
Linear Stability Analysis of a Solidifying Ternary Alloy

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Terrance J. Flynn, Jr.
Bachelor of Science

Southern Illinois University, 2000

Director: Dr. Daniel Anderson, Professor
Department of Mathematical Sciences

Spring Semester 2009
George Mason University

Fairfax, VA

Copyright c© 2009 by Terrance J. Flynn, Jr.
All Rights Reserved

ii

Dedication

To Jennifer, Terry and Nancy. I am finished now.

iii

Acknowledgments

I would like to acknowledge my wife and her patience. It has not gone unnoticed. I must
also recognize Dr. Daniel Anderson. His generosity with his time, ideas and research have
been immeasurable. Not only has he been an advisor, but an academic role model as well.

iv

Table of Contents

Page

List of Tables . vi
List of Figures . vii

Abstract . viii
1 Introduction . 1

1.1 Preliminaries . 1
1.2 Review of Literature . 2

2 Statement of Problem . 3
2.1 Ternary Phase Diagram . 3

2.2 Full Governing Equations and Boundary Conditions 4

2.2.1 Liquid Layer . 5

2.2.2 Primary Mushy Layer . 7

2.2.3 Secondary Mushy Layer . 10

3 Solution . 12
3.1 Nondimensionalization . 12
3.2 Linear Stability Analysis . 17

3.2.1 Base State Problem and Solutions 17
3.2.2 Linearized Disturbance Equations 27

3.2.3 Solution Method . 33
4 Linear Stability Results . 36

5 Conclusion . 45
A Alphabetical Listing of Matlab Functions . 47

Bibliography . 162

v

List of Tables

Table Page

4.1 Model parameter values . 37

vi

List of Figures

Figure Page

1.1 Basic geometry of ternary model . 2

2.1 A simple binary phase diagram . 4

3.1 Basic solution for the parameter values shown in table 4.1. 26

4.1 Neutral stability curve for the case of RaB = RaC = 0. 40

4.2 Neutral stability curve for the case of Ra = RaC = 0. 41

4.3 Neutral stability curve for the case of Ra = RaC = 0. 42

4.4 Neutral stability curve for the case of Ra = RaB = 0. 43

4.5 Neutral stability curve for the case of Ra = RaB = 0. 44

vii

Abstract

LINEAR STABILITY ANALYSIS OF A SOLIDIFYING TERNARY ALLOY

Terrance J. Flynn, Jr., MS

George Mason University, 2009

Thesis Director: Dr. Daniel Anderson

Solidification occurs frequently in many natural and industrial settings. Since producing

solids from liquids impacts many aspects of daily life, it is worthwhile to understand this

process. Modeling the transformation of a liquid into a solid for multicomponent systems

can, among other things, provide insights into the quality of the final solid.

In recent years, mathematical models describing the solidification of aqueous ternary

alloys have been proposed. These models include governing equations and boundary con-

ditions for each of the four major layers and interfaces present during the phase transition

from liquid to solid. The four layers consist of a completely solid and completely liquid layer

separated by two distinct mushy layers. The mushy layers are composed of both solidified

material and residual liquid and are treated as reactive porous regions. Here, reactive means

the amount of solid occupying the mush is influenced by the local temperature and liquid

composition. Furthermore, these solute and temperature fields are coupled to the fluid

velocity. Tracking the general motion of the fluid within these mushy layers then becomes

important to understanding their growth.

This work seeks to improve earlier models describing the change of phase in aqueous

ternary alloy systems. One such improvement is the addition of equations allowing transport

of heat and solute by both diffusion and convection. With these enhancements made, a base

state problem and solution are identified for the new model. The linear stability of the basic

solution is investigated numerically using a Chebyshev pseudospectral collocation method.

Results of the analysis are given in the form of neutral stability curves which describe the

base state’s linear stability to infinitesimal perturbations for some specific cases.

Chapter 1: Introduction

1.1 Preliminaries

The topic of solidification has been studied for many years. During this time, theoretical

and experimental studies have been performed by both industrial and academic researchers.

Solidification involves the transformation of a substance from its liquid phase to its solid

phase. This process is often brought about by sufficiently cooling the liquid until crystal-

lization can occur. One simple example of solidification is the freezing of water into ice. In

this case, only a single, pure material is involved. In other cases, the liquid being solidified

may have multiple components, in which case an alloy is formed. For instance, some alloys

are created by solidifying two constituent materials. Such alloys are referred to as binary

alloys. Still other alloys are formed from three components and are called ternary alloys.

During binary alloy solidification, a layer frequently develops between the completely

solid and liquid regions of the material. This layer involves a blend of solid and liquid

material together. Due to the presence of both liquid and solid phases, this layer is referred

to as the mushy layer. When a three component, or ternary alloy is solidified, two such

mushy layers form between the completely liquid and solid regions. The two mushy layers

are distinguished by the number of components found to be in their solid phases within

the mushy layers. Such a ternary system is shown in figure 1.1. Understanding the forma-

tion, development and interactions of these mushy layers within ternary alloys can help to

characterize the resulting solid.

1

6
z

z = 0

z = hS

z = hP

z = H

Eutectic solid

Secondary mush

Primary mush

Liquid layer

Figure 1.1: The basic geometry of a solidifying ternary system.

1.2 Review of Literature

In recent years, solidification of ternary alloys has become increasingly studied. Many

of these studies are built upon prior work done for binary alloys. The work here is no

exception. The works of [2] and [3] have provided the motivation for the present effort. In

[2], a model is described which accounts for several characteristics of a solidifying ternary

alloy. Governing equations and boundary conditions are presented which predict quantities

of the alloy through the four main layers (solid, secondary mush, primary mush and liquid)

and at the interfaces between each layer. This model is a natural extension of the binary

model presented in [7]. One limitation of the model in [2] is that transport of heat and

solute is accomplished exclusively by diffusion. Transport of heat and solute by convection

is not considered under this model. Similarly, [3] develops a model which treats diffusion of

heat as well as convection, but not diffusion of species. While this is an improvement over

[2], it is still not complete. To complete the model, the effects of diffusion, both of heat and

solute, as well as convection are incorporated in the present study.

2

Chapter 2: Statement of Problem

2.1 Ternary Phase Diagram

During solidification, different regions of an alloy may be in different phases depending on

the local liquid composition and temperature. Given a composition and temperature, a

phase diagram describes what material phase will be present. In the case of an equilibrium

binary phase diagram, the horizontal axis represents liquid composition and the vertical

axis defines temperature. Figure 2.1 is a phase diagram for a simple, symmetric binary

alloy with components B and C. The lines separating the completely liquid region from

the mush phase are the liquidus lines having slopes mB and mC .

The concept of a binary phase diagram can be extended by adding a third component.

For instance, if a third component A is included, then three binary phase diagrams can be

constructed, one for each pair of A,B and C. These three binary phase diagrams can be

combined to form a ternary phase diagram.

A simple ternary phase diagram can be found in [2]. In that work, a simplified ternary

phase diagram for a system of three components A, B and C is shown. By combining the

three binary phase diagrams for each pair AB, AC and BC at their shared corners, a 3D

prism shaped object is formed whose base is an equilateral triangle. Within the interior of

this object, a three dimensional surface can be drawn. This surface is comprised of three

smaller liquidus surfaces, each of which is separated by a cotectic curve which extends from

the binary eutectic of each side toward the ternary eutectic point. As the system is cooled,

one of three components will begin to solidify. The remaining liquid will then become

enriched in the other two components. A path along one of the liquidus surfaces can then

3

-

6

HHHHHHHHHHHHHHH

©©©©©©©©©©©©©©©

Solid

Mush Mush

Liquid

B C

TE

E

TB
M TC

M

Figure 2.1: A simple binary phase diagram

be traced which moves away from the corner of the solidifying component. This corresponds

to the development of the primary mushy layer. Upon further cooling, the solidification path

will reach one of the three cotectic curves at which time a second component will undergo

a phase transition from liquid to solid. At this point, the solidification path will move

along the cotectic curve and will be in the direction of the corner of the final unsolidified

component. This corresponds to the development of the secondary mushy layer. As the

temperature is lowered further, the ternary eutectic point of the phase diagram will be

reached and all three components will be solid. For simplicity, the liquidus surfaces and

cotectic curves are assumed to be linear.

2.2 Full Governing Equations and Boundary Conditions

The model under study specifies equations describing several characteristics of a solidifying

aqueous solution. Equations exist which represent temporally and spatially varying quan-

tities such as fluid flow; liquid composition; liquid and solid fractions; and temperature.

Each of these bulk quantities can be tracked through the various layers. Here, only the

liquid, primary and secondary mushy layers are of interest. Boundary conditions which

4

relate bulk properties across the liquid-mush boundary, given by z = hP , and the mush-

mush boundary, given by z = hS , exist as well. Positions of these free boundaries must

additionally be determined. Furthermore, it is assumed that the solution is in a laboratory

frame of reference translating in the z-direction at a speed V . Accordingly, the dimensional

governing equations in the liquid layer, primary mushy layer and secondary mushy layer as

well as the accompanying boundary conditions are as follows. Quantities involving a prime

denote dimensional variables.

2.2.1 Liquid Layer

The conditions

T = T∞ (2.1a)

B = B∞ (2.1b)

C = C∞ (2.1c)

are imposed in the far-field of the semi-infinite liquid region as z′ →∞.

Within the liquid layer,

−∇′p′ + µ′∇′2~u′ + ρ′~g′ = 0 (2.2a)

(
∂

∂t′
− V ′ ∂

∂z′

)
B + ~u′ · ∇′B = DB∇′2B (2.2b)

(
∂

∂t′
− V ′ ∂

∂z′

)
C + ~u′ · ∇′C = DC∇′2C (2.2c)

(
∂

∂t′
− V ′ ∂

∂z′

)
T ′ + ~u′ · ∇′T ′ = κ′∇′2T ′. (2.2d)

Equation (2.2a) is the Stoke’s flow equation describing the fluid velocity ~u′ in the completely

5

liquid layer where p′ is the pressure; µ′ is the dynamic viscosity; ρ′ is the fluid density;

and ~g′ is the downward force due to gravity. Equations (2.2b) and (2.2c) describe the

diffusion of the two solutes B and C, respectively, through the liquid. DB and DC are the

solutal diffusivity constants for the components B and C. Similarly, equation (2.2d) is the

heat equation in the liquid layer where κ is the constant thermal diffusivity of the liquid

and T represents temperature. Only two diffusion equations are required since the three

components (A, B, and C) are related by A + B + C = 1.

At z′ = hP , the interface separating the completely liquid region from the primary

mushy layer, we have the following boundary conditions.

Lv(~V ′
I · n̂)[φA]+− = [k̄∇′T ′ · n̂]+− (2.3a)

(~V ′
I · n̂)B[φA]+− = D′

B[χ∇′B · n̂]+− (2.3b)

(~V ′
I · n̂)C[φA]+− = D′

C [χ∇′C · n̂]+− (2.3c)

[T ′]+− = 0 (2.3d)

[B]+− = 0 (2.3e)

[C]+− = 0 (2.3f)

T ′ = TL(B,C) (2.3g)

(∇′T ′ · n̂)|+ = m′
B(∇′B · n̂)|+ + m′

C(∇′C · n̂)|+ (2.3h)

~u′ · n̂|+− = 0 (2.3i)

~u′ · t̂|+− = 0 (2.3j)

p′|+− = 0 (2.3k)

6

Here, Lv represents the latent heat, n̂ is the unit vector normal to the liquid-mush interface

and k̄ is the solid/liquid weighted thermal conductivity. Other quantities from (2.3a) are the

vector specifying the velocity of the liquid-mush interface ~V ′
I = ∂hP

∂t k̂ and φA, the fraction of

solid A. Several of the liquid-mush boundary conditions also involve χ, which is the fraction

of liquid per unit volume. The liquid and solid fractions are related by the condition that

φA + φB + φC + χ = 1 everywhere. In boundary condition (2.3h), m′
B and m′

C represent

the slopes of the two liquidus lines on the BC side of the ternary phase diagram. Finally,

in equation (2.3j), t̂ is the unit vector tangent to the liquid-mush interface.

The symbol |+− represents a jump in a quantity across the interface. So, for example,

(2.3d) represents the jump in temperature across the primary interface and is the difference

between the temperature on the liquid side of the interface and the temperature evaluated

on the other side of the interface in the primary mush. In other words, (2.3d) says that

T |+ − T |− = 0 where T |+ is the temperature just above the interface and T |− is the

temperature just below the interface.

2.2.2 Primary Mushy Layer

In the primary mushy layer,

~u′ = (Π′(φ)/µ′)[−∇′p′ + ρ′~g′] (2.4a)

(
∂

∂t′
− V ′ ∂

∂z′

)
(χB) + ~u′ · ∇′B = ∇′ · (DBχ∇′B) (2.4b)

(
∂

∂t′
− V ′ ∂

∂z′

)
(χC) + ~u′ · ∇′C = ∇′ · (DCχ∇′C) (2.4c)

c̄′
(

∂

∂t′
− V ′ ∂

∂z′

)
T ′ − L′v

(
− ∂

∂t′
+ V ′ ∂

∂z′

)
χ + c̄′(~u′ · ∇′T ′) = k̄′∇′2T ′ (2.4d)

T ′ = TL(B, C) = T ′M + m′
BB + m′

CC. (2.4e)

7

In the primary mushy layer, it is assumed that there exists one component, assume A,

which is beginning to transform from its liquid phase into its solid phase. Therefore, the

primary mush is comprised of both solid and liquid within the pores of the solid. Because

of this, fluid flow in this porous layer is described by Darcy’s equation (2.4a). Fluid motion

is influenced by the permeability of the mush Π(φ) which is a function of the local solid

fraction φ. Equations (2.4b) and (2.4c) describe the diffusion of the two components B

and C which are still dissolved in the remaining liquid and have not yet begun to solidify.

Equation (2.4d) represents the diffusion of heat through the primary mushy layer where c̄′

and k̄′ are the constant specific heat and thermal conductivity of the primary mush. Finally,

(2.4e) relates changes in liquid compositions B and C to changes in temperature through

the liquidus line slopes m′
B and m′

C . T ′M is the melting temperature of A. This condition

is a statement of local thermodynamic equilibrium in the primary mush.

At z′ = hS , the interface separating the primary and secondary mushy layers, we have

8

the following boundary conditions.

Lv(~V ′
I · n̂)[φA + φB]+− = [k̄∇′T ′ · n̂]+− (2.5a)

(~V ′
I · n̂){B[φA]+− + (B − 1)[φB]+−} = D′

B[χ∇′B · n̂]+− (2.5b)

(~V ′
I · n̂)C[φA + φB]+− = DC [χ∇C · n̂]+− (2.5c)

[T ′]+− = 0 (2.5d)

[B]+− = 0 (2.5e)

[C]+− = 0 (2.5f)

B = BC(T ′) (2.5g)

C = CC(T ′) (2.5h)

mC
B∇B · n̂|+ = mC

C∇C · n̂|+ (2.5i)

~u′ · n̂|+ (2.5j)

p′|+− = 0 (2.5k)

Here, ~V ′
I = ∂hS

∂t k̂ is the velocity of the mush-mush interface.

9

2.2.3 Secondary Mushy Layer

The governing equations in the secondary mushy layer are

~u′ = (Π′(φ)/µ′)[−∇′p′ + ρ′~g′] (2.6a)

(
∂

∂t′
− V ′ ∂

∂z′

)
(χB + φB) + ~u′ · ∇′B = ∇′ · (DBχ∇′B) (2.6b)

(
∂

∂t′
− V ′ ∂

∂z′

)
(χC) + ~u′ · ∇′C = ∇′ · (DCχ∇′C) (2.6c)

c̄′
(

∂

∂t′
− V ′ ∂

∂z′

)
T ′ + L′v

(
∂

∂t′
− V ′ ∂

∂z′

)
χ + c̄′(~u′ · ∇′T ′) = k̄′∇′2T ′ (2.6d)

B = BC(T) = − 1
mC

B

(T ′ − T ′E) + BE (2.6e)

C = CC(T) = − 1
mC

C

(T ′ − TAB′
E). (2.6f)

In the secondary mushy layer, component A continues to form a solid. Additionally, a

second component, assume B, begins to solidify along with A. Once again, due to the

presence of fluid within the voids of the solid, the secondary mushy layer can be modeled

as a porous layer and fluid flow can again be described using Darcy’s equation (2.6a).

Liquid composition is given by (2.6b) and (2.6c). Equations (2.6e) and (2.6f) relate changes

in temperature to changes in liquid composition throughout the secondary mushy layer.

These equations impose local thermodynamic equilibrium throughout the secondary mushy

layer. The ternary phase diagram quantity BE is the liquid composition of B at the ternary

eutectic point E. Also, TAB
E is the eutectic temperature from the AB binary phase diagram.

The density of the liquid within any given layer is

ρ′ = ρ′0(1 + α′(T ′ − T ′P) + βBB + βCC). (2.7)

10

Here, ρ0 is a reference density, α is the thermal expansion coefficient, and βB and βC are

constant solutal expansion coefficients describing changes in density with changes in liquid

composition B and C, respectively. The temperature at the liquid-mush interface is given

by T ′P .

11

Chapter 3: Solution

3.1 Nondimensionalization

To nondimensionalize the primed, dimensional quantities in the governing equations and

boundary conditions above, we use the following scalings from [3]:

~u =
~u′

V
, ~x =

~x′

(κ/V)
, t =

t′

(κ/V 2)
, ∇ =

κ

V
∇′, T =

T ′ − T ′P
∆T ′

where ∆T ′ = T ′P −T ′E , the difference between the temperatures at the liquid-mush interface

and at the mush-solid interface. Additionally, we redefine the fluid velocity in terms of the

scalar streamfunction ψ such that

~u =
(
−∂ψ

∂z
, 0,

∂ψ

∂x

)
.

From the definition of the streamfunction, we observe that

∇ · ~u = 0

is satisfied. From these scalings we obtain the following set of dimensionless governing

equations and boundary conditions.

12

In the liquid layer, the nondimensionalized governing equations are

Da∇4ψ = Ra
∂T

∂x
+ RaB

∂B

∂x
+ RaC

∂C

∂x
(3.1a)

(
∂

∂t
− ∂

∂z

)
B + ~u · ∇B =

1
δ2
B

∇2B (3.1b)

(
∂

∂t
− ∂

∂z

)
C + ~u · ∇C =

1
δ2
C

∇2C (3.1c)

(
∂

∂t
− ∂

∂z

)
T + ~u · ∇T = ∇2T (3.1d)

where

Da ≡ V 2Π0

κ2
, Ra ≡ gα∆TΠ0

νV
, RaB ≡ gβBΠ0

νV
and RaC ≡ gβCΠ0

νV
.

are dimensionless parameters of the system. The first of these parameters, Da, is the

Darcy number and the other three parameters are Rayleigh numbers. The first Rayleigh

number, Ra, is the thermal Rayleigh number and is given in terms of the thermal expansion

coefficient α. The other two Rayleigh numbers, RaB and RaC are solutal Rayleigh numbers.

The three Rayleigh numbers can be though of as ratios of destabalizing forces to stabalizing

forces. These Rayleigh numbers apply continuously over all three layers of interest. In

equations (3.1b) and (3.1c), the terms δ2
B and δ2

C are defined as

δ2
B ≡ κ/DB δ2

C ≡ κ/DC .

