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Abstract

Objective. Brain-computer interface (BCI) paradigms have existed for decades to improve communication and 
technological control. Electroencephalography (EEG) represents one of the most common non-invasive approaches toward 
recording brain signals in human participants [1]. Many features within EEG signal are used to model BCI including five 
major types of brain wave frequency bands, autoregressive parameters, and power spectral density values [2]. Processing 
EEG to produce a desired output demands signal filtration, feature extraction and classification. Approach. Using the 
Emotiv EPOC+ headset, electrodes placed on the scalp record passive mental activity at centimeter resolution [3].  The 
EPOC+ represents a low-cost alternative to medical-grade hardware, which may allow the development of this platform to 
be more accessible to end-users. Filtration and classification methods are applied to distinguish signal frequencies of 
interest. The recorded EEG signal is used to demonstrate potential for passive control a simple household appliance such as 
a light fixture. To this end, a participant’s passive EEG is recorded during a series of tasks in varying light settings. In 
addition to technical challenges, there are practical considerations to overcome, such as variability and subject fatigue. 
Preliminary results suggest a measurable distinction in mental state between tasks. Significance. Following this line of 
inquiry, a platform for interfacing with the increasingly ubiquitous internet of things (IoT) may be developed in the future. 
The potential applications of BCI are myriad and promise to better living conditions by enhancing and supplementing 
central nervous system output. EEG-based signaling may provide means to greater autonomy and technological accessibility
for disabled people and patients with neurological deficits.

1. Introduction
The means of recording neurophysiological signals

via electroencephalograph (EEG) has existed for over one 
hundred years [4]. The scalp EEG has allowed researchers 
to non-invasively study and monitor the state of the brain 
using electrodes distributed over regions of interest. A 
typical EEG signal consists of many features and often 
appears as an irregular, dynamic wave pattern. Traditional 
power spectral analysis separates EEG signal into major 
frequency bands: delta, theta, alpha, beta, and gamma. A 
large and ever-growing body of research supports EEG 
signal patterns as a viable brain-computer interface (BCI) 
[5]. High temporal resolution in EEG measurement offers 
the potential for close to real-time control of an actuator. 
EEG has been shown to be increasingly portable, 
inexpensive, and easy to use.

The Internet of Things (IoT) represents the 
integration of various technologies with different 
capabilities [6]. Still in the nascent stage of development, 

IoT enables personalized services toward a user’s 
interaction with a device. Several IoT domains of active 
development include health, remote monitoring, and 
process automation. One of the major challenges of IoT 
development is the integration of diverse technologies and 
standards. In the future, it is possible that bio-metric devices
will be IoT-capable to enable health monitoring and smart 
home control. 

Existing EEG research has examined self-reported 
changes in fatigue, frustration, and attention with good 
accuracy [7]. Additionally, an active area of EEG research is
in control of appliances and prosthetics. However, little 
research has been done to examine the effects of light 
exposure on EEG signal outside of sleep-deprivation 
studies. Light exposure represents a simple variable for 
which to identify distinguishing EEG signal patterns. A 
difference in passive mental state may one day prompt 
useful output by a smart-home algorithm.



2. Materials and Methods

2.1 Experimental Protocol
In this study, the Emotiv EPOC+ is used to 

demonstrate the feasibility of a passive-EEG based BCI. 
The Emotiv (Emotiv, San Francisco, CA) platform offers 
EEG recording hardware and software. The EPOC+ headset
utilizes 14 channels with electrode placement based on the 
international 10/20 system. The device transmits recorded 
EEG signal via Bluetooth to a PC for processing.

This study will attempt to demonstrate a difference
in passive mental states between reading in high and low 
ambient light settings. Specifically, EEG will be recorded 
while the user reads text in variable light settings to 
determine differences in mental state. One participant was 
recruited for this study. The participant completed a 1-hour 
session in a single day. To minimize the effect of movement
on the recorded EEG signals, the participant was instructed 
to remain still during recording. The participant maintained 
an upright, seated position for the duration of each 
recording session.Additionally, the participant inserted ear 
plugs to minimize distraction and effect from auditory 

response potentials. Care was taken to minimize distractions
and noises that might change the participant’s attention.

