/2010/04/mcafeebungle/
http://www.dtic.mil/whs/directives/corres/pdf/850002p.pdf

179

[GAke1995] Akerlof, George, “The market for “lemons”: Quality uncertainty and the

market mechanism, Springer 1995.

[Gate2000] Ateniese, G., Steiner, M., Tsudik, C : New multi-party authentication services

and key agreement protocols. IEEE J. of Selected Areas on Communications 18

(2000)

[GMai2011] "Google says hackers in China stole Gmail passwords"-NYTimes

06/01/2011

[GSch2000] Schudel, Gregg and Wood, Bradley J. “Adversary work factor as a metric

for information assurance” Proceedings of the 2000 workshop on new security

paradigms, NY, USA 2000.

[HAcq2002] Hierarchical Adaptive Control for QoS Intrusion Tolerance, a DARPA

funded UC Davis project, 2002

[Home2014] Home Depot Security Breach, 2014

http://money.cnn.com/2014/09/08/technology/security/home-depot-breach/

[HRam2004] H.V. Ramasamy “CoBFIT: A component-based framework for intrusion

tolerance”, Euromicro Conference, 2004

[HRei2007] Hans P. Reiser, Rudiger Kapitza “VM-FIT: Supporting Intrusion Tolerance

with Virtualization Technology” Proceedings of the 1st Workshop on Recent

Advances on Intrusion-tolerant Systems, 2007. Lisbon, Portugal.

[HRei2011] Hans P. Reiser “Byzantine Fault Tolerance for the Cloud” Workshop on

Cryptography and Security in Clouds, Zurich, 2011.

[JDob1986] Dobson, J., Randell, B.: Building rehable secure computing systems out of

unreliable insecure components. In: Proceedings of the International Symposium

on Security and Privacy, IEEE (1986) 187-193

[JFrag1985] Fraga, J.S., Powell, D.: A fault- and intrusion-tolerant file system. In:

Proceedings of the 3rd International Conference on Computer Security. (1985)

203-218

[JGaf2001] Gaffney, John E. Jr. Ulvila, Jacob W. (2001). “Evaluation of Intrusion

Detectors: A Decision Theory Approach” Security and Privacy.

[JHan1966] J. Hancock and P. Wintz. Signal Detection Theory. McGraw-Hill. New

York 1966

http://money.cnn.com/2014/09/08/technology/security/home-depot-breach/

180

[JHir1983] Hirshleifer, Jack, From weakest-link to best-shot: The voluntary provision of

public goods, Public Choice January 1983, Volume 41, Issue 3, pp 371-386.

[JJus2003] James E. Just et al “Learning Unknown Attacks – A start” Foundations of

Intrusion Tolerant Systems, pp 374-386, 2003

[JKni2002] J. Knight, D. Heimbigner. and A. Wolf. “The Willow Architecture:

Comprehensive Survivability for Large-Scale Distributed Applications”, lntrusion

Tolerance System Workshop, Supplemental Volume on 2002 International

Conference on Dependable .System and Network, 2002.

[JLal2003] Lala, J. H., Editor, "Organically Assured & Survivable Information Systems

(OASIS): Foundations of Intrusion Tolerant Systems," IEEE Computer Society

Press, http://computer.org/cspres, ISBN 0-7695-2057-X2003, 2003.

[JLep2003] J. Lepanto and W. Weinstein, “Contra: Camouflage of Network Traffic to

Resist Attacks.”

[JLow2004] Lowry, John et al. “Adversary Modeling to Observer Forensic Observables”

Digital Forensic Research Workshop 2004.

[JMcH2000] McHugh, John (2000) “Testing intrusion detection systems: a critique of the

1998 and 1999 DARPA intrusion detection system evaluations as performed by

Lincoln Laboratory” TISSEC, Vol 3, Issue 4

[JRey2003] James C. Reynolds et al. “On-Line Intrusion Detection and Attack

Prevention Using Diversity, Generate-and-Test, and Generalization”. Proceedings

of the 36th Hawaii International Conference on System Sciences, 2003.

