

BAYESIAN SEMANTICS FOR THE SEMANTIC WEB

by

Paulo Cesar G. da Costa

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

___ Director

___ Department Chairperson

___ Program Director

___ Dean, School of Information

Technology and Engineering

Date:___ Summer Semester 2005

 George Mason University

 Fairfax, VA

Bayesian Semantics for the Semantic Web

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Paulo Cesar G. da Costa

Master of Science

George Mason University, 1999

Director: Kathryn B. Laskey, Professor

Department of Systems Engineering and Operations Research

Summer Semester 2005

George Mason University

Fairfax, VA

ii

Copyright 2005 Paulo Cesar G. da Costa

All Rights Reserved

iii

Dedication

To Claudia, whose love and support made everything possible.

iv

Acknowledgements

Mark Twain (1835 – 1910) once said: “Only presidents, editors and people with

tapeworms have the right to use the editorial ‘we’”. However, this Dissertation can hardly

be considered the result of a single’s person work, and in this section I can recognize only

some of the people who helped me along the way. Thus, although I do not satisfy any of

Mark Twain’s criteria, I will use the editorial ‘we’ throughout this work as a means to

acknowledge the many contributors who helped me along the way in my research. In this

section I recognize a few contributions that deserve special emphasis.

First among all, I would like to thank Kathryn Laskey for wearing so many hats in

the last two years. When I asked her to be my advisor I already knew she was an

outstanding professor and gifted researcher. However, as we worked together I began to

realize how incredibly fortunate I was to have also met a mentor, co-author, and friend.

She not only guided me through the many areas of knowledge I had to visit, but also

showed a sensibility that few possess in pushing an advisee to achieve way beyond what

he thought he could ever do. Thank you so much for your splendid support and guidance!

I was also fortunate enough to have been blessed with one of the finest commit-

tees any PhD candidate could hope to have. Following the random order in which they

signed this Dissertation, I had the privilege to have Larry Kerschberg’s impressive back-

ground and always-thoughtful insights as invaluable assets I exploited many times during

v

my research. I could also rely on tremendously rewarding guidance from Ken Laskey,

whose clear thinking and deep knowledge of the W3C, Semantic Web and Data Inter-

change cannot be found in any book. Even if such a book should exist some day, it will

probably not match Ken’s ability to make even the hardest problems look embarrassingly

simple. Nonetheless, when the hardest problems came from the data mining area I was

always at ease, for I could count on Daniel Barbará’s extensive knowledge and experi-

ence in this field. These are dwarfed only by his talent for integrating ideas while pre-

senting the big picture within which the real problems are best understood. The last

committee member to sign the page was Dave Schum, who also signed my MS Thesis in

1999 in the same position. Thus, I was fortunate enough to have twice the opportunity to

learn from such a brilliant researcher and larger than life character.

During my PhD studies I also had the chance to interact with top-notch educators

who had great influence on my research. One is Tomasz Arciszewski, whose teachings in

inventive engineering played a key role in my own approach to difficult challenges. I am

also in debt to Carlotta Domeniconi, who took me from ground zero in data mining to a

level in which I could understand how its algorithms can help to solve many problems in

the Semantic Web. Finally, Dennis Buede, my advisor from the MS years, introduced me

to the field of decision-making and was a major collaborator on the Wise Pilot system

depicted in Appendix C. I also wish to thank Eswar Sivaraman for constructive criticism

that helped me to improve my presentation skills.

I would also like to thank Tod Levitt for his contribution as a reviewer of this

dissertation and some of the papers that resulted from my research. My gratitude is two-

vi

fold, since as CEO of IET he permitted me to use their flagship product, Quiddity*Suite,

and to interact with the amazingly competent team he leads. Among that team I must

personally thank Ed Wright, who made my learning path to Quiddity*Suite much easier

with his always prompt and clear advice; Mike Pool, whose expertise in OWL and

excitement about the possibilities of probabilistic reasoning were both helpful and

enlightening; and Masami Takikawa and Francis Fung, whose technical excellence and

creativity made them outstanding co-authors.

