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the filtered power spectrum at ky = 0. (b) The spatially averaged cross-

covariance function (thin line) for some point-to-point distance ∆. The thick

dot-dashed line shows the window function f(t) used in the travel-time mea-

surement procedure. The thick line shows the reference cross-covariance func-

tion, C0. (c) A sample cross-covariance between a single pair of points that

are separated by ∆ (thin line). Overplotted is C0 (thick line). Note the scale

difference between (b) and (c) (Gizon and Birch, 2004, Figure 1) . . . . . . 84

3.14 We consider two source signals φ(rs1, t) and φ(rs2, t) located at rs1 = [xs1, ys1]

and rs2 = [xs2, ys2]. The observed signal φ(rr, t) is made at a reference point

a distance rr = [xr, yr] from the origin O. With respect to the source points,

P is located at ∆1 = rr − rs1 and ∆2 = rr − rs2, respectively. Note that

the source and receiver points are assumed to be in the same z-plane. Also

note that a wavefield is not shown, for clarity, but that perturbations could

be located anywhere in the domain. The scatterers do not have to be located

at the considered source points. . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.15 An example of the quadrant geometry used in TD helioseismology to measure

east-west flows. The black regions show pixels in the east-west quadrant arcs

that are a distance ∆ from the central pixel x. The gray regions cover the

pixels that would be used for three separate smaller ∆. (Hindman et al.,

2004, Figure 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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4.1 Scattering amplitudes f(ϕn) for scattering angle ϕn = 0◦ computed using

the simulation code for each 0 ≤ m ≤ 7. The various wavenumbers k are

shown ranging in color from lowest (red) to highest (black). The color bar is

plotted to the right of the image. It is apparent that for all values of k, the

associated f(ϕn = 0◦) converge to 0 before m = 3. . . . . . . . . . . . . . . 94

4.2 Scattering amplitudes f(ϕn) for scattering angles ϕn = 0◦, 45◦, 90◦ computed

using the simulation code for each wavenumber k. The solutions for azimuthal

modes m = 0 (black), m = 1 (blue), m = 2 (green), and m = 3 (red, dashed)

are labeled in each plot. The m = 3 case is also representative of the f(ϕn)

solutions for all higher order m since they similarly converge to f(ϕn) = 0.

Note that the even-order azimuthal modes do not vary with ϕn, as expected

from Equation 4.2. These plots, along with Figure 4.1, show that all orders of

m > 3 can be neglected in the simulation scattering calculations, independent

of k or ϕn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Example data produced by the scattering simulation code. Three time steps

are shown at t = 0 (top row), t = 100 (middle row), and t = 200 (bottom

row). Axes are in units of pixels. Greyscale colors indicate wave amplitude

(black/white is minimum/maximum, grey is average), although the incident

and scattered waves are not scaled with respect to each other since the inci-

dent wave signal is actually 2-3 orders of magnitude larger than the scattered

wave signals. The incident wave (left column) is in-phase at x = 0 when t = 0,

with an incident angle φi = 0◦. The scattering results from a single scatterer

(middle column) and 10 evenly-spaced scatterers (right column) are shown

for each time step. The scatterer locations are indicated by the red dots (•).

For both scattering results, the scatterers are located at x = nx/3. The single

scatterer is placed at y = 0, and the multiple scatterers are spaced symmet-

rically around y = 0 with d = ∆y = 5 pixels. Note that each image is scaled

to itself, and that the scattered wave signals are actually much smaller than

the incident signal. The total wavefields (incident + scatterer(s)) are visually

indistinguishable from the incident waves shown here because the scattering

signal is much weaker than the incident wave signal. . . . . . . . . . . . . . 97
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4.4 Example data produced by the scattering simulation code, displaying a change

in incident phase from Figure 4.3. Three time steps are shown at t = 0 (top

row), t = 100 (middle row), and t = 200 (bottom row). Axes are in units of

pixels. Greyscale colors indicate wave amplitude (black/white is minimum/-

maximum, grey is average), although the incident and scattered waves are

not scaled with respect to each other since the incident wave signal is actually

2-3 orders of magnitude larger than the scattered wave signals. The incident

wave (left column) is randomly phased, with an incident angle φi = 0◦. The

scattering results from a single scatterer (middle column) and 10 evenly-

spaced scatterers (right column) are shown for each time step. The scatterer

locations are indicated by the red dots (•). For both scattering results, the

scatterers are located at x = nx/3. The single scatterer is placed at y = 0,

and the multiple scatterers are spaced symmetrically around y = 0 with

d = ∆y = 5 pixels. The total wavefields (incident + scatterer(s)) are visually

indistinguishable from the incident waves shown here because the scattering

signal is much weaker than the incident wave signal. . . . . . . . . . . . . . 98
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4.5 Example data produced by the scattering simulation code, displaying a change

in incident angle from Figure 4.3. Three time steps are shown at t = 0 (top

row), t = 100 (middle row), and t = 200 (bottom row). Axes are in units of

pixels. Greyscale colors indicate wave amplitude (black/white is minimum/-

maximum, grey is average), although the incident and scattered waves are

not scaled with respect to each other since the incident wave signal is ac-

tually 2-3 orders of magnitude larger than the scattered wave signals. The

incident wave (left column) is in-phase at t = 0, with an incident angle

φi = 45◦. The scattering results from a single scatterer (middle column)

and 10 evenly-spaced scatterers (right column) are shown for each time step.

The scatterer locations are indicated by the red dots (•). For both scattering

results, the scatterers are located at x = nx/3. The single scatterer is placed

at y = 0, and the multiple scatterers are spaced symmetrically around y = 0

with d = ∆y = 5 pixels. Note that each image is scaled to itself, and that

the scattered wave signals are actually much smaller than the incident signal.

The total wavefields (incident + scatterer(s)) are visually indistinguishable

from the incident waves shown here because the scattering signal is much

weaker than the incident wave signal. . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Example scattered data produced by the scattering simulation code, display-

ing changes in scatterer spacing, using the t = 100 incident conditions from

Figure 4.3 (in-phase, φi = 0◦). Axes are in units of pixels. Greyscale colors

indicate wave amplitude (black/white is minimum/maximum, grey is aver-

age), although the three scattering cases are not scaled with respect to each

other. The scatterer locations are indicated by the red dots (•); however,

dot size is not indicative of scatterer size. The middle plot is the same as the

middle-righthand plot in Figure 4.3, for reference. The left plot shows the

scattering response from 10 scatterers with d = ∆y = 2 pixels; the right plot

shows the 10-scatterer response for d = ∆y = 10 pixels. We note that the

locations in x are likewise adjustable, but not shown. . . . . . . . . . . . . . 100
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4.7 Examples of the real-part of the simulated scattered wave functions for a

single scatterer (left) and a column of ten scatterers (right) at t = 0. Axes

are in units of pixels. Greyscale colors indicate wave amplitude (black/white

is minimum/maximum, grey is average), although the incident and scattered

waves are not scaled with respect to each other since the incident wave signal

is actually 2-3 orders of magnitude larger than the scattered wave signals.

The incident wave packet (top) for these examples is initially in-phase and

aligned at the x = 0 line. Note that these images are the same simulated

data as those in the top row of Figure 4.3. . . . . . . . . . . . . . . . . . . . 102

4.8 The simulated scattered data in Figure 4.7 summed over the y-dimension.

The x-axis has units of pixels, while the summed amplitude has arbitrary

units. Note that the summed amplitude for the 10-scatterer case is about

10× the magnitude of the 1-scatterer case results. This data only shows

the t = 0 time step. Other time steps have a similar magnitude difference

in amplitude between the 1-scatterer and 10-scatterer cases. Stacking these

summed amplitude data through time produces plots of the time-dependent

Green’s functions of the scattering. . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 The Green’s function results for the 1- and 10-scatterer scattered wave sim-

ulation data are shown in the left and left-center images, respectively. The

x-axis has units of pixels, while the time steps on the y-axis are in seconds

(dt = 45 s). The vertical dashed line indicates the x-location of the scat-

terers. Note that if the t = 0 data from these two figures were plotted, the

results would give Figure 4.8. These images are shown to scale with them-

selves, so for comparison purposes the scaled-difference (right-center) and

scaled-difference overlaid with the scaled-10-scatterer case (right) are also

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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4.10 Similar to Figure 4.9, the Green’s function results for the 1- and 10-scatterer

incident wave simulation data are shown in the left and left-center images,

respectively. The x-axis has units of pixels, while the time steps on the y-axis

are in seconds (dt = 45 s). The vertical dashed line indicates the x-location of

the scatterers. These images are shown to scale with themselves, so for com-

parison purposes the difference (right-center) and difference overlaid with the

10-scatterer case (right) are also shown. As expected, there is no difference

between the incident wave linear TD results, since the incident wave packet

designated in both cases is the same. Thus, the right-hand image is a mirror

of the left and left-center images. . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Again similar to Figure 4.9, the Green’s function results for the 1- and 10-

scatterer total wave simulation data are shown in the left and left-center

images, respectively. The x-axis has units of pixels, while the time steps on

the y-axis are in seconds (dt = 45 s). The vertical dashed line indicates the

x-location of the scatterers. These images are shown to scale with them-

selves, so for comparison purposes the difference (right-center) and difference

overlaid with the scaled-10-scatterer case (right) are also shown. Although

the backscattered wave signal is too weak to be seen in both the 1-scatterer

and 10-scatterer cases by themselves, the difference clearly shows both the

forward and backscattered wave signals. The apparent scattering mainly

comes from the the 10-scatterer case because the scattered wave magnitude

is 10× larger than that of the 1-scatterer case. The overlaid image on the

right shows both the incident and scattered wave parts together. . . . . . . 107

4.12 Examples of the simulated real scattered wave functions for a single scatterer

(left) and a column of ten scatterers (right) at t = 0. Axes are in units of

pixels. Greyscale colors indicate wave amplitude (black/white is minimum/-

maximum, grey is average), although the incident and scattered waves are

not scaled with respect to each other since the incident wave signal is actually

2-3 orders of magnitude larger than the scattered wave signals. The incident

wave packet (top) for these examples is initially in-phase at an angle of 45◦

and a radial distance of nx/2 = ny/2 from the domain center. Note that

these images are the same simulated data as those in the top row of Figure 4.5.109
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4.13 The simulated scattered data in the 10-scatterer cases from Figures 4.7 and 4.12,

summed over the y-dimension. The x-axis has units of pixels, while the

summed amplitude has arbitrary units. Note that the summed amplitudes

for both incident angle cases have approximately the same magnitude. This

data only shows the t = 0 time step. Other time steps have similar amplitude

magnitudes between the φi = 0◦ and φi = 45◦ cases. Stacking these summed

amplitude data through time produces plots of the time-dependent Green’s

functions of the scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.14 The Green’s function results for the 1- and 10-scatterer scattered wave sim-

ulation data, with an incident angle of 45◦, are shown in the left and center

images, respectively. The x-axis has units of pixels, while the time steps on

the y-axis are in seconds (dt = 45 s). The vertical dashed line indicates the

x-location of the scatterers. Note that if the t = 0 data from the 10-scatterer

case was plotted, the results would give the left plot in Figure 4.13. For

comparison purposes, the difference (right) is also shown, with no scaling

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.15 The Green’s function results from the 10-scatterer, in-phase, φi = 0◦ simu-

lated data, corresponding to the simulated data represented in Figure 4.3.

The x-axis has units of pixels, while the time steps on the y-axis are in sec-

onds (dt = 45 s). The total wave (left) and incident wave (middle) results

are indistinguishable since the scattered wave is weaker than the incident

wave. The scattered wave result (right) shows both a forward and backward

scattered wave to either side of the line of scatterers, which is designated by

the vertical dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.16 The Green’s function results from the 10-scatterer, random phased, φi = 0◦

simulated data, corresponding to the simulated data represented in Fig-

ure 4.4. The x-axis has units of pixels, while the time steps on the y-axis

are in seconds (dt = 45 s). The total wave (left) and incident wave (mid-

dle) results are indistinguishable since the scattered wave is weaker than the

incident wave. The scattered wave result (right) shows both a forward and

backward scattered wave to either side of the line of scatterers, designated

by the vertical dashed line. The random phase results have strong signals

throughout the duration of the simulation time, corresponding to small, ran-

domly coherent incident wave packets. . . . . . . . . . . . . . . . . . . . . . 115

xxi



4.17 The cross-correlated results of the multiphased Green’s functions in Fig-

ure 4.16. The x-axis has units of pixels, while the time lag on the y-axis

is in seconds (dt = 45 s). The cross-correlation between the scattered wave

and the incident wave at x = 0 (left) produces the same result as cross-

correlating the total wave with itself at x = 0. The backscattered wave

diverges from the line of scatterers, designated by the vertical dashed line.

The cross-correlation of the incident wave with itself at x = 0 (right) crosses

the line of scatterers at the same time. . . . . . . . . . . . . . . . . . . . . . 116

4.18 Student’s t-test results between the Green’s functions of in-phase, φi = 0◦

scattering off of 1 and 10 scatterers. The x-axis has units of pixels. Both the

3× 3 (left) and 5× 5 (right) superpixel calculations are shown. . . . . . . . 121

4.19 Student’s t-test significance of differences results reflecting the statistical sig-

nificance of the t-statistic results shown in Figure 4.18. The x-axis has units

of pixels. Again, both the 3×3 (left) and 5×5 (right) superpixel calculations

are shown. Note that darker shades indicate higher significance. . . . . . . . 122

4.20 Histograms of the significance distributions in Figure 4.19. Both the 3 × 3

(top) and 5×5 (bottom) superpixel cases are shown. All significance left of the

vertical dash-dotted line indicates significant differences (significance level ≤

0.05; probability of significance = 95%) between the 1 and 10 scatterer cases,

while the dashed line indicates highly significant differences (significance level

≤ 0.01; probability of significance = 99%). . . . . . . . . . . . . . . . . . . . 123

4.21 Binary Student’s t-test significance results from Figure 4.19, masked to above

95% probability of significance. The x-axis has units of pixels. Again, both

the 3×3 (left) and 5×5 (right) superpixel calculations are shown. Note that

black regions indicates statistically significant differences; white, statistically

insignificant differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.22 Student’s t-test results from Figure 4.19, masked to above 95% probability

of significance. The x-axis has units of pixels. Again, both the 3 × 3 (left)

and 5× 5 (right) superpixel calculations are shown. In either case, the main

region of difference between the TD signals is passed through as statistically

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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4.23 Student’s t-test results between the Green’s functions of in-phase, φi = 45◦

scattering off of 1 and 10 scatterers. The x-axis has units of pixels. Both the

3× 3 (left) and 5× 5 (right) superpixel calculations are shown. . . . . . . . 127

4.24 Student’s t-test significance results reflecting the statistical signbificance of

the t-statistic results shown in Figure 4.23. The x-axis has units of pixels.

Again, Both the 3 × 3 (left) and 5 × 5 (right) superpixel calculations are

shown. Note that darker shades indicate higher significance. . . . . . . . . . 128

4.25 Histograms of the significance distributions in Figure 4.24. Both the 3 × 3

(top) and 5× 5 (bottom) superpixel calculations are shown. All significance

left of the vertical dash-dotted line indicates significant differences (signifi-

cance level ≤ 0.05; probability of significance = 95%) between the 1 and 10

scatterer cases, while the dashed line indicates highly significant differences

(significance level ≤ 0.01; probability of significance = 99%). . . . . . . . . 129

4.26 Binary Student’s t-test significance results from Figure 4.24, masked to above

95% probability of significance. The x-axis has units of pixels. Again, both

the 3×3 (left) and 5×5 (right) superpixel calculations are shown. Note that

black regions indicates statistically significant differences; white, statistically

insignificant differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.27 Student’s t-test results from Figure 4.24, masked to above 95% probability

of significance. The x-axis has units of pixels. Again, both the 3 × 3 (left)

and 5× 5 (right) superpixel calculations are shown. In either case, the main

region of difference between the TD signals is passed through as statistically

significant with the exception of the backscattered wave signal at earlier time

steps in the 5× 5 superpixel case (as seen in Figure 4.26). . . . . . . . . . . 131

5.1 SDO/AIA cutout images on Nov. 13 2013 at 4:00AM (middle of observation)

in wavelengths 304 �A (top left), 171 �A (top right), 193 �A (bottom left), 211 �A

(bottom right). The images shown are log10 scale of the data. Both axes have

units of pixels. Recall from Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ '
0.436 Mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 SDO/HMI tracked Dopplergram image on Nov. 13 2013 at 4:00AM (middle

of observation). The data has already been filtered for the f -mode. Both

axes have units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . . . . 138
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5.3 The f -mode filtered SDO/HMI quiet sun data, after summing over the y-

dimensions. The time step along the y-axis has units of seconds (dt = 45 s).

The x-axis has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . 139

5.4 The TD plot of the f -mode filtered SDO/HMI quiet sun data, after summing

over the y-dimension. Time lag t has units of seconds (dt = 45 s). ∆ has

units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. The TD results

were calculated for all possible reference lines, and were subsequently shifted

with respect to each reference line. The shifted results were then summed to

create this result, with an improved signal-to-noise ratio. . . . . . . . . . . . 140

5.5 Example reference cross-correlations, derived from the quiet sun data, used

in the travel time measurements. Time lag t has units of seconds (dt = 45

s). ∆ has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . . . . 143

5.6 The τ+(xs, xr) (top left), τ−(xs, xr) (top right), τmean(xs, xr) (bottom left),

and τdiff(xs, xr) (bottom right) travel time measurements from the quiet sun

data. Both axes have units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729

Mm. Travel times are indicated in greyscale, with black and white corre-

sponding to shortest and longest times, respectively. We note that there is a

visible pattern of horizontal and vertical lines; as of yet, we cannot conclude

about the source of the pattern, but it is under investigation. . . . . . . . . 144

5.7 The τall
+ (∆) (top left), τall

− (∆) (top right), τall
mean(∆) (bottom left), and τall

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the

full quiet sun data. Travel times have units of seconds (dt = 45 s). ∆ has

units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. These plots may

seem uninteresting because there is no variation in the travel times. However,

this is because we are essentially comparing our C0(∆, t) to itself. We expect

0-variation when making this comparison, so these results act as a sanity

check of our travel time calculations. Also, this leads us to understand that

the variations seen in Figures 5.8 and 5.9 are indicative of the noise that is

introduced when we compute travel times in sub-regions when C(∆, t) and

C0(∆, t) have different signal-to-noise ratios. . . . . . . . . . . . . . . . . . . 145
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5.8 The τ in
+ (∆) (top left), τ in

− (∆) (top right), τ in
mean(∆) (bottom left), and τ in

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the

quiet sun region, for a sub-region of the size of the CH region in Section 5.2.

Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1

HMI pixel = 0.06◦ ' 0.729 Mm. These travel times are for reference and later

comparison with the shifted travel times in Figure 5.13. They also give some

idea of the noise difference in travel times measured using the shifted-average

of the full dimensional data set, and those obtained from the sub-region. . . 146

5.9 The τout
+ (top left), τout

− (top right), τout
mean (bottom left), and τout

diff (bottom

right) travel time measurements from the shifted TD results of the quiet sun

region, for a sub-region of the size of the region outside the CH in Section 5.2.

Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1

HMI pixel = 0.06◦ ' 0.729 Mm. These travel times are for reference and later

comparison with the shifted travel times in Figure 5.14. They also give some

idea of the noise difference in travel times measured using the shifted-average

of the full dimensional data set, and those obtained from the sub-region. . . 147

5.10 Averaged, shifted TD plots of the f -mode filtered SDO/HMI CH data, after

summing over the y-dimension. Time lag t has units of seconds (dt = 45

s). ∆ has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. The

left-most TD result are calculated from all possible reference lines, ignoring

the location of the CH boundary. The center plot shows the average shifted

result from only those reference lines inside the CH region. The right-hand

result is similarly that of the region outside the CH boundary. The three

cases are highly similar, although it is possible that the TD signal in the

outer region is attenuated faster than inside the CH. This difference will be

investigate further in Section 5.3. . . . . . . . . . . . . . . . . . . . . . . . . 150
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5.11 The τ+(xs, xr) (top left), τ−(xs, xr) (top right), τmean(xs, xr) (bottom left),

and τdiff(xs, xr) (bottom right) travel time measurements from the full CH

data. Both axes have units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729

Mm. Travel times are indicated in greyscale, with black and white corre-

sponding to shortest and longest times, respectively. The solid lines repre-

sent the location of the center of the CH boundary, while the dashed lines

indicate the width of the boundary. Where (xs, xr) are below/left of the CH

boundary, the travel times are measured within the CH region with respect to

reference lines inside the region. Likewise for (xs, xr) are above/right of the

CH boundary, the travel times are calculated outside of the CH region with

respect to reference lines outside the region. Similarly, for xs inside (outside)

the boundary and xr outside (inside) the boundary, the travel times are mea-

sured outside (inside) the CH region with respect to signals inside (outside)

the CH region. We again note that there is a visible pattern of horizontal and

vertical lines; as of yet, we cannot conclude about the source of the pattern,

but it is under investigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.12 The τall
+ (∆) (top left), τall

− (∆) (top right), τall
mean(∆) (bottom left), and τall

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the

full CH data. Travel times have units of seconds (dt = 45 s). ∆ has units of

pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . . . . . . . . . . . . . 154

5.13 The τ in
+ (∆) (top left), τ in

− (∆) (top right), τ in
mean(∆) (bottom left), and τ in

diff(∆)

(bottom right) travel time measurements from the shifted TD results inside

the CH region. Travel times have units of seconds (dt = 45 s). ∆ has units

of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . . . . . . . . . . . . 155

5.14 The τout
+ (top left), τout

− (top right), τout
mean (bottom left), and τout

diff (bottom

right) travel time measurements from the shifted TD results outside of the

CH region. Travel times have units of seconds (dt = 45 s). ∆ has units of

pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. . . . . . . . . . . . . . . 156

5.15 Basic difference plots between the four sets of compared TD results. ∆ has

units of pixels, and t has units of seconds (dt = 45 s). These plots are mainly

for reference against the superpixel-average t-statistic results in Figures 5.16-
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5.16 The Student’s t-test comparison between the shifted TD results inside and

outside the CH boundary. ∆ has units of pixels, and t has units of seconds

(dt = 45 s). The top row of results employs a 3 × 3 superpixel; the bottom

row, a 5 × 5 superpixel. Ffull maps of the t-statistic are shown on the left.

The center images show the binary ≥ 95% significance maps of the left-

hand results. Black indicates statistically significant differences and white
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Coronal holes (CHs) are solar atmospheric features that have reduced emission in the

extreme ultraviolet (EUV) spectrum due to decreased plasma density along open magnetic

field lines. CHs are the source of the fast solar wind, can influence other solar activity, and

track the solar cycle. Our interest in them deals with boundary detection near the solar

surface. Detecting CH boundaries is important for estimating their size and tracking their

evolution through time, as well as for comparing the physical properties within and outside

of the feature.

In this thesis, we (1) investigate CHs using statistical properties and image processing

techniques on EUV images to detect CH boundaries in the low corona and chromosphere.

SOHO/EIT data is used to locate polar CH boundaries on the solar limb, which are then

tracked through two solar cycles. Additionally, we develop an edge-detection algorithm that

we use on SDO/AIA data of a polar hole extension with an approximately linear boundary.

These locations are used later to inform part of the helioseismic investigation; (2) develop a

local time-distance (TD) helioseismology technique that can be used to detect CH boundary

signatures at the photospheric level. We employ a new averaging scheme that makes use

of the quasi-linear topology of elongated scattering regions, and create simulated data to



test the new technique and compare results of some associated assumptions. This method

enhances the wave propagation signal in the direction perpendicular to the linear feature

and reduces the computational time of the TD analysis. We also apply a new statistical

analysis of the significance of differences between the TD results; and (3) apply the TD

techniques to solar CH data from SDO/HMI. The data correspond to the AIA data used in

the edge-detection algorithm on EUV images. We look for statistically significant differences

between the TD results inside and outside the CH region.

In investigation (1), we found that the polar CH areas did not change significantly

between minima, even though the magnetic field strength weakened. The results of (2)

indicate that TD helioseismology techniques can be extended to make use of feature sym-

metry in the domain. The linear technique used here produces results that differ between

a linear scattering region and a circular scattering region, shown using the simulated data

algorithm. This suggests that using usual TD methods on scattering regions that are ra-

dially asymmetric may produce results with signatures of the anisotropy. The results of

(1) and (3) indicate that the TD signal within our CH is statistically significantly different

compared to unrelated quiet sun results. Surprisingly, the TD results in the quiet sun near

the CH boundary also show significant differences compared to the separate quiet sun.



Chapter 1: Introduction

This dissertation is an amalgamation of two distinct problems in solar physics. Both stem

from the overarching goal of understanding the solar dynamo, which is the mechanism that

generates and evolves the Sun’s magnetic field (Charbonneau, 2014; Tobias, 2002). The two

topics approach the solar dynamo from, literally, opposite ends. The first, the tracking and

modeling of open magnetic field regions corresponding to coronal holes, is a “top-down”

approach that studies solar atmospheric conditions and links the evolution of the open flux

with internal solar dynamo processes (e.g., Fisk and Schwadron (2001); Pinto et al. (2011);

Zirker (1977)). Coronal holes are also of interest as sources of the fast and slow solar wind,

which directly affects conditions in near-Earth space and the heliosphere (Neugebauer et al.,

1998; Nolte et al., 1976; Ohmi et al., 2004; Schwenn, 2006; Wang et al., 1998, 2000). The

second, “bottom-up” approach uses helioseismology to probe the solar photosphere and

convection zone to determine magnetic field and plasma flow properties at and below the

Sun’s surface, where the dynamo is predicted to originate (Charbonneau, 2014; Tobias,

2002). The physics between the solar interior and atmosphere is still a widely open subject

in solar physics, and connecting these seemingly disjointed layers could have a broad impact

on our understanding of the dynamo, as well as plasma physics, magnetohydrodynamics,

and space weather prediction.

In this work, we investigate coronal holes (generally studied with “top-down” methods)

at the photosphere using a new “bottom-up” helioseismic technique. Boundary detection

processes are combined with time-distance local helioseismology to distinguish differences

in wave properties between a coronal hole region and the quiet sun, as well as potentially

reveal backscattered waves. Because boundary regions are elongated features, the scattering

we are considering is better represented as from a quasi-linear scattering surface than from
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a point scatterer. To enhance the estimation of wave properties, we study a region of a

large polar coronal hole extension with an approximately linear boundary. We also develop

a simulation on which we test our linear time-distance method. In future, this method could

easily be applied to other elongated solar magnetic features, such as sunspot boundaries

and filaments.

The remainder of this chapter is devoted to brief synopses of the general topics necessary

for understanding the scientific techniques and results of this work. In section 1.1, we

review the history and current physical understanding of coronal holes. In Section 1.2, we

briefly cover wave modes, focusing on f -mode oscillations, which is vital for our helioseismic

discussion. Finally, we give a general overview of (specifically, local) helioseismology and

its history in Section 1.3, which we will expand upon in more detail later in Chapter 3.

In Chapter 2, we investigate coronal holes using statistical properties and image pro-

cessing techniques on extreme ultraviolet (EUV) images in order to detect coronal hole

boundaries in the low corona and chromosphere. We develop an edge-detection algorithm

used on a polar hole extension with an approximately linear boundary; the data is from

the Solar Dynamics Observatory’s Atmospheric Imaging Assembly instrument (SDO/AIA;

Lemen et al., 2012; Pesnell, Thompson, and Chamberlin, 2012). These locations are used

later to inform part of the helioseismic investigation. Appendix A also includes some more

specific details about this process. Additionally, data from the Solar and Heliospheric Obser-

vatory’s Extreme ultraviolet Imaging Telescope (SOHO/EIT; Delaboudinière et al., 1995)

is used to locate polar coronal hole boundaries on the solar limb, which are then tracked

through two solar cycles (Hess Webber et al., 2014; Kirk et al., 2009).

Chapter 3 includes two in-depth reviews of (3.1) wave and scattering theory and (3.2)

time-distance local helioseismology. These topics are the basis for our new helioseismic

technique, as well as the way in which we test the new approach. We also present the

mathematical and geometrical symmetry arguments that, when applied to time-distance

helioseismology, constitute the foundation of our technique. We employ a new averaging

scheme that makes use of the linear geometry of elongated scattering regions. This method
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enhances the wave propagation signal in the direction perpendicular to the linear feature

and reduces the computational time of the TD analysis. Appendices B and C, respectively,

provide further instruction on the fundamental mathematics needed for these two reviews.

Chapter 4 describes the analytic simulation we have developed to test the new time-

distance technique, and presents results found using the technique on simulated data. We

also perform a statistical analysis on these time-distance results to probe for significant

differences between simulated cases. The simulation solves the scattered wave equation for

an f -mode plane wave interacting with a rigid cylinder, aligned perpendicular to the axes of

wave propagation. The simulation does not take any magnetic field into account, and thus is

not a true representation of the solar conditions (i.e., no absorption, mode conversion, etc.);

however, it is a representative model of the scattered wave interference expected from an

elongated scattering region (e.g., our coronal hole boundary), and serves as proof-of-concept

data for our time-distance method.

Chapter 5 presents the solar data and results found after employing our time-distance

technique. We study two data sets derived from the SDO Helioseismic and Magnetic Imager

(HMI) instrument (Pesnell, Thompson, and Chamberlin, 2012; Schou et al., 2012). A

broadband f -mode phase-speed filter is applied in both cases. The first is a quiet sun

region. The second is the coronal hole region corresponding to the SDO/AIA data studied

in Chapter 2. We compare the time-distance results between these two data sets using the

same statistical analysis used to compare the simulated data sets.

Finally, we present and discuss our conclusions in Chapter 6. Possibilities for future

work are also considered.

1.1 Coronal Hole Overview

Coronal holes (CHs) are regions of open magnetic field along which solar plasma particles

flow freely away from the Sun. This outflow causes the density and electron temperature in

the CHs to be lower than in the ambient corona and chromosphere (the solar “atmosphere”)

(Munro and Withbroe, 1972). They are the source of the fast solar wind, dynamically change
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with the solar cycle, and are key to understanding the Sun’s large-scale magnetic dynamo

process.

Polar coronal holes (PCHs) are long-lived features that primarily appear at latitudes

above ±50◦ (Waldmeier, 1981). These holes have a fixed rate of rotation distinct from

the polar plasma rotation (Navarro-Peralta and Sanchez-Ibarra, 1994), which suggests that

the field lines are less prone to twisting and distortion from sub-surface flows. PCHs are

dominant during solar minimum. Equatorial coronal holes (ECHs) are more transient fea-

tures, lasting hours up to weeks, and are more common during solar maximum. This type

of hole is subject to magnetic disturbances caused by flares and coronal mass ejections.

ECHs also rotate at the same rate as the solar differential rotation (Navarro-Peralta and

Sanchez-Ibarra, 1994). Polar hole extensions share similar properties to the PCHs (fixed

rotation rate, long-lived) but stretch down into lower latitudes where ECHs dominate.

During solar minimum, the Sun’s magnetic field is quasi-dipolar. The open magnetic

field migrates toward either pole and large stable PCHs are visible in EUV and X-ray

wavelengths. As the solar cycle progresses into maximum, the magnetic field gets wrapped

around in the high-β plasma of the convection zone, turning the poloidal field into a toroidal

one. The PCHs break apart and move down to lower latitudes as small, more transient

ECHs. Zhou and Smith (2009) found that, over four solar cycles, the amount of magnetic

flux from open polar magnetic field at minimum is roughly the same as the amount of

magnetic flux from globally open fields at maximum.