13

The dimensionless boundary conditions at the liquid-mush interface are

~VI · n̂[φA]+− =
[

1
S
∇T · n̂

]+

−
(3.2a)

~VI · n̂B[φA]+− =
1
δ2
B

[χ∇B · n̂]+− (3.2b)

~VI · n̂C[φA]+− =
1
δ2
C

[χ∇C · n̂]+− (3.2c)

[T]+− = 0 (3.2d)

TL(z = hP) = TL(B, C) = TM + MBB(z = hP) + MCC(z = hP) (3.2e)

[B(z = hP)]+− = 0 (3.2f)

[C(z = hP)]+− = 0 (3.2g)

∇T · n̂|+ = MB∇B · n̂|+ + MC∇C · n̂|+ (3.2h)

~u · n̂|+− = 0 (3.2i)

~u · t̂|+− = 0 (3.2j)

p|+− = 0 (3.2k)

where TM is the dimensionless melting temperature

TM =
T ′M − T ′P

∆T ′
.

14

In the primary mushy layer, the dimensionless governing equations are

∇2ψ =
1
Π

(∇Π · ∇ψ)−Π
(

Ra
∂T

∂x
+ RaB

∂B

∂x
+ RaC

∂C

∂x

)
(3.3a)

(
∂

∂t
− ∂

∂z

)
(χB) + ~u · ∇B = ∇ ·

(
1
δ2
B

χ∇B

)
(3.3b)

(
∂

∂t
− ∂

∂z

)
(χC) + ~u · ∇C = ∇ ·

(
1
δ2
C

χ∇C

)
(3.3c)

(
∂

∂t
− ∂

∂z

)
T + S

(
∂

∂t
− ∂

∂z

)
χ + ~u · ∇T = ∇2T (3.3d)

T = TM + BBB + MCC (3.3e)

where the Stefan number S is defined to be S ≡ Lv/(c̄∆T). The rescaled liquidus line

slopes are

MB =
m′

B

∆T ′
MC =

m′
C

∆T ′
.

15

After nondimensionalizing, the boundary conditions at the mush-mush interface are

~VI · n̂[φA + φB]+− =
1
S

[∇T · n̂]+− (3.4a)

~VI · n̂{B[φA]+− + (B − 1)[φB]+−} =
1
δ2
B

[χ∇B · n̂]+− (3.4b)

~VI · n̂C[φA + φB]+− =
1
δ2
C

[χ∇C · n̂]+− (3.4c)

[T]+− = 0 (3.4d)

[B]+− = 0 (3.4e)

[C]+− = 0 (3.4f)

B(z = hS) = − 1
MC

B

(T − TE) + BE (3.4g)

C(z = hS) = − 1
MC

C

(T − TAB
E) (3.4h)

MC
B∇B · n̂|+ = MC

C∇C · n̂|+ (3.4i)

~u · n̂|+− = 0 (3.4j)

p|+− = 0 (3.4k)

16

Finally, in the secondary mushy layer, the dimensionless governing equations are

∇2ψ =
1
Π

(∇Π · ∇ψ)−Π
(

Ra
∂T

∂x
+ RaB

∂B

∂x
+ RaC

∂C

∂x

)
(3.5a)

(
∂

∂t
− ∂

∂z

)
(χB + φB) + ~u · ∇B = ∇ ·

(
1
δ2
B

χ∇B

)
(3.5b)

(
∂

∂t
− ∂

∂z

)
(χC) + ~u · ∇C = ∇ ·

(
1
δ2
C

χ∇C

)
(3.5c)

(
∂

∂t
− ∂

∂z

)
T + S

(
∂

∂t
− ∂

∂z

)
χ + ~u · ∇T = ∇2T (3.5d)

B = − 1
MC

B

(T + 1) + BE (3.5e)

C = − 1
MC

C

(T − TAB
E). (3.5f)

The dimensionless cotectic line slopes and binary eutectic temperature are scaled like

MC
B =

mC′
B

∆T ′
MC

C =
mC′

C

∆T ′
TAB

E =
TAB′

E − T ′P
∆T ′

.

3.2 Linear Stability Analysis

3.2.1 Base State Problem and Solutions

In order to find steady states of the system under study, we shall remove any time depen-

dence and allow all variables to vary only in the z-direction. With these restrictions in

mind, the governing equations and boundary conditions give the following basic problem.

17

In the far-field,

T = T∞ (3.6a)

B = B∞ (3.6b)

C = C∞ (3.6c)

In the liquid layer,

−dB

dz
=

1
δ2
B

d2B

dz2
(3.7a)

−dC

dz
=

1
δ2
C

d2C

dz2
(3.7b)

−dT

dz
=

d2T

dz2
. (3.7c)

18

At the liquid-mush interface,

[φ̄A]+− =
1
S

[
dT̄

dz

]+

−
(3.8a)

B̄[φ̄A]+− =
1
δ2
B

[
χ̄

dB̄

dz

]+

−
(3.8b)

C̄[φ̄A]+− =
1
δ2
C

[
χ̄

dC̄

dz

]+

−
(3.8c)

[T̄]+− = 0 (3.8d)

[B̄]+− = 0 (3.8e)

[C̄]+− = 0 (3.8f)

TL(B̄, C̄) = TM + MBB̄ + MCC̄ (3.8g)

dT̄

dz

∣∣∣∣
+

= MB
dB̄

dz

∣∣∣∣
+

+ MC
dC̄

dz

∣∣∣∣
+

. (3.8h)

In the primary mushy layer,

− d

dz
(χB) =

d

dz

(
1
δ2
B

χ
dB

dz

)
(3.9a)

− d

dz
(χC) =

d

dz

(
1
δ2
C

χ
dC

dz

)
(3.9b)

−dT

dz
− S

dχ

dz
=

d2T

dz2
(3.9c)

T = TM + MBB + MCC. (3.9d)

19

At the mush-mush interface,

[φ̄A + φ̄B]+− =
1
S

[
dT̄

dz

]+

−
(3.10a)

B̄[φ̄A]+− + (B̄ − 1)[φ̄B]+− =
1
δ2
B

[
χ̄

dB̄

dz

]+

−
(3.10b)

C̄[φ̄A + φ̄B]+− =
1
δ2
C

[
χ̄

dC̄

dz

]+

−
(3.10c)

[T̄]+− = 0 (3.10d)

[B̄]+− = 0 (3.10e)

[C̄]+− = 0 (3.10f)

B̄ = − 1
MC

B

(T̄ − TE) + BE (3.10g)

C̄ = − 1
MC

C

(T̄ − TAB
E) (3.10h)

MC
B

dB̄

dz

∣∣∣∣
+

= MC
C

dC̄

dz

∣∣∣∣
+

. (3.10i)

20

In the secondary mushy layer,

− d

dz
(χB + φB) =

d

dz

(
1
δ2
B

χ
dB

dz

)
(3.11a)

− d

dz
(χC) =

d

dz

(
1

δ2
BC

χ
dC

dz

)
(3.11b)

−dT

dz
− S

dχ

dz
=

d2T

dz2
(3.11c)

B = − 1
MC

B

(T + 1) + BE (3.11d)

C = − 1
MC

C

(T − TAB
E). (3.11e)

At the interface between the secondary mush and the eutectic solid,

T = TE (3.12a)

B = BE (3.12b)

C = CE . (3.12c)

Part of the solution to the basic problem is finding the position of the liquid-mush

interface and mush-mush interface. Since the interface positions hS and hP along with

the liquid composition of species B at the liquid-mush interface can not be solved for

analytically, a numerical code is used to determine them. A system of three equations can

be formed whose solution gives the vales for these three unknowns. The complete solution to

the base state problem can be reduced to solving for just a few quantities. These quantities

include the liquid composition B in the secondary mush and both liquid compositions B

and C in the primary mush. These quantities are obtained as a result of finding the three

unknowns hS , hP , and BP and can be used to solve for all other quantities of interest.

21

The base state problem is solved beginning in the secondary mushy layer. At the top

of the eutectic solid region, the liquid composition BE is known. This information can

be used as an initial value for the ODE involving liquid composition B in the secondary

mushy region. After integrating both sides of equation (3.11a) once with respect to z, the

differential equation for liquid composition B in the secondary mush is

dB

dz
= −δ2

B

(
B +

φB

χ
− B∞

χ

)

If a position for the mush-mush interface hS is guessed, call it hguess
S , the ODE for B above

can be integrated vertically in the +z-direction over the thickness of the secondary mushy

region starting at z = 0, the boundary between the secondary mush and the eutectic solid,

until the guessed mush-mush boundary z = hguess
S is reached. This integration solves for

the liquid composition B at a discrete set of points through the secondary mush. At this

stage, a computed liquid composition Bcomp
S can be obtained. Using this, a computed liquid

composition Ccomp
S at hguess

S can be calculated using the expression

CS =
mC

B

mC
C

(BS −BAB
E).

At the mush-mush interface, Bcomp
S and Ccomp

S can be used as initial values for the ODEs for

liquid compositions B and C in the primary mushy layer. The ODEs for liquid composition

B and C in the primary mushy layer are

dB

dz
= δ2

B

(
B∞
χ

−B

)

dC

dz
= δ2

C

(
C∞
χ

− C

)
.

These are the result of integrating both sides of equations (3.9a) and (3.9b) with respect to

22

z. Once again, if a position for the liquid-mush interface z = hP is guessed, call it hguess
P ,

the ODEs for B and C can be integrated over the thickness of the primary mushy layer.

Once hguess
P is reached, the profiles for liquid compositions B and C in the primary mush

are now known at a discrete set of z values. The computed liquid compositions Bcomp
P and

Ccomp
P at z = hguess

P are therefore determined.

Finally, a system of three equations can now be formed. Finding the value of ~x =

(hguess
S , hguess

P , Bguess
P) which solves this system gives the solutions for the unknowns hS , hP

and BP . The system to be solved is

f(~x) =




Bcomp
S

(
1− δ2

C

δ2
B

)
+ BAB

E
δ2
C

δ2
B
− 1

χS+

(
B∞ − mC

C

mC
B

δ2
C

δ2
B

C∞
)

Bcomp
P −Bguess

P

Ccomp
P − Cguess

P


 = 0

where the quantity Cguess
P is found using the guessed value for liquid composition B at the

liquid-mush interface, Bguess
P , and is given by

Cguess
P =

1−
(

mB
−∆T∞

)
(δ2

B − 1)(Bguess
P −B∞)

(
mC

−∆T∞

)
(δ2

C − 1)
+ C∞.

The terms mB
−∆T∞ and mC

−∆T∞ are given by

mB

−∆T∞
=

1
TM−T∞

mB
+ B∞ + mC

mB
C∞

mC

−∆T∞
=

1
TM−T∞

mC
+ C∞ + mB

mC
B∞

.

By solving for the vector of unknown values ~x = (hS , hP , BP), the reduced number of

quantities needed to solve for all other quantities of the system are now determined. The

23

remaining quantities of interest are, beginning in the secondary mushy layer layer,

C =
−mC

B(B −BE) + TE − TAB
E

−mC
C

T = −mC
B(B −BE) + TE

φB =
δ2
C

δ2
B

(
(B −BAB

E)χ− mC
C

mC
B

C∞

)
− χB + B∞

χ2 − χ

[
B −BE

δB
+ S + 1− δ2

C

γB
(B −BAB

E)
]
− δ2

CmC
CC∞

γBmC
B

= 0.

In the primary mushy layer, the quantities of interest are

T = TM + mBB + mCC

χ =
1
2

[
1 + b1 − b2 +

√
(1− b1)2 + b2(−2− 2b1 + b2)

]

b1 =
1
γ

(
δ2
BB∞m̄B + δ2

CC∞m̄C

)

b2 =
1
γ

(
m̄B(B −BP)(1− δ2

B) + m̄C(C − CP)(1− δ2
C)

)
.

Finally, in the liquid layer,

C = C∞ + (CP − C∞)eδ2
C(hP−z)

B = B∞ + (BP −B∞)eδ2
B(hP−z)

T = T∞ + (TP − T∞)e(hP−z).

The solution to the system of equations along with a few additional calculations produces

a basic solution for the system. The base state solution is shown in figure 3.1 for the set

24

of input parameter values given in table 4.1. Figure 3.1 shows that the temperature of the

basic solution is increasing with z. The liquid compositions of species B and C are nearly

constant through the liquid layer. Within the primary mushy layer, liquid composition C

is decreasing as z increases. Through much of the primary mushy layer, liquid composition

B is decreasing as z increases. However, liquid composition B is increasing just ahead

of the mush-mush interface. In the secondary mushy layer, liquid composition C is again

decreasing with z while liquid composition B is increasing with z. This solution also has

φA = φB = φC = 0 in the liquid layer, φA 6= 0 in the primary mushy layer and φA 6= 0 6= φB

in the secondary mushy layer. In the eutectic solid layer, φ = φA + φB + φC = 1 and

χ = 0. Finally, there is no fluid flow present in any of the four layers. A variety of different

behaviors, interface positions, as well as thermal, solutal and solid fraction profiles are

possible. See [2] for some examples.

25

−30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

Temperature

z̄

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Liquid compositions

z̄

BC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Solid fractions

z̄

A

A B

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

C

B

Figure 3.1: Basic solution for the parameter values shown in table 4.1.

26

3.2.2 Linearized Disturbance Equations

To determine the linear stability of the basic solution found above, we redefine the variables

under study to include perturbation quantities. Let

T (x, z, t) = T̄ (z) + T̂ (z)eσt+iαx + complex conjugate

B(x, z, t) = B̄(z) + B̂(z)eσt+iαx + complex conjugate

C(x, z, t) = C̄(z) + Ĉ(z)eσt+iαx + complex conjugate

χ(x, z, t) = χ̄(z) + χ̂(z)eσt+iαx + complex conjugate

ψ(x, z, t) = 0 + iψ̂(z)eσt+iαx + complex conjugate

φB(x, z, t) = φ̄B(z) + φ̂Beσt+iαx + complex conjugate

hP (x, z, t) = h̄P + ĥP eσt+iαx + complex conjugate

hS(x, z, t) = h̄S + ĥSeσt+iαx + complex conjugate

where bar denotes the base state solution and the hat and exponential terms are infinitesimal

perturbations to the basic solutions. Replacing these into the full, dimensionless governing

equations above gives us, after keeping only the terms linear in the unknown hat quantities,

the following.

To restrict the height of the system, a maximum height of z = H is selected. For

a sufficiently large choice of H, this effectively approximates a semi-infinite system. At

27

z = H, the top of the liquid layer, we have the following conditions,

ψ̂z = 0 (3.13a)

ψ̂zzz = 0 (3.13b)

B̂ = 0 (3.13c)

Ĉ = 0 (3.13d)

T̂ = 0. (3.13e)

In the liquid layer,

d4ψ̂

dz4
− 2α2 d2ψ̂

dz2
+ α4ψ̂ − α

Da
(RaT̂ + RaBB̂ + RaCĈ) = 0 (3.14a)

−dB̂

dz
+ σB̂ − αψ̂

dB̄

dz
=

1
δ2
B

(
−α2B̂ +

d2B̂

dz2

)
(3.14b)

−dĈ

dz
+ σĈ − αψ̂

dC̄

dz
=

1
δ2
C

(
−α2Ĉ +

d2Ĉ

dz2

)
(3.14c)

−dT̂

dz
+ σT̂ − αψ̂

dT̄

dz
= −α2T̂ +

d2T̂

dz2
(3.14d)

28

At the interface between the liquid and primary mush,

[
ĥP

dφ̄A

dz
+ φ̂A

]+

−
+ σĥP [φ̄A]+− =

[
1
S

(
ĥP

d2T̄

dz2
+

dT̂

dz

)]+

−
(3.15a)

B̄

[
ĥP

dφ̄A

dz
+ φ̂A

]+

−
+

(
ĥP

dB̄

dz
+ B̂

)
[φ̄A]+− + σĥP B̄[φ̄A]+−

=
1
δ2
B

[
χ̄

(
ĥP

d2B̄

dz2
+

dB̂

dz

)
+

(
ĥP

dχ̄

dz
+ χ̂

)
dB̄

dz

]+

−





(3.15b)

C̄

[
ĥP

dφ̄A

dz
+ φ̂A

]+

−
+

(
ĥP

dC̄

dz
+ Ĉ

)
[φ̄A]+− + σĥP C̄[φ̄A]+−

=
1
δ2
C

[
χ̄

(
ĥP

d2C̄

dz2
+

dĈ

dz

)
+

(
ĥP

dχ̄

dz
+ χ̂

)
dC̄

dz

]+

−





(3.15c)

[
MB

(
ĥP

dB̄

dz
+ B̂

)
+ MC

(
ĥP

dC̄

dz
+ Ĉ

)]+

−
= 0 (3.15d)

[
ĥP

dB̄

dz
+ B̂

]+

−
= 0 (3.15e)

[
ĥP dC̄

dz
+ Ĉ

]+

−
= 0 (3.15f)

T̂ = MBB̂ + MCĈ (3.15g)

(
ĥP

d2T̄

dz2
+

dT̂

dz

)∣∣∣∣∣
+

= MB

(
ĥP

d2B̄

dz2
+

dB̂

dz

)∣∣∣∣∣
+

+ MC

(
ĥP

d2C̄

dz2
+

dĈ

dz

)∣∣∣∣∣
+

(3.15h)

−αψ̂
∣∣∣
+

−
= 0 (3.15i)

−i
dψ̂

dz

∣∣∣∣∣
+

−
= 0 (3.15j)

(α2ψ̂z − ψ̂zzz)+ =
1

Da

(
1

Π(φ)
ψ̂z

)−
. (3.15k)

29

Equation (3.15d) can be written as

(
ĥP

dT̄

dz
+ T̂

)∣∣∣∣
+

−
= 0

with the help of equations (3.15e), (3.15f), (3.15g) and (3.15h).

