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ABSTRACT 

BUILDING EXTRACTION FROM LIDAR USING EDGE DETECTION 

Justin Miller, M.S. 

George Mason University, 2015 

Thesis Director: Dr. Arie Croitoru 

 

Light Detection and Ranging (LiDAR) has become a versatile data source for many 

applications including building detection. Previously, manual photogrammetric methods 

were needed to accurately digitize building footprints, often resulting in ineffective and 

costly data collection process. Automated building extraction from imagery has been 

studied extensively, in particular using edge detection and image segmentation methods. 

However, the utilization of such methods, and in particular edge detection, for building 

extraction from LiDAR has not been fully explored. Consequently, this research explores 

the use of edge detection-based feature extraction as a possible framework for building 

detection and delineation in LiDAR data. In particular, building on existing edge 

detection and image segmentation operators, the proposed framework utilizes a rotating 

kernel for detecting the edges of buildings as well as the watershed segmentation operator 

for segmenting and identifying each building. Once identified, each building is then 

delineated using a combination of Hough transform and topological polygon 
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construction, resulting in the building’s footprint. The building extraction process was 

tested on three different datasets containing buildings of various shapes, and the 

extraction results were compared to manually extracted footprints in order to evaluate the 

accuracy and precision of the proposed framework. The analysis results show that the 

proposed framework was 90% accurate with 95% of the extracted results area overlapped 

the manually extracted footprints.
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CHAPTER 1: INTRODUCTION 

Photogrammetry has been around for decades providing accurate measurements, 

terrain extraction, and feature extraction. The imagery sources available to 

photogrammetrists at their discipline’s infancy were aerial imagery, satellite imagery, and 

synthetic aperture radar (SAR). Until recently, the only way to produce digital elevation 

models remotely was to go through a tedious process of triangulating the images and 

manually extracting features. As technology for photogrammetry improved, the 

triangulation process became faster and easier. Newer technologies, including LiDAR, 

were developed and started an evolution for terrain and feature extraction. LiDAR was 

developed over 40 years ago for mapping particles in the atmosphere (National Oceanic 

and Atmospheric Administration (NOAA) Costal Services Center, 2012). It wasn’t until 

Global Position Systems (GPS) became available to moving sensors in the 1980s and the 

improvement of internal measurement units (IMU) in the 1990s when LiDAR started to 

be used for measuring the Earth’s surface (National Oceanic and Atmospheric 

Administration (NOAA) Costal Services Center, 2012). Today LiDAR has become more 

accurate and developed providing capabilities far beyond photogrammetry. 

1.1 The Need for Building Footprints 
In recent years, there has been a significant increase in the need for accurate 

three-dimensional (3D) data of urban areas and the continuous updates of the Earth’s 
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changing landscape. These needs have led to research efforts that aim to develop 

automatic and semiautomatic tools for the creation of such data. These automated and 

semiautomatic methods also need to produce accurate geospatial information while 

keeping labor and costs low. LiDAR is becoming the lead data source for producing 

accurate geospatial information.  

For this reason, LiDAR could have an important role in the automation of 

building detection and the creation of 3D topographical databases (Lee et al., 2008). For 

the reasons above, building extraction using the automatic techniques on LiDAR data has 

a great potential as a research topic to meet the demands for applications that use building 

footprints and modeling. Applications that currently use building footprints and modeling 

consist of simulation of disaster scenarios, cartography, urban planning and management, 

wireless network planning, line-of-sight analysis, virtual tours, and many others (San & 

Turker, 2010). Urban landscape modeling is necessary for planning drainage systems, 

street improvement projects, disaster management, and other tasks (Yu et al., 2010).  

The United States tears down about 1.75 billion square feet of buildings, 

renovates approximately 5 billion square feet, and builds approximately 5 billion square 

feet of new structures each year. It is estimated by 2035 that 75% of the structures will be 

either new or renovated. The newly built environments need planning, electricity, water, 

improved infrastructure, and other human-necessities and services.  The amount of 

change predicted to occur over the next few decades shows that there is a need for 

building modeling methods to be faster, less labor intensive, and cheaper. (Architecture 

2030 n.d.) 
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1.2 Statement of the Problem 
The production process of the traditional photogrammetric method is efficient and 

cost effective when creating smooth, generalized terrain models but when the terrain 

models are more detailed, the efficiency decreases and the cost increases. This is due to 

the need for higher resolution imagery and higher accuracy of triangulated stereo pairs 

(Zhou et al., 2004). Triangulation is a complex and tedious process that aligns two 

images of the same area but collected at different angles to create a three-dimensional 

(3D) view of the area. A remote sensing method similar to LiDAR, SAR, has been 

researched as a data source to provide automated building extraction (Tupin & Roux, 

2003). SAR is similar to LiDAR in that it is an active sensor but SAR data is often very 

difficult to interpret because it contains lay-overs, shadows, and noise, and in many cases 

buildings that are scarcely recognizable (Tupin & Roux, 2003). LiDAR contains minimal 

noise compared to SAR and is much more interpretable by humans.  

Developed in the 1970s, LiDAR is not new or immature, but has not fully 

matured either (Miliaresis & Kokkas, 2007). There are many applications and algorithms 

still being developed and explored. Some current applications of LiDAR are urban 

planning, telecommunication, environmental monitoring, 3D modeling, and military 

operations. One feature that is used by these applications and many more is the location 

of buildings. Determining where the next housing development or cell phone tower 

should be placed, how the expansion of cities are affecting the environment, and 

navigating a military convoy are all situations where it is a necessity  to know the 

locations of existing buildings. Previous photogrammetric techniques for building 

extraction used two-dimensional (2D) and stereo imagery to manually digitize buildings, 
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and like the traditional photogrammetric techniques used for terrain modeling, the 

techniques become inefficient and costs increase as the more detailed the products need 

to be.  

Since the Earth’s population continues to grow and the number of building 

footprints expand, databases need constant updating which can be time consuming and 

expensive. With technology advancing and becoming faster and more economical, and 

with the improved accuracy and resolution, LiDAR can be used to extract building 

footprints more efficiently and cost-effectively than other methods. Since raster 

processing is more mature than processing point clouds, DSMs can be used and 

processed like panchromatic images by using the same techniques and algorithms. This 

includes edge operators, raster math, and mathematical morphology. Research on using 

these algorithms and techniques on DSMs is limited which lead to the research in this 

thesis; the study of an approach to accurately and efficiently automate the creation of 

building footprints using methods already established and proven for imagery on raster 

data derived from LiDAR point clouds.  

1.3 Organization of Thesis 
The literature review chapter of this thesis discusses current and past research in 

edge detection of remotely sensed data. The approach studied and implemented in this 

thesis is discussed in Chapters 3 and 4. Data from Stafford County’s government website 

of the study area and two sets of digitized data were used for comparison to the 

automated footprints and is discussed in Chapter 5. Final remarks of the comparison 

results and future research possibilities are discussed in the conclusion chapter.  
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CHAPTER 2: LITERATURE REVIEW 

There has been a large amount of research on edge detectors, methods to process 

raster imagery, and feature extraction from imagery. Raster processing is well-studied, 

defined, and proven to produce various useful products. A better understanding of raster 

processing, in particular edge detection techniques, was established reviewing articles on 

the subject. LiDAR processing is not as established as raster processing and articles about 

established and proven LiDAR processes are limited but there is still active research 

about these processes. Processing LiDAR for building detection has become a more 

popular topic in the past decade. The topics of edge and building detection from raster 

imagery and LiDAR are reviewed and discussed in this chapter.  

2.1 LiDAR Basics 
LiDAR is becoming a more widely used remote sensing technique for various 

applications. LiDAR is an active sensor which provides its own energy source to send to 

the Earth’s surface and then records the signal when reflected back to the sensor. Passive 

sensors (i.e. colored image products) use the Sun’s energy that is reflected off the Earth’s 

surface and then the sensor records the signal. LiDAR is an active sensor and unique 

compared to the conventional panchromatic, colored, or multispectral images because it 

uses its own energy, the laser, and records that reflection off the Earth’s surface. The 

main product created from LiDAR is elevation models where traditional 
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photogrammetric tools and stereo imagery were used to create these elevation models 

(Zhou et al., 2004)  

A LiDAR system for aerial collection is comprised of a GPS, IMU, and the 

LiDAR sensor. The sensor sends a laser pulse thousands of times a second while 

recording each returned pulse. The laser emits energy at a particular wavelength, most 

commonly in the near infrared electromagnetic spectrum range, and it depends on the 

material composition of an object on how well the material reflects the energy (National 

Oceanic and Atmospheric Administration (NOAA) Costal Services Center, 2012). The 

LiDAR system records the location from which the returned pulse came, the elevation at 

that location, and the intensity of the returned pulse as points called a point cloud. To 

record the elevation and location from which the pulse came, the LiDAR system uses the 

aircraft’s position from the GPS information, the scanning angle of the sensor, rotations 

of the sensor’s platform from the IMU, and the time the pulse took to return. The GPS 

information is not as accurate as needed to properly calculate the position of the returned 

pulse. Positional errors recorded by a GPS base station near the collection site is used to 

improve the GPS information in the LiDAR data.  
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Figure 1: Laser Scanning (Renslow et al., 2012) 

 

A single pulse can have multiple returns depending on the object or material on 

the ground on which it is collecting, and can help describe the characteristics of the 

ground cover. Consider the tree in Figure 2, for instance. The top most branch(es) will 

return the first signal and a second signal will be returned by the next branch, and so on 

until laser cannot penetrate any further or it reaches the ground which will be the last 

return. The capability of being able to penetrate objects and record multiple returns, like 

the tree, is referred to as foliage penetration (FOPEN). 
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Figure 2: LiDAR Multiple Returns (Schuckman & Renslow, 2014) 

 

Pre-processing steps that are needed to reduce noise in the point cloud include 

flight line matching, which is aligning strips of LiDAR from each pass of the sensor, and 

removing spikes or holes. Spikes are caused by flying objects (e.g. birds, clouds) and 

random atmosphere refraction. Holes are caused from materials that absorb all the energy 

of the laser pulse, such as water and LiDAR shadows. LiDAR shadows are caused by tall 

objects or steep terrain where the laser cannot penetrate causing a large area with no 

return data similar for a building casting a shadow from the Sun. 

A digital surface model (DSM) and bare-earth model (BEM) can be created by 

converting the point cloud into a gridded or raster format where the pixel value is the 

elevation (z value) or the intensity value at that location. The resolution of the DSM is 

dependent on the density of the point cloud and the diameter of the laser beam. Usually 

each return is used to create its own DSM (i.e. first returns creates a first return DSM). 
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The value of a pixel is determined by an algorithm (e.g. Kriging, inverse weight, etc.) that 

uses the points inside, or closest to, the pixel’s region. A BEM can also be created using 

algorithms to eliminate objects above the Earth’s surface such as buildings, trees, cars, 

etc. to show only the ground’s characteristics. 

DSMs are usually created because of the immense amounts of storage and 

computation power needed to store, analyze, and visualize the point clouds. Raster 

processing is more developed and is faster than processing point clouds making DSMs 

more versatile for the basic LiDAR user. These images can be processed to detect the 

edges of objects that change in elevation such as the elevation difference between the 

edge of a building and the ground. 