There are two viewpoints about the structure and origin of CHs. Some in the scientific

community assert that CHs are purely atmospheric features that are created and destroyed

in the corona and only extend down to the top of the photosphere (the Sun’s “surface”).

Others assert that CHs are driven by internal processes in the Sun and their associated

open magnetic field lines propagate into the convection zone. We will briefly discuss the

research supporting both viewpoints.

One widely-used theory that supports the idea that CHs are entirely driven by atmo-

spheric processes is the quasi-steady coronal model (e.g., Antiochos et al., 2007; Edmondson
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et al., 2009; Schrijver and DeRosa, 2003). The quasi-steady model was originally proposed

by Parker (1958). It suggests that at some distance into the corona from the photosphere,

the gas pressure begins to dominate over the magnetic pressure and pulls the magnetic field

lines outward. This gives rise to the idea of a “source surface,” below which all field lines

are closed while field lines that cross it are defined as open (e.g., Altschuler and Newkirk,

1969; Hoeksema and Scherrer, 1986; Schatten, Wilcox, and Ness, 1969). The Potential-Field

Source Surface (PFSS) model is still a common method used in global coronal magnetic

field modeling. More recently, quasi-steady coronal modeling efforts have extended into

the realm of magnetohydrodynamic (MHD) modeling (e.g., Linker et al., 1999; Roussev

et al., 2003), which does not require some of the physical assumptions necessary for the

PFSS model (e.g., current-free coronal magnetic field conditions). Another model that

could support the idea of coronal holes being purely atmospheric features is the interchange

reconnection model, which describes changes in the coronal magnetic field via interactions

between open and closed field lines in the corona (Fisk, Zurbuchen, and Schwadron, 1999).

However, this model has also been used to support the alternative theory that the formation

and destruction of CHs may be partially driven by internal solar processes, as we discuss

next.

The second theory argues that the open magnetic flux associated with CHs propagates

into the convection zone and is influenced by motions therein. Bohlin (1976) suggested that

CH formation is a byproduct of by the “unbalanced” flux emergence of bipolar magnetic

regions. Bohlin (1977) subsequently found that CHs tend to grow and decay at the average

rate of a supergranular cell. Around the same time, McIntosh (1976) proposed that CHs

form within regions of unipolar magnetic cells at low latitudes, influenced by nearby PCH

extensions of like polarity with which the ECHs then merge. He attributed this behavior to

the evolution of global magnetic neutral lines. In 2001, Fisk and Schwadron proposed that

the total amount of open magnetic flux of the Sun should remain approximately constant

in time because it can only be reduced by closure with open flux of opposite polarity. This

is unlikely in CHs since they have uniform polarity, particularly if the CH has a large area.

5



They argue that the behavior of the open flux must therefore be regulated by motions in

the photosphere. Particulary, they assert that diffusion processes and convective motions

govern the evolution of CHs both locally (opening and closing of flux at the boundaries)

and globally (over the course of a solar cycle). Pinto et al. (2011) used numerical MHD

simulations to study the coupling of the solar dynamo with the corona and solar wind.

They look at the response of open magnetic field regions in the corona to changes in the

evolving dynamo through a solar cycle. Their simulation shows a clear correspondence

between their dynamo model and the formation and evolution of coronal holes. Although

the dynamo model is a simplified one (e.g., magneto-rotational effects are neglected, toroidal

fields and flows are not considered) and the results are somewhat idealized (e.g., the models

produce regular and symmetric solar cycles), they note that the coronal features produced

are consistent with the results of similar work in modeling of the coronal field evolution

(Wang and Sheeley, 2003). There is also evidence that coronal holes and the fast solar wind

are associated with the chromospheric network, which in turn has been found to correspond

with the boundaries of supergranular cells that are driven by convection (Hassler et al.,

1999; Simon and Leighton, 1964).

Attempting to examine CHs from below the surface could provide an answer to this

highly debated topic. Recent research in local helioseismology (see Section 1.3) has been

successful at finding wave scattering signatures off of strong, closed magnetic flux below the

photosphere. We suggest that similar wave scattering could occur at sub-photospheric CH

boundaries, since the closed-to-open magnetic field boundary acts as a discontinuity that

could reflect some incoming waves.

1.2 Wave Modes Overview

There are three kinds of waves used in helioseismology, each of which generates a different

resonant wave mode. p-modes are acoustic oscillations, driven by pressure gradients; g-

mode oscillations have gravity as the restoring force; f -mode oscillations are surface-gravity
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waves. Each type of wave mode samples different depths of the solar interior. There are

many harmonic resonance patterns within each mode category.

We focus on f -mode waves for the purpose of this dissertation. f -modes are surface

waves that propagate horizontally across the photosphere, with gravity acting as the restor-

ing force. In fluid dynamics, surface-gravity wave propagation is described by Airy (or

linear) wave theory (Craik, 2004). A simple schematic is shown in Figure 1.1, from Feyn-

man, Leighton, and Sands (1963). Surface waves are a reasonable starting point for this

research because, as mentioned in Section 1.1, the research question is how deep below the

photosphere do CHs make their presence known.

Figure 1.1: f -mode waves are similar to deep-water surface waves in the ocean. The wave-
fronts propagate horizontally across the surface while the particle motion is circular. As
mentioned in the attributed text, the circular motion decreases in radius with increasing
depth until the motion disappears completely. (Figure 51-9, Feynman, Leighton, and Sands,
1963)

The main difference between Airy wave theory and the study of waves on the Sun is the

inclusion of the magnetic field. Airy wave theory is a hydrodynamic description of wave

propagation (charge-neutral fluid interacting with charge-neutral perturbations), whereas

the waves on the Sun are plasma waves that are influenced by and interact with the solar

magnetic field; in other words, MHD. To illustrate this, consider the hydrodynamic scenario

of a deep lake with and island in the center. A speed boat moving through the water creates a

wake that travels as a plane wave across the lake surface, eventually intersecting the island.

7



The interaction with the island creates a scattered wave, the “shape” (i.e., interference

pattern) of which is dependent on the “shape” (i.e., structure) of the island. In the MHD

approximation, the plasma takes place of the water in the lake and the magnetic field is

a barrier like the island. We can study the scattering of plasma waves off of the magnetic

field in order to understand the structure of that field.

f -mode waves have a radial order of n = 0 (there are no nodes in the radial eigenfunction

of the mode; Duvall, Jr. and Gizon (2000)). On the Sun, the peak of the f -mode frequency

envelope is about 3 mHz, with a FWHM of 1 mHz. This corresponds to a spherical harmonic

degree range of 600 ≤ ` ≤ 1200, with a peak at about ` = 880. Note that there are no

observable f -mode frequencies below 0.661 mHz (` = 41) (Schou, 2004).

The dispersion relationship for f -mode waves is similar to that of deep-water surface

waves (in the limit that the wavelength is small compared to the water depth):

ω2 = gk, (1.1)

where ω is the angular temporal frequency, g is the gravitational acceleration at the photo-

sphere, and kH is the horizontal wavenumber. Note that kH = (`+ 1/2)/R�, where ` is the

spherical harmonic degree and R� is the solar radius (Duvall, Jr. and Gizon, 2000). f -mode

oscillations are sensitive to both horizontal flow components, which allows more accuracy

for scattering detections than Doppler measurements that only see along the line-of-site

(LOS). Also, the f -mode has known eigenfunctions, so the depth that is being averaged is

well defined.

1.3 Helioseismology Overview

Helioseismology is the study of the solar interior from surface observations of naturally-

excited internal acoustic and surface-gravity waves (Gizon and Birch, 2005). Local helio-

seimology, a term coined by Lindsey, Braun, and Jefferies (1993), involves the study of

small regions on the solar disk and is used to create a detailed picture of the interior in
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that particular region. There are multiple methods used in local helioseismic research, in-

cluding ring diagram analysis, time-distance techniques, and acoustic holography (Pijpers,

2006). All current local helioseismic techniques assume wave scattering off of a point source

disturbance.

The specific local technique that will be used in this dissertation is called time-distance

(TD) helioseismology, first developed by Duvall, Jr. et al. (1993). TD helioseismology

computes correlations in far-field wave patterns between two surface points. A recent review

on this technique is presented by Gizon, Birch, and Spruit (2010), and we also briefly

describe the method in Section 3.2. Our specific procedure varies from the general TD

methodology by our exploitation of elongated feature geometry, allowing us to perform

the analysis in 1D and investigate a magnetic field configuration previously unexplored.

Precedence for our new technique is discussed in Section 3.2.3.2 (i.e., Cameron, Gizon, and

Duvall, Jr., 2008; Duvall, Jr. et al., 1996; Gizon and Birch, 2005; Hindman et al., 2004).

Local helioseismology has been used to look at magnetic structure in the solar interior

through flow anomalies. The initial idea for this dissertation was motivated by the work

of Ilonidis, Zhao, and Kosovichev (2011). Their research employed a time-distance anal-

ysis technique and was able to predict emerging flux associated with active regions up to

two days before the appearance of sunspots. We discuss implementation of time-distance

helioseismology analysis in Section 3.2. Howe et al. (2013) used a point source analysis

technique, called the ring-diagram method, to look at differences between quiet sun regions

and CH regions. They found that while there was no apparent change in wave frequency

and mode amplitude between quiet sun and CHs, there is evidence of less scattering from

points within the CH. They attribute this to the simple magnetic field geometry and fewer

emerging flux disturbances from within the hole areas. This leads to intriguing questions

about what occurs at the boundary between CHs and quiet sun regions and whether we

can use alternative local helioseismology techniques to investigate the subsurface properties

below CHs.
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Chapter 2: Coronal Hole Detection & Results

This dissertation requires knowing the location of CH boundaries. CH regions are not

visible in doppler velocity data, and can even be difficult to distinguish in magnetograms.

We must therefore use EUV images to detect the CHs in the chromosphere and corona,

approximating their projected boundary locations in the solar atmosphere as the open

magnetic field boundary location in the photosphere. In this chapter, we discuss our CH

boundary detection process, from data retrieval through the detection algorithm to the

boundary location results of the CH in question. Sections 2.1 and 2.2 consider the detection

method and results, respectively. Additionally, we review our somewhat related previous

work on PCH boundary detection using EUV images in Section 2.3.

2.1 Data Preparation and Detection Method

Prior to performing a helioseismic analysis on the SDO/HMI data, steps must be taken to

align the CH boundary to the y-dimension of the domain. This allows us to take advantage

of symmetry arguments for an elongated feature, as well as to approximate the boundary

location and width. However, the boundary is not a visible feature in the HMI data.

We therefore use the corresponding AIA data to determine the alignment and location

parameters that will be applied later to the HMI images. The retrieval and post-processing

methods are fairly straightforward, but many details and assumptions must be recorded for

reproducibility, and to understand the parameters that will be applied to the HMI data.

The steps and details of the AIA image post-processing method are discussed in this section.

All of the code used for this process, as well as the TD analysis later on, is written in the

Interactive Data Language (IDL; version 7.0, Unix) with heavy reliance on the SolarSoft

(SSW) library.
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2.1.1 Download Process

The initial step is retrieving the AIA data set that directly corresponds to the HMI data.

This means not only the same time span, but also the same dimensions and location on the

disk. Both data sets are archived by Stanford University’s Joint Science Operations Center

(JSOC). The data can be exported via the internal JSOC export system1. In this section,

we walk through the export process for our AIA data, noting that the procedure is mainly

the same for retrieving the HMI data as well.

There are multiple AIA product series available for download. The main archived data

set is the AIA level-1 series (aia.lev1 ). As opposed to the raw level-0 data, the level-1 data

have been processed for pixel-level calibrations including bad-pixel removal, despiking, and

flat-fielding. The processing of level-1.5 data further corrects for geometric calibrations,

such as plate-scaling, rotation to solar north, and shifting the image centers to match the

HMI data. Further details on the differences between data processing products can be found

in the SDO documentation website2, run by the Lockheed Martin Solar and Astrophysics

Laboratory (LMSAL). In particular, the PDF link to N. Hurlburt’s “AIA plan for producing

and distributing data”3 (last update November 19, 2010, as of writing this dissertation)

describes the various AIA level differences in detail. Another useful resource available via

LMSAL’s SDODocs website is M. DeRosa’s “Guide to SDO Data Analysis”4 (last update

July 27, 2016, as of writing this dissertation).

The only fully-archived AIA data series is the level-1 processed data. There are sev-

eral options for converting a level-1 download to level-1.5, such as using the SSW routine

aia prep.pro. There are also processing options embedded into the JSOC export system

that perform the same conversion, one of which will be discussed in detail later in this

section.

The JSOC export system has a cutout service that allows the user to request only a

1http://jsoc.stanford.edu/ajax/exportdata.html
2https://www.lmsal.com/sdodocs/
3https://www.lmsal.com/sdodocs/doc?cmd=dcur&proj num=SDOD0045&file type=pdf
4http://www.lmsal.com/sdouserguide.html
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specific region of the archived images. We use this service as our means of data retrieval.

The user can define the desired coordinates of the image center, as well as the dimensions

of the domain. We know what cutout parameters the desired AIA data requires, based on

the location and dimensions of the HMI data cube (see Appendix A.1). Figure 2.1 shows a

screenshot of the JSOC export website with parameter specifications for one wavelength of

the SDO/AIA data set used in this work. We will move our discussion through the export

page, starting at the top.

Figure 2.1: A screenshot of the JSOC Data Export Request Generation webpage with
parameter specifications for one wavelength of the SDO/AIA data set used in this work.

The RecordSet specifies the desired data series, date and time range, and any other

keyword options for the export query. It can either be entered manually, if the user knows
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the query syntax and desired data set, or it can be built using the JSOC Lookdata service5.

In accordance with the known HMI data specifications, our RecordSet query is for the

aia.lev1 data series on February 5th, 2014, between 8:00 (8AM) and 16:00 (4PM). The

wavelength keyword in Figure 2.1 is set to 211 �A; however, we made the same query for

three other wavelengths as well: 304 �A, 171 �A, and 193 �A. There is a Record Count

of about 2400 AIA images that meet the RecordSet specifications for each wavelength,

one image every ∼12 seconds. (The WAVELNTH=171 query actually has a count of

2401 because the first image per minute for that wavelength is taken on the 00-second,

which includes the 16:00:00 time step. This is automatically corrected for in the post-

processing.) We leave the Record Limit option set to its default “none” since we want

all of the available records. We do not actually need the full cadence of this data series;

the CH boundary does not change significantly over such a short period, and our analysis

uses spatial and temporal averages so that small-scale variations are negligible. We use one

image per minute to save on computation time and storage. However, there is currently

no way to tell the JSOC to only select the first image per minute for the aia.lev1 series

(there are shortcuts for some other data series, but they are not universal). We therefore

download all the data files within the time range and unpack only the desired time files

(see Section 2.1.2). Note, this is one reason why we only want a cutout region and not the

full resolution, full-disk data. The download and storage of a data set with 2400 images at

4096×4096 spatial resolution takes too much time and space, even in a compressed, tar-file

format.

Another minor but time-saving note pertains to the retrieval format. If you do not

change the delivery Method from url to url-tar, you will have to download each of the

2400 FITS files individually. It is much more convenient to download a single tar file

containing all the data files.

The Filename Format is the filename template for the returned data files. Different

data series have their own default templates. Changing the template is optional. Any

5http://jsoc.stanford.edu/ajax/lookdata.html
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acceptable keyword of the selected data series can be used in the template, surrounded

by braces. We adjust the Filename Format to differentiate between data by adding

the WAVELNTH keyword. Added text without braces is included as-typed. We add

“.proj.fits” to designate that these FITS files will be postel (azimuthally equidistant) pro-

jected (we make note of this and the filename designation for completeness and clarity).

Note that changing the RecordSet query in any way automatically reverts the Filename

Format back to its default. To ensure consistently named files from various export requests,

check/reset the filename template each time the RecordSet is changed (e.g. changing the

desired wavelength).

The AIA SCALE Processing option essentially converts the level-1 data to level-1.5

data6. It scales and rotates the images according to the metadata information so that it

matches the HMI data. Selecting this option removes the need to use aia prep.pro.

The MAPROJ7 Processing option performs two necessary functions. First, it extracts

tracked subframes from the full-disk 4K × 4K resolution images. The patches are tracked

at the Carrington rate. Second, the extracted patches are remapped to a specified helio-

graphic projection from the inherent helioprojective AIA coordinate system. The available

map projections include Plate Carée, cylindrical equal area, orthographic, and Postel’s pro-

jection. MAPROJ returns the data at the same processing level in which it was input (e.g.

aia.lev1 returns as level-1). The JSOC Processing options are done in the order they are

listed on the export page6. Thus, using the aforementioned AIA SCALE option will lead

to a level-1.5 data product from MAPROJ.

Within the MAPROJ Processing procedure, the options for specifying the grid spacing

and active region number can be left to their defaults. The CLong, Clat, MapProjection,

Width and Height parameters are all chosen to reflect the corresponding HMI data series.

All of this information is determined from the FITS headers of the corresponding HMI

data. The central coordinates of the HMI data in Carrington longitude and latitude are

6Personal Communication with P. Scherrer, 3/25/2016
7http://jsoc.stanford.edu/cvs/JSOC/proj/util/apps/export as maproj.c?rev=HEAD&content-

type=text/vnd.viewcvs-markup
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(+82◦,+24◦). These coordinates are the input values for the CLong and CLat parameters,

respectively. We select the postel MapProjection parameter in accordance with the HMI

data projection. The spatial dimensions of the HMI data are 512× 512 pixels with a pixel

scale of 0.06◦/pixel in Heliographic Carrington coordinates, which corresponds to a domain

size of 30◦ × 30◦. However, the inherent AIA coordinate system and pixel scale are not the

same as those for HMI; this must be taken into account in the JSOC cutout parameters. The

corresponding AIA domain can be approximated using the SSW World Coordinate System

(WCS) commands in IDL (see Appendix A.1 for more details). The MapScale parameter

is automatically set to 0.0359◦/pixel. This can be adjusted but we left it set to the default

since it is apparently the closest we can come to the HMI pixel scale (0.06◦). Figure 2.1

shows that our desired Width and Height parameters come out to about 885×885 pixels to

cover the same “square” 30◦ region. Note that AIA data is inherently recorded in arcsec but

the projected cutout data is returned in degrees. We caution that the output FITS header

information produced by MAPROJ is not fully converted from helioprojective coordinates

to heliographic coordinates. The header information needs to be edited/corrected in order

to use WCS routines (see Appendix A.2).

Before submitting an export request, the MAPROJ parameters must be verified by

clicking the “Check params” button. If all the necessary parameters are specified, it will

display the message “OK to submit”. Similarly, you must click the “Check Params for

Export” button to verify that the necessary query information is being submitted. It will

display “OK to proceed” if everything is in order for the export. Clicking “Submit Export

Request” sends the query to the JSOC server. After successful submission, the RequestID

for the current RecordSet will appear on the page below the submit button. Write this

ID down! The form is generally JSOC YYYYMMDD request#, where the date is the date

that the export request was submitted and the request number resets at the beginning of

each day. This RequestID will also be the filename of the tar file that contains the data

FITS files.

15



The JSOC export service will Notify the provided email account when the export pro-

cess is complete and the data is ready for download. Note, however, that even when a

notification email address is provided, experience shows that notifications are not always

sent/received. As mentioned, record the RequestID for each export query as a precau-

tionary measure so that the status of the request can be manually checked on the website

and, when available, download the tar file. The RequestID is also important information

to provide to the JSOC team if there is an issue that requires debugging.

2.1.2 Image Selection & Unpacking Routines

After download, the tar files are saved in wavelength-specific directories. The specific JSOC

RequestID’s/filenames of the tar files used in this work are as follows:

304 JSOC 20160328 455.tar

171 JSOC 20160328 454.tar

193 JSOC 20160328 456.tar

211 JSOC 20160328 457.tar

The filenames of the FITS data within the tar files have the form

aia.lev1.YYYY-MM-DDThhmmssZ.wavelnth.proj.fits

as suggested by the Filename Format in Figure 2.1.

The following Unix commands change to the working directory and extract only the

first FITS file for every minute.

## change d i r e c t o r y to l o c a t i o n o f the ta r f i l e
cd DIR

## see the names o f the data f i l e s that w i l l be ex t rac t ed from the ta r
f i l e

ta r −t v f JSOC ∗ . t a r ` ./ a i a . l ev1 .2014−02−05T? ? ? ? [ 0 ] ? ∗ '

## assuming the l a s t c a l l looked ok , e x t r a c t the data f i l e s i n to the
cur rent d i r e c t o r y

ta r −xvf JSOC ∗ . t a r ` ./ a i a . l ev1 .2014−02−05T? ? ? ? [ 0 ] ? ∗ '

Because the data is all taken on the same date, the files can be sorted by time. Since each

wavelength only has one image between 00 and 09 seconds every minute, these few lines
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effectively extract only the desired files.

The extracted files are rice-compressed and are read into IDL using the fitsio read image.pro.

(The standard IDL readfits.pro routine should also work with /FPACK keyword set. This

may also require download of the FPACK software8.) The read-in data is automatically

uncompressed by the routine. The headers contain some information about the compressed

data that is unnecessary moving forward. The uncompressed header information is up-

dated and the uncompressed FITS files are saved. Recall that there is no need to run

aia prep.pro because the JSOC export processing option MAPROJ converts the data to

level-1.5 internally.

Figure 2.2 shows the first time step of the log10 data from each wavelength. The CH

boundary is apparent in all four wavelengths as a change in intensity from darker (CH) to

brighter (quiet sun). The intensity change is particularly noticeable in the 193 �A and 211 �A

wavelengths.

8http://heasarc.gsfc.nasa.gov/fitsio/fpack/
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Figure 2.2: SDO/AIA cutout images on Feb. 5 2014 at 8:00 UT (first data time step) in

wavelengths 304 �A (top left), 171 �A (top right), 193 �A (bottom left), 211 �A (bottom right).
The images shown are log10 scale of the data. Both axes have units of pixels. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm.

2.1.3 Histogram Filtering & Combining Wavelength Images

From the uncompressed files, we store each wavelength in separate variables. The filenames

are parsed for hours and minutes. We then match the available times for each wavelength,

discarding any files that do not have data at a given time in all four wavelengths. Looping

through the remaining time steps, we iteratively read in the four wavelength files corre-

sponding to each time step, checking that the data dimensions match. If not, we discard

the data and continue to the next time step. Otherwise, we begin the post-processing
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procedure on the set of images.

First, we perform intensity filtering to improve the contrast in the EUV images. The

intensity thresholds are chosen statistically from histograms of each image’s intensity. For

each wavelength at every time step, we create a histogram of ALOG10(data)9 with a

minimum value of 0 and a maximum value of 10. The bin sizes for each wavelength were

determined by visual scrutiny of a random sample of the histograms for that wavelength.

The bin sizes need not (should not) necessarily be the same for each wavelength. We fit a

Gaussian curve to every histogram and store the coefficients. Note that the Gaussian fit

is also useful for choosing a reasonable bin size for each wavelength. The coefficients are

used to calculate the approximate FWHM of each histogram. From FWHM and Gaussian

coefficients, we then determine the intensity limits for each wavelength, which are adjustable

but should be consistent between the wavelengths. We choose a low intensity limit of low

= center and high intensity limit of high = center + 2∗fwhm, which effectively filters

all the below-average and anomalously high intensities, leaving the CH region well defined.

The histogram plots and fitted Gaussian curves for the first time step of each wavelength

(corresponding to the images in Figure 2.2) are shown in Figure 2.3, along with their defined

intensity boundaries.

After determining the intensity threshold values, we next create BYTSCL() images

of each ALOG10(data) wavelength with max and min values set to the intensity limits

defined above. The filtered data are then summed between all four wavelengths to form

one time step of the combined-wavelength data set. We can check the resulting images to

verify that the CH boundary is clearly defined, and that stray light effects and bright loop

features are minimized. If necessary, the histogram and intensity limit paramaters can be

tweaked until the combined images meet those criteria. The first time step of the resulting

data is shown in Figure 2.4.

9Inherent IDL programs will appear in this style throughout the rest of this section.
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Figure 2.3: Histogram examples corresponding to the SDO/AIA images in Figure 2.2.

Again, the plots are arranged by wavelength: 304 �A (top left), 171 �A (top right), 193 �A
(bottom left), 211 �A (bottom right). The vertical dashed lines indicate the intensity expo-
sure limits. The lower limit is the Gaussian center, or average intensity. The upper limit is
the Gaussian center plus twice the FWHM.
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Figure 2.4: The same images as in Figure 2.2, with the intensity limits from Figure 2.3
applied. Both axes have units of pixels. Recall from Section 2.1.1, 1 AIA cutout pixel =
0.0359◦ ' 0.436 Mm.
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2.1.4 Rotation & Cropping

Using IDL’s ROT() function, rotate the combined image until the linear CH boundary is

aligned to the y-axis. We have chosen a rotation of 20◦ about the center of the image. There

is a rotational “smearing” effect at the corners of the image. This needs to be cropped out

before further steps can be taken. Cropping reduces the amount of useful data so crop as

little of the image as possible while removing the smearing, keeping the image dimensions

square. The first time step of the rotated and cropped data is shown in Figure 2.5.

Figure 2.5: The first time step of combined AIA data, rotated 20◦ and cropped to remove
rotation effects at the edges. The notation x′, y′ is used here to denote rotated coordinates.
For simplicity in the remainder of this dissertation, we revert to the notation x, y for the
rotated coordinates, unless otherwise noted. Both axes have units of pixels. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm.
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The rotational step can be enhanced using the edge detection techniques discussed later

in Section 2.1.6. This would allow for a more quantitative and less arbitrary definition of the

rotation angle. For now, the rotation parameter visually aligns the boundary approximately

with the y-axis.

We store all time steps of the combination data in a single variable, create the relevant

header information (see Appendix A.2), and save the combined data and metadata in a

FITS file. This data is a visual representation of the working HMI data, after the same

rotational and cropping process is applied.

2.1.5 Reducing to 1D

The entire purpose of rotating and cropping the data is to be able to reduce the data

set down to one dimension, taking advantage of the elongated geometry of the feature.

Reducing the data not only improves the signal-to-noise ratio, but also reduces the number

of cross-correlation calculations necessary to produce a time-distance result by a factor of

n, the size of one dimension. This greatly decreases the amount of time it takes to compute

the time-distance results.

There are two options for reducing the data to 1D. We can either average over the

y-dimension, or sum over the y-dimension. These options only differ by a normalization

factor. In this dissertation we use summations to reduce to 1D, both for the boundary

detections using AIA data discussed here and in the linear time-distance analysis using the

simulated and HMI data (see Section 3.2.3). The result is shown in Figure 2.6.

For the AIA data, a reduction in the time dimension also takes place to further improve

the signal-to-noise ratio, shown in Figure 2.7. The boundary between the CH and quiet

sun regions is apparent as a smooth transition from an integrated intensity of ∼5×106 up

to ∼8×107. The inflection point and 3rd-order critical points of the transition region repre-

sent the center and width of the CH boundary, which we determine in Section 2.1.6 using

edge detection techniques. Again, the reduction is accomplished through a summation, as

opposed to averaging. The temporal reduction is not done in the corresponding HMI data
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analysis.

Figure 2.6: The aligned data, summed over the y-dimension, shows the CH boundary
through time. The time step along the y-axis has units of seconds (dt = 45 s), while the
x-axis has units of pixels. Recall from Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436
Mm.

Summarizing the process so far, we 1) choose an appropriate elongated-CH data set,

2) rotate the images such that the CH boundary is parallel to y-axis (removing rotational

effect around edges), 3) sum the data along the y-dimension, and 4) sum the reduced data

through time. Next we will smooth the 1D data (and its derivatives) along the x-dimension

in order to locate the center and width of the CH boundary.
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Figure 2.7: Additional summing over the time dimension shows a plot through the x-
dimension that displays the transition from the CH region to the quiet sun. The x-axis has
units of pixels. Recall from Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm. The
summed intensity has arbitrary units.

2.1.6 Edge & Width Detection

Savitzky-Golay (SG) smoothing is well-suited for use with data containing a lot of high-

frequency noise; particularly for locating maxima, minima, and inflection points by finding

of zero-point crossings in the data derivatives. This method employs curve-fitting of the

data, which preserves peak heights and widths, instead of finding the maxima of smoothed

data that can distort the shape and/or height of the peak, as with Gaussian fitting. This

is exemplified later in Section 2.1.6.1. We note that while the 1D AIA data in Figure 2.7

does not appear noisy, the subsequent derivatives necessary for our edge-detection technique

are increasingly noisy, as will be seen in Section 2.2. The SG smoothing filter is thus an

important choice for this analysis.

SG smoothing is a convolution method that uses least-squares fitting to fit subsets of

a data series with a low-degree polynomial (Savitzky and Golay, 1964). The convolution
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coefficients are determined by least-squares parameters (Gorry, 1990; Press et al., 1992).

Depending on the coefficients, this method can be used to smooth noisy data or compute

the smoothed derivatives (any order) of the unsmoothed data.

IDL’s SAVGOL() function returns the coefficients corresponding to designated pa-

rameters. The user can define the number of data points on either side of a point to be

considered in the smoothing filter (left and right are defined separately for the option of

asymmetric weighting; we use symmetric weighting and denote this value as σ, in compar-

ison to the standard deviation of a Gaussian filter), the order N of the desired derivative

of some function f (fN(x); N = 0 for no differentiation), and the degree of the desired

polynomial. It is noted in the SAVGOL() documentation that the coefficients returned

for N > 0 are not normalized. A normalization factor must be applied before convolving

the coefficients with the data. This factor is expressed by

norm =
!N
dxN

, (2.1)

where dx is the sampling interval between the data.

2.1.6.1 Example

To initially develop and test an edge detection routine that also detects the width boundaries

of edges, we created an example region with “wide” edges, as shown in Figure 2.8.

To imitate the process we are using on the AIA data, we summed the example data over

the y-dimension. To start, we compare the technical differences between Gaussian and SG

smoothing. Figure 2.9 shows the raw data along with the two smoothing methods applied

to the raw data. The Gaussian smoothing employed has a standard deviation of (σ = 5).

Similarly, the number of points used on either side of the SG smoothing was σ = 5, with

a polynomial of degree = 3. No noise was added to the example data, so there are no

other unwanted high-frequencies to smooth (besides the Gibbs phenomenon at the sharp

boundary edges). Note that both smoothed curves intersect the center of the boundary
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Figure 2.8: An example region with boundary edges of width dx = 3, centered at x = 26
and x = 72. Intensity is indicated by color (grey transitions designate boundary regions).

regions.

To better understand how the choice of parameters affect the SG smoothing, we look at

how adjusting the parameters changes the smoothed curves. Figure 2.10 compares varying

SG parameters with respect to the example data. A higher “sigma” (σ) broadens the

smoothed width. A higher degree increases the overshoot of the smoothed width boundaries

but, as mentioned, this is not highly relevant for this example. We continue with the σ = 5,

degree = 3 case to minimize the smoothed width and for comparison with the similar

Gaussian case.

