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Abstract 

In view of the tremendous production of computer data worldwide, there is a strong need for new 
powerful tools that can automatically generate useful knowledge from a variety of data, and present it 
in human-oriented forms. In efforts to satisfy this need, researchers have been exploring ideas and 
methods developed in machine learning, statistical data analysis, data mining, text mining, data 
visualization, pattern recognition, etc. The first part of this paper is a compendium of ideas on the 
applicability of symbolic machine learning and logical data analysis methods toward this goal. The 
second part outlines a multistrategy methodology for an emerging research direction, called 
knowledge mining, by which we mean the derivation of high-level concepts and descriptions from 
data through symbolic reasoning involving both data and relevant background knowledge. The 
effective use of background as well as previously created knowledge in reasoning about new data 
makes it possible for the knowledge mining system to derive useful new knowledge not only from 
large amounts of data, but also from limited and weakly relevant data. 
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1 INTRODUCTION 

We are witnessing the extraordinary expansion of computer accessible data about all kinds of 
human activities.  The availability of these large volumes of data and our limited capabilities to 
process them effectively creates a strong need for new methodologies for extracting useful, task-
oriented knowledge from them. There is also a need for methodologies for deriving plausible 
knowledge from small and indirectly relevant data, as in many practical areas, only such data 
may be available, e.g., fraud detection, terrorism prevention, computer intrusion detection, early 
cancer diagnosis, etc. This paper addresses issues and methods concerned with developing a new 
research direction, called knowledge mining, which aims at solving both types of problems. 

Current tools for analyzing data and extracting from it useful patterns and regularities primarily 
use conventional statistical methods, such as regression analysis, numerical taxonomy, 
multidimensional scaling, and more recent data mining techniques, such as classification and 
regression trees, association rules, and Bayesian nets (e.g., Daniel and Wood, 1980; Tukey, 
1986; Pearl, 1988, 2000; Morgenthaler and Tukey, 1989; Diday, 1989; Sharma, 1996, 
Neapolitan, 2003). While useful for many applications, these techniques have inherent 
limitations. 

For example, a statistical analysis can determine distributions, covariances and correlations 
among variables in data, but is not able to characterize these dependencies at an abstract, 
conceptual level as humans can, and produce a causal explanation why these dependencies exist.  
While a statistical data analysis can determine the central tendencies and variance of given 
factors, it cannot produce a qualitative description of the regularities, nor can it determine a 
dependence on factors not explicitly provided in the data. 

Similarly, a numerical taxonomy technique can create a classification of entities, and specify a 
numerical similarity among the entities assembled into the same or different categories, but it 
cannot alone build qualitative descriptions of the classes created and present a conceptual 
justification for including entities into a given category. Attributes and methods that are used to 
measure the similarity must be specified by a data analyst in advance.  Popular classification (or 
decision) trees or forests can represent a relationship between the input and output variables, but 
their representation power is very modest. These methods may thus produce a very complex tree 
even for a conceptually simple relationship. Similarly, association rules, which are popular in 
data mining, have a limited representation power. Bayesian nets are very attractive for many 
applications, but typically rely on human input as to their structure, and can automatically 
determine only relatively simple interrelationships among attributes or concepts. 

The above methods typically create patterns that use only attributes that are present in the data. 
They do not by themselves draw upon background domain knowledge in order to automatically 
generate additional relevant attributes, nor do they determine attributes’  changing relevance to 
different data analysis problems.  In cases where the goal is to address such tasks as those listed 
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above, a data analysis system has to be equipped with a substantial amount of background 
knowledge, and be able to conduct symbolic reasoning involving that knowledge and the input 
data. 

In efforts to satisfy the growing need for new data analysis tools that can overcome the above 
limitations, researchers have turned to ideas and methods developed in symbolic machine 
learning. The field of machine learning is a natural source of ideas for this purpose, because the 
essence of research in this field is to develop computational models for acquiring knowledge 
from facts and background knowledge. 

The above and related efforts led to the emergence of a research area concerned with logical data 
analysis, and the development of methods for data mining and knowledge discovery (e.g., Lbov, 
1981; Michalski, Baskin and Spackman, 1982; Zhuravlev and Gurevitch, 1989; Zagoruiko, 1991; 
Michalski et al., 1992; Van Mechelen et al., 1993; Fayyad et al., 1996; Evangelos and Han, 
1996; Brachman et al., 1996; Fayyad, Haussler and Stolorz, 1996; Michalski and Kaufman, 
1998; Han and Kamber, 2001; Hand, Mannila and Smyth, 2001; Alexe, Blackstone and Hammer, 
2003). 

A natural step in this progression appears to be the development of systems that closely integrate 
databases with inductive learning and data mining capabilities (e.g., Michalski et al., 1992, 
Khabaza and Shearer, 1995; Han et al, 1996; Imielinski, Virmani, and Abdulghani, 1996).  Such 
systems would be able to, for example, automatically call upon a decision rule generator, 
regression analysis, conceptual clusterer or attribute generation operator, depending on the state 
of data analysis. 

To achieve such a capability, a database needs to be integrated with a knowledge base and a wide 
range of data analysis, inductive learning, and data managment methods. We call such systems 
inductive databases, and consider them to be a technical basis for implementing knowledge 
mining (Michalski and Kaufman, 1998; Kaufman and Michalski, 2003). An inductive database 
can answer not only those queries for which answers are stored in its memory, but also those that 
require the synthesis of plausible knowledge, generated by inductive inference from facts in the 
database and prior knowledge in the knowledge base1. 

It should be mentioned that our meaning of the term “ inductive database”  is somewhat different 
from that of Imielinski and Mannila (1996) and De Raedt et al. (2002), by which they mean a 
database that stores both original data and induced hypotheses. Because from any non-trivial 
dataset a very large number of inductive hypotheses can be generated, and it is not known a 
priori which of them may be the most useful for the future tasks of interest, it is better in our 
view to equip a database with inductive inference capabilities, rather than store only their 
amassed results. These capabilities should be tightly integrated with the query language, so that 
they are transparent to the user, who can apply them without having to invoke separate data 
analysis or inductive learning programs.  

————— 
1  It may be interesting to note that R.S. Michalski first introduced and taught this concept in his course on deductive and 
inductive databases in 1973 at the University of Illinois at Urbana-Champaign.  
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This paper discusses selected ideas and methods for logical (or conceptual) data analysis, 
initiated by Michalski, Baskin, and Spackman (1982), which provide a basis for the development 
of a knowledge mining methodology and its implementation in an inductive database system.  
The paper is an update and extension of our earlier work presented in (Michalski and Kaufman, 
1998).  

While this paper presents many issues generally and makes many references to research done 
by others, its main focus is on the ideas and methods developed by the authors initially at the 
University of Illinois at Urbana-Champaign, and more recently at the George Mason University 
Machine Learning and Inference Laboratory. While the methods are presented in the context of 
analyzing numeric and symbolic data, they can also be applied to text, speech or image mining 
(e.g., Bloedorn, Mani and MacMillan, 1996; Umann, 1997; Cavalcanti et al., 1997; Michalski et 
al., 1998). 

2 KNOWLEDGE GENERATION OPERATORS 

This section discusses classes of symbolic learning methods that can serve as knowledge 
generation operators in logical data analysis and knowledge mining.   

2.1 Discovering Rules and Patterns via AQ Learning 

An important class of tools for knowledge discovery in databases stems from concept learning 
methods developed in machine learning. Given collections of examples of different concepts (or 
decision classes), the concept learning program hypothesizes a general description of each class. 
Some inductive methods use a fixed criterion for choosing the description from a large number 
of possible hypotheses, while others allow the user to define a criterion that reflects the problem 
at hand. A concept description can be in the form of a set of decision rules, a decision tree, a 
semantic net, etc. A decision rule can also take on many different forms.  