2.2 Edge Detection 
Edge detection is the process of detecting and locating discontinuities and 

changes in pixel values within an image (Maini & Aggarwal, 2009). “The job of 

extracting edges from digital images is very important for any computer vision system 

whose goal is to perform object recognition, segmentation, or a variety of other image 

processing operations” (McLean & Jernigan, 1988). There has been extensive research on 

the different types of edge detection techniques for panchromatic and spectral images like 

the Sobel, Prewitt, Cranny, or Laplacian techniques (Heath et al., 1998) (Maini & 

Aggarwal, 2009).  

Since DSMs can be processed just like an image, edge detectors can be a useful 

tool when finding boundaries of features. There are many algorithms and operators for 

edge detection, which have been around for decades, but they can be grouped into two 
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categories: Gradient based and Laplacian based (Maini & Aggarwal, 2009). Gradient 

based uses the first derivative of the image to find the maximum and minimum and 

Laplacian based uses the second derivative to find the zero crossing. Most of these edge 

detecting methods find the local derivative in a predefined kernel size which are much 

smaller than the image. The kernel is moved over the entire image, pixel by pixel, and 

performs the calculations, according to the edge detection method, on the pixels covered 

by the kernel (Maini & Aggarwal, 2009). The size of the kernel determines how sensitive 

it is to potential edges with smaller kernels being more sensitive. A sensitive kernel is not 

always the best choice and the size can depend on how noisy the image is.  

Well known Gradient based edge detectors include Sobel, Prewitt, and Roberts 

and each have their own unique way of detecting edges (Juneja & Sandhu, 2009). The 

Sobel method consists of two 3 X 3 kernels detecting edges in the horizontal and vertical 

direction and can also be modified to detect edges in the positive and negative diagonal 

directions (Figure 3), in which each is implemented separately and then combined to 

obtain the optimal edges. This method is considered the historical standard and is still 

seen in published papers today (Heath et al., 1998). Prewitt is very similar to Sobel kernel 

in that it has the same kernel size, design, and zero center weight except it uses a negative 

and positive one in place of the twos (Figure 3). Roberts is a two by two kernel designed 

to find edges in the diagonal directions with a weight of one in adjacent corners and zero 

in the other two corners. 
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Figure 3: Sobel Edge Detection Kernel 

 

Laplacian based methods consist of Laplacian and Laplacian of Gaussian (LoG). 

As mentioned previously, Laplacian methods use the second derivative and the common 

kernel of the Laplacian edged detector is shown in Figure 4. In order to use the second 

order derivative on a finite set of samples, an approximation of the second order 

derivative is used which is represented as the Laplacian edge detector kernel (Agouris et 

al., 1989). The downfall of this approximation is that it is very sensitive to noise. This led 

to the development of the LoG kernel. This edge detector uses a Gaussian smoothing to 

reduce the high frequency noise and then performs the Laplacian detection (Juneja & 

Sandhu, 2009). This can also be done in one step using one kernel which is the 

approximate of the LoG function.  

 

(a)       (b)  
Figure 4: Laplace Operators (a) 4 directions (b) 8 directions 
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2.3 Pre-processing Prior to Detecting Buildings 
Before detecting buildings from a DSM, some filtering is required in order to help 

the buildings stand out from other objects. These filtering techniques can be placed into 

two groups: ground filtering and remaining non-building removal (Meng et al., 2006). 

Ground filtering consists of identifying the ground and then separating the ground from 

objects above the ground. After the ground filtering, objects like trees, buildings, cars, 

etc., remain and need to be filtered so only the buildings remain. There are multiple 

algorithms and techniques for each filtering technique, as described below. 

2.3.1 Ground Filtering 
Most building detection techniques using LiDAR start with separating the ground 

from the features above ground. One common method is to take the DSM and subtract 

the Digital Terrain Model (DTM, also known as a BEM) as seen in Demir, et al (2009). 

The problem using this method arises when trying to generate a BEM. There are several 

complex algorithms identified by Sithole and Vosselman (2004) to produce a BEM and 

each approach has advantages and limitations depending on the terrain, landscape, outlier 

points, and computational speed. If the algorithm does not create the BEM correctly, 

manual editing is needed to reduce the risk of identifying buildings as ground. 

Each algorithm tested by Sithole and Vosselman (2004) fall into four filter 

concepts: slope-based, block-minimum, surface-based, and clustering/segmentation. Each 

of these concepts compares the immediate surrounding points and makes an assumption 

about the structure of the bare-earth points. The sloped-based method uses the slope 

between two points and if the slope exceeds a threshold, the highest slope is considered a 

non-ground point. The block-minimum method uses a horizontal plane based off of the 
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lowest points and then uses a buffer above the plane to classify the points within the 

buffer as ground. The surface-based method does the same except it uses a parametric 

surface. Clustering/segmentation uses the concept that a cluster of points must not be 

ground points if that cluster is above its neighborhood. As mentioned earlier, each ground 

filtering algorithm has their advantages and limitations and should be based on the terrain 

and landscape.  

Morgan and Tempeli (2000) who used a morphological filter on the DSM raster 

showed that the BEM generation process can be skipped. The morphological filter works 

on the DSM by using a moving window that changes in size. The idea is to compare the 

pixel of interest to others in the window to weight that pixel of how likely it is to be a 

ground or non-ground pixel according to how high the pixel is relative to its neighbors 

and how big the window size. Elaksher and Bethel (2002) uses a slightly different 

approach by using a minimum filter on the DSM, in which points above five meters is 

considered a building candidate. 

2.3.2 Separating Building and Non-Building Objects 
After separating points/pixels above the ground, trees and other non-building 

points have to be removed. Statistics, geometric constraints, and other remote sensing 

sources can be used to help distinguish the differences between objects in the DSM. 

One common statistical technique is to take the last return and subtract it from the 

first return (Meng et al., 2006). The idea for the LiDAR data’s first return minus the last 

return is that the laser pulse can penetrate tree canopies so there will be a height 

difference but man-made objects are not penetrable which will give a zero height 
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difference. However, there can be height differences in rough terrain and edges of 

buildings that need to be considered. One solution is to use a high gradient response of 

the last return and use a threshold to remove the building edges (Alharthy & Bethel, 

2002). After the building edges are removed, all that should remain is vegetation which is 

used to mask out the DSM. 

In “Automatic Construction of Building Footprints,” Zhang, et al. (2006) present 

a four step process. First, patches of similar height below a minimum area are removed. 

Second, patches that are part of buildings (i.e. chimneys, tanks, etc.) are recovered by 

their relationship to large patches surrounding the removed patches. Third, isolated 

boundary points (points that were previously identified as ground, building boundary, or 

inside building boundary) that do not have an inside point neighbor are removed. Finally, 

the remaining patches are merged together according to their connectivity to other 

patches to form complete building patches and then another minimum area removal is 

used. 

Other approaches go further into the geometric shape of vegetation to identify and 

remove them. Since buildings are used for storage or human accommodations, they 

should be high enough and large enough to identify and remove (Haithcoat et al., 2001). 

Therefore, any point below a certain height can be removed, which will eliminate objects 

like bushes and cars. Haithcoat, et al. (2001) suggested taking the gradient of the DSM 

and used a magnitude threshold to remove the trees. The idea behind that approach is that 

tree edges will have a higher magnitude from the Gaussian kernel and the shape of the 

boundaries will be irregular while the building boundaries will be rectangular.  
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Some authors suggested using local variance or statistics to identify vegetation. 

The elevation in tree canopies will vary locally and therefore the variance will be high 

while building roofs are usually flat or have a gradual slope (Zabuawala et al., 2009). 

Another technique is to take the difference between the elevation of a pixel and the 

average elevation of its 3 X 3 neighborhood (Ekhtari et al., 2009). This technique 

describes the roughness of the pixels and a roughness value above a determined threshold 

is considered non-building.   

Zhang, et al. (2006) suggested that statistics and geometric constraints may not be 

the approach of choice, especially for areas with dense trees. With the combination of 

LiDAR data and imagery, especially a three or more band image, can help with the 

classification of vegetation. Awrangejeb, et al. (2010) used multispectral imagery along 

with a height threshold to identify vegetation. Normalized Difference Vegetation Index 

and texture information from the multispectral image was used to identify pixels in the 

DSM as vegetation. A classification method one could use in areas of dense trees it to 

measure how green a pixel is in a three band RGB image (Yu et al., 2011). 

2.4 Building Detection with LiDAR Grids 
After the pre-processing is complete, only buildings should remain, allowing us to 

address the problem of accurately describing, measuring, and defining the boundaries of 

the buildings. Before LiDAR, feature and building detection were done using edge 

detectors. However, research on using these same techniques with LiDAR data is limited.  

Some research exists on derivatives of these techniques like the altered Canny 

algorithm found in “A Method of Edge Detection Based on Improved Canny Algorithm 
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for the LiDAR Depth-image” by Xu, et al. (2006), where the deficiencies of the original 

Canny algorithm were studied and the new method designed to eliminate those 

deficiencies. The altered Canny algorithm uses a median filter with an adaptable filter 

size based on noise distribution for smoothing instead of Gaussian smoothing, 3 X 3 

neighborhood for gradient calculations, and an adaptive threshold based statistical 

measures producing better results. Some research has been done using the classic edge 

detectors like Sobel and the original Canny edge detector on an image derived from the 

LiDAR points intensity values to extract runway edges (Mareboyana & Chi, 2006). 

Weng, et al. (2010) used the original Canny edge detector and further refined the results 

using textures identified in aerial imagery. Wang, et al. (2010) were able to produce 

building footprints using a Canny edge detector with an adaptive threshold for detecting 

building edges and then used a Quadric Error Metric based simplification. The Quadric 

Error Metric algorithm was used to rapidly build footprints creating 90° angles on 

adjacent edges and straight lines.  

Alternatively, seed growing methods have been commonly used for determining 

the extents of a building when given a set of parameters and the relationship of 

surrounding pixels determines which pixels are buildings. Miliaresis and Kokkas (2007) 

used slope between 40° and 90° as the parameter for potential building seeds. Then, a 

region growing segmentation algorithm was used to create building cells by connecting 

other pixels to the seed that have the same characteristics. 
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2.5 Building Detection with LiDAR Points 
Working with LiDAR point clouds is more difficult than grids due to the large 

amount of data and complex geometry. Algorithms and processing methods need to be 

adapted to the environment of irregular spaced data in the point cloud. Some benefits of 

working with points are increased accuracy and preventing the loss of data. When 

converting from points to grids, interpolation is necessary to convert the irregular point 

spacing. Interpolating the points can have adverse effects such as smoothing edges or 

incorrectly interpolating values. 

Verma, et al. (2006) uses the identified roof points to fit a plane to local point 

patches, group the patches based on similarities, and then defines approximate boundaries 

of the groups. Sampath and Shan (2010) define local neighbors of each point by using the 

Voronoi neighborhood method. These neighborhoods are then categorized as on a planar 

surface or non-planar along with the characteristics of the plane. Points with similar 

characteristics are grouped together and assumed to be on the same plane and therefore 

the building roof can be segmented. 

