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ABSTRACT

An important form of “learning from observation” is constructing a classifica-
tion of given objects or situations. Traditional techniques for this purpose,
developed in cluster analysis and numerical taxonomy, are often inadequate
because they arrange objects into classes solely on the basis of a numerical
measure of object similarity. Such a measure is a function only of compared
objects and does not take into consideration any global properties or concepts
characterizing object classes. Conscquently, the obtained classes may have no
simple conceptual description and may be difficult to interpret.

The above limitation is overcome by an approach called conceplual
clusterirg, in which a configuration of objects forms a class only if it is describ-
able by a concept from a predefined concept class. This chapter gives a
tutorial overview of conjunctive conceptual clustering, in which the predefined
concept class consists of conjunctive statements involving relations on selected
object atributes. The presented method arranges objects into a hierarchy of
classes closely circumscribed by such conjunctive descriptions. Descriptions
stemming from each node are logically disjoint, satisfy given background
knowledge, and optimize a certain global criterion.

The method is illustrated by an example in which the conjunctive con-
ceptual clustering program CLUSTER/2 constructed a classification hierarchy of
a large collection of Spanish folk songs. The conclusion suggests some cxten-
sions of the method and topics for further rescarch.
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11.1 INTRODUCTION

An omnipresent problem in science is to construct meaningful classifications
of observed objects or situations. Such classifications facilitate human com-
prehension of the observations and the subsequent development of a scientific
theory. This problem is a form of the very general, well-known principle of
“divide and conquer™ used in a varicty of problem-solving situations. It is also
related to the problem of decomposing any large-scale engineering system (for
example, an Al system) into smaller components, in order to simplify its
design and implementation.

The nature of processes leading to useful classifications remains little
understood, despite considerable effort in this direction. From the viewpoint
of machine learning, the process of constructing classifications is a form of
“learning from observation” (“‘learning without a teacher”). This form of
machine learning has been. systematically studied in such arcas as cluster
analysis and numerical taxonomy. The central notion used there for creating
classes of objects is a numerical measure of similarity of objects. Classes
(clusters) are collections of objects whose intra-class similarity is high and
inter-class similarity is low.

A measure of similarity is usually defined as a proximity measure ina
multi-dimensional space spanned by sclected object attributes. Such a
measure is, therefore, meaningful only if the selected attributes are relevant for
describing perceived object similarity. The presence of irrelevant attributes
will distort this measure. Moreover, all attributes defining the description
space are given equal weight in the process of determining classes. The
problem, then, becomes one of structuring attributes into classes, in order to
determine the most relevant attributes. Factor analysis and multi-dimensional
scaling have been used for this purpose, but these methods were designed
primarily for numerical variables. They cannot adequately handle the many-
valued, nominal (categorical) variables which occur often in human classifica-
tions.

The use of numerical measures of similarity for constructing classifica-
tions has other disadvantages. Such measures take into consideration only the
properties of compared objects without regard to any conlext or concepts use-
ful for characterizing object configurations. Consequently, the resulting
classes do not necessarily have any simple conceptual description and may be
difficult to interpret. The problem of determining the meaning of the obtained
classes is simply left to the researcher. This is a significant disadvantage of
traditional methods because a researcher analyzing data typically wants to
create classes that arc not only mathematically well defined, but that also have
a meaningful conceptual interpretation,

This chapter describes an approach to the problem of automatic con-
struction of classifications, in which a configuration of objects forms a class
only if it can be closely circumscribed by a conjunctive concept involving
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relations on selected object attributes. The problem undertaken can be
defined as follows!

Given:

A set of objects (physical or abstract), -

o A set of attributes to be used to characterize the objects,

e A body of background knowledge, which includes the problem
constraints, propertics of attributes, and a criterion for evaluating
the quality of constructed classifications.

Find:

o A hicrarchy of object classes, in which each class is described by a
single conjunctive concept. Subclasses that are descendants of any
parent class should have logically disjoint descriptions and op-
timize an assumed criterion (a clustering quality criterion).

Structuring objects into such conjunctive hierarchies is called conjunctive
concepual clustering. It is a special case of concepiual clustering in general,
which we define as a process of constructing a concepl network characterizing a
collection of objects, with nodes marked by concepis describing object classes,
and links marked by the relationships between the classes.

The idea of conceptual clustering and a general method for determining
conjunctive hierarchies was inroduced by Michalski [1980a]. This chapter is a
tutorial overview of conjunctive conceptual clustering and the algorithm im-
plemented in the program CLUSTER/2 {a successor 1o the earlier program
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm is illustrated by its
application to a practical problem in the area of musicology. The conclusion
discusses some possible extensions of the method and suggests topics for future
research, To improve the readability of this chapter, Table 11-1 provides a list
of basic symbols and operators together with a short explanation.

11.2 CONCEPTUAL COHESIVENESS

In conventional data analysis, the similarity between any two objects is charac-
terized by a single number: the value of a similarity function applied to sym-
bolic descriptions of objects. These symbolic descriptions are vectors, whose
components are scores on selected object attributes.

Such measures of similarity arc contexi-free, that is, the similarity be-
tween any two objects A and B depends solely on the propertics of the objects,
and is not influenced by any context (the “epvironment” surrounding the
objects). Some authors have introduced  contexi-sensitive measures of
similarity, where the similarity between objects A and B depends not only on
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Table 11-1: A Table of Basic Symbols and Operators

& conjunction (logical product)

V disjunction (logical sum)

e an event (a description of an object)

LEF a lexicographical evaluation functional
DOM{p) the domain of variable p

5(:1,:2} the syntactic distance between evenis e and ey
a a complex

A-complex a logical complex

s-complex a set complex

E the event space

ga) number of unobserved events in complex a
pla) ' number of chserved events in complex a
ta) total number of events in complex a

E an event set :

k the number of clusters

RU{el._.nl...} the refunion operator

GEN(a) a generalization of complex

Cﬂ\‘{EllEl} 4 caver of event set EL apainst E2

G{e|E°} a star of event e against event set E
RG{elEn} a redueed star of event e against event set Eo
RGelE m) a bounded reduced star with the bound m

A and B, but also on other objects in the collection to be clustered. One such
similarity measure is the reciprocal of mutual distance [Gowda & Krishna,
1978]. To determine the mutual distance from object A to object B, objects in
the collection are ranked according 1o the Fuclidean distance to A (the closest
object gets rank 1) and then according to the Fuclidean distance to B. The
mutual distance from object A to object B is the sum of the rank of A with
respect to B, and the rank of B with respect to A. Thus the similarity between
compared objects depends on their relation to other objects.

Taking neighboring objects into consideration solves some clustering
problems, but in general is not sufficient. The difficulty lies in the fact that
both of the above types of similarity measures are concepi-free, that is, depend
only on the properties of individual objects and not on any external concepts
which might be useful to characterize object configurations. Consequently,
methods that use such measures are fundamentally unable to capture the
“Gestalt properties” of object clusters, that is, properties that characterize a
cluster as a whole and are not derivable from properties of individual entities.
In order to detect such propertics, the system must be equipped with the
ability to recognize configurations of objects that corrcspond to certain
“concepts.” To illustrate this point, Jet us consider the problem of clustering
the points in Figure 11-1.
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Figure 11-1: An illustration of conceptual clustering.

