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ABSTRACT 

REALIZING CYBER RESILIENCE WITH HYBRID INTRUSION TOLERANCE 

ARCHITECTURES 

Ajay Nagarajan, M.S. 

George Mason University, 2017 

Dissertation Director: Dr. Arun Sood 

 

The current approach to security is based on perimeter defense and relies on 

firewalls, intrusion detection systems (IDS), and intrusion prevention systems (IPS). 

These systems require a priori information about attack patterns and system 

vulnerabilities. With ever-increasing bandwidth and thousands of unique malware 

signatures coming out every day, it is becoming impractical to prevent every intrusion. 

And so, intrusion tolerance assumes that intrusions are inevitable and focuses efforts on 

minimizing the impact of intrusions. The variety and complexity of cyber-attacks is 

increasing.  Various industry data breach investigation reports suggest that customized 

malware are difficult to detect and data ex-filtration often occurs over a period of days, 

weeks and months. The attackers’ strong motivation leads to organized and targeted 

cyber-attacks.  The current intrusion detection and prevention approaches are reactive in 

nature and inadequate to prevent all attacks.   



 

Given the clear need to design intrusion tolerant architectures, my work focuses 

on extension and application of recovery driven intrusion tolerance systems that make the 

attacker work harder by reducing the server’s exposure time to the internet. This 

approach relies on using hybrid architectures that combine reactive and proactive systems 

to protecting the cyber infrastructure. My research framework entails a) Proposing hybrid 

architectures founded on SCIT, a recovery driven intrusion tolerance approach; b) 

determining the influencing factors of each hybrid strategy and studying the impact of 

their variations within the context of an integrated intrusion defense strategy; c) defining 

economic models to assess the efficacy of proposed hybrid architectures; d) using 

mathematical models to evaluate proposed hybrid architectures and assess optimal 

operational parameters; and e) validating research using test bed experiments and 

simulations outlining impact of proposed architectures on system attack surface and 

intruder work factor.  

To system architects and executive management alike, this work can constitute as 

the basis for making informed decisions while piling layers of security as part of defense-

in-depth strategy. 
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CHAPTER ONE - INTRODUCTION 

This Introduction Chapter describes the motivation for my research and the 

contributions of this Dissertation in the areas of realizing cyber resilience using hybrid 

intrusion tolerance architectures and evaluating their security benefits. 

1.1 Motivation 

Today’s approach to security is based on perimeter defense and relies heavily on 

firewalls, Intrusion detection systems (IDS) and Intrusion prevention systems. Despite 

years of research and investment in developing such reactive security methodologies, our    

critical systems remain vulnerable to cyber-attacks. Present reactive security strategies 

like Firewalls, Intrusion Detection Systems (IDSs) and Intrusion Prevention systems have 

issues of false alarms, missed detections, inaccurate reports, and delays between 

compromise and detection. The variety and complexity of cyber-attacks is increasing, 

along with the number of successful intrusions to mission and business systems. Recent 

breach reports like Office of Personnel Management [OPMB2015] reported system 

compromise detection in July 2015, whereas the malware had resided in the system for 

nearly a year before that. So we infer that not only the Intrusion Detection System / 

Intrusion Prevention System (IDS/IPS) failed to prevent the intrusion, but current systems 

were not able to detect the presence of the intruder long after the compromise. 
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Intrusion detection is known to be a hard problem, and current cyber defense 

systems reportedly detect less than half the malware. Still servers and apps account for 

majority of the total records compromised. Verizon DBIR 2015 [Veri2015] underscores 

this problem by noting that only 9% of the compromises were detected within minutes or 

seconds. The others took hours, days, weeks and in some cases months. Thus, current 

cyber defenses cannot protect systems against customized malware and other zero day 

attacks; once an attack is successful, it can persist for many weeks. This emphasizes the 

need for a recovery-based Intrusion Tolerance approach since detection triggered 

Intrusion Tolerance Systems (ITS) might again fall short of the needs.  

Current Information Technology systems operate in a relatively static 

configuration and primarily focus on intrusion avoidance. For example, names, addresses, 

software stacks, networks, and various other configuration parameters remain static over 

extended periods of time. At the same time the variety of malware is increasing - 

Symantec reports [Syma2016] identifying more than a million new unique pieces of 

malware each day. Thus preventing all intrusions is very hard.  We believe that intrusions 

are inevitable. Current experience shows that in spite of prevention devices, the criminals 

are able to ex-filtrate data and damage systems. Industry studies by Verizon [Veri2015] 

and Mandiant [Mand2013] show that criminals are often in the compromised systems for 

months. According to the 2013 Verizon Business Data Breach Investigation Report 

[Veri2013], the average time an intruder resides in a system from initial compromise to 

the point of discovery is more than 34 days. The current static server approach is a legacy 
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design striving solely for simplicity and performance despite the increasing concern of 

malicious exploitation of system vulnerabilities. 

Moving Target Defense (MTD) is the idea of managing change across various 

system and network dimensions in order to increase the intruder work factor by 

increasing the intruder work complexity and decreasing visibility of systems to the 

intruders. Traditionally MTD strategies have presented two significant challenges to 

adoption. First, for the sake of security, MTD cannot ignore performance and end user 

productivity. Most customer facing systems don’t have the luxury of adding security that 

slows down performance. Customers tend to move on if the experience is slow and 

tedious. Secondly, traditional MTD design generally consists of complex processes 

involving memory address randomization, network address shuffling, instruction set 

randomization and more [DEva2011]. All of these techniques are designed to prevent 

attacks and have the potential to be resource hogs thereby slowing down throughput in 

certain cases.  

SCIT based Moving Target Defense acknowledges that trying to prevent each 

intrusion is impractical. Therefore, we shift the emphasis to minimizing losses occurring 

from intrusions rather than preventing intrusions. SCIT systems are designed to be 

complementary to reactive systems [ANag2010]. Primary goal of SCIT-MTD is to reduce 

the intruder’s window of opportunity to execute an attack and increase the costs of their 

foot-printing, scanning and attacking efforts. Since by design, the SCIT-MTD attack 

surface of the system is constantly changing, the system vulnerabilities are difficult to 

exploit.  The process of compromising a system involves identifying system 
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vulnerabilities and customizing attacks to exploit them. Ever-changing attack surface 

presents a stiff challenge to the intruders. SCIT – MTD can be used with diversification 

approaches to further increase the attacker difficulty. 

1.1.1Motivating Examples 

As cyber defense efforts increase, passive efforts such as establishing anti-virus 

software, firewall protection, or improving password strength and encryption, and the 

organization’s workload are constantly challenged by the need to apply patches 

immediately. Symantec Internet Security Threat Report 2016 suggests that security 

researchers are uncovering more than a million new unique pieces of malware every day, 

overwhelming malware analysis resources [Syma2016]. Increasingly, automated analysis 

technologies are used to keep up with the volume, but they still lack the precision to 

decipher compressed, encrypted, and obfuscated malware [RBej2005]. McAfee crash of 

tens of thousands of PCs globally illustrates the unpredictable system effects after 

compromise and their collateral damage, which creates even more uncertainty and less 

dependability for Enterprise Security [DKra2010]. 

The current reactive cyber defense approaches are expensive and inadequate. We 

expect that, automated recovery and Intrusion Tolerance System (ITS) will be useful in 

addressing the increasing malware and patch workload, but what are the cost impacts of 

malicious threats and false positives on dependability and security attributes? 

In reports of recent breaches, it has become clear that intruders were in the system 

for long periods.  Not only did the IDS/IPS fail to prevent the intrusion, these systems 
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were not able to detect the presence of the intruder.  To illustrate this point, we refer to 

the following data breach reports: 

1. Verizon 2016 Data Breach Investigation Report [Veri2016] focuses on over 

100,000 incidents that occurred in 2015.  The report suggests that the average 

time to compromise (time taken by the adversary to exploit a vulnerability and 

compromise a system) is in the order of minutes, however, the average time to 

discover (time taken by the defender to discover the compromise / breach) is still 

in the order of days. Therefore, the intruder is in the compromised system for a 

prolonged duration before the compromise is detected and system recovery 

initiated.  

2. Following are some recent security breach events that illustrate detection delay 

when it comes to detecting compromise:  

o Home Depot reported in September 2014 – Time to Discover 5 months 

[Home 2014] 

o PF Chang’s reported in July 2014 – Time to Discover 11 months 

[PFCh2014] 

o Sony reported in Nov 2014 – Time to Discover ~ 1 year [Sony2014] 

o Office of Personnel Management (OPM) reported in July 2015 – Time to 

Discover ~ 1 year [OPMB2015] 

3. Network Solutions breach [NetS2009] of June - July 2009 resulted in 600,000 

records compromised and the breach was detected after 2 months. 
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4. Wyndham Hotels breach [Wynd2010] was detected in January 2010, with an 

estimated start date of October 2009. 

From these typical data, we conclude that any strategy that will shorten the 

duration of the breach would lead to better protection of services and data.  

A new approach has slowly emerged during the past decade, and gained 

impressive momentum recently: intrusion tolerance (IT). That is,  handling— react, 

counteract, recover, mask— a wide set of faults encompassing intentional and malicious 

faults collectively called as intrusions, which may lead to failure of the system security 

properties if nothing is done to counter their effect on the system state. In short, instead of 

trying to prevent every single intrusion, these are allowed, but tolerated: the system has 

the means to trigger mechanisms that prevent the intrusion from generating a system 

failure. One such intrusion tolerance approach is Self-Cleansing Intrusion Tolerance 

(SCIT) [YHua2006]. 

1.2 Contribution 

Motivated by the challenges of providing practical intrusion tolerance solutions in 

conjunction with existing detection and prevention strategies, the contributions of this 

dissertation can be summarized as follows: “Apply Redundancy, Diversity and Re-

configuration techniques in proposing, designing and validating hybrid intrusion 

tolerance architectures that extend traditional SCIT systems to enable resilience, 

restoration and recovery of Information Systems at a granular level”.  
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Below is a summary of contributions made through each chapter in this 

dissertation. Significance of these contributions and their practical applicability in the 

space of information security is laid out in section 1.3 that follows.  

a) Chapter 2: Survey intrusion tolerance architectures and classify them using a 

taxonomy based on the algorithms and technology used to provide resilience to 

systems, applications and services. Intrusion tolerance techniques are broadly 

categorized as hardware and software based intrusion tolerance. Software based 

intrusion tolerance is further categorized into detection-based, algorithm-based, 

recovery-based and hybrid.  

b) Chapter 3: Propose a framework to assess the performance of security 

architectures in terms of reducing data ex-filtration. Propose hybrid approaches 

that combine recovery-driven intrusion tolerant SCIT architecture with existing 

IDS solutions as part of a multi layered defense strategy to protecting the cyber 

infrastructure. Specifically, a comparison of the following 4 hybrid architectures 

is performed from the perspective of minimizing data ex-filtration: (1) Network 

IDS only; (2) SCIT only; (3) Network IDS + Host IDS; (4) Network IDS + SCIT.  

The effectiveness of SCIT and IDS security architectures in terms of minimizing 

data ex filtration losses is analyzed using decision trees and Monte Carlo 

simulations. From the view point of reducing data ex-filtration we discover that 

Network IDS + SCIT is the preferred solution. This contribution led to 

publication [ANag2010]. 
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c) Chapter 4: Establish a framework that uses Receiver Operating Characteristic 

(ROC) curve analysis and damage cost models to trade-off the true positive rate 

and false positive rate for comparing alternate security architectures. This 

framework provides a baseline for making informed decisions and choosing 

operating parameters for various architectures. In this work, the framework is 

employed in performing a comparison between an IDS only solutions and an IDS 

+ SCIT hybrid solution. This analysis provides optimal value(s) of Probability of 

Detection by evaluating the potential damage from a missed intrusion and costs of 

processing false positives. This research proposes an approach which involves 

determining the influencing factors of each strategy and studying the impact of 

their variations within the context of an overall integrated intrusion defense 

strategy. This contribution led to publication [ANag2011]. 

d) Chapter 5: Leverage the concept of Attack Surface [15, 16] and its use as a 

security metric to compare the relative security of multiple security architectures. 

This research proposes the use of Attack Surface Shifting / Reduction as a metric 

to compare Moving Target Defenses (MTD) by assessing its impact on intruder 

work factors. As part of validating this hypothesis, a test bed experiment was 

conceptualized and built to perform attack surface assessment and compare the 

following architectures: 1) Static Systems; 2) Basic-SCIT (redundant, not-diverse) 

and 3) Diverse-SCIT (redundant, diverse). A test-case for assessing impact of 

dynamic attack surface on intruder work factor is also presented to back up 

research claims. This contribution led to publication [ANag2014]. 
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e) Chapter 6: Propose a game theoretic attack / protect cyber economic model to 

facilitate designing architectures that are resilient and tilt the asymmetric cyber 

economic costs in favor of the defender. This research formalizes system security 

state transitions and intruder / defender work factors associated with all of those 

state transitions. A series of test-bed experiments were designed to compare SCIT 

and non-SCIT security architectures in the face of two sample real world exploits. 

This component of my research incentivizes logical and architectural solutions 

that create an ecosystem where the sum of all defender work factors in defending 

an enterprise over a period of time is much less than the sum of all intruder work 

factors involved in compromising the enterprise and ex-filtrating data. 

f) Chapter 7: Propose µ-SCIT, a hybrid architecture that adds modularity to SCIT 

using Operating System level virtualization. The proposed architecture is built on 

top of OpenVZ container-based virtualization for Linux. The added modularity 

affords the ability to perform more frequent targeted granular rotations at the level 

of processes and applications. This in turn extends ability of SCIT to work with 

long running applications and handle long transactions using container check-

pointing and migration.  

g) Chapter 8: Propose a ‘stand-alone’ and a ‘collaborative’ architecture which make 

use of information provided by the enterprise Security Information and Event 

Management (SIEM) solution to perform adaptive intrusion tolerance in 

unsupervised learning environments. Resilient systems need to be adaptive, and to 

achieve this goal, this research shows how environmental information can be used 
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to adaptively change system and operational parameters. In this work, two hybrid 

architectures a) Stand-alone adaptive SCIT and b) Peer-to-peer collaborative 

SCIT are proposed that can perform adaptive intrusion tolerance on the basis of 

real time enterprise health. This contribution led to publication [ANag2012a]. 

h) Chapter 9: Explored game design for cyber-security training. One of the 

overlooked aspects of cyber-security is the human factor. Technologies cannot 

account for human errors and lack of security hygiene. This can only be addressed 

by security awareness and training. The objective of this research is to teach 

everyday users the requisite cyber security skills through gaming, beyond the 

current state-of-practice. Because the skill level of the trainees is also wide 

ranging, from causal computer users, to software engineers, to system 

administrators, to managers, the games must also be capable of training this wide 

range of computer users. Computer games can provide a media for delivering 

training in an engaging format at levels appropriate for the individual trainees. 

This work entailed the following components: (1) describe the state of practice by 

describing the gaming tool used in most cyber challenges at high schools and 

colleges in the US, i.e., the cyber security gaming tool CyberNEXS, (2) outline 

some of the additional topics that should be addressed in cyber security training 

and (3) some other approaches to game design that might prove useful for future 

cyber security training game development beyond CyberNEXS. This contribution 

led to publication [ANag2012]. 
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1.3 Significance 

As cyber defense efforts increase, passive efforts such as establishing anti-virus 

software, firewall protection, or improving password strength and encryption, and the 

organization’s workload are constantly challenged by the need to apply patches 

immediately. Security researchers are uncovering close to 55,000 new malware samples a 

day, overwhelming malware analysis resources [McAf2010]. With ever growing 

bandwidth and more people getting access to the internet, it is safe to assume that these 

security concerns are here to stay.  

The current reactive cyber defense approaches are expensive and inadequate. In 

addition to the cost of licensing and implementing these tools, there is also an ever 

increasing cost of administering and managing these security tools. All of the detection 

triggered approaches such as IDS / IPS are plagued by false positives that demand man 

hours for analysis. Given the number of unique malwares and amount of network traffic 

today’s enterprises are faced with on a daily basis, it is impractical to build an ability to 

deal with every one of the alerts generated by perimeter devices. As an inference, it is 

essential to explore techniques that strive to secure an enterprise on an on-going basis 

irrespective of environment changes or intruder actions.  

My research in the area of recovery driven intrusion tolerance is significant due to 

the following reasons:  

a) Industry breach investigation reports consistently highlight the fact that an 

intruder resides on a compromised environment for extended periods of time 

(sometime months to years) while ex-filtrating sensitive data. The proposed 
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hybrid approaches and the results presented with respect to their abilities to 

thwart data ex-filtration can assist system architects in revisiting their existing 

enterprise security setups or in designing new ones ground up. The framework 

presented to assess data ex-filtration potential in a current setup can be used as 

a tool by system administrators in assessing the health of their environment. 

b) The proposed framework that uses Receiver Operating Characteristic (ROC) 

curve analysis and damage cost models to trade-off the true positive rate and 

false positive rate for comparing alternate security architectures can be used as 

an effective tool by system and network administrators in assessing operating 

parameters for their various security tools. This framework provides a 

baseline for making informed decisions. A major shortcoming of various 

modern IDS / IPS solutions is the number of false positives that are generated. 

These false positives demand substantial man hours in terms of analysis in 

order to determine whether they are action worthy or not. Analysis using the 

proposed framework can provide optimal value(s) of Probability of Detection 

by evaluating the potential damage from a missed intrusion and costs of 

processing false positives.  

c) The proposed µ-SCIT architecture extends the capabilities of SCIT which is 

currently being used for short to medium transactions to be able to 

accommodate long running transactions. µ-SCIT also provides a technology 

solution to perform targeted recovery at a more granular level than SCIT. 
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d) Models defined and presented as part of this research to assess the impact of 

security architectures on system attack surface and intruder / defender work 

factors can help  

 system architects design resilient cyber ecosystems; 

 system architects explore proactive recovery; 

 system / network administrators with assessing efficacy of their 

current security architecture; 

 System / network administrators in performing system and service 

configuration changes that have meaningful impacts on intruder and 

defender work factors. 

1.4 Dissertation Organization 

This Dissertation comprises 10 chapters, including this Chapter 1. Chapter 2 

introduces intrusion tolerance and traditional fault tolerance concepts. It classifies 

intrusion tolerance architectures using a taxonomy that is based on techniques and 

algorithms used to achieve tolerance. Chapter 3 proposes hybrid architectures that consist 

of both IDS and Intrusion Tolerance Systems (ITS) and performs a comparison of the 

proposed architectures using decision trees and Monte Carlo simulation from the 

viewpoint of containing data ex-filtration. Chapter 4 defines a framework that uses 

Receiver Operating Characteristic (ROC) curve analysis and damage cost models to 

trade-off the true positive rate and false positive rate of detection solutions for comparing 

alternative security strategies. This chapter presents an approach which involves 

determining the influencing factors of each strategy and studying the impact of their 
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variations within the context of an overall integrated intrusion defense strategy. Chapter 5 

investigates the impact of SCIT based moving target defense architectures (as proposed 

in the previous chapters) on system attack surface.  Chapter 6 highlights the impact of 

SCIT based moving target defense architectures (as proposed in the previous chapters) on 

intruder and defender work factors. Chapter 7 proposes µ-SCIT, an architecture which 

adds modularity to SCIT using container-based virtualization. Chapter 8 introduces 

intrusion tolerant architectures built on top of SCIT that are self-adapting based on real 

time enterprise health and threat information feeds from SIEM. Chapter 9 explores the 

applicability of game design to cyber security training – a key missing link in addressing 

the human factor quotient of the cyber security paradigm. Chapter 10, in summary, 

provides conclusions of my dissertation research.  
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CHAPTER TWO – RELATED WORK 

This chapter presents related work from the recent past including a survey of 

intrusion tolerance architectures that classifies them using a taxonomy based on the 

algorithms and technology used to provide resilience to systems, applications and 

services. The Intrusion tolerance techniques are broadly categorized as hardware and 

software based intrusion tolerance. Software based intrusion tolerance is further 

categorized into detection-based, algorithm-based, recovery-based and hybrid.  

2.1 Overview 

There is a significant body of research on distributed computing architectures, 

methodologies and algorithms, both in the fields of dependability and fault tolerance, and 

in security and information assurance. These are commonly used in a wide spectrum of 

situations: information infrastructures; commercial web-based sites; embedded systems. 

Their operation has always been a concern, due to the use of Commercial Off The 

Shelves (COTS) products, compressed design cycles, openness. While they have taken 

separate paths until recently, the problems to be solved are of similar nature: keeping 

systems working correctly, despite the occurrence of mishaps, which we could commonly 

call, faults (accidental or malicious); ensure that, when systems do fail (again, due to 

accidental or malicious faults), they do so in a non-harmful way. In classical 

dependability, and mainly in distributed settings, fault tolerance has been the subject of 
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the many solutions published over the years. Classical security-related work has on the 

other hand privileged, with few exceptions, intrusion prevention, or intrusion detection 

without systematic forms of processing the intrusion symptoms.  

A new approach has slowly emerged during the past decade, and gained 

impressive momentum recently: intrusion tolerance (IT). That is, the process of handling 

(react, counteract, recover, mask) a wide set of faults encompassing intentional and 

malicious faults collectively called intrusions, which may lead to failure of the system 

security properties if nothing is done to counter their effect on the system state. In short, 

instead of trying to prevent every single intrusion, these are allowed, but tolerated: the 

system has the means to trigger mechanisms that prevent the intrusion from generating a 

system failure.  

The term "intrusion tolerance" has been used for the first time in [JFra1985], and 

a sequel of that work lead to a specific system developed in the DELTA- 4 project 

[YDes1991]. In the following years, a number of isolated works, mainly on protocols, 

took place that can be put under the IT umbrella [MCas199, MRei1995, KKih2001, 

LAlv2000, DMal2001, Gate2000, MHil2001], but only recently did the area develop 

explosively, with two main projects on both sides of the Atlantic, the OASIS and the 

MAFTIA projects, doing structured work on concepts, mechanisms and architectures. 

One main reason is concerned with the fact that distributed systems present fundamental 

problems in the presence of malicious faults. On the other hand, classical fault tolerance 

follows a framework that is not completely fit to the universe of intentional and/or 

malicious faults. These issues will be discussed below. 
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The purpose of this chapter is to make an attempt to systematize these new 

concepts and design principles. The chapter describes the fundamental concepts behind 

intrusion tolerance (IT), tracing their connection with classical fault tolerance and 

security, and identifying the main delicate issues emerging in the evolution towards IT. 

We discuss the main strategies and mechanisms for architecting IT systems, and report on 

recent advances on distributed IT system architectures. For the sake of clarifying our 

position, we assume an 'architecture' to be materialized by a given composition of 

components. Components have given functional and non-functional properties, and an 

interface where these properties manifest themselves. Components are placed in a given 

topology of the architecture, and interact through algorithms (in a generic sense), such 

that global system properties emerge from these interactions. 

2.2 Classical Fault Tolerance and Security 

Dependability has been defined as that property of a computer system such that 

reliance can justifiably be placed on the service it delivers. The service delivered by a 

system is its behavior as it is perceptible by its user(s); a user is another system (human 

or physical) which interacts with the former [AAvi1986]. 

Dependability is a body of research that hosts a set of paradigms, amongst which 

fault tolerance, and it grew under the mental framework of accidental faults, with few 

exceptions [JFra1985, JDob1986], but we will show that the essential concepts can be 

applied to malicious faults in a coherent manner. 

Malicious failures make the problem of reliability of a distributed system harder: 

failures can no longer be considered independent, as with accidental faults, since human 



18 

 

attackers are likely to produce "common-mode" symptoms; components may perform 

collusion through distributed protocols; failures themselves become more severe, since 

the occurrence of inconsistent outputs, at wrong times, with forged identity or content, 

can no longer be considered of "low probability"; furthermore, they may occur at 

specially inconvenient instants or places of the system, driven by an intelligent 

adversary's mind. The first question that comes to mind when addressing fault tolerance 

(FT) under a malicious perspective is thus: How do you model the mind of an attacker? 

Traditionally, security has evolved as a combination of: preventing certain attacks 

from occurring; removing vulnerabilities from initially fragile software; preventing 

attacks from leading to intrusions. For example, in order to preserve confidentiality, it 

would be unthinkable to let an intruder read any confidential data at all. Likewise, 

integrity would assume not letting an intruder modify data at all. That is, with few 

exceptions, security has long been based on the prevention paradigm. However, let us 

tentatively imagine the tolerance paradigm in security [AAde2002]: 

 assuming (and accepting) that systems remain to a certain extent vulnerable; 

 assuming (and accepting) that attacks on components/sub-systems can happen and 

some will be successful; 

 ensuring that the overall system nevertheless remains secure and operational. 

2.3 Intrusion Tolerance Concepts 

What is Intrusion Tolerance? As said earlier, the tolerance paradigm in security 

assumes that systems remain to a certain extent vulnerable; assumes that attacks on 

components or sub-systems can happen and some will be successful; ensures that the 
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overall system nevertheless remains secure and operational, with a quantifiable 

probability.  

The following subsections outline the most commonly used intrusion tolerance 

concepts, techniques, algorithms and technology implementations.  