2.6 Building Detection Using a Combination of LiDAR and Other Remote 
Sensors 

Other researchers used a combination of imagery, DSMs, and DTMs for feature 

extraction. An aerial image can be used to detect and extract the edges of the buildings 

and the LiDAR can remove vegetation and provide the buildings’ geometric shape for 

modeling (Zhou et al., 2004). Ekhtari, et al. (2009) used WorldView imagery to detect 

the edges of the buildings and then uses the LiDAR to mask out trees and other 

vegetation to help building edge reconstruction from gaps left by trees overhanging roofs. 
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Using WorldView and aerial imagery provides spectral information in addition to 

LiDAR’s physical measurements (i.e. heights).  

The spectral information can help define building edges by detecting spectral 

differences between the building and the surrounding features. Imagery limitations are 

the inability to distinguish the differences between objects that spectrally look similar, 

such as a black roof and an asphalt road, and shadows from the Sun can cause false 

edges. It is difficult to find and expensive to obtain both LiDAR data and imagery. Using 

the LiDAR data and imagery requires an additional process of geospatially registering 

and aligning them. 

2.7 Uses for Building Footprints and 3D Buildings 
Building footprints are essential geographic information system (GIS) data and 

are used for creating and updating building inventories for planning and analysis 

purposes. Planning applications include urban planning, telecommunication network 

planning and vehicle navigation (Miliaresis & Kokkas, 2007).  Examples of using 

building footprints for analysis include estimating energy demands, quality of life, urban 

population, property taxes (Jensen, 2000), and damage assessments (Vu et al., 2005). In 

1999, damage assessments of collapsed buildings were detected caused by the Izmit 

earthquake in Turkey using the before and after DEMs (Turker & Cetinkaya, 2005). The 

data allows analysis of complex urban characteristics and multidimensional scenarios for 

urban management (Zhao & Wang, 2014).  
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2.8 The Studied Approach 
As discussed, there are multiple ways to use LiDAR to help automated feature 

extraction on buildings but there is a limited amount of research using LiDAR data for 

the entire process of building extraction. Motivated by this, the focus of the approach 

presented in this thesis is to use techniques proven for similar datasets (i.e. raster, 

imagery). Labor is meant to be kept at a minimum when constructing the proposed 

approach by using a process that is robust, automated, and without creating additional 

LiDAR products (e.g. BEM or point cloud classification). The more products that need to 

be created to build the footprints, typically the more editing and human interaction is 

needed defeating the intent and purpose of automation. The approach discussed assumes 

the user has a first and last return DSM or a processed point cloud data from which the 

DSMs can easily be extracted. 

The first step of the proposed approach is the pre-process stage of creating a mask 

for removing natural features, especially large areas of trees and bushes using the first 

and last return DSM. Most previously researched algorithms and processes use a BEM. 

As discussed, BEMs are not always reliable and the accuracy of the BEM algorithm is 

dependent on the type of terrain and features. Further editing is most likely necessary 

after algorithms are used to create the BEMs, increasing the need for human interaction 

and labor.  

Next, a 1 X 3 rotating kernel is used for detecting edges. This rotating kernel has 

not been proven for similar data types but the technique and idea of using kernels to do 

relative-local comparison has been. After the edge detection step, the vegetation mask is 

applied and each building is identified and separated by the morphological watershed 
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operator. This allows focus on one building at a time eliminating influences from other 

buildings. Each building’s edge detection results are then converted to lines using Hough 

transform as possible lines for the building’s footprint. Finally an algorithm, discussed in 

Chapter 4, is used on the lines to combine, align perpendicular and parallel, trim, and add 

lines where needed. 
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CHAPTER 3: PROPOSED EDGE DETECTION PROCESS 

Chapters 3 and 4 discuss in detail the proposed approach of this thesis for 

detecting the edge of buildings and creating the footprints of the buildings. The high level 

approach consists of edge detection, creating the vegetation mask for vegetation removal, 

building separation, and footprint construction as described in Figure 5. 

 

 

  

An important factor for successful edge detection is eliminating features that are 

not of interest. Non-building edges, especially from large areas of trees and bushes, make 

it difficult to discern building versus non-building after edge detection. The non-building 

First Return DEM (2.1) Last Return DEM (2.1) 

Edge Detection (3.2) Vegetation Mask (3.1) 

 

Building Separation (4.1) 

Footprint Construction (4.2-4.4) 

Building Edges (3.3) 

Figure 5: High Level Approach (numbers represent sections discussing the subject) 
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detection and edge detection processes are implemented in parallel and the results are 

combined to eliminate non-building features after edge detection. There are many 

different edge detection techniques that can be used but proposed in this thesis is the use 

of a 1 X 3 rotating kernel for detecting the edges. Vegetation removal and the 1 X 3 

kernel edge detection are discussed in the chapter. 

3.1 Vegetation Mask 
The first step in the approach of this thesis is to separate and classify pixels as 

vegetation and non-vegetation. The method used in the approach is similar to Meng, et al. 

(2006) but without separating ground and non-ground points before classifying the 

vegetation. The process does not have to completely remove all the vegetation in this step 

because any smaller areas of vegetation possibly missed will be removed later in the 

“building separation” step in Section 4.1. The complete vegetation mask process is shown 

in Figure 6. 
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Figure 6: Vegetation Mask Process 

 

The first return DSM is subtracted by the last return DSM which eliminates man-

made features and other hard surfaces from the scene. Vegetation remains in the image 

and other features that are penetrable by the LiDAR. This method takes advantage of the 

foliage penetration (FOPEN) concept where LiDAR has the ability to penetrate 

vegetation as discussed in Section 2.1. The difference between the DSMs results shows 

that solid surfaces, the ground and buildings, will have a zero value and vegetation has a 

positive value. The positive value is the distance the LiDAR was able to penetrate the 

object.  

An issue with the difference of the DSMs is that edges are left around buildings 

because a laser pulse can show the edge of the roof in the first return while showing the 

side of the building or the ground below the edge of the roof resulting in a positive value 

in the difference of the DSMs. A 7 X 7 average filter is used to eliminate most of the 

edges around the buildings (Figure 7). A 3 X 3 and 5 X 5 average filter is not big enough 

First Return DSM Last Return DSM 

DEM Difference 

Average Filter 

Threshold 

Vegetation Mask 
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to suppress the positive values around building edges in the difference of the DSMs and 

therefore a 7 X 7 filter is used.  A mask image is produced by a threshold of greater than 

or equal to one in the averaged image and will be applied to edge detection results.  

Most existing methods use the BEM to subtract from the DSM to separate non-

ground pixels or points to form the ground which can produce inaccurate results (Demir 

et al., 2009) (Ekhtari et al., 2008). This process is typically done before classifying 

vegetation but is not part of the studied approach because the need of creating another 

product. In order to create the BEM, vegetation and man-made features are taken out of 

the elevation model and those areas are filled using an algorithm, such as Progressive 

Triangular Irregular Network Densification and Regularization method (Sithole & 

Vosselman, 2004), to estimate the elevation beneath those features. The results of these 

algorithms can vary and produce a false elevation, and therefore, skew the edge detection 

results. A different approach in this thesis is that the vegetation is not removed until after 

the edge detection is done. This is discussed in the next section. 

 

(a)  
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(b)  
Figure 7: Difference of DEMs (a) Image of first return subtracted by second return (b) 7 x 7 average filter of (a) 

 

3.2 Edge Detection 
Defining the complete and closed edge of the buildings is important for future 

steps in the approach in order to separate each building. A unique but simple edge 

detection process is used to define the edges of the buildings, utilizing concepts of edge 

detections discussed in Section 2.2, that have been used extensively with panchromatic 

imagery in comparing a pixel with its neighbors and deriving relative information. This 

process uses a rotating 1 X 3 logical kernel to find the local minimums and maximums as 

shown in Figure 8.  

The 1 X 3 kernel is rotated in eight directions every 45° comparing the pixel of 

interest, pixel M, with the other two pixels, pixels 1 in Figure 8. The kernel starts in one 

of the eight directions testing if the pixel of interest is greater than the other pixels. If the 

pixel of interest is greater than the other pixels in the 1 X 3 kernel and is greater than two 

meters than the lowest value in the kernel, then one is added to a pixel, at the same 

location as the pixel of interest, in a new raster of the same size as the DEM. The kernel 

is then rotated to the other seven directions performing the same comparison and adding 
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one to the new raster each time the greater than criteria is met. Two meters was chosen to 

detect only edges that could be building edges and reduce detecting edges that are not 

buildings. For this thesis, it is assumed that bushes and cars are not taller than two meters, 

and that buildings are taller than two meters from the ground. The same is done with the 

comparison except testing if the pixel of interest is smaller than the other pixels in the 

kernel and is two meters below the highest value in the kernel. At the end of the process 

two new rasters, containing the local maximums and minimums, are created. 

 

 
Figure 8: Rotating Minimum/Maximum Kernel 

 

The key idea behind this process is that the local maximum result will outline the 

roof of the buildings as it steps down to the ground while the local minimum results will 

outline just off the edge as it steps up from the ground to the roof. The local minimum 

has the benefit of being able to define the separation between buildings close together. 

These rotating kernels are used on the last return DSM to minimize edges detected on 

vegetation and also help with the separation of buildings close together. The minimum 

and maximum results from the last return DSM is combined by subtracting the maximum 
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results from the minimum to eliminate noise and help distinguish the edges as shown in 

Figure 9. Due to noise in the DSM the maximum results could show a pixel was a 

maximum in one of the kernel’s rotation where the rest of the rotations could have shown 

the pixel as a minimum. The raster created from combining the minimum and maximum 

results is the final step in detecting the edges of buildings. After combining the DSM 

results the vegetation mask from Section 3.1 is applied to eliminate vegetation edges. The 

vegetation removal does not remove all the vegetation but removes the larger areas so 

that the smaller areas can be filtered out later. 

 

(a)    (b)  

(c)  
Figure 9: Minimum/Maximum 1 X 3 Rotating Kernel Results (a) Maximum results where pixel values are from 

0 to 8 (b) Minimum Results where pixel values are from 0 to 8 (c) Maximum subtracted by Minimum results 

(edge detection results) where pixel values are from -8 to 8 
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Figure 10: Vegetation Removal from the Edge Detection Results Using the Vegetation Mask (pixel values are 

from -8 to 8 and represent the results from the rotating kernel) 
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CHAPTER 4: PROPOSED FOOTPRINT CONSTRUCTION 

Generally, the success of constructing footprints depends on two factors: how 

accurate the edge detector defines the edges and how well each building is identified and 

isolated from other buildings. Again, most of the processes used to obtain the possible 

lines of the footprint are methods and techniques that have been established and used for 

panchromatic imagery. The identification of individual buildings, defining footprint lines, 

and aligning the lines is discussed in detail later in this chapter and the steps are shown in 

Figure 11.  

 

          

Building Edges (3) 

Building Footprints (4.4) 

Watershed Operator (4.1) 

Separate Buildings (4.1) 

Hough Transform (4.2) 

Align Edge Lines (4.3) 
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Figure 11: The Footprint Construction Process (numbers represent sections discussing the subject) 

 

First the buildings are separated and isolated in their own raster in order to 

eliminate influences from other buildings when extracting the building’s edges. Then the 

building edges are extracted from the edge detection results. The extracted edges are 

aligned and extended or trimmed according to adjacent edges. Finally the edges are 

connected forming a polygon and the vertices of the polygon were placed in a clockwise 

ordered and expanded to enlarge the polygon to be consistent with the size of the 

buildings. 