In the primary mushy layer,

−α2ψ̂ +
d2ψ̂

dz2
=

1
Π

(
dΠ
dχ̄

dχ̄

dz

dψ̂

dz

)
−Πα(RaT̂ + RaBB̂ + RaCĈ) (3.16a)

σχ̄B̂ + σB̄χ̂− dχ̄

dz
B̂ − dB̂

dz
χ̄− dχ̂

dz
B̄ − dB̄

dz
χ̂− αψ̂

dB̄

dz

=
1
δ2
B

(
−α2χ̄B̂ + χ̄

d2B̂

dz
+

dχ̄

dz

dB̂

dz
+

d2B̄

dz2
χ̂ +

dB̄

dz

dχ̂

dz

)





(3.16b)

σχ̄Ĉ + σC̄χ̂− dχ̄

dz
Ĉ − dĈ

dz
χ̄− dχ̂

dz
C̄ − dC̄

dz
χ̂− αψ̂

dC̄

dz

=
1
δ2
C

(
−α2χ̄Ĉ + χ̄

d2Ĉ

dz
+

dχ̄

dz

dĈ

dz
+

d2C̄

dz2
χ̂ +

dC̄

dz

dχ̂

dz

)





(3.16c)

σT̂ − dT̂

dz
− S

(
−σχ̂ +

dχ̂

dz

)
− αψ̂

dT̄

dz
= −α2T̂ +

d2T̂

dz2
(3.16d)

T̂ = MBB̂ + MCĈ. (3.16e)

30

At the boundary between the primary and secondary mush,

[
ĥS

dφ̄A

dz
+ φ̂A + ĥS

dφ̄B

dz
+ φ̂B

]+

−
+ σĥS [φ̄A + φ̄B]+− =

1
S

[
ĥS

d2T̄

dz2
+

dT̂

dz

]+

−
(3.17a)

(
ĥS

dB̄

dz
+ B̂

)
[φ̄A + φ̄B]+− + (B̄ − 1)

[
ĥS

dφ̄A

dz
+ φ̂A + ĥS

dφ̄B

dz
+ φ̂B

]+

−

+ σĥS{(B̄ − 1)[φ̄A + φ̄B]+−}

=
1
δ2
B

[
χ̄

(
ĥS

d2B̄

dz2
+

dB̂

dz

)
+

(
ĥS

dχ̄

dz
+ χ̂

)
dB̄

dz

]+

−





(3.17b)

C̄

[
ĥS

dφ̄A

dz
+ φ̂A + ĥS

dφ̄B

dz
+ φ̂B

]+

−
+

(
ĥS

dC̄

dz
+ Ĉ

)
[φ̄A + φ̄B]+−

+ σĥSC̄[φ̄A + φ̄B]+− =
1
δ2
C

[
χ̄

(
ĥS

d2C̄

dz2
+

dĈ

dz

)
+

(
ĥS

dχ̄

dz
+ χ̂

)
dC̄

dz

]+

−





(3.17c)

[
ĥS

dB̄

dz
+ B̂

]+

−
= 0 (3.17d)

[
ĥS

dC̄

dz
+ Ĉ

]+

−
= 0 (3.17e)

ĥS
dB̄

dz
+ B̂ = − 1

MC
B

(
ĥS

dT̄

dz
+ T̂

)
(3.17f)

ĥS
dC̄

dz
+ Ĉ = − 1

MC
C

(
ĥS

dT̄

dz
+ T̂

)
(3.17g)

MC
B

(
ĥS

d2B̄

dz2
+

dB̂

dz

)∣∣∣∣∣
+

= MC
C

(
ĥS

d2C̄

dz2
+

dĈ

dz

)∣∣∣∣∣
+

(3.17h)

31

−αψ̂
∣∣∣
+

−
= 0 (3.17i)

ψ̂z|+− = 0 (3.17j)

In the secondary mushy layer, the linearized equations are

−α2ψ̂ +
d2ψ̂

dz2
=

1
Π

(
dΠ
dχ̄

dχ̄

dz

dψ̂

dz

)
−Πα(RaT̂ + RaBB̂ + RaCĈ) (3.18a)

σχ̄B̂ + σB̄χ̂− dχ̄

dz
B̂ − χ̄

dB̂

dz
− dχ̂

dz
B̄ − dB̄

dz
χ̂ + σφ̂B − dφ̂B

dz

− α
dB̄

dz
ψ̂ =

1
δ2
B

(
−α2B̂χ̄ +

dχ̄

dz

dB̂

dz
+ χ̄

d2B̂

dz2
+

dχ̂

dz

dB̄

dz
+ χ̂

d2B̄

dz2

)





(3.18b)

σχ̄Ĉ + σC̄χ̂− dχ̄

dz
Ĉ − dĈ

dz
χ̄− dχ̂

dz
C̄ − dC̄

dz
χ̂− αψ̂

dC̄

dz

=
1
δ2
C

(
−α2χ̄Ĉ + χ̄

d2Ĉ

dz
+

dχ̄

dz

dĈ

dz
+

d2C̄

dz2
χ̂ +

dC̄

dz

dχ̂

dz

)





(3.18c)

σT̂ − dT̂

dz
− S

(
−σχ̂ +

dχ̂

dz

)
− αψ̂

dT̄

dz
= −α2T̂ +

d2T̂

dz2
(3.18d)

B̂ = − 1
MC

B

T̂ (3.18e)

Ĉ = − 1
MC

C

T̂ (3.18f)

At z = 0,

ψ̂ = 0 (3.19a)

Ĉ = 0. (3.19b)

32

3.2.3 Solution Method

To determine the unknown z-dependence of the perturbations, a Chebyshev pseudospectral

collocation method is used. This same method was successfully used in [3] for similar

purposes. Additional Details of this method can be found in [6]. This particular method

solves the generalized eigenvalue problem

A~y = σB~y (3.20)

where A and B are matrices, ~y is the eigenvector of unknown, z-dependent perturbations,

and σ is the associated eigenvalue whose sign indicates the perturbations’ growth over time.

The matrix A can be thought of as a 3-by-3 matrix comprised of the submatrices ALL,

ALP , ALS, APL, APP , APS, ASL, ASP and ASS. Here, L represents the liquid layer,

P represents the primary mushy layer and S represents the secondary mushy layer. Matrix

A therefore has the form

A =




ALL ALP ALS
APL APP APS
ASL ASP ASS


 .

The three rows of sub-blocks contain the governing equations specified in each of the liq-

uid layer, the primary mushy layer and the secondary mushy layer respectively. The three

columns of sub-blocks represent the liquid variables: B, C and T , the primary mush vari-

ables: B, C, T and χ and the secondary mush variables: B, C, T , χ and φB. For instance,

submatrix ALL encodes the governing equations for the liquid layer involving liquid vari-

ables. Submatrix ALP contains the liquid equations but only those terms which use pri-

mary mushy layer variables. The size of each submatrix depends on the number of discrete

Chebyshev points used for the given layer and the number of variables in the layer. In the

liquid, primary mush and secondary mush, NL, NP and NS Chebyshev points are used,

respectively, for each variable of the layer. This means, for example, that the submatrix

33

ALL has 3(NL + 1) rows and 3(NL + 1) columns which store the various equations and

variables. The dimensions of the other eight submatrices can be found in the same way. In

addition, boundary conditions are maintained by rows of the A matrix that separate the

three rows of submatrices. So, for example, boundary conditions enforced at the top of the

system (z = H) appear in the first few rows of the matrix A. The particular row of A in

which a given boundary condition appears depends on the boundary at which the condition

is to be enforced.

The structure of the B matrix from the right hand side of equation (3.20) is similar to

that of A. The matrix B contains the nine submatricies BLL, BLP , BLS, BPL, BPP ,

BPS, BSL, BSP and BSS and looks like

B =




BLL BLP BLS
BPL BPP BPS
BSL BSP BSS


 .

The entries of the B matrix are the coefficients of the terms in the governing equations that

involve σ. Because of this, many of the elements of B are 0. The dimensions of A and B

are equal. Matlab code showing the details of the matrices A and B is given in Appendix

A.

To solve for the set of all ~y and σ, an eigensolver such as Matlab’s eig command can

be used. An eigenvector ~y is a column vector containing the perturbations’ z-dependence

for each variable in all three layers. The perturbations are evaluated at NL, NP and NS

points, the number of Chebyshev points within the liquid, primary mush and secondary

mush, respectively. The number of Chebyshev points used in each layer need not be the

same.

Since σ appears in the exponent of the additive perturbation terms, its sign determines

the overall stability of the base state solution presented previously. If for a given wavenum-

ber α and values for the solutal Rayleigh numbers RaB and RaC and thermal Rayleigh

34

number Ra, there exists a σ such that real(σ)> 0, then the basic, steady state solution

is linearly unstable. If, on the other hand, real(σ)< 0 for all σ, then the basic solution

is linearly stable. Therefore, it is useful to look at ordered pairs (α, RN) such that the

largest real part of any σ value is sufficiently close to 0. Such points (α,RN) will be points

along a neutral stability curve. Here, α is a wavenumber characterizing the normal mode

perturbation and RN is one of the thermal or solutal Rayleigh numbers. The other two

Rayleigh numbers can be assumed to be fixed constant values.

35

Chapter 4: Linear Stability Results

The linear stability of the basic solution presented earlier is determined for various system

parameter values. More specifically, an investigation of the basic solution’s linear stability

is presented for different combinations of values for the thermal Rayleigh number Ra and

the solutal Rayleigh numbers RaB and RaC . In each case, two of the Rayleigh numbers are

set to 0 while the third Rayleigh number is allowed to vary. Doing this produces neutral

stability curves which identify, for any wave number α, a Rayleigh number that, beyond

which, the basic solution becomes linearly unstable.

To obtain the results shown in figures 4.1, 4.2, 4.3, 4.4 and 4.5, a numerical bisection

routine was used to solve for a value of the nonzero Rayleigh number such that the largest

real part of any eigenvalue σ was sufficiently close to 0. Doing this for each wavenumber α in

the range of wavenumbers considered produces the curves seen in each of the figures. These

curves divide the plane into regions such that the basic solution is predicted to be linearly

stable on one side of the curve and linearly unstable on the other side of the curve. The

basic solution is neutrally stable for combinations of α and the nonzero Rayleigh number

that lie on the curve. If a curve attains a minimum or maximum value over the range

of wavenumbers considered, the Rayleigh number where the extremum occurs is called a

critical Rayleigh number. The corresponding wavenumber at which this occurs is called a

critical wavenumber. A critical Rayleigh number represents a value below which the basic

solution is linearly stable for all wavenumbers if the critical point is a minimum and above

which if the critical Rayleigh number is a maximum. With the exception of figure 4.4,

all figures were created using NL = NP = NS = 32. Producing the curve in figure 4.4

36

Table 4.1: Parameter values used during linear stability analysis based on those found in

[2]

Parameter Value
H 2.0

B∞ 0.2
C∞ 0.1
T∞ 5
BE 1/3
TE -19
CE 1/3

BAB
E 0.5

TAB
E -5
δ2
b 100

δ2
c 100
γ -1

TM 0
Da 0.05

required that NL = NP = NS = 16.

Beginning with the neutral stability curve for the case of RaB = RaC = 0 in figure

4.1, this curve separates a region below the curve where the basic state is predicted to be

linearly stable from a region above the curve where the basic state is predicted to be linearly

unstable. This curve has a minimum near α = 1.2. This wavenumber is denoted as αcrit.

The associated critical Rayleigh number, Racrit, at this wavenumber is about Racrit = 0.4.

Also shown in the inset plot of the figure is the solution for the streamfunction ψ̂ at the

point (αcrit, Racrit). The streamlines show the overall motion of the fluid throughout the

three layers. The dashed lines in the inset plot represent the positions of the interfaces

separating the liquid from the primary mush and the primary mush from the secondary

mush.

The next case has Ra = RaC = 0. In this case, two neutral stability curves can be

found. One curve, shown in figure 4.2, lies completely above the line RaB = 0 while the

37

second curve, shown in figure 4.3, lies completely below the line RaB = 0. Although they

are plotted separately, from figures 4.2 and 4.3 it is apparent that the two curves separate

the (α, RaB)-plane into three regions. The area above the upper neutral curve of figure 4.2

represents a region of (α,RaB) pairs such that the base state is linearly unstable. The area

between the two neutral curves represents combinations of α and RaB such that the base

state is linearly stable. The area below the lower neutral curve in figure 4.3 represents a

second region of (α,RaB) coordinates in which the base state solution is linearly unstable.

Often, only a single curve separates a single stable region from an unstable region. This is

the case for some binary systems such as the one described in [9] or ternary systems where

diffusion is not included [3]. In this case however, there are clearly two unstable regions and

one stable region. This means that the basic solution is unstable for a specific wavenumber

α whenever the solutal Rayleigh number RaB is either sufficiently positive or sufficiently

negative.

The presence of two neutral curves is due in part to the derivative of the liquid com-

position B profile dB
dz . From the base state solution, it can be seen that, in the primary

mushy layer, both dB
dz > 0 and dB

dz < 0. Since Ra = RaC = 0, the derivative of the density

ρ looks like dρ
dz ∼ RaB

dB
dz . Whenever dB

dz > 0 and RaB > 0, dρ
dz > 0. This then sets up a

situation where denser, and therefore heavier fluid is sitting on top of less dense or lighter

fluid. Similarly, the base state can become unstable whenever dB
dz < 0 and RaB < 0. This

also has the effect of producing a situation where fluid density is increasing as z increases.

The neutral stability curve in figure 4.2 has two local minima. The first of these occurs

near α = 1.2 while the second occurs near α = 29.2. Once again, the solutions to the

streamfunction ψ̂ at the local minima are shown in the insets. When α is near 1.2, the fluid

motion is present through each of the three layers in large convection cells. In contrast, at

the second local minima near α = 29.2, the convection is locallized in the secondary mushy

38

layer in much more compact convection cells. The neutral stability curve of figure 4.3 has

a maximum near α = 10.3. The fluid flow at this maximum is localized mostly within the

primary mushy layer as seen in the inset.

When Ra = RaB = 0, two neutral stability curves can again be found. These two curves

are shown in figures 4.4 and 4.5. In figure 4.4, the neutral stability curve lies above the

line RaC = 0. This curve has a minimum near α = 1.2. The inset plot shows the fluid

flow for this critical wavenumber. The fluid flow originates in the liquid layer and occurs

within large convection cells. The corresponding critical Rayleigh number is approximately

Racrit = 95.8. The region above this curve shows pairs of (α, RaC) where the basic solution

is predicted to be linearly unstable. Below this curve, but above the curve in figure 4.5, the

base state solution is predicted to be linearly stable.

Finally, the shape neutral stability plot in figure 4.5 again has Ra = RaB = 0 and is

very similar to the curve in figure 4.3. This curve lies completely below the line RaC = 0 for

the range of wavenumbers considered. The curve in figure 4.5 has a maximum at α = 10.2.

The solution for the streamfunction in the inset shows the convection is localized in the

primary mushy layer under these conditions.

In the case of Ra = RaC = 0, a solutal buoyancy argument can be made explaining the

existence of two neutral curves. This is due to the change in the sign of the derivative dB
dz

within the primary mushy layer. When Ra = RaB = 0, two neutral curves are also present.

However, dC
dz < 0 causing the system to be (solutally) stably stratified and does not change

sign at any point. This explains the lower neutral curve in figure 4.5 since dρ
dz ∼ RaC

dC
dz > 0

whenever RaC < 0. This argument fails to explain though why sufficiently large, positive

values of RaC cause the system to become unstable. A different mechanism then must be

causing the instability for RaC > 0. Based on recent work of Anderson, Coriell, McFadden

and Murray (Private communication, 2009) on a similar model, such modes appear to be

possible in this type of ternary system and warrant further investigation.

39

0 10 20 30 40 50 60
0

50

100

150

200

250

300

α

R
ay

le
ig

h
N

um
be

r:
 R

a

neutral stability curve (RaB=0,RaC=0): solid= numerical; red o = real, blue x = osc.

0 2 4
0

1

2

Figure 4.1: Neutral stability curve for the case of RaB = RaC = 0.

40

0 10 20 30 40 50

−4

−3

−2

−1

0

1

2

3

4

x 10
4

α

R
ay

le
ig

h
N

um
be

r:
 R

aB

neutral stability curve (Ra=0,RaC=0):solid=numerical;red o=real,blue x=osc.

0 1 2 3 4
0

1

2

0 1 2 3 4
0

0.5

1

1.5

2

Figure 4.2: Neutral stability curve for the case of Ra = RaC = 0.

41

0 10 20 30 40 50 60

−600

−400

−200

0

200

400

α

R
ay

le
ig

h
N

um
be

r:
 R

aB

neutral stability curve (Ra=0,RaC=0): solid= numerical; red o = real, blue x = osc.

0 1 2 3 4
0

0.5

1

1.5

2

Figure 4.3: Neutral stability curve for the case of Ra = RaC = 0.

42

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14
x 10

4

α

R
ay

le
ig

h
N

um
be

r:
 R

aC

neutral stability curve (Ra=0,RaB=0): solid= numerical; red o=real,blue x=osc.

0 1 2 3 4
0

0.5

1

1.5

2

Figure 4.4: Neutral stability curve for the case of Ra = RaB = 0.

43

0 10 20 30 40 50 60

−1000

−800

−600

−400

−200

0

200

400

600

α

R
ay

le
ig

h
N

um
be

r:
 R

aC

neutral stability curve (Ra=0,RaB=0): solid= numerical; red o = real, blue x = osc.

0 2 4

0.5

1

1.5

2

Figure 4.5: Neutral stability curve for the case of Ra = RaB = 0.

44

Chapter 5: Conclusion

This work has made a number of contributions to the area of solidifying ternary alloys. In

Section 2.2 a new model is presented which builds upon work done in [2] and [3]. This

new model incorporates fluid flow, diffusion of heat as well as diffusion of species. Since

convection and diffusion can carry heat and solute between layers, it is important to consider

these effects simultaneously.

Finding an equilibrium or steady state of this system is done numerically. Once the

governing equations and boundary conditions have been properly nondimensionalized and

made independent of time and directions other than z, all quantities can be written in terms

of just a few unknowns. These unknowns include the liquid composition B profile in the

secondary mush and both B and C solute profiles in the primary mush. Additionally, the

interface positions z = hP and z = hS must be solved for. The three solute profiles are

found by numerically integrating the ODEs for these quantities through the appropriate

layer and solving a system of three equations. The solution to this system is found using

Matlab’s fsolve command. Once found, all other properties of the base state in each of

the layers are then known.

A base state solution for the enhanced model is presented for the set of input parameter

values given. The base state shown in figure 3.1 has no fluid flow and temperature that is

increasing in z. The liquid compositions of species B and C are nearly constant through the

liquid layer. Within the primary mushy layer, the liquid compositions are decreasing with

z. However, just ahead of the mush-mush interface, the derivative dB
dz changes sign so that

B is briefly increasing with z. In the secondary mushy layer, liquid composition C is again

45

decreasing with z while liquid composition B is increasing with z. This solution also has no

solid fractions in the liquid layer, nonzero φA in the primary mushy layer and φA 6= 0 6= φB

in the secondary mushy layer. In the eutectic solid layer, we have φA + φB + φC = 1 and

χ = 0. The liquid-mush and mush-mush interface positions have also been solved for as

part of the basic solution.

To determine the base state’s linear stability to infinitesimal perturbations, a Chebyshev

pseudospectral collocation method is used. This method is used to solve a generalized

eigenvalue problem. The eigenfunctions found from this method represent the disturbances’

z dependence through each of the layers. The eigenvalues represent the disturbances’ growth

rates as t →∞. Details of this particular method can be found in [6] as well as in Appendix

A. This new numerical tool can be used to better understand ternary alloy mushy layer

systems.

The linear stability of the basic solution has been determined for various system parame-

ter values. More specifically, an investigation of the basic solution’s linear stability has been

presented for different combinations of values for the thermal Rayleigh number Ra and the

two solutal Rayleigh numbers RaB and RaC . In each case, two of the Rayleigh numbers are

set to 0 while the third Rayleigh number is allowed to vary. This produces neutral stability

curves which identify, for any wave number α, a critical value for the nonzero Rayleigh

number that, beyond which, the basic solution is linearly unstable.

46

Appendix A: Alphabetical Listing of Matlab Functions

%%%

%

% Bliquid.m

%

% Function to compute the liquid composition profile of B through the

% liquid layer.

%

% INUPTS: BP...liquid fraction of B at the liquid-mush interface

%

% hP...postion of the liquid-mush interface

%

% zLiq...vector of z (position) values in the liquid layer at

% which to evaluate the temperature

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: B profile vector through the liquid layer

%

%%%

function B = Bliquid(BP, hP, zLiq, paramVec)

47

% separate out phase diagram constants

deltabsq = paramVec(4);

Binfty = paramVec(6);

B = Binfty + (BP - Binfty) .* exp(deltabsq .* (hP - zLiq));

48

% This is a matlab m-file from Trefethen, "Spectral Methods in Matlab"

% page 54. It returns a matrix D and a vector x containing the

% Chebyshev Differentiation matrix D and the Chebyshev grid points x.

%

%

function [D,x]=cheb(N)

if N==0, D=0; x=1; return, end

x=cos(pi*(0:N)/N)’;

c=[2; ones(N-1,1); 2].*(-1).^(0:N)’;

X=repmat(x,1,N+1);

dX=X-X’;

D=(c*(1./c)’)./(dX+(eye(N+1))); % off-diagonal entries

D=D-diag(sum(D’));

49

%%%

%

% chiPrimary.m

%

% Function to compute the value of chi, the liquid-fraction, within the

% primary mushy layer.