A person considering Figure 11-1 would typically describe the observed
points as “arranged in two diamonds”, Thus, the points A and B, although
closer to each other than to other points, are placed in separate clusters. Here,
human solution involves partitioning the points into groups not on the basis of
pairwise distance, but on the basis of concept membership. Points are placed in
the same cluster if collectively they represent the same concept. In our ex-
ample, the coneept is “diamond”. |

This idea is the basis of conceptual clustering. From the viewpoint of
conceptual clustering, the “similarity” between two points A and B, which we
shall call the conceptual cohesiveness of A and B, depends not only on those
points and surrounding points E, but also on a sct of concepts C which are
available for describing A and B together:

Conceptual cohesiveness(A,B) = flA,.BEC)

To iltustrate this measure, let us assume that the set of concepts C con-
sists of geometrical figures, such as sequences of straight lines, circles, rec-
tangles, u'ianiglcs. ete. A measure of conceptual cohesiveness could be defined,

s

for example,
ABEC #elyf
ﬂ: Ll b | ]umxl{area(l}.}

1'l'l':is measure is mentioned solely to illustrate the difference bel{vm traditional similarity and
conceptual cohesiveness, 1t is not used in the method of conceptual dustering described here.
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where i indexes all écumctricn‘] figures that are specified in C and that
cover points A and B,

#c{&) is the total number of data points from E covered by figure i,
an
area(i) is the area of figure i

Note that the constant “~1"" in the numerator assures that the conceptual
cohesiveness reduces to a conventional similarity measure (a reciprocal of
distance) when no context points in E are taken into consideration and C is a
straight line of unit thickness linking the data points.

11.3 TERMINOLOGY AND BASIC OPERATIONS OF THE ALGORITHM

This section gives a brief overview of the terminology necded (o describe the
conjunctive conceptual clustering method. This terminology was introduced
by Michalski [1980a].

11.3.1 Variables and Their Types

Letx,, X,..., X, denote discrete variables that are selected to describe objects in
the mpuﬁalion to be analyzed. For each variable a domain is defined, contain-
ing all possible values the variable can take. We shall assume that the doinains
of variables x;, i= 1.2,....n are finite, and therefore can be represented as:

DOM(x) = {01..d;1},1 = 12,0

In general, the domains may differ not only with respect to their size, but
also with respect to the structure relating their elements. In the case of
numerical variables, this structure is defined by the scale of measurement. We
distinguish among nominal (categorical), linear (guantitative), and structured
variables, whose domains are unordered, totally-ordered, and graph-ordered
sets, respectively. Structured variables represent generalization hierarchies of
related values. We distinguish between two types of generalization hierarchies
for structured variables:

1. Unordered — when the leaf values in the hierarchy constitute an un-
ordered set.

2 Ordered — when the leaf valucs in the hierarchy constitute an ordered
set.

Figures 11-2 and 11-3 present an example of an unordered and an or-
dered generalization hicrarchy, respectively. In Figure 11-2, the leaves
represent specific shapes, and the internal nodes (“polygon™, “cllipsoid”, “4-
sided”) represent gencralizations or linguistic equivalents of these shapes. In
Figure 11-3, the leaves represent specific quantities, and the internal nodes
represent ordered generalizations or linguistic equivalents of these quantities.
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shape

palygon oval

3—sided 4 —sided circle ellipse
triangle rectangle square trapezoid

Figure 11-2: An example of an unordered generalization structure.

quantity

none one some dozen many

2T

couple few _several

L 7T,

0 1 2 d456789 -..7121314'..

Figure 11-3: An example of an ordered generalization structure.

11.3.2 Event Space

An event is an object description in the form of a vector of values of the
assumed variables X, X,....X . The event space is the space of all possible such
events,
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11.3.3 Syntactic Distance

The syntactic distance 8{e,, ¢,) between wo cvents ¢ and ¢, is defined as the
sum of the syntactic distances between the values of each vanable in the events
e, and ¢, As described by Michalski and Larson [1978], the syntactic distance
between two variable values is a number from 0 to 1, determined by a measure
which reflects the domain type of the variable. For a nominal variable, the
syntactic distance is either 0, if the values taken by the variable in each event
are identical, or 1, if the values are not identical. For a lincar variable, the
syntactic distance is the ratio of the absolute difference between the values o
the total span of the domain of the variable. For a structured variable, the
evaluation of syntactic distance depends on the type of generalization hierar-
chy. Since structured variable valucs in events arc leaves of a generalization
hierarchy, the syntactic distance between such values for unordered and or-
dered hierarchics is evaluated the same way as for nominal and lincar vari-
ables, respectively.

11.3.4 Relational Statements

A relational statement® {or a selector) is a form:
[x; # Ri]

where R, the reference, is a list of elements from the domain of variable x,,
linked by the internal disjunciion, denoted by “ V™.

# stands for the relational operator “="gr"s",

The selector [x. = R]] {[xi ® Rif) is interpreted as “value of x, is one of
the elements of R.” (“value of x is not an clement of R."). In the case of linear
variables, the notation of a selector can be simpliﬁed by using relational
operators >, >, € <, and a range operator ", as illustrated below. Here
are a few examples of a sclector, in which variables and their values are

represented by linguistic tenms:

zTh.is form is a special case of a referential sclector defined in the annolated predicate calculus
{Chapter 4 of this book). This form was first introduced in the variable valued logic sysiem one
(VL) described by Michalski [1975a).
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length » 2‘ {length i Fremar than 2)

eolor = biue ¥ red] {color is blue or red)

sire w medinm] [size is nol medium)

weight = 1.5] {weight is between 2 and 5, inclusively)

11.3.5 Complexes E

A logical product of selectors is called a logical complex (A-complex)
& o [x, # R, where 1€ {1.2..n}. Aneventeissaidto satisfy an A-complex
i values of variables in e satisfy all the sclectors in the complex,

For cxample, event ¢ = (2, 7, 0, 1, 5, 4, 6) satisfies A-complex
[, = 2 V 3lx; < 3lx; = 3.8] (concalcnation of selectors denotes
conjunction). An 3J\—cumplcx can be viewed as an exact symbolic represen-
tation of the events which satisfy it. For example, the above A-complex is the
symbolic representation of all events for which x, is 2 or 3, x, is smaller than or
equal 10 3, and x, is between 3and 8.

A collection of events for which there exists an A-complex satisfied by
these events and only by these events is called a set complex (s-complex). 1f
the distinction between A- and s- complexcs is not important, then we shall use
simply the term complex.