For reference, we overplot boundary markers for each curve in Figure 2.11. The chosen
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Figure 2.9: Summed data from example region in Figure 2.8 with smoothed curves from
two different smoothing methods: Gaussian (red dashed) and SG (blue dash-dot). The
Gaussian standard deviation is σ = 5 and the number of points used on either side of the
SG fit is also σ = 5 (11 total points, including center). The polynomial degree of the SG is
degree = 3.

boundary points are located where each curve meets the limiting data values (min = 0,

max = 100).

The overplotted 1st-order derivatives of each curve, along with the 0th-order width

boundaries from Figure 2.11, are shown in Figure 2.12. The signal maxima/minima are all

seemingly centered between the summed data boundaries, which is desirable. The deriva-

tive curves intersect on the summed data boundaries, which is also anticipated. The raw

data and Gaussian curves widen beyond their own 0th-order boundaries, while the SG curve
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Figure 2.10: A comparison of varying SG smoothing parameters. The dashed lines corre-
spond to degree = 3 polynomial fits, while dash-dotted lines show degree = 4 polynomial
fits. Each different set of parameters is also represented by different colors.

retains its width. Also, the SG peak height is closer to raw data peak height than the Gaus-

sian peak height. As mentioned in Section 2.1.6, the Gaussian derivative is slightly stunted

and broadened as compared to the SG curve.

The overplotted 2nd-order derivatives of each curve, again with the 0th-order width

boundaries, are shown in Figure 2.13. The data peaks are centered on the summed data

boundaries (as expected). The smoothed peaks are widened, which is expected since the

1st-order fitted curves are wider than the data. The derivative curves all have 0-crossings

centered between the raw data boundaries, which is desirable. All non-zero portions of the

curves remain between the SG width boundaries.

The inflection points are determined based on the location of the 2nd-order 0-crossings,

29



Figure 2.11: Similar to Figure 2.9, but with overplotted boundary markers for each curve.
The boundary locations are chosen at the points where each curve meets the limiting data
values. The inner boundaries, where the curves reach y = 100, are shown with dash-dotted
lines. The outer boundaries, where the curves reach y = 0, are shown with dotted lines.
The summed data curve and boundaries are shown in black. The Gaussian smoothed curve
and boundaries are shown in red. The SG smoothed curve and boundaries are shown in
blue.

detected near the locations of the 1st-order peak maxima and minima. Thresholding is used

to locate the 1st-order peaks. The subset of code used for the detections is shown below.

The Gaussian and SG smoothed curves each find the same inflection point locations, at the

center of the raw data boundary, as shown in Figure 2.14.

th r e sho ld =10.0 ; 1 st−order peak th re sho ld value

out=INTARR( nx ) ; masked output array , i n i t i a l i z e d to 0
; loop through data po in t s
FOR i i =0,n−1 DO BEGIN

; t e s t 1 st−order d e r i v a t i v e magnitude aga in s t th r e sho ld value

IF (ABS( de r iv1 [ i i ] ) GT th r e sho ld ) THEN BEGIN
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Figure 2.12: First-order derivatives of each curve, along with width boundaries from Fig-
ure 2.11. The colors and linestyles correspond to those in Figure 2.11.

; i f above thresho ld , s t o r e cur rent and p r i o r 2nd−order d e r i v a t i v e
va lue s

p i x e l=der iv2 [ i i ]

prevp=der iv2 [ i i −1]
; i f 2nd−order d e r i v a t i v e has 0−c ro s s ing , mark l o c a t i o n in output

array

IF ( p i x e l GT 0) AND ( prevp LE 0) THEN out [ i i −1]=1

IF ( p i x e l LE 0) AND ( prevp GT 0) THEN out [ i i ]=1
ENDIF

ENDFOR
; s t o r e count and l o c a t i o n s o f 0− c r o s s i n g s occu r r ing above th r e sho ld

i n f l e c t i o n=WHERE( out EQ 1 , n i )

The overplotted 3rd-order derivatives of each curve with the 0th-order width boundaries

are shown in Figure 2.15. The detected inflection points are also indicated on the plot. All

of the 3rd-order curves appear to have 0-crossings at the raw data boundaries. The absolute

maximum and minimum locations agree with the detected inflection points. All non-zero
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Figure 2.13: Second-order derivatives of each curve, along with width boundaries from
Figure 2.11. The colors and linestyles correspond to those in Figures 2.11-2.12.

portions of the curves remain between SG width boundaries.

Similar to the inflection point detections, the width boundaries are determined based

on the locations of 3rd-order 0-crossings detected near the locations of the 2nd-order peak

maxima and minima. Again, thresholding was used to locate the peaks. The subset of code

used for the detections is shown below. The Gaussian and SG smoothed curves find the

same width boundary locations, at edges of data boundary widths, as shown in Figure 2.16.

th r e sho ld =1.0 ; 2nd−order peak th re sho ld value

out=INTARR(nx−1) ; masked output array , i n i t i a l i z e d to 0
; loop through data po in t s
FOR i i =1,n−1 DO BEGIN

; t e s t 2nd−order d e r i v a t i v e magnitude aga in s t th r e sho ld value

IF (ABS( de r iv2 [ i i ] ) GT th r e sho ld ) THEN BEGIN
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Figure 2.14: Raw and smoothed example curves with detected inflection points from both
smoothed cases. Both curves produce inflection points at the same locations, which are also
the centers of the width regions and where both smoothed curves cross the raw data curve.
The red dotted lines represent the inflection point locations determined from the Gaussian
smoothed curve. The blue dashed lines represent the inflection point locations determined
from the Savitky-Golay smoothed curve.

; i f above thresho ld , s t o r e cur rent and p r i o r 3rd−order d e r i v a t i v e
va lue s

p i x e l=der iv3 [ i i ]

prevp=der iv3 [ i i −1]
; check s i gn o f 1 st−order d e r i v a t i v e at cur r ent l o c a t i o n

s=SIGN(1 , de r iv1 [ i i ] )
; i f 3rd−order d e r i v a t i v e has 0−c ro s s ing , mark l o c a t i o n in output

array , depending on correspond ing 1 st−order s i gn

IF ( p i x e l GT 0) AND ( prevp LE 0) THEN BEGIN

IF ( s GT 0) THEN out [ i i −1]=1 ELSE out [ i i ]=1
ENDIF

IF ( p i x e l LE 0) AND ( prevp GT 0) THEN BEGIN

IF ( s GT 0) THEN out [ i i ]=1 ELSE out [ i i −1]=1
ENDIF
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Figure 2.15: Third-order derivatives of each curve, along with width boundaries from Fig-
ure 2.11. The colors and linestyles correspond to those in Figures 2.11-2.13. The detected
inflection points are represented as vertical black dashed lines.

ENDIF
ENDFOR
; s t o r e count and l o c a t i o n s o f 0− c r o s s i n g s occu r r ing above th r e sho ld

width=WHERE( out EQ 1 , nw)

The 2D example boundary region with detected inflection point and width boundary

locations is shown in Figure 2.17. The technique developed with this simple example accu-

rately detects the boundary center and edges. The choice of smoothing is clearly not too

important here since both methods give the same edge/width results. However, as discussed

in Section 2.1.6, SG is better a method for noisy data, like the AIA data derivatives (see

Section 2.2). We apply the same SG method to the summed AIA data of Figure 2.7 in next

section.
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To briefly summarize the process outlined above, we first compute the smoothed deriva-

tives (up to 3rd-order) of a 1D data set. The peaks of the smoothed 1st-order derivative

correspond to the inflection points of the original data. We isolate the local region around

a 1st-order maximum/minimum and then determine the precise location of the peak (inflec-

tion point), which corresponds to the 0-crossing point in the 2nd-order derivative. Similarly,

the inflection points on either side of the 1st derivative peak are located by isolating the

maxima/minima of the corresponding 2nd-order curve and the related 3rd-order 0-crossings.

These secondary inflection points constitute a bounded interval within which the central

peak exists.
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Figure 2.16: Raw and smoothed example curves with detected inflection points and width
boundaries from both smoothed cases. Both curves produce width boundaries at the same
locations, which also correspond to the boundary edges from the summed data curve. The
black dashed lines represent the detected inflection points. The red dashed lines represent
the width boundary locations determined from the Gaussian smoothed curve. The blue
dotted lines represent the width boundary locations determined from the Savitky-Golay
smoothed curve.
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Figure 2.17: The 2D example boundary region with the detected inflection points (solid
red lines) and detected boundary widths (dashed red lines). Intensity is indicated by the
background color.
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2.2 Results

Recall the image-processing procedure so far. Having chosen an appropriate elongated-CH

data set, we rotated the multi-wavelength images such that the CH boundary is parallel

to y-axis, removing the rotational effects around edges. We then summed the data along

the y-dimension (axis-of-symmetry), and similarly summed the reduced data through time.

Now we need to locate the center and width of the CH boundary.

Using the edge detection technique from Section 2.1.6.1, we want to determine the CH

boundary’s center and edges from the AIA data. These locations will be used later in the

HMI data analysis. Since the AIA data has high-frequency noise, we use SG smoothing, as

discussed in Section 2.1.6. To determine the best possible set of parameters for smoothing

and the boundary detection algorithm, we first try various combinations of parameters

and compare their detection results. Tables 2.1-2.3 show and discuss the different sets of

parameters and their results when applied to the data.

For all of the calculations henceforth, we set parameter dx = 1.0 since the sample

spacing of the data is 1 pixel. (We note that we tried setting this value to the physical data

spacing in Mm, dx =
(

0.0359deg
pix

)(
12.15Mm

deg

)
= 0.436, but the resulting smoothed curve

fit the data poorly.) It is also apparent from Table 2.1 that the Mm spacing consistently

detects multiple inflection points as well. Table 2.1 also shows that degree = 4 is generally

more sensitive to nw and incidentally, it also produces a curve that better fits the data than

degree = 3. Therefore going forward, we select degree = 4 to improve the sensitivity of the

width detection.

We investigate the result dependence on threshold variability in Table 2.2. Recall from

Section 2.1.6.1 that the inflection point is dependent on the t1 parameter, while the width

detections are dependent on t2.

For the sake of having some definable criteria moving forward, we will choose the σ and

thresholding parameters that give results that best fit the following rules:

1. Only one inflection point is detected,
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Table 2.1: Savitzky-Golay data results to help find “the sweet spot” for smoothing and
determining an error estimate in edge location and width. Code uses IDL’s SAVGOL()
function where σ = nleft = nright is the integer specifying the number of data points on
either side of each point to include in the curve-fit, degree specifies the degree of smoothing
of the polynomial, and dx is the sampling interval between data points. The variables t1
and t2 are the threshold values used to determine the inflection point and width locations,
respectively. The inflection point location and width boundaries are detected using the
specified parameters. The number of width detections is recorded as nw. Note that the
widths declared here are those closest to the inflection point on either side. All locations
are in AIA pixel units.

σ degree dx t1 t2 inflection point left width right width nw

10
3

1.0
1E6 2E4

370 366 377 39

0.436 370*4 366 377 64

4
1.0

1E6 2E4
371 366 377 49

0.436 371*6 366 377 62

15
3

1.0
1E6 2E4

368 362 378 22

0.436 368*3 362 378 45

4
1.0

1E6 2E4
371 362 378 33

0.436 371*3 362 378 46

20
3

1.0
1E6 2E4

367 322 379 13

0.436 367*2 359 379 31

4
1.0

1E6 2E4
369 359 379 25

0.436 369*2 359 379 38
*n Routine detected n > 1 inflection point edges.

2. The detected width is symmetric about the detected inflection point,

3. The detected inflection point is the also the approximate average inflection point from

all tested cases,

4. If Criteria 1-3 are satisfied for multiple sets of parameters, choose the case with the

widest width (it is better to overestimate the width than underestimate it).

From Table 2.2, it is apparent that σ = 20, 25 best conform to our stated criteria. We

select the thresholding parameters t1 = 1E6 and t2 = 2E4. We note that our choice of

the t1 parameter is somewhat arbitrary between the two mid-values because they both

produce the same inflection point within each case of σ. We discard the lowest and highest

values because they either detect too many inflection points or not enough (Criterion 1).
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Table 2.2: Savitzky-Golay data results to help find “the sweet spot” for smoothing and
determining an error estimate in edge location and width. Code uses IDL’s SAVGOL()
function where σ = nleft = nright is the integer specifying the number of data points on
either side of each point to include in the curve-fit. We choose polynomial degree = 4, and
sampling interval dx = 1.0 pixel. The variables t1 and t2 are the threshold values used
to determine the inflection point and width locations, respectively. The inflection point
location and width boundaries are detected using the specified parameters. The number of
width detections is recorded as nw. Note that the widths declared here are those closest to
the inflection point on either side. All locations are in AIA pixel units.

σ t1 t2 inflection point left width right width nw

10

8E5 1.5E4 371*4 366 377 50
1E6 2E4 371 366 377 49

1.2E6 2.5E4 371 366 377 45
1.4E6 3E4 371 366 377 37

15

8E5 1.5E4 371*2 362 378 38
1E6 2E4 371 362 378 33

1.2E6 2.5E4 371 362 378 28
1.4E6 3E4 — 362 378 26

20

8E5 1.5E4 369 359 379 32
1E6 2E4 369 359 379 25

1.2E6 2.5E4 369 359 379 22
1.4E6 3E4 — 359 379 19

25

8E5 1.5E4 368 355 381 24
1E6 2E4 368 355 381 22

1.2E6 2.5E4 368 355 381 19
1.4E6 3E4 — 31 381 11

*n Routine detected n > 1 inflection point edges.

Similarly, our choice of t2 is somewhat arbitrary between the lowest three values tested since

all produce the same boundary limits within each case of sigma. We discard the higher

value because it returns an inconsistent lower boundary limit result with higher σ.

To narrow down the “sweet spot”, we look in finer detail at values between 15 < σ ≤ 30

in Table 2.3. The average inflection point is approximately between x = 368 and 369. The

width is not as clear cut and depends mainly on the number of points considered in the fit.

All the cases of σ in Table 2.3 fulfill Criterion 1. Cases σ = 19, 21, 22, 23, 26, 27 are ruled

out by Criterion 2; cases σ = 16, 17, 18, 28, 29, 30 are ruled out by Criterion 3. We choose

the σ = 25 case as our ultimate parameter selection because the symmetric boundary is

wider than in the σ = 20, 24 cases (Criterion 4).
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Table 2.3: Savitzky-Golay data results to help find “the sweet spot” for smoothing and
determining an error estimate in edge location and width. Code uses IDL’s SAVGOL()
function where σ = nleft = nright is the integer specifying the number of data points on
either side of each point to include in the curve-fit. We choose polynomial degree = 4,
and sampling interval dx = 1.0 pixel. The threshold variables that determine the inflection
point and width locations, respectively, are taken to be t1 = 1E6 and t2 = 2E4. The
inflection point location and width boundaries are detected using the specified parameters.
The number of width detections is recorded as nw. Note that the widths declared here are
those closest to the inflection point on either side. Bold red values indicate where one of
the listed criteria are not met, therefore ruling out that row of parameters. All locations
are in AIA pixel units.

σ inflection point left width right width nw

16 370 361 378 29

17 370 361 379 30

18 370 360 379 29

19 369 360 379 29

20 369 359 379 25

21 369 358 379 23

22 369 357 379 22

23 368 357 380 21

24 368 356 380 21

25 368 355 381 22

26 368 354 381 20

27 368 353 382 19

28 367 352 382 18

29 367 351 383 15

30 367 350 384 15
*n Routine detected n > 1 inflection point edges.

The AIA data plots produced using the final parameter selection are shown in Fig-

ures 2.18-2.21. Each plot shows the detected inflection point and all detected width bound-

aries. Note again that only the width boundaries closest to either side of the inflection point

are taken as the boundaries of interest. Figure 2.18 shows the data from Figure 2.7, plotted

with the 0th-order SG-smoothed curve. The smoothed curve is a good representation of the

data. The higher-order SG-smoothed curves are increasingly useful as the raw data deriva-

tives become progressively noisier. The inflection line intersects the peak of the 1st-order

SG derivative in Figure 2.19, the apparent 0-crossing location of the 2nd-order SG derivative
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Figure 2.18: 0th-order summed AIA data (black) with the overplotted SG smoothed curve
(cyan). The detected inflection point (solid red) and detected boundary widths (red dashed)
are also shown. The smoothing parameters are σ = 25 and degree = 4. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm. The summed intensity has
arbitrary units.

in Figure 2.20, and the local minimum of the 3rd-order SG derivative in Figure 2.21. The

width lines (including those that we will neglect) intersect the local minima and maxima

of the 2nd-order SG derivative in Figure 2.20, and the apparent 0-crossing locations of the

3rd-order SG derivative in Figure 2.21.

In summary, we will use a central edge location of x = 368, a lower width boundary

location of x = 355, and an upper width boundary of x = 381. These pixel positions

are converted into Heliographic Carrington coordinates using the SSW WCS routines in

IDL, and then mapped onto the corresponding HMI data. This process will be discussed

later when we consider the HMI analysis in Chapter 5; however, it involves WCS routines

outlined in Appendix A.1.
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Figure 2.19: 1st-order summed AIA data (black) with the overplotted SG smoothed curve
(cyan). The detected inflection point (solid red) and detected boundary widths (red dashed)
are also shown. The smoothing parameters are σ = 25 and degree = 4. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm. The summed intensity has
arbitrary units.
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Figure 2.20: 2nd-order summed AIA data (black) with the overplotted SG smoothed curve
(cyan). The detected inflection point (solid red) and detected boundary widths (red dashed)
are also shown. The smoothing parameters are σ = 25 and degree = 4. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm. The summed intensity has
arbitrary units.
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Figure 2.21: 3rd-order summed AIA data (black) with the overplotted SG smoothed curve
(cyan). The detected inflection point (solid red) and detected boundary widths (red dashed)
are also shown. The smoothing parameters are σ = 25 and degree = 4. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm. The summed intensity has
arbitrary units.
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2.3 Previous Work on Coronal Holes

Our previous research similarly studied CHs in EUV wavelengths, using SOHO/EIT data.

Here we summarize the method and results that were published in Kirk et al. (2009) and

Hess Webber et al. (2014). As mentioned in Chapter 1, the evolution of CHs through the

solar cycle is important in terms of understanding the solar dynamo. We specifically tracked

the boundaries of PCHs using a new feature tracking technique, dubbed perimeter tracing,

that measures the polar hole perimeters by detecting the limb boundaries throughout a

polar rotation. We then used the traced perimeter to estimate the PCH areas through

time. Our goal was to determine whether the polar holes could be used as proxies for

the open polar magnetic field, which then might be useful for predicting the level of solar

activity in the subsequent solar cycle. In this section, we provide a brief review of this prior

work and its results. We hereafter refer to Kirk et al. (2009) as Paper I and Hess Webber

et al. (2014) as Paper II.

Paper I is mainly devoted to the details of the perimeter tracing method, although some

initial results are also discussed. Paper II presents a few minor adjustments to the method

in Paper I, but is mostly dedicated to the results of an expanded data set, as well as the

development and results from a second supplemental PCH area measurement method. In

both papers, we use data from three EIT wavelengths for the analysis: 304 �A, 171 �A, and

195 �A. This set of wavelengths allows us to explore the PCH boundaries at varying scale

heights/temperatures, the highest of which is between ∼60 Mm and ∼190 Mm above the

photosphere (Fe XII 195 �A); the lowest, between ∼3 Mm and ∼60 Mm (He II 304 �A).

There are benefits and disadvantages to using any of these wavelengths. Small scale heights

obscure the polar limb less than large scale heights (Figure 2 in Paper I); however, the

contrast is similar between the CHs and general corrugations in the chromospheric line,

which makes the boundary detections more difficult than in the high contrast coronal lines

(Figure 3 in Paper I). Using the collection of all three wavelengths allows us to compare and

confirm the results of any one data set. Paper II also uses synoptic-map data from both
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SOHO/EIT (same three wavelengths) and SOHO/Michelson Doppler Imager (MDI).

As stated above, we detect the PCH limb boundaries through a rotation. However, the

differential rotation of the Sun means that using the Carrington rotation rate at the poles

would be inaccurate. Therefore, it is necessary to first define a standard rotation rate for

the polar holes. We determined that the approximate rate of rotation was 33 days, and

labeled this as the Harvey Rotation rate (in honor of the late Karen Harvey who was a

pioneer in CH research). We also defined a Harvey Rotation number (HR) as

HR =
JD − 2415024.5

33
, (2.2)

where JD is the Julian day, and HR 0 began on Jan 4, 1900.

The detection method begins with some image processing of the data. First, it is

calibrated using the SSW routine eit prep.pro. The images are then spatially smoothed using

a combination of morphological image analysis (MIA) functions (see Paper I, Section 3.2 for

more details). The effect is to (1) smooth out regions that are too small to be part of the

PCH, and (2) group small, closely-spaced regions of similar intensity into the larger PCH

region. These manipulations are important for removing bright points occurring within

the holes, which can potentially divert the boundary detections. They are also helpful in

smoothing out the corrugation and intermittent spicule structures in the 304 �A data.

Choosing intensity thresholds for the various wavelengths is the next step. Because

the Sun’s intensity fluctuates throughout the solar cycle, explicit intensity values for each

wavelength are unreliable since the maximum intensity at one time in the cycle could be the

minimum intensity at another time. Instead, we use normalized histograms of intensity for

each smoothed image. Distinct intensity threshold levels are chosen for each wavelength.

For example, for 171 �A images, the threshold might be the intensity bin with a value

of 0.70; in other words, where 30% of the pixels in the image are darker than that bin.

The threshold level for 304 �A images is lower because of their lower contrast, mentioned

above. The particular threshold values are chosen so as to best reflect the visible PCH limb
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boundaries throughout the solar cycle. (The threshold levels differ slightly between Paper I

and Paper II, in a quest for improved detection accuracy.) We then create binary images

using the intensity thresholds.

From the binary data, we isolate the solar limb by masking most of the disk and corona,

so that only an annulus containing the limb remains. The annulus has a width of about 6%

of the solar radius. We also mask up to latitudes of ±60◦ (changed to ±50◦ in Paper II) to

isolate the polar regions. From here, the PCH boundaries are apparent around the limb.

See Figure 4 in Paper I for an illustration of the steps in our detection process.

After the PCH boundaries are detected, their locations are converted into heliographic

coordinates and subsequently to HR coordinates (where the central meridian of the disk is

taken to be 0◦ longitude at the start of each rotation). We can then plot the locations on

a polar map for each HR (Figure 5 in Paper I).

We also compute the “quality” of the measurements. This value is the ratio between the

number of pixels within the binary limb that qualify as part of the PCH (where the binary

pixels are 0) and the total number of pixels between the detected limb boundaries. If the

PCH is poorly defined, the quality will be low. Any measurement with a quality under 15%

is discarded to help guard against false positives.

In Paper II, we incorporate additional false positive filters. The detection-confidence

(DC) factor is very similar to the quality calculation. Having already removed detections

with low measurement quality, we take the ratio of the total number of PCH pixels around

the limb with the total number of points above the limiting polar latitude. This is a measure

of the likelihood that a detection confines a PCH. If the boundary detections are close

together, then there are few potential PCH pixels in that pole and the probability that a

PCH actually exists between the boundaries is low, prompting a low DC factor. DC does not

indicate anything about the accuracy of the detections, but solar cycle trends are apparent

in the DC factor. Particularly, it is significantly lower during maximum than through the

rest of the cycle, when it ranges between about 0.4-1.0. This result lead us to implement a

filter that weights the boundary fit of the detected points based on their DC factors, and to
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disregard points with DC factors less than 0.4. We also reduce false positive detections do

to absorption features, such as filaments, that pass through the other filters. They appear

on the polar plots as smooth curves with consistently close-set latitudinal coordinates.

The filter implemented to remove the absorption features exploits this smooth, clustered

curvature by setting a lower-limit on the difference between the latitudinal coordinates of

consecutively detected points. This filter is effective because the latitudes of detected PCH

boundaries fluctuate more over time than do filaments rotating across the solar limb. Again,

any data that did not meet the threshold criteria were discarded.

To calculate an area from the perimeter results, we first combine the east and west

limb detections from each PCH, and then fit the combined data from one HR with a line

of best fit. Combining the limb measurements increases the sample size for the fitting.

This step is somewhat trivial since we are working in our defined HR coordinate system,

so the coordinates for either edge of a PCH can simply be concatenated into a single array.

We also apply another filter to guard against under-sampling. The filter throws out any

rotation where more than half of the measured points are missing (due to the quality, DC,

or absorption filters).

The array of detected points is now translated such that its “center-of-mass” is the

origin of the coordinate grid. Doing so helps prevent unrealistic fits of the data. The

measurements are then fitted using a non-linear least squares fitting routine with a Fourier

cosine series in longitude

f(φ) = ℵ0 +

Nmax∑
n=0

ℵ2n−1 cos(nφ+ ℵ2n), (2.3)

where ℵ are the Fourier coefficients and Nmax varies between two and seven to generate

multiple candidate fits. Candidate fits must conform to certain criteria in order to be

accepted as reasonable representations of the PCH, e.g., the fitted line cannot extend below

45◦ latitude. Again, for more details see Paper I. For all the remaining fits, we calculate
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the area within the fitted curves by integrating over the Fourier cosine function. We then

take an average of each of those areas, and accept it as the approximate area of the PCH

for the HR.

Confidence measurements of the fits are determined by estimating the uncertainties of

the fit parameters. We calculate the variances of each parameter from their squared partial

derivatives of Equation 2.3. These variances allow us to resolve a one-sigma confidence range

for each fit parameter. We then add/subtract one sigma to/from each of the parameters

and use the subsequent fits to calculate a maximum/minimum area limits, using the same

method described above, and again take an average of max and min areas to produce a

one-sigma range about the line-of-best-fit average area.

The results of Paper I study the PCHs from the beginning of the SOHO/EIT data, up

through mid-2007, spanning solar cycle 23. As expected, both PCHs show a decline into

solar maximum and restoration into solar minimum. The northern PCH disappears at the

end of 1999, coming back late in 2000. The southern PCH is delayed, disappearing in mid-

2000 and returning around the start of 2002. The asymmetry between the northern and

southern PCHs is consistent with the now widely studied hemispheric asymmetry prevailing

through solar cycle 24.

The area results are also compared to those of Harvey and Recely (2002), who studied

the PCH area between the middle of solar cycle 22 and the middle of solar cycle 23, using

He I 10830 �A. Our results agree with theirs in terms of the time-evolution of the holes

through the solar cycle. The northern hole disappears in mid-1999 and reemerges in early

2001; the southern hole disappears in mid-2000 but their study ends prior to its reappear-

ance. The results differ in the measured magnitudes of the PCH areas. After recovering

from the solar cycle 23 maximum, Harvey and Recely measure the northern PCH area to

be ∼37% larger than our measurement. Around the minimum between solar cycles 22 and

23, they measure a northern PCH to be almost twice as large as our measurement.

The Paper I areas are also compared to measurements of the polar magnetic field from

the Wilcox Solar Observatory (WSO). The unsigned polar magnetic field was about 40%
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weaker at the end of our study (near solar minimum) than it was in the previous cycle

minimum. Because CHs are representative of regions with concentrated open magnetic

field lines, one might reason that the polar holes should reflect the decrease in the polar

magnetic field strength between solar minima. However, our observations show that the

total PCH area in the cycle 23/24 minimum was only ∼15% smaller than in the previous

minimum. We conclude that this inconsistency suggests the PCHs are influenced more by

dynamics, such as flux transport and meridional flow, than magnetic field strength.

We now discuss the results of Paper II. Recall that we use the perimeter tracing method,

along with an EIT synoptic method and an MDI synoptic method. We will not go into detail

about the two new synoptic methods, but encourage readers to explore those procedures

in the paper. However, the results presented here are supported by all three methods, and

this research has been extended using the synoptic methods on SDO/AIA and HMI data

by Karna, Hess Webber, and Pesnell (2014).

Paper II expands the time-series of Paper I through the end of 2010, at which point the

available SOHO data becomes too few per day to accurately measure PCH areas. Before

proceeding, we note that we are explicitly not comparing PCH area values between the

widely accepted times of the solar cycle minima derived from the monthly averaged sunspot

numbers. Instead, we make the more fundamental comparisons of 1) the maximum PCH

areas in either hemisphere between solar cycle minima, and 2) the temporal displacement

of the area peaks between hemispheres. The SOHO data set does not cover the entire cycle

22/23 minimum. As a consequence of this, we cannot compare the shift in hemispheric area

peaks between solar cycles, and are forced to accept the beginning of the SOHO data series

as the largest PCH areas of the cycle 22/23 minimum.

The first main result of Paper II is that, for both hemispheres during both solar minima,

the maximum PCH areas cover about 6% of the total solar surface. The PCH areas do

not vary significantly between the observed solar cycle minima. Again, these results are

confirmed by all three feature-tracking methods. They also reconfirm our conclusion from

Paper I that the evolution of the PCH areas does not seem to be a good predictor of the
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amount of solar cycle activity expected in the following solar maximum.

We also find that the PCHs in the northern and southern hemispheres do not reach their

maximum areas at the same time, the northern hole achieving its peak almost 4 years before

the southern hole (again, this comparison can only be made for the cycle 23/24 minimum).

This suggests that the two poles reach solar-minimum conditions at distinct times. Similarly,

the northern hole began declining toward solar-maximum conditions in 2010, while the

southern hole had not begun its decent to solar maximum by the end of the available time-

series. At the time, we concluded that this out-of-phase characteristic was suggestive that

the subsequent polarity reversal would also be offset between the hemispheres, which has

turned out to be true (Karna, Hess Webber, and Pesnell, 2014).

Lastly, we note the work done in the Appendix of Paper II, towards understanding and

removing an annual periodicity prevalent the PCH areas. Unfortunately, our efforts were

unable to successfully remove the fluctuations. We finally concluded that the periodicity

stemmed from inherent projections effects within the SOHO ephemeris data and cannot be

fully eliminated from the calculations. However, through these efforts, we gained important

insight for interpreting the area results. We determined that the upper limit of the periodic

data approximates the actual PCH areas better than the average of the signal. We therefore

avoided using averaging techniques to smooth the area data.
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Chapter 3: Wave and Helioseismic Theory

In this chapter, we present details concerning the specific theories involved in this disserta-

tion research. The chapter is divided into two distinct topics. In Section 3.1, we develop

mathematical and conceptual ideas of wave scattering, with some associated mathematical

derivations given in Appendix B. This review is vital for the development of our simula-

tion, which will be discussed later in Chapter 4. The second theory presented in Section 3.2

concerns TD helioseismology, including the general analysis method and the specifics of our

new technique. Appendix C contains some supplementary material for this section. The

TD theory discussion in Section 3.2 and Appendix C is a description of the process we use

to analyze both the simulated and solar data sets.

3.1 Wave and Scattering Theory

The following explanation of the plane wave and scattering equations is primarily attributed

to Morse and Feschbach (1953, Ch. 9.3, Ch. 11) and Morse and Ingard (1986). A more in-

depth discussion in terms of solar physics can be found in Yang et al. (2012).

The solution to the total, time-dependent wave equation Ψ can be written in cylindrical

coordinates r, ϕ, z as

Ψ = ψ(r, ϕ, z)e−iωt (3.1)

where the spatial wavefunction ψ is a solution to the Helmholtz equation (see Equation B.1).

The time-dependent exponential term is related to the angular wave frequency ω, which we

define by the f -mode dispersion relation in Equation 1.1.
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In Appendix B.1, we share an in-depth derivation of the expanded plane wave wave-

function, ψp, for f -modes in cylindrical coordinates

ψp(r, ϕ, z) = Aeikr cos(ϕ) = A
∞∑
m=0

εmi
mJm(kr) cos(mϕ). (3.2)

We use this expanded form to further derive the scattered plane wave expansion ψs off a

cylinder aligned along the z-axis, which is detailed in Appendix B.2.

