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Abstract

FORMATION OF THE POWER DENSITY SPECTRUM IN THE ACCRETING COM-
PACT X-RAY OBJECTS

Andrey Makeev, PhD

George Mason University, 2010

Dissertation Director: Dr. Peter A. Becker

One of the remarkable phenomena, characterizing both Galactic and extra-Galactic X-

ray binary systems, is the substantial variability of a photon flux, detectable in a very

broad range of timescales. For instance, the accretion flow near a black hole event horizon

can produce X-ray variability on a millisecond timescale. At the same time aperiodic

changes from the extended accretion disk formed around the same black hole can occur

on timescales of order of several months to years. A complex structure, involving high

and low frequency nearly periodic oscillations and aperiodic features, observed in X-ray

lightcurves, is the subject of intensive studies. The characteristic quantities, extracted

from temporal analysis, carry specific physical meaning and contain direct observational

information about dynamics of the accreting X-ray source. It is the established fact that

X-ray spectral and timing properties are tightly correlated. Combined together, the photon

energy spectrum and the power density spectrum analyses, form a powerful framework that

brings up the complete (in the energy/space domain) picture of the physical processes at

work in the accreting system. Simultaneous study of spectral and timing characteristics

allows for comprehensive probing of the geometry of accretion flows, reliable identification

of the type of an X-ray source (black hole vs neutron star), constraining mass, size, and



spin of accreting stellar-mass compact objects. Up until now there is no self-consistent

physical model of the formation and evolution of the X-ray variability. This leaves a relative

freedom in interpretation of the characteristic quantities obtained from the timing analysis.

The current work aims at development of the physical alternative to the commonplace

ad hoc description of the Fourier power density spectrum of X-ray timing signal. In the

following study we employ the diffusion theory to directly solve for the X-ray luminosity

fluctuations. The basic underlying physical assumption is that the observed variability of X-

ray luminosity originates as the result of local fluctuations of the accretion rate, at all radii

in the disk, that diffusively propagate outward. Energy dissipation (and X-ray emission)

occurs in a narrow, shock-like region, called the transition layer, where the Keplerian flow

becomes non-Keplerian in order to adjust itself to the slowly-rotating surface of a neutron

star or the innermost stable orbit around a black hole. The X-ray time signal from the

transition region, as seen by a remote observer, is obtained by integrating over the emission

zone. The signal’s power spectrum is then calculated and analyzed. Our diffusion model of

the power spectrum formation operates with parameters that are physical characteristics of

the accretion flow: the diffusion time scale, the Reynolds number (which is connected to the

viscosity α-parameter), Keplerian and magnetosonic quasi-periodic oscillation frequencies,

radial size of the transition layer, and viscosity index, related to the viscosity distribution

law in the system. These quantities constitute the core of temporal data used along with the

spectral information to study physics of accretion. The proposed propagating fluctuation

model can reproduce fundamental properties of the variability observed in X-ray light curves

of accreting black hole and neutron star systems, as well as explain the power spectrum

evolution during the spectral state transitions of the source.



Chapter 1: Introduction

1.1 Overview

This thesis focuses on the timing properties of neutron stars and black holes in binary

systems, emitting electromagnetic radiation in the X-ray band. One of the primary tasks

of X-ray astrophysics is determination of physical characteristics of compact objects (cata-

clysmic variables, black holes and neutron stars) such as mass, size, distance, temperature,

luminosity, type of object, etc. Of the same importance is understanding of the physical

processes that cause these objects to radiate massive amounts of energy in different bands

of electromagnetic spectrum. High-energy photons emitted by X-ray sources are detected

individually by space-based observatories and analyzed to extract the principal quantities

of interest: incoming photon’s energy, its direction, time of arrival, photon flux, and, in

some cases, polarization. The following spectral and temporal studies are mainly based

on the analysis and interpretation of the compact object’s energy spectrum and its light

curve (photon count rate as a function of time). The spectral analysis provides the most

important piece of information, the photon energy spectrum. Variability (timing) studies

constitute a solid complement to spectral analysis and often carried out alongside.

An important task of X-ray temporal analysis is to explain the mechanism of the ob-

served broad-band variability. X-ray lightcurves from Galactic binary systems and Active

Galactic Nuclei (AGN) show significant fluctuations on a very broad range of timescales,

which is difficult to explain based on the compact nature of the X-ray emission region.

Study of timing flicker noise by Lyubarskii (1997) [33] proposed an elegant solution, where

fluctuations in the accretion rate produced at different radii in the accretion flow propagate

inward, to finally modulate the emission at the central, X-ray emitting region. Lyubarskii’s

propagating fluctuation model produces a broad range of variability timescales. In this

1



research we attempt to extend Lyubarskii model of distributed fluctuations in the accretion

disk, and explain the cause of luminosity fluctuations and observed features in the X-ray

power spectra.

1.2 Scope of work

The first Chapter of the thesis makes an introduction to the process of accretion onto

compact stellar objects like neutron stars and black holes. The basic mass transfer mecha-

nisms in close-binary systems are listed. The concept of the Eddington limit, which is used

throughout the thesis for approximate calculations, is explained. X-ray spectral states,

X-ray timing analysis and existing models of power spectrum formation are briefly dis-

cussed. Chapter 2 contains derivation of the basic conservation equations in the disk ge-

ometry, which we use later to write down the equation for diffusive propagation of the

fluctuations of mass accretion rate. We also provide an introduction to the model of the

viscous transition (adjustment) layer (also known as the Centrifugal Barrier Model, CBM)

of Titarchuk, Lapidus, Muslimov, 1998 [57] in accreting systems with slowly-rotating black

holes or weakly-magnetized neutron stars. In Chapter 3 a simplified initial-value problem

for the accretion rate variations is formulated and solved analytically for the two parts of

transition region. A brief discussion is presented regarding the discovered instability of

the transition layer. Important physical conclusions are drawn based on the analysis of

the power spectrum of the obtained solution. Chapter 4 gives a detailed description of the

numerical method for solving the diffusion equation with the time and space dependent per-

turbation source term. Numerical solution obtained for both the compact non-Keplerian

transition layer, and the extended Keplerian configurations. The question of the X-ray

lightcurve variability dependence on the accretion rate is considered, based on the form of

the diffusion operator and obtained results. The extra broadband power spectrum of the

two configurations is presented and analyzed. An interesting, and potentially helpful in

data analysis, fact of steepening of the power spectrum slope for the Keplerian disk, with

the increasing viscosity index is discussed there as well. Chapter 5 briefly summarizes the

2



results of this research.

1.3 Black holes and neutron stars

Existence of neutron stars was proposed by theorists not long after discovery of neutron.

The first self-consistent neutron star model was developed by Oppenheimer and Volkov in

1939 [37]. The current understanding is that neutron stars are created when normal stars

with masses of 4 . M . 8M� burn out nuclear fuel, and the deficit of the outward thermal

pressure is followed by the gravitational collapse. As the star collapses it loses most of its

outer material. The free electrons are forced by strong gravitation to combine together

with protons to form neutrons. Modern nuclear models predict the maximum stable mass

of the neutron star to be ∼ 3.0− 3.2M�. If mass of a collapsing star exceeds this value, the

central core continues to contract into an infinitesimal gravitational singularity, to form a

black hole. Black hole space-time is distorted to the extent that even photons cannot escape

past a certain radius, called the event horizon. The event horizon (the Schwarzschild radius)

of a black hole is determined only by its mass

RS = 2GM/c2. (1.1)

The effective potential of a test particle, in a gravitational field of a non-rotating (Schwarzschild)

black hole, is determined by a black hole mass and test particle’s angular momentum. Sta-

ble orbits occur in the local minima of the effective potential. The innermost stable circular

orbit around a black hole is given by [48]

R0 = 3RS =
6GM
c2

. (1.2)

The primary mechanism by which compact objects like black holes and neutron stars become

detectable from Earth is called the accretion. Accretion occurs when the gaseous matter

3



from the neighboring star or surrounding environment gets drawn onto a compact object,

often in form of a disk, heats up due to magnetic friction to temperatures of order ∼ 106 K

(which corresponds to X-ray band in the spectrum) and emits radiation.

1.4 Accreting X-ray close-binary systems

A binary system consists of the two stars orbiting around their center of gravity. A signif-

icant fraction (up to 50% out of ∼ 1011 in the Galaxy, according to Shakura & Sunyaev,

1973, [47]) of known stars form binary systems. A binary system is called ”close”, if the

two components can undergo mass exchange. In a close-binary system separation distances

are of order of the diameter of the components. In this work we consider close-binary sys-

tems where one object is a compact accreter (a black hole or a neutron star), the other, its

donor companion, a normal star which loses mass. The flow of mass between the two stars

is determined by the binary parameters of the system, as well as by the process of mass

removal from the donor star. The three main mechanisms of mass transfer between the two

stars are

• Roche-lobe overflow of the companion star. Typically, gas leaving the companion star

via Roche lobe overflow, has considerable angular momentum relative to the compact

object and therefore cannot fall on it directly. This leads to formation of an (accretion)

disk around the compact star.

• Stellar wind from the companion. Massive young stars may produce a significant

outflow of plasma, accelerated by radiation pressure.

• ”Capture of circumstellar material from a Be star primary. A Be star is a B star

which rotates so rapidly that an instability results via which material streams out

from the equatorial plane and an expanding atmosphere is formed”, (taken from

http://imagine.gsfc.nasa.gov/docs/science/know l2/mass exchange.html).
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1.5 The Eddington Limit

If the luminosity of a star is greater than the Eddington luminosity, the radiative pressure

will eject out the accreting matter. This condition sets the limitation for the highest possible

accretion rate onto a compact object, at which the accreter can still keep electrons from

being blown away. One can derive the Eddington limit from the condition of the hydrostatic

equilibrium, at which the radiation pressure gradient is balanced by the gravitational force,

under assumption of spherical accretion. Consider the radiative energy flux at radius R

F =
dE

dtdA
=

L

4πR2
. (1.3)

Photon’s momentum is p = E/c, therefore the momentum flux is

dp

dtdA
=

L

4πr2c
. (1.4)

The radiation force exerted on a free electron (protons are connected with electrons via

Coulomb interaction) is

dp

dt
= σT

dp

dtdA
= σT

L

4πR2c
, (1.5)

where σT = 8π/3 r2
e ≈ 6.65 × 10−25 cm2 is the Thomson scattering cross-section, re =

e2/mec
2 ≈ 2.8× 10−13 cm is the classical electron radius. Equalizing the pressure gradient

(1.5) to the gravitational force yields the balance equation

σT
L

4πR2c
=
GMmp

R2
, (1.6)

where

LEdd =
4πGMmpc

σT
. (1.7)
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Substituting the physical constants, one obtains

LEdd ≈ 1.2× 1038

(
M

M�

)
erg/s. (1.8)

It is convenient to introduce the Eddington accretion rate as a normalization

ṀEdd =
LEdd

c2
=

4πGMmp

σT c
, (1.9)

such that the dimensionless accretion rate is expressed as a fraction of ṀEdd

ṁ =
Ṁ

ṀEdd

. (1.10)

1.6 X-ray spectral states

All known X-ray binary systems are usually observed in one of the five canonical ”spectral

states”. The following classification is phenomological and is based on the relative strength

of the ”soft” black-body-like and ”hard” power-law components in the photon energy spec-

trum, the magnitude of X-ray flux in ∼ 1− 20 keV range, and the time variability.

• The low-hard state is characterized by low luminosity and hard nonthermal power-

law like energy spectrum dN/dE ∝ E−α, with the photon index α = 0.5 − 2 and

an exponential cutoff at around 100 − 200 keV. Sources observed in this state often

exhibit rapid and strong broad-band variability with a fractional root mean square

amplitude reaching 40%.

• The high-soft state has higher photon flux and is dominated by the soft thermal

component from an accretion disk, with a typical temperature of order of 1 keV. The

power-law tail (α ∼ 2.5) is present, but is much weaker than in the low state. No high-

energy cutoff has been observed for the high-soft state. This state shows suppressed
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temporal variability, which is of order of a few percent.

• The intermediate state is, naturally, occupied by the source between transitions

from/to low/high states. Photon energy spectrum in the intermediate state shows

both soft blackbody-like component and hard power-law.

• The very high state is characterized by several times higher luminosity than the high

state. In this state the thermal and power-law components have similar fluxes. The

power-law tail with a photon index ∼ 2.5 − 3 does not seem to have a cutoff. The

broad-band noise has fractional root mean square variability of order 1− 10%.

• The quiescent state is dominated by nonthermal power-law emission with photon

index steeper than in the low-hard state and is characterized by very faint X-ray flux.

An intuitive graphical sketch of the five X-ray spectral states, Figure 1.1, showing how the

geometry of the accretion flow changes as the mass accretion rate varies, was borrowed from

[10].
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Figure 1.1: Accretion flow in different X-ray spectral states as a function of the Eddington-
scaled (1.10) mass accretion rate. The Advection-Dominated Accretion Disk (corona) is
indicated by dots, the thin disk by the horizontal bars. Image taken from A. A. Esin, J. E.
McClintock, R. Narayan, ”Advection-dominated Accretion and the Spectral States of Black
Hole X-Ray Binaries: Application to Nova MUSCAE 1991”[10].

1.6.1 Power spectrum of an X-ray lightcurve

The Fourier power spectral analysis is a prime mathematical tool used in X-ray astronomy

to perform temporal/variability studies. Typical X-ray timing analysis routine involves

extracting (from data files) a photon lightcurve, where N selected photons from an energy

range of interest are ”binned” into evenly-spaced time bins with xi counts per bin. The

binned lightcurve is then used to calculate the power density spectrum, which is essentially

the properly normalized squared Fourier amplitude, and describes how variability power is

distributed as a function of frequency. As the result a lightcurve with N bins, comprised of
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counts, xi, produces a power spectrum, with N/2 + 1 independent amplitudes. A common

convention is to use either Leahy normalization

Pj = 2|Xj |2/Nph, (1.11)

or (RMS/mean)2/Hz normalization

Pj = 2|Xj |2/ (Nph × 〈Rate〉) , (1.12)

where the discrete Fourier transform of a time sequence xk is defined as

Xj =
N−1∑
k=0

xk exp(2πijk/N), j = [−N/2, ..., 0, ..., N/2]. (1.13)

Provided below brief description of the key power spectrum constituents, terminology and

definitions are taken from from the book ”Compact X-ray stellar sources” (W. Lewin and M.

van der Klis, Cambridge University Press 2006) [30]. ”A number of variability components or

power-spectral components together make up the power spectrum. An aperiodic component

by definition covers several, usually many, frequency resolution elements. Broad structures

are called noise and narrow features quasi-periodic oscillations (QPOs); ”broad-band noise”

and ”QPO peaks” are common terms. Least-square fitting techniques are used to measure

these components.” Some of the typical terms used include: ”power law noise is noise

that (in the frequency range considered) follows a power law Pν ∝ ν−α.” ”Band-limited

noise (BLN) is defined here as noise that steepens towards higher frequency (i.e., its local

power-law slope −dlogPν/dlogν increases with ν) either abruptly (showing a ”break” at

break frequency νbreak) or gradually.” ”The term peaked noise is used for noise whose Pν

has a local maximum at ν > 0. Various modified power laws (broken, cutoff) as well as

broad Lorentzians are used to describe band-limited BLN.” ”A quasi-periodic oscillation

(QPO) is a finite-width peak in the power spectrum. It can usually be described with a
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Lorentzian Pν ∝ λ/[(ν − ν0)2 + (λ/2)2] with centroid frequency ν0 and full width at half

maximum (FWHM) λ. This is the power spectrum of an exponentially damped sinusoid

x(t) ∝ e−t/τcos(2πν0t), but the underlying signal may well be different from this. λ is

related to the coherence time τ = 1/πλ of the signal, and is often reported in terms of the

quality factor Q ≡ ν0/λ, a measure for the coherence of the QPO. Conventionally signals

with Q > 2 are called QPOs and those with Q < 2 peaked noise. A sharp QPO peak is

one with high Q. The strength (variance) of a signal is proportional to the integrated power

P =
∫
Pνdν of its contribution to the power spectrum, and is usually reported in terms

of its fractional root-mean-squared (rms) amplitude r ∝ P 1/2, which is a measure for signal

amplitude as a fraction of the source flux.”

1.7 Existing models of power spectrum formation

Lyubarskii (1997) [33] was the first to suggest a self-consistent model for time variability

production in accretion powered X-ray sources. His model assumes that the small-amplitude

local (at each radius) fluctuations in the accretion rate are initiated by small variations in

the viscosity. Such fluctuations propagate inward and modulate the accretion rate in the

inner region of the disk, where the most of the observable X-ray flux is generated. His model

predicts that for the radially-independent amplitude of variations the power spectrum of X-

ray luminosity decays with frequency as the power law Pν ∝ ν−1, while for the amplitude of

the variations which increases with radius, the power law of the power spectrum continuum

becomes steeper than -1. Lyubarskii’s treatment, however, provides no physical model for

the sources of the initial perturbations. Titarchuk, Shaposhnikov and Arefiev (2007) [61]

(hereafter TSA2007) continued development of this model by formulating and solving the

problem of local driving perturbation diffusion in a disk-like configuration. ”The problem of

the diffusive propagation of the space distributed high-frequency perturbations is formulated

as a problem in terms of the diffusion equation for the surface density perturbations. The
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parameters of the resulting PDS, diffusion timescale of the diffusion propagation of the

local perturbations t0 and the power law index of the viscosity distribution over radius are

essential parameters of diffusion in a given bounded configuration. The PDS of the Green’s

function is a WRN power spectrum. Specifically, the low-frequency (LF) asymptotic form

of the WRN PDS, when the frequency is less than the inverse of diffusion timescale in

the disklike configuration t−1
0 , is characterized by a flat shoulder (white noise). In other

words, the LF white noise shoulder is insensitive to the source and viscosity distributions

over radius. The high-frequency (HF) asymptotic form of WRN is a power law ν−α with

index α, which is determined by the viscosity and perturbation source distributions over

the accretion configuration.” (L. Titarchuk and N. Shaposhnikov, ”On the nature of the

variability power decay toward soft spectral states in X-ray binaries: case study in Cygnus

X-1”, 2008) [60]. TSA2007 came to the conclusion that the White-Red Noise shape of

the power spectrum continuum is an outcome of the solution of the initial-value problem

for the spatially-distributed initial condition, defined over a bounded medium, which is

given by a weighted sum of the related exponential shots. This thesis research represents

the next stage in the development of the diffusive perturbation propagation model. We

employ the TSA2007 formalism and combine it with the framework of the Centrifugal

Barrier Model of Titarchuk, Lapidus and Muslimov 2008 [57] to consider the problem of the

power spectrum formation in the non-Keplerian adjustment layer around accreting compact

objects, as well as in the standard Keplerian disk. We solve the complete diffusion equation

with the non-separable time and space dependent perturbation source and study the power

spectrum properties as a function of accretion rate (via the Reynolds number of the flow)

and investigate how the two power-spectral components (from compact transition zone and

from extended disk) exhibit themselves, depending on a spectral state. Both analytical and

numerical solutions are presented.
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Chapter 2: Radial structure of the accretion disk

In a close-binary system the gas material flowing out from the companion star, as a result

of the Roche lobe overflow, typically has considerable angular momentum relative to the

compact object, such that the material cannot fall on the accreter directly, but instead

begins moving in circular orbits, forming an accretion disk. It is a good approximation to

assume that the gas particles move in the disk with the Keplerian angular velocity

ωK = (GM)1/2R−3/2. (2.1)

In this chapter we derive the basic one-dimensional conservation equations that govern

dynamics of accretion disks which obey (2.1) and consider the viscous boundary (transition)

layer formed at the innermost part of the disk, in a case when it extends down to the surface

of the accreting object (or the last stable circular orbit around a black hole), and when (2.1)

is no longer valid. Adjustment of the Keplerian flow to the inner boundary is presented

within the formalism of Titarchuk, Lapidus and Muslimov 2008 [57]. Solving the equation

for the radial distribution of the angular velocity in the transition zone, we demonstrate

that the transition layer size is a strong function of Reynolds number of the flow, and thus

a function of mass accretion rate. We use the argument by Titarchuk and Fiorito 2004 [55]

that at the point of adjustment formation of weak or strong shocks is likely, to treat the

transition layer and the Keplerian disk as the two independent configurations. In this case

the observed power spectrum is given by the sum of the power spectra from the individual

components. Study of the emission mechanism in the non-Keplerian transition region is as

important as in the Keplerian disk, since one half of all gravitational energy is released in

this narrow region, and most of the detectable X-ray radiation produced there as well.
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2.1 Conservation equations and viscous energy dissipation in

a differentially rotating disk

Let the axially-symmetric accretion disk be characterized by the surface density (mass per

unit surface area) which is the gas density ρ integrated over the disk’s height Σ(R, t) =∫ 2H

0
ρ(z)dz. Consider a thin cylindrical shell of disk material of radius R, thickness dR�

R, height 2H. In absence of sources/sinks within the shell the mass-continuity equation

∂ρ/∂t+ div(ρv) = 0 written in cylindrical coordinates (R,ϕ, z) reads

∂ρ

∂t
+

1
R

∂

∂R
(RρvR) +

1
R

∂

∂ϕ
(ρvϕ) +

∂

∂z
(ρvz) = 0. (2.2)

Azimuthal symmetry implies that the ϕ-derivative in (2.2) is zero. Integrating the entire

equation vertically from 0 to 2H, we obtain

∂

∂t

∫ 2H

0
ρ(z)dz +

1
R

∂

∂R

(
RvR

∫ 2H

0
ρ(z)dz

)
+
∫ 2H

0

∂

∂z
(ρvz)dz = 0.

The third integral (a perfect differential), contributes zero, since ρ(z = 0) = ρ(z = 2H) = 0,

yielding the mass conservation equation

∂Σ
∂t

+
1
R

∂

∂R
(RvRΣ) = 0. (2.3)

The radial velocity component in the continuity equation (2.3) is negative (vR < 0), reflect-

ing the fact that the accreting material is moving towards the compact object. In a typical

disk the azimuthal velocity component of accreting gas is much higher than the radial one

|vϕ| � |vR|. The total flux of material passing through radius R in the disk towards the
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center (the mass accretion rate) can be determined as follows: consider a disk segment con-

fined by R, dϕ, dz. The area element through which mass is moving in is dA = Rdϕdz. The

amount of mass passing through dA during time interval dt is dM = −ρvRdtdA (minus sign

appears because vR < 0). Correspondingly Ṁ = −ρvRdA, and after performing integration

over ϕ and z, we obtain the accretion rate [g/s]

Ṁ = −2πR
∫ 2H

0
ρvRdz = −2πRΣvR. (2.4)

In a case when a mass accretion source is present in the shell the corresponding term appears

on the right-hand side of the mass conservation law

∂Σ
∂t

+
1
R

∂

∂R
(RvRΣ) = S(R, t). (2.5)

The angular momentum balance in the disk can be derived in a similar manner. The

ring of gas has mass M = 4πRdRHρ and angular momentum L = MvϕR = MωR2 =

4πRdRHρωR2. The rate of change of L is given by the net flow of angular momentum from

neighboring annuli at R and R + dR plus the net torque Nvisc of viscous forces acting on

the annulus of gas between R and R+ dR

∂L

∂t
+ div(Lv) = Nvisc,

or writing in cylindrical coordinates

∂L

∂t
+

1
R

∂

∂R
(RLvR) +

1
R

∂

∂ϕ
(Lvϕ) +

∂

∂z
(Lvz) = Nvisc. (2.6)
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Substitution of L into (2.6) gives, after dropping the ϕ-derivative term and dividing through

by 4πRdRH,

∂

∂t
(ρωR2) +

1
R

∂

∂R
(RρωR2vR) +

∂

∂z
(ρωR2vz) =

1
4πRdRH

Nvisc.

After performing vertical integration from z = 0 to z = 2H, with the assumption that the

angular velocity ω does not vary along z-axis for given radius R, we have

∂

∂t
(ΣωR2) +

1
R

∂

∂R
(RΣωR2vR) =

1
2πRdR

Nvisc.