11.3.6 Sparseness

Let E be an event space, and E € E be a set of events representing objects to
be clustered. The events in E are called observed events, and cvents in EME
are called unobserved events. Let a be a complex which covers (includes)
some observed events and some unobserved events. The number of observed
events (points) in a is denoted by p(a). The number of unohbserved events in
a is called the absolute sparseness of a in E and denoted by s(a). The total
number of events contained in a is thus t{a) = pla) + s{a). The relative
sparseness of a complex is denoted by r{a) and is defined as the ratio of the
absolute sparseness of the complex w the total number of events covered by

the complex, |E{ult)her words: P)
'{ﬂ}=1' r{d}: f“ f(_ﬂC-J
An 1-‘§§%p1cx is a gencralized description of the observed events con-
tained in the corresponding s-complex. The rclative sparsencss of a complex
can be used as a very simple measure of the degree w which the A-complex
generalizes over (or fits) the observed events. 1f the sparseness is zero, then the
description covers only obscrved events (has zero degree of generalization). As
the relative sparseness of the complex increases, so docs the degree to which it
generalizes over the observed events. ‘The maximum relative sparseness value
of 1 is achieved when the complex cavers only unobscrved events.
The clustering algorithm presented in Scction 11.5.1 gencrates a collec-
tion of complexes that are pairwise disjoint. Such a collection, called a disjoint
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clustering, describes a partition of all observed cvents into disjoint classes. The
fit between a disjoint clustering and the observed events can be measured by
the relative spurseness of the clustering, defined as the average of the relative
sparsenesses of the complexes in the clustering.  Since the complexes in a
clustering are disjoint and the total number of observed events is constant, the
ranking of clusterings will not change if the relative Sparseness measure is
replaced by the absolute sparseness measure (the sum of absolute sparsenesses
of complexes). The latter measure is much simpler computationally and,
thercfore, is used in the presented clustering algorithm. Henceforth, we shall
simply use the term sparseness to denote this measure of fit,

An advantage of sparseness as a measure of fit is its simplicity. A dis-
advantage, however, is that it takes into consideration the whole event space,
no matter which variables spanning the space are actually present in the
A-complexes, Therefore, another measure is introduced, called projected
sparseness, which evaluates a clustering in a subspace of the original event
space, defined by specially selected “relevant™ variables. To define this
measure, let us observe that complexes of a disjoint clustering may involve
different subsets of variables. Because complexes are pairwise disjoint, any
pair of complexes must contain at least onc common variable with disjoint
references in both complexes. A variable with this property for any pair of
complexes in a clustering is called a discriminant variable of the clustering. For
example, x,, X,, and x, are discriminant variables of the clustering;

{23 b, =1V 2 [xy =1}, [x,<31x;=2V 3] [x,=3), [s,=1] [x,<2]}-
The event space spanned over only the discriminant variables is called

the projected event space of the clustering. The projected sparseness of a
clustering is the sum of the absolute sparsenesses of complexes in the projected

event space.
11.3.7 Refunion Operator

The refunion operator RU transforms a set of events and/or complexes into a
single complex covering the events and/or complexes. For each variable, the
set of all values the variable takes, in all given events and complexes, is deter-
mined. These scts are used as the reference of the variable in the generated

complex. For example, given:

g = (2301)
¢, = (0211 and
o« ={‘1 it Zr!'”lz 24“1} ='ﬂ'][.l4 =1

the refunion complex, RU(el.ez,a), denoted o', is:
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,-=[31=quV;”:2;3\.:"3\"4][11:9\"1”:4; 1V

It can be shown that the refunion complex has the minimuin Sparsencss
(absolute or relative) among all complexes covering the given events and/or
complexes [Michalski, 1980a].

11.3.8 GEN Operator

The generalizing operator GEN simplifics and gencralizes any given complex
by applying an appropriate generalization rule (see Section 4.5 in Chapter 4 of
this book) to each selector in the complex:

1. To linear selectors, the “closing the interval” rule is applied: The refer-
ence is clustered into one or a few disjoint intervals, such that the ratio of
the number of unobserved values to the width of the enclosing interval is
at or below a certain sparseness threshold. For example, the reference
1V 2V 3V 7V 8is wrned into one interval 1.8, if the assumed
threshold is 3/8 or more. If the threshold is less than 3/8, the reference is
wrned into two intervals 1.3 V 7.8,

7 To structured selectors, the “climbing the generalization hierarchy” rule
is applied: A reference with more than one value is replaced by the most
specific node in the generalization hierarchy which “covers” the refer-
ence.

3, After steps (1) and (2) are completed, the “dropping the condition™ rule
is applied to all selectors: A selector is removed if the ratio of the
number of missing reference values to the number of values in the
domain of the variable is below a certain sparsencss threshold.

To illustrate the GEN operator, consider the complex a', given above,
and assume that variables X, and %, are lincar, variable x, is structured, and
variable x, is nominal, that the domain of Xy is a generalization hicrarchy in
which the value “small” is the parent node of values 0 and 1, and that the
domain of x, contains values 0, 1, 2. Assume also that the sparscness threshold
for all \rariahdlcs is 0.5, Then we have:

GEN(a'): [x, < 3llx, = 2.4)[x; = small]

where the references for x, and x, are generalized by closing the interval, the
reference for x, is g::nera!izcd by clinbing the generalization tree, and the
sclector for variable x, is removed by dropping the condition.
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11.3.9 Cover

let E, and E, be two disjoint event scis, that is, F; N E, = ¢ A cover

COV[}{IlF.I} of E, against E. is any sct of s-complexes {“'}'E , such that for

cach event ¢ € E, there is an s-complex nj.j € J, covering it.'and none of the

complexes @, cover any cvent in E,: = e
E, € U CENE

By representing complexes of the cover as A-complexes, a cover can be
expressed as a logical disjunction of these complexes.

A cover in which all s-complexes are pairwise disjoint is called a disjoint
cover. 1T E; is a collection 1o be clustered and E, = ¢ then a disjoint cover
CDV{EIM], or simply COV(E,), represents a disjoint clustering of events. The
algorithm described in Section 11,5 generates a disjoint clustering of events by

repetitively constructing a special type of cover, called a star.
11.3.10 Star

The star G(c|E ) of event ¢ against event set E_ (¢ ¢ E ) is the set of all
maximally general” complexes covering the event ¢ and not covering any event
in E_. Informally, it is the set of all maximally general descriptions of event e
which do not intersect with set E . Figure 11-4 presents a star of event e
against events denoted by g™ in the two dimensional space spanned over
linear variables. The star consists of complexes a), e, and ay. Complex 'u’3 is
a “reduced” complex ay, as explained below.

In the algorithm “described in the next section, the “theoretical” stars
(defined above) are subjected [0 two major madifications. The first is to
minimize the sparseness of complexes in the stars, and the second is to
“bound” the stars, that is. to select from them a certain number of “best™
complexes, according 10 a context-dependent criterion. The first modification
is performed by procedure Redustar, described below, and the second by pro-
cedure Boundstar described in Section 11.5.1.2.