%

% INPUTS: B..........liquid composition of B within the primary mushy layer

%

% BP.........liquid composition of B at the liquid-mush interface

%

% C..........liquid composition of C in the primary mushy layer

%

% CP.........liquid composition of C at the liquid-mush interface

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: chi...liquid fraction within secondary mushy layer

%

%%%

function chi = chiPrimary(B, BP, C, CP, paramVec)

% separate out phase diagram constants

deltabsq = paramVec(4);

deltacsq = paramVec(5);

Binfty = paramVec(6);

50

Cinfty = paramVec(8);

gamma = paramVec(9);

mBbar = paramVec(18);

mCbar = paramVec(19);

b1 = (1/gamma)*(deltabsq*Binfty*mBbar+deltacsq*Cinfty*mCbar);

b2 = (1/gamma).*(mBbar.*(B-BP).*(1-deltabsq)+mCbar.*(C-CP).*(1-deltacsq));

chi = 1/2 .* (1 + b1 - b2+sqrt((1-b1) .^ 2 + b2 .* (-2 - 2 .* b1 + b2)));

51

%%%

%

% chiSecondary.m

%

% Function to compute the value of chi, the liquid fraction, within the

% secondary mushy layer for any given value(s) of B.

%

% No value is returned if computed value for chi is not within the range

% 0 <= chi <= 1. If chi is outside of this range an error message is

% printed and execution is halted.

%

% INPUTS: B...liquid composition of B within the secondary mushy layer

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: chi...liquid fraction within secondary mushy layer

%

%%%

function chi = chiSecondary(B, paramVec)

% separate out phase diagram constants

BE = paramVec(1);

TE = paramVec(2);

deltacsq = paramVec(5);

Tinfty = paramVec(7);

Cinfty = paramVec(8);

52

gamma = paramVec(9);

gammab = paramVec(10);

BEAB = paramVec(11);

mB = paramVec(14);

mC = paramVec(15);

mBC = paramVec(16);

mCC = paramVec(17);

% a Steffan number

S = (Tinfty - TE) / (gamma * (mB + mC));

% coefficient of chi^1 term in the quadratic equation for chi

b = (-B + BE) / gammab - S - 1 + (deltacsq / gammab) * (B - BEAB);

% constant term from quadratic equation for chi

c = -(deltacsq * mCC * Cinfty) / (gammab * mBC);

% use quadratic formula to find roots of chi (find plus root first)

chiplus = (-b + sqrt(b .* b - 4 .* c)) / 2;

% use minus to get second root

chiminus = (-b - sqrt(b .* b - 4 .* c)) / 2;

% somehow determine which root of chi to choose

if (chiplus >= 0 & chiplus <= 1)

chi = chiplus;

53

elseif (chiminus >=0 & chiminus <= 1)

chi = chiminus;

else

error(’ERROR: no valid value for chi found.’);

end

54

%%%

%

% Cliquid.m

%

% Function to compute the liquid composition profile of C through the

% liquid layer.

%

% INUPTS: CP.....liquid composition of C at the liquid-mush interface

%

% hP.....position of the liquid-mush interface

%

% zLiq...vector of z (position) values in the liquid layer at

% which to evaluate the temperature

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: liquid composition profile vector of C through the liquid layer

%

%%%

function C = Cliquid(CP, hP, zLiq, paramVec)

% separate out phase diagram constants

deltacsq = paramVec(5);

Cinfty = paramVec(8);

C = Cinfty + (CP - Cinfty) .* exp(deltacsq .* (hP - zLiq));

55

%%%

%

% Csecondary.m

%

% Function to compute the liquid composition profile of C through the

% secondary mushy layer.

%

% INUPTS: B.....liquid composition of B through the secondary mushy region

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: liquid composition profile vector of C through the secondary

% mushy layer

%

%%%

function C = Csecondary(B, paramVec)

% separate out phase diagram constants

BE = paramVec(1);

TE = paramVec(2);

TEAB = paramVec(12);

mBC = paramVec(16);

mCC = paramVec(17);

C = (-mBC .* (B - BE) + TE - TEAB) ./ -mCC;

56

% this file called from pm_three_layer.m ... it plots results

%%

%%

%%%%%%%%%%%%%%%%% PROCESS AND PLOT RESULTS %%%%%%%%%%%%%%%

%%

%%

figure(2)

RaC_rec=Ra_rec;

plot(alpha_rec,RaC_rec,’k-’);hold on

xlabel(’\alpha’,’FontSize’,16);ylabel(’Rayleigh Number: RaC’,’FontSize’,16);

title(’neutral stability curve (Ra=0,RaB=0): solid= numerical; red o = ’...

’real, blue x = osc.’)

%

alpha_length=length(alpha_rec);

for ja=1:alpha_length

if abs(omI_rec(ja)) > 0

plot(alpha_rec(ja),RaC_rec(ja),’bx’)

else

plot(alpha_rec(ja),RaC_rec(ja),’ro’)

end

end

%

xsave_neutral=[alpha_rec’ RaC_rec’ omR_rec’ omI_rec’];

save ’R_vs_a_dat.m’ xsave_neutral -ascii -double

print -depsc pm_neutral.eps

%%

57

figure(3)

plot(alpha_rec,omR_rec,’r-’,alpha_rec,omI_rec,’g--’)

xlabel(’\alpha’,’FontSize’,16);ylabel(’real and imaginary \sigma’,...

’FontSize’,16)

title(’Real (red) and Imaginary (green) growth rates: neutral stability’)

print -deps pm_sig_v_alpha_neutral.eps

%%

%

% plot the computed eigenvalue spectrum

%

figure(10)

plot(real(diag(D)),imag(diag(D)),’rs’);hold on;

title(’Computed eigenvalues’)

%%

figure(4) % liquid/primary/secondary

%%%% helpful indices

liqtot=4*(NL+1);

pritot=5*(NP+1)+1;

%

jSL = 1:NL+1;

jBL = NL+2:2*(NL+1);

jCL = 2*(NL+1)+1:3*(NL+1);

jTL = 3*(NL+1)+1:4*(NL+1);

%

jSP = (2:NP+2) + liqtot;

jBP=(NP+3:2*(NP+1)+1) + liqtot;

58

jCP=(2*(NP+1)+2:3*(NP+1)+1) + liqtot;

jTP=(3*(NP+1)+2:4*(NP+1)+1) + liqtot;

jXP=(4*(NP+1)+2:5*(NP+1)+1) + liqtot;

%

jSS=(2:NS+2)+liqtot+pritot;

jBS=(NS+3:2*(NS+1)+1)+liqtot+pritot;

jCS=(2*(NS+1)+2:3*(NS+1)+1)+liqtot+pritot;

jTS=(3*(NS+1)+2:4*(NS+1)+1)+liqtot+pritot;

jXS=(4*(NS+1)+2:5*(NS+1)+1)+liqtot+pritot;

jPS=(5*(NS+1)+2:6*(NS+1)+1)+liqtot+pritot;

%

%%%%%%%%%plot the temperature perturbation

subplot(3,2,1)

tl_vec=V(jTL,Kval);

tp_vec=V(jTP,Kval);

ts_vec=V(jTS,Kval);

%ts_vec=V(tsstart:tsstop,Kval);

plot(zl’,real(tl_vec),zl’,imag(tl_vec),’--’,...

zp’,real(tp_vec),zp’,imag(tp_vec),’--’,...

zs’,real(ts_vec),zs’,imag(ts_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’T’,’FontSize’,16)

title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid B perturbation

subplot(3,2,2)

bl_vec=V(jBL,Kval);

59

bp_vec=V(jBP,Kval);

bs_vec=V(jBS,Kval);

plot(zl’,real(bl_vec),zl’,imag(bl_vec),’--’,...

zp’,real(bp_vec),zp’,imag(bp_vec),’--’,...

zs’,real(bs_vec),zs’,imag(bs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’B’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid C perturbation

subplot(3,2,3)

cl_vec=V(jCL,Kval);

cp_vec=V(jCP,Kval);

cs_vec=V(jCS,Kval);

plot(zl’,real(cl_vec),zl’,imag(cl_vec),’--’,...

zp’,real(cp_vec),zp’,imag(cp_vec),’--’,...

zs’,real(cs_vec),zs’,imag(cs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’C’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid streamfunction perturbation

subplot(3,2,4)

sl_vec=V(jSL,Kval);

sp_vec=V(jSP,Kval);

ss_vec=V(jSS,Kval);

plot(zl’,real(sl_vec),zl’,imag(sl_vec),’--’,...

zp’,real(sp_vec),zp’,imag(sp_vec),’--’,...

60

zs’,real(ss_vec),zs’,imag(ss_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\psi’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid fraction perturbation

subplot(3,2,5)

xp_vec=V(jSP,Kval);

xs_vec=V(jSS,Kval);

plot(zp’,real(xp_vec),zp’,imag(xp_vec),’--’,...

zs’,real(xs_vec),zs’,imag(xs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\chi’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the solid fraction B perturbation

subplot(3,2,6)

ps_vec=V(jPS,Kval);

plot(zs’,real(ps_vec),zs’,imag(ps_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\phi_B’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

print -deps pm_pert_final.eps

61

% this file called from pm_three_layer.m ... it plots eigenfunctions

% at the critical Rayleigh number and wavenumber

%%%

%%%

%%%%%%%%%%%%%%%%% PROCESS AND PLOT RESULTS %%%%%%%%%%%%%%%%

%%%

%%%

figure(8)

%%%% helpful indices

liqtot=4*(NL+1);

pritot=5*(NP+1)+1;

%

jSL = 1:NL+1;

jBL = NL+2:2*(NL+1);

jCL = 2*(NL+1)+1:3*(NL+1);

jTL = 3*(NL+1)+1:4*(NL+1);

%

jSP = (2:NP+2) + liqtot;

jBP=(NP+3:2*(NP+1)+1) + liqtot;

jCP=(2*(NP+1)+2:3*(NP+1)+1) + liqtot;

jTP=(3*(NP+1)+2:4*(NP+1)+1) + liqtot;

jXP=(4*(NP+1)+2:5*(NP+1)+1) + liqtot;

%

jSS=(2:NS+2)+liqtot+pritot;

jBS=(NS+3:2*(NS+1)+1)+liqtot+pritot;

jCS=(2*(NS+1)+2:3*(NS+1)+1)+liqtot+pritot;

62

jTS=(3*(NS+1)+2:4*(NS+1)+1)+liqtot+pritot;

jXS=(4*(NS+1)+2:5*(NS+1)+1)+liqtot+pritot;

jPS=(5*(NS+1)+2:6*(NS+1)+1)+liqtot+pritot;

%

%%%%%%%%%plot the temperature perturbation

subplot(3,2,1)

tl_vec=V(jTL,KvalATCRIT);

tp_vec=V(jTP,KvalATCRIT);

ts_vec=V(jTS,KvalATCRIT);

%ts_vec=V(tsstart:tsstop,KvalATCRIT);

plot(zl’,real(tl_vec),zl’,imag(tl_vec),’--’,...

zp’,real(tp_vec),zp’,imag(tp_vec),’--’,...

zs’,real(ts_vec),zs’,imag(ts_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’T’,’FontSize’,16)

title(’At critical wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid B perturbation

subplot(3,2,2)

bl_vec=V(jBL,KvalATCRIT);

bp_vec=V(jBP,KvalATCRIT);

bs_vec=V(jBS,KvalATCRIT);

plot(zl’,real(bl_vec),zl’,imag(bl_vec),’--’,...

zp’,real(bp_vec),zp’,imag(bp_vec),’--’,...

zs’,real(bs_vec),zs’,imag(bs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’B’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

63

%

%%%%%%%%%plot the liquid C perturbation

subplot(3,2,3)

cl_vec=V(jCL,KvalATCRIT);

cp_vec=V(jCP,KvalATCRIT);

cs_vec=V(jCS,KvalATCRIT);

plot(zl’,real(cl_vec),zl’,imag(cl_vec),’--’,...

zp’,real(cp_vec),zp’,imag(cp_vec),’--’,...

zs’,real(cs_vec),zs’,imag(cs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’C’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid streamfunction perturbation

subplot(3,2,4)

sl_vec=V(jSL,KvalATCRIT);

sp_vec=V(jSP,KvalATCRIT);

ss_vec=V(jSS,KvalATCRIT);

plot(zl’,real(sl_vec),zl’,imag(sl_vec),’--’,...

zp’,real(sp_vec),zp’,imag(sp_vec),’--’,...

zs’,real(ss_vec),zs’,imag(ss_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\psi’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the liquid fraction perturbation

subplot(3,2,5)

xp_vec=V(jSP,KvalATCRIT);

64

xs_vec=V(jSS,KvalATCRIT);

plot(zp’,real(xp_vec),zp’,imag(xp_vec),’--’,...

zs’,real(xs_vec),zs’,imag(xs_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\chi’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

%%%%%%%%%plot the solid fraction B perturbation

subplot(3,2,6)

ps_vec=V(jPS,KvalATCRIT);

plot(zs’,real(ps_vec),zs’,imag(ps_vec),’--’);

xlabel(’z’,’FontSize’,16);ylabel(’\phi_B’,’FontSize’,16)

%title(’At final wavenumber’,’FontSize’,16)

%

print -deps pm_pertATCRIT.eps

65

%%%

%

% findUnknowns.m

%

% Function to determine the unknown quantities hS, hP and BP. These

% correspond to positions of the interfaces at the top of the secondary

% mushy layer, the top of the primary mushy layer and the concentation of

% component B at the top of the primary mushy layer, respectively.

%

% We’ll find the values for hS, hP and BP which zero the nonlinear system

% created at the end of this file by using fsolve.

%

% INPUTS: guess...vector of guesses for the unknown quantities [hS,hP,BP]

%

% OUTPUTS: f...vector of differences we’re trying to zero

%

%%%

function f = findUnknowns(guess, paramVec)

% guess(1) = hSguess

% guess(2) = hPguess

% guess(3) = BPguess

% separate out phase diagram constants

BE = paramVec(1);

TE = paramVec(2);

66

CE = paramVec(3);

deltabsq = paramVec(4);

deltacsq = paramVec(5);

Binfty = paramVec(6);

Tinfty = paramVec(7);

Cinfty = paramVec(8);

gamma = paramVec(9);

gammab = paramVec(10);

BEAB = paramVec(11);

TEAB = paramVec(12);

TM = paramVec(13);

mB = paramVec(14);

mC = paramVec(15);

mBC = paramVec(16);

mCC = paramVec(17);

mBbar = paramVec(18);

mCbar = paramVec(19);

% modify the relative and absolute error tolerances for ode23

options = odeset(’RelTol’,1e-5,’AbsTol’,1e-8);

% solve ODE for B in the secondary mushy layer (solution is found from the

% bottom of the layer to the top)

[zSec, Bsec] = ode23(@rhsBodeSec, [0 guess(1)], BE, options, paramVec);

[nrows, ncols] = size(Bsec);

67

% read out the last entry from the B values (BS)

BScomp = Bsec(nrows);

% using BS, next find CS

CScomp = (mBC / mCC) * (BScomp - BEAB);

deltaTB = 1/((TM-Tinfty)/mB+Binfty+(mCbar/mBbar)*Cinfty);

deltaTC = 1/((TM-Tinfty)/mC+Cinfty+(mBbar/mCbar)*Binfty);

% using guessed value for BP, find CP

CPguess = (-deltaTB*(deltabsq-1)*(guess(3)-Binfty))/(deltaTC*(deltacsq-1)) ...

+ Cinfty + 1/(deltaTC*(deltacsq-1));

% solve ODEs for B and C in the primary mushy layer (again the solution is

% found from the bottom of the layer to the top)

[zPri, BCvalsPri] = ode23(@rhsBCodePri, [guess(1), guess(2)], ...

[BScomp, CScomp], options, guess(3), CPguess, paramVec);

[nrows, ncols] = size(BCvalsPri);

% read out last value entry from the B values (this is BP)

BPcomp = BCvalsPri(nrows, 1);

% read out last entry from the the C values (this is CP)

68

CPcomp = BCvalsPri(nrows, ncols);

% determine chi (liquid-fraction) on the primary side of the interface

% between the two mushy layers

chiSplus = chiPrimary(BScomp,guess(3),CScomp,CPguess,paramVec);

% set up system of nonlinear equations to solve

f(1) = BScomp * (1 - deltacsq/deltabsq) + BEAB * (deltacsq/deltabsq) ...

- (1/chiSplus) * (Binfty - (mCC/mBC) * (deltacsq/deltabsq) * Cinfty);

f(2) = BPcomp - guess(3);

f(3) = CPcomp - CPguess;

69

%%%

%

% getABtern3layer.m

%

% Function that returns the A and B matrices for the generalized eigenvalue

% problem A*y = sigma*B*y.

%

% INPUTS:

%

% OUTPUTS: A...matrix from lefthand side of generalized eigenvalue problem

%

% B...matrix from righthand side of generalized eigenvalue problem

%%%

function [A,B] = getABtern3layer(alpha,RaB,RaC,Ra,Da,dBdzBL,deltaB2,...

deltaC2,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,V,...

chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PBS,DS2,...

chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

d2BdzBSdiag)

% define matrix of liquid equations using liquid variables

ALL=zeros(4*(NL+1),4*(NL+1));

70

% define a matrix of liquid equations using primary variables

ALP=zeros(4*(NL+1), 5*(NP+1)+1);

% define a matrix of liquid equations using secondary variables

ALS=zeros(4*(NL+1),6*(NS+1)+1);

% define matrix of primary equations using liquid variables

APL=zeros(5*(NP+1)+1,4*(NL+1));

% define matrix of primary equations using primary variables

APP=zeros(5*(NP+1)+1,5*(NP+1)+1);

% define matrix of primary equations using secondary variables

APS=zeros(5*(NP+1)+1,6*(NS+1)+1);

% define matrix of secondary equations using liquid variables

ASL=zeros(6*(NS+1)+1,4*(NL+1));

% define matrix of secondary equations using primary variables

ASP=zeros(6*(NS+1)+1,5*(NP+1)+1);

% define matrix of secondary equations using secondary variables

ASS=zeros(6*(NS+1)+1,6*(NS+1)+1);

% define matrix of liquid equations using liquid variables

71

BLL=zeros(4*(NL+1),4*(NL+1));

% define a matrix of liquid equations using primary variables

BLP=zeros(4*(NL+1), 5*(NP+1)+1);

% define a matrix of liquid equations using secondary variables

BLS=zeros(4*(NL+1),6*(NS+1)+1);

% define matrix of primary equations using liquid variables

BPL=zeros(5*(NP+1)+1,4*(NL+1));

% define matrix of primary equations using primary variables

BPP=zeros(5*(NP+1)+1,5*(NP+1)+1);

% define matrix of primary equations using secondary variables

BPS=zeros(5*(NP+1)+1,6*(NS+1)+1);

% define matrix of secondary equations using liquid variables

BSL=zeros(6*(NS+1)+1,4*(NL+1));

% define matrix of secondary equations using primary variables

BSP=zeros(6*(NS+1)+1,5*(NP+1)+1);

% define matrix of secondary equations using secondary variables

BSS=zeros(6*(NS+1)+1,6*(NS+1)+1);

72

% create variables for multi-row and multi-column indexing for assigning

% values to interior of layers (i denotes a row index and j a column index)

% (L=liquid, P=primary and S=secondary)

iSL = 3:NL-1;

iBL = NL+3:2*(NL+1)-1;

iCL = 2*(NL+1)+2:3*(NL+1)-1;

iTL = 3*(NL+1)+2:4*(NL+1)-1;

iSP=3:NP+1;

iBP=NP+4:2*(NP+1);

iCP=2*(NP+1)+3:3*(NP+1);

iTP=3*(NP+1)+2:4*(NP+1)+1;

iXP=4*(NP+1)+3:5*(NP+1)+1;

iSS=3:NS+1;

iBS=NS+3:2*(NS+1)+1;

iCS=2*(NS+1)+3:3*(NS+1);

iTS=3*(NS+1)+2:4*(NS+1)+1;

iXS=4*(NS+1)+3:5*(NS+1)+1;

iPS=5*(NS+1)+3:6*(NS+1)+1;

jSL = 1:NL+1;

jBL = NL+2:2*(NL+1);

jCL = 2*(NL+1)+1:3*(NL+1);

jTL = 3*(NL+1)+1:4*(NL+1);

73

jSP = 2:NP+2;

jBP=NP+3:2*(NP+1)+1;

jCP=2*(NP+1)+2:3*(NP+1)+1;

jTP=3*(NP+1)+2:4*(NP+1)+1;

jXP=4*(NP+1)+2:5*(NP+1)+1;

jSS=2:NS+2;

jBS=NS+3:2*(NS+1)+1;

jCS=2*(NS+1)+2:3*(NS+1)+1;

jTS=3*(NS+1)+2:4*(NS+1)+1;

jXS=4*(NS+1)+2:5*(NS+1)+1;

jPS=5*(NS+1)+2:6*(NS+1)+1;

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX ALL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%% BEGIN STREAMFUNCTION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%

%%%

% BC dPsi/dz = 0 at z=H

ALL(1,jSL)=DL(1,:);

74

% BC d^3Psi/dz^3 = 0 at z=H

ALL(2,jSL)=DL3(1,:);

% interior equation for streamfunction (psi)

ALL(iSL,jSL)=DL4(3:NL-1,:)-2*alpha^2*DL2(3:NL-1,:)+alpha^4*IL(3:NL-1,:);

%

% ... liquid buoyancy turned off!!!