2.3.1 AVI Composite Fault Model 

The mechanisms of failure of a system or component, security-wise, have to do 

with a wealth of causes, which range from internal faults (e.g. vulnerabilities), to 

external, interaction faults (e.g., attacks), whose combination produces faults that can 

directly lead to component failure (e.g., intrusion). An intrusion has two underlying 

causes: 

 Vulnerability - fault in a computing or communication system that can be 

exploited with malicious intention 

 Attack - malicious intentional fault attempted at a computing or communication 

system, with the intent of exploiting vulnerability in that system 

Which then lead to: 

 Intrusion - a malicious operational fault resulting from a successful attack on 

vulnerability 

This well-defined relationship between attack/vulnerability/intrusion is what we 

call the AVI composite fault model. The AVI sequence can occur recursively in a 

coherent chain of events generated by the intruder(s), also called an intrusion campaign. 

For example, a given vulnerability may have been introduced in the course of an 

intrusion resulting from a previous successful attack.  
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Vulnerabilities are the primordial faults existing inside the components, 

essentially requirements, specification, design or configuration faults (e.g., coding faults 

allowing program stack overflow, files with root setuid in UNIX, naïve passwords, 

unprotected TCP/IP ports). These are normally accidental, but may be due to intentional 

actions, as pointed out in the last paragraph.  

Attacks are interaction faults that maliciously attempt to activate one or more of 

those vulnerabilities (e.g., port scans, email viruses, malicious Java applets or ActiveX 

controls). The event of a successful attack activating vulnerability is called an intrusion. 

This further step towards failure is normally characterized by an erroneous state in the 

system which may take several forms (e.g., an unauthorized privileged account with 

telnet access, a system file with undue access permissions to the hacker). Intrusion 

tolerance means that these errors can for example be unveiled by intrusion detection, and 

they can be recovered or masked. However, if nothing is done to process the errors 

resulting from the intrusion, failure of some or several security properties will probably 

occur. 

2.3.2 Tolerance Techniques 

Redundancy, Diversity and Re-configuration are commonly applied principles for 

fault tolerance against accidental faults. Their use in security is attracting increasing 

interest; however it is less general and less of an accepted principle. The following 

section helps better understand how the above principles can be applied to security. 

a) Redundancy: Redundancy in general has been long understood to be a 

valid defense against physical faults. Its application to security however has only become 
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popular recently. Security encompasses multiple attributes (confidentiality, availability 

and integrity) and defending against multiple threats. Voted redundancy is often seen as 

the stereo-typical form of redundancy. In this case, multiple replicas vote on a decision 

and the decision’s outcome will reside upon the majority of the votes. Voted Redundancy 

is applicable in scenarios where there is a low probability for majority of the replicas to 

be compromised. Redundancy of Resources is another form of redundancy used in 

security where ideally the intended service can be provided (possibly in a degraded 

fashion) if at least 1 out of N redundant resources remains available. Security benefits in 

terms of availability is quiet apparent in this case. Primary objection for the application of 

redundancy to security has been that if an attacker can penetrate a certain defense, the 

same attacker would have no problems penetrating two copies of the same. This leads us 

to the second principle of diversity. 

b) Diversity: Redundancy alone is not enough in most of the cases. Having 

multiple copies of the same system/defense only creates slight separation. It is 

straightforward for the attacker who has penetrated one copy to penetrate the other. To 

avoid this, there is need for further isolation between two copies. Diversity provides this. 

Diversity is the property that the redundant components should be substantially different 

in one or more aspects, from hardware diversity and operating system diversity, to 

software implementation diversity. Additionally, diversity is also applied to time and 

space, in that diverse services should be co-located at multiple sites to protect against 

local disasters, and that clients may use time diversity by requesting service at different 

times. Diversity makes it unlikely for redundant components to be attacked / penetrated at 
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the same time. This also adds extra workload on the attacker with limited resources. 

Although increased diversity reduces the risk of correlated faults, it increases the 

complexity of the system.  

c) Voting: Redundancy is a key component in providing any kind of 

tolerance. As a consequence of having redundant components in ITS system, it is also 

paramount that the systems’ non-faulty components can agree on valid output data in the 

presence of the faulty components. While all the replicas of a response are considered 

equally reliable, the output must be based on cross-comparison of available replicas, 

possibly augmented by knowledge of the application. Voting is used to resolve any 

differences in redundant responses and to arrive at a consensus result based on the 

responses of perceived non-faulty components in the system. It has two complementary 

goals: masking of intrusions, thus tolerating them, and providing integrity of the data. 

The process involves comparing the redundant responses and reaching agreement on the 

results to find the “correct” response. Common metrics for comparison are Edit Distance 

and Hash Code. Edit Distance is useful for comparing data where we need to consider 

modification (insert/delete/replace) costs. A number of variants of the edit distance 

computations exist: simple edit distance, hamming distance, episode distance etc. The 

common UNIX utility diff uses such an approach. Hash Code is a useful metric for large 

data streams. When computing edit-distance is not-possible or computationally intensive, 

a digest of the data can be used as a metric. The hash code can be computed using some 

digest function such as CRC, MD5, or SHA. These metrics are used in agreement 
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algorithms to arrive at a plausible “correct” response. A leader/delegate usually passes on 

the chosen replica to the client. Common voting algorithms [PLor1989] include: 

 Formalized Majority Voting: This is the most commonly used algorithm, also 

known as consensus or majority voting. Here, the replicas are partitioned such 

that the difference between no two replicas in a partition is greater than a 

threshold. If the partition with the highest number of replica entries forms the 

absolute majority, one output from that partition is chosen as the final response. 

 Generalized Median Voting: In this method, a middle value is selected from the 

set of N replicas by systematically locating those which differ by greatest amount 

and eliminating them from consideration. 

 Formalized Plurality Voting: This algorithm is similar to formalized majority 

voting algorithm but for the fact that a relative majority is considered instead of 

absolute majority. 

Voting can be applied at various layers of the networking stack including 

application layer as well as the middleware layer [AFra2002]. SITAR [FWan2003] uses 

edit distance comparison [Rupp2002] and formalized majority voting as the primary 

algorithms. DIT [AVal2002] uses hash code comparison and formalized majority voting 

in its architecture. However, both architectures adapt to different algorithms based on the 

security posture at any given time. Some of the common mechanisms used to thwart 

attacks against this mechanism include diversity, unpredictable leader election and more 

redundancy. 
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d) Re-configuration: The occurrence of intrusions and the consistent isolation 

of faulty components lead to a decrease in the number of available fault-free components. 

Traditional intrusion detection systems are mostly reactive. The usual response after an 

intrusion is detected is to perform a post-mortem and take corrective and recovery 

actions. This is generally a manual task for the administrator and involves some 

downtime for the server. Survivable systems on the other hand, aim to have none or 

minimal downtime for the service as far as clients is concerned. They dynamically and 

adaptively reconfigure the system so that the service can be uninterrupted. 

Reconfiguration can be proactive or reactive and can help in prevention, elimination as 

well as tolerance. Reconfiguration can be effected in several different forms: 

 Rollover: The affected component is transparently replaced by a pristine replica 

of it. 

 Shifting: All the traffic directed to the affected server is routed to another safe 

server. 

 Load sharing: If the unavailability or degradation in performance is caused by 

high load, some form of load sharing or balancing may be employed. 

 Blocking: If a client is perceived to be offending or is suspicious, the system may 

decide not to service it. 

 Fishbowling: Fishbowling is similar to blocking. Unlike blocking, however, 

fishbowling allows the targeted user to continue receiving service. But, it protects 

normal users from being effected by the attacker’s intent. 
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 Changing the system’s posture: The system’s multiple layers of defense can be 

turned off/on based on the current operating environments and threat indication. 

 Rejuvenation: The affected component is restarted to restore it to a pristine state 

wiping out any memory resident or volatile attacks.  

e) Secret Sharing:  Secret sharing (also known as Threshold Scheme) was 

proposed by Adi Shamir in his classical paper “How to share a secret” [ASha1979]. The 

general idea is to devise a method to divide data D into n pieces in such a way that it 

needs k shares to reconstruct original data D, anything less reveals no information at all. 

This elegant idea has found many applications in key management schemes as well as 

cryptography. In terms of its application in Intrusion Tolerance Systems (ITS), there are 

two primary ways of using it. First and in its very native form, data shares can be stored 

in distributed physical locations such that even if n - k - 1 shares were attacked and 

compromised, the confidentiality are still kept and original data can be reconstructed, 

therefore the tolerance. In fact, this form not only employ threshold scheme, redundancy 

technique also comes into play due to the nature of dispersion of data. Second, data itself 

can be encrypted with a secret key, and this key is to be divided into n shares using 

threshold scheme. This form doesn’t exactly provide any redundancy to the original data 

per se, however, to gain access of the information, you do need k shares of encryption 

key to construct original key, which essentially provide “joint control or custody” of 

information. 

Threshold schemes help ensure confidentiality and survivability. One of the most 

representative projects is OASIS [JLal2003], a survivable storage system developed at 
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CMU. PASIS makes use of threshold schemes to analyze trade-offs among security, 

availability and performance. Draper Laboratory’s CONTRA [JLep2003] provides 

protection and tolerance by camouflaging the messages sent from the source to 

destination using threshold schemes. COCA [LZho2002] also relies on threshold scheme 

to tolerate faults. 

f) Indirection: Indirection is a common technique in computer science. In 

intrusion tolerance, it is often layered, and occurs at several levels. Indirection allows 

designers to insert protection barriers and fault logic between clients and servers. Also, 

since the indirection is hidden outside of the black box system, clients see only what 

looks like a COTS server. There are at least four main types of indirection used by 

intrusion tolerant systems: proxies, wrappers, virtualizations, and sandboxes. They are 

briefly summarized below: 

Proxies: A proxy server, usually transparent, is often the first line of defense of a 

system. The proxy server accepts all client requests, and uses its own logic to perform a 

variety of functions, including load-balancing, validity testing, signature based testing, 

and fault masking. The proxy acts as the sole client access point, hiding all behavior 

behind the proxy from clients. However, one caveat is that proxy efficiency is paramount 

to prevent performance bottlenecks. A Scalable Intrusion Tolerance Architecture for 

Distributed Services (SITAR) and Hierarchical Adaptive Control for QoS Intrusion 

Tolerance (HACQIT) [HAcq2002] use proxies to export the server interface to clients, 

protecting their many functions. Both are a kind of firewall and load balancing proxy. 

Since the proxy is the client endpoint, it is a likely target of attack.  
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Wrappers: Wrappers are most commonly placed directly around servers (or other 

wrappers), and inspect requests and responses before sharing them with other 

components (but not end clients). The wrapper also differs from the proxy in its intimate 

knowledge of the server. Though a single proxy/wrapper can be the sole line of defense, 

commonly the wrapper is behind other indirections, and is used to add functionality to a 

server without changing the COTS server itself. Wrappers are commonly employed, such 

as in SITAR [FWan2003] and Willow [JKni2002]. SITAR uses wrappers to allow COTS 

servers to speak a SITAR internal language, and Willow’s uses wrappers to augment the 

abilities of servers. Since the wrappers are treated by the rest of the system as the COTS 

servers, arguably this addition does not add substantial burden to protection of the COTS 

servers. 

Virtualizations: Generally speaking, virtualizations are naming indirections and 

are often used subtly, without glorification. When requesting a new virtualized service, 

the indirection happens as the virtual name is translated into a real name, allowing the 

real service to be referenced. Thereafter, direct access is allowed, reducing the 

performance cost of indirections (but then references are not moderated). Some examples 

of common virtualizations include memory subsystems, the DNS system, and RPC. By 

virtualizing the names, the details are delayed until needed, and changed as appropriate. 

In our review, RFITS [RRam2000] and ITSI [DBri2003] exhibited noteworthy 

virtualizations. RFITS is essentially based on virtualization (specifically, the existence of 

a large namespace from which mappings can be dynamically created and changed 

between an endpoints virtual channel and the actual channel they communicate with). By 
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detecting flood attacks and negotiating these changes unpredictably between endpoints, 

RFITS can survive much denial of service flood attacks. RFITS uses cryptography to 

protect these negotiations. ITSI also uses virtualization, as an alternative to a proxy, by 

having multiple hardware interfaces share the same MAC address, and using another 

technique to determine which interface is the true recipient. Since ITSI uses a hardware 

implementation, its virtualization is not vulnerable to many types of attacks. 

Sandboxes: Sandboxes are common tools used to separate users, servers, and 

other untrusted components. Essentially, the idea is to run each untrusted component 

within a sandbox, where all interactions with other systems and subsystems are 

moderated (and usually significantly restricted). Faults can then be tolerated by the 

sandbox, by rolling back system state, instantiating a new component to respond, or 

rejecting the requester (or a variety of other methods). Sandboxes thus provide a window 

between the untrusted execution, and its results taking effect. If a fault can be detected 

before the results are committed, they can be safely aborted. Sandboxes are commonly 

used to protect against faulty mobile code, and to test and diagnose suspected attacks, 

because the faulty behavior can be limited to within the sandbox. Two of the projects 

reviewed, ITSI and HACQIT, use sandboxes. ITSI’s fishbowling is one of the possible 

outcomes of reconfiguration, where the communication with servers is protected within 

its fishbowl. HACQIT uses a sandbox as an analysis workbench. Whenever a possible 

intrusion is detected, the logs leading up to it and the compromised server are transferred 

to the sandbox, and it determines an attack signature within the safety of a sandbox 

without further risk to critical systems. 
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2.3.3 Algorithms commonly used in Intrusion Tolerance Systems  

Byzantine Fault Tolerance: The object of Byzantine fault tolerance is to be able to 

defend against Byzantine failures, in which components of a system fail in arbitrary 

ways. Correctly functioning components of a Byzantine fault tolerant system will be able 

to correctly provide the system's service assuming there are not too many Byzantine 

faulty components. In the case of ‘f’ byzantine faulty nodes, at least ‘2f + 1’ total nodes 

(f+1 good nodes) are required for the system to behave in a fault tolerant manner. 

Fragmentation-Redundancy-Scattering: Fragmentation-redundancy-scattering 

provides intrusion tolerance by assuring confidentiality, integrity and availability in the 

case of an intrusion. Fragmentation – split the data into fragments such that isolated 

fragments contain no significant information. Redundancy- add redundancy so that 

fragment modification or destruction would not affect legitimate access. Scattering – 

isolate individual fragments such that not all of them can be compromised at the same 

time. 

Markov Decision Process (MDP): MDP provide a mathematical framework for 

modeling decision-making in situations where outcomes are partly random and partly 

under the control of a decision maker. At each time step, the process is in some state, and 

the decision maker may choose any action that is available in states. The process 

responds at the next time step by randomly moving into a new state, and giving the 

decision maker a corresponding reward. The probability that the process moves into its 

new states' is influenced by the chosen action. Specifically, it is given by a state transition 

function. Thus, the next states' depends on the current state sand the decision maker's 
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action a. In this manner, MDP’s help formalize the problem of intrusion tolerance by 

adding model parameters like state transition probabilities and associated costs. For 

example, an MDP can capture the cost of recovering a system from a ‘compromised’ 

state to a ‘clean’ state. 

Artificial immune systems (AIS) are computational systems inspired by the 

principles and processes of the human immune system. The algorithms typically exploit 

the immune system's characteristics of learning and memory to solve a problem. 

Artificial immune system is developed around defense similar to Intrusion Tolerance 

Systems. The idea of applying artificial immune to intrusion tolerance systems is to make 

ITS’ adjust and learn according to the extent of damage caused by an attack. 

2.3.4 Technologies commonly used in the implementation of Intrusion 
Tolerance Systems  

Virtualization: The use of virtualization technology has become popular in the 

recent years. There are now architectures which use virtualization for realizing intrusion 

tolerance in network-based services. Furthermore, hypervisor allows the implementation 

of efficient proactive recovery strategies to cope with undetectable intrusions.  

Cloud Computing: Cloud computing distributes computing tasks to virtual 

resource pools which are constituted of a large number of computers, and cloud 

computing ensures that various applications can get access to computing power, storage 

space and various software services when needed. Given the need for replication and 

diversity to implement effective intrusion tolerance, ITS’ almost always are resource 

demanding. Given the plethora of resources available in a cloud computing environment, 

intrusion tolerance can be best executed.  
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Hardware Technologies like FPGA: With impressive advances in hardware 

technology over the past few years, a new interest has developed in hardware based 

intrusion tolerance. One such hardware technology is Field Programmable Gate Arrays 

(FPGA). It is an integrated circuit which is designed to be configured by the 

customer/end-user after manufacturing. The ability to update its functionality offers 

advantages for many applications. With respect to intrusion tolerance, dynamically re-

configurable FPGA’s have been used to provide self-healing in the event of an intrusion. 

Other hardware devices like security enhanced Chip Multiprocessor (CMP) have also 

been used to achieve hardware based intrusion tolerance. 

2.4 Intrusion Tolerance Systems Taxonomy 

This section will employ the following taxonomy to classify intrusion tolerance 

architectures: 

 Hardware-based intrusion tolerance 

 Software-based intrusion tolerance 

 Detection-triggered 

 Algorithm based 

 Recovery based 

 Hybrid 

2.4.1 Hardware Based Intrusion Tolerance 

In a modular and distributed systems context, hardware fault tolerance today 

should rather be seen as a means to construct fail-controlled components, in other words, 

components that are prevented from producing certain classes of failures. This 
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contributes to establish improved levels of trust-worthiness, and to use the corresponding 

improved trust to achieve more efficient fault-tolerant systems. Distributed algorithms 

that tolerate arbitrary faults are expensive in both resources and time. For efficiency 

reasons, the use of hardware components with enforced controlled failure modes is often 

advisable. 

In [RSha2009], the authors propose a novel self-healing IDS using dynamically 

reconfigurable FPGA based hardware to provide confidentiality, data integrity, 

authentication and non-repudiation. To make the designed reconfigurable IDS fault 

tolerant, a self-healing autonomous restructuring algorithm is used. The moment an 

internal fault is detected, the faulty module is replaced by the spare unit both functionally 

and structurally. This self-healing of hardware is implemented with the help of four 

cores, doing the task of fault identification, spare module identification, and structural 

and functional information detection and finally restructuring. Target application – 

Shared internet resources; Technology used – FPGA hardware. 

In [SWei2005], the authors propose a system design using a chip multiprocessor 

(CMP) to provide intrusion tolerance and self-recovery for server applications. It uses a 

multi-point defense and recovery system to defeat remote exploits. A checkpoint based 

approach is employed to recover server applications under attack. It takes a snapshot of 

the application’s context and memory state before it handles the next request. If the 

request turns out to be malicious, the system discards the malicious request and rolls back 

the application’s state to a known good one through check-pointing. Target application – 

Server applications; Technologies used – Multi-core processors, Virtualization. 
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Self-Cleansing Intrusion Tolerance/ Hardware Enforced Security (SCIT/HES) 

[DArs2007] proposes a scalable hardware framework that complements the software 

components of SCIT to enforce and guarantee the six SCIT primitives, also presented in 

the paper. Non-violation of these SCIT primitives results in efficient intrusion tolerance. 

2.4.2 Software Based Intrusion Tolerance 

Software based intrusion tolerance can be classified into the following categories. 

2.4.2.1 Detection Triggered 

In these ITS architectures, recovery mechanism / tolerance is triggered on 

detection of an intrusion / error. Most of these ITS’ depend on intrusion detection 

systems for detection purposes. There are a number of ITS’ that are detection-triggered, 

some of which are briefly explained below. The major drawback of such ITS 

architectures is their dependence on the IDS. If the IDS does not happen to detect an 

intrusion, the tolerance mechanism will not be triggered into place thereby failing to 

tolerate that particular attack.  

SITAR [FWan2003] proposes an intrusion tolerant architecture for distributed services, 

especially COTS servers. Emphasis of SITAR is on providing continued availability. 

SITAR employs redundancy, diversity and adaptive reconfiguration to achieve tolerance 

with the use of byzantine fault tolerance algorithm and voting. SITAR is detection 

triggered and depends on the ability to detect compromises. 

DPASA [PPal2007] provides an architecture for survivable systems with multi-

layer defense for preventing intrusion and for detecting / responding to intrusions that 

cannot be prevented. The system uses proxies to create a high barrier to entry for an 
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attacker, continually monitors all parts of the system at all layers and supports dynamic 

reconfiguration of the system to recover from damages after the attack.  

The Willow architecture [JKni2002] is a survivable architecture that combines 

fault avoidance, elimination and tolerance. It has a powerful reconfiguration mechanism 

along with a general control structure that continually monitors network state. Distributed 

IDS monitors all components of the distributed computing environment and triggers the 

tolerance mechanism once an error / intrusion is detected. 

In DIT [AVal2003], the authors propose an adaptive architecture that triggers 

response mechanisms on detecting intrusions. This architecture consists of hardened 

intrusion tolerance proxies that mediate client-requests and also an alert management 

system based on the EMERALD [PNeu1997] intrusion detection framework. 

HACQUIT [JRey2003] performs online attack identification by using similarity 

rules for generalization of attack signatures. HACQUIT claims to protect against 

previously unknown attacks that are similar to existing attack signatures.  COTS supplied 

design diversity along with fault tolerant techniques are used in this paper to achieve 

intrusion prevention.  

ITSI [DBri2003] presents the approach taken on the Intrusion Tolerant Server 

Infrastructure (ITSI). ITSI uses smart network interface controllers (NIC) in its 

implementation to identify and isolate intrusions; prevent them from spreading and also 

to provide service availability under attack and during recovery. Smart NIC’s are based 

on distributed firewall technology developed by Secure Computing under DARPA’s 

ADF program.  
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VM-FIT [HRei2007] architecture uses virtualization technology to realize 

intrusion-tolerant network based services. In this case, the guest OS hosts the service and 

distributes the requests to a cluster of replicas. The hypervisor is entirely isolated from 

the guest OS such that an intrusion at the guest OS level would not affect the hypervisor / 

other trusted components.  Hypervisor has complete control over the guest OS such that it 

can terminate / recover a guest OS if need be.  

In [ASai2009], the authors propose an architecture that is based on fault tolerance 

principles such as redundancy and diversity to improve system resilience to intrusions. 

The paper proposes a generic intrusion tolerant architecture specifically for web servers 

that involve a cluster of mediating proxies to handle client requests in order to provide 

service availability and integrity. 

Authors of [ZKal2008] propose a multi-layer architecture for intrusion tolerant 

web services. The idea is to implement tolerance in case of malicious failures by the use 

of software fault tolerance techniques. The architecture uses a single service 

implementation (no redundant system components) and adds some functional capabilities 

to build an intrusion tolerant web service. In this case, intrusion detection triggers 

intrusion containment, system recovery and reconfiguration.  

ITUA [MCuk2001] looks at developing a middleware based intrusion tolerance 

solutions that would help tolerate staged attacks. Reconfiguration or adaptation is a key 

component of how ITUA provides tolerance. It instills unpredictability at different levels 

of adaptation with the motive to increase the length of time an application can survive an 

attack.  
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Intrusion Tolerance model for E-commerce system [YKim2007] proposes an 

adaptive intrusion tolerance technique for E-commerce systems in particular. In this 

model, the authors propose an architecture where the application function is separate and 

the middleware carries out the intrusion tolerance function. 

Randomized Failover Intrusion Tolerant System (RFITS) [RRam2000] is a 

research effort sponsored by DARPA/IPTO which developed survivability design 

patterns for building Denial of Service (DoS) resistant information systems. Here, the 

emphasis is on availability of the critical service. Randomized failover makes system 

posture unpredictable thereby providing enough time for attack neutralization. 

CoBFIT [HRam2004] presents a component based framework for building 

intrusion tolerant distributed systems. In this paper, the authors describe the CoBFIT 

implementation of a prototype intrusion-tolerant group communication system. The 

design and implementation of CoBFIT framework include characteristics like portability, 

re-configurability, flexibility and adaptability that are necessary for system dependability. 

2.4.2.2 Algorithm Driven 

As opposed to detection triggered intrusion tolerance architectures, the following 

architectures do not depend on IDS to trigger recovery / tolerance. The following ITS 

architectures depend on algorithms such as Byzantine Fault Detection, Fragmentation-

redundancy-scattering, Markov Decision Process algorithms and Artificial Immune 

System for providing intrusion tolerance. Although Byzantine fault detection has been 

commonly used for some time now, the implementation of other algorithms for intrusion 
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tolerance purposes is fairly recent. Some of the algorithm driven intrusion tolerance 

techniques are briefly explained below.  

OASIS [JLal2003] is a DARPA funded multi-layer intrusion tolerance technique. 

The goal of OASIS is to “allow sustained operation of mission critical functions in the 

face of known and future cyber-attacks against information systems”. As a part of 

OASIS, close to 30 projects are funded – one of which is ITUA which was discussed 

earlier; another project is the hybrid COCA [LZho2002] system which we will briefly 

describe under Hybrid intrusion tolerance architectures. 

MAFTIA [DPow2001] was the first project to use fault-tolerance techniques to 

build intrusion tolerant applications. The biggest contribution of MAFTIA was proposing 

an approach to tolerate both accidental faults and malicious attacks. MAFTIA employs 

Byzantine agreement protocols, threshold cryptography and voting algorithms to tolerate 

arbitrary failures.  

