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Abstract

HIGHER ORDER KALMAN FILTERING FOR NONLINEAR SYSTEMS

Deanna Colonna Easley, PhD

George Mason University, 2022

Dissertation Director: Dr. Tyrus Berry

We seek to improve upon and generalize the Ensemble Kalman Filter (EnKF) by defin-

ing a Higher Order Kalman Filter. The Kalman filter consists of two steps: forecast and

assimilation. In this thesis we develop the forecast step of our desired Higher Order Kalman

Filter with the higher order unscented transform (HOUT). The HOUT is a quadrature rule

that estimates the expected value of the first four moments of a distribution, i.e. the mean,

covariance, skewness and kurtosis. We then discuss how to generalize the assimilation step.

The original Kalman Filter can be derived in three ways: the Bayesian approach, the Mini-

mum Mean-Square Estimate (MMSE) approach and the Closure approach. Each derivation

provides a different avenue for us to derive the Higher Order Kalman Filter. In order to

generalize the Bayesian approach to the first four moments, instead of using a Gaussian

likelihood and prior, we use exponentials with a quartic polynomial as the exponent. In

order to generalize the MMSE approach we consider deriving optimal quadratic filters. Fi-

nally we may generalize the closure approach by deriving the ordinary differential equations

for the skewness and kurtosis and instead of assuming that the skewness is zero, we seek

new closures for the first four moments rather than just the first two.



Chapter 1: Introduction

The Kalman Filter is an algorithm that produces estimates of unknown variables using a

series of measurements observed over time, which contain statistical noise and other inac-

curacies. The Kalman Filter consists of two steps: forecast and assimilation. The forecast

step is our prediction step in which the Kalman filter produces estimates of the current state

variables, including their uncertainties. After the next measurement is observed, comes the

assimilation step or our update step in which the estimates are updated using a weighted

average.

Given the linear dynamical system

xk = Fxk−1 + ωk

yk = Hxk + νk

where ωk ∼ N (0, Q) and νk ∼ N (0, R), the forecast step of the Kalman Filter consists of

the equations

x−k = Fx+
k−1

P−k = FP+
k−1F

> +Q

where x−k is the mean of the forecast distribution and P−k is the covariance of the forecast

distribution. The assimilation step of the Kalman Filter consists of the equations

x+
k = x−k +K(yk −Hx−k ) (1.1)

P+
k = (I −KH)P−k

1



where x+
k is the mean of the posterior distribution and P+

k is the posterior of the forecast

distribution and K = P−H>(R + HP−H>)−1 is the Kalman gain. The latter are known

as the Kalman Equations.

Once we consider a nonlinear dynamical system, however, a more sophisticated tool

is needed to try to forecast the uncertainty. Hence, the Ensemble Kalman Filter (EnKF)

was developed to account for nonlinear systems. For the EnKF, in place of the linear

forecast step as previously mentioned, the unscented transform is used. Specifically, the

EnKF represents the distribution of the system state with an ensemble, a collection of state

vectors, and replaces the covariance matrix with the empirical covariance generated from

the ensemble.

Both the Kalman Filter and the EnKF have the assumption that all probability distri-

butions involved are Gaussian. However, if the system is nonlinear, the true distributions

are no longer Gaussian, so instead for the EnKF we are just making a Gaussian approxima-

tion. This means that technically the assimilation step for the Kalman Filter is no longer

optimal as it is based on linear-Gaussian assumptions, but the EnKF continues to use the

same assimilation step.

This manuscript aims to generalize the EnKF to higher order moments. In other words,

rather than assuming a particular distribution, we assume that we are only given the first

four moments of the distribution. For the generalized forecast step, we developed a new

approach for estimating the expected values of nonlinear functions applied to multivari-

ate random variables with arbitrary distributions. In particular, we efficiently represent

the distribution using a small number of quadrature nodes which are called σ-points. The

classical scaled unscented transform (SUT) matches the mean and covariance of a distri-

bution. In this manuscript, we introduce the higher order unscented transform (HOUT)

which also matches any given skewness and kurtosis tensors. This work has been completed

and accepted for publication [1].
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Recall that in order to have a complete Kalman Filter, we need the generalization of

the assimilation step. The original Kalman Filter can be derived in multiple ways, so

several approaches to generalize the Kalman equations are possible. In the remainder of

this introduction, we will first overview the motivation and methods of generalizing the

unscented transform (forecast step) in Section 1.1 and then we will overview the methods

of generalizing the Kalman equations (assimilation/update step) in Section 1.2.

1.1 Generalizing the Unscented Transform

A fundamental problem in uncertainty quantification is to approximate the expectation of

a function f : Rd → R applied to a random variable X sampled from a probability measure

dp on Rd, namely

E[f(X)] =

∫
f(x) dp. (1.2)

Even when the distribution is known, this can be a challenging computation in high di-

mensions, and the problem is often compounded by uncertain or incomplete knowledge of

f and dp. Moreover, in most problems of interest f has an extremely complex form. For

example, f may encapsulate the solution of a differential equation and the computation

of some feature of interest on the solution. So we may not be able to assume that f is

known in an explicit form, but instead that f or an approximation to f is available only

as a black-box computational scheme which can take inputs x and produce outputs f(x).

Similarly, the type of partial knowledge of the probability measure can vary widely. We

may have an explicit expression for a density function p(x) = dp/dx (if it even exists), or

we may only have some samples of dp, or estimates of some of the moments.

The method developed in this manuscript will assume that the first four moments of the

probability measure, dp, exist and can be accurately estimated. Our method will not use

any additional knowledge of the probability beyond these moments. Moreover, we will not

require any explicit knowledge of f , so our method is applicable if f is a black-box. In order

3



to derive error bounds we will require some regularity assumptions on f and additional

decay assumptions on the probability measure at infinity. While our error bounds depend

on the error of approximating f by a polynomial, our method does not require us to actually

find such an approximation, and will only require evaluating f on a small number of test

points.

The problem of approximating (1.2) can be approached as a problem of numerical

quadrature (also known as cubature when x has dimensionality greater than one – we

will use the term quadrature for both). A quadrature is an approximation of the form

E[f(X)] ≈
N∑
i=1

wif(xi) (1.3)

where xi are called nodes and wi are called weights. The goal is to find a small number

of nodes and weights that accurately represent the probability measure for a large space of

functions f ∈ C (e.g. Section 4.2, we will consider C to be the space of n times continuously

differentiable functions). A common strategy in quadrature methods is to choose nodes

and weights so that the above approximation is actually an equality for all f in some finite

dimensional subspace C̃ ⊂ C (such as a space of polynomials up to a fixed degree). For f

outside of C̃ we can then attempt to bound the error in the approximation (1.3) if we can

control the error between f and its projection into C̃. When f is sufficiently smooth and

dp is concentrated in a small region, then it is reasonable to approximate f using the space

of polynomials up to a fixed degree. Under these assumptions, we can bound the error

between f and a low degree polynomial via interpolation error bounds.

Ensuring that (1.3) holds with equality for all polynomials up to degree k is equivalent

to satisfying the so-called moment equations,

mj1,...,jn = E
[
Xj1

1 X
j2
2 · · ·X

jn
n

]
=

N∑
i=1

wix
j1
1 x

j2
2 · · ·x

jn
n (1.4)
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for all j1 +j2 + · · · jn ≤ k, since polynomials of the form xj11 , . . . x
jn
n form a basis of the space

of all polynomials of degree less than or equal to k. In other words, we are asking that

the empirical moments of the nodes xi, weighted by discrete probabilities wi, exactly agree

with the true moments mj1,...,jn of the distribution. When k = 2, the moment equations

specify that weighted nodes must match the mean vector and covariance matrix of the true

distribution, and this is achieved with the so-called Scaled Unscented Ensemble (SUT) [2]

(see section 2.1 for an overview).

The quadrature approach is an alternative to stochastic quadrature methods such as

Monte-Carlo quadrature, which is commonly used in particle filtering. Stochastic quadra-

tures use random variables Xi to build quadrature rules such that

E[f(X)] ≈ E

[
N∑
i=1

wif(Xi)

]
. (1.5)

However, the computed value
∑N

i=1wif(Xi) will be stochastic. This means that in addition

to a possible approximation error in (1.5), we also have an error due to the variance of

the random variable
∑N

i=1wif(Xi). While it is often easier to design stochastic quadrature

methods where the approximation error in (1.5) is small or even zero, for many problems

controlling the variance error requires a large number of random variables Xi and hence a

large number of function evaluations. When f is very expensive to compute, it may be more

efficient to use a small deterministic ensemble and accept the quadrature error in (1.3) in

order to avoid the large ensemble size that would be required to control the variance in a

stochastic quadrature.

The problem (1.2) is often part of a larger problem such as filtering [3], particle filtering

[4], adaptive filtering [5], smoothing [6], parameter estimation [7–9] and even model-free

filtering [10]. In all these applications it can be beneficial to have a deterministic approxi-

mation of (1.2) to improve the stability of the overall algorithm. For example, filters built

on random ensembles can fail catastrophically since they can generate realizations that

5



would normally have very low probability but lead to perverse behavior [11, 12]. Similarly,

gradient based optimization method for parameter estimation will need to carefully account

for any stochasticity in the objective function, so replacing a stochastic quadrature with a

deterministic quadrature can be desirable in certain applications.

The highly successful Unscented Kalman Filter (UKF) [3] is based on the SUT, as are

many of the other methods mentioned above. A closely related technique, called Cubature

Kalman Filters (CKF) [13], follows a similar strategy and is typically designed to achieve

a high degree of exactness under a Gaussian assumption on the distribution. Another po-

tentially deterministic method would be quadrature based on sparse grids [14,15]; however

designing such a quadrature typically requires detailed knowledge of the probability dis-

tribution. Similarly, polynomial chaos expansions [16, 17] require explicit knowledge of the

function f and the distribution. Our method is an alternative quadrature that only requires

us to know the first four moments of the distribution. Moreover, the nodes of our quadra-

ture will be adapted to the moments of the distribution. A potential future application of

the method developed here would be to a higher order UKF which tracks four moments,

and this was one of the inspirations behind this work. However, the current work only

generalizes the forecast step of the UKF to four moments, and generalizing the assimilation

step of the UKF is a significant remaining challenge.

In this manuscript, we develop a Higher Order Unscented Transform (HOUT) based on

tensor decomposition of the first four moments of a distribution. Whereas the UKF (and

implicitly most CKFs) only require the rank decomposition of the covariance matrix, the

HOUT requires the CANDECOMP/PARAFAC (CP) decomposition of higher order tensors

such as the skewness and kurtosis. The CP decomposition of a k-tensor is defined by vectors

vi such that,

T =

p∑
i=1

v⊗ki , (1.6)

i.e. the CP decomposition decomposes a tensor as the summation of rank-1 tensors, v⊗ki for

6



i = 1, . . . , p. The minimal value of p such that the above decomposition exists is called the

rank of T . For detailed definitions of tensors, tensor product (⊗) and tensor decomposition,

see Section 2.2. For the sake of giving an overview, we assume these definitions for now.

For details on tensor product and CP decomposition see Definitions 4 and 6. For a more

detailed introduction to tensors we suggest [18,19].

Ideally, we would like an exact CP decomposition (1.6) with the minimum possible

number of vectors; however this turns out to be an NP-complete problem [20,21]. Instead,

we will use an effective algorithm for obtaining an approximate CP decomposition up to

an arbitrary tolerance. The algorithm was originally suggested by [22], and it works by

repeatedly subtracting the best rank-1 approximation to a tensor until the norm of the

residual is less than any desired tolerance. Many methods have been developed based on

this idea (see [23] and citations therein) and in [24] it was proven to converge but without

any convergence rate. In Chapter 3, we give the first proof that this algorithm converges

linearly and we derive an upper bound on the convergence rate. While the approximate

decomposition typically requires many more vectors than the minimal CP decomposition,

it avoids the NP-completeness of that problem and gives us an effective algorithm.
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Figure 1.1: The 4-moment σ-points of the HOUT we developed of (a) a quadramodal
distribution, (b) a skewed quadramodal distribution, and (c) a skewed bimodal distribution.
The black points are the σ-points that correspond to the mean, the green points are the
σ-points corresponding to the covariance, the points in red are the σ-points corresponding
to the skewness, and the magenta points are the σ-points that correspond to the kurtosis.

In Chapter 2 we briefly review the SUT and some tensor facts and notation, including
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the Higher Order Power Method (HOPM) [25] that we will use for finding tensor eigenvec-

tors. Based on the HOPM, we prove the convergence of the approximate CP decomposition

algorithm in Chapter 3. This proof also requires some new inequalities relating the maxi-

mum eigenvalue of a tensor to the entries of the tensor, and these inequalities are likely to

be of independent interest. In Chapter 4 we introduce the Higher Order Unscented Trans-

form (HOUT) which generalizes the SUT in order to match arbitrary skewness and kurtosis

tensors. The HOUT gives a quadrature rule with degree of exactness four that is applicable

to arbitrary distributions. For a preview of the nodes of the HOUT, see Figure 1.1 where

we consider data sampled from two dimensional distributions with nontrivial skewness and

kurtosis tensors. For each distribution we show the HOUT nodes that are designed so that

the first four moments computed with this small number of nodes match the true moments

of the distribution up to the specified tolerance. In Section 4.2 we derive error bounds

under appropriate regularity assumptions on f and decay assumptions on the probability.

In Section 4.3 we demonstrate the HOUT on various non-Gaussian multivariate random

variables on complex nonlinear transformations.

1.2 Generalizing the Kalman Equations

Let us focus on the assimilation step of our desired Higher Order Kalman Filter. The original

Kalman Equations were derived in three distinct ways: either with the Bayesian approach, or

with the Minimum Mean-Square Estimate (MMSE) approach, or with the Closure approach.

Each approach provides a different method for us to derive the Higher Order Kalman

Filter. Our main contribution in this manuscript is with the generalized Bayesian approach.

However, we will also outline how the other approaches can be generalized.

The original Kalman Filter’s assimilation step was derived with the Bayesian approach

in the following way. Assume we have the prior p(x) (the probability of x) and the likelihood

p(y|x) (the probability of y given x). We want to find the posterior p(x|y) (probability of

8



x given y). By Bayes’ law,

p(x|y) ∝ p(y|x)p(x).

Assuming both the likelihood and prior are Gaussian, the posterior is also Gaussian. We

then write out the likelihood and the prior as exponential functions where

p(x) = e−
1
2

(x−x−)>(C+)−1(x−x−) and p(y|x) = e−
1
2

(y−Hx)>R−1(y−Hx)

to get

p(x|y) ∝ e−
1
2

(y−Hx)>R−1(y−Hx)e−
1
2

(x−x−)>(C+)−1(x−x−).

After some algebraic calculations and completing the square inside the exponent, we get

p(x|y) ∝ e−
1
2 [x>(H>R−1H+(C−)−1)x−2(y>R−1H+(x−)>(C−)−1)x].

Since the posterior is Gaussian, we know it will have the following form

p(x|y) ∝ e−
1
2

(x−x+)>(C+)−1(x−x+) ∝ e−
1
2

(x>(C+)−1x−2(x+)>(C+)−1x)

Thus we derive the mean and covariance of the posterior, getting the formulas for x+ and

C+, where we define

x+ = C+
(
H>R−1y + (C−)−1x−

)
and C+ =

(
H>R−1H + (C−)

)−1
.