The GMU Bayesian Group was an incredible source of enlightening discussions

and a forum that helped me not only to improve my research but also to enjoy and

understand the value of sharing knowledge among different research interests and areas.

Among that group, special thanks go to Chris Cuppan, Aleks Lazarevich, Sepideh Mirza,

Andy Powell and Mehul Revankar for reading and commenting on this work and the

related papers. Ghazi Alghamdi, Stephen Cannon, Sajjad Haider, Jim Jones, Tom

Shackelford, and Ning Xu also have my gratitude for the help and support and friendship

they provided throughout the research period.

None of my research would have been possible without the support from the

Brazilian Air Force, whose commander, General Luiz Carlos da Silva Bueno, assigned

me to such a challenging endeavor. I must also recognize the support I have received

from Lieutenant Generals Adenir Viana and Cleonilson Nicássio; from Colonel Milton

Casimiro, and from my dear colleagues, Lt. Cols. Carlos Liberato and Tomaz Gustavo,

who certainly had to face a greater workload in my absence. I am also grateful for the

remarkable support I received from the Brazilian Air and Defense Attaché in

vii

Washington, D.C., Major General Sérgio Freitas, from his Adjunct, Col. Lima de

Andrade, and from Master Sargent João Luiz, Alzira Welle and Elenice Gaspar.

My family was a strong point of support in those years. I thank my dear brother

Ricardo Costa for his many visits to our house, which reminded us of the wonderful

relatives we have in Brazil. I also thank my sister in law, Lívia Costa, for visiting us, and

my brothers in law, Marclei Neves and Cleber Júnior for their steady support.

To my parents, Quintino and Vitoria Costa, and to my parents in law, Cleber and

Margo Neves, I must apologize for having stolen their grandchildren for two very long

years. I am sure they more than anyone have been eagerly awaiting my graduation day. I

hope they forgive me for demanding such a sacrifice.

Indeed, Paulo and Laura Costa are such an awesome pair that I am sure anyone

would miss them terribly. Paulo, a terrific son who keeps reminding me how I must have

been when I was 14, never complained about having an absent-minded father at an age at

which a boy needs a participative one. Laura, whose energy is only matched by her

sweetness, constantly used the credentials of a 7-years old to rescue her dad from the

books without making him angry. Thank you both for filling our lives with joy.

Finally, my deepest gratitude goes to Claudia, my wife, best friend, and lifetime

partner. During our more than seventeen years together she has never ceased to impress

me with her tenacity, intelligence, and wisdom. However, during those two very busy

years she has not only remained the central hub of our family she has always been, but

also the one who comforted, helped, and inspired all of us during the hardest times with

her endless love and devotion. To her I dedicate this Dissertation.

