
Reports
Machine Learning and Inference Laboratory

 Initial Considerations toward Knowledge Mining

Kenneth A. Kaufman
Ryszard S. Michalski

MLI 04-4
P 04-6

October, 2004

MLI 03-1-

School of Computational Sciences

 George Mason University

INITIAL CONSIDERATIONS TOWARD KNOWLEDGE MINING
Kenneth A. Kaufman and Ryszard S. Michalski*

 Machine Learning and Inference Laboratory, George Mason University,
Fairfax, VA 22030-4444

* Also with the Institute of Computer Science, Polish Academy of Sciences, Warsaw

{ kaufman, michalski} @gmu.edu

http://www.mli.gmu.edu

Abstract

In view of the tremendous production of computer data worldwide, there is a strong need for new
powerful tools that can automatically generate useful knowledge from a variety of data, and present it
in human-oriented forms. In efforts to satisfy this need, researchers have been exploring ideas and
methods developed in machine learning, statistical data analysis, data mining, text mining, data
visualization, pattern recognition, etc. The first part of this paper is a compendium of ideas on the
applicability of symbolic machine learning and logical data analysis methods toward this goal. The
second part outlines a multistrategy methodology for an emerging research direction, called
knowledge mining, by which we mean the derivation of high-level concepts and descriptions from
data through symbolic reasoning involving both data and relevant background knowledge. The
effective use of background as well as previously created knowledge in reasoning about new data
makes it possible for the knowledge mining system to derive useful new knowledge not only from
large amounts of data, but also from limited and weakly relevant data.

Keywords: knowledge mining, data mining, inductive databases, machine learning, logical
and statistical data analysis

Acknowledgments

The authors thank their past and current collaborators who provided research feedback,
comments, and assistance at different stages of the development of methods and computer
programs described in this paper. We are grateful to the students and researchers who
contributed in a constructive and helpful way in this research over the years, in particular, to
Jerzy Bala, Eric Bloedorn, Michal Draminski, Mark Maloof, Jarek Pietrzykowski, Jim
Ribeiro, Bartlomiej Sniezynski, Janusz Wnek, Janusz Wojtusiak, and Qi Zhang.

This research was conducted in the Machine Learning and Inference Laboratory of George
Mason University. Support for the Laboratory’s research related to the presented results has
been provided in part by the National Science Foundation under Grants No. DMI-9496192,
IRI-9020266, IIS-9906858 and IIS-0097476; in part by the UMBC/LUCITE #32 grant; in
part by the Office of Naval Research under Grant No. N00014-91-J-1351; in part by the
Defense Advanced Research Projects Agency under Grant No. N00014-91-J-1854
administered by the Office of Naval Research; and in part by the Defense Advanced
Research Projects Agency under Grants No. F49620-92-J-0549 and F49620-95-1-0462
administered by the Air Force Office of Scientific Research. The findings and opinions
expressed here are those of the authors, and do not necessarily reflect those of the above
sponsoring organizations..

A version of this paper has been submitted for publication in C.J. Rao, E.J. Wegman and J.L.Solka (eds.), Handbook
in Statistics: Data Mining and Visualization, Elsevier/North Holland, 2005.

1 INTRODUCTION

We are witnessing the extraordinary expansion of computer accessible data about all kinds of
human activities. The availability of these large volumes of data and our limited capabilities to
process them effectively creates a strong need for new methodologies for extracting useful, task-
oriented knowledge from them. There is also a need for methodologies for deriving plausible
knowledge from small and indirectly relevant data, as in many practical areas, only such data
may be available, e.g., fraud detection, terrorism prevention, computer intrusion detection, early
cancer diagnosis, etc. This paper addresses issues and methods concerned with developing a new
research direction, called knowledge mining, which aims at solving both types of problems.

Current tools for analyzing data and extracting from it useful patterns and regularities primarily
use conventional statistical methods, such as regression analysis, numerical taxonomy,
multidimensional scaling, and more recent data mining techniques, such as classification and
regression trees, association rules, and Bayesian nets (e.g., Daniel and Wood, 1980; Tukey,
1986; Pearl, 1988, 2000; Morgenthaler and Tukey, 1989; Diday, 1989; Sharma, 1996,
Neapolitan, 2003). While useful for many applications, these techniques have inherent
limitations.

For example, a statistical analysis can determine distributions, covariances and correlations
among variables in data, but is not able to characterize these dependencies at an abstract,
conceptual level as humans can, and produce a causal explanation why these dependencies exist.
While a statistical data analysis can determine the central tendencies and variance of given
factors, it cannot produce a qualitative description of the regularities, nor can it determine a
dependence on factors not explicitly provided in the data.

Similarly, a numerical taxonomy technique can create a classification of entities, and specify a
numerical similarity among the entities assembled into the same or different categories, but it
cannot alone build qualitative descriptions of the classes created and present a conceptual
justification for including entities into a given category. Attributes and methods that are used to
measure the similarity must be specified by a data analyst in advance. Popular classification (or
decision) trees or forests can represent a relationship between the input and output variables, but
their representation power is very modest. These methods may thus produce a very complex tree
even for a conceptually simple relationship. Similarly, association rules, which are popular in
data mining, have a limited representation power. Bayesian nets are very attractive for many
applications, but typically rely on human input as to their structure, and can automatically
determine only relatively simple interrelationships among attributes or concepts.

The above methods typically create patterns that use only attributes that are present in the data.
They do not by themselves draw upon background domain knowledge in order to automatically
generate additional relevant attributes, nor do they determine attributes’ changing relevance to
different data analysis problems. In cases where the goal is to address such tasks as those listed

2

above, a data analysis system has to be equipped with a substantial amount of background
knowledge, and be able to conduct symbolic reasoning involving that knowledge and the input
data.

In efforts to satisfy the growing need for new data analysis tools that can overcome the above
limitations, researchers have turned to ideas and methods developed in symbolic machine
learning. The field of machine learning is a natural source of ideas for this purpose, because the
essence of research in this field is to develop computational models for acquiring knowledge
from facts and background knowledge.

The above and related efforts led to the emergence of a research area concerned with logical data
analysis, and the development of methods for data mining and knowledge discovery (e.g., Lbov,
1981; Michalski, Baskin and Spackman, 1982; Zhuravlev and Gurevitch, 1989; Zagoruiko, 1991;
Michalski et al., 1992; Van Mechelen et al., 1993; Fayyad et al., 1996; Evangelos and Han,
1996; Brachman et al., 1996; Fayyad, Haussler and Stolorz, 1996; Michalski and Kaufman,
1998; Han and Kamber, 2001; Hand, Mannila and Smyth, 2001; Alexe, Blackstone and Hammer,
2003).

A natural step in this progression appears to be the development of systems that closely integrate
databases with inductive learning and data mining capabilities (e.g., Michalski et al., 1992,
Khabaza and Shearer, 1995; Han et al, 1996; Imielinski, Virmani, and Abdulghani, 1996). Such
systems would be able to, for example, automatically call upon a decision rule generator,
regression analysis, conceptual clusterer or attribute generation operator, depending on the state
of data analysis.

To achieve such a capability, a database needs to be integrated with a knowledge base and a wide
range of data analysis, inductive learning, and data managment methods. We call such systems
inductive databases, and consider them to be a technical basis for implementing knowledge
mining (Michalski and Kaufman, 1998; Kaufman and Michalski, 2003). An inductive database
can answer not only those queries for which answers are stored in its memory, but also those that
require the synthesis of plausible knowledge, generated by inductive inference from facts in the
database and prior knowledge in the knowledge base1.

It should be mentioned that our meaning of the term “ inductive database” is somewhat different
from that of Imielinski and Mannila (1996) and De Raedt et al. (2002), by which they mean a
database that stores both original data and induced hypotheses. Because from any non-trivial
dataset a very large number of inductive hypotheses can be generated, and it is not known a
priori which of them may be the most useful for the future tasks of interest, it is better in our
view to equip a database with inductive inference capabilities, rather than store only their
amassed results. These capabilities should be tightly integrated with the query language, so that
they are transparent to the user, who can apply them without having to invoke separate data
analysis or inductive learning programs.

—————
1 It may be interesting to note that R.S. Michalski first introduced and taught this concept in his course on deductive and
inductive databases in 1973 at the University of Illinois at Urbana-Champaign.

3

This paper discusses selected ideas and methods for logical (or conceptual) data analysis,
initiated by Michalski, Baskin, and Spackman (1982), which provide a basis for the development
of a knowledge mining methodology and its implementation in an inductive database system.
The paper is an update and extension of our earlier work presented in (Michalski and Kaufman,
1998).

While this paper presents many issues generally and makes many references to research done
by others, its main focus is on the ideas and methods developed by the authors initially at the
University of Illinois at Urbana-Champaign, and more recently at the George Mason University
Machine Learning and Inference Laboratory. While the methods are presented in the context of
analyzing numeric and symbolic data, they can also be applied to text, speech or image mining
(e.g., Bloedorn, Mani and MacMillan, 1996; Umann, 1997; Cavalcanti et al., 1997; Michalski et
al., 1998).

2 KNOWLEDGE GENERATION OPERATORS

This section discusses classes of symbolic learning methods that can serve as knowledge
generation operators in logical data analysis and knowledge mining.

2.1 Discovering Rules and Patterns via AQ Learning

An important class of tools for knowledge discovery in databases stems from concept learning
methods developed in machine learning. Given collections of examples of different concepts (or
decision classes), the concept learning program hypothesizes a general description of each class.
Some inductive methods use a fixed criterion for choosing the description from a large number
of possible hypotheses, while others allow the user to define a criterion that reflects the problem
at hand. A concept description can be in the form of a set of decision rules, a decision tree, a
semantic net, etc. A decision rule can also take on many different forms.

In the AQ learning methodology, which we will discuss here, the general form of a decision (or
classification) rule is:

 CONSEQUENT ⇐ PREMISE |_ EXCEPTION (1)

where CONSEQUENT is a statement indicating a decision, a class, or a concept name to be
assigned to an entity (an object or situation) that satisfies PREMISE, provided it does not satisfy
EXCEPTION; PREMISE is a logical expression (e.g., a product of logical conditions or a
disjunction of such products), EXCEPTION (optional) defines conditions under which the rule
does not apply; and ⇐ denotes implication.