11.3.11 Redustar Procedure

Complexes in stars G{e1EOJ are maximally general, and therefore may describe
objects in an overgeneralized way. "The Redustar procedure generates a star,
and then maximally reduces the sparscncss of cach complex in it, while
preserving the coverage of observed events. For example, complex a', in
Figure 11-4 is such a reduced complex obtained from complex a;. The schs
of the procedure are:

3,& complex a is maximally peneral with resped to a propeniy P if there does not exist a complex
a* with propenty P such that & € a®,
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E .
//
+
[ a + e
) o .
® e e i PR (R
I g ® | o
|____________qq_+
. _\ ®
i Py \
+ “t:;
™ [ ]
[]
+
- e — elements of E,

+ — observed events in
complexes of the star

Figure 11-4:  An illustration of the star G(e[E ).

1. Elementary stars, Glele,). ¢, € E , are determined.

To generate an elementary star Glele) of an event e against another
event e, all variables that have different values in ¢ than in e, are iden-
tified. Suppose, with no loss of generality, that these variables are
Xy X Xs and that e, = {’1"‘“'"‘ T .....rn}, The complexes of the star
d{cfei] are then [x. = r), j:l‘.l...‘.ﬁ because these are the maximally
general complexes which cover e and do-not cover e, The number of

complexes in an elementary star is at most n, and, because e, =e, at least 1
2. The complete star G(e|E a} is determined.

The star G(e|E ) is generated by first setting up the logical product
& G'(cle), ¢, € t o Where G'(cle,) is the disjunction of complexes from
the clementary star G(ee). Next. the multiplication of complexes is
performed, using absorption laws, until a disjunction of nonredundant
complexes is obtained. This multiplication is carried out in steps, each
step being a multiplication of a disjunction of complexes by a disjunction
of selectors (the elements of consecutive clementary stars). The set of the

complexes in the resulting disjunction is G(e|E ).
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3. Complexes in G{eIED} are reduced and simplified.

The sparsencss of each complex in the star is reduced as much as possible
without “uncovering™ any of the observed events. This is done by per-
forming the refunion of all the observed events contained in each com-
plex. The complexes arc then generalized and simplified by applying the
GEN operator. The resuling set of complexes is a reduced star
RG(e[E). :

The theoretical hasis for the above algorithm generating the star G(elE )
is deseribed in Michalski [1975b].

11.3.12 NID Procedure

This procedure transforms a sct of Nondisjoint complexes Into a set of Disjoint
complexes (that is, a disjoint clustering). If input complexes to NID are al-
ready disjoint, the procedure leaves them unchanged. The steps of the proce-
dure are:

L. “Core” complexes are determined.

Observed events covered by more than one complex from the given set
are placed on the nultiply-covered event list (m-list). If the m-list is
empty, then the complexes are only weakly intersecting, that is, the inter-
section area contains only unobserved events. In this case, the procedure
terminates with an indication that the combination of complexes is a
weakly intersecting clustering. Otherwise, each complex is replaced by
the Refunion of the observed events contained in the complex that are
not on the m-list (i.e., that are singly covered). The obtained Refunions
are called “core” complexes.

2. A best “host” complex is determined for each event on the m-list.

An event is selected from the m-list and is “added™ to each of the k core
complexes by generalizing each complex to the extent necessary to cover
the event. Such a generalization is performed by applying the Refunion
operator to the event and the complex. As a result, k modified com-
plexes are obtained. By replacing one of the core com plexes in the initial
set with the corresponding modified complex, in k different ways, a col-
lection of clusterings is obtained. These clusterings arc evaluated accord-
ing to the assumed clustering quality criterion (see the next section). The
best clustering is determined, and the complex in it that covers the given
event from the m-list is considered to be the best “host™ for this cvent.
The best clustering is retained and the remaining ones arc climinated. By
repeating the above operation for every event on the m-list, a set of k
disjoint complexes is obtained whose union covers the same observed
events as the original set of nondisjoint complexes,

If an event cannot be “added” to any complex without causing the
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result to intersect other complexes, then the event is placed on the
exceptions lisL.

11.4 A CRITERION OF CLUSTERING QUALITY
The problem of how to judge the quality of a clustering is difficult, and there
seems to be no universal answer 1o it. One can, however, indicate two major
criteria, The first is that descriptions formulated for clusters (classes) should
be “simple”, so that it is easy to assign objects to classes and to differentiate
between the classes. This criterion alone, however, could lead to trivial and
arbitrary classifications. The second criterion is that class descriptions should
“fit well” the actual data. To achieve a very precisc “fir”*, however, a descrip-
tion may have to be complex. Consequently, the demands for simplicity and
good fit are conflicting, and the solution is to find a balance between the two.
A number of other measures can be introduced for evaluating clustering
quality. CLUSTER/2 uses a combined measure which can include any of the
following elementary criteria:

o the fit between the clustering and the events
o the simplicity of cluster descriptions

o the inter-cluster difference

« the discrimination index

« the dimensionality reduction

The fit between a clustering and the data is computed in two different
ways, denoted as T and P. The T measure is the negative of the total sparseness
of the clustering, and the P measure is the negative of the sum of the projected
sparsenesses of the complexes. The reason for using the negative values is to
increase the degree of match as the sparsencss decreases.

Simplicity of cluster descriptions is defined as the negative of the com-
plexity, which is the total number of selectors in all descriptions.

Inter-cluster difference is measured by the sum of the degrees of disjoint-
ness between every pair of complexes in the clustering. The degree of disjoint-
ness of a pair of complexes is the number of selectors in both complexes after
removing sclectors that intersect. For example, the pair of complexes:

o [color=red] [size=small or mediurn] [shape =cirele]

o [color =bluc] [size=medium or large]
has the degree of disjointness 3, because 2 of the 5 sclectors intersect
(intersecting selectors are italicized). This criterion promotes clusterings with
classes having many differing properties, and is analogous to the criterion of

requiring maximal distance between clusters, used in conventional methods of
clustering.
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The discrimination index is the number of variables that singly dis-
criminate among all the clusters, that is, variables having different values in
every cluster description.

Dimensionality reduction is measured by the negative of the essential
dimensionality, defined as the minimum number of variables required to dis-
tinguish among all complexes in a clustering. It can be computed by applying
to the clustering the variable-valued logic minimization algorithm Al
[Michalski, 1975b]. When the discrimination index is greater than zero, the
essential dimensionality is exactly one.

The definitions of the above criteria are such that the increase of any
criterion value improves the quality of the clustering. The relative influence of
each criterion is specified using the “‘Lexicographical Fvaluation Functional
with tolerances” (LEF) [Michalski, 1980b]. The LEF is defined by a sequence
of criterion-tolerance pairs (':1""1}' {cz,-rz}, ... where ¢, is an elementary
criterion sclected from the above list and 7, is a tolerance threshold

‘(7 € [0.100%)). In the first step, all clusterings are evaluated on the first
criterion, c,, and those that score best or within the range defined by the
threshold 7, are retained. Next, the retained clusterings are evaluated on
criterion ¢, with threshold 7., similarly to the above. This process continues
until either the set of rctaineé clusterings is reduced to a singleton (the “best”
clustering) or the sequence of criterion-tolerance pairs is exhausted. In the
latter case. the retained clusterings have equivalent quality with respect to the
given LEF, and any one may be chosen arbitrarily. The selection of elemen-
tary criteria, their ordering, and the specification of tolerances is made by a
data analyst.

