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ABSTRACT 

EXPLORING THE USE OF SIGNS DURING PROTEST ACTIVITIES THROUGH 
SOCIAL MEDIA DATA INTEGRATION: THE CASE OF OCCUPYWALLSTREET 

Kathryn M. Kash, M.S. 

George Mason University, 2016 

Thesis Director: Dr. Arie Croitoru 

 

Signs have long been used extensively in protest activities, such as political 

rallies, social unrest gatherings, picket lines, company boycotts, and marches. 

Consequently, recent studies have explored the use of posters in protests in terms of their 

role in the overall protest rhetoric, both visual and textual. While such studies articulate 

the central role signs have in protest activities, the locations of protest signs and their 

relationship to the spatial characteristics of protest activity often remain unexplored. 

Social media offer a new lens through which the location of signs in protest activities 

could be explored. In particular, the use of geotagged social media (such as Twitter and 

Flickr) contributions during protest activities can provide rich information about where 

signs are located, what narratives emerge from them, and how they are integrated into the 
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overall activity. Toward this goal, this research proposes an approach for integrating 

geotagged Flickr images and Twitter messages for examining the relation between sign 

locations and protest activity locations. In this approach, the Stroke Width Transform and 

Optical Character Recognition are used to detect text in protest-related images. The 

location of these images is then compared to geotagged Twitter messages relating to the 

same protest activity, and patterns of interest are detected. The utility of this approach 

was examined through the analysis of the 2011 OccupyWallStreet protests across the 

United States. The results suggest that, overall, signs are immersed in the protest activity, 

but they tend to concentrate in specific locations that are likely to have a more central 

role in context of the protest. 
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CHAPTER ONE 

1.1	Introduction	
Merriam-Webster (2016) defines social media as “forms of electronic 

communication (as websites for social networking and microblogging) through which 

users create online communities to share information, ideas, personal messages, and other 

content (as videos).” In the last decade, social media platforms and usage have increased 

exponentially. All over the world, people are posting to their various sites (e. g. 

Facebook, Twitter, Instagram, Flickr), from the mundane to the thrilling. Natural 

disasters, terrorism events, national uprisings, and protests, to name a few, are all being 

tracked via social media to be seen by the entire world. With the advancement of smart 

phones (with an embedded camera and global positioning system [GPS]), consumer 

digital cameras, readily available and low cost internet, and the ability to share an image 

in a few seconds, people are posting on social media at an alarming rate, often including 

images or video. Information and images are spreading at the push of a finger tap, which 

can provide a wealth of information about events around the world. Being able to 

automatically ingest such images and extract information from them is therefore 

becoming an important task in many application areas (traffic panel detection, license 

plate detection, or blind and visually impaired assistance), while also providing greater 

intelligence and knowledge of an event or activity. The amount of data that is being 
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generated is large and only getting larger (known as big data), and it offers a new way to 

study complex human systems (Croitoru et al., 2014).  

One such event or activity that has been using social media as a platform, 

organization and logistics coordination tool, and for news sharing is protest activities or 

contentious politics. Contentious politics can be defined as “concerted, counter-

hegemonic social and political action, in which differently positioned participants come 

together to challenge dominant systems of authority, in order to promote and enact 

alternative imaginaries” (Leitner et al., 2008, p. 1). It is used interchangeably to describe 

social movements, protests, revolutions, and demonstrations.  Posters and their use in 

social movement literature is scarce, yet the need to study them to gain a full 

understanding of protests has been determined (Wildermuth et al., 2014; Burridge, 2008). 

In order to identify which protest signs have text contained in them (relating to the 

protest), a text detection and recognition process has to be used, due to the large quantity 

of information.  

Traditionally, computer vision used optical character recognition (OCR) to ingest 

text on images to be machine readable. OCR has made considerable advances in the last 

few decades. By scanning pages or documents of well-formatted, printed text, OCR 

algorithms are very effective at text recognition. The text is segmented to differentiate 

between background pixels. Applications include assistance for the blind and visually-

impaired, automated business data entry, license plate identification, conversion of 

printed documents to soft copies (which can then be edited), and converting handwriting 

to a digital format. But when those same algorithms are applied on natural scenes (such 
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as a photograph), detecting text is still a challenge (Ikica & Peer, 2014; Pan et al., 2011).  

Factors in natural scenes, such as extreme size and font variation, multiple languages, 

blur, color, and strong background clutter and noise, prove almost impossible for 

traditional OCR to perform effectively. Variations in font, style, scale, orientation, 

geometric and photometric distortions, thickness, color, size, texture, lighting, partial 

occlusions, image resolutions, and complex background prove to be the greatest 

challenge in automatic text detection and recognition algorithms (Wang et al., 2015; Yin 

et al., 2014; Gonzalez et al., 2012; Li & Yu, 2012; Chen et al., 2011; Jung et al., 2004). 

Due to all these differences in natural scene images, designing a ‘one size fits all’ system 

that can accurately detect text proves genuinely challenging. A variety of methods have 

been developed and improved upon to assist with these issues in natural scene text 

detection.  

Many improvements have been made to text recognition, specifically in natural 

scenes. By using various methods of edge detection and image processing, many 

algorithms that improve this process have been developed. This research focuses on one 

suite of text detection algorithms to extract text from natural scenes, using the Occupy 

Wall Street (OWS) movement as a case study. Flickr images relating to OWS are 

harvested, then the text recognition process is used to determine if text is contained. Once 

text is detected, the spatial relationship of images with detected text is examined and 

compared with Twitter data from the same spatial location and place in time.  The Twitter 

data serves as the baseline for the overall protest activity. By comparing text detection 

methods on protest signs and then further visualizing that data to see the overall 
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relationship between social media and protest activity, understanding of these events can 

be enhanced and intelligence can be gathered over that space and the event.  

1.2	Thesis	Structure	
Chapter 2 provides a literature review analysis of some previous research related 

to protests, the use of signs, and the importance of spatial considerations when studying 

contentious politics, the Occupy movement, the use of social media in protests, and text 

detection algorithms. Chapter 3 gives an overview of the research objectives. Chapter 4 

elaborates on the data and methods used for analysis. Chapter 5 discusses the results of 

the analysis, and Chapter 6 concludes the research and provides recommendations for 

future work. 
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CHAPTER TWO 

2.1	Protests,	the	Use	of	Signs,	and	Location	
 

Since the advent of modern printing and the technological improvements in 

printing for mass production in the late 19th century (Eskilson, 2012), posters have been a 

mainstay in human culture.  Initially used primarily for advertising, poster usage is 

ubiquitous throughout almost all types of groups and events.  Dominated by advertising, 

political campaigns, and other propaganda in its inceptions, artists created visual pictures 

to inform the masses and stir up attention on various issues (New York History Museum, 

2015). Protestors utilize signs as a visual and textual way to convey their grievances. The 

low cost, ease of production, visibility, and ability to communicate a message quickly 

make posters the “medium of choice” for most activists and protestors (Wildermuth et al., 

2014; Irwin, 2007). “From picket lines, to company boycotts, to marches on Washington; 

the poster plays an essential role in articulating the voice of the people” (Wildermuth et 

al., 2014, p. 16). The combination of words and images on a poster can show a powerful 

message (Tan & Tollenaar, 2004). However, poster usage in protests goes undocumented 

(Bailey & McAte, 2003). Some social scientists who study protests and other social 
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movements often do not analyze or recognize the visual methods and materials used, save 

for documenting images in books or articles (Philipps, 2012). 

It is important to note that throughout this research, the terms ‘signs’ and ‘posters’ 

are used interchangeably. However, an argument can be made that ‘signs’ are 

homemade/handwritten do-it-yourself (DIY), while ‘posters’ are made by graphic 

designers and professionally printed and produced. Whichever way these signs or posters 

are produced (amateur vs. professional), it doesn’t change the fact that they are a 

powerful, immediate, and succinct form of public speech (Poynor, 2012). 

 Protest studies have seen an increase in the literature in examining protest rhetoric 

(what the protest is trying to achieve).  Examples include the Occupy movement (Deluca 

et al., 2012); the Arab Spring protests (Al-Al, 2012) and the online campaign against 

Susan G. Komen (Watt, 2012). They examine the framing of the protest (Deluca, 2012), 

the gendered implications of a political uprising and how women play a key role (Al-Ali 

2012), and the post-feminist rhetoric the Susan G. Komen Foundation used when it 

distanced itself from Planned Parenthood in 2012 (Watt, 2012). However, none of these 

examples focuses specifically on the protest posters and the prominent display of the 

visuals during a protest (Wildermuth et al., 2014).  

One of the only examples in the literature of examining the use of signs in 

protests is by Wildermuth et al. (2014), which focuses on the role the poster played in the 

social protests against the Wisconsin Act 10 from 2011. Their goal was to understand the 

strategies used in the posters to attempt to persuade the protestor’s audiences, rather than 

to evaluate the success or failure of the protest poster. Their argument states that the 
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“tones, themes and messages” are an important element to the overall rhetoric of the 

protest (Wildermuth, et al., 2014). They employed Irwin’s (2007) strategy of examining 

protest image rhetoric as a framework for evaluation of the images. Irwin grouped visual 

protest material into three categories:  a primary argument (or enthymeme); use of 

emotional appeals; and finally, the use of iconic images. Wildermuth also focused on the 

quality of the protest signs (for example, whether they were handmade or professionally 

printed) and found that the vast majority of the signs used in Wisconsin Act 10 protests 

were handmade. The researchers concluded that visual protest materials not only 

illustrate the campaigns goals, but also that the analysis of the materials was the key in 

“unlocking the deeper persuasive strategies and cultural significance of the Wisconsin 

protest” (Wildermuth et al., 2014). 

Some work in social movement research aims to analyze how visual protest 

materials can aid in improving the protest research and the outcomes. Philipps (2012) 

argues that by using visual protest material and doing visual interpretations, such as 

summarizing content analysis, iconological interpretation, and cluster analysis (the type 

of cluster analysis he does is on the layout, message content, design, etc.), it is possible to 

accurately describe the protest, understand the producer of the visual protest material, and 

understand the makeup of the types of people participating in the particular protest. An 

analysis on the 2004 German welfare system in Leipzig protests had two clear and 

distinct groups. The first group included the experienced demonstrators who were 

organized and had materials that were clear and appropriate for the demonstrations. The 

author called these types of protestors “professionals.” They could participate not because 
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they were affected personally, but because they believed in the overall cause of the 

protest. The second group was the “spontaneous or unorganized” type of protestor. Those 

people were joining the protest because of how it affected their own lives, and materials 

were often hastily made in a short amount of time with whatever was available to them. 

This type of analysis and the conclusions drawn show the benefits of analyzing visual 

materials and how they play a role in the overall protest movement (Phillips, 2012). 

Another example of analyzing protest posters to examine protest rhetoric was 

performed by Burridge (2008). Figure 1 is an example of the signs Burridge was 

analyzing. This study examined seven posters used by the British Countryside Alliance 

during their “Liberty and Livelihood” march in September of 2002. The group and the 

posters were challenging the ban of hunting with dogs (which ultimately was 

unsuccessful). However, the authors weren’t interested in the outcome of the protest. The 

author was interested in how the posters co-articulated visual and textual elements for a 

rhetorical purpose. They state that visual materials matter, they contain arguments, and 

that visual and textual materials should be taken seriously, given the way in which they 

are used creatively to achieve a particular rhetorical effect. Future work for social 

scientists should engage in “analysis of materials in which visual and textual elements are 

co-articulated for particular purposes, and attempt to map the range of relationships that 

can exist between those elements” (Burridge, 2008).  
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Figure 1: Pro Fox Hunting Poster (Burridge, 2008) 
  

Another facet of protest posters is their abundance. The more protest posters in a 

location, the more the presence of the protest is felt (Dumitrescu, 2010; Sewell, 2001). 