An overview of single-source scattering is discussed below in Section 3.1.1, including the

mathematical formalism for a non-scatterer-centric system. This discussion is generalized

to an N -scatterer system in Section 3.1.2, including single (each scatterer is unaware of

its neighbors) and multiple (scattered waves are “re-scattered” by neighbors) scattering

regimes. We are specifically interested in multiple-source scattering in this dissertation

because elongated scattering sources can be represented by integrating over an array of

discrete scatterers (see Section 3.2.3).

3.1.1 Single Scattering Source

The total time-independent wavefunction ψ is equivalent to the sum of the incident wave-

function ψi and resulting scattered wavefunction ψs. Figure 3.1 illustrates scattering of

an incident plane wave off of a cylindrical scatterer, oriented along the z-axis. Since the

incident wave is a plane wave, then by Equation 3.2, the incident wavefunction at some

arbitrary point is

ψi = eiki·r = eikr·α̂ = eikr cosϕ. (3.3)

The incident wave vector is denoted as ki = kα̂ = k[cosφi, sinφi] with magnitude |ki| =

k = 2π/λ, where λ is the wavelength. The incident angle of the incoming wave with respect

to the +x-axis through the origin is given by φi. The position vector of the observation

with respect to the origin is r = rr̂ = r[cosφr, sinφr], where φr is the angular position with

respect to the +x-axis. We define the angle ϕ = φi− φr, for simplicity. Note the use of the
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trigonometric angle sum identity cos(α± β) = cosα cosβ ∓ sinα sinβ.

ki

ψi

ψs

Figure 3.1: Scattering of an incident plane wave off of a point source scatterer; displaying
only the scattered wave (left), and the total (incident + scattered) wave (right). Only the
m = 0 mode is shown for l = 600. The dashed line indicates a single wavefront of the
incident plane wave ψi. Note that the incident wave vector ki is normal to this wavefront.
The resultant scattered wave ψs is radially symmetric about the point source in the far-field,
as shown by the dotted line wavefront. The amplitudes shown here are normalized to the
largest absolute value result from the total wave equation. This image was created using
the cyl wav.pro code, discussed in Section 4.1.

In the limit of r → ∞, the scattered wave satisfies the boundary conditions of a wave

diverging from a point source in the scattering region (see Appendix B.2). This bound-

ary condition applies whether the scattering region is actually a point source or not. In

cylindrical coordinates, this condition requires that

ψs → f(ϕ)
eikr√
r

; r →∞, (3.4)

which is only dependent on two dimensions (Morse and Feschbach, 1953, p. 1065, Eq. 9.3.3).
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The function f is called the scattering amplitude or angular distribution function. It is one

dimensional since the only angular dimension is azimuthal.

In the far-field regime, the scattering amplitude is given by

f(ϕ) = f(α̂, r̂) = A

√
2

πk
e−ika

∞∑
m=0

εmi
m−1 sin

(
δ′m
)

cos(mϕ), (3.5)

where m is the azimuthal order, εm is the Neumann factor, a is the radius of the scattering

cylinder, A is an arbitrary amplitude, and δ′m are the derivatives of the related phase angles

for the cylindrical Bessel functions (Morse and Feschbach, 1953, Ch. 11). See Appendix B.2

for an extensive derivation of this equation.

Shifting a Single Scatterer Away from the Origin

Consider an observation point P at rp = rpr̂p = rp[cosφp, sinφp]. As discussed above,

in the limit as rp → ∞, the scattered wave equation ψs of an incident plane wave from a

single scatterer S1 at the origin must look like

ψs ⇒
f(α̂, r̂p)√

rp
eikrp . (3.6)

If the scatterer is moved to some position b1 = b1b̂1 away from the origin, where b̂1 =

[cosφb1 , sinφb1 ], then r1 = rp − b1 is the new position vector from S1 to P (as shown in

Figure 3.2).

With respect to the scattering point, the scattered wave equation becomes

ψs =
f(α̂, r̂1)
√
r1

eikr1eikb1·α̂. (3.7)

Note that as b1 −→ 0, r1 −→ rp and this equation reduces to Equation 3.6, as expected.

Furthermore, if we shift our working coordinate space and reconsider S1 to be the “new
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Figure 3.2: A single scatterer S1 is shifted off the origin to a position b1 = [b1x, b1y] =

b1[cosφb1 , sinφb1 ] (the red vector). The observation point P is located at rp = [rpx, rpy] =

rp[cosφp, sinφp] with respect to the origin (the blue vector). The position of P with respect

to S1 is r1 = rp − b1 = [rpx − b1x, rpy − b1y] (the purple vector). The distance between P

and S1 is therefore |r1| = r1 =
√

(rpx − b1x)2 + (rpy − b1y)2.

origin,” then the only difference between Equation 3.7 and Equation 3.6 is the exponential

term dependent on b1. This indicates that the only physical change made by moving the

scatterer is a phase-shift!

With an understanding of the basic principles for scattering by a single point, we move

on to discuss scattering when more than one scattering source is present.

3.1.2 Multiple Scattering Sources

We now consider the effects of wave scattering from more than one scatterer. Multiple scat-

tering sources lead to wave interactions between the incident wave and all of the scattered
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waves produced by individual scattering sources. A simple example of this is the double-

slit experiment for light waves. The same general principle applies to acoustic and gravity

waves.

If the scattering cross-section of each scatterer is smaller than the distance to its neigh-

bors, then each scatterer behaves as though its neighbors do not exist, e.g. as a single

point scatterer. This is commonly referred to as single scattering (not to be confused with

scattering by a single source, discussed in Section 3.1.1). If the scattering cross-sections are

large enough to influence the neighboring scattering points, each scatterer then “notices”

the others. In this case, the total scattering is complicated by the interaction between the

original scattered wave from each point and the “re-scattered” wave by the neighboring

points. This is called multiple scattering.

Additionally, there is differentiation between dependent and independent scattering.

Dependent scattering occurs when there are systematic phase relations between scatterers,

which leads to strong constructive and destructive interference in the scattered waves, par-

ticularly in the direction of the incident wave. This is also referred to as coherent scattering.

Independent scattering, also known as incoherent scattering, is therefore scattering without

any systematic phase relationship between the scatterers. This assumption can be made if

the scattering points are sufficiently far away from one another. It has been shown that

a “sufficient” separation between scatterer centers is a distance of at least three times the

scatterers’ radius (being identical in size) (van de Hulst, 1957). Incoherent scattering is

weaker than coherent scattering. However, it is still non-zero and is important when ob-

serving the results of well-spaced single scattering, or when the observation is made off-axis

to the incident wave.

In this dissertation, we focus on coherent, single scattering. In practice, our exploitation

of the system geometry (see Section 3.2.3) drowns out any weaker incoherent or multiple

scattering signal. However, we include these concepts in our review to better understand the

overall theory, and why it is reasonable to neglect them. In Section 3.1.2.1, we discuss the

basic theory of single multi-source scattering and review the mathematical formulation of
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coherent versus incoherent scattering. We then briefly overview the more complex multiple

scattering in Section 3.1.2.2. For further details on the differences between dependent and

independent scattering, as well as single versus multiple scattering, see Martin (2006, p.1-2).

3.1.2.1 Single Scattering

Suppose an arbitrary observation point P is located in the far-field at rp = [r, φp] with

respect to the origin. Similarly, there is a row of N cylindrical scattering points, each

located at bn from the origin in the same z-plane as P , where n = 1, 2, . . . , N . We define

γn to be the angle between rp and bn. Let rn = [rn, φn] denote the distance vector from

each scatterer to P . A plane wave, described by Equation 3.3, is incident on the scatterers

with zero phase shift at the origin. Figure 3.3 shows a simple schematic of this situation

for N = 2 scattering points.

Assume the scattering points are far enough apart that near-field interactions can be

neglected. Combining Equations 3.5 and 3.7, and summing over the N points, we find the

total scattered wave at P is

ψs =
N∑
n=1

f(ϕn)
√
rn

ei(ki·bn+krn). (3.8)

For clarity of notation, we define kn to be the scattered wave vector from the nth scatterer

(recall, |ki| = |kn| = k); ϕn is the angle between kn and ki, referred to as the scattering

angle. The first term in the exponent is the incident plane wave response at the nth scatterer.

The second exponential term describes the resultant scattered wave in the direction from

bn toward P (kn · rn = krn).

If the location of P is sufficiently far from the region containing the scattering points

(rp >> bn), then 1√
rn
∼ 1√

r
, and the law of cosines, r2

n = r2 + b2n − 2rbn cos γn, can be
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Figure 3.3: A simple plane wave ψi scattering off of two points located at b1 and b2.
The total scattered wave is observed at point P some distance rp = [r, φp] from the origin

O. With respect to the two scatterers, P is located at r1 = [r1, φ1] and r2 = [r2, φ2],
respectively. The incident wave vector ki = [k, φi] and the scattered wave vectors kn have
the same magnitude, k, as does the wave vector from the origin in the the direction of
P , kp. The scattered waves are circular, but only the waves in the direction of P are of
interest. The angles between the incident and the scattered wave vectors are ϕn = φi − φn
(not shown for clarity). γn denote the angles between rp and bn (rp · bn = rbn cos γn; in

this depiction, γ2 ≡ φp). Note, P is assumed to be in the same z-plane as ψi and the two
scatterers.

applied with the 1st-order binomial approximation to simplify Equation 3.8:

ψs ⇒
f(ϕ)√
r

N∑
n=1

e
i
[
ki·bn+k

√
r2+b2n−2rbn cos γn

]

⇒ f(ϕ)√
r

N∑
n=1

e
i

[
ki·bn+kr

√
1+��

�( bnr )
2−2 bn

r
cos γn

]
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⇒ f(ϕ)√
r

N∑
n=1

ei[ki·bn+kr(1− bn
r

cos γn)]

⇒ f(ϕ)√
r

N∑
n=1

ei[ki·bn+kr−kbn cos γn]

⇒ f(ϕ)
eikr√
r

N∑
n=1

ei[ki·bn−kp·bn]

ψs ' f(ϕ)
eikr√
r

N∑
n=1

eiµ·bn (3.9)

where µ = ki−kp and µ = |ki−kp| =
√

k2
i + k2

p − 2|ki||kp| cos(φi − φp) =
√

2k2 (1− cosϕ) =√
4k2 sin2

(ϕ
2

)
= 2k sin

(ϕ
2

)
, with ϕ = φi−φp being the angle between ki and kp. (Note that

we intentionally define all angles with respect to the x-axis as φ and all difference angles

between vectors as ϕ.)

Equation 3.9 shows that in the far-field regime, the scattered wave field from multiple

scatterers can be expressed simply as the far-field single-scatterer solution multiplied by a

factor of the sum of the phase shifts contributed by each scatterer.

Scattering by a Row of N Equally-Spaced Scatterers

Consider a line of N scatterers, evenly distributed with spacing d < D along −D/2 ≤ x ≤

D/2 on the x-axis. Assuming the x-coordinate of the first scatterer is x1, the x-coordinate

for any of the scatterers can be written as xn = x1 + (n− 1)d where n = 1, 2, · · · , N . Since

the scatterers are positioned on the x-axis, bn = xnx̂ (y = z = 0). For simplicity, let us

assume that µ = µx̂ as well (in other words, φi = 180◦ − φp ⇒ ϕ = 2φi − 180◦, or φi and

φp must be reflected in π). Therefore, from Equation 3.9,

ψs = f(ϕ)
eikr√
r

N∑
n=1

eiµxn
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= f(ϕ)
eikr√
r

N∑
n=1

eiµ(x1+(n−1)d)

= f(ϕ)
eikr√
r
eiµx1

N∑
n=1

eiµ(n−1)d (3.10)

Let α = µd and note that

N∑
n=1

eiα(n−1) =
eiαN − 1

eiα − 1
. (3.11)

Substituting this series into the previous equation and making use of Euler’s formula

(eix = cosx + i sinx), the half-angle formula (1 − cosφ = 2 sin2[φ/2]), and the double-

angle formula (sinφ = 2 sin[φ/2] cos[φ/2]), we simplify as follows:

ψs =

(
eikr√
r

)
f(ϕ)eiµx1

[
eiαN − 1

eiα − 1

]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
cos(αN) + i sin(αN)− 1

cos(α) + i sin(α)− 1

]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
−2 sin2

(
1
2αN

)
+ i sin(αN)

−2 sin2
(

1
2α
)

+ i sin(α)

]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
−2 sin2

(
1
2αN

)
+ 2i sin

(
1
2αN

)
cos
(

1
2αN

)
−2 sin2

(
1
2α
)

+ 2i sin
(

1
2α
)

cos
(

1
2α
) ]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
sin
(

1
2αN

)
sin
(

1
2α
) ] [− sin

(
1
2αN

)
+ i cos

(
1
2αN

)
− sin

(
1
2α
)

+ i cos
(

1
2α
) ]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
sin
(

1
2αN

)
sin
(

1
2α
) ] [cos

(
1
2αN

)
+ i sin

(
1
2αN

)
cos
(

1
2α
)

+ i sin
(

1
2α
) ]

=

(
eikr√
r

)
f(ϕ)eiµx1

[
sin
(

1
2αN

)
sin
(

1
2α
) ] [e 1

2
iαN

e
1
2
iα

]
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=

(
eikr√
r

)
f(ϕ)eiµx1

[
sin
(

1
2µdN

)
sin
(

1
2µd

) ] e 1
2
iα(N−1)

=

(
eikr√
r

)
f(ϕ)eiµ(x1+ 1

2
(N−1)d)

[
sin
(

1
2Nµd

)
sin
(

1
2µd

) ] (3.12)

We note that the (N−1) term in the exponent should just be an N , according to Morse and

Feschbach (1953, Eq. 11.3.84), which we were unable to resolve; however, we also point out

that for large N (or small d), the effect of this discrepancy is negligible. We also observe

that this term drops out for N = 1, leaving behind the scattering equation for a single

scatterer (indeed, taking this into account may be the distinction between Equation 3.12

and that of Morse and Feschbach). Therefore, the equations are functionally the same and

can be interpreted the same way.

Recall that µ = 2k sin(ϕ2 ) is the magnitude of the difference between the incoming wave

vector and the wave vector in the direction of the observation. As ϕ → 0, the incident

wave vector is increasingly parallel to the line of observation and thus µ → 0. In this

case, eiµ(··· ) → 1 and [sin(1
2Nµd)/ sin(1

2µd)] → N . Thus, ψs → Nf(ϕ)(eikr/
√
r). Note

that this limit also holds true for any ϕ while Nkd � 1 (2πD � λ), also known as the

long-wavelength approximation. This behavior produces a purely coherent scattered wave.

When µ → 0 and Nkd > 1 � kd (2πD > λ � 2πd), the small-angle approximation

only applies to the sine term in the denominator of Equation 3.12. Therefore, the scattered

wavefunction can be approximated as ψs → f(ϕ)(eikr/
√
r)[sin(1

2Nµd)/(1
2µd)]. Changes

in ϕ thus have a strong affect on the scattering amplitude. For ϕ → 0 = 2π, the extra

amplitude term converges to a factor of N (as discussed above). However, as ϕ → π,

the scattered wave amplitude is greatly damped, considerably smaller than N times the

scattering amplitude of a single scatterer. Thus, the scattered beam is weak except for an

intense “shadow” beam on the forward-side of the scatterers (with respect to the direction

of wave motion). This is a combination of both coherent and incoherent scattering.

In the small wavelength approximation, λ < 2πd, Equation 3.12 must be used in full
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and results in a mainly incoherent wave. However, when µ = mπ, where m is an integer,

the sine term in the denominator again goes to zero, producing a strong, forward-scattered

beam. It may be of interest that the angles at which this occurs are the same as the Bragg

angles in the diffraction of x-rays off a crystal.

Also note that we have made the assumption here that µ is parallel to the row of

scatterers, which is not always (or even generally) the case. In our study, we examine

incident waves traveling perpendicular to a row of scatterers (Chapters 4-5). If the row of

scatterers is perpendicular to µ, for example with bn = ynŷ, then

ψs = f(ϕ)
eikr√
r

N∑
n=1

eiµynx̂·ŷ

= f(ϕ)
eikr√
r

N∑
n=1

e0

= f(ϕ)
eikr√
r

N∑
n=1

1

= Nf(ϕ)
eikr√
r

(3.13)

which is the same result as for the “parallel” coherent scattering case above.

With a general understanding of single scattering from multiple scatterers, we now

extend the discussion to higher order scattering terms.

3.1.2.2 Multiple Scattering

When the wave scattering off of multiple scatterers is strong, the waves around each scat-

terer are influenced by the presence of the other scatterers. In addition to the incoming

incident wave and outgoing scattered wave from each scattering point, we must also consider

the incoming re-scattered waves from all the scattering points in the surrounding near-field

region (Martin, 2006; Morse and Feschbach, 1953). Because we are operating under the
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assumptions of coherent, long-wavelength and far-field scattering, we can neglect the addi-

tional multiple scattering effects for the purposes of this work. However, it is instructive to

understand the basics of multiple scattering, so a brief overview of the math is given here,

based mainly on the discussion in Martin (2006, Ch. 8.3).

While the total scattered field from a row of scatterers is not isotropic, we will assume

that each individual scatterer produces a symmetrically scattered wave. Under this as-

sumption, the scattered wave field will act as a function ψs,j(r) = AjG(r − rj), where Aj

is the amplitude of the scattered wave, G is the free-space Green’s function, and r, rj are

the position vectors at the observation and jth scatterer, respectively, with respect to the

origin. In comparison to Equation 3.4 for a single scatterer observed in the far-field, we

could relate A1 =⇒ f(ϕ) and G(r − r1) =⇒ eik|r−r1|/
√
|r− r1|. For ease of notation and

generality for multiple scatterers, we will continue from here using the simplified isotropic

formula.

We can write the total wave field for N scatterers as

ψ(r) = ψi(r) +
N∑
j=1

ψs,j(r)

= ψi(r) +
N∑
j=1

AjG(r− rj). (3.14)

In and of itself, this is the same equation as used for the single scattering discussed in

Section 3.1.2.1. We then further define an “effective” scattered field by

ψn(r) ≡ ψ(r)−AnG(r− rn) = ψi(r) +

N∑
j=1
j 6=n

AjG(r− rj). (3.15)

This expression gives the resulting incident wave field on the nth scatterer due the initial

65



incident wave and all the scattered waves from the remaining N − 1 scatterers. The ampli-

tude of the wave scattered by this nth scatterer is proportional to the effective field incident

on it, which can be expressed as

An = gnψn(rn), (3.16)

where gn is the scattering coefficient for the nth scatterer. We will not go into details on

how to determine gn here; see Martin (2006, Ch. 8.3.1) for a thorough explanation. The

definition of An extends to the scattered amplitudes of all j scatterers. Therefore, the

effective scattered field near the nth scatterer can be expressed by

ψn(rn) = ψi(rn) +
N∑
j=1
j 6=n

gjψj(rj)G(rn − rj). (3.17)

This equation is a linear system for ψj(rj) and can be used iteratively within the total wave

equation to account for multiple scattering

ψ(r) = ψi(r) +
N∑
j=1

gjψj(rj)G(r− rj). (3.18)

The order of the multiple scattering is determined by the number of iterations of ψj(rj).

For example, if we consider 1st-order scattering to be that of single scattering (only the

incident wave is scattered, there is no re-scattering of neighboring scattered waves), then

the 2nd-order scattering scattering equations is

ψ (r)O2 = ψi (r) +

N∑
j=1

gjG (r− rj)

ψi (rj) +

N∑
l=1
l 6=j

glψl (rl)G (rj − rl)

 . (3.19)
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Similarly, the 3rd-order multiple scattering equation is

ψ (r)O3 = ψi (r) +

N∑
j=1

gjG (r− rj)

ψi (rj) +

N∑
l=1
l 6=j

glG (rj − rl)

×

ψi (rl) +
N∑
m=1
m 6=l

gmψm (rm)G (rl − rm)


 (3.20)

and so on. See Figure 3.4 for a conceptual schematic of this process.

incident

S1

S2

1st-order
scattering

∞

S2
1st-

order

∞
1st-order
scattering

S1
1st-

order

2nd-order
scattering

∞

S1
2nd-

order

∞
2nd-order
scattering

S2
2nd-

order

3rd-order
scattering

∞

S2
3rd-

order

∞
3rd-order
scattering

S1
3rd-

order

4th-order
scattering

∞

· · ·

∞
4th-order
scattering

· · ·

Figure 3.4: Compare to Fig. 8.1, page 311 in Martin (2006).

For a more detailed discussion, see Morse and Feschbach (1953, p. 1499-1500) and Martin
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(2006, Ch. 8.3). Martin also has specific discussions for multiple scattering of acoustic,

electromagnetic, elastic, and water waves.

In brief summary of Section 3.1, the cylindrical scattering equation can be derived from

the interaction of plane wave on a rigid cylinder with its major axis perpendicular to the

surface of the medium. The scattering from a single cylinder at the origin is produced

using boundary conditions at the cylinder and at infinity. If we move the cylinder away

from the origin, the change in the scattering equation equates to an additional phase-shift

term, which is dependent on the new location of the scatterer. The effect of multiple

scatterers is generalized simply as the sum of the scattering from each of the scatterers

(think superposition). This assumes that the scatterers are spread far enough apart that

they do not ”notice” the scattered waves from their neighbors. If the scatterers are close

together, then higher order scattering effects must be considered (e.g., the total scattered

signal from any one scatterer would be the 1st order scattering from the incident plane wave,

and the higher order ”re-scattering” of scattered waves coming from nearby neighbors). We

can implement the far-field and long-wavelength approximations to ensure that we do not

need to consider these multiple-scattering effects.
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3.2 Time-Distance Helioseismology Theory

In this section, we provide a detailed review of TD helioseismology concepts, as they per-

tain to this dissertation. We discuss the implementation of a phase-speed filter used to

isolate the f -modes in the SDO/HMI data in Section 3.2.1. Section 3.2.2 describes the the

process used to calculate cross-covariances in the TD method, as well as the importance

and application of measuring travel times. We also consider the divergence of our 1D linear

method from “usual” time-distance techniques in Section 3.2.3. The mathematics behind

linear correlations is reviewed, as is the connection between our summed cross-correlations

and Green’s function. Finally, we provide cases of precedence that support our exploitation

of elongated feature geometry in the new method.

3.2.1 Phase-Speed Filtering

In order to remove noise and unwanted wave modes, mode filters are applied to the data

in the Fourier domain. These filters affect both frequency ω (temporal) and wavenumber k

(spatial) dimensions, but for simplicity we will focus our discussion on frequency filtering.

However, keep in mind that the Fourier and filtering details described here translate directly

to wavenumber filtering, and that this research uses a full-spectral mode filter.

Depending on whether the frequencies to be removed are above or below the desired

passband of frequencies, different filters are used. To remove higher frequencies, a low-pass

filter is used (it allows low frequencies to pass through and blocks those that are higher than

some cutoff frequency), while high-pass filters attenuate lower frequencies. In some cases,

the same filtering function can be used as both a high- and low-pass filter. Combined, they

create a bandpass filter, which collectively removes all undesirable frequencies, transmitting

only a specific passband of signals. The shape of the filtering function dictates the amplitude

and rapidity of frequency attenuation, and its width controls the bandwidth of the passband.

Broad bandpass filters have wider bandwidths so the passband includes a wider range

of frequencies. Similarly, narrow bandpass filters have smaller bandwidths and are more

focused on specific frequencies.
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A Gaussian filter is often the preferred bandpass filter function, particularly for image

processing, because when a Gaussian function is transformed from the Fourier domain to

the spatial domain (or vice versa), it remains a Gaussian. However, the Gaussian filter is

a narrow bandpass filter with rapid signal attenuation about the peak frequency, which is

limiting if we want to isolate a strong signal spread over a wide passband of frequencies.

The same does not apply for broad differentiable piecewise functions such as an “Ideal”

(or “Boxcar”) filter, but the sharp edges of these functions create distortions in the Fourier

domain. See Appendix C for proof of these statements.

The filter function used in this work is that described by Duvall, Jr., Birch, and Gizon

(2006). The filter is a flat-top function with cosine-bell edges (hereafter referred to as the

FTC filter). The FTC filter is applied separately at each wavenumber k with a central

frequency ω given by the f -mode dispersion relation (Equation 1.1), and a width that also

depends indirectly on k, as follows. If the central f -mode frequency for some k is ωf and the

p1-mode frequency for k is ωp, then the magnitude difference in frequency between the two

modes is ∆ω = |ωp − ωf |. The FTC filter allows a full-power pass at frequencies between

±0.5∆ω and allows no power through at frequencies greater than |±0.75∆ω|. Half of a

cosine function dictates the filtering power between |±0.5∆ω| < ω < |±0.75∆ω|.

An example of the FTC filtering function is shown in Figure 3.5a, along with a Gaussian

function and two Boxcar functions. The corresponding fast Fourier transforms (FFTs)

for each function are shown in Figure 3.5b. Again, these functions and their transforms

are only shown in the frequency/time (ω/t) domain, but the filters apply just as well to

wavenumber/space (k/r) or combined full-spectral ((ω, k)/(r, t)) results. The FFT of the

FTC is a good approximation to the Gaussian FFT and has only minor side-lobes. For these

reasons, we deem the FTC function an acceptable filter for separating out the f -mode.

The spectral results of an f -mode-filtered sample data cube with the FTC function

are given in the ω-k diagrams in Figure 3.6. The unfiltered power spectrum is shown in

Figure 3.6a, for comparison. An acceptable p-mode filter (Gaussian high pass, provided by

J. Zhao) is applied for the results given in Figure 3.6b. Our FTC filter has been applied
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for the result in Figure 3.6c. The code that applies the FTC filter to a given data cube is

called filter yesf.pro. For reference, the first time step of a sample HMI tracked dopplergram

data cube is shown in Figure 3.7. Figure 3.7a displays the original, unfiltered data used to

produce Figure 3.6a. Likewise, the resultant first time step of p-mode and f -mode filtered

data, returned from transforming Figures 3.6b and 3.6c, are shown in Figures 3.7b and 3.7c,

respectively.

We point out that the ω-k diagrams in Figure 3.6 exhibit the dispersion relations of the

various wave modes. The spectral f -mode wave signal in Figure 3.7c is thus representative

of the f -mode dispersion relation given in Equation 1.1.

71



(a)

(b)

Figure 3.5: An example of various frequency-filtering functions is shown in (a). The blue
dot-dashed (· − · − ·−) line is a Gaussian function, the black and green solid lines (——,
——) are two boxcar functions of varying widths, and the red dashed curve (−−−) is an
FTC filter. The Fourier transforms of these functions are shown in (b), with corresponding
colors and linestyles. Both boxcar functions have significant side-lobes in their transforms,
which disrupt the clarity of the transformed signal. The transform of the Gaussian is, as
expected, another Gaussian so the transformed signal is “perfect”. However, the downside of
the Gaussian filter is the abrupt loss of power about a peak frequency, which is limiting if you
have a strong signal spread over a broad range of frequencies. The FTC filter is useful as a
full bandpass filter of all relevant frequencies while minimizing the effect of disadvantageous
side-lobes, as can be seen when comparing the transforms in (b). Note, this frequency-
filtering example is a simplified illustration but the concept holds true independent of the
filtering variable.
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(a) Full mode power spectrum

k

ω

(b) p-mode power spectrum

k

ω

(c) f -mode power spectrum

Figure 3.6: These phase-speed diagrams (also known as ω-k diagrams; ω is angular fre-
quency and k is wavenumber) display the spectral results of the sample data cube shown in
Figure 3.7a. The full power spectrum in (a) shows multiple waves modes, as well as a low-
frequency signal (where researchers expect to find the elusive g-mode). The low-frequency
signal is filtered out in both (b) and (c). Any signal below the median phase-speed distance
between the f - and p1-modes is filtered out to show only the various pn-modes in (b). Simi-
larly, all phase-speeds above the f - and p1-mode median are filtered out of (c), leaving only
the f -mode signal.

(a) The unfiltered image. (b) The filtered p-modes, mapped
back to the spatial domain.

(c) The filtered f -mode, mapped
back to the spatial domain.

Figure 3.7: An example time step of an HMI tracked mapped doppler data cube. The
tracked data is initially unfiltered (a). The various modes are filtered from the full power
spectrum in the Fourier domain (as shown in Figure 3.6), and the filtered spectra are then
transformed back to the spatial domain, giving just the p-modes (b) and the isolated f -mode
(c).
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3.2.2 Extracting Travel Times

3.2.2.1 Calculating Cross-Covariances

The cross-covariance between two complex functions f(r, t) and g(r, t) is defined as the

convolution

C(f, g, t) = f(r, t) ∗ g(r, t) ≡
∫ ∞
−∞

f∗(r, t)g(r, t+ t)dt, (3.21)

where f∗ is the complex conjugate of f , r and t are position and time, respectively, and t is

the positive or negative time lag. If the two functions are real (as for our purposes), than

f∗ = f .

The cross-covariance between two observed points over time can be expressed as

C(rs, rr, t) =
1

T

∫ T

0
φ(rs, t)φ(rr, t+ t)dt, (3.22)

where rs and rr denote the locations of the source and receiver points, respectively, and

t represents the time interval between the start of the observation at t = 0 and the total

temporal duration of the observation T (Couvidat et al., 2012; Giles, 1999; Gizon and

Birch, 2005). We define ∆ = ||rr − rs|| as the distance between the points. The quantity

φ(r, t) is the filtered LOS signal of the data cube in position and time. As discussed in

Section 3.2.1, the mode filter is applied to the data cube in Fourier space. The filtered

data are transformed back into spatial and temporal dimensions for the cross-covariance

calculations.

Note that the difference between the cross-covariance C and the cross-correlation C0 is

simply a normalization factor. Statistically, the normalization is the inverse of the standard

deviations σ, C0(f, g, t) = C(f, g, t)/σfσg. Analytically, C(rs, rr, t) can be normalized to

the cross-covariance at rs = rr (∆ = 0) and t = 0, C0(rs, rr, t) = C(rs, rr, t)/C(rs, rs, 0).

For TD helioseismology, the process of computing the cross-covariance between two

point sources in an HMI data set is as follows. First, choose the source pixel, denoting the
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source location rs = [xs, ys]. Choose the receiver pixel a distance ∆ away at rr = [xr, yr].

Calculate the cross-covariance between the signals φ(rs, t) and φ(rr, t + t) for each time

step (each image in the data cube), using Equation 3.22 (or the built in IDL function

C CORRELATE()).

This process is repeated using each non-edge pixel as rs. The “edges” are defined as all

pixels less than the distance ∆ away from the boundary of the image. Furthermore, the

cross-covariances can be computed for multiple rr of varying distances and/or directions.

The final set of cross-covariance data is a matrix with dimensions [# of rs, # of rr, # of t].

This matrix (and the number of calculations required to produce it) can be reduced by

considering different averaged geometries of receiver pixels in specific directions/distances.