11.5 METHOD AND IMPLEMENTATION

This section describes the algorithm for conjunctive conceptual clustering im-
plemented in the program CLUSTER/ {the successor to the program
CLUSTER/PAF [Michalski & Stepp, 1981]). The algorithm consists of a
clustering module and a hierarchy-building module, which are described in Sec-
tions 11.5.1 and 11.5.2, respectively. Section 11.5.1.4 gives an cxample il-
lustrating the details of the clustering module.

11.5.1 The Clustering Module

11.5.1.1 The Full-search Version of the Algorithm
"The basic algorithm underlying the implementation of the clustering module
was introduced in [Michalski, 1980a). Its goal can be described as follows:

Given:
e A collection of events to be clustered, E
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e The number of clusters desired, k, and
 The criterion of clustering quality, LEF
Find:
o A disjoint clustering of the collection of events that optimizes the
given criterion of clustering quality LEF.

We shall first describe a straightforward, exhaustive-scarch version of the
algorithm, and then show how this version is modified to increase efficiency.
The steps are:

1. Initial sceds are determined.

From the given collection of events E, k events (the initial seeds) are
selected. The sceds may be chosen randomly or according to some
criterion. (After this first step, seeds are always selected according to
certain rules; see step 5).

2. Stars are constructed for seeds.

For each seed ¢, a reduced star [{G[E.lEO) is constructed by procedure
4 A
Redustar, where ED is the set of remaining seeds.

3. An optimized clustering (a disjoint cover of E) is built by sclecting and
modifying complexes from stars, :

Every combination of complexes, created by selecting one complex from
cach star, is tested to see whether it contains intersecting complexes. If
50, the complexes are made disjoint by procedure NID.

4. A termination criterion is evaluated.

I this is the first iteration, the obtained clustering is stored. In sub-
sequent itcrations the clustering is stored only if it scores better than
previously-stored clusterings according to the LEF (see Section 11.4).
The algorithm terminates when a specified number of iterations does not
produce a better clustering (this number is defined by a termination
criterion, described below).

5. New seeds are selected.

New seeds are selected from sets of observed events contained in com-
plexes of the generated clustering, one sced per complex. Two seed-
selection techniques are used. One technigue selects “central” events,
defined as events nearest the geometrical centers of the complexes (as
determined by the syntactic distance). The other technique, stemming



62 CHAPTER 11: LEARNING FROM OBSERVATION

from the “adversity princlp!c"". sclects “border” cvents, defined as
cvents farthest from the centers. Ties for central or border events are
broken in favor of events which have not been used recently as seeds.
The technique of selecting central events is used repetitively in consecu-
tve iterations as long as the clusterings improve. When the improve-
ment ceases, border events are sclected. -

Afier selecting seeds, a new iteration of the algorithm begins from
step 2.

The algerithm is summarized by the flow chart in Figure 11-5.

Along with a clustering, the algorithm generates k A-complexes describ-
ing individual clusters, and determines how these complexes score on the
evaluation criteria in the LEF. The algorithm stops when the termination
criterion is satisfied. The termination criterion is a pair of parameters (b.p),
where b (the base) is a standard number of iterations the algorithm always
performs, and p (the probe) is the number of additional iterations beyond b
performed after each iteration which produced an improved cover. The
general structure of the algorithm is based on the so-called dynamic clustering
method [Diday & Simon, 1976].

The most computationally costly part of this algorithm is the construc-
tion of an optimized clustering, given k seed events (step 3). For an illustra-
tion. let us assume that k=2 and that k “seeds™, e, and e, have been selected
from the collection E. In the first step, stars G, = Gle |remaining sceds) and
G, = Ge,|remaining seeds) are generated. Figure 11-6 presents complexes of
these stars as branches of a scarch tree, Branches from the root represent
complexes of star G, that are @), @y, @y, - and branches at the second
level (repeated m, times) represent complexes of star G, that are
0y gy @y Each combination of complexes, containing one complex
from each star? corresponds to one path in the tree, Because any such com*
bination may contain intersecting complexes, procedure NID is applied to
each, and the result is a disjoint clustering. These clusterings are ordered
according to the quality criterion LEF, and the best one is selected.

11.5.1.2 Path-Rank-Ordered (PRO) Search Procedure Used in
CLUSTER/2

The above strategy for determining a clustering from seeds is very simple, but

unfortunately too inefficient for solving any interesting practical problems.

This is due to the fact that the stars may contain very many cum;‘:rle:es. When

there are n variables and k sceds, a star may contain up lo n 1 complexes

*his principle states that if a border, "near hil” event truly belongs to the given cluster, then
when sclected as the seed it should produce the same clustering as when a central event is used as a
seed.
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Given: .

E - a set of data events

k - the number of clusters
LEF - the clustering quality criterion

(m
Choose initial "seed” events from E

L 2. 4

{2)
Determine a star for each seed
against the other seed events

I

[L]]
By appropriately modifying and
selecting complexes [rom stars,
construct a disjoint cover of
E that optimizes the clustering
quality criterion LEF.

4
Is the termination
criterion satisfied?

Mo

15)
e Is the clustering
quality improving?

Choose k new seeds which Choose k new seeds which
are "central” events are "border” events

I Il

Figure 11-5: The flow chart of the clustering module.
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ﬁii denotes a complex j from star i.

Figur;: 11-6: The exhaustive-search search tree for k=2.

ﬂii denotes complex j from star i. Integeu@,@, ... indicate the order
of expanding nodes. Integers 0, 1, .... indicate the branch indices, Integers

@ [ZB ... indicate clustering evaluation scores for each path.

Figure 11-7: The Path-Rank-Ordered search tree for k=2 used in
CLUSTER/2.

(there are at most n complexes in any of the k-1 clementary stars needed to
compute the complete star). Thus, whenn= 30 and k=3, there could be up to
n¥1=900 complexes, and the search tree could have up to 900-way branching
at each node, and up to 900° =729 million lcaves. Absorption laws (as defined
in Boolean algebra) will usually eliminate many redundant complexes, but the
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star may still be too large. Artificial intelligence research on various heuristic
scarch procedures offers various possibilities for reducing the search (for ex-
ample, Nilsson [1980] or Winston [1977)). To solve this problem, we have
adopted some of the known ideas and also developed some new ones. The
result is a search procedure called Path-Rank-Ordered (PRO) search that in-
corporates the following four techniques:

1. Bounding the stars (procedure Boundstar).

The number of complexes in a star is bounded by a fixed integer m,
which assures that the search tree has at most m-way branching. A
bounded star containg not just m arbitrary complexes from the initial
star, but the m “best” ones.

At each step of star generation (a multiplication of a set of com-
plexes by the next elementary Star; sce the Redustar procedure in Section
11.3.11). complexes are first reduced and then arranged in descending
order according to the assumed clustering quality criterion LEF. Only
the first m complexes are retained for the next multiplication step. This
operation is also performed at the end of star generation, so that the final
star has at most m complexes. The stars s0 obtained are called bounded
reduced stars and denoted RG(&IED.m].,

Some elementary criteria measure global properties of a clustering
rather than propertics of just a single complex (such as the inter-cluster
differences). Consequently, when evaluating a complex descending from
a node in the search tree that is not the root, the complex is evaluated in
the context of complexes associated with the path from the root to this
node.