Many posters with similar messages in the same location can amplify the message 

because of the multiplication effect. Higher numbers of posters and protestors in the same 

location show that a campaign has credibility (Wildermuth et al., 2014). The massive 

amount of people in a protest or campaign can have a positive effect on the campaign, by 
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giving publicity to the group directly by physically occupying public spaces and 

indirectly by accounts from the media, newspapers, or social media. Additionally, a large 

group of people mass demonstrating for a movement increases that group’s solidarity 

(Sewell, 2001).  

The location of protest posters and their relationship to the overall protest activity 

is one that is scarce in the literature, though not entirely ignored. Rather, space is only 

discussed as a case study or background, relative to the specific activity, and not as a 

prime focus (Sewell, 2001) or downplayed spatial context and concepts in social 

movement research (Martin & Miller, 2003).  In recent years, some research discussing 

location and protest activity referring to the actual physical location of where the protest 

is taking place has emerged (Endres & Senda-Cook, 2011). Geographers have been 

studying the implications of place in social movements for the last 15 years (Martin & 

Miller, 2003; Sewell, 2001). McCarthy & McPhail (2006) look at the types of places 

where protests occur, such as public, private, and semi-private. However, rhetoricians are 

just starting to understand the implications that place has and the implications of place on 

a protest. Endres & Senda-Cook (2011) argue that “place can serve as a unique heuristic 

for rhetorical studies of social movements” (p. 258). 

The concept of place-based arguments invokes images of meaning or memories to 

support that argument. Spaces and places have meaning and symbolic values that are 

important to consider in protest movements (Sewell, 2001). An example would be an 

environmental campaign to “Save the Grand Canyon” or “Save the Glaciers.” The 

activists call upon the images of those places, even though the actual protest is not 
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happening at that location. Place-based rhetoric is the very place in which a protest is 

happening is part of the overall rhetorical message (Endres & Senda-Cook, 2011). The 

National Mall in Washington, D.C. is a good example of an area that has a pre-existing 

meaning in place-based rhetoric. The proximity to the federal government and the fact 

that so many other protests have occurred on the Mall have embedded in the meaning of 

“the Mall” that this is a place where protestors can come and have their voices heard. The 

Wisconsin Act 10 protests occurred at the Wisconsin State Capital, because the state 

legislators were the ones who could enact the change. The protest would not have the 

same effect if it were held in a less meaningful place. In a study of all protest activity 

mentioned by the New York Times from 1968 to 1973, in 83% of protests that were 

directed or targeted toward a school, the protest physically occurred at a school 

(McCarthy & McPhail, 2006). In the Civil Rights movement in the 1960s, there were 

many sit-ins, demonstrations, freedom rides and other actions occurring in public 

locations in order to protest segregation. These challenges against authority had more 

context and stakes because of the location in which they occurred (Sewell, 2001).  

Endres & Senda-Cook (2011) and Sewell (2001) discuss three types of place-

based rhetoric as a framework to use when studying the relationship of place and social 

movements. Protestors: 1) build on an existing building of a place; 2) temporarily 

reconstruct the meaning of a place; and 3) hold repeated demonstrations over time in a 

place and can change the meaning of that location.  Urban areas or university locations 

with parks, plazas, and squares are ready-made for political protests because of the 

audience and access to public spaces and locations, as opposed to suburbs, where the 
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majority of gathering locations are private properties, such as malls and shopping centers, 

without the type of audience and accessibility to free speech and assembly (Sewell, 

2001).  Sewell’s (2001) concepts of spatial agency, co-presence, time-distance, and the 

spatiality of power all play a role in studying and understanding the spatial dimension and 

how it relates to political protests as an actor in the protest itself and not a byproduct. 

Attention to spatial relations is needed when studying contentious politics and the forces 

driving those contentions (Martin & Miller, 2003). Indeed, Leitner et al. (2008) argue that 

the different aspects of space (place, scale, networks, positionality, and mobility) should 

be considered equally, instead of one over the other, when examining contentious 

politics, as they are intertwined and complex.  

2.2	The	Occupy	Wall	Street	Movement	
 

 In July of 2011, inspired by the protest and Arab Spring in Egypt and the 

Indignados in Spain, the online magazine Adbusters posted on their blog a call for 

20,000 people to flood lower Manhattan and not leave until their demands were met, in 

essence, ‘occupying’ the space. Grievances were published on a website created by the 

organizers, the New York City General Assembly, which outlined they wanted to “gather 

together in solidarity to express a feeling of mass injustice” (NYC General Assembly, 

2011). The way in which “corporations, which place profit over people, self-interest over 

justice, and oppression over equality, run our governments” was unacceptable (New York 

City General Assembly, 2011). Adbusters emphasized the physical occupation of Wall 

Street but they also encouraged the discussion online using the hashtag #occupywallstreet 
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(Adbusters, 2011). The initial call to action was for September 17, 2011 in Liberty 

Square (also known as Zuccotti Park), a half-acre site in lower Manhattan’s financial 

district (Gillham et al., 2013). The movement on the ground lasted for more than two 

months, with events staged around New York City, NY. The movement and ideals 

spread, and by October 15, 2011 (a month before the NYC protestors were forced out of 

Zuccotti Park), similar demonstrations had occurred in 951 cities in 82 countries (Bastos 

et al., 2015).  

Castañeda (2012) argues that the Indignados (loosely translated to “the 

Outraged”) movement in Spain in the spring and summer of 2011 was a direct precedent 

to the Occupy Wall Street movement in NYC in the fall of 2011. Spanish lawmakers had 

put in place cuts to education, welfare, and social programs, and many felt it was unjust. 

Activists started camping in the Toma la Plaza (a popular area in Barcelona) to “occupy 

and liberate the square” (Castañeda, 2012). The activities wanted the average citizen’s 

voice to be heard and not dismissed in favor of financial interests. Like the Spanish 

protest, the OWS movement wanted to call out income inequality and the 1% of 

Americans who have the majority of the wealth in America. Protestors used the slogan 

“We are the 99%” as a popular message that refers to the income inequality in America, 

conveying that that the top 1% of Americans have the majority of the wealth and political 

influence. Additional items of protest action included the corporate influence in 

American politics and the federal response to the 2008 financial crisis (Gillham et al., 

2012).  
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OWS is a unique protest because it was one of the first times social media was 

used in such a large way in an American protest. The uniqueness and effectiveness of 

using social media to spread awareness, logistics, and coverage of the event (outside 

traditional media) makes for an interesting case study of social media and protest activity 

(Croitoru et al., 2015).  

2.3	The	Use	of	Social	Media	in	Protest	Activities	
 

The popularity and available access of social media and smartphones provides a 

quick, powerful, and easy tool to be used in protests. The barriers to entry are very low to 

joining social media, allowing virtually anyone to create an account and start sharing, 

viewing, finding information, and connecting with others that have like-minded views 

(Steinert-Threlkeld et al., 2015). Social networks facilitate communication with people 

who otherwise would not have connected (Granovetter, 1973). There is no longer a 

question on whether or not social media plays a role in protest activities and contentious 

politics. A myriad of studies show that social media use is related to protest activity, and 

that users who engage in those events are users of social media – in developed and 

developing countries (Bekkers et al., 2011; Earl & Kimport, 2011; Pearce & Kendzior, 

2012; Valenzuela et al., 2012; Yun & Chang, 2011). Bastos et al. (2015) used the 

Granger causality test to show Twitter and Facebook activity (online) predicts offline 

protest activity for the OWS movement, as well as a feedback loop from onsite and 

online activity. The question then shifts from whether or not social media and protest 

activities are linked at all to how social media are used in protest activities (Kharroub & 

Bas, 2015; Valenzuela, 2013).  
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Social media played a vital role in “triggering, organizing, facilitating, 

accelerating, documenting and broadcasting the protests in Egypt in early 2011” 

(Kharroub & Bas, 2015). Before the revolution started, users discussed and shared 

conversations about the political conditions (Eltantawy & Wiest, 2011; Khamis & 

Vaughn, 2011), bringing users together who were otherwise distanced (Lim, 2012). By 

documenting everything on social media, such as police brutality, momentum for the 

movement and offline protest grew (Cottle, 2011; Khondker, 2011). Once the revolution 

began, social media were used to coordinate and announce events, and support was 

gained throughout Egypt and internationally (Eltantawy & Wiest, 2011; Khamis & 

Vaughn, 2011; Lim, 2012; Tufekci and Wilson, 2012; Zhuo et al., 2011).  

Kharroub and Bas (2015) contribute to the literature on the contents, uses, and 

effects of social media in political activism by evaluating visual content in the 2011 

Egyptian revolution. They found that the majority of images on Twitter relating to the 

revolution contained a more efficacy-eliciting content (crowds, protest activities, and 

national and religious symbols) than emotionally arousing images (such as violence). 

Conclusions were drawn that this was an intentional tool to motivate and gain more 

followers and encourage political participation through social media. 

In the case of the OWS campaign, the use of social media aided in the quick 

spread and geographically dispersed network that supported the cause, throughout the 

United States and internationally (Penney & Dadas, 2013). The mainstream media all but 

ignored the Occupy movement, with the first report of the event three weeks after the 

initial call to action in Zuccotti Park. Deluca et al. (2012) evaluated traditional 
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(old/mainstream) media and social (new) media and how it framed the Occupy Wall 

Street coverage. In traditional (television, newspapers) media, there was a coverage 

blackout for the first eight days. After the first eight days, only small articles were in 

major publications. In the first month of the OWS protests, only 104 stories appeared in 

the top five newspapers in the United States (The New York Times, The Washington 

Post, The Los Angeles Times, the Wall Street Journal, and USA Today). Television 

media largely ignored the Occupy movement until after a few weeks of coverage. The 

media that did cover it framed it in a negative light. The evolution of how mainstream 

media covered OWS was “stillborn, first neglected, and then frivolously framed” (Deluca 

et al., 2012, p. 500).  

Two early New York Times articles painted the activists as “hippies” and “flakes” 

and the OWS movement as frivolous and aimless. This early, negative framing by 

mainstream media didn’t do much to help discuss these issues that OWS was trying to 

protest. Issues such as income inequality, greed on Wall Street, and corruption from 

politicians and corporations were not being discussed and brought to light.  

Social media, on the other hand, provided “a different space for different voices to 

create a diversity of framings” (Deluca et al., 2012, p. 491).  Over 10 million results in a 

Google Blog search mentioned OWS in the first 30 days of the protest (17 September - 

17 October, 2011). Blogs from the political left and political right were analyzed and 

categorized, and while they had vastly different views on OWS, it at least provided a 

medium that was against the mainstream traditional news media. On Twitter on the first 

day alone, there were over 4,000 mentions of OWS. After almost a month into the event, 
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over 40,000 mentions of OWS were counted on Twitter in one day (Deluca et al., 2012). 

The numbers do not alone reveal the entire story, but they show how activism has 

changed, with OWS being one of the first large scale protests in the United States with 

the benefit of the smartphone and the internet at everyone’s fingertips. Smartphones and 

the internet are no longer a tool within an environment, but the environment itself. The 

OWS movement was one of the first large movements in the United States where the 

majority of users had smartphones. On the screens of social media, OWS was vibrant, 

and each side debated and discussed it, unlike the negative framing from traditional 

media. Social media (blogs, and Twitter/Facebook, etc.) created a new context for 

activism that does not exist in the world of mass media. Through social media, “the 

grounds of possibility for activism have been multiplied and transformed” (Deluca et al., 

2012, p. 500).  

The role played by social media in political and social protests has been 

increasing across the world (Earl & Kimport, 2011; McCaughey & Ayers, 2003). The 

Arab Spring (which started in Tunisia and then spread to other countries, with Egypt 

having a large protest) and the Vinegar protests in Brazil all used social media as a key 

component of the protest. One activist in Tunisia said “social media has created bridges, 

has created channels between individuals, between activists, between even ordinary men, 

to speak out, to know that there are other men who think like me. We can work together, 

we can make something together” (Pollock, 2011). Facebook in particular was very 

popular in the Tunisian revolution; it acted as the streets, where people could post videos, 
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messages, and organize meet-ups, as activists once did on the streets with pamphlets and 

blogs. It became a central location and meeting place to get and share information.  