In the AQ learning methodology, which we will discuss here, the general form of a decision (or 
classification) rule is: 

 CONSEQUENT   ⇐   PREMISE |_ EXCEPTION (1) 

where CONSEQUENT is a statement indicating a decision, a class, or a concept name to be 
assigned to an entity (an object or situation) that satisfies PREMISE, provided it does not satisfy 
EXCEPTION; PREMISE is a logical expression (e.g., a product of logical conditions or a 
disjunction of such products), EXCEPTION (optional) defines conditions under which the rule 
does not apply; and ⇐ denotes implication. 

If PREMISE is a disjunctive description (a disjunction of products), then rule (1) can be 
transformed into several rules with the same CONSEQUENT, in which PREMISE is a 
conjunctive description (a single product of conditions). For example, Figure 1 shows two rules 
representing a disjunctive description of a computer user profile learned by the AQ21 learning 
program in a study on learning patterns in computer user behavior (Michalski et al., 2005). AQ21 
is the most recent member of the family of AQ inductive learning programs (Wojtusiak, 2004). 
The rules characterize two different patterns of the behavior of User 1. 
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The first rule says that User 1 is indicated if the current window was opened less than 3 hours 
into the session, there are no protected words2 in the window title, the number of active processes 
in the current window does not exceed seven, and the total number of windows opened during 
the session does not exceed 16.  

User1 ⇐⇐⇐⇐ session_time_new_window � 3hours (368, 8340) & 
#characters_in_protected_words = 0 (110, 919) & 
#processses_in_current_window � 7 (203, 4240) & 
#windows_opened � 16 (369,7813):  65, 0 

User1 ⇐⇐⇐⇐ process_name = explorer (93, 875) & 
#characters_in_protected_words = 9..24 (161, 2999) & 
#processes_in_current_window � 7 (203, 4240) & 
#windows_opened � 16 (369, 7813) & 
#protected_words_in_window_title = 1 (109, 3304):   31, 0  

Figure 1:    Two rules in User 1’s profile learned by AQ21. 

The second rule says that User 1 is also indicated if the name of the active process is explorer, 
there are 9 to 24 characters in the protected words in the window title, the number of active 
processes in the current window does not exceed seven, the total number of windows opened 
during the session does not exceed 16, and there is only one protected word in the window title. 

The pairs of numbers in parentheses after each condition in the rules indicate the number of 
positive and negative training events, respectively, that support (are covered by) the condition 
For example, the first condition in the first rule covers 368 training events of User 1’s behavior, 
and 8340 training events of behavior of the other users.  The pair of numbers at the end of each 
rule indicates the total number of positive and negative training events covered by the rule.  For 
example, the first rule covers 65 events from the training data of User 1, but no events in the 
training data of other users.  Because both rules cover no negative events, they are said to be 
consistent with the training data. 

The rules in Figure 1 are examples of simple attributional rules, which are decision rules 
expressed in attributional calculus, a logic system used for representing knowledge in AQ 
learning (Michalski, 2004). A set of attributional rules with the same consequent (indicating the 
same decision) is called a ruleset. A collection of rulesets whose consequents span all values of 
the output (decision) variable is called a ruleset family, or a classifier. Rules, rulesets and 
classifiers are examples of attributional descriptions, as they involve only attributes in 
characterizing entities.  

In contrast to attributional descriptions, relational (aka structural) descriptions employ not only 
attributes but also multi-argument predicates representing relationships among components of 
the entities.  Such descriptions are produced, for example, by the INDUCE inductive learning 
programs (Larson, 1977; Bentrup. Mehler and Riedesel, 1987), and by inductive logic programs 

————— 
2  In order to protect user privacy, during preprocessing, all words in the window title that were not names of system programs or 
functions were replaced with randomly selected numbers.  The words that were not affected by this sanitization were called 
“protected.”  
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(e.g., Muggleton, 1992). Constructing structural descriptions requires a more complex 
description language that includes multi-argument predicates, for example, PROLOG, or 
Annotated Predicate Calculus (Michalski, 1983; Bratko, Muggleton and Karalic, 1997). 

For database exploration, attributional descriptions appear to be the most important and the 
easiest to implement, because most databases characterize entities in terms of attributes. As one 
can see, they are also easy to interpret and understand.  A simple and popular form of 
attributional description is a decision or classification tree. In such a tree, nodes correspond to 
attributes, branches stemming from the nodes correspond to attribute values, and leaves 
correspond to individual classes (e.g., Quinlan, 1986). A decision tree can be transformed into a 
set of simple attributional rules (a ruleset family) by traversing all paths from the root to 
individual leaves. Such rules can often be simplified by detecting superfluous conditions in them, 
but such a process can be computationally very costly (e.g., Quinlan, 1993). The opposite 
process of transforming a ruleset family into a decision tree is simple, but may introduce 
superfluous conditions because a tree representation is less expressive than a rule representation 
(Imam and Michalski, 1993). 

The attributional calculus distinguishes between many different types of attributes, such as 
nominal, rank, cyclic, structured, interval, ratio, absolute, set-valued, and compound (Michalski, 
2004).  By distinguishing so many attribute types, attributional calculus caters to the needs of 
knowledge mining.  By taking into consideration different attribute types, a learning system can 
be more effective in generating inductive generalizations, because different generalization rules 
apply to different attribute types (Michalski, 1983). Thus, a specification of such attribute types 
constitutes a form of background knowledge used in knowledge mining. 

The aforementioned AQ21 is a multipurpose learning system for generalizing cases into rules 
and detecting patterns in data. It is an updated version of AQ19, which was used as a major 
module of the INLEN system developed for testing initial ideas and methods for knowledge 
mining (see Section 5). The input to AQ21 consists of a set of training examples representing 
different concepts (classes, decisions, predictions, etc.), parameters defining the type of 
description to be learned and how it should be learned, a multi-criterion measure of description 
quality, and background knowledge, which includes a specification of domains and types of 
attributes, hierarchical structures defining structured domains, and arithmetic and logical rules 
suggesting ways to improve the representation space and/or define constraints on it.  The 
measure of description quality (or preference criterion) may refer to computational simplicity of 
the description, its generality level, the cost of measuring attributes in the description, or an 
estimate of its predictive ability.  

Many symbolic learning programs learn rules that are consistent and complete with regard to the 
input data. This means that they completely and correctly classify every distinct training 
example.  Others select rules according to a description quality criterion that does not necessarily 
give maximal weight to a description’s consistency.  The AQ21 learning program, depending on 
the setting of its parameters, can generate either complete and consistent descriptions, or strong 
patterns that can be partially inconsistent and incomplete. 
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2.2 Types of Problems in Learning from Examples  

Descriptions generated from examples by symbolic learning programs may take two forms, 
depending on whether the learning goal is to describe members of a particular concept (a group 
of entities), or contrast them against other groups.  Descriptions that enumerate the common 
properties of the entities in each group are called characteristic descriptions. Descriptions that 
specify differences between groups are called discriminant descriptions. 

Some methods for concept learning assume that examples do not have errors, that all attributes 
have a specified value in them, that all examples are located in the same database, and that 
concepts to be learned have a precise (“crisp”) description that does not change over time. In 
many situations one or more of these assumptions may not hold. This leads to a variety of more 
complex machine learning and data mining problems and methods for solving them: 

• Learning from noisy data, i.e., learning from examples that contain a certain amount of errors 
or noise (e.g., Quinlan, 1990; Michalski and Kaufman, 2001). These problems are 
particularly important for data and knowledge mining because databases frequently contain 
some amount of noise. 