In [MSli2009], authors propose an intrusion tolerance framework based on 

intermediate signature verification protocol introduced in [MSli2008]. The framework 

here is specifically meant for heterogeneous wireless sensor networks. In this 

architecture, intermediate signature verification algorithm is used to detect compromised 

nodes. Once detected, the compromised node is pushed into a tolerance state after which 

it is either isolated or recovered. 

[TZha2005] proposes a secret sharing based compiler solution to realize intrusion 

tolerance in secure software. The major contribution of this paper is the introduction of 

intrusion tolerance in secure software which is critical given their vulnerability. Here, 
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secret sharing provides better data confidentiality and integrity and the authors also 

propose mechanisms to recover from data tampering and to achieve intrusion tolerance. 

The Starfish System [KKih2003] intends to provide intrusion detection and 

tolerance for middleware applications in an asynchronous distributed system. The system 

contains a central highly secure trusted core which is surrounded by “arms” that have 

fewer security guarantees. In case of a vulnerability / intrusion in an arm, it can be 

removed from the trusted core. Similarly, new arms can be added to the trusted core as 

well. 

CC-VIT [YTan2010] uses virtualization to construct an intrusion tolerance system 

for the cloud computing platform. CC-VIT is a modified Byzantine fault tolerant 

architecture that allows the system to tolerate F faulty replicas in a total of N=2F+1 

replicas. The system also ensures that only F+1 replicas are required for proper 

functioning during the intrusion-free stage. 

In the paper [FAnj2000], the author uses Fragmentation-Redundancy-Scattering 

algorithm to realize intrusion tolerance in a mobile environment. The author also 

considers the important factor of user mobility while proposing the intrusion tolerance 

scheme.  

Zhilei Cui et al [ZCui2009] look at applying artificial intelligence concepts to 

intrusion tolerance. Based on artificial immune systems, the authors propose an intrusion 

tolerant system that can adapt and learn depending on the extent of damage caused by an 

intrusion. Authors also propose the construction of a behavioral database rather than 

updating the huge virus database frequently. 
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Patrick Kreidl [OKre2010] proposes a simple Markov decision process model for 

intrusion tolerance under the assumptions that every attack has to bypass a number of 

steps before the system gets compromised and that the defensive systems in place cannot 

prevent all the attacks. The author also uses simulation experiments to study costs 

tradeoff between system performance and security.    

Fault and Intrusion Tolerance in Object-Oriented Systems [BRan1991] briefly 

discusses the technique called Fragmented Data Processing (FDP) which is used to 

enhance the security of information in a distributed computing environment. This paper 

proposes the application of FDP on object-oriented systems to better provide intrusion 

tolerance to application programs. FDP here is strongly related to the traditional 

Fragmentation Redundancy Scattering (FRS) fault tolerance technique. 

Ineffective damage containment on a compromised critical database can 

potentially make the database useless. To counter this problem, authors of [PLui2001] 

present a multi-phase damage confinement approach with the first phase or the confining 

phase aggressively confining the damage and the following un-confining phases 

subsequently relax confinement. The aggressive confining phase makes sure that the 

damage does not spread beyond the first phase and in the process can cause loss of 

service availability. 

2.4.2.3 Recovery Based 

Recovery based systems are proactive intrusion tolerance systems. These ITS 

architectures function under the assumption that every system that is exposed to the 

internet is compromised. Irrespective of whether or not an IDS triggers an alert, recovery-
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based ITS architectures periodically restore the system to the last known good 

configuration to avoid sustained presence of attacker on the compromised system. 

Although recovery based ITS architectures do not require an IDS as part of the 

framework, they could complement each other to achieve defense in depth.  

A Rejuvenation Methodology of cluster recovery [KAun2005] presents a cluster 

recovery model based on concept of Software Rejuvenation. Software rejuvenation is a 

technique for dealing with software faults and performance degradation by refreshing or 

restarting it.  The proposed model provides the luxury of deciding which application 

components are vulnerable to longevity flaws and choosing them alone for rejuvenation. 

This in turn increases the availability of the service as well as reduced losses due to down 

time. 

Self-Cleansing Intrusion Tolerance (SCIT) [YHua2006] employs a cluster of 

servers each providing identical services. Using round-robin cleansing, at any point in 

time, a server in the cluster can have one of three states: offline cleansing, offline spare 

and online transaction processing. A SCIT server A is exposed to the internet for a period 

of time known as “Exposure Time” after which another server B in the cluster takes its 

place. Once server A comes offline, it is cleansed and restored to its last known good 

configuration. 

In FOREVER [PSou2008], the authors introduce a service that can be used to 

improve the resilience of intrusion tolerant replicated systems by tolerating an arbitrary 

number of faults. This is achieved by using both recovery and evolution techniques. 

Recovery techniques in FOREVER include time-triggered periodic recoveries and event-
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triggered recoveries. Once a recovery is performed, evolution techniques are used to 

modify the respective vulnerabilities that may be exploited by a malicious attacker. 

Hans P. Reiser and Rudiger Kapitza, the authors of [HRei2007] review the 

benefits of using a hypervisor-based replication infrastructure for implementing proactive 

recovery. They propose a proactive recovery system that uses virtualization to create a 

new system image before shutting down the one to be recovered. This is a stateless 

replication system, idea of which is to minimize system unavailability. 

In SPARE [RKap2009], the authors propose an approach that uses virtualization 

support as typically found in the cloud environment to reduce the resource demands of 

performing Byzantine Fault Tolerance. They also propose the use of spare replicas that 

are periodically updated in a suspended state to aid in proactive recovery which helps 

maximize availability. There are a number of related publications by the authors under 

the umbrella REFIT: Resource-Efficient Fault and Intrusion Tolerance [TDis2011] 

[TDis2011a] [TDis2010] [RKap2010]. 

Worm-IT [MCor2007] proposes a new intrusion tolerant group communication 

system with membership service. Worm-IT is a multi-node system and can tolerate an 

arbitrary number of malicious nodes. Worm-IT does not require failure detection of 

primary-members of the group communication system.  

2.4.2.4 Hybrid 

Some systems combine two or more of the techniques discussed above to provide 

a hybrid solution for intrusion tolerance. We will briefly discuss some of these hybrid 

intrusion tolerance solutions. 
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P. Sousa et al, the authors of [PSou2010] propose an approach where reactive 

mechanisms would complement existing proactive recovery techniques to build an 

intrusion tolerant replicated system that is highly resilient to faults. The reactive 

mechanisms give the non-faulty replicas the capability to detect other replicas getting 

compromised. The proactive-reactive recovery service is designed based on a hybrid 

distributed system [PVer2006].   

CloudFIT [HRei2011] is an effort to build an architecture for intrusion tolerant 

applications that can be deployed dynamically in the cloud. Author also explores the 

feasibility of applying existing BFT algorithms to increase security and availability in the 

proposed architecture. In CloudFIT, recovery is handled by a component that can trigger 

proactive recoveries and also handle event triggered recoveries.  

EU CRUTIAL [PSou2009] presents a demonstration of a family of protection 

devices for critical information infrastructures. These protection devices called 

CRUTIAL Information Switches (CIS) are responsible for enforcing sophisticated access 

control policies of both incoming and outgoing traffic. CIS by themselves are intrusion-

tolerant and self-healing in order to achieve high resilience. CIS are placed at network 

boundaries similar to firewalls; however they are responsible for enforcing access control 

policies on a global scale, all across the interconnected infrastructure.  

Cornell Online Certification Authority (COCA) [LZho2002] is a fault-tolerant 

and secure online certification authority. COCA uses threshold cryptography algorithm to 

sign the certificates it generates for local and wide area networks. COCA also uses 

redundancy in the form of server replicas to assure availability. Given there are ‘3t+1’ 



43 

 

COCA servers up, COCA may tolerate up to ‘t’ faulty servers as per Byzantine Fault 

Tolerance.   

2.5 Open Problems 

Let us analyze a few open problems that arise when intrusion tolerance is viewed 

from a security or fault tolerance perspective. To start with, what contributes to the risk 

of intrusion? Risk is a combined measure of the probability of there being intrusions, and 

of their severity, that is, of the impact of a failure caused by them. The former is 

influenced by two factors that act in combination: the level of threat to which a 

computing or communication system is exposed; and the degree of vulnerability it 

possesses. The correct measure of how potentially insecure a system can be (in other 

words, of how hard it will be to make it secure) depends: on the number and nature of the 

flaws of the system (vulnerabilities); on the potential for existing attacks on the system 

(threats). Informally, the probability of an intrusion is given by the probability of there 

being an attack activating a vulnerability that is sensitive to it. The latter, the impact of 

failure, is measured by the cost of an intrusion in the system operation, which can be 

equated in several forms (economic, political, etc.). 

Should we try and bring the risk to zero? And is that feasible at all? This is 

classical prevention/removal: of the number, power, and severity of the vulnerabilities 

and the attacks the system may be subjected to. The problem is that neither can be made 

arbitrarily low, for several reasons: it is too costly and/or too complex (e.g., too many 

lines of code, hardware constraints); certain attacks come from the kind of service being 

deployed (e.g., public anonymous servers on the Internet); certain vulnerabilities are 
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attached to the design of the system proper (e.g., mechanisms leading to races in certain 

operating systems). And even if we could bring the risk to zero, would it be worthwhile? 

It should be possible to talk about acceptable risk: a measure of the probability of failure 

we are prepared to accept, given the value of the service or data we are trying to protect. 

This will educate our reasoning when we architect intrusion tolerance, for it establishes 

criteria for prevention/removal of faults and for the effort that should be put in tolerating 

the residual faults in the system. Further guidance can be taken for our system 

assumptions if we think that the hacker or intruder also incurs in a cost of intruding. This 

cost can be measured in terms of time, power, money, or combinations thereof, and 

clearly contributes to equating 'acceptable risk', by establishing the relation between 'cost 

of intruding' and 'value of assets'. 

A malicious-fault modelling methodology is required that refines the kinds of 

faults that may occur, and one that does not make naïve assumptions about how the 

hacker can act. The crucial questions put in this section will be addressed in the rest of 

the dissertation. 
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CHAPTER THREE – SCIT AND IDS ARCHITECTURES FOR REDUCED DATA 

EX-FILTRATION 

This chapter proposes a framework to assess the relative performance of different 

security architectures in terms of their effectiveness in reducing data ex-filtration. The 

chapter explores various hybrid approaches that combine recovery driven SCIT 

methodology with existing IDS solutions as part of a multi layered defense strategy to 

enforce cyber resilience.  

3.1 Overview 

Today’s approach to security is based on perimeter defense and relies heavily on 

firewalls, Intrusion detection systems (IDS) and Intrusion prevention systems. Despite 

years of research and investment in developing such reactive security methodologies, 

critical systems remain vulnerable to cyber-attacks. In this approach, it is assumed that 

intrusions are inevitable and the effort is focused on minimizing losses. Towards this end 

a recovery based limited exposure time system called Self Cleansing Intrusion Tolerance 

(SCIT) is introduced. In this chapter, architectures that combine SCIT architecture with 

existing IDS approaches are investigated. The effectiveness of SCIT and IDS security 

architectures in terms of minimizing data ex filtration losses is analyzed using decision 

trees and the results of Monte Carlo simulation is presented.   

The variety and complexity of cyber-attacks is increasing.  Verizon 2009 Data 

Breaches Investigation Report [Veri2009] shows that customized malware is difficult to 
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detect and data ex-filtration often occurs over a period of days, weeks and months.  The 

attackers’ strong motivation leads to organized and targeted cyber-attacks.  The current 

intrusion detection and prevention approaches are reactive in nature and inadequate to 

prevent all attacks.  It is safe to conclude that intrusions are inevitable, and have adopted 

an intrusion tolerance approach.  In [YHua2006, ABan2009] a Self-Cleansing Intrusion 

Tolerance (SCIT) approach is introduced.  SCIT is a recovery driven intrusion tolerance 

system that makes the attacker work harder by reducing the server’s exposure time to the 

internet. 

More recently, a combination of reactive and proactive systems has been 

proposed [PSou2007].  Such hybrid approaches, with multiple layers of defense is seen as 

a desirable approach to protecting the cyber infrastructure.  In this chapter, the usefulness 

of adding IDS systems to an intrusion tolerance approach is explored.  Specifically, in 

this chapter a combination of IDS and SCIT architectures is studied.  4 architectures are 

compared: (1) Network IDS only; (2) SCIT only; (3) Network IDS + Host IDS; (4) 

Network IDS + SCIT.  From the view point of reducing data ex-filtration it is discovered 

that Network IDS + SCIT is the preferred solution. 

The rest of the chapter is divided into 6 sections. In the next section recent reports 

to motivate this study are discussed.  Section 3.3 provides an introduction to SCIT and 

how it reduces losses. Section 3.4 presents the methodology utilized in this chapter to 

gauge the effectiveness of a security strategy. Section 3.5 gives an overview of various 

security architectures compared in this chapter along with decision trees representing 
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their functionality. Section 3.6 gives an account of the Monte-Carlo simulation, the 

parameters used and the results obtained. 

3.2 Motivating Examples 

In reports of recent breaches, it has become clear that intruders were in the system 

for long periods.  Not only did the IDS/IPS fail to prevent the intrusion, these systems 

were not able to detect the presence of the intruder.  To illustrate this point, refer to the 

following data breach reports: 

Verizon DBIR [Veri2009] focuses on 90 studies conducted in 2008. 285 million 

consumer records were compromised. Some of the parameters used in this chapter are 

derived from this report. The average Intruder Residence Time (time between system 

compromise and breach containment) was more than 28 days and on average 675 records 

were compromised per day. 

Following are some recent security breach events that illustrate detection delay 

when it comes to detecting compromise:  

o Home Depot reported in September 2014 – Time to Discover 5 months [Home 2014] 

o PF Chang’s reported in July 2014 – Time to Discover 11 months [PFCh2014] 

o Sony reported in Nov 2014 – Time to Discover ~ 1 year [Sony2014] 

o Office of Personnel Management (OPM) reported in July 2015 – Time to Discover ~ 

1 year [OPMB2015] 

From these incidents, it can be concluded that any strategy that will shorten the 

duration of the breach would lead to better protection of data files. Consequently, in the 

analysis, focus is on the estimated records ex-filtrated because of malicious activity. 
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3.3 SCIT Framework 

In [YHua2006] SCIT, an intrusion tolerant technique that provides enhanced 

server security was presented. SCIT research has focused on critical servers that are most 

prone to malicious attacks. The technique involves multiple virtual instances of a server. 

These are rotated and self-cleansed periodically irrespective of the presence or absence of 

intrusions. Self-cleansing refers to loading a clean image of the server’s OS and 

application into the Virtual Machine. Rotation here refers to the process of bringing an 

exposed virtual server off-line, killing it, restarting it and in the meanwhile, bringing 

another virtual server online to assure availability. By doing so, in the event of an 

intrusion, the intruder is denied prolonged residence on the server. Once the virtual 

server’s exposure time to the Internet is completed, the virtual server instance is 

automatically rotated by a controller. This virtual instance of the server is what is referred 

to as virtual server throughout this chapter.  

Every virtual server is rotated through 6 states as shown in Figure 3.1a. Active 

state (or) Exposed state is the state in which the virtual server is on-line. If the exposed 

virtual server is busy processing an earlier query, the new incoming requests are put in a 

queue. The queries that are in the queue of a virtual server and are not processed during 

its exposed state are processed in its quiescent state / grace period. In grace period, no 

incoming queries are accepted. The virtual server is killed and restarted in the Kill VM / 

Start new VM states. A virtual server in Online-spare / Live-spare state suggests that it’s 

ready to go on-line. In addition to the states mentioned, there is also an Archive state – in 
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this state a VM that is no longer exposed and is ready to be killed is archived for offline 

forensics / future analysis / patching.  

VMware is used in this implementation, though the SCIT approach is not reliant 

on this virtualization approach. The SCIT Controller ensures the constant rotation of the 

virtual servers. 

 

Figure 3.1a: SCIT State Diagram 

 

Figure 3.1b: SCIT Server Rotation 

This illustrative example in Figure 3.1b shows 3 different time periods. At any 

given time, there are five servers online and three servers being wiped clean. In each case 

a different set of servers is being cleaned. Eventually every server will be taken offline, 

cleaned and restored to its pristine state. SCIT technology can be used to build a variety 

of servers that meet enhanced security requirements. It is best suited to servers that are 
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designed to handle short transactions – the lower the exposure time the shorter the 

transaction.  

 

3.4 Methodology to calculate data ex-filtration costs 

3.4.1 Overview 

Four SCIT / IDS architectures are considered. Two alternatives are standalone – 

NIDS only and SCIT only. In PCI DSS [PCID2014] and in DODi 8500.2 [DoDi2003], 

host IDS are suggested in addition to Network IDS, thus NIDS + HIDS systems are 

considered. Finally, NIDS and SCIT are treated. To evaluate the potential losses from 

each of these systems the approach of [JUlv2003] is followed. Decision trees are 

developed that represent the functionality of respective security architectures. The 

conditional probabilities in the decision trees help characterize their security properties. 

These decision trees are translated into decision guidance systems (DGS) by modeling 

them on Gnumeric - an open-source spreadsheet software suitable for Monte Carlo 

simulation. There are 4 DGS' - one each for NIDS, SCIT, NIDS + HIDS, NIDS + SCIT 

architectures.  

The DGS built on top of the decision tree using Gnumeric takes incoming traffic 

(in terms of queries) as input and divides the traffic into 4 categories: Confirmed 

Intrusion (CI), Non-intrusions (NI), False Alarms (FA) and Missed Intrusions (MI). 

Gnumeric's inbuilt Monte-Carlo simulation capabilities are used to generate incoming 

network traffic. In the case of Intrusions and Missed Intrusions, there would be an 

Intruder Residence time (IRT) associated with it. Section 3.6 expands on IRT and how it 

is modeled in the simulation. Using this IRT and the parameters from Verizon DBIR 
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[Veri2009] from section 3.2, data ex filtration costs in terms of records compromised are 

calculated.  

3.4.2 Assumptions 

In the analysis it is assumed that  

 In the malicious data ex-filtration process, records are stolen at a uniform rate.  

 No records are stolen if the IDS correctly identifies an intrusion.  

 There is a constant cost associated with: 

o Performing Intrusion Detection on a single query (incoming traffic) --- 

C(I)  

o SCIT processing of a query (incoming traffic) --- C(T)  

o Responding to one intrusion alarm --- C(R)  

Since the objective is to characterize the effectiveness of the security architecture 

in terms of least data ex filtrated, constant costs are ignored.  However, there is provision 

in the decision guidance systems to include these costs if need be.  

3.5 SCIT/IDS Scenarios 

Each of the four SCIT / IDS architectures are considered and are explained 

briefly. Decision tree representations of each of the architectures are discussed. The 

decision trees provide a mechanism to estimate costs associated with each of the 

outcomes (Confirmed Intrusion (CI), Non-intrusions (NI), False Alarms (FA) and Missed 

Intrusions (MI)). This helps to get a better idea of data ex-filtration costs suffered in each 

of the IDS and / or SCIT scenarios. It is emphasized that no loss occurs in the case of 

confirmed intrusion, since IDS detects those.   



52 

 

A number of probability values (p1…p34); (q1…q6) make up the following 

decision trees, however, it’s interesting to note that not all of them contribute equally in 

determining the outcome. For example, sensitivity analysis performed on the NIDS 

decision tree suggests that each of the possible outcomes (CI, NI, FA and MI) are most 

sensitive to change in the value of p1. They are less sensitive to change in the values of 

q1 & q2. They are least sensitive to change in the values of p4…..p13.  

In all the decision trees that follow, (p1…pn) and (q1…qn) represent conditional 

probabilities. 

 

Figure 3.2: NIDS Decision Tree 

3.5.1 NIDS 

In this case, a stand-alone independent Network Intrusion Detection System 

(NIDS) security architecture is considered. The decision tree in Figure 3.2 represents 

NIDS functionality and its effectiveness in finding intrusions and minimizing data ex 
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filtration. In Figure 3.2, values within braces next to the probability variables represent 

respective values considered to perform Monte-Carlo simulation. For instance, p1 (0.021) 

indicates that a value of 0.021 has been utilized for probability variable ‘p1’ in the 

simulation. Entire incoming traffic is monitored by the NIDS. Based on what it sees, 

there is a probability p1 of NIDS triggering an alarm and a probability 1-p1 of NIDS 

determining the traffic to be safe. In case of an Alarm, a probability q1 is associated with 

initiating a response and a probability 1-q1 associated with ignoring the Alarm. For 

instance, intrusions with severity (1, 2) are responded to and alarms with low severity 

ratings (3 to 6) are ignored. Such decisions are often made in security operations centers 

because of manpower limitations and the large number of alarms generated by the IDS. 

In the case of responding to an alarm and analyzing it, there is a probability p2 

that the alarm ends up being categorized as an intrusion and a probability 1-p2 of it being 

safe. Again, no security procedure in place is ideal, there is an error rate associated with 

it.  For example, traffic which is categorized as an intrusion, in reality could be an 

intrusion (confirmed intrusion) with a probability of p4 or could be a false alarm (error on 

NIDS's part) with a probability of 1-p4. A similar explanation follows anything that is 

categorized as a non-intrusion. On ignoring an Alarm, incoming traffic is let through 

without further analysis. This traffic in reality could be an intrusion (error on system 

administrator’s part – ignoring the alarm) or a non-intrusion (error on NIDS’ part).  In 

this case, intrusions are characterized as Misses and non-intrusions as False Alarms.  

In the case of a No-Alarm; the system administrator can still opt to analyze the 

traffic just to make sure the system is functioning the way it is supposed to. This could be 
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on the basis of his / her suspicion or could be a random check to determine if all things 

are well. The procedure that follows is similar to the one discussed in the case of an 

Alarm. 

In cases of Missed Intrusion traffic, damage is done to the system. In these cases, 

an intruder remains in the system for IRT duration of time causing damage, where IRT is 

the intruder residence time. In the simulation, the IRT-Probability Density Function 

(Section 3.6) is used to estimate IRT. In this scenario the amount of damage that could be 

caused to the system is unbounded, since IRT is unbounded.  

 

Figure 3.3: SCIT Decision Tree 

 

Figure 3.4: NIDS – HIDS Decision Tree 
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3.5.2 SCIT 

The security architecture in this case consists of a standalone SCIT system. There 

is no intrusion detector in the system. In other words, all potential attacks are successful 

since there are no IDS / IPS to check for them. Figure 3.3 represents SCIT's decision tree. 

The incoming traffic is classified as either being a successful attack or not. This is not 

done by the system since SCIT treats all incoming traffic in the same manner. There is a 

probability ‘s1’ associated with the incoming traffic being an attack and a probability ‘1-

s1’ associated with it being safe traffic. In the case of an attack, the intruder remains in 

the system for IRT duration of time causing damage.  

In the case of incoming traffic being safe, there is no IRT associated with it. 

Estimation of IRT is provided in section 3.6. In the case of an attack, estimated cost is 

C(T)+C(DX(irt,e)), where C(T) is the cost of SCIT implementation and C(DX(irt,e)) is 

the cost of data ex filtrated by the intruder in IRT duration of time. Since SCIT is in 

place, IRT can never be greater than SCIT's exposure time 'e'. And so the maximum 

possible damage that can be caused to the system by the intruder is now C(DX(e)) where 

‘e’ is the Exposure Time. In the case of safe (no attack) traffic, estimated cost is C(T) and 

no data loss occurs. 

3.5.3 NIDS + HIDS 

This architecture is an extension of NIDS. An additional layer of security in the 

form of Host IDS (HIDS) is added to the system. NIDS+HIDS systems could either have 

two IDS's running in parallel or have one followed by the other. NIDS+HIDS is 

considered to be serial, with the NIDS tuned to the network needs, and HIDS tuned to the 
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specific needs of the host. The first IDS (NIDS) performs its task exactly in the manner 

illustrated in the case of NIDS in section 3.5.1. If IDS 1 does not trigger an alarm or if 

IDS 1 alarm is ignored then IDS 2 (HIDS) is run to see if it triggers an alarm (Note, there 

is a small probability ‘q4’ of system administrator analyzing the traffic even though IDS 

1 does not trigger an alarm. IDS 2 is not run in these cases). This adds another layer of 

security in the sense that IDS 2 could pick up an intrusion that IDS 1 had missed. 

According to [JUlv2003], unless one of the IDS’ is worthless, it is better to use both in 

combination than to use single IDS. They suggest that since there is no incremental cost 

to getting IDS2 report, the expected cost from using an IDS composed of two 

independent detectors is the same regard-less of whether the response decision is made 

sequentially or in parallel. In a serial IDS-IDS setup, it is advisable to have the better 

performing IDS as IDS 1.  

 

Figure 3.5: NIDS – SCIT Decision Tree 
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3.5.4 NIDS+SCIT 

The system here is an extension of a previous case, NIDS. An additional layer of 

security - SCIT - is added to the NIDS. In cases where an intruder resides on the system 

for IRT duration of time, SCIT comes into play. As pointed out, in the case of NIDS, 

potential damage that can be caused to the system is unbounded. This is primarily 

because IRT remains unbounded in NIDS. On adding SCIT, IRT is no longer unbounded. 