If PREMISE is a disjunctive description (a disjunction of products), then rule (1) can be
transformed into several rules with the same CONSEQUENT, in which PREMISE is a
conjunctive description (a single product of conditions). For example, Figure 1 shows two rules
representing a disjunctive description of a computer user profile learned by the AQ21 learning
program in a study on learning patterns in computer user behavior (Michalski et al., 2005). AQ21
is the most recent member of the family of AQ inductive learning programs (Wojtusiak, 2004).
The rules characterize two different patterns of the behavior of User 1.

4

The first rule says that User 1 is indicated if the current window was opened less than 3 hours
into the session, there are no protected words2 in the window title, the number of active processes
in the current window does not exceed seven, and the total number of windows opened during
the session does not exceed 16.

User1 ⇐⇐⇐⇐ session_time_new_window � 3hours (368, 8340) &
#characters_in_protected_words = 0 (110, 919) &
#processses_in_current_window � 7 (203, 4240) &
#windows_opened � 16 (369,7813): 65, 0

User1 ⇐⇐⇐⇐ process_name = explorer (93, 875) &
#characters_in_protected_words = 9..24 (161, 2999) &
#processes_in_current_window � 7 (203, 4240) &
#windows_opened � 16 (369, 7813) &
#protected_words_in_window_title = 1 (109, 3304): 31, 0

Figure 1: Two rules in User 1’s profile learned by AQ21.

The second rule says that User 1 is also indicated if the name of the active process is explorer,
there are 9 to 24 characters in the protected words in the window title, the number of active
processes in the current window does not exceed seven, the total number of windows opened
during the session does not exceed 16, and there is only one protected word in the window title.

The pairs of numbers in parentheses after each condition in the rules indicate the number of
positive and negative training events, respectively, that support (are covered by) the condition
For example, the first condition in the first rule covers 368 training events of User 1’s behavior,
and 8340 training events of behavior of the other users. The pair of numbers at the end of each
rule indicates the total number of positive and negative training events covered by the rule. For
example, the first rule covers 65 events from the training data of User 1, but no events in the
training data of other users. Because both rules cover no negative events, they are said to be
consistent with the training data.

The rules in Figure 1 are examples of simple attributional rules, which are decision rules
expressed in attributional calculus, a logic system used for representing knowledge in AQ
learning (Michalski, 2004). A set of attributional rules with the same consequent (indicating the
same decision) is called a ruleset. A collection of rulesets whose consequents span all values of
the output (decision) variable is called a ruleset family, or a classifier. Rules, rulesets and
classifiers are examples of attributional descriptions, as they involve only attributes in
characterizing entities.

In contrast to attributional descriptions, relational (aka structural) descriptions employ not only
attributes but also multi-argument predicates representing relationships among components of
the entities. Such descriptions are produced, for example, by the INDUCE inductive learning
programs (Larson, 1977; Bentrup. Mehler and Riedesel, 1987), and by inductive logic programs

—————
2 In order to protect user privacy, during preprocessing, all words in the window title that were not names of system programs or
functions were replaced with randomly selected numbers. The words that were not affected by this sanitization were called
“protected.”

5

(e.g., Muggleton, 1992). Constructing structural descriptions requires a more complex
description language that includes multi-argument predicates, for example, PROLOG, or
Annotated Predicate Calculus (Michalski, 1983; Bratko, Muggleton and Karalic, 1997).

For database exploration, attributional descriptions appear to be the most important and the
easiest to implement, because most databases characterize entities in terms of attributes. As one
can see, they are also easy to interpret and understand. A simple and popular form of
attributional description is a decision or classification tree. In such a tree, nodes correspond to
attributes, branches stemming from the nodes correspond to attribute values, and leaves
correspond to individual classes (e.g., Quinlan, 1986). A decision tree can be transformed into a
set of simple attributional rules (a ruleset family) by traversing all paths from the root to
individual leaves. Such rules can often be simplified by detecting superfluous conditions in them,
but such a process can be computationally very costly (e.g., Quinlan, 1993). The opposite
process of transforming a ruleset family into a decision tree is simple, but may introduce
superfluous conditions because a tree representation is less expressive than a rule representation
(Imam and Michalski, 1993).

The attributional calculus distinguishes between many different types of attributes, such as
nominal, rank, cyclic, structured, interval, ratio, absolute, set-valued, and compound (Michalski,
2004). By distinguishing so many attribute types, attributional calculus caters to the needs of
knowledge mining. By taking into consideration different attribute types, a learning system can
be more effective in generating inductive generalizations, because different generalization rules
apply to different attribute types (Michalski, 1983). Thus, a specification of such attribute types
constitutes a form of background knowledge used in knowledge mining.

The aforementioned AQ21 is a multipurpose learning system for generalizing cases into rules
and detecting patterns in data. It is an updated version of AQ19, which was used as a major
module of the INLEN system developed for testing initial ideas and methods for knowledge
mining (see Section 5). The input to AQ21 consists of a set of training examples representing
different concepts (classes, decisions, predictions, etc.), parameters defining the type of
description to be learned and how it should be learned, a multi-criterion measure of description
quality, and background knowledge, which includes a specification of domains and types of
attributes, hierarchical structures defining structured domains, and arithmetic and logical rules
suggesting ways to improve the representation space and/or define constraints on it. The
measure of description quality (or preference criterion) may refer to computational simplicity of
the description, its generality level, the cost of measuring attributes in the description, or an
estimate of its predictive ability.

Many symbolic learning programs learn rules that are consistent and complete with regard to the
input data. This means that they completely and correctly classify every distinct training
example. Others select rules according to a description quality criterion that does not necessarily
give maximal weight to a description’s consistency. The AQ21 learning program, depending on
the setting of its parameters, can generate either complete and consistent descriptions, or strong
patterns that can be partially inconsistent and incomplete.

6

2.2 Types of Problems in Learning from Examples

Descriptions generated from examples by symbolic learning programs may take two forms,
depending on whether the learning goal is to describe members of a particular concept (a group
of entities), or contrast them against other groups. Descriptions that enumerate the common
properties of the entities in each group are called characteristic descriptions. Descriptions that
specify differences between groups are called discriminant descriptions.

Some methods for concept learning assume that examples do not have errors, that all attributes
have a specified value in them, that all examples are located in the same database, and that
concepts to be learned have a precise (“crisp”) description that does not change over time. In
many situations one or more of these assumptions may not hold. This leads to a variety of more
complex machine learning and data mining problems and methods for solving them:

• Learning from noisy data, i.e., learning from examples that contain a certain amount of errors
or noise (e.g., Quinlan, 1990; Michalski and Kaufman, 2001). These problems are
particularly important for data and knowledge mining because databases frequently contain
some amount of noise.

• Learning from incomplete data, i.e., learning from examples in which the values of some
attributes are unknown (e.g., Dontas, 1988, Lakshminarayan et al., 1996).

• Learning from distributed data, i.e., learning from spatially distributed collections of data
that must be considered together if the patterns within them are to be exposed (e.g., Ribeiro,
Kaufman and Kerschberg, 1995).

• Learning drifting or evolving concepts, i.e., learning concepts that are not stable but changing
over time, randomly or in a certain general direction. For example, the “area of interest” of a
computer user is usually an evolving concept (e.g., Widmer and Kubat, 1996).

• Learning concepts from data arriving over time, i.e., incremental learning in which currently
held hypotheses characterizing concepts may need to be updated to account for the new data
(e.g., Maloof and Michalski, 2004).

• Learning from biased data, i.e., learning from a data set that does not reflect the actual
distribution of events (e.g., Feelders, 1996).

• Learning flexible concepts, i.e., concepts that inherently lack precise definition and whose
meaning is context-dependent; approaches concerned with this topic include fuzzy sets (e.g.,
Zadeh, 1965; Dubois, Prade and Yager, 1993), two-tiered concept representations (e.g.,
Michalski, 1990; Bergadano et al., 1992), and rough sets (e.g., Pawlak, 1991; Slowinski,
1992; Ziarko, 1994).

• Learning concepts at different levels of generality, i.e., learning descriptions that involve
concepts from different levels of generalization hierarchies (e.g., Kaufman and Michalski,
1996). An example of such problem is learning the concept of a liver disease versus the
concept of liver cancer.

• Integrating qualitative and quantitative discovery, i.e., determining sets of equations that fit a
given set of data points, and qualitative conditions for the application of these equations (e.g.,
Falkenhainer and Michalski, 1990).

7

• Qualitative prediction, i.e., discovering patterns in sequences or processes and using these
patterns to qualitatively predict the possible continuation of the given sequences or processes
(e.g., Davis, 1981; Michalski, Ko and Chen, 1985; 1986; Dietterich and Michalski, 1986).

Each of these problems is relevant to the derivation of useful knowledge from a collection of
data and knowledge. Therefore, it can be asserted that methods for solving these problems
developed in the area of machine learning are directly relevant to logical data analysis and
knowledge mining.

2.3 Clustering of Entities into Conceptually Meaningful Categories

Another class of machine learning methods relevant to knowledge mining concerns the problem
of building a conceptual classification of a given set of entities. The problem is similar to that
considered in traditional cluster analysis, but is defined in a different way, which allows for
knowledge-based constructions. Given a set of attributional descriptions of entities, a description
language for characterizing classes of such entities, and a classification quality criterion, the
problem is to partition entities into classes that have a simple and meaningful description in the
given description language and maximize the classification quality criterion. Thus, a conceptual
clustering method seeks not only a classification structure of entities, but also an understandable
description of the proposed classes (clusters). An important, distinguishing aspect of conceptual
clustering is that, unlike in similarity-based cluster analysis, the properties of these class
descriptions are taken into consideration in the process of determining the partition of entities
into clusters (e.g. Michalski and Stepp, 1983).

To clarify the difference between conceptual clustering and conventional clustering, notice that a
conventional clustering method typically determines clusters on the basis of a similarity measure
that is a function solely of the properties (attribute values) of the entities being compared, and
not of any other factors:

 Similarity(A, B) = f(properties(A), properties(B)) (2)

where A and B are entities being compared.