%

ALL(iSL,jBL)=(-alpha*RaB)/Da*IL(3:NL-1,:);

ALL(iSL,jCL)=(-alpha*RaC)/Da*IL(3:NL-1,:);

ALL(iSL,jTL)=(-alpha*Ra)/Da*IL(3:NL-1,:);

% BC dPsi/dz|^+ - dPsi/dz|^- = 0 at z=h_p

ALL(NL,jSL)=DL(NL+1,:);

% BC psi|^+ - psi|^- = 0 at z=h_p

ALL(NL+1,NL+1)=1;

%%%

%%%% END STREAMFUNCTION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%

%%%

%%%

%%% BEGIN B EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%%%%

%%%

75

% BC Bhat=0 at z=H

ALL(NL+2,NL+2)=1;

% interior equation for B

ALL(iBL,jSL)=alpha*dBdzBLdiag(2:NL,:);

ALL(iBL,jBL)=DL(2:NL,:)+(1/deltaB2)*(-alpha^2*IL(2:NL,:)+DL2(2:NL,:));

% BC (h_p*dBB/dz+Bhat)^+ - h_p*dBB/dz+Bhat)^- = 0 at z=h_p

ALL(2*(NL+1),2*(NL+1))=1;

%%%

%%% END B EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%%%%%%

%%%

%%%

%%% BEGIN C EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%%%%

%%%

% BC Chat=0 at z=H

ALL(2*(NL+1)+1,2*(NL+1)+1)=1;

% interior equation for C

ALL(iCL,jSL)=alpha*dCdzBLdiag(2:NL,:);

ALL(iCL,jCL)=DL(2:NL,:)+(1/deltaC2)*(-alpha^2*IL(2:NL,:)+DL2(2:NL,:));

% BC (h_p*dCB/dz+Chat)^+ - h_p*dCB/dz+Chat)^- = 0 at z=h_p

76

ALL(3*(NL+1),3*(NL+1))=1;

%%%

%%% END C EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%%%%%%

%%%

%%%

%%% BEGIN T EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%%%%%

%%%

% BC That = 0 at z=H

ALL(3*(NL+1)+1,3*(NL+1)+1)=1;

% ingerior equation for T

ALL(iTL,jSL)=alpha*dTdzBLdiag(2:NL,:);

ALL(iTL,jTL)=DL(2:NL,:)-alpha^2*IL(2:NL,:)+DL2(2:NL,:);

% BC That=MB*Bhat+MC*Chat at z=h_p

ALL(4*(NL+1),4*(NL+1))=1;

ALL(4*(NL+1),2*(NL+1))=-MB;

ALL(4*(NL+1),3*(NL+1))=-MC;

%%%

%%%%%%%%% END T EQUATION IN LIQUID LAYER USING LIQUID VARIABLES %%%%%%%%%%%

%%%

77

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX ALL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX ALP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%% BEGIN STREAMFUNCTION EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%

%%%

% BC dPsi/dz|^+ - dPsi/dz|^- = 0 at z=h_p

ALP(NL,jSP)=-DP(1,:);

% BC psi|^+ - psi|^- = 0 at z=h_p

ALP(NL+1,2)=-1;

%%%

%%% END STREAMFUNCTION EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%%

%%%

%%%

%%%%%%%%% BEGIN B EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%%%%%%%

78

%%%

% BC (h_p*dB/dz + B)^+ - (h_p*dB/dz + B)^- = 0 at z=h_p

ALP(2*(NL+1),1)=dBdzBL(NL+1)-dBdzBP(1);

ALP(2*(NL+1),NP+3)=-1;

%%%

%%%%%%%%% END B EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%%%%%%%%%

%%%

%%%

%%%%%%%%% BEGIN C EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%%%%%%%

%%%

% BC (h_p*dC/dz + C)^+ - (h_p*dC/dz + C)^- = 0 at z=h_p

ALP(3*(NL+1),1)=dCdzBL(NL+1)-dCdzBP(1);

ALP(3*(NL+1),2*(NP+1)+2)=-1;

%%%

%%%%%%%%% END C EQUATION IN LIQUID LAYER USING PRIMARY VARIABLES %%%%%%%%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX ALP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

79

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX APL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% equation (64h) for interface position h_p using liquid variables

APL(1,jBL)=-MB*DL(NL+1,:);

APL(1,jCL)=-MC*DL(NL+1,:);

APL(1,jTL)=DL(NL+1,:);

% BC (alpha^2*dPsi/dz-d^3Psi/dz^3)^+=(1/Da)*(1/PI*dPsi/dz)^- at z=h_p

APL(2,jSL)=alpha^2*DL(NL+1,:)-DL3(NL+1,:);

% BC (64b) at z=h_p for B

APL(NP+3,jBL)=-V*(-1+XBP(1))*IL(NL+1,:)+1/deltaB2*DL(NL+1,:);

% BC (64c) at z=h_p for C

APL(2*(NP+1)+2,jCL)=-V*(-1+XBP(1))*IL(NL+1,:)+1/deltaC2*DL(NL+1,:);

% BC (64a) for X at z=h_p

APL(4*(NP+1)+2,jTL)=1/S*DL(NL+1,:);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX APL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

80

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX APP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%% BEGIN EQUATION FOR h_p USING PRIMARY VARIABLES %%%%%%%%%%%%%%

%%%

% equation (64h) for interface position h_p

APP(1,1)=d2TdzBL(NL+1)-MB*d2BdzBL(NL+1)-MC*d2CdzBL(NL+1);

%%%

%%%%%%%%%%%%%% END EQUATION FOR h_p USING PRIMARY VARIABLES %%%%%%%%%%%%%%%

%%%

%%%

%% BEGIN EQUATION FOR PSI IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

% BC (alpha^2*dPsi/dz-d^3Psi/dz^3)^+=(1/Da)*(1/PI*dPsi/dz)^- at z=h_p

APP(2,jSP)=-(1/Da)*(1/XBP(1)^3)*DP(1,:);

% interior streamfunction equation

81

APP(iSP,jSP)=-alpha^2*IP(2:NP,:)+DP2(2:NP,:)-PIstuffPtimesDP(2:NP,:);

APP(iSP,jBP)=alpha*RaB*chiCubedBPdiag(2:NP,:);

APP(iSP,jCP)=alpha*RaC*chiCubedBPdiag(2:NP,:);

APP(iSP,jTP)=alpha*Ra*chiCubedBPdiag(2:NP,:);

% BC psi|^+ - psi|^- = 0 at z=hs

APP(NP+2,NP+2)=1;

%%%

%%%% END EQUATION FOR PSI IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

%%%

%%%% BEGIN EQUATION FOR B IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

% BC (64b) at z=h_p for B

APP(NP+3,1)=-V*BBL(NL+1)*dXdzBP(1)-V*dBdzBL(NL+1)*(-1+XBP(1))...

+1/deltaB2*(d2BdzBL(NL+1)-XBP(1)*d2BdzBP(1)-dXdzBP(1)*dBdzBP(1));

APP(NP+3,jBP)=-1/deltaB2*XBP(1)*DP(1,:);

APP(NP+3,4*(NP+1)+2)=-V*BBP(1)-1/deltaB2*dBdzBP(1);

% interior equation for B

APP(iBP,jSP)=alpha*dBdzBPdiag(2:NP,:);

XBPtimesDP=XBPdiag*DP;

XBPtimesDP2=XBPdiag*DP2;

82

dXBPtimesDP=dXdzBPdiag*DP;

APP(iBP,jBP)=dXdzBPdiag(2:NP,:)+XBPtimesDP(2:NP,:)...

+(1/deltaB2)*(-alpha^2*XBPdiag(2:NP,:)+XBPtimesDP2(2:NP,:)...

+dXBPtimesDP(2:NP,:));

BBPtimesDP=BBPdiag*DP;

dBBPtimesDP=dBdzBPdiag*DP;

APP(iBP,jXP)=BBPtimesDP(2:NP,:)+dBdzBPdiag(2:NP,:)...

+(1/deltaB2)*(d2BdzBPdiag(2:NP,:)+dBBPtimesDP(2:NP,:));

% BC (h_s*dB/dz+B)^+ - (h_s*dB/dz+B)^- = 0 at z=h_s

APP(2*(NP+1)+1,2*(NP+1)+1)=1;

%%%

%%%%% END EQUATION FOR B IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%%

%%%

%%%

%%%% BEGIN EQUATION FOR C IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

% BC (64c) at z=h_p for C

APP(2*(NP+1)+2,1)=-V*CBL(NL+1)*dXdzBP(1)-V*dCdzBL(NL+1)*(-1+XBP(1))...

+1/deltaC2*(d2CdzBL(NL+1)-XBP(1)*d2CdzBP(1)-dXdzBP(1)*dCdzBP(1));

APP(2*(NP+1)+2,jCP)=-1/deltaC2*XBP(1)*DP(1,:);

APP(2*(NP+1)+2,4*(NP+1)+2)=-V*CBP(1)-1/deltaC2*dCdzBP(1);

83

% interior equation for C

APP(iCP,jSP)=alpha*dCdzBPdiag(2:NP,:);

XBPtimesDP=XBPdiag*DP;

XBPtimesDP2=XBPdiag*DP2;

dXBPtimesDP=dXdzBPdiag*DP;

APP(iCP,jCP)=dXdzBPdiag(2:NP,:)+XBPtimesDP(2:NP,:)...

+(1/deltaC2)*(-alpha^2*XBPdiag(2:NP,:)+XBPtimesDP2(2:NP,:)...

+dXBPtimesDP(2:NP,:));

CBPtimesDP=CBPdiag*DP;

dCBPtimesDP=dCdzBPdiag*DP;

d2CdzBPdiag;

APP(iCP,jXP)=CBPtimesDP(2:NP,:)+dCdzBPdiag(2:NP,:)...

+(1/deltaC2)*(d2CdzBPdiag(2:NP,:)+dCBPtimesDP(2:NP,:));

% BC (h_s*dC/dz+C)^+ - (h_s*dC/dz+C)^- = 0 at z=h_s

APP(3*(NP+1)+1,3*(NP+1)+1)=1;

%%%

%%%%% END EQUATION FOR C IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%%

%%%

%%%

%%%% BEGIN EQUATION FOR T IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

% interior equation for T

84

APP(iTP,jBP)=-MB*IP;

APP(iTP,jCP)=-MC*IP;

APP(iTP,jTP)=IP;

%%%

%%%%% END EQUATION FOR T IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%%

%%%

%%%

%%% BEGIN EQUATION FOR CHI IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%

%%%

% BC (64a) for X at z=h_p

APP(4*(NP+1)+2,1)=-V*dXdzBP(1)+1/S*(d2TdzBL(NL+1)-d2TdzBP(1));

APP(4*(NP+1)+2,jTP)=-1/S*DP(1,:);

APP(4*(NP+1)+2,4*(NP+1)+2)=-V;

% interior equation for chi

APP(iXP,jSP)=alpha*dTdzBPdiag(2:NP+1,:);

APP(iXP,jTP)=DP(2:NP+1,:)-alpha^2*IP(2:NP+1,:)+DP2(2:NP+1,:);

APP(iXP,jXP)=S*DP(2:NP+1,:);

%%%

%%%% END EQUATION FOR CHI IN THE PRIMARY LAYER USING PRIMARY VARIABLES %%%%

%%%

85

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX APP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX APS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% BC psi|^+ - psi|^- = 0 at z=h_s

APS(NP+2,2)=-1;

% BC (h_s*dB/dz+B)^+ - (h_s*dB/dz+B)^- = 0 at z=h_s

APS(2*(NP+1)+1,1)=dBdzBP(NP+1)-dBdzBS(1);

APS(2*(NP+1)+1,NS+3)=-1;

% BC (h_s*dC/dz+C)^+ - (h_s*dC/dz+C)^- = 0 at z=h_s

APS(3*(NP+1)+1,1)=dCdzBP(NP+1)-dCdzBS(1);

APS(3*(NP+1)+1,2*(NS+1)+2)=-1;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX APS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

86

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX ASP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% condition for h_s using primary variables (66i)

ASP(1,jBP)=MBC*DP(NP+1,:);

ASP(1,jCP)=-MCC*DP(NP+1,:);

% BC dPsi/dz|^+ - dPsi/dz|^- = 0 at z=h_s

ASP(2,jSP)=DP(NP+1,:);

% BC (66c) for C at z=h_s

ASP(2*(NS+1)+2,jCP)=-V*(-XBP(NP+1)+XBS(1))*IP(NP+1,:)...

+1/deltaC2*XBP(NP+1)*DP(NP+1,:);

ASP(2*(NS+1)+2,5*(NP+1)+1)=V*CBP(NP+1)+1/deltaC2*dCdzBP(NP+1);

% BC (66a) for X at z=h_s

ASP(4*(NS+1)+2,5*(NP+1)+1)=V;

ASP(4*(NS+1)+2,jTP)=DP(NP+1,:)/S;

% BC (66b) for phi_b at z=h_s

% ASP(5*(NS+1)+2,jBP)=-V*(-XBP(NP+1)+XBS(1))*IP(NP+1,:)...

% +1/deltaB2*XBP(NP+1)*DP(NP+1,:);

% ASP(5*(NS+1)+2,5*(NP+1)+1)=V*BBP(NP+1)+1/deltaB2*dBdzBP(NP+1);

ASP(5*(NS+1)+2,jBP)=-V*(-XBP(NP+1)+XBS(1)-PBS(1))*IP(NP+1,:)...

87

+1/deltaB2*XBP(NP+1)*DP(NP+1,:);

ASP(5*(NS+1)+2,5*(NP+1)+1)=V*BBP(NP+1)+1/deltaB2*dBdzBP(NP+1);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX ASP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX ASS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%% BEGIN EQUATION FOR INTERFACE POSITION h_s USING SECONDARY VARIABLES %%%

%%%

% condition for h_s (66i)

ASS(1,1)=MBC*d2BdzBP(NP+1)-MCC*d2CdzBP(NP+1);

%%%

%%%%%%%%%%%%% END EQUATION FOR h_s USING SECONDARY VARIABLES %%%%%%%%%%%%%%

%%%

%%%

% BEGIN EQUATION FOR PSI IN THE SECONDARY LAYER USING SECONDARY VARIABLES %

88

%%%

% BC dPsi/dz|^+ - dPsi/dz|^- = 0 at z=h_s

ASS(2,jSS)=-DS(1,:);

% interior streamfunction equation

ASS(iSS,jSS)=-alpha^2*IS(2:NS,:)+DS2(2:NS,:)-PIstuffStimesDS(2:NS,:);

ASS(iSS,jBS)=alpha*RaB*chiCubedBSdiag(2:NS,:);

ASS(iSS,jCS)=alpha*RaC*chiCubedBSdiag(2:NS,:);

ASS(iSS,jTS)=alpha*Ra*chiCubedBSdiag(2:NS,:);

% BC Psi=0 at z=0

ASS(NS+2,NS+2)=1;

%%%

%% END EQUATION FOR PSI IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

%%%

%% BEGIN EQUATION FOR B IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

% interior equation for B

ASS(iBS,jBS)=IS;

ASS(iBS,jTS)=1/MBC*IS;

89

%%%

%% END EQUATION FOR B IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

%%%

%% BEGIN EQUATION FOR C IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

% BC (66c) for C at z=h_s

ASS(2*(NS+1)+2,1)=-V*CBP(NP+1)*(-dXdzBP(NP+1)+dXdzBS(1))...

-V*dCdzBP(NP+1)*(-XBP(NP+1)+XBS(1))...

+1/deltaC2*(XBP(NP+1)*d2CdzBP(NP+1)-XBS(1)*d2CdzBS(1)...

+dXdzBP(NP+1)*dCdzBP(NP+1)-dXdzBS(1)*dCdzBS(1));

ASS(2*(NS+1)+2,jCS)=-1/deltaC2*XBS(1)*DS(1,:);

ASS(2*(NS+1)+2,4*(NS+1)+2)=-V*CBP(NP+1)-1/deltaC2*dCdzBS(1);

% interior equation for C

ASS(iCS,jSS)=alpha*dCdzBSdiag(2:NS,:);

XBStimesDS=XBSdiag*DS;

XBStimesDS2=XBSdiag*DS2;

dXBStimesDS=dXdzBSdiag*DS;

ASS(iCS,jCS)=dXdzBSdiag(2:NS,:)+XBStimesDS(2:NS,:)...

+(1/deltaC2)*(-alpha^2*XBSdiag(2:NS,:)+XBStimesDS2(2:NS,:)...

+dXBStimesDS(2:NS,:));

CBStimesDS=CBSdiag*DS;

dCBStimesDS=dCdzBSdiag*DS;

90

ASS(iCS,jXS)=CBStimesDS(2:NS,:)+dCdzBSdiag(2:NS,:)...

+(1/deltaC2)*(d2CdzBSdiag(2:NS,:)+dCBStimesDS(2:NS,:));

% BC Chat=0 at z=0

ASS(3*(NS+1)+1,3*(NS+1)+1)=1;

%%%

%%% END EQUATION FOR C IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%%

%%%

%%%

%% BEGIN EQUATION FOR T IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

% interior equation for T

ASS(iTS,jCS)=IS;

ASS(iTS,jTS)=1/MCC*IS;

%%%

%%% END EQUATION FOR T IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%%

%%%

%%%

% BEGIN EQUATION FOR CHI IN THE SECONDARY LAYER USING SECONDARY VARIABLES %

%%%

91

% BC (66a) for X at z=h_s

ASS(4*(NS+1)+2,1)=-V*(-dXdzBP(NP+1)+dXdzBS(1))...