Averaging in these geometries also helps isolate flow patterns in specific directions, and

improves the signal-to-noise ratio of the cross-correlations results. For example, in the

common center-to-annulus geometry, rs is considered to be a central pixel surrounded an

annulus of radius ∆. This averaging scheme emphasizes radial flows toward and away

from the central point. The signal of each annulus is taken as the averaged signals at

the receiver pixels that fall within ∆ around the central source pixel. Mathematically,

this averaged signal is expressed as φ̄(∆, t) =
∑N

i=1 φ(rri, t)/N , where N is the number

of pixels that falls within the annulus radius, rri = [xs + ∆ cos(θi), ys + ∆ sin(θi)] is the

location of the ith receiver pixel in the annulus, and θi is the angle between pixel i and a line

intersecting rs parallel to the +x-axis. The cross-covariance in Equation 3.22 then becomes

C(rs,∆, t) = 1
T

∫ T
0 φ(rs, t)φ̄(∆, t+ t)dt. The calculations are repeated for multiple annuli of

varying ∆. We do not use the center-to-annulus geometry in our work; however, the ability

to average point-to-point cross-correlations over specific geometries is highly important for

our new technique. We discuss the implications and application to our method further in

Section 3.2.3.

Figure 3.8 illustrates the cross-correlation process applied to the example f -mode data

shown in Figure 3.7c. The data in Figure 3.8a is shown with four different source pixels,
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each with a receiver point a distance ∆ = 10 pixels away in the x direction. Figure 3.8b

displays the corresponding cross-correlation plots of the point pairs in (a). By themselves,

they do not show clear signals of correlated inbound and outbound wave propagation.

However, averaging the cross-correlation results of all possible source pixels with the same

∆ improves the signal-to-noise ratio so that visible wave signals are evident propagating

inward and outward, as shown in Figure 3.8c.

To represent the data in another way, we can “stack” the point-to-point cross-correlation

results of each source point for a given receiver. As mentioned above, the cross-correlations

can also be averaged over various geometries (e.g., center-to-annulus) to improve the signal-

to-noise ratio and return results with specific directional information. Thus, as a clarifying

example, we will briefly examine results of another geometry that emphasizes waves that

propagate left-right (or east-west). Instead of averaging over annuli, we average over the

north-south direction such that ȳr = ȳs, making r effectively one dimensional in the x-

direction, and ∆ = |rr − rs| = |xr − xs|. The resulting averaged cross-correlation is a

function of rs = xs, rr = xr, and t. We note that we will be exploring this geometry in

much greater detail later in Section 3.2.3.

Stacking the cross-correlations of this east-west geometry for a particular rr produces a

TD plot: an array of t versus rs, such as those in Figure 3.9. Furthermore, we can average

the cross-correlations pertaining to equivalent ∆, regardless of rs, so that we have averaged

TD plots representative of equal distances between points. In practice, this requires a

“shifting” of the TD results with respect to rs such that the distances to rr are “aligned”

in terms of ∆ in the TD plot. Visually, this equates to shifting the TD data from different

sources, like in Figure 3.9 so that the vertical dashed lines are positioned at ∆ = 0, as in

Figure 3.10. The averaged shifted TD plot, t versus ∆, produces a map with a higher signal-

to-noise ratio, as in Figure 3.11, which shows a much clearer signal than the unaveraged

TD plots in Figures 3.9 and 3.10. We note here that although the signal-to-noise ratio is

improved, some of the spatial information is lost in taking these shifted averages. This is

detrimental to studying the difference in phase correlations between explicit source points.
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In any TD plot, the slope of the branch envelope indicates the group velocity of the wave

packet. Similarly, the phase speed pertaining to each wavenumber is measured by the slope

of the strong black or white signals within a branch. Airy wave theory (Section 1.2) tells us

that for f -mode waves, the phase speed is equivalent to the dispersion relation divided by

the wavenumber, so from Equation 1.1 the lines of constant phase in these TD plots should

act as
√
g/k. To further improve the signal-to-noise ratio, we can make another shift in

the TD plots along the lines of constant phase and then average across ∆, as illustrated in

Figure 3.12 (Hindman et al., 2004, Figure 7).

77



(a) A filtered f -mode dopplergram image indicating the location of four pairs of source (cyan) and receiver

(yellow) pixels. The source and receiver points are separated by ∆ = 10 pixels in the x direction.

(b) The cross-correlation plots for each of the four point pairs in (a). The plot arrangement corresponds to
the point locations on the image. There is no distinct cross-correlation pattern across time in these plots.
Lag has units of seconds (dt = 45 s).

(c) The average over the cross-correlations of all the possible source pixels in (a), with ∆ = 10 pixels in the
x direction. It is clear that the averaging improves signal-to-noise and reveals an ingoing and outgoing wave
signal. Lag has units of seconds (dt = 45 s).

Figure 3.8: Example cross-correlations using the f -mode filtered data from Figure 3.7c.
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Figure 3.9: TD plots of three sample source-point locations, showing unshifted, unaveraged
data. The time lag has units of seconds (dt = 45 s), while r and ∆ are in pixel units.
As expected, the cross-correlations are strongest at t = 0 for rs = rr (∆ = 0), where the
source is correlating perfectly with itself. These locations are represented by the vertical
dashed lines. The plots are “shifted” such that the dashed lines coincide with ∆ = 0 on
the axis above the plots. This is representative of the TD shifting that is done before the
cross-correlation results can be averaged to improve the signal-to-noise ratio. Note that
some data manipulation was done to produce these images, in order to clarify the cross-
correlation signals within the background noise, but this enhancement is not performed in
the actual data analysis.
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Figure 3.10: The same three TD plots from Figure 3.9, now shifted in terms of ∆ = 0. Again,
time lag has units of seconds (dt = 45 s), while ∆ is in pixel units. The cross-correlation
signals are visibly propagating from [∆, t] = [0, 0]. These data can now be averaged (along
with the shifted TD plots from all other instances of rr), the result of which is shown in
Figure 3.11. We note that other than our indication of the corresponding rs and rr, the
shift loses all relevant location information about the associated source points.
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Figure 3.11: An example TD plot, averaged over the shifted data from all source points.
Again, time lag has units of seconds (dt = 45 s), while ∆ is in pixel units. The signal-
to-noise ratio is much larger in this plot than in the unshifted, unaveraged data in the
Figures 3.9 and 3.10 plots, even despite the signal enhancement performed in producing
those images (which was not used here).

Figure 3.12: An example TD plot showing a line of constant phase (left), shifted with
respect to the constant phase (middle), and then averaged over ∆ (right). (Hindman et al.,
2004, Figure 7)
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3.2.2.2 Travel Times

Perturbations alter wave travel times expected in an homogeneous domain. Measuring the

travel times of waves through an inhomogeneity can tell us about the perturbation. For

example, flow perturbations will cause the positive τ+ and negative τ− travel times to differ,

since waves travel faster in the direction of the flow and are inhibited when traveling against

it. Therefore, a difference between positive and negative travel times τdiff = τ+−τ− indicates

that a flow perturbation is present. Similarly, the average travel time τmean = (τ+ + τ−)/2

is indicative of wave-speed perturbations, such as temperature variations (Gizon and Birch,

2005).

There are multiple methods by which to calculate travel times (Gizon and Birch, 2005),

including fitting Gaussian wavelets (Duvall, Jr. et al., 1997; Kosovichev and Duvall Jr.,

1997), and fitting model cross-covariance functions (Gizon and Birch, 2002, 2004). For

this dissertation, we use the travel time definition from Gizon and Birch (2004), which

minimizes the the difference between the observed cross-covariance function and a reference

cross-covariance function. There are several benefits for using this method. First, it is highly

robust with respect to noise. Second, the function is linear in terms of the cross-covariance,

which means that averaging over different travel times is equivalent to calculating the travel

time for averaged cross-covariances. Last, the probability density functions of the positive

and negative travel times are unimodal Gaussian curves, which allows us to calculate errors

for the travel times.

Because we will ultimately be working in one spatial dimension (see Sections 2.1.5 and 3.2.3.2),

we can use a point-to-point formulation of the travel time calculations; we note that the

center-to-annulus formalism is similarly defined by Gizon and Birch (2004). The mathe-

matical definition of the point-to-point travel times is

τ±(x1,x2) = h
∑
t

W±(∆, t)
[
C(x1,x2, t)− C0(∆, t)

]
, (3.23)
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where W±(∆, t) is a weighting function given by

W±(∆, t) =
∓f(±t)∂tC0(∆, t)

h
∑

t′ f(±t′) [∂t′C0(∆, t′)]2
. (3.24)

C0 is a smooth reference cross-covariance function, h is the temporal sampling rate, and

∆ = x2 − x1. Figure 3.13 illustrates the procedure for determining τ±, starting from an

f -mode power spectrum, then determining C0(∆, t), and finally minimizing the difference

between C0 and one instance of the point-to-point cross-covariance function C(x1,x2, t).

The function f(±t) is a window function that isolates the positive and negative parts of

the cross-covariance. The interval is selected to coincide with the arrival time of the wave

packet. When measuring positive travel times, f(t) = 0 when t < 0; similarly for negative

travel times when t > 0. For f -mode waves, the time-distance maps only have one group

phase branch (as seen in Figure 3.11), so f(±t) can be taken as a Heaviside step function,

shown in the middle panel of Figure 3.13 (Gizon and Birch, 2004). The Heaviside step

function for positive travel times can be represented as the discrete piecewise function with

f(+t) =


0 t < 0

1
2 t = 0,

1 t > 0

(3.25)

and similarly for negative travel times.

The travel times defined here are essentially minimizations of the “badness of fit” be-

tween C and C0. If a uniform flow rotates in the +x direction, then for waves traveling

from x1 to x2 , C will occur earlier in time than C0 because waves travel faster with the flow

than against it. Therefore, in order to minimize the difference between C and C0, C0 must

be shifted backwards in time so that the minimum occurs at a negative time τ+. Similarly,
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Figure 3.13: The f -mode power and cross-covariance functions. (a) A cut through of the
filtered power spectrum at ky = 0. (b) The spatially averaged cross-covariance function

(thin line) for some point-to-point distance ∆. The thick dot-dashed line shows the window
function f(t) used in the travel-time measurement procedure. The thick line shows the

reference cross-covariance function, C0. (c) A sample cross-covariance between a single

pair of points that are separated by ∆ (thin line). Overplotted is C0 (thick line). Note the
scale difference between (b) and (c) (Gizon and Birch, 2004, Figure 1)

we would expect τ− to have positive values in the presence of this flow. If the flow were

moving in the opposite direction, the reverse would be true with positive τ+ and negative

τ−.
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3.2.3 Symmetry Arguments

This section is the start of our divergence from “usual” TD helioseismology, described in

Section 3.2.2.1. We have argued in Section 3.1 that the scattered wavefield from a linear

perturbation can be approximated discretely as an integral over points along the boundary.

This is analogous to the superposition of scattered wavefields from the individual points.

In Section 2.1.5, we suggested that we can exploit the axis of symmetry of a 1D scattering

region to (1) improve the signal-to-noise ratio of the TD results, and (2) greatly decrease the

number of calculations required and therefore the computing time of the TD analysis. In

this section, we present the underlying mathematical and geometrical symmetry arguments

necessary for our new TD technique, as well as a case of precedence for making these

assumptions.

3.2.3.1 Mathematical Symmetry

We want to measure the travel times of a wavefield from an elongated perturbation that

produces a quasi-linear scattering signal. We argue that it is possible to assume a 1D

system by averaging the signal along the line of symmetry, to simplify calculating the

necessary cross-correlations while isolating the wave signal traveling perpendicular to the

approximately-linear boundary. To do so, certain properties of the averaged cross-covariance

function must be proven.

Figure 3.14 shows a simplified example considering two source point observations, φ(rs1, t)

and φ(rs2, t), and the signal at a single receiver point, φ(rr, t). Ordinarily, the cross-

covariances would be calculated using Equation 3.22 between each source and the receiver,

separately, as

C1 = C(∆1, t) =
1

T

∫ T

0
φ(rs1, t)φ(rr, t+ t)dt, (3.26)

C2 = C(∆2, t) =
1

T

∫ T

0
φ(rs2, t)φ(rr, t+ t)dt. (3.27)
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O φ(rs2, t)φ(rs1, t)

φ(rr, t)

rs1

∆1

rr

rs2

∆2

Figure 3.14: We consider two source signals φ(rs1, t) and φ(rs2, t) located at rs1 = [xs1, ys1]
and rs2 = [xs2, ys2]. The observed signal φ(rr, t) is made at a reference point a distance
rr = [xr, yr] from the origin O. With respect to the source points, P is located at ∆1 =
rr − rs1 and ∆2 = rr − rs2, respectively. Note that the source and receiver points are
assumed to be in the same z-plane. Also note that a wavefield is not shown, for clarity, but
that perturbations could be located anywhere in the domain. The scatterers do not have
to be located at the considered source points.

The cross-covariances C1 and C2 then might be averaged (along with other Cn) in order to

increase the signal-to-noise ratio, as discussed in Section 3.2.2. What we aim to prove is that

the cross-covariance of the averaged signals produces the same result, and how averaging

over a linear geometry of signals emphasizes wave propagation in specific directions.

Firstly, we point out that the cross-covariance is a linear function. Using the two sources

and receiver in Figure 3.14 and Equations 3.26-3.27, we show that

C̄1,2 = 1
2 [C1 + C2]

=
1

2T

[∫ T

0
φ (rs2, t)φ (rr, t+ t) dt+

∫ T

0
φ (rs1, t)φ (rr, t+ t) dt

]

=
1

2T

∫ T

0
[φ (rs2, t)φ (rr, t+ t) + φ (rs1, t)φ (rr, t+ t)] dt

86



=
1

T

∫ T

0

1
2 [φ (rs2, t) + φ (rs1, t)]φ (rr, t+ t) dt

=
1

T

∫ T

0
φ̄1,2 (rs, t)φ (rr, t+ t) dt. (3.28)

It follows that this is mathematically valid for any number N of the averaged cross-

covariance function C̄N and averaged source signals φ̄N , where φ̄N =
∑N

i=1 φ(rsi, t)/N .

The same logic similarly applies if we also consider multiple receiver points. As mentioned

in Section 2.1.5, one could similarly choose to sum instead of average over the data. This

clearly would not effect the conclusions drawn in this section, since the normalizing factor

of the average is a constant which does not change the linearity of the problem.

This property of the cross-covariance can also be proven in the Fourier domain. The

Fourier transform is a is linear process, and the convolution between two functions in Fourier

space is simply multiplicative between the transformed functions. Therefore, the transform

of the sum over multiple signals is the same as the sum over the transformed signals.

Next, we investigate the effect of averaging over a line of signals in one dimension. Again

starting from Figure 3.14, we look at how averaging between rs1 and rs2 affects ∆ in the

resultant averaged cross-covariance. As stated in the figure caption, we define the position

vectors

rs1 = [xs1, ys1], rs2 = [xs2, ys2], rr = [xr, yr],

∆1 = rr − rs1, ∆2 = rr − rs2.

(3.29)

We now show that averaging over ∆1 and ∆2 is equivalent to the distance between the

receiver’s location and the averaged locations of the sources. We do so explicitly in x and

y coordinates to help illustrate the directionality of the results.

∆̄ = 1
2

2∑
i=1

∆i = 1
2 [(rr − rs1) + (rr − rs2)]
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= 1
2 [([xr, yr]− [xs1, ys1]) + ([xr, yr]− [xs2, ys2])]

= 1
2 [((xr − xs1) x̂+ (yr − ys1)ŷ) + ((xr − xs2) x̂+ (yr − ys2) ŷ)]

= 1
2 [(xr − xs1 + xr − xs2) x̂+ (yr − ys1 + yr − ys2) ŷ]

= 1
2 [(2xr − (xs1 + xs2)) x̂+ (2yr − (ys1 + ys2)) ŷ]

= [xr, yr]− 1
2 [(xs1 + xs2) x̂+ (ys1 + ys2) ŷ] (3.30)

= [xr, yr]− [x̄s, ȳs]

= rr − r̄s

Again, this logic expands for any number of source points (N instead of 2), and considering

multiple reference points. From Equation 3.30, we can see that if the source points are

symmetrically aligned along the x- (or y-) axis, as they are in Figure 3.14, the signals in

that direction cancel out (xs1 = −xs2) so that only the signal perpendicular to the line of

symmetry is important. Of course, the receiver point can contribute directionality in all

directions; however, all but the perpendicular components of the received signal similarly

cancel if multiple receiver signals are averaged along the same axis of symmetry. The

problem would therefore simplify down to one spatial dimension.

We have shown that (1) the average over cross-covariances between signals is equivalent

to the cross-covariance of the averaged signals and (2) averaging a line of signals preserves

only the averaged signal perpendicular to the line. Together, these properties allow us to

simplify the TD process for a linear perturbation down to one spatial dimension before

any cross-covariance is calculated. For a data cube of size nx × ny × nt, this reduces the

computational time of the point-to-point cross-covariances by a factor of ny. They also tell

us that we can easily compute the unidirectional cross-correlations of a wavefield with an

elongated perturbation that produces a linear signal in any direction by making use of the
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axis of symmetry.

3.2.3.2 Geometric Symmetry

There is precedence for using geometric symmetry arguments in time-distance helioseismol-

ogy. We briefly discussed the center-to-annulus geometry in Section 3.2.2.1. It is also a

relatively common practice to find the center-to-annulus cross-correlations separately for

different quadrants of the annuli (north, south, east, west), on top of averaging over each

annulus as a whole. This geometry is exemplified in Figure 3.15 (Hindman et al., 2004,

Figure 6). Not only does this tactic give more information about directionality of flows,

but it also helps to improve the signal-to-noise ratio (Duvall, Jr. et al., 1996, 1997; Gizon

and Birch, 2005; Hindman et al., 2004). For example, eastward flows are an average of the

positive lags from the eastern quadrant and the negative lags from the western quadrant,

which doubles the sample size and improves the signal-to-noise ratio. Similar is true for the

flows towards the other quadrants. The standard full-annulus cross-correlation represents

radially inward/outward flows to/from the central pixel.

We point out that our summation along the north-south axis of symmetry of our linear

feature (described in Section 2.1.5) effectively performs the same function as isolating the

east-west directed waves. All wave propagation that is not parallel to the x-axis is essentially

averaged out of the resultant 1D data.

Additionally, Cameron, Gizon, and Duvall, Jr. (2008) developed a time-distance method

that makes use of the rotational symmetry of a nearly-circular sunspot region. They used

SOHO/MDI data of AR 9787, as well as simulated sunspot data, to observe how f -mode

waves respond to propagating through strong magnetic regions. They describe their cross-

covariance technique (we note that the notation used below corresponds to their paper, and

not necessarily the notation used in this thesis):

Let us denote by φ(r, t) the filtered Doppler velocity, where r is a position

vector and t is time. Rather than studying the cross-covariance of φ between
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Figure 3.15: An example of the quadrant geometry used in TD helioseismology to measure
east-west flows. The black regions show pixels in the east-west quadrant arcs that are a
distance ∆ from the central pixel x. The gray regions cover the pixels that would be used
for three separate smaller ∆. (Hindman et al., 2004, Figure 6)

two spatial points, we consider the cross-covariance between φ averaged over a

great circle γ, denoted by φ̄(γ, t), and φ measured at any other point r:

C(r, t) =

∫ T

0
φ̄(γ, t′)φ(r, t+ t′)dt′

where the effective integration time, T , is nine days, or 36 times six hours. Since

averaging φ over γ is equivalent to selecting only the horizontal wavevectors

that are perpendicular to γ, this cross-covariance function gives us information

about plane wave packets that propagate away from γ. In simple words, the
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cross-covariance at time lag t tells us about the position of a wave packet, a

time t after it has left γ. In the rest of the paper we fix the distance between γ

and the center of the sunspot at ∆ = 40 Mm. Since ∆ � λ, where λ ≈ 5 Mm

is the dominant wavelength, the sunspot is in the far field of γ.

For any particular choice of orientation of γ, the computed cross-covariance

is very noisy, thus explaining the need for some spatial averaging.... Because

sunspot AR 9787 is almost rotationally invariant around it’s center, we can

compute many equivalent cross-covariance functions corresponding to many dif-

ferent directions of the incoming wave packet, derotate these about the center

of the sunspot so that they match the reference cross-covariance, and average

them to reduce the noise. We have performed this averaging over all directions

of the incoming wavevectors, with a fine sampling of 1◦.... this enables us to

reach a very good signal-to-noise level. (Cameron, Gizon, and Duvall, Jr., 2008,

p.294-295)

The process they detail is similar to our own method, except that they are working with a

rotationally invariant case whereas ours is treated as translationally invariant. Where we

sum along the y-axis of symmetry to isolate east-west flows, they average the derotated

cross-covariances to isolate radial inward/outward flows. By the logic presented in Sec-

tion 3.2.3.1, the linearity of the cross-covariance function equates these procedures. This

gives us excellent precedence for accepting our technique as reasonable.
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Chapter 4: Wave Scattering Simulation & Results

4.1 Simulation

The motivation for producing simulated scattered wave data is to create a proof-of-concept

model on which to test helioseismic results using known inputs. It is important to un-

derstand that we are not over-concerned with incorporating detailed solar physics, such

as magnetic fields, into this simulation. We simply want to create surface wave interac-

tions to determine how well our local helioseismology technique can retrieve the scattering

information.

All of the data in this chapter were created using IDL code we wrote, called cyl wav.pro.

All of the calculations are performed in the complex domain, but the images show only the

real part of the data, as these are the “observable” results.

Our simulation is analytic rather than numerical. The grid resolution is set to 128×128

pixels. There is no need for very-high resolution simulated data; it only serves to slow

down calculations. The spatial resolution is 0.729 Mm/pixel, to mimic the HMI data.

The spatial resolution (0.729 Mm → ` ' 6007) and domain size (∼ 93 Mm → ` ' 46)

limit the need for all values of `; however, our region of interest between 600 ≤ ` ≤ 1200

(7.29 Mm ≥ λ ≥ 3.65 Mm) falls well within the maximum and minimum limiting ` values.

We can also determine some reasonable spacing ∆` such that only distinct modes within

the domain are used, which reduces computational time. We use ∆` = 30, reducing the

number of simulated wave modes to 21 (although the spacing could be much higher than

this). The temporal cadence is set to 45 seconds, again to mimic the HMI data.

We neglect multiple scattering effects (discussed in Section 3.1.2) because the simulation

is in the far-field regime and assumes the long-wavelength approximation. We can make

these assumptions based on our choice of scatterer-radius a. If a ≤ 0.5 pixels (i.e. the
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diameter of each scatterer is less than a pixel), the actual size of a becomes arbitrary, in

which case we can choose it to be arbitrarily small. This ensures both the long-wavelength

and far-field approximations. The far-field approximation alone allows us to neglect multiple

scattering. Additionally, declaring a � λ means that any noticeable distance d between

scatterers is large enough to ignore multiple scattering as well, regardless of the far-field

approximation. In the simulation code, we set a = pixsz/10 to guarantee our use of the

far-field and long-wavelength approximations.

We note that using long wavelengths is also desirable because the waves see the “width”

of a boundary as smaller, so the boundary interactions are sharper. Sharper interactions

are more likely to produce a stronger coherent backscattered signal. This point is important

for “future” work that is currently underway.

From the discussions in Section 3.1 and Appendix B.2, we consider N scattering points

in the dependent, single scattering limit. The total scattered wave function will look like

ψs =
N∑
n=1

f(ϕn)eikrn·α̂eikbn·α̂
√
rn

. (4.1)

which is computed in the main cyl wav.pro code.

The scattering amplitude in Equation 4.1 is computed in the cyl scattering amplitude.pro

function within the main code. The form of the scattering amplitude equation coded into

the algorithm, for scattering angle ϕn = φi − φn and arbitrary m, is given by

f(ϕn) =

√
2

πk
e−iδ

′
mεmi

m−1 sin
(
δ′m
)

cos(mϕn), (4.2)

where δ′m are the phase angle derivatives for the Bessel functions (calculated assuming the

long-wavelength approximation and Neumann “rigid” boundary conditions in the function

cyl phase angle.pro). Note that because the scattering amplitude dependence on m is linear,

we simply need to sum the results of Equation 4.2 over various m to incorporate more than
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one azimuthal mode. Although m → ∞ on the Sun, we only need the contributions up

to m = 3. Higher than that, the scattering solution converges and the higher-order m

effects are negligible. This is proven in Figures 4.1 and 4.2. Figure 4.1 shows the scattering

amplitudes f(ϕn = 0◦) computed for each wavenumber k with 0 ≤ m ≤ 7. It is clear that

the solutions have converged to 0 by m = 3. Figure 4.2 shows the 0 ≤ m ≤ 3 solutions

of f(ϕn) with different scattering angles across varying k. Again, the m = 3 solution has

clearly converged to 0 in each angular case.

Figure 4.1: Scattering amplitudes f(ϕn) for scattering angle ϕn = 0◦ computed using the
simulation code for each 0 ≤ m ≤ 7. The various wavenumbers k are shown ranging in color
from lowest (red) to highest (black). The color bar is plotted to the right of the image. It
is apparent that for all values of k, the associated f(ϕn = 0◦) converge to 0 before m = 3.

The simulation code allows the user to change multiple parameters in Equation 4.1,

including the incident angle, the number and spacing of wave modes, the phase of each

wave mode, and the number and location of scattering points. We show examples of the

various parameter adjustments in Figures 4.3-4.5. In each of these figures, there are three
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rows corresponding to time steps t = 0, 100, 200 (recall, the cadence is set to 45 s). The

first columns display incident plane waves at each time step. The second and third columns

show the scattering responses to the incident waves at each time step for a single scatterer

and 10 scatterers, respectively. At any point in time, the maximum scattered wave signal is

2-3 orders of magnitude smaller than the incident wave signal; therefore, the total wave is

not shown since it is visually indistinguishable from the incident wave. Figure 4.3 displays

an in-phase incident plane wave with φi = 0◦ and the corresponding scattering responses.

Figure 4.4 shows a change in phase with a randomly phased incident plane wave of φi = 0◦

and the corresponding scattering responses. Figure 4.5 shows an adjustment to the incident

angle with an in-phase incident plane wave of φi = 45◦ and the corresponding scattering

responses. Finally, Figure 4.6 shows similar results to the Figure 4.3 multiple scatterer

results at t = 100, but illustrates the variable scatterer spacing in y. We note (but do not

show) that the locations in x are likewise adjustable.

For the simulated data in our linear TD method, we use 10 scattering points parallel to

the y-axis at x = nx/3 pixels with a spacing d = ∆y = 5 pixels. The incident wave packet

is in-phase along the edge of the domain at t = 0, with an incident angle of φi = 0◦, as in

Figure 4.3.
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Figure 4.2: Scattering amplitudes f(ϕn) for scattering angles ϕn = 0◦, 45◦, 90◦ computed
using the simulation code for each wavenumber k. The solutions for azimuthal modes m = 0
(black), m = 1 (blue), m = 2 (green), and m = 3 (red, dashed) are labeled in each plot.
The m = 3 case is also representative of the f(ϕn) solutions for all higher order m since
they similarly converge to f(ϕn) = 0. Note that the even-order azimuthal modes do not
vary with ϕn, as expected from Equation 4.2. These plots, along with Figure 4.1, show that
all orders of m > 3 can be neglected in the simulation scattering calculations, independent
of k or ϕn.
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Figure 4.3: Example data produced by the scattering simulation code. Three time steps are
shown at t = 0 (top row), t = 100 (middle row), and t = 200 (bottom row). Axes are in units
of pixels. Greyscale colors indicate wave amplitude (black/white is minimum/maximum,
grey is average), although the incident and scattered waves are not scaled with respect to
each other since the incident wave signal is actually 2-3 orders of magnitude larger than the
scattered wave signals. The incident wave (left column) is in-phase at x = 0 when t = 0, with
an incident angle φi = 0◦. The scattering results from a single scatterer (middle column)
and 10 evenly-spaced scatterers (right column) are shown for each time step. The scatterer
locations are indicated by the red dots (•). For both scattering results, the scatterers are
located at x = nx/3. The single scatterer is placed at y = 0, and the multiple scatterers are
spaced symmetrically around y = 0 with d = ∆y = 5 pixels. Note that each image is scaled
to itself, and that the scattered wave signals are actually much smaller than the incident
signal. The total wavefields (incident + scatterer(s)) are visually indistinguishable from the
incident waves shown here because the scattering signal is much weaker than the incident
wave signal.
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Figure 4.4: Example data produced by the scattering simulation code, displaying a change
in incident phase from Figure 4.3. Three time steps are shown at t = 0 (top row), t = 100
(middle row), and t = 200 (bottom row). Axes are in units of pixels. Greyscale colors
indicate wave amplitude (black/white is minimum/maximum, grey is average), although
the incident and scattered waves are not scaled with respect to each other since the incident
wave signal is actually 2-3 orders of magnitude larger than the scattered wave signals. The
incident wave (left column) is randomly phased, with an incident angle φi = 0◦. The
scattering results from a single scatterer (middle column) and 10 evenly-spaced scatterers
(right column) are shown for each time step. The scatterer locations are indicated by the
red dots (•). For both scattering results, the scatterers are located at x = nx/3. The single
scatterer is placed at y = 0, and the multiple scatterers are spaced symmetrically around
y = 0 with d = ∆y = 5 pixels. The total wavefields (incident + scatterer(s)) are visually
indistinguishable from the incident waves shown here because the scattering signal is much
weaker than the incident wave signal.
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Figure 4.5: Example data produced by the scattering simulation code, displaying a change
in incident angle from Figure 4.3. Three time steps are shown at t = 0 (top row), t = 100
(middle row), and t = 200 (bottom row). Axes are in units of pixels. Greyscale colors
indicate wave amplitude (black/white is minimum/maximum, grey is average), although
the incident and scattered waves are not scaled with respect to each other since the incident
wave signal is actually 2-3 orders of magnitude larger than the scattered wave signals. The
incident wave (left column) is in-phase at t = 0, with an incident angle φi = 45◦. The
scattering results from a single scatterer (middle column) and 10 evenly-spaced scatterers
(right column) are shown for each time step. The scatterer locations are indicated by the
red dots (•). For both scattering results, the scatterers are located at x = nx/3. The
single scatterer is placed at y = 0, and the multiple scatterers are spaced symmetrically
around y = 0 with d = ∆y = 5 pixels. Note that each image is scaled to itself, and that
the scattered wave signals are actually much smaller than the incident signal. The total
wavefields (incident + scatterer(s)) are visually indistinguishable from the incident waves
shown here because the scattering signal is much weaker than the incident wave signal.
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Figure 4.6: Example scattered data produced by the scattering simulation code, displaying
changes in scatterer spacing, using the t = 100 incident conditions from Figure 4.3 (in-
phase, φi = 0◦). Axes are in units of pixels. Greyscale colors indicate wave amplitude
(black/white is minimum/maximum, grey is average), although the three scattering cases
are not scaled with respect to each other. The scatterer locations are indicated by the red
dots (•); however, dot size is not indicative of scatterer size. The middle plot is the same
as the middle-righthand plot in Figure 4.3, for reference. The left plot shows the scattering
response from 10 scatterers with d = ∆y = 2 pixels; the right plot shows the 10-scatterer
response for d = ∆y = 10 pixels. We note that the locations in x are likewise adjustable,
but not shown.
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4.2 Time-Distance Analysis

4.2.1 Testing Assumptions

Before comparing simulated linear TD results with those from real data, or even before

interpreting the simulated data results on their own, we need to understand whether and

how various assumptions influence the analysis. If the implementation of the assumptions

consequently changes the simulated results, the effects need to be recognized so that they do

not confuse our interpretation of the results. In extreme cases, we may even need to change

our assumptions in order to produce reasonable outcomes and conclusions. In Section 3.2.3,

we mathematically proved the linear TD effects of spatially averaging data over an axis of

symmetry, reducing the cross-correlation calculations to 1D. Using the simulated data, we

now explore how the linear TD results differ when assuming a line of perturbations versus

a single scatterer.