4.1 Building Separation 
Separating the buildings is a very important process in the proposed approach and 

has to be accurate, not only to identifying all the buildings but also for Hough transform 

(discussed in Section 4.2) to work correctly. It was found that without building 

segmentation, lines are created connecting multiple buildings and the formation of lines 

is influenced by any building in the scene. The watershed operator (Gonzalez & Woods, 

2008) is used to segment the image to identify different regions and in this case the 

regions are the buildings. This technique has also been used for decades for image 

processing and segmentation. 

The watershed operator finds a region by searching for low valued pixels 

surrounded by higher value pixels. If the edge detection did not completely enclose the 

building, the watershed operator will not define that building as a separate region. With 

the rotating kernel used for edge detection, a thick closed boundary is able to be 
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established as shown in Figure 12. Any value in the combined minimum and maximum 

raster is converted to a binary image where any value greater than or less than zero is 

converted to one. 

 

 
Figure 12: Binary Minimum/Maximum Raster 

 

The total area of a region is defined by the extents of thick boundary giving plenty 

of area to make sure the region contains the entire building. If boundaries of two regions 

are connected, the area of the regions stopped where boundaries connect as seen in Figure 

13. In the results of the watershed operator each pixel within a region is given the same 

unique value to the other regions. These unique values were used one by one as a mask to 

extract the original detected edges from the rotation kernel and placed into its own raster 

as shown in Figure 13.  

Before the building is saved as its own raster and considered a building, the mask 

has to contain 49 pixels, an area of a 7 X 7 pixel square, and contain 49 boundary pixels 

in the original edge detection results which will be the perimeter of a 10 X 10 pixel 
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square building. A pixel in the DSM is approximately one meter in length and width 

corresponding to a distance of seven meters for seven pixels and ten meters for ten pixels. 

The minimum area and perimeter threshold assumes that a building will have an area at 

least 49 square meters and a perimeter approximately 49 meters long. Most of the 

building edges from the edge detection results were at two or more pixels thick which 

means the building’s perimeter could be less than 49 meters. Both the minimum area and 

perimeter thresholds are needed to ensure proper identification of buildings and non-

building regions. Using just one of the thresholds could lead to non-buildings being 

identified as buildings.  
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(a)  

(b)    (c)  
Figure 13: Watershed and Extraction Results (a) Watershed results colored by region number (b) Binary mask 

of left building in (a) inset (c) extracted edge detection results 

 

4.2 Detecting Lines by Hough Transform 
The raster edges of the buildings need to be converted to vector format that can 

define building outlines as polygons. A similar approach is found in Croitoru and 

Doytsher (Croitoru & Doytsher, 2004), where the buildings were discovered, separated, 

and then Hough transform was performed on each building separately. The only 

difference between Croitoru and Doytsher’s process and the proposed approach is how 

the lines are extracted from Hough space.  
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The method used in the proposed approach first converted the edge detection 

results into Hough space using Hough transform. The transform uses the Standard Hough 

Transform (SHT) equation (Gonzalez & Woods, 2008),  

Equation 1: The Hough Transform 

𝜌 = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃   
 

, where x and y is the location of a pixel in the edge detection results, ρ is the distance of 

the shortest vector from the image’s origin to a line through pixel (x,y), and θ is the angle 

of the vector from the x-axis. θ’s range is from -90° to 90° and ρ’s range is from −(𝑚2 +

𝑛2)1/2 ≤ 𝜌 ≤ (𝑚2 + 𝑛2)1/2, which is the maximum distance from the origin to the 

farthest image extent (where m is image’s columns and n is image’s rows), to make the 

raster parameter space (θ,ρ). The SHT equation is iterated every one degree for a single 

edge pixel and ρ is rounded to the nearest integer to derive a matrix representing Hough 

space as shown in Figure 14. For each iteration, a one value is added to the corresponding 

(θ,ρ) cell which creates maximums in Hough space after all edge pixels are completed 

representing candidates for edge lines. 
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Figure 14: Hough Space, ρ is the y-axis and θ is the x-axis (the whiter the pixel the more edge detection pixels 

have the same ρ and θ value) 

 

Equation 2: Slope-Intercept Form of the Hough Transform 

𝑦 = −𝑥 
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
+ 

𝜌

𝑠𝑖𝑛𝜃
 

 

The approach finds the maximums in the Hough space and formulates a line as 

shown in Equation 2, from that maximum. The line equation is then used to find all edge 

pixels that intersect the line creating line segments as shown in Figure 15a. A line 

segment consists of consecutive edge pixels along the line without crossing over a non-

edge pixel. Line segments are kept if the segment length is greater than or equal to four 

pixels and line segments from the same line are joined if a gap of less than or equal to 

two pixels between segments. The four pixel threshold represents the line segment has to 

be at least four meters long to be considered a building edge. The gap between line 

segments cannot be greater than two meters and the line segments considered the edge of 

the building. The θ value and the maximum Hough space value is kept as part of the 
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attribute of the line segment where θ is the slope of the line, 0° is a vertical line and 45° is 

a positive slope line, and the maximum Hough space value is the number of edge pixels 

that made the complete line in the scene. Next, the edge pixels used to create the line 

segment are converted non-edge pixel, except the pixels at the beginning and end of the 

line segment, and the edge detection image is updated. The beginning and end pixels are 

kept as an edge pixel because of the possibly the end pixels is the corner of the building. 

If the end pixel is the corner of the building, it is needed to find the adjacent edge of the 

building. 

The updated edge image is converted into Hough space and the creation of line 

segments is carried out again with the new maximum value from the Hough space. The 

edge image is again updated removing the edge pixels used to create the line. The cycle 

of converting the updated edge detection image into Hough space, creating a line from 

the maximum value in Hough space, and updating the edge image continues until no 

more line segments meeting the four pixel length requirement is found. This iteration 

process produces multiple line candidates around the edge of the building as shown in 

Figure 15b.  

At this point in the process one side of the building can contain multiple lines as 

shown in Figure 15b and the lines are joined according to their angle, θ from the Hough 

transform that created the line, and its distance in relation to the other lines. The angle 

between two lines has to be less than or equal to 15° and within two pixels of each other 

to consider combining them. The 15° and two pixel maximum threshold was a safe 

estimate to prevent lines representing a different edge combining. This is the first step of 
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aligning and combining lines and a threshold to combine all the lines on the same edge is 

not needed. Any missed lines on the same edge are combined later in the line aligning 

process. The new slope and end points of the combined line segments were determined 

by a weighted average of each lines’ length and Hough space value. The Hough space 

value is the value at (θ,ρ) used to create the line segment. The weighted average is 

calculated as: 

Equation 3: Distance-Hough Maximum Weighted Average 

𝑤𝑖 =
(𝑑𝑖 + ℎ𝑖)

∑ (𝑑𝑗 + ℎ𝑗)
𝑗
1

⁄  

 

where d is the length of the line segment, h is the Hough space value, i is the line or 

measurement being weighted and j is the number of lines being combined. 

To combine the lines, first the angles of the lines are averaged using a weighted 

average. The new angle, θ, is then used with the x and y value of the weighted centroid, 

weights to calculate the centroid is determined by using Equation 3, of the lines to create 

a function representing the combined lines. The end points of the new line is calculated 

using the new function. Figure 15c (orange line is the new line) using. The weighted 

centroid uses the weighted average equation and applies it to the end points of the lines 

(weighted center mass shown as the green dot in Figure 15c). The extents of the new line 

use the maximum and minimum x value of the end points of the lines. If the angle of the 

line is greater than 45°, then the maximum and minimum y value is used. The results of 

combining the initial lines from Hough space is shown in Figure 15d. 



38 

 

Different condition statements in programming this process are needed to handle 

horizontal lines (θ=90°) and vertical lines (θ=0°) for combining the lines. Condition 

statements are also needed for direction and steepness of the slope to calculate new 

endpoints after adjusting or combining lines. If θ was between -45° and 45°, the x-value 

had to be solved for because of the rapidly changing y-value, due to steep slope. 

Therefore when lines were combined with steep slopes, the minimum and maximum y-

values of the two lines were used to calculate the new end points instead of the minimum 

and maximum x-values. 

 

(a)    (b)  

(c)  (d)  
Figure 15: Examples of the Hough Lines Extraction Process (a) one line created from Hough space (b) all lines 

from Hough space (c) line combination concept (red and purple lines are being combined, green cross is the 

weighted centroid, and the orange line the new combined line) (d) combining the lines results 
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4.3 Aligning Building Edges 
After the lines are created and combined, further editing and alignment is needed 

in order to make adjacent edges perpendicular and opposite edges parallel, assuming the 

buildings were constructed this way and only have 90° angles. The ends of adjacent lines 

also need to be trimmed or extended so the corresponding end points are topologically 

connected. Alignment of the lines starts by taking the two longest edges and averaging 

them so they are either parallel or perpendicular according to their current orientation. 

The lines θ value are compared to each other by taking the absolute value of 𝜃1 − 𝜃2. If 

the absolute value was less than or equal to 35° of 0° or 180° then they are considered 

parallel or if it less than or equal to 35° of -90° or 90° then they are considered 

perpendicular.  

The large 35° threshold is used to include a large range since all sides are 

assumed to be parallel or perpendicular. If the 35° threshold is not met, then longest and 

the third longest line are compared for alignment. If that combination doesn’t meet the 

35° threshold then the second longest and third longest are compared and this iteration 

continues until the combination of the two longest lines that meet the threshold are found.  

For parallel lines, the new lines are rotated about their mid-point to their averaged 

θ (figure 15a). For the perpendicular lines the averaged difference of the lines’ θ 

value,
1

2
(𝜃1 − 𝜃2), which represents how far each line has to rotate to be perpendicular to 

one another. If the θ difference was less than 90° then the then the lines were rotated 

away from each other by the averaged difference and vice versa if the θ difference is 

greater than 90° (shown in figure 15b). The rest of the edge lines are then rotated to be 
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perpendicular or parallel to the θ established from averaging the two longest lines if they 

are within 35°. Lines that are not within 35° are deleted. 

Another iteration of combining lines as discussed in Section 4.2 is completed 

before endpoints of adjacent lines are connected. End points are connected by trimming 

or extending adjacent lines to their intersection. First two lines have to be 90° from each 

other to make sure they are possible adjacent edges and secondly the endpoints had to be 

within two pixels in order to connect them. The two pixel threshold is used to avoid 

connecting endpoints that could end up extending a line through an extrusion from the 

building. The intersection of the two lines is calculated by setting each line’s linear slope-

intercept equation equal to each other, as expressed by the following equation: 

 

Equation 4: Hough Lines Intersection Formula 

−𝑥 (
𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1
⁄ ) + (

𝜌
𝑠𝑖𝑛𝜃1

⁄ ) = −𝑥 (
𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛𝜃2
⁄ ) + (

𝜌
𝑠𝑖𝑛𝜃2

⁄ ) 

 

A solution is derived solving for x and substituting x back into one of the line’s slope-

intercept equation. This (x,y) pair is then used as the connection point for the two lines 

and the lines were trimmed or extended to that point. Checks were needed for connecting 

the end points to make sure the correct and closest endpoints were being connected. 