[JSwe1996] Swets, John A. “Signal detection theory and ROC analysis in psychology

and diagnostics: Collected papers”, 1996

[JUlv2003] Jacob W Ulvila, John E Gaffney Jr “Evaluation of Intrusion Detection

Systems”, Journal of Research of the National Institute of Standards and

Technology 2003

[KAun2005] Khin Mi Mi Aung, Kiejin Park and Jong Sou Park. “A Rejuvenation

Methodology of Cluster Recovery”. CCGrid 2005, IEEE International

Symposium Vol. 1, pp. 90 - 95, May 2005.

[KKih2001] Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The SecureRing group

communication system. ACM Transactions on Information and System Security 4

(2001) 371-406

181

[KKih2003] K.P. Kihlstrom, P. Narasimhan “The Starfish System: providing intrusion

detection and intrusion tolerance for middleware systems” Proceedings of the

Eight international Workshop on Object-Oriented Real-Time Dependable

Systems, 2003

[LAlv2000] Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K., Wright, R.N.: Dynamic

Byzantine quorum systems. In: Proceedings of the IEEE International Conference

on Dependable Systems and Networks. (2000) 283-292

[LAnn2010] Annetta, L.A. The "I's" Have It: A Framework for Serious Educational

Game Design. Review of General Psychology, 14 (2).105-112.

[LGor2002] Gordon, Lawrence and Loeb, Martin, “The Economics of Information

Security Investment”, University of Maryland, ACM Transactions on Information

and Systems Security, November 2002.

[LZho2002] Zhou, L et al “COCA: A secure distributed online certification authority”

ACM Transaction on Computer Systems 20 (2002)

[Mand2013] Mandiant “APT1: Exposing one of China’s Cyber Espionage Units” report

2013

[Mars2010] CISCO Security Monitoring, Analysis and Response System (MARS)

Framework

[McAf2010] McAfee Labs. “McAfee Threats Report: Second Quarter 2010”.

http://www.mcafee.com/us/local_content/reports/q22010_threats_report_en.pdf.

pg 11.

[McAf2013] McAfee “Infographic: The State of Malware 2013”

[MCas1999] Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings

of the Third Symposium on Operating systems Design and Implementation.

(1999)

[MCor2007] Miguel Correia et al “Worm-IT – A wormhole-based intrusion-tolerant

group communication system”, Journal of Systems and Software, Volume 80,

Issue 2, 2007

[MCuk2001] Michael Cukier, Partha Pal et al. “Intrusion Tolerance Approaches in

ITUA” – joint project of BBN technologies and Boeing.

http://www.mcafee.com/us/local_content/reports/q22010_threats_report_en.pdf

182

[MHei2012] Heilman, Marshall, “South Carolina Department of Revenue” Mandiant,

Public Incident Response Report, November 20, 2012.

[MHil2001] Hiltunen, M., Schlichting, R., Ugarte, C.A.: Enhancing survivability of

security services using redundancy. In: Proceedings of the IEEE International

Conference on Dependable Systems and Networks. (2001) 173-182

[MPre2001] Prenski M. "Digital game-based learning" New York: McGraw-Hill; 2001.

[MRei1995] Reiter, M.K.: The Rampart toolkit for building high-integrity services. In:

Theory and Practice in Distributed Systems. Volume 938 of Lecture Notes in

Computer Science. Springer-Verlag (1995) 99-110

[MShi2011] Marn-Ling Shing, Kuo Lane Chen, Chen-Chi Shing and Huei Lee, “A game

theory approach in information security risk study” 2010 International conference

on e-business, Management and Economics (IPEDR) vol.3, 2011.

[MSli2008] M. Sliti, M. Hamdi, N. Boudriga, A. Helmy, "An Elliptic Threshold

Signature Framework for k-Security in Wireless Sensor Networks," The 15th

IEEE International Conference on Electronics, Circuits, and Systems, 2008

[MSli2009] M. Sliti et al “Intrusion-tolerant framework for heterogeneous wireless

sensor networks” IEEE/ACS International Conference on Computer Systems and

Applications, 2009

[MSSI2009] Microsoft Security Intelligence Report Volume 8, 2009

[MWil2003] Wilson, M. and Hash, J. Building an Information Technology Security

Awareness and Training Program, NIST, 2003.