Steinert-Threlkeld et al. (2015) carried out a study using 13.8 million geo-located 

Tweets (not pulled based on specific hashtags and keywords) and protest data from a 

publically available machine-coded data set, the Global Database of Events, Location and 

Tone (GDELT) from 16 countries involved in the Arab Spring from November 2010 to 

December 31, 2011. Hashtags were analyzed and the Gini coefficient is used to measure 

extent of coordination. Coordination is defined as “converging on a few hashtags and 

using them intensively” (Steinert-Threlkeld et al., 2015, pp. 3-4). A Gini coefficient of 

zero (0) indicates complete equality with all hashtags used the same number of times. 

Conversely, a Gini coefficient of one (1) indicates that everyone used one single hashtag 

and nothing else was used. The higher the coefficient, the more coordination being done 

about an event that that hashtag represents. Their findings show evidence that 

coordinating messages on Twitter is associated with increased protest activity the 

following day. Egypt had an average Gini coefficient of 0.59, Syria was 0.6. Kuwait was 

0.09, and Oman came in at 0.02.  This work also supports the idea that decentralized 

players (people with weak ties) can facilitate a mobilization or protest (Granovetter, 

1973), challenging the notion that the people who protest only do so if friends or family 

protest (Gould, 1991, as cited in Steinert-Threlkeld et al., 2015) or are people with prior 

protest experience (McAdam, 1986, as cited in Steinert-Threlkeld et al., 2015).  While 

these claims are true for the countries involved in the Arab Spring, the authors do caution 
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that other countries with free speech and free media might not need to do as much 

coordination online (Steinert-Threlkeld et al., 2015). 

Valenzuela (2013) examines the relationship of using social media and increased 

protest activity among the adult population and gives three explanations for that 

relationship: information; expression; and activism.  Survey data were collected from the 

adult urban population in Chili in winter of 2011, a period of time where citizens were 

demanding changes in education and energy policies. They found that expression and 

activism did a have a positive and statistically significant relationship, but the use of 

social media as a news source (information) was not statistically significant. This could 

be because of the nature of Chilean media providing most of the news and should be 

looked at further in studies of other countries. Valenzuela argues that social media is not 

creating a new form of protest, but augmenting traditional forms of protest. Offline and 

online are not separate and parallel worlds of activism, but intertwined and related to 

each other (Valenzuela, 2013).  

A sign or poster in use in a protest can be thought of as an analog tweet – sharing 

a short message with followers and trying to persuade onlookers of the voice to see the 

activist’s perspective. Where a sign is only viewed by the immediate audience, Tweets 

are shared globally to a much wider audience. Taking a picture of the protest signs and 

posting it on Flickr is a ‘message within a message,’ and protests and signs are being 

augmented with the spread and use of social media to share the message.  
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2.3.1	Twitter	and	OccupyWallStreet	
 Twitter is a social networking platform that enables users to openly share short 

messages no longer than 140 characters. Each short message is called a tweet, and each 

tweet can be “re-tweeted” by other users, sharing and forwarding on the message to their 

network of followers. With over 320 million monthly users (Twitter, 2015), Twitter is 

one of the largest social media platforms around the world. Virtually every aspect of 

modern life - news, sports, television, natural disasters and other current events - are all 

documented real-time on Twitter. Trending topics are identified by Twitter’s algorithms 

to determine the most popular topics in a user’s area, based on their location and who 

they follow (Twitter, 2016), though it is important to note that Twitter does not require 

users to register for an account to view others Tweets. Unlike Facebook, Twitter is an 

opt-in to privacy; all tweets are public by default. The short messages (140 characters) 

with links to images, videos, and other blogs and media facilitate conceptual 

understanding of content and the ability to view many sources very quickly to learn and 

gain information (Gleason, 2013). 

 With the initial call to action from Adbusters and by using the hashtag 

#occupywallstreet, Twitter became the de facto preferred platform associated with the 

OWS movement. Activities were coordinated, messages were dispersed, and editorial 

commentary was distributed. Twitter was used to bypass the mainstream media (Penney 

& Dadas, 2013).  

 According to research by Penney and Dadas (2013), there are seven overlapping 

ways in which Twitter was used in relation to the OWS movement. By interviewing 17 

people with varying backgrounds, geographic locations, and involvements in the OWS 
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movement, they came up with seven themes on how Twitter is utilized in protest 

movements. While they admit their research is not an exhaustive look at how every user 

of Twitter in the OWS movement feels and behaves, these firsthand accounts provide rich 

information on how Twitter was used and can inform future studies in examining Twitter 

and protest usage.  

 The first theme is the most obvious:  facilitating the face-to-face, offline protest 

in an online forum. Earl and Kimport (2011) referred to this as “e-mobilization,” where 

the “internet is used to facilitate the sharing of information in the service of an offline 

protest action” (p. 12). Giving out information in a tweet, such as the location and time of 

a meeting, is the most basic representation of e-mobilization. This is the same as using an 

advertisement, a poster, or commercial to give out information. The difference with 

Twitter is that the tweets can be shared quickly and reach a large number of people, 

thereby hopefully attracting a greater turnout of people at the offline protest location.  

This face to face “e-mobilization” theme can also apply to coordinating the 

logistics during an event as it happens (as opposed to before the event occurs, such as the 

previous example). Someone can Tweet “the food tent needs supplies” while the event is 

happening, and followers will see that tweet and provide help. The real-time, on the 

ground needs of the event could be communicated in an online forum, so that other event 

members see that and react in an offline way.  

Live reporting, or citizen journalism, is the act of allowing users on the ground to 

become journalists and “live–tweet” an event as it is occurring. The use of smartphones 

to share video, photos, and messages allows users who are not participating in person to 
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view the event and feel as though they are on the ground, or to gain interest from people 

not already engaged in the discussions. This real-time, in-situ reporting is also observed 

by Wayant et al. (2012) in their spatiotemporal analysis of Tweets and OWS activity. 

Sharing real-time information is not exclusive to Twitter; the new social network 

platform Periscope allows users to film video and simultaneously broadcast it out to 

followers (rather than filming something, saving it, and then uploading it afterward to a 

platform such as Flickr, YouTube, or Facebook).   

Twitter allows users to retweet a message (or Tweet), which is essentially 

forwarding the message from one user out to another user’s followers. This increases the 

number of people seeing the message and enables even more users to retweet that 

message. Many of the Twitter activists interviewed (Penney & Dadas, 2013) claimed that 

retweeting was one of the central and most important functions to participating in the 

OWS movement online. Users can also add context to someone’s tweet, adding words, a 

headline, or a link to an article that offers more than the character limit allows.  

Twitter allows users to provide editorial commentary on a topic and engage in 

online deliberation with others who might have differing viewpoints (though some users 

in the interviews claimed that Twitter’s architecture doesn’t make it conducive to have 

good debate with people of differing viewpoints). Conversely, it also allows users who 

are in agreement become stronger and create a sense of community. By engaging in 

informal communication, the bond of the group is stronger, and many said that there was 

a “sense of community, solidarity, and group identity” (Penney & Dadas, 2013). Building 

these ties is important to social movements (McAdam & Paulsen, 1993).  
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Finally, the seventh theme presented by Penney and Dadas (2013) is the use of 

Twitter to facilitate online actions. This includes emailing and other lobbying campaigns, 

calling government offices to voice opinions on a piece of legislation, and signing a 

petition online. The ability to participate in a campaign or movement, without having to 

be physically present, allows for activists to continue to shape and amplify and continue 

to grow the rhetoric and movement “across physical boundaries” (p. 89). 

 While there were many different protest locations throughout OWS (a movement 

that spanned the country, and locally in NYC, there were multiple cites of action), 

Twitter was the constant theme throughout. Twitter provided ways for users at an offline 

protest in one location to stay connected with offline protestors in another location, 

thereby creating an online presence. Croeser and Highfield’s (2014) work on the Occupy 

Oakland movement expanded on research from Juris (2012) and Gerbaudo (2012) that 

examined the relationship between online aspects of a social movement and the physical 

location of the protest. They determined that the relationship is deeply entwined, with 

regard to the online and offline spaces of protest, and both rely on each other. Twitter 

allows for users who are not physically present at the protest to feel as if they are there. 

Indeed, Bastos et al. (2014) confirm this idea with their work in the Vinegar protests in 

Brazil. By harvesting geospatial information from Tweets (ambient or exact), they claim 

that users tweeting about the location aren’t necessarily physically present at the place of 

protest, but are still involved in the movement. Activists shift between the physical and 

the online spaces in order to balance the constraints and affordances of each space 

(Croeser & Highfield, 2014).  
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While there are many advantages for using Twitter in a protest campaign, some 

users are wary of the disadvantages, such as censorship from the website itself and being 

watched by law enforcement and other government entities. The audience of tweets is 

worldwide, and law enforcement can monitor tweets just like fellow protest participants 

and head off any illegal activity (Penney & Dadas, 2013).  

 Performing spatiotemporal analysis on tweets relating to OWS activity, Wayant et 

al. (2012) were able to get an overview of the activities on the Day of Action (November 

17, 2011) by simply using the Twitter data, showing that Twitter is a good proxy of 

activity without having to have sensors on the ground.   

2.3.2	Flickr	
 Flickr is an online image and video hosting platform that allows users to upload 

images and videos and categorize and share those images using optional keyword tags 

(freely chosen words). With over 115 million users (Flickr, 2016) and an estimated 10 

billion images uploaded (Flickr, 2015), it is clear that Flickr is one of the leading photo 

sharing platforms in the world. In addition to storing personal photos, users can make 

connections and networks to other users and create a community of sharing images in 

user groups.  

 In addition to the exchangeable image file format (EXIF) data, which include 

technical information about the photo (date and time taken, aperture, type of camera, 

ISO, shutter speed, etc.) from the camera that took the photograph, users can add 

contextual information, such as tags, to images. User-added tags are a manual process 

performed by the owner of the image to provide additional information, allowing for 
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richer semantic searches from the Flickr community and adding context to a photo by 

adding descriptive keywords. Flickr imposes a limit of 75 user-created tags per image 

(Flickr). Images can only be tagged by the owner, unless that owner changes privacy 

settings to allow for their network to crowdsource tags. Marlow et al. (2006) found this 

feature to be underutilized; most tags were generated from the owner out of the 58 

million observed tags they studied. While most tags are generally added for personal 

classification for the user to find their own images again later, tagging also introduces 

new social communication methods and opportunities for data mining and acts as a 

primary navigational tool within Flickr to find people or images with like-minded 

interests (Marlow et al., 2006; Ames & Naaman, 2007).   

An example of tags added to a photo of Nationals Park baseball stadium in 

Washington, D.C. would be “baseball,” “stadium,” “MLB,” or “Washington Nationals.” 

Work done by Sigurbjörnsson and Van Zwol (2008) explored the different ways to add 

recommended tags using co-occurrence and voting/promotion methods. Co-occurrence 

between two tags is the number of photos (in their collection) where both tags use the 

same annotation. The raw co-occurrence is then normalized against the overall frequency 

of the tags using asymmetric measures, which showed a better result than symmetric 

normalization. After a list of possible tags is generated, aggregation and promotion are 

computed to come up with a list of recommended tags to add to an image (Sigurbjörnsson 

& Van Zwol, 2008).  

In May of 2015, Flickr introduced automated tagging to its site, which uses 

pattern recognition, such as convolutional networks, to view the content of the image and 
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automatically add tags to images that have a high confidence threshold, such as 95% 

(Flickr, 2014). Users can decide to remove automatically added tags easily, just as they 

would add or remove their own user-generated tags. Usually these automated tags tend to 

be very general, such as ‘car’ or ‘dog,’ if the contents of the photo included a car or a 

dog. If a user recognizes that a tag was incorrectly added (such as your grandmother 

being tagged as ‘cat’ instead of ‘people’), by removing a tag, the algorithm is trained and 

learns that that photo does not have a cat in it, but rather a person, improving the future 

use of the algorithm (Flickr, 2015).  