Otherwise the algorithm could connect lines from the opposite side of the building. 
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(a)    (b)  

(c)    (d)    (e)  
Figure 16: The Edge Alignment Process 

(a) aligning parallel lines (b) aligning perpendicular lines (c) all edges aligned (d) second iteration of combining 

lines (e) connecting end points 

 

4.4 Completing the Polygon 
This next step is used to add, trim, or extend lines to connect endpoints that are 

still not connected because of previous constraints on creating and editing lines. The 

algorithm connects unconnected endpoints that are closest to each other and then 

connects the next closest unconnected endpoints. If the endpoints being connected are 

part of lines that are perpendicular then the lines were trimmed or extended to their 

intersection point as discussed in Section 4.3.  

If the lines of the endpoints are parallel then the lines are combined or a new line 

is created connecting the two lines depending on the distance between the two lines. If 

the lines are within four pixels then they are combined as described in Section 4.2, 
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otherwise a line is added perpendicular to the two lines to connect the endpoints. The four 

pixel threshold has been the minimum length for a buildings edge and if the parallel lines 

are separated more than four lines, then that edge of the building was missed during the 

Hough transformation process. The new line is created to pass through the weighted 

average (Equation 3) of the unconnected points and the parallel lines are trimmed or 

extended to intersect the new perpendicular line and the same was done with the new line 

as shown in Figure 17. 

 

 
Figure 17: Completed Polygon 

 

In the final stage of the process the building polygons are created. The edge lines 

are not in any particular order. Therefore the lines are ordered by starting with one line 

and finding the connected line, then finding the next connected line until the next 

connected line is the line used to start this stage in the process. The order of vertices, 

clockwise or counter-clockwise, are calculated by determining how many vertices have a 

New Line 
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positive or negative cross product between adjacent vertices as shown in Figure 18a 

(Bourke, 1998). If there are more vertices with a positive cross product then the vertices’ 

order was counter-clockwise and the order was reversed for creating a vector data layer.  

The size of the building needs to be expanded to correct for a systematic bias in 

the proposed approach. The vertices expanded from the center of the polygon by a 

distance of two pixels. The distance of two was determined by testing different distances 

and is discussed in Section 5.3. The direction of the expansion is defined by the direction 

of a vector created half between adjacent lines and the cross product. If the cross product 

was positive then the vertex was expanded in the opposite direction of the vector. If the 

cross product was negative, the vertex was expanded the same direction as the vector. 

 

(a) (b)  
Figure 18: Vertices Cross Product (a) Right hand rule cross product (Bourke, 1998) (b) direction of expansion 

based on cross product 
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CHAPTER 5: EXPERIMENT RESULTS 

The first section of this chapter describes the data used for the experiments and 

the data used for comparing the extracted footprints to three different datasets; shapefile 

of structures in the test area’s county, digitized buildings from the DSM used for the 

tests, and digitized building from high resolution orthorectified imagery. This chapter 

discusses the results and analysis of the results of the approach. The limitations and 

advantages of the proposed approach are also discussed.  

5.1 Data 
The aerial LiDAR data used in the research was produced by the Army Geospatial 

Center (AGC) and permission was granted by the AGC for the use of this data in this 

thesis. The LiDAR was collected over the Fredericksburg, VA area (Figure 19) and the 

point cloud was transformed into a first return and last return regular grid and intensity 

image with a sub-meter post spacing (resolution). The area of the collection is five 

kilometer by three kilometer (5km X 3km) and a three tenths kilometer by two tenths 

kilometer (0.3km X 0.2km) subset of the collected area was used to perform the 

experiments. The DEMs are projected using the WGS 84 UTM Zone 18N coordinate 

system. The subset consists of few different shaped buildings ranging from simple 

rectangles to more complex shapes at various angles throughout the DEM. Trees, bushes, 

and rolling terrain added complexity to the scene. 
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(a)  

(b)    (c)  
Figure 19: LiDAR Data Test Area (a) first return shaded relief combined with intensity image (b) first return (c) 

second return 

 

The three datasets used for comparison consist of data of all structures in Stafford 

County from the county’s website 

(http://www.staffordcountyva.gov/index.aspx?NID=1319), digitized buildings from 

colored high resolution orthorectified imagery downloaded from the county’s website, 

and digitized buildings from the first return DSM. The structures and the colored imagery 

were projected in NAD 83 Virginia State Plane and the structures data and digitized 

buildings from the colored imagery were re-projected to WGS 84 UTM Zone 18. The 

image footprint of Stafford County is approximately 30.7 kilometers by 50 kilometers 

http://www.staffordcountyva.gov/index.aspx?NID=1319
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(30.7km X 50km) with one foot (0.34 meters) resolution. The image was downloaded in 

quadrants in MrSID format. 

There was poor correlation between the structures downloaded from the county’s 

website and the digitized buildings from the imagery and DSM. The method of how 

Stafford County collected the structure data is unknown but comparing this data to the 

LiDAR data revealed inaccuracies in official data suggesting the need for an improved 

data collection process. Table 2 in Section 5.2 shows the correlation between the datasets 

and Figure 21 presents a visual comparison. Also, visually there appears to be a much 

stronger correlation between the digitized datasets, therefore the discussion of the results 

will be focused on comparing the extracted footprints to the digitized datasets. 

 

(a)    (b)  
Figure 20: Colored High Resolution Imagery (a) image of test area (b) a close-up view of buildings in test area 
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(a)    (b)  
Figure 21: Stafford County's Structures Visual Comparison (a)Comparison on colored image (b) comparison on 

LiDAR DEM 

 

 
Figure 22: Stafford County in Virginia (https://www.openstreetmap.org/export#map=8/37.892/-

77.761&layers=Q) 

 

5.2 The Extracted Footprints 
The experimented approach detected all 57 buildings in the scene and extracted 

the footprints shown in Figure 23 and Figure 24. The algorithm performed according to 

the proposed approach and removed vegetation, detected edges, and constructed 
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footprints. The extracted footprints have 90° angles consistent with the buildings in the 

scene and the buildings were properly separated.  
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(a)  
 

(b)  
Figure 23: Extracted Footprints Overlaid on the LiDAR’s First Return DSM (extracted footprints in purple) (a) 

extracted footprints for test area (b) close-up of area outlined by red box in (a)  
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(a)   

 

(b)  
Figure 24: Extracted Footprints Overlaid on the Colored High Resolution Image (extracted footprints in purple) 

(a) extracted footprints for test area (b) close-up of area outlined by red box in (a) 
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5.3 Method of Evaluation 
The 57 buildings from each dataset and the extracted footprints were compared to 

the corresponding buildings one by one in the Stafford County’s structures and the 

digitized datasets. Each extracted footprint and the corresponding building in the other 

datasets were assigned the same identification number to ensure the correct buildings 

were compared. The datasets where analyzed and the buildings’ perimeter, area, and 

centroid were calculated in QGIS 2.8.1. The following statistics were used for the one to 

one comparisons: 

 

Equation 5: Area/Perimeter Error 

𝛿𝑎/𝛿𝑝 =
𝑀𝑑 − 𝑀𝑒

𝑀𝑑
∗ 100 

 

Equation 6: Centroid Error 

𝜖 = √(𝑥𝑑 − 𝑥𝑒)
2 + (𝑦𝑑 − 𝑦𝑒)

2
 

 

Equation 7: Percent Overlapped Area 

𝛾 =
𝐴𝑑  ∩  𝐴𝑒

𝐴𝑑
∗ 100 

 

Equation 8: Commission (Zhang et al., 2006) 

𝛼 =  
𝐴𝑒𝑁𝑂𝑁

𝐴𝑑
∗ 100  

 

Equation 9: Omission (Zhang et al., 2006) 

𝛽 =  
𝐴𝑑𝑁𝑂𝑁

𝐴𝑑
∗ 100  
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Equation 10: Percent Accuracy 

𝜂 =
(𝐴𝑑  ∩  𝐴𝑒) − 𝐴𝑒𝑁𝑂𝑁

𝐴𝑑
∗ 100 

 

Table 1: Equations' Symbols 

Symbols Description Symbols Description Subscript Description 

δa Area Error 
M 

Measured 
area/perimeter 

e Extracted Footprint 

δb Perimeter Error d 
Digitized 

Building/Structure 

ϵ Centroid Error x x-coordinate 
  

γ Overlapped Area y y-coordinate 
  

α Commission A Area 
  

β Omission 
ANON 

Non-Overlapping 
Area 

  

η Accuracy 
  

 

The percent area/perimeter error shows the relationship between the size of the 

digitized/structure footprint and the automated polygon while the centroid error shows if 

there is an offset between the two footprints. The percentage of the overlapped area 

(represents precision) between the two footprints shows how well the automated polygon 

fits to the digitized/structure footprint while the average of all the percentage of 

overlapped areas shows precision. Commission (percentage of false positive area) show 

shows how much of the automated footprints does not fit to the digitized/structure 

footprints as the false positive due to rotation, offset, and contraction while the omission 

(percentage of false negative) shows the incorrectly identified areas as the false negative 

due to any rotation, offset, and enlargement. The overall accuracy is produced by the 

percent accuracy equation which shows how accurate the edge detection performed by 

subtracting the incorrectly identified areas from the correctly identified areas. Minimum, 
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maximum, average, and standard deviation (Std Dev in tables) use all the one to one 

comparisons for that measurement (i.e. area error, perimeter error, centroid error, etc.). 

5.4 The Comparison Between Tests and Digitized Buildings 
As mentioned previously, the structures from Stafford County did not correlate 

well with the digitized datasets and therefore, only the comparison between the extracted 

footprints and the digitized datasets is discussed in detail in this section. The automated 

footprints were still compared with each other to show the possible inaccuracies from 

official authorities which highlighted the need for updated building footprints from older 

techniques. The statistical comparison of the extracted footprints to the digitized datasets 

in Table 2 shows the magnitude and direction of the area error of 15% and 18% and an 

accuracy of 58% and 56%. The table also shows the digitized datasets are correlated to 

each other since the magnitudes and directions are similar when comparing the structures 

to the Imagery Digitized buildings and the structures to the DEM Digitized buildings. 

Because the structures are not correlated the comparisons discussed in this section is 

focused on the extracted footprints and digitized datasets. 