In contrast, a conceptual clustering program creates clusters based on conceptual cohesiveness,
which is a function of not only properties of the entities, but also of two other factors: the
description language L, which the system uses for describing the classes of entities, and of the
environment, E, which is the set of neighboring examples:

 Conceptual cohesiveness(A, B) = f(properties(A), properties(B), L, E) (3)

Thus, two objects may be similar, i.e., close according to some distance measure, while having a
low conceptual cohesiveness, or vice versa. An example of the first situation is shown in Figure
2. The points (black dots) A and B are “close” to each other; in fact, they are closer than any
other pair of points in the figure. They would therefore be placed into the same cluster by any
technique based solely upon the distances between the points. However, these points have small
conceptual cohesiveness, because they can be viewed as belonging to configurations representing
different concepts.

8

A conceptual clustering method, if equipped with an appropriate description language, would
cluster the points in Figure 2 into a circle and a horizontal line, as people normally would. A
classification quality criterion used in conceptual clustering may involve a variety of factors,
such as the fit of a cluster description to the data (called sparseness), the simplicity of the
description, and other properties of the entities or the concepts that describe them (Michalski and
Stepp, 1983; Stepp and Michalski, 1986). Ideas on employing conceptual clustering for
structuring text databases and creating concept lattices for discovering dependencies in data are
described by Carpineto and Romano (1995a; 1995b). The concepts created through the clustering
are linked in lattice structures that can be traversed to represent generalization and specialization
relationships.

Figure 2: An illustration of the difference between closeness and conceptual cohesiveness.

Recent advances in traditional, similarity-based clustering have attempted to go beyond the
limitations described above as well. Subspace clustering (e.g., Agrawal et al, 1998; Aggarwal et
al, 1999; Wang et al, 2004) alters the description language and the environment before creating
groups by projecting the event space on a subspace that produces better clusters. Various
approaches to manifold learning (Tenenbaum, de Silva and Langford, 2000; Saul and Roweis,
2003; Belkin and Niyogi, 2004) also attempt to reduce the dimensionality of the problem; they
differ from subspace clustering in that their focus is preserving the relationships among the
datapoints, rather than compacting them.

2.4 Automated Improvement of the Search Space: Constructive Induction

Most methods for learning from examples assume that the attributes used for describing
examples are sufficiently relevant to the learning problem at hand. This assumption does not
always hold in practice. Some attributes used in the examples may not be directly relevant (e.g.,
if the target concept is based on density, and we only have mass and volume attributes), and
others may be irrelevant or nonessential (e.g., if the target concept is predicting a student’s
performance in a class, and an attribute indicates the student’s height). An important
characteristic of logical analysis methods is that they can relatively easily determine irrelevant or
nonessential attributes.

A

B

9

An attribute is nonessential if there is a complete and consistent description of the concepts to be
learned that does not use this attribute. Thus, a nonessential attribute may be either irrelevant or
relevant, but will by definition be dispensable. There may exist a set of attributes, each one by
itself nonessential, yet some member of the set must be present in order to generate a complete
and consistent attributional description. Inductive learning programs such as the rule-learning
program AQ21, or the decision tree-learning C4.5, can cope relatively easily with a large number
of nonessential attributes in their input data.

If there are very many nonessential attributes in the input data descriptions, the complexity of the
learning process may significantly increase, along with the execution time, and the risk for
generating spurious rather than relevant knowledge may increase. Such a situation calls for a
method that can efficiently determine the most relevant attributes for the given problem from
among all those given initially. Only the most relevant attributes should be used in the learning
process.

Determining the most relevant attributes is therefore a useful data exploration operator. Such an
operator can also be useful for the data analyst on its own merit, as it may be important to know
which attributes are most discriminatory for a given learning task. By removing less relevant
attributes, the representation space is reduced, and the problem becomes simpler. Thus, such a
process is a form of improving the representation space. Some methods for finding the most
relevant attributes are described in (Zagoruiko, 1972; Baim, 1982; Fayyad and Irani, 1992;
Caruana and Freitag, 1994; Langley, 1994).

In applications in which the attributes originally given may only be weakly or indirectly relevant
to the problem at hand, there is a need for generating new, more relevant attributes that may be
functions of the original attributes. These functions may be simple, e.g., a product or sum of a set
of the original attributes, or very complex, e.g., a Boolean attribute based on the presence or
absence of a straight line or circle in an image (Bongard, 1970). Finally, in some situations, it
will be desirable to abstract some attributes, that is, to group some attribute values into units, and
thus reduce the attribute’s range of possible values. A quantization of continuous attributes is a
common example of such an operation (e.g., Kerber, 1992).

All the above operations—removing less relevant attributes, adding more relevant attributes, and
abstracting attributes—are different means of improving the original representation space for
learning. A learning process that consists of two (intertwined) phases, one concerned with the
construction of the “best” representation space, and the second concerned with generating the
“best” hypothesis in the found space is called constructive induction (Michalski, 1978; 1983;
Bloedorn, Wnek, and Michalski, 1993; Wnek and Michalski, 1994; Bloedorn and Michalski,
1998). An example of a constructive induction program is AQ17 described in (Bloedorn, Wnek
and Michalski, 1993), which performs all three types of operators for improving the original
representation space. In AQ17, the process of generating new attributes is performed through the
combination of existing attributes using mathematical and/or logical operators, and then selecting
the “best” combinations.

2.5 Reducing the Amount of Data: Selecting Representative Examples

When a database is very large, determining general patterns or rules characterizing different
concepts may be very time-consuming. To make the process more efficient, it may be useful to

10

extract from the database the most representative or important cases (examples) of given classes
or concepts. Even a random extraction should not be costly in the case of very large datasets, as
the selected set will likely be quite representative. Most methods of heuristic selection of
examples attempt to select those that are either most typical or most extreme (assuming that there
is not too much noise in the data). A method for determining the most representative examples,
called “outstanding representatives,” is described by Michalski and Larson (1978).

2.6 Integrating Qualitative and Quantitative Methods of Numerical Discovery

In a database that contains numerical and symbolic attributes, a useful discovery could be an
equation binding numerical attributes. A standard statistical technique for this purpose is
regression analysis. This technique requires that the general form of the equation is provided to
the system, as in multivariate linear regression. The application of machine learning to
quantitative discovery produced another approach to this problem that does not require a
specification of the form of the equation.

For instance, from a table of planetary data including planets’ names, planet’s masses, their
densities, distances from the sun, periods of rotation, lengths of local years, and the number of
moons, a quantitative discovery system would derive Kepler’s Law, which states that the cube of
the planet’s distance from the sun is proportional to the square of the length of its year. The
attributes such as the planet’s name and the number of moons would be ignored.

Research on quantitive discovery was pioneered by the BACON system (Langley, Bradshaw and
Simon, 1983), and then followed by many other systems, such as COPER (Kokar, 1986),
FAHRENHEIT (Zytkow, 1987), and ABACUS (Falkenhainer and Michalski, 1990). Similar
problems have been explored independently by Zagoruiko (1972) in Russia under the name of
empirical prediction.

Some equations may not apply directly to data, because of an inappropriate value of a constant,
or different equations may apply under different qualitative conditions. For example, in applying
Stoke’s Law to determine the velocity of a falling ball, if the ball is falling through a vacuum, its
velocity depends on the length of time it has been falling and on the gravitational force being
exerted upon it. A ball falling through some sort of fluid will reach a terminal velocity dependent
on the radius and mass of the ball and the viscosity of the fluid.

The program ABACUS (Greene, 1988; Falkenhainer and Michalski, 1990; Michael, 1991) is
able to determine quantitative laws under different qualitative conditions. It does so by
partitioning the data into subsets, each of which adheres to a different equation determined by a
quantitative discovery module. The qualitative discovery module can then determine
conditions/rules that characterize each of these example sets. For example, given a table
containing data on how fast different balls fall through different media, ABACUS can discover
these patterns based on the medium of descent:

 If Medium = vacuum, then v = 9.8175 t
 If Medium = glycerol, then vr = .9556 m
 If Medium = castor oil, then vr = .7336 m (4)

11

2.7 Predicting Processes Qualitatively

Most programs for learning rules from examples determine them from examples of various
classes of objects. An example of a concept represents that concept regardless of its relationship
to other examples. Contrast that with a sequence prediction problem, in which a positive example
of a concept is directly dependent on the position of the example in the sequence.

For example, Figure 3 shows a sequence of nine figures. One may ask what object plausibly
follows in the tenth position. To answer such a question, one needs to search for a pattern in the
sequence, and then use the pattern to predict a plausible sequence continuation. In qualitative
prediction, the problem is not to predict a specific value of a variable (as in time series analysis),
but rather to qualitatively characterize a plausible subsequent object, that is, to describe plausible
properties of that future object.

Figure 3: An example of a qualitative prediction problem.

In the example in Figure 3, one may observe that the sequence consists of circles with parallel
shading and squares with dark shapes inside. The figures may be rotated in different orientations
at 45-degree intervals. But is there a consistent pattern?

To determine such a pattern, one can employ different descriptive models, and instantiate the
models to fit the particular sequence. The instantiated model that best fits the data is then used
for prediction. Such a method was initially developed by Dietterich and Michalski, (1986), and
then generalized in SPARC/G system to handle arbitrary sequences of entities described by
attributes (Michalski, Ko and Chen, 1986). The method employs three descriptive models—
periodic, decomposition, and DNF.

The periodic model is used to detect repeating patterns in a sequence. For example, Figure 3
depicts a recurring pattern that alternates round and square objects. In general, there can also be
periodic subsequences within the periodic sequences. In the figure, the round objects form a
subsequence in which individual objects rotate leftward by 45 degrees and alternate between
small and large. The square objects have a subsequence alternating between those with a triangle
in the corner and those half-filled. Each subsequence is rotating clockwise.

The second model, the decomposition model, is used to characterize a sequence by decision rules
in the following general form: “ If one or more of the previous elements of the sequence have a
given set of characteristics, then the next element will have the following characteristics...” One
such rule that applies to the sequence in Figure 3 would state that if an element in the sequence

1 2 3 4 5 6 7 8 9 ?

12

has a triangular component, then the next element in the sequence will have a diagonally shaded
component; otherwise it will have no diagonal shading.