We compare a line of scatterers to a point scatterer when summing over the linearly

symmetric dimension. Figure 4.7 shows example images for reference. As mentioned in

Section 4.1, the incident wave packet is in-phase at t = 0 along the y-axis at x = 0. The

waves consist of 21 evenly spaced wavelengths corresponding to 600 ≤ ` ≤ 1200. The

incident waves in this example propagate in the +x direction (incident angle of 0◦). In the

scattered wavefields, the scatterers are visibly centered at y = ny/2 along the x = nx/3

line. Multiple scattering has been ignored. The azimuthal order m terms in the expanded

scattering calculation are summed over 0 ≤ m ≤ 3, since any terms above m = 3 are

negligible, as shown in Section 4.1. Across two dimensions, the 1-scatterer case shows the

expected radially symmetric scattering pattern, while for the 10-scatterer case, the wave

interactions from each scatterer create a quasi-linear scattering pattern.

Figure 4.8 shows plots of the scattered data in Figure 4.7, summed over the y-dimension.

The magnitude ratio between the 1-scatterer and 10-scatterer cases is approximately a

multiple of the number of scatterers n. This relationship is seen over all other time steps,

although only the t = 0 time step is shown. The factor-of-n difference holds true for any
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Figure 4.7: Examples of the real-part of the simulated scattered wave functions for a single
scatterer (left) and a column of ten scatterers (right) at t = 0. Axes are in units of
pixels. Greyscale colors indicate wave amplitude (black/white is minimum/maximum, grey
is average), although the incident and scattered waves are not scaled with respect to each
other since the incident wave signal is actually 2-3 orders of magnitude larger than the
scattered wave signals. The incident wave packet (top) for these examples is initially in-
phase and aligned at the x = 0 line. Note that these images are the same simulated data
as those in the top row of Figure 4.3.

number of scatterers because of the linearity of the system. This expected result is now

confirmed.
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Figure 4.8: The simulated scattered data in Figure 4.7 summed over the y-dimension. The
x-axis has units of pixels, while the summed amplitude has arbitrary units. Note that the
summed amplitude for the 10-scatterer case is about 10× the magnitude of the 1-scatterer
case results. This data only shows the t = 0 time step. Other time steps have a similar
magnitude difference in amplitude between the 1-scatterer and 10-scatterer cases. Stacking
these summed amplitude data through time produces plots of the time-dependent Green’s
functions of the scattering.

Stacking the summed simulation data, like Figure 4.8, through time produces plots of

Green’s function G(xs, xr, t). For in-phase incident waves with a large signal-to-noise ratio

(no random noise was added to the scattering calculations), these Green’s function images

are effectively TD results of cross-correlated data. (We will discuss how scattering from out-

of-phase incident waves affects this relationship in Section 4.2.2.) The connection between

Green’s function and the cross-correlation has been shown by many authors (e.g., Gouédard

et al., 2008; Lobkis and Weaver, 2001; Tsai, 2010). The general relationship is expressed by

d

dt
[C( rs, rr, t )] =

−A2

2
[G (rs, rr, t)−G (rs, rr,−t)] . (4.3)

This equation changes somewhat depending on the restrictive conditions and assumptions

of the system, including attenuation, (un)equal energy distribution between wave modes,

degeneracy of modes, and low/high frequency regimes. However, in general (and for our

simulation) the relationship can be approximated by Equation 4.3. For our purposes, the
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Green’s function has only one spatial dimension with r = x, since we summed over the

y-dimension.

Figure 4.9 shows the Green’s functions for the 1- and 10-scatterer cases. At first glance,

these individual results look approximately the same; however, both plots are scaled with

respect to themselves. To clearly see any differences, the 1-scatterer data must be approx-

imately scaled to the magnitude of the 10-scatterer data before subtracting the two. We

find an interesting scaled difference result. A rounded propagation feature exists in the

1-scatterer case but is diminished (if not absent) in the 10-scatterer case. This rounded

feature is due to the strong circular scattering signal in the 1-scatterer case. In order to

better view how this feature merges with the stronger TD feature, we also include an overlay

of the scaled difference with the scaled 10-scatterer case. The approximate start time of

the feature can be seen in the t = 200 row of Figure 4.3, as the characteristic differences

between the 1 and 10 scatterer simulated data. The presence of the rounded feature could

be further explored by studying the rate at which the feature diminishes with increasing n,

and how large n needs to be in order to reasonably neglect the feature. However, delving

into those details is beyond the scope of the current work. We simply note that we use a

multiple-scatterer case moving forward to avoid this effect from the 1-scatterer assumption.

For reference, we also show the Green’s function results for the incident (Figure 4.10)

and total (Figure 4.11) wavefields. As expected, there is no difference between the incident

wave TD results, since the incident wave packet designated in both cases is exactly the

same. In the total wavefield results, the scattered wave signal is too weak to be seen

compared to the incident wave signal, for both the 1-scatterer and 10-scatterer cases (the

scattered wave signal being 2-3 orders of magnitude smaller than the incident wave signal).

The (unscaled) difference clearly shows both the forward and backscattered waves (the

incident wave contribution is effectively canceled out); however, the apparent scattering

mainly comes from the 10-scatterer case since the scattered wave magnitude is 10× larger

than that of the 1-scatterer case. This is the same reason why the rounded propagation

feature from Figure 4.9 is not visible. One might conclude that if the 1-scatterer data were
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Figure 4.9: The Green’s function results for the 1- and 10-scatterer scattered wave simulation
data are shown in the left and left-center images, respectively. The x-axis has units of
pixels, while the time steps on the y-axis are in seconds (dt = 45 s). The vertical dashed
line indicates the x-location of the scatterers. Note that if the t = 0 data from these
two figures were plotted, the results would give Figure 4.8. These images are shown to
scale with themselves, so for comparison purposes the scaled-difference (right-center) and
scaled-difference overlaid with the scaled-10-scatterer case (right) are also shown.

scaled in the difference between total waves (as was done in the scattering-only difference),

the rounded propagation feature would appear here too. On the contrary, scaling the 1-

scatterer, total-wave data would scale both the incident and scattered wave signals from

the 1-scatterer case. Thus, the incident signal would still dominate and drown out all the

scattered signals.
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Figure 4.10: Similar to Figure 4.9, the Green’s function results for the 1- and 10-scatterer
incident wave simulation data are shown in the left and left-center images, respectively.
The x-axis has units of pixels, while the time steps on the y-axis are in seconds (dt = 45
s). The vertical dashed line indicates the x-location of the scatterers. These images are
shown to scale with themselves, so for comparison purposes the difference (right-center) and
difference overlaid with the 10-scatterer case (right) are also shown. As expected, there is
no difference between the incident wave linear TD results, since the incident wave packet
designated in both cases is the same. Thus, the right-hand image is a mirror of the left and
left-center images.
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Figure 4.11: Again similar to Figure 4.9, the Green’s function results for the 1- and 10-
scatterer total wave simulation data are shown in the left and left-center images, respectively.
The x-axis has units of pixels, while the time steps on the y-axis are in seconds (dt = 45
s). The vertical dashed line indicates the x-location of the scatterers. These images are
shown to scale with themselves, so for comparison purposes the difference (right-center) and
difference overlaid with the scaled-10-scatterer case (right) are also shown. Although the
backscattered wave signal is too weak to be seen in both the 1-scatterer and 10-scatterer
cases by themselves, the difference clearly shows both the forward and backscattered wave
signals. The apparent scattering mainly comes from the the 10-scatterer case because the
scattered wave magnitude is 10× larger than that of the 1-scatterer case. The overlaid
image on the right shows both the incident and scattered wave parts together.
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What happens if we change the direction of propagation of the incident wave packet?

Figures 4.12-4.14 correspond to Figures 4.7-4.9 above, but with φi = 45◦. The scattering

points are positioned in the same locations as in the φi = 0◦ case. In Figure 4.12, notice

that the effect of the non-zero azimuthal orders shows in the 1-scatterer case as a change

in the direction of the strongest scattering so that it propagates parallel to the direction

of the new incident wave. The same is not as obvious in the 10-scatterer case, but the

strongest scattering clearly occurs at the scatterers closest to the incident wave packet

(as expected). Regardless, the scatterers still produce a linear interference pattern along

the y-dimension. Comparing the summed data from both 10-scatterer cases (φi = 0◦ and

φi = 45◦) in Figure 4.13, the summed amplitude magnitudes are similar. However, the

difference between the wave patterns is apparent. The Green’s functions in Figure 4.14

show a somewhat surprising result. The 10-scatterer case seems to have a double TD

signal, which is approximately symmetric in time about the 1-scatterer TD signal. The

double signals apparently occur as the incident wave packet passes either end of the column

of scatterers. While surprising, these results make sense since the column of scatterers is

symmetric about y = ny/2, where the 1-scatterer is located. From the difference plot, it is

apparent that 1) the maximum scattering amplitudes are on the same order of magnitude

(no scaling required) and 2) the 1-scatterer signal indeed falls in the center between the

double 10-scatterer signals. This φi = 45◦ study is mainly a curiosity-driven comparison

investigation and no further analysis has been pursued for this dissertation.
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Figure 4.12: Examples of the simulated real scattered wave functions for a single scatterer
(left) and a column of ten scatterers (right) at t = 0. Axes are in units of pixels. Greyscale
colors indicate wave amplitude (black/white is minimum/maximum, grey is average), al-
though the incident and scattered waves are not scaled with respect to each other since
the incident wave signal is actually 2-3 orders of magnitude larger than the scattered wave
signals. The incident wave packet (top) for these examples is initially in-phase at an angle
of 45◦ and a radial distance of nx/2 = ny/2 from the domain center. Note that these images
are the same simulated data as those in the top row of Figure 4.5.
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Figure 4.13: The simulated scattered data in the 10-scatterer cases from Fig-
ures 4.7 and 4.12, summed over the y-dimension. The x-axis has units of pixels, while
the summed amplitude has arbitrary units. Note that the summed amplitudes for both
incident angle cases have approximately the same magnitude. This data only shows the
t = 0 time step. Other time steps have similar amplitude magnitudes between the φi = 0◦

and φi = 45◦ cases. Stacking these summed amplitude data through time produces plots of
the time-dependent Green’s functions of the scattering.
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Figure 4.14: The Green’s function results for the 1- and 10-scatterer scattered wave simula-
tion data, with an incident angle of 45◦, are shown in the left and center images, respectively.
The x-axis has units of pixels, while the time steps on the y-axis are in seconds (dt = 45
s). The vertical dashed line indicates the x-location of the scatterers. Note that if the
t = 0 data from the 10-scatterer case was plotted, the results would give the left plot in
Figure 4.13. For comparison purposes, the difference (right) is also shown, with no scaling
applied.
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In summary, we have learned three things from this study, two of which are directly per-

tinent to the overarching research project. First, we confirmed that the intensity magnitude

of the summed simulated data directly scales by a multiple of the number of scatterers n

present in a line of scatterers. Second, while the main TD results for a single scatterer and

column of multiple scatterers are approximately the same (when scaled by the multiplicative

factor of n), the single scatterer produces an additional circular scattering effect that is not

apparent in the multiple scatterer result. Finally, for the multiple scatterers case, the first

two properties are partially dependent on the angle of incidence with respect to the line

of scatterers. They have been proven when the incident wave propagation is perpendicular

to the scattering line, but may differ as the angle becomes more acute with respect to the

axis of symmetry. However, ensemble theory suggests that if multiple random waves were

incident from a variety of angles, these angular effects would cancel to some extent. Fur-

thermore, the linear summation along the axis of symmetry would give TD results similar to

the purely perpendicular case, as proven in Section 3.2.3. The simulation has not been used

to explore the details of this line of reasoning in this dissertation, but could be investigated

in the future.

4.2.2 Applied Comparison of Cross-Correlation and Green’s Function

As mentioned in the previous section, there is a close relationship between the cross-

correlation and Green’s function of a set of data. Assuming that the source function is

white noise distributed everywhere acting at time t, Gouédard et al. (2008) state:

In the frequency domain, a white noise [source function] contains all the

frequencies with a random phase. In the time domain, this is a random wavefield

[modal sum of Green’s function] such that the position and the activation time

of each source are uncorrelated. (Gouédard et al., 2008, p.378)

However, when the frequencies are in-phase with no added noise, the sources in the wavefield

are automatically correlated. Therefore, it is not necessary to perform a cross-correlation
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on in-phase simulated data; however, the out-of-phase simulation must be cross-correlated

to retrieve a coherent TD signal. We can use the simulation to visualize this relationship.

Figure 4.15 shows the Green’s function results for the 10-scatterer simulated data with

an in-phase incident wave packet of φi = 0◦. The scatterers are located parallel to the y-axis

at x = nx/3, with spacing d = 5 pixels in the y-direction. As discussed in Sections 3.2.3 and

4.2.1, these results are produced by summing over the axis of symmetry, which corresponds

to the y-dimension in our case. The total wave and incident wave Green’s functions are

visibly indistinguishable because the resultant scattered wave is much weaker than the

incident wave. However, the scattered wave does contribute a small but significant signal,

including a backscattered wave signal. The backscattered wave is apparent in the scattered

wave Green’s function plot as the coherent signal to the left of the line of scatterers. Note

that this reflection occurs at the same point in time as when the incident wave passes the

scatterers.

Similarly, Figure 4.16 shows the Green’s function results of when the incident wave

modes are randomly phased. The scatterer locations and angle of incidence are the same as

for the in-phase case. In comparison to the in-phase Green’s functions, the random phase

results have strong signals throughout the duration of the simulation time. The strong

signals correspond to small, randomly coherent incident wave packets, as can be seen in

Figure 4.4.

We can physically see the role that performing the cross-correlation plays when we

apply it to the the randomly-phased Green’s functions. Although we have no choice but

use the total wave in actual solar data, we are free to cross-correlate the scattered wave

with the incident wave in the simulated data, which is effectively the same as the difference

in TD signals between the total and incident waves. This allows us to examine the purely-

scattered wave signal in detail. The scattered wave cross-correlation with respect to the

x = 0 incident signal is shown in Figure 4.17, along with the incident wave’s cross-correlation

with itself at x = 0 for reference. It is clear that the cross-correlation aligns the phases;

the cross-correlations in Figure 4.17 resemble the coherent signal of the Green’s functions
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Figure 4.15: The Green’s function results from the 10-scatterer, in-phase, φi = 0◦ simulated
data, corresponding to the simulated data represented in Figure 4.3. The x-axis has units
of pixels, while the time steps on the y-axis are in seconds (dt = 45 s). The total wave
(left) and incident wave (middle) results are indistinguishable since the scattered wave is
weaker than the incident wave. The scattered wave result (right) shows both a forward and
backward scattered wave to either side of the line of scatterers, which is designated by the
vertical dashed line.

in Figure 4.15.

We note here that there is only the forward propagating branch of the TD signals in

the simulated data, which is particularly clear in Figure 4.17. This is because we only have

incident waves propagating in one direction. If the various wave modes were randomized in

their incident angle, the backward propagating branch would appear in the TD results. As

it is, we do not need to consider any negative time lags in the simulated cross-correlation

results.

Because we focus on the in-phase simulated data in this chapter, the cross-correlation

calculations are not necessary and we only use the Green’s function results moving forward.
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Figure 4.16: The Green’s function results from the 10-scatterer, random phased, φi = 0◦

simulated data, corresponding to the simulated data represented in Figure 4.4. The x-axis
has units of pixels, while the time steps on the y-axis are in seconds (dt = 45 s). The
total wave (left) and incident wave (middle) results are indistinguishable since the scattered
wave is weaker than the incident wave. The scattered wave result (right) shows both a
forward and backward scattered wave to either side of the line of scatterers, designated
by the vertical dashed line. The random phase results have strong signals throughout the
duration of the simulation time, corresponding to small, randomly coherent incident wave
packets.

However, we note that the wave packet is in-phase at t = 0 and has shifted slightly out-of-

phase by the time it reaches the line of scatterers. The Green’s function results would more

accurately represent true TD results if the wave packet were exactly in-phase when incident

upon the scatterers. However, the phase shift is small enough that the approximation of

the Green’s function to TD results is reasonable.
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Figure 4.17: The cross-correlated results of the multiphased Green’s functions in Figure 4.16.
The x-axis has units of pixels, while the time lag on the y-axis is in seconds (dt = 45 s). The
cross-correlation between the scattered wave and the incident wave at x = 0 (left) produces
the same result as cross-correlating the total wave with itself at x = 0. The backscattered
wave diverges from the line of scatterers, designated by the vertical dashed line. The cross-
correlation of the incident wave with itself at x = 0 (right) crosses the line of scatterers at
the same time.

4.2.3 Statistical Analysis

When comparing noisy data, the difference between data will be even noisier. As has been

discussed, one of the main challenges in TD helioseismology is improving the signal-to-noise

ratio. It is difficult to perform any noise reduction techniques on the difference between

TD results without affecting the already weak signal. In many cases, the signal-to-noise
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ratio of the difference is so low that the signal and noise are virtually indistinguishable. The

question becomes, how can we determine which difference features are significant and which

are products of noise? The answer comes from performing a statistical analysis between the

two TD data sets. We present a new statistical method for comparing TD results, stemming

from the Student’s t-test analysis. Before presenting some results, we will briefly review the

equations needed to compute the t-statistic and its significance.

Assuming equal variances, the independent Student’s t-test statistic between two Gaus-

sian data distributions A and B is calculated as (Press et al., 1992, p.616)

t =
Ā− B̄

sAB

√
1
nA

+ 1
nB

,

sAB =

√
(nA − 1) s2

A + (nB − 1) s2
B

nA + nB − 2
,

(4.4)

where n∗ are the sample sizes, Ā and B̄ denote the sample means, s∗ are the sample

standard deviations, and s2
AB is an unbiased estimator of the common variance between the

two sampled data sets. The individual degrees of freedom are d.f.∗ = n∗ − 1, so the total

number of degrees of freedom d.f. = d.f.A+d.f.B = nA+nB−2. In the specific case where

nA = nB = n, these equations simplify such that d.f. = 2n−2 and sAB becomes the pooled

standard deviation. Note that the denominator of t is the standard error of the difference

between the means.

The significance of the t-statistic is calculated using an incomplete beta function, Ix(a, b)

(Press et al., 1992, p.226,228,616). The probability distribution Probt is dependent upon

the value of t and the total d.f. of the two samples. It is given by

Probt = 1− I d.f.
d.f.+t2

(
d.f.

2
,
1

2

)
. (4.5)

Statistically, Probt is the likelihood that, for the specified number of degrees of freedom, the
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observed difference of the two sample means would be smaller than the observed difference

if the means were the same. For t to indicate a significant difference at the 95% confidence

level, Probt ≥ 0.95 (significance level Ix(a, b) ≤ 0.05).

If we assume unequal variances between the two distributions, the independent t-test

statistic becomes (Press et al., 1992, p.617)

t =
Ā− B̄
sA−B

,

sA−B =

√
s2
A

nA
+
s2
B

nB
.

(4.6)

Now, s2
∗ are the unbiased estimators of the sample variances, but s2

A−B is not a pooled

variance. The individual degrees of freedom are defined the same as in the equal-variance

case, but the total number of degrees of freedom is now approximated as

d.f. =

(
s2A
nA

+
s2B
nB

)2[(
s2A
nA

)2
/ (nA − 1)

]
+

[(
s2B
nB

)2
/ (nB − 1)

] . (4.7)

This approximation is known as the Welch-Satterthwaite equation, and the unequal-variance

calculation of the t-statistic is called Welch’s t-test (Welch, 1947). The probability distri-

bution is calculated in the same way as for the equal-variance Student’s t-test.

We determine whether two distributions have significantly different variances by per-

forming an F -test (Press et al., 1992, p.619). The F -test tests the null hypothesis that

the two sample variances are equal. The F -statistic is the ratio between the variances, so

values of either F � 1 or F � 1 indicate highly significant differences. Again, the proba-

bility of producing a particular value of F if the variances are not equal (rejecting the null

hypothesis) is calculated using an incomplete beta function of the form (Press et al., 1992,
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p.226,229,619)

ProbF = 2I d.f.B
d.f.B+d.f.AF

(
d.f.B

2
,
d.f.A

2

)
. (4.8)

The factor of 2 arises because we are generally willing to reject the null hypothesis with

either very large or very small values of F , so the significance is “two-tailed” (the sum of

two incomplete beta functions, one “left”-tailed for very small F and one “right”-tailed

for very large F ). The incomplete beta function follows the symmetry relation Ix(a, b) =

1−I1−x(b, a), which indicates that the two tails are always equal so we only need to calculate

one tail and double it. Also note that if the distributions are highly similar, the two tails

can overlap. Such a scenario can produce probabilities greater than 1. This impossibility

is resolved by subtracting the too-large probability from 2 (the sum of the upper-limit

statistical probabilities (1) of both tails). With this in mind, a value of ProbF ≤ 0.05 implies

a 95% confidence in the rejection of the null hypothesis. In other words, the variances are

statistically different. We note that it is possible to have a value of F ' 1 with a statistically

significant ProbF rejecting the null hypothesis. In this case, we would assume the variances

to be statistically different, despite their similar values.

Our use of the t-tests is slightly different from the standard definitions described above.

We want to look at a “map” of the differences between TD results, instead of the difference

of the averages. Therefore, instead of subtracting the full-data averages in the numerators

of Equations 4.4 and 4.6, we use a “superpixel” method, taking the difference between a

running-average of a p × p array around corresponding points in the two TD plots, and

using the statistics of those superpixels. For example, a 3×3 superpixel would have n∗ = 9,

and the average and standard deviation of this array would constitute Ā (B̄) and sA (sB)

in the t-statistic equations, respectively. Edges are taken into account in the statistics. The

F and ProbF values are calculated to determine whether the similar- or unequal-variance

equations should be used for each superpixel. The corresponding probability maps are

produced using Equation 4.5. To create a difference map of only the statistically significant

differences, we threshold the subsequent probability maps to above 95% significance and
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then mask the t-statistic maps by the probability threshold maps. We note that using the

superpixel method loses some resolution due to the localized averaging. We are currently

investigating alternative statistical comparison techniques, which are beyond the scope of

this dissertation.

For the simulation, we statistically compare the in-phase scattered wave Green’s function

results between the 1-point and 10-point scattering cases, first for φi = 0◦ (Figures 4.18-

4.22) and then for φi = 45◦ (Figures 4.23-4.27). In both simulation comparisons, we show

the 3× 3 and 5× 5 superpixel results for contrast, considering that different resolutions of

the spatial averaging will affect the statistical results (as mentioned above).
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.18: Student’s t-test results between the Green’s functions of in-phase, φi = 0◦

scattering off of 1 and 10 scatterers. The x-axis has units of pixels. Both the 3 × 3 (left)
and 5× 5 (right) superpixel calculations are shown.
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.19: Student’s t-test significance of differences results reflecting the statistical sig-
nificance of the t-statistic results shown in Figure 4.18. The x-axis has units of pixels.
Again, both the 3× 3 (left) and 5× 5 (right) superpixel calculations are shown. Note that
darker shades indicate higher significance.
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3 × 3 superpixel

5 × 5 superpixel

Figure 4.20: Histograms of the significance distributions in Figure 4.19. Both the 3 × 3
(top) and 5 × 5 (bottom) superpixel cases are shown. All significance left of the vertical
dash-dotted line indicates significant differences (significance level ≤ 0.05; probability of
significance = 95%) between the 1 and 10 scatterer cases, while the dashed line indicates
highly significant differences (significance level ≤ 0.01; probability of significance = 99%).
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.21: Binary Student’s t-test significance results from Figure 4.19, masked to above
95% probability of significance. The x-axis has units of pixels. Again, both the 3 × 3
(left) and 5× 5 (right) superpixel calculations are shown. Note that black regions indicates
statistically significant differences; white, statistically insignificant differences.
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.22: Student’s t-test results from Figure 4.19, masked to above 95% probability of
significance. The x-axis has units of pixels. Again, both the 3 × 3 (left) and 5 × 5 (right)
superpixel calculations are shown. In either case, the main region of difference between the
TD signals is passed through as statistically significant.
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For the in-phase, φi = 0◦ Green’s function case, Figure 4.18 shows the initial t-statistic

results comparing 1-scatterer versus 10-scatterers, calculated with our “superpixel” versions

of Equations 4.4 and 4.6. Results from both a 3×3 and 5×5 superpixel are shown. For each

running-average set of superpixels, the F and ProbF values (Equation 4.8) are calculated

and used to determine whether the similar- or unequal-variance t-test equations will be used

for the statistical analysis of those localized data. Looking at the results of the significance

tests in Figure 4.19, computed using Equation 4.5, the 5 × 5 superpixel case finds more

less-significant differences than the 3 × 3 superpixel case, as expected due to the broader

averaging scheme of the former. However, both probability calculations seem to identify a

significant difference in the main wave propagation features. Figure 4.20 shows histograms

of the significance values for the 3 × 3 and 5 × 5 superpixel cases. If we apply a binary

threshold at the 95% significance level, displayed in Figure 4.21, we can then use the results

as a mask of the t-test data so that only the significant differences are displayed, as in

Figure 4.22. For both superpixel cases, the main wave propagation features of the t-test

results qualify as statistically significant differences, for both the transmitted and reflected

portions of the scattered wave.

Similarly, for the in-phase, φi = 45◦ Green’s function case, Figure 4.23 shows the initial

t-statistic results comparing 1- versus 10-scatterers, using a 3 × 3 and 5 × 5 superpixel.

Again, the F -statistic and ProbF values are used to determine which superpixel locations

require similar- or unequal-variance calculations. Like before, Figure 4.24 clearly shows

that the 5× 5 superpixel result has more instances of lower-significance of differences than

the 3 × 3 result, but both seem to indicate that the main wave features are of higher

significance. Figure 4.25 displays the histograms of the significance values for the two

superpixel cases. Applying the binary threshold at the 95% significance level, we produce

the significance masks in Figure 4.26. The most obvious difference between the 3 × 3 and

5 × 5 superpixel cases here is that the increased averaging (lower resolution) of the 5 × 5

superpixel case loses some of the main backscattered wave signal. The masked t-test results

are displayed in Figure 4.27. The two results are somewhat difficult to differentiate, but the
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.23: Student’s t-test results between the Green’s functions of in-phase, φi = 45◦

scattering off of 1 and 10 scatterers. The x-axis has units of pixels. Both the 3 × 3 (left)
and 5× 5 (right) superpixel calculations are shown.

statistically significant differences in the main TD signals have already been made apparent

by Figure 4.26.

Other statistical comparisons between simulated Green’s function results (e.g., total

waves, randomized phases, cross-correlated, etc.) were also performed but we will not

present them all here. Further investigations into these distinctions, as well as the statistical

analysis between other wave-parameter combinations, are areas of future work.
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.24: Student’s t-test significance results reflecting the statistical signbificance of the
t-statistic results shown in Figure 4.23. The x-axis has units of pixels. Again, Both the
3 × 3 (left) and 5 × 5 (right) superpixel calculations are shown. Note that darker shades
indicate higher significance.
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3 × 3 superpixel

5 × 5 superpixel

Figure 4.25: Histograms of the significance distributions in Figure 4.24. Both the 3×3 (top)
and 5 × 5 (bottom) superpixel calculations are shown. All significance left of the vertical
dash-dotted line indicates significant differences (significance level ≤ 0.05; probability of
significance = 95%) between the 1 and 10 scatterer cases, while the dashed line indicates
highly significant differences (significance level ≤ 0.01; probability of significance = 99%).
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3 × 3 superpixel 5 × 5 superpixel

Figure 4.26: Binary Student’s t-test significance results from Figure 4.24, masked to above
95% probability of significance. The x-axis has units of pixels. Again, both the 3 × 3
(left) and 5× 5 (right) superpixel calculations are shown. Note that black regions indicates
statistically significant differences; white, statistically insignificant differences.

130



3 × 3 superpixel 5 × 5 superpixel

Figure 4.27: Student’s t-test results from Figure 4.24, masked to above 95% probability
of significance. The x-axis has units of pixels. Again, both the 3 × 3 (left) and 5 × 5
(right) superpixel calculations are shown. In either case, the main region of difference
between the TD signals is passed through as statistically significant with the exception of
the backscattered wave signal at earlier time steps in the 5× 5 superpixel case (as seen in
Figure 4.26).
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4.3 Results

For the simulated data in our linear TD method, we use 10 scattering points parallel to

the y-axis, centered around y = ny/2, along x = nx/3 with a spacing d = ∆y = 5 pixels.

The incident wave packet is in-phase along the edge of the domain at t = 0, with an

incident angle of φi = 0◦. As stated in Section 4.1, the spatial resolution is 0.729 Mm/pixel.

The simulation is created for a total duration of 8 hours, with a 45 second cadence. The

harmonic degrees range between 600 ≤ ` ≤ 1200 with a spacing ∆` = 30; the azimuthal

modes include 0 ≤ m ≤ 3. Examples from this data set were presented in Figure 4.3.

Figure 4.15 shows the Green’s function results for the above case. As discussed in

Sections 3.2.3 and 4.2.1, the results are produced by summing over the axis of symmetry

in the simulated wavefield. The total- and incident-wave Green’s functions are visibly

indistinguishable because the resultant scattered wave is much weaker than the incident

wave. However, the scattered wave contributes a small but significant signal, including a

backscattered wave signal. Note that the coherent scattered signal occurs at the same time

as when the incident wave packet passes the line of scatterers, as expected.

Recall that the goal of creating this simulation was to test the linear TD scheme for

an elongated scattering region, specifically on a data set of which we know and can control

the input parameters. For this purpose, we have shown that the linear TD results produce

significant differences when applied to a domain with an elongated scattering region versus

a circularly symmetric scattering region. This suggests that using usual TD methods on

features that are radially asymmetric may produce results with signatures of the anisotropy,

and that the shape of the feature must be taken into account. Furthermore, our new linear

technique successfully enhances the linear interference pattern from the line of scatterers,

while reducing the dimensionality (and therefore computational time) of the TD analysis.

Additionally, our method can easily be extended in future research to study cases in which

the array of scatterers is not linearly aligned.

We also performed a modified Student’s t-test comparison of the scattered Green’s

function results between the 1- and 10-scatterer cases, using a new superpixel method.
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These differences are found to be statistically significant. Some work has been done toward

comparing the total and incident Green’s function results for the 10-scatterer case, and

the t-test results indeed return the scattered wave results (since the t-statistic is essentially

a difference). However, the difference is not found to be statistically significant, despite

the match to a known result. This most likely has to do with the spatial averaging of our

superpixel t-test method, which loses resolution in the local differences between data. In the

future, we need to determine alternate ways of calculating the localized t-test probabilities

so that we can better calculate and interpret these significance results. In the mean time,

this method of statistical analysis is promising for the comparison of differences in our

simulated scattering results. We will also apply it to the HMI data in Chapter 5 to see if

we can detect statistically significant differences between the quiet sun and our coronal hole

data. There is growing interest in the local helioseismology community for the statistical

error analysis of data and results, and this method is a step in that direction.