viii

Table of Contents

Page

Abstract ...xv

Chapter 1 A Deterministic Model of a Probabilistic World..17

1.1 From Information to Knowledge...19

1.1.1 Is Semantic Information Really Important? ..19

1.1.2 The Semantic Web and ontologies ...23

1.2 Issues on Representing and Reasoning Using Ontologies26

1.3 Why Uncertainty Matters..30

1.4 Research Contributions and Structure of this Dissertation33

Chapter 2 Background and Related Research...37

2.1 Web Languages ..37

2.2 A Brief Introduction to Probabilistic Representations..39

2.3 Bayesian Networks ...43

2.3.1 Probabilistic Reasoning with Bayesian Networks47

2.3.2 Case Study: The Star Trek Scenario ...47

2.4 Probabilistic Extensions to Web Languages ..52

2.4.1 Probabilistic extensions to Description Logic ...52

2.4.2 Probabilistic Extensions to OWL..54

2.5 Probabilistic Languages with near First-Order Expressive Power......................57

Chapter 3 Multi-Entity Bayesian Networks ...60

3.1 A More “Realistic” Sci-fi Scenario ...61

3.2 The Basics of MFrags ...63

3.3 Representing Recursion in MEBN Logic ..69

3.4 Building MEBN Models with MTheories ...74

3.5 Making Decisions with Multi-Entity Decision Graphs.81

3.6 Inference in MEBN Logic...83

3.7 Learning from Data...88

3.8 MEBN Semantics. ..94

Chapter 4 The Path to Probabilistic Ontologies..101

4.1 A Polymorphic Extension to MEBN ...107

4.1.1 The Modified MTheory Definition...111

4.1.2 The Star Trek MTheory Revisited ..116

4.2 Using Quiddity*Suite for Building SSBNs..117

4.2.1 Concepts with Direct Translation ...119

4.2.2 Concepts with a More Complex Translation...124

4.2.3 Use of Comments and Other Aspects of Quiddity*Suite..........................130

ix

Chapter 5 PR-OWL...132

5.1 The Overall Implementation Strategy..134

5.1.1 Why MEBN as the semantic basis for PR-OWL?.....................................135

5.1.2 Implementation Approach..139

5.2 An Upper Ontology for Probabilistic Systems...142

5.2.1 Creating an MFrag ...152

5.2.2 Representing a Probability Distribution..160

5.3 A Proposed Operational Concept for Implementing PR-OWL.........................164

Chapter 6 Conclusion and Future Work...168

6.1 Summary of Contributions..168

6.2 A Long Road with Bright Signs Ahead ...170

Bibliography ...173

Appendix A Source Code for The Starship Model ...192

Appendix B Preliminary Syntax and Semantics for PR-OWL......................................224

B.1 PR-OWL Classes ...224

B.2 PR-OWL Properties ...239

B.3 Naming Convention (optional) ...254

B.4 PR-OWL Upper-Ontology Code ..256

Appendix C Potential Applications for PR-OWL Outside the Semantic Web300

C.1 PR-OWL for Integration Ontologies: The DTB Project300

C.2 PR-OWL for Multi-Sensor Data Fusion: The Wise Pilot System....................305

x

List of Tables

Table Page

Table 1. Conditional Probability Table for Node MDR...49

Table 2. Sample Parts of the Danger To Self MFrag Probability Distribution68

Table 3. MEBN Elements Directly Translated into Quiddity*Suite...........................124

Table 4. Metadata Annotation Fields ..130

Table 5. Zone_MFrag Nodes in MEBN and PR-OWL..157

Table 6. Classes Used in PR-OWL ...224

Table 7. Properties Used in PR-OWL ...239

xi

List of Figures

Figure Page

Figure 1. Simplified Text Understanding ..20

Figure 2. Simplified Text Understanding after Data Preparation21

Figure 3. Law of Total Probability..43

Figure 4. Sample Relationships Among Three Random Variables45

Figure 5. The Naïve Star Trek Bayesian Network...49

Figure 6. The BN to the Four-Starship Case ...50

Figure 7. The BN for One-Starship Case with Recursion ..51

Figure 8. The Danger To Self MFrag..64

Figure 9. An Instance of the Danger To Self MFrag..67

Figure 10. The Zone MFrag..70

Figure 11. SSBN Constructed from Zone MFrag ..71

Figure 12. The Star Trek Generative MTheory ...76

Figure 13. Equivalent MFrag Representations of Knowledge......................................78

Figure 14. The Star Trek Decision MFrag...82

Figure 15. SSBN for the Star Trek MTheory with Four Starships within Range..........86

Figure 16. Parameter Learning in MEBN..88

Figure 17. Structure Learning in MEBN...91

Figure 18. SSBNs for the Parameter Learning Example..93

Figure 19. Typical Web Agent’s Knowledge Flow – Ignoring Uncertainty103

Figure 20. Typical Web Agent’s Knowledge Flow – Computing Uncertainty105

Figure 21. Star Trek MTheory with the Transporter MFrag – Untyped Version109

Figure 22. Built-in MFrags for Typed MEBN...111

Figure 23. Star Trek MTheory with the Transporter MFrag – Typed Version116

Figure 24. Entity Clusters of Star Trek MTheory..121

Figure 25. Mapping the Sensor Report Entity Cluster to a Frame..............................123

Figure 26. Zone Entity Cluster..126

Figure 27. Overview of a PR-OWL MTheory Concepts..149

Figure 28. Elements of a PR-OWL Probabilistic Ontology150

Figure 29. Header of the Starship Probabilistic Ontology..152

Figure 30. Initial Starship Screen with Object Properties Defined.............................153