 If the camera allows for geotagging, the coordinates are included in the EXIF data 

that are submitted with the photo. This gives location information to an image and can be 

plotted on a map. As of 2011, Flickr reported having over 300 million images geotagged 

(Flickr, 2011). If the exact coordinate information is not available, but users know the 

relative date and/or time of when and where the photo was taken, users can manually add 

location information to that photo through the Flickr interface, giving that image 

geospatial context.  

Flickr introduced machine tagging in 2007, giving even more context to tags and 

the image it is associated with. Using the namespace:predicate=value syntax, users can 

add more layers of information about a tag and an image. An example could be 

medium:paint=oil, or flora:tree=coniferous. These tags can be added just as a regular 

user generated tag; however, they are only able to be queried using the Flickr application 

programming interface (API; Flickr, 2007). 
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Hollestein and Purves (2010) used tags from 8 million Flickr images to determine 

how people describe spaces and city core areas. They were able to describe the use of the 

term “Downtown” and explore border boundaries of neighborhoods by analyzing Flickr 

data and metadata. Terms such as “downtown”, “city center,” and “near Central Station” 

describe vernacular  geography which “encapsulates the spatial knowledge that we use to 

conceptualize and communicate about space on a day-to-day basis” (Hollenstein & 

Purvis, 2010, p. 22). The increase in digital libraries that include georeferenced data has 

been beneficial to researchers who wish to explore the boundaries and locations of 

vernacular regions. Users can upload an image to a library, and based on the coordinates, 

systems can provide suggestions for the place or tags based on the coordinates (Kessler et 

al., 2009; Grothe & Schaab, 2009; Ahern et al., 2007). Those studies focused on larger 

areas or neighborhoods where the names of those areas are already defined and known. 

The work by Hollestein and Purves (2010) expands that concept by exploring how geo-

referenced tags (not the same as geotags, which are coordinates associated with an image) 

can be used to “define and compare the usage of different city core areas.” Their findings 

conclude that this user generated content of adding tags to images is a viable way to 

explore areas that are seen as more common in everyday lexicon. 

2.4	Text	Detection	
 

For the purposes of this research, it is important to differentiate between text 

detection and text recognition. Text detection involves determining if an image contains 

text and locating the text regions in an image, as opposed to recognizing the text (Ikica & 

Peer, 2014; Wang et al., 2013; Jung et al., 2004). Text recognition is the extraction of the 
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detected regions of text into readable digital format through an OCR program. Text has to 

be detected before it can be recognized and retrieved (Yin et al., 2014). Wang et al. 

(2015) described the difference: “text detection is to extract text regions from a given 

image, and text recognition is to translate pixel-based text into readable code” (p. 1).  

Jung et al. (2004) synthesized the overall approach to text detection and 

recognition. It consists of four stages: text detection; text localization; text extraction and 

enhancement (this is sometimes referred to as binarization); and recognition, or OCR, as 

shown in Figure 2. Almost all text detection and recognition algorithms can be binned 

into this overall approach, though there are varying methods of reaching the same 

conclusion. This type of method of detection is sometimes referred to as “End-to End,” 

with the objective being to “simultaneously localize and recognize all of the words in the 

image or video sequence, modelling complete systems for text understanding” (Karatzas 

et al., 2015, p. 1).  

 
Figure 2: Overall Text Information Extraction Process (derived from Jung et al., 2004) 

 

 
 Text detection methods are generally divided into three major categories: texture-

based; connected-components (CC); and a hybrid of both texture and CC-based. Due to 

the computationally complex nature of texture-based methods, a CC approach, which is 

more efficient for real time analysis of natural scene images, is used in this research. Real 
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time is defined as an algorithm processing time that is comparable to a human reading the 

text (Neumann & Matas, 2012). A more comprehensive look at the different methods and 

their advantages and disadvantages is discussed below.   

2.4.1	Texture	Based	Methods	
Texture methods can also be referred to as sliding window or learning-based 

methods. Some authors also use the term ‘region-based’ to describe sliding window and 

learning methods; however, there is a subset of authors that use ‘region-based’ to refer to 

a connected component analysis (Section 2.4.2). In this research, any reference to region-

based methods are referring to a texture method, using sliding windows to detect text. 

This is different than the regions that are detected in an analysis that are potential text 

candidates, such as Maximally Stable Extremal Regions (MSER), which is discussed in 

Section 2.4.3.  

A sliding window is used to search for possible texts in the image, and then 

machine learning is used to identify the texts (Yin et al., 2014). Images are scanned at 

different scales, looking for text-like features, and are then classified as text or non-text. 

A pre-trained classifier is used to determine if that region has text or not (Gao et al., 

2013). The basic premise behind texture or learning methods is that the processes assume 

that text has a “special” texture and is uniform compared to its background, from which it 

can then be distinguished (Shi et al., 2013; Chen et al., 2011). Fast Fourier Transform and 

wavelet decomposition methods extract the textural regions, and then those regions are 

fed into a classifier such as support vector machine (SVM) or AdaBoost to further specify 

regions as text or ‘non-text’ (Shi et al., 2013; Li & Hu, 2012; Chen et al., 2011).   
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 It is generally accepted that the learning and texture-based methods are less 

efficient and have a high computational complexity, as opposed to connected component 

based methods for text detection. (Wang et al., 2015; Ikica & Peer, 2014; Chen et al., 

2011). The sliding window needs to be run at multiple scales to search for all the texts in 

the image, despite the fact that this procedure slows down processing, though it does 

make it robust to noise in images (Wang et al., 2015; Yin et al. 2014). Text regions have 

distinct textural properties from non-text ones, which allows for more accurate text 

detection in noisy images (Pan et al., 2011). Training data need to be fed to the learning 

classifiers of what exactly are text and non-text regions before the algorithms can be 

processed. If the training data supplied are not sufficient in detecting all types of text, the 

output is not as strong. It is difficult to get a strong representation of all text and non-text 

regions (Shi et al., 2013).  

 Gao et al. (2013) proposed a region-based method that employs an adapted, pre-

trained AdaBoost classifier to determine if sliding window regions had text in them. They 

use transfer learning, which assumes that different scenes have different features. The 

weak learners for the AdaBoost classifier are reweighted based on each scene and the 

confidence level of each scene. This helps eliminate false positives, but keep true 

positives. Results are competitive; however, it still experiences issues when complex 

images are being read and processing time is not ideal (Gao et al., 2013). 

González et al. (2014) present a method for traffic sign and panel detection and 

recognition using Google street view imagery as an application to intelligent 

transportation systems. The goal of their research was to automatically create an 
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inventory of traffic sign panels to support maintenance and assist drivers. While the 

images used had traffic signs that are relatively uniform in shape and color, the authors 

point out the images were obtained at various weather conditions, times of day, and 

landscapes. However, their approach begins with a blue or white color segmentation of 

all the images, thereby only using images that have a traffic panel in them. Then, the “bag 

of visual words” (BOVW) methodology is applied to detect the text. Finally, the images 

are classified using either Naive Bayes or support vector machine (SVM), and the paper 

compares the differences. By using the BOVW approach, they don’t use edge or 

geometrical characteristics, which most other text recognition algorithms use. Their 

model depends on a fixed dictionary that contains common words and a dynamic 

dictionary that is region specific for where the panel is located. While this experiment 

was successful, there were numerous limitations that prevented it from being applied to 

another application without tweaking the algorithm and underlying dictionary (González 

et al., 2014). 

 Wang et al. (2012) used an unsupervised learning algorithm to extract features (or 

regions) from images, and then those learned features were input into a convolutional 

neural network (CNN). Their end-to-end system combines a lexicon (a list of words that 

could be detected from an image) to determine the words in an image and achieved 

competitive results by using the CNN.  Although this system is described as ‘simple,’ it 

still requires processing time and a lexicon of possible words that the algorithm can chose 

from to determine what the text in the image says (Wang, et al., 2012). There are certain 

advantages to using a lexicon, such as a list of names from a sports match when watching 
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video (Ballan, et al., 2010) or having a list of products in a supermarket, which could be 

used in aiding the visually impaired (Phan et al., 2013, Wang, et al., 2011). For images 

where no prior knowledge of the subject area is known, having an algorithm that requires 

a predetermined list of words could be a disadvantage.  

2.4.2	Connected	Components		
 

The other, more widely used types of text detection algorithms utilize a connected 

component (CC) approach. CC methods have the same premise: text is found by 

grouping characters into pixel regions, because it is assumed that pixels belonging to the 

same character have similar properties (Neumann & Matas, 2012; Li & Lu, 2012). The 

properties on which pixels are grouped could range from edge detection, stroke width, 

color, image intensity, and geometry (Wang et al., 2015; Shi et al., 2013; Neumann & 

Matas, 2012). This ‘bottom-up’ approach (Ikica & Peer, 2014; Gomez & Karatzas, 2013) 

selects pixels via image segmentation into regions, which are then grouped into 

connected components. The regions are then determined to be text or ‘non-text,’ based on 

geometric properties, classifiers, and other heuristics. The ‘non-text’ regions are then 

discarded from further analysis (Li & Lu, 2012; Chen, et al., 2011; Pan et al., 2011). 

After removing these false positives, regions are grouped into words or lines (Ikica and 

Peer, 2014; Shi et al., 2013). Figure 3 shows a diagram of the overall CC analysis, which 

is derived from Pan et al. (2011). These derived words/lines can then be fed into a 

commercial OCR program to determine the text from the image (unlike texture based 

methods, which needs further processing). 
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Figure 3: Connected Component Analysis Overview (derived from Pan et al., 2011). 
 

 
There is a smaller number of CC regions detected than regions texted for a 

texture-based approach, which is why the CC-based method is favorable; it is 

computationally less complex, which means a shorter processing time (Wang et al., 2015; 

Pan et al., 2011). CC methods also don’t depend on properties of text, such as text 

orientation and size, font, and scale (Neumann & Matas, 2012; Su & Xu, 2015), though 

they are sensitive to blur, skew, low resolution, and illumination problems (Wang et al., 

2015) and complex backgrounds or clutter (Neumann & Matas, 2012; Li & Lu, 2012). 

Pan (2011) suggests that CC methods can’t accurately segment components without prior 

knowledge of the text location and scale (Pan et al., 2011). Even though there are many 

advantages to using a connected component analysis, it is still challenging to develop a 

perfect system for connected component analysis that eliminates false positives without 

losing actual text character candidates as well (Shi et al., 2013).  

2.4.3	Maximally	Stable	Extremal	Regions	(MSERs)	
 MSERs are used in many text detection processes and methods in the literature 

(Neumann & Matas, 2010; Chen et al., 2011; González et al., 2012; Li & Lu, 2012; Shi et 

al., 2013; Yin et al., 2014). First proposed in 2004 by Matas, Chum, Urban and Pajdla, it 

was used for stereo image and reconstruction of 3D scenes. In recent years virtually every 

CC	extraction	via	image	
segmentation

CC	analysis	to	filter	out	
false	positives

Post	processing	to	group	
text	components	into	

words/lines
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type of text detection using a connected component analysis utilizes the MSER method to 

detect possible text candidates. In fact, in the 2015 ICDAR Competition on Robust 

Reading, almost every method proposed had utilized the MSER segmentation algorithm 

(Karatzas, et al., 2015). MSERs are a CC-based method that use the detected MSERs as 

the character candidates.  

  The MSER is a type of extremal region (ER) whose size remains the same over a 

range of thresholds on intensity values (Phan et al., 2013; Neumann & Matas, 2012).  

MSERs are robust to varying degrees of geometric, view point, illumination, and lighting 

conditions (Neumann & Matas, 2010; Shi et al., 2013; Mikolajczyk et al., 2005), and 

have a high character detection recall (Wang, et al., 2015), making them a perfect choice 

for text detection. Text is usually the same color, intensity and in contrast with its 

background, which are ideal conditions for MSER segmentation (Shi et al., 2013). MSER 

detection is also very efficient, with a near linear complexity (Nistér & Stewénius, 2008; 

Matas et al., 2004).  

Shi et al. (2013) use MSERs to detected character candidates and a graph cut 

model to detect text. Region based methods and context information are used in a cost 

function that remove non-text MSERs, improving the text grouping process.  This 

research merges texture methods and CC-based methods, also known as a hybrid process.  