”The net torque on a ring of gas between R and R + dR is subject to competing torques”

(J. Frank, A. King and D. Raine ”Accretion power in astrophysics” 2002) [12] on the two

edges of the ring

Nvisc = G(R+ dR)−G(R) =
∂G

∂R
dR, (2.7)

where the torque between the two neighboring rings is (Appendix C)

G(R) = 2πR2νΣR
dω

dR
. (2.8)

Thus the angular momentum balance is expressed by equation

∂

∂t
(ΣωR2) +

1
R

∂

∂R
(RΣωR2vR) =

1
2πR

∂G

∂R
. (2.9)

Using the fact that for a constant gravitational potential ∂ω/∂t = 0 [12], and expressing

∂Σ/∂t from the mass conservation law (2.3), equation (2.9) can be simplified to

−Ṁ d

dR

(
ωR2

)
=
dG

dR
, (2.10)
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where Ṁ is given by (2.4). It is convenient to write the viscous torque G in terms of the

rϕ−component of the viscous stress tensor τ (Appendix C). Integrating τrϕ vertically we

obtain

Wrϕ =
∫ 2H

0
τrϕdz = 2H · ηRdω

dR
≈ νΣR

dω

dR
, (2.11)

where η = ρν is dynamic viscosity and we used Σ ≈ 2Hρ. Substitution of (2.11) into (2.8)

gives

G(R) = 2πR2Wrϕ, (2.12)

producing the angular momentum equation expressed in terms of Wrϕ

Ṁ
d

dR

(
ωR2

)
= −2π

d

dR
(WrϕR

2). (2.13)

The energy flux radiated from the disk surface can be obtained from the power Pvisc [erg

s−1] dissipated by the viscous torques [12]. For the annulus of matter confined between R

and R+ dR

Pvisc = ω ·Nvisc. (2.14)

Substituting formula (2.7) for the torque and using the identity

ω
∂G

∂R
=

∂

∂R
(ωG)−G∂ω

∂R
,

we obtain

Pvisc =
∂

∂R
(ωG)dR−G∂ω

∂R
dR. (2.15)
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The energy flux F [erg s−1 cm−2] is then given by the ratio of the power of viscous dissipation

[second term in equation (2.15)] to emission area

F (R) =
P diss

visc

dAring
=

Gω′dR

2× 2πRdR
=
Gω′

4πR
, (2.16)

where each ring has two (z+ and z−) plane faces. Using expression (2.12) for G(R) we

finally obtain

F (R) =
1
2
WrϕR

dω

dR
. (2.17)

For a steady-state accretion Ṁ = const, and integration of (2.13) gives

ṀωR2 = −2πWrϕR
2 + C. (2.18)

The integration constant, according to Shakura & Sunyaev 1973 [47], is determined by

the condition that Wrϕ vanishes at the innermost stable circular orbit R0 = 3RS in the

Schwarzschild gravitational field of a black hole or at the neutron star’s surface

C = Ṁω(R0)R2
0. (2.19)

This allows us to express Wrϕ from (2.18):

Wrϕ = − 1
2π
Ṁω(R)

[
1− ω(R0)

ω(R)

(
R0

R

)2
]
. (2.20)

Thus, the energy flux radiated from the disk surface is

F (R) = − 1
4π
Ṁω(R)R

dω

dR

[
1− ω(R0)

ω(R)

(
R0

R

)2
]
. (2.21)
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For the Keplerian motion ω(R) is given by (2.1), and consequently


dω

dR
= −3

2

√
GMR−3/2R−1 (2.22)

ω(R0)
ω(R)

=
(
R

R0

)3/2

. (2.23)

Using these relations, we obtain

F (R) =
3

8π
GMṀ

R3

[
1−

(
R0

R

)1/2
]
, (2.24)

The luminosity [erg s−1] of the annulus of the disk confined between radii R1 and R2 is

given by the energy flux integrated over the area of the annulus

L = 4π
∫ R2

R1

F (R)RdR =
3
2
GMṀ

(
1
R1
− 1
R2

)
, (2.25)

in case when Ṁ is independent of R. These results are well-known from the standard theory

of accretion disks of Shakura & Sunyaev 1973 [47]. We will use formulas (2.24), (2.25) to

derive the equation for accretion rate fluctuations 4Ṁ as a function of radius and time.

2.2 Viscous transition layer

2.2.1 Sub-Keplerian motion in the vicinity of the compact object

In cases when the accretion disk extends down to the surface of the neutron star or the

innermost stable circular orbit around a slowly-rotating black hole, relation (2.1) is not

entirely correct. A neutron star cannot rotate faster than the break-up speed (Appendix

A) at its equator ω∗ < ωK [12]. In fact, the majority of neutron stars are observed to

rotate slower than a few revolutions per second [18]. Neutron stars in close-binary systems
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can get spun up to a few hundreds Hz by the transfer of angular momentum from the

companion star. The most rapidly rotating neutron star currently known, eclipsing binary

millisecond pulsar PSR J1748-2446ad, has rotational frequency f∗ = 716 Hz, mass < 2M�,

and estimated upper limit on radius R∗ ∼ 16 km [18]. A simple calculation (2.1) for a test

particle moving in the Keplerian orbit at R = R∗ gives fK ≈ 1282 Hz, i.e. the Keplerian

rotation at the surface of a star is ∼ 1.8 times faster than the fastest-spinning neutron star.

The difference, of course, is more dramatic for the slower spinning stars. With decreasing

radius the angular velocity of the flow will remain Keplerian (and therefore increasing)

before some critical point, after which it begins to rapidly decrease (adjust) to the value ω∗

in a thin boundary layer of hot plasma [12], [47]. The motion in the boundary layer is not

Keplerian and is not described by (2.1). It is a rather remarkable fact, that a substantial

fraction (approximately one half) of the total accretion energy is deposited in such non-

Keplerian adjustment boundary layer (the other half is radiated from extended Keplerian

disk) [12], [20], [41]. In fact, a dominant portion of all detectable X-ray radiation (photons

with hν & 1 keV) is generated in the compact area of the size of a fewRS around the accreter,

within which the boundary layer is contained. The following argument is reconstructed from

derivations by J. Frank, A. King and D. Raine ”Accretion power in astrophysics” 2002 [12]

and S. Kato, J. Fukue and S. Mineshige ”Black hole accretion disks” 1998 [20]. For a

massive compact central object M of ”radius R∗ the gravitational potential energy released

by the accretion of a mass m on to its surface is” [12]

4Eacc = G
Mm

R∗
. (2.26)

”If all the kinetic energy of infalling matter is given up to radiation at the stellar surface

R∗, then the accretion luminosity is” [12]

Lacc = G
MṀ

R∗
, (2.27)
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where Ṁ = dm/dt. On the other hand [20], the luminosity of the Keplerian disk can be

estimated as follows: a test particle mp rotating in a circular orbit of radius R has total

energy

E = T + U =
mpv

2
φ

2
− GMmp

R
= −GMmp

2R
, (2.28)

where for Keplerian orbit

vφ = ωKR =
√
GMR−

1
2 . (2.29)

If the particle falls from infinity to radius R with zero total energy, the amount of excess

energy released during the accretion is

4Erad = 0− (T + U) =
GMmp

2R
. (2.30)

In other words, in the case of the standard non-relativistic accretion disk its luminosity is

given by

Ldisk =
GMṀ

2Rin
, (2.31)

where Rin is the inner radius of the Keplerian flow. We notice that the luminosity (2.31)

of the Keplerian disk is only a half of the total available accretion luminosity (2.27). ”This

discrepancy arises because the matter just outside the boundary layer still retains one

half of the potential energy it has lost as kinetic energy” (J. Pringle ”Accretion discs in

astrophysics” 1981) [41]. Thus, the rest of the accretion luminosity must be emitted in the

boundary layer very close to the central star.

2.2.2 X-ray emission zone

It is helpful to have an order of magnitude estimates of the size of the emission region

responsible for X-ray production for characteristic black hole/neutron star objects. Suppose

that the accretion disk extends all the way down to the surface R∗ of a neutron star or the
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innermost stable circular orbit (1.2) R0 around a black hole. In fact, R0 is often used as

an approximate neutron star radius, such that R∗ ≈ R0. Consider an annulus of the disk

confined between R0 and some radius R′ > R0, such that ring’s radial size is δ = R′−R0. For

optically thick accretion flow, the radiation from the ring will reach thermal equilibrium with

the matter before being detected by a remote observer. Assuming that thermal photons are

radiated away from the disk’s two surfaces, the luminosity [51] of matter, drifting towards

the accreter, is given by

L =
1
2
GMṀ

R0
= FluxBB ×Area = σT 4 · 2 · 2πR0δ, (2.32)

where σ = 5.67 × 10−5 erg cm−2 K−4 s−1 is the Stefan-Boltzmann constant. Therefore

temperature of an optically thick ring related to its size by

T = Topt thk =

(
GMṀ

8πR2
0σ

)1/4

δ−1/4, (2.33)

or expressing δ as a function of T

δ =

(
GMṀ

8πR2
0σ

)
T−4. (2.34)

Consider two characteristic compact objects − a 1.4M� neutron star, and a massive 10M�

black hole. For a neutron star RNS
0 = 3RS = 6GM/c2 = 1.24 × 106 cm, while for a black

hole RBH
0 = 8.85 × 106 cm. It is more intuitive to use units of km to get the feel of the

scale. So, let us put approximately RNS
0 ≈ 12 km, RBH

0 ≈ 90 km. Taking the mass transfer

rate to be the Eddington accretion rate (1.9), we have ṀNS ≈ 1.96× 1017 g/s for a neutron

star, and ṀBH ≈ 1.4 × 1018 g/s for a black hole. Many orbital X-ray observatories have

effective detection threshold hνmin ∼ 1 keV, which, using E = kBT, kB = 8.617 × 10−5
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eV/K, is equivalent to temperature T ≈ 1.16 × 107 K. Substituting these numbers into

(2.34) gives the radial size of X-ray emission zone: δNS = δBH = 0.92 × 106 cm (9 km).

Notice that δ is independent of mass of the object, since M2 present in both numerator

and denominator in (2.34), when formula for ṀEdd is substituted. Therefore we find that

X-ray (photons with hν ≥ 1 keV) emission zone extends from RNS
0 to RNS

0 + δ ≈ 21 km

∼ 5RS for a neutron star, and from RBH
0 to RBH

0 + δ ≈ 99 km ≈ 3.3RS in case of a

black hole. These elementary calculations demonstrate that most of the detectable X-ray

radiation is produced in a compact region around the central object of the size of only a

few Schwarzschild radii.

2.2.3 TLM98 model of the adjustment layer

In 1998 Titarchuk, Lapidus, Muslimov [57], hereafter TLM98, proposed the comprehensive

physical model (Centrifugal Barrier model) of a bounded compact coronal region around

an accreting black hole or neutron star, ”that is a consequence of dynamical adjustment of

the Keplerian disk flow to the innermost sub-Keplerian boundary condition near the central

object”, (TLM98). In the following section we provide a brief overview of their model, and

present a simple yet convincing argument, which will allow us to treat a problem of diffusive

propagation of perturbations in the boundary layer analytically.

According to TLM98 ”the disk structure begins deflecting from a Keplerian one at a certain

point to adjust itself to the boundary condition at the surface” of a neutron star, or at the

innermost stable circular orbit around a black hole. We will adopt TLM98 notation and

call the ring of the disk confined between R0 and the last Keplerian orbit Radj the transition

layer. Recall that the angular momentum balance is governed by equation (2.13)

Ṁ
d

dR

(
ωR2

)
= −2π

d

dR

(
WrϕR

2
)
, (2.35)
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where Wrϕ is the shear stress (2.11) exerted on the layer surface integrated over the disk

height, η is the turbulent viscosity. Substituting Wrϕ, one obtains a second-order differential

equation for angular velocity

ω′′ +
γ + 3
R

ω′ +
2γ
R2

ω = 0. (2.36)

One can notice that the single parameter that enters equation (2.36), and that regulates

the adjustment of ω in the transition layer to ωK, is the Reynolds number of the flow

γ =
Ṁ

4πηH
=
ρ

η
vRR ≡ Re, (2.37)

where characteristic velocity and length scales are vR and R. To get an idea of what values of

γ one may expect from observing X-ray radiation from disk accretion onto compact objects,

recall that the Reynolds number can be expressed as the inverse of the α−parameter of

Shakura & Sunyaev, which is defined so that α < 1. Thus, γ is always expected to be

greater than unity. In fact, analysis of power spectra, done by [60] and [61], for a number

of X-ray black hole and neutron star binary systems in different spectral states, suggests

that the effective Reynolds number varies from γ ∼ 3 in a low-hard state to approximately

γ ∼ 80 in a high-soft state. Utilizing the physical interpretation of the Reynolds number

(relative strength of inertial forces compared to viscous forces), we infer that in the case of

disk accretion inertial forces of the flow always dominate the viscous ones.

The inner boundary condition is dictated by the continuity of the flow and requires that

the angular frequency of the flow matches the angular frequency ω0 of a neutron star, or

the last stable orbit around a Schwarzschild black hole

ω = ω0 at R = R0. (2.38)
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The outer boundary condition requires the smooth matching of the Keplerian flow at some

(not a priori known) adjustment radius Radj


ω = ωK at R = Radj, (2.39)

dω

dR
=
dωK

dR
at R = Radj. (2.40)

The boundary problem formulated as the second-order differential equation (2.36) combined

with the three boundary conditions (2.38)-(2.40) and unspecified value of radj is perfectly

determined: three constants matched up with three boundary conditions. Such formulation

([23], Ch. 9.3) uniquely determines the distribution of the angular velocity ω(R) in the

boundary region, as well as the position of the adjustment point Radj. TLM98 solved

(2.36) with the boundary conditions (2.38)-(2.40) for the case where parameter γ is constant.

Introducing dimensionless variables


m = M/M�, (2.41)

θ = ω/ω0, (2.42)

r = R/R0, (2.43)

where R0 = 3RS, RS = 2GM/c2 is the Schwarzschild radius, the resulting angular velocity

profile has the form

θ(r) = D1r
−γ + (1−D1)r−2. (2.44)

Factor D1 is given by the ratio

D1 =
θadj − r−2

adj

r−γadj − r
−2
adj

, (2.45)
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where θadj = θK(radj). The Keplerian angular velocity, expressed in terms of new variables,

can be obtained from

θK =
ωK

ω0
=

1
ω0

√
GmM�
(R0r)3

. (2.46)

TLM98 normalized the angular velocity by the value ω1728 = 2π×363 rad/s, because of the

remarkable 363 Hz quasi-periodic oscillation (QPO) feature, which is thought to be related

to the rotation period of a neutron star 4U 1728-34 [52]. Expressing rotational velocity of

a compact object as ω0 = ω1728(ω0/ω1728), we have, after substituting numbers into (2.46)

θK ≈
6

m
(
f0

363

)r−3/2, (2.47)

where f0 = ω0/(2π) is the rotational frequency at the inner boundary. The outer boundary

condition (2.40), written in terms of new variables, now reads

3
2
θadj = D1γr

−γ
adj + 2(1−D1)r−2

adj. (2.48)

The principal difference of the radial profile (2.44) from Keplerian (2.1) is that it is not a

monotonically-decreasing function of radius, but has a maximum at

rmax =
(γ

2

) 1
γ−2

[
θadj − r−2

adj

θadj − r−γadj

] 1
γ−2

, (2.49)

after which θ(r) rapidly falls off in region 1 < r < rmax, to match θ = 1 at the inner boundary

r = 1 (Figure 2.1). It is easy to see from the boundary condition at the adjustment point

(2.48) that the radial size radj of the transition layer is solely determined by the parameter

γ. Combination of equations (2.45), (2.48) along with (2.46) results in a non-linear equation
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which can be solved for radj as a function of γ

f(radj) = (4−2γ)r−(γ+2)
adj + (2γ−3)

6
m

(
f0

363

)−1

r
−(γ+3/2)
adj − 6

m

(
f0

363

)−1

r
−7/2
adj = 0. (2.50)

A visual inspection of this equation suggests that it can yield an approximate form of the

dependence radj = f(γ) without invoking a numerical method. If set f0 = 363 Hz, denote

a = 6/m, and replace (approximate) the term a(2γ− 3)r−(γ+3/2)
adj by a(2γ− 4)r−(γ+2)

adj , after

a little algebra we obtain

radj ≈ exp
[

2
2γ − 3

· ln(a− 1)(2γ − 4)
a

]
.

The logarithmic factor determines the scale of the function, whose principal behavior is
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Figure 2.1: Angular velocity θ as a function of radius r for a 1.4M� neutron star.
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Figure 2.2: Radius of maximum θ and adjustment radius as functions of Reynolds number.

controlled by the exponent

radj ∝ e2/(2γ−3). (2.51)

Hence, we conclude that the adjustment radius is a rapidly-decaying function of γ, where

in the limit of infinitely large Reynolds number radial extent radj− 1 of the transition layer

asymptotically approaches zero. The exact numerical solution radj = f(γ) for a sample

1.4M� neutron star, rotating with f0 = 300 Hz, is shown on Figure 2.2. The functional

dependence radj = f(γ) is very insensitive to the parameters of the accreter, m and f0,

so the Figure 2.2 represents the characteristic behavior of the adjustment radius of the

boundary layer as a function of Reynolds number. Estimates for 1.4M� neutron star and

10M� black hole show that the region δr = radj − rmax shrinks by a factor ∼ 75 (!), for

both types of objects, as Reynolds number changes from γ = 3 (typically associated with

low-hard spectral state) and γ = 80 (corresponds to high-soft spectral state). It is worth

noting that calculations by [35] for inner radius of the Keplerian disk in the low-hard state
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(≤ 6 − 25 GM/c2) are in a good agreement with the estimate for Radj ≈ 18GM/c2 for

γ = 3. For sufficiently large values of Reynolds number, ”thickness” of the transition zone

is many times less than the characteristic size of the system. For example, for parameter

γ = 50 the characteristic radius of the 1.4M� system (R∗ = Rmax ≈ 13.2 km) by more

than an order of magnitude exceeds the radial size (dTL ≈ 1.2 km) of the transition layer.

Therefore, the transition layer can be approximated by a ”thin shell”, such that

dTL = Radj −R0 � R∗, (2.52)

for γ � 1. We will use this approximation as the main argument in simplifying the diffusion

equation, when solving the problem analytically.

2.2.4 Two X-ray emitting configurations: compact adjustment region and

extended disk

One should realize that ideal ”adjustment of the Keplerian rotation to the sub-Keplerian

inner boundary condition” (TLM98) (2.38) is only possible in a highly-unlikely case, when

both ω and dω/dR match with ωK and dωK/dR at the adjustment point. This condition

allows for unique determination of position of the adjustment radius. When the outer

boundary condition (2.39), (2.40) is not satisfied, the solution of equation (2.36), satisfying

the inner boundary condition will inevitably pass through the zone of super-Keplerian ro-

tation [57]. Such a scenario is demonstrated on Figure 2.3, where the green line represents

smooth adjustment of the angular velocity ω to the inner boundary condition; navy-blue

line represents the adjustment where dω/dr 6= dωK/dr at radj. In a real accretion flow

presence of kinks [34], [26] is accompanied by discontinuities in the the velocity components

derivatives, and thus implies discontinuities in ω′. The presence of a super-Keplerian region

can significantly affect the flow dynamics in the transition layer, in particular, a centrifu-

gal barrier can develop as accreting material enters the zone with super-Keplerian motion.

Titarchuk and Fiorito, 2004, [55] argue that when adjustment to the sub-Keplerian flow is
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not smooth strong or weak shocks are likely to be formed at radj. Extensive observational
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Figure 2.3: Ideal adjustment (green line) of Keplerian rotation to sub-Keplerian BC and
realistic adjustment (navy line) through a super-Keplerian motion for 1.4M� neutron star
and parameter γ = 15.

timing analysis conducted by [13] and [61] shows that there can be several components

in the accretion flow, each having a different viscous timescale, exhibiting themselves as

independent continuum components in the the power density spectrum. The characteris-

tic timescales of the two most prominent components suggest that they may be related to

compact (of order of a few RS) configuration, with timescales ranging from milliseconds to

a few seconds, and independent extended configuration (of order of thousands of RS), with

timescales ranging from several days to years. Notably, the high-frequency power spectrum

component seems to evolve completely autonomously with respect to the low-frequency

part. In the framework of the TLM98 transition layer model, presence of discontinuities

and abrupt transitions in the solution at the adjustment radius can result in that the X-ray

signal detected by a distant observer is comprised of the two weakly correlated compo-

nents, one emerging from the compact non-Keplerian transition region, the other from the
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extended Keplerian disk. Thus, their model with non-ideal adjustment can, potentially

explain the observed two-component power spectra. We test this assumption by solving

the diffusion propagation problem for the two independent bounded configurations and cal-

culating their power spectra. Titarchuk, Shaposhnikov and Arefiev 2007 [61] demonstrate

that the resulting power spectrum of a sum of two weakly correlated signals is given by the

sum of power spectra of the two components. Namely,

||FX1+X2(ω)||2 = ||FX1(ω)||2 + ||FX2(ω)||2. (2.53)

Transition layer

Keplerian disk

Standing shock

Black hole

Figure 2.4: Schematic representation of the transition layer.

In the following Chapters we calculate the power spectra for the two configurations and

demonstrate that observed two-component spectrum continuum can be reproduced by the

TLM98 model. Keeping the contribution of the Keplerian disk to the power spectrum

unchanged, we show that, depending on the accretion rate, the variability of the transition

layer component can produce various observed patterns in the power spectrum, where the

high-frequency component completely dominates the low-frequency one, opposite case where

30



the low-frequency component is dominating, and the case where both components have

comparable power. The graphical illustration of the transition zone is presented on Figure

2.4.
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Chapter 3: Analytical solution of the simplified diffusion

propagation problem for compact non-Keplerian

configuration

In this chapter we demonstrate that the generic shape of the Fourier power spectrum of

X-ray luminosity fluctuations emerging from the transition region near the compact object

can be obtained in analytical form. Using equations of mass conservation and angular mo-

mentum transport in a disk-like configuration, derived in Chapter 2, we write the evolution

equation for the mass transfer rate fluctuations 4Ṁ , specify the boundary conditions, and

show that for the source term with separable space and time parts the solution of this prob-

lem is reduced to the convolution of the solution of the initial-value problem with the time

part of the source term. Employing the convolution theorem (Appendix B), it follows that

the resulting power spectrum is given by the product of the power spectrum of the solution

of the initial-value problem and the power spectrum of the source function. We demonstrate

that due to the nature of the problem with the dynamic adjustment of the Keplerian flow

to the sub-Keplerian boundary condition at the surface of a neutron star (or the innermost

stable circular orbit around a black hole) the diffusion operator inevitably changes its sign.

Therefore, we consider the two problems in the two space domains. We then solve the dif-

fusion problem for the trivial initial conditions to find accretion rate fluctuations 4Ṁ(R, t)

at each radius in the region, integrate this solution over the radial range, and finally cal-

culate the power spectrum of the integrated X-ray signal. Analysis of the power spectrum

continuum is done by comparison to the power spectrum of a single exponential shot. We

discover a strong dependence of the power spectrum on the Reynolds number, connected

with the accretion rate, and therefore with the spectral state, and introduce characteristic

physical quantities that have immediate interpretation in observational analysis.
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3.1 Formulation of the problem of power spectrum formation

3.1.1 X-ray luminosity fluctuations in the vicinity of a compact object

In the case when the accretion rate is the function of both radius and time, the total

luminosity (2.25) of the annulus of the disk confined between radii R1 and R2 is given by

L(t) ≈ 3
2
GM

∫ R2

R1

Ṁ(R, t)R−2dR. (3.1)

Therefore, any perturbations 4Ṁ of accretion rate in the energy release zone will cause

variations 4L in observed luminosity. Dropping a constant factor in front of the integral,

we have

4L(t) ∝
∫ R2

R1

4Ṁ(R, t)R−2dR. (3.2)

We will adopt the notation ||Ff (ω)||2 = F∗f (ω)Ff (ω) for the power density spectrum (Ap-

pendix B) of a function f(t), where Ff (ω) is the Fourier transform of f(t), F∗f (ω) its complex

conjugate. Hence, the power spectrum of the luminosity fluctuations is

||F4L(ω)||2 ∝ F∗4L(ω) · F4L(ω), (3.3)

where 4L(R, t) is given by (3.2).

3.1.2 Diffusion equation for accretion rate fluctuations

In order to calculate the power spectrum (3.3) one needs to know 4Ṁ(R, t). Combination

of the mass conservation law and the angular momentum balance allows us to construct

the evolution equation expressed entirely in terms of Ṁ [and 4Ṁ as we will demonstrate

later]. This equation combined with the appropriate boundary and initial conditions can

33



then be solved for 4Ṁ(R, t). Expressing Ṁ from equations (2.5) and (2.9) gives

Ṁ =
G′ − 2πRωR2S

v−1
R

˙(ωR2) + (ωR2)′
, (3.4)

where dot stands for ∂/∂t, prime stands for ∂/∂R. For particle orbits in a fixed gravitational

potential [12] ∂ω/∂t = 0, what simplifies (3.4) to

Ṁ =
G′

(ωR2)′
− ωR2

(ωR2)′
2πRS. (3.5)

Multiplying the continuity equation (2.5) by 2πRνω′R2 and acting on it with
1

(ωR2)′
∂

∂R
,

we obtain

1
(ωR2)′

∂

∂R

(
2πRνω′R2∂Σ

∂t

)
+

1
(ωR2)′

∂

∂R

[
νω′R2 ∂

∂R
(2πRvRΣ)

]
=

1
(ωR2)′

∂

∂R

(
2πRνω′R2S

)
.