The third model, the DNF (disjunctive normal form) or “catch-all” model, tries to capture
general properties characterizing the whole sequence. For example, for the sequence in Figure 3,
it could instantiate to a statement such as “all elements in the sequence are round or square, their
interiors are either shaded, or contain a dark rectangle or triangle, etc.

Given the problem in Figure 3, SPARC/G would find the following pattern based on the periodic
model:

 Period < [shape=circle] & [shading = parallel] [orientation(i+1)=orientation(i) + 45],
 [shape = square] & [orientation(i+1)=orientation(i) + 45] > (5)

The pattern can be paraphrased: there are two phases in a repeating period (their descriptions are
separated by a comma). The first phase involves a circular figure, and the second phase a square
figure. The cricular figure is shaded and rotates to the right and the square figure also rotates to
the right by 45 degrees in relation to its predecessor. Based on this pattern, a plausible next
figure in the sequence would be a square figure rotated clockwise 45 degrees in relation to the
previous square figure. This rule does not specify the contents of that square.

The qualitative prediction capabilities described above can be useful for conceptual exploration
of temporal databases in many application domains, such as agriculture, medicine, robotics,
economic forecasting, computer intrusion detection, etc.

2.8 Knowledge Improvement via Incremental Learning

One very important aspect of the application of machine learning to logical data analysis is the
existence of methods for incremental learning that can improve data generalizations when new
data become available. This is analogous to Bayesian learning, but it is not the posterior
probability of a description that being improved, but rather the description itself.

Incremental learning can take three forms, depending on how much data from which the prior
knowledge was generated is available. Zero-memory learning, in which none of the earlier data
is retained, is more economical, while full-memory incremental learning, in which all earlier
training examples are retained, is likely to result in more accurate descriptions, provided that
issues of concept drift can be accounted for. Partial-memory incremental learning is an attempt
to strike a balance between these two extremes, by selecting for retention only the cases most
likely to be of use later on.

The zero-memory algorithm is straightforward. New data that contradicts prior hypotheses is
integrated into the prior hypotheses through specialization operators that reshape the hypotheses
into ones consistent with the new data. The best of these modified hypotheses are then input to
the learner along with the new data points (e.g., Michalski and Larson, 1983).

In the full-memory incremental learning, the new data that contradict the previous description are
first filtered by removing any examples which were identical to earlier training examples. The
prior hypotheses are then appropriately specialized or generalized to account for new data, while
preserving consistency and completeness of the description with regard to all past examples (e.g.,
Reinke and Michalski, 1988).

13

The partial memory method utilizes a selection of prior data for retention. Some partial memory
systems select examples that are near the perceived boundaries of the concepts, either based on
the incoming datastream (e.g., Kibler and Aha, 1987), or on induced rules (e.g., Maloof and
Michalski, 2000, 2004). Others retain a seed positive example (e.g., Elio and Watanabe, 1991),
or maintain only negative examples of a concept so as to define a boundary (e.g., Iba, Woogulis
and Langley, 1988).

2.9 Summarizing the Logical Data Analysis Approach

To help the reader develop a rough sense of what is different and new in the above, let us
consider operations typically performed by traditional multivariate data analysis methods. These
include computing mean-corrected or standardized variables, variances, standard deviations,
covariances and correlations among attributes; principal component analysis; factor analysis;
cluster analysis; regression analysis; multivariate analysis of variance; and discriminant analysis.
All these methods can be viewed as primarily oriented toward numerical characterizations of
data.

In contrast, the logical data analysis approach, described above, focuses on developing symbolic
logic-style descriptions of data, which may characterize data qualitatively, differentiate among
classes, create a “conceptual” classification of data, qualitatively predict sequences, etc. These
techniques are particularly well-suited for developing descriptions and seeking patterns in data
that involve nominal (categorical), rank, and structured attributes (with hierarchically-ordered
domains), although they can handle all types of attributes.

Another important distinction between the two approaches to data analysis is that purely
statistical methods are particularly useful for globally characterizing a set of objects, but not so
for determining a description for predicting class membership of individual objects (with some
exceptions, e.g., classification trees). A statistical operator may determine, for example, that the
average lifespan of a certain type of automobile is 7.3 years, but it may not provide conditions
indicating the lifespan of an automobile with particular characteristics, nor the ability to
recognize the type of a specific automobile from its description. A symbolic machine learning
approach is particularly useful for such tasks. It may create a description such as “ if the front
height of a vehicle is between 5 and 6 feet, body color is silver or grey, and the driver’s seat is 2
to 3 feet above the ground, then the vehicle is likely to be a minivan of brand X.” Such
descriptions are particularly suitable for classifying future, not yet observed entities based on
their properties.

The knowledge mining methodology aims at integrating a wide range of strategies and operators
for data exploration based on both machine learning research and statistical methods. The reason
for such a multistrategy approach is that a data analyst may be interested in many different types
of information about the data, requiring different exploratory strategies and different operators.

3 STRONG PATTERNS VS. COMPLETE AND CONSISTENT RULES

In its early stages of development, machine learning was oriented primarily toward methods that
produce consistent and complete descriptions of the training data, that is, descriptions that
explain (“cover”) all positive training examples of the target concepts, and none of the negative
examples. In practical applications, however, data frequently contain some errors; therefore, a

14

complete and consistent description will likely overfit the data, producing incorrect micro-
patterns. Also, in practice, one may be more interested in determining a simple but not
completely correct pattern than a complex but a correct one.

There have been several methods developed to determine such patterns using the symbolic
learning approach. One method is through postprocessing of learned descriptions using ruleset
optimization (e.g., Bergadano et al, 1992). The well-known decision tree pruning is a simple
form of the same idea (e.g., Quinlan, 1993). In this method, an initially learned complete and
consistent description is simplified by removing statistically insignificant components (subtree
pruning in decision tree learning, or rule truncation in AQ learning), or optimizing some of its
components (rule optimization in AQ learning).

Another method is to optimize descriptions during the rule generation process. Such a method
employs a rule quality criterion, defined by the user, that specifies a tradeoff between
completeness and consistency of a rule. At each stage of rule learning, candidate hypotheses are
overgeneralized (introducing inconsistency, but increasing rule coverage), and then evaluated
using the rule quality criterion. Whichever variant of the original hypothesis scores best is
retained as input to the next iteration of rule learning. In this way, negative examples are ignored
if the creation of a strong pattern requires it.

Such a method was implemented in AQ learning, as an additional option to rule truncation
(Michalski and Kaufman, 2001). The method uses a rule quality measure Q(w), where w is a
user-specified weight parameter controlling the relative importance of rule coverage in relation
to rule consistency gain.

Specifically, given a training dataset consisting of P positive examples of a concept and N
negative examples (examples of other concepts), and given a rule R that covers p positive
examples and n negative examples, the rule’s coverage (relative support) is defined as:

 cov(R) = p / P (4)

The consistency of rule R is defined as the fraction of covered examples that are positive
(correctly classified), or:

 cons(R) = p / (p + n) (5)

However, without taking into account the distribution of training examples, a rule’s consistency
alone does not provide a strong indication of the predictive utility of the rule. Thus, we instead
apply consistency gain (cgain), which measures the rule’s improvement in performance over the
expected performance of blindly guessing the positive class. A normalization factor ensures that
this measure will be zero when the rule performs no better than such a blind guess, and 1 when
the rule achieves 100% consistency.

 cgain(R) = (p / (p + n)) – (P / (P + N)) * ((P + N) / N) (6)

The Q(w) formula then combines the coverage and consistency gain terms through multiplication
(so that Q will be 1 when both terms are 1, and Q will be 0 when either term is 0), and
accordingly, the weight w is computed as an exponent in the equation. Specifically:

 Q(w) = cov(R)w * cgain(R)1-w (7)

15

It should be noted that both cov(R) and cgain(R) are functions of the rule’s positive and negative
support. Other programs typically also use various functions of rule’s positive and negative
support in evaluating the descriptions they generate.

Table 1 presents examples of how different methods can choose differently from the same set of
candidate rules (Kaufman and Michalski, 1999). In the table, three separate data sets are
assumed, each with 1000 training examples. In Data Set A, 200 of the training examples are in
the positive class; in Data Set B, 500 training examples are, and in Data Set C, 800 training
examples are. For each data set, seven rules are hypothesized, each covering different numbers
of positive and negative examples. The table shows how each set of seven rules would be ranked
by information gain, by the programs PROMISE (Baim, 1982), CN2 (Clark and Niblett, 1989),
and RIPPER (Cohen, 1995), and by Q(w) for w = 0, .25, .5, .75, and 1. In each column, “1”
indicates the rule determined by the method to be the best (the highest rank), and “7” indicates
the worst.

Data Pos Neg RANKS

Set Inf. Gain PROMISE CN2 RIPPER Q(0) Q(.25) Q(.5) Q(.75) Q(1)

A 50 5 7 7 4 7 4 7 7 7 6

 50 0 6 6 1 6 1 6 6 6 6

200 200 5 1 1 2 1 2 1 1 1 1

pos 150 10 2 2 3 2 3 2 2 2 2

 150 30 3 3 6 3 6 3 3 3 2

800 100 15 5 5 5 5 5 4 4 5 5

neg 120 25 4 4 7 4 7 5 5 4 4

B 50 5 7 7 3 7 3 7 7 7 7

 250 25 6 5 3 5 3 5 5 5 5

500 500 50 1 1 3 1 3 1 1 1 1

pos 500 150 2 3 7 3 7 6 4 2 1

 200 5 5 6 1 6 1 4 6 6 6

500 400 35 3 2 2 2 2 2 2 3 3

neg 400 55 4 4 6 4 6 3 3 4 3

C 50 5 7 – 3 7 3 6 6 6 7

 250 25 5 – 3 5 3 2 5 4 5

800 500 50 1 – 3 1 3 3 1 1 1

pos 500 150 6 – 7 3 7 7 7 7 1

 200 5 3 – 1 6 1 1 3 5 6

200 400 35 2 – 2 2 2 2 2 2 3

neg 400 55 4 – 6 4 6 5 4 3 3

Table 1: How different methods rank different rules.

This is not meant to suggest that any of these ranking methods are superior or inferior to any
other. Rather, it serves to indicate how by changing the rule quality criterion, one can often alter

16

which rules will be selected, and demonstrates the flexibility of the Q(w) measure to emulate
several different rule quality criteria through adjustment of its weight. This research thus shows
that by controlling the w parameter in the AQ learning program, one can obtain rulesets
representing different trade-offs between consistency and completeness, and approximate
behavior of different learning programs.

