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Abstract

NONPARAMETRIC BAYESIAN MODELS FOR UNSUPERVISED LEARNING

Pu Wang, PhD

George Mason University, 2011

Dissertation Director: Carlotta Domeniconi

Unsupervised learning is an important topic in machine learning. In particular, clustering

is an unsupervised learning problem that arises in a variety of applications for data analysis

and mining. Unfortunately, clustering is an ill-posed problem and, as such, a challenging

one: no ground-truth that can be used to validate clustering results is available. Two issues

arise as a consequence. Various clustering algorithms embed their own bias resulting from

different optimization criteria. As a result, each algorithm may discover different patterns

in a given dataset. The second issue concerns the setting of parameters. In clustering,

parameter setting controls the characterization of individual clusters, and the total number

of clusters in the data.

Clustering ensembles have been proposed to address the issue of different biases induced

by various algorithms. Clustering ensembles combine different clustering results, and can

provide solutions that are robust against spurious elements in the data. Although clustering

ensembles provide a significant advance, they do not address satisfactorily the model selection

and the parameter tuning problem.



Bayesian approaches have been applied to clustering to address the parameter tuning

and model selection issues. Bayesian methods provide a principled way to address these

problems by assuming prior distributions on model parameters. Prior distributions assign

low probabilities to parameter values which are unlikely. Therefore they serve as regularizers

for modeling parameters, and can help avoid over-fitting. In addition, the marginal likelihood

is used by Bayesian approaches as the criterion for model selection. Although Bayesian

methods provide a principled way to perform parameter tuning and model selection, the

key question “How many clusters?” is still open. This is a fundamental question for model

selection. A special kind of Bayesian methods, nonparametric Bayesian approaches, have

been proposed to address this important model selection issue. Unlike parametric Bayesian

models, for which the number of parameters is finite and fixed, nonparametric Bayesian

models allow the number of parameters to grow with the number of observations. After

observing the data, nonparametric Bayesian models fit the data with finite dimensional

parameters.

An additional issue with clustering is high dimensionality. High-dimensional data pose

a difficult challenge to the clustering process. A common scenario with high-dimensional

data is that clusters may exist in different subspaces comprised of different combinations of

features (dimensions). In other words, data points in a cluster may be similar to each other

along a subset of dimensions, but not in all dimensions. People have proposed subspace

clustering techniques, a.k.a. co-clustering or bi-clustering, to address the dimensionality

issue (here, I use the term co-clustering). Like clustering, also co-clustering suffers from the

ill-posed nature and the lack of ground-truth to validate the results.



Although attempts have been made in the literature to address individually the major

issues related to clustering, no previous work has addressed them jointly. In my dissertation

I propose a unified framework that addresses all three issues at the same time. I designed a

nonparametric Bayesian clustering ensemble (NBCE) approach, which assumes that multiple

observed clustering results are generated from an unknown consensus clustering. The under-

lying distribution is assumed to be a mixture distribution with a nonparametric Bayesian

prior, i.e., a Dirichlet Process. The number of mixture components, a.k.a. the number

of consensus clusters, is learned automatically. By combining the ensemble methodology

and nonparametric Bayesian modeling, NBCE addresses both the ill-posed nature and the

parameter setting/model selection issues of clustering. Furthermore, NBCE outperforms

individual clustering methods, since it can escape local optima by combining multiple

clustering results.

I also designed a nonparametric Bayesian co-clustering ensemble (NBCCE) technique.

NBCCE inherits the advantages of NBCE, and in addition it is effective with high dimensional

data. As such, NBCCE provides a unified framework to address all the three aforementioned

issues. NBCCE assumes that multiple observed co-clustering results are generated from an

unknown consensus co-clustering. The underlying distribution is assumed to be a mixture

with a nonparametric Bayesian prior. I developed two models to generate co-clusters in

terms of row- and column- clusters. In one case row- and column-clusters are assumed to be

independent, and NBCCE assumes two independent Dirichlet Process priors on the hidden

consensus co-clustering, one for rows and one for columns. The second model captures the

dependence between row- and column-clusters by assuming a Mondrian Process prior on the

hidden consensus co-clustering. Combined with Mondrian priors, NBCCE provides more

flexibility to fit the data.

I have performed extensive evaluation on relational data and protein-molecule interaction

data. The empirical evaluation demonstrates the effectiveness of NBCE and NBCCE and

their advantages over traditional clustering and co-clustering methods.



Chapter 1: Introduction

1.1 Motivation

Unsupervised learning is an important topic in machine learning. In particular, clustering is

an unsupervised learning problem that arises in a variety of applications for data analysis

and mining. The aim of clustering is to organize data into groups so that points similar

to each other are placed in the same cluster and points different from one another are

placed in different clusters. For example, one can cluster documents according to content.

Documents with similar content will have high similarity, and they are more likely to be

clustered together.

Unfortunately, clustering is an ill-posed problem and, as such, a challenging one: no

ground-truth that can be used to validate clustering results is available. Two issues arise as

a consequence. Various clustering algorithms embed their own bias resulting from different

optimization criteria. As a result, each algorithm may discover different patterns in a given

dataset. The second issue concerns the setting of parameters and model selection. Model

selection is to select a model from a set of candidate models. Each candidate model is

characterized by some parameters. In clustering, parameter setting and model selection

involves at least two aspects, namely the characterization of individual clusters, and the

total number of clusters in the data. Due to the absence of ground-truth, cross-validation

techniques cannot be used to tune the involved input parameters. As a consequence, model

selection becomes challenging for clustering: users have no guidelines for choosing the proper

clustering model for a given dataset. Here I refer to the two issues as different bias, and

model selection and parameter setting.

Clustering ensembles have been proposed to address the issue of different biases induced

by various algorithms. Clustering ensembles combine different clustering results. Different

1



clusterings can be obtained from clustering the same dataset w.r.t. different criteria, or from

different local optima of the same clustering algorithm obtained using different parameter

values on the same dataset. Clustering ensembles can provide solutions that are robust against

spurious elements in the data. By combining multiple clustering results, the combination

process allows to cancel out emergent spurious structures that arise due to the various biases

to which each individual clustering is tuned, or to the variance induced by different local

optima. The clustering result of a clustering ensemble is called consensus clustering.

Although clustering ensembles provide a significant advance, they do not address satis-

factorily the model selection and the parameter setting problem. For example, although

clustering ensembles can combine clustering results of varying number of clusters, they still

need users to specify the number of consensus clusters. Therefore it’s still challenging for

clustering ensembles to perform model selection and parameter tuning, due to the absence

of ground-truth.

Bayesian approaches have been applied to clustering to address the parameter tuning and

model selection issues. Bayesian methods provide a principled way to address these problems

by assuming prior distributions on model parameters. For example, when using mixture

models for clustering, each mixture component is considered as a cluster, and Bayesian

mixture models assume prior distributions to the parameters of each mixture component

and to the weights of mixture components. Prior distributions assign low probabilities

to parameter values which are unlikely. Therefore they serve as regularizers for modeling

parameters, and can help avoid over-fitting. In addition, the marginal likelihood is used by

Bayesian approaches as the criterion for model selection. The marginal likelihood is defined

as p(D|m) =
∫
p(D|θ,m)p(θ|m)dθ, where D denotes the observed data, m is a specific

model, and θ represents the model parameters. The marginal likelihood can be interpreted

as the probability of the data under the model, averaging over all possible parameter values.

In general, we want to avoid using too simple or too complex models, since both too simple

and too complex models do not generalize well on unseen data. If the model is too simple, it

is unlikely to generate the observed data D; on the other hand, if the model is too complex,
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it can generate many possible data, therefore it is unlikely to generate that particular

data D at random. This is the built-in property of Bayesian methods when performing

model selection, called Occam’s Razor [46]. When predicting using Bayesian methods,

the predictive distribution is p(~x|D,m) =
∫
p(~x|θ,D,m)p(θ|D,m)dθ, where ~x is an unseen

datum. The predictive distribution demonstrates the key ingredient of Bayesian methods,

the averaging over uncertain variables and parameters. This means that Bayesian methods

do not perform a point estimation θ̂ of the model parameter θ to predict unseen data, but

learn a posterior distribution of the model parameter, p(θ|D,m), and then predict unseen

data using the expectation of unseen data w.r.t. the posterior of the model parameter.

Although Bayesian methods provide a principled way to perform parameter tuning and

model selection, the key question “How many clusters?” is still open. This is a fundamental

question for model selection. Specifically it relates to how many parameters should be

used in clustering models. For example, if we use a Bayesian mixture model for clustering,

we can assume there are K mixture components, and therefore we need K parameters to

represent the K components (or clusters). A special kind of Bayesian methods, nonparametric

Bayesian approaches, have been proposed to address this important model selection issue.

Unlike parametric Bayesian models, for which the number of parameters is finite and fixed,

nonparametric Bayesian models allow the number of parameters to grow with the number

of observations. To accommodate asymptotically unbounded numbers of parameters within

a single parameter space, the dimension of the space has to be infinite. A nonparametric

Bayesian model places a prior distribution over the infinite-dimensional parameter space.

This allows the dimensionality of the model parameters to adapt to the complexity of the

data set, thus protecting against over-fitting while allowing enough parameters to prevent

under-fitting. After observing the data, since the data are always finite, nonparametric

Bayesian models fit the data with finite dimensional parameters.

Although Bayesian approaches, especially nonparametric Bayesian approaches, provide a

principled way of parameter tuning and model selection, they do not address the bias issue

of clustering. Bayesian approaches have a built-in model selection criterion, the marginal
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likelihood. However, there’s no ground-truth to validate this criterion.

An additional issue with clustering is high dimensionality. High-dimensional data, e.g.,

text data, pose a difficult challenge to the clustering process. Usually clustering algorithms

can handle data with low dimensionality, but as the dimensionality of the data increases,

most algorithms do not scale well. The higher dimensionality, the sparser the data.

A common scenario with high-dimensional data is that clusters may exist in different

subspaces comprised of different combinations of features (dimensions). In other words,

data points in a cluster may be similar to each other along a subset of dimensions, but not

in all dimensions. At the same time, data points located in another cluster may form a

tight group with respect to different subset of dimensions. Therefore, such clusters are not

defined in terms of all dimensions, but subsets of dimensions. The resulting clusters are

called subspace clusters. Common global dimensionality reduction techniques are unable to

capture such local structure of the data. Thus, a proper feature selection procedure should

operate locally in the high-dimensional feature space.

People have proposed subspace clustering techniques, a.k.a. co-clustering or bi-clustering,

to address the dimensionality issue (here, I use the term co-clustering). Often data can be

organized in a matrix, such data are called dyadic data, where rows and columns represent

objects and features, or different objects, respectively. The entries in the matrix represent

the binary relation between the corresponding rows and columns, i.e., values for features

given each object, or strength of relations between each pair of objects. In dyadic data, each

row is usually represented in terms of all columns, and vice versa. If the number of rows and

columns is large, this representation is of high dimensionality. Co-clustering is to cluster

rows and columns into row- and column-clusters, given dyadic data organized in a matrix.

The resulting co-clusters, defined in terms of row- and column-clusters, group similar entries

together, while entries in different co-clusters are dissimilar. The co-clustering result can

be viewed as a partition over the dyadic data matrix. One can then represent each row in

terms of column-clusters, and each column in terms of row-clusters. Since the number of

row- and column-clusters is much less than the number of rows and columns, co-clustering

4



reduces the dimensionality of original matrix.

Like clustering, also co-clustering suffers from the ill-posed nature and the lack of ground-

truth to validate the results. In fact, different co-clustering algorithms might use different

similarity criteria, and therefore lead to various co-clustering results with different biases.

Similarly, model selection and parameter tuning is still an issue for co-clustering.

In summary, the aforementioned three issues make clustering a challenging problem.

Work has been done to address each issue individually. Cluster ensembles have been proposed

to address the different bias problem. But clustering ensembles still suffer from the model

selection and parameter tuning issue. Nonparametric Bayesian approaches have been applied

to clustering to perform model selection and parameter tuning, but they do not address

the bias issue. Further, subspace clustering, or co-clustering, has been proposed to address

the dimensionality problem. But co-clustering still suffers from the ill-posed nature. Thus,

although attempts have been made in the literature to address individually the major issues

related to clustering, no previous work has addressed them jointly.

1.2 Problem Statement

The work conducted in this dissertation narrows the research gap outlined in the previous

section. Specifically, I tackled the problem represented by the three long-standing issues of

clustering, namely the different bias, the model selection and parameter tuning, and the

high dimensionality.

To this end, I introduced a new unified framework that addresses all three issues discussed

above at the same time. This is a non-trivial task as it involves solving a new problem

altogether: the co-clustering ensemble problem. The proposed framework combines and

leverages the ensemble methodology, co-clustering and nonparametric Bayesian learning

techniques.
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1.3 Contributions

I designed a nonparametric Bayesian clustering ensemble (NBCE) approach, which assumes

that multiple observed clustering results are generated from an unknown consensus clustering.

The underlying distribution is assumed to be a mixture distribution with a nonparamet-

ric Bayesian prior, i.e., a Dirichlet Process. The number of mixture components, a.k.a.

the number of consensus clusters, is learned automatically. By combining the ensemble

methodology and nonparametric Bayesian modeling, NBCE addresses both the ill-posed

nature and the parameter setting/model selection issues of clustering. Furthermore, NBCE

outperforms individual clustering methods, since it can escape local optima by combining

multiple clustering results.

I also designed a nonparametric Bayesian co-clustering ensemble (NBCCE) technique.

NBCCE inherits the advantages of NBCE, and in addition it is effective with high dimensional

data. As such, NBCCE provides a unified framework to address all the three aforementioned

issues. NBCCE assumes that multiple observed co-clustering results are generated from an

unknown consensus co-clustering. The underlying distribution is assumed to be a mixture

with a nonparametric Bayesian prior. I developed two models to generate co-clusters in

terms of row- and column- clusters. In one case row- and column-clusters are assumed to be

independent, and NBCCE assumes two independent Dirichlet Process priors on the hidden

consensus co-clustering, one for rows and one for columns. The second model captures the

dependence between row- and column-clusters by assuming a Mondrian Process prior on the

hidden consensus co-clustering. Combined with Mondrian priors, NBCCE provides more

flexibility to fit the data.

In addition, existing co-clustering techniques, including NBCCE, typically only leverage

the entries of the given contingency matrix to perform the two-way clustering. As a

consequence, they cannot predict the interaction values for new objects. Predictions can only

be made for objects already observed. In many applications, additional features associated to

the objects of interest are available, e.g., sequence information for proteins. Such features can

be leveraged to perform predictions on new data. Infinite Hidden Relational Model (IHRM)
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[86] has been proposed to make use of features associated to the rows and columns of the

contingency matrix. IHRM has the fundamental capability of forecasting relationships among

previously unseen data. However, the original work of IHRM [86] didn’t demonstrate how

effective object features are in predicting relationships of unseen data. Here, I re-interpret

IHRM from a co-clustering point of view, and demonstrate the ability of features to predict

relationships of unseen objects on protein-molecule interaction data.

The contribution of my dissertation can be briefly summarized as follows:

• Nonparametric Bayesian Clustering Ensembles: I propose a nonparametric clustering

ensemble approach based on a Dirichlet Processes Mixture model;

• Nonparametric Bayesian Co-clustering Ensembles: I propose two nonparametric

Bayesian co-clustering ensemble approaches, one based on two independent Dirichlet

Processes, the other based on Mondrian Processes;

• Feature Enriched Dirichlet Process Co-clustering : I evaluate the performance of

Dirichlet Process Co-clustering when enriched with object features to measure the

improvement achieved in predicting relationships between unseen objects.

The remaining chapters of this dissertation are organized as follows: Chapter 2 introduces

the background and Chapter 3 discusses the related work. Chapter 4 and 5 introduce my

work on nonparametric Bayesian clustering ensembles and co-clustering ensembles. Chapter 6

introduces the feature enriched Dirichlet Process co-clustering model. Chapter 7 summarizes

the dissertation and discusses some future work.
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Chapter 2: Background

In this chapter, I briefly introduce the background of my dissertation. First I’ll introduce the

problems I’ll focus on, clustering, clustering ensemble and co-clustering. Then I’ll introduce

the methods I’m using, nonparametric Bayesian approaches, to solve those problems.

2.1 Clustering, Clustering Ensembles and Co-clustering

Clustering is to find a cluster structure for unlabeled data. A cluster is usually a collection

of “similar” data while data belonging to different clusters are considered “dissimilar”. So

clustering tries to group similar data together, and dissimilar data into different clusters.

Here, a natural question arises: what’s a good clustering? Unfortunately, there is no absolute

“best” criterion. As for text clustering, one could cluster documents by content, or by style.

When the clustering criterion differs, similarity might differ, further clustering result will be

different.

Clustering algorithms fall into three distinct types [27]: combinatorial algorithms, mode

seeking, and mixture modeling. Combinatorial algorithms find (local) optimal clusterings by

solving combinatorial optimization problems, without probabilistic modeling. Mode seeking

attempts to find distinct modes of the probability density function from which observations

are assumed to generate, then observations near to each mode comprise each cluster. Mixture

modeling supposes that data are i.i.d. samples drawn from some mixture of components.