Overall the results are promising for the researched approach with respect to 

accuracy and precision. There are two test sets discussed in this section: Test Set 1 and 

Test Set 2. Test Set 1 was created by the algorithm discussed in Sections 4.2 - 4.4 without 

the expansion discussed at the end of 4.4 and the former constraints of minimum line 

length of five and maximum gap of three. Test Set 2 used the expanded footprints and 

updated constraints. 
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Table 2: Stafford County's Structures Statistical Comparison 

  Area Error (%) 
Area Overlapped 

(%) 

  
Imagery 

Digitized 
DEM 

Digitized 
Imagery 

Digitized 
DEM 

Digitized 

Min -7% -1% 61% 59% 

Max 37% 37% 92% 91% 

Avg 15% 18% 79% 78% 

Std Dev 8% 8% 7% 7% 

  
  

    

  
Commission Error 

(%) 
Omission Error  

(%) 

  
Imagery 

Digitized 
DEM 

Digitized 
Imagery 

Digitized 
DEM 

Digitized 

Min 8.4% 9.1% 0.0% 0.0% 

Max 39.2% 40.8% 21.1% 18.2% 

Avg 21.2% 22.1% 6.5% 4.5% 

Std Dev 7.3% 6.8% 5.7% 4.3% 

          

  Centroid Error (m) Accuracy (%) 

  
Imagery 

Digitized 
DEM 

Digitized 
Imagery 

Digitized 
DEM 

Digitized 

Min 0.15 0.16 21.67% 18.32% 

Max 3.10 2.81 83.15% 81.83% 

Avg 1.25 1.20 57.63% 55.72% 

Std Dev 0.74 0.67 14.61% 13.69% 

 

Through testing the approach, some biases and inaccuracies were observed in Test 

Set 1. The inaccuracies were solved by correcting the initial constraints set in Section 4.2. 

When creating the lines from Hough space the length of line segments were constrained 

to be five pixels or larger and gaps between line segments had to be joined within three 

pixels. With these constraints some extrusions were excluded from the final footprint as 

seen in Figure 25. Reducing the constraints for the length of line segments to four pixels 
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and gaps to two pixels allowed more extrusions to be detected and included in the 

footprint. 

 

(a)    (b)  
Figure 25: Constraint Correction from Test Set 1 (a) and Test Set 2 (b) 

 

Figure 27 shows that the area and perimeter were consistently smaller than the 

digitized and structure footprints. This bias is possibly a result of using the last return 

DSM and using Hough transform on thick image edges. The last return is the return of a 

laser pulse that traveled the furthest and therefore the elevation of the actual edge at or 

near ground level. The actual edge of the building was likely observed in the first return 

DSM but since vegetation is prevalent in the first return, last return was chosen for edge 

detection. Hough transform extracted multiple lines for the same edge because of the 

thick image edges. The final result of combining the lines averaged the lines closer to the 

middle of the thick image edge which is further away from the edge of the building as 

shown in Figure 26. From three tests of increasing the expansion it was determined a 

distance of approximately two pixels of expansion in all directions provided more 

accurate results in terms of area and perimeter sizes and the final results are shown in 
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Figure 28. A possible slight bias that the automated footprint has a smaller perimeter still 

remains in Test Set 2.  

 

    
Figure 26: Test Set 1 Compared to Test Set 2, Edge Detection, and First Return DSM Test Set 1 is the blue 

polygons, Test Set 2 is the green polygons, red pixels are the edge detection results, and grey scale pixels is the 

first return DSM. 
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Figure 27: Test Set 1 Bias (perimeter on the x-axis and area on the y-axis) 

 

 
Figure 28: Test Set 2 with Bias Correction (perimeter on the x-axis and area on the y-axis) 
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The distance between centroids (centroid error) between Test Set 1 and Test Set 2 

changed slightly and the average of the centroid errors were visually unnoticeable using 

Figure 30 and Figure 31. There was a slight increase in precision in the comparison of the 

digitized datasets and Test Set 2 possibly due to the fact that Test Set 2 was more 

sensitive to extrusions from the building with the updated constraints. Visually there was 

a small offset between the DEM and imagery possibly causing a small bias where the 

automated footprints are consistently to the right of the imagery digitized buildings which 

is shown in Figure 31.  

There was one instance observed where a large dormer, or tall extruding roof 

structure, extended upwards from the main section of the room causing edge detection 

results and ultimately reducing the performance of the approach (Figure 29). 
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(a)    (b)  
Figure 29: Tall Extruding Roof Structure Affecting Performance of Approach (a) Image showing extruding roof 

structure, the extracted footprint (purple polygon), and the image digitized building (blue polygon) (b) image 

showing extracted footprint (red polygon) and edge detection (white pixels) 

 

 
Figure 30: Set 1 Centroid Error Accuracy and Precision 
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Figure 31: Set 2 Centroid Error Accuracy and Precision 

 

Another inaccuracy in the extracted footprint compared to the digitized buildings 

was rotation. Part of the percent accuracy equation (Equation 10) is subtracting the area 

that did not intersect the digitized from the intersecting area. This accounted for rotation 

where if the automated footprint was the same size and shape as the as the digitized 

building then it would reduce the accuracy. This also accounted for buildings that were 

bigger than the digitized buildings but on average they were smaller suggesting offset or 

rotation. The bias in centroid offset was very small which leaves rotation being the main 

cause for inaccuracies. This was more prevalent in the comparison of the DEM digitized 

buildings since the average accuracy percentage is lower for the DEM digitized buildings 

than the Imagery digitized. 

Possible sources for inaccuracy include using too thick of edge detected 

boundaries, gathering all lines from Hough space rather only using one or two lines per 
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side, using the wrong weighting or method for combining line, or possibly a combination 

of all of them. The rotation also had an adverse effect on the building’s alignment relative 

to the others around it. Most of the buildings that were a few meters apart where parallel 

with each other but visually some footprints were not. Also, visually there was no 

correlation between the orientation of the building in the image and the amount of 

rotation. 

Figure 32 and Figure 33 shows the distribution of the area difference, area of 

digitized building subtracted by the automated footprint, along with the normal 

distribution curve for the dataset. The comparison with the DEM digitized buildings has a 

slight positive bias compared to the average showing that the automated footprints, on 

average, are smaller but there is no bias with imagery digitized buildings. 

 

 
Figure 32: Imagery Digitized Area Difference Distribution 
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Figure 33: DEM Digitized Area Difference Distribution 
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Table 3: Statistical Comparison of Automated Footprints 

  Area Error (%) Area Overlapped (%) 

  
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 

Min -53.8% -12.5% -4.5% 77.7% 86.5% 82.9% 

Max 4.6% 7.6% 14.8% 100.0% 99.4% 99.3% 

Avg -18.7% -0.3% 3.1% 94.0% 94.9% 93.9% 

Std Dev 11.2% 4.1% 3.8% 5.5% 2.7% 3.1% 

              

  Commission Error (%) Omission Error (%) 

  
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 

Min 0.0% 0.6% 0.7% 8.6% 0.5% 0.1% 

Max 22.3% 13.5% 17.1% 55.2% 13.1% 8.3% 

Avg 6.0% 5.1% 6.1% 24.7% 5.5% 3.0% 

Std Dev 5.5% 2.7% 3.1% 10.4% 2.7% 2.1% 

              

  Centroid Error (m) Accuracy (%) 

  
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 
Stafford 

County 
Imagery 

Digitized 
DEM 

Digitized 

Min 0.08 0.07 0.01 55.4% 73.1% 65.7% 

Max 3.20 0.93 0.84 100.00% 98.9% 98.7% 

Avg 1.12 0.44 0.29 88.0% 89.7% 87.8% 

Std Dev 0.73 0.21 0.16 11.1% 5.4% 6.2% 

 

While this thesis’s approach performed well in the experiments described within, 

several factors could affect its performance. The approach was tested on a relatively 

small sample of only 57 buildings that were simple or slightly complex, contained no 

trees overhanging roofs, and contained consistent rolling terrain over the scene. With 

more complex buildings not all adjacent edges are 90° from each other as assumed in the 

proposed approach. If angles other than 90° were to be considered in this approach, it 
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may have produced edges that were not as accurate as the results presented here. One of 

the constraints for aligning edges to the correct angle was that it needs to be within 35° 

from the calculated orientation in Section 4.3. 35° is a wide constraint and would have to 

be lowered to account for angles other than 90° for adjacent sides. This could lead to 

sides or parts of a side that are improperly aligned. This approach should be able to 

handle more complex buildings if adjacent edges are 90° but have eight or more sides; 

which is more than the sample sets used in this experiment. 

The approach in this thesis was able to remove enough vegetation to eliminate 

any influences but if there were trees overhanging roofs, a slightly different approach 

may be needed. The vegetation mask created in Section 3.1 is used to remove most of the 

vegetation in the edge detection results which in turn could remove edges of a building if 

the mask contained an overhanging tree. If the building edge is not complete it will not be 

segmented in the watershed results, and ultimately not labeled as a building. The edge 

detection is performed on the last return DSM and could possibly not contain that tree 

and also likely not contain the outermost edges of tree area which utilizes LiDAR’s 

FOPEN capability. A possible solution to this issue is to use an erosion morphological 

filter on the vegetation mask to decrease the tree areas and in turn remove the 

overhanging tree in the mask. Figure 34 depicts a scenario, in which the green area 

represents a possible vegetation mask and the blue area represents the vegetation mask 

with the erosion morphological filter applied. In this case, the tree will be removed from 

the mask and not affect the detected building edge from the last return DSM. 
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Figure 34: Overhanging Tree Removal (green area is possible vegetation mask and blue area is after an erosion 

morphological filter is applied to the vegetation mask) 

 

The terrain could also affect the results of this proposed approach. In the 

experiments presented, all measurements were kept relative to small and specific local 

areas, reducing possible influences of the terrain. Other potential error sources include 

buildings on steep terrain or in cities with tall non-building objects such as overpasses, 

suspended exits, or entrance ramps. 
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CHAPTER 6: CONCLUSION 

The results from these extracted footprints compared to the digitized datasets 

show the approach can be consistent and accurate and most importantly there is no 

human interaction involved after the creation of the first and last return DSMs. 

LiDAR is not a new technology and was intended for mapping particles. Through 

advancements in technology it has become a useful tool for mapping the surface of the 

Earth. Through the years, LiDAR has surpassed traditional photogrammetry techniques in 

efficiency and cost for complicated terrain modeling. The phenomenology and 

capabilities, such as FOPEN, are being studied for applications to extract additional 

information about objects in the data, such as buildings.  

Buildings are an important object to depict from remotely sensed data for several 

applications including urban planning, environmental monitoring, 3D modeling, and 

military operations. These applications rely heavily on the accuracy and efficiency of 

building datasets in order to perform proper analysis and produce quality products. 

This thesis presented an approach to automate building footprint extraction from 

LiDAR data providing accurate and consistent results using a combination of the new 

capabilities of LiDAR and the proven techniques, like raster processing, used to exploit 

older and more understood data. Through literature review it was discovered that there is 

minimal research using DEMs generated from LiDAR using proven techniques for 
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imagery. Instead of the pixels in a raster representing spectral information it represents 

spatial information. There are no limitations for the imagery proven techniques of edge 

detection according to what the pixel value represents and therefore can be used on 

DEMs. 

The approach of this research uses the same concept of edge detection for 

imagery in that local relative comparisons are made to discover local discontinuities. The 

rotating kernel used in this approach defined complete and closed building edges and 

used the watershed operator to identify and segment the buildings. Each segmented 

building was then transformed into Hough space and building edges were extracted as 

line segments. Finally, the line segments were processed through an algorithm to 

combine and align forming the buildings’ footprint as polygons. 

Three datasets were used to compare the extracted footprints created in the 

approach for accuracy and precision: structures downloaded from Stafford County’s 

website and two sets of digitized buildings from the LiDAR DEM used in this research 

and a high resolution orthorectified image. The structures did not correlate well to the 

digitized data or the automated footprints. The automated footprints correlated very well 

with the digitized data resulting in commission and omission errors of 5% and 6% when 

compared to the imagery digitized buildings and 6% and 3% when compared to the DEM 

digitized buildings, showing the accuracy and precision of the approach in this thesis. 