SCIT introduces a metric called 'Exposure Time'. Since SCIT is pro-active and performs 

self-cleansing after time 'e', where 'e' is the Exposure Time; an upper bound is set on IRT. 

With SCIT the maximum damage C (DX (irt)) that can be caused to the system is C (DX 

(e)) since (irt <= e).  NIDS+SCIT performs better than standalone SCIT since NIDS helps 

identify certain intrusions before they can cause damage and have to be tolerated.   

3.6 Monte Carlo Simulation 

Methodology as presented in section 3.4 was followed to perform the Monte-

Carlo Simulation. The decision trees represented above are captured in the simulation. 

The values used for the probabilities have been chosen on the basis of discussions with 

experienced managers. Certain assumptions were made in the process of simulating the 

decision trees based on these discussions: A) There are nearly twice as many False 

Alarms as Confirmed Intrusions and B) Out of the 50,000 incoming queries – 500 are 

potential attacks (as shown in Figure 3.3). Once the decision trees are incorporated in the 

Gnumeric spreadsheet format with all probability values plugged in, the inbuilt Monte-

Carlo simulation feature in Gnumeric can be used to simulate the incoming traffic. Table 

3.1 summarizes the parameters used in the simulation. Primary objective of the 
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simulation was to compute a mean / total damage cost (in terms of records lost) in each of 

the SCIT / IDS cases given incoming traffic of 50,000 queries.  

The Intruder residence time used in the simulation is modeled as a Pareto 

distribution. It is assumed that IRT can take values between 0 hours and 2 months with 

mean being 48 hours. As compared to the examples in Section 3.2, this is a very 

conservative choice. Using the 28 days average, noted in Section 3.2, would be even 

more advantageous to SCIT. This average is incorporated in Intruder Residence Time 

Probability Density Function (IRT-PDF), which gives a relation between IRT values and 

their respective probabilities of occurrence.  

3.6.1 Probability values chosen for the simulation 

The values of (q1...q2) and (p1...p13) are the same for NIDS and NIDS+SCIT. 

These values are presented in Figure 3.2 within parenthesis next to respective variables. 

In the case of SCIT, probability values are presented in Figure 3.3.  In case of NIDS + 

HIDS, the probability values are given below – variables followed by their value: 

q1 (0.35) | q2, q5 (0.1) | q3, p7 (0.01) 

p8, p9 (0.95) | p18, q4, q6, p23 (0.001) | p33 (0.9999) 

p1 (0.021) | p2,p6,p22,p19 (0.05) |  p5,p21 (0.3) 

p4,p12,p14,p20,p28,p30 (0.8) | p16,p32 (0.7)  

p17,p3,p10,p11,p13,p15,p24,p25,p26,p27,p29,p31 (0.9) 

3.6.2 Results of the Simulation 

Data loss measured in number of records is the metric for assessing effectiveness 

of security architecture. The results in Table 3.2 show data ex filtration costs in records. 
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This table shows that the potential for damage is high for NIDS only and NIDS + HIDS 

alternatives. The records ex-filtrated are about the same for both scenarios.  If SCIT is 

deployed then the ex-filtration losses are significantly reduced.  The loss rate is 

dramatically impacted by the exposure time chosen.  To illustrate this feature, the result 

for the case of 4 minute and 4 hour exposure times1 is reported. The best scenario is a 

combination of NIDS and SCIT.  For NIDS+SCIT (ET 4 minutes) the records lost are 

less than 0.16% of the NIDS only loss and 0.19% of NIDS+HIDS loss. 

Table 3.1: Parameters used in the simulation 

Simulation metrics Value (units) 

Number of queries used 50,000 

Query Inter Arrival Time 10 ms to 18 ms  

Intruder Residence Time (IRT) 0 minutes to 2 months 

Mean IRT (modeled as Pareto distribution) 

against respective probabilities of occurrence. 

48 (hrs) 

Exposure time of SCIT (ET) Case 1: 4 (hrs) 

Case 2: 4 (minutes) 

Mean number of records stolen per day 675.4 records / breach 

Mean number of records stolen per hour 28.15 records / breach 

Table 3.2: Results of the Monte-Carlo simulation 

Case Total Damage 

(records) 
No. of  
Breaches 

Mean Damage 

(records/breach) 

NIDS 245,962 (100%) 192 1,281 

SCIT: ET 4h 
SCIT: ET 4m 

55,364 (23%) 
1,015 (0.4%) 

508 
508 

109 
2 

NIDS+HIDS 210,578 (86%) 164 1,284 

NIDS+SCIT: ET 4h 
NIDS+SCIT: ET 4m 

20,931 (9%) 
383 (0.16%) 

191 
191 

110 
2 

                                                 
1 The prototypes that are have built have an Exposure Time (ET) of 1 minute, but in this analysis a higher ET is taken to 

show the effectiveness of SCIT architecture. 
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3.7 Summary 

The SCIT architecture provides a robust security mechanism that guarantees 

certain security properties by limiting the exposure time. An important advantage of 

SCIT compared to IDS solutions is that SCIT does not generate false alarms, and thus can 

help reduce the intrusion alerts management costs.  Thus SCIT also provides 

administrative and economic benefits which make it a reasonable choice to be included in 

security architecture. In particular, this is expected to be of interest in environments 

where technical skills are limited. Examples of such environments are found in military 

tactical settings, in remote and rural locations, small organizations and in newly emerging 

countries.  The simulation studies presented suggest that a combination of an NIDS with 

SCIT on host servers provides a robust architectural solution in the face of new attacks. 
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CHAPTER FOUR – COMBINING INTRUSION DETECTION AND RECOVERY 

FOR ENHANCED SYSTEM DEPENDABILITY 

This chapter presents a framework that uses Receiver Operating Characteristic 

(ROC) curve analysis and damage cost models to trade-off the true positive rate and false 

positive rate for comparing alternate detection based security architectures. In this work, 

the framework is employed in performing a comparison between IDS only solutions and 

an IDS + SCIT hybrid solution. This analysis provides a strategy for optimizing 

configuration of intrusion detection systems by evaluating the trade-off between potential 

damage from a missed intrusion and the costs of processing false positives.  

4.1 Overview 

Current cyber defenses are reactive and cannot protect against customized 

malware and other zero day attacks which persist for many weeks. Using Receiver 

Operating Characteristic curve analysis and damage cost models, the true positive rate 

and false positive rate are traded-off to compare alternative architectures. This analysis 

provides optimal value(s) of Probability of Detection by evaluating the potential damage 

from a missed intrusion and costs of processing false positives. In this chapter, an 

approach which involves determining the influencing factors of each strategy and 

studying the impact of their variations within the context of an integrated intrusion 

defense strategy is proposed. The goal is to manage the intrusion risks by proactively 

scheduling recovery for dependable networks.   
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The variety and complexity of cyber-attacks are increasing, along with the 

number of successful intrusions to mission and business systems. Recent breach reports 

like Wyndham Hotels [Wynd2010] reported system compromise detection in February 

2010, whereas the malware had resided in the system since October 2009. So it is 

inferred that not only the Intrusion Detection System / Intrusion Prevention System 

(IDS/IPS) failed to prevent the intrusion, but current systems were not able to detect the 

presence of the intruder long after the compromise. 

Motivated by the above observations, this research focus has been on a method 

which consists of two important approaches to enhance cyber defense. First, recognizing 

that intrusion detection is a hard problem, can the focus be shifted to minimizing losses 

resulting from intrusions? If this strategy is successful, it is anticipated that the reduced 

demands on the IDS will in turn lead to fewer false positives. Second, this model uses 

real world data from recent breach reports and their average costs to evaluate the cost 

reductions that can be achieved by using a combination of intrusion detection and 

tolerance architectures. Previously, the classical approach to assess architectures has been 

based on Single Loss Expectancy and Annual Loss Expectancy. More recently decision 

trees have been used [JGaf2001].  In the former, many assumptions are required, and in 

the latter a lot of data have to be collected.  These approaches are good for analyzing 

systems for which past data can be used.  But is this useful for architectural decisions for 

the future? The use of ROC (Receiver Operating Characteristic) curve based analysis is 

proposed, which is a powerful tool system administrator can use with enterprise specific 

data to build economic models and to compare alternate architectures. DARPA funded 
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Lincoln Lab IDS evaluation [RLip2000] was a pioneering paper that evaluated many IDS 

by generating normal traffic similar to that seen on Air force bases. They used ROC 

curves to present their results. McHugh [JMcH2000] published a critique of Lincoln 

Lab’s work in 2000 which primarily considered issues associated with Lincoln’s 

experimental dataset. McHugh pointed out the following problems in Lincoln’s 

application of ROC analysis to IDS evaluation, which are a lack of “appropriate units of 

analysis, bias towards possibly unrealistic detection approaches and questionable 

presentation of false alarm data” [JMcH2000]. In Section 4.4, these issues are treated. 

In this chapter, an IDS only solution is compared with IDS and SCIT (Self 

Cleansing Intrusion Tolerance) combination, SCIT being the approach to intrusion 

tolerance which is classified in the recovery-based category [QNgu2010]. From this 

assessment, optimal value(s) of Probability of Detection and other operational parameters 

can be selected to balance the potential damage from a missed intrusion and the cost of 

false positive processing. In this approach, it is stipulated that providing an upper bound 

on the time between the compromise and recovery has many advantages since it does not 

require the assumption that the system will be able to detect either the intrusion attempt 

or the compromise. 

The rest of the chapter is organized as follows. In Section 4.2, the motivation for 

dependability recovery requirements is developed. Section 4.3 briefly reviews the 

intrusion tolerance approach. Sections 4.4, explains ROC Analysis usefulness to assess 

IDS architectures. . Sections 4.5, applies a cost model to evaluate how three different 

cases behave for a set of hypothetical ROC curves. Section 4.6 is the conclusion. 
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4.2 Motivation 

As cyber defense efforts increase, passive efforts such as establishing anti-virus 

software, firewall protection, or improving password strength and encryption, and the 

organization’s workload are constantly challenged by the need to apply patches 

immediately. Security researchers are uncovering close to 55,000 new malware samples a 

day, overwhelming malware analysis resources [McAf2010]. Increasingly, automated 

analysis technologies are used to keep up with the volume, but they still lack the 

precision to decipher compressed, encrypted, and obfuscated malware [RBej2005]. 

McAfee recent crash of tens of thousands of PCs globally illustrates the unpredictable 

system effects after compromise and their collateral damage, which creates even more 

uncertainty and less dependability for Enterprise Security [DKra2010]. 

The current reactive cyber defense approaches are expensive and inadequate. It is 

expected that, automated recovery and Intrusion Tolerance System (ITS) will be useful in 

addressing the increasing malware and patch workload, but what are the cost impacts of 

malicious threats and false positives on dependability and security attributes? 

4.3 Intrusion Tolerance Approach 

ITS architecture objective is to tolerate unwanted intrusions and restore the 

system to its normal state. Various ITS approaches are reviewed by Nguyen and Sood 

[QNgu2010]. In this paper, the recovery-based SCIT (Self-Cleansing Intrusion 

Tolerance) model is used [QNgu2010], which is applicable to servers that are open to the 

Internet, such as Web, and DNS servers [ABan2009]. Using round-robin cleansing, at 

any point in time, a server in a SCIT cluster can have one of the three states: offline 
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cleansing, offline spare and online transaction processing. The duration that a SCIT 

server is exposed to the Internet is called its Exposure Time. The architecture is simple, 

and does not rely on intrusion detection. Implementation of SCIT scheme can be based 

on virtualization. The interfaces between controller and the group of servers to be 

protected are trusted. 

Another benefit of a recovery-based ITS is to shrink down breach duration, which 

has the effect of reducing losses and their costs. Indeed, this intrusion tolerance strategy 

would mitigate the effects of malicious attacks. Intrusion detection is known to be a hard 

problem, and current cyber defense systems reportedly detect less than half the malware. 

Still servers and apps account for 98% of the total record compromised. Verizon DBIR 

2010 [Veri2010] underscores this problem by noting that only 11% of the compromises 

were detected within minutes or hours. Thus, current cyber defenses cannot protect 

systems against customized malware and other zero day attacks; once an attack is 

successful, it can persist for many weeks. This emphasizes the need for a recovery-based 

Intrusion Tolerance approach since detection triggered ITS might again fall short of the 

needs.  

4.4 Receiver Operating Characteristics (ROC) 

ROC analysis has been long used in signal detection theory to present the tradeoff 

between hit-rates and false-positive rates of classifiers. ROC analysis was initially used 

during World War II in the analysis of radar signals to differentiate signal from noise. It 

was soon introduced in Psychology to map the perceptual detection of signals 

[JSwe1996]. ROC curves are useful for assessing the accuracy of predictions. A ROC 
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curve plots the fraction of true positives (hits) versus the fraction of false positives, and 

hence has a direct relationship with diagnostic decision making. The ideal prediction 

method would yield a co-ordinate (0, 1) on the ROC curve. This represents 100 % true 

positives and zero percent false-positives, and is referred to as the perfect classification. 

4.4.1 Using ROC to assess IDS quality 

The most attractive feature of ROC analysis is the fact that the tradeoff between 

probability of detection and probability of false positive can be derived directly. This 

allows a system administrator to instantly determine how well a classifier performs and 

also to compare two classifiers. We care about false positives in addition to the 

probability of detection since there is a need to characterize human workload involved in 

analyzing false positives generated by traffic. According to [RLip2000], false positive 

rates above 100’s per day could make IDS almost useless even with high probability of 

detection since security analysts must spend hours each day investigating false positives.  

DARPA funded Lincoln Lab IDS evaluation [RLip2000] appears to be the first to 

perform tests to evaluate many IDS by generating normal traffic similar to that on a 

government site. McHugh [JMcH2000] reviews and analyzes the validity and adequacy 

of artificial data used to estimate real world system performance. In this chapter, a 

methodology to compare various IDS’s, each of which is represented by a ROC curve is 

presented. Verizon’s 2010 results representing a cross section of multiple industries are 

utilized. Furthermore, these data validate firsthand real world evidence over a broad five 

year range from 2004-2009 with the addition of US Secret Service confirmed cases. 
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The Lincoln Lab experiment used ROC for presenting the results of the 

evaluation. McHugh [JMcH2000] criticized Lincoln Lab’s use of ROC curves primarily 

on the following grounds. It is attempted to address each of these concerns in this work: 

Determining appropriate units of analysis: Unit of analysis is the quantity of input 

on which a decision is made. Lincoln lab used sessions as the unit of analysis, the 

problems of which were outlined in [JMcH2000]. McHugh also emphasized the need for 

using similar units of analysis across all IDS’s to be evaluated. In this case, a simple 

system and consistently use query / packet is considered as the unit of analysis across all 

IDS’s.  

Errors per unit time: In [RLip2000], a pseudo-ROC curve with x-axis as False 

Positives per day instead of Percentage False Positives was used. This led to two 

incomparable units being used on two axes, and the results in turn became strongly 

influenced by factors like the data rate that should typically be irrelevant. In this chapter, 

the probability of detection and that of false positives for all ROC curves are consistently 

used. In such a case, given that the distributions of signal and noise are realistic, McHugh 

[JMcH2000] recognizes that the ROC presentation should give a good account of 

detector performance in similar environments. Given enough characterizations of the 

signal and noise distributions, McHugh further acknowledges that it is even possible to 

investigate optimal detectors. 

McHugh [JMcH2000] criticizes Lincoln Lab’s methods of scoring and 

constructing ROC curves which lead to problems like bias towards unrealistic detection 

approaches, but not the use of ROC curves itself. In this case, the emphasis is not on 
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constructing ROC curves but on comparing IDS’s using the cost-model once they have 

their respective ROC curves. While there is a need for alternative taxonomies, the scoring 

method from the attacker’s perspective is still utilized for real world incidents.  

According to [RLip2000], there have been a number of similar efforts. In order to 

be able to compare multiple IDS systems, the ROC curves should be generated using 

similar or preferably same test data. According to Orfila et al. [AOrf2006], if two ROC 

curves intersect at some point, there is no way of claiming that one is better than the other 

since some system administrators might want high probability of detection (top right 

corner of ROC curve) and some might want low probability of false positive (bottom left 

corner of ROC curve). 

Stolfo et al. [FSto2000] presents an alternative method to perform evaluation 

based on cost metrics. Authors help formalize the costs involved in evaluating an IDS 

into three types: 1) Damage cost, 2) Challenge cost or Response cost and 3) Operational 

cost. 

In [CDru2004], Drummond et al. propose the use of cost curves for evaluating 

classifiers. Cost curves plot expected cost vs. Probability Cost Function (PCF). Here PCF 

is a function of probability of detection, probability of false positive and its 

corresponding costs. Although cost curves are good to compare classifiers, the 

representation does not provide for the system administrator to quickly see the cost trend 

of operating at different points (Pf, Pd) on the ROC curve. Also [CDru2004] does not 

suggest a way to determine the expected cost of operating at a point on ROC curve.  
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In [JGaf2001], Gaffney et al. argued that both ROC analysis and cost analysis 

methods are incomplete. They used decision analysis techniques and provide an expected 

cost metric that reflects IDS’s ROC curve based on a decision tree approach. This cost 

model requires a lot of data to be collected and does not reflect the magnitude of actual 

costs associated with breach events. For this, a cost-model for the calculation of expected 

cost of operating at any point on the ROC curve is proposed. 

4.5 Cost Model 

In this section, it is aimed to overcome each of the shortcomings of earlier 

approaches by proposing a cost model that consists of two elements: 

 A formula for the expected cost of operating at any point on the ROC curve 

 Cost metrics derived from published breach investigation reports 

4.5.1 Expected Cost Calculation 

The cost of operating IDS at any point on the ROC curve (Pf, Pd) is a combination 

of the following: 

 Operational Costs – Cost involved in operating the IDS and keeping it running. 

 Damage Costs – the amount of damage caused by an intruder in case of a 

successful attack. 

 Response Costs – the cost involved in responding to a potential intrusion on 

detection. 

Out of the three costs mentioned above, operational costs and response costs 

greatly vary from organization to organization based on a number of factors like size of 

the organization, type of organization etc. Since these two costs are not entirely 
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quantifiable, for the purposes of this chapter, the objective function proposed in 

[JHan1966] is employed:  

Expected Cost of operating at any point on the ROC curve = Cost of Misses + Cost of 

False Positives 

Thus, for every point on the ROC curve (Pf, Pd), there is an expected cost: 

Expected Cost = (Cm*p*Pm) + (Cf*(1-p)*Pf), 

Where  

Cm – Cost of a miss                    p – Prior probability of Intrusion  

Cf – Cost of a false positive         Pd – Probability of detection  

Pm – Probability of a miss = (1-Pd) 

Pf – Probability of a false positive 

Note that this expected cost is for one incoming query. If there are ‘n’ incoming 

queries, the above expected cost must be multiplied by ‘n’. The value of metrics used in 

the cost model is summarized in Table 4.1.  

Table 4.1:  Metrics values used in the Cost Model 

Metrics Value Explanation Ref 

Median  number of records lost per 

breach (M) 
1,082 Removes outliers. 

Better estimate of the 

“typical value” 

[Veri2010] 

Average cost of compromised record (D) $ 204 Direct Cost: $ 60 + 

Indirect Cost: $144 
[SWid2010] 

Cost of a Miss (Cm) $220,000 M * D = 1082 * $ 204 [Veri2010], 

[SWid2010] 

Cost of a False Positive (Cf) $ 400 Assumption: Labor 

Cost + Overhead Cost 

= $ 400 

 

Median Compromise Duration per breach 14 days Compromise to [Veri2010] 
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In this chapter, the probability of detection Pd and that of a false positive Pf will 

constitute the operational parameters. 

The median number of records lost for assessing damage is used. In many cases, 

the outliers in breach data can skew the data, because most of the losses come from only 

a few breaches. Therefore, the Mean becomes highly skewed and is not a good estimate 

of the typical number of records lost per breach. Median is a better estimate of the typical 

value [SWid2010]. 

4.5.2 Evaluating Classifiers using the proposed Cost Model 

For the purposes of this chapter, it is not addressed how the ROC curves are 

constructed. Proper construction and use of ROC curves in Intrusion / Anomaly detection 

have been addressed in [RMax2004]. It is just shown how the cost model can be 

implemented once they are constructed. Figure 4.1 gives a family of hypothetical ROC 

curves, each representing a classifier. The cost model will be implemented on these ROC 

curves in three different cases to evaluate the classifiers’ behaviors: 

Discovery time + 

Discovery to 

Containment time 
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Figure 4.1: Receiver Operating Curves 

Table 4.2 provides the values of the parameters used in the cost model in each of 

the three cases. Within each case, the value of ‘p’ remains the same for both IDS and 

SCIT+IDS. Therefore, the number of intrusions that occur in each of these architectures 

are the same since Number of intrusions = [Number of incoming queries * Prior 

probability of intrusion (p)]. The baseline IDS and SCIT+IDS scenarios are provided for 

Case 1. Case 2 and Case 3 help investigate the impact of ‘Cm’ and ‘p’ on system cost and 

security. Figures 4.2 through 4.7 illustrate this. It is noted that the y-axis scale is different 

in Figure 4.6.  

CASE 1a. IDS: (Figure 4.2) 

This is a stand-alone IDS system. The cost keeps decreasing as Probability of 

Detection (Pd) is increasing. As Pd increases, number of misses decrease along with the 

significant associated costs. However, after a threshold, if the value of Pd is increased, the 
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expected cost stops decreasing and starts increasing rapidly. At this point, the cost of 

False Positives exceeds the cost of misses and so the gains from containing misses start 

diminishing. This point is known as the “minimal cost point on the ROC curve (MCP)”. 

For e.g., in Case 1a, the MCP for Series 1 is 70 and it occurs at (Pf, Pd) = (0.20, 0.85). 

MCP for each series of every case evaluated is tabulated in Table 4.3.   

CASE 1b. SCIT + IDS: (Figure 4.3) 

Now SCIT is added to existing IDS and the system is evaluated using the Cost 

Model. It is assumed that the exposure time of SCIT is 4 hours2. This reduces the 

compromise duration of the system from 14 days to 4 hours. It is assumed that data is ex-

filtrated uniformly over time. Since the cost of a miss was $220,000 earlier with 

compromise duration of 14 days, now it significantly reduces to $2,620 for compromise 

duration of 4 hours.  

 

                                                 
2 The SCIT servers tested in our lab and independently tested at Lockheed Martin and Northrop Grumman 

have Exposure Times of 1 or 2 minutes.  Here, larger values of Exposure Time are used to emphasize the 

advantage of the concept. 
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Figure 4.2: IDS Case 1a 

 

 

Figure 4.3: SCIT + IDS Case 1b 

Table 4.2: Parameter values used in the cost model 

 p Cm Cf Compromise 

Duration 

Case 1a: IDS 0.001 $220,000 $400 14 days 

Case 1b: IDS+SCIT 0.001 $2,620 $400 4 hours 

Case 2a: IDS 0.001 $60,000 $400 14 days 

Case 2b: IDS+SCIT 0.001 $715 $400 4 hours 

Case 3a: IDS 0.005 $220,000 $400 14 days 

Case 3b: IDS+SCIT 0.005 $2620 $400 4 hours 
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Figure 4.4: IDS Case 2a 

 

 

 

Figure 4.5: SCIT + IDS Case 2b 
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Figure 4.6: IDS Case 3a 

 

 

Figure 4.7: SCIT + IDS Case 3b 

 

CASE 2. (Figures 4.4 & 4.5) 

Assumption: As compared to the baseline (Case 1), IDS cost of a miss is reduced from 

$220,000 to $60,000.  
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CASE 3. (Figures 4.6 & 4.7) 

Prior Probability of Intrusion is increased fivefold from p = 0.001 to p = 0.005. 

4.5.3 Results: Comparison of IDS’s 

Figure 4.8 compares the MCP’s of 3 IDS' whose performances are indicated by 

the ROC curves in Figure 4.1.                             

 Series 1 IDS clearly outperforms all the other IDS’ in all three cases. 

 It is most expensive to operate the IDS’ in case 3 since prior probability of 

intrusion is high which in turn leads to more misses.  

4.5.4 Results: Comparison of SCIT + IDS’s 

Figure 4.8 also presents the minimal cost points for IDS + SCIT. An exposure 

time of 4 hours is used. It is noted that as compared to the IDS only case, the costs are 

much lower. The minimal cost points are achieved using a much lower value of 

Probability of Detection which in turn leads to a lower Probability of False Positive. It 

can be concluded that this makes the IDS design much easier and the system easier to 

operate. The reliability of the IDS results also increase. 

From the results, it can be seen that the benefits of adding SCIT are as follows: 

 Cost of a miss is greatly reduced. As the compromise duration / exposure time of 

SCIT is reduced, cost of a miss further reduces.  

 A larger number of misses can be tolerated now that the cost of a miss is reduced. 
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Table 4.3: Minimal Cost Point values 

 
 

 

Figure 4.8: Minimal Cost Point Comparison 

4.5.5 General Observations (IDS and SCIT + IDS) 

As the cost of miss decreases, more misses can be tolerated and so probability of 

detection for achieving minimal cost point can now take lower values. 