Reformulating x+ and C+, we get that

x+ = x− +K(y −Hx−) and C+ = (I −KH)C−

where K = C−H>(R + HC−H>)−1 is the Kalman gain. This is the general idea for how

the original Kalman equations were derived using this approach.

9



A way we can see how to generalize the Bayesian approach is: instead of using a Gaussian

likelihood and prior, i.e. exponentials with a degree two polynomial as the exponent, we

use exponentials with a degree four polynomial as an exponent. This way we have an

order 4-moment filter. The Bayesian update will simply be adding the polynomials in

the exponent of the prior distribution and likelihood function. However this method does

present some challenges. By replacing the quadratic with higher degree polynomial, we lose

the nice property that Gaussians possess, which is that the mean and covariance can be

easily determined from the polynomial. So there is an algebraic problem of how we can

determine the first four moments of a distribution purely from the polynomial. In fact,

it is also a challenge when using a cubic. The real challenge here will be figuring out the

connection between the moments and the coefficients of the polynomial.

In Chapter 5 we introduce novel methods of extending the Kalman equations (1.1) to

higher order moments. We will mainly cover the Bayesian approach in Section 5.1 but we

will also discuss the other approaches to derivation in Sections 5.2 and 5.3. Combining the

higher order unscented transform developed in Section 4.1 and the higher order Kalman

filter proposed in Chapter 5 will lead to a higher order ensemble Kalman filter for nonlinear

processses with more general noise statistics.
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Chapter 2: Background

We start by reviewing the Scaled Unscented Transform (SUT) in Section 2.1 which has

degree of exactness two. We then briefly introduce our tensor notation in Section 2.2 and

tensor-vector products and tensor norms in Section 2.3. Finally, in Section 2.4 we review

tensor eigenvectors and eigenvalues and the Higher Order Power Method (HOPM) [25] for

finding them.

2.1 Scaled Unscented Transform

The Scaled Unscented Transform (SUT) was introduced by Julier and Uhlmann in [2] and

further developed in [3, 26–29]. The fundamental goal of this paper is to generalize their

method to higher order moments. This work was started in [28] which worked on matching

the skewness, and below we show that CP decompositions are the key to generalizing their

approach.

The SUT uses the mean and covariance of a distribution to choose quadrature nodes

and weights such that the quadrature rule has degree of exactness 2. Degree of exactness

k means that a quadrature rule is exact for computing the expectation of polynomials up

to degree k. The fundamental insight of Julier and Uhlmann is that achieving degree of

exactness 2 is equivalent to matching the first two moments of the distribution. Moreover,

they showed that this can be efficiently accomplished using a matrix square root of the

covariance matrix.

Definition 1 (ith column of the symmetric matrix square root of A). Let A be a d × d

matrix. We define the ith column of the symmetric matrix square root of A, denoted

11



√
Ai, by

d∑
i=1

√
A
⊗2

i =

d∑
i=1

√
Ai
√
A
>
i = A.

The notation v⊗k will be defined below. Note that the following definition can use any

matrix square root but we have found empirically that the unique symmetric matrix square

root has the best performance. The negative of any matrix square root is also a matrix

square root. The following definition perturbs the mean µ by both a matrix square root

and its negative to create an ensemble of 2d+ 1 points.

Definition 2 (The Scaled Unscented Transform (SUT) [2]). Let dp be a probability measure

with mean µ ∈ Rd and the covariance C ∈ Rd×d. Then for some β ∈ R the σ–points are

defined by

σi =


µ if i = 0

µ+ β
√
Ci if i = 1, . . . , d

µ− β
√
Ci−d if i = d+ 1, . . . , 2d

and the corresponding weights are defined by

wi =


1− d

β2 if i = 0

1
2β2 if i = 1, . . . , 2d

We note that the choice of β can have significant impact on the effectiveness of the

transform.

Remark 1. The absolute condition number of the Scaled Unscented Transform is

bounded above by

2d∑
i=0

|wi| =
∣∣∣∣1− d

β2

∣∣∣∣+
d

β2
.

12



If β ≥
√
d, then

2d∑
i=0

|wi| = 1. If β <
√
d, then

2d∑
i=0

|wi| =
2d

β2
− 1.

The following theorem says that the SUT matches the first two moments, µ and C.

Theorem 1 (Empirical mean and Empirical covariance [2]). For an arbitrary β, we have

µ = E[X] =
2d∑
i=0

wiσi and C = E[(X − µ)(X − µ)>] =
2d∑
i=0

wi(σi − µ)(σi − µ)>

and if q : Rd → R is a polynomial of degree at most 2, we have, E[q(X)] =
∑2d

i=0wiq(σi).

We should note that if the distribution has zero skewness, such as a Gaussian distri-

bution, then the symmetry of the nodes yields degree of exactness 3, and, in the specific

case of a Gaussian distribution the choice β =
√

3 achieves degree of exactness 4 [2, 3, 29].

The choice β =
√
d is often called the unscented transform and sets w0 = 0 so that only

2d of the σ-points are required. The ability of the SUT to match the first four moments of

the Gaussian distribution has led some to associate the SUT with a Gaussian assumption,

however this is not required and degree of exactness 2 is achieved for arbitrary distributions.

Our goal is to generalize the unscented transform to higher moments, which are tensors.

2.2 Tensors

Tensors are essentially multidimensional matrices, which will be used to conveniently express

the notions of covariance, skewness and kurtosis in a similar fashion.

Definition 3 (k-order tensor). For positive integers d and k, a tensor T belonging to Rdk

is called a k-order tensor or simply a k-tensor.

In particular, a vector in Rd can be viewed as a first order tensor and a d × d matrix

as a second order tensor. Let x ∈ Rd. We note that the outer product xx> yields a d × d

13



matrix whose ij-entry can be represented as

(xx>)ij = xixj = (x⊗ x)ij = (x⊗2)ij .

We generalize this process of forming higher order tensors from vectors with following

definition.

Definition 4 (kth-order tensor product). Let v ∈ Rd and k be a positive integer then the

kth-order tensor product is a k-tensor denoted

v⊗k = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
k times

,

the elements are given by (v⊗k)i1,...,ik = vi1 . . . vik .

Definition 4 immediately connects tensor products to the moments of a distribution

since we can represent the covariance as C = E[(X − µ)⊗2] =
∫

(x− µ)⊗2 dp(x) so that the

skewness S and kurtosis K can be defined as

S =

∫
(x− µ)⊗3 dp(x) K =

∫
(x− µ)⊗4 dp(x),

so that, for example,

Sijk =

∫ (
(x− µ)⊗3

)
ijk

dp(x) =

∫
(x− µ)i(x− µ)j(x− µ)k dp(x).

The following definition generalizes the notion of a rank-1 matrix to tensors.

Definition 5 (Rank-1 Tensor). Let T ∈ Rdk then T is called a rank-1 tensor if there

exists a v ∈ Rd such that

v⊗k = T.
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For tensors that are not rank-1, one may seek to decompose the tensor as a sum of

rank-1 tensors.

Definition 6 (CP decomposition). The vectors v1, ..., vp form a CP decomposition of a

tensor T if,

T =

p∑
`=1

v⊗k`

and the minimum p for which such a decomposition exists is called the rank of the tensor

T .

This notion of rank agrees with the classical notion of matrix rank in the case of second

order tensors but many of the properties of matrix rank do not generalize to higher order

tensors [19–21,30,31].

2.3 Tensor Multiplication and Tensor Norms

In this section we introduce the necessary definitions and notation along with some pre-

liminary results that will be needed below. To discuss how tensor multiplication works,

let us first look at the simplest case where we multiply a 2-tensor with a 1-tensor. Recall

that for a matrix A ∈ Rd×d and v ∈ Rd, the matrix-vector multiplication Av is given by

(Av)i =
∑d

j=1Aijvj so we define two natural tensor-vector products

(A×1 v)i =

d∑
j=1

Ajivj = (A>v)i and (A×2 v)i =

d∑
j=1

Aijvj = (Av)i

Analogously, for a 3-tensor S ∈ Rd×d×d and a vector v ∈ Rd, the tensor-vector multiplication

is carried out as follows

(S ×1 v)ik =
d∑
j=1

Sjikvj , (S ×2 v)ik =
d∑
j=1

Sijkvj , (S ×3 v)ik =
d∑
j=1

Sikjvj ,
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each case resulting in a d× d matrix. For example, if S ∈ R3×3×3 and v ∈ R3 such that

S =

S111 S121 S131

S211 S221 S231

S311 S321 S331




S112 S122 S132

S212 S222 S232

S312 S322 S332




S113 S123 S133

S213 S223 S233

S313 S323 S333




then

S×1 v =


S111v1 + S211v2 + S311v3 S112v1 + S212v2 + S312v3 S113v1 + S213v2 + S313v3

S121v1 + S221v2 + S321v3 S122v1 + S222v2 + S322v3 S123v1 + S223v2 + S323v3

S131v1 + S231v2 + S331v3 S132v1 + S232v2 + S332v3 S133v1 + S233v2 + S333v3

 .

Generalizing this to arbitrary order tensors yields the following definition.

Definition 7 (n-mode product of a tensor). The n-mode product of a k-order tensor

T ∈ Rdk with a vector v ∈ Rd, denoted by T ×n v, is defined elementwise as

(T ×n v)i1,...,in−1,in+1,...,ik =
d∑
j=1

Ti1,...,in−1,j,in+1,...,ikvj .

Note that T ×n v ∈ Rdk−1
, so the order of the resulting tensor is decreased by 1.

The above definition can also be generalized for tensor-matrix multiplication [19]. Fi-

nally we note that the Frobenius norm for matrices can be generalized to tensors in the

following way.

Definition 8 (Tensor Frobenius Norm [19]). The Frobenius norm of a tensor T ∈ Rdk
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is the square root of the sum of the squares of all its elements

‖T‖F =

√√√√ d∑
i1=1

· · ·
d∑

ik=1

Ti1,...,ik
2.

Moments of a distribution have the special property in that they are symmetric in the

following sense.

Definition 9 (Symmetric Tensor). A tensor T ∈ Rdk is symmetric, if the tensor is

invariant to permutations of the indices, i.e.

Ti1···ik = Tp(i1···ik)

for any permutation p.

Notice that if a tensor is symmetric then the n-mode product is independent of the

mode, i.e. if T ∈ Rdk is symmetric then

T ×n v = T ×m v

for any 1 ≤ n,m ≤ k. The next lemma shows that the tensor Frobenius norm has a

particularly simple formula for rank-1 tensors.

Lemma 1. Let v ∈ Rd and k be a positive integer then the tensor Frobenius norm of the

kth-order tensor product is the same as the Euclidean norm of v raised to the k, i.e.

‖v⊗k‖F = ‖v‖k.
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Proof. By the definition of the tensor Frobenius norm,

‖v⊗k‖2F =
d∑

i1=1

· · ·
d∑

ik=1

[(v⊗k)i1,...,ik ]2

and since (v⊗k)i1...ik = vi1vi2 · · · vik , we have ‖v⊗k‖2F =
∑d

i1=1 · · ·
∑d

ik=1 v
2
i1
· · · v2

ik
, so

‖v⊗k‖2F =

d∑
i1=1

v2
i1

d∑
i2=1

v2
i2 · · ·

d∑
ik=1

v2
ik

= ‖v‖2‖v‖2 · · · ‖v‖2︸ ︷︷ ︸
k times

by definition of ‖v‖ so

‖v⊗k‖F = ‖v‖k.

2.4 Tensor Eigenvectors and Normalized Power Iteration

The key to our approximate CP decomposition is rank-1 approximation which is based on

tensor eigenvectors which can be found with the Higher Order Power Method (HOPM)

which we review in this section.

Definition 10 (Tensor Eigenvectors and Eigenvalues). Let T ∈ Rdk be a symmetric tensor

then v ∈ Rd is an eigenvector and λ ∈ R is the corresponding eigenvalue of T if

(((T ×1 v)×1 v) · · · ×1 v) = λv.

Note that since T is symmetric, the choice of n-mode product does not affect the defi-

nition of a tensor eigenvector. The next lemma shows that an eigenvalue-eigenvector pair

provides a rank-1 approximation of a tensor in the Frobenius norm.
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Lemma 2. Let T be a k-order symmetric tensor with dimension d, i.e. T ∈ Rdk and v ∈ Rd

be a unit length eigenvector of T with eigenvalue λ 6= 0. Then

‖T − λv⊗k‖2F = ‖T‖2F − λ2

and ‖T‖F ≥ λ.

Proof. We first wish to show that ‖T − λv⊗k‖2F = ‖T‖2F − λ2.

‖T − λv⊗k‖2F =

d∑
i1=1

· · ·
d∑

ik=1

[(T − λv⊗k)i1,...,ik ]2 =

d∑
i1=1

· · ·
d∑

ik=1

[Ti1,...,ik − λ(v⊗k)i1,...,ik ]2

=
d∑

i1=1

· · ·
d∑

ik=1

(T 2
i1,...,ik

− 2λTi1,...,ikvi1vi2 · · · vik + λ2v2
i1v

2
i2 · · · v

2
ik

)

= ‖T‖2F − 2λ
d∑
i=1

vi(T ×2 v ×3 v ×4 · · · ×k v)i + λ2‖v⊗k‖F

Since ‖v‖ = 1 and by Lemma 1, ‖v⊗k‖F = 1, hence

‖T − λv⊗k‖2F = ‖T‖2F − 2λ〈v, λv〉+ λ2 = ‖T‖2F − 2λ2‖v‖22 + λ2 = ‖T‖2F − λ2

Since ‖T − λv⊗k‖F ≥ 0, ‖T‖2F − λ2 ≥ 0 so ‖T‖2F ≥ λ2 and taking square roots, ‖T‖F ≥

|λ|.

It immediately follows from Lemma 2 that the eigenvector with the largest eigenvalue will

achieve the best rank-1 approximation among the eigenpairs. In fact, it has been shown that

the eigenpair with the largest eigenvalue achieves the best possible rank-1 approximation

of the tensor [22, 32]. This fact will form the basis for an effective algorithm for finding an

approximate CP decomposition in the next section.
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Finally, an effective algorithm for finding the eigenvector associated to the largest eigen-

value in absolute value is the Higher Order Power Method (HOPM) originally developed in

[25] and further analyzed in [32,33]. In the case of symmetric tensors the Symmetric-HOPM

(S-HOPM) has a simpler form that is very similar to Normalized Power Iteration (NPI) but

is not guaranteed to converge [22]. The HOPM algorithm for a symmetric order-k tensor

T ∈ Rdk requires initialization with the left singular vector, u, corresponding to the largest

singular value of the unfolding (reshaping) of the tensor into a d×dk−1 matrix. The HOPM

then defines k sequences of vectors, v
(1)
0 , . . . , v

(k)
0 , by initializing them all to be equal to u,

v
(1)
0 = · · · = v

(k)
0 = u, and inductively updating

w = T ×1 v
(1)
j+1 ×1 · · · ×1 v

(i−1)
j+1 ×1 v

(i+1)
j ×1 · · · ×1 v

(k)
j (2.1)

v
(i)
j+1 =

w

||w||

for each i = 1, ..., k and then increments j. Note that in formula (2.1), the subscripts

do not represent the indices of the vector, they refer to the iteration whereas in Algorithm

2.1 subscripts indicate vector indices.