 A distinct disadvantage of the MSER segmentation is the sensitivity to blur on 

images with low contrast (Neumann & Matas, 2012; Li & Lu, 2012; Chen et al., 2011). 

Images that have smaller text that aren’t focused, or if there was too much motion in the 

image, won’t be detected using the out of the box MSER process (Chen et al., 2011). Li 
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and Lu (2012) overcome this by incorporating a contrast enhanced intensity information 

on the boundary between text and background. Chen et al. (2011) use an edge enhanced 

MSER process, by running the image through a Canny edge detection method before 

MSER segmentation.  

 The MSER segmentation does an adequate job to detecting text candidates, but it 

also detects more than just the text in an image. Further processing is needed on the 

MSERs to narrow down and remove the non-text candidates, which can be difficult 

(Wang et al., 2015). Properties such as stroke width transform (Epshtein et al., 2010), 

geometric filtering (Chen et al., 2011; Li & Lu, 2012), adjacency relationships and 

distance metrics that compute distance between MSER regions (Yin et al., 2014) and 

AdaBoost classifiers to learn relationship between MSER regions by clustering (Koo & 

Kim, 2013) are used to refine and remove false positive MSER regions.  

2.4.4	Stroke	Width	Transform	
One of the most common properties in a connected component analysis to refine 

potential text is the Stroke Width Transform (SWT), first proposed by Epshtein et al. 

(2010). The SWT transforms the image data from containing color values per pixel to 

containing the most likely stroke width. The SWT leverages the constant stroke width 

that separates text from other elements of a natural scene. The simplicity of the algorithm 

allows for fast and robust text recognition and the versatility to detect text in many 

languages and fonts. It is localized and data dependent, meaning it reduces the need for 

multi-scale computation. Combining the SWT with geometric filters proves to have 

promising results in text detection (Li & Lu, 2012; Chen, 2011).  
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The SWT algorithm doesn’t require searching for separating features per pixel 

(such as color or gradient). In addition, there is a lack of a scanning window over a multi-

scale pyramid, separating the SWT from other text recognition algorithms. The 

experiment they conducted to test the operator was on a standard set of images from the 

IDCAR dataset which is a common benchmark in testing. The authors also used another 

‘harder’ set of images, which contain much vegetation and repeating patterns (such as 

windows), to test the algorithm. The authors conclude it is more accurate and performs 15 

times faster than other text recognition algorithms.  

Ben-Ami et al. (2012) introduced an automatic system of recognizing racing bib 

numbers to determine which competitors are in a specific photo. Due to the large number 

of photographs taken at running races, this is a significant challenge. The authors use 

facial recognition software to locate a person’s face and narrow down the region of text 

to be detected to the torso, as all racing bib numbers are on the front of each competitor. 

This removes other text from being processed, such as billboard signs, text on clothing, 

and other background information that is not relevant. Then, they utilize the SWT 

operator to detect the racing bib numbers, with a few enhancements. They implemented a 

maximum stroke width size, which limits the character candidates scale, and for images 

where the bibs were low resolution (1-2 pixel width for the text), resolution is scaled up 

to allow for edge extraction. By limiting the search area so significantly, the SWT 

operator performs very well, with very few false positives and a high precision rate (Ben-

Ami et al., 2012). 
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2.4.5	Hybrid	Methods	
 To overcome some of the pitfalls of both texture and CC-based methods, many 

researchers are now using a hybrid method to achieve state-of-the-art results. By using a 

combination of texture/region based and CC-based methods, the advantages from both 

can be exploited. A hybrid method can combine texture detection methods to determine 

the text segments to be analyzed, and then a component candidate analysis can be 

performed using a mixture of geometric and stroke width classifiers, along with machine 

learning techniques to filter out false positives. Conversely, a hybrid approach could also 

mean doing a CC analysis to segment an image and then using texture or region-based 

methods to filter out false positives.  

Pan et al. (2011) use a texture to CC approach. A texture-based method to detect 

the text candidates is used to segment regions of an image, and then CCs are extracted as 

text candidates using local binarization. Non-text regions are eliminated using a 

Conditional Random Fields (CRF) model with supervised learning, and then characters 

can be grouped into words or lines.  

 Fabrizio et al. (2013) use a hybrid method of merging the traditional CC strategy 

for the first step of the decision stage and a texture/region based validation stage to filter 

out false positives. Their method collects potential text boxes using a CC segmentation 

algorithm, followed by classification and grouping of the text boxes. False detections are 

then filtered out through a validation step, based on a global SVM of the text box content 

adapted from the Histogram of Oriented Gradients (HOG) approach. The authors use an 

ITOWNS dataset (similar to Google street view), as well as the International Conference 

on Document Analysis and Recognition (ICDAR) dataset, which is used as a benchmark 
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in text recognition. The ICDAR competition is held every two years to challenge and 

improve researchers in the field of computer vision.  The results on the ICDAR database 

show their method is competitive, and their algorithm has been adopted for use for the 

ITOWNS project.  
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CHAPTER THREE 

3.1	Objective	of	Research	
 

Prior literature affirms that social media posts are harnessed and utilized in 

various ways in modern life, particularly in protest activities. In addition to posts online, 

signs and posters have been used extensively at protest events, including political rallies, 

social unrest gatherings, picket lines, company boycotts, and marches. By studying the 

location of a protest and where signs are placed in relation to the protest, intelligence over 

that space can be acquired. Researchers of space and contentious politics claim that space 

has meaning, and protests occur at spaces that are symbolic (Endres & Senda-Cook, 

2011; Sewell, 2001). Alternatively, the place may not be significant, but the meaning of 

that space can be transformed because of the movement held there. 

In order to determine the location of signs and posters in relation to the actual 

protest, the initial challenge lies in detecting the text on protest signs and posters. A 

further challenge lies in actually recognizing the message conveyed by the text. A 

plethora of research has been conducted in the computer vision field of text detection and 

optical character recognition over the last decade and beyond. Improvements in 

technology and the ICDAR Robust Reading competitions have challenged the status quo 
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on text detection and recognition. However, most of the algorithms only published their 

work on the baseline image sets from the reading competitions, usually in addition to one 

other dataset, such as a street view set, traffic signs, license plates, or other natural 

scenes. Another popular text detection use case is for the blind and visually impaired, 

from navigation in the street to navigation inside a grocery store.  

At the time of this research, text detection that provides an interesting subject area 

in content-based image retrieval (such as protest signs and their locations) has not been 

performed.  As referenced by Burridge (2008), Wildermuth et al. (2014), and Baily & 

McAtee (2003), it is evident that there is a gap in the research of signs in protest 

activities, with the majority of the research focused on protest rhetoric.  A subset of the 

literature confirms that studying visual protest material is important in order to glean 

intelligence of the motives of the protest, who is participating in the protest, and how it 

relates to opponents’ claims regarding the protest. While this research will not analyze 

the rhetoric of protest posters, it does highlight a way to analyze a large set of posters 

from events and highlights reasons why studying rhetoric of protest images is important. 

Based on the literature reviewed, it is apparent that text recognition continues to 

be an active research area, most likely due to the complexity and difficulties in deriving 

an adequate algorithmic solution. This is particularly true for natural scenes containing 

freehand text. Many of the recent works published seem to suggest new methods or 

tweaks to methods to improve the state of the art. A trend in the literature is using an 

ICDAR benchmark image set to test accuracy, and many others also use some sort of 

urban scene or street view imagery, since those are traditionally the most complex. These 
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methods, while using real world images, are not using a dataset that is taken from a 

protest that showcases text, usually handwritten and in large and varied fonts in natural 

scenes.  

This research aims to explore the location of protest signs in relation to the overall 

protest activity. Text detection algorithms, including MSER detection, geometric 

filtering, SWT, and OCR, will be applied to a large and varied dataset of protest images 

captured from the Occupy Wall Street (OWS) movement in the fall (September through 

December) of 2011. The resulting set of images that had detected text is compared with 

the location of overall protest activity, which is gleaned from Twitter data from the same 

time period covering the same issues. The research objective is not to study the accuracy 

of the text detection algorithm, but rather to use the text detection process to evaluate 

protest signs. The assumption is that, because these images were harvested using 

keywords and tags or hashtags that relate to the OWS movement, if text is detected, then 

that text also relates to the OWS protest activity. The text detection results lead to a 

consideration of the following questions: Do the Flickr images (with text detected) 

overlay spatially with the majority of the tweets (a proxy for the overall protest activity)? 

Will these findings confirm or reject the theory that space in contentious politics is 

important to study when examining the overall protest? In essence, this research 

examines the relationships between physical locations of social protests and the online 

presence of social protests, as determined by the detection of text in Flickr images and the 

locations of Twitter data.  
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CHAPTER FOUR 

4.1	Analysis	Overview	
 

In order to analyze the location of protest signs and its relationship to the overall 

protest, a text detection methodology was utilized to determine which images actually 

contained signs. Then, the locations of the text detected images are compared with 

Twitter point density data, which represent the overall protest activity.  

There is no ‘one size fits all’ when it comes to text detection methods, and which 

type of method to use largely depends on the dataset available and the purpose of the 

research. For the process used in this research, a connected component analysis is used, 

even though hybrid results have proved to be more effective in text detection and 

recognition (Neumann & Matas, 2012). Because of the large quantity of images to 

process, the efficiency and low processing time of the connected component approach 

were desired. The connected component approach also requires no a priori knowledge.  

The overall method of this research is shown in Figure 4. Each section is called 

out referencing the section number that describes that topic. Section 4.2 details how data 

were harvested from Flickr and Twitter. Section 4.3 discusses the text detection 

methodology used to determine which Flickr images contained protest signs. Section 4.4 

highlights the spatiotemporal clustering methodology used to analyze the relationship 
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between the Flickr images with detected text and physical space, and Section 4.5 

discusses some of the processes used to view and analyze the detected Flickr images and 

that relationship to overall protest activity using tweets.  

 

 

Figure 4: Overall Process Workflow 
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4.2	Data	
 

Many of the test datasets in the literature are from reading competitions, such as 

the International Conference on Document Analysis and Recognition (ICDAR), which is 

held every two years, the most recent conference being in 2015. They provide test 

datasets for all algorithms to be tested against, so that the precision, recall, and f-measure 

are baselined. Other use cases of text detection/recognition algorithms use image datasets 

that are from scenes but still have a focused text, as is the case with the majority of 

images. Focused texts are defined by images captured with the user’s intention and 

intervention (Yao et al., 2015), and text is the main subject. For the first time in the 2015 

competition, ICDAR provided an incidental text dataset, which means that any text that 

appeared in a natural image is captured without the user’s prior preference or intention. 

This introduces more complexities and difficulties in text detection, such as blur, layout, 

non-uniform illumination, low resolution, and cluttered background (Yao et al., 2015). 

The differences in focused text and incidental text are mentioned to show that images can 

be taken with the purpose of detecting text, thereby having a clear focus - text centered in 

the image - and that is the purpose of taking the photograph. Other times, natural scene 

images can be taken, and there happens to be text included in the image. The dataset used 

in this research is a mixture of focused and incidental natural scene images, which 

increases the complexity of text detection. The intention with which images were taken is 

not known.  

Over 12,000 distinct images (from 644 individual users) were harvested from 

Flickr’s publically available API, taken starting September 17th, 2011 (the start of the 
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Occupy movement in Zuccotti Park in New York City, NY) to December 10, 2011. Each 

image has metadata associated with it, such as date taken, location of capture (latitude 

and longitude coordinates, or geotags), and Flickr tags. No pre-processing was performed 

on the images before running them through the text detection process. The tags associated 

with each image were user-generated, as the Flickr process for automatic tag suggestion 

was not in place at the time these photos were uploaded. Tags such as “OWS,” 

“OccupyWallStreet,” “OccupyWallSt,” and “occupy” were used to get images that are 

relevant to the Occupy Wall Street movement and geolocated throughout the United 

States and Canada.  For the purposes of this research, it is assumed that the Flickr image 

locations and the actual protest signs are very close, while acknowledging that there is 

some distance between the actual camera taking the photograph of the protest sign. The 

scale and analysis of this research assumes the location of the image is relatively the 

same as the location of the protest signs.  