Figure 31. Zone MFrag Represented in PR-OWL ...155

Figure 32. ZoneMD Resident Node ..159

Figure 33. Declarative Distributions in PR-OWL..161

Figure 34. A Probabilistic Assignment in a PR-OWL Table162

Figure 35. Snapshot of a Graphical PR-OWL Plugin ..165

xii

Figure 36. The Insider Behavior Ontology (IB) ..302

Figure 37. The Organization and Task Ontology (OT)..302

Figure 38. The Insider Threat Detection Process – Initial Setup303

Figure 39. The Insider Threat Detection Process – Data Interchange.........................304

Figure 40. The Insider Threat Detection Process – Desired Process304

Figure 41. General Track Danger Assessment Scheme ...307

Figure 42. Individual Track's BN Information Exchange Scheme308

Figure 43. Wise Pilot system – general scheme...309

Figure 44. Wise Pilot with 4 Tracks..310

Figure 45. Wise Pilot with 5 Tracks..311

xiii

List of Abbreviations

AAA – Anti-Aircraft Artillery

A-Box – Assertional Box (DL knowledge base assertional component)

AL – Attributive Languages (family of description logic languages)

ALC – Basic AL with the concept of negation added (C means complement)

API – Application Programming Interface

ARDA – Advanced Research and Development Activity (www.ic-arda.org)

BN – Bayesian Network

CEO – Chief Executive Officer

CPT – Conditional Probability Table

DAG – Direct Acyclic Graph

DAML – Darpa Agency Mark-up Language

DARPA – US Defense Advanced Research Project Agency

DL – Description Logics

DTB – Detection of Threat Behavior

FOL – First-Order Logic

FOPC – First Order Predicate Calculus

GML – Generalized Markup Language

GMU – George Mason University (www.gmu.edu)

HTML – Hypertext Markup Language

IBN – Insider Threat Behavioral Network

IET – Information Extraction and Transport, Inc. (www.iet.com)

IO – Integration Ontology

ISO
1
 – International Organization for Standardization

MEBN – Multi-Entity Bayesian Networks

MFrag – MEBN Fragment

MTheory – MEBN Theory

OIL – Ontology Interface Layer

OOBN – Object-Oriented Bayesian Networks

OWL – Web Ontology Language

PR-OWL – Probabilistic OWL

RDF – Resource Description Framework

RDFS – RDF-Schema

RV – Random Variables

1
 ISO is actually a word that was derived from the Greek isos, meaning "equal".

xiv

SGML – Standard Generalized Markup Language

SHOE – Simple HTML Ontology Extensions

SSBN – Situation Specific Bayesian Network

SW – Semantic Web

T-Box – Terminological Box (DL knowledge base terminology component)

W3C – World Wide Web Consortium

WSMO – Web Service Modeling Ontology

WWW – World Wide Web

XML – Extensible Markup Language

Abstract

BAYESIAN SEMANTICS FOR THE SEMANTIC WEB

Paulo Cesar G. da Costa, Ph.D. Student

George Mason University, 2005

Dissertation Director: Dr. Kathryn B. Laskey

Uncertainty is ubiquitous. Any representation scheme intended to model real-

world actions and processes must be able to cope with the effects of uncertain

phenomena.

A major shortcoming of existing Semantic Web technologies is their inability to

represent and reason about uncertainty in a sound and principled manner. This not only

hinders the realization of the original vision for the Semantic Web (Berners-Lee &

Fischetti, 2000), but also raises an unnecessary barrier to the development of new,

powerful features for general knowledge applications.

The overall goal of our research is to establish a Bayesian framework for

probabilistic ontologies, providing a basis for plausible reasoning services in the

Semantic Web. As an initial effort towards this broad objective, this dissertation

introduces a probabilistic extension to the Web ontology language OWL, thereby creating

a crucial enabling technology for the development of probabilistic ontologies.

The extended language, PR-OWL (pronounced as “prowl”), adds new definitions

to current OWL while retaining backward compatibility with its base language. Thus,

OWL-built legacy ontologies will be able to interoperate with newly developed

probabilistic ontologies. PR-OWL moves beyond deterministic classical logic (Frege,

1879; Peirce, 1885), having its formal semantics based on MEBN probabilistic logic

(Laskey, 2005).