+1/S*(d2TdzBP(NP+1)-d2TdzBS(1));

ASS(4*(NS+1)+2,4*(NS+1)+2)=-V;

ASS(4*(NS+1)+2,jTS)=-DS(1,:)/S;

% interior equation for chi

ASS(iXS,jSS)=alpha*dTdzBSdiag(2:NS+1,:);

ASS(iXS,jTS)=DS(2:NS+1,:)-alpha^2*IS(2:NS+1,:)+DS2(2:NS+1,:);

ASS(iXS,jXS)=S*DS(2:NS+1,:);

%%%

%% END EQUATION FOR CHI IN THE SECONDARY LAYER USING SECONDARY VARIABLES %%

%%%

%%%

%BEGIN EQUATION FOR PHI_B IN THE SECONDARY LAYER USING SECONDARY VARIABLES%

%%%

% BC (66b) for phi_B at z=h_s

% ASS(5*(NS+1)+2,1)=-V*dBdzBP(NP+1)*(-XBP(NP+1)+XBS(1))...

% -V*BBP(NP+1)*(-dXdzBP(NP+1)+dXdzBS(1))...

% +1/deltaB2*(XBP(NP+1)*d2BdzBP(NP+1)-XBS(1)*d2BdzBS(1)...

% +dXdzBP(NP+1)*dBdzBP(NP+1)-dXdzBS(1)*dBdzBS(1));

% ASS(5*(NS+1)+2,4*(NS+1)+2)=-V*BBP(NP+1)-1/deltaB2*dBdzBS(1);

% ASS(5*(NS+1)+2,jBS)=-1/deltaB2*XBS(1)*DS(1,:);

92

ASS(5*(NS+1)+2,1)=-V*dBdzBP(NP+1)*(-XBP(NP+1)+XBS(1))...

-V*BBP(NP+1)*(-dXdzBP(NP+1)+dXdzBS(1)+dPdzBS(1))...

-V*(BBP(NP+1)-1)*(-dPdzBS(1))-V*dBdzBP(NP+1)*(-PBS(1))...

+1/deltaB2*(XBP(NP+1)*d2BdzBP(NP+1)-XBS(1)*d2BdzBS(1)...

+dXdzBP(NP+1)*dBdzBP(NP+1)-dXdzBS(1)*dBdzBS(1));

ASS(5*(NS+1)+2,4*(NS+1)+2)=-V*BBP(NP+1)-1/deltaB2*dBdzBS(1);

ASS(5*(NS+1)+2,jBS)=-1/deltaB2*XBS(1)*DS(1,:);

ASS(5*(NS+1)+2,5*(NS+1)+2)=-V;

% interior equation for phi_B

ASS(iPS,jSS)=alpha*dBdzBSdiag(2:NS+1,:);

XBStimesDS=XBSdiag*DS;

dXBStimesDS=dXdzBSdiag*DS;

XBStimesDS2=XBSdiag*DS2;

ASS(iPS,jBS)=dXdzBSdiag(2:NS+1,:)+XBStimesDS(2:NS+1,:)...

+1/deltaB2*(-alpha^2*XBSdiag(2:NS+1,:)+dXBStimesDS(2:NS+1,:)...

+XBStimesDS2(2:NS+1,:));

BBStimesDS=BBSdiag*DS;

dBBStimesDS=dBdzBSdiag*DS;

ASS(iPS,jXS)=BBStimesDS(2:NS+1,:)+dBdzBSdiag(2:NS+1,:)...

+1/deltaB2*(dBBStimesDS(2:NS+1,:)+d2BdzBSdiag(2:NS+1,:));

ASS(iPS,jPS)=DS(2:NS+1,:);

%%%

% END EQUATION FOR PHI_B IN THE SECONDARY LAYER USING SECONDARY VARIABLES %

%%%

93

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX ASS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

% combine all nine submatrices to form the A matrix to be returned

A = [ALL ALP ALS;

APL APP APS;

ASL ASP ASS];

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX BLL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% interior equation for B in the liquid layer using liquid variables

BLL(iBL,jBL)=IL(2:NL,:);

% interior equation for C in the liquid layer using liquid variables

BLL(iCL,jCL)=IL(2:NL,:);

% interior equation for T in the liquid layer using liquid variables

BLL(iTL,jTL)=IL(2:NL,:);

%%%

94

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX BLL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX BPP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% BC for B at z=h_p

BPP(NP+3,1)=BBL(NL+1)*(-1+XBP(1));

% interior B equation in primary layer using primary variables

BPP(iBP,jBP)=XBPdiag(2:NP,:);

BPP(iBP,jXP)=BBPdiag(2:NP,:);

% BC for C at z=h_p

BPP(2*(NP+1)+2,1)=CBL(NL+1)*(-1+XBP(1));

% interior C equation in primary layer using primary variables

BPP(iCP,jCP)=XBPdiag(2:NP,:);

BPP(iCP,jXP)=CBPdiag(2:NP,:);

% BC for X and z=h_p

BPP(4*(NP+1)+2,1)=-1+XBP(1);

95

% interior X equation in primary layer using primary variables

BPP(iXP,jTP)=IP(2:NP+1,:);

BPP(iXP,jXP)=S*IP(2:NP+1,:);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX BPP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN MATRIX BSS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%

% BC for C at z=h_s

BSS(2*(NS+1)+2,1)=CBP(NP+1)*(-XBP(NP+1)+XBS(1));

% interior equation for C in the secondary layer using secondary variables

BSS(iCS,jCS)=XBSdiag(2:NS,:);

BSS(iCS,jXS)=CBSdiag(2:NS,:);

% BC for X at x=h_s

BSS(4*(NS+1)+2,1)=-XBP(NP+1)+XBS(1);

% interior equation for X in the secondary layer using secondary variables

BSS(iXS,jTS)=IS(2:NS+1,:);

96

BSS(iXS,jXS)=S*IS(2:NS+1,:);

% BC for phi_B at z=h_s

%BSS(5*(NS+1)+2,1)=BBP(NP+1)*(-XBP(NP+1)+XBS(1));

BSS(5*(NS+1)+2,1)=BBP(NP+1)*(-XBP(NP+1)+XBS(1)+PBS(1))...

+(BBP(NP+1)-1)*(-PBS(1));

% interior equation for phi_B in the secondary layer using secondary

% variables

BSS(iPS,jBS)=XBSdiag(2:NS+1,:);

BSS(iPS,jXS)=BBSdiag(2:NS+1,:);

BSS(iPS,jPS)=IS(2:NS+1,:);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% END MATRIX BSS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

% combine all nine submatrices to form the B matrix to be returned

B = [BLL BLP BLS;

BPL BPP BPS;

BSL BSP BSS];

return;

97

%%%

%

% getBaseState.m

%

% Function to compute and return some values associated with the base state

% solution.

%

% INPUTS: guessVec...vector of three guesses for the unknowns hS,hP and BP

%

% RETURNS: zSec..............z values in secondary mush

% Bsec..............B profile through secondary mush

% Csec..............C profile through secondary mush

% tempSec...........temperature profile through secondary mush

% chiSec............liquid fraction profile through secondary mush

% phiBsec...........solid-fraction B profile in secondary mush

% zPri..............vector of z values in primary mush

% Bpri..............B profile through primary mush

% Cpri..............C profile through primary mush

% tempPri...........temperature profile through primary mush

% zLiq..............z values through liquid layer

% Bliq..............B profile through liquid layer

% Cliq..............C profile through liquid layer

% tempLiq...........temperature profile through liquid layer

%

%%%

function [tempLiq,Bliq,Cliq,tempPri,Bpri,Cpri,chiPri,tempSec,Bsec,Csec,...

98

chiSec,phiBsec,hP,hS,zLiq,zPri,zSec] = getBaseState(guessVec,BE,TE,...

CE,deltabsq,deltacsq,Binfty,Cinfty,Tinfty,gamma,BEAB,TEAB,TM)

% function [zSec,Bsec,Csec,tempSec,chiSec,phiBsec,zPri,Bpri,Cpri, ...

% tempPri,zLiq,Bliq,Cliq,tempLiq] = getBaseState(guessVec,BE,TE,CE,...

% deltabsq,deltacsq,Binfty,Cinfty,Tinfty,gamma,BEAB,TEAB,TM)

% model parameters to be used throughout program

% BE = 1/3; % liquid composition of B at eutectic interface

% TE = -19; % temperature at the eutectic interface

% CE = 1/3; % liquid composition of C at the eutectic interface

% deltabsq = 100; % kappa / DB (ratio of thermal to solutal diffusivity)

% deltacsq = 100; % kappa / DC (ratio of thermal to solutal diffusivity)

% Binfty = 0.2; % far-field liquid composition of B

% Tinfty = 5; % far-field temperature

% Cinfty = 0.1; % far-field liquid composition of C

% gamma = -1; % Lv / cbar*(mB+mC)

% BEAB = 0.5; % eutectic concentration of B on the AB binary diagram

% TEAB = -5; % eutectic temperature on the AB binary diagram

% TM = 0; % temperature above which water is liquid and below which

% it is solid

% get the slopes

M = getMvec(BE, TE, CE, TEAB, BEAB, TM);

% liquidus and cotectic line slopes

99

mB = M(1);

mC = M(2);

mBC = M(3);

mCC = M(4);

mBbar = mB /(mB + mC);

mCbar = mC /(mB + mC);

gammaB = ((mB + mC) / mBC) * gamma;

% set up a vector of (constant) phase diagram parameters to be passed to

% other functions needing these values

pdVec(1) = BE;

pdVec(2) = TE;

pdVec(3) = CE;

pdVec(4) = deltabsq;

pdVec(5) = deltacsq;

pdVec(6) = Binfty;

pdVec(7) = Tinfty;

pdVec(8) = Cinfty;

pdVec(9) = gamma;

pdVec(10) = gammaB;

pdVec(11) = BEAB;

pdVec(12) = TEAB;

pdVec(13) = TM;

pdVec(14) = mB;

100

pdVec(15) = mC;

pdVec(16) = mBC;

pdVec(17) = mCC;

pdVec(18) = mBbar;

pdVec(19) = mCbar;

% compute some basic values within the mushy layers

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

% read off interface positions and liquid compositions at those interfaces

hS = zSec(length(zSec));

hP = zPri(length(zPri));

BP = Bpri(length(Bpri));

CP = Cpri(length(Cpri));

% create a vector of z values at which to compute B, C and T in the

% liquid layer

zLiq = [hP:0.01:1.0]’;

% compute values for quantities through the different layers

Csec = Csecondary(Bsec, pdVec);

tempSec = tempSecondary(Bsec,pdVec);

tempPri = tempPrimary(Bpri,Cpri,pdVec);

TP = tempPri(length(tempPri));

chiSec = chiSecondary(Bsec, pdVec);

phiBsec = phiBsecondary(Bsec,chiSec,pdVec);

101

phiAsec = 1 - chiSec - phiBsec;

chiPri = chiPrimary(Bpri,BP,Cpri,CP,pdVec);

phiApri = 1 - chiPri;

Bliq = Bliquid(BP,hP,zLiq,pdVec);

tempLiq = Tliquid(TP,hP,zLiq,pdVec);

Cliq = Cliquid(CP,hP,zLiq,pdVec);

% make plot of the base state

plotBaseState(zLiq,Bliq,Cliq,tempLiq,zPri,Bpri,Cpri,tempPri,phiApri,...

chiPri,zSec,Bsec,Csec,tempSec,phiBsec,phiAsec,chiSec);

102

%%%

%

% getMvec.m

%

% Function to return the four liquidus and cotectic line slopes.

%

% INPUTS: BE.....concentration of B at the eutectic point on the ternary

% phase diagram

% TE.....temperature at the ternary eutectic point on the ternary

% phase diagram

% CE.....concentration of C at the eutectic point on the ternary

% phase diagram

% TEAB...temperature at the eutectic point on the AB phase diagram

% BEAB...concentration of B at the eutectic point on the AB binary

% phase diagram

% TM.....temperature below which water is solid and above which it

% is liquid

%

% OUTPUTS: Mvec...vector of four slopes [mB, mC, mBC, mCC]

%

%%%

function Mvec = getMvec(BE, TE, CE, TEAB, BEAB, TM)

% create the vector of liquidus and cotectic line slopes

Mvec(1) = -(TM - TEAB) / BEAB; % mB

Mvec(3) = (TEAB - TE) / (BE - BEAB); % mBC

103

Mvec(4) = (TEAB - TE) / CE; % mCC

Mvec(2) = -Mvec(4) - (Mvec(1) * Mvec(4)) / Mvec(3); % mC

104

% makes plot resembling figure 2 from DMA’s JFM, 2003 paper

function makeFig2()

guessVec = [0.09,0.4,0.2];

Barr = 0.1:0.01:0.43;

Carr = 0.01:0.01:0.15;

% model parameters to be used throughout program

BE = 1/3; % liquid composition of B at eutectic point

TE = -19; % temperature at the eutectic point

CE = 1/3; % liquid composition C at the eutectic point

deltabsq = 100; % kappa / DB

deltacsq = 100; % kappa / DC

Binfty = 0.2; % far-field liquid compostion of B

Tinfty = 5; % far-field temperature

Cinfty = 0.1; % far-field liquid composition of C

gamma = -1; % Lv / cbar*(mB+mC)

BEAB = 0.5; % eutectic B on the AB binary diagram

TEAB = -5; % eutectic temperature on the AB binary diagram

TM = 0; % temperature above which water is liquid and below which

% it is solid

% get the slopes

M = getMvec(BE, TE, CE, TEAB, BEAB, TM);

105

% liquidus and cotectic line slopes

mB = M(1);

mC = M(2);

mBC = M(3);

mCC = M(4);

mBbar = mB /(mB + mC);

mCbar = mC /(mB + mC);

gammaB = ((mB + mC) / mBC) * gamma;

% set up a vector of (constant) phase diagram parameters to be passed to

% other functions needing these values

pdVec(1) = BE;

pdVec(2) = TE;

pdVec(3) = CE;

pdVec(4) = deltabsq;

pdVec(5) = deltacsq;

pdVec(6) = Binfty;

pdVec(7) = Tinfty;

pdVec(8) = Cinfty;

pdVec(9) = gamma;

pdVec(10) = gammaB;

pdVec(11) = BEAB;

pdVec(12) = TEAB;

pdVec(13) = TM;

106

pdVec(14) = mB;

pdVec(15) = mC;

pdVec(16) = mBC;

pdVec(17) = mCC;

pdVec(18) = mBbar;

pdVec(19) = mCbar;

for i=1:length(Barr)

pdVec(6)=Barr(i);

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

hSarr1(i) = zSec(length(zSec));

hParr1(i) = zPri(length(zPri));

end

subplot (3,1,1);

plot(Barr,hParr1,’r--’,Barr,hSarr1,’b--’);

xlabel(’B_{∞}’,’Interpreter’,’latex’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(0.25,0.35,’h^P’);

text(0.25,0.15,’h^S’);

axis([0.1 0.4 0 0.5]);

set(gca,’XTick’,0.1:0.1:0.45);

set(gca,’YTick’,0:0.1:0.5);

107

pdVec(6) = 0.2;

for i=1:length(Carr)

pdVec(8)=Carr(i);

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

hSarr2(i) = zSec(length(zSec));

hParr2(i) = zPri(length(zPri));

end

subplot(3,1,2);

plot(Carr,hParr2,’r--’,Carr,hSarr2,’b--’);

xlabel(’C_{∞}’,’Interpreter’,’latex’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(0.08,0.3,’h^P’);

text(0.08,0.05,’h^S’);

axis([0 0.2 0 0.5]);

set(gca,’XTick’,0:0.05:0.2);

set(gca,’YTick’,0:0.1:0.5);

pdVec(8) = 0.1;

TL = TM + mB * Binfty + mC * Cinfty;

Tarr = 0.01:1:20;

108

for i=1:length(Tarr)

pdVec(7)=Tarr(i)+TL;

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

hSarr3(i) = zSec(length(zSec));

hParr3(i) = zPri(length(zPri));

end

subplot(3,1,3);

plot(Tarr,hParr3,’r--’,Tarr,hSarr3,’b--’);

axis([0 20 0 0.8]);

set(gca,’XTick’,0:5:20);

set(gca,’YTick’,0:0.2:0.8);

xlabel(’$T_{\infty}-T^{\mathcal{L}}(B_{\infty},C_{\infty})$’, ...

’Interpreter’,’latex’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(10,0.5,’h^P’);

text(10,0.2,’h^S’);

109

function makeFig7()

Barr = 0.1:0.01:0.43;

Carr = 0.01:0.01:0.15;

% model parameters to be used throughout program

BE = 1/3; % liquid composition of B at eutectic point

TE = -19; % temperature at the eutectic point

CE = 1/3; % liquid composition of C at the eutectic point

deltabsq = 100; % kappa / DB

deltacsq = 100; % kappa / DC

Binfty = 0.2; % far-field liquid compostion of B

Tinfty = 5; % far-field temperature

Cinfty = 0.1; % far-field liquid composition of C

gamma = -1; % Lv / cbar*(mB+mC)

BEAB = 0.5; % eutectic B on the AB binary diagram

TEAB = -5; % eutectic temperature on the AB binary diagram

TM = 0; % temperature above which water is liquid and below which

% it is solid

guessVec = [0.09,0.4,0.2];

% get the slopes

M = getMvec(BE, TE, CE, TEAB, BEAB, TM);

% liquidus and cotectic line slopes

110

mB = M(1);

mC = M(2);

mBC = M(3);

mCC = M(4);

mBbar = mB /(mB + mC);

mCbar = mC /(mB + mC);

gammaB = ((mB + mC) / mBC) * gamma;

% set up a vector of (constant) phase diagram parameters to be passed to

% other functions needing these values

pdVec(1) = BE;

pdVec(2) = TE;

pdVec(3) = CE;

pdVec(4) = deltabsq;

pdVec(5) = deltacsq;

pdVec(6) = Binfty;

pdVec(7) = Tinfty;

pdVec(8) = Cinfty;

pdVec(9) = gamma;

pdVec(10) = gammaB;

pdVec(11) = BEAB;

pdVec(12) = TEAB;

pdVec(13) = TM;

pdVec(14) = mB;

111

pdVec(15) = mC;

pdVec(16) = mBC;

pdVec(17) = mCC;

pdVec(18) = mBbar;

pdVec(19) = mCbar;

for i=1:length(Barr)

pdVec(6)=Barr(i);

% compute some basic values within the mushy layers

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

hSarr1(i) = zSec(length(zSec));

hParr1(i) = zPri(length(zPri));

BP = Bpri(length(Bpri));

CP = Cpri(length(Cpri));

end

subplot (2,1,1);

plot(Barr,hParr1,’r--’,Barr,hSarr1,’b--’);

xlabel(’B_{∞}’,’Interpreter’,’latex’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(0.25,0.35,’h^P’);

text(0.25,0.15,’h^S’);

hold on;

112

pdVec(6) = 0.2;

for i=1:length(Carr)

pdVec(8)=Carr(i);

% compute some basic values within the mushy layers

[zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, pdVec);

hSarr2(i) = zSec(length(zSec));

hParr2(i) = zPri(length(zPri));

BP = Bpri(length(Bpri));

CP = Cpri(length(Cpri));

end

subplot(2,1,2);

plot(Carr,hParr2,’r--’,Carr,hSarr2,’b--’);

xlabel(’C_{∞}’,’Interpreter’,’latex’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(0.08,0.3,’h^P’);

text(0.08,0.05,’h^S’);

hold off;

113

%%%

%

% phiBsecondary.m

%

% Computes solid-fraction of B in the secondary layer.