Twitter data were harvested using Twitter’s RESTful API. The search terms used 

included ‘‘OWS,’’ ‘‘OccupyWallSt,’’ ‘‘OccupyWallStreet,’’  and their hashtag (#) 

equivalents. The dataset was centered around the greater New York, NY region (data 

spanned the states of New York and New Jersey) and included over 21,000 precisely 

geolocated tweets. A subset of the region was taken, to include Tweets that were located 

in Manhattan, Brooklyn, Queens, the Bronx, Long Island, and a portion of Staten Island. 

The resulting subset included 14,083 tweets (from 5964 individual users). The tweets 

were posted between October 12, 2011 and April 19, 2012.  
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The scale of the analysis begins with a country-wide look at the clusters of urban 

centers of OWS activity. Subsets of the data from the five largest cities with OWS 

activity are shown to better view the locations of the Flickr data. Finally, the New York 

city (NYC) region is the focus of further analysis for two reason: 1) the Twitter data are 

located in the NYC area; and 2) the majority of the Flickr images were geolocated to the 

NYC area, with over 7,000 images from the entire Flickr dataset coming from the NY 

area. Indeed, the protests in Manhattan and Zuccotti Park were the epicenters of activity 

of the Occupy Wall Street protests. 

4.3	Text	Detection	
 The process used for text detection is a connected component approach with 

simple rule based filtering to remove non-text regions (Li & Lu, 2012; Chen et al., 2011). 

Then, those possible text regions are fed into an optical character recognition algorithm to 

read the text. The overall process workflow is outlined in Figure 5. The corresponding 

number is the section in which that topic is discussed more in depth. This process was 

applied using the Mathworks Matlab software suite 2015b Student Edition with the 

Computer Vision toolbox.  
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Figure 5: Text Detection and Recognition Workflow 
 

 
To process over 12,000 images, a batch process was written in Matlab that took 

the process in Figure 5 and looped it over all images in a folder. Instead of writing out the 

text it detected from the OCR, it wrote the name of the file to a text file, along with a 

number. An output of zero (0) meant no text boxes were detected that contained text. An 

output of one (1) or greater meant text boxes were detected that contained text, and the 

resulting number represented the number of boxes detected in the image. The default text 

detection output variable assigns a confidence threshold to each text detection box. If the 

confidence value threshold was greater than 0.5 for a given word, then that word counted 

as a detected word.  

4.3.1	Detecting	Text	using	MSERs	
The original input image (as shown in Figure 6) was converted to a grayscale 

image. The grayscale image is taken to be the input into the MSER detection algorithm. 

The minimum area required in order for a region to be selected is 200 pixels, and the 

maximum area allowed is 8000 pixels. The threshold delta, or the step size between 

intensity levels, is a value of 4 (out of possible values from 0 to 100). The threshold delta 

is the value at which the MSER detector steps through an image to detect stable regions. 
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The higher the value of the threshold, the lower the number of intensity increments it 

filters through to detect stable regions, and vice versa: the lower the value of the 

threshold, the higher the number of intensity increments the algorithm filters through to 

detect stable regions.  

 

 

 
Figure 6: Original Input Image 
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The output of the detect MSER regions process is shown in Figure 7. It can be 

observed that more than just probable text regions are detected. Further processing is 

therefore needed to remove non-text regions. 

 

 
Figure 7: Detect MSER's 

 
 

4.3.2	Geometric	Filtering	
Geometric filtering was then performed on each image to remove non-text regions 

that were detected from the MSER algorithm. This process was completed with simple 

rule-based filtering; however, some researchers employ a machine learning approach to 

train a text vs. non text classifier (the hybrid methods mentioned previously in Section 
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2.4). Because of the size of the dataset considered in this research, the simple rule based 

filtering was employed, given its fast computation nature. 

After calculating the statistics for each region, thresholds were employed to 

remove regions that didn’t meet that threshold for that particular statistic. Regions with 

an aspect ratio greater than 3, an eccentricity greater than 0.995, a solidity less than 0.3, 

an extent less than 0.2 and greater than 0.9, and a Euler number less than -4 were all 

removed as possible text regions. The resulting image after geometric filtering is 

performed is shown in Figure 8. 

 

 

Figure 8: After Removing Non-Text Regions Based on Geometric Properties 
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4.3.3	Stroke	Width	Transform	
 As described in Epshtein et al. (2010), stroke width is the measure of the lines and 

curves that make up the characters. The length of a straight line from the text edge pixel 

to another along its gradient direction is the stroke width. The majority of text regions 

have little variation in stroke width, so it is easy to calculate stroke width and remove 

larger regions that have a higher variation. Regions with little variation are most likely 

text, because the lines and strokes making up the text character are usually similar and 

uniform. 

The stroke width is estimated for one of the detected MSER regions by using a 

distance transform and binary thinning operation (Li & Lu, 2012). A binary region image 

is created, and then the Euclidean distance is calculated for every pixel on the stroke 

width regions to the nearest boundary of the corresponding MSER. A skeleton image is 

created by performing binary thinning. If an object does not have a hole in it (such as a 

text character), it shrinks the skeleton to the minimum connected strokes. Objects that do 

have a hole cause the skeleton to shrink to a connected ring halfway between the hole and 

the outer boundary. Figure 9 shows the region image (left) and the stroke width 

‘skeleton’ image (right).  
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Figure 9: Region Image and Stroke Width Image 

 
 
 

The stroke width variation must be calculated for the entire region to be used as a 

threshold value to remove non-text regions. The standard deviation of all the stroke width 

values for each region is divided by the mean of the stroke width values for that region. 

Regions with a stroke width variation metric of 0.4 or higher are determined to be non-

text and are filtered out of the image. This value can be adjusted for different types of 

font, but in this case, the default was taken, as there is no a priori information about the 

font type used. A for-loop processes all of the regions in an image to determine if that 

region is text or non-text. The output of the stroke width and distant transform filtering is 
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show in Figure 10. Under ideal conditions, only text would be remaining at this step; 

however, each image is different, with different conditions. 

 

 

Figure 10: After Removing Non-Text Regions Based on Stroke Width Variation 
 
 

4.3.4	Merge	Text	Regions		
In order to make sense of the text regions detected, the characters (which are 

detected individually up to this stage) need to be merged for further processing and 

recognition, such as in an OCR tool. For example, the characters that make up the word 

“BLIND” need to be properly ordered, because a random ordering, such as “L, N, D, I, 
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B,” does not have the proper meaning. Characters or text in the same word usually share 

similar properties, such as intensity, size, and stroke width, and text almost always 

appears in a straight or slightly curved line, thereby allowing the characters to be grouped 

together (Li & Lu, 2012; Chen, et al., 2011).  

To merge text regions, boxes are drawn around the text characters, and the boxes 

are then expanded by a small amount (0.02) to find neighboring regions that overlap. 

Anything that exceeds the image’s boundary is clipped. The expanded bounding boxes 

are shown in Figure 11. 
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Figure 11: Expanded Bounding Boxes 
 
 
 
 Any boxes that are found to be overlapping with other neighboring bounding 

boxes are merged together around the words and character lines by computing the 

overlap ratio. The distance between all bounding box pairs is quantified, making it easier 

to find groups of neighboring text regions (overlap ratio of non-zero). A graph is then 

used to find all the connected (overlap ratio of non-zero) text regions, outputting indices 

for each connected text region. A single bounding box is created (merging the 

neighboring bounding boxes) by using the indices and taking the minimum and 

maximum of each individual bounding box that make up a connected component. Any 
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boxes that are just one text region are removed (which further refines false positives, as 

text is unlikely to be on its own). The resulting image of detected boxes is shown in 

Figure 12. 

 

 

Figure 12: Detected Text 
 

4.3.5	Optical	Character	Recognition		
 The resulting text regions are then run through the OCR program in Matlab, 

returning an ocrtext object, which gives the recognized text, the location of the text on the 

input image, and the confidence threshold of the results. The OCR program used in 
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Matlab is based on the popular OCR tool Tesseract (Smith, 2007). The output of the OCR 

text recognition for this example is shown in Figure 13. 

 

 

Figure 13: OCR Results for Example Image 
 
 

4.4	Spatio-temporal	analysis	
To analyze the Flickr data that had text detected and its relation to physical space, 

a clustering algorithm was used to detect groups and clusters in physical space.  

Traditionally, the Density Based Spatial Clustering of Application with Noise 

(DBSCAN; Ester et al., 1996) is used to detect clusters by builds on density as a measure 

for defining and detecting clusters. While DBSCAN has a number of advantages 

(distinguishing noise in the data, the ability to form arbitrary cluster shapes, and 

performing clustering with no prior knowledge or assumptions), it does not have a 

temporal component. To account for time as a variable in the cluster, the DenStream 

method was used, which is a stream-based clustering algorithm, first proposed by Cao et 
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al., (2006). The use of DenStream in recent literature, as well as an in depth 

methodology, is described in Croitoru et al. (2015). 

4.5	Spatial	Data	Visualization	and	Analysis	
 The images harvested from Flickr, which had metadata, such as tags, coordinates, 

and date taken associated with them, were parsed into a comma separated value (CSV) 

file and read into a spreadsheet. The table was then opened in ArcMap, and a point 

shapefile was created from the X and Y (longitude and latitude) values of the location of 

where the image was taken. The text file created from the process in Figure 5 was then 

joined using the Join by Attribute tool to create a new column in the attribute table. Each 

image now contained a value of zero (0) if text wasn’t detected, or a one (1) or greater if 

text was detected. The data was projected to the WGS84 Web Mercator (Auxiliary 

Sphere) coordinate system, since the points span the entire United States (with a few in 

Canada).  

 The Twitter data were projected to WGS 84 UTM Zone 18N (since the dataset is 

located in New York), and then the point density tool was run in ArcGIS to visualize the 

density of points over the region per square kilometer. The point density tool allows a 

better visual representation of the 14,000 points (tweets), rather than points stacked on 

top of each other. In this case, the tool calculated how many points were calculated for 

each square kilometer. The resulting raster is then symbolized with a color ramp, which 

allows the human eye to better understand the amount of points in an area. The resulting 

Flickr images that had text detected were then spatially overlaid with the Twitter point 
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density results. Results of the visualization of Flickr data and Twitter data can be seen in 

Chapter Five. 
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CHAPTER FIVE 

5.1	Text	Detection	Accuracy	Assessment	
 
 In order to evaluate the text detection methodology, a subset of 200 images was 

taken from the larger dataset and run through the process. An equal number of images 

with text and without text were randomly selected, with the author determining if an 

image had text or not. These images act as the ground truth for determining if the text 

detection process was successful or not. Text detection was deemed a success if the 

output of the text recognition (OCR) identified any text, regardless of the accuracy of the 

text detection. For each image, a number was written to a text file; this was the number of 

text boxes detected from the OCR. This number was written if the confidence threshold 

of the OCR in Matlab was above 0.5 AND the text boxes detected were not empty 

spaces. This could be one text box detected, or several. The actual text that was 

recognized through OCR was not compared to the text in the image. OCR was only used 

as a tool to evaluate the text detection. Images with no text detected were given a value of 

zero; images with text detected were given a value of text boxes detected, starting at one.  

 A confusion matrix was built to represent the amount of true positives, true 

negatives, false positives, and false negatives that were a result of the process. An image 
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is a true positive if it was correctly classified as having text (output a number of 1 or 

greater). An image is a true negative if it was correctly classified as not having text 

(output a number of 0). An image is a false positive if it was incorrectly classified as 

having text, but the image did not actually contain text (output a number of 1 or greater 

but should have been a 0). An image is a false negative if it was incorrectly classified as 

not having text but the image did have text (output number of 0 but should have been 1 or 

greater). The resulting confusion matrix from the 200 ground truth images is located in 

Table 1. By adding up the number of true positives and true negatives and dividing by the 

total number of images tested, the overall accuracy of the text detection methodology is 

78%. 