• Learning from incomplete data, i.e., learning from examples in which the values of some 
attributes are unknown (e.g., Dontas, 1988, Lakshminarayan et al., 1996). 

• Learning from distributed data, i.e., learning from spatially distributed collections of data 
that must be considered together if the patterns within them are to be exposed (e.g., Ribeiro, 
Kaufman and Kerschberg, 1995). 

• Learning drifting or evolving concepts, i.e., learning concepts that are not stable but changing 
over time, randomly or in a certain general direction. For example, the “area of interest”  of a 
computer user is usually an evolving concept (e.g., Widmer and Kubat, 1996). 

• Learning concepts from data arriving over time, i.e., incremental learning in which currently 
held hypotheses characterizing concepts may need to be updated to account for the new data 
(e.g., Maloof and Michalski, 2004). 

• Learning from biased data, i.e., learning from a data set that does not reflect the actual 
distribution of events (e.g., Feelders, 1996). 

• Learning flexible concepts, i.e., concepts that inherently lack precise definition and whose 
meaning is context-dependent; approaches concerned with this topic include fuzzy sets (e.g., 
Zadeh, 1965; Dubois, Prade and Yager, 1993), two-tiered concept representations (e.g., 
Michalski, 1990; Bergadano et al., 1992), and rough sets (e.g., Pawlak, 1991; Slowinski, 
1992; Ziarko, 1994). 

• Learning concepts at different levels of generality, i.e., learning descriptions that involve 
concepts from different levels of generalization hierarchies (e.g., Kaufman and Michalski, 
1996). An example of such problem is learning the concept of a liver disease versus the 
concept of liver cancer. 

• Integrating qualitative and quantitative discovery, i.e., determining sets of equations that fit a 
given set of data points, and qualitative conditions for the application of these equations (e.g., 
Falkenhainer and Michalski, 1990). 
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• Qualitative prediction, i.e., discovering patterns in sequences or processes and using these 
patterns to qualitatively predict the possible continuation of the given sequences or processes 
(e.g., Davis, 1981; Michalski, Ko and Chen, 1985; 1986; Dietterich and Michalski, 1986). 

Each of these problems is relevant to the derivation of useful knowledge from a collection of 
data and knowledge. Therefore, it can be asserted that methods for solving these problems 
developed in the area of machine learning are directly relevant to logical data analysis and 
knowledge mining. 

2.3 Clustering of Entities into Conceptually Meaningful Categories 

Another class of machine learning methods relevant to knowledge mining concerns the problem 
of building a conceptual classification of a given set of entities. The problem is similar to that 
considered in traditional cluster analysis, but is defined in a different way, which allows for 
knowledge-based constructions. Given a set of attributional descriptions of entities, a description 
language for characterizing classes of such entities, and a classification quality criterion, the 
problem is to partition entities into classes that have a simple and meaningful description in the 
given description language and maximize the classification quality criterion. Thus, a conceptual 
clustering method seeks not only a classification structure of entities, but also an understandable 
description of the proposed classes (clusters). An important, distinguishing aspect of conceptual 
clustering is that, unlike in similarity-based cluster analysis, the properties of these class 
descriptions are taken into consideration in the process of determining the partition of entities 
into clusters (e.g. Michalski and Stepp, 1983). 

To clarify the difference between conceptual clustering and conventional clustering, notice that a 
conventional clustering method typically determines clusters on the basis of a similarity measure 
that is a function solely of the properties (attribute values) of the entities being compared, and 
not of any other factors: 

 Similarity(A, B) = f(properties(A), properties(B)) (2) 

where A and B are entities being compared. 

In contrast, a conceptual clustering program creates clusters based on conceptual cohesiveness, 
which is a function of not only properties of the entities, but also of two other factors: the 
description language L, which the system uses for describing the classes of entities, and of the 
environment, E, which is the set of neighboring examples: 

 Conceptual cohesiveness(A, B) = f(properties(A), properties(B), L, E) (3) 

Thus, two objects may be similar, i.e., close according to some distance measure, while having a 
low conceptual cohesiveness, or vice versa. An example of the first situation is shown in Figure 
2. The points (black dots) A and B are “close”  to each other; in fact, they are closer than any 
other pair of points in the figure.  They would therefore be placed into the same cluster by any 
technique based solely upon the distances between the points. However, these points have small 
conceptual cohesiveness, because they can be viewed as belonging to configurations representing 
different concepts. 
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A conceptual clustering method, if equipped with an appropriate description language, would 
cluster the points in Figure 2 into a circle and a horizontal line, as people normally would. A 
classification quality criterion used in conceptual clustering may involve a variety of factors, 
such as the fit of a cluster description to the data (called sparseness), the simplicity of the 
description, and other properties of the entities or the concepts that describe them (Michalski and 
Stepp, 1983; Stepp and Michalski, 1986). Ideas on employing conceptual clustering for 
structuring text databases and creating concept lattices for discovering dependencies in data are 
described by Carpineto and Romano (1995a; 1995b). The concepts created through the clustering 
are linked in lattice structures that can be traversed to represent generalization and specialization 
relationships. 

 

Figure 2:    An illustration of the difference between closeness and conceptual cohesiveness. 

Recent advances in traditional, similarity-based clustering have attempted to go beyond the 
limitations described above as well.  Subspace clustering (e.g., Agrawal et al, 1998; Aggarwal et 
al, 1999; Wang et al, 2004) alters the description language and the environment before creating 
groups by projecting the event space on a subspace that produces better clusters.  Various 
approaches to manifold learning (Tenenbaum, de Silva and Langford, 2000; Saul and Roweis, 
2003; Belkin and Niyogi, 2004) also attempt to reduce the dimensionality of the problem; they 
differ from subspace clustering in that their focus is preserving the relationships among the 
datapoints, rather than compacting them. 

2.4 Automated Improvement of the Search Space: Constructive Induction  

Most methods for learning from examples assume that the attributes used for describing 
examples are sufficiently relevant to the learning problem at hand. This assumption does not 
always hold in practice. Some attributes used in the examples may not be directly relevant (e.g., 
if the target concept is based on density, and we only have mass and volume attributes), and 
others may be irrelevant or nonessential (e.g., if the target concept is predicting a student’s 
performance in a class, and an attribute indicates the student’s height). An important 
characteristic of logical analysis methods is that they can relatively easily determine irrelevant or 
nonessential attributes. 

A

B
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An attribute is nonessential if there is a complete and consistent description of the concepts to be 
learned that does not use this attribute. Thus, a nonessential attribute may be either irrelevant or 
relevant, but will by definition be dispensable. There may exist a set of attributes, each one by 
itself nonessential, yet some member of the set must be present in order to generate a complete 
and consistent attributional description.  Inductive learning programs such as the rule-learning 
program AQ21, or the decision tree-learning C4.5, can cope relatively easily with a large number 
of nonessential attributes in their input data. 

If there are very many nonessential attributes in the input data descriptions, the complexity of the 
learning process may significantly increase, along with the execution time, and the risk for 
generating spurious rather than relevant knowledge may increase. Such a situation calls for a 
method that can efficiently determine the most relevant attributes for the given problem from 
among all those given initially. Only the most relevant attributes should be used in the learning 
process.  

Determining the most relevant attributes is therefore a useful data exploration operator. Such an 
operator can also be useful for the data analyst on its own merit, as it may be important to know 
which attributes are most discriminatory for a given learning task. By removing less relevant 
attributes, the representation space is reduced, and the problem becomes simpler. Thus, such a 
process is a form of improving the representation space.  Some methods for finding the most 
relevant attributes are described in (Zagoruiko, 1972; Baim, 1982; Fayyad and Irani, 1992; 
Caruana and Freitag, 1994; Langley, 1994). 