Each component is defined by a parameterized probability density function; observations

generated from the same density are considered within the same cluster. Therefore, mixture

modeling converts clustering problems into density estimation problems. In this dissertation,

I focus on mixture modeling for clustering via nonparametric Bayesian approaches.

Clustering ensembles [71] is proposed to address the different bias issue of clustering.
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Clustering ensembles combine multiple base clusterings of a set of data into a single consensus

clustering without accessing the features of data. By combining multiple clustering results,

the combination process allows to cancel out emergent spurious structures that arise due to

the various biases to which each individual clustering is tuned, or to the variance induced by

different local optima. Therefore, clustering ensembles can provide solutions that are robust

against spurious elements in the data.

A clustering ensemble technique is characterized by two components: the algorithm

to generate base clusterings, and the machinery to combine the input clusterings into a

consensus clustering. Base clustering results are typically generated by using different

clustering algorithms [1], or by applying a single algorithm with various parameter settings

[18,39,40], possibly in combination with data or feature sampling [16,52,78,79].

There are two ways of modeling clustering ensemble problems. One is formalized as a

combinatorial optimization problem, as in [71]; the other is formalized by mixture modeling,

as in [84]. I focus on mixture modeling for clustering ensembles via nonparametric Bayesian

approaches.

Often, the data themselves can manifest various structures, which may be hard to

capture using a traditional clustering approaches. Consider dyadic data, e.g., documents

and words, which can be represented by a matrix, whose rows correspond to documents

and the columns correspond to words, and an entry is the term frequency of a word that

appears in a document. If one wants to cluster both documents and words, one possible

way may be to cluster the rows and columns independently using traditional clustering

approaches. However, such simple way might fail to discover subtle patterns of the data,

e.g., some sets of words may only appear in certain sets of documents, which means the

data matrix may depict a block structure. In order to deal with such kind of structures,

researchers proposed co-clustering algorithms [10,12, 26, 49, 70, 85], which aim at taking into

account information about columns while clustering rows, and vise versa. Given an m× n

data matrix, co-clustering algorithms find co-clusters, where each co-cluster is a submatrix

that manifest a similar pattern across a subset of rows and columns. Other nomenclature
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for co-clustering include biclustering, bidimensional clustering, and subspace clustering.

Similarly to clustering approaches, co-clustering approaches fall into two distinct types:

combinatorial algorithms [10, 12, 26] and mixture modeling [49, 70, 85]. Again, I focus on

mixture modeling for co-clustering via nonparametric Bayesian approaches.

2.2 Bayesian Mixture Modeling

Mixture models have been extensively applied to clustering and classification. The basic

mixture model for i.i.d. observations ~X = 〈xi|i ∈ {1, · · · , N}〉 have the following probability

density function:

p(xi|K, ~w, ~θ) =
K∑
k=1

wkf(xi|θk) (2.1)

where f(·|θ) is a given parametric family of densities indexed by a scalar or vector parameter

θ, such as the Gaussian, the Gamma, or the Poisson family; K is the unknown number of

components; wk is the component weight. The component weights are non-negative real

numbers, subject to
∑K

k=1wk = 1. Let ~w = 〈w1, · · · , wK〉 and ~θ = 〈θ1, · · · , θK〉.

Mixture models represent a population consisting of subpopulations k = 1, · · · ,K with

sizes proportional to wk. Random sampling from the population amounts to randomly

choosing a subpopulation with probability proportional to its weight, and then drawing an

observations from the subpopulation density. However, the identity of the subpopulation

from which each observation is drawn is unknown. Therefore, it is natural to consider the

group indicator zi for the i-th observation as a latent variable. For ~Z = 〈z1, · · · , zN 〉, the

probability of zi = k is:

p(zi = k) = wk (2.2)

Given the values of the zi, the observations are drawn from their respective individual
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subpopulations:

xi|~Z ∼ f(·|θzi) (2.3)

The formulation given by Equations (2.2) and (2.3) is convenient for calculation and

interpretation. Integrating z out from Equations (2.2) and (2.3) brings back to Equation

(2.1).

This representation in terms of latent indicators is called completing the sample. Following

the EM terminology, ~Z and ~X are referred as the complete data. A natural model for

clustering is to assume data are generated from such a mixture model. Here data generated

from the same component are considered as a cluster; then ~Z becomes the vector of cluster

assignments for the observed data.

In a Bayesian framework, the unknownK, ~w and ~θ are regarded as drawn from appropriate

prior distributions, denoted by p(K, ~w, ~θ). The prior is assumed to be exchangeable for each

component k, that is, invariant under permutations of the pairs (wk, θk).

The likelihood function for the mixture model, denoted as L(~w, ~θ), is:

L(K, ~w, ~θ) =

N∏
i

p(xi|K, ~w, ~θ) (2.4)

The posterior density, which is our starting point for inference, is thus proportional to

L(K, ~w, ~θ)p(K, ~w, ~θ). Realistic models typically also involve hyperparameters. If I put

distributions on hyperparameters, it does complicate inference.

In a Bayesian framework, mixture model inference, in essence, is mixture density estima-

tion, where one needs to inference the number of components K, the component weights ~w

and the density of each component f(·|θk) (namely the parameter θ of each component).
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2.3 Nonparametric Bayesian Models

2.3.1 Dirichlet Processes

The Dirichlet process (DP) [14] is an infinite-dimensional generalization of the Dirichlet

distribution. Formally, let S be a set, G0 a measure on S, and α0 a positive real number.

The random probability distribution G on S is distributed as a DP with concentration

parameter α0 (also called the pseudo-count) and base measure G0 if, for any finite partition

{Bk}1≤k≤K of S:

(G(B1), G(B2), · · · , G(BK)) ∼

Dir(α0G0(B1), α0G0(B2), · · · , α0G0(BK))

Let G be a sample drawn from a DP. Then with probability 1, G is a discrete distribution

[14]. Further, if the first N − 1 draws from G yield K distinct values θ∗1:K with multiplicities

n1:K , then the probability of the N th draw conditioned on the previous N − 1 draws is given

by the Pólya urn scheme [5]:

θN =

θ∗k, with prob nk
N−1+α0

, k ∈ {1, · · · ,K}

θ∗K+1 ∼ G0, with prob α0
N−1+α0

The DP is often used as a nonparametric prior in Bayesian mixture models [2]. Assume

the data are generated from the following generative process:

G ∼ Dir(α0, G0)

θ1:N ∼ G

x1:N ∼
N∏
n=1

F (·|θn),
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where the F (·|θn) are probability distributions known as mixture components. Typically,

there are duplicates among the θ1:N ; thus, multiple data points are generated from the same

mixture component. It is natural to define a cluster as those observations generated from

a given mixture component. This model is known as the Dirichlet process mixture (DPM)

model. Although any finite sample contains only finitely many clusters, there is no bound

on the number of clusters and any new data point has non-zero probability of being drawn

from a new cluster [54]. Therefore, DPM is known as an “infinite” mixture model.

The DP can be generated via the stick-breaking construction [68]. Stick-breaking draws

two infinite sequences of independent random variables, vk ∼ Beta(1, α0) and θ∗k ∼ G0 for

k = {1, 2, · · · }. Let G be defined as:

πk = vk

k−1∏
j=1

(1− vj) (2.5)

G =
∞∑
k=1

πkδ(θ
∗
k) (2.6)

where ~π = 〈πk|k = 1, 2, · · · 〉 are mixing proportions and δ(θ) is the distribution that samples

the value θ with probability 1. Then G ∼ Dir(α0, G0). It is helpful to use an indicator

variable zn to denote which mixture component is associated with xn. The generative process

for the DPM model using the stick-breaking construction is:

1. Draw vk ∼ Beta(1, α0), k = {1, 2, · · · } and calculate ~π as in Eq (2.5).

2. Draw θ∗k ∼ G0, k = {1, 2, · · · }

3. For each data point n = {1, 2, · · · , N}:

• Draw zn ∼ Discrete(~π)

• Draw xn ∼ F (·|θ∗zn)

The most popular inference method for DPM is MCMC [54]. Here we briefly introduce
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Gibbs sampling for DPM when F (·|θ∗zn) and G0 are conjugate. Conditioned on observations

{xn}n∈{1,··· ,N} sampled from G and values {zn}n∈{1,··· ,N} for the indicator variables, the

posterior density function for the parameter θ∗k for the kth cluster is also a member of the

conjugate family:

p(θ∗k|{xn, zn}n∈{1,··· ,N}) = g(θ∗k|ζ∗k) = (2.7)

∏N
n=1 f(xn|θ∗k)1[zn=k]g(θ∗k|ζ0)∫ ∏N
n=1 f(xn|θ∗k)1[zn=k]g(θ∗k|ζ0)dθ∗k

where 1[·] is the indicator function, f(x|θ) is the density (or mass) function for F (·|θ),

g(θ|ζ0) is the density function for G0, and g(θ∗k|ζ∗k) is the posterior density function, with

hyperparameter ζ∗k obtained using the conjugate updating rule. Conditioned on the next

indicator variable zN+1, the predictive distribution for the next data point is given by:

p(xN+1|{xn, zn}n∈{1,··· ,N}, zN+1 = k) (2.8)∫
f(xN+1|θ∗k)g(θ∗k|ζ∗k)dθ∗k,

can also be obtained in closed form. Having integrated out the parameters, it is necessary

to Gibbs sample only the indicator variables. The conditional probability for sampling

the indicator variable for the ith data point is given as follows. For populated clusters

k ∈ {zn}n∈{1,··· ,i−1,i+1,··· ,N},

p(zi = k|xi, {xn, zn}n∈{1,··· ,i−1,i+1,··· ,N}) (2.9)

∝ n¬ik
N − 1 + α0

∫
f(xi|θ∗k)g(θ∗k|ζ∗¬ik )dθ∗k.

Here, n¬ik is the number of data points other than xi assigned to the kth cluster, and g(θ∗k|ζ∗¬ik )
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is the posterior density for the kth cluster parameter given all observations except xi. For

unpopulated clusters k /∈ {zn}n∈{1,··· ,i−1,i+1,··· ,N}, the predictive probability is:

p(zi = k|xi, {xn, zn}n∈{1,··· ,i−1,i+1,··· ,N}) (2.10)

∝ α0

N − 1 + α0

∫
f(xi|θ∗k)g(θ∗k|ζ0)dθ∗k.

Eq (2.9) is the probability of assigning xi to the kth existing cluster, while Eq (2.10)

is the probability of assigning xi to its own singleton cluster. Additional details on DPM

inference can be found in [54,59].

2.3.2 Mondrian Processes

A Mondrian process M∼MP (λ, (a,A), (b, B)) on a 2-dimensional rectangle (a,A)× (b, B)

generates random partitions of a rectangle as follows [65]. The parameter λ, called the

budget, controls the overall number of cuts in the partition. At each stage, a random cost E

is drawn and compared to the budget. If E exceeds the budget, the process halts with no

cuts; otherwise, a cut is made at random, the cost is subtracted from the budget, and the

process recurses on the two sub-rectangles, each being drawn independently from its own

MP distribution.

The cost E of cutting the rectangle (a,A)× (b, B) is distributed exponentially with mean

equal to 1/(A − a + B − b), the inverse of the combined length of the sides. That is, for

fixed λ, a longer perimeter tends to result in a loIr cost. The parameter λ can be vieId as a

rate of cut generation per unit length of perimeter. If a cut is made, it has horizontal or

vertical direction with probability proportional to the lengths of the respective sides, and its

placement is uniformly distributed along the chosen side. After a cut is made, a new budget

λ′ = λ− E is calculated, and the sub-rectangles are independently partitioned according to

a Mondrian process with rate λ′. That is, if the cut splits the horizontal side into (a, x) and

(x,A), then the two sub-rectangle processes are M< ∼ MP (λ′, (a, x), (b, B)) and M> ∼

15



Algorithm 1 Mondrian M∼MP (λ, (a,A), (b, B))

let λ′ ← λ− E where E ∼ Exp(A− a+B − b)
if λ′ < 0 then
return M← {(a,A)× (b, B)}

end if
draw ρ ∼ Bernoulli( A−a

A−a+B−b)

if ρ = 1 then
draw x ∼ Uniform(a,A)
let M1 ←MP (λ′, (a, x), (b, B))
let M2 ←MP (λ′, (x,A), (b, B))
return M←M1 ∪M2

else
draw x ∼ Uniform(b, B)
let M1 ←MP (λ′, (a,A), (b, x))
let M2 ←MP (λ′, (a,A), (x,B))
return M←M1 ∪M2

end if

MP (λ′, (x,A), (b, B)), respectively. Conversely, for a vertical cut into (b, x) and (x,B), the

sub-rectangle processes are M< ∼MP (λ′, (a,A), (b, x)) and M> ∼MP (λ′, (a,A), (x,B)).

The one-dimensional Mondrian process reduces to a Poisson process. The MP shares

with the Poisson process the self-consistency property that its restriction to a subspace is

a Mondrian process with the same rate parameter as the original Mondrian process. As

with the Poisson process, one can define a non-homogeneous MP by sampling the cuts

non-uniformly according to a measure defined along the sides of the rectangle [65]. This

work considers only the homogeneous MP.

Algorithm 1 describes how to sample from the MP with rate λ on a 2-dimensional space

(a,A)× (b, B). More details on the Mondrian Process can be found in [65].

Relations and Exchangeability

Consider a stochastic 2-dimensional matrix ~R = 〈ri1···in〉, where i and j index objects xi ∈ X

and yj ∈ Y in possibly distinct sets X and Y . A binary matrix represens a relation on

X × Y , where ri,j=1 (ri,j=0) indicates presence(absence) of a relationship between xi and

yj . More generally, if ri,j ∈ R, the matrix ~R represents a function from X × Y to R.

The stochastic matrix ~R is separately exchangeable if its distribution is invariant to
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separate permutations of rows and columns [65]. That is, let ~R1:n,1:m be an n by m matrix;

let π(1 : n) and σ(1 : m) denote permutations of the integers from 1 to n and 1 to m

respectively; and let ~Rπ(1:n),σ(1:m) denote the matrix obtained from ~R1:n,1:m by permuting its

rows according to π(1 : n) and its columns according to σ(1 : m). Separate exchangeability

means that for any permutation π(1 : n) and σ(1 : m), the distribution of ~R1:n,1:m is the

same as the distribution of ~Rπ(1:n),σ(1:m). That is, the specific association of objects to

indices is irrelevant to the distribution.

The distribution of a separately exchangeable relation can be parameterized in terms

of a latent parameter for each dimension and an additional random parameter. This

representation, originally due to Aldous and Hoover, was exploited by [65] to model relational

data using the Mondrian process. In the 2-dimensional case, I have a latent parameter ξi for

each xi ∈ X, a latent parameter ηj for each yj ∈ Y , and an additional random parameter θ.

The ξi are iid draws from pξ; the ηj are iid draws from pη; and θ is drawn from pθ. Then

[65],

p(~R1:n,1:m) =

∫
pθ(θ)

∏
i

pξ(ξj)× (2.11)

∏
j

pη(ηj)
∏
i,j

p~R(ri,j |θ, ξi, ηj)dθdξ1:ndη1:m

2.4 Advanced Bayesian Inference

2.4.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) [53] is a very popular inference method for Bayesian

models. MCMC first builds a Markov chain whose stationary distribution is the target

posterior distribution, and then draws samples from the Markov chain. The law of large

numbers justifies the use of sample averages as estimations.

A Markov chain is described by a transition kernel P (θ, dθ′) that specifies for each state
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θ the probability of jumping to state θ′ in next step, where θ, θ′ ∈ Θ, and Θ the state space.

Here, one assumes that for each transition distribution the corresponding density function

exists and denote the transition density as p(θ, θ′).

MCMC requires that the constructed chain must be aperiodic, irreducible and reversible.

Especially, the reversibility condition, known as “detailed balance” equation, is:

π(θ)p(θ, θ′) = π(θ′)p(θ′, θ) (2.12)

where π is the initial distribution of the starting state. One can derive that:

∫
π(θ)p(θ, θ′)dθ = π(θ′) (2.13)

which means that π is a stationary distribution of the produced chain. Further, aperiodicity

and irreducibility ensure that π is the unique stationary distribution. Therefore, a sample

drawn from the chain is considered as a sample drawn from the distribution π. For Bayesian

inference, the target distribution π is set to be the posterior distribution of interest.

Metropolis-Hastings Sampling

Metropolis-Hastings (MH) sampling [28,50] is the most important MCMC approach. Any

variant of MCMC methods can be considered as a special case of MH. MH constructs a

Markov chain with transition density:

p(θ, θ′) = q(θ, θ′)α(θ, θ′), for θ 6= θ′ (2.14)

p(θ, θ) = 1−
∫
q(θ, θ′)α(θ, θ′)dθ (2.15)

where q is the proposal density to propose a candidate jump-to state θ′, and α(θ, θ′) is the

acceptance probability of accepting the jump from θ to θ′. According to the detailed balance
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condition, the chain has to satisfy that:

π(θ)q(θ, θ′)α(θ, θ′) = π(θ′)q(θ′, θ)α(θ′, θ) (2.16)

Assuming α(θ′, θ) = 1, which leads to choose α(θ, θ′) as

α(θ, θ′) = min

(
1,
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)
(2.17)

One can see that MH can only accept θ′ with positive probability jumping back to θ.