We have not presented the travel time calculations for this simulated data set. One

drawback of the parameters selected is that there is no negative branch of the TD results,

and therefore we cannot measure a meaningful τ−. Without both the positive and negative

travel times, we also cannot calculate meaningful mean and difference travel times. Thus,

the travel times do not contribute much information about the current simulation results.

Future work might include adjusting the input parameters such that the incident angle

and initial mode phases are randomized, which would then produce both branches of the

cross-correlation.

One of the next steps of this research that we are currently investigating is the isolation

and enhancement of backscattered signals. This process involves phase-speed shifting, men-

tioned in Section 3.2.2.1. The phase speeds can be approximated by the calculated travel

times. Since the backscattered signal is extremely weak in the solar data but is clear in the

simulation, we are again using the simulation as a test case prior to applying the analysis

to the HMI data. For this purpose, the measured travel times will be important.
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As mentioned above, potential future work with the simulation includes adjusting var-

ious input parameters and analyzing the differences in the TD results, expanding from a

linear array of scatterers to more general scattering geometries, looking at the statistical

differences between various other combinations of parameters, and testing alternative sta-

tistical analysis methods for comparing total wave results. We are also currently working

on isolating and enhancing the simulated backscattered signal, the method of which we will

then apply to our coronal hole data. There are may other possibilities for working with the

simulated data, such as incorporating wave attenuation and absorption to mimic the affect

of a magnetic field, or adding various noise distributions.
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Chapter 5: Wave Scattering Analysis & Results

We now discuss the SDO/HMI Dopplergrams and the application of our linear TD method

to solar data. We begin by briefly discussing the data product specifications and the retrieval

process. We then consider the linear TD analysis of two different data sets and their results,

as well as a statistical comparison between the results.

Similar to the AIA data discussed in Chapter 2, the SDO/HMI data is downloaded

from the JSOC archive. Unlike the AIA data, however, the HMI Dopplergrams are already

processed and partitioned from full-disk images into smaller mapped regions that cover

areas of 30◦ × 30◦ over 8-hour intervals. These time-distance products are tracked at the

differential rotation rate of the sun, and mapped into heliographic coordinates via Postel’s

projection. The resultant data cubes have dimensions of 512 × 512 × 640, with a spatial

resolution of 0.06◦/pixel (∼ 0.729 Mm/pixel), and a temporal cadence of 45 s. The data is

archived in the JSOC series hmi.tdVtrack.

Just as with the AIA data, the exported HMI data is rice-compressed. We again use

the fitsio read image.pro routine to decompress the FITS file and read the data. We then

take the Fourier transform of the data using IDL’s FFT(data) function, and filter the

transformed datacube to isolate the f -mode using the FTC filter described in Section 3.2.1.

The filtered data is then transformed back into the spatial/temporal domain, again with

FFT(data,/INVERSE). Our code that performs this process is entitled filter yesf.pro.

The uncompressed header information is then updated and saved with the uncompressed,

f -mode-filtered HMI data. This form of the data is what we use for the duration of the

analysis. The routine that encompasses this whole procedure is called process HMI data.pro.

After performing the post-processing procedure on the corresponding AIA data (Sec-

tions 2.1.3-2.1.4), we apply the same rotation and cropping procedure on our HMI data.
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We add the rotate and crop parameters to the header metadata and adjust other affected

parameters, such as the size of the spatial dimensions. This is the final iteration of the

data, on which we will perform our linear TD analysis. We also compute and store the new

bounding box information, for reference and to check against the AIA bounding box. This

code is called post process HMI.pro.

We perform our analysis on two different HMI data sets. First, we investigate a quiet

sun region as a reference data set (Section 5.1). Next, we perform the analysis on our quasi-

linear coronal hole data in Section 5.2. Finally, in Section 5.3, we discuss the statistical

differences between the results.

5.1 Quiet Sun Data

5.1.1 HMI Data

The quiet sun data is from November 13, 2013, starting at 12:00 AM. It is centered around

Carrington Heliographic longitude 112.9◦ (corresponding to a Stonyhurst longitude of 0◦;

central meridian) and latitude 0◦ (equator). For reference, the mid-time step AIA data is

shown in Figure 5.1 and the corresponding f -mode filtered HMI data is shown in Figure 5.2.

We note that this quiet sun data set is observed at a different latitude than our CH data,

which could affect the comparative results later in Section 5.3. However, because our method

for statistical comparison is an initial attempt and will likely be improved in the future, we

are not concerned about the differing latitudes within the scope of this dissertation. We

will address this issue in the future.

There is technically no need for the rotation and cropping of the quiet sun data, since

there is no boundary feature to align. However, we perform these image processes for

consistency when we later compare results with the coronal hole data.

Implementing our linear technique, we sum over the y-dimension of the processed data.

Again, this is not specifically necessary for the quiet sun data. We do so 1) to isolate the

east-west signal of the random wavefield for comparability with the coronal hole data, 2) for
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Figure 5.1: SDO/AIA cutout images on Nov. 13 2013 at 4:00AM (middle of observation) in

wavelengths 304 �A (top left), 171 �A (top right), 193 �A (bottom left), 211 �A (bottom right).
The images shown are log10 scale of the data. Both axes have units of pixels. Recall from
Section 2.1.1, 1 AIA cutout pixel = 0.0359◦ ' 0.436 Mm.

the convenience of working in only one spatial dimension, 3) to improve the signal-to-noise

ratio, and 4) since a truly random wavefield should not be affected by an assumed symmetry

anyway. As a matter of interest and to compare to the summed Green’s function results of

the simulation, we show the summed quiet sun data in Figure 5.3.

We perform the shift with respect to various reference lines, as discussed in Section 3.2.2.1.

For the quiet sun, we do not care about preserving the location of a feature and we want to
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Figure 5.2: SDO/HMI tracked Dopplergram image on Nov. 13 2013 at 4:00AM (middle of
observation). The data has already been filtered for the f -mode. Both axes have units of
pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.

improve the signal-to-noise ratio as much as possible. TD results are calculated for all possi-

ble reference lines of the data. Each result is then shifted by its reference line location, such

that the source-receiver distance ∆ becomes the dependent variable. The shifted results are

then averaged to produce the final TD result, which we will discuss in the following section.

We also measure and present the shifted travel times for the quiet sun data. Theoretically,

the shifted travel times of the quiet sun region should be 0-valued throughout, since we are

comparing C0 with C0. We will see that this is true for the travel times of the full quiet

sun region, but not quiet true for sub-regions of interest.

5.1.2 Time-Distance Results

The averaged, shifted TD result for our quiet sun region is shown in Figure 5.4. Examples

of the resultant cross-correlations (for ∆ = 0, 7, 15) are shown in Figure 5.5. As expected,

the strongest cross-correlation is at (∆, t) = (0, 0), where the data is being compared to

itself with no time lag.

The quiet sun travel times are measured with the method described in Section 3.2.2.2.
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Figure 5.3: The f -mode filtered SDO/HMI quiet sun data, after summing over the y-
dimensions. The time step along the y-axis has units of seconds (dt = 45 s). The x-axis
has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.

We use a temporal sampling rate h = 1 because our lags change in discrete increments

(ti = ih), although dt = 45 seconds. To measure the unshifted travel times, we use the

unshifted TD results as our main cross-correlation term C(x1, x2, t) in Equation 3.23, and

the shifted cross-correlations described above as C0(∆, t) in Equations 3.23 and 3.24. The

unshifted travel time results are shown in Figure 5.6. The shifted travel time results are

shown in Figures 5.7, 5.8, and 5.9, and are measured (respectively) using the shifted-average

quiet sun TD results from the full data set, a sub-region the size of the CH region, and a

sub-region the size of the region outside the CH. This is mainly done for later comparison

with the shifted travel times from the CH sub-regions.

The unshifted travel time results are shown in Figure 5.6. The mean positive travel
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Figure 5.4: The TD plot of the f -mode filtered SDO/HMI quiet sun data, after summing
over the y-dimension. Time lag t has units of seconds (dt = 45 s). ∆ has units of pixels.
Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. The TD results were calculated for all possible
reference lines, and were subsequently shifted with respect to each reference line. The
shifted results were then summed to create this result, with an improved signal-to-noise
ratio.

time τ̄+ is a positive value, while the mean negative travel time τ̄− is negative. We expect

that the opposite of this result might be partially due to solar rotation, as mentioned in

Section 3.2.2.2. Yet because we rotated the data, our x-dimension does not directly corre-

spond to an east-west flow, and is more along the lines of “east northeast-west southwest”

140



in direction. This could account for the apparent “reversal” of underlying flow in our quiet

sun results. There seem to be no notable wave-speed perturbations in τmean. This is ex-

pected for a quasi-isotropic and homogeneous quiet sun region. The mean of τdiff is also

positive, (as expected based on its definition and the values of τ̄+ and τ̄−) which indicates

an underlying flow in the −x direction. We note that deviations in these travel time mea-

surements are within the noise level of the results, and the average values of the positive

and negative travel times are close to τ̄± = 0 within one standard deviation. Also note that

there is a larger signal-to-noise ratio closer to ∆ = 0, as we might expect from the example

C0(∆, t) plots in Figure 5.5. This dependence of signal-to-noise on ∆ should become more

significant for noisier travel time measurements.

We reiterate that for a non-rotated data cube, the results in the ±x direction would

correspond to the east-west direction. An underlying flow in the +x direction might then

be indicative of solar rotation, which rotates from east to west. However, when interpreting

our travel time results, it is important to remember that our data is rotated. Therefore,

our ±x direction is more akin to a “east northeast-west southwest” flow.

Recall that τdiff is sensitive to variations in flows and τmean is sensitive to sound speed

perturbations. Therefore, the physical interpretations of our unshifted quiet sun results

are that 1) there are not strong differences in the plasma flows through which the f -mode

waves are traveling in the quiet sun and 2) there are not cogent sound speed perturbations,

such as drastic changes in temperature, in this quiet sun region. Of course, these results

only consider flows and wave-speed perturbations in the ±x direction due to our use of the

linear TD technique. However, when looking at elongated boundary features, these effects

should be most notable in the direction perpendicular to the boundaries.

Although we mainly need the shifted travel times for comparison with the similar CH

results, we can still consider some stand-alone implications of the shifted quiet sun travel

time results. Figure 5.7 shows the measured travel time variations over the full quiet sun

domain, which are non-existent. These plots may seem uninteresting because there is no

variation in the travel times. However, this 0-result is due to the fact that we are essentially
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comparing our C0(∆, t) to itself. We expect 0-variation when making this comparison, so

these results act as a sanity check of our travel time calculations. Also, this leads us to the

conclusion that the variations seen in Figures 5.8 and 5.9 are indicative of the noise that

is introduced when we compute the travel times in sub-regions using the C0(∆, t) derived

from the average of the full dimension of the TD data (in other words, when C(∆, t) and

C0(∆, t) have different signal-to-noise ratios).
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Figure 5.5: Example reference cross-correlations, derived from the quiet sun data, used in
the travel time measurements. Time lag t has units of seconds (dt = 45 s). ∆ has units of
pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.
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Figure 5.6: The τ+(xs, xr) (top left), τ−(xs, xr) (top right), τmean(xs, xr) (bottom left), and
τdiff(xs, xr) (bottom right) travel time measurements from the quiet sun data. Both axes
have units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. Travel times are indicated in
greyscale, with black and white corresponding to shortest and longest times, respectively.
We note that there is a visible pattern of horizontal and vertical lines; as of yet, we cannot
conclude about the source of the pattern, but it is under investigation.
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Figure 5.7: The τall
+ (∆) (top left), τall

− (∆) (top right), τall
mean(∆) (bottom left), and τall

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the full quiet sun
data. Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI
pixel = 0.06◦ ' 0.729 Mm. These plots may seem uninteresting because there is no variation
in the travel times. However, this is because we are essentially comparing our C0(∆, t) to
itself. We expect 0-variation when making this comparison, so these results act as a sanity
check of our travel time calculations. Also, this leads us to understand that the variations
seen in Figures 5.8 and 5.9 are indicative of the noise that is introduced when we compute
travel times in sub-regions when C(∆, t) and C0(∆, t) have different signal-to-noise ratios.
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Figure 5.8: The τ in
+ (∆) (top left), τ in

− (∆) (top right), τ in
mean(∆) (bottom left), and τ in

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the quiet sun
region, for a sub-region of the size of the CH region in Section 5.2. Travel times have units
of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.
These travel times are for reference and later comparison with the shifted travel times in
Figure 5.13. They also give some idea of the noise difference in travel times measured using
the shifted-average of the full dimensional data set, and those obtained from the sub-region.
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Figure 5.9: The τout
+ (top left), τout

− (top right), τout
mean (bottom left), and τout

diff (bottom

right) travel time measurements from the shifted TD results of the quiet sun region, for a
sub-region of the size of the region outside the CH in Section 5.2. Travel times have units
of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.
These travel times are for reference and later comparison with the shifted travel times in
Figure 5.14. They also give some idea of the noise difference in travel times measured using
the shifted-average of the full dimensional data set, and those obtained from the sub-region.
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5.2 Coronal Hole Data

5.2.1 HMI Data

The CH data is from February 5, 2014, starting at 8:00 AM. It is centered around Car-

rington Heliographic longitude 82◦ (corresponding to a Stonyhurst longitude of 0◦; central

meridian) and latitude 24◦ (equator). The HMI data corresponds to the AIA data discussed

in Sections 2.1 and 2.2. This data is visibly indistinguishable from that shown in Figure 5.2,

so we will not share an example time step.

Having performed the rotation and cropping designated by the EUV results, we must

convert the detected CH and width boundary locations from AIA pixels to HMI pixels.

As mentioned in Section 2.1.1, the HMI data has a different pixel scale than that of the

AIA data. However, both data sets, by our design, are in Postel-projected heliographic

coordinates and cover the same bounding box of the solar disk. The heliographic locations

of the CH inflection point and boundaries are the same regardless of the data set. It

is therefore a somewhat trivial task to convert the AIA pixel locations into heliographic

coordinates, and subsequently those coordinates into HMI pixel locations. To do so, we

use some of the WCS routines already outlined in Appendix A.1. Namely, we use the

SSW function wcs get coord.pro on the specific AIA pixels with the AIA WCS structure

to retrieve the associated heliographic coordinates, followed by wcs get pixel.pro on those

coordinates with the HMI WCS structure to get the associated HMI pixels. The HMI

WCS structure is produced from the FITS header using the function fitshead2wcs.pro. We

again note (as we did in Chapter 2) that the AIA WCS structure must be corrected after

downloading that data series, as shown in Appendix A.2. Other than updating the AIA

metadata, the procedure for converting the AIA pixels to HMI pixels is encoded into our

routine convert aia2hmiloc.pro. After running the conversion code, we find the necessary

HMI locations as follows: a central CH location at x = 268, a lower width boundary location

at x = 260, and an upper width boundary at x = 276. It is interesting to note that the

boundary width is still symmetric about the detected center, which was one of our original
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criteria for choosing width-detection parameters from the EUV data in Section 2.2.

Again, we perform a summation over the y-dimension of the CH data to exploit the

assumed translational invariance of the boundary. There is still no apparent distinction

between the CH data and the quiet sun data at this point. The same is true of the TD

results of the summed CH data. However, as mentioned in Section 3.2.2.1, if we take the

shifted average of these TD results, we lose the specific spatial information with respect

to the CH boundary. In order to compare the TD results within the CH region to the

nearby quiet sun or the completely unrelated quiet sun results of Section 5.1.2, we split the

unshifted CH data at the boundary. We can then choose to take a shifted average inside or

outside the hole for comparison, or compare the unshifted regions (full set or sub-regions)

with reference cross-correlations.

We add here that while we cannot shift the CH TD results with respect to all available

reference lines without losing the boundary location, we will consider alternatives in the

future backscatter-detection project mentioned at the end of Chapter 4, which is outside

the scope of this dissertation. We plan to shift the data with respect to the detected

CH boundary in order to enhance the scattered signal in the interaction region of the CH

boundary, after testing this method on the simulated backscattered signal.

5.2.2 Time-Distance Results

The shifted TD plots of the CH data are shown in Figure 5.10, for 1) an averaged shift

across the entire domain, 2) that for reference lines located inside the CH region, and 3)

similarly for the region outside the CH boundary. We note that the shifting of the inner and

outer data is bounded by the width locations, as opposed to the detected-center location

of the CH boundary. As usual, the distinctions between the three cases are difficult or

impossible to see. However, upon comparison of the inside-CH and outside-CH results, it is

possible that the negative branch of the TD signal is attenuated more quickly and at shorter

distances in the region outside the CH than within the CH region. We will investigate this

possible difference further in Section 5.3.

149



Figure 5.10: Averaged, shifted TD plots of the f -mode filtered SDO/HMI CH data, after
summing over the y-dimension. Time lag t has units of seconds (dt = 45 s). ∆ has units of
pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. The left-most TD result are calculated
from all possible reference lines, ignoring the location of the CH boundary. The center plot
shows the average shifted result from only those reference lines inside the CH region. The
right-hand result is similarly that of the region outside the CH boundary. The three cases
are highly similar, although it is possible that the TD signal in the outer region is attenuated
faster than inside the CH. This difference will be investigate further in Section 5.3.

We will not show examples of the unshifted TD data, although we do use the three

cases (“in”, “out”, and “all”) of the unshifted and shifted data to measure travel times. We

use the same C0(∆, t) as was used to measure the travel times for the quiet sun data in

Section 5.1.2, which was derived from that data set (see Figure 5.5).

We do not expect to see strong implications of horizontal flows or wave-speed pertur-

bations in the travel times because CHs are not strongly magnetic or turbulent features.

However, as discussed in Section 1.1, CHs are known to have outflows that cause decreased

density and electron temperature in the solar atmosphere. It is uncertain whether these

properties are noticeable at the surface but if so, they may manifest as differences in the

measured travel times or attenuation rate between the CH region and the quiet sun.
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For the unshifted travel time results, we find travel times dependent on both the source

and receiver points, similar to those measured for the quiet sun data. The travel times

measured across the entire domain of the CH data are shown in Figure 5.11, with indications

of the CH boundary location. Compared to the quiet sun travel times in Figure 5.6, these

results appear slightly noisier throughout. This is likely due to our use of reference cross-

correlations, which fit much of the noise in the related quiet sun data. Using the same

reference with completely unrelated data, even another quiet sun region, will propagate the

uncorrelated noise variations through into the travel times. We also still see a dependence

of the signal-to-noise ratio on ∆, as discussed in Section 5.1.2.

As predicted above, these unshifted results do not show any substantial flows or wave-

speed perturbations. There could be differences between the travel times of the waves inside

and outside the CH boundary. We are currently working on ways to test for the significance

of any differences between the inner and outer unshifted travel times. We will not consider

this issue in this dissertation, but it is a current topic of study. However, we can state

that the average τ̄+ and τ̄−, as well as τ̄diff, taken over the entire domain indicate a slight

uniform flow in the +x direction, as opposed to our quiet sun results in Section 5.1.2. Those

averages taken specifically for the travel times within and outside of the CH region indicate

the same result. We note again, however, that the standard deviations for all these results

are at least one order of magnitude larger than the calculated means, so we cannot conclude

anything about these flow results with certainty.

The travel times between two shifted data sets are not usually measured. However, if

we want to look for very subtle differences between the travel times inside and outside the

CH region, it seems that improving the signal-to-noise as much as possible is desirable. The

resulting travel times will only be a function of ∆ instead of combinations of sources and

receivers. With our linear TD method, ∆ only describes distances along the ±x direction,

so the resulting travel times can be interpreted similarly to the usual “unshifted” travel

times.

The results of the shifted travel time measurements are shown in Figures 5.12, 5.13, and
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5.14 for the full domain, the region within the CH boundary, and the outer quiet sun region,

respectively. Again, the signal-to-noise ratio is largest when ∆ = 0. It is difficult to see

from the plots what the travel times are suggesting. However, we can use the mean values

of the plots to inform ourselves about overall flows and wave-speed perturbations present

in the specified regions. We will also investigate the significance of differences in the shifted

results in Section 5.3.

For the shifted travel times through the full domain (Figure 5.12), the mean of the travel

time difference again suggests an underlying flow propagating in the +x direction. There

also seems to be some wave-speed perturbation affecting travel times between distances

of 150 < ∆ < 190 in the τmean results. Similarly in the CH region (Figure 5.13), the

mean of τdiff also indicates a flow in the +x direction. The wave-speed perturbation around

150 < ∆ < 190 is also still present in τmean, as well as another perturbation near ∆ = 90.

Interestingly, the mean flow outside of the CH (Figure 5.14) is in the −x direction, and

the wave-speed perturbation between 150 < ∆ < 190 seems to be a much more distinctive

feature. There is also a perturbation outside the CH near ∆ = 80, which could be affiliated

with the slight perturbation inside the CH at about the same distance. We point out that

the perturbation outside the CH has a negative effect on τmean, while the perturbation inside

the CH has a positive effect.

We note again that the mean flow results from the shifted travel times should be con-

sidered with some skepticism because the standard deviations of all these results are large

enough to cross a 0-mean value. On the other hand, the apparent wave-speed perturbation

features fall outside of one standard deviation in all three cases of τmean, suggesting that

the perturbations are of some significance. We investigate the significance of differences

between results inside and outside the CH, and compared with the quiet sun shifted travel

times, in the next section.
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Figure 5.11: The τ+(xs, xr) (top left), τ−(xs, xr) (top right), τmean(xs, xr) (bottom left),
and τdiff(xs, xr) (bottom right) travel time measurements from the full CH data. Both
axes have units of pixels. Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm. Travel times are
indicated in greyscale, with black and white corresponding to shortest and longest times,
respectively. The solid lines represent the location of the center of the CH boundary, while
the dashed lines indicate the width of the boundary. Where (xs, xr) are below/left of the
CH boundary, the travel times are measured within the CH region with respect to reference
lines inside the region. Likewise for (xs, xr) are above/right of the CH boundary, the travel
times are calculated outside of the CH region with respect to reference lines outside the
region. Similarly, for xs inside (outside) the boundary and xr outside (inside) the boundary,
the travel times are measured outside (inside) the CH region with respect to signals inside
(outside) the CH region. We again note that there is a visible pattern of horizontal and
vertical lines; as of yet, we cannot conclude about the source of the pattern, but it is under
investigation.
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Figure 5.12: The τall
+ (∆) (top left), τall

− (∆) (top right), τall
mean(∆) (bottom left), and τall

diff(∆)

(bottom right) travel time measurements from the shifted TD results of the full CH data.
Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel
= 0.06◦ ' 0.729 Mm.

154



Figure 5.13: The τ in
+ (∆) (top left), τ in

− (∆) (top right), τ in
mean(∆) (bottom left), and τ in

diff(∆)

(bottom right) travel time measurements from the shifted TD results inside the CH region.
Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel
= 0.06◦ ' 0.729 Mm.
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Figure 5.14: The τout
+ (top left), τout

− (top right), τout
mean (bottom left), and τout

diff (bottom

right) travel time measurements from the shifted TD results outside of the CH region.
Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel
= 0.06◦ ' 0.729 Mm.
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5.3 Statistical Comparisons

As done for the simulation analysis in Chapter 4, we want to statistically compare the

TD results obtained within the CH region to those from outside the CH boundary. First,

we will perform our “superpixel” Student’s t-test analysis on the shifted TD results from

Figures 5.4 and 5.10. Then we will use the same method to compare the shifted travel time

results from Figures 5.12, 5.13, and 5.14 with the similar quiet sun results in Figures 5.7,

5.8, and 5.9. For the shifted travel times, the superpixel method translates to a comparison

of smoothed running-averages of the 1D data.

We present four statistical comparison cases between the shifted-average TD results.

The basic differences between TD results in the four cases are mapped in Figure 5.15, for

comparison with the related superpixel t-test results. The statistical comparison between

the regions inside and outside of the CH boundary are shown in Figure 5.16; the full CH

data set versus the separate quiet sun data is given in Figure 5.17; Figure 5.18 displays

the significance of differences between the CH region and the unrelated quiet sun, and the

comparison of the quiet sun region near the CH boundary to the unrelated quiet sun region

is shown in Figure 5.19. We note that the comparisons are made between like-sized sub-

regions. For each case, we show both the 3× 3 superpixel results and the 5× 5 superpixel

results. The latter are more highly smoothed, and therefore have less spatial resolution than

the former; however, the increased number of data points used in the calculations improve

the statistics of the comparison.

We note that in the raw differences of the shifted TD data in Figure 5.15, there appear

to be numerous strong difference attributes. However, as mentioned in Section 4.2.3, the

superpixel method of comparison uses localized averaging, which loses some resolution in the

data. Therefore, certain features are clearly averaged out in the t-test results, including the

main TD branches, and no comparison of the small-scale differences between data sets can

be made. On the other hand, this highlights regions with large-scale significant differences,

and we can also compare more general properties of the main TD branch regions. Finally,

while the statistical results presented below are interesting, their causes and implications
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are as yet unclear. The application of hypothesis testing to TD results is a novel approach,

and further analysis needs to be done in the future to understand the full implications of

the statistical results. In light of this reservation, we will only point out some of the more

obvious and interesting results of the comparison cases.

Between the CH region and the nearby quiet sun (Figure 5.16), there is one region that

has large-scale significant differences, around ∆ = 75 and t = 45. It is difficult to interpret

the meaning of this feature, since it does not appear to be a strong feature in the raw “In

vs Out” difference image in Figure 5.15 and the smoothed statistical analysis interrupts

the feature in the t-statistic results. However, it seems that the feature propagates to both

shorter and longer distances, and into longer time lags. It is also not present in any of

the other shifted TD comparison cases, implying that this significant difference is unique

between the regions inside and outside of the CH.

Furthermore, we point out that between the averaged-out main TD branches in Fig-

ure 5.16, the negative branch of the main TD signal is truncated in both ∆ and t, as

compared to the positive branch. The difference is apparent in both the t-statistic map

and the significance mask. This could indicate greater attenuation or absorption of waves

propagating in the −x direction versus waves traveling in the +x direction. This result

is not apparent in the comparisons between the full CH region and the quiet sun region

(Figure 5.17) or between the region inside the CH and the quiet sun (Figure 5.18). It seems

to be present in the comparison between the region outside the CH and the unrelated quiet

sun (Figure 5.19), but is less distinct. This suggests that the difference in −x wave propa-

gation is unique to the quiet sun region just outside of our CH, and may be indicative of the

influence on waves entering a CH region. Future case studies would be useful for validating

this conclusion.

Collectively, these results suggest the presence of a wave front propagating through the

quiet sun toward the CH boundary, which is somehow disrupted in the boundary region. If

it were reflected by the boundary, we would “expect” to see some backscattered signal at

the boundary location. However, recall that shifting the TD data obscures the location of
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the boundary, so any backscattered signal is likely averaged out. It is also possible that the

wave is partially absorbed by the open magnetic field when it crosses the CH boundary, so

that the weakened propagating wave does not show up as a statistically significant difference

between the CH region and the unrelated quiet sun.

As mentioned above, these statistical results are interesting but their causes and impli-

cations are unclear as of yet. Further analysis is needed in the future to understand the

full implications of these results. Furthermore, we have not investigated the presence or

potential cause of a wavefront propagating towards the CH. It is possible that some nearby

solar activity produced such a wave, but we leave that determination to future work. We

also note that while we used our superpixel Student’s t-test method on this data, it is also

possible to use the traditional t-test considering that the shifted TD results are averages

of a set of unshifted data. We have performed an initial investigation into this form of the

analysis, the results of which support the conclusions presented above and possibly indicate

the presence of backscattering. However, that analysis is still currently under investigation

and is beyond the scope of this dissertation.

We now move on to the statistical comparison between the shifted travel time measure-

ments from the quiet sun and the various CH sub-regions. Recall that these travel times

were measured using the shifted TD results discussed above. They are therefore only de-

pendent on ∆. Again, the signal-to-noise ratio is largest close to ∆ = 0. The “superpixel”

t-test method used for the shifted TD comparions translates to a smoothed running-average

of the 1D shifted travel times. Multiple smoothing widths were tried, but only statistical

comparisons using a width of 7 “pixels” (3 data points on either side of a central point) are

shown. This smoothing value was chosen to improve the statistics, without losing too much

spatial resolution. Only the final ≥ 95% masked t-statistic results are presented.

In Figures 5.20-5.23, we look at the thresholded significance of difference between the

measured travel times between different sub-regions. Each plot shows the significant differ-

ences between its specified travel time measurement (i.e., the τmean and τdiff plots are not

the average and difference of the τ+ and τ− significant difference plots, but the compared
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significant differences between the τmean and τdiff results of two sub-regions).

In Figure 5.20, the statistically significant differences between the in-CH and out-CH

travel times indicate that the difference in the underlying flows is significant, and there is also

a significant difference in wave-speed perturbation between 70 ≤ ∆ ≤ 100. This is consistent

with the results of Figures 5.13 and 5.14. Interestingly, the wave-speed perturbation around

∆ = 150 is similar between the two regions and the difference is relatively small (although

still found to be statistically significant). This is likewise the case for the other sub-region

comparisons.

In Figure 5.21, the statistically significant differences in travel times between the full CH

and quiet sun regions are much smaller than the comparisons between other sub-regions.

This is most likely due to the fact that the full quiet sun travel times in Figure 5.7 are

exactly 0, which greatly affects the smoothed hypothesis test. If we accept the results of

this comparison as real, they indicate a difference in flows effecting small distances and

a possible wave-speed perturbation at ∆ = 100 that might correspond to the significant

wave-speed perturbation in the in-CH versus out-CH comparison.

In Figure 5.22, the t-test results comparing the region inside the CH with the unrelated

quiet sun region shows a significant net difference in flow, particularly for distances up to

∆ = 50. It also seems to indicate a strong wave-speed perturbation both around ∆ = 90

(similar to those seen in the other comparisons), and another strong perturbation near

∆ = 20 that was not apparent in the individual travel times (Figures 5.8 and 5.13). The

cause of this significant perturbation is currently unidentified, and is an item for future

investigation. It is possible that this feature is a signature of the wave propagation through

a CH versus a quiet sun region, particularly since it is not found as a strong feature in the

other travel time comparisons.