By bounding the star we gain significantly in efficiency, but give up
the assurance that the obtained clustering will be optimal. This is not a
significant loss, however, because the clustering obtained at the end of
each iteration contributes only the seeds to the next iteration, and thus its
optimality is not very important.

2, Generating stars dynamically.

Because it is necessary to evaluate complexes in the context of previously
selected complexes, bounding a star has to be done differently at each
node of the search tree. CLUSTER/2 uses a “lazy” strategy, in which a star
is generated only when it is needed to expand a node on the path being
cxplored,

3. Searching in order of path rank.

As we mentioned above, complexes in a bounded star are arranged in
descending order according to the LEF. In the search tree, the branch to
the best complex is assigned the branch index 0, the branch to the next
best complex is assigned the branch index 1, and so on, up to the index
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m-1. The path index of a path from the root to a leaf is the sum of the
branch indices along the path.

The paths from the root to a leaf represent potential clusterings and
are investigated in the ascending order of their path index. Thus, the
first path investigated is the one with path index 0, that is, the path
containing only the “best” complexes from cach star. The next paths
considered are those with a path index of one. There are k such paths,

As paths of increasing path index are generated and evaluated, a
search termination criterion is applied. This criterion consists of two
paramcters, search-base and search-probe. A search-base number of
paths is always expanded and evaluated. Then, a search-probe number
of additional paths is considered. Each path is processed by NID, and if
some complexes are transformed to make them disjoint, the clustering-
quality criterion is evaluated again. Whenever a new clustering is better
than any previous clustering, it is saved and another search-probe num-
ber of additional paths is explored. If the above probing fails to find a
better clustering, the search terminates.

4, Tapering the search tree.

The bound of the stars, m, is decreased with the increase of the path
index. The search tree is, therefore, more fully developed on the side
containing the “higher quality” complexes.

Figure 11-7 shows an example of a search tree generated by CLUSTER/L.
The tree is a modification of the tree in Figure 11-6, resulting from the applica-
tion of the above efficiency-increasing techniques. In Figure 11-6, the max-
imum value of bound m is set to 3. The root is expanded by constructing the
star G(seed, Jother seeds.3), whose complexes are a;, a,,. and a;; (listed in
decreasing order of their “quality”, as determined by the EF). 'ﬂ!m branches
representing these complexes are assigned branch indices 0, 1, and 2, respec-
" tively. The node attached to branch 0 is expanded next The star
G(seed,jother seeds.d) is generated, creating complexes a,,, @y, and a,,.
Branches corresponding to these complexes are assigned branch indices U,ZL
and 2, respectively. The path 0-0 (having the lowest path index of 0, denoted
by heavy lines in Figure 11-7) is considered first. The associated clustering
{a,,. @y} is processed by NID, and the result is saved as the best clustering so
far. Next, path 0-1 is considered. The associated clustering {a), ay,lis
processed by NID and evaluated. Ifit is better than the previous clustering, it
is saved. In order to explore the path 1-0 (the second path with path index 1},
the star G(sced, jother seeds.2) is generated. The star contains complexes a’,
and a’,,. The %Iuste:ing {ay, m:'2 } associated with the currently invcsﬂg,au:&
path is cvaluated. Assuming that the termination criterion has the parameters
scarch-base=2 and scarch-probe=2, and that the evaluation scores are as
shown in Figure 11-7, the wree search terminates after investigating the fourth
path 0-2 (since this path exhausts the probing without finding a better
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clustering). Path 0-1, with the evaluation score of 22, is the best clustering
found.

11.5.1.3 Dynamic Modification of Classifications

‘I'he obtained clustering partitions all the observed events into disjoint classes.
'The set-theoretic union of complexes in the clustering does not, however,
necessarily cover the whole event space. Conscquently, when a given clas-
sification is applied to a new event that is “putside™ this union, it is not pos-
sible to assign this event to any class. In such a case, the classification
(clustering) is automatically adjusted to accommodate the new event. This is
done by applying the NID procedure (Section 11.3.12), medified as follows.
The complexes of the current clustering play the role of “core” complexes, and
the new event is treated as an element of the m-list. The event is incorporated
into the complex that is the best “host™ for it, as determined by NID, As a
result, the original complex becomes the Refunion of itself and the event. This
way, the initial classification is modified to incorporate the new, unforeseen
event. Such a process has a psychological justification, as it is common for
people to modify their classifications when some object fails to fit them, by
appropriately perturbing the boundaries of the classes.

11.5.1.4 An Example Illustrating the Clustering Module
The following simple example illustrates some further details of the clustering
module algorithm. There are ten objects, each described by four variables: x,,
Xy, Xq and X, with three-valued domains, DOM(x) = 10,1,2}, i=12,34.
\};riaia‘ies x, and x, are linear, variable x, is structured, and variable x, is
niominal. T}'ic generalization hierarchy of tﬁe domain of x, is shown in Figure
11-8. Object descriptions (events in the population E) are presented in Figure
11-9, For simplicity, let us assume that the goal is to partition objects into only
two classes (k=2) using a LEF in which the primary criterion (with tolerance
of 0%) is to minimize the total sparseness, and the secondary criterion is to
maximize the simplicity of the clustering, (that is, the negative of the number
of selectors). Figure 11-10 shows a geometrical representation of the events
using a generalized logic diagram [Michalski, 1978]. Each cell in the diagram is
labeled by the event it represents. Empty cells represent unobserved events.
The steps of the algorithm follow the diagram in Figure 11-5,

Iteration 1

Step 1 (Figure 11-5, block 1): A subset of k=2 observed events (seeds) is
selected from the population E = {e }, i=12,...10. The seeds can be
selected randomly, or they can be chosen as events which are most
syntactically distant from each other. In the latter case, as experiments
show, the algorithm will usually converge faster. For selecting such
“outstanding” events, program ESEL [Michalski & Larson, 1978] is
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VAWVAN

Figure 11-8: The generalization hicrarchy of the domain of variable x,.

Event X, X, Xy x,
e, 0 a 0 1
e, 0 b 0 0
e, 0 c 1 2

A 1 a 0 2
eg 1 c 1 1
9 2 a 1 0
8, 2 b 0 1
8y 2 b 1 2
8, 2 c 0 0
e, 2 c 2 2

Variable

Type: L S5 L N

{L: linear;  M: nominal; §: structured]

Figure 11-9: A data set describing ten objects, using four variables.
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o o|® | | |

Figure 11-10: A geometrical representation of events ¢, 0 €, En-
circled events are initial seeds. :

used. For the sample problem, let us make a “bad” choice and select
two events close to each other, such as e, and

Step2 (Figure 11-5, block 2): Bounded reduced stars RGl(e,le,,m) and
RGile 1-:},m]. with m=35, are generated by procedure Boundstar
(described in Section 11.5.1.2):

RGe,Je,m) = {Ix, = alixy = 0V 1), [x, =1V 25}
RG(e,le,.m) = {lx, = hVJn], x,=0V2}

These stars contain all possible complexes, because m>2. After
applying the closing the inierval and climbing 1he hierarchy
generalization rules, the stars become:
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RGfe,Je,m) = {Ix, = alix; = <1).lx, =1V 2}
RGle,le,m) = {[x, = fl.[x, = 0V 21}
The reference “b V ¢ in the sclector for the structured variable
X, has been replaced by a more general value, f (Figure 11-8).