CASES 

IDS Only IDS + SCIT 

(ET=4hrs)

IDS only IDS + SCIT 

(ET=4hrs)

IDS Only IDS + SCIT 

(ET=4hrs)

CASE 1 70 2 102 3 135 3

CASE 2   28 0.5 43 1 45 1

CASE 3 170 7 218 12 386 12

Minimal Cost Point for Figure 1 ROC Curves - Cost ($)

SERIES 3 SERIES 2 SERIES 1 
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As Cm decreases, Cf has a greater influence on the expected cost and so there is an 

increased need to contain false positives. Note that the Probability of False Positives for 

achieving minimal cost point now decreases. 

As prior probability of intrusion ‘p’ increases: 

 The total number of misses’ increases and so does the expected cost.  

 To combat this, probability of Detection for achieving minimal cost point 

increases thus reducing the number of misses. (Note: Number of misses = 

Number of incoming queries * p * Pm). 

4.6 Summary 

Intrusion detection is a hard problem, making intrusions inevitable. Consequently, 

containing losses by an upper bound on the time between compromise and recovery 

shows many advantages. ROC analysis, supplemented with cost analysis using median of 

lost records and average cost of compromised records per breach, reveals tradeoff 

between high probability of detection, and low probability of false positive. This 

approach reduces the cost of a miss; and tolerating a larger number of misses’ leads to 

lower false positive costs. 

The SCIT architecture provides a robust security mechanism that guarantees 

certain security properties by limiting the exposure time. In addition, SCIT does not 

generate false positives and thus reduces the intrusion alerts management costs. Thus 

SCIT also provides administrative and economic benefits which make it a reasonable 

choice to be included in security architecture. In particular, this is expected to be of 

interest in environments where technical skills are limited. The analysis presented 
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suggests that a combination of IDS with SCIT on host servers provides a robust 

architectural solution in the face of new attacks. 
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CHAPTER FIVE – SCIT BASED MOVING TARGET DEFENSE 

REDUCES AND SHIFTS ATTACK SURFACE 

This chapter leverages the concept of Attack Surface [15, 16] and its use as a 

security metric to compare the relative security of multiple hybrid security architectures. 

This work proposes the use of Attack Surface Shifting / Reduction as a metric to compare 

Moving Target Defenses (MTD) by assessing its impact on intruder / defender work 

factors.  

5.1 Overview 

In this chapter, Attack Surface assessment is used to evaluate SCIT. A system’s 

attack surface is the subset of its resources that an attacker can use to attack the system. 

Manadhata [PMan2008, PMan2013] uses attack surface reduction / shifting as means of 

assessing MTD. In this chapter, the dynamically changing Attack Surface for three 

system architectures (1) Static Systems; (2) Basic-SCIT and (3) Diverse-SCIT are 

compared. 

Moving Target Defense (MTD) is the idea of managing change across various 

system and network dimensions in order to increase the intruder work factor by 

increasing the intruder work complexity and decreasing visibility of systems to the 

intruders. Traditionally MTD strategies have presented two significant challenges to 

adoption. First, for the sake of security, MTD cannot ignore performance and end user 

productivity. Most customer facing systems don’t have the luxury of adding security that 
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slows down performance. Customers tend to move on if the experience is slow and 

tedious. Secondly, traditional MTD design generally consists of complex processes 

involving memory address randomization, network address shuffling, instruction set 

randomization and more [DEva2011]. All of these techniques are designed to prevent 

attacks and have the potential to be resource hogs thereby slowing down throughput in 

certain cases.  

SCIT based Moving Target Defense acknowledges that trying to prevent each 

intrusion is impractical. Therefore, the emphasis is to minimize losses occurring from 

intrusions rather than prevent intrusions. SCIT systems are designed to be complementary 

to reactive systems [ANag2010]. Primary goal of SCIT-MTD is to reduce the intruder’s 

window of opportunity to execute an attack and increase the costs of their foot-printing, 

scanning and attacking efforts. Since by design, the SCIT-MTD attack surface of the 

system is constantly changing, the system vulnerabilities are difficult to exploit.  The 

process of compromising a system involves identifying system vulnerabilities and 

customizing attacks to exploit them. Ever-changing attack surface presents a stiff 

challenge to the intruders. SCIT – MTD can be used with diversification approaches to 

further increase the attacker difficulty. 

5.1.1 Common Security Evaluation Metrics and Attack Surface 

Measurement of security has been a challenge and is of practical importance to 

software industry. Today two measurements are commonly used to determine the security 

of a system: (1) at the ‘code level’, the number of bugs found (or fixed from one version 

to the next) are counted; (2) at the ‘system level’, the number of times a system version is 
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mentioned in CERT advisories, security bulletins and vulnerability databases like MITRE 

CVE are counted. Manadhata [PMan2008, PMan2013] proposed Attack Surface as a 

security   metric that focuses at the ‘design level’ of a system: above the level of code, 

but below the level of the entire system. Attack Surface is a metric to compare the 

relative security of two versions of the same system rather than the absolute security of a 

system. Given two versions, A and B, of a system, one could measure the security of A 

relative to B with respect to the system’s attack surface. Intuitively, higher the attack 

surface, more the chances of the system getting compromised e.g., eliminating certain 

system features potentially makes it more secure. 

Attack Surface assesses (a) system ‘actions’ externally visible to the system’s 

users; and (b) system ‘resources’ accessed or modified by each action. The more actions 

available to a user or the more resources accessible through these actions, the more 

exposed the attack surface. The more exposed the attack surface, the more likely the 

system could be compromised.   

The Formal Definition of Attack Surface is [PMan2008] “The set M of entry 

points and exit points, the set C of channels and the set I of un-trusted data items are the 

system’s resources that can be used by the attacker to compromise the system. Therefore, 

given a system S and its environment, the system’s attack surface can be represented as 

the triple <M, C, I>”.  

Attacks carried out over the years, however, show that certain system resources 

are more likely to be opportunities, i.e., targets or enablers, of attack than others. This 

leads to the idea of ‘Weighted Attack Surface’. For example, services running as the 
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privileged user root in UNIX are more likely to be targets of attack than services running 

as non-root users. Since every system resource contributes unequally to the system’s 

attack surface, author of [PMan2008] proposes the use of ‘Damage Potential – Effort 

ratio’. The amount of damage that can be done to the system by exploiting a particular 

resource is the damage potential of that resource. Similarly, the amount of work that the 

attacker would have to put in to use that resource as an attack tool defines the effort.  

5.2 Attack Surface Shifting/Reduction as a technique for Moving Target 
Defense 

In [PMan2008] Manadhata formalized the notion of a software system’s attack 

surface and proposed the use of system’s attack surface measurement as an indicator of 

the system’s security. Intuitively, a system’s attack surface is the set of ways in which an 

adversary can enter the system and potentially cause damage. Hence larger the attack 

surface, the more insecure the system. 

 

Figure 5.1: Attack Surface Shifting 

Awad A. Younis et al [AYou2012] establish that there is a relationship between 

Attack Surface Size and Vulnerability Density. The authors also performed a case study 

on two different versions of Apache HTTP Server. They concluded that the version with 
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the bigger attack surface had more vulnerabilities as well as vulnerability density. This 

further supports the use of Attack Surface size as a security metric. 

In [PMan2013], the author considers a scenario where system administrators are 

continuously trying to protect their systems from attackers. As shown in Figure 5.1, if a 

defender shifts a system’s attack surface, then old attacks that worked in the past, e.g., 

attack 1, may not work anymore. Hence the attacker has to spend additional effort to 

make past attacks work or find new attacks, e.g., attack 4. Hence, the interaction between 

the defender and the intruder here can be viewed as a two player game where the action 

of one player has a consequence on the other. Thus, reducing or shifting a system’s attack 

surface functions as MTD. This works in favor of the defender to increase the intruder’s 

work factor randomly. 

Attack Surface of a system can be reduced or shifted by disabling, modifying and 

/ or enabling the system’s features [PMan2013].  Disabling the existing features reduces 

the number of entry points, exit points, channels, and data items, and hence reduces the 

number of resources that are part of the attack surface.  Modifying the features changes 

the damage potential-effort ratios of the resources that are part of the attack surface, e.g., 

lowering a method’s privilege or increasing the method’s access rights reduces the 

resources’ contributions to the attack surface measurement.  The enabled features 

increase the attack surface measurement by enabling new features and adding more 

resources to the attack surface. When existing features are disabled and new features 

enabled, the attack surface shifts. Table 5.1 presents four illustrative scenarios to 
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highlight the possible impacts of disabling, enabling or modifying features on a system’s 

attack surface: 

Table 5.1: Possible Scenarios to Reduce and Shift the Attack Surface 

Scenarios Features Attack Surface 

Reduction 

Attack Surface 

Shift 

A Disabled Existing Yes Yes 

B Enabled New No No 

C Enabled New 

Disabled Existing 

Yes Yes 

D Enabled New 

Disabled Existing 

No Yes 

5.2.1 Dynamic Attack Surface 

The Attack Surface of a production system increases with time.  For example, the 

number of open sockets may increase because of programming oversight.  In typical 

operations, the application of a security patch reduces the Attack Surface, while a patch 

that increases functionality increases the Attack Surface. Similarly, in cases of a Web 

Server serving dynamic content; the contents of dynamic web pages change in response 

to different client requests. Use of additional web service extensions and client side plug-

ins are generally required to facilitate the use of dynamic content thereby leading to an 

increase in the Attack Surface. Thus, the Attack Surface is a dynamic property. The SCIT 

approach constantly restores software to a pristine state, and thus dynamically reduces the 

Attack Surface.  
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5.2.2 Impact of Dynamic Attack Surface on Intruder Work Factor 

Information assurance mechanisms are designed to frustrate the adversary and 

make it difficult to launch a successful attack. There is a need to quantify the impact of a 

given mechanism on a particular adversary. In the age of unknown attacks, the goal of 

sound security architecture should be: (a) to significantly increase the intruder work factor 

for successful attacks. Intruder work factor is the amount of work an intruder has to put in 

to accomplish an attack (eg: mean time to compromise a system) and (b) To significantly 

increase the ratio of the attacker’s work factor to generate successful attacks to the 

defender’s work factor for responding to successful attacks [JJust2003]. 

In order to measure the impact of Dynamic Attack Surface on Intruder Work 

Factor (IWF), a test bed experiment [ANag2013] was developed. This effort was not 

meant to be exhaustive but representative. As part of the experiment, vulnerable versions 

of Apache Tomcat and Samba were exploited using pre-loaded exploits in the Metasploit 

Framework. Since pre-loaded exploits were used, the experimental results did not 

account for ‘Exploit Development Time’ which is often a large chunk of the time for 

compromising a system. Address Space Layout Randomization (ASLR) and SCIT 

techniques of Moving Target Defense were implemented to make the Attack Surface 

more dynamic. Two sample exploit conditions were used to assess the impact of 

Dynamic Attack Surface on IWF: (a) Remote root buffer overflow exploit of Samba and 

(b) WAR backdoor exploit of Apache Tomcat.  
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Figure 5.2: Attacker and Defender Actions – Apache Tomcat Exploit 

Sample Results [ANag2013]: Figure 5.2 presents the attacker and defender 

actions for Case (b): the Apache Tomcat Exploit. Red circular nodes here indicate 

intruder activity with associated IWF in seconds, and blue dashed arrows show the 

transitions between intruder actions. Green solid arrows indicate impact of SCIT rotation 

on each intruder activity. Defender Work Factor (DWF) in this case is 44 seconds per 

rotation – the time taken to switch an exposed virtual instance of server with a pristine 

copy. This process not only moves the target but also self-cleanses the system. SCIT 

rotation and self-cleansing is independent of attacker activity and so it can occur at any 
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point of the attack life cycle. Example scenario: if SCIT rotation happens while the 

intruder is performing his ‘Dictionary Attack’ – then the attack is interrupted and the 

intruder would have to redo the following: (a) Scan to identify the new target and (b) Re-

launch the dictionary attack on the newly identified target. In effect, a DWF of 44 

seconds induces an additional IWF of 166 seconds. 

Under these sample exploit conditions, the key findings of the experiment were: 

(a) ASLR increased the IWF and at best case, had an iterative impact on IWF. ASLR 

with periodic re-randomization induced a higher IWF than ASLR w/o re-randomization. 

(b) SCIT, at best, had a cumulative impact on IWF. These further support the notion that 

dynamic attack surface frustrates the adversary and increases the work required for a 

successful attack. 

5.3 Test Bed Experiment 

In this chapter, Attack Surface assessment is used to evaluate impact of the MTD 

solutions. The dynamically changing Attack Surface for three security configurations (1) 

Static systems; (2) Basic-SCIT and (3) Diverse-SCIT are compared. Static systems adopt 

traditional reactive systems; they are sitting ducks that are indefinitely online. System 

cleansing and recovery is generally manually triggered or by an IDS/IPS. Static systems 

with two flavors of SCIT – MTD are compared: Basic-SCIT which loads the same 

pristine image every-time a virtual server is self-cleansed; and Diverse-SCIT loads clean 

images of diverse implementations of the same service during the SCIT cycle. Microsoft 

Attack Surface Analyzer is used for ease of use to perform all attack surface assessment. 

Configuration of System used for Test Bed Experiment: 
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 Gateway P-7805u 

 Intel Core 2 Duo CPU P8400 @ 2.26GHz 

 4 GB RAM 

 64-bit Windows Vista Home Premium Service Pack 2 

This setup is not intended to emulate real world server system configuration. This 

is merely a test-bed configuration used to evaluate the dynamic attack surface of varying 

system architectures in sample scenarios.  

Assumptions made for analysis: 

Since it is not plausible to determine the ‘Damage Potential - Effort Ratio’ of 

every existing system resource (there are hundreds of them); it is assumed they are all 

equal. This is similar to the approach taken in [PMan2008]. And so, it is arrived that 

Attack Surface Size = Total Number of Attack Surface Components 

5.3.1 Attack Surface Components 

For the purposes of the Test Bed Experiment, the Microsoft Attack Surface 

Analyzer is used.  In the experiment it is assumed that the following components make up 

the Attack Surface of a system. This is not intended to be comprehensive but summarizes 

the key components of any system’s attack surface: (a) Running Processes – Process is an 

executing program; (b) Executable Memory Pages – Data Execution Prevention (DEP) is 

a system-level memory protection feature which enables the system to make one or more 

memory pages non-executable. Non-executable memory pages make it harder for the 

exploitation of buffer overruns. Therefore, fewer executable memory pages is better; (c) 

Windows – In a graphical Windows-based application, window is the area of the screen 
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which interacts with the user by receiving input and displaying output; (d) Kernel Objects 

– An object is a collection of data that the OS manages.  Kernel Objects are objects that 

are part of the kernel-mode operating system, for example: symbolic links, registry keys; 

(e) Services- Windows service is a program running in the background similar to a UNIX 

Daemon; (f) Drivers – Software that enables the functionality of a physical or virtual 

device; (g) Ports – Ports are process specific communication endpoints of a system. Ports 

are associated with host IP addresses and the type of protocol used for communication as 

in TCP or UDP; (h) Named Pipes – A named pipe is a one-way or duplex pipe for 

communication between a pipe server and one or more pipe clients. A named pipe can 

facilitate inter process communication; (i) RPC Endpoints – Remote Procedure Call is an 

inter-process communication that allows a program to execute a procedure on a remote 

computer over the network. RPC Endpoints facilitate such communication; (j) Objects 

with weak Access Control List (ACL): These can be files, executables, registry entries 

etc. One example of a weak ACL is allowing non-administrators to modify files. Sum of 

all of these components make up the Attack Surface Size of a system. 

Table 5.2: Attack Surface Size Comparison 

Attack 

Surface 

Component 

Pristine 

Apache 

System 

Apache 

System after 

32 days 

Apache System 

after 4 hour 

Exposure 

Pristine 

Nginx 

System 

Nginx System 

after 4 hour 

Exposure 

Running 

Processes 

76 79 77 76 77 

Executable 

Memory Pages 

25 46 27 21 26 

Windows 183 265 199 180 189 

Kernel Objects 513 520 513 513 516 

Services 182 189 182 181 181 
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5.3.2 Static Systems 

Static systems are systems that do not incorporate proactive security strategies. In 

such systems, cleansing is generally triggered manually or by an alarm on discovering 

malicious activity. According to Verizon’s Data Breach Investigation Report 2013 

[Veri2013], the average time an intruder resides on the system from the point of initial 

compromise to the point of intrusion discovery is more than 34 days. In the case of a 

Static System, since there is no periodic self-cleansing or restoration, the attack surface of 

the system keeps on increasing with time as a result of normal system use.  

To illustrate this, the attack surface size of an Apache System (a) before use 

(pristine) and (b) after random usage for 32 days are compared. Figure 6.4 illustrates the 

setup of the Apache System. Table 5.2 presents results from the attack surface analysis 

report.  Columns 2 and 3 of Table 5.2 show the growth in Attack Surface Size of the 

static Apache system during usage.  

Table 5.3 section (a) summarizes the security issues that were introduced during 

the 32 day usage. In other words, these security issues were not present in the Pristine 

Apache System but appeared in the Apache System after 32 days. 

Drivers 274 284 274 274 274 

TCP/UDP 

Ports 

118 138 124 101 115 

Named Pipes 133 146 136 133 134 

RPC 

Endpoints 

33 35 33 33 33 

Attack 

Surface Size 

1537 1699 1565 1512 1545 
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5.3.3 Basic-SCIT Setup 

In the Basic-SCIT setup, there are multiple virtual instances of the server of which 

one or more are online at any given time. Once every period of time known as ‘Exposure 

Time’, the system proactively self-cleanses and rotates. Every time this happens, the 

Pristine Apache Image is loaded into the virtual instance that is about to go online. Figure 

5.3 presents one such instance. This setup is providing a Pet Store e-commerce 

application service through iBatis JPetStore 4.0.5. In the experiment, the ‘Exposure 

Time’ is 4 hours. The attack surface size of the system can only increase till the point of 

self-cleansing. Thus there is an upper bound on the growth of the Attack Surface Size. 

After 4 hours, on self-cleansing, the size of the attack surface is reduced back to that of 

the Pristine Apache Image. This is cyclical and so the size of the attack surface is 

periodically reduced and kept manageable.  

Table 5.2 (columns 2 and 4) compares the Attack Surface Size of a Pristine 

Apache System with that of the Apache System after 4 hour use. After the system has 

been exposed for 4 hours, it is self-cleansed and rotated thereby reducing the Attack 

Surface Size back to that of the Pristine Apache System. From columns 2, 3 and 4, it can 

be emphasized that the growth in Attack Surface Size is much less in 4 hours as opposed 

to 32 days. Similarly, from Table 5.3 section (a) and section (b) it is apparent that the 

count of security issues that arose over 32 days far outnumbered issues that arose in 4 

hours. 
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Figure 5.3: Apache System 

Figure 5.4 (black series) presents the temporal attack surface of the Basic SCIT 

setup for the first 40 hours. The size of the system’s attack surface increases for 4 hours 

when it is exposed and is reduced to that of the pristine Apache image on self-cleansing 

periodically.   

Table 5.3: Security Issues that arose in (a) the Apache System during 32 day usage; (b) the Apache System 

during 4 hour usage and (c) the Nginx System during 4 hour usage 

Security Issues on System Usage Count 

(a) Pristine Apache System VS Apache System after 32 days 

Executables with weak ACLs 17 

Directories containing objects with weak ACLs 10 

Registry Keys with weak ACLs 10 

Processes with NX disabled 1 

Services vulnerable to tampering 3 

Services with Fast Restarts 1 

Vulnerable Named Pipes 26 

(b) Pristine Apache System VS Apache System after 4 hours 

Directories containing objects with weak ACLs 3 

Processes with NX disabled 2 

Services vulnerable to tampering 1 
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(c) Pristine Nginx System VS Nginx System after 4 hours 

Directories containing objects with weak ACLs 4 

Services vulnerable to tampering 1 

5.3.4 Diverse-SCIT Setup 

In Diverse-SCIT, a system with two diverse implementations of the iBatis 

JPetStore service is used. Virtual Server 1 uses the Apache Load Balancer with Apache 

Tomcat 7.0.41 and Terracotta Big Memory Go Caching; whereas Virtual Server 2 uses 

the Nginx HTTP Server with load balancer along with MemCached v1.4.15 to provide 

service. 

Table 5.4: Security Issues unique to each configuration 

Security Issues Count 

Issues present in Apache System but not in Nginx System 

Directories containing objects with weak ACLs 4 

Processes with NX disabled 1 

Services vulnerable to tampering 1 

Issues present in Nginx System but not in Apache System 

Directories containing objects with weak ACLs 1 

Processes with NX disabled 1 

Figure 5.5 presents two such virtual instances of the server, one with each 

configuration. In this setup, virtual servers are rotated in such a manner to alternate 

between the two configurations. As shown in Figure 5.4 (red series), on each self-

cleansing, the size of the system’s attack surface alternates between that of Pristine 

Apache image and Pristine Nginx image.  Table 5.2 (columns 5 and 6) compares the 
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Attack Surface Size of the Pristine Nginx System with the Nginx System after 4 hour use.  

Table 5.3 section (c) lists the security issues that arose during exposure. In addition to 

reducing the Attack Surface Size periodically, this setup also shifts it. Table 5.4 

emphasizes this shift by presenting security issues that are unique to each setup. This 

adds another layer of complexity to the intruder since identifying system vulnerabilities 

with ever changing attack surface is a challenge. An attack that used to work with the 

previous configuration no longer works on rotation.   

 

Figure 5.4: Temporal Attack Surface – Basic SCIT and Diverse SCIT 
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Figure 5.5: Two virtual instances of the Diverse SCIT Setup 

5.4 Summary 

In this chapter, Attack Surface assessment is used to evaluate the impact of the 

SCIT MTD solutions. The dynamically changing Attack Surface Size for (1) Static 

Systems; (2) Basic-SCIT and (3) Diverse-SCIT were compared using a test bed 

experiment. Results of the experiments that show changes in attack surface size along a 

timeline for the three different security configurations are presented. The results support 

the hypothesis that SCIT is an effective means to provide MTD by reducing / shifting 

attack surface periodically, thus making the hacker’s task harder. With Basic-SCIT, by 

moving the target virtual server, the intruder is forced to restart the attack all over again. 

Furthermore with Diverse-SCIT, due to Attack Surface shifting, some of the attacks that 

worked before no longer work after self-cleansing and restoration. Traditional reactive 
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systems are generally static and are indefinitely online. If not for periodic management, 

the system attack surface size tends to keep growing with time. Gains of SCIT are further 

highlighted when compared to traditional static systems.  
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CHAPTER SIX – SCIT BASED MOVING TARGET DEFENSE: WORK FACTOR 

ANALYSIS 

This chapter proposes a game theoretic attack / protect cyber economic model to 

facilitate designing architectures that are resilient and tilt the asymmetric cyber economic 

costs in favor of the defender. This work formalizes system security state transitions and 

intruder / defender work factors associated with all of those state transitions. This 

component of my research incentivizes logical and architectural solutions that create an 

ecosystem where the sum of all defender work factors in defending an enterprise over a 

period of time is much less than the sum of all intruder work factors involved in 

compromising the enterprise security and ex-filtrating data. 

6. 1 Overview 

This chapter explores the metrics, measures, and economics of cyber resiliency 

and asymmetric effects. The chapter examines an approach to shifting adversaries’ 

current advantage in cyber conflicts in favor of defenders. If the economic drivers can be 

understood, which increase an adversary costs in time, it can then reduce the asymmetry 

impacts for cyber economic value and resiliency. If progress is to be made, cybersecurity 

experts will also need to view solutions in economic and policy terms, rather than just 

technology. Nevertheless, systems will need to integrate cyber resiliency and asymmetry 

with their co-dependent infrastructures. 
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Cybersecurity imbalance limits current solutions to an increasing rate and severity 

of attacks. BIGDATA volume, velocity, variety and complexity are beyond the ability of 

commonly used tools that capture, process and analyze these security incidents. The 

Internet of Things is just one example that’s driving this new cyber economics. Another 

seeks incentives for a global security from the insider out of "like-minded, like-valued 

nations” for new international norms. This chapter explores the metrics, measures, and 

economics of cyber resiliency and asymmetry effects on the asymmetric balance and 

examine an approach to shift adversaries’ current advantage in cyber conflicts in favor of 

defenders. 

Today, cybersecurity needs a fourth generation cyber security approach focused 

on Resilience, Restoration and Recovery. Moving Target Defense (MTD) concepts that 

control changes across multiple system dimensions in order to increase the costs of 

adversary probing and attack efforts; thus, reducing the window of opportunity and 

increasing the uncertainty and apparent complexity for attackers. If it is assumed that 

perfect security is unattainable and that all systems are compromised, MTD research 

focuses on enabling continued safe operations in a compromised environment and to have 

systems that are defensible rather than perfectly secure. Self-Cleaning Intrusion 

Tolerance (SCIT) integrates cyber resiliency and asymmetry with their co-dependent 

infrastructures. 