Fürnkranz and Flach (2003) have studied the behavior of different rule quality measures, and
present a means for showing graphically how these measures can be intuitively visualized and
compared.

4 RULESET VISUALIZATION VIA CONCEPT ASSOCIATION GRAPHS

When working with symbolic knowledge as described above, it is desirable for a data analyst to
be able to visualize the results of the learning process. The purpose of such visualization
operators is to relate visually the input data to the rules that have been learned from them, to see
which datapoints would corroborate or contradict these rules, to identify possible errors, etc. To
this end, programs are needed that are specialized toward the visualization of data and
attributional knowledge. Two such approaches are the diagrammatic visualization method
implemented in the KV program (Zhang, 1997), and the concept association graph (e.g.,
Michalski and Kaufman, 1997; Kaufman and Michalski, 2000). The latter approach is
particularly oriented toward problems of data and knowledge mining, due to a lack of
complications arising from scaling up to many large attribute domains.

Concept association graphs were developed as a tool for visualizing attributional rulesets, or
more generally the relationships between consequents and premises (Michalski and Kaufman,
1997). Attributes, rules and their relationships are displayed in a graphical form using nodes and
links. There are three different types of nodes: input nodes, output nodes and rule nodes.

Input nodes are nodes that represent components of the premise of a rule, while output nodes
represent the consequent of a rule. Rule nodes represent the relationships between one or more
input attributes and one or more output attributes. All of the conditions in the premise of a rule
are linked to its rule-node, which is then linked to the output node(s). Input and output nodes
appear as ovals in a concept association graph, and rule nodes appear as rectangles.

There are two types of links, presented as continuous links and dotted links. The dependency
between input and output nodes is represented with continuous links of different thickness. The
thicker the link, the stronger the relationship. The thickness of the link can be computed using
many different methods, which may take into consideration for example, the completeness (what
percentage of positive examples of the consequent class are covered by the condition) or the
consistency (what percentage of the examples covered by the condition are of the target class).
A third method combines completeness and consistency using the Q(w) measure (Section 3).
These links are labeled by annotations that specify the values of the attribute represented by the
associated input node that satisfy the condition represented by the link. This can be done either
through a specification of attribute values (as seen, for example, in Figure 4 below) or, more
simply, through one of four symbols that characterize those values (as seen, for example, in
Figure 5 below).

The abstraction to four symbols can be used in the case of linear or binary attributes. The
symbol ‘+’ indicates a positive relationship between the attribute (or higher values of it) and the

17

rule. The symbol ‘ -‘ indicates a negative relationship; a rank attribute should have a low value,
or a binary attribute should be false. Linear (rank, interval or ratio) attributes can also be
characterized by the symbols ‘^’ and ‘v’ , which indicate respectively that the attribute should
have central or extreme values in the given condition.

Dotted links in concept association graphs are used to display generalization (is-a) relationship
between nodes. For example, in the mushroom domain (see Figure 4), a dotted link shows that
the output node [class=poisonous] is an instantiation of the classes-of-mushrooms node. Dotted
links are optional, and are used primarily when output nodes can also serve as input nodes for
another diagrammed rule.

The major advantage of a concept association graphs is that it can visualize multivariate
relationships (rules) with a graphical indication of the strength of individual condition in these
rules. The visualization method using concept association graphs has been implemented in
program CAG1, which reads in a set of attributional rules learned by AQ-type learning program,
and then displays a concept association graph. The program allows the user to modify the graph.

To illustrate different forms of concept association graphs we will use attributional rules learned
from the “mushroom dataset” obtained from the data repository at the University of California at
Irvine, and rules learned from a medical database representing patients with histories of different
diseases.

The mushroom dataset contains the examples of more than 8000 different species of mushrooms,
classified as edible or poisonous. Each mushroom is described in terms of 23 attributes, of which
22 are discrete input attributes (nominal or ordinal), and one is an output attribute, with the
domain { edible, poisonous} . There were 3916 examples of poisonous mushrooms, and 4208
examples of edible mushrooms. The attributional rules learned from these examples are:

[class = poisonous]

 ⇐ [odor = creosote or fishy or foul or musty or pungent or spicy : 3796,0]

: p=3796, n=0

 ⇐ [cap_color � cinnamon: 3904, 4176] & [gill_spacing = close or distant 3804,3008]
& [stalk_root � equal: 3660,2624] & [stalk_surface_above_ring = fibrous or silky
or smooth: 3908,4192] & [ring_type � flaring: 3916,4160] & [spore_print_color =
green or purple or chocolate or yellow or white: 3468,672] & [habitat � waste:
916,4016]
: p=3440, n=24

[class = edible]
 ⇐ [odor = almond or anise or none : 4208,120]

: p=4208, n=120

Thus, there are two rules for poisonous mushrooms, and one rule for edible mushrooms. The
pairs of numbers after “ :” in each condition in each rule denote the number of positive and
negative examples covered by this condition, respectively. Parameters p and n after each rule
denote the total number of positive and negative examples covered by each rule, respectively.

18

Thus, the first rule for the poisonous mushrooms covers 3796 examples of poisonous mushrooms
and zero examples of edible mushrooms.

Given these rules, and numbers of positive and negative examples associated with each condition
in each rule, CAG1 generated a concept association graph presented in Figure 4. The thickness
of the lines connecting conditions with the class is proportional to the consistency of the
conditions, measured by (p / p + n). Thus, in Rule 2 for the poisonous class, the link
corresponding to the condition [spore_print_color = green or purple or chocolate or yellow or
white] is much thicker than the others, as the consistency of this condition is approximately 84%,
while the next strongest conditions, [stalk_root � equal] and [gill_spacing = close or distant],
have consistencies of 58% and 56%, respectively. The links associated with them are somewhat
thicker than the links representing the rule’s remaining conditions, which have consistencies
around 50%.

Figure 4. A concept association graph representing rules for distinguishing edible from
poisonous mushrooms.

CAG1 was also used to visualize attributional rules learned from data collected by the American
Cancer Society on lifestyles and diseases of nonsmoking men, aged 50-65. The data consist of
over 73,000 records describing them in terms of 32 attributes; 25 are Booleans indicating the
occurrence or non-occurrence of various classes of disease, and the other 7 describe elements of
their lifestyles. Six of the seven are discrete attributes, with 2-7 linearly ordered values, and the
seventh, representing how long the respondent had lived in the same neighborhood, is numeric.
Among the discovered patterns were:

19

[Arthritis=present]

 ⇐ [Hi gh_Bl ood_Pr essur e = pr esent] (432, 1765) &
 [Educat i on < gr ad school] (940, 4529) &
 [Rot undi t y > ver y_l ow] (1070, 5578) &
 [Year s_i n_Nei ghbor hood >= 1] (1109, 5910) : 325, 1156

[Colon_Polyps=present]

 ⇐ [Pr ost at e_Di sease = pr esent] (34: 967) &
 [Sl eep = 5, 9] (16, 515) &
 [Year s_i n_Nei ghbor hood >= 8] (33, 1477) &
 [Rot undi t y = aver age] (58, 2693) &
 [Educat i on < col l ege degr ee] (83, 4146) : 5, 0

[Diverticulosis=present]

 ⇐ [s t r oke = absent] (257, 7037) &
 [Ar t hr i t i s = pr esent] (70, 1033) &
 [Rot undi t y >= aver age] (170, 4202) &
 [Educat i on >= some col l ege] (176, 4412) &
 [Sl eep = 7. . 9] (205, 5743) &
 [Year s_i n_Nei ghbor hood > 10] (134, 3846) : 24, 115

[Stomach_Ulcer=present]

 ⇐ [Ar t hr i t i s = pr esent] (107, 1041) &
 [Educat i on <= col l ege degr ee] (305, 5276) &
 [Exer ci se >= medi um] (298, 5606) : 79, 668

[Asthma=present]

 ⇐ [Hay_Fever = pr esent] (170, 787) : 170, 187

The first rule, for example, states that occurrence of arthritis is associated with high blood
pressure, education below graduate school, rotundity (a relation of patient’s weight to height)
above very low, and that patients moved into their current neighborhood at least a year ago.

When the above rules and several others were input to CAG1, it resulted in the generated graph
shown in Figure 5. In this CAG, links are color-coded according to which rule they apply to for
ease of viewing. The concepts are present at a higher level of abstraction than in Figure 4; as
discussed above. The relationship between nodes is represented with symbols rather than with
an exact “ relation reference.” That is, instead of the list of values for attributes shown on the
input links of Figure 4, the links are instead annotated with the four symbols +, -, ^ and v.

In these graphs, the output nodes are also used directly as input nodes, without linking to an
intermediate node to signify their values. This is possible because the output attributes are all
binary, and the value true (or in this case “present”) is understood.

In the graph in Figure 5, link thicknesses are based on completeness (support). For example, two
of the links comprising the Stomach Ulcer rule in Figure 5 are noticeably thicker than the third,
because the conditions involving Education and Exercise had approximately three times the
support of the arthritis condition.

20

Figure 5: A concept association graph representing discovered multivariate relationships
between diseases and lifestyles. Link thicknesses represent relative support.

5 INTEGRATION OF KNOWLEDGE GENERATION OPERATORS

To make the data exploration operations described above easily available to a data analyst, and
applicable in sequences in which the output from one operation is an input to another one,
programs performing these operations are best integrated into one system. This idea underlay the
INLEN system (Michalski et al, 1992; Michalski and Kaufman, 1997), and its successor,
VINLEN (Kaufman and Michalski, 2003), which is currently under development. The INLEN
system integrates machine learning programs, simple statistical data analysis tools, data tables, a
knowledge base, inference procedures, and various supporting programs under a unified
architecture and graphical interface. The knowledge base is used for storing, updating and
applying rules that may be employed for assisting data exploration, and for reporting results from
it.

The general architecture of INLEN is shown in Figure 6. The system consists of knowledge
systems, which maintain the data and knowledge relevant to a given application domains. Each
knowledge system is associated with a database (DB) and a knowledge base (KB), both of which
can be accessed by a set of operators. The operators are divided into three classes:

• DBMOs: Data Management Operators, which operate on the database. These are
conventional data management operators that are used for creating, modifying and displaying
relational tables.