Notice that the product that updates v
(i)
j+1 is the tensor T multiplied by the k − 1

other vectors, leaving out v
(i)
j . Also note that we use the already updated (j + 1)-step

vectors for the first i − 1 products and the j-step vectors for the last k − i products. The

HOPM is guaranteed to converge to an eigenvector of T [33], and when T is symmetric all

v
(1)
j , ..., v

(k)
j converge to the same eigenvector but may differ in sign for even order tensors.

For completeness we summarize the HOPM algorithm of [25] in Algorithm 1.

Unlike the case of matrices, for tensors of order greater than two the basins of attraction

for multiple distinct eigenvalues can have non-zero measure. It has been observed [22,32,33]

that initialization with the left singular vector, u, of the tensor unfolding typically leads to

convergence to the eigenvector with the largest eigenvalue. The next chapter will rely on
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Algorithm 1 Higher Order Power Method (HOPM) [25]

Inputs: A k-tensor T ∈ Rdk

Outputs: Eigenvector v ∈ Rd and eigenvalue λ such that T ×1 v ×1 · · · ×1 v = λv

Reshape T into a d× dk−1 matrix and compute the leading left singular vector, v0

Initialize v(1) = v(2) = · · · = v(k) = u, λ = Inf and λprev = 0
while |λ− λprev| > tol do

for ` = 1, ..., k do

Set v
(`)
s =

∑d
i1,...,i`−1,i`+1,...,ik=1 Ti1,...,i`−1,s,i`+1,...,ikv

(1)
i1
· · · v(`−1)

i`−1
v

(`+1)
i`+1

· · · v(k)
ik

Set vs = vs
‖vs‖

end for
Set λprev = λ

Set λ =
∑d

i1,...,ik=1 Ti1,...,ikv
(1)
i1
· · · v(1)

ik

end while
Set v = v(1)

Return v, λ.

the ability to find the eigenpair associated to the largest eigenvalue (in absolute value) so a

guaranteed way to find an initial condition in the basin of the largest eigenvalue is still an

important problem for future research.
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Chapter 3: Approximate CP Decomposition

In this chapter, we show how tensors eigenvectors can be used to form an approximate

CP decomposition up to an arbitrary level of precision. Of course, this is not a method of

finding the minimal CP decomposition, the computation of which is NP-complete [20, 21].

Moreover, we do not even see an exact CP decomposition. Instead, given an order-k tensor

T , we seek a sequence of vectors v` and constants λ` such that
∑p

`=1 λ`v
⊗k
` approximates T

in the Frobenius norm up to an error that can be made arbitrarily small by increasing p. In

the next section we will show that this approximate CP decomposition is a key component

for generalizing the unscented ensemble to higher moments.

Our approach is motivated by a theorem of [22] which states that if v is the unit length

eigenvector of an order-k tensor T associated to the largest eigenvalue λ (in absolute value),

then λv⊗k is the best rank-1 approximation of T , namely

‖T − λv⊗k‖

is minimized over all possible λ, ‖v‖ = 1. It is well known that subtracting the best rank-

1 approximation does not produce an exact CP decomposition, and in fact may increase

tensor rank [30,31]. However, it was suggested in [22] that repeatedly subtracting the rank-

1 approximations may result in an approximate CP decomposition. Theorem 2 below will

show that this process converges subject to a certain tensor eigenvalue inequality that will

be shown in Lemma 3 below.

Originally ([1]) our proof for Theorem 2 required an inequality of the form

λmaxabs ≥ |Ti1,...,ik |. (3.1)
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In the case of symmetric matrices, the inequality (3.1) holds since if T ∈ Rd2 is symmetric,

it has an orthogonal eigendecomposition, T = U>ΛU , so by the Cauchy-Schwarz inequality,

|Tij | = |〈ui, λjuj〉| ≤ ||ui|| ||λjuj || = |λj | ≤ λmaxabs (3.2)

where uk is an eigenvector of T and λk is the associated eigenvalue for 1 ≤ k ≤ d, and

the identity matrix shows that c = 1 is the best possible constant for matrices. Naturally,

this method of proof cannot be generalized to arbitrary tensors due to the lack of a similar

rank-1 eigendecomposition. However, the following result of Banach [34] will allow us to

prove the inequality (3.1) for all tensors.

Corollary 1 (Banach, [34]). If T (v1, ..., vk) is a symmetric k-linear tensor, then

sup
‖v1‖≤1,...,‖vk‖≤1

|T (v1, ..., vk)| = sup
‖v‖≤1

|T (v, ..., v)|.

In fact, Corollary 1 is a special case of Banach’s Satz I in [34] when applied to scalar

valued tensors (the full result applies to L2-function valued tensors). This allows us to prove

the following lemma for all symmetric tensors.

Lemma 3. For all symmetric k-order tensors T with largest eigenvalue in absolute value

λmaxabs, then

λmaxabs ≥ |Ti1,...,ik |. (3.3)

Proof. By Corollary 1, we have:

λmaxabs = sup
||v||=1

|T (v, ..., v)| = sup
||v1||=...=||vk||=1

|T (v1, ..., vk)| ≥ |T (ei1 , ..., eik)| = |Ti1,...,ik |
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We can now prove that repeatedly subtracting rank-1 yields an approximate CP decom-

position to any desired precision.

Theorem 2. Let T be a k-order symmetric tensor with size d, i.e. T ∈ Rdk . Consider

the process of finding an approximate CP decomposition of T by starting from T0 = T and

setting T`+1 = T` − λ`v⊗k` where λ` is the largest eigenvalue in absolute value of T` and v`

is the associated eigenvector. Then ‖T`‖F → 0 and for r =

√
1− 1

dk
∈ [0, 1)

‖T`+1‖F
‖T`‖F

≤ r and T =

p∑
`=1

λ`v
⊗k
` +O(rL)

for all L ∈ N.

Proof. First let λmaxabs be the largest eigenvalue in absolute value of a tensor T and recall

λmaxabs ≥ |Ti1...ik | for all i1, . . . , ik. We will show that there exists a constant c = 1
dk/2
∈ (0, 1]

such that λmaxabs ≥ c‖T‖F . Since λmaxabs ≥ |Ti1...ik |, we have

λ2
maxabs ≥ T 2

i1...ik

which implies that

dkλ2
maxabs ≥

∑
i1,...,ik

T 2
i1...ik

so we have dk/2λmaxabs ≥
√∑

i1,...,ik
T 2
i1...ik

and

λmaxabs ≥
1

dk/2
‖T‖F , (3.4)

where we take c =
1

dk/2
∈ (0, 1], since d ≥ 1.
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By Lemma 2 applied to T`, we have

‖T`+1‖F 2 = ‖T` − λ`v⊗k` ‖F
2

= ‖T`‖F 2 − λ`2.

Since λ` is defined to be the largest eigenvalue of T`, (3.4) says that λ` ≥ c‖T`‖F where

c = 1
dk/2

so

‖T`+1‖F 2 ≤ ‖T`‖F 2 − c2‖T`‖F 2

≤ (1− c2)‖T`‖F 2.

Thus, setting r =
√

1− c2 ∈ [0, 1) we have ‖T`+1‖F ≤ r‖T`‖F and ‖T`+1‖F ≤ r2‖T`−1‖F

and so forth and proceeding inductively we find,

‖T`+1‖F ≤ r`+1‖T0‖F = r`+1‖T‖F .

Since 0 < r < 1, lim
`→∞

r`+1 = 0, so 0 ≤ ‖T`+1‖F ≤ r`+1‖T‖F → 0 implies ‖T`+1‖ → 0 as

`→∞. Since this limit is 0, an upper bound on the rate of convergence of ‖T`‖F is found

by considering

‖T`+1‖F
‖T`‖F

≤ r =

√
1− 1

dk
.

Theorem 2 gives an effective algorithm for finding approximate CP decompositions of

tensors. Note that this theorem can be improved using a result of [35] in which we define

λmaxabs = ||T ||2 ≥ Appk(R, d, ..., d)||T ||F

where Appk(R, d, ..., d) is the best rank-one approximation ratio. When d = 1, 2, 4, 8, we
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have Appk(R, d, ..., d) = d−
k−1
2 but for all other d we have Appk(R, d, ..., d) > d−

k−1
2 , thus

λmaxabs ≥ d−
k−1
2 ‖T‖F (3.5)

which is the best inequality that holds for all d, although better inequalities may hold

for d 6= 1, 2, 4, 8. Thus, by replacing (3.4) with (3.5), the Theorem 2 can be rewritten as

follows with the best possible bound for r.

Theorem 3. Let T be a k-order symmetric tensor with size d, i.e. T ∈ Rdk . Consider

the process of finding an approximate CP decomposition of T by starting from T0 = T and

setting T`+1 = T` − λ`v⊗k` where λ` is the largest eigenvalue in absolute value of T` and v`

is the associated eigenvector. Then ‖T`‖F → 0 and for r =
√

1− d1−k ∈ (0, 1)

‖T`+1‖F
‖T`‖F

≤ r and T =

p∑
`=1

λ`v
⊗k
` +O(rL)

for all L ∈ N.

In the next chapter, we will show how to use the approximate CP decomposition to build

an ensemble that simultaneously matches the mean, covariance, skewness and kurtosis.

We summarize the approximate CP decomposition algorithm below.
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Algorithm 2 Approximate CP Decomposition

Inputs: A k-tensor T ∈ Rdk and a tolerance τ .

Outputs: Vectors, v`, and signs, s` ∈ {−1, 1} such that

∣∣∣∣∣∣∣∣ p∑̀
=1

s`v
⊗k
` − T

∣∣∣∣∣∣∣∣
F

≤ τ .

Set ` = 1

while ||T ||F > τ do

Apply the HOPM (Algorithm 1) to find an eigenpair (v, λ) of T .

Set s` = sign(λ) (note that if k is odd we can always choose s` = 1)

Set v` = |λ|1/kv

Set T = T − s`v⊗k`
Set ` = `+ 1

end while

Return the set of all s`, v`.

Finally, we demonstrate this algorithm on a random 3-tensor and 4-tensor with d = 2

and d = 10 in Figure 3.1. We note that in all cases the convergence is much faster than

our theoretical upper bound, however for d = 10 we see that the ratio of residual norms

approaches much closer to our upper bound. Moreover, high dimensional tensors require

a much larger number of vectors to achieve a given tolerance with the approximate CP

decomposition. So while our approach provides an effective solution, it is likely that there

is room for improvement, and the higher order unscented transform (HOUT) introduced in

the next section can use any method of CP decomposition.
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Figure 3.1: Top (a-d): With d = 2 we demonstrate the convergence rate of the approximate
CP decomposition of a random symmetric 3-tensor (a,b) and 4-tensor (c,d). The norm of

the residual in blue (a,c) decays to numerical zero faster than the upper bound, r` (red). The
ratio of successive Frobenius norms shown in blue (b,d) respect the derived upper bound r
(red) as long as the difference between iterations exceeds numerical precision. However, it
has not really converged to the true value, it has just converged up to 16 digits of precision.
Notice how the blue line in (b) violates the upper bound right before iteration 50, and at the

same iteration in (a), the error levels off near numerical precision (10−16). Bottom (e-h):
We repeat the experiment with d = 10.

3.1 Sharpness

Now we wish to show the sharpness of Lemma 3, i.e. demonstrate that the inequality (3.3)

is optimal. We first show that without loss of generality we only need to show sharpness

for 2k tensors.

Lemma 4. If there is an example of a symmetric tensor T ∈ R2k such that the inequality

is shown to be sharp, then the inequality is also sharp for Rnk .

Proof. Suppose there is a symmetric tensor T ∈ R2k that demonstrates sharpness of the

Lemma 3. We can extend this to the nk case where entries with indices that consist of

ones and twos are the same as the 2k case and all other entries 0. This yields the following
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equations:

λu1 = (T ×2 u×3 u)1 =

n∑
j,k=1

T1jk`ujuku`

λu2 = (T ×2 u×3 u)2 =
n∑

j,k=1

T2jk`ujuku`

λu3 = (T ×2 u×3 u)3 =

n∑
j,k=1

T3jk`ujuku` = 0

λu4 = (T ×2 u×3 u)4 =
n∑

j,k=1

T4jk`ujuku` = 0

...

λun = (T ×2 u×3 u)3 =
n∑

j,k=1

Tnjk`ujuku` = 0

1 = u1
1 + u2

2 + ...+ u2
n

Obviously u3 = u4 = ... = un = 0 and thus u2
1 + u2

2 = 1. Hence we have the same equations

as in the 2k case. Therefore, we have proved the inequality for any symmetric k-tensor.

We first consider the case of 3-tensors. By the eigenvalue equation, for some 3-tensor

T ∈ Rd3 and eigenvector ~u ∈ Rd of length 1 with associated eigenvalue λ we have

T ×2 u×3 u = λu (3.6)

with the component-wise definition

(T ×2 u×3 u)i =

d∑
j,k=1

Tijkujuk.
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By Lemma 4, we only need to consider tensors that are in R23 . Consider the 2 × 2 × 2

symmetric tensor T with entries T111 = 0, T211 = 1, T221 = 0, T222 = −1 so

T =

T111 T121

T211 T221

][
T112 T122

T212 T222

][
=

0 1
1 0

][
1 0
0 −1

][

and eigenvector of length 1 ~u =

u1

u2

. By plugging these values into the eigenvalue

equation and taking the first component of both sides of (3.6) we have the following equality

λu1 = (T ×2 u×3 u)1 =
2∑

j,k=1

T1jkujuk = T111u
2
1 + T112u1u2 + T121u2u1 + T122u

2
2 = 2u1u2

Now, taking the second component we have

λu2 = (T ×2 u×3 u)2 =

2∑
j,k=1

T2jkujuk = T211u
2
1 + T212u1u2 + T221u2u1 + T222u

2
2 = u2

1 − u2
2

Therefore, we have the system of equations

λu1 = 2u1u2 (3.7)

λu2 = u2
1 − u2

2 (3.8)

u2
1 + u2

2 = 1 (3.9)

Rearranging (3.7) gives λ = 2u2. Plugging this value of λ into (3.8) then gives u2
1 = 3u2

2.

Plugging this into (3.9) and solving the equation yields λ = ±1.

Therefore, since λmaxabs = 1 and is greater than or equal to the absolute value of each
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entry in the tensor, this proves that in the inequality λmaxabs ≥ c · Tstu, c cannot have a

value greater than 1, proving the sharpness of our inequality for the 3-tensor.

We next consider the case of 4-tensors. By Lemma 4, we only need to consider tensors

that are in R24 . Note that by the eigenvalue equation, for some T ∈ Rd4 and eigenvector

~u ∈ Rd of length 1 with associated eigenvalue λ we have

T ×2 u×3 u×4 u = λu (3.10)

with the component-wise definition

(T ×2 u×3 ×4u)i =

d∑
j,k,`=1

Tijkujuku`.