MH samplers begin at an arbitrary state θ1 and proceeds through a sequence of states

θ2, θ3, · · · , as follows. Conditioned the current state θi, a new state θ′ is proposed according

to the proposal distribution q(θi, θ
′). The new state is accepted with probability computed

by Eq. (2.17). If accepted, set the next state θi+1 = θ′, otherwise, θi+1 = θi.

Reversible Jump MCMC

For detailed balance to hold, both the forward and backward transition densities must be

positive for any allowable transition. This is not the case when standard MH sampling is used

to sample from different parameter spaces, such as parameter spaces of varying dimensionality.

Reversible jump Markov Chain Monte Carlo (RJMCMC) [22,23,81] generalizes standard

MH to problems in which the proposal and target distributions have densities on spaces of

different dimensions.

First let’s consider a unusual case, that the parameter spaces changed but the dimen-

sionality of the spaces remains the same. For example, θi ∈ (0, 1), while θi+1 ∈ (−∞,+∞).

Since the parameter spaces changed, a probability measure for θi is no longer a probability

measure for θi+1, since they don’t even have the same support. But if one can build a

bijection between (0, 1) and (−∞,+∞), e.g. θi+1 = − log( 1
θi
− 1), the inverse of sigmoid

function, then a probability measure for θi is also a probability measure for θi+1. Further,

with the bijection, θi and θi+1 can have the same probability measure, then standard MH
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sampling can be applied, even θi and θi+1 are of different space.

Next, let’s consider trans-dimensional case, that the dimensionality of parameter spaces

changes. Assume a state s = (k, ~θk) consisting of a discrete subspace indicator k and a

continuous, subspace-dependent parameter ~θk whose dimensionality nk depends on k. To

ensure reversibility of moves between subspaces of different dimensions, auxiliary parameters

are introduced to match dimensions of the current and proposed states. Specifically,

associated with each pair k and k′ of states, there are two auxiliary parameters ~ukk′

and ~uk′k satisfying the dimension matching condition

nk + n~ukk′ = nk′ + n~uk′k . (2.18)

Then, a bijective mapping hkk′ is defined to transform the augmented state of subspace k

to the augmented state of subspace k′. Accordingly, the inverse transform h−1k′k maps from

augmented states of subspace k′ to augmented states of subspace k. Again, the bijection

ensures the same probability measure for the the two augmented subspaces. RJMCMC

draws samples on the augmented state space, thus always proposing moves between spaces

of equal dimension.

RJMCMC for trans-dimensional case is described in Algorithm 2. A move from a state

(k, ~θk) in subspace k to a state (k′, ~θk′) in subspace k′ is proposed with probability q(k, k′).

Conditioned on the move from k to k′, two new augmented parameter vectors are proposed

as follows. First, one new random auxiliary parameter ~u′kk′ is proposed from the density

qkk′(~ukk′ |~θk). Then, the other new random auxiliary parameter ~uk′k is proposed from the

density qk′k(~uk′k|~θk′). Finally, the new state is accepted with probability

α((k′, ~θk′ , ~uk′k), (k, ~θk, ~ukk′)) = (2.19)

min

(
1,
π(k′, ~θk′)q(k

′, k)qk′k(~uk′k|~θk′)
π(k, ~θk)q(k, k′)qkk′(~ukk′ |~θk)

J

)
,
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where π(k′, ~θk′) is the target distribution and J is the Jacobin calculated as:

J =

∣∣∣∣∣∂hkk′(~θk, ~ukk′)∂~θk∂~ukk′

∣∣∣∣∣ . (2.20)

The Jacobin (2.19) is needed to ensure detailed balance. It’s due to the change of variables

of the probability density functions from one variable space to another variable space. Since

here involve two augmented parameter space, although the bijection ensures the same

probability measure for the two spaces, when evaluating the density function, it’s required

to evaluate the density in one parameter space, so here it changes the parameter in the

augmented space of k to the augmented space of k′, and the variable change results in the

Jacobin. In many cases of interest, the bijection is just the identity mapping, and J is just 1.

Algorithm 2 Reversible Jump MCMC

Initialize model k.
repeat

Propose a new model k′ by drawing it from the distribution p(k, ·),
Propose the parameter for the new model by generating ~u′kk′ from distribution qkk′(·|~θk),

and set (~θk′ , ~u′k′k) = hkk′(~θk, ~u′kk′),
Randomly choose whether to accept the new state according to the acceptance probability
given in (2.19). If move is accepted, set k = k′.

until Stopping criterion is met.

Gibbs sampling

Often, model parameter space is of high dimensionality. Assume model parameters are

n-dimensional vectors, denoted as ~θ = 〈θ1, · · · , θn〉. One way of proposing a new parameter

~θ′ conditioned on current parameter ~θ, is just change one dimension of ~θ, which means ~θ′

is the same as ~θ except on one of the dimensions. Without loss of generality, assume ~θ′ is

different as ~θ on the ith dimension, that ~θ′ = 〈θ1, · · · , θ′i, · · · , θn〉. The proposal distribution

q(~θ, ~θ) only needs to proposal a new value on the ith dimension. Denote the proposal as
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q(θ′i,
~θ), and the accept ratio changes to:

α(~θ, ~θ′) = min

(
1,
π(~θ′)q(θ′i,

~θ)

π(~θ)q(θi, ~θ′)

)
(2.21)

It’s turned out that if the proposal q(θ′i,
~θ) is the conditional distribution of θi conditioned

on all other dimensions, the accept ratio becomes 1. The conditional distribution of θi

conditioned on all other dimensions is:

p(θi|θ1, · · · , θi−1, θi+1, · · · , θn) =
π(~θ)

π(~θ¬i)
=

π(θ1, · · · , θn)

π(θ1, · · · , θi−1, θi+1, · · · , θn)
(2.22)

where ~θ¬i denotes ~θ excludes the ith dimension.

Then π(~θ′)q(θi, ~θ
′) becomes:

π(~θ′)q(θi, ~θ
′) = (2.23)

π(θ1, · · · , θ′i, · · · , θn)p(θi|θ1, · · · , θi−1, θi+1, · · · , θn) = π(θ1, · · · , θi, θ′i, · · · , θn)

and π(~θ)q(θ′i,
~θ) becomes:

π(~θ)q(θ′i,
~θ) = (2.24)

π(θ1, · · · , θi, · · · , θn)p(θ′i|θ1, · · · , θi−1, θi+1, · · · , θn) = π(θ1, · · · , θi, θ′i, · · · , θn)

Since π(~θ′)q(θi, ~θ
′) = π(~θ)q(θ′i,

~θ), the accept ratio becomes 1.

This kind of sampling method is called Gibbs sampling, which accepts every proposed

new state. So no need to explicitly calculate the accept ratio for Gibbs sampling, but directly

draw samples from the conditional distribution p(θi|θ1, · · · , θi−1, θi+1, · · · , θn).

In practice, Gibbs sampling updates each dimension of model parameters one by one,
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which is to update the first dimension by drawing sample θ′1 from p(θ1|θ2, · · · , θn), then

draw sample θ′2 from p(θ2|θ′1, θ3, · · · , θn), note that the first dimension has been updated

from θ1 to θ′1, and then so on so forth, until update all dimensions.

2.4.2 Variational Bayesian Inference

Variational Bayesian (VB) inference [4,35] approximates an intractable posterior distribution

using a tractable distribution, called variational distribution. By doing so, VB converts an

inference problem to an optimization problem, in that VB finds the best approximation to

the posterior in a tractable solution space, not in an intractable one.

I assume observed data ~X = 〈x1, · · · , xn〉, corresponding latent variables ~Z = 〈z1, · · · , zn〉

and parameters ~θ of a model m. Further, I assume a prior p(~θ|m) to the model parameters.

VB finds a lower bound to the log-likelihood function of the model m which is:

log p( ~X|m) = log

∫
p( ~X, ~Z, ~θ|m)d~θd~Z = log

∫
q(~Z, ~θ)

p( ~X, ~Z, ~θ|m)

q(~Z, ~θ)
d~θd~Z (2.25)

≥
∫
q(~Z, ~θ) log

p( ~X, ~Z, ~θ|m)

q(~Z, ~θ)
d~θd~Z (2.26)

where q(~Z, ~θ) is the variational distribution. For the sake of tractability, ~Z and ~θ are assumed

to be independent in the variational distribution, and then q(~Z, ~θ) = q(~Z)q(~θ). Further,

assume every zi of ~Z is independent, that q(~Z) =
∏n
i=1 q(zi). I can rewrite Equation (2.26)

as:

log p( ~X|m) ≥
∫
q(~θ)

(∫
q(~Z) log

p( ~X, ~Z|~θ,m)

q(~Z)
d~Z + log

p(~θ|m)

q(~θ)

)
d~θ (2.27)

By taking derivative of Equation (2.27) w.r.t. q(~Z) and q(~θ), respectively, and setting
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the derivatives as zero, I can compute q(~Z) and q(~θ) as following:

q(zi) ∝ exp

(∫
q(~θ) log p(xi, zi|~θ,m)d~θ

)
(2.28)

q(~θ) ∝ p(~θ|m) exp

(∫
q( ~X) log p( ~X, ~Z|~θ,m)d~Z

)
(2.29)

Collapsed variational Bayesian (CVB) inference [42,74,75] improves standard VB, by

marginalizing out ~θ before applying VB inference. By doing so, the variational distribution of

CVB, q(~Z), involves only ~Z, no ~θ. So CVB does not need to assume ~Z and ~θ are independent

in the variational distribution. Therefore, CVB has a less restricted assumption than VB,

which allows CVB to search in a less restricted tractable solution space to find the (local)

optima. Thus, CVB can find in general a better approximation to the posterior distribution

than VB.
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Chapter 3: Related Work

3.1 Clustering

Extensive work has been done on clustering. Discriminative approaches to clustering include

k-means [45,47], k-medians [33], fuzz clustering [29], spectral clustering [80], and hierarchical

clustering [34]. An example of a generative approach to clustering is mixture of Gaussians

[11]. Here I review two Bayesian clustering approaches based on mixture models, Dirichlet

Processes [14] and Latent Dirichlet Allocation [9], which are closely related to my work.

3.1.1 Dirichlet Processes

Dirichlet Processes (DP) [14] have a long history. Each sample drawn from a DP is an infinite

discrete distribution. There are some intuitive representations for Dirichlet Processes, one is

Pólya urn schemes [5], another famous constructive definition is stick-breaking construction

[68]. There are many generalizations to DP, such as Hierarchical DP [73], which assumes a DP

as the base measure to several related DP’s; Pitman-Yor Processes [60], whose stick-breaking

representation differs from that of DP in that vi ∼ Beta(a, b) instead of vi ∼ Beta(1, α0);

Nested DPs [64], from which each drawn sample is again a DP, and etc.

The stick-breaking construction can not only be used to construct DP, but also many

other discrete nonparametric Bayesian models, e.g. Pitman-Yor Processes [60] and Indian

Buffet Processes [24]. In [31], a Gibbs sampler was proposed for stick-breaking priors.

Recently [65] proposed a multidimensional non-parametric prior process, called Mondrian

Processes, for modeling relational data. The process is based on “multidimensional stick-

breaking”, where in two-dimensional case, it generates non-overlapping axis-aligned cuts in

a unit matrix.
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3.1.2 Probabilistic Topic Modeling

“Latent Dirichlet Allocation” (LDA) proposed by Blei et al. [9] applied Bayesian mixture

models to model text data. LDA first defines each topic as a mixture distribution over words,

and then each document is assumed to be a mixture of topics. Each topic can be thought as a

soft clustering of words, where similar and related words are grouped together. Further, LDA

assumes that given topics, documents and words are conditionally independent. By doing so,

LDA represents each document in term of topics, instead of words, which greatly reduces

the dimensionality of document representation, since the number of topics is considerably

smaller than the number of words.

A standard variational Bayesian (VB) algorithm [9] is used to estimate the posterior

distribution of model parameters given the model evidence. The standard VB simplifies

the true intractable posterior to a tractable approximation, which transforms the inference

problem into an optimization one consisting in finding a best tractable approximation to

the true posterior. Griffiths et al. proposed a collapsed Gibbs sampling method to learn the

posterior distribution of parameters for the LDA model [25]. Recently, Teh et al. proposed

a collapsed variational Bayesian (CVB) algorithm to perform model inference for LDA

[75], which borrows the idea from the collapsed Gibbs sampling that first integrate out

model parameters then perform standard VB. Recently, LDA model has been extended to

supervised learning scenario, [8, 51,62].

A nonparametric Bayesian version of the Latent Dirichlet Allocation (LDA) mode is

called Dirichlet Enhanced Latent Semantic Analysis (DELSA) model [87]. DELSA treats

documents as being organized around latent topics drawn from a mixture distribution

with parameters drawn in turn from a Dirichlet process. The posterior distribution of the

topic mixture for a new document converges to a flexible mixture model in which both

mixture weights and mixture parameters can be learned from the data. Thus, the posterior

distribution is able to represent the distribution of topics more robustly. After learning,

typically only a few components have non-negligible weights; thus the model is able to

naturally output clusters of documents.
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Later, Blei et al. proposed Hierarchical Topic Model and Chinese Restaurant Process

[6, 7], another nonparametric Bayesian topic model which can learn topic hierarchy in a

unsupervised way, and recently proposed variational inference [83] for this model. [44]

proposed a DAG-style hierarchical topic model, called Pachinko allocation, relaxing the

assumption of fixed group assignments, and a nonparametric version proposed [43].

3.2 Clustering Ensembles

Ensemble methods have been a major success story in machine learning and data mining,

particularly in classification and regression problems. Recent work has also focused on

clustering, where ensembles can yield robust consensus clusterings [15,17,39,71,77]. Cluster-

ing ensembles combine various base clustering results and compute a consensus clustering,

which is intended to be more robust and accurate than each individual base clustering

result. Since these methods require only the base clustering results and not the raw data

themselves, clustering ensembles provide a convenient approach to privacy preservation

and knowledge reuse [84]. Such desirable aspects have generated intense interest in cluster

ensemble methods.

Various approaches have been proposed to address the clustering ensemble problem.

Our focus is on statistically oriented approaches. One popular methodology to build a

consensus function utilizes a co-association matrix [1,18,52,79]. Such matrix can be seen as a

similarity matrix, and thus can be used with any clustering algorithm that operates directly

on similarities [1, 79]. In alternative to the co-association matrix, voting procedures have

been proposed to build consensus clustering in [13]. Gondek et al. [21] derived a consensus

clustering based on the Information Bottleneck principle: the mutual information between

the consensus clustering and the individual input clusterings is maximized directly, without

requiring approximation.

A different popular mechanism for constructing a consensus clustering maps the problem

onto a graph-based partitioning setting [3, 30, 71]. In particular, Strehl et al. [71] proposed
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three graph-based approaches: Cluster-based Similarity Partitioning Algorithm (CSPA),

HyperGraph Partitioning Algorithm (HGPA), and Meta-Clustering Algorithm (MCLA).

The methods use METIS (or HMETIS) [36] to perform graph partitioning. The authors

in [61] developed soft versions of CSPA, HGPA, and MCLA which allow to combine soft

partitionings of data.

Another class of clustering ensemble algorithms is based on probabilistic mixture models

[77,84]. Topchy et al. [77] proposed a mixture-membership model for clustering ensembles,

which modeled the clustering ensemble as a finite mixture of multinomial distributions in

the space of base clusterings. A consensus result is found as a solution to the corresponding

maximum likelihood problem using the EM algorithm. Wang et al. [84] proposed Bayesian

Cluster Ensembles (BCE), a model that applied a Bayesian approach to discovering clustering

ensembles. BCE addresses the over-fitting issue to which the maximum likelihood method is

prone [77]. The BCE model is applicable to some important variants of the basic clustering

ensemble problem: it can be adapted to handle missing values in the base clusterings; it

can handle the requirement that the base clusterings reside on a distributed collection of

hosts; and it can deal with partitioned base clusterings in which different partitions reside in

different locations. Other clustering ensemble algorithms, such as the cluster-based similarity

partitioning algorithm (CSPA) [71], the hypergraph partitioning algorithm (HGPA) [71], or

k-means based algorithms [41] can handle one or two of these cases; however, none except

the Bayesian method can address them all. However, like most clustering ensemble methods,

BCE has the disadvantage that the number of clusters in the consensus clustering must be

specified a priori. A poor choice can lead to under- or over-fitting.

3.3 Co-clustering

Researchers have proposed several discriminative and generative co-clustering models. Dhillon

et al. [12] introduced an information-theoretic co-clustering approach based on hard par-

titions. Shafiei et al. [69] proposed a soft-partition co-clustering method called “Latent
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Dirichlet Co-clustering.” This model, however, does not cluster rows and columns simultane-

ously. A Bayesian Co-clustering (BCC) model has been proposed in [70]. BCC maintains

separate Dirichlet priors for row- and column-cluster probabilities. To generate an entry

in the data matrix, the model first generates the row and column clusters for the entry

from their respective Dirichlet-multinomial distributions. The entry is then generated from

a distribution specific to the row- and column-cluster. Like the original Latent Dirichlet

Allocation (LDA) [9] model, BCC assumes symmetric Dirichlet priors for the data distribu-

tions given the row- and column-clusters. Shan and Banerjee [70] proposed a variational

Bayesian algorithm to perform inference with the BCC model. In [85], the authors proposed

a variation of BCC, “Latent Dirichlet Bayesian Co-clustering” (LDCC), and developed a

collapsed Gibbs sampling and a collapsed variational Bayesian algorithm to perform inference.