In applications in which the attributes originally given may only be weakly or indirectly relevant 
to the problem at hand, there is a need for generating new, more relevant attributes that may be 
functions of the original attributes. These functions may be simple, e.g., a product or sum of a set 
of the original attributes, or very complex, e.g., a Boolean attribute based on the presence or 
absence of a straight line or circle in an image (Bongard, 1970). Finally, in some situations, it 
will be desirable to abstract some attributes, that is, to group some attribute values into units, and 
thus reduce the attribute’s range of possible values. A quantization of continuous attributes is a 
common example of such an operation (e.g., Kerber, 1992). 

All the above operations—removing less relevant attributes, adding more relevant attributes, and 
abstracting attributes—are different means of improving the original representation space for 
learning. A learning process that consists of two (intertwined) phases, one concerned with the 
construction of the “best”  representation space, and the second concerned with generating the 
“best”  hypothesis in the found space is called constructive induction (Michalski, 1978; 1983; 
Bloedorn, Wnek, and Michalski, 1993; Wnek and Michalski, 1994; Bloedorn and Michalski, 
1998). An example of a constructive induction program is AQ17 described in (Bloedorn, Wnek 
and Michalski, 1993), which performs all three types of operators for improving the original 
representation space. In AQ17, the process of generating new attributes is performed through the 
combination of existing attributes using mathematical and/or logical operators, and then selecting 
the “best”  combinations. 

2.5 Reducing the Amount of Data: Selecting Representative Examples  

When a database is very large, determining general patterns or rules characterizing different 
concepts may be very time-consuming. To make the process more efficient, it may be useful to 
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extract from the database the most representative or important cases (examples) of given classes 
or concepts. Even a random extraction should not be costly in the case of very large datasets, as 
the selected set will likely be quite representative.  Most methods of heuristic selection of 
examples attempt to select those that are either most typical or most extreme (assuming that there 
is not too much noise in the data). A method for determining the most representative examples, 
called  “outstanding representatives,”  is described by Michalski and Larson (1978). 

2.6 Integrating Qualitative and Quantitative Methods of Numerical Discovery 

In a database that contains numerical and symbolic attributes, a useful discovery could be an 
equation binding numerical attributes. A standard statistical technique for this purpose is 
regression analysis. This technique requires that the general form of the equation is provided to 
the system, as in multivariate linear regression.  The application of machine learning to 
quantitative discovery produced another approach to this problem that does not require a 
specification of the form of the equation.  

For instance, from a table of planetary data including planets’  names, planet’s masses, their 
densities, distances from the sun, periods of rotation, lengths of local years, and the number of 
moons, a quantitative discovery system would derive Kepler’s Law, which states that the cube of 
the planet’s distance from the sun is proportional to the square of the length of its year. The 
attributes such as the planet’s name and the number of moons would be ignored.  

Research on quantitive discovery was pioneered by the BACON system (Langley, Bradshaw and 
Simon, 1983), and then followed by many other systems, such as COPER (Kokar, 1986), 
FAHRENHEIT (Zytkow, 1987), and ABACUS (Falkenhainer and Michalski, 1990). Similar 
problems have been explored independently by Zagoruiko (1972) in Russia under the name of 
empirical prediction. 

Some equations may not apply directly to data, because of an inappropriate value of a constant, 
or different equations may apply under different qualitative conditions. For example, in applying 
Stoke’s Law to determine the velocity of a falling ball, if the ball is falling through a vacuum, its 
velocity depends on the length of time it has been falling and on the gravitational force being 
exerted upon it. A ball falling through some sort of fluid will reach a terminal velocity dependent 
on the radius and mass of the ball and the viscosity of the fluid. 

The program ABACUS (Greene, 1988; Falkenhainer and Michalski, 1990; Michael, 1991) is 
able to determine quantitative laws under different qualitative conditions. It does so by 
partitioning the data into subsets, each of which adheres to a different equation determined by a 
quantitative discovery module. The qualitative discovery module can then determine 
conditions/rules that characterize each of these example sets.  For example, given a table 
containing data on how fast different balls fall through different media, ABACUS can discover 
these patterns based on the medium of descent: 

 If Medium = vacuum, then v = 9.8175 t 
 If Medium = glycerol, then vr = .9556 m 
 If Medium = castor oil, then vr = .7336 m (4) 
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2.7 Predicting Processes Qualitatively  

Most programs for learning rules from examples determine them from examples of various 
classes of objects. An example of a concept represents that concept regardless of its relationship 
to other examples. Contrast that with a sequence prediction problem, in which a positive example 
of a concept is directly dependent on the position of the example in the sequence.  

For example, Figure 3 shows a sequence of nine figures. One may ask what object plausibly 
follows in the tenth position.  To answer such a question, one needs to search for a pattern in the 
sequence, and then use the pattern to predict a plausible sequence continuation. In qualitative 
prediction, the problem is not to predict a specific value of a variable (as in time series analysis), 
but rather to qualitatively characterize a plausible subsequent object, that is, to describe plausible 
properties of that future object. 

 

Figure 3:   An example of a qualitative prediction problem. 

In the example in Figure 3, one may observe that the sequence consists of circles with parallel 
shading and squares with dark shapes inside. The figures may be rotated in different orientations 
at 45-degree intervals. But is there a consistent pattern? 

To determine such a pattern, one can employ different descriptive models, and instantiate the 
models to fit the particular sequence. The instantiated model that best fits the data is then used 
for prediction. Such a method was initially developed by Dietterich and Michalski, (1986), and 
then generalized in SPARC/G system to handle arbitrary sequences of entities described by 
attributes (Michalski, Ko and Chen, 1986). The method employs three descriptive models—
periodic, decomposition, and DNF. 

The periodic model is used to detect repeating patterns in a sequence. For example, Figure 3 
depicts a recurring pattern that alternates round and square objects. In general, there can also be 
periodic subsequences within the periodic sequences. In the figure, the round objects form a 
subsequence in which individual objects rotate leftward by 45 degrees and alternate between 
small and large.  The square objects have a subsequence alternating between those with a triangle 
in the corner and those half-filled.  Each subsequence is rotating clockwise. 

The second model, the decomposition model, is used to characterize a sequence by decision rules 
in the following general form: “ If one or more of the previous elements of the sequence have a 
given set of characteristics, then the next element will have the following characteristics...”  One 
such rule that applies to the sequence in Figure 3 would state that if an element in the sequence 

1        2        3         4        5       6          7         8          9        ? 
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has a triangular component, then the next element in the sequence will have a diagonally shaded 
component; otherwise it will have no diagonal shading. 

The third model, the DNF (disjunctive normal form) or “catch-all”  model, tries to capture 
general properties characterizing the whole sequence. For example, for the sequence in Figure 3, 
it could instantiate to a statement such as “all elements in the sequence are round or square, their 
interiors are either shaded, or contain a dark rectangle or triangle, etc. 

Given the problem in Figure 3, SPARC/G would find the following pattern based on the periodic 
model: 

 Period < [shape=circle] & [shading = parallel] [orientation(i+1)=orientation(i) + 45], 
 [shape = square] & [orientation(i+1)=orientation(i) + 45] > (5) 

The pattern can be paraphrased: there are two phases in a repeating period (their descriptions are 
separated by a comma). The first phase involves a circular figure, and the second phase a square 
figure. The cricular figure is shaded and rotates to the right and the square figure also rotates to 
the right by 45 degrees in relation to its predecessor. Based on this pattern, a plausible next 
figure in the sequence would be a square figure rotated clockwise 45 degrees in relation to the 
previous square figure.  This rule does not specify the contents of that square. 