By providing a means of modeling uncertainty in ontologies, PR-OWL will serve

as a supporting tool for many applications that can benefit from probabilistic inference

within an ontology language, thus representing an important step toward the World Wide

Web Consortium’s (W3C) vision for the Semantic Web.

In addition, PR-OWL will be suitable for a broad range of applications, which

includes improvements to current ontology solutions (i.e. by providing proper support for

modeling uncertain phenomena) and much-improved versions of probabilistic expert

systems currently in use in a variety of domains (e.g. medical, intelligence, military, etc).

17

Chapter 1 A Deterministic Model of a Probabilistic World

We can trace attempts by humans to represent the world surrounding them to as

early as 31,000 years ago, during the so called Upper Paleolithic period, where the

earliest recorded cave drawings were made (Clottes et al., 1995). Moving from pictures

representing objects of the real world (i.e. ideograms) to pictures representing the sounds

we pronounce (i.e. phonograms), humans developed the first alphabets somewhere near

the twentieth century B.C.2 The efficiency of written communication received a dramatic

boost with the invention of the printing press by Johannes Guttenberg in 1450.

Printing had been the dominant form for representing and communicating human

knowledge until the second half of the last century, when the advent of digital computing

became the driving force of what Alvin Toffler (1980) called “the Third Wave” of change

in human history (the first being the agricultural revolution and the second being the

industrial revolution).

At this point, inquisitive readers might ask why Toffler’s terminology was chosen

over the more technically oriented and widely used term “information technology

revolution”.

The answer lies in the fact that we want a broader concept for the current era of

changes so we can clearly distinguish the phase “information revolution”, which we

2 Dating established by John Darnell, in his 1990s studies of rock carvings at Wadi el-Holi made by

Semitic workers within the Egyptian society. For more information on alphabets and its origins see

http://www.xasa.com/wiki/en/wikipedia/a/al/alphabet.html (as accessed in Sept 02, 2004).

18

consider as an almost concluded phenomenon, from “knowledge revolution”, the

subsequent phase of the “Third Wave” we are experiencing nowadays.

Until the past few years, computers had been used primarily as media for storing,

exchanging, and working with information. The Internet (the network infrastructure) and

the World Wide Web (the information space) have played an important role as facilitators

in this process. Yet, as the availability of information resources increases, we are starting

to face a significant bottleneck in our ability to use it: our own capacity to process huge

amounts of data.

 Indeed, our cognitive process includes one extra step between receiving data and

deciding and/or acting upon it, namely the need for updating our beliefs about the

subject(s) of interest given the new information available to us or, in other words, to

understand what the incoming data means for our decisions and actions.

In short, data per se is useless to most of our daily tasks until we transform it into

knowledge. When we reach our cognitive limit for performing this task, we are

experiencing what is called “information overload”.

During the “information revolution”, human beings have largely performed the

transformation from data to decision-relevant knowledge, working in a data-centric

scheme that we call the “information paradigm”. The “knowledge revolution” will be

seen in the future as the phase in which this tedious task was successfully assigned to

computers, allowing humans to shift their focus from data-centric activities to

knowledge-centric activities, thus allowing them to work under the more efficient

“knowledge paradigm”.

19

1.1 From Information to Knowledge

The rapid expansion of corporate computer networks and the World Wide Web

(WWW) is increasing the problem of information overload, and in this race between the

availability of data and our capacity of transforming it into knowledge, humanity has

developed many methods for using our ever-growing computational power to make our

lives easier. Yet, in spite of the many efforts in this direction, we still have to rely heavily

on the human brain for breaking the information to knowledge barrier. This led us to the

question: What is missing for IT techniques to be able to help us to overcome the

information paradigm and begin to work under the knowledge paradigm?

We argue that the answer lies in devising ways for the computers not only to

“crunch the bytes” but also to “understand” what those bytes mean. Obviously,

computers don’t really understand the meaning conveyed by the bytes they “crunch”.