All aforementioned co-clustering models are parametric ones, i.e., they need to have specified

the number of row- and column-clusters.

A nonparametric Bayesian co-clustering (NBCC) approach has been proposed in [49].

NBCC assumes two independent nonparametric Bayesian priors on rows and columns,

respectively. As such, NBCC does not require the number of row- and column-clusters to be

specified a priori. NBCC assumes a Pitman-Yor Process [60] prior, which is a generalization

of Dirichlet Processes. Pitman-Yor processes, unlike Dirichlet processes, favor uniform

cluster sizes. Existing Bayesian co-clustering models, e.g., BCC [70], LDCC [85], and NBCC

[49], can handle missing entries only for already observed rows and columns.

Other researchers also applied Dirichlet Processes to relational learning, such as [37, 86].

The infinite relational model (IRM) [37] is very similar to NBCC, except that IRM can model

not only binary relations between two different kinds of objects, but also binary relations

between the same kind of objects. The infinite hidden relational model (IHRM) [86] leverages

the features associated with each objects to better predict missing relations between objects,

but IHRM didn’t demonstrate how effective object features are in predicting relationships

between unseen objects.
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Co-clustering techniques have also been applied to collaborative filtering [66]. Collabora-

tive filtering recommends items to users by discovering similarities among users based on

their past consumption records, and using the discovered similarities to predict which items

will be attractive to a user. The user consumption records can be organized in a matrix.

Co-clustering techniques for collaborative filtering include the nearest bi-clustering method

[72], evolutionary co-clustering for online collaborative filtering [38] and information-theoretic

co-clustering [20].
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Chapter 4: Nonparametric Bayesian Clustering Ensembles

4.1 Introduction

This chapter introduces a nonparametric Bayesian clustering ensembles model called Dirichlet

Process-based Clustering Ensembles (DPCE). DPCE adapts the Dirichlet Process Mixture

(DPM) model proposed by [54] to the clustering ensembles problem. DPCE allows the

number of consensus clusters to be discovered from the data, while inheriting the desirable

properties of the Bayesian clustering ensembles model [84]. Similar to the mixture modeling

approach [77] and the parametric Bayesian approach [84], DPCE treats the base clustering

results for each object as a feature vector with discrete feature values, and learns a mixed-

membership model from this feature representation. An empirical evaluation (see Section

4.3 below) demonstrates the versatility and superior stability and accuracy of DPCE.

4.2 Dirichlet Process-based Clustering Ensembles

Following [77] and [84], we assume the observations are the output of M base clustering

algorithms, each generating a hard partition on the N data items to be clustered. Let

Jm denote the number of clusters generated by the mth clustering ϕm, m ∈ {1, · · · ,M},

and let ynm ∈ {1, · · · , Jm} denote the cluster ID assigned to the nth data item xn by ϕm,

n ∈ {1, · · · , N}. The row ~yn = 〈ynm|m ∈ {1, · · · ,M}〉 of the base clustering matrix ~Y gives

a new feature vector representation for the nth data item. Following common practice in the

clustering ensemble literature, [71], DPCE models the output of M base co-clusterings. The

original data matrix ~X, assumed inaccessible, is not modeled. Table 4.1 shows an example

of base clusterings of DPCE.
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Table 4.1: Example of Base Clusterings for DPCE

ϕ1 ϕ2 · · · ϕm · · · ϕM
x1 2 A · · · y1m · · · b
x2 1 B · · · y2m · · · a
x3 2 B · · · y3m · · · c
...

...
...

. . .
...

. . .
...

xn yn1 yn2 · · · ynm · · · ynM
...

...
...

. . .
...

. . .
...

xN 3 A · · · yNm · · · d

4.2.1 DPCE Generative Model

Figure 4.1 depicts the generative model for DPCE. The observations ~Y are generated from a

Dirichlet Process mixture model, where α0 is the concentration parameter and Gm is the base

measure for the mth base clustering. The Dirichlet process is sampled via the stick-breaking

construction as described in Eqs (2.5) and (2.6). The consensus cluster indicator variables

zn are iid draws of an integer-valued distribution parameterized by ~π. A sequence ~θ∗km of

parameters is drawn, for each consensus cluster 1 ≤ k < ∞ and base clustering m ≤ M .

These are drawn independently, with ~θ∗km having distribution Gm, where Gm is a symmetric

Jm-dimensional Dirichlet distribution with total pseudo-count βm.1 Conditional on the

indicator variables and unique parameter vectors, the cluster IDs are drawn independently.

The cluster ID ymn output by the mth base clustering for the nth datum is drawn from

a discrete distribution with parameter ~θ∗km, where k is equal to zn, the consensus cluster

indicator for the nth datum.

Formally, the generative process for DPCE is:

• Draw vk ∼ Beta(1, α0), for k = 1, 2, · · · ,∞.

• Set mixture weights for consensus clusters πk = vk
∏k−1
t=1 (1− vt), for k = 1, 2, · · · ,∞.

1As the number of clusters is provided as input to typical clustering algorithms, Jm is treated as
deterministic and known.
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Figure 4.1: Dirichlet Process-based Clustering Ensemble Model

• For k = 1, 2, · · · ,∞, m = 1, 2, · · · ,M , draw parameters for consensus clusters:

~θ∗km ∼ Dirichlet(
βm
Jm

, · · · , βm
Jm

)

• For each datum n:

– Draw consensus cluster zn ∼ Discrete(~π);

– For each base clustering ϕm, generate ynm ∼ Discrete(~θ∗znm).

4.2.2 DPCE Inference

We use the collapsed Gibbs sampling method discussed in Section 2.3.1 for DPCE inference.

All model parameters except the concentration parameter α0 are marginalized out. Only zn

and α0 are sampled.

The conditional distribution for sampling zn given ~Y and all other indicator variables

~z¬n is:

p(zn = k|~Y , ~z¬n, α0) ∝ Nk¬n
M∏
m=1

N¬nk,ynm + βm
Jm

Nk¬n + βm
(4.1)
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when the cluster index k appears among the indices in ~z¬n, and

p(zn = k|~Y , ~z¬n, α0) ∝ α0

M∏
m=1

1

Jm
(4.2)

when the cluster index k does not appear among the indices in ~z¬n. Here, N¬nk is the number

of data points assigned to the kth consensus cluster excluding the nth datum, and N¬nk,ynm is

the number of data points in the kth consensus cluster that are also assigned to the same

cluster as the nth datum by ϕm, excluding the nth datum.

To sample the concentration parameter α0, we assign a Gamma prior to α0, and perform

Metropolis-Hastings sampling. Conditional on ~z and marginalizing over ~π, α0 is independent

of the remaining random variables. As pointed out by [63], the number of observations N

and the number of components K are sufficient for α0. Following [2] and [73], we have:

p(K|α0, N) = s(N,K)αK0
Γ(α0)

Γ(α0 +N)
(4.3)

where s(N,K) is the Stirling number. Treating (4.3) as the likelihood function for α0,

we assign a Gamma prior distribution p(α0|a, b) for α0. The posterior distribution for α0

satisfies: p(α0|K,N, a, b) ∝ p(K|α0, N)p(α0|a, b). We use a Metropolis-Hastings sampler to

sample α0. If the proposal distribution is symmetrical (e.g., a Gaussian distribution with

mean α0), then the accept ratio is:

A(α0, α
′
0) =

p(α′0|K,N, a, b)
p(α0|K,N, a, b)

=
p(K|α′0, N)p(α′0|a, b)
p(K|α0, N)p(α0|a, b)

(4.4)

Examination of the likelihood function (4.3) reveals that its shape is similar to the

Gamma distribution. For example, Figure 4.2 shows the normalized likelihood for α0 in

red, and a Gamma distribution fit to the same mean and variance in blue, for N = 200 and
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Figure 4.2: Gamma Distribution Fits Likelihood of α0

K = 15. This similarity can be exploited to improve the mobility of the Metropolis-Hastings

sampler. A Gamma proposal distribution can be chosen to approximate the posterior

distribution of α0 given K and N . Parameters a(K,N) and b(K,N) are estimated offline to

match the mean and variance of the posterior distribution for different values of K and N .

During sampling, proposal distribution parameters are selected to match the sample size N

and the current number of consensus clusters K. The accept ratio for the Gamma proposal

distribution is:

A(α0, α
′
0) =

p(K|α′0, N)p(α′0|a, b)p(α0|a(K,N), b(K,N))

p(K|α0, N)p(α0|a, b)p(α′0|a(K,N), b(K,N))
(4.5)

where p(·|a(K,N), b(K,N)) is the Gamma distribution with its parameters a(K,N) and

b(K,N) estimated by fitting the posterior distribution of α0 given N and K.

4.3 Empirical Evaluation

We compared DPCE with two generative clustering ensemble models, Bayesian clustering

ensembles (BCE) [84] and mixture model for clustering ensembles (MM) [77].
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Datasets.

We evaluated DPCE on both synthetic and real datasets. First we generated two sets of

synthetic data to test the robustness and accuracy of DPCE. The two synthetic datasets are

plotted in Figure 4.3(a) and 4.3(b). The synthetic data shown in Figure 4.3(a) is consisted

of two 2-dimensional Gaussian clusters (green stars and blue dots), each 75 points, with 50

uniform noise points (red pluses). The synthetic data shown in Figure 4.3(b) is consisted of

four 2-dimensional Gaussian clusters without noise (yellow pluses, blue dots, green starts,

and red triangles).
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(a) Synthetic Dataset 1: Two Clusters with Out-
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(b) Synthetic Dataset 2: Four Clusters

Figure 4.3: Synthetic Datasets for DPCE

Then we used five datasets from the UCI Machine Learning Repository2 to evaluate DPCE:

Glass, Ecoli, ImageSegmentation, ISOLET, and LetterRecognition. Glass contains glass

instances described by their chemical components. Ecoli contains data on E. Coli bacteria.

ImageSegmentation contains data from images that were hand-segmented classifying each

pixel. ISOLET contains data representing spoken letters of the alphabet. LetterRecognition

contains character images corresponding to the capital letters in the English alphabet. We

held out 1/4 of the data to evaluate the predictive performance of MM, BCE and DPCE.

2http://archive.ics.uci.edu/ml/
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4.3.1 Methodology

For the synthetic datasets in Figure 4.3(a) and Figure 4.3(b), we used k-means to generate

base clusterings. We varied the number of base clusterings and the number of clusters in

each base clustering to test the robustness of DPCE.

To generate base clusterings on real data for each ensemble method, we ran Dirichlet

Process Clustering (DPC) [54] 5 times with different random initializations to generate 5

base clusterings. We compared DPCE with DPC, MM, and BCE on real datasets. Also,

we repeat each ensemble method 5 times with different base clustering results. For the

parametric clustering ensembles methods, MM and BCE, we set the number of output

clusters equal to the actual number of classes, according to the ground truth.

As for generative models, we used perplexity to compare them. The perplexity of the

observed data ~X is defined as [9]:

perp( ~X) = exp

(
− log p( ~X)

N

)
(4.6)

where N is the number of data points in ~X. Clearly, the perplexity monotonically decreases

with the log-likelihood. Thus, a lower perplexity value on the training data means that the

model fits the data better, and a lower value on the test data means that the model can

better explain unseen data. For the five real datasets, we report perplexity on both training

and test sets.

4.3.2 Results

First, we tested the robustness of DPCE on the two synthetic datasets. The first synthetic

dataset shown in Figure 4.3(a) has two clusters with some noise. We fed five base clusterings

with 4, 8, 16, 32, and 32 clusters to DPCE, that the five base clusterings all overestimate

the true number of clusters. DPCE can always find 2 consensus clusters. Therefore the five

base clusterings must contain coherent information about the cluster structure of the data,
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Table 4.2: Perplexity Results on Training data for Real Datasets
Glass Ecoli ImageSegmentation ISOLET LetterRecognition

DPC 1.443 (0.22) 1.478 (0.41) 1.733 (0.042) 1.996 (0.46) 2.562 (0.051)
MM 1.323 (0.024) 1.465 (0.042) 1.704 (0.045) 1.986 (0.047) 2.536 (0.051)
BCE 1.093 (0.022) 1.320 (0.0.40) 1.545 (0.043) 1.874 (0.048) 2.248 (0.052)

DPCE 0.972 (0.023) 1.214 (0.0.43) 1.334 (0.044) 1.762 (0.047) 2.136 (0.051)

and DPCE can find that information. The second synthetic dataset shown in Figure 4.3(b)

has four clusters, indicated by yellows pluses, green stars, blue dots and red triangles. We

varied the number of base clusterings from 2, 4, 8, 16, to 32, with all base clusterings only

have two clusters, which underestimate the true number of clusters. There are two types of

base clusterings for the second synthetic dataset: the type 1, shown in Figure 4.4(a), groups

yellow pluses and green stars together while blue dots and red triangles together, and the

type 2, shown in Figure 4.4(b), groups yellow pluses and blue dots together while green

stars and red triangles together. Further, no matter how many base clusterings used for the

second synthetic dataset, we made one half of the base clusterings type 1, the other half type

2. DPCE can always find 4 consensus clusters from all base clusterings, shown in Figure

4.4(c). This demonstrates that DPCE is more robust and accurate than each individual

base clustering, and more important, the number of consensus clusters is not bounded by

the maximum and minimum number of clusters in base clusterings.

Table 4.2 compares DPC, MM, BCE and DPCE in terms of the perplexity on the

synthetic datasets. It’s clear that DPCE fits the data better than BCE, MM and DPC.

BCE is better than MM. Both BCE and MM are better than DPC, but they are parametric

models, and the number of consensus clusters is set according to the ground-truth. In

contrast, DPCE can automatically find the number of clusters that fits the data best.

Tables 4.3 compare DPC, MM, BCE and DPCE in terms of the perplexity on test data

of the real datasets. DPCE fits the test data best, and outperforms BCE, MM and DPC.

BCE is better than MM, and BCE and MM are better than DPC.

Figure 4.5 plots the log-likelihoods on the LetterRecognition dataset for 5 DPC runs and

one DPCE run initialized with iteration 1000 of the 5 DPC runs. We continued the DPC

runs for another 1000 iterations to compare with DPCE. All chains of DPCC and MPCC
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Figure 4.4: DPCE Results on Synthetic Dataset 2

appear to have reached different local optima, since the Potential Scale Reduction Factor

MCMC diagnostic [19] for the 5 DPC log-likelihood values plotted in Figure 4.5 is 1.4908,

which is indicative of non-convergence. The local optimum for DPCE has higher likelihood

than all five DPC local optima.

Further, when MH sampling α0, we used a Gamma proposal, which is evaluated by

approximating the posterior distribution of α0. To demonstrate the effectiveness of the

Gamma proposal, we compared it with a Gaussian proposal, which proposes new α0

distributed according to a Gaussian distribution centered at old α0 with variance 1. We then
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Table 4.3: Perplexity Results on Test Data for Real Datasets
Glass Ecoli ImageSegmentation ISOLET LetterRecognition

DPC 1.215 (0.035) 1.994 (0.052) 2.501 (0.057) 2.620 (0.057) 3.774 (0.067)
MM 1.202 (0.036) 1.977 (0.051) 2.449 (0.056) 2.572 (0.058) 3.724 (0.069)
BCE 1.167 (0.035) 1.759 (0.049) 2.137 (0.059) 2.315 (0.055) 3.303 (0.068)

DPCE 1.025 (0.037) 1.524 (0.050) 1.933 (0.057) 2.014 (0.056) 2.956 (0.066)
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Figure 4.5: DPC and DPCE Likelihood Comparison

plot the correlation between samples proposed by Gamma proposal and Gaussian proposal

respectively. Because Gaussian proposal can only propose local moves, the correlation

between samples are very high; while Gamma proposal can propose non-local moves, the

correlation between samples are relatively low. Figure 4.6 depicts the comparison of using

Gamma proposal and Gaussian proposal when MH sampling α0 on the synthetic dataset.

Note we drop samples of the first half burn-in period, only plot the correlation between the

second half samples.
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Figure 4.6: Correlation between samples of α0 using Gaussian Proposal and Gamma proposal.
Blue triangles are samples from Gaussian proposal, and red stars are from Gamma proposal.
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Chapter 5: Nonparametric Bayesian Co-clustering Ensembles

5.1 Introduction

A direct extension to DPCE is to apply ensembles to co-clustering, the problem of simulta-

neously clustering the rows and columns of a data matrix into row- and column-clusters

to achieve homogeneity in the blocks in the induced partition of the data matrix. Our

first approach to co-clustering ensembles extends DPCE to a nonparametric model for

co-clustering ensembles. While nonparametric Bayesian methods have previously been used

in co-clustering [49] to allow the number of row clusters and column clusters to be random

and inferred from the data, our work makes use of nonparametric Bayesian ideas to model

co-clustering ensembles. In particular, I develop a model-based approach to ensembles that

explicitly models the way in which multiple co-clusterings differ from each other and from a

consensus co-clustering.