The qualitative prediction capabilities described above can be useful for conceptual exploration 
of temporal databases in many application domains, such as agriculture, medicine, robotics, 
economic forecasting, computer intrusion detection, etc. 

2.8 Knowledge Improvement via Incremental Learning 

One very important aspect of the application of machine learning to logical data analysis is the 
existence of methods for incremental learning that can improve data generalizations when new 
data become available.  This is analogous to Bayesian learning, but it is not the posterior 
probability of a description that being improved, but rather the description itself.  

Incremental learning can take three forms, depending on how much data from which the prior 
knowledge was generated is available.  Zero-memory learning, in which none of the earlier data 
is retained, is more economical, while full-memory incremental learning, in which all earlier 
training examples are retained, is likely to result in more accurate descriptions, provided that 
issues of concept drift can be accounted for.  Partial-memory incremental learning is an attempt 
to strike a balance between these two extremes, by selecting for retention only the cases most 
likely to be of use later on. 

The zero-memory algorithm is straightforward.  New data that contradicts prior hypotheses is 
integrated into the prior hypotheses through specialization operators that reshape the hypotheses 
into ones consistent with the new data.  The best of these modified hypotheses are then input to 
the learner along with the new data points (e.g., Michalski and Larson, 1983). 

In the full-memory incremental learning, the new data that contradict the previous description are 
first filtered by removing any examples which were identical to earlier training examples.  The 
prior hypotheses are then appropriately specialized or generalized to account for new data, while 
preserving consistency and completeness of the description with regard to all past examples (e.g., 
Reinke and Michalski, 1988). 
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The partial memory method utilizes a selection of prior data for retention. Some partial memory 
systems select examples that are near the perceived boundaries of the concepts, either based on 
the incoming datastream (e.g., Kibler and Aha, 1987), or on induced rules (e.g., Maloof and 
Michalski, 2000, 2004).  Others retain a seed positive example (e.g., Elio and Watanabe, 1991), 
or maintain only negative examples of a concept so as to define a boundary (e.g., Iba, Woogulis 
and Langley, 1988). 

2.9 Summarizing the Logical Data Analysis Approach 

To help the reader develop a rough sense of what is different and new in the above, let us 
consider operations typically performed by traditional multivariate data analysis methods. These 
include computing mean-corrected or standardized variables, variances, standard deviations, 
covariances and correlations among attributes; principal component analysis; factor analysis; 
cluster analysis; regression analysis; multivariate analysis of variance; and discriminant analysis. 
All these methods can be viewed as primarily oriented toward numerical characterizations of 
data. 

In contrast, the logical data analysis approach, described above, focuses on developing symbolic 
logic-style descriptions of data, which may characterize data qualitatively, differentiate among 
classes, create a “conceptual”  classification of data, qualitatively predict sequences, etc. These 
techniques are particularly well-suited for developing descriptions and seeking patterns in data 
that involve nominal (categorical), rank, and structured attributes (with hierarchically-ordered 
domains), although they can handle all types of attributes. 

Another important distinction between the two approaches to data analysis is that purely 
statistical methods are particularly useful for globally characterizing a set of objects, but not so 
for determining a description for predicting class membership of individual objects (with some 
exceptions, e.g., classification trees). A statistical operator may determine, for example, that the 
average lifespan of a certain type of automobile is 7.3 years, but it may not provide conditions 
indicating the lifespan of an automobile with particular characteristics, nor the ability to 
recognize the type of a specific automobile from its description. A symbolic machine learning 
approach is particularly useful for such tasks. It may create a description such as “ if the front 
height of a vehicle is between 5 and 6 feet, body color is silver or grey, and the driver’s seat is 2 
to 3 feet above the ground, then the vehicle is likely to be a minivan of brand X.”  Such 
descriptions are particularly suitable for classifying future, not yet observed entities based on 
their properties. 

The knowledge mining methodology aims at integrating a wide range of strategies and operators 
for data exploration based on both machine learning research and statistical methods. The reason 
for such a multistrategy approach is that a data analyst may be interested in many different types 
of information about the data, requiring different exploratory strategies and different operators. 

3 STRONG PATTERNS VS. COMPLETE AND CONSISTENT RULES 

In its early stages of development, machine learning was oriented primarily toward methods that 
produce consistent and complete descriptions of the training data, that is, descriptions that 
explain (“cover” ) all positive training examples of the target concepts, and none of the negative 
examples.  In practical applications, however, data frequently contain some errors; therefore, a 
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complete and consistent description will likely overfit the data, producing incorrect micro-
patterns. Also, in practice, one may be more interested in determining a simple but not 
completely correct pattern than a complex but a correct one.   

There have been several methods developed to determine such patterns using the symbolic 
learning approach. One method is through postprocessing of learned descriptions using ruleset 
optimization (e.g., Bergadano et al, 1992). The well-known decision tree pruning is a simple 
form of the same idea (e.g., Quinlan, 1993).  In this method, an initially learned complete and 
consistent description is simplified by removing statistically insignificant components (subtree 
pruning in decision tree learning, or rule truncation in AQ learning), or optimizing some of its 
components (rule optimization in AQ learning). 

Another method is to optimize descriptions during the rule generation process. Such a method 
employs a rule quality criterion, defined by the user, that specifies a tradeoff between 
completeness and consistency of a rule.  At each stage of rule learning, candidate hypotheses are 
overgeneralized (introducing inconsistency, but increasing rule coverage), and then evaluated 
using the rule quality criterion.  Whichever variant of the original hypothesis scores best is 
retained as input to the next iteration of rule learning.  In this way, negative examples are ignored 
if the creation of a strong pattern requires it. 

Such a method was implemented in AQ learning, as an additional option to rule truncation 
(Michalski and Kaufman, 2001). The method uses a rule quality measure Q(w), where w is a 
user-specified weight parameter controlling the relative importance of rule coverage in relation 
to rule consistency gain. 

Specifically, given a training dataset consisting of P positive examples of a concept and N 
negative examples (examples of other concepts), and given a rule R that covers p positive 
examples and n negative examples, the rule’s coverage (relative support) is defined as: 

 cov(R) = p / P (4) 

The consistency of rule R is defined as the fraction of covered examples that are positive 
(correctly classified), or: 

 cons(R) = p / (p + n) (5) 

However, without taking into account the distribution of training examples, a rule’s consistency 
alone does not provide a strong indication of the predictive utility of the rule.  Thus, we instead 
apply consistency gain (cgain), which measures the rule’s improvement in performance over the 
expected performance of blindly guessing the positive class.  A normalization factor ensures that 
this measure will be zero when the rule performs no better than such a blind guess, and 1 when 
the rule achieves 100% consistency. 

 cgain(R) = (p / (p + n)) – (P / (P + N)) *  ((P + N) / N) (6) 

The Q(w) formula then combines the coverage and consistency gain terms through multiplication 
(so that Q will be 1 when both terms are 1, and Q will be 0 when either term is 0), and 
accordingly, the weight w is computed as an exponent in the equation.  Specifically: 

 Q(w) = cov(R)w *  cgain(R)1-w (7) 
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It should be noted that both cov(R) and cgain(R) are functions of the rule’s positive and negative 
support.  Other programs typically also use various functions of rule’s positive and negative 
support in evaluating the descriptions they generate. 