 

Table 1: Confusion Matrix on subset of images for text detection and OCR process 
 

True Positive: 74 False Positive: 18 

False Negative: 26 True Negative: 82 

 

   

 Examples of images that were classified as true positives are shown in Figure 14. 

On the left is the result of the text detection image with bounding boxes drawn around 

where the algorithm determined text could be located. The potential text regions were 

then read through OCR.  To the right of the image is the result of the OCR. While most 
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of the true positives capture at least one complete word, some, such as Figure 14d, did 

not. However, because it text was still detected, it was classified as a True Positive.  

.  

 

Figure 14: True Positive Examples 
 

 Examples of images that were classified as true negatives are shown in Figure 15. 

Because these are true negatives, no text was recognized through OCR. Figures that have 



63 
 
 

yellow boxes in them show the locations of potential text regions. However OCR did not 

recognize any text, therefore the images were still classified as true negatives.  

 

 

Figure 15: True Negative Examples 
 

 
Examples of images that were classified as false positive are shown in Figure 16. 

The image on the left is the result of the text detection/OCR, and the text it detected is on 

the right.  
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Figure 16: False Positive Examples 
 

Examples of images that were classified as false negatives are shown in Figure 

17. Because these are false negatives, no text was recognized through OCR, though there 

is text in the images. Figures that have yellow boxes in them show the locations of 

potential text regions. However, OCR did not recognize any text, therefore the images 

were classified as false negatives.  
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Figure 17: False Negative Examples 
 

As mentioned in Chapter 4, taking a picture of a protest sign in an urban location 

most likely will have some form of text in the background, such as a street sign, a 

storefront name, a car driving by, etc. In the case of the OWS images, other signs can 

also serve as incidental text, as there were many protest signs in use. For the subset of 
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images used in the accuracy assessment study (200), only a small number of images had 

incidental text, and an even smaller number had detected and recognized incidental text. 

Examples of these are shown in Figure 18.  For Figure 18a, text was detected (as shown 

by the yellow bounding boxes), but the OCR did not recognize any text in the image at all 

(including the focused text). In Figure 18b, the OPEN sign from the hot dog stand was 

detected, and the OCR detected the text.  
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Figure 18: Examples of Incidental Text 
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5.2	Spatial	Data	Visualization	and	Analysis	Results		
 The geolocated images harvested from Flickr were added to a map with the 

latitude and longitude defined for X and Y using ESRI ArcGIS Desktop software. After 

the DenStream process was run (Section 4.4 Spatio-temporal analysis), the results 

produced 32 clusters of Flickr images where text was detected. The results of the clusters 

are shown in Figure 19. 

 

 

Figure 19: Overview Map of all Images Harvested from Flickr relating to Occupy Wall Street in Fall 2011 
  
 

The cluster IDs, corresponding locations, and points per cluster are found in Table 

2, ordered by points per cluster in descending order. 
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Table 2: Cluster ID, Location, and Number of Points Per Cluster 
ClusterID City, State  Points Per Cluster 
1 New York City, NY 3452 
4 Chicago, IL 534 
2 San Francisco/Oakland/Bay Area, CA 352 
3 Los Angeles, CA 145 
9 Washington, DC 139 
5 Boston, MA 92 
8 Seattle, WA 85 
7 Portland, OR 54 
12 Detroit and Ann Arbor, MI 50 
25 Toronto, Ontario, Canada 49 
13 Minneapolis, MN 48 
30 Montreal, Quebec, Canada 37 
26 Vancouver, British Columbia, Canada 36 
6 Tampa/St. Petersburg, FL 34 
21 Yucca Valley Airport, CA 33 
23 Santa Fe, NM 30 
27 Ottawa, Ontario, Canada 27 
10 New Orleans, LA 25 
29 Raleigh and Chapel Hill, NC 21 
31 Albany, NY 21 
18 Denver and Boulder, CO 20 
15 Bellingham, WA 18 
14 Austin, TX 14 
16 Atlanta, GA 12 
32 Lexington, KY and Mansfield, OH 12 
22 Kalamazoo, MI 11 
20 Burlington, VT 10 
24 Pittsburgh, PA 10 
11 Kansas City, MO 9 
17 San Diego and Oceanside CA 8 
28 Philadelphia, PA 8 
19 Tucson, AZ 6 
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Based on Table 2,  the top five cities (with a high concentration of Flickr images 

relating to OWS) were subset to be studied in depth. Table 3 shows the location of the 

subset, the number of records included in the subset, and a percentage of how many 

records were classified as Text Detected vs. Text Not Detected. With the exception of 

Los Angeles, CA, all the cities had a lower percentage of text detected than text not 

detected. Maps showcasing the location of the images as points are shown in Figures 20 

through 24.  

 

Table 3: Number of Records Per City and Percent Detected vs Not Detected 
 

 Number of 
Records 

% Text Detected % Text Not 
Detected 

New York City, NY 7659 3539  = 46.21% 4120  = 53.79% 

San Francisco/ 
Oakland, CA 

777 350 = 45.05% 427 = 54.95% 

Chicago, IL 1318 533 = 40.44% 785 = 59.56% 

Los Angeles, CA 258 134= 51.94% 124= 48.06% 

Washington, D.C. 335 139 = 41.49% 196 = 58.51% 

Entire Dataset 12599 5558= 44.11%  7041=55.89 

 

Figure 20 shows a map of the Flickr images and the results of the text detection 

process for Washington, D.C. The red dots signify that text was detected, and the blue 

dots signify text was not detected. The two inset maps show a close up of McPherson 

Square and Freedom Plaza, locations of heavy protest activity.  
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Figure 20: Washington, D.C. Inset Map 

 
 
 

Figure 21 shows a map of the Flickr images and the results of the text detection 

process for Los Angeles, CA. The red dots signify text was detected, and the blue dots 

signify text was not detected. The inset map shows Los Angeles City Hall, a location of 

heavy protest activity.  
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Figure 21: Los Angeles, California Inset Map 

 
 
 

Figure 22 shows a map of the Flickr images and the results of the text detection 

process for San Francisco and Oakland, CA. The red dots signify text was detected, and 

the blue dots signify text was not detected. The two inset maps show San Francisco, CA 

and Oakland, CA, locations of heavy protest activity.  
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Figure 22: San Francisco and Oakland, California Inset Map 

 
 
 

Figure 23 shows a map of the Flickr images and the results of the text detection 

process for Chicago, IL. The red dots signify text was detected, and the blue dots signify 

text was not detected. The two inset maps show the Federal Reserve Bank of Chicago and 

Congress Plaza Garden, locations of heavy protest activity. 
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Figure 23: Chicago, Illinois Inset Map 

 
 
 

Figure 24 shows a map of the Flickr images and the results of the text detection 

process for New York City, NY. The red dots signify text was detected, and the blue dots 

signify text was not detected. The inset map shows Zuccotti Park, one of the main 

locations of protest activity.  
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Figure 24: New York City, New York Inset Map 

 
 

 
Subsets of clustered Flickr images with text detected are shown in Figure 25.  
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Figure 25: Urban Centers with OWS Activity Clustered by DenStream 

 
 
 

The Twitter dataset, consisting of over 20,000 geolocated tweets relating to OWS 

during October 2011 to April 2012 around the greater New York City area, was subset to 

be a smaller region consisting of the five main New York City boroughs (Manhattan, 

Brooklyn, Queens, Staten Island, and the Bronx) containing 14,083 precisely geolocated 

tweets (5,946 individual users). The Twitter data are used as a proxy for the overall 



77 
 
 

protest activity (Wayant et al., 2012). Figure 26 and Figure 27 show the Twitter point 

density overlaid with the results of the text detection process of the Flickr images. Figure 

26 shows the Twitter density and the results of the Flickr images that did have text 

detected, and Figure 27 shows Twitter density and the results of the Flickr images that 

did not have any text detected. 

The point density shows that, in the lighter green areas, there are fewer points per 

square kilometer than in the yellow and red areas, which have a higher point density per 

square kilometer. The densest areas of Twitter activity relating to the protest activity 

occur in midtown Manhattan and Zuccotti Park. The Flickr activity relating to Occupy 

Wall Street has the majority of images in or around Zuccotti Park.  
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Figure 26: Flickr Images with Text Detected and Twitter Point Density 
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Figure 27: Flickr Images with No Text Detected and Twitter Point Density 
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Figure 28 and Figure 29 are close-ups of Manhattan, where the majority of Flickr 

images were located, along with the highest point density of Tweets. The locations with 

text detected and text not detected are the same.   
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Figure 28: Manhattan Subset of Twitter Density and Flickr Images with no Text Detected 
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Figure 29: Manhattan Subset of Twitter Density and Flickr Images with Text Detected 
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(a) 

 

 
(b) 

 
  (c) 

 
(d) 

Figure 30 (a) is an inset map on Washington Square Park showing 67 Flickr 

images that had text detected relating to OWS. Figure 30 (b), (c), and (d) are examples of 

the text detected images called out to their location in the park. The image is the output 

from the overlapping merged text regions to create bounding boxes around groups of text 

(similar to Figure 12). 
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(a) 

 

 
(b) 

 
  (c) 

 
(d) 

Figure 30: Washington Square Park Inset Map with 67 Text Images Detected and Examples 
 
 
 

Figure 31(a) is an inset map on Brooklyn Bridge showing nine Flickr images that 

had text detected relating to OWS. Figure 31 (b), (c), and (d) are examples of the text 

detected images, called out to their location on the bridge. The image is the output from 
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the overlapping merged text regions to create bounding boxes around groups of text 

(similar to Figure 12).  

 

 
(a) 

 

 
(b) 

 
  (c) 

 
(d) 

Figure 31: Brooklyn Bridge Inset Map with 9 Text Images Detected and Examples 
 
 

Figure 32(a) is an inset map on Union Square Park showing 48 Flickr images that 

had text detected relating to OWS. Figure 32 (b), (c), and (d) are examples of the text 

detected images called out to their location in the park. The image is the output from the 
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overlapping merged text regions to create bounding boxes around groups of text (similar 

to Figure 12). 

 
(a) 

 

 
(b) 

 
  (c) 

 
(d) 

Figure 32: Union Square Park Inset Map with 48 Text Images Detected and Examples 
 
 
 
 



87 
 
 

Figure 33(a) is an inset map on Times Square showing 128 Flickr images that had 

text detected relating to OWS. Figure 33 (b), (c), and (d) are examples of the text 

detected images called out to their location in the park. The image is the output from the 

overlapping merged text regions to create bounding boxes around groups of text (similar 

to Figure 12). 
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(a) 

 

 
(b) 

 
  (c) 

 
(d) 

Figure 33: Times Square Inset Map with 128 Text Images Detected and Examples 
 
 
 
 

Figure 34 (a) is an inset map on Zuccotti Park showing 2587 Flickr images that 

had text detected relating to OWS. Figure 34 (b), (c), and (d) are examples of the text 

detected images called out to their location in the park. The image is the output from the 
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overlapping merged text regions to create bounding boxes around groups of text (similar 

to Figure 12). 

 
(a) 

 

 
(b) 

 
  (c) 

 
(d) 

 
Figure 34: Zuccotti Park Inset Map with 2587 Text Images Detected and Examples 
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5.3	Discussion		
 

The accuracy assessment of the subset of 200 images shows that 78% of the time, 

the images are correctly identified as having text or not. Looking at samples of the true 

positives, true negatives, false positives, and false negatives shows interesting results. In 

Figure 14, showcasing examples of true positives (images that were correctly identified 

as containing text) shows images with text that is evenly distributed, printed (vs. 

handwritten), has similar font size throughout, and a vertical orientation of text (as 

opposed to slanted). The text detection process correctly identified areas in the image that 

contain text in each image, and for four out of the five examples, the text recognition 

process (OCR) correctly identified the text in the image. In Figure 14d, there is variation 

in font size, non-vertical text orientation, and variation in font color. However, some text 

was still detected (vs. no text at all).  