One way in which multiple co-clusterings can arise is via different local optima of a single

base co-clustering method. Rather than selecting one of these optima, our approach explicitly

recognizes the possibility that these local optima may contribute distinct, complementary

perspectives on the co-clustering problem, in which case all optima should contribute to

the formation of a consensus co-clustering. It is worth noting that this issue arises in

many problems in which there is combinatorial structure, and our model-based approach to

ensembles may have applications beyond co-clustering.

Most co-clustering algorithms [12,69,70,85] assume that row- and column-clusters are

variation independent; i.e., individual co-clusters are obtained as the product of row- and

column-clusters. This partitions the data matrix into a regular grid. This assumption of

variation independence is inappropriate in situations exhibiting context-specific independence.

For example, one cannot represent the situation in which, for some rows, a given set a of
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columns is partitioned into several clusters, whereas for other rows, the columns form a

single undifferentiated cluster. Recent work has explored a nonparametric Bayesian prior

known as the Mondrian Process that relaxes this assumption [65]. A sample drawn from a

two-dimensional Mondrian process is a random partition over a matrix that is not constrained

to be a regular grid. Our second approach to co-clustering ensembles is based on Mondrian

processes.

Specifically I develop (1) a Dirichlet process-based co-clustering ensemble model

(DPCCE), which assumes independent Dirichlet process mixture priors for rows and columns;

and (2) a Mondrian process-based co-clustering ensemble model (MPCCE) that places a

Mondrian process prior over the matrix partitions. For both the DPCCE and the MPCCE,

the number of blocks is not fixed a priori, but is open-ended and inferred from the data.

5.2 Dirichlet Process-based Co-clustering Ensembles

Following general practice in the clustering ensemble literature, [71], the DPCCE model does

not specify a probabilistic model for the original R×C data matrix ~X, but rather models the

output of M base co-clusterings 〈ϕm|m ∈ {1, 2, · · · ,M}〉. The base co-cluster ϕm partitions

the rows and columns of the data matrix into Im row clusters and Jm column clusters. We

assume that rows and columns are clustered independently by the base clusterings, resulting

in a grid-style partition. That is, all entries in a given row (column) are assigned to the

same row (column) cluster. The base co-clusterings are organized into a R× C ×M array

~Y , where the entries yrcm = 〈yRrm, yCcm〉 denote the row- and column-cluster ID’s assigned by

ϕm. The indices yRrm and yCcm range from 1 to Im and Jm, respectively.

5.2.1 DPCCE Generative Model

According to the DPCCE model, the observations ~Y are generated from independent row

and column Dirichlet process mixture models with pseudo-counts αR and αC , and row and

column base measures GRm and GCm, respectively. Figure 5.1 depicts the DPCCE model.
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A stick-breaking process is used to generate the row and column Dirichlet processes. The

mixing proportions ~πR and ~πC are generated as in Eq (2.5), and the consensus cluster

indicator variables zRr and zCc are drawn according to these mixing proportions. The unique

row and column parameters ~θ∗Rlm and ~θ∗Ckm for each consensus row-cluster l and column-cluster

k are generated as independent draws from symmetric T -dimensional Dirichlet distributions

GRm and GCm with pseudo-counts βRm and βCm, respectively. We assume Im, Jm ≤ T ; as T

grows without bound with fixed total pseudo-count, GRm and GCm become Dirichlet process

distributions. The row-cluster ID’s yRrm are independent draws from a T -dimensional discrete

distribution with parameter ~θ∗Rlm , where l = zRr is the row-cluster indicator for row r.

Similarly, the column-cluster ID’s yCcm are independent draws from a T -dimensional discrete

distribution with parameter ~θ∗Ckm, where k = zCc is the column-cluster indicator for row r.

Formally, the generative process for DPCCE is:

• Draw vRl ∼ Beta(1, αR), for l = 1, 2, · · · ,∞

• Set mixture weights for consensus row-clusters πRl = vRl
∏l−1
t=1(1 − vRt ), for l =

1, 2, · · · ,∞

• Draw vCk ∼ Beta(1, αC), for k = 1, 2, · · · ,∞

• Set mixture weights for consensus column-clusters πCk = vCk
∏k−1
t=1 (1 − vCt ), for k =

1, 2, · · · ,∞

• Draw parameters for consensus row-clusters ~θ∗Rl ∼ Dir(βR), for l = 1, 2, · · · ,∞

• Draw parameters for consensus column-clusters ~θ∗Ck ∼ Dir(βC), for k = 1, 2, · · · ,∞

• For each row r:

– Draw consensus row-cluster zRr ∼ Discrete(~πR)

– For each base co-clustering ϕm:

∗ Generate yRrm ∼ Discrete(~θ∗Rlm ), where l = zRr
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Figure 5.1: Dirichlet Process-based Co-clustering Ensemble Model

• For each column c:

– Draw consensus column-cluster zCc ∼ Discrete(~πC)

– For each base co-clustering ϕm:

∗ Generate yCcm ∼ Discrete(~θ∗Ckm), where k = zCc

5.2.2 Inference

We use the collapsed Gibbs sampling method discussed in Sec. 2.3.1 for DPCCE inference.

As all model parameters are marginalized out, we sample only zRr and zCc . We assume

infinite T , so that GRm and GCm become Dirichlet process distributions.

The conditional distribution for sampling zRr given ~Y and all other indicator variables

~zR¬r is:

p(zRr = l|~Y , ~zR¬r, γR) ∝ (5.1)

NR
l
¬r

R− 1 + αR

M∏
m=1

NR¬r

yRrm
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when the cluster index l appears among the indices in ~zR¬r, and

p(zRr = l|~Y , ~zR¬r, γR) ∝ (5.2)

αR

R− 1 + αR

M∏
m=1

NR¬r

yRrm

when the cluster index l does not appear among the indices in ~zR¬r. Here, NR
l
¬r

is the

number of rows assigned to the lth consensus row-cluster excluding the rth row, and NR¬r

yRrm

is the number rows assigned to the same row-cluster as the rth row by ϕm excluding the rth

row.

Similarly, the conditional distribution for sampling zCc given ~Y and all other indicator

variables ~zC¬c is:

p(zCc = k|~Y , ~zC¬c, γC) ∝ (5.3)

NC
k
¬c

C − 1 + αC

M∏
m=1

NC¬c

yCcm

when the cluster index k appears among the indices in ~zC¬c, and

p(zCc = k|~Y , ~zC¬c, γC) ∝ (5.4)

αC

C − 1 + αC

M∏
m=1

NC¬c

yCcm

when the cluster index k does not appear among the indices in ~zC¬c. Here, NC
k
¬c

is the

number of columns assigned to the kth consensus column-cluster excluding the cth column,

and NC¬c

yCcm
is the number columns assigned to the same column-cluster as the cth column by

ϕm excluding the cth column.
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Figure 5.2: Unpermuted Synthetic Data Matrix Sampled from Mondrian Process (left) and
Corresponding Grid (right)

Table 5.1 summarizes notation used throughout the paper.

5.3 Mondrian Process-based Co-clustering Ensembles

The Mondrian Process-based Co-clustering Ensemble (MPCCE) model generalizes the grid-

style partitions of the DPCCE to allow different resolutions in different parts of the data

matrix. The non-regular partitions generated by the MP provide increased flexibility and

parsimony.

A sample drawn from a two-dimensional Mondrian Process partitions a rectangle using

axis-aligned cuts, as illustrated in Figure 5.2 (left). If we overlay this partition on a data

matrix, we can identify each block with a co-cluster consisting of entries falling inside the

block. The model replaces the independent row clusters and column clusters of the DPCCE

model with a set of co-clusters. It is more natural to deal with these co-clusters directly,

rather than with row- and column-clusters separately. To achieve the same level of resolution

with a grid-style partition would require a much less parsimonious model, as shown in Figure

5.2 (right).

5.3.1 MPCCE Generative Model

The MPCCE generative process, depicted in Figure 5.3, puts a two-dimensional MP prior on

partitions of the data matrix. Following [65], we treat a MP prior as generating a partition

M over the unit square [0, 1]× [0, 1]. Rows and columns of the data matrix are mapped to
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Table 5.1: Notation Description for DPCCE and MPCCE
Symbols Description

R number of rows in the data matrix ~X

C number of columns in the data matrix ~X
M number of base co-clusterings

ϕm the mth base co-clustering

Notation for DPCCE

Im number of row-clusters in ϕm
Jm number of column-clusters in ϕm
yRrm the row-cluster assigned to the rth row by ϕm, yRrm ∈ {1, · · · , Im}
yCcm the column-cluster assigned to the cth column by ϕm, yCcm ∈ {1, · · · , Jm}
~Y defined as 〈yrcm|r ∈ {1, · · · , R}, c ∈ {1, · · · , C},m ∈ {1, · · · ,M}〉
~θR∗lm the discrete distribution of observing the row-clusters of ϕm in the lth consensus row-cluster
~θC∗km the discrete distribution of observing the column-clusters of ϕm in the kth consensus column-cluster
~θC∗l defined as 〈θR∗lm |m ∈ {1, 2, · · · ,M}〉
~θC∗k defined as 〈θC∗km|m ∈ {1, 2, · · · ,M}〉
NR
im the number of rows assigned to the im

th row-cluster by ϕm
NC
jm the number of columns assigned to the jm

th column-cluster by ϕm
NR
l the number of rows assigned to the lth consensus row-cluster

NC
k the number of columns assigned to the kth consensus column-cluster

NR¬r
l the number of rows assigned to the lth consensus row-cluster excluding the rth row

NC¬c
k the number of columns assigned to the kth consensus column-cluster excluding the cth column

NR¬r

yRr·m
the number rows assigned to the same row-cluster as the rth row by ϕm excluding the rth row

NC¬c

yC·cm

the number of columns assigned to the same column-cluster of the cth column by ϕm,

excluding the cth column

Notation for MPCCE

Jm number of co-clusters in ϕm

M a Mondrian sample, which is a Mondrian style partition over the unit square,
and assume there are K blocks in M

yrcm
the co-cluster identity assigned to the entry (r, c) by the mth base clustering ϕm,
yrcm ∈ {1, · · · ,K}

~Y defined as 〈yrcm|r ∈ {1, · · · , R}, c ∈ {1, · · · , C},m ∈ {1, · · · ,M}〉
θmkjm the probability of assigning an entry in the kth block of M by ϕm to its jm

th co-cluster

~θmk
defined as 〈θmkjm |jm ∈ {1, 2, · · · , Jm}〉, which is drawn from a Jm-dimensional
symmetric Dirichlet distribution with hyperparameter βm

χRh the position of the hth horizontal cut of the total LR horizontal cuts in M
χCg the position of the gth vertical cut of the total LC vertical cuts in M
Nk the number of entries in the kth block of M

N y··m=jm
k the number of entries in both the kth block of M and the jm

th co-cluster of ϕm
N¬rk the number of entries in the kth block of M, excluding the entries in the rth row

N¬ck the number of entries in the kth block of M, excluding the entries in the cth column

N¬rk,y··m=jm

the number of entries in both the kth block of M and the jm
th co-cluster of ϕm,

excluding the entries in the rth row

N¬ck,y··m=jm

the number of entries in both the kth block of M and the jm
th co-cluster of ϕm,

excluding the entries in the cth column
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vertical and horizontal coordinates of the unit square through latent variables ξr and ηc. The

latent variables ~ξ = 〈ξr|r ∈ {1, · · · , R}〉 and ~η = 〈ηc|c ∈ {1, · · · , C}〉 act like permutations

of the rows and columns of the data matrix. The partition M and the latent variables ~ξ

and ~η determine a partition over the original data matrix.

As with DPCCE and standard practice in the clustering ensemble literature and model

the variables yrcm that denote the co-cluster ID assigned to the entry in row r and column c

by the mth base clustering ϕm. The co-cluster ID yrcm ranges from 1 to Jm, the number of

co-clusters output by ϕm. We assume that yrcm is sampled from a discrete distribution with

parameter ~θmk, namely p(yrcm = jm) = θmkjm , where k is the block of M corresponding to

row r and column c, and the parameter ~θmk is sampled from a symmetric Jm-dimensional

Dirichlet distribution.

Formally, the generative process for the base clusterings ~Y proceeds as follows:

• Draw a partition M∼MP (λ, [0, 1], [0, 1]); let K be the number of blocks in M

• Draw block parameters ~θmk ∼ Dir(βm), for m = 1, 2, · · · ,M and k = 1, 2, · · · ,K

• Draw latent row coordinates ξr ∼ Uniform[0, 1], for r = 1, 2, · · · , R

• Draw latent column coordinates ηc ∼ Uniform[0, 1], for c = 1, 2, · · · , C

• For each row r and column c:

– Let k be the block (co-cluster) of M to which (ξr, ηc) belongs

– For each base clustering ϕm, draw yrcm ∼ Discrete(~θmk)

5.3.2 Inference

We perform Markov Chain Monte Carlo (MCMC) simulation on the posterior distribution

over M, ~ξ, ~η, and ~θ. The joint distribution of observed base co-clustering results ~Y , hidden
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Figure 5.3: Mondrian Process-based Co-clustering Ensemble Model

variable M, ~ξ and ~η, and model parameters ~θ is:

p(~Y ,M, ~ξ, ~η, ~θ|β, λ) = p(M|λ)

(
R∏
r=1

p(ξr)

)(
C∏
c=1

p(ηc)

)
(5.5)

(
K∏
k=1

M∏
m=1

p(~θmk|β)

)(
R∏
r=1

C∏
c=1

M∏
m=1

p(yrcm|~θ,M, ξr, ηc)

)
.

We can integrate out the model parameter ~θ because of conjugacy:

p(~Y ,M, ~ξ, ~η|β, λ) = p(M|λ)

(
R∏
r=1

p(ξr)

)(
C∏
c=1

p(ηc)

)
(5.6)

( K∏
k=1

M∏
m=1

Γ(Jmβm)

Γ(Jmβm +Nk)

Jm∏
jm=1

Γ(βm +N y··m=jm
k )

Γ(βm)

)
,

where Nk denotes the number of entries in the kth block of M, and N y··m=jm
k denotes the

number of entries in both the kth block of M and the jm
th co-cluster of ϕm.

We perform Gibbs sampling on the row and column coordinates ~ξ and ~η. Since ξr and
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ηc have uniform prior distributions, their posterior distributions are piece-wise constant [65].

Define ~χR = 〈χRh |h ∈ {0, · · · , LR, LR + 1}〉, where χR0 = 0, χRh < χRh+1, χ
R
LR+1 = 1. The

value χRh is the position of the hth horizontal cut of the total LR horizontal cuts in M. The

conditional probability that ξr falls in the interval (χRh , χ
R
h+1) is:

p(χRh < ξr < χRh+1| ~X,M, ~ξ¬r, ~η, β, λ) ∝ (5.7)

(χRh+1 − χRh )

( K∏
k=1

M∏
m=1

Γ(Jmβm)

Γ(Jmβm +N¬rk )

Jm∏
jm=1

Γ(βm +N¬rk,y··m=jm
)

Γ(βm)

)
.

Similarly, let ~χC = 〈χCg |g ∈ {0, · · · , LC , LC + 1}〉, where χC0 = 0, χCg < χCg+1, χ
C
LC+1 = 1.

The value χCg is the position of the gth vertical cut of the total LC vertical cuts in M. The

conditional probability that ηc falls in the interval (χCg , χ
C
g+1) is:

p(χCg < ηc < χCg+1| ~X,M, ~ξ, ~η¬c, β, λ) ∝ (5.8)

(χCg+1 − χCg )

( K∏
k=1

M∏
m=1

Γ(Jmβm)

Γ(Jmβm +N¬ck )

Jm∏
jm=1

Γ(βm +N¬ck,y··m=jm
)

Γ(βm)

)
.

In these equations, the superscripts ¬r and ¬c mean that the rth row and cth column are

excluded in the respective counts. Accordingly, we have:

θmkjm ∝ βm +N y··m=jm
k . (5.9)

Reversible jump MCMC (RJMCMC) [22] is used to sample from the posterior distribution

p(M|~Y , ~ξ, ~η, β, λ). A state M consists of a tree of blocks and a vector ~ζ of parameters. The

parameters consist of a cost Ek and a location χk of the cut to each non-leaf block of the

tree. The location χk ranges between zero and τk, where τk is half the length of the block

perimeter. If χk is less than the width of the block, a vertical cut is made at position χk
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along the width; otherwise, a horizontal cut is made along the height of the block at position

equal to χk minus the block width.

Each MCMC proposal either removes a pair of sibling leaf blocks or adds a cut to a leaf

block. When a leaf block k is split into child blocks k′ and k′′, the parameter ~ζ is extended

to 〈~ζ,Ek, χk〉. When a split is removed, the associated cost Ek and location χk are removed

from 〈~ζ,Ek, χk〉 to obtain ~ζ. RJMCMC maintains reversibility of moves by adding auxiliary

parameters so that moves occur between spaces of equal dimensions. When proposing to add

a cut, we augment the current parameter ~ζt and define a bijection between the augmented

parameter 〈~ζt, u1, u2〉 and the proposed parameter ~ζt+1 = 〈~ζt, Ek, χk〉:

gaddt→t+1(〈~ζt, u1, u2〉) = 〈~ζt, Ek, χk〉. (5.10)

Similarly, when proposing to remove a cut, we augment the proposed state ~ζt+1 and define a

bijection between the current state ~ζt and the augmented proposed state 〈~ζt+1, u1, u2〉:

gremovet→t+1 (~ζt) = (5.11)

gremovet→t+1 (〈~ζt+1, Ek, χk〉) = 〈~ζt+1, u1, u2〉.