Substitution of formulas (2.4) and (2.8) for Ṁ and G, under assumption that kinematic

viscosity ν is independent of time, reduces the previous equation to

1
(ωR2)′

∂

∂R

(
∂G

∂t

)
+

1
(ωR2)′

∂

∂R

(
νω′R2∂Ṁ

∂R

)
=

1
(ωR2)′

∂

∂R

(
2πRνω′R2S

)
.

We are free to exchange the space and time derivatives in the first term, and, with the help

of relation (3.5), finally obtain

∂Ṁ

∂t
+

1
(ωR2)′

∂

∂R

(
νω′R2∂Ṁ

∂R

)
=

2π
(ωR2)′

[
∂

∂R

(
νω′R3S

)
− ωR3Ṡ

]
. (3.6)
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Constructed is the diffusion (heat) equation where the left-hand side is written for variable

Ṁ which is the function of time and radius, while the source-related terms are isolated on

the right-hand side. Equation (3.6) for the accretion rate can also be used for the accretion

rate perturbations 4Ṁ(R, t) (as demonstrated in Appendix D) in the framework of the

linear perturbation theory

∂4Ṁ
∂t

= − 1
(ωR2)′

∂

∂R

(
νω′R2∂4Ṁ

∂R

)
+ fdr(R, t). (3.7)

We used the collective ”driving force” notation fdr(R, t) for the source terms located on the

right-hand side of equation (3.6).

3.2 Transition layer instability

The space operator

ΛR = − 1
(ωR2)′

∂

∂R

(
νω′R2 ∂

∂R

)
(3.8)

in the diffusion equation (3.7) involves the angular velocity radial derivative ω′(R). Notice

that ω′ changes its sign at R = Rmax. Let us inspect the behavior of the diffusion coefficient

in (3.8) in the vicinity of this special ”turnover” point. First, consider the multiplicative

term

(ωR2)′ = (2− γ)ω0D1R
γ
0R

1−γ . (3.9)

Its sign is determined by the product (2− γ)D1. Coefficient D1, defined by (2.45), can be

written as

D1 =
θadjr

2
adj − 1

r2−γ
adj − 1

.
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It is easy to see that D1, as well as critical radius rmax (2.49), become undefined for γ = 2.

We shall, therefore, limit ourselves to studying the case of Reynolds number Re = γ > 2,

Under this condition, since θadj > 1 and radj > 1, the numerator of D1 always remains

positive, while the denominator is always negative. Thus, D1 < 0 and the derivative

(ωR2)′ > 0. Now, since ω′ < 0 for R > Rmax and ω′ > 0 for R < Rmax, the diffusion

coefficient in ΛR is positive for R > Rmax, but turns negative for R < Rmax. Figure 3.1
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Figure 3.1: Factor in the diffusion coefficient, determining its sign, as a function of radius
in transition region.

shows the radial dependence of the diffusion coefficient in the transition layer for a 10M�

black hole, rotating with f0 = 30 Hz, for parameter γ = 20.

Negative diffusion coefficient in the region R < Rmax indicates the onset of instability in the

disk as accreting matter proceeds inwards past the critical point Rmax. The diffusion taking

place in the disk for R > Rmax reverses into the process of clumping of matter (into separate
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rings, which continue to move towards the accreter) at radius R = Rmax, causing the disk

break up. The outward angular momentum transfer, occurring in the Keplerian accretion

disk, changes its direction at this point, such that the infalling matter starts to transfer its

angular momentum to the central object, causing it to spin up. The diffusion coefficient will

alternate sign from positive (in the outer region) to negative (in the inner region) for any

accretion disk configuration, involving dynamical adjustment of the Keplerian flow to the

sub-Keplerian inner boundary. In this sense the instability emerges as an intrinsic property

of the any disk diffusion problem with the adjustment.

In order to isolate the critical point we formulate and solve the two problems defined in two

regions of the transition zone:


(outer stable) region 1 Rmax ≤ R ≤ Radj,

(inner unstable) region 2 R0 ≤ R ≤ Rmax.

3.2.1 Formulation of the diffusion problem and plan for the analytical

solution

Let us assume that the perturbation sources are distributed over the disk, and that they

are separable, i.e. can be presented in form of a product of space and time parts

fdr = R(R)ϕ(t). (3.10)

The problem of diffusive propagation of driving perturbations in the transition layer can now

be formulated as the nonhomogeneous equation (with 4Ṁ replaced by u for compactness)

∂u

∂t
= ΛRu+R(R)ϕ(t), (3.11)
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combined with the appropriate boundary conditions (B.C.) at R0, Rmax, Radj subject to

the initial condition u(R, 0) = I(R).

The general solution of the nonhomogeneous equation is given by the sum:

u(R, t) = uh
g(R, t) + un

p(R, t), (3.12)

where the first term on the right-hand side is the general solution of the homogeneous

problem



∂uh
g

∂t
= ΛRuh

g , (3.13)

uh
g = I(R), (3.14)

+ B.C. (3.15)

The second term in (3.12) is the particular solution of the problem for the nonhomogeneous

equation (3.11). It is not hard to show (Appendix E) that for the specific (homogeneous)

initial condition u(R, 0) = 0, the particular solution of (3.11) can be presented as a convo-

lution

un
p =

∫ t

0
ϕ(t′)Y (R, t− t′)dt′, (3.16)

where the kernel Y (R, t) is the solution of the initial-value problem for distributed pertur-

bations at the initial moment



∂Y

∂t
= ΛRY (3.17)

Y (R, t− t′)t=t′ = R(R) (3.18)

+ B.C. (3.19)
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Thus, the resulting perturbation 4Ṁ(R, t) is a sum of the two components - one is given

by the solution of the problem (3.13)-(3.15), the other is given by the convolution (3.16). It

should be pointed out that when ”the observational time intervals are much longer than the

characteristic diffusion timescale of the perturbation in the disk t0, the contribution of the

second (first in our case) component to the resulting signal (the amplitude of perturbations

determined by the solution of the homogeneous problem) decays exponentially with time.”

(Titarchuk, Shaposhnikov and Arefiev 2007) [61]. Recent observational analysis by [60]

suggests that the typical diffusion timescales for the compact non-Keplerian configuration

vary roughly from ∼ 0.1 s to ∼ 1 s. The duration of observation can be taken to be of

order ∼ 1 hr, i.e. much longer than diffusion time scale. We, therefore, shall keep only the

observationally significant part of the solution

u(R, t) =
∫ t

0
ϕ(t′)Y (R, t− t′)dt′. (3.20)

Lets now specify the boundary conditions for the diffusion problem formulated over the

transition region R0 ≤ R ≤ Radj. We set 4Ṁ(R0) = 0 at the inner radius where infalling

gas meets the surface of the neutron star or passes through the last stable circular orbit

around a black hole. Accretion rate perturbations also vanish at the outer boundary Radj

due to presence of the centrifugal barrier shock: 4Ṁ(Radj) = 0. In addition we require

4Ṁ to be continuous and bounded at the ”turnover” point Rmax.
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3.2.2 Solution of the initial-value problem for region 1

We will use method of separation of variables to seek the solution of the initial-value problem



∂Y

∂t
+

1
(ωR2)′

∂

∂R

(
νω′R2∂Y

∂R

)
= 0, Rmax ≤ R ≤ Radj, (3.21)

Y (R, 0) = R(R), (3.22)

Y (Rmax) < ±∞; Y (Radj) = 0, (3.23)

in form Y = X(R)T (t). Angular velocity entering the diffusion equation (3.21) is given

by ω = ω0

[
D1r

−γ + (1−D1)r−2
]
, where r = R/R0, coefficient D1 is defined by formula

(2.45). After substitution Y = XT in (3.21), choosing the separation constant −λ2, we

obtain


d

dR

(
νω′R2dX

dR

)
− λ2(ωR2)′X = 0, (3.24)

T (t) = Ae−λ
2t. (3.25)

Spatial equation (3.24) combined with the boundary conditions X(Rmax) <∞, X(Radj) =

0, forms the eigenvalue problem of finding such (eigenvalues) λk, that there exist non-trivial

solutions (eigenfunctions) Xk of (3.24). In fact, it is not hard to see that (3.24) has the form

of the Sturm-Liouville equation (which we will, using some simplifications, show later). Let

us assume that its eigenvalues λk are known and its eigenfunctions {Xk} form a complete

orthogonal basis. Then the particular solution of the problem (3.21)-(3.23) is

Yk(R, t) = Xk(R)Ake−λ
2
kt.
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The general solution is written as a linear combination of particular solutions

Y (R, t) =
∞∑
k=1

Xk(R)Ake−λ
2
kt.

In order to determine coefficients Ak, we note that at the initial moment t = 0

Y (R, 0) =
∞∑
k=1

Xk(R)Ak. (3.26)

But since {Xk(R)} form the complete eigenfunction basis, equation (3.26) represents the

eigenfunction expansion of Y (R, 0) in {Xk}, with the Fourier coefficients

Ak =
1

||Xk||2

∫ Radj

Rmax

Y (R, 0)Xk(R)ρ(R)dR,

where the weight function ρ(R) is the coefficient at λ2X term in the spatial equation (3.24),

with the eigenfunction’s norm given by

||Xk||2 =
∫ Radj

Rmax

X2
k(R)ρ(R)dR. (3.27)

Therefore the solution of the initial-value problem can be written as a series

Y (R, t) =
∞∑
k=1

e−λ
2
kt

ck
||Xk||2

Xk(R), (3.28)

with

ck =
∫ Radj

Rmax

R(R)Xk(R)ρ(R)dR, (3.29)
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where we used the initial condition Y (R, 0) = R(R).

Let us find λk and Xk. The diffusion operator in equation (3.24) can be simplified, if we

recall that the transition layer can approximated by a ”thin shell” (2.52) in the limit γ � 1

dTL = Radj −R0 � Rmax. (3.30)

Expanding ω(R) in Taylor series around R = Rmax, we have

ω(R) = ω(Rmax) + ω′(Rmax)(R−Rmax) +
1
2
ω′′(Rmax)(R−Rmax)2 + · · · (3.31)

The second term in the expansion is zero, so (3.31) reduces to

ω(R) = ω(Rmax)− 1
2
a0(R−Rmax)2 + · · · ,

where a0 = −ω′′(Rmax) is a positive constant. If we introduce x = R − Rmax, such that

0 ≤ x ≤ xadj in region 1, then

ω(x) = ωmax −
1
2
a0x

2 + · · · , (3.32)

ω′(x) = −a0x+ · · · ≈ ω′′(Rmax)x (3.33)

After substituting linear approximation (3.33) for ω′, equation (3.24), with derivatives ex-

pressed in terms of new variable x, becomes

d

dx

[
νω′′(Rmax)xR2dX

dx

]
− λ2(ωR2)′X = 0. (3.34)

The ”thin shell” condition (3.30) implies x � Rmax. Therefore, we can approximately set

R = Rmax + x ≈ Rmax. in (3.34). The tenuity of the transition region also allows us to
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assume that viscosity does not vary with radius ν ≈ ν0. Exploiting these approximations

the quantity ν0ω
′′(Rmax)R2

max can be pulled outside the derivative sign to yield the Sturm-

Liouville (self-adjoint) form of the equation for X

d

dx

(
x
dX

dx

)
+ λ2ρ(x)X = 0, (3.35)

where the weight factor is x-independent, and is given by

ρ = − (ωR2)′

ν0ω′′(Rmax)R2
max

=
(γ − 2)ω0D1

ν0ω′′(Rmax)
Rγ0R

−γ−1
max = const. (3.36)

The self-adjointness of the spatial equation asserts our assumption about orthogonality of

its eigenfunctions. Equation (3.35) can be transformed to

x2X ′′ + xX ′ + λ2ρxX = 0, (3.37)

which is the Bessel’s equation

x2y′′ + axy′ + (bxm + c)y = 0, (3.38)

with a = 1, b = λ2ρ, c = 0, m = 1: The solution of (3.38) is represented by a linear

combination of Bessel functions Jξ and Yξ

y(x) = x
1−a

2 ·
[
C1Jξ

(
2
m

√
bx

m
2

)
+ C2Yξ

(
2
m

√
bx

m
2

)]
, ξ =

1
m

√
(1− a)2 − 4c.
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In our case index ξ = 0. The boundary conditions (3.23) in terms of variable x read

Xk(x = 0) < ±∞,

Xk(x = xadj) = 0.

Since the function Y0(x) diverges to negative infinity at x = 0, we set C2 = 0 to obtain the

(unnormalized) spatial eigenfunctions

Xk(x) = C1J0 (2λk
√
ρx) , ρ > 0. (3.39)

The normalized eigenfunctions are given by

X̂k =
1
||Xk||

Xk, where ||Xk||2 =
∫ xadj

0
X2
k(x)ρ(x)dx. (3.40)

The eigenvalues λk can be determined from the boundary condition at xadj

J0

(
2λk
√
ρxadj

)
= 0. (3.41)

Use of the Bessel function’s principal asymptotic form [1]

Jξ(z) ≈
√

2
πz

cos(z − ξπ

2
− π

4
), for z � 1 (3.42)

makes (3.41) easily solvable for λk (Appendix F). Thus we find

λk =
π

8
(4k − 1) (ρxadj)

−1/2 , k = 1, 2, · · · (3.43)

The first five spatial eigenfunctions (3.39) are displayed on Figure 3.2. One can spot in-

creasingly better matching of Xk with the outer boundary condition Xk(radj) = 0, as with
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increasing k (and λk) asymptotic form (3.42) becomes more accurate. We have now all the

dimensionless radius r

1.3 1.4 1.5 1.6 1.7 1.8

(r
)

k
X
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Figure 3.2: First several spatial eigenfunction Xk(r) (3.39), where dimensionless radius
r = R/R0.

necessary ingredients to calculate Y (R, t). According to formula (3.20), the accretion rate

fluctuations 4Ṁ(R, t) in the region are presented as a convolution of the solution Y (R, t)

of the initial-value problem with distributed initial condition and the time part ϕ(t) of the

source term

4Ṁ(R, t) =
∫ t

0
ϕ(t′)Y (R, t− t′)dt′. (3.44)

In the simplest possible case, when ϕ(t′) is a point source at time instant t′ = 0, ϕ(t′) = δ(t′),

we obtain

4Ṁ(R, t) = Y (R, t). (3.45)

The power density spectrum of the luminosity fluctuations 4LX(t) from region Rmax ≤

R ≤ Radj (equivalent to 0 ≤ x ≤ xadj) can be calculated, using equations (3.2), (3.3), and
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the solution (3.28) of the initial-value problem for Y (R, t)

||F4LX (ω)||2 ∝ (3.46)

∫ ∞
0

[∫ Radj

Rmax

( ∞∑
m=1

e−λ
2
mt
′ cm
||Xm||2

Xm

)
R′−2dR′

]
eiωt

′
dt′ ×

∫ ∞
0

[∫ Radj

Rmax

( ∞∑
k=1

e−λ
2
kt

ck
||Xk||2

Xk

)
R−2dR

]
e−iωtdt.

Converting to variable x = R−Rmax in the spatial integrals, we can exploit the same ”thin

shell” argument as was used, when we linearized the diffusion coefficient in the eigenvalue

problem (3.34), namely that R = Rmax + x ≈ Rmax. Hence, we can pull the constant

factor R−2
max outside the integral, and actually drop it, since normalization constant is not

important for the power spectrum continuum shape. Moving space and time integrals under

summation symbols, we have, after performing time integration

||F4LX (ω)||2 ∝
∞∑
m=1

cm
||Xm||2

1
λ2
m − iω

∫ xadj

0
Xmdx

′
∞∑
k=1

ck
||Xk||2

1
λ2
k + iω

∫ xadj

0
Xkdx. (3.47)

It is convenient to combine factors determining the ”weight” of each term in the sum

Bm =
cm
||Xm||2

∫ xadj

0
Xm(x′)dx′ Bk =

ck
||Xk||2

∫ xadj

0
Xk(x)dx, (3.48)

such that the power spectrum expression becomes more compact

||F4LX (ω)||2 ∝
∞∑
m=1

Bm
λ2
m − iω

·
∞∑
k=1

Bk
λ2
k + iω

. (3.49)
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The upper limit on the product of series (3.49) can be evaluated, using the following rea-

soning: for any two complex quantities x and y

x̄x+ ȳy = |x|2 + |y|2 ≥ (x̄y + xȳ), (3.50)

[which follows immediately from the fact that (x− y)2 ≥ 0]. Thus, if we assume that there

are only two terms a1, a2 in the power spectrum sum, we would have

(a1 + a2)(ā1 + ā2) = |a1|2 + |a2|2 + ā1a2 + a1ā2 ≤ 2
(
|a1|2 + |a2|2

)
.

Identity (3.49) can be generalized to infinitely large number of terms ([61] Appendix C).

Hence, we obtain the upper limit estimate for the spectrum

||F4LX (ω)||2 ≤ 2
∞∑
k=1

B2
k

λ4
k + ω2

, (3.51)

where the weight factors Bk are given by (3.48). In order to proceed we need to calculate the

expansion coefficients c2
k/||Xk||2 and the radial integral of the eigenfunction Xk(x) in (3.48).

Let us elaborate more on the (unspecified yet) initial condition (3.22). In order to satisfy the

boundary conditions (3.23) and, at the same time, have a relatively simple integral in the

equation for the expansion coefficients (3.29), one can implement the following arrangement:

introduce a small quantity ε and define the initial condition as

R(R) =


R0 = const, for Rmax ≤ R ≤ Radj − ε, (3.52)

−A(R−Radj + ε)2 +B, for Radj − ε ≤ R ≤ Radj, (3.53)
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where coefficients A and B are determined from


−A(R−Radj + ε)2 +B = R0, at Radj − ε, (3.54)

−A(R−Radj + ε)2 +B = 0, at R = Radj. (3.55)

Example of such initial condition is demonstrated on the Figure 3.3 forRadj = 2, ε = 0.1, and

R0 = 1. We constructed a function which is a constant on the interval Rmax ≤ R ≤ Radj−ε,

R

1.8 1.85 1.9 1.95 2

R
(R

)

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Example of the initial condition (3.52), (3.53) with Radj = 2, ε = 0.1, and
R0 = 1.

which then smoothly turns into a parabola at radius Radj − ε, to match the zero boundary

condition at Radj. For the purpose of calculation of ck one can always set ε→ 0 (with both

boundary conditions fulfilled), thus approximating function R(R) in the integral (3.29)

with R0. This is completely valid approximation, because in the limit of infinitely small

ε contribution of the region Radj − ε ≤ R ≤ Radj to the integral (3.29) will be infinitely
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small. It is not hard to find ck and ||Xk||2 for the uniform initial perturbation distribution

(Appendix G):

ck
||Xk||2

∝ 1

λkJ1(2λkρ1/2x
1/2
adj )

. (3.56)

As for the radial integral, substitution of (3.39) gives

∫ xadj

0
Xk(x)dx =

∫ xadj

0
J0(2λkρ1/2x1/2)dx. (3.57)

The integral of the Bessel’s function of zero-th order with an argument ax1/2 is expressed

via regularized hypergeometric function

∫
J0(ax1/2)dx = x 0F̃1(; 2;−a

2x

4
), (3.58)

where 0F̃1(;α;β) = 0F1(α;β)/Γ(α) [and Γ(2) = 1], thus giving

∫ xadj

0
Xk(x)dx = xadj 0F1(2;−λ2

kρxadj). (3.59)

Notice that (3.56), (3.59) involve ρ [equation (3.36)], which depends on a number of pa-

rameters, all of which can be determined for a given compact object (with mass m and

rotational velocity f0). Angular velocity second derivative ω′′(Rmax) is given by

ω′′(Rmax) = ω0

[
γ(γ + 1)D1R

γ
0R
−γ−2
max + 6(1−D1)R2

0R
−4
max

]
. (3.60)

Now, we have everything to calculate the final power spectrum. Disregarding a constant

factor in front of the sum, we obtain the power spectrum profile emergent from region

49



Rmax ≤ R ≤ Radj:

||F4LX1(ω)||2 ∝
∞∑
k=1

χ2
k

λ2
k

(
λ4
k + ω2

) , (3.61)

where

χk =
xadj 0F1(2;−λ2

kρxadj)

J1(2λkρ1/2x
1/2
adj )

. (3.62)

The solution (3.28) of the initial-value problem [and which power spectrum is given by

(3.61)] can be considered as the weighted sum of related exponential shots. The exponential

time dependence of Y (R, t) is the immediate consequence of solving the diffusion equation

for the bounded configuration. In this respect it is instructive to analyze the power spectrum

of the simple exponential shot

f(t) = e−t/t0 , (3.63)

defined for time t > 0. Taking the Fourier transform of (3.63), we obtain the power density

spectrum as the zero-centered Lorentzian

||Ff (ν)||2 =
1

2π
1[

t−2
0 + (2πν)2

] . (3.64)

It is easy to see that the power spectrum (3.64) becomes frequency-independent in the

low-frequency limit, specifically, when ν � (2πt0)−1, while for high frequencies, i.e., when

ν � (2πt0)−1, it behaves as the decaying power law ∼ ν−2. Continuous transition from

one extreme case to another occurs when ν ∼ (2πt0)−1. One can calculate location of

the anticipated ”break” ν0 in the spectrum, setting ν0 = (2πt0)−1. Thus, for instance, for

t0 = 10 s, ν0 ≈ 0.016 Hz. Figure 3.4 shows the power spectrum of the exponential shot

(3.63), plotted in log-log scale, for t0 = 10 s. We readily identify the break in the spectrum

located at ∼ 0.016 Hz, as expected. Based on this simple analysis one can anticipate a

somewhat similarly-shaped power spectrum continuum of the solution (3.28). Indeed,
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Figure 3.4: Power spectrum of the single exponential shot exp(−t/t0) for t0 = 10 s.
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Figure 3.5: Power spectrum continuum (3.61) of the solution Y (R, t) of the initial-value
problem (3.21)-(3.23) integrated over region Rmax ≤ R ≤ Radj for a sample black hole with
m = 10, f0 = 30 Hz, γ = 10.
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expression (3.61) is nothing, but a weighted sum of the zero-centered Lorentzians. It can

be shown, using (3.43) and the identity λk = (λk/λ1)λ1, where λ1 = 3π/8 (ρxadj)
−1/2, that

λk related to λ1 by

λk =
4k − 1

3
λ1, k = 1, 2, · · · (3.65)

Hence, the eigenvalues are ordered such that λ1 < λ2 < · · · < λk, which is, in fact, the

property of the regular Sturm-Liouville problem (3.35). Keeping this in mind it is not hard

to see that the power spectrum series (3.61) is dominated by the first term k = 1 (which is

also the slowest-decaying component in the solution (3.28)). Let us consider the behavior

of the leading term of (3.61)

||F4LX (ω)||2k=1 ∝
χ2

1

λ6
1 + λ2

1ω
2

(3.66)

for the following cases

• ω � λ2
1 implies that λ6

1 � λ2
1ω

2. Neglecting the small term, we find that the power

spectrum ||F4LX (ω)||2k=1,LF ∝ λ−6
1 is frequency-independent (white noise) in the low

frequency limit,

• ω � λ2
1 implies that λ6

1 � λ2
1ω

2. Neglecting the small term, gives that ||F4LX (ω)||2k=1,HF ∝

λ−2
1 ω−2, i.e. the power spectrum is a power-law function of frequency (red noise) with

index −2 in the high frequency limit,

• the characteristic angular velocity ω∗ = λ2
1 determines the location of a ”break” in

the power spectrum continuum, where the flat low-frequency plateau smoothly turns

into a power law for high frequency.