[MYou1989] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University

Science, 1989.

[NetS2009] Network Solutions Security Breach, 2009

http://www.careandprotect.com/

[OASI2000] Organically assured and survivable information systems (OASIS).

http://www.tolerantsystems.org

[OKre2010] O.P. Kreidl “Analysis of a Markov decision process model for intrusion

tolerance” International Conference on Dependable Systems and Networks

Workshops (DSN-W) 2010.

http://www.careandprotect.com/
http://www.tolerantsystems.org/

183

[OPMB2015] Office of Personnel Management Breach, 2015

https://www.opm.gov/cybersecurity/cybersecurity-incidents/

[PAde2012] Adey P and Anderson B (2012) Anticipating emergencies: Technologies of

preparedness and the matter of security. Security Dialogue 43(2): 99–117.

[PCID2014] PCI DSS Compliance Standards (Requirement 11.4)

https://www.pcisecuritystandards.org/pdfs/pci_audit_procedures_v1-1.pdf

[PFCh2014] PF Chang’s Security Breach 2014

http://www.zdnet.com/article/pf-changs-security-breach-data-stolen-from-33-

locations-over-8-months/

[Play2011] “Security Experts: Playstation Network breach one of largest ever” USA

Today, 04/27/2011

[PLor1989] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A Theoretical

Investigation of Generalized Voters for Redundant Systems,” in The Nineteenth

International Symposium on Fault-Tolerant Computing, pp. 444 – 451, 1989.

[PLue2003] Luenam P. and Peng Liu “The design of an adaptive intrusion tolerant

database system” Foundations of Intrusion Tolerant Systems, 2003

[PLui2001] Peng Liu and Sushil Jajodia “Multi-Phase Damage Confinement in Database

Systems for Intrusion Tolerance”, Proceedings of the 14th IEEE workshop on

Computer Security Foundations, 2001

[PMan2008] Manadhata, P.K. “An attack surface metric” Ph.D. thesis, Carnegie Mellon

University (2008)

[PMan2013] Manadhata, P.K. “Game Theoretic Approaches to Attack Surface Shifting”,

MTD II

[PNeu1997] Peter Neumann & Phillip Poras “Event Monitoring Enabling Responses to

Anomalous Live Disturbances”, 1997 National Information Systems Security

Conference

[Pone2009] 2009 Annual Study: Cost of a Data Breach, Ponemon Institute LLC.

[Pone2015] Ponemon Institute, “2015 cost of data breach study: impact of business

continuity management”, Ponemon Instituted, June 2015.

https://www.opm.gov/cybersecurity/cybersecurity-incidents/
https://www.pcisecuritystandards.org/pdfs/pci_audit_procedures_v1-1.pdf
http://www.zdnet.com/article/pf-changs-security-breach-data-stolen-from-33-locations-over-8-months/
http://www.zdnet.com/article/pf-changs-security-breach-data-stolen-from-33-locations-over-8-months/

184

[PPal2007] Partha Pal, Franklin Webber, and Richeard Schantz. “The DPASA Survivable

JBI – A High-Water Mark in Intrusion-Tolerant Systems”, Workshop on Recent

Advances in Intrusion Tolerant Systems’07, 2007.

[PSou2007] Paulo Sousa et al. “Resilient Intrusion Tolerance through Proactive and

Reactive Recovery”. 13th IEEE International Symposium on Pacific Rim

Dependable Computing, 2007.

[PSou2008] Paulo Sousa et al. “The FOREVER Service for Fault/Intrusion Removal”.

WRAITS 2008, Glasgow, Scotland.