Table 1 presents examples of how different methods can choose differently from the same set of 
candidate rules (Kaufman and Michalski, 1999).  In the table, three separate data sets are 
assumed, each with 1000 training examples.  In Data Set A, 200 of the training examples are in 
the positive class; in Data Set B, 500 training examples are, and in Data Set C, 800 training 
examples are.  For each data set, seven rules are hypothesized, each covering different numbers 
of positive and negative examples. The table shows how each set of seven rules would be ranked 
by information gain, by the programs PROMISE (Baim, 1982), CN2 (Clark and Niblett, 1989), 
and RIPPER (Cohen, 1995), and by Q(w) for w = 0, .25, .5, .75, and 1.  In each column, “1”  
indicates the rule determined by the method to be the best (the highest rank), and “7”  indicates 
the worst. 

Data Pos Neg RANKS 

Set   Inf. Gain PROMISE CN2 RIPPER Q(0) Q(.25) Q(.5) Q(.75) Q(1) 

A 50 5 7 7 4 7 4 7 7 7 6 

 50 0 6 6 1 6 1 6 6 6 6 

200 200 5 1 1 2 1 2 1 1 1 1 

pos 150 10 2 2 3 2 3 2 2 2 2 

 150 30 3 3 6 3 6 3 3 3 2 

800 100 15 5 5 5 5 5 4 4 5 5 

neg 120 25 4 4 7 4 7 5 5 4 4 

B 50 5 7 7 3 7 3 7 7 7 7 

 250 25 6 5 3 5 3 5 5 5 5 

500 500 50 1 1 3 1 3 1 1 1 1 

pos 500 150 2 3 7 3 7 6 4 2 1 

 200 5 5 6 1 6 1 4 6 6 6 

500 400 35 3 2 2 2 2 2 2 3 3 

neg 400 55 4 4 6 4 6 3 3 4 3 

C 50 5 7 – 3 7 3 6 6 6 7 

 250 25 5 – 3 5 3 2 5 4 5 

800 500 50 1 – 3 1 3 3 1 1 1 

pos 500 150 6 – 7 3 7 7 7 7 1 

 200 5 3 – 1 6 1 1 3 5 6 

200 400 35 2 – 2 2 2 2 2 2 3 

neg 400 55 4 – 6 4 6 5 4 3 3 

Table 1:   How different methods rank different rules. 

This is not meant to suggest that any of these ranking methods are superior or inferior to any 
other.  Rather, it serves to indicate how by changing the rule quality criterion, one can often alter 
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which rules will be selected, and demonstrates the flexibility of the Q(w) measure to emulate 
several different rule quality criteria through adjustment of its weight. This research thus shows 
that by controlling the w parameter in the AQ learning program, one can obtain rulesets 
representing different trade-offs between consistency and completeness, and approximate 
behavior of different learning programs. 

Fürnkranz and Flach (2003) have studied the behavior of different rule quality measures, and 
present a means for showing graphically how these measures can be intuitively visualized and 
compared.  

4 RULESET VISUALIZATION VIA CONCEPT ASSOCIATION GRAPHS 

When working with symbolic knowledge as described above, it is desirable for a data analyst to 
be able to visualize the results of the learning process. The purpose of such visualization 
operators is to relate visually the input data to the rules that have been learned from them, to see 
which datapoints would corroborate or contradict these rules, to identify possible errors, etc. To 
this end, programs are needed that are specialized toward the visualization of data and 
attributional knowledge.  Two such approaches are the diagrammatic visualization method 
implemented in the KV program (Zhang, 1997), and the concept association graph (e.g., 
Michalski and Kaufman, 1997; Kaufman and Michalski, 2000).  The latter approach is 
particularly oriented toward problems of data and knowledge mining, due to a lack of 
complications arising from scaling up to many large attribute domains. 

Concept association graphs were developed as a tool for visualizing attributional rulesets, or 
more generally the relationships between consequents and premises (Michalski and Kaufman, 
1997).  Attributes, rules and their relationships are displayed in a graphical form using nodes and 
links.  There are three different types of nodes: input nodes, output nodes and rule nodes. 

Input nodes are nodes that represent components of the premise of a rule, while output nodes 
represent the consequent of a rule.  Rule nodes represent the relationships between one or more 
input attributes and one or more output attributes.  All of the conditions in the premise of a rule 
are linked to its rule-node, which is then linked to the output node(s).  Input and output nodes 
appear as ovals in a concept association graph, and rule nodes appear as rectangles. 

There are two types of links, presented as continuous links and dotted links.   The dependency 
between input and output nodes is represented with continuous links of different thickness.  The 
thicker the link, the stronger the relationship.  The thickness of the link can be computed using 
many different methods, which may take into consideration for example, the completeness (what 
percentage of positive examples of the consequent class are covered by the condition) or the 
consistency (what percentage of the examples covered by the condition are of the target class).  
A third method combines completeness and consistency using the Q(w) measure (Section 3). 
These links are labeled by annotations that specify the values of the attribute represented by the 
associated input node that satisfy the condition represented by the link.  This can be done either 
through a specification of attribute values (as seen, for example, in Figure 4 below) or, more 
simply, through one of four symbols that characterize those values (as seen, for example, in 
Figure 5 below). 

The abstraction to four symbols can be used in the case of linear or binary attributes.  The 
symbol ‘+’  indicates a positive relationship between the attribute (or higher values of it) and the 
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rule.  The symbol ‘ -‘  indicates a negative relationship; a rank attribute should have a low value, 
or a binary attribute should be false.  Linear (rank, interval or ratio) attributes can also be 
characterized by the symbols ‘^’  and ‘v’ , which indicate respectively that the attribute should 
have central or extreme values in the given condition. 

Dotted links in concept association graphs are used to display generalization (is-a)  relationship 
between nodes.  For example, in the mushroom domain (see Figure 4), a dotted link shows that 
the output node [class=poisonous] is an instantiation of the classes-of-mushrooms node.  Dotted 
links are optional, and are used primarily when output nodes can also serve as input nodes for 
another diagrammed rule. 

The major advantage of a concept association graphs is that it can visualize multivariate 
relationships (rules) with a graphical indication of the strength of individual condition in these 
rules. The visualization method using concept association graphs has been implemented in 
program CAG1, which reads in a set of attributional rules learned by AQ-type learning program, 
and then displays a concept association graph. The program allows the user to modify the graph.  

To illustrate different forms of concept association graphs we will use attributional rules learned 
from the “mushroom dataset”  obtained from the data repository at the University of California at 
Irvine, and rules learned from a medical database representing patients with histories of different 
diseases. 

The mushroom dataset contains the examples of more than 8000 different species of mushrooms, 
classified as edible or poisonous. Each mushroom is described in terms of 23 attributes, of which 
22 are discrete input attributes (nominal or ordinal), and one is an output attribute, with the 
domain { edible, poisonous} . There were 3916 examples of poisonous mushrooms, and 4208 
examples of edible mushrooms. The attributional rules learned from these examples are: 

[class = poisonous] 

       ⇐ [odor = creosote or  fishy or  foul or musty or pungent or spicy : 3796,0]     

: p=3796, n=0 

       ⇐  [cap_color  � cinnamon: 3904, 4176] &  [gill_spacing = close or distant 3804,3008] 
& [stalk_root � equal: 3660,2624] & [stalk_surface_above_ring = fibrous or silky 
or smooth: 3908,4192] & [ring_type � flaring: 3916,4160] & [spore_print_color = 
green or purple or chocolate or yellow or white: 3468,672] & [habitat � waste:  
916,4016] 
: p=3440, n=24  

  
[class =  edible]  
       ⇐ [odor = almond  or anise or  none : 4208,120] 

: p=4208, n=120  

Thus, there are two rules for poisonous mushrooms, and one rule for edible mushrooms. The 
pairs of numbers after “ :”  in each condition in each rule denote the number of positive and 
negative examples covered by this condition, respectively. Parameters p and n after each rule 
denote the total number of positive and negative examples covered by each rule, respectively. 
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Thus, the first rule for the poisonous mushrooms covers 3796 examples of poisonous mushrooms 
and zero examples of edible mushrooms.  