2.2 Data Collection
EEG data is collected using the EPOC+ headset 

setup per manufacturer’s instructions and connected to a PC
using EmotivPRO software. Signals were acquired from 14 
electrodes placed at the following positions described in 
Figure 1. The sampling rate is 128 Hz. All recordings were 
made to be one minute in length and preceded by thirty 
seconds of recorded activity. As a comparison, the 
participant’s EEG signal under a blindfold was recorded. 
Then ceiling lights and a reading light were turned on for 
the next session of recordings in which the participant read 
text from out of a book. After this, the lights were turned off
and a single candle was then used by the participant to read 
from five feet away. The participant read from a book 
without repeating passages to emulate a real-world use case.
Five sessions per activity per participant were recorded. 
Bluetooth connection was maintained within a five foot 
distance between device and dongle. Due to low quality of 
recording, the least noisy recordings from each task trial 
were kept for processing.

Figure 1. (a) The locations of each EEG channel as overlaid over the head in two dimensions 
and (b) in three dimensions. Channel location plots are constructed in MATLAB from data 
collected by the EPOC+. EEGLAB  software reads channel locations from Cartesian 
coordinates provided from the device.



2.3 Data Processing
After recording is completed in EmotivPRO, the 

data is exported to the EDF file format. The MATLAB 
(MathWorks, Natick, MA) toolbox, EEGLAB [8], is chosen
for data analysis. Pre-processing the EEG data before 
analysis is necessary. Imported as EEGLAB datasets, the 
signal is first re-referenced to the two reference channels. 
The EPOC+ comes standard with a fifth-order SINC filter 
to low-pass filter signals below 50 Hz. In EEGLAB, a 0.5 
Hz high-pass filter is applied. An automated noise-removal 
tool, CleanLine, is applied to the signal. Bad channels and 
large artifacts such as scalp and jaw muscle movements are 
stripped from the signal using statistical methods (Figure 2).
With the processed data, the power spectral density, channel
activity and component analysis can be plotted to identify 
frequencies and channels of interest associated with each 
task.

Figure 2. A screen capture from EEGLAB visualizing the 
identification of bad channels and artifacts. Bad channels 
are identified using statistical methods and removed from 
analysis. Bad channels usually result from poor 
connectivity. A large artifact, most likely a scalp muscle 
movement can be seen in this frame after 0.7 sec.

3. Results
3.1 Spectral Density
From the spectral density data shown in figures, some 
patterns become apparent. During the blindfolded session, 
the participant exhibited a spike in alpha wave frequency 
rhythms (8 Hz). This is largely consisted with similar data 
in literature SOURCE NEEDED. In the high ambient light 
trial, there is a much smaller alpha rhythm spike 

accompanied by a blank. The last trial, the low light trial, 
showed a similar pattern to the high light spectral density, 
albeit with lower alpha rhythm detection and a spike in beta 
rhythms.

3.2 Independent Component Analysis (ICA)
Using EEGLAB functions, an independent 

component analysis was performed. Also known as blind 
source separation, this method maximizes the degree of 
statistical independence between outputs. The ICA for each 
trial can be seen in Figure 3.

3.3 Limitations
There are several limitations in using the EPOC+ 

model. Of note, the working distance of the platform 
between the user and the Bluetooth dongle was quite short, 
around five feet. The wireless characteristic of the model 
severely limits the range of tasks that can be meaningfully 
be tested on the Emotiv platform as well as contributed to 
bad channel data. It has been shown that consumer grade 
devices, such as the EPOC, exhibit high variability of data 
[9]. The impedance of the saline solution changes over time 
as the sensors dry due to user body heat. Additionally, the 
hair of the user is an obstacle to signal quality. Participant 
noted discomfort after the session. Additionally, there were 
limitations to this study including, but not limited to, the 
small number of participants and recordings. 