Examples of true negatives (images that were correctly classified as not having 

text) in Figure 15 show small yellow boxes in 15b and 15e, signifying potential text from 

the text detection process, however, when run through the OCR, no text was found. The 

patterns found in those two images from a person’s legs (15b), or the bag the dog is being 

carried in and the container with the straight line (15e) are the potential text regions. It is 

also important to note that in 15b and 15c, incidental text (text in the background of an 

image such as road signs, storefronts, or other construction not relating to signs) is not 

detected, leading to a positive evaluation of the text detection process overall. Because 

there was no text in the foreground, the algorithm didn’t immediately look for text in the 

background, which is not relevant to the protest activity.  
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In Figure 16, which showcases examples of false positives (images incorrectly 

classified as having text), 16e has a building with windows that are mistakenly identified 

as text. The even distribution, size, and color of these windows and their contrast from 

the background make it an easy mistake for the text detection and recognition algorithms.  

The false negative (images incorrectly classified as not having text) examples in 

Figure 17 showcase how the variations in orientation specifically cause issues with 

automatic text extraction (Yin et al., 2014; Li & Lu, 2012; Jung et al., 2004), even though 

font and size are consistent. The text detection process outputting the yellow boxes 

around potential text regions does accurately highlight the text, which is in line with 

claims made by Neumann and Matas (2012) and Su and Xu (2015) that connected 

components are not sensitive to orientation issues. This suggests that the reason these 

images were classified as false negatives were due to the OCR text recognition process 

and not the connected component process. If that is the case, many images that were not 

classified as having text in them could have been included, expanding the locations where 

text was detected in the spatio-temporal clustering and comparisons with the Twitter 

density maps. 

The clustered map showing text detected Flickr images in Figure 19 and the inset 

maps from the five cities (New York, Chicago, Los Angeles, Washington, D.C, and San 

Francisco and Oakland) show that the protest activities in physical space primarily 

occurred in urban centers around the country (and Canada). The subsets of New York, 

Chicago, Los Angeles, Washington D.C., and San Francisco/Oakland were chosen 
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because they were the top five areas with the most points per cluster as highlighted in 

Table 2. 

 Figure 20: Washington, D.C. Inset Map shows that McPherson Square appears to 

have more images with text not detected vs. text detected. Freedom Plaza appears to have 

a mixture of images with text detected and without, with no pattern emerging on the 

location of the signs, other than inside the public park. Washington D.C. is the home to 

the National Mall, a space known for social movements and actions (Endres & Senda-

Cook, 2011); however, very few images are located on the mall, with the majority in 

McPherson Square and Freedom Plaza. McPherson Square is on K Street, which is where 

lobbyists (people who influence policy makers) have offices. Freedom Plaza, another 

popular location of Occupy protests in D.C., is a few blocks from the White House. 

Additionally, the actual name of the plaza, “Freedom,” suggests that the activists are 

using that space intentionally as a base to share their message. 

Figure 21: Los Angeles, California Inset Map has the majority of images with and 

without text located just outside the Los Angeles City Hall, the local government office 

of the region. Figure 23: Chicago, Illinois Inset Map has a cluster of images outside the 

Federal Reserve Bank of Chicago, a symbol of the federal government and a place of 

power in the finance industry. These subset maps (in addition to Figure 19, the cluster 

map of the entire United States and Canada) answer the questions of where the protest 

activity was occurring, confirming the work from Sewell (2001), who claimed that the 

majority of protests occur in urban areas because of the access to public spaces and a 

wider audience. All of the Flickr images were geolocated to be in parks, on streets, or 
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near government centers, all areas of high visibility and audience. The symbolic 

significance of the protest can better be characterized because people put signs there, as 

opposed to the other locations around the city where activity occurred. In New York City, 

the location of over 2,000 signs in Zuccotti Park has immense meaning. This park is 

located in the financial district of lower Manhattan, right outside Wall Street, which 

controls the United States stock market and other big banks, believed by the activists to 

be the culprit in the growing wealth inequality and the 2008 financial downturn in 

America. By protesting outside Wall Street, protestors wanted the people who work on 

Wall Street to know they weren’t happy. Having this same level of protestors in Central 

Park would not have the same effect, because of the distance from Wall Street. To better 

characterize the overall protest activity, Twitter data were used as a proxy (Wayant et al., 

2012).  

The Twitter point density maps in Figure 26 and Figure 27, which show the 

overall New York City Region, and the maps that focus on Manhattan in Figure 28 and 

Figure 28 show that the majority of the protest activity occurred in Manhattan. The color 

ramp is stretched so that the light green areas have less activity, progressing through 

yellow, orange, and red areas, with the red areas having the highest level of tweets per 

square kilometer. The red areas signify the highest levels of protest activity because more 

tweets were geolocated to those locations. The Twitter maps show more points per square 

kilometer in lower Manhattan near Zuccotti Park, and in Midtown, near Times Square. 

Both locations had almost all of the Flickr images relating to OWS. The Flickr images are 

concentrated around two locations of high protest activity (red areas), answering the 
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question that the Flickr images with text detected spatially overlay with the majority of 

the tweets, or the locations of the overall protest activity.  

Subset images of New York City protest locations are shown in Figure 30 through 

Figure 34 (Washington Square Park, Brooklyn Bridge, Union Square Park, Times 

Square, and Zuccotti Park, respectively). By highlighting some of the specific images that 

were determined by the text detection and text recognition process to contain text, this 

shows and confirms that those signs relate to the OWS movement and that the signs were 

located in public places throughout the city that have high visibility, in line with the 

claims made by Sewell (2001), Endres & Senda-Cook (2011) that space in contentious 

politics is relevant. 

The Twitter point density maps show that the location of the most tweets is in line 

with the location of the Flickr images. As shown in the literature, social media (and 

Twitter in particular) are very effective and entwined with social protests, especially the 

OWS movement. The location of the protest activities in OWS in public spaces, urban 

areas, parks, proximity to government centers and buildings, policy makers and policy 

influencers, and the financial institutions confirm the theory that space in contentious 

politics is important to consider when examining the overall protest activity. These 

spaces could have already had meaning or they were transformed to be meaningful 

during the protest (areas such as Times Square, the Brooklyn Bridge, etc.). In the case of 

Zuccotti Park, the protest was so significant that it has been permanently linked to the 

OWS activities and any future protest activity in that space, whether related or unrelated 

to the OWS activity; this is a byproduct of the Fall 2011 activities that occurred. These 
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results suggest that, overall, signs are immersed in the protest activity, but tend to 

concentrate in specific locations that are likely to have a more central role in context of 

the protest. 
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CHAPTER SIX 

6.1	Conclusions	
  
 Social media are offering a new lens through which researchers can study 

complex human systems, and the amount of data is increasing as time goes on. By 

integrating a social network analysis with a geographic analysis, a new understanding of 

the location of a space can be defined and interpreted (Croitoru et al., 2014). Twitter in 

particular is one way for users to document, share, coordinate, live-report, and provide 

commentary on a phenomenon or event, such as a protest activity. Signs and posters, 

which have been used in protest activities for many decades, are a version of an analog 

tweet. Short messages are shared with the wider audience. Rhetoricians have claimed that 

the messages shown on those signs are important to study, and geographers have claimed 

that the location of those signs is important.  

In order to determine which signs from the Occupy Wall Street movement 

contained text, a text detection process was used. Text detection in computer vision is a 

very active and hard problem. Every year, there are hundreds of new methods being 

produced and papers being published that try to improve the text detection and 

recognition processes. This research showcased one text detection method in which 
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images with natural scenes (with varying orientations, fonts, sizes, colors, and blurriness) 

can be enhanced before running that image through an optical character recognition tool. 

That process was chosen based on the complexity and type of data that were being 

studied. There were assumptions made that if text was detected, it was relating to the 

Occupy Wall Street movement, as Flickr tags were used to harvest the images.  

 Once text was detected, those images were clustered using a spatio-temporal 

clustering method that showed that images in urban areas were related to each other in 

space and time, solidifying the work that studies the theory of space and place in 

contentious politics.  Comparing that work with precisely geolocated Twitter data (as a 

proxy of the overall protest) shows that the majority of images were in areas of high 

protest activity, such as urban squares, parks, plazas, and financial and government 

institutions.  

 The quantitative work shown in this research confirms the qualitative claims 

made by the researchers regarding the need and validity of studying space and 

contentious politics, and that studying the signs of protests is important to studying 

contentious politics rhetoric. Signs and posters are immersed in protest activity and tend 

to be located in areas with a central role and meaning.   

6.2	Future	Work	
 
  

Although the text detection process was evaluated using a subset of images, it is 

important to remember that the text detection process was not used to evaluate the 

accuracy of the text detection methodology, but as a catalyst for studying the relationship 
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between social media images and physical space.  Assumptions are that if text was 

detected, it actually was the text from the image. As referenced in the examples of true 

positives, true negatives, false positives, and false negatives (Figure 14 through Figure 

17), the text detection process with the detected bounding boxes around areas of text does 

an adequate job (78% of the time, it is correct) finding text. However, there seem to be 

issues with the resulting text recognition piece - the optical character recognition tool. 

Even though the text detection method clearly outlines boxes of text, there are still issues 

with the OCR interpretations. As mentioned in the literature, OCR works very well for 

documents with evenly formatted, distributed, and vertical text. However, when it comes 

to natural scenes with varying degrees of orientation, illumination, fonts, sizes, colors, 

and blur, OCR all but fails to accurately output the proper text. Handwritten posters also 

are not as easily detected as a printed poster image. The connected components, stroke 

width, and geometric filtering recognize text in the images, as determined by the yellow 

bounding boxes; however, the OCR process needs improvements. One possible method 

of improving the OCR results could be rotating the result of the text detection images to 

be completely vertical, so that the orientation of the text is straight up and down.  

There are many text detection processes, all with their advantages and 

disadvantages. The process chosen for this work was used because of the ease of 

computational complexity and lack of a priori knowledge or lexicon to determine the 

words used in the images. Future work could enhance these methods by implementing a 

Canny edge detector to better separate out characters of potential text, such as in the 

research conducted by Chen et al. (2011), or by using a ‘contrast enhanced’ method (Li & 
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Lu, 2012) to overcome the issues that MSERs have with detected blurred text. With the 

process used in this research, all of the defaults were taken because of the large dataset 

size. Further refining could adjust those variables (aspect ratio, stroke width, MSER 

region size, etc.) for improved text detection accuracy.  

The resulting images with detected text boxes around potential text regions 

generally gave good results. However, problems arose with the OCR process to 

determine human readable text from that image. Future improvements to optical character 

recognition could benefit from improved text recognition in natural scenes.  

This study focused on Twitter data that were isolated to the New York City 

region. The reason for this is because that location was the epicenter and the catalyst for 

all other OWS movements. Further research should be done to examine the relationship 

of Twitter and Flickr images in other urban spaces, such as San Francisco and Oakland, 

two prominent areas of OWS activity.  

The Flickr images and tweets used in this study have dates associated with them, 

and it is assumed that the date associated is the date the image was taken or the date the 

tweet was uploaded. However, further analysis should be done to explore the latency 

involved when images are taken and when they are uploaded to Flickr. Some users could 

upload images immediately, and others could wait a few days before uploading a batch of 

images all at once.  

This research did not explore the density of signs in an image, but further work 

could be done to weight images based on how many signs are contained within the 

image. Many images include only one sign, but some, such as in a larger crowd, can 
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contain many signs, with as many as 10 to 20 signs per image. Exploring density of signs 

in one image could expand on the location of signs, since one image does not necessarily 

equal one sign.  

To explore the level of coordination in the Occupy Wall Street movement, 

looking at the differences in types of signs could be examined. Coordination could be 

higher if there are many professionally produced posters or many copies of signs held by 

many people. Coordination could be lower if every sign was unique and made in a ‘do it 

yourself,’ or DIY, fashion. Similar to the work performed by Steinert-Threlkeld et al. 

(2015), which looked at the coordination of Tweets in protest, investigating coordination 

of Flickr images could show interesting results. 

Finally, Flickr tags were explored here, but not actually used in this research. 

Flickr tags could be compared with the hashtags and content from Twitter messages to 

create tag clouds and compare the rhetoric of the protest signs and social media.  
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