Given these rules, and numbers of positive and negative examples associated with each condition 
in each rule, CAG1 generated a concept association graph presented in Figure 4.  The thickness 
of the lines connecting conditions with the class is proportional to the consistency of the 
conditions, measured by (p / p + n). Thus, in Rule 2 for the poisonous class, the link 
corresponding to the condition [spore_print_color = green or purple or chocolate or yellow or 
white] is much thicker than the others, as the consistency of this condition is approximately 84%, 
while the next strongest conditions, [stalk_root � equal] and [gill_spacing = close or distant], 
have consistencies of 58% and 56%, respectively.  The links associated with them are somewhat 
thicker than the links representing the rule’s remaining conditions, which have consistencies 
around 50%. 

 

Figure 4.   A concept association graph representing rules for distinguishing edible from 
poisonous mushrooms. 

CAG1 was also used to visualize attributional rules learned from data collected by the American 
Cancer Society on lifestyles and diseases of nonsmoking men, aged 50-65.  The data consist of 
over 73,000 records describing them in terms of 32 attributes; 25 are Booleans indicating the 
occurrence or non-occurrence of various classes of disease, and the other 7 describe elements of 
their lifestyles.  Six of the seven are discrete attributes, with 2-7 linearly ordered values, and the 
seventh, representing how long the respondent had lived in the same neighborhood, is numeric.  
Among the discovered patterns were: 
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[Arthritis=present] 

     ⇐ [ Hi gh_Bl ood_Pr essur e = pr esent ]  ( 432,  1765)  & 
   [ Educat i on < gr ad school ]  ( 940,  4529)  & 
 [ Rot undi t y > ver y_l ow]  ( 1070,  5578)  & 
 [ Year s_i n_Nei ghbor hood >= 1] ( 1109,  5910) :  325,  1156 

 
[Colon_Polyps=present]  

 ⇐ [ Pr ost at e_Di sease = pr esent ]  ( 34:  967)  & 
      [ Sl eep = 5,  9]  ( 16,  515)  & 
      [ Year s_i n_Nei ghbor hood >= 8]  ( 33,  1477)  & 
      [ Rot undi t y = aver age]  ( 58,  2693)  & 
      [ Educat i on < col l ege degr ee]  ( 83,  4146) :  5,  0 

 
[Diverticulosis=present] 

 ⇐   [ s t r oke = absent ]  ( 257,  7037)  & 
      [ Ar t hr i t i s  = pr esent ]  ( 70,  1033)  & 
      [ Rot undi t y >= aver age]  ( 170,  4202)  & 
      [ Educat i on >= some col l ege]  ( 176,  4412)  & 
      [ Sl eep = 7. . 9]  ( 205,  5743)  & 
      [ Year s_i n_Nei ghbor hood > 10]  ( 134,  3846) :  24,  115 

 
[Stomach_Ulcer=present]  

 ⇐ [ Ar t hr i t i s  = pr esent ]  ( 107,  1041)  & 
       [ Educat i on <= col l ege degr ee]  ( 305,  5276)  & 
       [ Exer ci se >= medi um]  ( 298,  5606) :  79,  668 
 
[Asthma=present] 

 ⇐ [ Hay_Fever  = pr esent ]  ( 170,  787) :  170,  187 

The first rule, for example, states that occurrence of arthritis is associated with high blood 
pressure, education below graduate school, rotundity (a relation of patient’s weight to height) 
above very low, and that patients moved into their current neighborhood at least a year ago.   

When the above rules and several others were input to CAG1, it resulted in the generated graph 
shown in Figure 5.  In this CAG, links are color-coded according to which rule they apply to for 
ease of viewing.  The concepts are present at a higher level of abstraction than in Figure 4; as 
discussed above.  The relationship between nodes is represented with symbols rather than with 
an exact “ relation reference.”   That is, instead of  the list of values for attributes shown on the 
input links of Figure 4, the links are instead annotated with the four symbols +, -, ^ and v. 

In these graphs, the output nodes are also used directly as input nodes, without linking to an 
intermediate node to signify their values.  This is possible because the output attributes are all 
binary, and the value true (or in this case “present” ) is understood. 

In the graph in Figure 5, link thicknesses are based on completeness (support).  For example, two 
of the links comprising the Stomach Ulcer rule in Figure 5 are noticeably thicker than the third, 
because the conditions involving Education and Exercise had approximately three times the 
support of the arthritis condition. 
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Figure 5:   A concept association graph representing discovered multivariate relationships 
between diseases and lifestyles.  Link thicknesses represent relative support. 

5 INTEGRATION OF KNOWLEDGE GENERATION OPERATORS 

To make the data exploration operations described above easily available to a data analyst, and 
applicable in sequences in which the output from one operation is an input to another one, 
programs performing these operations are best integrated into one system. This idea underlay the 
INLEN system (Michalski et al, 1992; Michalski and Kaufman, 1997), and its successor, 
VINLEN (Kaufman and Michalski, 2003), which is currently under development. The INLEN 
system integrates machine learning programs, simple statistical data analysis tools, data tables, a 
knowledge base, inference procedures, and various supporting programs under a unified 
architecture and graphical interface. The knowledge base is used for storing, updating and 
applying rules that may be employed for assisting data exploration, and for reporting results from 
it. 

The general architecture of INLEN is shown in Figure 6. The system consists of knowledge 
systems, which maintain the data and knowledge relevant to a given application domains.  Each 
knowledge system is associated with a database (DB) and a knowledge base (KB), both of which 
can be accessed by a set of operators. The operators are divided into three classes: 

• DBMOs: Data Management Operators, which operate on the database. These are 
conventional data management operators that are used for creating, modifying and displaying 
relational tables. 
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• KBMOs: Knowledge Management Operators, which operate on the knowledge base. These 
operators play a similar role to the DBMOs, but apply to the rules and other structures in the 
knowledge base. 

• KGOs: Knowledge Generation Operators, which operate on both the data and knowledge 
bases. These operators perform symbolic and numerical data exploration tasks. They are 
based both on various machine learning and inference programs and on conventional data 
exploration techniques. 

The execution of a KGO usually requires some background knowledge, and is guided by control 
parameters (if some parameters are not specified, default values are used). The background 
knowledge may contain some general knowledge, previously discovered knowledge, and 
knowledge specifically relevant to a given application domain, such as a specification of the 
value sets and types of attributes, the constraints and relationships among attributes, initial rules 
hypothesized by an expert, etc. The KGOs can be classified into groups, based on the type of 
operation they perform, each of which includes a number of specific operators that are 
instantiated by a combination of parameters.   For example one group consists of operators for 
learning decision rules, another for selecting attributes, another for applying knowledge, and so 
forth. 

 

Figure 6:   A general schema of the INLEN inductive database system. 

One INLEN operator extends beyond the traditional learning and discovery operators, and thus 
merits further discussion.  Specifically, the Scout Access operator is used to build knowledge 
scouts – scripts to serve as intelligent agents performing discovery tasks in the inductive database 
(Michalski and Kaufman, 2000). 

To explore the idea of a knowledge scout further, consider the task of data exploration and 
knowledge mining.  Typically, the entire plan of discovery can not be determined in its entirety 
beforehand.  Some results may require no action, others may require some action to be taken, 
and occasionally, some may warrant a new and completely unplanned course of action.  Yet it is 
time-consuming and subject to errors for an analyst to stand over every stage of the discovery 
process and respond appropriately to the output from each of those steps.  Thus, the idea of a 
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knowledge scout is that of a mechanism that can encapsulate the user’s knowledge of how to 
react to different contingencies. 