The limiting behavior of the spectrum continuum (3.66) is completely identical to the one

of the single exponential shot (3.64). The power spectrum continuum (3.61) (normalized
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to a maximum value) for a 10M� black hole, rotating with f0 = 30 Hz, and parameter

γ = 10 is shown on Figure 3.5. A thick dashed line represents the power spectrum series

with 100 terms in it. The solid red line represents the leading term ||F4LX (ω)||2k=1 of the

same series. It is easy to see that the leading term completely dominates the series (the

two lines are indistinguishable on the plot). As anticipated from the analysis of the limiting

behavior of (3.66), the spectrum shape is the white noise for frequencies ω � ω∗; the red

noise with the power law index −2, for frequencies ω � ω∗, with the break (a ”knee”)

in the continuum occurring at ω∗. The successive (k = 2, 3) terms have progressively

weaker normalization, due to the high power of (increasing with k) λk in the denominator

of (3.61), with break locations ω∗k = λ2
k shifted at higher frequencies. We associate td = λ−2

1

as a characteristic diffusion timescale, based on our solution (3.28) of the diffusion problem

(3.21)-(3.23). Physical meaning of td can be understood in a sense that any perturbation

at any radius in the region will diffusively propagate outward over this timescale [59]

td ∼
(
L

lfp

)2 lfp
vR
, (3.67)

where L is the characteristic thickness of the transition layer,

lfp ∼
η

ρvR
=

1
σpertn

(3.68)

is the mean free path of the particle, η is the turbulent viscosity, ρ is the mass density, vR is

the inward radial drift velocity, n is the number density, σpert is the perturbation interaction

cross-section.

3.2.3 Power spectrum as a function of Reynolds number

As we showed, the power spectrum continuum is determined by the first eigenvalue of the

spatial problem (3.24). Substituting formula (3.36) for ρ into (3.43), λ1 expressed in terms
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of dimensionless radius r reads

λ1 =
3π
8
(
ν0R

−2
0

)1/2 [ ω′′r (rmax)
(γ − 2)ω0D1

]1/2
[

rγ+1
max

radj − rmax

]1/2

. (3.69)

It is obvious from (3.69) that λ1 can change substantially with varying γ, however it is

not clear how exactly, because rmax, radj, ω′′r (rmax) and D1 are all functions of γ. Before

providing exact numerical answer let us try to simplify this equation and determine the

principal behavior of λ1 = f(γ). We can use approximate formulas rmax ≈ (γ/2)1/(γ−2) and

radj ≈ (2γ)1/(γ−2) (Appendix H) along with (2.45) and (3.60) to obtain

λ1 ≈
3π
8
(
ν0R

−2
0

)1/2( γ2 + 6(D−1
1 − 1)γ/2

(γ − 2)
[
(2γ)1/(γ−2) − (γ/2)1/(γ−2)

])1/2

, (3.70)

where γ(γ + 1) ≈ γ2 and factor (γ/2)1/(2−γ) ≈ 1. Term 6(D−1
1 − 1)γ/2 in the numerator

gives little contribution and can be safely neglected. Finally, using Taylor series expansion

(1/4)1/(γ−2) ≈ 1 + 1/(γ − 2)ln(1/4) and the above approximations, yields

λ1 ≈
3π
8

[−ln(1/4)]−1/2 (ν0R
−2
0 )1/2γ, (3.71)

such that λ−2 has dimension of time. Our estimate (3.71) implies that λ1 is a linear

growing function of γ. Figure 3.6 shows λ1 plotted as a function of γ for R2
0/ν0 = 10 s,

using exact (3.69) (solid circles) and approximate (3.71) formulas. The difference between

the two representations does not exceed 2.5% for the line’s slope. Linear dependence of

λ1 on Reynolds number γ translates into rapid power spectrum decay with increasing γ,

according to equation (3.66), accompanied by shift of its characteristic features towards high

frequency, as ω∗ ∼ γ2. We anticipate the attenuation effect to be especially pronounced at
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lower frequencies (on the left side relative to the break in continuum), where λ6
1 dominates

the denominator of (3.66). Figure 3.7 shows the power spectra (3.61) calculated for γ = 5,

15, and 45 (corresponding to λ1 = 0.54, 1.76, and 5.52) superimposed on one plot. We

identify the corresponding break locations at ω∗ ≈ 0.3, 3.1, and 30.4 rad s−1, as well as

observe power spectrum variability decay with increasing γ. It is easy to see that a factor

3 change in Reynolds number results in a dramatic (more than 4 orders of magnitude)

suppression of power spectrum normalization in the low frequency limit, and ∼ 2 orders of

magnitude suppression of variability in the high frequency limit. This result can potentially

explain the observed variability decay of X-ray lightcurves during transition of a source from

low-hard to high-soft state. Recall that the transition layer size shrinks very rapidly as γ

increases. Therefore, power spectrum decay is a direct consequence of the compression of

the emission zone with increasing accretion rate. In Chapter 4 we return to this discussion

and give a more detailed explanation, as we analyze the complete diffusion problem.
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Figure 3.6: Eigenfunction λ1 as a function of Reynolds number γ. Solid circles represent
exact formula (3.69).
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Figure 3.7: Power spectrum high-frequency shift/decay with increasing Reynolds number.

3.2.4 Solution of the initial-value problem for region 2

Let us now consider the diffusion problem in the inner region R0 ≤ R ≤ Rmax of the

boundary layer. We will use method of separation of variables to solve the initial-value

problem



∂Y

∂t
+

1
(ωR2)′

∂

∂R

(
νω′R2∂Y

∂R

)
= 0, R0 ≤ R ≤ Rmax, (3.72)

Y (R, 0) = R(R), (3.73)

Y (R0) = 0; Y (Rmax) < ±∞. (3.74)

Substitution of Y (R, t) = X(R)T (t) into (3.72) gives

1
T

dT

dt
= − 1

X

1
(ωR2)′

d

dR

(
νω′R2dX

dR

)
= ±λ2.
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It is not difficult to show (Appendix I) that the choice −λ2 of the separation constant is

unacceptable, since it only allows for the trivial solution of the spatial equation. Thus, a

positive constant must be chosen. In this case the spatial equation becomes

d

dR

(
R2νω′

dX

dR

)
+ λ2(ωR2)′X = 0. (3.75)

Applying the same assumptions we used when solved the problem for region 1, the previous

equation can be reduced to

d

dx

(
x
dX

dx

)
− λ2ρX = 0, (3.76)

where x = R−Rmax, such that −x0 ≤ x ≤ 0, ρ = is determined by (3.36). Now, since x is

non-positive in the region, equation (3.76) can be expressed in terms of |x|

d

dx

(
|x|dX

dx

)
+ λ2ρX = 0, 0 ≤ |x| ≤ x0. (3.77)

Solution of (3.77) is represented by the sum of Bessel’s functions

Xk(y) = C1J0(2λk
√
ρ|x|) + C2Y0(2λk

√
ρ|x|). (3.78)

The boundary condition at x = 0 requires us to set C2 = 0, because of the divergence of

Y0(0). Therefore the eigenfunctions of the equation (3.75) are

Xk(x) = C1J0(2λk
√
ρ|x|), ρ > 0. (3.79)

The remaining boundary condition (at x = −x0)

J0(2λk
√
ρx0) = 0,
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can be used to determine the eigenvalues

λk =
π

8
(4k − 1) (ρx0)−1/2 , k = 1, 2, · · · (3.80)

Hence, we found that the solution for the spatial eigenvalue problem in region R0 ≤ R ≤

Rmax is identical to the solution in region Rmax ≤ R ≤ Radj, with Radj replaced by R0 in

the expression for λk. However, due to positive sign of the separation constant, solution for

the time part became an exponentially growing function of time

T (t) = Aeλ
2t.

Formally, the general solution of the diffusion equation can be written as a series

Y (R, t) =
∞∑
k=1

eλ
2
kt

ck
||Xk||2

Xk(R), (3.81)

with

ck =
∫ Rmax

R0

R(R)Xk(R)ρ(R)dR, (3.82)

||Xk||2 =
∫ Rmax

R0

X2
k(R)ρ(R)dR, (3.83)

where Xk and λk are given by (3.79), (3.80).

Demanding the spatial problem to have a non-trivial solution in R0 ≤ R ≤ Rmax, resulted

in an unstable solution for the time part, which makes impossible to calculate the power

spectrum directly, because of divergence of the integral
∫ ∞

0
eλ

2te±iωtdt. This difficulty can

be overcome if we treat the problem using the following physical reasoning. Let us introduce
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a characteristic time Tpl which takes plasma to travel the distance from Rmax to R0

Tpl = (Rmax −R0)/vpl. (3.84)

To keep calculations simple let us assume that the perturbation sources are distributed over

the region according to the first spatial eigenfunction R(R) ∝ X1(R) (see Figure 3.8), such

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
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Figure 3.8: First several spatial eigenfunctions Xk (3.79).

that expansion coefficients are

ck ∝
∫ Rmax

R0

X1(R)Xk(R)ρ(R)dR.

Orthogonality of {Xk} leaves only one non-vanishing coefficient

c1 ∝
∫ Rmax

R0

X1(R)X1(R)ρ(R)dR = ||X1||2, (3.85)
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reducing the sum (3.81) to a single term

Y1(R, t) = eλ
2
1tX1(R). (3.86)

Let us consider the time signal Y 1(t) = eλ
2
1t, on interval 0 < t < Tpl. A non-periodic

function defined over 0 < t < Tpl can be expanded into a Fourier series which is defined

only in 0 < t < Tpl:

Y 1(t) =
a0√
Tpl

+
∞∑
n=1

[angn(ωnt) + bnhn(ωnt)] , (3.87)

where the angular velocity of n−th harmonic is

ωn =
2π
Tpl

n, n = 1, 2, · · · , (3.88)

functions

gn(ωnt) =

√
2
Tpl

cos(ωnt),

hn(ωnt) =

√
2
Tpl

sin(ωnt),

form the orthonormal basis, an, bn are the Fourier coefficients. Parseval’s theorem (Ap-

pendix B) states that the area under the power spectrum curve is equal to the area under

the square of the magnitude of the time signal

∫ ∞
−∞
|Y 1(t)|2dt =

∫ ∞
−∞
||FY 1

(ω)||2dω. (3.89)
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Substituting the Fourier series representation (3.87) of Y 1(t) into the left-hand side of the

Parseval’s identity we obtain after integration

∫ Tpl

0
|Y 1(t)|2dt = a2

0 +
∞∑
n=1

(a2
n + b2n).

The right-hand side of this equation can also be written as an integral over ω, using Dirac

δ−function

a2
0 +

∞∑
n=1

(a2
n + b2n) =

∫ ∞
−∞

[
a2

0δ(ω) +
∞∑
n=1

(a2
n + b2n)δ(ω − ωn)

]
dω.

Thus ∫ Tpl

0
|Y 1(t)|2dt =

∫ ∞
−∞

[
a2

0δ(ω) +
∞∑
n=1

(a2
n + b2n)δ(ω − ωn)

]
dω, (3.90)

where the quantity under the integral on the right-hand side is the power spectrum of Y 1

||FY 1
(ω)||2 = a2

0

∣∣
ω=0

+
∞∑
n=1

(a2
n + b2n)

∣∣∣∣∣
ω=ωn

.

Thus, in order to find ||FY 1
(ω)||2 we need to calculate the Fourier coefficients a0, an, and

bn:

a0 =

∫ Tpl

0
1√
Tpl
Y 1(t)dt

∫ Tpl

0

(
1√
Tpl

)2

dt

=
1√
Tpl

∫ Tpl

0
eλ

2
1tdt =

1
λ2

1

√
Tpl

eλ
2
1t

∣∣∣∣∣
Tpl

0

=
1

λ2
1

√
Tpl

(
eλ

2
1Tpl − 1

)
,

an =

√
2
Tpl

∫ Tpl

0 Y 1(t)cos (ωnt) dt

2
Tpl

∫ Tpl

0 cos2 (ωnt) dt
=

√
2
Tpl

∫ Tpl

0
eλ

2
1tcos (ωnt) dt =

√
2
Tpl
· λ2

1

eλ
2
1Tpl − 1
λ4

1 + ω2
n

,
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bn =

√
2
Tpl

∫ Tpl

0 Y 1(t)sin (ωnt) dt

2
Tpl

∫ Tpl

0 sin2 (ωnt) dt
=

√
2
Tpl

∫ Tpl

0
eλ

2
1tsin (ωnt) dt =

√
2
Tpl
· ωn

1− eλ2
1Tpl

λ4
1 + ω2

n

.

Finally, dropping the DC term, we obtain the power spectrum from the inner region R0 ≤

R ≤ Rmax

||F4LX2(ω)||2 =


2
Tpl

(eλ
2
1Tpl − 1)2

λ4
1 + ω2

n

, ω = ωn

0, ω 6= ωn,

(3.91)

where ωn are given by (3.88). We notice that due to the finite time interval of the Fourier

expansion the spectrum is discrete, i.e. it is non-zero only at certain frequencies (harmonics).

The behavior of the power spectrum is governed by relation between the diffusion timescale

td = λ−2
1 of the flow, and the characteristic time Tpl of plasma inward motion in the exponent

eTpl/td . Consider the following cases

• a quasi-stable regime Tpl ∼ td yields the power spectrum which behaves as the power-

law with index −2 for high frequency harmonics and flattens out into the white noise

in the low frequency limit.

• regime Tpl � td leads to power spectrum extinction, which can be realized in the case

of very fast, free-fall-like movement of gas, when the perturbations in the flow just do

not have sufficient time to propagate and cause luminosity variability.

• regime Tpl � td corresponds to unbounded exponential growth (destruction) of the

power spectrum, in the case of slowly-moving gas, causing even minimal perturbations

grow exponentially. In this regime the diffusion problem becomes highly non-linear.

It should be noted that it is likely that matter entering the unstable zone R < Rmax, with

negative diffusion coefficient, will rapidly attain the velocity comparable to the free-fall

speed
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vff = c

√
RS

R
. (3.92)

Even for the lowest observable [61] value of Reynolds number γ ∼ 3, which corresponds to

the largest value Rmax . 4.5RS, the estimated value for vff & 0.5 c. On the other hand,

the velocity of the viscous diffusion propagation is comparable or less than the speed of

sound [47]

vS =
√
kBT

mP
. (3.93)

Assuming the highest temperature of the photons, typically observed from the sources in

the low-hard state, to be kBT ∼ 50 keV, we obtain that vS . 0.007 c, i.e. at least a

factor of 70 less than vff . Based on these estimates we anticipate that the most probable

scenario, among the three listed above, is the second, which results in the power spectrum

extinction. One can assume that such an accretion mode, past the critical point Rmax, is not

observationally-relevant for timing analysis. In the next Chapter we provide a numerical

solution of the diffusion problem for the transition region and the Keplerian disk. Due to

intrinsic instability of the solution in the region 2, R0 ≤ R ≤ Rmax, we do not attempt to

solve the problem in that region. In fact, the stability criterion for the numerical method,

used to solve the tridiagonal system of equations, is violated for the diffusion equation with

negative diffusion coefficient (Appendix J). Special approach is required to treat such a

highly-nonlinear problem, which is not a part of this research. Taking into account the fact

that the signal from the unstable zone is unlikely to contribute much to the observed signal

anyway, we will concentrate only on studying the diffusion equation defined for stable part

of the transition layer, Rmax ≤ R ≤ Radj.
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Chapter 4: Numerical solution of the diffusion problem

The evolution equation (3.7) for4Ṁ is a diffusion (heat) partial differential equation in one

dimension, that can be approximated in finite differences and solved numerically. Numerical

approach removes limitations of the analytical solution, in particular, allowing us to

• drop all approximations made to render the problem solvable in elementary functions,

• use the source term of arbitrary complexity,

• test various forms of the radial dependence law of viscosity in the disk,

• solve a diffusion problem for the extended Keplerian disk configuration, using loga-

rithmic scale in both space and time

• conduct ”quick” computer experiments in order to study peculiarities of the system

under consideration, etc.,

while providing a far superior computational speed (maintaining very good accuracy), as

compared to implemented-on-a-computer analytical formulas. In this Chapter we will solve

the diffusion propagation problem with time and space variable source of perturbations, for

the two independent ”configurations” − a compact (an order of a few RS) sub-Keplerian

transition layer and an extended (∼ 104RS) Keplerian accretion disk. We will calculate

the power spectrum of the two solutions (integrated over the relevant spatial interval) for a

broad range of frequencies, and demonstrate how the two power spectra can be combined

together to yield a spectrum continuum that has direct connection to the observed power

spectra from X-ray accreting binary systems. For this analysis we will consider a massive

10M� black hole, rotating with f0 = 30 Hz.
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4.1 Diffusion equation for compact non-Keplerian and ex-

tended Keplerian configurations and its approximation

in finite differences

First, let us write down the evolution equation for accretion rate fluctuations 4Ṁ(r, t)

expressed in terms of dimensionless variables (2.41) −(2.43) of TLM98, for the two disk

configurations. It is common to assume that kinematic viscosity in accretion disk is a

power law function of radius, normalized to the value on the outer edge of the disk

ν = ν0(r/rout)ψ. (4.1)

For our simulations we will adopt that the non-Keplerian transition layer is confined between

radius rmax (2.49) of maximum angular velocity and the adjustment point radj, given by

relation (2.50); while the Keplerian disk extends from the outer edge of the transition layer

radj to rout = 104 [r is measured in units R/R0, where R0 = 3RS, RS = 2GM/c2 is

Schwarzschild radius]. Employing viscosity distribution law (4.1) and substituting formula

(2.44), for the non-Keplerian angular velocity θ(r) in the adjustment layer, into equation

(3.7), one obtains

∂u

∂t
= ν0R

−2
0 r−ψadj r

γ−1 ∂

∂r

[
(µrψ+1−γ + ξrψ−1)

∂u

∂r

]
+ fdr(r, t). (4.2)

where u(r, t) = 4Ṁ(r, t); µ = γ/(2− γ), ξ = 2/(2− γ) (D−1
1 − 1) are constant coefficients,

D1 is given by equation (2.45). Substituting Keplerian angular velocity profile θ(r) = θK(r),

equation (2.47), into (3.7) we obtain the diffusion propagation equation for the extended

disk

∂u

∂t
= 3ν0R

−2
0 r−ψoutr

1/2 ∂

∂r

[
rψ−1/2∂u

∂r

]
+ fdr(r, t). (4.3)
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Diffusion equations (4.2), (4.3) have the form

∂u

∂t
= f(r)

∂

∂r

[
D(r)

∂u

∂r

]
+ S(r, t), (4.4)

This is a linear equation with coordinate-dependent coefficient of diffusion. Using (2nd

order accurate) centered difference formula we can approximate the right-hand side of (4.4)

at i−th spatial node at k−th time instant as

f(r)
∂

∂r

[
D(r)

∂u

∂r

]
+ S(r, t) ≈ fi

Di+1/2u
′
i+1/2 −Di−1/2u

′
i−1/2

2(4r/2)
+ Ski , (4.5)

where the spatial step is4r, and index i runs through the spatial grid 1 ≤ i ≤M . Applying

the same 2nd order formula for derivatives u′i−1/2, u′i+1/2

u′i−1/2 ≈
ui − ui−1

4r
, u′i+1/2 ≈

ui+1 − ui
4r

, (4.6)

gives

f(r)
∂

∂r

[
D(r)

∂u

∂r

]
+ S(r, t) ≈ fi

Di+1/2(ui+1 − ui)−Di−1/2(ui − ui−1)
(4r)2

+ Ski . (4.7)

Using ∂u/∂t ≈ (uk+1
i − uki )/4t for the time derivative , where the time step is 4t, and

index k runs through the time grid 1 ≤ k ≤ N we can write the explicit centered difference

for the heat equation (4.4)

uk+1
i − uki
4t

≈ fi
(4r)2

[
Di+1/2(uki+1 − uki )−Di−1/2(uki − uki−1)

]
+ Ski . (4.8)
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The implicit centered difference is based on the solution at time step k + 1

uk+1
i − uki
4t

≈ fi
(4r)2

[
Di+1/2(uk+1

i+1 − u
k+1
i )−Di−1/2(uk+1

i − uk+1
i−1 )

]
+ Sk+1

i . (4.9)

Averaging the two approximations yields the desired scheme

uk+1
i − uki
4t

≈ fi
2(4r)2

{
Di+1/2(uki+1 − uki )−Di−1/2(uki − uki−1) + (4.10)

Di+1/2(uk+1
i+1 − u

k+1
i )−Di−1/2(uk+1

i − uk+1
i−1 )

}
+

1
2

(Ski + Sk+1
i ).

The implicit scheme (4.10) is unconditionally stable and is second-order accurate in both

space and time [17]. It is known as Crank-Nicolson method, and for the heat equation in

one space dimension leads to the tridiagonal linear system to be solved at each time step,

thus providing fast, memory-efficient, and easy-to-implement algorithm. Sorting out k and

k+ 1 terms on different sides of equation and calling α = fi4t/2(4r)2, S = (Ski +Sk+1
i )/2

gives

aiu
k+1
i−1 + biu

k+1
i + ciu

k+1
i+1 = (4.11)

αDi−1/2u
k
i−1 +

[
1− α(Di+1/2 +Di−1/2)

]
uki + αDi+1/2U

k
i+1 +4tS,

with matrix elements



ai = −fi
2
4t

(4r)2
Di−1/2, (4.12)

bi = 1 +
fi
2
4t

(4r)2

[
Di−1/2 +Di+1/2

]
, (4.13)

ci = −fi
2
4t

(4r)2
Di+1/2. (4.14)
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Equation (4.11) can be conveniently presented in a matrix form Auk+1
i = dk

i :



b1 c1 0 0 0 · · · 0 0 0

a2 b2 c2 0 0 · · · 0 0 0

0 a3 b3 c3 0 · · · 0 0 0

. . . . . · · · . . .

0 0 0 0 0 · · · aM−1 bM−1 cM−1

0 0 0 0 0 · · · 0 aM bM





uk+1
1

uk+1
2

uk+1
3

· · ·

uk+1
M−1

uk+1
M


=



dk1

dk2

dk3

· · ·

dkM−1

dkM



where symbol dki represents the entire right-hand side of equation (4.11) and matrix ele-

ments ai, bi, ci as defined above. In this form the diffusion equation can be solved on a

computer, using any tridiagonal matrix solver. Possible choices include Thomas method

(the sweep method), variations of Gaussian elimination or Cholesky factorization methods,

etc. I implemented the sweep method in C and compared it with the tridiagonal solver

gsl linalg solve tridiag (a variant of Cholesky decomposition provided in the GNU Sci-

entific Library), to find that both produce exactly the same solution.

Complete formulation of the initial-boundary value problem requires specification of the

boundary conditions, which in general can be mixed, i.e. given as a linear combination of

Dirichlet (function’s value is specified on the boundary) and Neumann (function’s deriva-

tive is specified on the boundary) boundary conditions. Thus for one space dimension we

would generally have


αinu(r) + βin

∂u

∂r
= γin at r = rin, (4.15)

αoutu(r) + βout
∂u

∂r
= γout at r = rout, (4.16)

Recalling that our spatial grid is defined over range 1 ≤ i ≤ M , we reserve indexes i = 0

and i = M + 1 for ”inner” and ”outer” boundaries, such that u(rin) = u0, u(rout) = uM+1.
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It follows from (4.15) and (4.16) that


u0 =

βinu1 −4rγin

βin −4rαin
, (4.17)

uM+1 =
βoutuM +4rγout

βout +4rαout
, (4.18)

where we approximated
∂u

∂r
(rin) ≈ u1 − u0

4r
,
∂u

∂r
(rout) ≈

uM+1 − uM
4r

. Equation (4.11)

written for i = 1 and i = M reads


a1 u

k+1
0 + b1uk+1

1 + c1uk+1
2 = dk

1, (4.19)

aMuk+1
M−1 + bMuk+1

M + cM uk+1
M+1 = dk

M, (4.20)

with bold-lettered parts being the first and the last equations of the linear system Auk+1
i = dk

i .