The rest of this chapter is divided into 8 sections. In the next section, related 

works for the motivation of this study are discussed. Section 6.3 presents market 

characteristics for the asymmetric cyber advantage. Section 6.4 introduces SCIT technical 
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and architectural methodology for gaining an asymmetric advantage. Section 6.5 presents 

a Cyber Economic Model. Section 6.6 applies SCIT resiliency and security for an optimal 

balance. Section 6.7 shows case studies of the defender and/or adversary with pre-loaded 

exploits, and then compares an attacker’s work factor to a defender’s. Section 6.8 

Conclusions of SCIT architecture asymmetric cyber advantage to provide “Security-

Driven Resilience”. 

6.2 Related Work 

Cyber Economics is a developing field of study that requires the multi-

disciplinary research of social and behavioral scientists, as well as, lawyers and 

technologists. Ponemon Institute 2015 [Pone2015] annual research provides several 

takeaways for better understanding the factors that can minimize the financial 

consequences after a data breach. Littlewood identifies the intruder work factor as a 

fundamental quantitative measure of security [BLit1993]. Marn-Ling Shing et al 

proposes the use of game theory concepts (a game matrix) for assessing the Intruder 

Work Factor likelihoods [SMar2011]. DARPA attempted observing Intruder Work factor 

in collaboration with Sandia National Labs [GSch2000]. Collectively, they are 

progressive efforts of the metrics for cyber costs but lack an integrated analyses for 

today’s need of cyber resiliency and asymmetry. So research by Professors Lawrence 

Gordon and Vernon Loeb on the impact of investments in cyber security measures, cost 

of responding to security breaches, and impact of a publically acknowledged security 

breach on stock valuation was assimilated [LGor2002]. 
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This integrated analysis begins with the intruder security work factors for 

fundamental quantitative measurements. Figure 6.1, shows a breakout of Adversary Time 

Expenditure - 95% of the attack is preparation for an attack execution; thereby, changing 

it would impact the asymmetric costs in today’s traditional defensive secure systems 

[JLow2004]. 

Cyber resiliency and asymmetry economics needs integrated analyses inclusive of 

measurement that demonstrate greater value. The Ponemon Institute research reveals that 

the Mean Time To Identify (MTTI) and Mean Time To Contain (MTTC) the data breach 

are linearly related to data breach costs. However, today’s reactive policies and isolated 

technologies have only reduced the breach discovery from 234 days to 178 days, and the 

time for breach containment is reduced from 83 days to 55 days [Pone2015]. If the 

economic drivers can be understood, which increase an adversary costs in time, the 

asymmetry impacts for cyber economic value and resiliency can be reduced. 
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Figure 6.1: Adversary time expenditure 

Defenders maintain separate technologies for their activities over multiple layers 

that attempt to block malicious activities across the attack space. In the cases studies, this 

attack space is used to apply a variant of a Root Exploit, Brute Force attack, and 

Dictionary attack to measure some of the activities over the layer space, shown in Table 

6.1 [GSchu2000]. Metrics of their resiliency in an asymmetry environment are measured. 

The goal is to demonstrate that cyber economics decisions should assess Intruder and 

Defenders Work Factors; consequently, drive the practical constraints of cost, risk, and 

benefits. 

 

Table 6.1: Defender Activity 
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6.3 Foundations of Asymmetric Cyber Advantage 

Cyber economics aids in the asymmetric balance between the attackers and 

defenders; whether with a choice of technologies or procedures that prevent and respond 

or determine an attack type and their efforts to success. Political economists Christopher 

Coyne and Peter Leeson [CCoy2005] characterize the current defensive strategy as 

“simply the sum of dispersed decisions of individual users and businesses.” For instance, 

in the Market for Lemons: Quality Uncertainty and the Market Mechanism presents the 

information asymmetry between buyers and seller. This examines how the quality of 

goods traded in a market can degrade, leaving only "lemons" behind. The economist 

George Akerlof presents an adverse selection problem in how high-quality is driven from 

the market, which leads to a market collapse [GAke1995]. A similar problem exist in 

today’s internet, where information asymmetry exchanges with bad actors and lower 

quality goods. 

Similarly, Jack Hirshleifer’s story on the “Island of Anarchia” represents today’s 

internet defenses, where individual families each constructed and maintained a section of 

the flood wall. Thus, the island's flood defenses is dependent on the weakest link, that is, 

the laziest family [GHir1983]. Cyber espionage takes advantage of the asymmetric 

weaknesses, where an individual gains access to intellectual property and exploits this 

advantage at the market expense. 

Cyber defenders bear these asymmetric costs in traditional defensive secure 

systems, when playing by the attacker’s rules. SCIT reverses the advantages for the 

defenders to reduce the work factors by working with known host system properties – 
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while an intruder work factor increases in working with unknowns in the target 

environment. In the case of SCIT, the controllable environment is independent of the 

previous attacker activities. 

6.4 Technical and Architectural approaches to gaining asymmetric 
advantage  

SCIT is a fourth generation cyber security approach with a focus on Resilience, 

Restoration and Recovery. SCIT research focuses on the critical servers most prone to 

malicious attacks.  

Table 6.2 shows a comparison of security solutions to highlight their different 

defender work factors [ANag2013]. These factors drive decisions of cyber economics in 

traditional perimeter defenses for more effective and efficient solutions. 

Address Space Layout Randomization (ASLR) improves the effectiveness, when 

applied to every application to protect binaries from code-injection attacks and obfuscate 

a process system language to presents an ever-changing target. SCIT also presents an 

ever-changing target that increases the cost of their probing and attack efforts. Together, 

SCIT + ASLR improves the asymmetric balance effectiveness though with the added cost 

and reduced efficiency. 

6.5 Cyber Economic Models 

In the absence of other comparable economic analysis, the Gordon-Loeb Model 

[LGor2002] has become the “gold standard” in the area of cyber economic models. They 

developed an economic model for cyber security based on an analysis of organization 

spending as well as marginal effectiveness and return on investment of cyber 
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investments. Among the many findings of their research, the Gordon-Loeb Model makes 

two important assertions: 

Table 6.2:  Technical Solutions Work Factors 

 

 

 Incremental additional investment in security provides additional benefit by 

reducing the potential of successful attack up to a point. Beyond this point, there 

is diminishing (or no) additional benefit for additional investment. 

 An organization should not invest more in cybersecurity protection measures than 

37% of the expected potential loss due to successful cyberattack. 

Using these as baseline for cyber investment hygiene, a case can be presented for 

using intruder and defender work factors to quantify intruder efforts in compromising a 

target system and defender efforts in protecting the system. The relevance of the 
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following vulnerability life cycle is also taken into consideration in presenting a generic 

state transition diagram that represents one cycle of transition from a vulnerable state to a 

known good state for the target system. 

A Typical Vulnerability Life Cycle is presented below: 

 Discovery 

 Disclosure 

 Release of Patch 

 Availability of Exploit 

Couple of examples illustrating relevance of relationship between Vulnerability 

life cycle and Attacker / Defender Work Factor are presented below: 

 Disclosure of a vulnerability without a patch decreases Intruder Work Factor 

 Release of a Patch increases Intruder Work Factor and decreases Defender Work 

Factor 

The state transition diagram below (Figure 6.2), in addition to representing 

transition between various system security states, also assign intruder and defender costs 

for each transitions. Intruder (or) defender actions trigger state transitions represented 

below and the individual costs for performing such actions. 

Costs to the Intruder: 

 CAR – Performing target environment reconnaissance 

 CAA – Attacking and exploiting target 

 CAAN – Attacking and exploiting target w/ no protections 

 CAAP – Attacking and exploiting target w/ protections 
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 CAAS – Attacking and exploiting target within a short exposure window when 

SCIT is in place along with other protections 

 CAE – Ex-filtrating data from target post compromise 

 

 

 

Costs to the Defender: 

 CDP – Updating services patching security issues periodically 

 CDT – Performing testing on updates and patches before deploying them to 

production environment 

 CDD – Monitoring and detecting intrusions and other malicious activities 

 CDI – Performing incident response 

 CDR – Remediating and recovering systems reactively to last known good secure 

state as a response to a security incident. Cost is dependent on severity of security 

incident and assets compromised. 

 CDS – Recovering systems periodically using SCIT proactively. Fixed cost 

independent of malicious event severity. 

CAAS >> CAAP >> CAAN 
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Figure 6.2 - Generic State Transition Diagram and Costs 

* State transitions costing the defender CDS are only applicable in the case of architectures employing Self-

Cleansing Intrusion Tolerance (SCIT) 

 CDV – Cost to the defender in performing periodic vulnerability assessments, 

keeping up with security updates and using threat intelligence to proactively 

identify security issues 

 

 

CA – Sum of all attacker costs 

CD – Sum of all defender costs 
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Primary Objective of the cyber economic model from the defender’s standpoint is 

the following:  

Sum of defender work factors across the timeline must be much less than the sum of 

attacker work factors. 

 

In order to build an attack / protect economic model, a few parameters are defined 

in addition to the ones discussed above: 

 

 CCA – the value of the critical assets (it is assumed it is the same for both the asset 

owner and the intruder). The cost to protect an asset should never be greater than 

the value of asset itself. 

 CP – total cost of protecting the critical assets (CDV + CDD + CDP + CDT), per unit, 

together with a possible amortization of the protection technology’s cost over the 

number of units to be protected. 

 PC – the probability of intruder exploiting the target systems and compromising 

the critical assets (if no protections are applied) 

 PE – the probability of intruder exploiting the target systems and compromising 

the critical assets (if protections are applied) 

 PS – the probability of intruder exploiting the target systems and compromising 

the critical assets within a short exposure window (if SCIT is in place in addition 

to protections applied) 

 

CD <<CA 

 

PS << PE << PC 
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An attack / protect economic model based on simple game theoretic formulation 

is presented below in Table 6.3. Each cell in the game table has two entries: 

D – Defender’s value, A – Intruder’s value 

Observations from Table 6.3: 

Defender Perspective: It is reasonable for the defender to try and maximize the 

minimal advantage the defender has over the intruder, namely (D-A). For the value of (D-

A) to be high, from the equations in Table 6.3, the following conditions need to be met: 

 The cost of protecting the critical assets, CP in architecture 2 (or) CP + CDS in 

architecture 3 need to be lower than 37 % of the value of CCA. The defender cost 

in performing SCIT (CDS) is a small fixed cost that is neutral to the asset’s threat 

environment. This fixed defender work factor however has an iterative effect on 

CAA making the intruder’s compromise the system ‘n’ times to achieve their 

goals. ‘n’ here is the ratio (Total Intruder Attack Duration / SCIT Exposure 

Window) 

 Probability of intruder exploiting the target Pi needs to be low. Lower the better. 

 Cost (CAR + CAA) needs to be high. Higher the better. 

Table 6.3: A Game Theoretic Attack / Protect Economic Model 
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All the above conditions are best met by Architecture 3 – Defense in Depth 

Protection + SCIT (CDS). Therefore, Architecture 3 presents the best platform for the 

defender to maximize his advantage over the intruder. 

Intruder Perspective: It is reasonable for the intruders to maximize their value, 

namely A. For the value of A to be high, from the above equations, the following 

conditions need to be met: 

 Probability of intruder exploiting the target system (PC or PE or PS) needs to be 

high. Higher the better. 

 Cost (CAR + CAA) needs to be low. Lower the better. 

 In the case of Architecture 3, the value of ‘n’ needs to be low, meaning that the 

total duration of attack must not be much larger than the SCIT exposure window. 
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Intruder loses his advantage as the SCIT exposure window gets smaller or as the 

total attack duration gets bigger. 

6.6 Optimal Balance between Resiliency and Security 

Resiliency notions have increasingly adopted and resemble security concerns, 

thus constituting the growth of Security-Driven Resilience. Security has pulled away 

from its traditional bias and focuses upon the everyday needs of people and population; 

and in doing so remap its scale in security. Today, the concept of resilience incorporates a 

vast range of contemporary risks and security challenges [UNIS2012]. Since 9/11, 

resiliency has increasingly become a central organizing metaphor within the expanding 

and multi-scale institutional framework of national security and emergency preparedness 

[PAde2012]. Hence, what the resilience is – becomes less important – than what it does. 

Today, cyber defenders bear these asymmetric costs, and need to reduce their 

work factors for resiliency and security of known's like host system properties. Moving 

Target Defenses enable practical cyber resiliency, which reverses to a defender’s 

advantage the everyday needs of security personnel and end users. SCIT increases the 

attacker costs of their probing and attack efforts; while, enabling the continued safe 

operation in a potentially compromised environment. Their benefit is to have defensible 

systems, rather than hoping for perfectly secure systems. Cyber resiliency and asymmetry 

needs integrated analyses of the economics drivers, which show that increase an 

adversary costs in time reduces the asymmetry impacts for cyber economic value and 

resiliency. 
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In order to achieve this balance between Resilience and Security in the context of 

SCIT, a formal model for the SCIT controller was developed which provides a 

framework for flexibility in the application of SCIT to facilitate meeting target 

environment requirements when it comes to security, resilience and performance. The 

SCIT controller handles the rotation of the virtual machines and is the engine behind the 

SCIT environment.  

A formal representation was important to understand the relationships between 

the various temporal variables that drive the configuration and by extension, the security 

and performance of a SCIT environment. 

Table 6.4: SCIT Temporal Configuration Variables 

TE Exposure time (s) 

TS Service time + Switch time (s) 

TI Query inter arrival time (ms) 

TR Time taken to restart server (s) 

V Number of virtual servers used 

TQ Time spent in quiescent state (s) 

Qi(t) Service requests received till time t. 

Qp(t) Service requests processed till time t. 

N(t) Service requests queued at time t. 

VO(t) Number of Virtual Servers online at 

time t. 

VR(t) Number of Virtual Servers restarting at 

time t. 
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Based on the temporal variables defined above in Table 6.4, the following 

relationships in Table 6.5 were developed and validated with test-bed experiments. 

Table 6.5: SCIT Test Bed Configuration Variables 

N(t) = Qi(t) - Qp(t) 

Qi(t) = t / TI 

Qi(t) = Qi(t-1) + (1 / TI) 

TQ = N(t) * TS 

Qp(t) = Qp(t-1) + x 

where x = [VO(t) - VR(t)] / [VO(t) * TS] 

TR + TQ < TEmin * (V – 1) 

TQmax <= [TE * (V-1)] - TR 

VO(t) ∝ TS / [TI * TE] 

VR(t) ∝ 1 / TE 

These relationships help in configuring parameters like Exposure Time, Quiescent 

Time and Number of Virtual Servers that need to be online at any given time to be able to 

meet the security and performance requirements of an environment. These relationships 

also provide flexibility in terms of configuring parameters to assure resilience as deemed 

necessary in an environment.  

Adaptive SCIT: 

 Having these metrics handy helps to take a step towards Adaptive SCIT - adding 

Resilience to SCIT. 

 High compute environments are generally resource intensive and computing 

needs vary greatly with time. Above established metrics and relationships give the 
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ability to dynamically adapt SCIT working parameters on perceived system 

environment changes. 

 Misconfigurations such as having too large an exposure window could impact 

system security. Similarly having too few virtual machines online could impact 

performance. There is a need to continuously monitor service demands and threat 

landscape in order to strike a balance between usability, performance and security 

at all times. 

6.7 Use Cases for Defender and/or Intruder that include Work Factors 

Hypothesis: “Intruder and Defender Work Factor” are quantifiable metrics. With 

100K+ new unique malware samples per day [McAf2013], the goal of a security strategy 

should be: Increase the ratio of the attacker’s work factor to the defender’s work factor. 

In order to validate the goal, test bed experiments were performed for which two 

architectures were considered: Non-SCIT and SCIT architectures. 

 Test Bed Setup: Apache Tomcat 5.5.36, Gateway p7805u FX – 2.26 GHz Intel 

Core 2 Duo P8400; 4GB 1066 MHz DDR2 RAM, Windows Vista Premium 64 bit 

OS 

 Pre-loaded exploits in the Metasploit Framework used – hence the results do not 

account for ‘Exploit Development’ time 

Two use cases are presented, both of which show quantifiable metrics and an 

asymmetric cyber advantage for the Defender Work Factor against the Intruder 

[ANag2013]. 
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Table 6.6 timeline of a samba remote root exploit for a buffer overflow attacks 

shows an asymmetric cyber advantage for an exploit in 1/2 the time of intruder work 

factors. An ASLR configurations slightly increases an intruder’s workload, but the 

combination with randomization more than doubles the ratio of intruder work factor to 

defender work factor. Randomization increases the uncertainty and apparent complexity 

for attackers, shown in figure 6.3. This reduces their window of opportunity and increases 

their costs of probing and attack efforts. Similarly, SCIT technical and architectural 

approach also gains an asymmetric advantage that interrupts the Buffer Overflow. SCIT 

provides security and resiliency, which interrupts and forces a restart that loads a clean 

image of the server’s operating system and application into the Virtual Machine. 

Thereby, provides an optimal balance between resiliency and security. 

Table 6.7 WAR Backdoor use case represents the earlier Adverse Time 

Expenditure breakout [ANag2013]. The intruder work load factors on an Apache Tomcat 

is 95% of an attack’s execution. Even though an intruder asymmetric cyber advantage is 

executing the exploit in 11 seconds, the missed opportunity is disrupting the work load 

factors over their 134 seconds of preparation. 

Further, the cost model defined above was applied to the Apache Tomcat test bed 

experiment to investigate the impact of SCIT on intruder costs. 
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Table 6.6: Test Case Buffer Overflow Work Factors 

 

 

Figure 6.3: Samba test case exploit work flow 
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SCIT technology implements defensive side of procedures, which prevent and 

respond to cyber-attacks. SCIT technical and architectural approach interrupts the 

attacker, as shown in table 6.7 WAR Backdoor chart and Figure 6.4 flow diagram shows 

seven stages to force a restart and reload the server’s operating system and application 

into the Virtual Machine. An optimal balance between security and practical cyber 

resiliency, where resiliency tool supports the economic work load factors for defender at 

an adversary expense. SCIT resilience, restoration and recover increases the uncertainty 

and apparent complexity for attackers, reduce their window of opportunity and increase 

the costs of their probing and attack efforts. 

Furthermore, defensive opportunities that disrupt an intrusion are not limited to 

the initial beach exploit activities. For example, South Carolina Department of Revenue 

malicious (phishing) emails, where one user click on the embedded link unwittingly 

executed a malware. Over the next two months, attacker’s compromised 44 systems with 

one malicious backdoor software to steal three database files, and another to send data 

out. Additionally, there were at least 33 more unique pieces of malicious software, 

password tools, batch scripts and administrative utilities, which executes commands to 

perform the attack and data theft activities [MHei2012]. Blocking these sequence, in 

additional to the initial, not only increases the intruder work factors but the likelihood of 

an intruder success. 

The foundational and applied advances effect the asymmetry and resiliency in 

cyber economics. Collectively, they drive essential system requirements for cyber 
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systems, which includes traditional IT, cloud platforms, cyber-physical systems, and 

critical infrastructure. 

Table 6.7: WAR backdoor test case work factors 
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Figure 6.4: WAR backdoor test case workflow 

6.8 Summary 

SCIT “Security-Driven Resilience” architecture provides a robust security 

mechanism that guarantees certain security properties by limiting the exposure time. It is 

a cyber- resiliency tool guided by economic factors for defender and/or intruder. SCIT is 

an optimal balance between resiliency and security that provides administrative and 

economic benefits as a reasonable choice to be included in security architecture. 

Additionally, SCIT does not generate false alarms, an important advantage of SCIT 

compared to traditional reactive solutions like IDS, which helps reduce the intrusion 

alerts management costs. SCIT provides a cyber-advantage that benefits environments 

where technical skills are limited; for examples, environments of remote and rural 

locations, small organizations, tactical military settings, and emerging countries. The 
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simulation studies presented suggest that an implementation of SCIT on host servers 

provide a robust architectural solution in the face of new attacks. 
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CHAPTER SEVEN: µ-SCIT – ADDING MODULARITY TO SCIT 

This chapter proposes µ-SCIT, a hybrid architecture that adds modularity to SCIT 

using Operating System level virtualization. The proposed architecture is built on top of 

container-based virtualization technology. The added modularity affords the ability to 

perform more frequent targeted granular rotations at the level of processes and 

applications. This in turn extends ability of SCIT to work with long running applications 

and handle long transactions using container check-pointing and migration. 

7.1 Overview 

In previous chapters, we have defined Self-Cleansing Intrusion Tolerance (SCIT), 

a recovery based intrusion tolerance technique that comprises of rotating Virtual Servers 

(VS) once every period of time known as the ‘exposure window’. Rotating a virtual 

server here entails killing a virtual server and restarting it using a last known good 

configuration ‘golden image’. Needless to say, there are certain challenges in performing 

such SCIT rotations, some of them being: 

1. Resource intensive – depending on the size of the VS, killing it and restarting 

it once every period of time (especially if the exposure window is small) could 

have an impact on the performance of the system. Also, the number of virtual 

machines that need to be delegated to perform SCIT tasks depend on a) time it 

takes to do a single SCIT rotation (greater the time, more number of VS’ 



124 

 

required) and b) target ‘exposure time’ (smaller the exposure time, more 

number of VS’ required).  

2. Wasteful – it is well documented that most of the vulnerabilities that exist and 

those can be exploited are application vulnerabilities and not Operating 

System vulnerabilities. In order to cleanse applications that may have been 

compromised, it is wasteful to rotate the entire VS along with its’ operating 

system components. 

3. Persisting long running applications – although SCIT (as is) works well for 

systems that perform relatively small transactions (example: E-commerce), it 

faces challenges in environments where there is a need to persist long running 

transactions (example: media, critical military applications). Persisting such 

long running transactions across a full VS rotation without downtime is a 

tough ask.  

To address these challenges, this chapter proposes µ-SCIT that extends traditional 

SCIT by adding modularity to it. Goal here is to perform micro level rotations that are at 

a more granular level than full VS rotations. 

7.2 Need for Modularity  

7.2.1 Performance Argument: Exposure Time as a metric for proactive risk 
management 

Security and performance must be dealt within one framework – high security 

with low performance is as unacceptable as low security and high performance. In this 

chapter, we assess the effectiveness of using exposure time as a metric to tradeoff 



125 

 

between security and performance. This metric exacerbates the need for adding 

modularity to SCIT. 

Lower exposure times mean lower intruder residence times leading to less 

damage inflicted. Although reducing the exposure time increases security, it also 

increases computing overhead thus reducing service throughput. It is essential to strike a 

balance. We use throughput and response time to assess service performance. 

We now introduce the term ‘Exposure Factor’: 

Exposure Factor (EF) = percentage loss if a threat is successfully realized 

The following observations must be kept in mind while configuring an exposure time: 

 Given intrusion has not occurred, penetration risk increases with time – indicates 

a need for low ‘exposure time’; 

 Given intrusion has occurred, progress of intrusion increases with time – indicates 

a need for low ‘exposure time’; 

 Low exposure times lead to low exposure factor thereby resulting in minimum 

losses; 

SCIT Controller Model: 

The SCIT controller is the despatcher that keeps all the virtual servers in order by rotating 

them in and out to maintain exposure window and perform self-cleansing. The SCIT 

Controller model ‘S’ can be formally represented using the following:  

S  V1V2V3…Vn S 

Where V1…Vn stand for ‘n’ Virtual Servers respectively 
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Virtual Server 1 gets exposed first. Once the exposure time of Virtual Server 1 runs out, 

dispatcher switches control to Virtual Server 2. Now, Virtual Server 2 becomes exposed 

and Virtual Server 1 is pushed into quiescent state before restarting. Once all virtual 

servers have been exposed once, it is Virtual Server 1’s turn to be exposed again. 

Despatcher maintains this cycle. 

Having formalized that, here are some general observations: 

 Higher number of virtual servers gives the flexibility to attain lower exposure 

times.  

 Managing large number of virtual servers take up a lot of CPU cycles thereby 

leading to poor query response times. 

 More virtual servers lead to more frequent server rotations meaning more 

processing. 

 It is relatively simple and inexpensive to manage a small number of virtual 

servers; however this results in larger exposure times and more risk of 

penetration. 

 In this framework, number of VS on-line simultaneously has an impact on 

throughput and response times. 

 From Simulation runs, we infer that having more number of VS on-line 

simultaneously results in a healthy increase in throughput. This we believe is 

primarily caused by the VS's in the quiescent state.  

 Having more number of VS on-line leads to higher response times. This is not a 

desirable effect. 
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Taking all these observations into consideration, although lower exposure times 

lead to more secure servers, they also use up a lot of CPU cycles performing frequent full 

VS rotations thereby bringing down the service throughput. In order to address the 

conundrum of providing low exposure times as well as having low performance impact, 

this work proposes adding modularity to SCIT where critical applications are rotated on a 

more frequent basis thereby addressing low exposure time targets as well as not having to 

rotate the entire VS to achieve the same thereby addressing low performance impact 

requirements.   