This is just a widely used metaphor to express the idea that making semantic information

explicit and computationally accessible (i.e. better organizing the structure of data) is a

powerful, more elegant way of utilizing that data. In other words, if we want to extract

knowledge from data we must develop technologies that allow computers to make use of

semantic, contextual information attached to the data being processed.

1.1.1 Is Semantic Information Really Important?

Text Classification has been one of the hottest research topics in the academic

community, particularly after the end of the last decade. The obvious explanation for this

is the explosion of the WWW’s use since that period, where the rapid, continuously

increasing availability of data is exerting a tremendous pressure to improve the capability

20

of knowledge retrieval technologies. The current state-of-art paradigm for text

classification of a huge corpus of text data utilizes a Vector Space Representation of

documents. In this scheme, text documents are transformed into a single file called “bag

of words”. Then, dimensionality reduction techniques are applied to that file, which is

finally subjected to knowledge retrieval techniques aimed at pointing out possible

partitions of the feature space.

One limitation of most techniques based on the Bag of Words paradigm is that

they fail to consider the semantic meaning of the text. That is, if two documents share

roughly the same words, they will be mapped to nearby locations in the resulting space,

even if they are not related to the same subject, whereas two closely related documents

that do not share the same words (e.g. documents with a high use of synonyms) would be

mapped in different regions. The toy example in Figure 1 illustrates this problem.

Tr – Computer Science
Before developing products
for Apple’s Cocoa
environment using the
Xcode suite, John Grape
was a well known member
of the Wine Project in the
Linux community, where he
cultivated many admirers
for his hard-working profile.

D1 – Computer Science
Yellow Dog is a distribution
that works in Macintosh
computers, and one of its
features is to allow OS X
software to run natively. This
is a clear contrast with
Windows applications, which
need to rely on emulation to
run on a different OS, even in
X86 computers.

D2 – Agriculture
Developing countries are
not known for their wine
production, as their
usually equatorial
environment is well suited
for producing cocoa,
whereas grapes or even
apples are much harder to
cultivate.

Figure 1. Simplified Text Understanding

Suppose we use Tr as a corpus of training data related to the class “computer

science”. Then applying the usual techniques for text classification to this corpus will

result in a model that can be used for classifying other documents, which will also go

through the same algorithms, such as Martin Porter’s algorithm for stemming (Porter,

21

1980), stop word removal (remove non-descriptive words like articles, prepositions, etc),

pruning infrequent words, etc. Figure 2 illustrates the kind of output that might be

produced by such a system, for both the training data Tr and the data to be classified

(documents D1 and D2).

Tr – Computer Science
Before developing products
for Apple’s Cocoa
environment using the
Xcode suite, John Grape
was a well known member
of the Wine Project in the
Linux community, where he
cultivated many admirers
for his hard-working profile.

D1 – Computer Science
Yellow Dog is a distribution
that works in Macintosh
computers, and one of its
features is to allow OS X
software to run natively. This
is a clear contrast with
Windows applications, which
need to rely on emulation to
run on a different OS, even in
X86 computers.

D2 – Agriculture
Developing countries are
not known for their wine
production, as their
usually equatorial
environment is well suited
for producing cocoa,
whereas grapes or even
apples are much harder to
cultivate.

Figure 2. Simplified Text Understanding after Data Preparation

Just by inspection we can see that D1 shares only one out of its 23 words with the

vocabulary within the training data Tr, which means a commonality of just 4.3%.

Therefore, even though the two texts share the same subject, our word comparison

algorithm would classify D1 as not being related to the class being represented by Tr,

given the fact that they have few words in common.

Yet, if we do the same comparison between the training data Tr and the

agriculture-related document D2, we will see that 13 out of 16 D2’s words (81.3%) are

also in the training data Tr, which will cause our algorithm to incorrectly classify T3 as

closely related to the class being represented by Tr.

Vector Space Representation algorithms are actually used with corpuses of

training data typically containing hundreds or thousands of words, instead of our toy

example’s 21 words. So misclassifications like the one in our three-text example are not

22

very likely. Indeed, as demonstrated by Sebastiani in his recent survey on automated text

categorization (Sebastiani, 2002)3, syntax-based algorithms usually achieve true positive

rates between 75% and 87% in text categorization problems. Still, unlikely does not mean

impossible and even low error rates can be quite undesirable, especially in domains

where just a few errors may be the difference between success and failure, such as

terrorist screening or Intrusion Detection systems.