%

% INPUTS: B..........liquid composition of B in the secondary mushy layer

%

% chi........liquid-fraction in the secondary mushy layer

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: phiB...profile of solid fraction B through the secondary mush

%

%%%

function phiB = phiBsecondary(B, chi, paramVec)

% separate out phase diagram constants

deltabsq = paramVec(4);

deltacsq = paramVec(5);

Binfty = paramVec(6);

Cinfty = paramVec(8);

BEAB = paramVec(11);

mBC = paramVec(16);

mCC = paramVec(17);

114

% solid fraction of B in the secondary mushy layer

phiB = (deltacsq./deltabsq) .* ((B - BEAB) .* chi - (mCC/mBC) .* Cinfty) ...

- chi .* B + Binfty;

115

function plotBaseState(zLiq,Bliq,Cliq,tempLiq,zPri,Bpri,Cpri,tempPri,...

phiApri,chiPri,zSec,Bsec,Csec,tempSec,phiBsec,phiAsec,chiSec)

% combine some of the input vectors...

z = [zSec; zPri; zLiq];

zMush = [zSec; zPri];

B = [Bsec; Bpri; Bliq];

C = [Csec; Cpri; Cliq];

temp = [tempSec; tempPri; tempLiq];

% obtain the interface positions and values of B and C at the mush-liquid

% interface

hS = zSec(numel(zSec));

hP = zPri(numel(zPri));

BP = Bpri(numel(Bpri));

CP = Cpri(numel(Cpri));

figure;

% plot temperature profile

subplot(2, 2, 1);

plot(temp, z, [-30 0], [hP hP], ’k--’, ...

[-30 0], [hS hS], ’k--’);

xlabel(’Temperature’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

axis([-30 0 0 1]);

set(gca,’XTick’,-30:10:0);

116

set(gca,’YTick’,0:0.2:1.0);

set(get(gca,’YLabel’),’Rotation’,0.0);

% plot liquid composition profiles

subplot(2,2,2);

plot(B,z,C,z,[0 1],[hP hP],’k--’, ...

[0 1], [hS hS], ’k--’);

xlabel(’Liquid compositions’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

axis([0 1 0 1]);

set(gca,’XTick’,0:0.2:1.0);

set(gca,’YTick’,0:0.2:1.0);

set(get(gca,’YLabel’),’Rotation’,0.0);

text(0.25,0.8,’B’,’FontSize’,8);

text(0.125,0.8,’C’,’FontSize’,8);

phiA = [phiAsec; phiApri];

phib = zeros(length(zPri), 1);

phib = [phiBsec; phib];

phibPlusPhiA = phib + phiA;

% plot solid-fractions

subplot(2,2,3);

plot(phibPlusPhiA,zMush,[0 1],[hS hS],’k--’,[0 1], [hP hP], ’k--’, ...

phiA,zMush);

axis([0 1 0 1]);

117

xlabel(’Solid fractions’);

ylabel(’\bar{z}’,’Interpreter’,’latex’);

text(0.1,0.2,’A’,’FontSize’,8);

text(0.3,0.04,’A’,’FontSize’,8);

text(0.58, 0.04,’B’,’FontSize’,8);

set(gca,’XTick’,0:0.2:1.0);

set(gca,’YTick’,0:0.2:1.0);

set(get(gca,’YLabel’),’Rotation’,0.0);

% plot solidification path for symmetric case

subplot(2,2,4);

plot(C,B, [0 1/3], [0.5 1/3], ’k--’, [1/3 0.5], [1/3 0], ’k--’);

axis([0 0.5 0 0.5]);

xlabel(’C’);

ylabel(’B’);

set(gca,’XTick’,0:0.1:0.5);

set(gca,’YTick’,0:0.1:0.5);

set(get(gca,’YLabel’),’Rotation’,0.0);

118

% file ’pm_three_layer.m’

% Ternary mushy layer linear stability code with solute diffusion

% and three layers for eutectic phase diagram.

clear all;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%

% far-field ...

%

H=2.0;

Binfty = 0.2; % far-field liquid composition of B

Cinfty = 0.1; % far-field liquid composition of C

Tinfty = 5; % far-field temperature

% Tinf=0.4;

% Binf=0.55;

% Cinf=0.35;

%

% phase diagram:

%

BE = 1/3; % liquid composition of B at eutectic interface

TE = -19; % temperature at the eutectic interface

CE = 1/3; % liquid composition of C at the eutectic interface

BEAB = 0.5; % eutectic concentration of B on the AB binary diagram

119

TEAB = -5; % eutectic temperature on the AB binary diagram

%

% C1E=1/3;

% C2E=1/3;

% C1AB=1/2;

% C2AB=1/2;

%

% for symmetric case (with TEAB=TEAC, not just symmetric compositions)

% need a special TEAB

%

%TEAB=-1+(1/6)/(C1inf-1/3);

%

% M1C=(TEAB+1)/(C1AB-C1E);

% M2C=(TEAB+1)/(C2AB-C2E);

% M1=(1-M2C*(C2inf-C2E))/(C1inf-C1E-(M2C/M1C)*(C2inf-C2E));

% M2=M2C*(1-M1/M1C);

%

% other related quantities

%

deltabsq = 100; % kappa / DB (ratio of thermal to solutal diffusivity)

deltacsq = 100; % kappa / DC (ratio of thermal to solutal diffusivity)

gamma = -1; % Lv / cbar*(mB+mC)

TM = 0; % temperature above which water is liquid and below which

% it is solid

guessVec=[0.1,0.2,0.3]; % vector of guesses for hS, hP and BP

120

M = getMvec(BE, TE, CE, TEAB, BEAB, TM);

% liquidus and cotectic line slopes

mB = M(1);

mC = M(2);

mBC = M(3);

mCC = M(4);

Da=0.05;

Vel=1;

% TS1star=-1-M1C*C1E;

% TS2star=-1+M2C*(1-C2E);

% TPstar=-1+M1*(1-C1E)-M2*C2E;

% !!!!! etc ...

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% SETUP THREE LAYER BASE STATE %%%%%%%%%%%%%%%%%%

%%%

%

[TBLx,BBLx,CBLx,...

TBPx,BBPx,CBPx,XBPx,...

TBSx,BBSx,CBSx,XBSx,PHIBBSx,...

hpB,hsB,zlB,zpB,zsB] = getBaseState(guessVec,BE,TE,CE,...

deltabsq,deltacsq,Binfty,Cinfty,Tinfty,gamma,BEAB,TEAB,TM);

121

% [TBLx,BBLx,CBLx,...

% TBPx,BBPx,CBPx,XBPx,...

% TBSx,BBSx,CBSx,XBSx,PHIBBSx,...

% hpB,hsB,zlB,zpB,zsB]=get_base_state(...parameters to pass...);

%

% plot_base_state;

%

% xbs_save=[zlB’ TBLx BBLx CBLx ...

% zpB’ TBPx BBPx CBPx XBPx ...

% zsB’ TBSx BBSx CBSx XBSx PHIBBSx];

% save ’basestate_dat.m’ xbs_save -ascii -double

%

%%%

%%%%%%%%%%%%%%%%%% Set up Chebyshev Points, Differentiation Matrices %%%%%%

%%%

NL=16;

NP=16;

NS=16;

[barzl,zl,DL,DL2,DL3,DL4,IL]=setup_cheb(NL,H,hpB);

% barzl are Chebyshev points cos(j*pi/NL) j=0:NL

% zl are points rescaled on [hpB,H]

% DL,DL2 are wrt [hpB,H]

[barzp,zp,DP,DP2,DP3,DP4,IP]=setup_cheb(NP,hpB,hsB);

% barzp are Chebyshev points cos(j*pi/NP) j=0:NP

% zp are points rescaled on [hsB,hpB]

122

% DP,DP2 are wrt [hsB,hpB]

[barzs,zs,DS,DS2,DS3,DS4,IS]=setup_cheb(NS,hsB,0);

% barzs are Chebyshev points cos(j*pi/NS) j=0:NS

% zs are points rescaled on [0,hsB]

% DS,DS2 are wrt [0,hsB]

%%%

%%%%%%%%%%% CONVERT BASE STATE EXPRESSIONS TO CHEBYSHEV POINTS %%%%%%%%%%%%

%%%

TBL=spline(zlB,TBLx,zl); % provides base state liquid temperature at points zl

BBL=spline(zlB,BBLx,zl);

CBL=spline(zlB,CBLx,zl);

TBP=spline(zpB,TBPx,zp);

BBP=spline(zpB,BBPx,zp);

CBP=spline(zpB,CBPx,zp);

XBP=spline(zpB,XBPx,zp);

TBS=spline(zsB,TBSx,zs);

BBS=spline(zsB,BBSx,zs);

CBS=spline(zsB,CBSx,zs);

XBS=spline(zsB,XBSx,zs);

PHIBBS=spline(zsB,PHIBBSx,zs);

% !!!!! etc.

%%%

%%%%%%%%%%% DEFINE BASE STATE EXPRESSIONS USED TO DEFINE MATRICES %%%%%%%%%

%%%

%

123

dBdzBL=DL*BBL’;

dCdzBL=DL*CBL’;

dBdzBP=DP*BBP’;

dCdzBP=DP*CBP’;

dTdzBPdiag=diag(DP*TBP’);

dBdzBLdiag=diag(DL*BBL’);

dCdzBLdiag=diag(DL*CBL’);

dTdzBLdiag=diag(DL*TBL’);

dBdzBPdiag=diag(DP*BBP’);

dXdzBPdiag=diag(DP*XBP’);

XBPdiag=diag(XBP);

BBPdiag=diag(BBP);

d2BdzBPdiag=diag(DP2*BBP’);

d2TdzBL=DL2*TBL’;

d2TdzBP=DP2*TBP’;

d2BdzBL=DL2*BBL’;

d2CdzBL=DL2*CBL’;

chiCubedBPdiag=diag(XBP).^3;

dXdzBP=DP*XBP’;

d2BdzBP=DP2*BBP’;

d2CdzBP=DP2*CBP’;

dCdzBPdiag=diag(DP*CBP’);

CBPdiag=diag(CBP);

d2CdzBPdiag=diag(DP2*CBP’);

dBdzBS=DS*BBS’;

dCdzBS=DS*CBS’;

124

chiCubedBSdiag=diag(XBS).^3;

BBSdiag=diag(BBS);

dXdzBS=DS*XBS’;

dPdzBS=DS*PHIBBS’;

d2CdzBS=DS2*CBS’;

dCdzBSdiag=diag(DS*CBS’);

XBSdiag=diag(XBS);

CBSdiag=diag(CBS);

d2CdzBSdiag=diag(DS2*CBS’);

d2TdzBS=DS2*TBS’;

dTdzBSdiag=diag(DS*TBS’);

d2BdzBS=DS2*BBS’;

dBdzBSdiag=diag(DS*BBS’);

dXdzBSdiag=diag(DS*XBS’);

d2BdzBSdiag=diag(DS2*BBS’);

deltaT=TM-TE;

MB=mB/deltaT;

MC=mC/deltaT;

MBC=mBC/deltaT;

MCC=mCC/deltaT;

%S=167*(1/deltaT);

S=(gamma*(mB+mC))/(TM-TE);

for i=1:NP+1

PIstuffPtimesDP(i,:)=(3/XBP(i)*dXdzBP(i))*DP(i,:);

125

end

for i=1:NS+1

PIstuffStimesDS(i,:)=(3/XBS(i)*dXdzBS(i))*DS(i,:);

end

% TBLMAT=diag(TBL); % base state temperature

% D_TBL=diag(DL*TBL); % first derivative of base state temperature

% D2_TBL=diag(DL2*TBL); % second derivative of base state temperature

% !!!!! etc....

%

%%%

%%%%%%%%%%%%%%%%%%%%% GET EIGENVALUES AND EIGENFUNCTIONS %%%%%%%%%%%%%%%%%%

%%%

%

%%

%%%

%%%%

%%%%%

%%%%%%

%%%%%%%

%%%%%%%%

%%%%%%%%%

%%%%%%%%%% !!!THIS SECTION FOR DEBUGGING AND RUNNING SPECIFIC CASES

% Ratest=0;

126

% Ra2test=90000:-1000:0;

% len=length(Ra2test);

% Ra1test=0;

% alpha=20;

% figure(10);

% %[A,B]=getABtern3layer(alpha,Ratest,Ra1test,Ra2test,...parameter list ...);

% for k=1:len

% [A,B] = getABtern3layer(alpha,Ra1test,Ra2test(k),Ratest,Da,dBdzBL,deltabsq,...

% deltacsq,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

% dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

% dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

% d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,Vel,...

% chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

% CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PHIBBS,DS2,...

% chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

% XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

% d2BdzBSdiag);

% [V,D]=eig(A,B);

% % figure(12);

% % plot(real(diag(D)),imag(diag(D)),’rh’);hold on;

% [eig_sorted,eig_label,beta]=sort_eigs(diag(D));

% eig_sorted;

% plot(Ra2test(k),real(eig_sorted(1)),’bs’);hold on;

% end

% %figure(13);

% %spy(A);

127

% %figure(14);

% %spy(B);

%return;

%%%%%%%%%%

%%%%%%%%%

%%%%%%%%

%%%%%%%

%%%%%%

%%%%%

%%%%

%%%

%%

%

%

% set min and max wavenumbers to scan through

% (set them the same to compute a specific, single wavenumber)

modewatch=1; % normally set this to = 1 for tracking the eigenvalue

% with the largest real part. Set = 2 for second eigenvalue

% with the second largest real part, etc.

alphamin=0.2;

alphamax=2.0;

%

% set numalpha to be the number of wavenumbers values to calculate on

% the interval [alphamin,alphamax]

%

128

numalpha=20; % the smallest this can be is 2 ...

%

% set min and max Rayleigh number bracket

%

Rmin=0;

Rmax=200000000;

tol=10^(-8);

%

%%%

%%%

%%%%%%%%% start the loop through different wavenumber values %%%%%%%%%%%

%%%%%%%%% using bisection to zero out the real part of the %%%%%%%%%%%

%%%%%%%%% numbered ’modewatch’ %%%%%%%%%%%

%%%

%%%

Ra=0;

RaB=0;

for ia=1:numalpha

alpha=alphamin+(alphamax-alphamin)*(ia-1)/(numalpha-1);

a2=alpha^2;

Rlow=Rmin;

Rhigh=Rmax;

%%

%%

%

% get omegamax_min (the largest real(omega) for R=Rmin)

129

%

%%

%%

% need to decide which Rayleigh numbers to fix and which ones to vary !!!!!

RaC=Rmin;

%[A,B]=getAB3layer(alpha,Ra,RaB,RaC,...parameter list...);

[A,B] = getABtern3layer(alpha,RaB,RaC,Ra,Da,dBdzBL,deltabsq,...

deltacsq,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,Vel,...

chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PHIBBS,DS2,...

chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

d2BdzBSdiag);

[V,D]=eig(A,B);

%

% The following function -- sort_eigs -- sorts the eigenvalues

% for these two cases (largest to smallest), keeping track of their

% original locations so that the corresponding eigenfunctions can be

% retrieved and identifies the infinite eigenvalues (identified

% by beta=0).

%

[eig_sorted,eig_label,beta]=sort_eigs(diag(D));

%

130

% Identify specifically the max eigenvalue and corresponding

% eigenfunction location for the first Rmin case ... (this gets

% repeated below for the Rmax case and then the general Rm case

% within the bisection code.

%

omegamax_min=eig_sorted(modewatch);

Kval=eig_label(modewatch);

%%

%%

%

% get omegamax_max (the largest real(omega) for R=Rmax)

%

%%

%%

% need to decide which Rayleigh numbers to fix and which ones to vary !!!!!

RaC=Rmax;

%[A,B]=getAB3layer(alpha,Ra,Ra1,Ra2,...parameter list...);

[A,B] = getABtern3layer(alpha,RaB,RaC,Ra,Da,dBdzBL,deltabsq,...

deltacsq,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,Vel,...

chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PHIBBS,DS2,...

chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

131

d2BdzBSdiag);

[V,D]=eig(A,B);

%

% The following function -- sort_eigs -- sorts the eigenvalues

% for these two cases (largest to smallest), keeping track of their

% original locations so that the corresponding eigenfunctions can be

% retrieved and identifies the infinite eigenvalues (identified

% by beta=0).

%

[eig_sorted,eig_label,beta]=sort_eigs(diag(D));

%

% Identify specifically the max eigenvalue and corresponding

% eigenfunction location for the first Rmin case ... (this gets

% repeated below for the Rmax case and then the general Rm case

% within the bisection code.

%

omegamax_max=eig_sorted(modewatch);

Kval=eig_label(modewatch);

%%%

%

if sign(real(omegamax_max))==sign(real(omegamax_min))

display(’WARNING: BRACKET NOT FOUND FOR BISECTION’)

omegamax_max

omegamax_min

return;

end

132

%

k=1;

Rmid(1)=Rlow+(Rhigh-Rlow)/2;

err(1)=(Rhigh-Rlow)/2;

while err(k)>tol

k=k+1;

Rm=Rlow+(Rhigh-Rlow)/2;

% need to decide which Rayleigh numbers to fix and which ones to vary !!!!!

RaC=Rm;

%%

%%

%

% get omegamax (the largest real(omega) for RaT=Rm)

%

%%

%%

% [A,B]=getAB3layer(alpha,Ra,Ra1,Ra2,...parameter list...);

[A,B] = getABtern3layer(alpha,RaB,RaC,Ra,Da,dBdzBL,deltabsq,...

deltacsq,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,Vel,...

chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PHIBBS,DS2,...

chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

133

d2BdzBSdiag);

[V,D]=eig(A,B);

%

% The following function -- sort_eigs -- sorts the eigenvalues

% for these two cases (largest to smallest), keeping track of their

% original locations so that the corresponding eigenfunctions can be

% retrieved and identifies the infinite eigenvalues (identified

% by beta=0).

%

[eig_sorted,eig_label,beta]=sort_eigs(diag(D));

%

% Identify specifically the max eigenvalue and corresponding

% eigenfunction location for the first Rmin case ... (this gets

% repeated below for the Rmax case and then the general Rm case

% within the bisection code.

%

omegamax=eig_sorted(modewatch);

Kval=eig_label(modewatch);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% actual bisection step %%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if sign(real(omegamax))==sign(real(omegamax_min))

Rlow=Rm;

omegamax_min=omegamax;

else

Rhigh=Rm;

134

omegamax_max=omegamax;

end

Rmid(k)=Rm;

err(k)=(Rhigh-Rlow)/2;

end % bisection (while) loop

%

Kval_rec(ia)=Kval

alpha_rec(ia)=alpha

Ra_rec(ia)=Rm % this could represent RaB, RaC or Ra

omR_rec(ia)=real(omegamax);

omI_rec(ia)=imag(omegamax);

end % alpha loop

%

% test the computed Rayleigh numbers over the given range in alpha to

% identify the critical values alphacrit, Racrit, Ra1crit, Ra2crit

% omIcrit and omRcrit

%

% !!!!! maybe need to use min(Ra_rec) ?????

[Ra_BIG,ci]=min(Ra_rec); % Ra_BIG = maximum discrete Rayleigh number

% ci = index of critical value

%

% apply a local parabolic fit to identify the actual critical values

%

if ci ~= length(alpha_rec);

if ci ~= 1;

alphaMAT=[alpha_rec(ci-1)^2 alpha_rec(ci-1) 1;...

135

alpha_rec(ci)^2 alpha_rec(ci) 1;...

alpha_rec(ci+1)^2 alpha_rec(ci+1) 1];

Rvec=[Ra_rec(ci-1);Ra_rec(ci);Ra_rec(ci+1)];

xABC=alphaMAT\Rvec;

alphacrit=-xABC(2)/(2*xABC(1))

RaCcrit=xABC(3)-xABC(2)^2/(4*xABC(1))

RaBcrit=RaB; % note Ra is fixed

Racrit=Ra; % note RaC is fixed

%

% with the critical values, resolve to get omega, etc.