7.2.2 Security Argument 

From Figure 7.1, Microsoft Security Intelligence Report Volume 8, 2009 suggests 

that most of the vulnerabilities that lead to intrusions are in fact application 

vulnerabilities and not operating system vulnerabilities. SCIT performs full virtual server 

rotations thereby rotating operating system components as well periodically, while in 

reality, these operating system components and other system software are least 

susceptible to compromise. To overcome such wasteful rotations, my research proposes 

adding modularity to the current model that treats the entire virtual server as one gigantic 

program.  
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Figure 7.1: Vulnerabilities trend in Windows systems, 2006-2009 [MSSI2009] 

Micro-SCIT (µ-SCIT) proposes a different design that adds granularity to the 

SCIT rotations by extending the base operating system functionality by means of user-

space servers (or) modules (or) containers. By splitting a running virtual server into 

small, independent parts, the system becomes less complex and more robust, because the 

smaller parts are more manageable and help to isolate faults. Advantages of such a 

modular approach over a traditional monolithic approach are as follows: 

 First, by splitting up the virtual server into multiple isolated modules or 

containers, we are not reducing the number of bugs but we are significantly 

reducing the damage that each bug can cause.  

 Second, by breaking the operating system into many processes, each with its own 

boundaries, we greatly restrict the propagation of faults. A bug in a running 

application cannot inadvertently wipe out the file system by accident. This hugely 

helps in isolation of faults and prevention of malware propagation. 
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 Third, by constructing the system as a collection of modules, the functionality of 

each module can be clearly determined, making the entire system much easier to 

implement and secure.  

 Fourth, this design facilitates long transactions. Persisting a long running 

application is now a matter of check-pointing and restoring a module specific to 

that application and does not involve the other components of the virtual server 

that are constantly being restored to last known good configuration by SCIT.  

In order to add said modularity, the use of OS-level virtualization is proposed.  

7.3 Operating System Level Virtualization  

Operating system level virtualization is a server virtualization method where the 

kernel of an operating system facilitates the use of multiple isolated user-space instances, 

instead of just one. Such instances are called Containers or Virtual Environments (VE) or 

Virtual Private Servers (VPS) or Jails. A sample illustration of a container is provided in 

Figure 5.2. Operating systems that support container based virtualization facilitate: 

 Running multiple isolated sets of processes under a single kernel instance 

 Check pointing – saving complete state of container and later restarting 

 Check pointing and restarting are implemented as loadable kernel modules  

From kernel view, containers is a separate set of processes completely isolated from other 

containers and host systems. Container is an isolated entity (all inter-process 

communications (IPC) and parent-child relationships are within the container 

boundaries). Traditional h/w virtualization approaches like Xen and VMWare only 

support check pointing / restarting of an entire OS environment; they do not support 
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check pointing and restarting of a small set of processes as required by the µ-SCIT 

proposed above. 

7.3.1 Container Check-pointing and live migration 

In order to achieve the goals of µ-SCIT as outlined in Section 7.1, it was 

necessary to achieve container check-pointing and live migration. OpenVZ, which is a 

container based virtualization technology for Linux was used to implement a test bed 

version of µ-SCIT and to assess its effectiveness.  

Basic requirements for container-based operating system virtualization to 

facilitate check-pointing and live migration can be outlined as follows: 

 Process Id (PID) virtualization – same PID has to be assigned to a process as it 

had before check-pointing  

 Process group isolation – make sure parent child relationships will not lead to 

outside a container 

 N/W isolation and virtualization – all networking connections will be isolated 

from all other containers and host OS 

 Resource virtualization – to be independent from hardware and able to restart 

container on a different server 

In addition to the basic requirements outlined below, in order to persist a transaction / 

application through a SCIT rotation across servers, there is a need to maintain system 

consistency – meaning all relevant state information and application specific private data 

need to be carried over: 

 Register set, address space 
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 Allocated resources, network connections 

 Per-process private data 

 Process-hierarchy, IDs 

A typical container check-point / restore life cycle would go through the following: 

 Freeze processes (source) 

 Dump container to dump file (source) 

 Stop the container (source) 

 Restart the container  (destination) 

 Restart the processes (destination) 

 Resume processes within the container (destination) 

 

Figure 7.2: Sample illustration of container 
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7.3.1.1 Container migration challenges and considerations 

Like any technology solution, container migration has its own sets of challenges 

and considerations. As noted earlier in this section, the crux of container migration is in 

dumping the container to a dump file and moving the dump file to target destination. 

Needless to say, the performance of this container migration / restoration strategy hinges 

on the size of the dump file. We noted in Section 7.3.1 that all container private data and 

relevant state information needs to be carried over to facilitate seamless resumption of 

long running transaction / applications without loss of availability. To achieve this goal, 

dump file size needs to be minimal.  

As part of validating the practicality of this approach, a test-bed experiment was 

conceptualized and built to simulate use case scenarios. The configuration of the system 

used to build the test-bed is presented below. It needs to be noted that the system specs 

are well below current state of the art servers and this was deliberate to portray 

performance efficacy of this approach. 

Configuration of System used for Test Bed Experiment: 

 Gateway P-7805u 

 Intel Core 2 Duo CPU P8400 @ 2.26GHz 

 4 GB RAM 

 CentOS 6 

As a result of performing multiple test bed experiments, find below a summary of dump 

file sizes that needed to be moved to destination in order to perform respective container 

migrations under various scenarios using OpenVZ. 
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Table 7.1: Sample container dump file sizes 

Size, Mb Scenario 

0.9 1 Bash 

1.2 Bash + SSH Daemon 

2 Bash + Idle Apache Tomcat 

2.4 POSTGRESQL Server Running with Table of 300 entries open 

3 6 Bashes 

3.6 MySQL Daemon 

16 Acrobat Reader with an open 12 Mb file 

26 Bash + Mozilla Firefox (Default Home Page) + Java VM 

The test bed experiments were not meant to be complete or to represent every 

possible scenario. It was meant to illustrate the sample dump file sizes in scenarios while 

attempting to migrate some fairly common applications. As can be noted from our 

results, the dump file sizes are manageable and should not cause any noticeable 

performance impacts given today’s network bandwidth and data transfer rates.  

It is recognized that the scenarios highlighted above are not complete and that 

more resource intensive applications could lead to larger dump file sizes. In order to 

address those scenarios, some potential options to minimize dump file sizes are presented 

in the following subsection. 
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7.3.1.2 Minimizing Dump File Size 

In order to minimize dump file sizes and facilitate seamless rotation of Virtual 

Private Servers, following tweaks could be effectively performed as was learned in the 

process of running multiple test bed experiments.  

In the context of using OpenVZ in CentOS Linux for my test bed experiments, 

one of the options to minimize dump file size is to avoid carrying over unnecessary 

container private data and folders. This can be achieved by creating a file 

/tmp/exclude.txt in the destination VPS with entries to exclude migrating. Sample file can 

contain entries like: 

 /tmp 

 /boot 

 /lib/modules 

 /etc/blkid 

 /etc/mtab 

 /etc/lvm 

 /etc/fstab 

 /etc/udev 

In addition to excluding migration of unnecessary folders, certain system services 

can also be disabled / uninstalled since they will not be required in the context of a 

container. Sample list provided below: 

 acpid, amd (not needed) 

 checkfs, checkroot (no filesystem checking is required in container) 



135 

 

 clock (no clock setting is required/allowed in container) 

 consolefont (container does not have a console) 

 hdparm (container does not have real hard drives) 

 klogd (unless you use iptables to LOG some packets) 

 keymaps (container does not have a real keyboard) 

 kudzu (container does not have real hardware) 

 lm_sensors (container does not have access to hardware sensors) 

 microcodectl (container can not update CPU microcode) 

 netplugd (container does not have real Ethernet device) 

 irqbalance (this is handled in host node) 

 auditd (not needed in container) 

 lvm2-monitor (no LVM in containers) 

 ntp/ntpd (clock taken from host node) 

7.4 A comparison of SCIT with Container Migration 

Container Migration is not meant to be a substitute for SCIT. It is meant to be 

complementary. Although SCIT is more resource intensive than container migration, it 

assures sanctity of the new virtual server going online by employing the use of an internal 

‘golden image’ that is not public facing and hence not accessible from the internet. With 

regard to container migration, although it has its performance benefits of facilitating 

micro-rebooting and security benefits of performing targeted actions, there are no 

guarantees when it comes to the security posture of the container. Having made those 
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distinctions, our research proposes the use of these two solutions together complementing 

one another.  

A brief security comparison of SCIT and container migration is provided below:  

Table 7.2 Security comparison of SCIT and container migration 

 SCIT Container Migration 

Restore to clean state  

(no malicious activity detected) 

Yes No. State information + potential 

malicious data carried over 

Restore to clean state  

(malicious activity detected) 

Yes Yes, can go back to a previous clean 

checkpoint (if known) 

Malware propagation within 

applications 

Does not 

prevent 

Prevents – due to use of isolated 

containers 

7.5 µ-SCIT – Adding Modularity to SCIT using OS-level virtualization 

µ-SCIT is an architecture that brings together the two technology solutions 

presented in the previous section – SCIT and container migration. Every virtual server in 

the resulting µ-SCIT architecture would resemble the illustration in Figure 7.3. It is a 

representation of a µ-SCIT virtual server built on top of OpenVZ virtualization for Linux. 

OpenVZ provides the ability to build isolated containers (or) Virtual Private Servers 

(VPS) that independently contain within them all the processes, child processes, network 

dependencies, application software and relevant container private data to function on its 

own. This in turn provides an ability to be able to kill, restart or migrate the VPS without 

having to deal with the other components and layers.  

When SCIT and container migration work in tandem and as a complement to one 

another, the resulting µ-SCIT architecture would perform two levels of rotations as 

summarized below: 
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1. Once every ‘exposure time’, VMM kills the virtual server (say VS #1) that is 

exposed and starts another virtual server (say VS #2) that was in live spare. 

During this process, the VS is self-cleansed and is loaded from a ‘golden image’ 

next time it goes online. Meanwhile, VS #2 is exposed and this cycle goes on.  

2. Within every virtual server (say VS #2) that is currently exposed, all critical 

Virtual Private Servers are rotated once every ‘container lifetime’. 

Critical Virtual Private Servers are the VPS’ that have been identified beforehand 

during an audit or by system / network administrators to be 

 Critical to services provided and/or 

 Have an escalated threat posture with a potential for compromise  

 Candidates for long running transactions 

 

 Figure 7.3: Representation of µ-SCIT Virtual Server (VS) instance  
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Once such a determination has been made, these VPS’ go through rotations once 

every period of time known as ‘container lifetime’. In the context of VPS, rotations 

imply:  

 being migrated meaning check-pointed and restored (or) 

 be self-cleansed meaning VPS gets replaced by a known-good version of 

the same 

In µ-SCIT architectures, use of ‘Container Lifetime’ that is much smaller than 

‘Exposure Time’ is strongly recommended thereby creating an ecosystem where critical 

VPS rotations take place far more frequently than SCIT rotations.  

7.6 Summary 

In this chapter, we proposed µ-SCIT – a hybrid approach that combines SCIT and 

container-based virtualization. By adding modularity to SCIT, µ-SCIT can be 

summarized as follows:  

 Offers another layer of rotation in addition to the existing SCIT rotations 

o More granular – rotation happens at the level of VPS and not VS 

o More frequent – since the size of the VPS is relatively small compared 

to the VS in most cases, this affords an opportunity to perform targeted 

cleaning and migration on a more frequent basis 

o VPS rotations happen once every  ‘Container Lifetime’ where Container 

Lifetime << Exposure Time 

 Facilitates long transactions / long running applications 
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o Long running application needs to be identified beforehand and placed 

into a dedicated VPS  

o VPS is migrated (check-pointed and restored) once every ‘Exposure 

Window’ from source server to destination server in order to persist full 

SCIT rotations.  
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CHAPTER EIGHT – RECOVERY BASED RESILIENT CYBER ECO-SYSTEM 

This chapter proposes a ‘stand-alone’ and a ‘collaborative’ architecture which 

make use of information provided by the enterprise Security Information and Event 

Management (SIEM) solution to perform adaptive intrusion tolerance in unsupervised 

learning environments. Resilient systems need to be adaptive, and to achieve this goal, 

this research shows how environmental information can be used to adaptively change 

system and operational parameters.  

8.1 Overview 

Today’s approach to security is largely based on perimeter defense and reactive 

strategies like IDS / IPS systems, Firewalls and Anti-virus products. Past experience has 

repeatedly shown us that this strategy is not complete and secure. Intrusion tolerance is 

an approach which treats intrusions as inevitable and shifts the focus from detection and 

prevention to containing losses and rapid recovery. It can be suggested that a complete 

security strategy is one which does defense in depth and involves both traditional security 

strategies and intrusion tolerance. Security Information and Event Management (SIEM) 

is a framework which consolidates the plethora of information available from all of the 

network and security devices into useful information. In this chapter, a stand-alone and a 

collaborative architecture is proposed which make use of information provided by the 

SIEM framework to perform adaptive intrusion tolerance in unsupervised learning 
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environments. Resilient systems need to be adaptive, and to achieve this goal it is shown 

how environmental information can be used to adaptively change system parameters. 

The variety and complexity of cyber attacks are ever increasing. Verizon Business 

2012Data Breaches Investigation Report [Veri2012] shows that customized malware is 

difficult to detect and data ex-filtration often occurs over a period of days, weeks and 

months. The current intrusion detection and prevention approaches are reactive in nature 

and depend on a priori information which is inadequate to prevent all attacks. Events 

such as the VeriSign security breach [VSig2012] and the Playstation Network breach 

[Play2011] reinforce two notions: 1) even the most sophisticated IDS / IPS systems fail to 

detect / prevent every intrusion and 2) once the system is compromised, the intruder stays 

in the system doing damage for extended periods of time. 

In addition to the shortcomings of IDS / IPS systems, the costs of operating them 

are high and increasing. To illustrate the issue the example of an enterprise with an 

average of 1,000,000 raw events occurring per day is considered. About 10,000 alerts are 

generated by perimeter defense systems. Out of these, 100 alerts are correlated on the 

basis of severity and other considerations. Assuming it takes 1.5 man hours to handle one 

alert, a total of 150 man hrs is required per day to handle alerts generated. The cyber 

security requires 365 days 24 hours per day support and in general about 30 people are 

required to carry out this task. How many large companies can afford such an allocation 

of manpower – in companies we talk to, only 2 or 3 people perform this task.  What’s 

worse, 50 % of the alerts are false positives – a tremendous waste of resources. With ever 
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increasing bandwidth and millions of new malware created every day, these numbers are 

bound to increase.  

Despite years of research and investment in developing such reactive security 

methodologies, our critical systems remain vulnerable to cyber attacks. The reactive 

perimeter defense approach relies heavily on threat modeling and vulnerability 

elimination.  It is suggested that additional attention should be given to the consequences 

of a successful attack.  In the proposed approach, the focus is on limiting the 

consequences, like reducing the losses that are induced. It is believed that we must make 

our cyber systems more proactive and resilient.  Such systems will have the property of 

(1) supporting continuity of operations – working even in the presence of an intruder; (2) 

losses, if any, must be limited; (3) systems must resume full operations, i.e. system must 

be restored to a known good state; and (4) the resilient system operations should be 

independent of the threat. 

To design such a system, it is assumed that intrusions are inevitable. Therefore, 

the focus is shifted from modeling threats / vulnerabilities to developing methods that 

will minimize the consequences of an intrusion, increase the work effort of the adversary 

and increase the visibility of the adversary to the defenders.  For this, a ‘Moving Target 

Defense’ approach to computer security is developed. The focus is on building mission 

resilient systems that are able to work through an attack. To ensure reliable operations, 

the system is  restored to a pristine state once every short period of time known as the 

‘exposure time’ – thus negating any malicious action performed by the adversary and 

minimizing consequences. In addition to this, redundancy is used to provide 
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uninterrupted service and increase overall system availability. The more frequent the 

computer restoration the less likely it is for the intruder to do damage. The restoration 

frequency can be random to confuse the adversary and increase his work effort. The 

shortest time between restorations is a trade-off between available system resources and 

the throughput of the computer. This intrusion tolerant technology is called Self 

Cleansing Intrusion Tolerance (SCIT) [YHua2006].  The recovery driven approach of 

SCIT is compared to the detection driven and other intrusion tolerance approaches in 

[QNgu2011].    

Consistent with CrossTalk’s theme for the September/October issue, in this 

chapter, a resilient cyber eco system is proposed in which every member is able to work 

together and learn from one another in near-real time to predict and prevent cyber-

attacks, limit propagation of attacks across participating entities, minimize losses 

occurring from successful attacks and rapidly recover to a pristine state.  To build such a 

system which is resilient to a variety of sustained attacks, a model is proposed that 

integrates tools and mechanisms that provide protection and detection as well as adaptive 

tolerance. Rest of the chapter is organized as follows: Section 8.2 provides a brief 

overview of how SCIT works and motivates the rest of the chapter by presenting the need 

for adaptive SCIT, Section 8.3 introduces Security Information and Event Management 

(SIEM) solutions and presents the idea on how information from SIEM solutions can be 

used to build adaptive intrusion tolerance systems. Two scenarios will be reviewed – 

stand-alone adaptive intrusion tolerance architecture and a peer-to-peer collaborative 

intrusion tolerance architecture. 
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8.2 Need for Adaptive SCIT 

Resilient systems have to exhibit adaptive and recovery behavior.  SCIT is 

recovery driven, and in this section it is shown how SCIT can be made more adaptive to 

the ongoing changes in the environment.   

At any point of time, the resilience of a SCIT system is affected by (1) the current 

attacks; (2) the current workload; (3) the current data integrity level; (4) the current data 

availability level; and (5) the current behavior of the system [PLue2003]. The first four 

factors together make up the environment of the SCIT system. Two SCIT systems with 

different behaviors can yield different levels of resilience. This suggests that as the 

environment and the behavior of the system changes, the effectiveness of SCIT changes 

as well. To achieve the maximum amount of resilience, the SCIT system must adapt itself 

to its environment. Through an architecture for adaptive SCIT, we can (1) adapt SCIT to 

different application semantics; (2) significantly improve the cost-effectiveness of SCIT; 

(3) prevent dramatic performance degradation due to system environment changes; and 

(4) maintain trade-off between system security and system performance [PLue2003]. 

In the case of SCIT, the primary metric is “Exposure time”. In [ANag2010], the 

relationship between exposure time and security of a system is illustrated in terms of data 

compromised. In [QNgu2009], the SCIT approach was discussed from the perspectives 

of effectiveness, tunable parameters, performance impact, and integration to application 

systems. From the derived expression for MTTSFSCIT, it was conjectured 

mathematically that decreasing the exposure time window will improve the resilience of a 

SCIT-based system. To adapt SCIT we will need to adapt the exposure time in response 
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to systems parameters. Increasing MTTSFSCIT would require decreasing the exposure 

window; hence the cycle that a SCIT server has to go through will become shorter. In this 

space, there is a tradeoff between system security, performance and cost. Adaptive SCIT 

could help balance this trade-off in real time with the use of a dynamic exposure time 

window given the current operating environment and system behavior.   

8.3 Use of Security Information and Event Management (SIEM) Solutions 

“The term Security Information Event Management (SIEM), describes the 

product capabilities of gathering, analyzing and presenting information from network and 

security devices; identity and access management applications; vulnerability management 

and policy compliance tools; operating system, database and application logs; and 

external threat data”. [SIEM2012] 

In addition to receiving inputs from IDS / IPS systems, a SIEM solution will be 

used to collect and correlate data from all the other sources mentioned in Figure 8.1 to 

characterize overall network behavior. This behavioral pattern is then compared with a 

database of normal network behavior patterns to identify irregularities. Based on the 

findings of this comparison and the severity of the irregularities, the SCIT controller 

tunes the “exposure time” of the SCIT-ized system to adapt to the current environment. 

Similar iterative periodic comparisons will help guide the unsupervised learning and 

automatic adaption of the SCIT-ized system. 
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8.3.1 Use of information from SIEM solutions in building adaptive Intrusion 
Tolerant Systems 

In this section, the idea of using aggregated information from SIEM solutions to 

build adaptive intrusion tolerant systems is expanded on. For the purposes of this chapter, 

SCIT is the intrusion tolerance architecture of choice.  

To address the needs outlined in section 8.2, an adaptive SCIT framework must 

do the following: 

 

Figure 8.1: Security Information and Event Management Framework [MARS2010] 

 Employ a dynamic exposure-time - the exposure window must keep changing 

with time as the SCIT environment and the system behavior changes. 



147 

 

 Constantly receive input from the SIEM framework on the current SCIT 

environment and state of behavior to make informed alterations to the exposure 

window. 

Two adaptive SCIT architectures are presented with a common assumption that 

SCIT is deployed at Enterprise level. 

8.3.1.1 Stand-alone Adaptive SCIT 

 

Figure 8.2: Stand-alone adaptive SCIT 

In this architecture, SIEM is constantly monitoring the SCIT-ized node and 

periodically generates consolidated reports based on the information it has gathered and 

correlated from varying sources. These reports are fed into the Statistics Aggregator 

which converts massive information obtained from SIEM into meaningful metrics and 
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their respective values. Further, the classifier compares pre-defined Normal Behavior 

Model (in terms of metrics and values) with the current values obtained from the 

Statistics Aggregator. The classifier then feeds the results of the comparison to the Tuner 

of the SCIT Controller. Based on this, the Tuner makes an informed decision on whether 

or not to alter the existing “exposure time”. 

For example, if the results from the classifier identify malicious behavior that 

points to a Distributed Denial of Service (DDoS) attack, then the SCIT Controller can 

now reduce the “exposure time” thereby hardening the system against such an attack. 

8.3.1.2 Peer-to-peer Collaborative SCIT 

 

Figure 8.3: Peer-to-peer collaborative SCIT 
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This architecture is an extension of the stand-alone architecture. It is meant to 

mimic a cyber-eco-system with multiple participants in the community that offers 

recovery based resilience. In this case, there are ‘N’ SCIT-ized nodes that are online 

concurrently. SIEM solutions of each individual node namely SIEMA, SIEMB so on till 

SIEMN generate reports individually and keep forwarding them to the Statistics 

Aggregator periodically. The advantages of collaborative SCIT are straight forward:  

 There is more information to work with – the Statistics aggregator is now fed with 

useful information from ‘n’ different SIEM solutions.  

 Acts as a pre-warning system: malicious behavior in any one of the nodes in the 

community can now be used to warn / harden rest of the community. 

 Unsupervised Learning – malicious behavior in any one node in the community 

can help teach an attack pattern to the rest of the community. 

 Fewer chance of false positives since isolated events now carry less weightage.  

8.4 Summary 

Cyber-attacks are becoming more wide spread, sophisticated and consequential 

with time. However, detecting, handling and identifying the consequences of an intrusion 

are still persistent problems. This is partly due to the lack of trust between the members 

of the cyber eco system which impedes information sharing and collaboration. If every 

entity of the cyber eco-system were to collaborate with one another and took co-ordinated 

security decisions, it could lead to unsupervised learning systems that provide hardened 

proactive defense. 
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In this chapter, two such recovery based cyber resilient adaptive SCIT 

architectures were proposed. One is a stand-alone system and another is a collaborative 

system that encourages information sharing and promotes cyber health among 

communities. In addition to the periodic system self-cleansing done proactively, the 

system constantly part takes in unsupervised learning from other members of the eco-

system to adapt to the current environment and system behavior.  
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CHAPTER NINE – EXPLORING GAME DESIGN FOR CYBER-SECURITY 

TRAINING 

This chapter explores game design for cyber-security training. The objective of 

this research is to teach everyday users the requisite cyber security skills through gaming, 

beyond the current state-of-practice. Because the skill level of the trainees is also wide 

ranging, from causal computer users, to software engineers, to system administrators, to 

managers, the games must also be capable of training this wide range of computer users. 

9.1 Overview 

Cyber security awareness and training are vitally important and challenging. A 

huge number of attacks against everyday users occur routinely. Prevention techniques 

and responses are wide ranging but are only effectively if used effectively. The objective 

of this research is to teach everyday users the requisite cyber security skills through 

gaming, beyond the current state-of-practice. Because the skill level of the trainees is also 

wide ranging, from causal computer users, to software engineers, to system 

administrators, to managers, the games must also be capable of training this wide range 

of computer users. Computer games can provide a media for delivering training in an 

engaging format at levels appropriate for the individual trainees. In this chapter (1) the 

state-of-practice is described by describing the gaming tool used in most cyber challenges 

at high schools and colleges in the US, i.e., the cyber security gaming tool CyberNEXS, 

(2) some of the additional topics that should be addressed in cyber security training are 
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outlined and (3) some other approaches to game design that might prove useful for future 

cyber security training game development beyond CyberNEXS are discussed. 

Cyber security training is becoming more and more vital to global security. The 

large number of network intrusions and malicious attacks that have taken place over the 

past several years only re-assures the growing need. Some of these events include: 

massive data breaches of consumer information at Sony and Sony PSN [Sony2011]; 

Stuxnet worm’s stealthy attack on the Iranian nuclear program [Stux2010] and the 

Chinese electronic break-in at Google [GMai2011]. 

Intrusions are becoming more and more accepted as a norm. Ever increasing 

bandwidths, the phenomenon of social networking and the accessibility of mobile devices 

are part of the reason for this growing cyber-attack problem. Given that cyber security is 

a real and near threat, it demands comprehensive training in a variety of areas. Games can 

help here by providing an engaging interface that enhances training, draws more trainees 

in and simulates a variety of scenarios. 