Now, consider the 2×2×2×2 symmetric tensor T with entries T1111 = T2222 = 3, T1122 = 1,

and T1112 = T1222 = 0 . We then take the first component of both sides of (3.10) to get the

following equality

λu1 = (T ×2 u×3 u×4 u)1

=

2∑
j,k=1

T1jk`ujuku`

= T1111u
3
1 + T1211u

2
1u2 + T1121u

2
1u2 + T1112u

2
1u2 + T1221u1u

2
2 + T1212u1u

2
2

+T1122u1u
2
2 + T1222u

3
2

= T1111u
3
1 + (T1211 + T1121 + T1112)u2

1u2 + (T1221 + T1212 + T1122)u1u
2
2 + T1222u

3
2

= 3u3
1 + 3u1u

2
2

= 3(u3
1 + u1u

2
2).

31



Now, taking the second component we have

λu2 = (T ×2 u×3 u×4 u)2

=

2∑
j,k=1

T2jk`ujuku`

= T2111u
3
1 + T2211u

2
1u2 + T2112u

2
1u2 + T2121u

2
1u2 + T2212u1u

2
2 + T2221u1u

2
2

+T2122u1u
2
2 + T2222u

3
2

= T2111u
3
1 + (T2211 + T2112 + T2121)u2

1u2 + (T2212 + T2221 + T2122)u1u
2
2 + T2222u

3
2

= 3u2
1u2 + 3u3

2

= 3(u2
1u2 + u3

2).

Therefore, we have the system of equations

λu1 = 3(u3
1 + u1u

2
2) (3.11)

λu2 = 3(u2
1u2 + u3

2) (3.12)

u2
1 + u2

2 = 1 (3.13)

Rearranging (3.13) as u2
2 = 1 − u2

1 and plugging this into (3.11) gives us λu1 = 3u1 hence

λ = 3. Then we rearrange (3.13) as u2
1 = 1 − u2

2 and plug this into (3.12) to give us

λu2 = 3u2 thus once again λ = 3. Therefore λmaxabs = 3 and satisfies the Lemma 3

λmaxabs ≥ |Tijk`|

since the largest entry in T is also 3, proving the sharpness of the lemma for the 4-tensor.
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Chapter 4: Higher Order Unscented Transform

4.1 Higher Order Unscented Transform

The goal of the scaled unscented transform is to generate a small ensemble that exactly

matches the mean and covariance of a distribution, thus forming a quadrature rule that can

be to estimate the expected value of nonlinear functions. In this section we define the higher

order unscented transform which matches the first four moments of a distribution, thus

providing a quadrature rule with a higher degree of exactness. While we only describe the

process explicitly for up to four moments, our method is based on the approximate tensor

decomposition from the previous section and should allow generalization to an arbitrary

number of moments.

Suppose we are given the following moments of the distribution of a random variable:

the mean µ ∈ Rd, the covariance matrix C ∈ Rd×d, the skewness tensor S ∈ Rd×d×d,

and kurtosis tensor K ∈ Rd×d×d×d. Let τ be a parameter that specifies the tolerance of the

approximate CP decompositions and let S and K have the approximate CP decompositions

∣∣∣∣∣
∣∣∣∣∣S −

J∑
i=1

ṽi
⊗3

∣∣∣∣∣
∣∣∣∣∣
F

≤ τ/2

∣∣∣∣∣
∣∣∣∣∣K −

L∑
i=1

siũi
⊗4

∣∣∣∣∣
∣∣∣∣∣
F

≤ τ/2

where si ∈ {−1, 1} denote signs. Note that these approximate decompositions can be

constructed by the algorithm described in Theorem 2 and then moving the eigenvalues

inside the tensor power by the rule (cv)⊗k = ckv⊗k. Note that the signs si are required for

the kurtosis since constants come out of even order tensor powers as absolute values.
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The key to forming an ensemble that matches all four moments simultaneously is care-

fully balancing the interactions between the moments. For example, if we add new quadra-

ture nodes of the form µ + γṽi in order to try to match the skewness, these nodes will

influence the mean of the ensemble. In order to balance these interactions we make the

following definitions based on the approximate CP decompositions of the skewness and

kurtosis,

µ̃ =
J∑
i=1

ṽi, µ̂ = −γ−2µ̃, C̃ =
L∑
i=1

siũi
⊗2, Ĉ = C − 1

δ2
C̃

where L̂ =
L∑
i=1

si and β, γ, δ are arbitrary positive constants that will define the 4 moment

σ-points below. We note that C is assumed symmetric and positive definite since it is a

covariance matrix and C̃ is symmetric by definition. In order to insure that Ĉ is also positive

definite, let λC̃max be the largest eigenvalue of C̃ and let λCmin be the smallest eigenvalue of

C, then we require that δ >

√
λC̃max

λCmin

which guarantees that Ĉ is positive definite. We note

that this choice can be overly conservative especially when C is close to rank deficient. In

these cases, it can be helpful to iterative divide δ by 2 as long as Ĉ remains positive definite.

These choices balance out the interactions between the moments and are the key to proving

Theorem 4 below. We are now ready to define the 4-moment σ-points.

Definition 11 (The 4-moment σ–points of the higher order unscented transform). Let α,
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β, γ, δ be positive real numbers, we define the 4 moment σ-points by

σi =



µ if i = −2

µ+ αµ̂ if i = −1

µ− αµ̂ if i = 0

µ+ β
√
Ĉi if i = 1, . . . , d

µ− β
√
Ĉi−d if i = d+ 1, . . . , 2d

µ+ γṽi−2d if i = 2d+ 1, . . . , 2d+ J

µ− γṽi−2d−J if i = 2d+ J + 1, . . . , 2d+ 2J

µ+ δũi−2d−2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L

µ− δũi−2d−2J−L if i = 2d+ 2J + L+ 1, . . . , N

and the corresponding weights by

wi =



1− dβ−2 − L̂δ−4 if i = −2

1
2α
−1 if i = −1

−1
2α
−1 if i = 0

1
2β
−2 if i = 1, . . . , 2d

1
2γ
−3 if i = 2d+ 1, . . . , 2d+ J

−1
2γ
−3 if i = 2d+ J + 1, . . . , 2d+ 2J

1
2δ
−4si−2d−2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L

1
2δ
−4si−2d−2J−L if i = 2d+ 2J + L+ 1, . . . , N

For convenience, denote N = 2(d+ J + L).
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The next theorem shows that the 4-moment σ-points match the first two moments

exactly and match the skewness and kurtosis up to an error term that can be controlled

below.

Theorem 4. Given the 4-moment σ-points associated with µ, C, S, and K we have∑N
i=−2wi = 1 and

N∑
i=−2

wiσi = µ

N∑
i=−2

wi(σi − µ)⊗2 = C

∣∣∣∣∣
∣∣∣∣∣
N∑

i=−2

wi(σi − µ)⊗3 − S

∣∣∣∣∣
∣∣∣∣∣
F

≤ τ/2 + α2
∣∣∣∣µ̂⊗3

∣∣∣∣
F

∣∣∣∣∣
∣∣∣∣∣
N∑

i=−2

wi(σi − µ)⊗4 −K

∣∣∣∣∣
∣∣∣∣∣
F

≤ τ/2 + β2
∣∣∣∣C̄∣∣∣∣

F
.

where C̄ =
∑d

i=1

√
Ĉ
⊗4

i .

Proof. We first we wish to show that the first moment equation matches our mean. We

begin by splitting the sum

N∑
i=−2

wiσi =

0∑
i=−2

wiσi +

2d∑
i=1

wiσi +

2d+2J∑
i=2d+1

wiσi +

N∑
i=2d+2J+1

wiσi

Using the expressions defining the 4 moment σ-points σi and the corresponding weights wi,
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we have

N∑
i=−2

wiσi = (1− dβ−2 − L̂δ−4)µ+
1

2α
(µ+ αµ̂)− 1

2α
(µ− αµ̂)

+

d∑
i=1

1

2β2

(
µ+ β

√
Ĉi
)

+

2d∑
j=d+1

1

2β2

(
µ− β

√
Ĉi−d

)

+
2d+J∑
i=2d+1

1

2γ3

(
µ+ γṽi−2d

)
+

2d+2J∑
j=2d+J+1

−1

2γ3

(
µ− γṽi−2d−J

)

+
2d+2J+L∑
i=2d+2J+1

1

2δ4
si−2d−2J

(
µ+ δũi−2d−2J

)

+
N∑

j=2d+2J+L+1

1

2δ4
si−2d−2J−L

(
µ− δũi−2d−2J−L)

and regrouping like terms, we obtain

N∑
i=−2

wiσi = (1− dβ−2 − L̂δ−4)µ+ µ̂+

d∑
i=1

1

2β2

(
2µ+ β

√
Ĉi − β

√
Ĉi
)

+

J∑
i=1

(
1

2γ3

(
µ+ γṽi

)
− 1

2γ3

(
µ− γṽi

))
+

L∑
i=1

1

2δ4
si
(
2µ+ δũi − δũi

)

= (1− dβ−2 − L̂δ−4)µ+ µ̂+

d∑
i=1

µ

β2
+

J∑
i=1

ṽi
γ2

+

L∑
i=1

siµ

δ4

= (1− dβ−2 − L̂δ−4)µ+ µ̂+ dβ−2µ+ γ−2
J∑
i=1

ṽi + δ−4µ

L∑
i=1

si

= µ+ µ̂+ γ−2µ̃

= µ
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using the definition µ̂ = −γ−2µ̃ for the last equality.

To look at the other moment equations, let’s first observe that for n = 2, 3, 4,

N∑
i=−2

wi(σi − µ)⊗n =

0∑
i=−1

wi(σi − µ)⊗n +

2d∑
i=1

wi(σi − µ)⊗n

+
2d+2J∑
i=2d+1

wi(σi − µ)⊗n +
N∑

i=2d+2J+1

wi(σi − µ)⊗n

Notice that since the first σ-point σ−2 is µ, the term w−2(σ−2−µ)⊗n = 0. By the definition

of σ-points and corresponding weights,

N∑
i=−2

wi(σi − µ)⊗n =
αn−1

2

(
µ̂⊗n − (−µ̂)⊗n

)

+
βn−2

2

 d∑
i=1

(√
Ĉi
)⊗n

+

2d∑
j=d+1

(
−
√
Ĉi−d

)⊗n

+
γn−3

2

 2d+J∑
i=2d+1

(
ṽi−2d

)⊗n − 2d+2J∑
j=2d+J+1

(
− ṽi−2d−J

)⊗n

+
δn−4

2

2d+2J+L∑
i=2d+2J+1

si−2d−2J

(
ũi−2d−2J

)⊗n

+
δn−4

2

N∑
j=2d+2J+L+1

si−2d−2J−L
(
− ũi−2d−2J−L

)⊗n
.

where we used the property (av)⊗n = anv⊗n where a is any real number and v is a vector.
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When n is even, we have

N∑
i=−2

wi(σi − µ)⊗n = βn−2
d∑
i=1

(√
Ĉi
)⊗n

+ δn−4
L∑
i=1

si
(
ũi
)⊗n

(4.1)

and when n is odd, we obtain

N∑
i=−2

wi(σi − µ)⊗n = αn−1µ̂⊗n + γn−3
J∑
i=1

(
ṽi
)⊗n

. (4.2)

Now we wish to show that the second moment equation matches our covariance. By

(4.1), setting n = 2 we have

N∑
i=−2

wi(σi − µ)⊗2 =
d∑
i=1

√
Ĉ
⊗2

i + δ−2
L∑
i=1

siũ
⊗2
i = Ĉ + δ−2C̃

and applying the definition of Ĉ = C − δ−2C̃ we have

N∑
i=−2

wi(σi − µ)⊗2 = C,

as desired. Next, observe that by (4.2) and the definition of S,

N∑
j=0

wi(σi − µ)⊗3 = α2µ̂⊗3 +

J∑
i=1

ṽ⊗3
i
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and since we assume that

∣∣∣∣∣∣∣∣ J∑
i=1

ṽ⊗3
i − S

∣∣∣∣∣∣∣∣
F

≤ τ
2 , by the triangle inequality we have,

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=0

wi(σi − µ)⊗3 − S

∣∣∣∣∣∣
∣∣∣∣∣∣
F

≤ τ

2
+ α2||µ̂⊗3||F

as desired. Lastly, we wish to show that the fourth moment equation matches our kurtosis.

By (4.1) and the definition of K, we have

N∑
i=−2

wi(σi − µ)⊗4 = β2
d∑
i=1

√
Ĉ
⊗4

i +

L∑
i=1

siũ
⊗4
i

= β2C̄ +

L∑
i=1

siũ
⊗4
i

and since we assume that

∣∣∣∣∣∣∣∣ L∑
i=1

siũ
⊗4
i −K

∣∣∣∣∣∣∣∣
F

≤ τ
2 , by the triangle inequality we have,

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=0

wi(σi − µ)⊗4 −K

∣∣∣∣∣∣
∣∣∣∣∣∣
F

≤ τ

2
+ β2||C̄||F

which completes the proof.

Notice that the third and fourth moment equations do not exactly match the skewness

and kurtosis, respectively. Of course, we only used an approximate CP decomposition to

begin with, which accounts for the τ term in the error. Thus, the real goal is to bound the

other error term by the same tolerance, τ . The following corollary shows how to control

the error terms on the skewness and kurtosis.

Corollary 2. Let τ be a specified tolerance for the absolute error of the skewness and

kurtosis and set C̄ =
d∑
i=1

√
Ĉ
⊗4

i and µ̂ as in Theorem 4. If we choose parameters α, β such
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that

α <

√
τ

2||µ̂⊗3||F
and β <

√
τ

2||C||F

then

∣∣∣∣∣
∣∣∣∣∣
N∑

i=−2

wi(σi − µ)⊗3 − S

∣∣∣∣∣
∣∣∣∣∣
F

< τ and

∣∣∣∣∣
∣∣∣∣∣
N∑

i=−2

wi(σi − µ)⊗4 −K

∣∣∣∣∣
∣∣∣∣∣
F

< τ.

Proof. The inequality for β follows immediately from Theorem 4. Once β is chosen, then

we can define,

||µ̂⊗3||F =

∣∣∣∣∣∣∣∣((1− dβ−2 − L̂δ−4
)
µ− γ−2µ̃

)⊗3
∣∣∣∣∣∣∣∣
F

and choosing α <
√

τ
2||µ̂⊗3||F we have

∣∣∣∣∣
∣∣∣∣∣
N∑

i=−2

wi(σi − µ)⊗3 − S

∣∣∣∣∣
∣∣∣∣∣
F

≤ τ/2 + α2||µ̂⊗3||F < τ

as desired.

Corollary 2 could easily be reformulated to control relative error if desired, and taken

to the extreme we could make the quadrature rule exact up to numerical precision. As a

practical matter, this is not an effective strategy since it would result in a larger condition

number for the numerical quadrature as shown in the following remark.
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Algorithm 3 Higher Order Unscented Transform (HOUT)

Inputs: A function f , tolerance τ , and the mean, µ, covariance, C, skewness, S, and

kurtosis, K, of a random variable X.