%

a2crit=alphacrit^2;

% [A,B]=getAB3layer(alphacrit,Racrit,Ra1crit,Ra2crit,...parameter list...);

[A,B] = getABtern3layer(alphacrit,RaBcrit,RaCcrit,Racrit,Da,dBdzBL,deltabsq,...

deltacsq,dCdzBL,dBdzBP,dCdzBP,DL2,DL3,DL4,NL,NP,NS,IL,IP,MB,MC,...

dTdzBPdiag,dBdzBLdiag,dCdzBLdiag,dTdzBLdiag,DP2,S,PIstuffPtimesDP,...

dBdzBPdiag,dXdzBPdiag,XBPdiag,BBPdiag,d2BdzBPdiag,XBP,d2TdzBL,...

d2TdzBP,d2BdzBL,d2CdzBL,MBC,MCC,IS,DL,DP,DS,PIstuffStimesDS,Vel,...

chiCubedBPdiag,BBL,dXdzBP,d2BdzBP,BBP,CBL,d2CdzBP,...

CBP,dCdzBPdiag,CBPdiag,d2CdzBPdiag,dBdzBS,dCdzBS,XBS,PHIBBS,DS2,...

chiCubedBSdiag,BBSdiag,dXdzBS,dPdzBS,d2CdzBS,dCdzBSdiag,dXdzBSdiag,...

XBSdiag,CBSdiag,d2CdzBSdiag,d2TdzBS,dTdzBSdiag,d2BdzBS,dBdzBSdiag,...

d2BdzBSdiag);

[V,D]=eig(A,B);

[eig_sorted,eig_label,beta]=sort_eigs(diag(D));

omegamaxATCRIT=eig_sorted(modewatch);

136

KvalATCRIT=eig_label(modewatch);

%

omIcritATCRIT=imag(omegamaxATCRIT);

omRcritATCRIT=real(omegamaxATCRIT);

%

% call m-file that plots results at the critical wavenumber

%

eigfunctionATCRIT_plotter_V;

streamfunctionATCRIT_plotter_V;

else

display(’NO CRITICAL POINT IN WAVENUMBER BRACKET (min at left)’)

end

else

display(’NO CRITICAL POINT IN WAVENUMBER BRACKET (min at right)’)

end

%

% call m-file that plots various bits of these results

%

eigfunction_plotter_V;

streamfunction_plotter_V;

return;

137

%%%

%

% rhsBCodePri.m

%

% Function to compute the right hand side of the ODEs for B and C in the

% primary mushy layer.

%

% This system of coupled ODEs is solved using ode23.

%

% INPUTS: z........a position within the secondary musy layer

%

% BCvals...liquid compositions of B and C in the primary mush

%

% BPguess...guessed value for B at the top of the primary mushy

% layer

%

% CPguess...guessed value for C at the top of the primary mushy

% layer

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: vector of B and C values in primary mushy layer at z

%

%%%

function rhsBC = rhsBCodePri(z, BCvals, BPguess, CPguess, paramVec)

% dB/dz = deltabsq(Binfty/chi - B)

138

% dC/dz = deltacsq(Cinfty/chi - C)

% separate out phase diagram constants

deltabsq = paramVec(4);

deltacsq = paramVec(5);

Binfty = paramVec(6);

Cinfty = paramVec(8);

% in order to compute B and C at z, we need the liquid fraction at z

chi = chiPrimary(BCvals(1), BPguess, BCvals(2), CPguess, paramVec);

% compute B at z

rhsBC(1,1) = deltabsq * (Binfty / chi - BCvals(1));

% compute C at z

rhsBC(2,1) = deltacsq * (Cinfty / chi - BCvals(2));

139

%%%

%

% rhsBodeSec.m

%

% Function to compute the right hand side of the ODE for B in the secondary

% mushy layer.

%

% INPUTS: z...position within the secondary musy layer

%

% B...liquid composition of B

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: rhs...value of B at current positiion z

%

%%%

function rhs = rhsBodeSec(z, B, paramVec)

% dB/bz = -delta_b^2(B + phi_b/chi - B_inf/chi)

% separate out phase diagram constants

deltabsq = paramVec(4);

Binfty = paramVec(6);

% determine chi (liquid fraction) for current value of B

chi = chiSecondary(B, paramVec);

140

% solid fraction of B in the secondary mushy layer

phi_b = phiBsecondary(B, chi, paramVec);

% solve right hand side of ODE for B in the secondary mushy layer

rhs = -deltabsq * (B + phi_b / chi - Binfty / chi);

141

function [barzp,zp,DP,DP2,DP3,DP4,IP]=setup_cheb(NP,Htop,Hbot);

% edited (6-6-08, DMA)

% This is the Matlab function file that sets up

% the basic grid and Chebyshev differentiation

% matrices. It is called by pm_three_layer.m.

%

%

% Chebyshev Points: bar{z}=cos(j*pi/N), j=0,1,2,...,N

%

barzp=cos([0:NP]*pi/NP);

%

% rescalings for mushy layer thickness in terms of Chebyshev scaling

%

LP=(Htop-Hbot)/2;

AP=1/LP;

zp=Htop+LP*(barzp-1);

%

% define chebyshev differentiation matrix:

%

%[D,x]=cheb(N);D2=D^2;D3=D^3;D4=D^4;

%

[DP,x]=cheb(NP);

DP=AP*DP;

DP2=DP^2;

DP3=DP^3;

DP4=DP^4;

142

%

% define identity matrix for use in setting up matrices

%

IP=eye(NP+1);

143

%%%

%

% solveMush.m

%

% Main driver used to compute model parameters within the mushy layers.

%

% INPUTS: guessVec...three element vector of guesses for hS, hP and BP

%

% paramVec...vector of ternary phase diagram constants

%

% OUTPUTS: zSec...vector of z values through secondary mushy layer

%

% Bsec...liquid composition of B through secondary mushy layer

%

% zPri...vector of z values throuhg primary mushy layer

%

% Bpri...liquid composition of B through primary mushy layer

%

% Cpri...liquid composition of C through primary mushy layer

%

%%%

function [zSec,Bsec,zPri,Bpri,Cpri] = solveMush(guessVec, paramVec)

% separate out phase diagram constants

BE = paramVec(1);

TE = paramVec(2);

144

CE = paramVec(3);

deltabsq = paramVec(4);

deltacsq = paramVec(5);

Binfty = paramVec(6);

Tinfty = paramVec(7);

Cinfty = paramVec(8);

gamma = paramVec(9);

gammab = paramVec(10);

BEAB = paramVec(11);

TEAB = paramVec(12);

TM = paramVec(13);

mB = paramVec(14);

mC = paramVec(15);

mBC = paramVec(16);

mCC = paramVec(17);

mBbar = paramVec(18);

mCbar = paramVec(19);

% decrease the relative and absolute error tolerances for ode23

options = odeset(’RelTol’,1e-5,’AbsTol’,1e-8);

% determine unknown quantities (hS, hP and BP)

unknowns = fsolve(@findUnknowns, guessVec, [], paramVec);

% determine model variable values using previously unknown quantities

% (first solve ODE for B in the secondary mushy layer)

145

[zSec, Bsec] = ode23(@rhsBodeSec, [0 unknowns(1)], BE, options, paramVec);

deltaTB = 1/((TM-Tinfty)/mB+Binfty+(mCbar/mBbar)*Cinfty);

deltaTC = 1/((TM-Tinfty)/mC+Cinfty+(mBbar/mCbar)*Binfty);

% using guessed value for BP, find CP

CPguess = (-deltaTB*(deltabsq-1)*(unknowns(3)-Binfty))/(deltaTC*(deltacsq-1)) ...

+ Cinfty + 1/(deltaTC*(deltacsq-1));

% read out the last entry from the B values (BS)

BScomp = Bsec(length(Bsec));

% using BS, next find CS

CScomp = (mBC / mCC) * (BScomp - BEAB);

% next solve ODEs for B and C in the primary mushy layer

[zPri, BCvalsPri] = ode23(@rhsBCodePri, [unknowns(1), unknowns(2)], ...

[BScomp, CScomp], options, unknowns(3), CPguess, paramVec);

Bpri = BCvalsPri(:,1);

Cpri = BCvalsPri(:,2);

146

function [eig_vec_ordered,eig_label_vec,beta]=sort_eigs(DD);

% edited (9-25-07, DMA)

% This is the Matlab function file that sorts the

% eigenvalues in terms of their real parts (largest to smallest)

% from a list of eigenvalues DD subject to omission of infinite

% eigenvalues (determined by whether or not 1/D(kk)==0).

%

% This function file returns

%

% eig_vec_ordered = eigenvalues ordered from maximum real part

% to minimum real part ... the non-infinite

% ones are stored at the beginning of the

% vector so, for example, eig_vec_ordered(1)

% should always contain the largest non-infinite

% eigenvalue.

%

% eig_label_vec = vector list of addressess for the original

% location of the eigenvalues. This is used

% in the calling code to identify the correct

% eigenfunction associated with each (now shuffled)

% eigenvalue.

%

% beta = this is a vector with entry 1 if the eigenvalue was finite

% 0 if the eigenvalue was infinite

%

betavec=1./DD;

147

sizeDD=length(DD);

eig_vec_ordered=zeros(sizeDD,1);

eig_label_vec=zeros(sizeDD,1);

beta=zeros(sizeDD,1);

%

[yvec,ivec]=sort(-real(DD));

i=0;

ib=sizeDD+1;

for kk=1:sizeDD

j=ivec(kk);

% if betavec(j)~=0; % only interested in non-infinite eigenvalues

if DD(j) < 10^(7)

i=i+1;

eig_vec_ordered(i,1)=DD(j);

eig_label_vec(i,1)=j;

beta(i,1)=1;

else

ib=ib-1;

eig_vec_ordered(ib,1)=0;

eig_label_vec(ib,1)=j;

beta(ib,1)=0;

end

end

148

% this file called from pm_dd_bisection_V.m ... it plots streamfunctions

% at the critical Rayleigh number and wavenumber

fprintf ’Plotting streamfunction...\n’

Nplot=NL+NP+NS;

%%%

%%%

%%%%%%%%%%%%%%%%% PROCESS AND PLOT RESULTS %%%%%%%%%%%%%%%%

%%%

%%%

%

% primary layer vertical velocity perturbation

%

%wpstart=1;

%wpstop=Nplot+1;

%wp_vec=V(wpstart:wpstop,KvalATCRIT);

%

%wpREAL=real(wp_vec);

%wpIMAG=imag(wp_vec);

%

liqtot=4*(NL+1);

pritot=5*(NP+1)+1;

jSL = 1:NL+1;

jSP = (2:NP+2) + liqtot;

jSS=(2:NS+2)+liqtot+pritot;

%

149

psiLIQ=V(jSL,Kval);

psiPRI=V(jSP,Kval);

psiSEC=V(jSS,Kval);

PSI=[psiLIQ;psiPRI;psiSEC];

%

PSIr=real(PSI);

PSIi=imag(PSI);

%

figure(9)

%

% set up x-z plane

%

XMIN=0;

XMAX=4; % 4*pi/alphacrit;

DELTAX=0.005;

xp = [XMIN:DELTAX:XMAX];

[XPPLOT,ZPPLOT]=meshgrid(xp,[zl,zp,zs]);

%

if imag(omegamax) == 0 % real mode

%

% define z-dependent part of streamfunction

%

for i=1:length(xp)

%WPHAT(:,i)=wpREAL;

PSIHAT(:,i)=PSIr;

end

150

%PSIP=(2/alphacrit)*sin(alphacrit*XPPLOT).*WPHAT;

PSIP=-2*(PSIHAT.*sin(alpha*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction’,’FontSize’,16)

%

else % oscillatory mode

for i=1:length(xp)

%WPHATr(:,i)=wpREAL;

%WPHATi(:,i)=wpIMAG;

PSIHATr(:,i)=PSIr;

PSIHATi(:,i)=PSIi;

end

%%%%

subplot(2,2,1);

t=0;

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(imag(omegamax)*t + alpha*XPPLOT) + ...

PSIHATr.*sin(imag(omegamax)*t + alpha*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t=0’,’FontSize’,16)

%%%%

151

subplot(2,2,2)

t=pi/(2*imag(omegamax));

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(imag(omegamax)*t + alpha*XPPLOT) + ...

PSIHATr.*sin(imag(omegamax)*t + alpha*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= \pi/2’,’FontSize’,16)

%%%%

subplot(2,2,3)

t=pi/(imag(omegamax));

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(imag(omegamax)*t + alpha*XPPLOT) + ...

PSIHATr.*sin(imag(omegamax)*t + alpha*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= \pi’,’FontSize’,16)

%%%%

subplot(2,2,4)

t=3*pi/(2*imag(omegamax));

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

152

PSIP=-2*(PSIHATi.*cos(imag(omegamax)*t + alpha*XPPLOT) + ...

PSIHATr.*sin(imag(omegamax)*t + alpha*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= 3\pi/2’,’FontSize’,16)

end

%

print -deps pm_streampertATCRIT.eps

153

% this file called from pm_dd_bisection_V.m ... it plots streamfunctions

% at the critical Rayleigh number and wavenumber

fprintf ’Plotting streamfunction...\n’

Nplot=NL+NP+NS;

%%%

%%%

%%%%%%%%%%%%%%%%% PROCESS AND PLOT RESULTS %%%%%%%%%%%%%%

%%%

%%%

%

% primary layer vertical velocity perturbation

%

%wpstart=1;

%wpstop=Nplot+1;

%wp_vec=V(wpstart:wpstop,KvalATCRIT);

%

%wpREAL=real(wp_vec);

%wpIMAG=imag(wp_vec);

%

liqtot=4*(NL+1);

pritot=5*(NP+1)+1;

jSL = 1:NL+1;

jSP = (2:NP+2) + liqtot;

jSS=(2:NS+2)+liqtot+pritot;

%

154

psiLIQ=V(jSL,KvalATCRIT);

psiPRI=V(jSP,KvalATCRIT);

psiSEC=V(jSS,KvalATCRIT);

PSI=[psiLIQ;psiPRI;psiSEC];

%

PSIr=real(PSI);

PSIi=imag(PSI);

%

figure(9)

%

% set up x-z plane

%

XMIN=0;

XMAX=4; % 4*pi/alphacrit;

DELTAX=0.005;

xp = [XMIN:DELTAX:XMAX];

[XPPLOT,ZPPLOT]=meshgrid(xp,[zl,zp,zs]);

%

if omIcritATCRIT == 0 % real mode

%

% define z-dependent part of streamfunction

%

for i=1:length(xp)

%WPHAT(:,i)=wpREAL;

PSIHAT(:,i)=PSIr;

end

155

%PSIP=(2/alphacrit)*sin(alphacrit*XPPLOT).*WPHAT;

PSIP=-2*(PSIHAT.*sin(alphacrit*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction At Critical Rayleigh Number’,’FontSize’,16)

%

else % oscillatory mode

for i=1:length(xp)

%WPHATr(:,i)=wpREAL;

%WPHATi(:,i)=wpIMAG;

PSIHATr(:,i)=PSIr;

PSIHATi(:,i)=PSIi;

end

%%%%

subplot(2,2,1);

t=0;

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

PSIHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t=0’,’FontSize’,16)

%%%%

156

subplot(2,2,2)

t=pi/(2*omIcritATCRIT);

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

PSIHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= \pi/2’,’FontSize’,16)

%%%%

subplot(2,2,3)

t=pi/(omIcritATCRIT);

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

PSIP=-2*(PSIHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

PSIHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= \pi’,’FontSize’,16)

%%%%

subplot(2,2,4)

t=3*pi/(2*omIcritATCRIT);

%PSIP=(2/alphacrit)*(WPHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

% WPHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

157

PSIP=-2*(PSIHATi.*cos(omIcritATCRIT*t + alphacrit*XPPLOT) + ...

PSIHATr.*sin(omIcritATCRIT*t + alphacrit*XPPLOT));

contour(XPPLOT,ZPPLOT,PSIP);

%

xlabel(’x’,’FontSize’,16);ylabel(’z’,’FontSize’,16)

title(’Streamfunction: \sigma_I t= 3\pi/2’,’FontSize’,16)

end

%

print -deps pm_streampertATCRIT.eps

158

%%%

%

% tempPrimary.m

%

% Function to compute the temperature profile through the primary mushy

% layer for the given input values of B and C.

%

% INPUTS: B...vector of B composition values

%

% C...vector of C composition values

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: temp...temperature profile through the primary mushy layer

%

%%%

function temp = tempPrimary(B,C,paramVec)

% separate out phase diagram constants

TM = paramVec(13);

mB = paramVec(14);

mC = paramVec(15);

temp = TM + mB .* B + mC .* C;

159

%%%

%

% tempSecondary.m

%

% Function to compute the temperature profile through the secondary mushy

% layer for the given values of B input.

%

% INPUTS: B...vector of B composition values

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: temp...temperature profile through the secondary mushy layer

%

%%%

function temp = tempSecondary(B, paramVec)

% separate out phase diagram constants

BE = paramVec(1);

TE = paramVec(2);

mBC = paramVec(16);

temp = -mBC .* (B - BE) + TE;

160

%%%

%

% Tliquid.m

%

% Function to compute the temperature profile through the liquid layer.

%

% INUPTS: TP...temperature at the liquid-mush interface

%

% hP...position of the liquid-mush interface

%

% zLiq...vector of z (position) values in the liquid layer at

% which to evaluate the temperature

%

% paramVec...vector of phase diagram constants

%

% OUTPUTS: temperature profile vector through the liquid layer

%

%%%

function T = Tliquid(TP,hP,zLiq,paramVec)

% separate out phase diagram constants

Tinfty = paramVec(7);

T = Tinfty + (TP - Tinfty) .* exp(hP - zLiq);

161

Bibliography

162

Bibliography

[1] A. Aitta, H.E. Huppert, and M.G. Worster, Diffusion-controlled solidification of a
ternary melt from a cooled boundary, J. Fluid Mech. 432 (2001), 201–217.

[2] D.M. Anderson, A model for diffusion-controlled solidification of ternary alloys in
mushy layers, J. Fluid Mech. 483 (2003), 165–197.

[3] D.M. Anderson and T.P. Schulze, Linear and nonlinear convection in solidifying
ternary alloys, J. Fluid Mech. 545 (2005), 213–243.

[4] S.H. Davis, Theory of solidification, Cambridge University Press, 2001.

[5] A.F. Thompson, H.E. Huppert, M.G. Worster, and A. Aitta, Solidification and com-
positional convection of a ternary alloy, J. Fluid Mech. 497 (2003), 167–199.

[6] L.N. Trefethen, Spectral methods in matlab, Society for Industrial and Applied Math-
ematics, 2000.

[7] M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167
(1986), 481–501.

[8] , Natural convection in a mushy layer, J. Fluid Mech. 224 (1991), 335–359.

[9] , Instabilities of the liquid and mushy regions during solidification of alloys, J.
Fluid Mech. 237 (1992), 649–669.

[10] , Interfaces on all scales during solidification and melting, Interfaces for the
Twenty-First Century (M.K. Smith, M.J. Miksis, G.B. McFadden, G.P. Neitzel, and
D.R. Canright, eds.), Imperial College Press, 2002, pp. 187–201.

163

Curriculum Vitae

Terrance J. Flynn, Jr. received a Bachelor of Science from Southern Illinois University in
2000.

164