[PSou2009] P. Sousa et al “Intrusion-tolerant self-healing devices for critical

infrastructure protection” IEEE / IFIP International Conference on Dependable

Systems and Networks, 2009

[PSou2010] P. Sousa et al “Highly Available Intrusion-Tolerant Services with Proactive-

Reactive Recovery” IEEE Transactions on Parallel and Distributed Systems 2010

[PVer2006] P. Verissimo, “Travelling through Wormholes: A New Look atDistributed

Systems Models” Special Interest Group on Algorithms and Computation Theory

News, vol. 37, no. 1, 2006

[QNgu2009] Quyen Nguyen and Arun Sood, “Quantitative Approach to Tuning of a

Time-Based Intrusion-Tolerant System Architecture”, 3rd Workshop on Recent

Advances in Intrusion Tolerant Systems, Portugal, June 29, 2009.

[QNgu2010] Nguyen, Quyen and Sood, Arun. “Comparative Analysis of Intrusion-

Tolerant System Architectures”. IEEE Security and Privacy – Volume: PP, Issue:

99 , 2010.

[QNgu2011] Quyen L. Nguyen and Arun Sood, "Comparative Analysis of Intrusion-

Tolerant System Architectures", IEEE Security and Privacy, Volume 9 Issue 4,

July-Aug 2011

[RBej2005] Bejtlich, Richard. “The Tao of network security monitoring: beyond

intrusion detection”, Pearson Education, Inc. 2005.

[RKap2009] Rudiger Kapitza, Tobias Distler and Hans P. Reiser “Practical Intrusion-

tolerance in the Cloud”

[RKap2010] Rudiger Kapitza et al “Storyboard: Deterministic Multithreading”

Proceedings of the 6th workshop on Hop Topics in System Dependability,

Vancouver, Canada, 2010.

185

[RLip2000] R. Lippmann, et al “Evaluating Intrusion Detection Systems: The 1998

DARPA Off-line Intrusion Detection Evaluation” Proceedings of DISCEX 2000,

Los Alamitos, CA. 2000.

[RMax2004] R.A. Maxion and R.R. Roberts. “Proper use of ROC curves in Intrusion/

Anomaly Detection” Technical Report, University of Newcastle Nov 2004

[RRam2000] Ranga Ramanujam “Randomized Failover Intrusion Tolerant Systems

(RFITS)” Architecture Technology Corporation

[RSha2009] R.Shashikumar and L.C.S. Gouda “Self-Healing Reconfigurable FPGA

Based Fault Tolerant Security Model for Shared Internet Resources” IJCSNS

International Journal of Computer Science and Network Security, VOL.9 No.1,

January 2009

[RUpp2002] R. Uppalli, R. Wang, and F. Wang, “Design of a ballot monitor for an

intrusion tolerant system,” in Supplemental Volume of the International

Conference on Dependable Systems and Networks (DSN-2002), pp. B60–B61,

2002.

[RZbi2004] Rabih Zbib et al. “Intrusion Tolerance in Distributed

Middleware”.Information Systems Frontiers 6:1, 2004

[SANS2002] Security Awareness – Implementing an effective strategy, SANS Institute

InfoSec reading room, 2002

[Siem2012] Security Information and Event Management – Wikipedia article

[Sony2011] "Sony playstation suffers massive data breach" - Reuters - 04/26/2011

[Sony2014] Sony Security Breach 2014

https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-

december-2014-sony-hack/

[Stux2010] "Stuxnet 'hit' Iran Nuclear Plans" - BBC - 11/22/2010

[SWei2005] Weidong Shi, Hsien-Hsin S. Lee, Guofei Gu, Laura Falk, Trevor N. Mudge,

Mrinmoy Ghosh “An Intrusion-Tolerant and Self-Recoverable Network Service

System Using A Security Enhanced Chip Multiprocessor” ICAC '05 Proceedings

of the Second International Conference on Automatic Computing, Seattle, WA,

USA

https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/
https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/

186

[SWid2010] Widup, Suzanne. (2010, Jul). “The Leaking Vault – Five years of data

breaches” – Digital Forensics Association.