Outputs: Estimate of E[f(X)] with degree of exactness 4.

Compute the approximate CP decomposition
∣∣∣∣∣∣S −∑J

i=1 ṽ
⊗3
i

∣∣∣∣∣∣
F
≤ τ/2

Compute the approximate CP decomposition
∣∣∣∣∣∣K −∑L

i=1 siũ
⊗4
i

∣∣∣∣∣∣
F
≤ τ/2

Set C̃ =
∑L

i=1 siũ
⊗2
i .

Compute the largest eigenvalue λC̃max of C̃ and the smallest eigenvalue λCmin of C

Choose δ >

√
λC̃max

λCmin

(note that C is positive definite so λCmin > 0)

(Optional) While C − δ−2C̃ is positive definite, set δ = δ/2

Set Ĉ = C − δ−2C̃

Compute the symmetric square root of Ĉ with columns
√
Ĉi

Set C̄ =
∑d

i=1

√
Ĉi
⊗4

Choose β <
√

τ
2||C̄||F

and choose γ > 0 (default γ = J−1/3)

Set L̂ =
∑L

i=1 si and µ̃ =
∑J

i=1 ṽi and µ̂ = (1− dβ−2 − L̂δ−4)µ− γ−2µ̃

Choose α <
√

τ
2||µ̂⊗3||F

Define the 4-moment σ-points, σi, and weights, wi, according to Definition 11

Output:
∑N

i=−2wif(σi)

Remark 2. The absolute condition number of the higher order unscented transform is

bounded above by
∑N

i=0 |wi|. Using the bounds from Corollary 2 we find

N∑
i=0

|wi| =
1

α
+

d

β2
+
J

γ3
+
L

δ4
>

√
||µ̄⊗3||F

τ
+
d||C̄||F
τ

+
J

γ3
+
L

δ4
= O(τ−1)

which shows that the condition number has the potential to blow up as the tolerance is

decreased.

We summarize the HOUT algorithm in Algorithm 3 and we now turn to some numerical

experiments to demonstrate the HOUT.
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4.2 Error Analysis

The standard approach to error estimates for the SUT is based on a Taylor’s theorem

approximation near the mean. These results can be immediately generalized to the HOUT

as in the following theorem.

Theorem 5 (Taylor-type HOUT Error Bound). Let f ∈ C5(Rd,R) and let X ∼ p be a

random variable with distribution p that has compact support. Then the error in estimating

E[f(X)] using the 4-moment σ–points of the HOUT and corresponding weights has the upper

bound ∣∣∣∣∣E[f(X)]−
m∑
i=1

wif(σi)

∣∣∣∣∣ ≤ ||D5f ||∞
d5

120

(
||M5,abs||max + ||M̃5,abs||max

)

where the ||D5f ||∞ is taken on the support of the measure and M5,abs, M̃5,abs are the absolute

fifth moments of p and the quadrature respectively.

Proof. Suppose f ∈ C5(Rd,R). Now we wish to find the error bound where E[f(x)] with

x ∼ p is the truth and

m∑
i=1

wif(σi) is our estimate where m is the number of σ-points (nodes)

in the quadrature. By Taylor’s theorem with remainder we can expand f centered at µ as

f(x) = f(µ) +∇f(µ)(x− µ) +
1

2

d∑
j,k=1

Hf(µ)jk(x− µ)j(x− µ)k

+
1

6

d∑
j,k,l=1

D3f(µ)jkl(x− µ)j(x− µ)k(x− µ)l

+
1

24

d∑
j,k,l,r=1

D4f(µ)jklr(x− µ)j(x− µ)k(x− µ)l(x− µ)r

+
1

120

d∑
j,k,l,r,s=1

D5f(µ∗)jklrs(x− µ)j(x− µ)k(x− µ)l(x− µ)r(x− µ)s
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where µ∗ ∈ B‖x−µ‖(µ) (i.e. ‖µ∗−µ‖ < ‖x−µ‖), and Dkf(x)j1···jk ≡
∂kf

∂xjk · · · ∂xj1
(x). Thus

E[f(x)] =

∫
Rd
f(x)p(x) dx

= f(µ)

∫
Rd
p(x) dx+∇f(µ)

∫
Rd

(x− µ)p(x) dx

+
1

2

d∑
j,k=1

Hf(µ)jk

∫
Rd

(x− µ)j(x− µ)kp(x) dx

+
1

6

d∑
j,k,l=1

D3f(µ)jkl

∫
Rd

(x− µ)j(x− µ)k(x− µ)lp(x) dx

+
1

24

d∑
j,k,l,r=1

D4f(µ)jklr

∫
Rd

(x− µ)j(x− µ)k(x− µ)l(x− µ)rp(x) dx

+
1

120

d∑
j,k,l,r,s=1

∫
Rd
D5f(µ∗x)jklrs(x− µ)j(x− µ)k(x− µ)l(x− µ)r(x− µ)sp(x) dx

= f(µ) +
1

2

d∑
j,k=1

Hf(µ)jkCjk +
1

6

d∑
j,k,l=1

D3f(µ)jklSjkl +
1

24

d∑
j,k,l,r=1

D4f(µ)jklrKjklr

+
1

120

d∑
j,k,l,r,s=1

∫
Rd
D5f(µ∗x)jklrs(x− µ)j(x− µ)k(x− µ)l(x− µ)r(x− µ)sp(x) dx

where the subscript on µ∗x denotes the implicit dependence on x of the remainder in Taylor’s theorem.

Since the quadrature exactly matches the first four moments we have,

1 =

m∑
i=1

wi, µ =

m∑
i=1

wiσi, Cjk =

m∑
i=1

wi(σi − µ)j(σi − µ)k,

Sjkl =

m∑
i=1

wi(σi−µ)j(σi−µ)k(σi−µ)l, and Kjklr =

m∑
i=1

wi(σi−µ)j(σi−µ)k(σi−µ)l(σi−µ)r.

So applying Taylor’s theorem inside the quadrature formula yields,
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m∑
i=1

wif(σi) =

m∑
i=1

wi

(
f(µ) +∇f(µ)(σi − µ) +

1

2

d∑
j,k=1

Hf(µ)jk(σi − µ)j(σi − µ)k

+
1

6

d∑
j,k,l=1

D3f(µ)jkl(σi − µ)j(σi − µ)k(σi − µ)l

+
1

24

d∑
j,k,l,r=1

D4f(µ)jklr(σi − µ)j(σi − µ)k(σi − µ)l(σi − µ)r

+
1

120

d∑
j,k,l,r,s=1

D5f(µ∗)jklrs(x− µ)j(x− µ)k(x− µ)l(x− µ)r(x− µ)s

)

= f(µ) +
1

2

d∑
j,k=1

Hf(µ)jkCjk +
1

6

d∑
j,k,l=1

D3f(µ)jklSjkl +
1

24

d∑
j,k,l,r=1

D4f(µ)jklrKjklr

+
1

120

d∑
j,k,l,r,s=1

(
m∑
i=1

D5f(µ∗σi)jklrswi(σi − µ)j(σi − µ)k(σi − µ)l(σi − µ)r(σi − µ)s

)

Notice that the first four terms of the true expectation and the quadrature formula agree.

Since the first four terms cancel, the error becomes,∣∣∣∣∣E[f(x)]−
m∑
i=1

wif(σi)

∣∣∣∣∣
=

1

120

∣∣∣∣∣
d∑

j,k,l,r,s=1

∫
Rd
D5f(µ∗x)jklrs(x− µ)⊗5

jklrs dp−
m∑
i=1

D5f(µ∗σi)jklrswi(σi − µ)⊗5
jklrs

∣∣∣∣∣
≤ 1

120

d∑
j,k,l,r,s=1

∫
Rd

∣∣∣D5f(µ∗x)jklrs(x− µ)⊗5
jklrs

∣∣∣ dp+
m∑
i=1

∣∣∣D5f(µ∗σi)jklrswi(σi − µ)⊗5
jklrs

∣∣∣
≤ ||D

5f ||∞
120

d∑
j,k,l,r,s=1

∫
Rd

∣∣∣(x− µ)⊗5
jklrs

∣∣∣ dp+

m∑
i=1

∣∣∣wi(σi − µ)⊗5
jklrs

∣∣∣
≤ ||D5f ||∞

d5

120

(
||M5,abs||max + ||M̃5,abs||max

)

While the assumption of compact support is not strictly necessary, one must make some

assumption on the decay of the probability measure in order to control the error. Moreover,
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the Taylor’s theorem approach does not allow less regular functions f or take advantage

of additional regularity that may be present in f . Thus we take a more general approach

based on the methods of polynomial approximation [36,37].

The benefit of our ability to match four moments to arbitrary precision is that it allows

us to apply the standard approach for quadrature error analysis based on polynomial ap-

proximation. In this section, we develop error bounds in the context of a quadrature that

matches n moments. Since the HOUT matches four moments, the bounds developed in this

section apply to the HOUT with n = 4. Of course, this immediately requires an assumption

on the probability measure dp that the first n-moments exist. However, we will not require

the existence of a density or any regularity assumptions on the measure.

The polynomials 1, x, (x − µ)⊗2, ..., (x − µ)⊗n form a basis for the space of degree n

polynomials in the components of x ∈ Rd, denoted Πd
n. Since expectations are linear, a

quadrature which is exact on these basis polynomials will be exact for all polynomials of

degree less than or equal to n, namely, E[q] =
∑m

i=1wiq(σi) for any q ∈ Πd
n. Of course,

the quadrature may only be accurate up to threshold and in finite precision arithmetic it

cannot be exact. Moreover, the moments that the quadrature is matching may only be

estimates of the true moments. To understand the propagation of such errors, we write the

polynomial q(x) =
∑n

s=0

∑d
j1,...,js=1 aj1···js(x− µ)⊗sj1···js in the basis of moments. Note that

Emoments ≡

∣∣∣∣∣E[q]−
m∑
i=1

wiq(σi)

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
s=0

d∑
j1,...,js=1

aj1···js

(
E[(x− µ)⊗sj1···js ]−

m∑
i=1

wi(σi − µ)⊗sj1···js

)∣∣∣∣∣∣
≤ c(q)

n∑
s=0

||Ms − M̃s||max

where c(q) is a constant depending only on the polynomial q and Ms = E[(x−µ)⊗s] are the

true moments and M̃s =
∑m

i=1wi(σi − µ)⊗s are the moments matched by the algorithm.
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Whenever we approximate a function f by a polynomial q ∈ Πd
n, we should expect

unbounded errors as the inputs approach infinity. Thus, in order to control the error on

E[f ] by polynomial approximation, we need to split the domain into the interior and exterior

of a ball Br(µ) of radius r centered on µ. Outside the ball we define the error by

Eoutside ≡
∫
Rd∩Br(µ)c

|f − q| dp.

and bounding this error requires assuming that the probability measure decays sufficiently

fast to control the error between f and q. Inside the ball we define the polynomial approx-

imation error by

Einside ≡ ||f − q||∞ = sup
x∈Br(µ)

|f(x)− q(x)|

and bounding this error will require an appropriate regularity assumption on f .

By combining these error terms, we can control the error of a quadrature formula on

any function f by any polynomial q of degree n, namely,

Etotal ≡

∣∣∣∣∣E[f ]−
m∑
i=1

wif(σi)

∣∣∣∣∣
≤ |E[f ]− E[q]|+ Emoments +

∣∣∣∣∣
m∑
i=1

wiq(σi)−
m∑
i=1

wif(σi)

∣∣∣∣∣
≤ Emoments +

∫
Rd
|f − q| dp+

m∑
i=1

wi|f(σi)− q(σi)|

≤ Emoments +

∫
Rd∩Br(µ)c

|f − q| dp+

∫
Br(µ)

||f − q||∞ dp+

m∑
i=1

wi||f − q||∞

≤ Emoments + Eoutside + 2Einside

where we assume that r is sufficiently large that σi ∈ Br(µ) for all i = 1, ...,m. Notice that
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the three error terms all depend on the choice of the polynomial q, and since the inequality

holds for all q ∈ Πd
n we can write

∣∣∣∣∣E[f ]−
m∑
i=1

wif(σi)

∣∣∣∣∣ ≤ inf
q∈Πdn

{Emoments + Eoutside + 2Einside} .

From this general framework, many potential results can be derived depending on the

localization of the probability measure and the regularity of f . If we assume that the

moments are exactly approximated, then one such result would be the following theorem.

Theorem 6 (General HOUT Error Bound). Let f ∈ Cn(Rd,R) be bounded in absolute value

by a polynomial, |f(x)| ≤ a + b||x||t. Let x be a random variable with probability density

p(x) < ce−α||x−µ||
β

for some α, β > 0 and all ||x − µ|| > r0. Let Q(f) ≡
∑m

i=1wif(σi) be

exact on the first k moments of p. For any radius r ≥ r0 such that σi ∈ Br(µ) we have

|E[f ]−Q(f)| ≤ c1
( r
k

)n ||Dnf ||∞
k

+
∑
|γ|=n

sup
|x−y|< 1

k

|Dn
γ f(x)−Dn

γ f(y)|

+ c2 kr
t+k+d−βe−αr

β

,

where c1 depends on n, d and c2 depends on a, b, α, β.

Proof. Recall that the total quadrature error is bounded above by the sum of the error

due to the moments, Emoments, the error inside the ball, Einside, and the error outside,

Eoutside. Since we assume that the quadrature exactly matches the first k moments, we

have Emoments = 0. Next, combining the bound on f and the exponential decay bound on
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the density we have,

Eoutside =

∫
Br(µ)c

|f − q| dp ≤
∫
Br(µ)c

(a+ b||x− µ||t + b2||x− µ||k)ce−α||x−µ||
β
dx

= ωd

∫ ∞
r

(asd−1 + bst+d−1 + b2s
k+d−1)ce−αs

β
ds

≤ cωd
∫ ∞
r

asd−βsβ−1e−αs
β

+ bst+d−βsβ−1e−αs
β

+ b2s
k+d−βsβ−1e−αs

β
ds

= (c3r
d−β + c4r

t+d−β + c5r
k+d−β)e−αr

β

+ cωd

∫ ∞
r

a1s
d−β−1e−αs

β
+ b3s

t+d−β−1e−αs
β

+ b4s
k+d−β−1e−αs

β
ds.

The above integration by parts can be repeated until d− β, t+ d− β, k + d− β are all less

than β−1, then the integrands are bounded above by sβ−1e−αs
β

which is integrable exactly.

These integration by parts pick up polynomial terms multiplied by e−αr
β

all of which are

bounded by rt+k+d−βe−αr
β
. Since there are fewer than k such terms, we have

Eoutside ≤ c2 kr
t+k+d−βe−αr

β
.

Finally, we turn to the error of polynomial approximation inside Br(µ). Defining f̃(x) =

f(rx + µ) on the unit ball, we can apply Theorem 3.4 of [37] which says there exists a

polynomial q̃ such that,

||f̃ − q||∞,B1(0) ≤
c1

kn

 ||Dnf̃ ||∞
k

+
∑
|γ|=n

sup
|x−y|<1/k

|Dn
γ f̃(x)−Dn

γ f̃(y)|

 .
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By the chain rule we have |Dnf̃ | = rn|Dnf | so that

||f − q||∞ ≤ c1

( r
k

)n ||Dnf ||∞
k

+
∑
|γ|=n

sup
|x−y|<1/k

|Dn
γf(x)−Dn

γf(y)|



where q(x) = q̃((x− µ)/r).