21

• KBMOs: Knowledge Management Operators, which operate on the knowledge base. These
operators play a similar role to the DBMOs, but apply to the rules and other structures in the
knowledge base.

• KGOs: Knowledge Generation Operators, which operate on both the data and knowledge
bases. These operators perform symbolic and numerical data exploration tasks. They are
based both on various machine learning and inference programs and on conventional data
exploration techniques.

The execution of a KGO usually requires some background knowledge, and is guided by control
parameters (if some parameters are not specified, default values are used). The background
knowledge may contain some general knowledge, previously discovered knowledge, and
knowledge specifically relevant to a given application domain, such as a specification of the
value sets and types of attributes, the constraints and relationships among attributes, initial rules
hypothesized by an expert, etc. The KGOs can be classified into groups, based on the type of
operation they perform, each of which includes a number of specific operators that are
instantiated by a combination of parameters. For example one group consists of operators for
learning decision rules, another for selecting attributes, another for applying knowledge, and so
forth.

Figure 6: A general schema of the INLEN inductive database system.

One INLEN operator extends beyond the traditional learning and discovery operators, and thus
merits further discussion. Specifically, the Scout Access operator is used to build knowledge
scouts – scripts to serve as intelligent agents performing discovery tasks in the inductive database
(Michalski and Kaufman, 2000).

To explore the idea of a knowledge scout further, consider the task of data exploration and
knowledge mining. Typically, the entire plan of discovery can not be determined in its entirety
beforehand. Some results may require no action, others may require some action to be taken,
and occasionally, some may warrant a new and completely unplanned course of action. Yet it is
time-consuming and subject to errors for an analyst to stand over every stage of the discovery
process and respond appropriately to the output from each of those steps. Thus, the idea of a

22

knowledge scout is that of a mechanism that can encapsulate the user’s knowledge of how to
react to different contingencies.

For instance, An experiment based on 1993 World Factbook data found the following rule
describing 25 of the 55 countries with low (<1%) population growth:

PopGrRate < 1% if pos neg
1. BirthRate is 10..20 or 50..60 46 20

2. FertRate is 1..2 or > 7 32 17

3. Religion is Protestant or Roman_Catholic or Eastern_Orth or
Shinto orBulgarian_Orth or Russian_Orth or Romanian_Orth or
Greek_Orth 38 32

4. NetMigRate <= +10 54 123

The first and strongest condition is surprising. Birth rates ranged in the data from 10 to 60, and
while the low birth rate is intuitive, the very high one is not. Looking at the 25 countries that
satisfy the rule, 24 of them had birth rates less than 20. Only one country, Malawi, had a birth
rate above 50. Such a counterintuitive result could instigate a series of experiments to determine
the cause of such behavior. In fact subsequent investigation of Malawi compared to the rest of
the countries quickly turned up an explanation: an outward net migration rate that dwarfs those
of all the other countries.

Thus, a goal of knowledge scout would be to be able to specify in a script anomalies to be
detected and what should be done in response to them (either logging them for a human, or
calling upon new discovery operators). A knowledge scout needs the means to specify its plan
of action, specifically, a language rich enough to specify the operators available to it and the
means to select and execute actions. For instance, M-SQL extends the SQL data query language
by adding to it the ability to query for certain types of rules and to invoke an association rule
generating operator (Imielinski, Virmani, and Abdulghani, 1996). Thus, it has access to
conventional database operators plus a data mining operator.

Built for the INLEN environment which contained a variety of learning and discovery operators,
each of which offered a range of parameter settings, KGL was designed as a language for
specifying detailed plans in such an environment (Michalski and Kaufman, 2000). By
combining the means for specifying the steps to be taken and the means for specifying the
control structure, KGL code, such as the set of instructions shown in Figure 7, could be provided
to the program. In that figure, the program is asked to examine the PEOPLE data table extracted
from the CIA’s World Factbook, and to take action based on the rules it finds. Comments
(bracketed and in italics) have been added to explain each line.

The presented script learns rules for each possible decision attribute, then executes three tasks.
First it counts the number of rules whose consequent predicts a country’s population growth rate
that are strong according to three criteria: high relative support, high absolute support, and
containing at least two conditions that have both absolute support and standalone consistency
above the given thresholds. Then it tests the ruleset that determines a country’s likely fertility
rate for complexity (based on the total number of conditions in the ruleset); if it is too complex,
the four most relevant attributes to the task are chosen, and the learning is repeated on this

23

streamlined dataset. Finally, it reports on the number of conditions in the life expectancy rule
base that have confidence levels above different thresholds.

open PEOPLE { Sel ect PEOPLE dat abase}
do CHAR(deci s i on=al l , pf i l e=peopl e1. l r n) { Char act er i ze concept s

r epr esent i ng s i ngl e val ues of
al l at t r i but es, usi ng par amet er s
 speci f i ed i n f i l e peopl e1. l r n}

st r ongPGr ul es1 = #r ul es(PGR, compl >= 60) { Count r ul es f or Popul at i on}
s t r ongPGr ul es2 = #r ul es(PGR, supp >= 25) { Gr owt h Rat e t hat sat i sf y}
s t r ongPGr ul es3 = #r ul es(PGR, { t hr ee di f f er ent condi t i ons}
 num_conds(cons >= 50 and supp > 10) > 2) { f or t hr eshol d of st r engt h}
pr i nt “ Number of st r ong PGR r ul es:
 Type 1 = ” , s t r ongPGr ul es1, “ ,
 Type 2 = “ , s t r ongPGr ul es2, “ ,
 Type 3 = “ , s t r ongPGr ul es3
i f #condi t i ons(Fer t) > 150 { I s Fer t r ul eset t oo compl ex?}
 begi n
 do SELECT(at t r i but es, deci s i on=Fer t ,
 t hr esh=4, out =PEOPLE2, cr i t er i on=max) { I f so, f i nd “ t hr esh” best }
 do CHAR(pf i l e=peopl e1. l r n, deci s i on=Fer t) { i ndependent at t r i but es, t hen
 end { r echar act er i ze}
f or i = 1 t o 6
begi n { For each val ue of i , 1- 6, }
pr i nt “ Number of LE condi t i ons wi t h p/ n { count & di spl ay number of }
 r at i o of at l east ” , i , “ : 1 =” , { Li f e Expect ancy condi t i ons}
 #condi t i ons(LE, cons >= i / (i +1)) { wi t h consi st ency • i / (i +1) }
end

Figure 7: KGL code defining a knowledge scout for exploring a World Factbook data table.

In summary, an inductive database integrates a database with a set of operators for performing
various types of operations on the database, on the knowledge base, or on the data and
knowledge bases combined.

6 SUMMARY

The main thesis of this paper is that modern methods for symbolic machine learning have a
direct and important application to logical data analysis and the development of a new research
direction, called knowledge mining. Knowledge mining has been characterized as a derivation of
human-like knowledge from data and prior knowledge. It was indicated that a knowledge mining
system can be implemented using inductive database technology that deeply integrates a
database, a knowledge base, and operators for data and knowledge management and knowledge
generation.

Among knowledge generation operators are operators for inductive learning of attributional rules
or trees characterizing the relationship between designated output and input attributes, for
creating conceptual hierarchies (conceptual clustering) from data, for selecting most relevant
attributes, and for visualizing data and rules learned from the data. The learned rules represent
high-level knowledge that can be of great value to a data analyst, and used for human decision-
making or for automated classification. Other important operators include construction of
equations along with logical preconditions for their application, determination of symbolic
descriptions of temporal sequences of multi-attribute events, automated generation of new, more
relevant attributes, and selection of representative examples.

24

The underlying theme of all these methods is the ability to generate knowledge that is easily
understood and articulated. Visualization techniques such as concept association graphs facilitate
the presentation of broad concepts to the user.

The knowledge generation capability was illustrated by presenting results from several
application domains. In analyzing demographic data, the knowledge mining approach helped to
discover the anomalous Malawi’s population changes. In analyzing medical data, it showed in
understandable terms relationships between the occurrences of diseases and the presence or
absence of other diseases as well as factors in individuals’ lifestyles. And in a computer
intrusion detection domain, it created symbolic user models from process table data
characterizing users’ activities (Michalski et al, 2005).

In contrast to many data mining approaches, the methodology presented can utilize various types
of background knowledge regarding the domain of discourse. This background knowledge may
include, for example, a specification of the domain and the type of the attributes, the known
relationships among attributes, prior concept descriptions, and other high-level knowledge. An
important aspect of the methodology is its ability to take advantage of this knowledge.

We presented KGL as a language for developing knowledge scouts. KGL was designed for an
environment in which the data was not stored in a full-scale DBMS. VINLEN, which works in
conjunction with an SQL-accessible relational database, requires a knowledge scout language
that is tailored to such an environment. Thus, one topic of ongoing research is the development
of a Knowledge Query Language – a language of SQL-like form that extends its capabilities into
a knowledge mining paradigm.

25

REFERENCES

Aggarwal, C.C., Procopiuc, C., Wolf, J. Yu, P.S. and Park, J.S., “Fast Algorithms for Projected
Clustering,” Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data, pp. 61-72, 1999.

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P., “Automatic Subspace Clustering of
High Dimensional Data for Data Mining Applications,” Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pp. 94-105, 1998.

Alexe, S., Blackstone, E, and Hammer, P., “Coronary Risk Prediction by Logical Analysis of
Data,” Annals of Operations Research, 119, pp. 15-42, 2003.

Baim, P.W., “The PROMISE Method for Selecting Most Relevant Attributes for Inductive
Learning Systems,” Report No. UIUCDCS-F-82-898, Department of Computer Science,
University of Illinois, Urbana, 1982.

Belkin, M. and Niyogi, P., “Semi-supervised Learning on Riemannian Manifolds,” Machine
Learning, 56, pp. 209-239, 2004.

Bentrup, J.A., Mehler, G.J. and Riedesel, J.D., “ INDUCE 4: A Program for Incrementally
Learning Structural Descriptions from Examples,” Reports of the Intelligent Systems Group, ISG
87-2. UIUCDCS-F-87-958, Department of Computer Science, University of Illinois, Urbana,
1987.