The results and statistical analysis also prove great promise of the approach to replace or 

supplement traditional timely, ineffective, and costly photogrammetric processes. 
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More research could be done to ensure its consistency in producing these or 

similar results using data from other environments. The study area only contained simple 

and no complex buildings with adjacent sides 90° from each other. Further research 

modifying the Hough lines alignment algorithm could determine if the concepts 

expressed in this thesis can be applied to complicated scenes. Diverse terrain types and 

environments, such as steep slopes and heavy forests, could also be researched with this 

approach.  

One reason for commission error (false positives) is the rotation of the extracted 

footprints from the digitized datasets. Possible solutions for providing a better orientation 

of the extracted footprint is to use other local features. In a housing development most 

houses are parallel and in the same orientation as the houses around them. After using the 

proposed approach footprints within a close proximity can be used to align the footprints 

to each other providing better orientations and fewer commission errors. Roads can also 

be used since most buildings are perpendicular to the road. 

Testing needs to be done on LiDAR datasets with occlusions such as LiDAR 

shadows and LiDAR system artifacts. LiDAR shadows can occur from tall buildings or 

when collecting an area off nadir where no returns are recorded on the opposite side of 

objects. LiDAR system artifacts could be caused by GPS recording issues, incorrect 

settings on the sensor for specific collections, and more. The test dataset used in 

experimenting the proposed approach did not contain artifacts or shadows. Testing on 

flawed datasets should be done to observe the effect it would have on the proposed 

approach. 
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Three-dimensional datasets are also becoming more in-demand for analysis and 

visualization. The automated footprints were created from 3D data which future research 

could exploit and translate the heights in the DEMs to the footprints creating 3D vector 

datasets. There are multiple ways to detect edges using traditional kernels, such as 

Roberts, Sobel, and Laplacian, and each have their advantages and limitations but could 

provide additional information about the building and structures on the roof. A 

suggestion for future research is to study each of the kernels to determine if one kernel or 

a combination of more than one kernel can provide better results than this study or be 

used to model and classify different types of buildings. 
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APPENDIX – COMPARISON TABLE FOR EACH EXTRACTED BUILDING 

Table 4: Comparison Table Part 1a 

  Area Difference Perimeter Difference X-Centroid Difference Y-Centroid Difference 
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1 -4.40 4.31 6.81 1.03 1.70 1.55 -0.48 -0.24 -0.07 -0.27 0.05 -0.06 

2 -73.84 0.57 9.83 -5.71 0.67 1.56 -1.16 -0.36 -0.12 -1.59 0.12 0.09 

3 -48.47 -3.39 4.80 -2.30 -0.16 1.06 -0.12 -0.03 0.33 -1.24 0.39 0.46 

4 -19.69 0.29 8.37 2.28 0.84 2.19 -1.83 -0.41 -0.08 -1.15 0.25 0.24 

5 -37.25 -2.15 1.48 0.45 0.91 1.50 -0.42 -0.73 -0.33 -0.27 0.24 -0.14 

6 -35.77 2.65 2.18 -0.66 -0.08 -0.41 -0.25 -0.16 0.17 -0.83 0.00 -0.13 

7 -14.12 -12.06 -5.35 5.44 1.88 2.75 0.72 -0.12 0.00 1.21 0.59 0.40 

8 -61.19 0.88 7.39 -0.23 0.70 1.73 0.51 -0.19 0.01 0.51 0.37 0.35 

9 -66.59 17.44 19.90 -5.84 2.24 2.23 1.61 -0.47 -0.03 -0.65 0.09 -0.16 

10 -37.67 0.47 6.40 -2.13 0.11 0.59 0.05 -0.02 0.49 -0.10 0.27 0.19 

11 -13.31 -8.56 12.83 1.42 -0.57 2.81 1.97 0.29 0.16 0.15 0.14 -0.14 

12 9.31 4.38 7.75 6.48 0.42 0.63 0.71 0.00 0.03 -0.78 0.30 0.18 

13 -38.43 -3.81 11.05 -6.03 -0.57 1.97 -0.43 -0.22 0.14 -0.70 -0.01 0.06 

14 -46.72 -4.95 4.58 -0.60 -0.53 0.63 -1.16 0.02 0.17 -0.10 0.18 -0.01 

15 -20.86 -4.36 16.04 1.52 -1.03 3.01 1.68 -0.15 0.33 0.14 0.05 0.00 

16 -34.09 11.34 11.34 -1.25 1.58 1.58 0.19 0.04 0.04 -0.70 -0.10 -0.10 

17 -51.19 1.81 0.46 -9.00 1.04 0.20 1.61 -0.07 0.35 -0.39 0.16 0.08 

18 -4.77 5.76 25.88 -6.81 1.59 3.87 2.75 -0.33 -0.05 0.03 0.39 0.21 

19 -1.90 -16.08 7.69 0.08 0.60 2.48 0.86 -0.37 -0.08 0.05 0.45 -0.07 

20 -40.08 3.89 3.89 -1.45 1.69 1.69 0.11 0.02 0.02 -0.17 0.44 0.44 

21 -85.77 -13.25 -10.42 -13.70 -1.16 -0.33 0.16 -0.01 0.19 -0.72 0.42 0.29 

22 -19.80 10.51 10.51 -3.45 0.74 0.74 1.20 -0.17 -0.17 -0.56 -0.28 -0.28 

23 -37.47 -9.51 -5.52 -0.98 -0.68 0.40 -0.80 -0.48 -0.08 -1.04 0.05 0.06 

24 -30.00 -3.56 6.06 -3.22 0.53 2.39 -0.40 -0.36 -0.02 0.65 0.09 -0.25 

25 -34.59 -0.22 32.27 -3.94 -1.90 2.40 3.20 0.51 0.55 -0.22 0.57 0.13 

26 -24.25 0.34 1.07 0.65 0.44 1.49 -1.00 -0.44 -0.08 -0.71 0.08 0.15 

27 -27.26 4.86 9.60 -1.26 0.50 2.59 -0.22 -0.30 0.09 -0.54 0.45 0.45 

28 -33.33 -13.82 -3.47 -5.97 -2.18 -1.08 1.60 -0.29 -0.12 -0.47 0.36 0.08 

29 -41.72 -14.46 -8.96 -2.10 -0.96 -0.67 2.89 0.04 0.21 0.44 0.34 0.16 

30 -24.14 -3.82 5.58 3.78 4.12 5.37 -0.34 -0.58 -0.17 -0.76 -0.04 0.08 

31 -45.12 -2.56 -2.56 -8.22 -0.69 -0.69 0.03 -0.24 -0.24 -0.07 -0.12 -0.12 

32 -32.33 -7.85 11.63 -1.83 -0.89 1.33 -0.29 -0.42 -0.21 -0.32 0.26 0.27 

33 -18.99 7.41 3.71 0.81 1.16 0.77 1.17 -0.42 -0.06 -0.94 0.18 0.03 

34 -43.05 -0.64 8.06 -10.77 -2.91 -2.90 1.53 -0.45 -0.31 0.14 0.33 0.09 
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Table 5: Comparison Table Part 1b 

  Area Difference Perimeter Difference X-Centroid Difference Y-Centroid Difference 
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35 -40.73 5.31 5.31 -5.38 1.97 1.97 0.26 -0.66 -0.66 0.08 0.52 0.52 

36 -32.29 8.00 14.36 0.20 1.48 2.49 2.13 -0.33 -0.13 -0.96 0.47 0.37 

37 -36.17 -6.25 0.98 -5.22 -1.08 0.32 -0.39 -0.25 -0.12 0.17 0.20 0.47 

38 -38.36 14.79 20.61 -3.82 2.12 3.79 -0.99 -0.17 0.36 -0.12 0.07 0.14 

39 -30.67 0.00 7.59 -0.58 0.05 1.50 -0.43 -0.77 -0.05 0.13 0.53 0.41 

40 -23.75 4.10 6.13 0.33 0.69 0.39 0.38 -0.54 0.04 0.02 0.15 0.33 

41 -15.98 2.53 7.75 1.98 -0.22 1.10 -0.17 -0.21 0.01 -0.65 -0.10 -0.01 

42 -23.18 3.60 14.27 -2.08 0.23 1.88 -0.03 -0.61 -0.01 -0.43 -0.29 0.07 

43 -27.94 -4.58 5.12 0.34 -0.15 1.23 1.76 -0.32 -0.06 -0.30 0.22 0.20 

44 -40.28 7.93 7.93 -1.24 1.15 1.15 0.24 0.04 0.04 -0.32 0.22 0.22 

45 -18.34 -10.67 -0.52 -2.35 -0.83 0.40 1.42 0.07 0.49 -0.22 0.00 0.02 

46 -14.25 9.37 13.51 8.04 7.10 6.94 1.91 -0.12 0.30 -0.28 0.15 0.03 

47 -31.75 -12.74 -1.06 0.14 -1.28 0.27 -0.53 -0.38 0.25 -0.45 0.00 0.07 

48 -10.97 -3.53 -2.76 4.25 -0.42 -0.12 -0.02 -0.72 -0.44 -0.74 -0.04 0.03 

49 -13.57 4.00 -2.69 1.93 0.34 -0.14 1.89 -0.72 -0.12 -0.13 0.15 0.21 

50 -30.22 -1.42 16.42 -0.82 -0.70 2.18 1.27 -0.27 -0.22 -1.13 0.35 0.37 

51 -62.16 -25.51 -8.54 -9.07 -3.33 -0.95 -0.99 -0.52 -0.10 -1.01 -0.14 0.12 

52 -32.15 1.12 2.11 -0.15 0.42 0.58 -0.13 -0.37 0.01 -0.39 0.23 0.24 

53 -22.12 14.73 21.61 1.12 2.63 3.96 -0.34 -0.82 -0.15 -0.22 0.34 0.38 

54 -28.97 10.22 11.46 -0.76 1.62 1.96 0.04 -0.65 -0.19 -0.37 0.40 0.62 

55 -30.01 6.11 8.80 1.14 0.87 1.12 -0.20 -0.64 -0.36 0.10 -0.20 -0.04 

56 -25.96 -3.79 9.18 -1.51 -0.56 1.43 1.65 -0.11 0.00 -0.30 0.00 0.22 

57 -33.93 -11.98 -2.08 -0.53 -0.44 0.02 -0.43 -0.58 -0.02 -0.45 0.04 -0.03 

Min -85.77 -25.51 -10.42 -13.70 -3.33 -2.90 -1.83 -0.82 -0.66 -1.59 -0.29 -0.28 

Max 9.31 17.44 32.27 8.04 7.10 6.94 3.20 0.51 0.55 1.21 0.59 0.62 

Avg -31.62 -0.65 6.60 -1.54 0.36 1.38 0.42 -0.29 0.00 -0.35 0.18 0.14 

Std Dev 17.09 8.42 8.33 4.03 1.61 1.58 1.12 0.27 0.23 0.50 0.21 0.20 
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Table 6: Comparison Table Part 2a 

  Centroid Error Area Error Perimeter Error Overlapped Area 
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1 0.55 0.25 0.10 -2% 2% 3% 2% 3% 3% 91% 95% 95% 