The proof of Theorem 6 follows from upper bounds on the error of the multivariate

polynomial of best approximation found in [36,37] together with bounds on the integrals of

polynomials multiplied by an exponential.

Of course, the HOUT currently has only been derived for k = 4, however we chose

to derive the general error bounds to show how matching more moments can potentially

improve the estimation in the future.

4.3 Numerical Experiments
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Figure 4.1: (a) Comparison between the higher order unscented transform ensemble (HOUT,
red dots) and the Scaled Unscented Transform ensemble (SUT, green dots) on a non-
Gaussian distribution. Note that the SUT uses 5 σ-points while the HOUT uses 69 σ-points.
(b,c) Estimating the output mean and covariance for various values of β in the SUT and
various values of γ in the HOUT.

We first compare the HOUT and SUT on various polynomials applied to a two dimensional

input distribution. In order to generate a non-Gaussian input distribution, we start by
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generating an ensemble of 105 standard Gaussian random variables, Z ∈ R2 and then

transforming them by a map X = AZ + B(Z � Z � sign(Z)) where A,B are random

2× 2 matrices with entries chosen from a Gaussian distribution with mean 0 and standard

deviation 1/10 and � is componentwise multiplication. The resulting ensemble is shown in

Fig. 4.1(a) along with the HOUT (red dots) and SUT (green dots) ensembles.

The SUT has the free parameter β but the HOUT requires a certain inequality for

β and instead the HOUT has γ as a free parameter. In order to explore the effect of

these parameters on the SUT and HOUT, we considered a random quadratic polynomial

f : R2 → R. In Fig. 4.1 we show the error of the HOUT and SUT estimates of the

mean E[f(X)] and variance E[(f(X) − E[f(X)])2] as a function of β for the SUT and γ

for the HOUT. Notice that since f is a quadratic polynomial, the mean is also a quadratic

polynomial, whereas the variance is a quartic polynomial. Since the SUT has degree of

exactness two, it is exact on the mean but not on the variance. The HOUT has degree of

exactness four and is exact on both up to the specified tolerance (10−5 in these experiments).

Reducing the tolerance below this point led to increased error, most likely due to the

conditioning of the HOUT quadrature rule.

51



0 0.5 1 1.5 2

c

10
-16

E
rr

o
r 

in
 m

e
a

n

HOUT

SUT

(a) f(x) = ax+ bcx2

0 0.5 1 1.5 2

c

10
-8

10
-6

10
-4

10
-2

E
rr

o
r 

in
 m

e
a

n

HOUT

SUT

(b) f(x) = ax+ bcx3

0 0.5 1 1.5 2

c

10
-5

10
0

E
rr

o
r 

in
 m

e
a

n

HOUT

SUT

(c) f(x) = ax+ bcx4

0 0.5 1 1.5 2

c

10
-4

10
-3

10
-2

E
rr

o
r 

in
 m

e
a

n

HOUT

SUT

(d) f(x) = ax+ bcx5

0 0.5 1 1.5 2

c

10
-5

10
0

E
rr

o
r 

in
 v

a
ri
a

n
c
e

HOUT

SUT

(e) f(x) = ax+ bcx2

0 0.5 1 1.5 2

c

10
-5

10
0

E
rr

o
r 

in
 v

a
ri
a

n
c
e

HOUT

SUT

(f) f(x) = ax+ bcx3

0 0.5 1 1.5 2

c

10
-4

10
-2

10
0

E
rr

o
r 

in
 v

a
ri
a

n
c
e

HOUT

SUT

(g) f(x) = ax+ bcx4

0 0.5 1 1.5 2

c

10
-2

10
0

E
rr

o
r 

in
 v

a
ri
a

n
c
e

HOUT

SUT

(h) f(x) = ax+ bcx5

0 0.5 1 1.5 2

c

10
-5

10
0

E
rr

o
r 

in
 s

k
e

w
n

e
s
s

HOUT

SUT

(i) f(x) = ax+ bcx2

0 0.5 1 1.5 2

c

10
-4

10
-2

10
0

E
rr

o
r 

in
 s

k
e

w
n

e
s
s

HOUT

SUT

(j) f(x) = ax+ bcx3

0 0.5 1 1.5 2

c

10
-2

10
0

E
rr

o
r 

in
 s

k
e

w
n

e
s
s

HOUT

SUT

(k) f(x) = ax+ bcx4

0 0.5 1 1.5 2

c

10
-4

10
-2

10
0

10
2

E
rr

o
r 

in
 s

k
e

w
n

e
s
s

HOUT

SUT

(l) f(x) = ax+ bcx5

0 0.5 1 1.5 2

c

10
-2

10
0

E
rr

o
r 

in
 k

u
rt

o
s
is

HOUT

SUT

(m) f(x) = ax+ bcx2

0 0.5 1 1.5 2

c

10
-2

10
0

E
rr

o
r 

in
 k

u
rt

o
s
is

HOUT

SUT

(n) f(x) = ax+ bcx3

0 0.5 1 1.5 2

c

10
-2

10
0

10
2

E
rr

o
r 

in
 k

u
rt

o
s
is

HOUT

SUT

(o) f(x) = ax+ bcx4

0 0.5 1 1.5 2

c

10
-2

10
0

10
2

10
4

E
rr

o
r 

in
 k

u
rt

o
s
is

HOUT

SUT
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Figure 4.2: Comparison between the higher order unscented transform (HOUT) and the
Scaled Unscented Transform (SUT) when estimating the mean (top row), variance (second
row), skewness (third row), and kurtosis (bottom row) with different polynomials. Notice
that the SUT has degree of exactness two while the HOUT has degree of exactness four.

Using the same two-dimensional distribution, X, we passed it through several polyno-

mial functions of the form f(x) = ax + bcxn for n = 2, 3, 4, 5 where a and b are made

random 1 × 2 vectors. To show the influence of the strength of the nonlinearity, we sweep
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through different values of c. In Fig. 4.2 we compare the HOUT and SUT for estimating

the mean and variance of the output of each of these polynomials. As expected, the HOUT

is exact for the means up to n = 4 and for the variances up to n = 2 due to having degree

of exactness four. For higher degree polynomials, the HOUT has comparable or better per-

formance. Whenever the nonlinearity is not too strong, such as when c is small and/or the

power n is small, the HOUT has a big advantage. However, for some strong nonlinearities

when c and the power n is large then the HOUT and SUT may have similar performance.

Of course, the HOUT and SUT are intended for use beyond polynomial functions. In

fact, the most common application is for forecasting dynamical systems. Next, we consider

the problem of forecasting the chaotic Lorenz-63 dynamical system [38]. We integrate the

Lorenz-63 system with a Runge-Kutta order four method and a time step τ = 0.1. In

order to generate a non-Gaussian initial state, we start by choosing a random point on the

attractor and adding a small amount of Gaussian noise. We then run the ensemble forward

N1 = 5 steps and we consider this the initial state, see Fig. 4.3(a) (blue) and Fig. 4.3(b)

(blue). We compute the statistics of the initial state using the ensemble shown, and use

these statistics to generate the HOUT and SUT as shown in Fig. 4.3(b). All three ensembles

are then integrated forward in time N2 additional steps and the true forecast statistics from

the large ensemble are compared to the HOUT and SUT estimates. An example is shown

in Fig. 4.3(c) with N2 = 15.

We then repeat this experiment 500 times with different randomly selected initial states

on the attractor and we compute the geometric average of the error between the HOUT

estimate and the true statistics at each forecast time, shown in Fig. 4.3(d-g)(blue). Similarly,

we compute the geometric average of the error between the SUT estimate and the true

statistics (red) at each forecast time, shown in Fig. 4.3(d-g)(red). We note that the HOUT

provides improved estimates of the first four moments up to at least 4 forecast steps, which is

0.4 model time units. In particular, the mean forecast is improved by an order of magnitude

in this forecast range.
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Figure 4.3: Comparison between the higher order unscented transform (HOUT) and the
Scaled Unscented Transform (SUT) when estimating the mean E[f(X)] (top row) and higher
moments of the Lorenz-63 model at various forecast horizons. In (a) we show the Lorenz-63
attractor (black) along with an example initial ensemble (blue) and forecast ensemble (red)
used to compute the true statistics. In (b,c) we show the initial and forecast ensembles
(blue) together with the HOUT (red) and SUT (green) ensembles. Results in (d-g) show
the forecast accuracy versus the forecast steps and are geometrically averaged over 500
different initial conditions on the attractor.
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Chapter 5: A Higher Order Kalman Filter

We just went over the completed forecast step of the proposed Higher Order Kalman Filter.

Now, let us explore how we can get the assimilation step. How we do this is by observing

the various ways to derive the Kalman Filter. There is the Bayesian approach, the Mini-

mum Mean-Square Estimate (MMSE) approach and the Closure approach. Since each of

these approaches leads to the same Kalman filter, each one provides a different avenue for

potentially generalizing the Kalman Filter. We’ll now discuss each of these briefly in turn

and how they might be generalized to higher order Kalman Filtering.

5.1 Bayesian approach

5.1.1 Generalizing the Bayesian Approach

To see about generalizing this approach, instead of having Gaussian noise, we will allow

a much more general class of noise. Thus instead of using likelihood and prior that are

exponentials with a quadratic function as an exponent, we will use exponentials with a

quartic function as an exponent. Not only are we generalizing this approach by using non

Gaussian statistics that have non trivial skewness and kurtosis, we are also allowing the

noise to be more complicated at the same time. One nice feature of this generalization is

that we will also be using a maximum entropy distribution. The idea is if you specify the

first k moments of a distribution, then there are a lot of distributions that have those k

moments. But if you try to find out of all those possible distributions, the one that has

maximum entropy, then there is a unique answer and it turns out to be e to a kth degree

polynomial. We speculate that one of the reasons the Kalman filter works so well is that

the Kalman update is based on a Gaussian assumption which is also a maximum entropy

assumption. So we should note that doing this e to a quartic polynomial idea it may be
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a very natural generalization because it is also using maximum entropy distribution for 4

moments. One of our goals would be to connect the performance of the filter with this

maximum entropy distribution. Is there some reason that choosing a maximum entropy

distribution is a really nice choice? We wish to investigate that.

Notice even in the one-dimensional case, this is a difficult problem to solve. As motiva-

tion, let us briefly explore the one-dimensional derivation of the original Kalman filter. In

the one-dimensional case, the prior and likelihood are defined as

p(x) = e
− (x−µ−)2

2(σ2)− and p(y|x) = e−
(y−Hx)2

2r2 ,

respectively. Let

q(x) = −(x− µ−)2

2(σ2)−

r(x) = −(y −Hx)2

2r2

Then expanding the above equations give us

q(x) = − (µ−)2

2(σ2)−
+

µ−

(σ2)−
x− 1

2(σ2)−
x2 = a0 + a1x+ a2x

2

r(x) = − y2

2r2
+
Hy

r2
x− H2

2r2
x2 = b0 + b1x+ b2x

2

Thus by Bayes’ Law

p(x|y) ∝ eq(x)er(x) = eq(x)+r(x)
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where grouping like terms we have

q(x) + r(x) = −(µ−)2r2 + (σ2)−y2

2r2(σ2)−
+

(
(µ−)2

(σ2)−
+
Hy

r2

)
x− 1

2

(
1

2(σ2)−
+
H2

2r2

)
x2.

Since the posterior is Gaussian, it has the following form

p(x|y) ∝ e−
(x−µ+)2

2(σ2)+ = ep̂(x)

So after expanding we have

p̂(x) = − (µ+)2

2(σ2)+
+

µ+

(σ2)+
x− 1

2(σ2)+
x2 = c0 + c1x+ c2x

2

Then once we set p̂(x) = q(x)+r(x), or more specifically setting c1 = a1+b1 and c2 = a2+b2,

we find that posterior moments are defined as follows

µ+ = (σ2)+

(
(µ−)2

(σ2)−
+
Hy

r2

)

(σ2)+ =

(
1

2(σ2)−
+
H2

2r2

)−1

From this we can see the general idea for how we can write the posterior moments in terms

of the prior moments is by setting the coefficients of q(x) + r(x) equal to the coefficients of

p̂(x). Now, the nice thing about the gaussian is that it is very easy to read off the mean

and covariance from the polynomial that e is raised to. That may be harder when we deal

with say quartic polynomials as opposed to quadratic polynomials.

The general approach we would like to take is using Bayes’ law so we get

p(x|y) ∝ eq(x)er(x)
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where q(x) and r(x) are two quartic polynomials and we wish to write it as

p(x|y) ∝ ep̂(x)

where p̂(x) is a quartic polynomial. The real challenge here comes with figuring out the

connection between the moments and the coefficients to that polynomial. We are going to

follow John Harlim’s approach in [39].

5.1.2 A Solution to the Moment Problem

Let q(x) be a k-degree polynomial defined as such

q(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k,

where the distribution is p(x) = eq(x) and the raw moments (moments about the origin) are

defined as

mj = E[xj ] =

∫ ∞
−∞

xjp(x) dx

where a0 is chosen so that m0 = 1.

In the terms of the first four moments of a distribution that we have been discussing,

i.e. the mean, variance, skewness and kurtosis, where

µ = E[X]

σ2 = E[(X − µ)2] = E[X2]− µ2

S = E[(X − µ)3] = E[X3]− 3µE[X2]− 2µ3

κ = E[(X − µ)4] = E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4,

(in this case the second, third and fourth moments would be considered central moments),
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they can be represented in the following way in terms of mj ,

µ = m1

σ2 = m2 −m2
1

S = m3 − 3m1m2 − 2m3
1

κ = m4 − 4m1m3 + 6m2
1m2 − 3m4

1.

We wish to find E[xjq′(x)] in terms of the moments for j = 0, 1, 2, ..., k − 1. Plugging in

the derivative

q′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ kakx

k−1,

we have

E[xjq′(x)] = E[xj(a1 + 2a2x+ 3a3x
2 + · · ·+ kakx

k−1)]

= E[a1x
j + 2a2x

j+1 + 3a3x
j+2 + · · ·+ kakx

j+k−1]

By linearity,

E[xjq′(x)] = a1E[xj ] + 2a2E[xj+1] + 3a3E[xj+2] + · · ·+ kakE[xj+k−1]

Thus in terms of the moments,

E[xjq′(x)] = a1mj + 2a2mj+1 + 3a3mj+2 + · · ·+ kakmj+k−1 (5.1)

Now we use integration by parts to find another expression for E[xjq′(x)]. By the definition

of expectation,

E[xjq′(x)] =

∫ ∞
−∞

xjq′(x)p(x) dx =

∫ ∞
−∞

xjq′(x)eq(x) dx
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Let u = xj and dv = q′(x)eq(x) dx. Then du = jxj−1 dx and v = eq(x). Thus by integration

by parts,

E[xjq′(x)] = xjeq(x)

∣∣∣∣∞
−∞
−
∫ ∞
−∞

jxj−1eq(x) dx

= 0− j
∫ ∞
−∞

xj−1eq(x) dx

= −j
∫ ∞
−∞

xj−1p(x) dx

= −jE[xj−1]

Hence we have

E[xjq′(x)] = −jmj−1. (5.2)

From (5.1) and (5.2), we have

a1mj + 2a2mj+1 + 3a3mj+2 + · · ·+ kakmj+k−1 = −jmj−1 (5.3)

So, for j = 0, 1, 2, ..., k − 1, we get the following system of equations

a1m0 + 2a2m1 + 3a3m2 + · · ·+ kakmk−1 = 0

a1m1 + 2a2m2 + 3a3m3 + · · ·+ kakmk = −m0

a1m2 + 2a2m3 + 3a3m4 + · · ·+ kakmk+1 = −2m1

a1m3 + 2a2m4 + 3a3m5 + · · ·+ kakmk+2 = −3m2

...

a1mk−1 + 2a2mk + 3a3mk+1 + · · ·+ kakm2k−2 = −(k − 1)mk−2

which can be represented as the following matrix equation
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m0 2m1 3m2 · · · kmk−1

m1 2m2 3m3 · · · kmk

m2 2m3 3m4 · · · kmk+1

m3 2m4 3m5 · · · kmk+2

...
...