Elimination of uk+1
0 , uk+1

M+1 (boxed terms) in (4.19), (4.20) by means of substitution of (4.17)

(4.18) gives


b∗1u

k+1
1 + c1u

k+1
2 =

(
dk1

)∗
, (4.21)

aMu
k+1
M−1 + b∗Mu

k+1
M =

(
dkM

)∗
, (4.22)

where


b∗1 = b1 + a1

βin

βin −4rαin

(
dk1

)∗
= dk1 + a1

4rγin

βin −4rαin
(4.23)

b∗M = bM + cM
βout

βout +4rαout

(
dkM

)∗
= dkM − cM

4rγout

βout +4rαout
. (4.24)
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Therefore, in order to account for the boundary conditions of type (4.15), (4.16), diagonal

matrix elements b1, bM have to be altered to b∗1, b∗M , as well as the right-hand side vector

elements dk1, dkM have to be altered to
(
dk1

)∗
,
(
dkM

)∗
according to (4.23), (4.24). This would

also require calculation of coefficients a1, cM , which are not part of the tridiagonal matrix

A. Consider, for instance, the case of Dirichlet or Neumann boundary conditions


u(rin) = x, (4.25)

∂u

∂r
(rout) = y. (4.26)

Using (4.15), (4.16) and (4.23), (4.24) we obtain



(
dk1

)∗
= dk1 − a1x, (4.27)

b∗M = bM + cM , (4.28)(
dkM

)∗
= dkM −4r cMy. (4.29)

Likewise, for the boundary conditions


∂u

∂r
(rin) = x, (4.30)

u(rout) = y, (4.31)

modified matrix/vector entries become



b∗1 = b1 + a1, (4.32)(
dk1

)∗
= dk1 +4r a1x, (4.33)

(
dkM

)∗
= dkM − cMy. (4.34)
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4.2 Perturbation term in the diffusion equation

The origins of broadband variability observed in X-ray binary systems are attributed to

an ensemble of oscillations and waves propagating in the innermost region of an accre-

tion disk. As in other systems, one can expect various types of oscillatory motions in

accretion disk. These motions, in general, occur as the outcome of restoring forces act-

ing on perturbations [20]. As a result, an accretion disk represents a complex dynam-

ical system of many variables with its defining physical quantities (radius, height, den-

sity, temperature, viscosity, pressure, speed of sound, accretion rate, etc.) experienc-

ing quasi-periodic fluctuations around their equilibrium values in a steady state, with

characteristic timescales. Some of these timescales, ordered from fastest to slowest, in-

clude [41], [30]: the dynamical timescale tϕ ∼ R/vK = (R3/GM)1/2, the z−timescale

tz = 2H/vS = R/vK = tϕ, the thermal timescale tth = Σ v2
S/F (R) ∼ R3v2

S/GMν, and the

viscous timescale tν = R/vR ∼ R2/ν ∼ α−1(H/R)−2tϕ. It is reasonable to assume that lo-

cal mechanical oscillations, which can translate into fluctuations of the mass accretion rate

4Ṁ , occur at all radii in the disk, can have radial, azimuthal, and vertical modes, and can

be of different frequency and amplitude, possibly conforming with some radial distribution

law. Let us demonstrate that such perturbations happen on the local dynamical timescale

tϕ. Local disk perturbations may be caused by various oscillatory and instability-related

processes in the rotating gas, including particle orbits eccentricities initiated by irregulari-

ties in mass supply or disturbances from the companion star, relaxation fluctuations due to

Rayleigh-Taylor instabilities in the disks with inhomogeneous vertical structure [54], inertial

and coupled oscillations, p− and g−mode trapped disk oscillations [57], [20], oscillations

due to magnetic force (MRI), etc. At basics, however, all such oscillation mechanisms essen-

tially come down to perturbing Keplerian orbits of gas particles. In a non-relativistic disk,

under an assumption of ”smallness” of perturbations it can be shown that their dominant

oscillation frequency in either r̂, or ϕ̂, or ẑ directions scales with radial position as the Ke-

plerian angular velocity νdr ∝ νK(R). Due to presence of viscosity between adjacent layers
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of rotating matter these oscillations diffuse out into neighboring disk annuli, and therefore

decay with time.

4.2.1 Small perturbations of a Keplerian orbit

To prove our statement let us now analyze the problem of stability of the modified Keplerian

orbit. We will consider the simplest case of the circular orbit and prove that the small

perturbations of such orbits are stable and have the same period as the original orbit.

Assume that a particle of mass m is orbiting another particle of mass M � m at distance

r = r0, such that its orbit lies in the r̂ϕ̂−plane of the cylindrical coordinates (r, ϕ, z). The

effective gravitational potential of the two interacting masses is given by

Ueff(r) = −GmM
r0

+
l2

2µr2
0

, (4.35)

where the reduced mass µ = mM/(m + M), and the angular momentum l = µr2
0ϕ̇ is

conserved. Since m�M , µ ≈ m. It is easier to proceed if we move to the non-inertial (in

our case rotating) frame of reference. Let us choose the frame of reference placed at the

center of the unperturbed Kepler orbit, and uniformly-rotating with the angular velocity

equal to that of the orbit Ω = ωK(r0) = ϕ̇. In such frame of reference the unperturbed

particle is at rest, because the gravitational pull is balanced by the centrifugal force

m
dv

dt
= −GmM

r2
0

r0

r0
+mΩ× (r0 ×Ω) = 0. (4.36)

Lets now perturb the particle slightly in the r̂ϕ̂−plane so that it acquires some non-zero

velocity. As a result unperturbed motion r0, ϕ0 = 0 changes into perturbed motion r =

r0 + δr(t), ϕ = ϕ0 + δϕ(t). Equation of motion for the particle m becomes

m
dv

dt
= −GmM

r2

r

r
+mΩ× (r ×Ω) + 2mv ×Ω, (4.37)
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where the last term on the right-hand side is the Coriolis force, which now appeared because

particle picked up some velocity as a result of perturbation. Cancelling out m and writing

down r and ϕ components of (4.37) we have


v̇r = −GM

r2
+ (Ω× (r ×Ω))r + 2(v ×Ω)r (4.38)

v̇ϕ = (Ω× (r ×Ω))ϕ + 2(v ×Ω)ϕ. (4.39)

We can use the Taylor series to expand 1/r2 around the small parameter:

1
(r0 + δr)2

≈ 1
r2

0

− 2
r3

0

δr.

After calculating r and ϕ components of the vector products in (4.38) and (4.39) we obtain


δ̈r = −GM

r2
0

+
2GM
r3

0

δr + Ω2r0 + Ω2δr + 2Ωr0δ̇ϕ (4.40)

r0δ̈ϕ = −2Ωδ̇r, (4.41)

where v̇r = δ̈r, v̇ϕ = r0δ̈ϕ. First and third terms on the right-hand side of equation (4.40)

represent the unperturbed orbit and balance each other out, therefore yielding

 δ̈r = kδr + ar0δ̇ϕ (4.42)

r0δ̈ϕ = −aδ̇r, (4.43)

with k = 2GM/r3
0 + Ω2, a = 2Ω. This system of equations can be solved by differentiating

(4.42) with respect to time, followed by substitution of (4.43):

v̈r = kδ̇r + ar0δ̈ϕ = (k − a2)δ̇r = (k − a2)vr. (4.44)
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Or, after substituting back expressions for k and a

v̈r + ω2
oscvr = 0, (4.45)

ω2
osc = 4Ω2 − 2GM

r3
0

− Ω2. (4.46)

Recalling that our frame of reference is uniformly-rotating with Ω = ωK(r0) =
(
GM/r3

0

)1/2,

we have from (4.46)

ωosc =

√
GM

r3
0

= ωK(r0). (4.47)

Equation of free oscillations (4.45) has solution

vr = C1sin(ωosct) + C2cos(ωosct) = δ̇r. (4.48)

δr is obtained by integration of the last equation

δr(t) =
1
ωosc

[−C1cos(ωosct) + C2sin(ωosct)] + C3. (4.49)

Solution for δϕ(t) can be found by integrating equation (4.43)

δ̈ϕ = −2Ω
r0

[C1sin(ωosct) + C2cos(ωosct)] (4.50)

twice, giving

δϕ(t) =
2

ωoscr0
[C1sin(ωosct) + C2cos(ωosct)] . (4.51)

Solutions for small oscillations δr and δϕ (4.49) and (4.51) show that both are stable (sine

and cosine have bounded variations) and occur at the same angular frequency equal to
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the Kepler angular frequency of the unperturbed orbit, i.e. ωosc = ωK(r0) as follows from

equation (4.47).

Let us now analyze a small perturbation δz in z−direction that rotates the original orbital

plane by a small angle θ, but leaves the radius of the orbit r = r0 unaltered. Obviously,

such perturbation changes the angular momentum of the system. Because of the angle,

attractive gravitational force acquires an additional z−component

Fz = −GmM
r2

0

· sinθ = −GmM
r2

0

· δz
r0
. (4.52)

This is the only non-zero force component acting in z, therefore the equation of motion is

simply

mδ̈z = −GmM
r3

0

δz. (4.53)

After dividing out m, we have

δ̈z +
GM

r3
0

δz = 0. (4.54)

As in case of rϕ− perturbations, we obtained equation of free oscillations, which solutions

are sines and cosines (and therefore bounded) with the angular frequency equal to the

Keplerian angular frequency ωK(r) (4.47) of the unperturbed orbit.

It is also possible to show that in more general case of Keplerian elliptical orbits, the same

result will hold, but we would have to deal with the time dependence of the coefficients in

linearized equations of motion (4.42), (4.43), (4.54).

4.2.2 One-time/continuous Damped Harmonic Oscillator source

From the above considerations it is natural to assume, that for each annulus of the disk

the driving force can be modeled by the Damped Harmonic Oscillator (DHO) with the

initial (undamped) angular velocity equal to the Keplerian angular velocity ωK (2.1) at
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given radius. For mass m and spring constant k the unforced DHO satisfies equation

ẍ+
1
Q
ω0ẋ+ ω2

0x = 0, (4.55)

where ω2
0 = k/m and the quality factor Q = ω0/4ω characterizes decay time of the os-

cillator. Free DHO equation can be solved with the help of an auxiliary equation q2 +

(ω0/Q)q+ω2
0 = 0 and the substitution x = eqt. For Q > 1/2 (underdamped case) the DHO

will experience oscillations with the amplitude gradually decreasing to zero and at a slightly

modified frequency than the undamped case

x(t) = A sin
(
ω0t

√
1− 1

4Q2
+ ϕ

)
e−

Γ
2
t, (4.56)

where the dampening factor Γ ≡ 4ω = ω0/Q. The solution of the free underdamped

oscillator with f0 = 100 Hz, and Q = 5 is shown on Figure 4.1. The characteristic decay

time (after which the amplitude drops by factor e) is determined from e−t/t0 where t0 =

2Q/ω0. We will use the source term defined by the solution (4.56) (”one-time” source)

of the unforced equation in order to study the solution of the disk diffusion equation and

behavior of the power density spectrum on a ”characteristic” timescale of the system:

f1t
dr(R, t) = A(R) sin

[
ωK(R)t

√
1− 1

4Q2
+ ϕ

]
e−

Γ(R)
2
t, (4.57)

where superscript ”1t” stands form ”one-time”. Notice that f1t
dr(R, t) is not a separable

source, i.e. it can not be written as a product of space and time parts R(R)ϕ(t). Driving

perturbations described by (4.57) once started at time instant t = 0 gradually decay to

zero as time goes to infinity, without ever being re-excited. Even though not realistic,

such a source allows to study all the principal properties of the solution 4Ṁ(R, t) and
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reproduces the key power spectrum features. It is clear from relations ωK(R) ∝ R−3/2

and Q = ωK(R)/4ω that the fastest oscillations occur at the smallest radii also have

shortest decay time, while the slowest ones, that occur at the largest radii, decay on longer

timescales. The obvious shortfall of such a source is that at long-enough times only the

slowest oscillation modes survive, which of course is never the case in reality. However,

(4.57) is sufficient to produce the principal solution on a characteristic/local (for a given

radius) timescale. Therefore, we labeled it the ”one-time” perturbation source. In order

to simulate a more realistic variable source of perturbations, that gets randomly re-excited

over time, with each following state based only on the previous state, one usually uses the

autoregressive scheme, called the Markov chain [21]. A Markov chain produces a stationary

series resulting from a stochastic process. In our case, with both dampening and oscillating

terms present in the perturbation source, the quadratic autoregressive scheme should be

implemented, where the n-th member of the series is given in terms of the previous. Such a

process can be modeled using the numerical solution of the forced DHO equation, where the

external force on the right-hand side is assigned a random value (for instance a Gaussian

deviate with zero mean and variance σ2) at each time instant

f̈ st
dr +

1
Q
ωKḟ

st
dr + ω2

Kf
st
dr = Fext(t), (4.58)

where superscript ”st” stands for stochastic, Fext is a random deviate distributed as

f(x) =
1√
2πσ

e−x
2/2σ2

. (4.59)

The variance of the distribution determines the resulting amplitude f st
dr(R, t), which is a

function of radius. The radial dependence of f st
dr can be understood from the following

argument. In order to have a detectable effect on the oscillator m attached to a spring with

a spring constant k, the external force Fext should have an amplitude comparable to the
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product of the spring constant and displacement

Fext

m
∼ k

m
4x = ω2

04x. (4.60)

I.e., in order to achieve a unit displacement Fext/m should be of order ω2
0. In the case

of excitation of Keplerian orbits displacement 4x is replaced with the amplitude of the

resulting driving force f st
dr and ω0 is replaced with ωK(R). Thus, for a given excitation

amplitude Fext in (4.58), the response f st
dr(R, t) will be a growing function of radius (as

angular velocity ωK decreases with radius as R−3/2). Introducing new variables u = f st
dr(t),

and v = ḟ st
dr(t) a second-order equation (4.58) can be written as a system of the two first-

order equations

 u̇ = v, (4.61)

v̇ = Fext(t)− αv − βu, (4.62)

where α = ωK/Q, β = ω2
K. One can write a solution of the system (4.61), (4.62) in terms

of the first-order forward finite difference (forward Euler method):

 vk+1 = vk +4t [Fext(tk)− αvk − βuk] , (4.63)

uk+1 = uk + vk4t. (4.64)

A system of equations (4.63), (4.64) can be easily written in a computer code. A continuous

stochastic perturbation source f st
dr(R, tk) (shown on Figure 4.2) as a solution of (4.58), (4.63)

and (4.64) allows to solve for a much more realistic time signal, which exhibits life-like

fluctuations in phase and amplitude, aka the photon ”lightcurve”, with all disk oscillation

frequencies present at any arbitrarily-remote instant of time.
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Figure 4.1: Unforced damped harmonic oscillator (4.56) with Q = 5.
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Figure 4.2: Damped harmonic oscillator (4.58) with random external force term (4.59).
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4.3 Validation of the numerical method

Implementation of the numerical algorithm in the computer code must be checked to ensure

its functionality and tested to produce the anticipated output. Such testing can be done

by solving numerically a problem, the answer for which is known from exact analytical

calculation, and comparing the results. It turns out that the diffusion problem for the

extended Keplerian disk (4.3) can be solved analytically for certain values of parameters in

the equation. Considered below are

• exact analytical solution of the initial-value problem for Keplerian configuration and

comparison of the analytical result against numerical,

• exact analytical solution of the diffusion problem with the time-dependent perturba-

tion source for Keplerian configuration and comparison of the analytical result against

numerical.

4.3.1 Initial-value problem for Keplerian configuration

The simplest relevant problem can be formulated as the initial-value problem for the dif-

fusion equation (4.3) with no source term, and with the appropriate initial and boundary

conditions. In order to simultaneously test both Dirichlet and Neumann boundary con-

ditions consider the following initial-value problem specified over arbitrary spatial region

rmin ≤ r ≤ rmax:



∂u

∂t
= 3ν0R

−2
0 r−ψoutr

1/2 ∂

∂r

[
rψ−1/2∂u

∂r

]
, rmin ≤ r ≤ rmax, (4.65)

u(rmin) = 0, (4.66)

∂u

∂r
(rmax) = 0, (4.67)

u(r, 0) = f(r), (4.68)

80



where the initial condition is defined as

f(r) =

−A(r − rmin − ε)2 +B, for rmin ≤ r ≤ rmin + ε, (4.69)

u0 = const, for rmin + ε ≤ r ≤ rmax, (4.70)

and coefficients A and B are determined from

−A(r − rmin − ε)2 +B = 0, at r = rmin, (4.71)

−A(r − rmin − ε)2 +B = u0, at rmin + ε. (4.72)

Example of such initial condition is demonstrated on the Figure 4.3 for rmin = 1, ε = 0.1,

and u0 = 1. Defined above function f(r) is a parabola on the interval rmin ≤ r ≤ rmin + ε,

which then smoothly turns into a constant at radius rmin + ε. Let us now assume that

r

1 1.05 1.1 1.15 1.2

f(
r)

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Example of the initial condition (4.69), (4.70) with rmin = 1, ε = 0.1, and
u0 = 1.
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viscosity is a linear function of radius, i.e. ψ = 1. Applying method of separation of

variables u = X(r)T (t) we obtain


d

dr

(
r1/2dX

dr

)
+ λ2ρ(r)X = 0, (4.73)

T (t) = Ae−λ
2t. (4.74)

where ρ(r) = βr−1/2, β = R2
0/3ν0 r

ψ
out. Radial equation

rX ′′ +
1
2
X ′ + λ2βX = 0 (4.75)

is a type of Bessel equation and has solution

X(r) = r1/4
[
C1J1/2(2λ

√
βr) + C2Y1/2(2λ

√
βr)
]
. (4.76)

Asymptotic forms of Bessel functions of order 1/2 have exact representation in trigonometric

functions (this is the reason for choosing viscosity index ψ = 1)


J1/2(x) =

√
2
πx

cos(x− π/2), (4.77)

Y1/2(x) =

√
2
πx

sin(x− π/2). (4.78)

Thus, using (4.77) and (4.78), the solution of the radial solution becomes

X(r) = (πλ)−1/2β−1/4
[
C1sin(2λ

√
βr)− C2cos(2λ

√
βr)
]
. (4.79)
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Dropping a constant factor (which is canceled out in the final solution anyway), and intro-

ducing ω = 2λ
√
β, ξ =

√
r, expression for X(r) can be reduced to

X(r) ∝ C1sin(ωξ)− C2cos(ωξ) = C0sin(ωξ + φ0) = C0sin [ω(ξ − ξ0)] , (4.80)

where C0 =
√
C2

1 + C2
2 , tg(φ0) = −C2/C1. The boundary conditions (4.66), (4.67) give us

equations for X(r) and λ

 sin [ω(ξmin − ξ0)] = 0, ξ0 = ξmin, (4.81)

cos [ω(ξmax − ξ0)] = 0, ωk(ξmax − ξ0) = π/2 + kπ, k = 0, 1, 2 · · · (4.82)

Switching back from ω and ξ to our regular variables, we find the spatial eigenfunctions

Xk(r) ∝ sin
[
2λk
√
β(
√
r −
√
rmin)

]
, (4.83)

where the eigenvalues are given by

λk =
(k/2− 1/4)πβ−1/2

√
rmax −

√
rmin

, k = 1, 2, · · · (4.84)

The full solution of the initial-value problem (4.65)-(4.68) is then written as a series

u(r, t) =
∞∑
k=1

XkAke
−λ2

kt, k = 1, 2, · · · (4.85)

Consider now time instant t = 0:

u(r, 0) =
∞∑
k=1

XkAk, k = 1, 2, · · · (4.86)
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It is easy to show that the differential operator in equation (4.73) is self-adjoint, and hence

its eigenfunctions {Xk} form a complete orthonormal basis, such that (4.86) represents an

eigenfunction expansion of u(r, 0) in {Xk}, with the Fourier coefficients

Ak =
∫ rmax

rmin

u(r, 0)
Xk(r)
||Xk||2

ρ(r)dr, (4.87)

where the eigenfunction’s norm is

||Xk||2 =
∫ rmax

rmin

Xk(r)2ρ(r)dr. (4.88)

Therefore, we obtain

u(r, t) =
∞∑
k=1

ck
||Xk||2

Xke
−λ2

kt, k = 1, 2, · · · , (4.89)

with

ck =
∫ rmax

rmin

u(r, 0)Xk(r)ρ(r)dr. (4.90)

For the purpose of calculation of expansion coefficients ck one can always set ε → 0 in

(4.69), (4.70), approximating function u(r, 0) in the integral (4.90) with u0. This is a

valid approximation, because in the limit of infinitely small ε contribution of the region

rmin ≤ r ≤ rmin + ε to the integral (4.90) will be infinitely small. This provides for a simple

calculation of ck:

ck = u0

∫ rmax

rmin

Xk(r)ρ(r)dr. (4.91)
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Using formulas (4.83), (4.88), and (4.91) we find

||Xk||2 = β

∫ rmax

rmin

sin2
[
2λk
√
β(
√
r −
√
rmin)

]
r−1/2dr. (4.92)

Likewise

ck = βu0

∫ rmax

rmin

sin
[
2λk
√
β(
√
r −
√
rmin)

]
r−1/2dr. (4.93)

A constant factor β is divided out in the final sum, so it can be neglected. Thus, after

taking definite integrals, we obtain

||Xk||2 ∝ r1/2 − 1
4λk
√
β

sin
[
4λk
√
β(
√
r −
√
rmin)

]∣∣∣∣rmax

rmin

(4.94)

ck ∝ −
1

λk
√
β

cos
[
2λk
√
β(
√
rmin −

√
r)
]∣∣∣∣rmax

rmin

(4.95)

Finally, the solution of the initial-value problem (4.65)-(4.68) is given by formulas (4.83),

(4.84), (4.89), (4.94), (4.95). For this ”validation run” we assume a 10M� black hole, where

characteristic viscosity in the disk is ν0 = λtvt ≈ 0.1 routR0vt, with vt ≈ 4 × 106 cm/s. A

solution for region 1 ≤ r ≤ 2 with the initial condition u0 = 10 is shown on Figure 4.4 (top

panel). Color depth represents the value of u(r, t) at each point (ri, tj). Calculation was

done on a 500 × 2000 space-time grid with a time step 4t = 1 × 10−5 s. It is clear that

presented solution satisfies initial and boundary conditions and that uniform distribution

u(t = 0) diffuses out to zero as time goes to infinity. In order to compare the results

of analytical and numerical calculations, I used the scatter plot visual representation, on

which a single dot is drawn for a pair of solutions ua, un at node (ri, tj). X/Y axes scales

correspond to the amplitude ua/n computed by analytical/numerical methods. This way of

comparing the results gives a clear and comprehensive picture on how the two solutions

85



Figure 4.4: Analytical solution of the initial-value problem (4.65)-(4.68) (top panel),
Numerical solution plotted against analytical as a scatter plot (bottom panel).
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agree (or disagree) with each other. Drawing just the relative error (ua−un)/ua can often

lead to false perception, when both quantities are much less than unity. If the numerical

result perfectly reproduces the analytical one, the scatter plot would look like an infinitely

narrow straight line with the slope of 1. The width of the line (width of the transverse

”profile” of the scatter) indicates how well the two solutions agree. The scatter plot shown on

the bottom panel of Figure 4.4 demonstrates a remarkable agreement between our solutions,

as all points are grouped in a very tight band, with no a single outlier, resembling a straight

line with the slope equal 1. This result was anticipated for a highly-accurate Crank-Nicolson

scheme with the small time step used. This test, therefore, establishes the validity of

the numerical scheme, when solving the initial-boundary-value problem without the source

term. In this study we intend to solve a diffusion equation with the perturbation source

varying in both space and time, therefore such configuration should also be tested. The

unforced damped harmonic oscillator with angular frequency, varying as a function of radius

as Keplerian angular velocity, is a good model for distributed perturbations in the accretion

disk:

fdr(R, t) = A(R) cos
[
ωK(R)t

√
1− 1

4Q2
+ ϕ

]
e−

Γ(R)
2
t, (4.96)

where ωK is given by (2.46) [via ω(r) = ω0θ(r)], damping coefficient Γ = ωK/Q, and Q is

the coherence factor. Solution of the diffusion problem with the space and time dependent

source term can be obtained as a time integral

u(r, t) =
∫ t

0
u†(r, t− t′)dt′, (4.97)

where u†(r, t) is the solution of the homogeneous equation with the initial condition u†(r, 0) =

S(r, t). It is not hard to see that solving the homogeneous equation will inevitably result

in a non-trivial integral, when calculating Fourier coefficients in the expansion (4.89) (due

to non-trivial initial condition at each time instant). This makes it difficult to write down
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the exact analytic formula, which can be used to verify the numerical result. Our goal is to

check that numerical method solves the non-homogeneous equation. For the source function,

which depends only on time, the solution of the non-homogeneous equation is considerably

more manageable. Setting ωK = ω = const, A = const throughout rmin ≤ r ≤ rmax, allows

us to write u(r, t) as a convolution of the time-dependent source S(t) = Acos(ωt)e−(Γ/2)t

with the (already known) solution of the homogeneous problem (4.65)-(4.68)

u(r, t) =
∫ t

0
u∗(r, t− t′)S(t′)dt′, (4.98)

where u∗(r, t) is given by (4.89). Integral (4.98) is taken in elementary functions, such that

u(r, t) = A

∞∑
k=1

ck
||Xk||2

Xke
−λ2

kτ−Γ/2(t−τ)

{
(Γ/2− λ2

k)cos[ω(t− τ)]− ωsin[ω(t− τ)]
λ4
k − Γλ2

k + Γ2/4 + ω2

}∣∣∣∣∣
t

0

,

(4.99)

where we changed the variable of integration to τ = t − t′. The top panel of Figure 4.5

displays the solution (4.99) of the boundary-value problem with the time-varying source

term



∂u

∂t
= 3ν0R

−2
0 r−ψoutr

1/2 ∂

∂r

[
rψ−1/2∂u

∂r

]
+Acos(ωt)e−

Γ
2
t, rmin ≤ r ≤ rmax,(4.100)

u(rmin) = 0, (4.101)

∂u

∂r
(rmax) = 0, (4.102)

as a color-coded plot on the same grid, with same space/time steps, as were used for the

initial-value problem. Angular frequency was chosen to be ω = 1370 rad/s, as the highest

Keplerian frequency ωmax
K at rmin = 1. With the time step 4t = 1× 10−5 s, one period of

such oscillations is sampled ∼ 460 times, which is more than enough for smooth rendering.
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Figure 4.5: Analytical solution of the boundary-value problem with the oscillating source
(top panel), Numerical solution plotted against analytical as a scatter plot (bottom panel).
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Comparison against the numerical result, in form of the scatter plot, is shown on the

bottom panel of Figure 4.5. We notice the same exceptional consistency between the two

solutions as we observed for the homogeneous problem. This result completes validation of

the numerical method.