4. Discussion
Studies have shown relationship between EEG 

power spectrum and task performance [10]. One group 
suggests that posterior alpha band activity is a critical 
indicator of attention and frustration in the user [7].The data
gathered from this study can be applied to the Neuroberry 
platform, a CAC-based framework primarily developed for 
gaming [11]. The Neuroberry group achieved success in 
using the EPOC model as a remote control. One group has 
shown success combining the Emotiv EEG headset with a 
mounted camera, which prompts interface when the user 
looks at a device [12]. As the camera recognizes a device, 
the user performs a trained action for the EEG sensor 
interpret. Such gestures would comprise a motor-imagery 
based BCI through kinesthetic imagination of the limbs 
[13].

As EEG data sets continue to grow and become 
available to researchers, machine learning algorithms will 
be able to identify previously unseen patterns within the 
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Figure 3. (a) Spectral density shown for the blindfolded trial. Notable frequencies 8 Hz and 16 Hz highlighted for emphasis. To 
the right (b), includes the ICA for the blindfolded trial, suggesting that channels 10 and 12 recorded the most activity during this 
task. During the high ambient light session (c), a spike in the 9 Hz can be seen. The high light ICA (d) shows channels 4 and 6 
and 9 to be of relatively high activity. In the low light spectral density (e), a spike in beta rhythms at 22 Hz can be seen in 
addition to a smaller spike in the 10 Hz frequency. ICA of the low light trial (f) suggests that channels 4, 6, and 10 to be of 
notable activity, similar to the high light trial (d).



signals. One group has been able to utilize machine learning
to identify changes in individual’s attention state using 
passive EEG collected over a large timespan [14]. The 
combination of additional biosensors and machine learning-
based data processing techniques is becoming known as 
ambient intelligence (AmI). That is, the capacity to 
synthesize information acquisition and processing from a 
variety of sources to produce useful outputs [15]. Many 
different types of sensors such as smart watches, sound 
sensors, and cameras can be leveraged to create a user-
centric assisted living system, adaptive to a user’s habits, 
gestures, and emotions [16]. EEG data is just one of many 
potential inputs that AmI will use to proactively support 
people in their daily lives. 

To more fully realize the passive BCI, a few 
additional areas should be addressed. It is known that EEG 
can vary considerably between users and even between 
sessions of the same user. The integration of additional 
biometric features, such as heart rate, may potentially 
confound brain activity. It may be difficult for a developer 
to incorporate all of these features into a meaningful smart 
home platform. Therefore, a large number of EEG studies 
are required to data capital needed for machine learning 
algorithms to properly assign weights to relevant features 
associated with a particular command.

5. Conclusion
EEG has already been shown to be a well 

researched and standardized method of non-invasive BCI. 
The low-cost, portability, and relative ease of use off EEG 
based platforms continue to improve. In addition, modern 
machine learning techniques are addressing technical 
problems concerning pattern recognition and data analysis. 
The non-invasive nature of EEG, coupled with unobtrusive 
use, is key to the mainstream adoption and further 
development of this technology. Though the elderly and 
those suffering from neurological deficits stand to benefit 
the most from this technology, there is potential for anyone 
to use EEG to control smart devices. One of the key 
challenges is the skill requirement associated with training 
the user to associate a particular signal pattern with the 
desired action.

Although there are no inherit safety risks 
associated with using EEG devices, users should still 
demonstrate caution in interpreting EEG signals, 
particularly for neurofeedback and wellness monitoring 
applications. Lab-grade and commercial-grade devices may 
vary considerably, and the body of research on the former is

considerably smaller [17]. Medical EEG interpretation 
continues to be an active area of neurological research. The 
growing consumer EEG device market makes many claims 
about user wellness that have not been rigorously lab-tested.

The distinction between EEG data that can be used
to command a computer is all too blurry from the EEG 
signal that could potentially diagnose a neurological illness. 
The fact remains that EEG recordings are sensitive bio-
metric data requiring secure storage. It is the responsibility 
of any bio-metric data gathering platform to adhere to best 
practices for managing sensitive user information.

In the future, a smart-home platform may 
incorporate a variety of sensing mechanisms and bio-
metrics to anticipate and respond to the needs and controls 
of the user. The goal is to expand the feasibility of such 
systems by lowering barriers such as cost and skill 
requirements as factors. A passive BCI will ideally work 
out-of-the-box or with very little conscious training 
required, providing greater accessibility to all.
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