Finally, Figure 5.23 compares the quiet sun region outside of the CH to the unrelated

quiet sun region. Again, there is a strong indication of a wave-speed perturbation difference

near ∆ = 80, and a small but significant difference in flow speed between the independent

quiet sun region and the near-CH quiet sun region. This is in agreement with the individual
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travel time results found in Figures 5.14 and 5.9.
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In CH vs Out CH Full CH vs QS

In CH vs QS Out CH vs QS

Figure 5.15: Basic difference plots between the four sets of compared TD results. ∆ has
units of pixels, and t has units of seconds (dt = 45 s). These plots are mainly for reference
against the superpixel-average t-statistic results in Figures 5.16-5.19.
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Figure 5.16: The Student’s t-test comparison between the shifted TD results inside and
outside the CH boundary. ∆ has units of pixels, and t has units of seconds (dt = 45 s).
The top row of results employs a 3 × 3 superpixel; the bottom row, a 5 × 5 superpixel.
Ffull maps of the t-statistic are shown on the left. The center images show the binary
≥ 95% significance maps of the left-hand results. Black indicates statistically significant
differences and white indicates otherwise. We threshold the t-test results on the left with
the center significance masks to produce the plots on the right. These results show only the
significantly different TD signals between the inner and outer regions of the CH boundary.
Note that small-scale differences between the main TD branches are averaged out with this
technique.
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Figure 5.17: The Student’s t-test comparison between the shifted TD results of the full CH
data set and separate quiet sun data. ∆ has units of pixels, and t has units of seconds
(dt = 45 s). The top row of results employs a 3 × 3 superpixel; the bottom row, a 5 × 5
superpixel. Ffull maps of the t-statistic are shown on the left. The center images show
the binary ≥ 95% significance maps of the left-hand results. Black indicates statistically
significant differences and white indicates otherwise. We threshold the t-test results on the
left with the center significance masks to produce the plots on the right. These results show
only the significantly different TD signals between the full CH data and the quiet sun data.
Note that small-scale differences between the main TD branches are averaged out with this
technique.
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Figure 5.18: The Student’s t-test comparison between the shifted TD results inside the CH
region and the separate quiet sun data. ∆ has units of pixels, and t has units of seconds
(dt = 45 s). The top row of results employs a 3 × 3 superpixel; the bottom row, a 5 × 5
superpixel. Ffull maps of the t-statistic are shown on the left. The center images show
the binary ≥ 95% significance maps of the left-hand results. Black indicates statistically
significant differences and white indicates otherwise. We threshold the t-test results on the
left with the center significance masks to produce the plots on the right. These results show
only the significantly different TD signals between the CH region and the unrelated quiet
sun region. Note that small-scale differences between the main TD branches are averaged
out with this technique.
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Figure 5.19: The Student’s t-test comparison between the shifted TD results outside of the
CH boundary and the separate quiet sun data. ∆ has units of pixels, and t has units of
seconds (dt = 45 s). The top row of results employs a 3× 3 superpixel; the bottom row, a
5×5 superpixel. Ffull maps of the t-statistic are shown on the left. The center images show
the binary ≥ 95% significance maps of the left-hand results. Black indicates statistically
significant differences and white indicates otherwise. We threshold the t-test results on the
left with the center significance masks to produce the plots on the right. These results
show only the significantly different TD signals between the quiet sun region near the CH
boundary and the unrelated quiet sun region. Note that small-scale differences between the
main TD branches are averaged out with this technique.
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Figure 5.20: The ≥ 95% significance of differences between the shifted travel time measure-
ments inside and outside the CH boundary. Shown are the significant t-statistics of τ+(∆)
(middle top), τ−(∆) (top), τmean(∆) (middle bottom), and τdiff(∆) (bottom). Travel times
have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel = 0.06◦ '
0.729 Mm.
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Figure 5.21: The ≥ 95% significance of differences between the shifted travel time measure-
ments of the entire CH data and the separate quiet sun data. Shown are the significant
t-statistics of τ+(∆) (middle top), τ−(∆) (top), τmean(∆) (middle bottom), and τdiff(∆)
(bottom). Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1
HMI pixel = 0.06◦ ' 0.729 Mm.
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Figure 5.22: The ≥ 95% significance of differences between the shifted travel time measure-
ments inside the CH and the unrelated quiet sun data. Shown are the significant t-statistics
of τ+(∆) (middle top), τ−(∆) (top), τmean(∆) (middle bottom), and τdiff(∆) (bottom).
Travel times have units of seconds (dt = 45 s). ∆ has units of pixels. Recall, 1 HMI pixel
= 0.06◦ ' 0.729 Mm.
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Figure 5.23: The ≥ 95% significance of differences between the shifted travel time measure-
ments of the region outside of the CH boundary and the separate quiet sun data. Shown are
the significant t-statistics of τ+(∆) (middle top), τ−(∆) (top), τmean(∆) (middle bottom),
and τdiff(∆) (bottom). Travel times have units of seconds (dt = 45 s). ∆ has units of pixels.
Recall, 1 HMI pixel = 0.06◦ ' 0.729 Mm.
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Chapter 6: Conclusions

This dissertation is comprised of three main topics relevant to the study of elongated f -mode

wave scattering detection and its application to a solar CH boundary. In Chapter 2, we

investigated CHs using statistical properties and image processing techniques on EUV im-

ages to detect CH boundaries in the low corona and chromosphere. Part of this study used

SOHO/EIT data to locate polar CH boundaries on the solar limb, which were subsequently

tracked through two solar cycles. Additionally, we developed an edge-detection algorithm

that was used on SDO/AIA data spanning a polar CH extension that has an approximately

linear boundary. These locations were also used to inform part of the helioseismic investi-

gation. In Chapter 3, we discussed a new local TD helioseismology technique that can be

used to detect elongated boundary features. The method employs a new averaging scheme

that makes use of the quasi-linear topology of elongated scattering regions. It enhances the

wave propagation signal in the direction perpendicular to the linear feature and reduces the

computational time of the TD analysis. We also reviewed the scattering theory necessary

to create a simulation that we could use to test the new technique. We discussed the simu-

lated data and the results from the linear TD analysis in Chapter 4, as well as considering

the significance of differences between the simulated TD results. Finally in Chapter 5, we

applied the TD technique to solar CH data from SDO/HMI. The data correspond to the

AIA data used in the edge-detection algorithm on EUV images. We looked for significant

differences in the TD results and measured travel times between the CH and the quiet sun.

The investigation tracking polar CH boundaries found that the polar CH areas did not

change significantly between solar minima, even though the polar magnetic field strength

weakened by half.

After producing a simulated data set containing a linear array of scatterers, we sub-

sequently tested the linear TD technique. Our new linear technique successfully enhances
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the linear interference pattern from the line of scatterers, while reducing the computational

time of the analysis. We found that the results clearly and significantly differ between a

linear scattering region and a circularly symmetric scattering region. We conclude that

using circularly-symmetric TD geometries on features that are radially asymmetric may

produce results with signatures of the anisotropy. Therefore, it is important to use a ge-

ometry appropriate to the feature of interest when performing TD analysis. Additionally,

our method can easily be extended to study cases in which the array of scatterers are not

linearly aligned.

The results of the EUV edge-detection method provided the boundary location of the

polar CH extension used in the linear TD analysis, and informed the image-processing

parameters necessary for aligning the CH boundary in the Dopplergram data. We should

note that our explanation of the download process for JSOC cutout data was generalized

and made publicly available as guiding documentation for individuals wanting to make

use of that service. Applying our linear TD analysis to the HMI data, we found that the

travel time results indicate a small, uniform flow in both a quiet sun region and in the CH

data, including specifically within the CH region itself. However, the uncertainties are large

enough that we cannot conclude about the existence of this flow with certainty. In general,

a flow in the +x direction would most likely be attributed to solar rotation. Yet because

of our rotation of the data, our x-dimension does not directly correspond to an east-west

flow, and is more along the lines of an east northeast-west southwest flow. Considering this

and the relatively high standard deviations of the travel times, we are hesitant to conclude

that solar rotation is the cause of our potential underlying flow, although we recognize that

we could still be detecting a slight east-west component of the rotation. Further results,

averaged within the regions inside and outside of the CH, suggest that there is actually

a reversed underlying flow in the region outside of the CH boundary, and that there is

some wave-speed perturbation across the CH boundary. This result is further supported

by the statistical comparison performed on the TD results and travel time measurements.

We suggest that our findings indicate the presence of a wave front propagating through the
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quiet sun toward the CH boundary, which is then disrupted and weakened in the boundary

region via absorption by the open field lines or backscattering that is lost in the noise.

We cannot confirm this conjecture without some of the future work that we are currently

investigating.

6.1 Future Work

The possibilities for future work stemming from this dissertation are many and varied.

They include everything from improving the simulation, to detecting the CH boundary

more accurately, to applying the linear TD technique to other solar features, etc. We will

briefly review some of the future work possibilities mentioned in this dissertation, as well

as other ideas that have not been discussed.

In terms of the edge detection technique, there are several research options to try.

We may be able to restrict the width of the CH boundary by performing similar image

post-processing techniques on He 10830 �A data. This would allow us to determine if the

boundary width in the chromosphere is similar to that in the corona. The combined AIA

data is mainly coronal with large scale heights and may not represent the CH boundary

width in the photosphere/low-chromosphere very well. It has also been suggested that we

try using AIA 1700 �A data for similar reasons. We could also try using HMI magnetogram

data to look for unipolar regions corresponding to the CH region. Unfortunately, unipolar

regions may not be well defined in magnetograms, so our post-processing technique may

not be useful with that data set. Additionally, it has been suggested that we apply a

point-spread-function to our AIA data, in order to remove stray light effects. We did not

do so because we are downloading JSOC cutout data instead of full-disk images, and the

point-spread function needs to be applied to the full-disk prior to retrieving the cutout

data. However, it is possible that removing stray light effects will give us higher accuracy

in detecting the CH boundary. Finally, there has been a recommendation that instead of

performing an approximate rotation to align the CH boundary visually, we use a 16-point

edge detection of the boundary to determine the slope and thus the angle of rotation needed
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for proper alignment.

There are also many potential improvements that can be made on the simulation. Most

basic is to consider using the full-field Hankel function instead of the far-field approxima-

tion that we currently employ, since multiple scattering can already be neglected through

our choice of scatterer radius (R. Cameron, August 2015, personal comm.). The relative

importance of the far-field assumption could be an exploratory topic using the simulation.

We could also incorporate more realistic physics, such as wave attenuation or absorption.

There is also the possible undertaking of changing from an analytic code to a numerical sim-

ulation, which could then include more physical parameters such as density and magnetic

field.

We can also perform further TD analysis on the simulated data. Future work might

include adjusting the input parameters such that the incident angle and/or initial mode

phases are randomized, which would then produce a more realistic cross-correlation signal.

We can also change other parameters to test the TD results of, for example, an elongated

scattering boundary that is not strictly linear or expand from a line of scatterers to a

broader region of scatterers (either symmetrically aligned or randomly distributed). We

also want to further investigate the statistical differences between varying scenarios, and

consider other methods of statistical comparison. We are also currently working on isolating

and enhancing the simulated backscattered signal. This requires the use of phase-speed and

group-speed information to focus the backscattered region in the TD results, shift the data

so that the interaction at the boundary is aligned, and then implement a phase-speed shift

that allows us to average over the backscattering for better signal-to-noise. The simulated

TD results will be used to test all these steps before applying them to the solar data.

In terms of the statistical analysis, we want to improve upon our superpixel t-test

method and look into other possible significance-testing methods in image-processing. We

might also make other statistical comparisons between data. Additionally, it is important

to begin using propagated errors in our analyses, which we are not currently considering.

Finally, we should compare the results of our CH region against quiet sun data observed at
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the same Carrington latitude and longitude coordinates in order to account for projection,

line-of-sight, and rotational effects.

To improve upon our linear TD results of the HMI data, we want to extend the data set

in time. This should help improve our signal-to-noise ratio. We could also find other similar

CH boundary cases to compare. We also want to expand the technique from approximately

linear boundary regions to handle elongated boundaries that are piecewise-linear, as men-

tioned for the future testing possibilities of the simulation. Finally, we could also test our

method on an approximately symmetric sunspot and compare the TD results to those found

using a center-to-annulus east-west quadrant analysis. We have actually already chosen a

candidate symmetric sunspot on which to perform this study.

As mentioned above, we are currently working toward the detection of backscattered

signals from the CH boundary. We also plan to do more work on the statistical analysis of

the TD results, as well as the travel time measurements. We are currently working on using

a traditional t-test analysis on the shifted TD results, since they are averages of a set of

shifted data. Finally, we have not yet investigated the presence or potential cause of a wave

front propagating towards the CH, detected in our travel time measurements. We need to

return to the full-disk images to determine whether any nearby solar activity produced such

a wave.

There are also bigger steps that can be taken to extend this research. There is interest

in the research community for applying our linear TD method on a filament region. It has

also been suggested that we retry the analysis for lower ` (larger λ) to make boundary width

“sharper”. Theoretically, this should result in a stronger backscattered signal. A λ:width

ratio greater than ∼3:1 in Mm is desirable (R. Cameron, August 2015, personal comm.).

Similarly, we should retry the analysis for higher frequencies, which are more sensitive to

atmospheric structure. We are more likely to detect backscattering from a CH boundary

at higher frequencies because the main difference between a CH region and the quiet sun

is the atmospheric conditions, and high frequencies are more sensitive to the coronal state.

Combining this with the investigation of lower values of `, it has been recommended that
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we look at the at the p4-mode in the future, instead of the f -mode.
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Appendix A: Processing AIA Data - Details

This appendix pertains to the discussion in Section 2.1. Specifically, Appendix A.1 is

referenced in Section 2.1.1, and Appendix A.2 is referenced in Sections 2.1.1 and 2.1.4.

A.1 Determining the AIA Cutout Bounding Box

We share some example code for determining the pixel dimensions needed by the JSOC

cutout service in order to produce AIA data with the same heliographic dimensions as the

relevant HMI data. This is necessary because the AIA pixel scale is different than that of

HMI, even when projecting the AIA data onto the same coordinate map as the HMI data.

A reference projected AIA cutout image is required by this code for the header infor-

mation needed in the WCS routines. The dimensions can be arbitrarly chosen for this

test case. We start with square pixel dimensions approximated by the desired domain size

(30◦×30◦) divided by the projected AIA pixel scale (JSOC default of 0.0359◦/pixel), giving

30◦/(0.0359◦/pixel) ≈ 635 pixels square.

However, the HMI file is not arbitrary. The HMI data should have the bounding box

and center of the desired AIA output (ideally, use the actual data to be used in the analysis).

fnmhmi = HMI data f i l ename
fnmaia = AIA data f i l ename

; read in f i t s data and s t o r e headers

hmidata=r e a d f i t s ( fnmhmi , hmihead )

a iadata=r e a d f i t s ( fnmaia , a iahead )

; convert header in fo rmat ion in to wcs s t r u c t u r e s

wcshmi=f i t shead2wcs ( hmihead )

wcsaia=f i t shead2wcs ( aiahead )

; s t o r e s i z e o f hmi data axes
; note , hmi time a x i s doesn ' t matter here

nxhmi=fxpar ( hmihead , `NAXIS1 ' )

nyhmi=fxpar ( hmihead , `NAXIS2 ' )

; get hmi coo rd ina t e s f o r lower− l e f t and upper−r i g h t p i x e l s

hmi l l=wcs get coord ( wcshmi , [ 0 , 0 , 0 ] )

hmiur=wcs get coord ( wcshmi , [ nxhmi−1,nyhmi−1 ,0 ])
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; convert hmi hgc coo rd ina t e s ( deg ) to p ro j e c t ed a ia hgc coo rd ina t e s ( deg

)

wcs conver t to coord , wcsaia , a i a l l , `hg ' , hmi l l [ 0 ] , hmi l l [ 1 ] , /
ca r r i ng ton

wcs conver t to coord , wcsaia , a iaur , `hg ' , hmiur [ 0 ] , hmiur [ 1 ] , /
ca r r i ng ton

; check a ia coo rd ina t e s compared to hmi coo rd ina t e s
; the se SHOULD be the same

pr int , a i a l l , hmi l l [ 0 : 1 ]

pr int , a iaur , hmiur [ 0 : 1 ]

; convert a i a degree s to p i x e l s

a i a l l p=w c s g e t p i x e l ( wcsaia , a i a l l )

a i au r p=w c s g e t p i x e l ( wcsaia , a i aur )

; r epo r t a i a bounding box in p i x e l s ,
pr int , ' lower− l e f t ' , a i a l l p
pr int , ' upper−r i g h t ' , a i au r p
pr int , ' d i f f e r e n c e ' , a iaur p−a i a l l p

; the bounding box should be square ,
; the d i f f e r e n c e i s approximately the s i z e o f the r equ i r ed a ia data ,
; input these p i x e l dimensions in to the JSOC export system!

Once the desired pixel dimensions are determined, we recommend that users download a

sample instance of the projected AIA data from the JSOC cutout service and double check

the bounding box coordinates before exporting the entire data set. This may save time in

the long run if the bounding box size needs to be adjusted.

A.2 Updating the Projected AIA Header Information

Unfortunately, the MAPROJ processing option in the JSOC cutout service (discussed in

Section 2.1.1) does not update enough of the relevant header information to port the meta-

data correctly into a WCS structure. This is a fairly straightforward thing to fix, but must

be done manually (at least for now). And it must be done in order to move forward with

determining the necessary AIA bounding box (Appendix A.1) and converting the detected

coronal hole boundary location in the AIA data to the corresponding location in the HMI

data (Section 2.2). In plain terms, it is a silly and tedious step but is a requirement before

the “real work” can begin.
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First, we create a template WCS structure in IDL:

template={template , $
COORD TYPE: ' ' , $
WCSNAME: ' ' , $
SIMPLE: BYTE(0 ) , $
NAXIS : LONARR(2 ) , $
VARIATION: ' ' , $
COMPLIANT: BYTE(0 ) , $
PROJECTION: ' ' , $
IX : 0L , $
IY : 0L , $
CRPIX: DBLARR(2 ) , $
CRVAL: DBLARR(2 ) , $
CTYPE: STRARR(2 ) , $
CNAME: STRARR(2 ) , $
CUNIT: STRARR(2 ) , $
CDELT: DBLARR(2 ) , $
ROLL ANGLE: DOUBLE(0 ) , $
PC: DBLARR( 2 , 2 ) , $
TIME: {TIME, $

FITS DATE : ' ' , $
OBSERV DATE: STRARR(4 ) , $
OBSERV END: STRARR(4 ) , $
EXPTIME: DOUBLE(0 ) $

} , $
POSITION : {POSITION, $

SOHO: BYTE(0 ) , $
POS ASSUMED: 0 , $
DSUN OBS: DOUBLE(0 ) , $
SOLAR B0 : DOUBLE(0 ) , $
SOLAR L0 : DOUBLE(0 ) , $
CARR EARTH: DOUBLE(0 ) , $
HGLN OBS: DOUBLE(0 ) , $
HGLT OBS: DOUBLE(0 ) , $
HEQ OBS: DBLARR(3 ) $

} $
}

Each tag in the template structure is defined according to the standard WCS structure for

solar data, including the type and size of the associated values. We duplicate this template

into arrays for each of our four AIA wavelengths.

We then pre-define the values that we expect for certain tags of the projected AIA data

(the WCS tags from the associated HMI data can be used to identify some of these desired

“default” values):
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coordtype= ' Carrington−He l i og raph i c '
wcsname= ' Carrington−He l i og raph i c '
nax i s =[695 ,695 ] ; a f t e r r o t a t i o n and cropping
v a r i a t i o n= 'CROTA '
compliant=BYTE(0 )
p r o j e c t i o n= 'ARC '
i x=0L
iy=1L

crp ix =[348 ,348 ]

ctype =[ 'CRLN−ARC ' , 'CRLT−ARC ' ]

cname=[ ' ' , ' ' ]

cun i t =[ ' deg ' , ' deg ' ]
c d e l t =0.0359

r o l l a n g l e=DOUBLE(−20.0)

pc =[ [COS(DOUBLE( r o l l a n g l e ∗!DTOR) ) ,SIN(DOUBLE( r o l l a n g l e ∗!DTOR) ) ] , [−SIN(

DOUBLE( r o l l a n g l e ∗!DTOR) ) ,COS(DOUBLE( r o l l a n g l e ∗!DTOR) ) ] ]

s imple=BYTE(0 )

soho=BYTE(0 )
posassumed=0

Next, we loop through the original “bad” WCS structures for the four AIA wavelengths

we use. We compare the original tag values to the desired “default” tag values defined

above. For those values that seem to have been updated through MAPROJ, we simply

check for consistency with the default values (an error message is displayed if something

goes wrong), and then set the new WCS tag value to the original value. For the values that

we know were not updated by MAPROJ, we explicitly set the tag to the new default tag

value.

We also use the template to create a new WCS structure in which we combine infor-

mation from the four wavelengths (to be used with the combined data produced in Sec-

tions 2.1.3 and 2.1.4). The WCS string names should match, regardless of wavelength, and

are easily copied into the combination WCS structure. Several of the numerical values are

also simply copied (i.e. SIMPLE, SOHO, ROLLANGLE, CDELT, etc.). The complication

comes from those values that are slightly different between the four different data sets (i.e.

OBSERV DATE, OBSERV END, EXPTIME, DSUN OBS, SOLAR B0, etc.). These values

are slightly different because the different AIA cameras and filters take pictures at slightly

different times, which translates to slightly different positions as well. However, some of

these parameters are not necessary for the WCS computations, so we store an array of the
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four values for reference. Those parameters that are important in the WCS calculations

vary only slightly between the four wavelengths, so we store the average of those values for

later use. We make note of this for consistency and reproducibility.
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Appendix B: An In-Depth Derivation of the Scattering

Amplitude and Related Quantities

B.1 Cylindrical Plane Wave Expansion

The solution to the full time-dependent wave equation in cylindrical coordinates is given by

Equation 3.1, in which the spatial wavefunction ψ is a solution to the Helmholtz equation

(
∇2 + k2

)
ψ = 0. (B.1)

The Laplacian operator in cylindrical coordinates is
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If we assume the wavefunction is a separable equation ψ = R(r)Φ(ϕ)Z(z), we can insert

this solution into Equation B.1 and find solutions to the separate terms of ψ
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At this point we can separate out the Φ term. Because the solution to Φ must be periodic

in ϕ, the separation constant must be negative.

1

Φ

d2Φ

dϕ2
= −m2 −→ Φ(ϕ) = Am cos(mϕ) +Bm sin(mϕ) (B.4)
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Continuing with the remaining terms in the partially separated Helmholtz equation,
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Separating out the Z term now, the solution must not be periodic as z → ∞, which

necessitates a positive separation constant
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−nz (B.6)

Returning to the final separation term from the Helmholtz equation, we now have
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Letting x = r
√
k2 + n2 −→ r = x/

√
k2 + n2 and dx =

√
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equation gives
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This resulting equation is the Bessel equation. Solutions are a linear combination of Bessel

functions of the first and second kinds (Jmn(x) and Nmn(x), respectively). The general

solution to the radial equation is thus

R(r
√
k2 + n2) = EmnJmn(r

√
k2 + n2) + FmnNmn(r

√
k2 + n2). (B.9)

Combining Equations B.4, B.6 and B.9, we find the general form of the spatial wavefunction

to be

ψ(r, ϕ, z) =

∞∑
m=0

∞∑
n=0

[Am cos(mϕ) +Bm sin(mϕ)]
[
Cne

nz +Dne
−nz]

×
[
EmnJmn(r

√
k2 + n2) + FmnNmn(r

√
k2 + n2)

]
. (B.10)

Note that m is the azimuthal order of the resulting wave and n is the radial order. The

spherical harmonic degree l is embedded in our definition of the wavenumber k (see Sec-

tion 1.2).

For our purposes, we only wish to consider f -mode waves, in which case n = 0. With

this simplification, the previous equation becomes

ψ(r, ϕ, z) = C
∞∑
m=0

[Am cos(mϕ) +Bm sin(mϕ)] [EmJm(kr) + FmNm(kr)] , (B.11)

where we have now lost any dependence on z (as might be expected for surface waves) and

the only contribution from the Z(z) equation is a constant factor which we call C = C0+D0.

We can reach a more specific solution for a plane wave perpendicular to the cylindrical

(z-)axis with ψ = Aeikr cos(ϕ) by starting with a fundamental property of Bessel functions

(understanding from Equation B.11 that Bessel functions are part of the solution). First,

note that J−m(z) = (−1)mJm(z), and we will make use of the trig identity cos(x) = 1
2(eix+
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e−ix). By definition,
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εmi
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where εm is called the Neumann factor and is defined as ε0 = 1, εm = 2 for m > 0.
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Substituting in z = kr, we find the plane wave expansion in cylindrical coordinates to be

ψ = Aeikr cos(ϕ) = A

∞∑
m=0

εmi
mJm(kr) cos(mϕ), (B.14)

which is exactly Equation 3.2. In comparison with the general solution given in Equa-

tion B.11, this is an acceptable solution to the Helmholtz equation.

B.2 Cylindrical Wave Scattering

The following derivation of cylindrical wave scattering equations is primarily attributed to

Morse and Feschbach (1953) and Morse and Ingard (1986).

The total wavefunction for an incident plane wave scattering off a cylinder of radius a,

oriented along the z-axis, is Ψtot = ψtote
−iωt = (ψi + ψs)e

−iωt. The incident plane wave

expansion ψi is given by Equation 3.2, and ψs is the scattered wavefunction.

As r → ∞, the solution to ψs must converge to an outgoing plane wave perpendicular

to the cylindrical axis. This behavior can generally be expressed by the Hankel function

of the first kind, Hm(kr) = Jm(kr) + iNm(kr), (also known as the Bessel function of the

third kind), which is the full general outgoing solution to the Bessel equation. We can thus

assume the solution to the scattered wavefunction is of the form

ψs =

∞∑
m=0

BmHm(kr) cos(mϕ), (B.15)

where Bm are coefficients that could depend on azimuthal order. Comparing this assumed

solution to Equation B.11, it is an appropriate solution to the Helmholtz solution. The

total time-independent wavefunction is then written as

ψtot = ψi + ψs
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= A
∞∑
m=0

εmi
mJm(kr) cos(mϕ) +

∞∑
m=0

BmHm(kr) cos(mϕ)

=
∞∑
m=0

Aεmi
mJm(kr) cos(mϕ) +BmHm(kr) cos(mϕ) (B.16)

Assuming the cylinder is a rigid scatterer, the boundary condition at r = a must be

vn = ∇ψtot · n = 0. In other words, there is no fluid flow across the rigid boundary so the

normal velocity (normal gradient of the wavefunction) is non-existent at the boundary. This

condition is also known as a Neumann boundary condition. Note that the normal velocity

at a cylindrical surface is the simply radial velocity. Therefore, the Neumann boundary

condition for our specific geometry is vr = ∂ψtot/∂r = 0. Applying the rigid boundary

conditions,

vr = ∇ψtot · r |r=a =
∂ψtot
∂r

∣∣∣∣
r=a

= 0 (B.17)

⇒
∞∑
m=0

Aεmi
m J ′m(kr)

∣∣
r=a

cos(mϕ) +BmH
′
m(kr)|r=a cos(mϕ) = 0

⇒Aεmi
mJ ′m(kr)|r=a���

��cos(mϕ) +Bm H ′m(kr)
∣∣
r=a��

���cos(mϕ) = 0

⇒Bm H ′m(kr)
∣∣
r=a

= −Aεmim J ′m(kr)
∣∣
r=a

⇒Bm = −Aεmim
J ′m(kr)

H ′m(kr)

∣∣∣∣
r=a

(B.18)

Morse and Feschbach (1953, p.1564) define the derivatives of the Bessel and Hankel func-

tions, respectively, as J ′m(kr) = −C ′m(kr) sin [δ′m(kr)] and H ′m(kr) = iC ′m(kr)eiδ
′
m(kr), where

δm(kr) is the phase angle and Cm(kr) is the amplitude of the mth-order Hankel function.

Substituting J ′m(kr) and H ′m(kr) into the previous step, we get

Bm = −Aεmim
−����C ′m(kr) sin [δ′m(kr)]

i���
�C ′m(kr)eiδ′m(kr)

∣∣∣∣
r=a
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= Aεmi
m−1 sin

[
δ′m(kr)

]
e−iδ

′
m(kr)

∣∣∣
r=a

= Aεmi
m−1 sin

[
δ′m(ka)

]
e−iδ

′
m(ka) (B.19)

Plugging Bm back into ψs gives the scattered wavefunction of a plane wave interacting with

a rigid cylinder

ψs = A
∞∑
m=0

εmi
m−1 sin

[
δ′m(ka)

]
e−iδ

′
m(ka)Hm(kr) cos(mϕ). (B.20)

Morse and Feschbach (1953, p.1563-4) also provide us with asymptotic values of Hm(kr)

and δ′m(ka). As kr → ∞ (far-field), Hm(kr) →
√

2
πkre

ikr−iπ
(
m+

1
2

)
/2

. Assuming ka �

2m + 1, which is a valid assumption for small a and/or small k (small l, large λ, long-

wavelength approximation), then δ′0(ka) → 1
4π(ka)2 and δ′m>0(ka) → − πm

(m!)2

(
ka
2

)2m
. In-

serting these approximations into Equation B.20 gives the far-field scattering equations

under the long-wavelength approximation. Notice that under these assumptions, Equa-

tion B.20 is proportional to eikr/
√
r. This is an expected condition for a scattered wave

in two dimensions as r → ∞ (Morse and Feschbach, 1953, 9.3). The scattering amplitude

f(ϕ) is equivalent to all other terms in the scattering function (see Equation 3.5).

Equation B.20 is essentially the equation in the cyl wav.pro code that produces the

simulated data used to test the time-distance helioseismology techniques for this research

(Chapter 4). However, we do implement the long-wavelength approximation to determine

δ′m(ka) and the far-field assumption to reduce the Hankel function.
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Appendix C: Fourier Transforms of Gaussian and Piecewise

Functions

In 1D, the transform equation from the spatial domain to the Fourier domain is

H̃(k) =
1√
2π

∫ ∞
−∞

H(x)e−ikxdx (C.1)

H(x) and H̃(k) are the input and output functions of the transformation, where x is the

spatial coordinate and k is the wavenumber. If we want to find the transform of a gaussian

function, we substitute the function for H(x). The transform of a piecewise function is

likewise found by substituting the equation for H(x).

Starting with a simple Gaussian function,

F (x) = e−x
2/α2

(C.2)

where α is an arbitrary constant. The transform equation now looks like

F̃ (k) =
1√
2π

∫ ∞
−∞

e−x
2/α2

e−ikxdx

=
1√
2π

∫ ∞
−∞

e−( x
2

α2
+ikx)dx (C.3)

If we multiply through by a constant factor e−(Ak)2 , we can complete the square within the

integrand exponent.

F̃ (k) =
e(Ak)2

√
2π

∫ ∞
−∞

e
−
(
x2

α2
+ikx+(Ak)2

)
dx =

e(Ak)2

√
2π

∫ ∞
−∞

e−( xα+Ak)
2

dx

=
e
−
(
α2k2

4

)
√

2π

∫ ∞
−∞

e−( xα+ iαk
2 )

2

dx (C.4)
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Letting u = x
α + iαk

2 , and dx = αdu, the substitution yields

F̃ (k) =
e
−
(
α2k2

4

)
√

2π
α

∫ ∞
−∞

e−u
2
du

=
e
−
(
α2k2

4

)
√

2π
α
√
π

=
α√
2
e−(αk2 )

2

(C.5)

Equation C.5 is the solution to the Gaussian Fourier transform and is a Gaussian function

itself.

Implementing a simple piecewise function,

G(x) =

 0 for |x| > α

1 for −α < x < α
(C.6)

we can split the transform equation into three separate integrals, for each region of the

piecewise function.

G̃(k) =
1√
2π

[∫ −α
−∞

(0)e−ikxdx+

∫ α

−α
(1)e−ikxdx+

∫ ∞
α

(0)e−ikxdx

]

=
1√
2π

[
0 +

∫ α

−α
e−ikxdx+ 0

]

=
1√
2π

∫ α

−α
e−ikxdx

=

√
2

π

sin(αk)

k
(C.7)

Equation C.7 is most certainly not a piecewise function.

The plots of functions F (x) and G(x) with their associated Fourier transforms F̃ (k) and
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Figure C.1: To the left are spatial plots of the Gaussian function of Equation C.2 (top) and
the piecewise function of Equation C.6 (bottom). To the right are the corresponding Fourier
transform functions of Equation C.5 (top) and Equation C.7 (bottom). The constant α in
the equations is arbitrarily set to α = 1.5 for these calculations.

G̃(k) are shown in Figure C.1.
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