4.4 Solution of the diffusion propagation problem in transi-

tion layer

Diffusion equation for accretion rate perturbations u = 4Ṁ in the non-Keplerian transition

layer is given by

∂u

∂t
= ν0R

−2
0 r−ψadj r

γ−1 ∂

∂r

[(
γ

2− γ
rψ+1−γ +

2
2− γ

(D−1
1 − 1)rψ−1

)
∂u

∂r

]
+ fdr(r, t). (4.103)

In order to proceed with the numerical solution we have to assign numerical values to its

coefficients. All the quantities in (4.103), besides the value of kinematic viscosity ν0 at

radius radj, are defined by the two parameters of the accreting compact object: its mass

and its rotational frequency. Estimate for viscosity can be obtained from the following

reasoning. The standard theory of accretion disks by Shakura & Sunyaev, 1973, [47] states

that viscosity is defined by characteristic turbulent size and turbulent velocity

ν ∼ λtvt, (4.104)

where λt can not exceed the characteristic size of the configuration, vt can not be greater

than speed of sound. For the transition layer it is typically assumed that its height is

comparable to its radial size [55]. This gives us an estimate for the size of the configuration:

δTL = Radj −Rmax. Speed of sound in the region is determined by the photon temperature

vS ≈ 0.001 c

√
kBT

0.938
, (4.105)
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where kBT is in units of keV. For this modeling we will suppose that photon energies

vary approximately from ∼ 5 keV in a high-soft state to ∼ 50 keV in a low-hard state (a

typical range observed in spectral transitions of X-ray binaries) and that vt ≈ 0.2 vS, and

λt ≈ 0.2 δTL. We impose the same boundary conditions, as were used in the analytical

solution, i.e. ∂u/∂r = 0, at r = rmax, and u = 0 at r = radj. Steps 4t and 4r in the finite

difference scheme (4.10) were determined from the conditions that the fastest oscillation

period in the system (the inverse of the Keplerian frequency at the inner boundary) does not

vary significantly over one step in time, as well as, the solution, for a given time step, does not

change significantly over one step in radius. Specifically, the time step 4t = 10−4 s and 200

spatial intervals we used to solve the diffusion problem for the transition layer. Figure 4.6

displays the solution of the diffusion equation (4.103) for viscosity index ψ = 0, parameter

γ = 3, and the quality factor Q = 4 in the driving source. The top panel corresponds to the

”one-time” perturbation source (4.57). The bottom panel corresponds to the continuous

source term, determined by equations (4.58), (4.63), (4.64). The horizontal scale represents

the dimensionless radius r = R/R0, where R0 = 3RS, the vertical scale is time in seconds.

Color depth measures the amplitude of the solution. The merits of the ”one-time” source

are now clearly seen. Both oscillating and decaying behavior of the solution is obvious. We

notice that the outer parts of the region indeed oscillate at a lower frequency than do the

inner parts, since the perturbation source is distributed according to ωK ∝ r−3/2. Likewise,

the oscillations at the smaller radii are also decaying at a faster rate. It is even possible to

envision the shape of the power spectrum of the integrated solution. There will be less or

more defined periodic component, associated with the solution oscillations. For the signal

integrated over radius, the centroid of the quasi-periodic variability peak will correspond to

the radius-averaged frequency. Power spectrum should also contain a distinctive aperiodic

component, reflecting the exponential decay of the solution with time. From our previous

analysis, we anticipate its power spectrum to be given by a zero-centered Lorentzian with

the ”break” defined by the diffusion timescale, which is determined by the characteristic

time ν0R
−2
0 and the diffusion coefficient, which is a function of γ and ψ. None of these
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Figure 4.6: Solution 4Ṁ(r, t) for a ”one-time” perturbation source (4.57) (top panel), and
for a continuous stochastic source defined as a numerical solution of equations (4.58), (4.59).
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conclusions could be drawn from the solution of the equation with the stochastic per-

turbation source. In fact, it may seem like it exhibits completely random variation in both

space and time, with the only little clue in that the typical size of the ”blobs” on the plot

tend to be smaller for the smaller radii, where the oscillation frequency of the driving source

is higher. This is where Fourier power spectral analysis comes in very helpful.

4.4.1 Power spectrum from transition layer

From (2.24), (2.25) we obtain that the total X-ray signal, emerging from the transition layer

region, is given by the integral

4L(t) ∝
∫ radj

rmax

4Ṁ(r, t)
[
r−2 − r−5/2

]
dr. (4.106)

Figures 4.7 and 4.8 show examples of the integral solution, for the”one-time” and the

stochastic perturbations sources in the diffusion equation. These can be thought of as the

time profiles of two the dimensional solutions, shown on Figure 4.6. Power spectrum of the

integrated signal can be calculated, using standard Fast Fourier Transform libraries. I used

the popular FFTW C library. The FFT computes the discrete Fourier transform (DFT) of

a uniformly-spaced time series Xk of length N

Yk =
N−1∑
j=0

Xje
−i2πj k/N . (4.107)

The power spectrum for the k− th harmonic is defined as Y ∗k Yk, where the asterisk symbol

stands for complex conjugation. The Nyquist frequency is determined by the sampling time

interval: for 4t = 10−4 s, νNYQ = 1/(24t) = 5000 Hz. We do not anticipate to see any

features in the power spectrum far above the highest Keplerian frequency. For the largest

value of Reynolds number, γ = 80, the inner radius of the transition layer rmax ≈ 1.046

corresponds to the Keplerian frequency νK|r=rmax
≈ 206 Hz. Thus, for plotting, we limit
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Figure 4.7: Integrated over transition layer solution of the diffusion equation with ”one-
time” perturbation source.
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Figure 4.8: Integrated over transition layer solution of the diffusion equation with continuous
perturbation source.
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the upper boundary of the spectrum at 500 Hz. The solution time series was calculated

on 200,000-point time grid, so the low frequency limit in the power spectrum is given by

νmin = 1/(N4t) = 0.05 Hz. This also determines the frequency resolution of the spectrum

4f = 0.05 Hz. The diffusion propagation problem was solved for the three values of

Reynolds number: γ = 3, 10, and 80. According to [60], [61] the range 3 . γ . 80,

inferred from observations, approximately corresponds to evolution of X-ray source from

low-hard to high-soft spectral state. Radial independence of viscosity was assumed within

the transition layer (ψ = 0). In fact, solution with viscosity indexes ψ = 1, 2, that imply

linear or quadratic dependence of viscosity on radius, resulted in almost identical solutions

to the one with ψ = 0, showing that for the tenuous transition region uniform viscosity

distribution may be a good approximation. The power spectra, calculated for the ”one-

time” and continuous perturbation sources in the diffusion equation, are shown on Figures

4.9 and 4.10 correspondingly. The power spectra are presented in a log-log scale and are

normalized to the maximum value. One can clearly identify the two main features of the

spectra: the aperiodic ”white-red” noise component, given by the sum of zero-centered

Lorentzians, with the characteristic ”break”, corresponding to the diffusion timescale, and

the quasi-periodic peak in the hecto-Hertz range, corresponding to the mean frequency

of driving perturbations. A very strong dependence of the power spectrum normalization

on Reynolds number is obvious. This behavior is anticipated and was predicted by the

analytical solution. It is worth noting that both features, the ”break” and the QPO peak

are shifted into higher frequencies as γ increases. Power spectrum decay, accompanied by a

high-frequency shift of its features, as an X-ray source makes a transition from low-hard to

high-soft state, is a well-established observational result. That gives us some confidence in

that our simple model not only does not contradict the observational facts, but, in fact, is

capable of explaining and predicting them, to some extension. The striking similarity of the

power spectra, calculated using the realistic continuous source term in the diffusion equation,

to the real power spectra, calculated from the photon lightcurves, is also remarkable. It has

to be emphasized, however, that presented spectra were created for the specific values of
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Figure 4.9: Power spectrum of the integrated signal for different values of Reynolds number.
”One-time” perturbation source.
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Figure 4.10: Power spectrum of the integrated signal for different values of Reynolds number.
Continuous perturbation source.
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parameters, and can vary wildly, depending on the way viscosity ν0 is defined, coherence

of the QPO peak, amplitude of the driving force, relation between the photon’s temperature

and Reynolds number of the flow, distribution of the driving perturbations in the disk, etc.

Physical processes, not included in the model, for instance, hot plasma outflow in the

centrifugal barrier (the outer boundary of the transition layer), particularly important in

the high-soft state, can significantly diminish the presence of the QPO feature, to the degree

that it may not be detectable at all [55].

4.4.2 Fractional variability amplitude of the lightcurve as a function of

Reynolds number

Variability of the photon lightcurve can be characterized by the quantity, known as the

fractional root-mean square (RMS) amplitude. In the analysis of real-life lightcurves the

intrinsic variability amplitude relative to the mean photon count rate and in excess of

measurement noise is defined as follows

Fvar =

√
S2 − 〈σ2

err〉
〈X〉2

. (4.108)

Here S2 is the total variance of the light curve, 〈σ2
err〉 is the mean square error accounting

for the noise, instrumental and statistical errors, 〈X〉 is the mean count rate. In our case,

where we do not model individual photons and no instrument errors exist, 〈σ2
err〉 = 0. If we

assume that the diffusion equation (4.103) is written for the quantity 4Ṁ/Ṁ , where Ṁ is

a steady-state accretion rate (analogous to mean count rate), then the expression (4.108)

reduces to

Fvar =

√√√√ 1
N

N∑
n=1

[u(tn)]2, (4.109)
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where u(tn) is the solution time series of length N . Figure 4.11 shows the RMS amplitude

(4.109) computed for the space-integrated solution of the diffusion equation (4.103) with

the continuous perturbation source, for Reynolds number γ varying from 3 to 30. The RMS

amplitude on the plot should not be considered as a meaningful quantity by itself, since

it is directly proportional to the amplitude of the driving oscillations and depends on the

value of Ṁ , which we do not model. The general trend, however, has the meaning, as well

as the relative change in the RMS with varying γ. It is easy to see from the plot that as

γ increases by a factor of two (from 3 to ∼ 6) the RMS amplitude drops by a factor of

10. For γ = 30 the RMS amplitude is ∼ 320 times smaller than for γ = 3. Our modeling

predicts a very rapid decay of variability amplitude with growing Reynolds number. It can

be shown that this is a direct consequence of the way the diffusion coefficient in equation

(4.103) and size of the transition region depend on Reynolds number. Qualitatively this

can be explained using the following reasoning: γ−dependent part of the diffusion operator

in equation (4.103) can be expanded as

rγ−1 ∂

∂r

[(
µr1−γ + ξr−1

) ∂u
∂r

]
= (µ+ ξrγ−2)u′′ +

[
µ(1− γ)r−1 − ξrγ−3

]
u′. (4.110)

Evaluating coefficients and taking characteristic radius to be the average radius in the

region, yields µ = −3, ξ ≈ 2.11, 〈r〉 ≈ 2.13 for γ = 3, and µ = −1.07, ξ ≈ 0.082, 〈r〉 ≈ 1.12,

for γ = 30. I.e. the right-hand side of the diffusion equation proportional (neglecting the

constant factor in front of the diffusion coefficient and dropping the source term) to

RHS(Eqn.(4.103)) ∝

 1.5u′′ + 0.7u′, for γ = 3, (4.111)

0.9u′′ + 26u′, for γ = 30. (4.112)

Notice that the multiplying factor at u′ increased by a factor ∼ 37, while the coefficient at

u′′ has not changed substantially, as Reynolds number changed from γ = 3 to γ = 30. It is
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not hard to show that the large factor at u′ will result in a very weak dependence of solution

on radius. Keeping in mind that at the same time the size of the transition layer shrank

by a factor 27, and the boundary condition u = 0 at r = radj, it becomes apparent that

combination of the above conditions will result in significant suppression of the amplitude

of the solution in the region. It is interesting to notice that for real X-ray sources the RMS

amplitude decays from roughly ∼ 40% to a few percent, as the source makes a transition

from hard state to soft state. Clearly, our calculation produces the correct trend, though

the rate of amplitude decay seems to be exponential.
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Figure 4.11: RMS amplitude as a function of Reynolds number.
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4.4.3 Magnetoacoustic oscillations of the transition layer

Titarchuk, Bradshaw, and Wood, 2001, [63] developed a general formalism of magnetoa-

coustic (magnetosonic) radial oscillations in the transition layer. In their model the magne-

toacoustic frequency is derived as the eigenfrequency of the boundary-value problem, which

results from an MHD treatment of the interaction of the transition layer with the magnetic

field. The principal idea behind their model is following. Introducing small perturbations

to the parameters (matter density, velocity, and magnetic field) of the transition layer

ρ = ρ0 + ρ1, V = V 0 + V 1, B = B0 + B1, (4.113)

and assuming that B0 = B0ez and V 1 = V1er, they combined the continuity equation,

the equation of motion, and the ideal gas equation to obtain the fundamental equation for

magnetoacoustic oscillations in the transition layer. Its radial component reads

∂2V1

∂t2
− v2

S

∂

∂r

(
1
r

∂rV1

∂r

)
− VA

∂

∂r

(
1
r

∂rVAV1

∂r

)
= 0. (4.114)

Combined with the boundary conditions (both stiff and free boundary conditions on V1 were

considered) this equation allows to solve for the eigenfrequencies of the magnetoacoustic

oscillations in the transition layer. The solution yields a resulting velocity as a mixture of

speed of sound and the Alfven velocity, becoming either one at the appropriate limit (pure

acoustic or pure magnetic cases). In the case of the weak magnetic field the magnetoacoustic

oscillation frequency is given by

νS =
vS

2πL
, (4.115)

where speed of sound vS is determined by plasma temperature T and L = Radj − R0 is

the radial size of the transition layer. We recall that for a given Reynolds number γ the

radial size L of the transition region is determined by (2.50). Using our phenomological

relation (see section ”Solution of the diffusion propagation problem in transition layer”)
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between temperature and spectral state (which is determined by the Reynolds number)

one can obtain the temperature of plasma. Therefore, using L and T , the magnetoacoustic

oscillation frequency νS can be found immediately. Figure 4.12 shows the power spectra

for γ = 3, 10, and 80 with the transition layer oscillation frequencies (low-frequency quasi-

periodic oscillation) added to the continuum. The normalization and coherence parameters

of the peaks were chosen to reproduce the ones observed in the data. Even though, the low-

frequency magnetoacoustic QPO feature is not a direct outcome of our diffusion model, its

location on a frequency scale in the power spectrum, as a function of spectral state, certainly

is. One can clearly see that the position of the low-frequency QPO peak is drifting towards

high frequency, as do other power-spectral components (high frequency QPO and ”break” in

the continuum), as γ increases from 3 to 80 and the transition zone becomes more compact.
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Figure 4.12: Power spectrum of the integrated solution of the diffusion equation (4.103)
with the ”one-time” perturbation source (4.57), with added magnetoacoustic quasi-periodic
oscillation low-frequency peak (4.115) for 10M� black hole with f0 = 30 Hz.
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4.4.4 Observational data

In order to draw a connection between the model predictions and the observational data, we

chose a few observations of the microquasar XTE J1550-564 by the Rossi X-ray Timing Ex-

plorer (RXTE). XTE J1550-564 is a binary system, involving ∼ 10M� black hole, with the

spin parameter a∗ ≈ 0.5, powered by the accretion disk, resulting from Roche Lobe overflow

of the massive evolved companion star. In 1998 XTE J1550-564 underwent a few powerful

X-ray flares, in one of which its X-ray flux exceeded the flux from the brightest currently

known X-ray source, Crab Nebula, by ∼ 1.5 times. During these flares the source changed

its spectral states several times. We selected the four representative observations, namely

30188-06-09-00, 30188-06-01-03, 30188-06-01-00, 3019101-03-00 for comparison. Both pho-

ton energy spectra and power density spectra were produced. Energy spectrum in 3 − 50

keV energy range was fitted by the combination of the Bulk Motion Comptonization model

(BMC), from the HEASOFT spectral fitting package XSPEC, to fit the spectrum contin-

uum, and the Gaussian model to account for the iron Kα fluorescent emission line. The

photon spectra are presented on Figure 4.13. One can clearly see the source’s evolution

from low-hard to high-soft state with the increasing strength of the soft thermal, black-body

like component and decaying hard power-law component. BMC photon index Γ changes

through values 1.6, 1.8, 2.4, 2.7 during the source transition. Figure 4.14 demonstrates the

simultaneous evolution of the power density spectrum. We used RMS2/Hz normalization

for the power spectrum. One can see that the total normalization of the PDS continuum

decays, during the source’s transition to high-soft state, accompanied by the characteristic

shift of the power-spectral features, namely the location of the ”break” frequency and the

position of the low-frequency quasi-periodic oscillation (QPO) peak. However, within the

framework of our diffusion propagation model, we cannot provide a definitive conclusion

on the (quantitative) magnitude of the power spectrum normalization decay, i.e. predict

the amount by which the normalization will change from one state to another, because we

operate with the absolute (arbitrary) units of 4Ṁ in the diffusion equation, unlike the ob-

servational data, where the relative flux variability is studied. We notice that the driving,
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high-frequency (HF) QPO is not seen in the PDS. There is clearly some power present in

the hecto-Hertz range of the power spectrum, which could be related to the distributed

driving source, but large error bars hinder appearance of the features. We associate the

prominent low-frequency QPO peak with the frequency of the magnetoacoustic oscillations

in the transition layer. One can estimate characteristic parameters of the model for a par-

ticular state and overlay model solution with the data, to demonstrate that it produces

the expected shape. This is shown on Figure 4.15 for the low-hard state. Using the lo-

cation of the significant low-frequency magnetoacoustic QPO peak as the reference point,

Shakura-Sunyaev parametrization of the viscosity, and phenomenological relation between

plasma temperature and the effective Reynolds number we calculate the PDS continuum

shape for the given compact object. Taking into account the fact that this is just the shape

produced by the solution of the diffusion propagation equation, and not the full-fledge fit-

ting model, one can conclude that the simulated continuum describes observational power

spectrum continuum pretty good. As was noticed before, the strong high-frequency driving

QPO predicted by the model, is not seen in the data, which is a rather common obser-

vational fact for the black hole X-ray sources. This can be attributed to several possibles

reasons: the weak QPO feature itself, the matter outflow (wind) from the accreter, which

smears out the narrow features into a broader frequency range, low photon flux, resulting

in higher uncertainty and larger errors. It should be noted that there are a few observa-

tions of XTE J1550-564, in which the high-frequency, driving QPO feature is present with

good significance. Despite the fact that our simple diffusion propagation formalism did not

originally aim at direct comparison to real data, but was developed as a model description

of the power spectrum shape, based on the first physical principles, it is capable of doing

the correct predictions, at least in a qualitative way. In order to have a complete model

one has to make a connection to the mass accretion rate Ṁ(R, t) in the accretion disk,

when formulating the diffusion problem. This would require a substantially more involved

treatment, which includes energy balance in the disk, accounts for gas pressure and the disk

structure in radial direction.
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Figure 4.13: Photon energy spectra of XTE J1550-564 during state transition.
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Figure 4.14: Power density spectra of XTE J1550-564 during state transition.
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Figure 4.15: Power spectrum of XTE J1550-564 overlayed with the model.

4.5 Simulation of broadband power spectrum from accreting

X-ray sources

A few works [13], [44], [61], present power spectra of X-ray binary systems, in which vari-

ability timescales vary from milliseconds to a few years. Such data carries unique timing

information about the emitting system as a whole. Analysis of mechanisms that cause such

extremely broad range variability can help to understand how the different components in

the accretion flow interact with each other. A broadband power spectrum of the neutron

star Cyg X-2, produced by [13], clearly exhibits the two (presumably independent) white-

red noise components, one with the characteristic timescale ∼ 1 Hz, the other with the

characteristic timescale ∼ 10−7 Hz. Employing the formalism of the transition layer model

of TLM98, one can argue that these two components may occur independently from the

two weakly correlated X-ray emitting configurations: a compact non-Keplerian transition
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region contained within a few RS, and, separated by a centrifugal barrier [57], [55], ex-

tended Keplerian accretion disk, which can have size of order of a few thousands RS. We

attempt to model these two configurations, using our perturbation propagation model, to

find out if it is possible to reproduce the observed two-component power spectrum, and

understand why sometimes the two components are seen in the spectrum, and sometimes

only one or the other. An obvious challenge one faces when trying to model numerically a

power spectrum in a broad frequency range is the size and number of the time steps. For

instance, if we were to sample the frequency range from 1 ms to 1 month with a single

”sweep”, the sampling time interval would have to be at least 4tNYQ = 5 × 10−4 ms (or

shorter), thus requiring ≥ 5×109 points. Generating and processing a time sequence of this

length is prohibitively time consuming task, even on a modern computer, using the most

swift fast Fourier transform (FFT) libraries. One way around this difficulty is to sample

different parts of the spectrum with shortest time intervals used to produce high-frequency

part of the spectrum) to longest (for the low-frequency part). The different pieces can than

be merged together to yield a power spectrum that subtends the entire range. However,

for our diffusion problem with the ”one-time” perturbation source (4.57), where the rate of

decay of perturbations is proportional to the oscillation frequency, only ”slow” oscillations

survive to the very long times, it may seem natural to use logarithmic time binning, where

the signal u(t) is spaced uniformly in logarithm of t. In this case d(ln t) = dt/t = const,

i.e. the time bin dt becomes broader with increasing time. Conversion from t to ln t will

result in tremendous saving in the number of points on a time grid. For example, to span

the frequency interval 1× 10−8 Hz− 1× 103 Hz with 1000 nodes per decade we would have

to generate just 11000 samples. That is 7 orders of magnitude difference with the number

of points we would need if we used regular binning. Modeling of the accretion disk that

extends to thousands of Schwarzschild radii may also be made more efficient if one converts

to logarithm of the space coordinate.
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4.5.1 Finite difference approximation for a diffusion equation on a uni-

form grid ln t and ln r

Transition from the finite difference approximation (4.11), (4.12)−(4.14) of the diffusion

equation (4.4), defined over a grid uniformly spaced in r and t to the finite difference defined

over a grid uniformly spaced in ln r, ln t requires only minor changes. If the substitution

τ = lnt is made in equation (4.4), one obtains

e−τ
∂u

∂τ
= f(r)

∂

∂r

[
D(r)

∂u

∂r

]
+ S(r, τ). (4.116)

The Crank-Nicolson scheme for equation (4.116) is

uk+1
i − uki
4τ

= eτk
fi

24r2

[
Di+1/2(uki+1 − uki )−Di−1/2(uki − uki−1)

]
+
eτk

2
Ski + (4.117)

eτk+1
fi

24r2

[
Di+1/2(uk+1

i+1 − u
k+1
i )−Di−1/2(uk+1

i − uk+1
i−1 )

]
+
eτk+1

2
Sk+1
i .

After regrouping terms, one obtains a tridiagonal system of equations suitable for solving

numerically

aiu
k+1
i−1 + biu

k+1
i + ciu

k+1
i+1 = ãiu

k
i−1 + b̃iu

k
i + c̃iu

k
i+1 +

4τ
2

(
eτkSki + eτk+1Sk+1

i

)
, (4.118)

where the coefficients on the left-hand side of equation (4.118) are



ai = −fi
4τ

24r2
eτk+1Di−1/2, (4.119)

bi = 1 + fi
4τ

24r2
eτk+1

(
Di−1/2 +Di+1/2

)
, (4.120)

ci = −fi
4τ

24r2
eτk+1Di+1/2. (4.121)
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the coefficients on the right-hand side are



ãi = fi
4τ

24r2
eτkDi−1/2, (4.122)

b̃i = 1− fi
4τ

24r2
eτk
(
Di−1/2 +Di+1/2

)
, (4.123)

c̃i = fi
4τ

24r2
eτkDi+1/2. (4.124)

For a non-Keplerian transition layer the diffusion coefficient in (4.116) is determined by

f(r) = ν0R
−2
0 r−ψadj r

γ−1, (4.125)

D(r) = µrψ+1−γ + ξrψ−1, (4.126)

µ = γ/(2− γ), (4.127)

ξ = 2/(2− γ)(D−1
1 − 1). (4.128)

Equation (4.116) can be used to solve for accretion rate fluctuations in the compact config-

uration on an extra broad range of times, using logarithmic time step dτ = d(ln t) = dt/t.