Step 3 (Figure 11-5. block 3): From each star a complex is sclected and
appropriately modified. such that the resulting set of k=2 complexes
is a disjoint cover of E, and is an optimal or suboptimal cover among
all possible such covers. according to the clustering quality criterion.
There are four combinations of complexes to consider:

) Sparseness Complexi

{a} complex L xy = n;.Iij <1] £ 15 om% "

complex 2: k3 = 46% i
lex 1 =1V2 These to ot disjoi
Lo o _ H; o Rl P b
11.3.12) is applied to each cover,
(c) complex 1 [:, . a]%a <1] but the sparseness of resuftin
complex 2: =0V clusterings in each case is
5 and their complexity is 3.
(d) complex 1: {;4 =1 %] .
complex 2: x, =0 V
Cover () s selected since it has the minimum total sparseness.

Step4 (Figure 11-5, block 4): The termination criterion is tested. In our
example, the parameters of the termination criterion are: base=2 and
probe=2 (Section 11.4). The current iteration is the first of the two
base iterations.

Step 5 (Figure 11-5, block 5): A new set of seeds is determined. These new

seeds are central events, among the observed events covered by (a).

Complex [x, = a]lx, < 1] covers the set {e, e, }. and complex [x, =
1 3 17476 2

f] covers the set {"2"33'35*&7'33"“9'&10} (notice that value f of X,isa

generalization of b and ¢ according to Figure 11-8). The central events

(as determined by syntactic distance) in these sets are e, and e,

respectively, so they become new seeds.

Iteration 2

Step 2: New stars RGile 4'“3'“") and RG(ca[e4.m) are generated:

RG[‘C#IBE,II'I:I = {[31 = ﬂlll <1} [31 < 1113 < 1]1 [I3 = 01}
RG(egle,m) = {Ix, = 2, [xy = fl.[x, = >11}
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Step 3: All combinations of complexes (obtained by sclecting one complex
from each star) are subjected to procedure NID and then evaluated.
The best clustering is:

rSEness Complexi
Spans i

8 }

complex 1: %, S 1xy S 1)
mmglu F4 L% = ZI[ 3

Step 4: This is the last of the base iterations.

Step 5: Complex [x; < 1][x; < 1] covers events {els"z-“s-ewes} and [x;, = bl
cOvers {"a-ﬂﬁ'ea~e?"19}' Since this clustering is an improvement over
the previous one (since it has a lower sparseness), the new seeds
sclected are central events: e, and eg.

Iteration 3

This iteration produces the same clustering as iteration 1.

Step 4: This is the first of the two “probe” iterations.
Step 5: Since the clustering obtained is not better than the previous one, bor-
der events are selected as the new seeds: e, and eg.

Iteration 4

This iteration produces a new clustering:

1} Spnﬁness Cum;ileull!
¢ 4 }

It is the second “probe” iteration. If the obtained clustering was better than
the previous best clustering, another probe=2 iterations would be scheduled.
Since the sparseness of the clustering obtained in this iteration (71) is not an
improvement over the previous best sparseness (53), the termination criterion
is satisfied. The best resulting clustering is the one produced in iteration 2:

e, < Uxy < 1

complex 1: [x
complex 21 [x

[x, =2
Figure 11-11 shows the diagrammatic representation of this solution.
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o= [x,< 1] %< 1)

X %
a &
0o bl|%
c &
a e,
1 b
l::-II 5
— = —
a % ;z-lx,-zl
2 b e, &
cl|l® 80
Er —- —
0o 1 2 o 1 210 1 2 x
1] 1 2 %

Figure 11-11: A diagrammatic representation of the clustering {a, a,}.
11.5.2 The Hierarchy-bullding Module

The hierarchy-building module uses the clustering module to determine a
hierarchy of clusters. [t performs two loops, one iterative and one recursive,
The iterative loop repeats the clustering module for a sequence of values of k
in order to determine the value for which the most desirable clustering is
obtained. Such an approach is computationally acceptable because, in prac-
tical applications, most interesting hierarchics will have a relatively small num-
ber of branches (that is, a small value of k) at each level.

The recursive loop applies the above iterative process at each node of the
hierarchy. In the first step, the process is executed for the root, representing
the initial event set E. Clusters of E and their conjunctive descriptions are
determined. Consecutive steps repeat the same operation for the nodes
representing clusters obtained during the previous step. The hicrarchy con-



MICHALSKI AND STEPP 373

tinues to grow from the top down until the “cantinue-growth™ criterion fails to
be met. This criterion requires that the fit between the clusters and their
descriptions at every level of the hierarchy must be better than at the previous
level.

In order to determine the optimal value of k, we must modify the cluster-
ing quality criterion so that it can be used to compare clusterings with different
numbers of complexes. Such a criterion must reflect the dependency of the fit
between the clustering and data on the value of k. As the number of clusters k
increases. the fit (measured by the negative of sparsencss) will likely increase,
since smaller complexes will have smaller sparseness. On the other hand,
increasing k increases the complexity of the clustering and therefore is un-
desirable. A simple criterion that takes into consideration the above trade-off
is to require the product

Total sparseness X (k + )

to achieve a minimum value, where 8 is an experimentally determined
parameter balancing the relative effect of the sparseness and the number of
clusters k on the solution.

11.6 AN EXAMPLE OF A PRACTICAL PROBLEM: CONSTRUCTING A
CLASSIFICATION HIERARCHY OF SPANISH FOLK SONGS

This example presents an application of the above method to the development
of a classification hicrarchy of 100 Spanish folk songs. The folk songs were
characterized by 22 musicological attributes, listed in Figure 11-12. These
attributes, as well as other relevant data, were provided by musicologist Pablo
Poveda, who studied this problem using traditional methods of numerical
taxonomy [Poveda, 1980} The results obtained by using the traditional
methods were not very satisfying. because the generated clusters lacked
descriptions, and therefore were difficult to interpret.

The top five levels of the conjunctive hierarchy produced by CLUSTER/2
are presented in Figure 11-13. The criterion of clustering quality was to
“minimize the total sparseness”. The number of clusters (k) at each level was
2. to meet the requirement of the musicologist.