Bergadano, F., Matwin, S., Michalski, R.S. and Zhang, J., “Learning Two-Tiered Descriptions of
Flexible Concepts: The POSEIDON System,” Machine Learning, 8, pp. 5-43, 1992.

Bloedorn, E., Mani, I. and MacMillan, T.R., “Machine Learning of User Profiles:
Representational Issues,” Proceedings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), Portland, OR, 1996.

Bloedorn, E. and Michalski, R.S., “Data-Driven Constructive Induction,” IEEE Intelligent
Systems, Special Issue on Feature, Transformation and Subset Selection, pp. 30-37, March/April,
1998.

Bloedorn, E., Wnek, J. and Michalski, R.S., “Multistrategy Constructive Induction.,”
Proceedings of the Second International Workshop on Multistrategy Learning, Harpers Ferry,
WV, pp. 188-203, 1993.

Bongard, N., Pattern Recognition, Spartan Books, New York (a translation from Russian), 1970.

Brachman, R.J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G. and Simoudis, E., “Mining
Business Databases,” Communications of the ACM, 39:11, pp. 42-48, 1996.

Bratko, I., Muggleton, S. and Karalic, A., “Applications of Inductive Logic Programming,” in
Michalski, R.S., Bratko, I. and Kubat, M. (eds.), Machine Learning and Data Mining: Methods
and Applications, London, John Wiley & Sons, 1997.

Carpineto, C. and Romano, G., “Some Results on Lattice-based Discovery in Databases,”
Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases, Heraklion,
pp. 216-221, 1995a.

26

Carpineto, C. and Romano, G., “Automatic Construction of Navigable Concept Networks
Characterizing Text Databases,” in Gori, M. and Soda, G. (eds.), Topics in Artificial Intelligence,
LNAI 992-Springer-Verlag, pp. 67-78, 1995b.

Caruana, R. and Freitag, D., “Greedy Attribute Selection,” Proceedings of the Eleventh
International Conference on Machine Learning, pp. 28-36, 1994.

Cavalcanti, R.B., Guadagnin, R., Cavalcanti, C.G.B., Mattos, S.P. and Estuqui, V.R., “A
Contribution to Improve Biological Analyses of Water Through Automatic Image Recognition,”
Pattern Recognition and Image Analysis, 7:1, pp. 18-23, 1997.

Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning, 3, pp. 261-283,
1989.

Cohen, W., “Fast Effective Rule Induction,” Proceedings of the 12th International Conference
on Machine Learning, 1995

Daniel, C. and Wood, F.S., Fitting Equations to Data, New York, John Wiley & Sons, 1980.

Davis, J., “CONVART: A Program for Constructive Induction on Time-Dependent Data,” M.S.
Thesis, Department of Computer Science, University of Illinois, Urbana, 1981.

De Raedt., L., Jaeger, M., Lee, S.D. and Mannila, H., “A Theory of Inductive Query
Answering,” Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM’02), pp. 123-130, 2002.

Dieterrich, T. and Michalski, R.S., “Learning to Predict Sequences,” in Michalski, R.S.,
Carbonell, J.G. and Mitchell, T.M. (eds.), Machine Learning: An Artificial Intelligence
Approach Vol. 2, Morgan Kaufmann, pp. 63-106, 1986.

Diday, E. (ed.), Proceedings of the Conference on Data Analysis, Learning Symbolic and
Numeric Knowledge, Nova Science Publishers, Inc., Antibes, 1989.

Dontas, K., “APPLAUSE: An Implementation of the Collins–Michalski Theory of Plausible
Reasoning,” M.S. Thesis, Computer Science Department, The University of Tennessee,
Knoxville, TN, 1988.

Dubois, D., Prade, H. and Yager, R.R. (eds.), Readings in Fuzzy Sets and Intelligent Systems,
Morgan Kaufmann, 1993.

Elio, R. and Watanabe, L., “An Incremental Deductive Strategy for Controlling Constructive
Induction in Learning from Examples,” Machine Learning 7: pp. 7-44, 1991.

Evangelos S. and Han, J. (eds.), Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, Portland, OR, 1996.

Falkenhainer, B.C. and Michalski, R.S., “ Integrating Quantitative and Qualitative Discovery in
the ABACUS System, in Kodratoff, Y. and Michalski, R.S. (eds.), Machine Learning: An
Artificial Intelligence Approach Vol. III, San Mateo, CA, Morgan Kaufmann, pp. 153-190, 1990.

Fayyad, U.M., Haussler, D. and Stolorz, P., “Mining Scientific Data,” Communications of the
ACM, 39:11, pp. 51-57, 1996.

Fayyad, U.M. and Irani, K.B., “The Attribute Selection Problem in Decision Tree Generation,”
Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, pp. 104-
110, 1992

27

Fayyad, U.M. Piatetsky-Shapiro, G. Smyth, P. and Uhturusamy, R. (eds.), Advances in
Knowledge Discovery and Data Mining, San Mateo, CA, AAAI Press, 1996.

Feelders, A., “Learning from Biased Data Using Mixture Models,” Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 102-107,
1996.

Fürnkranz, J. and Flach, P., “An Analysis of Rule Evaluation Metrics,“ Proceedings of the
Twentieth International Conference on Machine Learning (ICML-2003)¸ pp. 202-209, 2003.

Greene, G., “The Abacus.2 System for Quantitative Discovery: Using Dependencies to Discover
Non-Linear Terms,” Reports of the Machine Learning and Inference Laboratory, MLI 88-4,
Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, 1988.

Han, J., Fu,, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A.,
Stefanovic, N., Xia, B. and Zaiane, O.R., “DBMiner: A System for Mining Knowledge in Large
Relational Databases,” . Proceedings of the Second International Conference on Data Mining
and Knowledge Discovery (KDD'96), pp. 250-255, 1996.

Han, J. and Kamber, M., Data Mining: Concepts and Techniques, San Francisco: Morgan
Kaufmann, 2001.

Hand, D., Mannila, H. and Smyth, P., Principles of Data Mining, Cambridge, MA: MIT Press,
2001.

Iba, W., Woogulis, J. and Langley, P., “Trading Simplicity and Coverage in Incremental Concept
Learning,” Proceedings of the Fifth International Conference on Machine Learning, San
Francisco: Morgan Kaufmann, pp. 73-79, 1988.

Imam, I.F. and Michalski, R.S., “Should Decision Trees be Learned from Examples or from
Decision Rules?” Proceedings of the Seventh International Symposium on Methodologies for
Intelligent Systems (ISMIS-93), Trondheim, Norway, 1993.

Imielinski, T. and Mannila, H., “A Database Perspective on Knowledge Discovery,”
Communications of ACM, 39: pp. 58-64, 1996.

Imielinski, T., Virmani, A. and Abdulghani, A., “DataMine: Application Programming Interface
and Query Language for Database Mining,” Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, 256-261, 1996.

Kaufman, K.A. and Michalski, R.S., “A Method for Reasoning with Structured and Continuous
Attributes in the INLEN-2 Multistrategy Knowledge Discovery System,” Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp.
232-237, 1996.

Kaufman K. and Michalski R.S., “Learning from Inconsistent and Noisy Data: The AQ18
Approach,” Proceedings of the Eleventh International Symposium on Methodologies for
Intelligent Systems, Warsaw, pp. 411-419, 1999.

Kaufman K. and Michalski, R.S., “A Knowledge Scout for Discovering Medical Patterns:
Methodology and System SCAMP,” Proceedings of the Fourth International Conference on
Flexible Query Answering Systems, FQAS'2000, Warsaw, Poland, pp. 485-496, 2000.

28

Kaufman K. and Michalski R.S., “The Development of the Inductive Database System VINLEN:
A Review of Current Research,” International Intelligent Information Processing and Web
Mining Conference, Zakopane, Poland, 2003.

Kerber, R., “Chimerge: Discretization for Numeric Attributes,” Proceedings of the Tenth
National Conference on Artificial Intelligence (AAAI-92), AAAI Press, pp. 123-128, 1992.

Khabaza, T. and Shearer, C., “Data Mining with Clementine,” Colloquium on Knowledge
Discovery in Databases, The Institution of Electrical Engineers, 1995.

Kibler, D. and Aha, D., “Learning Representative Exemplars of Concepts: A Case Study,”
Proceedings of the Fourth International Conference on Machine Learning, San Francisco:
Morgan Kaufmann, pp. 24-30, 1987.

Kokar, M.M., “Coper: A Methodology for Learning Invariant Functional Descriptions,” in
Michalski, R.S., Mitchell, T.M and Carbonell, J.G. (eds.), Machine Learning: A Guide to
Current Research, Kluwer Academic, Boston, MA 1986.

Lakshminarayan, K., Harp, S.A., Goldman, R. and Samad, T., “ Imputation of Missing Data
Using Machine Learning Techniques.” Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. Portland, OR, pp. 140-145, 1996.

Langley, P., “Selection of Relevant Features in Machine Learning,” AAAI Fall Symposium on
Relevance, pp. 140-144, 1994.

Langley, P., Bradshaw G.L. and Simon, H.A., “Rediscovering Chemistry with the BACON
System,” in Michalski, R.S., Carbonell, J.G. and Mitchell, T.M. (eds.), Machine Learning: An
Artificial Intelligence Approach, Morgan Kaufmann, San Mateo, CA, pp. 307-329, 1983.

Larson, J.B., “ INDUCE-1: An Interactive Inductive Inference Program in VL21 Logic System,”
Report No. 876, Department of Computer Science, University of Illinois, Urbana, 1977.

Lbov, G.S., Mietody Obrabotki Raznotipnych Ezperimentalnych Danych (Methods for Analysis
of Multitype Experimental Data), Akademia Nauk USSR, Sibirskoje Otdielenie, Institut
Matiematiki, Izdatielstwo Nauka, Novosibirsk, 1981.

Maloof, M.A. and Michalski, R.S, “Selecting Examples for Partial Memory Learning,” Machine
Learning, 41, pp. 27-52, 2000.

Maloof, M. and Michalski R.S., “ Incremental Learning with Partial Instance Memory,” Artificial
Intelligence, 154, 95-126, 2004.