For an extended Keplerian disk the logarithmic change of variables should also be made for

spatial coordinate x = lnr

e−τ
∂u

∂τ
= f(x)

∂

∂x

[
D(x)

∂u

∂r

]
+ S(x, τ). (4.129)

Taking into account that the angular velocity in a Keplerian disk is given by (2.47), we find

that

f(x) = 3ν0R
−2
0 e−ψxoute−x/2, (4.130)

D(x) = e(ψ−3/2)x, (4.131)
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where the above assumption for viscosity was made. The tridiagonal system for the extended

configuration remains unchanged (4.118), as do the matrix elements (4.119)−(4.121) and

the right-hand side coefficients (4.122)−(4.124), with 4r replaced by 4x. Of course, in

both cases the source term has to be expressed in terms of new variables x and τ . An

obvious question now is how to calculate the Fourier transform (and the power spectrum)

of the logarithmically-spaced signal? The answer is the FFTLog algorithm.

4.5.2 (Fast) Fourier Transform of a logarithmically spaced periodic se-

quence

FFTLog algorithm was originally proposed in 1978 by [53], however its actual implemen-

tation [15], as a set of Fortran subroutines, was done in 1999. ”FFTLog can be regarded

as a natural analogue to the fast Fourier transform (FFT) of a linearly spaced periodic

sequence, in the sense that, just as the normal FFT gives the exact (to machine preci-

sion) Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the

exact Fourier or Hankel transform of arbitrary order, of a logarithmically spaced periodic

sequence”, (Hamilton, 2000) [15]. FFTLog belongs to the family of fast Hankel transform

(FHT) algorithms. One of the advantages of FFTlog is that the Bessel function order ν

in the Hankel transform may be any real number. This includes half-integer ν, and hence

Fourier sine, cosine and spherical Hankel transforms.

4.5.3 Power spectrum expressed via Fourier sine/cosine transforms

Our goal is to obtain the power density spectrum of the solution of the diffusion equation,

which is logarithmically spaced in time. The FFTLog algorithm does not produce the

Fourier transform of the form

Ff (ω) =
∫ ∞
−∞

f(t)e−iωtdt, (4.132)
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suitable for direct computation of power spectrum, but rather gives discrete approximations

of the Fourier sine and cosine transforms (FST/FCT). Let us demonstrate that the power

density spectrum, as defined by relation (B.8) (Appendix B), of a real-valued function

f =

 f(t) for t ≥ 0, (4.133)

0 for t < 0, (4.134)

can be expressed in terms of FST and FCT. Substituting the definition of the continuous

Fourier transform (4.132) of the function f(t) into (B.8), we have

||Ff (ω)||2 =
1

2π

{[∫ ∞
0

f(t)cos(ωt)dt
]2

+
[∫ ∞

0
f(t)sin(ωt)dt

]2
}
. (4.135)

On the other hand, sum of the squares of the Fourier sine and cosine transforms of f(t) is

given by

F2
S f (ω) + F2

C f (ω) =
2
π

{[∫ ∞
0

f(t)cos(ωt)dt
]2

+
[∫ ∞

0
f(t)sin(ωt)dt

]2
}
. (4.136)

Comparing (4.135) and (4.136), we have

||Ff (ω)||2 =
1
4
[
F2

S f (ω) + F2
C f (ω)

]2
. (4.137)

Thus, the power spectrum of f(t) is equal to the sum of the squares of the Fourier sine and

cosine transforms times a constant factor.

Below we consider the cases of ν = ±1/2, for which the Hankel transform is equivalent

to the Fourier sine/cosine transform, as well as, outline the key principles of the FFTLog

algorithm.
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4.5.4 Fourier Sine/Cosine Transform as a special case of Hankel Trans-

form

The continuous Hankel (Fourier-Bessel) transform of a function a(t) with the power law

bias (ωt)±q is defined as

ã(ω) =
∫ ∞

0
a(t)(ωt)qJν(ωt)ωdt. (4.138)

If the substitutions

 a(t) = A(t) t1/2−q, (4.139)

ã(ω) = Ã(ω)ω1/2+q, (4.140)

are made, then (4.138) becomes

Ã(ω) =
∫ ∞

0
ω1/2t1/2A(t)Jν(ωt)dt. (4.141)

It is easy to see that the Fourier sine and cosine transforms FS(ω), FC(ω) of the function A(t)

are special cases of the Hankel transform (4.141) with the Bessel function index ν = ±1/2,

since

J1/2(x) =

√
2
πx

sin(x), (4.142)

J−1/2(x) =

√
2
πx

cos(x). (4.143)
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Using identities (4.142), (4.143), we obtain

Ã(ω) =



√
2
π

∫ ∞
0

A(t) sin(ωt)dt ≡ FS(ω), for ν = 1/2, (4.144)

√
2
π

∫ ∞
0

A(t) cos(ωt)dt ≡ FC(ω), for ν = −1/2. (4.145)

An efficient way of calculating the Discrete Hankel Transform is realized in the the Fortran

library FFTLog (A. J. S. Hamilton, ”Uncorrelated modes of the nonlinear power spectrum”

2000) [15]. One can refer to this publication for the detailed explanation of the algorithm.

4.5.5 Parseval’s identity for the Discrete Hankel Transform

Bessel functions Jν(ωt) in the kernel of Hankel transform form an orthogonal basis with

respect to the weighting factor t. Thus the Parseval’s theorem must also hold. In the case

of the continuous Hankel transform with no power law bias (q = 0)

ã(ω) =
∫ ∞

0
a(t)Jν(ωt)tdt, (4.146)

a(t) =
∫ ∞

0
ã(ω)Jν(ωt)ωdω, (4.147)

[obtained from the definition (4.138) by the substitutions a(t)→ a(t) t, ã(w)→ ã(ω)ω] the

Parseval’s identity can be derived, using the orthogonality relationship

∫ ∞
0

Jν(ωt)Jν(ω′t)tdt =
1
ω
δ(ω − ω′). (4.148)
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Consider the integral of the product of the two inverse Hankel transforms

a(t) =
∫ ∞

0
ã(ω)Jν(ωt)ωdω, (4.149)

b(t) =
∫ ∞

0
b̃(ω′)Jν(ω′t)ω′dω′, (4.150)

over t with the weight t

∫ ∞
0

a(t)b(t)tdt =
∫ ∞

0

[∫ ∞
0

ã(ω)Jν(ωt)ωdω
∫ ∞

0
b̃(ω′)Jν(ω′t)ω′dω′

]
tdt. (4.151)

After regrouping integrals on the right-hand side of (4.151), we have

∫ ∞
0

a(t)b(t)tdt =
∫ ∞

0

∫ ∞
0

ã(ω)b̃(ω′)
[∫ ∞

0
Jν(ωt)Jν(ω′t)tdt

]
ωdω ω′dω′. (4.152)

The expression in the square brackets, according to (4.148), is ω−1δ(ω − ω′), yielding the

Plancherel’s identity for the continuous Hankel transform

∫ ∞
0

a(t)b(t)tdt =
∫ ∞

0
ã(ω)b̃(ω)ωdω. (4.153)

The Parseval’s identity is a special case of (4.153), with a = b

∫ ∞
0
|a(t)|2 tdt =

∫ ∞
0
|ã(ω)|2 ωdω. (4.154)
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Utilizing the orthogonality property of the basis functions of the discrete transform, one

obtains the discrete analog of (4.154)

N/2∑
n=−N/2

|an|2 =
N/2∑

m=−N/2

|ãm|2 . (4.155)

Recalling that for the unbiased Hankel transform with the Bessel function index ν±1/2 (to

get the Fourier sine/cosine transform), we made substitutions (4.139), (4.140), we obtain

N/2∑
n=−N/2

|An|2 tn =
N/2∑

m=−N/2

∣∣∣Ãm∣∣∣2 ωm. (4.156)

4.5.6 FFTLog validation

A self-consistent way to validate the FFTLog algorithm is to demonstrate that the Parseval’s

theorem (4.156), where An = A(tn) is the logarithmically-sampled solution of the diffusion

equation, Ãm = Ã(ωm) its discrete Hankel transform, is indeed satisfied. In order to do this

we can solve the diffusion equation (4.116) for both disk configurations (compact transition

layer and extended Keplerian disk), calculate the discrete Hankel transform, using FFTLog,

and compare total energy in time and frequency domains at each radius. If the algorithm

works correctly and no errors were made in using it, the two ways of computing energy must

yield the identical result. Shown on the top panel of Figure 4.16 is the total energy contained

in a solution u(r, t) of the diffusion problem for transition layer configuration overlayed with

the total energy contained in the waveform Fu(ω), calculated using FFTLog, at each spatial

point. A quite remarkable agreement between the two lines assures that the method does

work correctly. The bottom panel of the same Figure displays a similar comparison for the

extended disk configuration, where the logarithm of radius x = ln r is used as a scale on

the horizontal axis.
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Figure 4.16: Validation of FFTLog algorithm: transition layer (top panel), extended disk
(bottom panel).
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4.5.7 Combined power spectra of the two configurations

The diffusion propagation problem for the extended Keplerian disk is formulated as the

equation

∂u

∂t
= 3ν0R

−2
0 r−ψoutr

1/2 ∂

∂r

[
rψ−1/2∂u

∂r

]
+ fdr(r, t), (4.157)

defined over region radj ≤ r ≤ rout, with the boundary conditions u = 0 at r = radj and

∂u/∂r = 0 at r = rout. The inner disk radius is set to radj, under assumption that the large

disk begins at the outer edge of the transition layer, and thus is determined by the Reynolds

number. Outer radius of the Keplerian disk is taken to be rout = 104. The equation is solved

for a 10M� black hole rotating with f0 = 30 Hz. The same parametrization for kinematic

viscosity ν0 was made as in the the problem for the transition layer, i.e. ν ∼ λtvt, where

λt . 2H, where the height of the accretion disk at given radius is 2H ∼ 0.1R [47]; vt . vS,

where speed of sound is given by (4.105). We assumed that the characteristic temperature

at the outer edge of the disk is ∼ 1 eV. A ”one-time” perturbation source (4.57) was used as

fdr(r, t) on the right side of the diffusion equation. Since in reality only the innermost part

of the Keplerian disk contributes to production of photons with energies & 1 keV, no radial

integration of the solution is done, but rather the signal from the inner edge of the disk is

used for computing the power density spectrum. In order to eliminate undesirable artifacts

in the power spectrum, caused by ringing and aliasing in FFTLog, a much broader then

needed time range was used, with 32000 points on a logarithmic time grid. Logarithmically

spaced spatial grid has 1000 points. The simplest model with viscosity index ψ = 0 was

first considered. Figure 4.17 shows the two power spectra, calculated for the transition

layer and the extended disk, overlayed on one plot. It should be pointed out that in

order to have comparable normalizations for power spectra of the two (vastly different in

sizes) configurations, the amplitude of the driving perturbations in the large disk should

be ∼ 5 orders of magnitude smaller than the amplitude of the driving perturbations in the

transition region. It is easy to explain, if one recalls that the driving source term in the
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diffusion equation is defined per unit area of the disk, and thus scales with radius as ∝ r.

As anticipated, the power spectrum from the extended Keplerian disk (red line on the plot)

appears as the white-red noise with characteristic ”knee” in the continuum, corresponding

to the viscous timescale of the disk. Notice that this break occurs at ∼ 10−6 Hz, while the

high-frequency component has break at ∼ 1 Hz. One can also see a weak high-frequency

quasi-periodic feature, approximately lined up with the QPO peak from the transition layer.

This peak reflects the presence of the driving sources in the emission area (the inner edge

of the large disk). As was shown in Chapter 2, the resulting power spectrum of a sum

of two weakly correlated signals is given by the sum of power spectra of the two signals

(2.53). Assuming that the two configurations, separated by a shock-like centrifugal barrier,

are independent, we can combine the two power spectra, by adding together high-frequency

and low-frequency components. The combined spectra, calculated for the Reynolds number

γ = 3, 10, and 80 are presented of Figure 4.18. From the plot one can infer, that observed in

data, power spectrum patterns, when only one of the components is seen, or both present

simultaneously, can be realized when an X-ray source experiences a spectral transition.

During a change from γ = 3 to γ = 80 (what presumably corresponds to transition from

low-hard to high-soft state) the HF component of the spectrum undergoes significant change

in terms of its normalization with respect to a LF component and frequency location of its

features (break, QPOs). For instance, the top red line on Figure 4.18 exhibits strong HF

power spectrum from the compact configuration, with barely detectable presence of the LF

component from the accretion disk. At contrast, the bottom (blue) line, on the same plot,

shows much weaker HF component as compared to a LF one. In real observational power

spectra the high-frequency QPO peak from the transition region may not be seen at al, for

the source in high-soft or very high state, so that the only visible component is white-red

noise from the extended disk. Due long collection time needed in order to detect the break

in the low-frequency power spectrum, the real data spectrum is often truncated at low

frequency, resulting in that the only LF red noise (power) component seen. In between the

two extremities, there is the case where both HF and LF parts of the power spectrum can
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Figure 4.17: Two power spectrum components in extra broad frequency range. Blue line
represents the power spectrum from the transition layer.
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Figure 4.18: Combined power spectrum as a sum of LF and HF components for different
values of Reynolds number.
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be observed as distinct components. This situation is represented by the green line on the

same figure. Of course, presented plots reflect only a few very particular scenarios for some

fixed values of parameters. As was mentioned before, the shape and normalization of power

spectrum can vary wildly even within the framework of our simplistic model, depending

on multiple variables, including the parametrization of kinematic viscosity, distribution

of perturbation sources in the disk, relationship between Reynolds number and photon

temperature, coherence factor of the driving sources, etc. So far we only studied the cases

where kinematic viscosity in the disk was assumed to be uniform throughout the disk,

ν0 = const. We found earlier that for the compact transition layer zone this is indeed a

good approximation, since neither the solution of the diffusion problem, nor the calculated

from it power spectrum did not show any changes with introduction of linear and quadratic

dependence of viscosity as a function of radius. For a Keplerian accretion disk, extended over

thousands of Schwarzschild radii, such dependence might be significant. In order to find out

in what way, we simulated the extended configuration for the three values of viscosity index

ψ = 0, 1/2, and 1, keeping all other parameters of the problem unaltered. The results are

presented on Figure 4.19. Eye analysis of the power spectra for varying viscosity distribution

law suggests that there is rather strong dependence, in the way that ”undistorted” power

spectrum for the case ψ = 0 experiences a dramatic change as ψ evolves to values 0.5, and

1. Straight power law part seems to be replaced by the two power laws with different slopes

for ψ = 1, accompanied by a huge growth (∼ 7 orders of magnitude for the low-frequency

part of power spectrum) of the continuum normalization. The high-frequency part, also

undergoes a lift up in normalization, though to a less degree. We do not provide physical

interpretation of these results here. However, these predictions, might be of a potential

value in analysis of real data. For instance, if one observes a significant deviation from the

straight power law line (in a log-log scale) of the low-frequency power spectrum component,

this may be a signal to that there may be some other than uniform distribution of viscosity

in the accretion disk.
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Figure 4.19: Power spectrum from the extended Keplerian disk as a function of the viscosity
distribution law (4.1).
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Chapter 5: Summary

We present analytical and numerical treatment of a problem of formation of the Fourier

power density spectrum of the X-ray luminosity fluctuations in the non-Keplerian adjust-

ment region near the compact object and in the extended Keplerian accretion disk. Our

approach is based on the diffusion model in which the local perturbations of the mass ac-

cretion rate occur at each radius in the disk and then diffusively propagate outward. The

equation describing the evolution of such driving oscillations can be derived from the laws of

mass continuity and angular momentum balance in the disk geometry. We write this equa-

tion directly in terms of accretion rate fluctuations 4Ṁ . The Centrifugal Barrier Model

(CBM), by Titarchuk, Lapidus, and Muslimov, 1998, was adopted for the analysis. CBM

predicts the existence of the compact coronal region around an accreting object, where the

Keplerian accretion flow dynamically adjusts to the inner sub-Keplerian boundary condi-

tion. Applying CBM to the problem of diffuse perturbation propagation resulted in the

diffusion coefficient that changes its sign at ”turnover” radius Rmax, where the angular

velocity reaches maximum. The negative diffusion coefficient in the equation leads to the

unbounded exponential solution. We conclude that the discovered instability is an intrinsic

property of any problem with the adjustment of the Keplerian motion to the sub-Keplerian

inner boundary. Whenever the accretion disk extends all the way down to the surface of

the slowly-rotating neutron star or the last stable circular orbit around a black hole this

type of phenomena will take place. Analytical solution of the diffusion problem for the sta-

ble zone of the compact transition layer showed that the emergent power spectrum of the

accretion rate variations is given by the product of the power spectrum of the solution of

the initial-value problem for the distributed initial condition and the power spectrum of the

driving perturbation. We demonstrate that the power spectrum continuum of the solution

of the initial-value problem is the white-red noise. This shape is produced by the weighted
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sum of the zero-centered Lorentzians. Its characteristic feature, the ”break” frequency is

associated with the system’s diffusion timescale, and thus have immediate application in

data analysis. Below this break the power spectrum is frequency-independent, while above

it the power spectrum behaves as the power law with index −2. One of the consequences

of the CBM is the strong dependence of the size of the transition layer on the Reynolds

number γ of the flow, which is directly proportional to mass accretion rate. We found

that this dependence significantly affects the power spectrum normalization and frequency

location of its features: power spectrum variability rapidly decays with increasing γ, while

the spectrum features drift into higher frequencies. This finding is in a good agreement

with observational results. The unstable region of the adjustment layer also produces the

white-red noise-like power spectrum, which is, however, unlikely to be detected. The diffu-

sion problem with the damped harmonic oscillator source term was solved numerically for

both the compact transition layer zone and the extended Keplerian disk. Main conclusions

drawn from the analytical solution were confirmed by the numerical solution. We obtained

the similarly-shaped (white-red noise) power spectrum which also has the quasi-periodic

feature in the hecto-Hertz range, associated the distributed perturbation sources. These

sources of fluctuations occur on a dynamical timescale tϕ which is inverse-proportional to

the frequency of the Keplerian orbital motion νK. The question of dependence of the RMS

variability amplitude of the lightcurve as a function of spectral state was considered. The

observed rapid variability decay with increasing Reynolds number γ is explained by the

compression of the emission zone and properties of the diffusion operator, which is a strong

function of γ. A solution of the diffusion propagation equation and its power spectrum

were also obtained on an extra broad frequency range. Our model is capable of reproducing

the two-component power spectra, seen in real data. According the the CBM formalism

these components can be attributed to the compact non-Keplerian adjustment region and

independent extended Keplerian disk. We found out that the viscosity distribution in the

transition layer is likely to be uniform throughout the region. Power spectrum from the

Keplerian disk, however, exhibits a strong dependence on the viscosity distribution law.
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Appendix A: Break-up speed of a rotating sphere

Consider a massive spherical object of mass M , radius R composed of particles held together

by gravitational force. Suppose it is rotating with angular velocity ω. There are two

competing forces acting on a fragment of mass m located at R: gravitational pull towards

the center

Fgrv = G
mM

R2
, (A.1)

and centrifugal force in opposite direction of magnitude

Fcfg = m
v2
ϕ

R
= mω2R. (A.2)

The rotational break-up will occur if the centrifugal acceleration exceeds the gravitational

acceleration

G
M

R2
< ω2R, (A.3)

i.e. the sphere’s break-up angular velocity is determined by the condition

ωbr =

√
GM

R3
= ωK, (A.4)

where ωK is the angular velocity of the Keplerian orbit at radius R.
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Appendix B: Parseval’s theorem, power density spectrum,

and convolution theorem

In order to understand why the squared Fourier amplitude is associated with power, let us

recall the useful relationship, known as Parseval’s theorem. Consider the product of the

continuous Fourier transform F(ω) of some function f(t) and its complex-conjugate F∗(ω)

F∗(ω)F(ω) =
1

2π

∫ ∞
−∞

f∗(t′)eiωt′dt′ ·
∫ ∞
−∞

f(t)e−iωtdt. (B.1)

Regrouping the integrals on the right-hand side of (B.1), followed by integration of the

entire equation over ω from −∞ to ∞ gives

∫ ∞
−∞
F∗(ω)F(ω)dω =

1
2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f∗(t′)f(t)eiω(t′−t)dt′dtdω =

∫ ∞
−∞

∫ ∞
−∞

f∗(t′)f(t)
[

1
2π

∫ ∞
−∞

eiω(t′−t)dω

]
dt′dt. (B.2)

The Fourier transform of a shifted Dirac δ−function is

F(δ(t− t′))(ω) =
1√
2π

∫ ∞
−∞

δ(t− t′)e−iωtdt =
1√
2π
e−iωt′ , (B.3)

Taking the inverse transform yields

δ(t− t′) =
1√
2π

∫ ∞
−∞
F(δ(t− t′))(ω)eiωtdω =

1
2π

∫ ∞
−∞

eiω(t−t′)dω. (B.4)

Formula (B.4) expresses the orthogonality property of the Fourier transform basis functions

exp(iωt). Since the δ−function is symmetric, the expression in the square brackets in
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equation (B.2) is δ(t′ − t), thus reducing it to

∫ ∞
−∞
F∗(ω)F(ω)dω =

∫ ∞
−∞

f∗(t)f(t)dt. (B.5)

Relationship (B.5) is called the Parseval’s identity for the continuous Fourier transform.

For a real-valued function f∗(t)f(t) = f2(t). If a potential difference U = U(t) is applied

across a resistor R, the dissipated power is given by

P =
1
R

∫ ∞
−∞

U2(t)dt. (B.6)

For a 1 Ohm load, according to (B.5), it is equal to the integral over angular frequency of

the square of the Fourier transform of U(t)

P (on 1 Ohm) =
∫ ∞
−∞

U2(t)dt =
∫ ∞
−∞
F∗U (ω)FU (ω)dω. (B.7)

The quantity

||FU (ω)||2 = F∗U (ω)FU (ω), (B.8)

characterizing how much energy of a signal U(t) is contained in a frequency interval ω −

ω + dω, is called the (unnormalized) power density spectrum, or just the power spectrum

of the signal U(t). For our analysis we will adopt this definition and will not care about

normalization for now.

Another important property of the Fourier transform is the convolution theorem. Consider

the continuous Fourier transform F(ω) of a function f(t) and it inverse

F(w) =
∫ ∞
−∞

f(t)e−iωtdt, f(t) =
1

2π

∫ ∞
−∞
F(ω)eiωtdw, (B.9)
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where non-unitary normalization is used. Let functions f(t), g(t), h(t) have their Fourier

transforms F(ω), G(ω), H(ω). The convolution theorem states that if H(ω) = F(ω)G(ω),

then

h(t) =
∫ ∞
−∞

f(ξ)g(t− ξ)dξ ≡ f ∗ g. (B.10)

The function h(t) defined by (B.10) is called the convolution of f(t) and g(t). Convolution

theorem can be proved, using the inverse Fourier transform of h(t)

h(t) =
1

2π

∫ ∞
−∞
H(ω)eiωtdω =

1
2π

∫ ∞
−∞
F(ω)G(ω)eiωtdω. (B.11)

Substituting the definition of F(ω) we get

h(t) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(ξ)e−iωξdξ
]
G(ω)eiωtdω. (B.12)

We can interchange the order of integration to obtain

h(t) =
∫ ∞
−∞

f(ξ)
[

1
2π

∫ ∞
−∞
G(ω)eiω(t−ξ)dω

]
dξ. (B.13)

But from definition (B.9) we have

g(t) =
1

2π

∫ ∞
−∞
G(ω)eiωtdω, (B.14)

and by replacing t by t − ξ in (B.14) we see that the expression in the square brackets in

(B.13) is g(t− ξ), i.e.

h(t) =
∫ ∞
−∞

f(ξ)g(t− ξ)dξ ≡ f ∗ g. (B.15)
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Thus (B.10) holds. This result is immediately applicable to our problem of finding the

power spectrum of a function h(t) =
∫ ∞
−∞

f(ξ)g(t − ξ)dξ. Using the convolution theorem,

we have

H(ω) = F(ω)G(ω), (B.16)

H∗(ω) = F∗(ω)G∗(ω), (B.17)

where the asterisk symbol stands for complex conjugate. Multiplying equation (B.16) by

H∗(ω), and employing equality (B.17), we obtain

H∗H = F∗F · G∗G, (B.18)

i.e. the power spectrum of a function h(t), presented as a convolution of f(t) and g(t) is

given by the product of power spectra of f(t) and g(t)

||H||2 = ||F||2||G||2. (B.19)
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Appendix C: Reynolds number and viscous torques in the

disk

Throughout this work we regard the accretion flow as the Newtonian fluid, i.e. the one in

which the stress (the force per unit area) is proportional to the velocity gradient

τ = η
∂u

∂x
, (C.1)

where η [g cm−1 s−1] is the coefficient of viscosity of the fluid, called the dynamic or turbulent

viscosity. The basic equation, which expresses the Newton’s second law for a fluid of constant

density, is the Navier-Stokes equation [66]

ρ
Du
Dt

= −∇p+ η∇2u + F, (C.2)

where D/Dt = ∂/∂t+ u · ∇, and the velocity of the particle is u = (u, v, w). The Reynolds

number is defined as a dimensionless parameter combined of the following four quantities:

density ρ, viscosity η, velocity and length scales U and L correspondingly. Thus

Re =
ρUL

η
=
UL

ν
, (C.3)

where we introduced the kinematic viscosity ν = η/ρ [cm2 s−1]. One can show, by consid-

ering the dynamical equation of a steady incompressible flow, that the Reynolds number

physical meaning is expressed by the ratio

Re ∼ inertia forces
viscous forces

. (C.4)
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I.e. the Reynolds number indicates the relative importance of two dynamical processes. It is

an experimental fact that for higher values of Reynolds number the flow becomes turbulent,

while for low values Reynolds number flow tends to be laminar.