...
. . .

...

mk−1 2mk 3mk+1 · · · km2k−2





a1

a2

a3

a4

...

an


=



0

−m0

−2m1

−3m2

...

−(k − 1)mk−2


Hence 

a1

a2

a3

a4

...

an


=



m0 2m1 3m2 · · · kmk−1

m1 2m2 3m3 · · · kmk

m2 2m3 3m4 · · · kmk+1

m3 2m4 3m5 · · · kmk+2

...
...

...
. . .

...

mk−1 2mk 3mk+1 · · · km2k−2



−1

0

−m0

−2m1

−3m2

...

−(k − 1)mk−2


Notice the difficulty here is that we need k− 2 additional moments in order to solve for the

k coefficients. So we are going to explore the different ways of closing these equations either

by making some ansatz for mk+1, mk+2, . . . , m2k−2 or maybe looking for some additional

equations to add. This challenge is only going to get harder in higher dimensions with

tensors.

5.1.3 Three-Moment Filter

Let us first explore the simpler case in which we try the Bayesian approach with the following

cubic polynomial

q(x) = a0 + a1x+ a2x
2 + a3x

3,
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then by (5.3) we have

a1mj + 2a2mj+1 + 3a3mj+2 = −jmj−1.

Then for j = 0, 1, 2, we have the following system of equations

a1m0 + 2a2m1 + 3a3m2 = 0

a1m1 + 2a2m2 + 3a3m3 = −m0 (5.4)

a1m2 + 2a2m3 + 3a3m4 = −2m1

which can be represented as the following matrix equation


m0 2m1 3m2

m1 2m2 3m3

m2 2m3 3m4



a1

a2

a3

 =


0

−m0

−2m1


Hence 

a1

a2

a3

 =


m0 2m1 3m2

m1 2m2 3m3

m2 2m3 3m4


−1

0

−m0

−2m1


Solving the above equation gives us

a1 =
2m3m

2
1 − 2m1m

2
2 −m4m1 +m3m2

m4m2
1 − 2m1m2m3 +m3

2 −m4m2 +m2
3

a2 =
2m2

1m2 − 2m3m1 −m2
2 +m4

2(m4m2
1 − 2m1m2m3 +m3

2 −m4m2 +m2
3)

a3 =
−2m3

1 + 3m2m1 −m3

3(m4m2
1 − 2m1m2m3 +m3

2 −m4m2 +m2
3)
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Thus in terms of µ, σ2, S, κ we have

a1 = − 4µ5 + 4µ3σ2 + Sµ2 − µ(σ2)2 + κµ− Sσ2

S2 + 8Sµ3 + 16µ6 + (σ2)3 − κσ2

a2 =
8µ4 + 2Sµ− (σ2)2 + κ

2(S2 + 8Sµ3 + 16µ6 + (σ2)3 − κσ2)

a3 = − 4µ3 + S

3(S2 + 8Sµ3 + 16µ6 + (σ2)3 − κσ2)

Now, we would like to solving the system of equations (5.4) for m1, m2, m3 in terms of

a1, a2, a3 which can be represented as the following matrix equation


2a2 3a3 0 0

a1 2a2 3a3 0

2 a1 2a2 3a3





m1

m2

m3

m4


=


a1

−1

0



Gaussian Elimination results in the following augmented matrix


1 0 0

27a33
2(4a32−6a1a3a2+9a23)

−(3a3a21−4a22a1−6a2a3)

2(4a32−6a1a3a2+9a23)

0 1 0
−9a2a23

4a32−6a1a3a2+9a23

−(a2a21−3a3a1+2a22)

4a32−6a1a3a2+9a23

0 0 1
3(4a22a3−3a1a23)

2(4a32−6a1a3a2+9a23)

a31−2a2a1−6a3
2(4a32−6a1a3a2+9a23)


thus
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m1 =
−(3a3a

2
1 − 4a2

2a1 − 6a2a3)− 27a3
3m4

2(4a3
2 − 6a1a3a2 + 9a2

3)

m2 =
−(a2a

2
1 − 3a3a1 + 2a2

2) + 9a2a
2
3m4

4a3
2 − 6a1a3a2 + 9a2

3

m3 =
a3

1 − 2a2a1 − 6a3 − 3(4a2
2a3 − 3a1a

2
3)m4

2(4a3
2 − 6a1a3a2 + 9a2

3)

We can see here that there are infinitely many solutions that depend on m4. However,

perhaps optimizing the variance with respect to m4 can give us a possible closure. By

taking the above solutions for m1 and m2, we see that the variance is

σ2 =
−(a2a

2
1 − 3a3a1 + 2a2

2) + 9a2a
2
3m4

4a3
2 − 6a1a3a2 + 9a2

3

−
(
−(3a3a

2
1 − 4a2

2a1 − 6a2a3)− 27a3
3m4

2(4a3
2 − 6a1a3a2 + 9a2

3)

)2

.

To optimize the variance, we wish to solve for

d

dm4
(σ2) = −9a2

3(81a4
3m4 − 8a4

2 + (9a2
1 − 36a2)a2

3)

2(−4a3
2 + 6a1a3a2 − 9a2

3)2
= 0

which yields the following solution

m4 =
8a4

2 + 36a2
3a2 − 9a2

1a
2
3

81a4
3

.
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Plugging this into equation for m1, m2, and m3 we get

m1 = − a2

3a3

m2 =
2a2

2 + 3a1a3

9a2
3

m3 = −4a3
2 + 3a1a3a2 + 9a2

3

27a3
3

.

Thus

µ = − a2

3a3

σ2 =
a2

2 + 3a1a3

9a2
3

S =
4a3

2 + 6a1a3a2 − 9a2
3

27a3
3

κ =
a2(25a3

2 + 30a1a3a2 + 36a2
3)

81a4
3

.

This means that with respect p(x|y) = ep̂(x) where p̂(x) = a+
0 + a+

1 x + a+
2 x

2 + a+
3 x

3, the
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posterior moments are

µ+ = − a+
2

3a+
3

(σ2)+ =
(a+

2 )2 + 3a+
1 a

+
3

9(a+
3 )2

S+ =
4(a+

2 )3 + 6a+
1 a

+
3 a

+
2 − 9(a+

3 )2

27(a+
3 )3

κ+ =
a+

2 (25(a+
2 )3 + 30a+

1 a
+
3 a

+
2 + 36(a+

3 )2)

81(a+
3 )4

so in terms of the prior p(x) = eq(x) and the likelihood p(y|x) = er(x) where r(x) = b0 +

b1x+ b2x
2 + b3x

3,

µ+ = − a2 + b2
3(a3 + b3)

(σ2)+ =
(a2 + b2)2 + 3(a1 + b1)(a3 + b3)

9(a3 + b3)2

S+ =
4(a2 + b2)3 + 6(a1 + b1)(a3 + b3)(a2 + b2)− 9(a3 + b3)2

27(a3 + b3)3

κ+ =
(a2 + b2)(25(a2 + b2)3 + 30(a1 + b1)(a3 + b3)(a2 + b2) + 36(a3 + b3)2)

81(a3 + b3)4

where in terms of the prior moments

a1 = − 4(µ−)5 + 4(µ−)3(σ2)− + S−(µ−)2 − µ−((σ2)−)2 + κ−µ− − S−(σ2)−

(S−)2 + 8S−(µ−)3 + 16(µ−)6 + ((σ2)−)3 − κ−(σ2)−

a2 =
8(µ−)4 + 2S−µ− − ((σ2)−)2 + κ−

2((S−)2 + 8S−(µ−)3 + 16(µ−)6 + ((σ2)−)3 − κ−(σ2)−)

a3 = − 4(µ−)3 + S−

3((S−)2 + 8S−(µ−)3 + 16(µ−)6 + ((σ2)−)3 − κ−(σ2)−)
.
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5.1.4 Four-Moment Filter

Since the HOUT involves the first four moments, ideally we would like to construct a 4

moment filter. Let q(x) be

q(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

where a4 < 0. Then by (5.3) for n = 4, we have

a1mj + 2a2mj+1 + 3a3mj+2 + 4a4mj+3 = −jmj−1

So, for j = 0, 1, 2, 3, we get the following system of equations

a1m0 + 2a2m1 + 3a3m2 + 4a4m3 = 0

a1m1 + 2a2m2 + 3a3m3 + 4a4m4 = −m0

a1m2 + 2a2m3 + 3a3m4 + 4a4m5 = −2m1 (5.5)

a1m3 + 2a2m4 + 3a3m5 + 4a4m6 = −3m2

which can be represented as the following matrix equation



m0 2m1 3m2 4m3

m1 2m2 3m3 4m4

m2 2m3 3m4 4m5

m3 2m4 3m5 4m6





a1

a2

a3

a4


=



0

−m0

−2m1

−3m2
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Hence 

a1

a2

a3

a4


=



m0 2m1 3m2 4m3

m1 2m2 3m3 4m4

m2 2m3 3m4 4m5

m3 2m4 3m5 4m6



−1

0

−m0

−2m1

−3m2


Solving the above equation gives us

a1 =

2m6m
2
1m3 − 2m2

1m4m5 − 2m6m1m
2
2 −m1m2m3m5 + 5m1m2m

2
4 − 2m1m

2
3m4 −m6m1m4

+m1m
2
5 + 3m3

2m5 − 6m2
2m3m4 + 3m2m

3
3 +m6m2m3 −m2m4m5 −m2

3m5 +m3m
2
4

m6m
2
1m4 −m2

1m
2
5 − 2m6m1m2m3 + 2m1m2m4m5 + 2m1m

2
3m5 − 2m1m3m

2
4 +m6m

3
2

− 2m2
2m3m5 −m2

2m
2
4 + 3m2m

2
3m4 −m6m2m4 +m2m

2
5 −m4

3 +m6m
2
3 − 2m3m4m5 +m3

4

a2 =

2m6m
2
1m2 − 2m2

1m3m5 − 3m1m
2
2m5 +m1m2m3m4 + 2m1m

3
3 − 2m6m1m3 + 2m1m4m5

+ 3m3
2m4 − 3m2

2m
2
3 −m6m

2
2 + 5m2m3m5 − 3m2m

2
4 −m2

3m4 +m6m4 −m2
5

2(m6m
2
1m4 −m2

1m
2
5 − 2m6m1m2m3 + 2m1m2m4m5 + 2m1m

2
3m5 − 2m1m3m

2
4 +m6m

3
2

− 2m2
2m3m5 −m2

2m
2
4 + 3m2m

2
3m4 −m6m2m4 +m2m

2
5 −m4

3 +m6m
2
3 − 2m3m4m5 +m3

4)

a3 =

−2m6m
3
1 + 3m5m

2
1m2 + 4m2

1m3m4 − 3m1m
2
2m4 − 5m1m2m

2
3 + 3m6m1m2

−m5m1m3 − 2m1m
2
4 + 3m3

2m3 − 3m5m
2
2 + 2m2m3m4 +m3

3 −m6m3 +m5m4

3(m6m
2
1m4 −m2

1m
2
5 − 2m6m1m2m3 + 2m1m2m4m5 + 2m1m

2
3m5 − 2m1m3m

2
4 +m6m

3
2

− 2m2
2m3m5 −m2

2m
2
4 + 3m2m

2
3m4 −m6m2m4 +m2m

2
5 −m4

3 +m6m
2
3 − 2m3m4m5 +m3

4)

a4 =

2m5m
3
1 − 5m2

1m2m4 − 2m2
1m

2
3 + 8m1m

2
2m3 − 3m5m1m2

+ 3m1m3m4 − 3m4
2 + 4m2

2m4 − 4m2m
2
3 +m5m3 −m2

4

4(m6m
2
1m4 −m2

1m
2
5 − 2m6m1m2m3 + 2m1m2m4m5 + 2m1m

2
3m5 − 2m1m3m

2
4 +m6m

3
2

− 2m2
2m3m5 −m2

2m
2
4 + 3m2m

2
3m4 −m6m2m4 +m2m

2
5 −m4

3 +m6m
2
3 − 2m3m4m5 +m3

4)

Now, we would like to solving the system of equations (5.5) for m1, ..., m6 in terms of a1,

..., a6 which can be represented as the following matrix equation



2a2 3a3 4a4 0 0 0

a1 2a2 3a3 4a4 0 0

2 a1 2a2 3a3 4a4 0

0 3 a1 2a2 3a3 4a4





m1

m2

m3

m4

m5

m6


=



a1

−1

0

0
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Gaussian Elimination results in the following augmented matrix



1 0 0 0
1
ξ

(−81a43 + 216a2a4a23 − 96a1a24a3
+192a34 − 64a22a

2
4)

− 4
ξ

(27a4a33 − 48a2a24a3
+16a1a34)

2
ξ

(2a4a31 − 6a2a3a21 + 4a32a1
+9a23a1 − 16a2a4a1
+6a22a3 + 18a3a4)

0 1 0 0
2
ξ

(27a2a33 − 18a1a4a23 + 48a24a3
−48a22a4a3 + 32a1a2a24)

8
ξ

(16a34 − 8a22a
2
4

−6a1a3a24 + 9a2a23a4)

3a3a31 − 4a22a
2
1 − 8a4a21

+18a2a3a1 − 8a32 + 16a2a4

0 0 1 0
1
ξ

(32a4a32 − 36a23a
2
2 − 96a24a2

+27a1a33 − 72a23a4)

4
ξ

(−12a3a4a22 + 8a1a24a2
−24a3a24 + 9a1a23a4)

1
ξ

(2a2a31 − 9a3a21 − 4a22a1
+24a4a1 − 30a2a3)

0 0 0 1

2
ξ

(12a3a32 − 8a1a4a22
−18a1a23a2 + 12a3a4a2
+27a33 − 24a1a24 + 12a21a3a4)

8
ξ

(4a4a32 − 8a24a2
−6a1a3a4a2 + 2a21a

2
4

+9a23a4)