For instance, An experiment based on 1993 World Factbook data found the following rule 
describing 25 of the 55 countries with low (<1%) population growth: 

PopGrRate < 1% if  pos neg 
1. BirthRate is 10..20 or 50..60 46 20 

2. FertRate is 1..2 or > 7 32 17 

3. Religion is Protestant or Roman_Catholic or Eastern_Orth or 
Shinto orBulgarian_Orth or Russian_Orth or Romanian_Orth or 
Greek_Orth 38 32 

4. NetMigRate <= +10 54 123 

The first and strongest condition is surprising.  Birth rates ranged in the data from 10 to 60, and 
while the low birth rate is intuitive, the very high one is not.  Looking at the 25 countries that 
satisfy the rule, 24 of them had birth rates less than 20.  Only one country, Malawi, had a birth 
rate above 50.  Such a counterintuitive result could instigate a series of experiments to determine 
the cause of such behavior.  In fact subsequent investigation of Malawi compared to the rest of 
the countries quickly turned up an explanation:  an outward net migration rate that dwarfs those 
of all the other countries. 

Thus, a goal of knowledge scout would be to be able to specify in a script anomalies to be 
detected and what should be done in response to them (either logging them for a human, or 
calling upon new discovery operators).  A knowledge scout needs the means to specify its plan 
of action, specifically, a language rich enough to specify the operators available to it and the 
means to select and execute actions.  For instance, M-SQL extends the SQL data query language 
by adding to it the ability to query for certain types of rules and to invoke an association rule 
generating operator (Imielinski, Virmani, and Abdulghani, 1996).  Thus, it has access to 
conventional database operators plus a data mining operator. 

Built for the INLEN environment which contained a variety of learning and discovery operators, 
each of which offered a range of parameter settings, KGL was designed as a language for 
specifying detailed plans in such an environment (Michalski and Kaufman, 2000).  By 
combining the means for specifying the steps to be taken and the means for specifying the 
control structure, KGL code, such as the set of instructions shown in Figure 7, could be provided 
to the program.  In that figure, the program is asked to examine the PEOPLE data table extracted 
from the CIA’s World Factbook, and to take action based on the rules it finds.  Comments 
(bracketed and in italics) have been added to explain each line. 

The presented script learns rules for each possible decision attribute, then executes three tasks.  
First it counts the number of rules whose consequent predicts a country’s population growth rate 
that are strong according to three criteria:  high relative support, high absolute support, and 
containing at least two conditions that have both absolute support and standalone consistency 
above the given thresholds.  Then it tests the ruleset that determines a country’s likely fertility 
rate for complexity (based on the total number of conditions in the ruleset); if it is too complex, 
the four most relevant attributes to the task are chosen, and the learning is repeated on this 
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streamlined dataset.  Finally, it reports on the number of conditions in the life expectancy rule 
base that have confidence levels above different thresholds. 

open PEOPLE { Sel ect  PEOPLE dat abase}  
do CHAR( deci s i on=al l ,  pf i l e=peopl e1. l r n)  { Char act er i ze concept s  

r epr esent i ng s i ngl e val ues of  
al l  at t r i but es,  usi ng par amet er s 
 speci f i ed i n f i l e peopl e1. l r n}  

st r ongPGr ul es1 = #r ul es( PGR,  compl  >= 60)  { Count  r ul es f or  Popul at i on}   
s t r ongPGr ul es2 = #r ul es( PGR,  supp >= 25)  { Gr owt h Rat e t hat  sat i sf y}  
s t r ongPGr ul es3 = #r ul es( PGR,  { t hr ee di f f er ent  condi t i ons}   
   num_conds( cons >= 50 and supp > 10)  > 2) { f or  t hr eshol d of  st r engt h}  
pr i nt  “ Number  of  st r ong PGR r ul es:  
   Type 1 = ” ,  s t r ongPGr ul es1,  “ ,  
   Type 2 = “ ,  s t r ongPGr ul es2,  “ ,  
   Type 3 = “ ,  s t r ongPGr ul es3 
i f  #condi t i ons( Fer t )  > 150  { I s Fer t  r ul eset  t oo compl ex?}  
  begi n  
  do SELECT( at t r i but es,  deci s i on=Fer t ,  
     t hr esh=4,  out =PEOPLE2,  cr i t er i on=max)  { I f  so,  f i nd “ t hr esh”  best }  
  do CHAR( pf i l e=peopl e1. l r n,  deci s i on=Fer t )  { i ndependent  at t r i but es,  t hen  
  end  { r echar act er i ze}  
f or  i  = 1 t o 6 
begi n { For  each val ue of  i ,  1- 6, }  
pr i nt  “ Number  of  LE condi t i ons wi t h p/ n { count  & di spl ay number  of }  
       r at i o of  at  l east ” ,  i ,  “ : 1 =” ,  { Li f e Expect ancy condi t i ons}  
      #condi t i ons( LE,  cons >= i / ( i +1) )  { wi t h consi st ency •  i / ( i +1) }  
end 

Figure 7:  KGL code defining a knowledge scout for exploring a World Factbook data table. 

In summary, an inductive database integrates a database with a  set of operators for performing 
various types of operations on the database, on the knowledge base, or on the data and 
knowledge bases combined. 

6 SUMMARY 

The main thesis of this paper is that modern methods for symbolic machine learning have a 
direct and important application to logical data analysis and the development of a new research 
direction, called knowledge mining. Knowledge mining has been characterized as a derivation of 
human-like knowledge from data and prior knowledge. It was indicated that a knowledge mining 
system can be implemented using inductive database technology that deeply integrates a 
database, a knowledge base, and operators for data and knowledge management and knowledge 
generation.   

Among knowledge generation operators are operators for inductive learning of attributional rules 
or trees characterizing the relationship between designated output and input attributes, for 
creating conceptual hierarchies (conceptual clustering) from data, for selecting most relevant 
attributes, and for visualizing data and rules learned from the data.  The learned rules represent 
high-level knowledge that can be of great value to a data analyst, and used for human decision-
making or for automated classification. Other important operators include construction of 
equations along with logical preconditions for their application, determination of symbolic 
descriptions of temporal sequences of multi-attribute events, automated generation of new, more 
relevant attributes, and selection of representative examples. 
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The underlying theme of all these methods is the ability to generate knowledge that is easily 
understood and articulated. Visualization techniques such as concept association graphs facilitate 
the presentation of broad concepts to the user. 

The knowledge generation capability was illustrated by presenting results from several 
application domains.  In analyzing demographic data, the knowledge mining approach helped to 
discover the anomalous Malawi’s population changes.  In analyzing medical data, it showed in 
understandable terms relationships between the occurrences of diseases and the presence or 
absence of other diseases as well as factors in individuals’  lifestyles.  And in a computer 
intrusion detection domain, it created symbolic user models from process table data 
characterizing users’  activities (Michalski et al, 2005). 

In contrast to many data mining approaches, the methodology presented can utilize various types 
of background knowledge regarding the domain of discourse. This background knowledge may 
include, for example, a specification of the domain and the type of the attributes, the known 
relationships among attributes, prior concept descriptions, and other high-level knowledge. An 
important aspect of the methodology is its ability to take advantage of this knowledge. 

We presented KGL as a language for developing knowledge scouts.  KGL was designed for an 
environment in which the data was not stored in a full-scale DBMS.  VINLEN, which works in 
conjunction with an SQL-accessible relational database, requires a knowledge scout language 
that is tailored to such an environment.  Thus, one topic of ongoing research is the development 
of a Knowledge Query Language – a language of SQL-like form that extends its capabilities into 
a knowledge mining paradigm. 
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