”The physical idea of the viscous torque G [in a differentially-rotating gas] is to assume that,

if the gas flow is turbulent to some extent, gas particles of adjacent layers will be exchanged

in the radial direction. Since the two different radial flows of material originating in both

layers will have different specific angular momenta, this will cause a net transfer of angular

momentum between them.” (O. Toledano, E. Moreno, G. Koenigsberger, R. Detmers and

N. Langer ”Tides in asynchronous binary systems” 2007) [64]. One can calculate the viscous

torque on the annulus of the disk in terms of kinematic viscosity ν = η/ρ. Here ρ is the

local density of the gas, and the turbulent viscosity η (the coefficient of shear viscosity) is

related to the component τrϕ of the viscous stress tensor by [26]

τrϕ = η

(
1
R

∂vR
∂ϕ

+
∂vϕ
∂R
− vϕ
R

)
, (C.5)

where vR, vϕ are the radial and azimuthal components of the velocity. Inserting vϕ = ωR,

with ω as the rotational angular velocity of the shear flow,

∂vϕ
∂R

=
∂(ωR)
∂R

= ω +R
∂ω

∂R

and neglecting the shear effects in the radial direction, the viscous stress tensor becomes

τrϕ = ηR
∂ω

∂R
. (C.6)

It has the meaning of the tangential (shear) force per unit area acting in ϕ−direction on the

r−th face of the fluid element, and has dimension of [g cm−1 s−2]. Hence, the total viscous

torque G exerted by the ring-shaped outer layer of gas on the inner one is obtained by
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multiplying τrϕ by the lever arm R and integrating over the area of interaction dA = Rdϕdz

G = 2πR2

∫ 2H

0
ηR

∂ω

∂R
dz = 2πR2νΣR

∂ω

∂R
. (C.7)
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Appendix D: Diffusion equation for small perturbations

Suppose that equation (3.6) is written for the unperturbed quantities Ṁ0(R, t), ω0(R),

ν0(R), and Q0(R, t). It is reasonable to assume that if we introduce a small perturbation

in the accretion rate

4Ṁ(R, t)� Ṁ0(R, t),

it will induce small variations in other physical parameters about their unperturbed values:



Ṁ0 → Ṁ0(R, t) +4Ṁ(R, t),

ω0 → ω0(R) +4ω(R, t),

ν0 → ν0(R) +4ν(R, t),

Q0 → Q0(R, t) +4Q(R, t).

(D.1)

Substitution of (D.1) into (3.6) gives

∂Ṁ0

∂t
+
∂4Ṁ
∂t

+
1

(ω0R2)′ + (4ωR2)′
∂

∂R

[
R2(ν0 +4ν)(ω0 +4ω)′

(
∂Ṁ0

∂R
+
∂4Ṁ
∂R

)]
+

1
(ω0R2)′ + (4ωR2)′

∂

∂R

[
2πR3(ν0 +4ν)(ω0 +4ω)′(Q0 +4Q)

]
= 0.

Keeping only terms of first-order smallness, and using the Taylor series expansion for

1
(ω0R2)′ + (4ωR2)′

≈ 1
(ω0R2)′

− (4ωR2)′

((ω0R2)′)2 ,
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equation (3.6) can be rewritten as

∂4Ṁ
∂t

+
1

(ω0R2)′
∂

∂R

[
R2ν0ω

′
0

∂4Ṁ
∂R

]
+ f(R, t) = 0, (D.2)

where the source term f(R, t) =

1
(ω0R2)′

∂

∂R

[
R2

(
ν04ω′

∂Ṁ0

∂R
+4νω′0

∂Ṁ0

∂R

)
+ 2πR3(ν04ω′Q0 +4νω′0Q0 + ν0ω

′
04Q)

]
−

(4ωR2)′

((ω0R2)′)2

∂

∂R

[
R2ν0ω

′
0

∂Ṁ0

∂R
+ 2πR3ν0ω

′
0Q0

]
,

is determined by the perturbation terms 4ω(R, t), 4ν(R, t), and 4Q(R, t). We now have

to justify our assumption about smallness of these ”response” fluctuations. First, kinematic

viscosity ν depends on properties of accreting plasma, which are unknown, and therefore

we simply assume that the small variations in the accretion rate 4Ṁ � Ṁ0 will cause the

small variations in viscosity 4ν � ν0. Secondly, we are free to choose the mass accretion

input term Q(R, t) to be such that its response to the small fluctuations in Ṁ results in the

small fluctuations in Q, 4Q� Q0. We have to verify, however, that the small fluctuations

in Ṁ lead to the small fluctuations in ω, 4ω � ω0. According to (2.44), the unperturbed

angular velocity radial profile is

ω0 ∝
[
D1r

−γ + (1−D1)r−2
]
.

Dropping subscripts for simplicity and taking the differential, gives

dω ∝ d
(
Dr−γ

)
+ d

[
(1−D)r−2

]
= −Dr−γ lnrdγ +

(
r−γ − r−2

)
dD, (D.3)
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where we used r−γ = e−γlnr. Formula for D is given by equation (2.45). Employing relation

(2.46) we can write D in terms of radj only:

D =
αr

1/2
adj − 1

r2−γ
adj − 1

, where α =
6

m
(
f0

363

) .

Correspondingly, after taking the differential, we obtain

dD =
d(αr1/2

adj )(r2−γ
adj − 1)− (αr1/2

adj − 1)d(r2−γ
adj )

(r2−γ
adj − 1)2

= (D.4)

=
α
2 r
−1/2
adj dradj(r

2−γ
adj − 1)− (αr1/2

adj − 1)r2−γ
adj

[
−lnradjdγ + (2− γ)dradj

radj

]
(r2−γ

adj − 1)2
.

Now, relationship between radj and γ is determined by the boundary condition (2.48).

Taking the differential of equation (2.48), we have

3
2
αd
(
r
−3/2
adj

)
= d

(
Dγr−γadj

)
+ 2d

[
(1−D)r−2

adj

]
.

Proceeding, we find that dradj, dD, and dγ are related to each other via

dradj =
(γr−γadj − 2r−2

adj)dD + (Dr−γadj − γDr
−γ
adjlnradj)dγ

4(1−D)r−3
adj + γ2Dr−γ−1

adj − 9
4αr

−5/2
adj

. (D.5)

Combining (D.4) and (D.5) together to eliminate dradj we obtain

dD =

Dr−γadj−γDr
−γ
adj lnradj

4(1−D)r−3
adj+γ

2Dr−γ−1
adj − 9

4
αr
−5/2
adj

[
(2− γ)r1−γ

adj

]
dγ − r2−γ

adj lnradjdγ[
1− γr−γadj−2r−2

adj

4(1−D)r−3
adj+γ

2Dr−γ−1
adj − 9

4
αr
−5/2
adj

(2− γ)r1−γ
adj

] .
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Pulling the differential of γ out and denoting the rest by ψ(γ) we can write

dD = ψ(γ)dγ, (D.6)

which upon substitution into (D.3) results in

4ω ∝
{
−Dr−γ lnr +

(
r−γ − r−2

)
ψ(γ)

}
4γ. (D.7)

I.e. the variations 4ω of the angular velocity are determined by the variations 4γ of the

Reynolds number, but according to equation (2.37)

4γ ∝ 4Ṁ, → 4ω ∝ 4Ṁ. (D.8)

Therefore, small perturbations 4Ṁ(R, t) in accretion rate, will indeed result in the small

perturbations 4ω(R, t) in angular velocity, thus supporting our assumption about ”small-

ness” of induced fluctuations, and justifying the transition from equation (3.6), for accretion

rate, to equation (3.7), for the small perturbations of accretion rate.
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Appendix E: Convolution solution of the diffusion problem

Solution u = u(R, t) of the equation

∂u

∂t
= ΛRu+R(R)ϕ(t), (E.1)

(ΛR is the space diffusion operator) combined with the appropriate boundary conditions at

Rin and Rout and homogeneous initial condition u(R, 0) = 0, at any R and t can be written

as the convolution

u(R, t) =
∫ t

0
ϕ(t′)G(R, t− t′)dt′, (E.2)

with the kernel G(R, t−t′) being a solution of the initial-value problem for the homogeneous

equation


∂G

∂t
= ΛRG (E.3)

G(R, t− t′)t=t′ = R(R) (E.4)

with the same boundary conditions as that for u(R, t). This can be easily verified by

substitution (E.2) in (E.1), keeping in mind equations (E.3), (E.4). Differentiation with

respect to the limit of integration can be done using the identity

d

dt

∫ t

0
f(t, t′)dt′ = f(t′ = t) +

∫ t

0
f ′t(t, t

′)dt′.

Therefore for the left-hand side of (E.1) we have

LHS(E.1) =
∂

∂t

[∫ t

0
ϕ(t′)G(R, t− t′)dt′

]
= ϕ(t)G(R, 0) +

∫ t

0
ϕ(t′)G′t(R, t− t′)dt′ =

= ϕ(t)G(R, 0) +
∫ t

0
ϕ(t′)ΛRG(R, t− t′)dt′.
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The right-hand side of (E.1) becomes after substitution of (E.2)

RHS(E.1) = ΛR
∫ t

0
ϕ(t′)G(R, t− t′)dt′ +R(R)ϕ(t).

Given that G(R, 0) = R(R), comparison of the LHS(E.1) with the RHS(E.1), yields their

equivalence, i.e. proves the correctness of the solution (E.2).
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Appendix F: Bessel function asymptotic form

To justify the applicability of the approximate formula

Jν(z) ≈
√

2/(πz) cos(z − νπ

2
− π

4
), for z � 1. (F.1)

for finding roots of J0 we should compare it against the exact expression for Bessel function

represented by an infinite series

Jν(z) =
(z

2

)ν ∞∑
k=0

(
−z2

4

)k
k!Γ(ν + k + 1)

.

Figure F.1 shows J0(x) plotted using both infinite series representation and asymptotic

expression. It is clear that the asymptotic form reproduces the exact series very closely

x

0 5 10 15 20

(x
)

0J

-0.5

0

0.5

1

1.5

2
(x) as a series0J

(x), asymptotic form0J

Figure F.1: Bessel function J0

starting approximately from argument values ≥ 1. For the purpose of root finding the

asymptotic representation is accurate to within 2% for the first root, which is well sufficient

in our approximation.
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Appendix G: Expansion coefficients and eigenfunction’s

norm for uniform initial perturbation

The weight function ρ (3.36) in the spatial equation (3.35) is independent of x, so it can be

pulled outside the integral (3.29) along with R0 = const:

ck = ρR0

∫ xadj

0
Xk(x)dx,

where Xk(x) = J0(2λk
√
ρx) is the eigenfunction of (3.35). Substitution gives

ck = ρR0

∫ xadj

x0

J0(2λk
√
ρx)dx =

ρR0

2λ2
kρ

∫ xadj

x0

J0(2λk
√
ρx)2λk

√
ρxd(2λk

√
ρx).

Employing the derivative identity for Bessel functions

ynJn−1(y) =
d

dy
[ynJn(y)] ,

we find that
∫
yJ0(y)dy = yJ1(y), and hence

ck = ρR0λ
−1
k

√
xadj

ρ
J1(2λk

√
ρxadj).

The eigenfunction’s norm ||Xk||2, is given by (3.27):

||Xk||2 = ρ

∫ xadj

0
J2

0 (2λk
√
ρx)dx =

ρ

2λ2
kρ

∫ xadj

0
J2

0 (2λk
√
ρx)2λk

√
ρxd(2λk

√
ρx).
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This integral can be taken by integrating by parts, using the recurrent relation for Bessel

functions. We have

∫ a

0
J2

0 (y)ydy =
a2

2
J2

0 (a)− 1
2

∫ a

0
y22J0(y)J ′0(y)dy.

Using relation J ′0(y) = −J1(y), the second term on the right-hand side can be rewritten as

a2

2
J2

0 (a) +
∫ a

0
y2J0(y)J1(y)dy.

Invoking the derivative identity for n = 1, yJ0(y) = [yJ1(y)]′y and substituting it into the

equation above gives

a2

2
J2

0 (a) +
∫ a

0

d

dy
[yJ1(y)] yJ1(y)dy =

a2

2
J2

0 (a) +
a2

2
J2

1 (a).

We obtain

||Xk||2 = ρxadj

[
J2

0 (2λk
√
ρxadj) + J2

1 (2λk
√
ρxadj)

]
,

but from the boundary condition Xk(xadj) = 0, it follows that J0(2λk
√
ρxadj) = 0, and

correspondingly

||Xk||2 = ρxadjJ
2
1 (2λk

√
ρxadj).
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Appendix H: Approximations for rmax, radj in the limit γ � 1

For large Reynolds number, γ � 1, a simple approximate formula for calculating rmax and

radj may be practical. Notice that expression in square brackets in formula (2.49) for rmax

is slightly less than unity

ξ =

[
θadj − r−2

adj

θadj − r−γadj

] 1
γ−2

. 1. (H.1)

Thus, when raised into power 1/(γ − 2), where γ � 1, ξ → 1. For large γ the quantity ξ

asymptotically approaches unity. Therefore, neglecting ξ, we have

rmax =
(γ

2

) 1
γ−2

ξ ≈
(γ

2

) 1
γ−2

. (H.2)

Likewise, neglecting term r−γadj in formula (2.45) for coefficient D1, we have

D1 ≈ 1− θadjr
2
adj. (H.3)

Substitution of (H.3) into the boundary condition (2.48) gives

3/2 θadj ≈ 2θadj + γ(r−γadj − θadjr
2−γ
adj ),

or after dividing through by θadj

3/2 ≈ 2 + γr−γadj(θ
−1
adj − r

2
adj).

For 10 . γ . 100, r2
adj is ∼ 7 − 9 times larger than θ−1

adj, i.e. one can neglect the latter to

obtain

radj ≈ (2γ)1/(γ−2) . (H.4)
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Appendix I: Test of a negative separation constant in the

analytical solution for region 2

The separation constant −λ2 results in the spatial equation

d

dR

(
νω′R2dX

dR

)
− λ2(ωR2)′X = 0. (I.1)

Using approximation ω′(x) ≈ −a0x (see solution for region 1 for details) for the angular

velocity derivative, where a0 = −ω′′(Rmax) > 0, x = R−Rmax, such that −x0 ≤ x ≤ 0, and

replacing (ωR2)′ with αR1−γ we have

d

dx

(
νa0xR

2dX

dx

)
+ λ2αR1−γX = 0. (I.2)

After setting R ≈ Rmax and pulling the quantity νa0R
2
max outside the derivative, we have

d

dx

(
x
dX

dx

)
+ λ2ρX = 0, (I.3)

where ρ = α/(νa0)R−(γ+1)
max . As was shown this equation can be rewritten as Bessel’s

equation, which has the solution

Xk(x) = C1J0(2λk
√
ρx) + C2Y0(2λk

√
ρx). (I.4)

Since x ≤ 0, a negative expression appears under the square root

Xk(x) = C1J0(2λki
√
ρ|x|) + C2Y0(2λki

√
ρ|x|).
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The Bessel’s function identity Iξ(x) = i−ξJξ(ix) gives that J0(ix) = I0(x), thus yielding

Xk(x) = C1I0(2λk
√
ρ|x|) + C2Y0(2λki

√
ρ|x|).

The outer boundary condition requires that Xk(x = 0) < ±∞, but the function Y0(0)

diverges to negative infinity, so we have to put C2 = 0. The inner boundary condition

requires that Xk(x = −x0) = 0, but the function I0(x) is always nonnegative, so we have

to set C1 = 0 as well. I.e. the only solution of the spatial problem, given the boundary

conditions, is the trivial solution Xk(x) = 0, which can not be a solution of the eigenvalue

problem. We must, therefore, consider a positive separation constant.
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Appendix J: The ”sweep” method for tridiagonal linear

systems

The sweep method (Thomas method) was developed for solving systems of linear algebraic

equations with sparse, tridiagonal or aperiodic coefficient matrix. It is perfectly applicable

for the diffusion PDE, which can be approximated in finite differences and written as a

system of linear equations with tridiagonal coefficient matrix. The method is based on that

a given system of n linear algebraic equations gets transformed to a form

xi = αi + βixi+1, i = 1, 2, · · · , n− 1,

where the sweep coefficients αi, βi are found consequently in a forward sweep, xn are found

in a backward sweep, and then xi are determined (i = n − 1, n − 2, · · · , 1) by consecutive

application of the recurrent relation xi = αi + βixi+1.

Lets consider a system of linear equations Ay = f , where A = ‖aij‖ is tridiagonal, i.e. such

that aij = 0, if j > i + 1 or j < i − 1. In general, a system of linear algebraic equations

with tridiagonal matrix can be written as


ajyj−1 − cjyj + bjyj+1 = −fj , j = 1, · · · , N − 1, (J.1)

y0 = χ1y1 + µ1, (J.2)

yN = χ2yN−1 + µ2. (J.3)

For solving such a system numerically the method of successive elimination of unknowns (a

Gauss method) can be applied. Our coefficient matrix A, written explicitly, has a form A =
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1 −χ1 0 0 0 · · · 0 0 0

a1 −c1 b1 0 0 · · · 0 0 0

0 a2 −c2 b2 0 · · · 0 0 0

. . . . . · · · . . .

0 0 0 0 0 · · · aN−1 −cN−1 bN−1

0 0 0 0 0 · · · 0 −χ2 1


We will seek the solution of the system (J.1) in form

yj = αj+1yj+1 + βj+1, where j = 0, · · · , N − 1, (J.4)

where αj+1, βj+1 are unknown coefficients, which are found successively from α1, β1 to

αN , βN (forward sweep), then yN , yN−1, · · · , y0 are found successively (backward sweep).

Formulas for calculation αj+1, βj+1 can be derived from (J.4). Proceeding, we have

yj−1 = αjyj + βj = αj(αj+1yj+1 + βj+1) + βj = αjαj+1yj+1 + (αjβj+1 + βj), where

j = 1, · · · , N − 1.

Substituting existing expression for yj , yj−1 into equation (J.1) for j = 1, · · · , N − 1 we

obtain

[αj+1(ajαj − cj) + bj ]yj+1 + [βj+1(ajαj − cj) + ajβj + fj ] = 0.

This equation will be satisfied if the coefficients αj+1, βj+1 are chosen to make expressions

in square brackets vanishing, i.e.

αj+1 =
bj

cj − αjaj
, βj+1 =

ajbj + fj
cj − αjaj

, j = 1, · · · , N − 1. (J.5)
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In order to find all αj , βj it is sufficient to set α1, β1, which can be found from the

requirement of equivalence of (J.4), at j = 0, i.e. y0 = α1y1 +β1, and (J.2). Thus we obtain

α1 = χ1, β1 = µ1. (J.6)

Finding coefficients αj+1, βj+1, using (J.5), (J.6) is called a forward sweep. Once sweep

coefficients αj+1, βj+1, j = 0, · · · , N − 1 have been determined the solution of system

(J.1)−(J.3) can be found using recurrent relation (J.4), starting from j = N − 1. But in

order to start calculations using this formula we need to know yN , which can be determined

from equations

yN = χ2yN−1 + µ2, yN−1 = αNyN + βN , yN =
χ2βN + µ2

1− χ2αN
.

The process of finding yi, using formulas

yj = αj+1yj+1 + βj+1, j = N − 1, · · · , 0, yN =
χ2βN + µ2

1− χ2αN
. (J.7)

is called a backward sweep. The algorithm of solving a system (J.1)−(J.3) using formulas

(J.5)−(J.7) defines the sweep method. We notice that this method is valid if denominators

of (J.5) and (J.7) are not equal to zero. It can be shown that it is sufficient to impose the

following conditions, in order to ensure the method’s applicability


αj 6= 0, bj 6= 0, |cj | ≥ |aj |+ |bj |, for j = 1, · · · , N − 1,

|χ1| ≤ 1, |χ2| < 1.

If these conditions are satisfied the system (J.1)−(J.3) is equivalent to the system (J.5)−(J.7),

and therefore existence and uniqueness of solution are guaranteed. Moreover, inequalities
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|αj | ≤ 1, for j = 1, · · · , N provide stability of the calculation using recurrent relations

(J.7), i.e. the error introduced at some step in the calculation would not grow larger in

the following steps. Lets suppose that in formula (J.7) at j = j0 + 1 instead of yj0+1,

ŷj0+1 = yj0+1 + δj0+1 has been computed. Then in the next step, i.e. at j = j0, instead of

yj0 = αj0+1yj0+1 + βj0+1 we will get ŷj0 = αj0+1(yj0+1 + δj0+1) + βj0+1 and the error would

be equal δj0 = ŷj0 − yj0 = αj0+1δj0+1. It follows that |δj0 | = |αj0+1||δj0+1| ≤ |δj0+1|, i.e.

error of computation is limited and is not growing.

It is important to point out that the negative diffusion coefficient in the equation (3.7)

results in an unbounded evolution operator, causing an arbitrary small error in the initial

data result in vast differences of the solutions after arbitrary short amount of time, if we

consider the exact solution. Thus the diffusion equation with a negative diffusion coefficient

is not a well-posed problem in the beginning. Let us show explicitly that the sweep method

described above is not applicable for solving such a problem numerically, due to its intrinsic

instability in the region where diffusion coefficient is negative. The diffusion equation of

type (4.4) can be expressed in a matrix form

aiu
k+1
i−1 + biu

k+1
i + ciu

k+1
i+1 = f(uk),

with tridiagonal matrix elements given by



ai = − 4t
(4r)2

fiDi−1/2, (J.8)

bi = 1 +
4t

(4r)2
fi
[
Di−1/2 +Di+1/2

]
, (J.9)

ci = − 4t
(4r)2

fiDi+1/2. (J.10)

The diffusion coefficient alternates its sign in the transition layer (Figure 3.1), and becomes

negative in the region r < rmax. In order for the sweep method to remain stable the
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following inequalities must hold

 |bi| ≥ |ai|+ |ci|, for i = 1, · · · , N (J.11)

ai 6= 0, ci 6= 0, for i = 2, · · · , N − 1 (J.12)

Lets check whether these requirements are satisfied for the cases D > 0 and D < 0. For

D > 0 we have

|bi| =
∣∣∣∣1 +

4t
(4r)2

fi
[
Di−1/2 +Di+1/2

]∣∣∣∣ , while (J.13)

|ai|+ |ci| =
∣∣∣∣− 4t

(4r)2
fiDi−1/2

∣∣∣∣+
∣∣∣∣− 4t

(4r)2
fiDi+1/2

∣∣∣∣ (J.14)

Noting that quantities 4t, (4r)2, and fi are strictly positive, it is clear that conditions

(J.11), (J.12) indeed hold true. However, for D < 0 we have

|bi| =
∣∣∣∣ 4t(4r)2

fi
[
|Di−1/2|+ |Di+1/2|

]
− 1
∣∣∣∣ , while (J.15)

|ai|+ |ci| =
4t

(4r)2
fi
[
|Di−1/2|+ |Di+1/2|

]
, (J.16)

yielding |bi| < |ai| + |ci|, which is a violation of condition (J.11). Thus the sweep method

becomes unstable in the radial region where the diffusion coefficient is negative.
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