2 1.97 0.38 0.16 -46% 0% 4% -10% 1% 2% 91% 96% 94% 

3 1.25 0.39 0.56 -30% -2% 2% -4% 0% 2% 97% 96% 93% 

4 2.16 0.48 0.25 -10% 0% 4% 4% 1% 4% 84% 94% 94% 

5 0.50 0.77 0.36 -22% -1% 1% 1% 1% 2% 99% 95% 96% 

6 0.87 0.16 0.22 -22% 1% 1% -1% 0% -1% 96% 97% 97% 

7 1.41 0.60 0.40 -7% -6% -3% 8% 3% 4% 84% 95% 95% 

8 0.72 0.42 0.35 -43% 0% 4% 0% 1% 3% 100% 94% 93% 

9 1.74 0.48 0.17 -46% 8% 9% -10% 3% 3% 96% 91% 91% 

10 0.12 0.27 0.53 -22% 0% 3% -4% 0% 1% 100% 97% 94% 

11 1.98 0.32 0.21 -8% -5% 6% 2% -1% 5% 88% 98% 92% 

12 1.06 0.30 0.19 5% 2% 4% 10% 1% 1% 85% 95% 95% 

13 0.82 0.22 0.15 -23% -2% 5% -10% -1% 3% 92% 98% 95% 

14 1.17 0.18 0.17 -28% -2% 2% -1% -1% 1% 99% 99% 96% 

15 1.68 0.16 0.33 -12% -2% 8% 2% -2% 5% 93% 97% 90% 

16 0.73 0.10 0.10 -19% 5% 5% -2% 3% 3% 98% 94% 94% 

17 1.66 0.17 0.36 -29% 1% 0% -15% 2% 0% 99% 97% 97% 

18 2.75 0.50 0.21 -2% 3% 12% -12% 2% 6% 83% 94% 88% 

19 0.87 0.58 0.10 -1% -8% 3% 0% 1% 4% 92% 96% 93% 

20 0.21 0.44 0.44 -24% 2% 2% -2% 3% 3% 100% 93% 93% 

21 0.74 0.42 0.35 -54% -6% -4% -24% -2% 0% 100% 98% 98% 

22 1.32 0.33 0.33 -10% 5% 5% -6% 1% 1% 92% 93% 93% 

23 1.31 0.48 0.10 -22% -5% -3% -2% -1% 1% 94% 97% 96% 

24 0.77 0.37 0.25 -17% -2% 3% -5% 1% 4% 98% 96% 96% 

25 3.20 0.76 0.56 -23% 0% 15% -7% -3% 4% 78% 94% 83% 

26 1.23 0.45 0.17 -13% 0% 1% 1% 1% 2% 94% 95% 93% 

27 0.59 0.54 0.46 -15% 2% 4% -2% 1% 4% 97% 93% 91% 

28 1.67 0.46 0.14 -18% -7% -2% -9% -3% -2% 96% 98% 99% 

29 2.93 0.34 0.27 -25% -7% -4% -4% -2% -1% 86% 98% 97% 

30 0.84 0.58 0.19 -13% -2% 3% 6% 6% 8% 93% 93% 91% 

31 0.08 0.26 0.26 -25% -1% -1% -14% -1% -1% 99% 98% 98% 

32 0.44 0.49 0.34 -18% -4% 5% -3% -2% 2% 99% 97% 94% 

33 1.50 0.46 0.07 -11% 4% 2% 1% 2% 1% 88% 93% 95% 

34 1.53 0.56 0.32 -24% 0% 4% -18% -4% -4% 89% 90% 88% 
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Table 7: Comparison Table Part 2b 

  Centroid Error Area Error Perimeter Error Overlapped Area 
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35 0.27 0.84 0.84 -27% 3% 3% -10% 3% 3% 94% 90% 90% 

36 2.34 0.57 0.39 -23% 4% 8% 0% 3% 4% 85% 92% 90% 

37 0.42 0.32 0.48 -21% -3% 0% -9% -2% 0% 98% 98% 94% 

38 1.00 0.19 0.39 -22% 6% 9% -6% 3% 6% 98% 92% 89% 

39 0.45 0.93 0.41 -16% 0% 3% -1% 0% 2% 98% 93% 94% 

40 0.38 0.56 0.33 -12% 2% 3% 1% 1% 1% 97% 95% 95% 

41 0.67 0.23 0.01 -8% 1% 3% 3% 0% 2% 95% 95% 95% 

42 0.43 0.68 0.07 -12% 2% 6% -3% 0% 3% 98% 93% 94% 

43 1.79 0.39 0.20 -15% -2% 2% 1% 0% 2% 93% 95% 95% 

44 0.40 0.23 0.23 -28% 4% 4% -2% 2% 2% 100% 95% 95% 

45 1.44 0.07 0.49 -6% -4% 0% -3% -1% 1% 91% 98% 96% 

46 1.94 0.20 0.31 -9% 5% 7% 13% 12% 11% 88% 89% 89% 

47 0.69 0.38 0.26 -17% -6% -1% 0% -2% 0% 98% 98% 97% 

48 0.74 0.72 0.44 -5% -1% -1% 6% -1% 0% 95% 95% 97% 

49 1.89 0.73 0.24 -7% 2% -1% 3% 1% 0% 82% 92% 98% 

50 1.70 0.44 0.43 -19% -1% 8% -1% -1% 4% 90% 95% 91% 

51 1.41 0.54 0.15 -37% -13% -4% -15% -5% -1% 99% 99% 98% 

52 0.41 0.44 0.24 -19% 1% 1% 0% 1% 1% 100% 95% 95% 

53 0.40 0.88 0.41 -13% 7% 10% 2% 4% 6% 99% 87% 89% 

54 0.38 0.77 0.65 -17% 5% 5% -1% 3% 3% 100% 90% 94% 

55 0.23 0.67 0.36 -14% 2% 3% 2% 1% 2% 99% 93% 95% 

56 1.68 0.11 0.22 -17% -2% 5% -3% -1% 3% 92% 98% 94% 

57 0.63 0.58 0.03 -19% -6% -1% -1% -1% 0% 98% 97% 99% 

Min 0.08 0.07 0.01 -54% -13% -4% -24% -5% -4% 78% 87% 83% 

Max 3.20 0.93 0.84 5% 8% 15% 13% 12% 11% 100% 99% 99% 

Avg 1.12 0.44 0.29 -19% 0% 3% -3% 1% 2% 94% 95% 94% 

Std Dev 0.73 0.21 0.16 11% 4% 4% 7% 3% 2% 6% 3% 3% 
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Table 8: Comparison Table Part 3a 

  Commission Omission Percent Accuracy 
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1 9% 5% 5% 12% 3% 2% 81% 89% 89% 

2 9% 4% 6% 55% 4% 2% 81% 91% 89% 

3 3% 4% 7% 33% 5% 4% 95% 93% 87% 

4 16% 6% 6% 26% 6% 2% 68% 88% 88% 

5 1% 5% 4% 23% 6% 3% 97% 89% 93% 

6 4% 3% 3% 26% 2% 2% 93% 93% 93% 

7 16% 5% 5% 23% 12% 8% 69% 89% 89% 

8 0% 6% 7% 43% 5% 4% 100% 88% 85% 

9 4% 9% 9% 50% 1% 0% 93% 83% 83% 

10 0% 3% 6% 22% 3% 3% 99% 94% 89% 

11 12% 2% 8% 19% 7% 2% 77% 96% 84% 

12 15% 5% 5% 11% 3% 1% 69% 90% 91% 

13 8% 2% 5% 30% 4% 0% 85% 95% 89% 

14 1% 1% 4% 29% 4% 1% 99% 97% 93% 

15 7% 3% 10% 19% 5% 2% 85% 94% 81% 

16 2% 6% 6% 21% 0% 0% 96% 89% 89% 

17 1% 3% 3% 30% 3% 3% 98% 93% 94% 

18 17% 6% 12% 19% 3% 0% 67% 87% 76% 

19 8% 4% 7% 9% 12% 4% 85% 91% 86% 

20 0% 7% 7% 24% 5% 5% 100% 87% 87% 

21 0% 2% 2% 54% 8% 7% 99% 95% 96% 

22 8% 7% 7% 19% 2% 2% 83% 87% 87% 

23 6% 3% 4% 28% 7% 6% 88% 95% 93% 

24 2% 4% 4% 19% 6% 1% 96% 92% 92% 

25 22% 6% 17% 45% 6% 2% 55% 89% 66% 

26 6% 5% 7% 20% 5% 6% 88% 90% 87% 

27 3% 7% 9% 18% 5% 4% 94% 85% 83% 

28 4% 2% 1% 22% 9% 2% 92% 96% 99% 

29 14% 2% 3% 39% 9% 8% 72% 96% 93% 

30 7% 7% 9% 20% 8% 6% 86% 87% 83% 

31 1% 2% 2% 26% 3% 3% 99% 96% 96% 

32 1% 3% 6% 20% 7% 1% 97% 94% 88% 

33 12% 7% 5% 23% 3% 3% 76% 86% 91% 

34 11% 10% 12% 35% 10% 8% 78% 80% 76% 
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Table 9: Comparison Table Part 3b 

  Commission Omission Percent Accuracy 
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35 6% 10% 10% 33% 8% 8% 88% 79% 79% 

36 15% 8% 10% 39% 3% 2% 70% 84% 81% 

37 2% 2% 6% 23% 5% 5% 96% 96% 89% 

38 2% 8% 11% 24% 2% 2% 95% 84% 78% 

39 2% 7% 6% 18% 7% 3% 96% 85% 88% 

40 3% 5% 5% 15% 4% 2% 93% 89% 91% 

41 5% 5% 5% 12% 4% 1% 91% 90% 91% 

42 2% 7% 6% 14% 5% 0% 96% 86% 87% 

43 7% 5% 5% 22% 7% 3% 86% 90% 89% 

44 0% 5% 5% 28% 1% 1% 100% 90% 90% 

45 9% 2% 4% 15% 6% 4% 83% 96% 92% 

46 12% 11% 11% 21% 6% 4% 76% 79% 78% 

47 2% 2% 3% 20% 8% 4% 96% 97% 93% 

48 5% 5% 3% 10% 6% 4% 89% 90% 93% 

49 18% 8% 2% 25% 6% 3% 65% 83% 96% 

50 10% 5% 9% 29% 5% 1% 81% 91% 82% 

51 1% 1% 2% 39% 13% 6% 97% 99% 97% 

52 0% 5% 5% 19% 5% 4% 100% 89% 89% 

53 1% 13% 11% 15% 6% 1% 98% 73% 77% 

54 0% 10% 6% 17% 5% 1% 100% 80% 87% 

55 1% 7% 5% 14% 5% 2% 99% 86% 89% 

56 8% 2% 6% 25% 4% 1% 84% 97% 88% 

57 2% 3% 1% 21% 9% 2% 97% 93% 98% 

Min 0% 1% 1% 9% 0% 0% 55% 73% 66% 

Max 22% 13% 17% 55% 13% 8% 100% 99% 99% 

Avg 6% 5% 6% 25% 5% 3% 88% 90% 88% 

Std Dev 6% 3% 3% 10% 3% 2% 11% 5% 6% 
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