[Syma2016] Symantec Internet Security Threat Report 2016

[TDis2010] Tobias Distler, Rudiger Kapitza et al “State transfer for Hypervisor-based

proactive recovery of Heterogeneous Replicated Services” Proceedings of the 5th

“Sicherheit, Schutz und Zuverlassigkeit” Conference, Berlin, 2010.

[TDis2011] Tobias Distler, Rudiger Kapitza “Increasing performance in Byzantine Fault

Tolerant systems with On-Demand Replica Consistency” Proceedings of the

EuroSys 2011 conference, Salzburg, 2011

[TDis2011a] Tobias Distler, Rudiger Kapitza et al “SPARE: Replicas on Hold” 18th

Network and Distributed System Security Symposium, San Diego, USA, 2011

[TZha2005] T. Zhang, X. Zhuang, S. Pande “Building intrusion-tolerant secure software”

International Symposium on Code Generation and Optimization, 2005

[UNIS2012] UNISDR (United Nations International Strategy for Disaster Reduction)

How to Make Cities More Resilient: A Handbook for Local Government. Geneva,

Switzerland: UNISDR, 2012.

[Veri2009] Verizon 2009 Data Breach Investigations Report

http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.p

df

[Veri2010] Verizon Business Data Breach Investigations Report 2010

[Veri2012] Verizon Business Data Breach Investigation Report 2012

[Veri2013] Verizon Business Data Breach Investigation Report 2013

[Veri2015] Verizon Business Data Breach Investigations Report 2015

[Veri2016] Verizon Data Breach Investigations Report 2016

[VSig2012] “Key Internet Operators VeriSign hit by hackers” Reuters 02/02/2012

[Wynd2010] Hotchkiss, Kirsten “Wyndham Hotels Worldwide Breach”.

http://www.wyndhamworldwide.com/customer_care/data-claim.cfm. Jun. 2010

http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf
http://www.verizonbusiness.com/resources/security/reports/2009_databreach_rp.pdf
http://www.wyndhamworldwide.com/customer_care/data-claim.cfm.%20Jun.%202010

187

[YAwa2012] Awad A. Younis and Yashwant K. Malaiya “Relationship between Attack

Surface and Vulnerability Density: A Case Study on Apache HTTP Server”, The

2012 International Conference on Internet Computing, Las Vegas, USA, July

2012

[YDes1991] Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed

computing systems. In: Proceedings of the 1991 IEEE Symposium on Research in

Security and Privacy. (1991) 110-121

[YHua2006] Yih Huang, David Arsenault, and Arun Sood. “Incorruptible System Self-

Cleansing for Intrusion Tolerance”. Performance, Computing, and

Communications Conference, IPCCC 2006.

[YKim2007] Young-Soo Kim et al “Intrusion Tolerance model for Electronic Commerce

System” Future Generation Communication and Networking (FGCN), 2007

[YTan2010] Yuesheng Tan, Dengliang Luo, Jingyu Wang “CC-VIT: Virtualization

Intrusion Tolerance Based on Cloud Computing” Second International

Conference on Information Engineering and Computer Science 2010

[YYor1987] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE Transl. J.

Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf.

Magnetics Japan, p. 301, 1982].

[ZCui2009] Zhilei Cui, Xi Lu, Jine Wang “Adaptive Intrusion Tolerance Strategy of the

System Based on Artificial Immune” International Conference on Computational

Intelligence and Software Engineering 2009

[ZKal2008] Zahra Aghajani Kalkhoran, Mohammad Abdollahi Azgomi “A Multi-Layer

Architecture for Intrusion Tolerant Web Services” ICT Group, Iran University of

Science and Technology, Tehran, Iran.

188

BIOGRAPHY

Ajay Nagarajan received his Bachelor of Engineering (B.E.) degree in Computer Science

and Engineering from Anna University, India in 2007. He later received his Master of

Science (M.S.) degree in Computer Science from George Mason University, USA in

2010. Since February 2015 to date, Ajay Nagarajan has been working as a practitioner in

Stroz Friedberg’s cyber resilience practice out of their Washington, DC office.