The proposal distribution Q(Mt+1;Mt) chooses with equal probability whether to add or

remove a cut, and uses a uniform discrete distribution to sample the block at which to

add or remove the cut. When a cut at block k is being added, Q(Mt+1;Mt) proposes a

location χk from a uniform distribution and a cost Ek from an exponential distribution

with parameter τk. When a cut at block k is being removed, Q(Mt+1;Mt) sets the new

parameter ~ζt+1 deterministically by removing the cost Ek and location χk from the current

state ~ζt, and the auxiliary parameters are then sampled from a distribution q(u1, u2). The

parameter u1 is sampled from the same exponential distribution used to sample the cost of

a new cut at k, and the parameter u2 is sampled from the same uniform distribution used
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to sample the location of a new cut at k.

Following [22], the proposal to remove a cut is accepted if α drawn from Uniform(0, 1)

satisfies:

α < min

{
1, (5.12)

p(Mt+1|~Y , ~ξ, ~η, β, λ)

p(Mt|~Y , ~ξ, ~η, β, λ)

Q(Mt;Mt+1)

Q(Mt+1;Mt)q(u1, u2)

∣∣∣∣∣∂〈~ζt+1, u1, u2〉
∂~ζt

∣∣∣∣∣
}
,

where
∣∣∣∂〈~ζt+1,u1,u2〉

∂~ζt

∣∣∣ is the Jacobian of gremovet→t+1 (~ζt). The acceptance probability for adding a

cut is obtained in a similar manner. See [22] for details on RJMCMC.

To calculate the acceptance ratio in Equation (5.12), we need to calculate two ratios

Q(Mt;Mt+1)

Q(Mt+1;Mt)q(~Ut+1)
and p(Mt+1|~Y ,~ξ,~η,β,λ)

p(Mt|~Y ,~ξ,~η,β,λ)
. The first of these involves only the proposal distri-

butions, and is straightforward to calculate. The second of these, the ratio of posterior

probabilities of Mt+1 and Mt, is equal to the prior odds ratio times the likelihood ratio:

p(Mt+1|~Y , ~ξ, ~η, β, λ)

p(Mt|~Y , ~ξ, ~η, β, λ)
= (5.13)

p(Mt+1|λ)

p(Mt|λ)

L(Mt+1)

L(Mt)
,
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where L(Mt+1) and L(Mt) are the likelihood of Mt+1 and Mt, which are defined as:

L(Mt+1) = (5.14)

Kt+1∏
kt+1=1

M∏
m=1

Γ(Jmβm)

Γ(Jmβm +Nkt+1)

Jm∏
jm=1

Γ(βm +N y··m=jm
kt+1

)

Γ(βm)
,

L(Mt) = (5.15)

Kt∏
kt=1

M∏
m=1

Γ(Jmβm)

Γ(Jmβm +Nkt)

Jm∏
jm=1

Γ(βm +N x··m=jm
kt

)

Γ(βm)
.

For a proposal to remove a cut of block k into blocks k′ and k′′, the prior odds ratio is

given by:

p(Mt+1|λ)

p(Mt|λ)
=

ωk
p(χk)p(Ek)ωk′ωk′′

, (5.16)

where ωk is the probability that sampling terminates with no cut at block k; this happens

when the cost Ek exceeds the budget λk. The cut cost Ek is generated from an exponential

distribution with parameter τk. Thus, the probability of terminating with no split at block

k is given by:

ωk = (5.17)∫ +∞

λk

τk exp(−τke)de = exp(−τkλk).

Similarly, ωk′ = exp(−τk′λk′) and ωk′′ = exp(−τk′′λk′′). Note that a block’s budget is equal

to its parent’s budget minus the cost of cutting the parent. Thus, λ′k = λ′′k = λk − Ek; and

λk can be computed recursively from the budgets and cut costs of its ancestors.

A similar calculation gives the acceptance ratio for adding a random cut to Mt to

generate Mt+1. The inference algorithm for MPCCE is given in Algorithm 3.
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Algorithm 3 Inference for MPCCE

Input λ, β and ~Y ; randomly initialize ~ξ and ~η
t← 0
M0 has no cut
budget← λ
repeat
t← t+ 1
Propose Mt+1 conditioned on Mt by either adding or removing a cut
Accept or reject Mt+1 according to Equation (5.12)
if reject then
Mt+1 ←Mt

else
Mt+1 ←Mt+1

end if
Gibbs sample ~ξ and ~η according to Equation (5.7) and (5.8)

until Stopping criteria met

Output the final M, ~ξ and ~η

5.4 Empirical Evaluation

We compared DPCCE and MPCCE with other generative co-clustering approaches: Latent

Dirichlet Co-clustering (LDCC) [70,85], Dirichlet Process-based Co-clustering (DPCC) [49],

and Mondrian Process-based Co-clustering (MPCC) [65].

5.4.1 Data

We conducted evaluation of DPCCE and MPCCE on both synthetic and real data. Following

[65], we synthetically generated non grid-style clusters by sampling from a Mondrian process

on the unit square. We then generated 250 row and 250 column coordinates from a uniform

distribution, and set the data value to the cluster ID for the block at those coordinates.

Finally, we permuted the rows and columns randomly to form the final data matrix. We also

used two real datasets for DPCCE and MPCCE: (a) MovieLens1 is a movie recommendation

dataset containing 100,000 ratings in a sparse data matrix for 1682 movies rated by 943 users.

(b) Jester2 is a joke rating dataset. The original dataset contains 4.1 million continuous

ratings of 100 jokes from 73,421 users. Following [70], we chose 1000 users who rated almost

1http://www.grouplens.org/node/73
2http://goldberg.berkeley.edu/jester-data/
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all jokes, discretized the ratings, and used this dense data matrix in our experiment. For

both real datasets, we held out 25% of the data for testing.

5.4.2 Methodology

We compared DPCCE and MPCCE with other generative co-clustering approaches: Latent

Dirichlet Co-clustering (LDCC) [70,85], Dirichlet Process-based Co-clustering (DPCC) [49],

and Mondrian Process-based Co-clustering (MPCC) [65]. LDCC requires specification of

the numbers of row- and column-clusters. For the synthetic dataset, we varied the numbers

of both row- and column-clusters from 5 to 10. For MovieLens, we set the number of user

clusters to 20, the number of occupation categories, and the number of movie clusters to 19,

the number of genres. For Jester, we used 5 joke clusters and 20 user clusters; this is the

number of clusters given in the data description. The pseudo-counts of the DP priors for

both rows and columns in DPCC and DPCCE are assumed a Gamma prior, as for DPCE.

We ran DPCC and MPCC 5 times with different random initializations, to generate five

base co-clustering results. We then ran DPCCE and MPCCE based on the DPCC and

MPCC results, respectively. We repeated DPCCE and MPCCE 5 times, each time with five

different base co-clusterings. For MPCCE and MPCC we set the budget λ = 1, and let µd

be Lebesgue measure. We ran DPCC, DPCCE, MPCC and MPCCE for 1000 iterations.

We evaluated the models using perplexity. For the two real datasets, we report perplexity

on both training and test sets; for the synthetic data, we report only training perplexity. If

the chain mixes well and is run sufficiently long, each sample of 5 DPCC or MPCC results

used to fit the DPCCE and MPCCE models can be viewed as a sample from the DPCC or

MPCC posterior distribution, respectively. We therefore also evaluated a model averaging

approach, in which we calculated the perplexity based on the average of the five DPCC or

MPCC likelihood results.
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Table 5.2: Perplexity Comparison on Training Datasets

Synthetic MovieLens Jester

LDCC 4.782 (0.025) 3.045 (0.026) 18.896 (0.072)

DPCC 3.723 (0.026) 2.797 (0.028) 15.984 (0.073)

Model Avg. of DPCC 3.687 (0.039) 2.312 (0.040) 14.223 (0.115)

DPCCE 3.573 (0.037) 2.130 (0.033) 13.677 (0.107)

MPCC 1.626 (0.023) 2.473 (0.043) 12.035 (0.088)

Model Avg. of MPCC 1.486 (0.046) 2.386 (0.051) 10.968 (0.142)

MPCCE 1.255 (0.038) 2.124 (0.037) 9.785 (0.122)

5.4.3 Evacuation Results of DPCCE and MPCCE

We present two main experimental comparisons: (a) perplexity comparisons on the synthetic

data and the training sets for the real datasets; and (b) perplexity comparisons on the test

sets for the real datasets.

Perplexity Comparison on Training Datasets

Figure 5.2 (left) shows the original non-grid style synthetic data matrix. After permuting its

rows and columns, this matrix was input to the base co-clustering algorithms for DPCCE

and MPCCE. Figure 5.2 (right) shows the corresponding grid-style partition of the original

synthetic data matrix. Clearly, the grid-style partition of DPCCE over-segments the data,

whereas the partition provided by MPCCE reflects the actual data distribution.

Table 5.2 shows the perplexity results for the training data. Each entry shows an

average perplexity over five runs3, with the standard deviation of the average shown in

parentheses. The benefit of the non-grid partition is demonstrated by the improvement

of MPCC and MPCCE over LDCC, DPCC and DPCCE. The efficacy of the ensemble

approach is demonstrated by the improvement of MPCCE and DPCCE over MPCC and

DPCC, respectively. The model averaging estimates perform better than their respective

non-ensemble counterparts, but not as well as the ensemble estimates. All nonparametric

approaches perform better than LDCC. Note that for MovieLens, MPCCE performs only

2% better than DPCCE, a difference that cannot be distinguished from sampling noise. This

3For DPCC and MPCC, the estimate for each run is the average of the results for the five base co-clusterings.
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Figure 5.4: DPCC and DPCCE Likelihood Comparison

may indicate that a grid structure of independent user and movie groups provides a good fit

to the MovieLens data. For the Jester dataset, the perplexities are relatively high for all

models. This is due to the large number of missing values in this dataset.

All DPCCE and MPCCE experiments were run on a CentOS 5.5 server running Linux

on a 4-core CPU with 4GB memory. The running time for 1000 iterations of MPCC was

approximately 4 hours on MovieLens and 3 hours on Jester. For 1000 iterations of MPCCE,

the running time was about 6 hours on MovieLens and 4 hours on Jester. For DPCC and

DPCCE, 1000 iterations ran about 3 hours.

Figure 5.4 plots the log-likelihoods on the MovieLens dataset for 5 DPCC runs and

one DPCCE run initialized with iteration 1000 of the 5 DPCC runs. Figure 5.5 plots the

log-likelihoods on the Jester dataset for 5 MPCC runs and one MPCCE run initialized with

iteration 1000 of the 5 MPCC runs. We also continued the DPCC and MPCC runs for

another 1000 iterations to compare with DPCCE and MPCCE, respectively. All chains

of DPCC and MPCC appear to have reached different local optima. The local optimum

for DPCCE has higher likelihood than all five DPCC local optima, similar for MPCCE

v.s. MPCC. The Potential Scale Reduction Factor MCMC diagnostic [19] for the 5 DPCC

log-likelihood values plotted in Figure 5.4 is 2.9855, for the 5 MPCC log-likelihood values
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Figure 5.5: MPCC and MPCCE Likelihood Comparison

Table 5.3: Perplexity Comparison on Test Datasets

MovieLens Jester

LDCC 3.247 (0.052) 23.743 (0.236)

DPCC 2.908 (0.055) 20.174 (0.219)

Model Avg. of DPCC 2.838 (0.079) 19.165 (0.421)

DPCCE 2.707 (0.060) 18.092 (0.458)

MPCC 2.793 (0.067) 13.781 (0.263)

Model Avg. of MPCC 2.738 (0.089) 13.433 (0.379)

MPCCE 2.626 (0.084) 12.036 (0.438)

plotted in Figure 5.5 is 3.0043, which is also indicative of non-convergence. The other DPCC,

DPCCE, MPCC and MPCCE runs followed the same pattern. These results suggest that

the ensemble method finds superior local optima for samplers that mix poorly. Note running

DPCCE and MPCCE for 1000 iterations requires less computation time than continuing the

5 DPCC and MPCC runs for a second 1000 iterations, and results in superior local optima.

Perplexity Comparison on Test Datasets

Predictive performance was evaluated by measuring perplexity on the test data for the two

real datasets. Table 5.3 shows the prediction comparison results. Again, the results are

reported as an average perplexity over multiple predictions, with the standard deviation of
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each average in parentheses.

Again, all nonparametric methods perform better than LDCC; clustering ensembles

perform better than model averaging, which performs better than single-run methods;

and the MP methods perform better than grid-style clustering. Statistical significance

tests indicate that the improvement due to the ensemble method is much greater than

expected from chance variation. Mann-Whitney U -test [48] of the hypothesis that the

median perplexities are the same were significant at p < 10−2 for MPCC vs MPCCE and for

DPCC vs DPCCE, on both the MovieLens and Jester data sets. Although the differences

remain smaller for MovieLens than for Jester, the improvement in both MovieLens and

Jester due to the non-grid partitions of the MP exceeds sampling error. That co-clustering

ensembles perform better than model averaging on both training and test sets for all data

sets is consistent with the hypothesis that poor mixing of the MCMC algorithms for DPCC

and MPCC kept the chains near local optima of the posterior distribution, and that the

ensemble algorithms can combine information from multiple local optima to find a superior

co-clustering.

From Tables 5.2 and 5.3, one can observe that MPCCE doesn’t improve much over

DPCCE on the training and test perplexities for the MovieLens dataset, whereas MPCCE

does improve significantly over DPCCE on the training and test perplexities for the Jester

dataset. One possible reason is that for Jester, the kd-tree style partition fits the dataset

much better than the grid-style partition. Figure 6.2 shows the co-cluster structures learned

from MovieLens and Jester. One can observe that MovieLens depicts a grid-style structure,

where Jester does not. Further, both the training and test perplexities of the MovieLens

are much higher than those of Jester, for all models. This indicates that all models fit the

MovieLens data better than the Jester data4. This is because Jester is a very sparse dataset

(i.e., with a lot of missing values), much sparser than MovieLens, and the sparser a dataset

is, the harder is to fit a model.

4Because perplexity is a normalized version of a likelihood, so one can directly compare perplexities of
different datasets.
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Chapter 6: Feature Enriched Nonparametric Bayesian

Co-clustering

6.1 Introduction

Existing co-clustering techniques typically only leverage the entries of the given contingency

matrix to perform the two-way clustering. As a consequence, they cannot predict the

interaction values for new objects. Predictions can only be made for objects already

observed (e.g., for a protein and a molecule used during training, although not necessarily

in combination). This greatly limits the applicability of current co-clustering approaches.

In many applications additional features associated to the objects of interest are available,

e.g., sequence information for proteins. Such features can be leveraged to perform predictions

on new data. Infinite Hidden Relational Model (IHRM) [86] has been proposed to leverage

features associated to the rows and columns of the contingency matrix to forecast relationships

among previously unseen data. Although, the authors in [86] introduce IHRM from a

relational learning point of view, IHRM is essentially a co-clustering model, which overcomes

the aforementioned limitations of existing co-clustering techniques.

In particular, IHRM is a nonparametric Bayesian modeling of the data, that learns the

number of row and column clusters from the given samples. This is achieved by adding

Dirichlet Process priors on the rows and columns of the contingency matrix. As such, IHRM

does not require the a priori specification of the numbers of row and column clusters in

the data. The resulting nonparametric nature of IHRM, combined with its capability of

leveraging features and making predictions for new objects, enable it to be used effectively

in a large number of applications.

There are some Bayesian co-clustering models are related to IHRM, but none of them

makes use of features associated to the rows and columns of the contingency matrix. A
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nonparametric Bayesian co-clustering (NBCC) approach has been proposed in [49]. IHRM

can be viewed as an extension of NBCC, where features associated to rows and columns are

used. Such features enable IHRM to predict entries for unseen rows and columns. Many

applications can greatly benefit from this prediction capability. On the contrary, existing

Bayesian co-clustering models, e.g., BCC [70], LDCC [85], and NBCC [49], can handle

missing entries only for already observed rows and columns (e.g., for a protein and a molecule

used during training, although not necessarily in combination).

The authors in [86] have applied IHRM to collaborative filtering [66]. Although co-

clustering techniques have also been applied to collaborative filtering, such as the nearest

bi-clustering method [72], evolutionary co-clustering for online collaborative filtering [38] and

information-theoretic co-clustering [20], none of these techniques involve features associated

to rows or columns of the data matrix. IHRM, however, has the advantages of being

nonparametric and of leveraging features.

While, in the original work of IHRM [86], the authors didn’t explicitly evaluate how much

improvement will achieve if leveraging features and making predictions for unseen objects.

In this chapter, we re-interpret IHRM from the co-clustering point of view, and we rename

IHRM as Feature Enriched Dirichlet Process Co-clustering (FE-DPCC). Furthermore, we

focus on the empirical evaluation of forecasting relationships between previously unseen

objects by leveraging object features. We conducted several experiments on a variety

of relational data, including protein-molecule interaction data. The empirical evaluation

demonstrates the effectiveness of the feature-enriched approach and identifies the conditions

under which the use of features is most useful, i.e., with sparse data.