The idea of using games to support health, education, management and other 

sectors have already yielded positive results [MPre2001] The application of gaming 

concepts to training can also be equally fruitful. Furthermore, research is advancing in 

modeling and simulation that seems potentially applicable to cyber security and defense 

(cyber war) gaming [BotN2008]. 
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9.2 Cyber Security Training 

9.2.1 Awareness Topics 

The goal is to train the next generation the skills necessary to attain highest 

achievable level of cyber security and defense against cyber-attacks. Defending against 

cyber-attacks in near real time is highly stressful. Typically, higher user stress levels lead 

to more user errors. The game design should put the player in a range of stress levels, 

thus enabling the user to function more effectively in real life. 

Password usage and management – In today’s world, passwords protect your 

computers, data and online accounts. Hackers are becoming increasingly sophisticated at 

cracking passwords using techniques like brute force attacks, dictionary based attacks and 

Phishing. It is therefore important to create awareness about making strong passwords the 

first line of defense. Techniques for creating, using and frequently changing strong 

passwords can be presented. 

Protection from malware and spam – A recent New York Times report 

[SANS2002] has the Microsoft Internet Safety Enforcement team stating that the “mean 

time to infection of an unprotected computer on the internet is less than 5 minutes”. 

Viruses, Worms and Trojans are the most common forms of infection and are designed to 

inflict loss of productivity / economic damage to the target. According to a study 

conducted by Ferris research, the annual worldwide economic damages from malware 

exceeded $130 billion in 2009. Therefore, any effective cyber security awareness session 

must cover the use of anti-virus / anti-malware tools along with training on scanning and 

updating definitions. 
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Patch management – Patches are additional pieces of code developed to address 

problems in software post-release. They enable additional functionality or fix security 

flaws within the software. These security flaws / vulnerabilities can be exploited if left 

unpatched at a later time thereby making your system open to compromise. Timely 

patching of security issues is critical to maintaining service / operational availability, 

confidentiality and integrity of the system. New patches are released on a daily basis and 

it often becomes difficult even for experienced system administrators to keep track of all 

important patches. Training on effective patch management should hence form an 

important part of the cyber security awareness program. 

Social engineering phishing techniques – Phishing based social engineering are 

attacks on human judgment as opposed to software vulnerabilities and so these attacks 

pose a threat to unsuspecting users. As more and more users continue to access the 

internet daily, they become susceptible to Phishing which is a form of electronic 

deception. Social engineering is evolving so rapidly that security policies alone cannot 

protect critical infrastructures any more. Even with rigid safeguards, hackers manipulate 

employees using social engineering phishing techniques into compromising personal, 

social security and other sensitive information. Hence, it becomes important to develop a 

security-aware culture that keeps users / employees abreast of latest security threats. This 

can only be achieved through periodic cyber security training and awareness programs. 

Some of the other cyber-security training and awareness topics that need to be 

presented are: 

 Awareness of compliance policy and implications of noncompliance 
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 How to handle e-mails / attachments from unknown senders and SPAM. 

Malicious emails coming from recognizable emails are a particular challenge. 

 Implementation of new technology 

 Awareness on allowed and prohibited web usage – a system to monitor user 

activity 

 Data backup and storage procedures – do’s and do not’s. 

 Responsibility transfer between employees – how to handle? 

 Incident response awareness procedures and trigger points - preliminary user steps 

 Implications of shoulder surfing 

 Use of personal system/ software in work environment 

 Education on access control issues – separation of duties, least privilege, privilege 

escalation etc. 

 Individual responsibility and accountability 

 Physical access to spaces based on work demands 

 Incentive schemes (if any) 

9.2.2 Existing Training 

A number of techniques exist to get cyber security awareness material 

disseminated through an agency. The technique chosen depends on resources available 

and also the type of cyber security message that is being sent out. Some of the most 

common techniques used are: 

 Web-based awareness session – virtual classrooms 

 Computer based awareness sessions – computer labs or CD-ROMs 
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 Teleconferencing sessions 

 Instructor-led sessions 

 IT security days, Cyber Security awareness week and similar events 

 Posters with do’s and do not’s list 

 Screensaver and warning banner / messages 

 Periodic Newsletters 

 Agency wide e-mail messages / alerts 

 ‘Brown bag’ seminars 

 Awards / Incentives program 

9.2.3 Shortcomings of the current techniques: [BCon2007, LAnn2010] 
 

 30 minutes of information about why security is important is not going to change 

how users behave daily. It should be a continuous process. Most of the awareness 

programs now happen to be onetime a year events. Users cannot be expected to 

retain the information from this session and change their daily behavior. 

Awareness must be a continuous life cycle where users must be trained, updated 

and reinforced periodically. User’s retention capacity must be taken into account; 

 Too many topics discussed in too little time – users cannot be expected to 

understand / retain all of them; 

 Training environments are not realistic – different stress levels have an impact on 

how users act; 
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 Most awareness programs are presented by security professionals who are bad 

communicators. Instructor led training headed by security professionals turn out 

having long information sessions that end up overwhelming people and not 

getting the intended point across. These sessions cannot afford to be boring; they 

must be involving and fun; 

 If users make the same mistake a number of times even after training and 

reinforcement – there has to be some sort of disciplinary action. And similarly, 

there must be incentives for users with good security hygiene; 

 One must be able to perform a measurement of user behavior (some sort of score 

maybe) before and after training to actually see if the training has had a positive 

impact. Techniques used in current security awareness programs do not facilitate 

this. They require an additional survey for the same; 

 Except for the instructor led session, the rest of them all are passive and do not 

facilitate interaction with the user. Most of the time the question “Why should I 

be doing this?” goes un-answered; 

 A successful awareness program must be able to do two things – one is to get and 

retain the user’s attention for a span of time and two is to communicate the 

awareness material to the user effectively in that span of time. Current techniques 

are found lacking in achieving both. 
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9.2.4 Interactive Computer-based training 

To overcome these shortcomings, the use of Interactive Computer-based training 

like video games for cyber awareness training is now gaining momentum. Given the 

current landscape, such games generally fall into two broad classes: [LAnn2010] 

 First-person interaction games – Example: first person games where the user is 

confronted by an adversary / problem and must take a proper course of action else 

is penalized severely; 

 Resource management simulation games – manage a virtual online environment 

with provided limited resources. Good choices result in a richer environment and 

additional resources, bad choices result in diminishing resources. 

Motivation for the games is either recognition (i.e., if you do well and play fair, 

you will receive recognition) or certification to enhance your professional career. It is 

conceivable that cyber games of the future might offer financial or other incentives like 

prizes for first, second and third places in the competition. In regard to the later, a high 

quality, valued certification from a game probably does lead to career growth and the 

corresponding increased salary.  

The primary objective of such games is cyber training. Some of the games teach 

advanced cyber defense concepts and penetration testing in addition. Some such existing 

games are:  

 CyberProtect – Developed by DoD in 1999. It teaches information assurance 

concepts [LAnn2010]; 
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 CyberCIEGE – Developed by Naval Postgraduate School in 2005. The game 

employs resource management and simulation to illustrate information assurance 

concepts for training and education [LAnn2010]; 

 Multiple micro-games by Wombat security technologies for cyber security 

awareness and training of US Air force personnel. Eg: Anti-Phishing Phil. 

Wombat is currently developing a dozen more similar micro games; 

 NetWars – NetWars is an offense-oriented cyber security completion that is held 

completely online and made available to high school students as well. It is an 

online game where the primary objective is to penetrate into systems, gain access 

to files and provide proof for the same. It is conducted by the SANS institute and 

is a player in training and certification of cyber security professionals; 

 CyberNEXS – is an example of a simulation game for multiple aspects of cyber 

security, e.g., activities that revolve around protecting systems from penetration 

attacks.  

A brief look at CyberNEXS follows.  

9.2.5 CyberNEXS gaming 

CyberNEXS is considered somewhat of a de facto standard in cyber defense 

competitions – due to its wide spread adoption as the cyber security training and as a 

game for professional cyber security certification. Thousands of students have used 

CyberNEXS. It has a client-server architecture that provides game access to anyone with 

Internet access. One such training exercise is the SAIC High School 12-week Cyber 

Security e-Learning Pilot which makes use of the CyberNEXS training platform to 
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educate high school students on advanced cyber defense techniques. These students have 

gone on to participate in a number of cyber defense competitions over the past four years. 

Some such notable competitions are the Air Force Association (AFA) Cyber Patriot 

National High School Cyber Defense Competition, the Maryland Cyber Challenge, the 

State of Maine High School Competition and the San Diego Mayor’s Cyber Cup. 

CyberNEXS has five different models of operation, they are: 

 On-site training 

 Remote training 

 Certification 

 Competition / Gaming 

 Licensing 

Gaming is facilitated through the ‘competition’ model. Here the objective of all 5 

gaming modes is to teach cyber defense and penetration testing skills to participants. 

There are 5 CyberNEXS gaming modes: 

CyberNEXS-CND (Computer Network Defense Centralized) – CyberNEXS-

CND is a realistic cyber defense exercise in which the participants (blue team) are tasked 

with defending their network while under attack from the red team. Blue team’s primary 

objective is to ensure availability of their critical services and secure their host 

throughout the duration of the attack. Blue team also has to detect and mitigate red team’s 

attack and communicate its findings to the administrator (white team). 
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CyberNEXS-CND Lite – This game mode is similar to CyberNEXS-CND. 

However, here the objective is only to maintain availability of critical services and secure 

hosts. There is no need to detect or mitigate the incoming attacks from red team. 

CyberNEXS-Forensics – In this game mode, a series of cyber forensic challenges 

are given to the participants. The objective of the participants here is to find evidence of 

intrusions, discover malware, analyze payloads, analyze log and audits and trace attacks 

back to attackers. It is also important for the participants to effectively communicate all 

of their findings with the white team. 

CyberNEXS-CAN (aka Computer Network Attack or Penetration testing) – The 

objective of this game mode is for the participants to assess a network of computers for 

vulnerabilities and successfully exploit the vulnerabilities to gain user or administrative 

control of the system. Participants can use any of the network assessment tools that are at 

their disposal for this. It is also important to effectively communicate their progress to a 

“white team”, which is basically an observer team. 

CyberNEXS-CTF (Capture the flag) – The Capture the Flag mode is similar to the 

CTF modes found in first person shooter / strategy games. There are two parts to this 

game. First, the participants have to assess a network of computers for vulnerabilities, 

exploit them and take over a series of target hosts. Secondly, once the hosts are 

compromised and are under control, the participants are now required to defend these 

hosts against other incoming attacks while maintaining availability of their critical 

services. 
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Moving forward, it is desired to build on this to develop games that are even more 

engaging, entertaining, and educational. Some of the things that can be done to improve 

on the current de facto standards are: 

 Motivate participation by creating a broader certification program that could 

further better employment opportunities; 

 Make the game even more scalable and flexible. Present optional game modes 

where the participant is in full control of the environment, not requiring a white 

team. This helps participant understand the working of the network. 

 In real world, both the attacker and the defender get to make moves all the time. 

There is no constraint. Attacker adapts to defenders move and vice versa. 

Similarly, an expert system or a learning engine could potentially help in student-

system game, by the system learning and adapting to the user’s moves. This 

requires the development of a front end learning management system. 

9.3 Computer Game Design 

When designed well, video games can enthrall players, drawing them into a 

virtual world, motivating them, and challenging them. Research has also shown that 

games can support and enhance learning and training [BCon2007]. In this section, some 

important elements of game design are discussed with enhancing cyber security training 

in mind. 

Good game designs focus on the player experience. They create goals that a 

player feels motivated to reach and rules that must be followed in pursuit of those goals. 

They are also formulated to match the knowledge and skill level of their target audience 



163 

 

(though it may be a wide range). Furthermore, games designed for education and training 

must be focused on the training goals. What do you want the player to learn? Do you 

want them to learn a specific procedure for patching an operating system? Do you want 

them to learn how to think rationally under stressful conditions? Do you want them to 

learn the mindset and tools of their combatant? Having a clear understanding of who the 

player is and what you want them to learn will help you design a game that provides both 

the player and instructor feedback about the player’s progress. 

There are several approaches to and decompositions of game design that can help 

jump start to the design process. Themes can provide a narrative for the game and begin 

to immerse the players into an alternate world. This immersion can strengthen the 

training results [BCon2007]. Themes can include a specific story, such as a plumber 

searching through a Mushroom Kingdom to save a princess (i.e. Super Mario Bros) or a 

less specific feel, such a dark, dangerous world or a fast paced, cartoon kingdom. When 

chosen well, themes make the mechanics of a game feel more natural. 

In the next couple of sub-sections, other breakdowns of game design, including 

genres, dynamics, and core mechanics are discussed. 

9.3.1 Game Genres 

Game genres provide both the designers and players an instant idea about the 

nature of the game and the type of skills required. It should be noted that games can be a 

hybrid of multiple genres. Below a number of different game genres and their potential 

applicability to cyber awareness training are reviewed: 

1) Action Games 
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Action Games keep the player moving and involved at all times providing an 

adrenaline rush. They often include a lot of hand/eye coordination and quick reflexes. 

First Person Shooters (FPSs), such as Quake, fall into this genre. Actions in games of this 

type are not complex and do not require a lot of deliberation. In cyber security, one might 

imagine a game to train end users to quickly recognize the subject lines of phishing 

emails. 

Applicability Example: In cyber security, one might imagine a game to train end 

users to quickly recognize the subject lines of phishing emails. 

2) Role Playing Games (RPGs) 

RPGs generally have more developed stories and are played for longer spans of 

time in more expansive worlds. These games also tend to focus on character growth. As 

the game progresses characters obtain more experience, capabilities, and weapons. The 

outcome of actions in this genre can include an element of chance. Even if the player 

performs an action perfectly, it could still fail. Final Fantasy is an example of a game 

from this genre. A game for cyber security training could easily involve the player taking 

on the role of a system administrator to defend a group of servers that are critical to the 

future of the country or even a hacker that needs to break into a series of systems to 

obtain the information needed to save a hostage. As the player’s knowledge and skills 

increase, they would be given more sophisticated tools and also bigger challenges to 

further develop their abilities. 

Applicability Example: A game for cyber security training could involve the 

player taking on the role of a system administrator to defend a group of servers that are 
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critical to the future of the country or even a hacker that needs to break into a series of 

systems to obtain the information needed to save a hostage. As the player’s knowledge 

and skills increase, they would be given more sophisticated tools and also bigger 

challenges to further develop their abilities. 

3) Adventure Games 

Adventure games are somewhat similar to RPGs, in that, they also focus on story, 

but generally adventure games also include more exploration and a number of puzzles. 

Myst, for example, involved exploring the world, encountering puzzles, and attempting to 

solve the puzzles so that additional areas could be explored. Along the way, the player 

pieces together the story of what has taken place in this world. This genre of games might 

fit quite nicely with training recovery operations after an intrusion. 

Applicability Example: Possibly to training recovery operations after an intrusion. 

4) Strategy Games 

In strategy games, the key is balance. There are at least two opposing teams each 

with an equal chance of winning. There may be different units, weapons, resources, and 

goods available to the opponents, but they must be balanced. In strategy games, there is 

not a single right way to do things. Multiple strategies can be successfully enacted. There 

are normally also a series of different missions that lead a final completion. Command 

and Conquer requires players to construct bases, acquire resources, and attempt to 

conquer opponent bases. 

Applicability Example: It is easy to see how this paradigm could be used in cyber 

security training. Players might use different strategies and priorities in defending 
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penetration attacks. If trying to train administrators through better knowledge of a 

hacker’s mind set, players might take on the role of hacker and use different strategies to 

try to breach a system. 

5) Sports Games 

The genre of sports games might seem irrelevant to cyber security, but in fact 

there are possible parallels. Many sports games involve deciding on formations and 

calling plays. We could imagine training managers to handle security attacks in a similar 

fashion. What skills should his team have (or what can he afford)? What should each 

member of the team be doing as an attack progresses? The members of the team could be 

Non- Player Characters (NPCs) or real players in an asynchronous game. 

Applicability Example: Students could play war games that are time constrained. 

This adds a dimension of stress and necessity for effective time / resource management. 

6) Fighting Games 

Fighting games are simple and direct, but engaging. In fighting games, the action 

is swift and intense and the moves are usually easy to learn. Tekken and Mortal Kombat 

are examples of fighting games. Opponents battling to deface and restore a website might 

fit in this genre. 

Applicability Example: Students could play war games to compete for points for 

defensive blocking, and offensive cyber-attacks. A student could play cyber war against 

the computer or another student, or teams could play each other. 

7) Casual Games 
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Casual games tend to be easy to learn and not difficult to master. They include 

video game versions of card games and board games, as well as games created just for 

computers, such as Tetris. Generally, a player starts a new game each play session as 

opposed to continuing a mission from their last session. Any number of casual games 

could be designed to help familiarize people with cyber security terminology and train 

them on more rudimentary techniques such as creating secure passwords. 

Applicability Example: Any number of casual games could be designed to help 

familiarize people with cyber security terminology and train them on more rudimentary 

techniques such as creating secure passwords. 

8) Sandbox Games 

Finally, in sandbox or God games, there is no preset win condition. A player is 

provided a variety of building blocks and constructs their virtual life or virtual 

environment. The game system causes different events to occur that affect (positively or 

negatively) the player’s world. For example, in The Sims, a player’s kitchen might catch 

on fire or they might be promoted. In terms of cyber security, the player might setup a 

system, be it a single computer or an entire network, with various precautions and then 

the game could prompt changes to the system based on hardware failures, attacks, 

consumer complaints, etc. 

Applicability Example: In terms of cyber security, the player might setup a 

system, be it a single computer or an entire network, with various precautions and then 

the game could prompt changes to the system based on hardware failures, attacks, 

consumer complaints, etc. 
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9) Simulations 

Simulations normally focus on one piece of equipment or activity. The resulting 

experience can be true to life or exaggerated. For example, many racing game allow the 

players to maneuver the vehicles around the course at speeds that would not normally be 

possible. CyberNEXS is an example of a simulation game for cyber security 

(http://www.saic.com/cybernexs/), where the activity revolves around protecting systems 

from penetration attacks. 

Applicability Examples: Both CyberNEXS and Netwars 

(http://www.sans.org/cyber-ranges/netwars/) are simulation games for cyber security 

where the activity revolves around protecting systems from penetration attacks. 

9.3.2 Game Dynamics 

Game dynamics are a particular pattern of play within a game and are tied to core 

mechanics, which will be discussed in the next section. They focus the type of actions a 

player can take. 

1) Territorial Acquisition 

Territorial acquisition revolves around a limited resource that may or may not be 

a land mass. The main focus of the game is to acquire as much of the limited resource(s) 

as possible and strategically control it. Risk and some FPSs have the territorial 

acquisition dynamic. In cyber security, the limited resource might be memory, network 

bandwidth, or entire servers. 

2) Prediction 
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The prediction dynamic is simply prompting the player to guess what will happen 

and rewarding them if they guess correctly. Roulette and Rock-Paper-Scissors are 

examples of prediction games. A training game is unlikely to focus solely on the 

prediction dynamic, but it does still have a place. For example, guessing the nature the 

next attack to try to defend against it. 

3) Spatial Reasoning 

Spatial reasoning often involves puzzles (e.g. Tetris, Tic-Tac-Toe, and Connect 

Four). A cyber-security game might include the notion of lining up security elements to 

form a continuous shield from attacks and strategizing about where the next attack might 

come from. 

4) Survival 

The survival dynamic taps into the instinctual need for self-preservation. There is 

a constant life and death struggle that is the focus of the game. Here we could imagine a 

player becoming a server or router and struggling to survive against constant attacks. 

5) Destruction 

Every FPS includes the destruction dynamic. With this dynamic, the goal is 

basically to wreck everything in sight. Consider a game set in a computer, where the 

player uses different weapons (i.e. security techniques) to destroy various attacks he 

encounters. 

6) Building 

Because of their focus on character development, RPGs often have a building 

dynamic. The main objective of these games is to build a better character or in the case of 
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the sandbox game SimCity, a better world. How about a better network or computer 

system? 

7) Collection 

The collection dynamic can be found in card games and many platformers (e.g. 

collect rings, bolts, gold coins, etc.). In these games, getting the most of a resource is 

what determines the winner. A cyber-security parallel might involve collecting passwords 

or other user data. 

8) Chasing and Evading 

In chasing and evading games, the goal is to capture prey or escape predators. 

Pac-Man is a good example. In cybersecurity, a hacker might be attempting to gain 

control of a system or data while evading detection. 

9) Trading 

Trading requires cooperating with others. There are normally multiple kinds of 

resources that can be exchanged between players. This is common in card games. We 

could imagine a game where tokens corresponding to security software and techniques 

are traded. When someone has a full set, their system is secure and they have won the 

game. This would increase the trainees’ awareness of cyber-security. 

10) Race to the End 

The race to the end dynamic has the player or players focusing on getting to a 

certain location first or learning a technology first. The applications to cyber security 

training are straightforward. 
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9.3.3 Game Mechanics 

Game mechanics are essentially the rules of a game. They describe how the game 

state changes. For example, in Monopoly, if you land on an un-owned property, then you 

can buy it. 

There are a few common classes of mechanics. The setup mechanic is at least one 

rule describing how the game begins. Victory conditions describe how the game is won. 

Not all games have victory conditions. For example, RPGs tend to have smaller goals 

along the way, but no explicit victory condition. Progression of play mechanics include a 

description of whether it is a turned based or real time game, who goes first and how, and 

how conflicting, simultaneous actions get resolved. Naturally, player actions are also a 

common class of mechanics. What actions can a player perform and how? What affect do 

player actions have on the game state? The final class of mechanics is a definition of 

game views. This is a description of exactly what information each player knows about at 

any given time. Some mechanics might change this view as the game progresses (e.g. 

lifting the fog of war). 

Like game dynamics, these mechanics can help focus a game design and ensure 

that it is consistent and coherent. 

9.3.4 Learning and Training Games 

In educational games, the goal is to teach a body of knowledge. Before beginning 

the game design process, there should be a clear outline of exactly what the player should 

learn from playing the game. The game itself should motivate and reward the player to 

keep them playing the game and as a consequence acquiring more information or skill. 
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According to Annetta, there are six principles to follow when designing games for 

education [BCon2007]. Players should have a unique identity in the game world. This 

promotes them getting more emotionally involved in the game and caring about the 

consequences, which leads to immersion. Immersion is a heightened sense of presence 

that leads to the player being more engaged in the content and motivated to succeed. 

Interactivity further involves players in the game world by allowing them to interact with 

other players or NPCs. Increased Complexity keeps players challenged. Game levels can 

provide a platform for increasing the complexity of content and concepts, keeping players 

from getting bored. Informed Teaching focuses on providing feedback to the instructors. 

These games should track players’ performances and record timings, actions, and 

mistakes and provide feedback to both the instructors and the players. Finally, 

educational games should be instructional. Players should be able to assimilate the 

knowledge and skills they are acquiring in the game with their existing knowledge and 

experiences. 

9.4 Summary 

Although many of the topics presented as part of the cyber security awareness 

program are universal, such training must always be tailored to address the needs and 

security policies of a particular organization. A major shortcoming of most of the current 

forms of cyber awareness training is that they don’t require participants to think on their 

feet and apply security concepts in real time. And although theoretical knowledge of 

security concepts is important, handling a security event in a stressful environment 
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demands prior hands-on experience. A flexible, scalable and highly interactive video 

game could help simulate a similar environment for the trainees. 
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CHAPTER TEN - CONCLUSIONS 

10.1 Summary 

As part of this research, a framework to assess the performance of security 

architectures in terms of reducing data ex-filtration was defined. Multiple hybrid 

approaches were proposed that combine recovery-driven intrusion tolerant SCIT 

architecture with existing IDS solutions as part of a multi layered defense strategy to 

protecting the cyber infrastructure.  

A framework was established that uses Receiver Operating Characteristic (ROC) 

curve analysis and damage cost models to trade-off the true positive rate and false 

positive rate for comparing alternate security architectures. This framework provides a 

baseline for making informed decisions and choosing operating parameters for various 

architectures.  

As part of my research, I also proposed the use of Attack Surface Shifting / 

Reduction as a metric to compare Moving Target Defenses (MTD) by assessing its 

impact on intruder work factors.  

A game theoretic attack / protect cyber economic model was developed to 

facilitate designing architectures that are resilient and tilt the asymmetric cyber economic 

costs in favor of the defender. This research formalizes system security state transitions 

and intruder / defender work factors associated with all of those state transitions. 
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I also proposed µ-SCIT, a hybrid architecture that adds modularity to SCIT using 

Operating System level virtualization. The added modularity affords the ability to 

perform more frequent targeted granular rotations at the level of processes and 

applications. This in turn extends ability of SCIT to work with long running applications 

and handle long transactions using container check-pointing and migration.  

Finally, in order to perform adaptive intrusion tolerance that constantly learns 

from its ecosystem, I conceptualize and present architectures for a ‘stand-alone’ and a 

‘collaborative’ architecture which make use of information provided by the enterprise 

Security Information and Event Management (SIEM) solution.  
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