Michael, J., “Validation, Verification and Experimentation with Abacus2,” Reports of the
Machine Learning and Inference Laboratory, MLI 91-8, Machine Learning and Inference
Laboratory, George Mason University, Fairfax, VA, 1991.

Michalski, R.S., “A Planar Geometrical Model for Representing Multi-Dimensional Discrete
Spaces and Multiple-Valued Logic Functions,” ISG Report No. 897, Department of Computer
Science, University of Illinois, Urbana, 1978.

Michalski, R.S., “A Theory and Methodology of Inductive Learning,” Artificial Intelligence, 20,
pp. 111-161, 1983.

29

Michalski, R.S., “Learning Flexible Concepts: Fundamental Ideas and a Method Based on Two-
tiered Representation, in Kodratoff, Y. and Michalski, R.S. (eds.), Machine Learning: An
Artificial Intelligence Approach, Vol. III, San Mateo, CA, Morgan Kaufmann, pp. 63-102, 1990.

Michalski, R.S., “Attributional Calculus: A Logic and Representation Language for Natural
Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-2, George
Mason University, Fairfax, VA, 2004.

Michalski, R.S., Baskin, A.B. and Spackman, K.A., “A Logic-based Approach to Conceptual
Database Analysis,” Sixth Annual Symposium on Computer Applications in Medical Care
(SCAMC-6), George Washington University, Medical Center, Washington, DC, pp. 792-796,
1982.

Michalski, R.S. and Kaufman, K.A., “Multistrategy Data Exploration Using the INLEN System:
Recent Advances,” Sixth Symposium on Intelligent Information Systems (IIS ‘97), Zakopane,
Poland, 1997.

Michalski, R.S. and Kaufman, K.A., “Data Mining and Knowledge Discovery: A Review of
Issues and a Multistrategy Approach,” in Michalski, R.S., Bratko, I. and Kubat, M. (Eds.),
Machine Learning and Data Mining: Methods and Applications, pp. 71-112, London: John
Wiley & Sons, 1998.

Michalski R.S. and Kaufman K., “Building Knowledge Scouts Using KGL Metalanguage,”
Fundamenta Informaticae , 40, pp 433-447, 2000.

Michalski R.S. and Kaufman K., “Learning Patterns in Noisy Data: The AQ Approach,”
Machine Learning and its Applications, Paliouras, G., Karkaletsis, V. and Spyropoulos, C.
(Eds.), pp. 22-38, Springer-Verlag, 2001.

Michalski, R.S., Kaufman, K., Pietrzykowski, J. Wojtusiak, J. and Sniezynski, B., “Learning
User Behavior and Understanding Style: A Natural Induction Approach,” Reports of the
Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA, 2005 (to
appear).

Michalski, R.S., Kerschberg, L., Kaufman, K. and Ribeiro, J., “Mining for Knowledge in
Databases: The INLEN Architecture, Initial Implementation and First Results,” Journal of
Intelligent Information Systems: Integrating AI and Database Technologies, 1, pp. 85-113, 1992.

Michalski, R. S., Ko, H. and Chen, K., “SPARC/E(V.2), An Eleusis Rule Generator and Game
Player,” Reports of the Intelligent Systems Group, ISG No. 85-11, UIUCDCS-F-85-941,
Department of Computer Science, University of Illinois, Urbana, 1985.

Michalski, R.S., Ko, H. and Chen, K., “Qualitative Prediction: A Method and a Program
SPARC/G,” in Guetler, C. (ed.), Expert Systems, London, Academic Press, 1986.

Michalski, R.S. and Larson, J.B., “Selection of Most Representative Training Examples and
Incremental Generation of VL1 Hypotheses: The Underlying Methodology and the Description
of Programs ESEL and AQ11,” Report No. 867, Department of Computer Science, University of
Illinois, Urbana, 1978.

30

Michalski R.S. and Larson, J., “ Incremental Generation of VL1 Hypotheses: The Underlying
Methodology and the Description of Program AQ11,” Reports of the Intelligent Systems Group,
ISG 83-5, UIUCDCS-F-83-905, Department of Computer Science, University of Illinois,
Urbana, 1983.

Michalski, R.S., Rosenfeld, A., Duric, Z., Maloof, M. and Zhang, Q., “Application of Machine
Learning in Computer Vision,” in Michalski, R.S., Bratko, I. and Kubat, M. (eds.), Machine
Learning and Data Mining: Methods and Applications, London, John Wiley & Sons, 1998.

Michalski, R. S. and Stepp, R., “Learning from Observation: Conceptual Clustering,” in Machine
Learning: An Artificial Intelligence Approach, R.S. Michalski, J. G. Carbonell, and T. M.
Mitchell (eds.), Palo Alto, CA, Tioga Publishing, 1983.

Morgenthaler, S. and Tukey, J.W., “The Next Future of Data Analysis,” in Diday, E. (ed.),
Proceedings of the Conference on Data Analysis, Learning Symbolic and Numeric Knowledge,
Nova Science Publishers, Antibes, 1989.

Muggleton, S. (ed.), Inductive Logic Programming, Morgan Kaufmann, 1992.

Neapolitan, R.E., Learning Bayesian Networks, Prentice Hall, 2003.

Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic,
Dordrecht, 1991.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San
Mateo, CA: Morgan Kaufmann, 1988.

Pearl, J., Causality: Models, Reasoning and Inference, Cambridge University Press, 2000.

Quinlan, J.R., “ Induction of Decision Trees,” Machine Learning, 1, pp. 81-106, 1986.

Quinlan, J.R., “Probabilistic Decision Trees,” in Kodratoff, Y. and Michalski, R.S. (eds.),
Machine Learning: An Artificial Intelligence Approach, Volume III, Morgan Kaufmann, San
Mateo, CA, pp. 140-152, 1990.

Quinlan, J.R., C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos, CA, 1993.

Reinke, R.E. and Michalski, R.S., “ Incremental Learning of Concept Descriptions: A Method
and Experimental Results,” Machine Intelligence, 11, pp. 263-288, 1988.

Ribeiro, J.S., Kaufman, K.A. and Kerschberg, L., “Knowledge Discovery From Multiple
Databases,” Proceedings of the First International Conference on Knowledge Discovery and
Data Mining, Montreal, PQ, pp. 240-245, 1995.

Saul, L.K. and Roweis, S.T., “Think Globally, Fit Locally: Unsupervised Learning of Low
Dimensional Manifolds,” Journal of Machine Learning Research, 4, pp. 119-155, 2003.

Sharma, S., Applied Multivariate Techniques, London, John Wiley & Sons, 1996.

Slowinski, R. (ed.), Intelligent Decision Support: Handbook of Applications and Advances of the
Rough Sets Theory, Dordrecht/Boston/London, Kluwer Academic, 1992.

Stepp, R. and Michalski R.S., “Conceptual Clustering: Inventing Goal-Oriented Classifications
of Structured Objects,” in Michalski, R.S., Carbonell, J. and Mitchell, T.M. (eds.), Machine
Learning: An Artificial Intelligence Approach, Vol. II, Morgan-Kaufmann Publishers, 1986.

31

Tenenbaum, J.B., de Silva, V. and Langford, J.C., “A Global Geometric Framework for
Nonlinear Dimensionality Reduction,” Science, 290, pp. 2319-2323, 2000.

Tukey, J.W., The Collected Works of John W. Tukey, Vol. V, Philosophy and Principles of Data
Analysis: 1965-1986, Jones, L.V. (ed.), Wadsworth & Brooks/Cole, Monterey, CA, 1986.

Umann, E., “Phons in Spoken Speech: A Contribution to the Computer Analysis of Spoken
Texts,” Pattern Recognition and Image Analysis, 7:1, pp. 138-144, 1997.

Van Mechelen, I., Hampton, J., Michalski, R.S. and Theuns, P. (eds.), Categories and Concepts:
Theoretical Views and Inductive Data Analysis, London, Academic Press, 1993.

Wang, H., Chu, F., Fan, W. Yu, P.S. and Pei, J., “A Fast Algorithm for Subspace Clustering by
Pattern Similarity,” Proceedings of the 16th International Conference on Scientific and
Statistical Database Management (SSDBM'04), Santorini Island, Greece, 2004.

Widmer, G. and Kubat, M., “Learning in the Presence of Concept Drift and Hidden Concepts,”
Machine Learning, 23, pp. 69-101, 1996.

Wnek, J. and Michalski, R.S., “Hypothesis-driven Constructive Induction in AQ17-HCI: A
Method and Experiments,” Machine Learning, 14, pp. 139-168, 1994.

Wojtusiak, J., “AQ21 User’s Guide,” Reports of the Machine Learning and Inference
Laboratory, MLI 04-3, George Mason University, Fairfax, VA, September, 2004..

Zadeh, L., “Fuzzy Sets,” Information and Control, 8, pp. 338-353, 1965.

Zagoruiko, N.G., Recognition Methods and Their Application, Sovietsky Radio, Moscow (in
Russian), 1972.

Zagoruiko, N.G., “Ekspertnyie Sistemy I Analiz Dannych (Expert Systems and Data Analysis),”
Wychislitielnyje Sistemy, N.144, Akademia Nauk USSR, Sibirskoje Otdielenie, Institut
Matiematikie, Novosibirsk, 1991.

Zhang, Q., “Knowledge Visualizer: A Software System for Visualizing Data, Patterns and Their
Relationships,” Reports of the Machine Learning and Inference Laboratory, MLI 97-14, George
Mason University, Fairfax, VA, 1997.

Zhuravlev, Y.I. and Gurevitch, I.B., “Pattern Recognition and Image Recognition,” in Zhuravlev,
Y.I. (ed.), Pattern Recognition, Classification, Forecasting: Mathematical Techniques and their
Application. Issue 2, Nauka, Moscow, pp. 5-72 (in Russian), 1989.

Ziarko, W.P. (ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery, Berlin, Springer-Verlag,
1994.

Zytkow, J.M., “Combining Many Searches in the FAHRENHEIT Discovery System,”
Proceedings of the Fourth International Workshop on Machine Learning, Irvine, CA, pp. 281-
287, 1987.

A publication of the Machine Learning and Inference Laboratory
School of Computational Sciences
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K. A. Kaufman

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group)
Reports, or were part of the Department of Computer Science Reports).

Copyright © 2004 by the Machine Learning and Inference Laboratory.