6.2 Feature Enriched Dirichlet Process Co-clustering

6.2.1 FE-DPCC Model

The observed data ~X of FE-DPCC are composed of three parts: the observed row features

~XR, the observed column features ~XC , and the observed relational features ~XE between
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Figure 6.1: Feature Enriched Dirichlet Process Co-clustering Model

rows and columns. If there are R rows and C columns, then ~XR = 〈~xRr |r = {1, · · · , R}〉,

~XC = 〈~xCc |c = {1, · · · , C}〉, and ~XE = 〈xErc|r = {1, · · · , R}, c = {1, · · · , C}〉. ~XE may have

missing data, i.e., some entries may not be observed.

FE-DPCC is a generative model and it assumes two independent DPM priors on rows

and columns. We follow a stick-breaking representation to describe the FE-DPCC model.

Specifically, FE-DPCC first assumes one DP prior, Dir(αR0 , G
R
0 ), for rows, and one DP

prior, Dir(αC0 , G
C
0 ), for columns; next draws row-cluster parameters ~θ∗Rk from GR0 , for

k = {1, · · · ,∞}, column-cluster parameters ~θ∗Cl from GC0 , for l = {1, · · · ,∞}, and co-

cluster parameters ~θ∗Ekl from GE0 , for each combination of k and l1; then draws row mixture

proportion ~πR and column mixture proportion ~πC as defined in Eq. 2.5. For each row r and

each column c, FE-DPCC draws the row-cluster indicator zRr and column-cluster indicator

zCc according to ~πR and ~πC , respectively. Further, FE-DPCC assumes the observed features

of each row r and each column c are drawn from two parametric distributions F (·|~θ∗Rk ) and

F (·|~θ∗Cl ), respectively, and each entry, xErc, of the relational feature matrix is drawn from a

parametric distribution F (·|~θ∗Ekl ), where zRr = k and zCc = l.

The generative process for FE-DPCC is:

1Every co-cluster is indexed by a row-cluster ID and a column-cluster ID. Thus, we denote a co-cluster

defined by the kth row-cluster and the lth column-cluster as (k, l).
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• Draw vRk ∼ Beta(1, αR0 ), for k = {1, · · · ,∞} and calculate ~πR as in Eq (2.5)

• Draw ~θ∗Rk ∼ GR0 , for k = {1, · · · ,∞}

• Draw vCl ∼ Beta(1, αC0 ), for l = {1, · · · ,∞} and calculate ~πC as in Eq (2.5)

• Draw ~θ∗Cl ∼ GC0 , for l = {1, · · · ,∞}

• Draw ~θ∗Ekl ∼ GE0 , for k = {1, · · · ,∞} and l = {1, · · · ,∞}

• For each row r = {1, · · · , R}:

– Draw zRr ∼ Discrete(~πR)

– Draw ~xRr ∼ F (·|~θ∗R
zRr

)

• For each column c = {1, · · · , C}:

– Draw zCc ∼ Discrete(~πC)

– Draw ~xCc ∼ F (·|~θ∗C
zCc

)

• For each entry ~xErc:

– Draw ~xErc ∼ F (·|~θ∗E
zRr z

C
c

)

The FE-DPCC model is illustrated in Figure 6.2.1.

6.2.2 Inference

The likelihood of the observed data is:

p( ~X|~ZR, ~ZC , ~θ∗R, ~θ∗C , ~θ∗E) =

(
R∏
r=1

f(~xRr |~θ∗RzRr )

)
(6.1)

(
C∏
c=1

f(~xCc |~θ∗CzCc )

)(
R∏
r=1

C∏
c=1

f(xErc|~θ∗EzRr zCc )

)
,
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where f(·|~θ∗Rk ), f(·|~θ∗Cl ) and f(·|~θ∗Ekl ) denote the probability density (or mass) functions

of F (·|~θ∗Rk ), F (·|~θ∗Cl ) and F (·|~θ∗Ekl ), respectively; g(·|ζR), g(·|ζC) and g(·|ζE) denote the

probability density functions of GR0 , GC0 and GE0 , respectively; ~ZR = 〈zRr |r = {1, · · · , R}〉;

~ZC = 〈zCc |c = {1, · · · , C}〉; ~θ∗R = 〈~θ∗Rk |k = {1, · · · ,∞}〉; ~θ∗C = 〈~θ∗Cl |l = {1, · · · ,∞}〉; and

~θ∗E = 〈~θ∗Ekl |k = {1, · · · ,∞}, l = {1, · · · ,∞}〉.

The marginal likelihood obtained by integrating out the model parameters ~θ∗R, ~θ∗C , and

~θ∗E is:

p( ~X|~ZR, ~ZC , GR0 , GC0 , GE0 ) = (6.2)(
R∏
r=1

∫
f(~xRr |~θ∗RzRr )g(~θ∗RzRr

|ζR)d~θ∗RzRr

)
(

C∏
c=1

∫
f(~xCc |~θ∗CzCc )g(~θ∗CzCc

|ζC)d~θ∗CzCc

)
(

R∏
r=1

C∏
c=1

∫
f(xErc|~θ∗EzRr zCc )g(~θ∗EzRr zCc

|ζE)d~θ∗EzRr zCc

)

We assume F (·|~θ∗Rk ) and GR0 , F (·|~θ∗Cl ) and GC0 , and F (·|~θ∗Ekl ) and GE0 are all pairwise

conjugate. Thus, there is a closed form expression for the marginal likelihood (6.2).

The conditional distribution for sampling the row-cluster indicator variable zRr for the

rth row ~xRr is as follows. For populated row-clusters k ∈ {ZRr′}r′={1,··· ,r−1,r+1,··· ,R},

p(zRr = k|~xRr , {xErc}c∈{1,··· ,C}, ~XR¬r, ~XE¬r, ~ZR¬r) (6.3)

∝ N¬rk
R− 1 + αR0

∫
f(~xRr |~θ∗Rk )g(~θ∗Rk |ζ∗R¬rk )d~θ∗Rk

×
C∏
c=1

(∫
f(xErc|~θ∗EkzCc )g(~θ∗EkzCc

|ζ∗E¬rkzCc
)d~θ∗EkzCc

)
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where ¬r means excluding the rth row, N¬rk is the number of rows assigned to the kth

row-cluster excluding the rth row, ζ∗R¬rk is the hyperparameter of the posterior distribution

of the kth row-cluster parameter ~θ∗Rk given all rows assigned to the kth row-cluster excluding

the rth row, and ζ∗E¬r
kzCc

is the hyperparameter of the posterior distribution of the co-

cluster (k, zCc ) given all entries assigned to it excluding the entries in the rth row. When

k /∈ {zRr′}r′={1,··· ,r−1,r+1,··· ,R}, i.e., zRr is being set to its own singleton row-cluster, the

conditional distribution becomes:

p(zRr = k|~xRr , {xErc}c∈{1,··· ,C}, ~XR¬r, ~XE¬r, ~ZR¬r) (6.4)

∝ αR0
R− 1 + αR0

∫
f(~xRr |~θ∗Rk )g(~θ∗Rk |ζR)d~θ∗Rk

×
C∏
c=1

(∫
f(xErc|~θ∗EkzCc )g(~θ∗EkzCc

|ζ∗E¬rkzCc
)d~θ∗EkzCc

)

The conditional distribution for sampling the column-cluster indicator variable zCc

for the cth column ~xCc is obtained analogously. For populated row-clusters l ∈

{ZCc′ }c′={1,··· ,c−1,c+1,··· ,C},

p(zCc = l|~xCc , {xErc}r∈{1,··· ,R}, ~XC¬c, ~XE¬c, ~ZC¬c) (6.5)

∝ N¬cl
C − 1 + αC0

∫
f(~xCc |~θ∗Cl )g(~θ∗Cl |ζ∗C¬cl )d~θ∗Cl

×
R∏
r=1

(∫
f(xErc|~θ∗EzRr l)g(~θ∗EzRr l

|ζ∗E¬czRr l
)d~θ∗EzRr l

)

where ¬c means excluding the cth column, N¬rl is the number of columns assigned to the

lth column-cluster excluding the lth column, ζ∗C¬cl is the hyperparameter of the posterior

distribution of the lth column-cluster parameter ~θ∗Cl given all columns assigned to the lth
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column-cluster excluding the cth column, and ζ∗E¬c
zRr l

is the hyperparameter of the posterior

distribution of the co-cluster (zRr , l) given all entries assigned to it excluding the entries

in the cth column. If zCc /∈ {zCc′ }c′={1,··· ,c−1,c+1,··· ,C}, i.e., zCc is being assigned to its own

singleton column-cluster, the conditional distribution becomes:

p(zCc = l|~xCc , {xErc}r∈{1,··· ,R}, ~XC¬c, ~XE¬r, ~ZC¬c) (6.6)

∝ αC0
C − 1 + αC0

∫
f(~xCc |~θ∗Cl )g(~θ∗Cl |ζC)d~θ∗Cl

×
R∏
r=1

(∫
f(xErc|~θ∗EzRr l)g(~θ∗EzRr l

|ζ∗E¬czRr l
)d~θ∗EzRr l

)

Table 6.1 summarizes the notation used in this section.

6.3 Experimental Evaluation

6.3.1 Datasets

We conducted experiments on two rating datasets and two protein-molecule interaction

datasets. MovieLens2 is a movie recommendation dataset containing 100,000 ratings in a

sparse data matrix for 1682 movies rated by 943 users. Jester3 is a joke rating dataset.

The original dataset contains 4.1 million continuous ratings of 140 jokes from 73,421 users.

We chose a subset containing 100,000 ratings. Following [70], we uniformly discretized the

ratings into 10 bins. The protein-molecule interaction datasets are described in Section 6.3.2

below. Table 6.2 summarizes the characteristics of the four datasets.

2http://www.grouplens.org/node/73
3http://goldberg.berkeley.edu/jester-data/
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6.3.2 Protein-Molecule Interaction Study

Small organic molecules (a.k.a. ligands) can bind to different proteins and modulate

(inhibit/activate) their functions. Understanding these interactions provides insight into

the underlying biological processes and is useful for designing therapeutic drugs [67, 76].

Small molecules can work rapidly and reversibly, can modulate a single function of a

multifunction protein, and can disrupt protein-protein interactions. In this work we use

the FE-DPCC approach to co-cluster the relational data obtained from different protein-

molecule interaction studies along with standard features extracted for a protein target and

the chemical molecules.

The first protein-molecule interaction dataset (MP14) consists of G-protein coupled

receptor (GPCR) proteins and their interaction with small molecules [32]. GPCRs are

used widely in the pharmaceutical industry as a therapeutic target. We used sequence

features and hierarchical features of proteins for the MP1 dataset. When using protein

sequence features, we extracted k-mer features. These interactions are the product of an

assay (biological experiment) that evaluates whether a particular protein target is active

against a molecule. In our dataset MP1, we had 4051 interactions between 166 proteins and

2687 molecules. The use of targets restricted to a specific group of proteins (GPCRs) is

similar to a chemogenomics approach where the assumption is that proteins belonging to

the same family have a similarity in their interaction or activity profile.

We also evaluated our algorithm on an additional protein-molecule interaction dataset

(MP25), used previously in [57]. This dataset is different from MP1, in the sense that the

protein targets belong to a more general class and are not restricted to GPCRs. We used

protein sequence features and extracted 5-mer features. In this dataset we had 154 proteins,

45408 molecules, and a total of 154× 45408 interactions. MP2 is very sparse; we therefore

selected the subset of molecules that interact with at least two proteins, resulting in 2876

molecules and a total of 7146 positive interactions.

4http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/
5http://pubchem.ncbi.nlm.nih.gov/
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6.3.3 Methodology

For fair comparison, we compared FE-DPCC with a variant of NBCC, called Dirichlet

Process Co-clustering (DPCC), which assumes two independent Dirichlet Process priors on

rows and columns, as FE-DPCC does. FE-DPCC uses row and column features, whereas

DPCC does not. In the original work of NBCC [49], the authors used Pitman-Yor Process

priors, a generalization of Dirichlet Processes. We ran 1000 iterations of Gibbs sampling for

both FE-DPCC and DPCC.

We used perplexity as an evaluation metric on the test data. The perplexity of a dataset

D is defined as perplexity(D) = exp
(
−L(D)

N

)
, where L(D) is the log-likelihood of D, and

N is the number of data points in D. The higher the log-likelihood, the lower the perplexity,

and the better a model fits the data. For models that provide probabilistic predictions of

test data, perplexity is a better metric than accuracy, because it takes into account the

model’s confidence in its prediction – assigning greater penalty when the model is more

certain of its erroneous response.

The relational features in our data are discrete. We assume f(·|~θ∗Ekl ) is a categorical

distribution, denoted as Cat(·|~θ∗Ekl ), and g(~θ∗Ekl |ζE) is a Dirichlet distribution, denoted as

Dir(~θ∗Ekl |~ϕ), with ζE = ~ϕ. Because of conjugacy, we can marginalize out ~θ∗Ekl . Without loss of

generality, we assume that f(·|~θ∗Ekl ) is a D-dimensional categorical distribution with support

{1, · · · , D}, and we denote the Dirichlet hyperparameter as ζE = ~ϕ = 〈ϕd|d = {1, · · · , D}〉.

The predictive distribution of the co-cluster (k, l) observing a new entry xEr′c′ = d, d ∈

{1, · · · , D}, is:

p(xEr′c′ = d|ζ∗Ekl , zRr′ = k, zCc′ = l) = (6.7)∫
f(xEr′c′ = d|~θ∗Ekl )g(~θ∗Ekl |ζ∗Ekl )d~θ∗Ekl ) =

∫
Cat(xEr′c′ = d|~θ∗Ekl )Dir(~θ∗Ekl |~ϕ∗kl)d~θ∗Ekl ) ∝ N d

(k,l) + ϕd
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where ~ϕ∗kl is the posterior hyperparameter of the Dirichlet distribution of the co-cluster (k, l),

and N d
(k,l) is the number of entries assigned to the co-cluster (k, l) and equal to d.

In the MovieLens dataset, rows represent users and columns represent movies. Row

features are age, gender, and occupation; column features form a 19-dimensional binary

vector where a non-zero dimension means the movie belongs to the corresponding genre, for

a total of 19 genres. We assumed independence among the row features and the column

features conditional on row- and column-clusters. We modeled age as drawn from a Poisson

distribution, Poi(·|λ), with a conjugate Gamma prior, Gamma(λ|%, ς). We modeled gender

as drawn from a Bernoulli distribution, Ber(·|ϑ), with a conjugate Beta prior Beta(ϑ|κ, $).

The occupation feature is categorical, modeled as Cat(·|~φ), with Dirichlet prior, Dir(~φ|~ϕ).

Thus, the row feature parameter is given by ~θ∗Rk = 〈λ∗k, ϑ∗k, ~φ∗k〉, and the row feature

prior hyperparameter is ζR = 〈%, ς, ϑ, ~ϕ〉. We denote the feature vector of a new user

as ~xRr′ = 〈ar′ , gr′ , or′〉, where ar′ , gr′ , and or′ represent the age, gender and occupation,

respectively. The predictive distribution of the kth row-cluster observing a new user, ~xRr′ , is:

p(~xRr′ |%∗k, ς∗k ,κ∗k, $∗k, ~ϕ∗k, zRr′ = k) = (6.8)(∫
Poi(ar′ |λ∗k)Gamma(λ∗k|%∗k, ς∗k)dλ∗k

)
(∫

Ber(gr′ |ϑ∗k)Beta(ϑ∗k|κ∗k, $∗k)dϑ∗k
)

(∫
Cat(or′ |~φ∗k)Dir(~φ∗k|~ϕ∗k)d~φ∗k

)

where %∗k, ς∗k , κ∗k, $∗k, and ~ϕ∗k are the posterior hyperparameters (k indices the row-clusters).

Denote ζ∗Rk = 〈%∗k, ς∗k ,κ∗k, $∗k, ~ϕ∗k〉. We also assume that features associated to movies

(columns) are generated from a Multinomial distribution, Mul(·|~ψ), with Dirichlet prior,

Dir(~ψ|~ϕ). Accordingly, ~θ∗Cl = ~ψ∗l , and ζC = ~ϕ. The predictive distribution of the lth
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column-cluster observing a new movie, ~xCc′ , is:

p(~xCc′ |~ϕ∗l , zCc′ = l) =

∫
Mul(~xCc′ |~ψ∗l )Dir(~ψ∗l |~ϕ∗l )d~ψ∗l

where ζ∗Cl = ~ϕ∗l is the posterior hyperparameter of the Dirichlet distribution (l indices the

column-clusters).

In the Jester dataset, rows represent users and columns represent jokes. No features are

associated to users, thus row-clusters cannot predict an unseen user. We used a bag-of-word

representation for joke features, and assumed each joke feature vector is generated from

a Multinomial distribution, Mul(·|~ψ), with a Dirichlet prior, Dir(~ψ|~ϕ). The predictive

distribution of the lth column-cluster observing a new joke, ~xCc′ , is:

p(~xCc′ |~ϕ∗l , zCc′ = l) =

∫
Mul(~xCc′ |~ψ∗l )Dir(~ψ∗l |~ϕ∗l )d~ψ∗l

For the two protein-molecule interaction datasets, rows represent molecules and columns

represent proteins. We extracted k-mer features from protein sequences. For MP1, we also

used hierarchical features for proteins. We used a graph-fragment-based feature represen-

tation that computes the frequency of different length cycles and paths for each molecule.