The top node of the hierarchy corresponds to the whole collection of
songs. All the other nodes represcnt various classes (categories) of songs. The
description of each class is a conjunctive statement involving selected folk song
attributes. In Figure 11-13, instead of providing the whole cluster description
associated with each branch, we show, for simplicity, only the discriminant
variables occurring in the given cluster. As it wrned out. all nodes in the
hierarchy have only one discriminant variable. For example, at the first level,
the discriminant variable is the harmonic structure, which takes the value
“monophonic” in one cluster and “polyphonic” in the other cluster.
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Wariable Domain

5y ‘Tonal Range L
1:2: Mumber of Toes {110}
:3: Dicgree of Robal {05}
e Degree of Embellishment {05}
1 Deegree ol Melizma {05}
3 Tummber of Musicl Phrases {055

: Dwgres of Musicsl Tension {05}
xs: Degree of Mclodic Line Bleading. {05}
Ty Harmonic Stnscture {Morophanic, Polyphanic)
o Religious Senlng {Religicus, Secular)
uy Sex of Singers {Same Sex, Mized Seves}
ny Rhyttm {Weak. Strang. Trigle-beat}
113: Harmoay {Nooe, Noa-Phrygian, Phrygian}
']4-: Heenophanic {Ye= bfcr}
] Insrumenial AccEnpaniment {Yes, Ma}
0g Female singer {Yes, Mo}
;": Accompanied by Dancing Ve Mo}
ny A Serenade {Yes, Nol
g A Love wag {Yes. Mo}
T A Soko {Yes, Mo}
:11: Uises Phrygian Scale {Yes, Na}
19y Pascgyric {¥rs, No}

Figure 11-12: Variables used to describe 100 Spanish folk songs.

One interesting aspect of the generated hierarchy is that the value sets of
some variables have been split into ranges, These ranges can be considered as
new (generalized) values of variables. For example, while producing the
sccond level clustering of the monophonic folk songs (the left branch), the
range of the degree of “rubato” was split into Iwo ranges 0..3 and 4..5, which
can be characterized as “low” and “high", respectively. Similar partitioning of
value sets was performed on the degree of embellishment, the degree -of
melisma, the tonal range, and the number of tones in a song.

The leaf nodes in the hierarchy shown in Figure 11-13, marked by
a,@,....a)) fepresent groups of songs, whose complete description consists of
discriminant variables indicated along the path from the root to the leaf and
some additional properties generated by CLUSTER/2, but not shown in Figure
11-13. For example, the group of songs represented by a (8 songs) has the
following complete description:

a; = armonic m:mre:mmuﬁsmd {discriminant variables
rubato = low][tonal ange= along the path from
qpczicculaf [instruments =no] the root 1o leaf a )

no. of distintl :nnes-~|_ 5;.'h.3]{dance1= Isio] (aﬁdiiinﬂlhpr&pcrﬁm
ancgyric =nojjno. of phrases=1.. enerated by the program
rnetlsn::;a =0..2}[tension=1..3] -t the leal node)

The hierarchy in Figure 11-13 is a simple and meaningful classification
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Monophonic | Polyphonic

Low | High Low | High
Rubato | Rubato Embelishment | Embelishment
0=3 | 4-5 01 2—4
Low High Low No. | High No.
Tonal | Tonal of Tones | of Tones
Range | Range -7 | 8=10
4-7 | 8-11
Low | High
Melisma | Melisma
Secular | Religious 0-1] 2-3
] Low | High
Same | Mixed Tonal | Tonal
Instrumeants? Sex | Sexes Range | Range
Mo | Yes (Singers] 56 | 7-11

al o2 o3 od ob o af o ol el0 a1l

No. of 7 6 5 15
e v 8 5 12 17 0w 10 "

Figure 11-13; A classification hierarchy of Spanish folk songs produced
by CLUSTER/L.

of the folk songs. The classes are easy to interpret due to the provided descrip-
tions. If the clustering quality criterion LEF is changed (by selecting different
elementary criteria, a different order of the criteria, and/or different tolerances
for them) the gencrated hierarchy may be different. This way the algorithm
can generate several alternative hierarchies. The ultimate judgment of which
one is the most appropriate for the given application is made by the data
analyst.

CLUSTER/2 has also been applied to problems in other domains. One
experiment, in the ficld of agriculture, was to structure a collection of 47 cases
of soybean diseases. Each case was described by a vector of 35 components,
representing  symptoms and characterizations of the discased plants.
CLUSTER/? “re-discovered™ disease classes known to plant pathologists, and
provided a description of cach class which closely matched the known
symptoms of the corresponding diseascs [Michalski & Stepp, 1981}
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11.7 SUMMARY AND SOME SUGGESTED EXTENSIONS OF THE METHOD

The described methad for conjunctive conceptual clustering determines a
hierarchy of classes characterizing a collection of objects.  Each class has a
description in the form of a single conjunctive statement, logically disjoint
from descriptions of other classes with the same parent node in the hierarchy,
and optimized according to a certain clustering quality criterion. The major
difference between this method and methods of numerical taxonomy lies in its
extension of the concept of the measure of similarity into a more general
notion of “conceptual cohesiveness”. Such a measure takes into consideration
not only the properties of individual objects, but also their relationship to
other objects and, most importantly, their relationship to some predetermined
concepts characterizing object collections.

This work represents our early resulis on the subject of conceptual
clustering, and, naturally, many problems remain to be solved. Here are some
interesting topics for further research:

e In this method, the variables for describing objects are assumed to be
determined a priori, and may not be the most appropriate ones for
clustering the given objects. A desirable extension of the method would
be to implement constructive induction mechanisms able to determine
new, more relevant variables during clustering. The use of such variables
could lead to simpler and/or more interesting clusterings. A closely
related problem of deriving new variables for learning generalized
descriptions of concepts from their examples is discussed in Chapter 4.

e The presented method describes object classes solely by conjunctive
statements. Although a conjunctive statement is one of the most com-
mon descriptive forms used by humans, it is nevertheless a quite limited
form. An interesting extension of the work would be to use descriptions
which involve additional operators, such as logical implication or equiv-
alence.

¢ The purpose of building classifications is often to simplify decision
making by collecting into one class those situations, observations, or ob-
jects that require a similar decision or action. To do this well, the
criterion of clustering quality should include knowledge of the goals,
purposes, and intentions associated with the problem under investiga-
tion.

o In the method deseribed, the classes arc organized into a hierarchy. The
links of the hierarchy represent just the generalization (sct inclusion)
relationship between the parent and child nodes. The method could be
extended to generate a graph structure (a “classification network™) in
which links might also represent other relationships between classes. For
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example, within such a graph, some links might denote properties that
are inherited from parent nodes, and other links might denote properties
that differentiate between sibling classes.

s For applications involving clustering visual information, an interesting
extension would be to use as conceptual building blocks various standard
geometrical shapes, such as circles, ellipses, triangles, rectangles, and so
on, and to allow nondisjoint clusterings.

e The problems which are suitable to the CLUSTER/2 algorithm involve
objeets which can be sufficiently described by variable-value pairs, which
are those objects whose internal structure s irrelevant to the problem at
hand. When the internal structure of objects is to be considered {when
relevant variables include relatdonships between features of object
subparts), the techniques presented here are not adequate (although still
applicable, by transforming the structural praperties into propositional
attributes). An adequate method for clustering such objects requires a
richer descriptive language, such as first-order predicate logic or its ex-
tension — for example, the annotated predicate calculus described in
Chapter 4 of this book.
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