1
ξ

(−a41 + 8a2a21 − 12a3a1
+12a22 − 24a4)



where

ξ = 16a4
2 − 36a1a3a

2
2 − 80a4a

2
2 + 90a2

3a2 + 16a2
1a4a2 + 9a2

1a
2
3 + 96a2

4 − 60a1a3a4

thus

m1 =

2(2a4a
3
1 − 6a2a3a

2
1 + 4a3

2a1 + 9a2
3a1 − 16a2a4a1 + 6a2

2a3

+18a3a4) + (81a4
3 − 216a2a4a

2
3 + 96a1a

2
4a3 − 192a3

4

+ 64a2
2a

2
4)m5 + 4(27a4a

3
3 − 48a2a

2
4a3 + 16a1a

3
4)m6

16a4
2 − 36a1a3a2

2 − 80a4a2
2 + 90a2

3a2 + 16a2
1a4a2 + 9a2

1a
2
3 + 96a2

4 − 60a1a3a4

m2 =

3a3a
3
1 − 4a2

2a
2
1 − 8a4a

2
1 + 18a2a3a1 − 8a3

2 + 16a2a4

−2(27a2a
3
3 − 18a1a4a

2
3 + 48a2

4a3 − 48a2
2a4a3

+ 32a1a2a
2
4)m5 − 8(16a3

4 − 8a2
2a

2
4 − 6a1a3a

2
4 + 9a2a

2
3a4)m6

16a4
2 − 36a1a3a2

2 − 80a4a2
2 + 90a2

3a2 + 16a2
1a4a2 + 9a2

1a
2
3 + 96a2

4 − 60a1a3a4

m3 =

2a2a
3
1 − 9a3a

2
1 − 4a2

2a1 + 24a4a1 − 30a2a3

−(32a4a
3
2 − 36a2

3a
2
2 − 96a2

4a2 + 27a1a
3
3 − 72a2

3a4)m5

− 4(−12a3a4a
2
2 + 8a1a

2
4a2 − 24a3a

2
4 + 9a1a

2
3a4)m6

16a4
2 − 36a1a3a2

2 − 80a4a2
2 + 90a2

3a2 + 16a2
1a4a2 + 9a2

1a
2
3 + 96a2

4 − 60a1a3a4

m4 =

−a4
1 + 8a2a

2
1 − 12a3a1 + 12a2

2 − 24a4 − 2(12a3a
3
2

− 8a1a4a
2
2 − 18a1a

2
3a2 + 12a3a4a2 + 27a3

3 − 24a1a
2
4

+ 12a2
1a3a4)m5 − 8(4a4a

3
2 − 8a2

4a2 − 6a1a3a4a2 + 2a2
1a

2
4 + 9a2

3a4)m6

16a4
2 − 36a1a3a2

2 − 80a4a2
2 + 90a2

3a2 + 16a2
1a4a2 + 9a2

1a
2
3 + 96a2

4 − 60a1a3a4

Similarly, to what we did for the three-moment filter, perhaps optimizing the variance

and kurtosis with respect to m5 and m6 can give us some possible closures. The idea would
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be computing the gradients

∇σ2 =

 ∂σ2

∂m5

∂σ2

∂m6



∇κ =

 ∂κ
∂m5

∂κ
∂m6



and setting to 0 and then solving for m5 and m6. Then once we find the equations for

m5 and m6, we can then plug them back in to the above equations and then find the

representation of the posterior moments in terms of the quartic’s coefficients.

Once can see from this process that while we do not have a simple formula for the

posterior moments solely in terms of prior moments and likelihood moments, we have a

general procedure that can be applied to an algorithm. Now we will discuss other approaches

that could be developed more in the future.

5.2 Minimum Mean-Square Estimate (MMSE) Approach

The Kalman filter can also be derived by by minimizing the expected value of the square

of the magnitude of this vector, E[‖xk − x̂k|k‖2] which is equivalent to minimizing the trace

of the posterior estimate of the covariance matrix Pk|k. The derivation begins by making

the ansatz

x̂k|k =

[
Ak Bk

]x̂k|k−1

ŷk


= Akx̂k|k−1 +Bkŷk
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which is called a linear filter since the next estimate is a linear combination of the previous

estimate and the observation. Constraining the filter to be unbiased, meaning the E[x̂k|k] =

xk, we find that Ak = I −BkHk so the filter becomes

x̂k|k = (I −BkHk)x̂k|k−1 +Bkŷk.

Now minimize over all possible Bk, the trace of the covariance matrix Pk|k and we find that

the minimum is achieved by the Kalman gain matrix so Bk = Kk. This gives the MMSE

filter

x̂k|k = (I −KkHk)x̂k|k−1 +Kkŷk,

which is identical to the Kalman filter.

A possible way to generalize the MMSE approach is by looking for look for optimal

quadratic filters where we propose a quadratic ansatz as follows

x̂k|k = Ck

x̂k|k−1

ŷk

+Dk ×3

x̂k|k−1

ŷk

×2

x̂k|k−1

ŷk



where Ck is a n× (n+m) matrix and Dk is a n× (n+m)× (n+m) 3-tensor in which n

is the dimension of the state and m is the dimension of the observation.
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Notice that,

C
x̂
ŷ

+D ×3

x̂
ŷ

×2

x̂
ŷ



i

=
n∑
j=1

Cij x̂j +
n+m∑
j=n+1

Cij ŷj−n

+
n∑
j=1

[
n∑
k=1

Dijkx̂k +
n+m∑
k=n+1

Dijkŷk−n

]
x̂j

+
n+m∑
j=n+1

[
n∑
k=1

Dijkx̂k +
n+m∑
k=n+1

Dijkŷk−n

]
ŷj−n

=
n∑
j=1

Cij x̂j +
n+m∑
j=n+1

Cij ŷj−n +
n∑
j=1

n∑
k=1

Dijkx̂kx̂j

+
n∑
j=1

n+m∑
k=n+1

Dijkŷk−nx̂j +
n+m∑
j=n+1

n∑
k=1

Dijkx̂kŷj−n

+

n+m∑
j=n+1

n+m∑
k=n+1

Dijkŷk−nŷj−n

is a quadratic polynomial in the entries of x̂ and ŷ.

Recall that E[ŷk] = Hxk and assume that E[x̂k|k−1] = xk, then

E

C
x̂
ŷ

+D ×3

x̂
ŷ

×2

x̂
ŷ


i

=

n∑
j=1

CijE[x̂j ] +

n+m∑
j=n+1

CijE[ŷj−n] +

n∑
j=1

n∑
k=1

DijkE[x̂kx̂j ]

+

n∑
j=1

n+m∑
k=n+1

DijkE[ŷk−nx̂j ] +

n+m∑
j=n+1

n∑
k=1

DijkE[x̂kŷj−n]

+

n+m∑
j=n+1

n+m∑
k=n+1

DijkE[ŷk−nŷj−n]

and using the fact that Pkj = E[(x̂k − xk)(x̂j − xj)] and Rkj = E[νkνj ] is the covariance
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matrix of the noise,

E

C
x̂
ŷ

+D ×3

x̂
ŷ

×2

x̂
ŷ


i

=

n∑
j=1

Cijxj +

n+m∑
j=n+1

Cij(Hx)j−n +

n∑
j=1

n∑
k=1

Dijk(Pkj + xkxj)

+

n∑
j=1

n+m∑
k=n+1

Dijk(Hx)k−nxj +

n+m∑
j=n+1

n∑
k=1

Dijkxk(Hx)j−n

+

n+m∑
j=n+1

n+m∑
k=n+1

Dijk ((Hx)k−n(Hx)j−n +Rkj)]

For the filter to be unbiased, we need to set the right side of the above equation equal to

xi.

We still want an unbiased filter and the minimized variance. We will probably have

room for more constraints as we could even consider minimizing the kurtosis to help us look

for the best possible Ck and Dk. There are some concerns however. The linear filter has

some nice properties that we are kind of giving up by going to this more strongly nonlinear

form. Stability for one thing might be an issue with a quadratic filter so we may need to

use our constraints to enforce stability.

5.3 Closure Approach

The evolution of the posterior probability density, p(x, t), is described by the Kushner

partial differential equation

dp = L∗p dt+ p(h− h)R−1 dz

where

L∗p = −
∑
i

∂

∂xi
(fip) +

∑
i,j

∂2

∂xj∂xi
(Qijp)
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is the Kolmogorov Forward operator where Qij = 1
2(qq>)ij = 1

2

∑
k qikqjk is the system

noise covariance matrix, h is the observation function,

h = Ep[h(x, t)] =

∫
h(x, t)p(x, t) dx

is the expected observation, Rij = (rr>)ij =
∑

k rikrjk is the observation noise covariance

matrix, and

dz = dy − hdt

is the the innovation process where dy are the true observations.

Starting off from this Kushner partial differential equation, we can compute ordinary

differential equations for the mean and variance. Recall that the mean is

µ(t) = E[x] =

∫
xp(x, t) dx.

Then the derivative of the mean is

µ̇(t) =

∫
x
∂

∂t
p(x, t) dx.

We then substitute ∂
∂tp(x, t) with the Kushner equation and integrate by parts and find

that

µ̇(t) = (f(x0) +Df(x0)(µ− x0)) dt+ σDh(x0)>R−1 dz.

Similarly we can compute a dynamical system for the covariance

σ̇ =
(
σF> + Fσ +Q− σH>R−1Hσ>

)
dt+ S ·H>R−1 dz

where S is the skewness tensor. If we assume the skewness equals zero (i.e. assume the
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distribution is gaussian), this closure gives us the Kalman equations.

We propose to go further by deriving the ordinary differential equations for the skewness

and kurtosis. Instead of assuming the skewness is zero, we will find new closures for the

first four moments rather than just the first two moments. One downside is that when we

get to the equation for the kurtosis, it will involve the fifth moment so we are going to have

to make a closure there. The easiest thing would be to just assume that the fifth moment

is zero. We will try to find more realistic closures in the future.
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[34] S. Banach, “Über homogene polynome in (l2),” Studia Mathematica, vol. 7, no. 1, pp.
36–44, 1938.

[35] Z. Li, Y. Nakatsukasa, T. Soma, and A. Uschmajew, “On orthogonal tensors and best
rank-one approximation ratio,” SIAM Journal on Matrix Analysis and Applications,
vol. 39, no. 1, pp. 400–425, 2018.

[36] K. Atkinson and W. Han, Theoretical numerical analysis. Springer, 2005, vol. 39.

[37] D. L. Ragozin, “Constructive polynomial approximation on spheres and projective
spaces.” Transactions of the American Mathematical Society, vol. 162, pp. 157–170,
1971.

[38] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmospheric sciences,
vol. 20, no. 2, pp. 130–141, 1963.

[39] W. Hao and J. Harlim, “An equation-by-equation method for solving the multidimen-
sional moment constrained maximum entropy problem,” Communications in Applied
Mathematics and Computational Science, vol. 13, no. 2, pp. 189–214, 2018.

78



Curriculum Vitae

Education

Ph.D. Candidate in Mathematics, Expected graduation: May 2022, George Mason
University, Dissertation: Higher Order Kalman Filtering for Nonlinear Systems, Advisor:
Dr. Tyrus Berry

M.S. in Mathematics, May 2017, George Mason University

B.S. (Summa Cum Laude) in Mathematics, Minor in Italian, May 2015, George Mason
University

Teaching and Research Experience

Oct 7, 2021 Guest Researcher
– Present NIST, Gaithersburg

Researching Nitrogen Vacancy (NV) Diamond-Based Quantum Metrology with Dr.
Zeeshan Ahmed and Dr. Tyrus Berry

Aug 25, 2018 Research Assistant
– Mar 24, 2022 George Mason University, Fairfax

Researching higher order methods in data assimilation with Dr. Tyrus Berry

May 25, 2019 Course Instructor
– Jun 24, 2019 George Mason University, Fairfax

Taught Precalculus.

May 25, 2018 Course Instructor
– Jun 24, 2018 George Mason University, Fairfax

Taught Precalculus.

Jan 10, 2018 Teaching Assistant
– May 24, 2018 George Mason University, Fairfax

Taught three recitations of Analytic Geometry and Calculus III for Instructor Nacir
Hmidouch and one recitation of Elementary Differential Equations for Adjunct Prof.
Chistopher Paldino.

79



Aug 25, 2017 Teaching Assistant
– Jan 9, 2018 George Mason University, Fairfax

Taught three recitations of Analytic Geometry and Calculus III for Dr. Thomas
Wanner and three recitations of Analytic Geometry and Calculus I for Dr. Flavia
Colonna.

Jan 10, 2017 Teaching Assistant
– May 24, 2017 George Mason University, Fairfax

Taught three recitations of Analytic Geometry and Calculus III for Asst. Prof. Kum-
nit Nong.

Jan 22, 2017 Grader
– May 27, 2017 George Mason University, Fairfax

Graded Linear Algebra exams for Dr. Neil Epstein.

Aug 25, 2016 Teaching Assistant
– Jan 9, 2017 George Mason University, Fairfax

Taught two recitations of Analytic Geometry and Calculus III for Dr. Igor Griva and
one recitation of Analytic Geometry and Calculus III Honors for Dr. Robert L. Sachs.

Mar 20, 2016 Grader
– May 28, 2016 George Mason University, Fairfax

Graded Introductory Calculus with Business Applications quizzes and tests for Prof.
Karen L Crossin.

Aug 31, 2015 Grader
– Dec 26, 2015 George Mason University, Fairfax

Graded Linear Algebra homework for Dr. Jeng-Eng Lin.

Talks and Conferences

• October 6, 2021: Sensor Science Division Seminar, National Institute of Standards
and Technology (NIST). Learning Hidden States from Noisy Observations.

• August 27, 2021: Dynamics Days Europe 2021. Generalizing the Unscented Ensemble
Transform to Higher Moments.

• August 25, 2020: Dynamics Days Digital 2020. Generalizing the Unscented Ensemble
Transform to Higher Moments.

• August 14, 2020: SIAM Conference on Mathematics of Planet Earth (MPE20). Gen-
eralizing the Unscented Ensemble Transform to Higher Moments.

• November 22, 2019: Student Research Talks, George Mason University. Generalizing
the Unscented Ensemble Transform to Higher Moments.

• February 26, 2019: Mathematics and Climate Seminar, George Mason University.
Lorenz Equations.

80



Awards

2021 Clarke Family Award for Excellence in Algebra, Analysis, and Topology

This award was established in 2015 by Robert W. Clarke to provide scholar-
ships to encourage and recognize graduate student excellence in the study of
mathematics and carries a monetary prize of $1,000.

2015 William Weaver Prize in Italian Studies

This award was established in the name of the late pre-eminent translator of
Italian literature into English and recognizes the academic achievements of
students of Italian. It is a monetary prize in the amount of $1,000.

2015 Excellence in Advanced Italian

This award recognizes one’s progress and efforts at study of Italian language
and culture at the advanced level for the 2014-2015 academic year.

2015 Excellence in Advanced Italian

This award recognizes one’s progress and efforts at study of Italian language
and culture at the advanced level for the 2013-2014 academic year.

Organizations

Association for Women In Mathematics (GMU Chapter)

President April 2020 - April 2022

Treasurer March 2018 - April 2020

Vice President April 2017 - March 2018

81