These graph-fragment-based features were derived using a chemoinformatics toolkit called

AFGEN [82] (default parameters were used) and are known to capture structural aspects of

molecules effectively. In both cases, we assumed each protein is generated from a Multinomial

distribution, Mul(·|~ψp), with a Dirichlet prior, Dir(~ψp|~ϕp). We also assumed each molecule

is generated from a Multinomial distribution, Mul(·|~ψm), with a Dirichlet prior, Dir(~ψm|~ϕm).

The predictive distribution of the kth row-cluster observing a new molecule, ~xRr′ , is:

p(~xRr′ |~ϕ∗mk , zRr′ = k) =

∫
Mul(~xRr′ |~ψ∗mk )Dir(~ψ∗mk |~ϕ∗mk )d~ψ∗mk
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The predictive distribution of the lth column-cluster observing a new protein, ~xCc′ , is:

p(~xCc′ |~ϕ∗pl , zCc′ = l) =

∫
Mul(~xCc′ |~ψ∗pl )Dir(~ψ∗pl |~ϕ

∗p
l )d~ψ∗pl

6.3.4 Results

We performed a series of experiments to evaluate the performance of FE-DPCC across the

four datasets. All experiments were performed five times, and we report the average (and

standard deviation) perplexity across the five runs. The experiments were performed on an

Intel four core, Linux server with 4GB memory. The average running time for FE-DPCC

was 1, 3, 3.5 and 2.5 hours on the MovieLens, Jester, MP1 and MP2 datasets, respectively.

Feature Enrichment Evaluation

Table 6.3 shows the average perplexity values (and standard deviations) across five runs for

the four datasets on the test data. To analyze the effect of new rows and columns on the

prediction capabilities of the algorithms, we split each test dataset into subsets based on

whether the subset contains new rows or columns.

Table 6.3 shows that the overall perplexity of FE-DPCC is lower than that of DPCC on

all datasets, with an improvement of 12%, 1.5%, 84% and 81% for MovieLens, Jester, MP1

and MP2, respectively. In particular, as expected, FE-DPCC is significantly better than

DPCC on the portion of the test data that contains unseen rows or columns, or both. These

test sets consist of entries for rows and columns that are independent and not included in

the training set. The DPCC algorithm does not use features; as such it can predict entries

for the new rows and columns using prior probabilities only. In contrast, the FE-DPCC

algorithm leverages features along with prior probabilities; this enables our approach to

predict values for the independent test entries more accurately. This ability is a major

strength of our FE-DPCC algorithm. For the portion of the test data whose rows and

columns are observed in the training as well, the perplexity values of FE-DPCC and DPCC
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are comparable. The standard deviations indicate that the algorithms are stable, yielding

consistent results across different runs.

To accurately assess the performance of the FE-DPCC algorithm, we performed a set

of experiments that involved a perturbation of the protein and molecule features on the

MP1 dataset. The average perplexity values on the MP1 test sets are reported in Table 6.4.

k-mer= 5 has been used as protein sequence features. First, we take the protein sequences

(i.e., columns) and shuffle the ordering of the amino acids. This alters the ordering of the

protein sequence but maintains the same composition (i.e., the shuffled sequences have the

same number of characters or amino acids). We refer to this scheme as “Shuffle”. It achieves

an average perplexity of 3.034, versus the average perplexity of 1.450 achieved by FE-DPCC

(with no shuffling of features).

We also devised a scheme in which the row and/or column features are exchanged, e.g.,

the features of a particular molecule are exchanged with the features of another molecule.

Such an exchange, either of proteins, molecules, or both, causes the inclusion of incorrect

information within the FE-DPCC algorithm. Our aim was to assess the strength of FE-

DPCC when enriched with meaningful and correct features. We refer to this scheme as

“Exchange.” Table 6.4 reports the results of exchanging molecule features only (Exchange M),

protein features only (Exchange P), and both (Exchange M and P). We noticed an average

perplexity of 2.9 in each case.

We also evaluated the FE-DPCC algorithm when only molecule or only protein features

are used (“Use Only M” and “Use only P” in Table 6.4). For the DPCC algorithm (with

no features), the use of only one set of features prevents the co-clustering algorithm from

making inferences on the unseen rows or columns in the test set. As such, we observe a high

perplexity value in Table 6.4 for these settings.

From Table 6.4 we can see that the use of incorrect features, either of proteins, or

molecules, or both, hurts the prediction performance. The use of protein features only, or

molecule features only, gives worse performance than the use of incorrect features. This

is because, in the former case, the model observes entries of unseen proteins or unseen
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molecules with low prior probabilities. The use of protein and molecule features (last row of

Table 6.4) gives the best performance, which establishes the success of our technique.

For MP1 we performed an additional set of experiments to evaluate the sequence features.

The k-mer features are overlapping subsequences of a fixed length extracted from the protein

sequences. We used k-mer lengths of 2, 3, 4 and 5, and observed that the average perplexity

(Table 6.5) remained fairly similar. As such, we used k-mer= 5 in all the experiments. We

also compared the sequence features for the proteins to an alternate feature derived from

a hierarchical biological annotation of the proteins. For the MP1 dataset the hierarchical

features were extracted as done in the previous study [32,58]. From Table 6.5 we observe

that the hierarchical features (HF) achieved a slightly lower perplexity in comparison to

the k-mer= 5 sequence features. This is encouraging, as it suggests that sequence features

perform similarly to manual annotation (hierarchy), that may not be easily available across

all the proteins.

Visualization of Co-clusters

In Figure 6.2 we illustrate the co-cluster structures learned by FE-DPCC on MovieLens and

Jester (we do not plot the co-clusters for MP1 and MP2 because they are too sparse). We

calculate the mean entry value for each co-cluster, and plot the resulting mean values in

different color scales; the lighter the color is, the larger the value.

Users

M
ov

ie
s

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8
1.5

2

2.5

3

3.5

4

(a) MovieLens
Jokes

U
se

rs

 

 

1 2 3

1

2

3

4

5

6

7

8

9

−4

−2

0

2

4

6

(b) Jester

Figure 6.2: Co-clusters Learned by FE-DPCC
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Figure 6.2 shows that FE-DPCC was able to identify a meaningful co-cluster structure

for both MovieLens and Jester.

Data Density

We also varied the density of MovieLens and Jester to see how different levels of density affect

the test perplexity of FE-DPCC and DPCC. We varied the matrix density by randomly

sampling 25%, 50% and 75% of the entries in the training data. These sampled matrices

were then given in input to DPCC and FE-DPCC to train a model, and infer unknown

entries on the test data. Figure 6.3 illustrates these results averaged across five iterations.

As the sparsity of the relational matrix increases the test perplexity increases for both

FE-DPCC and DPCC. But the DPCC algorithm has far higher perplexity in comparison

to the FE-DPCC algorithm for a sparser matrix. As the matrix sparsity increases, the

information within the relational matrix is lost and the FE-DPCC algorithm relies on the

row and column features. Thus, for sparser matrices the FE-DPCC algorithm shows far

better clustering results in comparison to the DPCC. These experiments suggest the reason

why we see a dramatic difference between the two algorithms for the MP1 and MP2 datasets,

which are very sparse (see Table 6.2). It also identifies the (sparse) conditions under which

features are most useful.
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MCMC Convergence Diagnostics

We used 1000 iterations of Gibbs sampling for the FE-DPCC algorithm. Here we conduct

MCMC convergence diagnostics to check whether 1000 iterations are enough to reach

convergence. In Table 6.6, we report the potential scale reduction factor (PSRF) [19] on

the log-likelihoods of five Gibbs sampling runs. PSRF compares within-chain variance with

between-chain variance. Values far from 1 are diagnostic of non-convergence. Typically,

values above 1.1 or 1.2 are considered problematic. From Table 6.6, we can see PSRF values

on all datasets except Jester are well below 1.1, which suggests that the number of iterations

is sufficient and the results have converged. The PSRF value for Jester is above 1.1 but

below 1.2, suggesting possible convergence issues.
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Table 6.1: Notation Description of FE-DPCC
R Number of rows
C Number of columns
~XR Row features, ~XR = 〈~xRr |r = {1, · · · , R}〉
~XC Column features, ~XC = 〈~xCc |c = {1, · · · , C}〉
~XE Relational features between rows and columns, ~XE = 〈xErc|r = {1, · · · , R}, c = {1, · · · , C}〉
k Index for row-clusters
l Index for column-clusters

zRr Row-cluster indicator variable for the rth row, and zRr ∈ {1, · · · , k, · · · ,∞}
zCc Column-cluster indicator variable for the cth column, and zCc ∈ {1, · · · , l, · · · ,∞}
~ZR ~ZR = 〈zRr |r ∈ {1, · · · , R}〉
~ZC ~ZC = 〈zCc |c ∈ {1, · · · , C}〉
~θ∗Rk Parameter of the kth row-cluster
~θ∗Cl Parameter of the lth column-cluster
~θ∗Ekl Parameter of the co-cluster (k, l)

ζR Hyperparameter of the prior distribution to the kth row-cluster parameter

ζC Hyperparameter of the prior distribution to the lth column-cluster parameter
ζE Hyperparameter of the prior distribution to the parameter of the co-cluster (k, l)
~ZR¬r ~ZR¬r = 〈zRr′ |r′ ∈ {1, · · · , R}, r′ 6= r〉
~XE¬r ~XE¬r = 〈xEr′c|r′ = {1, · · · , R}, r′ 6= r, c = {1, · · · , C}〉
N¬rk Number of rows assigned to the kth row-cluster, excluding the rth row
~ZC¬c ~ZC¬c = 〈zCc′ |c′ ∈ {1, · · · , C}, c′ 6= c〉
~XE¬c ~XE¬c = 〈xErc′ |r = {1, · · · , R}, c′ = {1, · · · , C}, c′ 6= c〉
N¬cl Number of columns assigned to the lth column-cluster, excluding the cth column

g(~θ∗Rk |ζ∗Rk ) Posterior distribution of the parameter of the kth row-cluster

g(~θ∗Rk |ζ∗R¬rk ) Posterior distribution of the parameter of the kth row-cluster, updated without the rth row

ζ∗R¬rk
Hyperparameter of the posterior distribution of the parameter of the kth row-cluster,

updated without the rth row

g(~θ∗Ekl |ζ∗Ekl ) Posterior distribution of the parameter of the co-cluster (k, l)

g(~θ∗Ekl |ζ∗E¬rkl )
Posterior distribution of the parameter of the co-cluster (k, l),

updated without the entries in the rth row

ζ∗E¬rkl
Parameter of the posterior distribution of the parameter of the co-cluster (k, l),

updated without the entries in the rth row

g(~θ∗Cl |ζ∗Cl ) Posterior distribution of the parameter of the lth column-cluster

g(~θ∗Cl |ζ∗C¬cl ) Posterior distribution of the parameter of the lth column-cluster, updated without the cth column

ζ∗C¬cl
Hyperparameter of the posterior distribution of the parameter of the lth column-cluster,

updated without the cth column

g(~θ∗Ekl |ζ∗E¬ckl )
Posterior distribution of the parameter of the co-cluster (k, l),

updated without the entries in the cth column

ζ∗E¬ckl
Hyperparameter of the posterior distribution of the parameter of the co-cluster (k, l),

updated without the entries in the cth column
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Table 6.2: Training and Test Data of Each Dataset

MovieLens Jester MP1 MP2

Train

# Rows 943 33459 1961 2674
# Columns 1650 140 61 149
# Entries 80000 80000 3000 5000
Density 5.142% 1.708% 2.508% 1.255%

Test

# Rows 927 14523 856 1647
# Columns 1407 139 68 145
# Entries 20000 20000 1051 2146
Density 1.533% 0.991% 1.806% 0.899%

Table 6.3: Test Perplexity of Different Test Subsets
MovieLens Jester MP1 MP2

DPCC
Row and Column Observed 3.327 (0.020) 17.111 (0.031) 1.430 (0.011) 1.484 (0.013)
Row or Column Unseen 4.427 (0.047) 19.322 (0.025) 8.845 (0.011) 7.987 (0.011)
Overall Perplexity 4.424 (0.087) 18.116 (0.035) 8.843 (0.013) 7.980 (0.021)

FE-DPCC
Row and Column Observed 3.344 (0.021) 17.125 (0.040) 1.435 (0.024) 1.489 (0.023)
Row or Column Unseen 3.892 (0.026) 17.836 (0.053) 1.453 (0.026) 1.509 (0.024)
Overall Perplexity 3.889 (0.031) 17.836 (0.062) 1.450 (0.046) 1.501 (0.045)

Table 6.4: Test Perplexity of (M)olecule and (P)rotein Features on the MP1 Dataset

Perplexity

Shuffle P 3.034 (0.083)

Exchange M 2.945 (0.083)

Exchange P 2.932 (0.071)

Exchange M and P 2.991 (0.095)

Use Only M 7.235 (0.043)

Use Only P 7.789 (0.045)

Use M and P 1.450 (0.046)

Table 6.5: Test Perplexity of Protein Features of the MP1 Dataset

Perplexity

2-mer 1.471 (0.057)

3-mer 1.437 (0.044)

4-mer 1.441 (0.049)

5-mer 1.450 (0.046)

HF 1.413 (0.010)
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Table 6.6: MCMC Diagnostics

Dataset PSRF

MovieLens 1.023

Jester 1.186

MP1 (HF) 1.038

MP1 (SF) 1.046

MP2 (SF) 1.053
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

In conclusion, clustering is an important unsupervised learning problem that arises in a variety

of applications for data analysis and mining. However, clustering is an ill-posed problem and,

as such, a challenging one: no ground-truth that can be used to validate clustering results is

available. Two issues arise as a consequence. Various clustering algorithms embed their own

bias resulting from different optimization criteria. As a result, each algorithm may discover

different patterns in a given dataset. The second issue concerns the setting of parameters.

In clustering, parameter setting controls the characterization of individual clusters, and the

total number of clusters in the data. In addition, the high-dimensionality of the data, which

is commonly seen in practice, makes the clustering process even more difficult.

There has been some existing work to address the issues of clustering. Clustering

ensembles have been proposed to address the issue of different biases induced by various

algorithms. Bayesian and nonparametric Bayesian approaches have been applied to clustering

to address the parameter tuning and model selection issues. Subspace clustering, or co-

clustering, is proposed to address the dimensionality issue of clustering.

Although attempts have been made in the literature to address individually the major

issues related to clustering, no previous work has addressed them jointly. In my dissertation,

I introduced a unified framework that addresses all three issues at the same time.

7.2 Contributions

Specifically, I designed a nonparametric Bayesian clustering ensemble (NBCE) approach,

which assumes that multiple observed clustering results are generated from an unknown
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consensus clustering. The underlying distribution is assumed to be a mixture distribution

with a nonparametric Bayesian prior. The number of mixture components, i.e., the number

of consensus clusters, is learned automatically. By combining the ensemble methodology

and nonparametric Bayesian modeling, NBCE addresses both the ill-posed nature and the

parameter setting/model selection issues of clustering. Furthermore, NBCE outperforms

individual clustering methods, since it can escape local optima by combining multiple

clustering results. I also designed a nonparametric Bayesian co-clustering ensemble (NBCCE)

technique. NBCCE inherits the advantages of NBCE, and in addition it is effective with

high dimensional data. As such, NBCCE provides a unified framework to address all the

three aforementioned issues.

Further, I evaluated a novel feature-enriched nonparametric Bayesian Co-clustering

approach, which can predict relationships between previously unseen objects and is most

effective with sparse data. Large improvements have been achieved with protein-molecule

interaction data.

7.3 Future Work

As for the future work, my work can be extended in several ways. First, Bayesian methods

are computationally very intensive. How to speed up Bayesian inference is an open issue

in Bayesian research. Recently, GPUs have drawn a lot of attention in parallel computing.

A GPU is a highly parallel, multithreaded, and multi-core processor. Traditionally, GPUs

were designed for graphics computation, but more recently they have been used for general

parallel computation. GPUs can possibly be used to also speed up Bayesian inference.

Second, FE-DPCC still assumes independence between row-clusters and column-clusters.

It is possible to replace the two independent Dirichlet Process priors in FE-DPCC with a

Mondrian Process prior. The resulting model will provide more flexibility in fitting the data.

Third, I have noticed that the inference for Mondrian Processes is very complex and

time consuming. The MCMC inference for MP involves RJMCMC to draw Mondrian

samples and Gibbs sampling to draw indicator variables to assign data to subspace clusters.
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Mondrian samples are used to define kd-tree (subspace cluster) structures, which are structure

dependent terms, and the indicator variables are used for data assignments, which are data

dependent terms. There are two separate inference stages for MP, one for the inference of

the structure terms, the other for the inference of the data terms. I have been thinking

of extending Dirichlet Diffusion Trees (DDT) [55, 56] to handle co-clustering. DDT is a

nonparametric Bayesian model for hierarchical clustering. DDT assumes a prior distribution

over binary trees. As such, both MP and DDT are tree structure priors. One advantage of

DDT inference is that it is possible to marginalize out the data dependent terms of DDT, and

only focus on the inference of structure terms, which makes DDT inference more efficient.
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