In the Data Mining field, the need for considering semantic information has been

recognized by many researchers. There is active research into techniques aimed to extract

semantic information from the data corpus itself that are focused on external data sources

such as ontologies (discussed in the next session). Examples of the first group include

Latent Semantic Kernels (Cristianini et al., 2001), Probabilistic LSI (Hofmann, 1999),

automatic cross-language retrieval (Littman et al., 1997), and some variations of Kernel

Methods (Joachims, 1998). In the second group we will usually find studies advocating

the use of the Wordnet (Miller et al., 1990; Fellbaum, 1998) as a semantic source, such

Siolas e d’Alché-Buc (2000) and Hotho et al. (2002, 2003).

In short, despite the successes of syntax-only algorithms, the potential increase in

discrimination power that semantic information might bring must not be ignored. In

highly sensitive domains such as counter-terrorism, this increase could be the key for

finding the needle in the haystack without having unacceptable false alarm rates.

The former is just one example of an application of techniques for which

automated incorporation of semantics would be useful. There is a widespread

3 See table at page 47 for a direct comparison among data mining algorithms.

23

understanding of the importance of semantics for many information-processing

applications. The following sections review two research areas closely related to this

dissertation: the Semantic Web and Ontology Engineering.

1.1.2 The Semantic Web and ontologies

The W3C defines the Semantic Web4 as a collaborative effort between the W3C

itself and a large number of researchers and industrial partners that will extend the current

web to provide a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries.

The current WWW uses markup languages5 such as HTML and XML (both being

“semantic-unaware” languages) as a means to convey syntax rules and conventions to

extract, transform and interchange data. In this scheme, humans are the sole party

responsible for dealing with the knowledge implied from that data. However, given our

restrictions in dealing with huge amount of data, it is becoming not only desirable but

also necessary to make use of the increasing computational power of our current

machines to perform such a task. The realization of this concept is the W3C’s vision of

the Semantic Web as stated by Tim Berners-Lee (Berners-Lee & Fischetti, 2000, page

177):

“…computers and networks have as their job to enable the information

space … But doesn’t it make sense … to put their analytical power to

work making sense of the vast content … on the web? …This creates what

4 From the W3C Semantic Web page, http://www.w3c.org/2001/sw/, as extracted in June 16, 2005.
5 A markup language adds computer-understandable codes (markups) to convey metadata information

within a text file. Depending on the language used, this metadata can be mostly restricted to styling and

layout (e.g. HTML) or also include semantic information and other advanced features (e.g. OWL).

24

I call a Semantic Web – a web of data that can be processed directly or

indirectly by machines … The first step is putting data on the Web in a

form that machines can naturally understand…”6.

 We can infer from this definition how important representing the structure of data

and metadata is going to be in this new approach for the distributed information use and

sharing. Indeed, the W3C further states that the Semantic Web (SW) can only reach its

full potential if it becomes a place where data can be shared and processed by automated

tools as well as by people.

As an example of automated tools, we can consider the case in which software

agents would have the ability to perform inference on the data stored in Web sites. To do

so, such agents have to “understand” the semantics of the data, in contrast to only relying

on its syntax. For instance, a software agent responsible for booking a trip to Florida must

be able to infer when the word “Florida” actually means the Southern State of USA, the

Portuguese word meaning “decorated with flowers”, a type of large bean, or the

homonymous Uruguayan province.

According to the W3C (Heflin, 2004), ontologies are envisioned as the

technology providing the cement for building the Semantic Web. Ontologies contain a

common set of terms for describing and representing a domain in a way that allows

automated tools to use the stored data in a more context-aware fashion, intelligent

software agents to afford better knowledge management, and many other possibilities

brought by a standardized, more intensive use of metadata.

6 Emphasis added.

25

The term Ontology was borrowed from philosophy. Its roots can be traced back to

Aristotle’s metaphysical studies of the nature of being and knowing7. Nonetheless, use of

the term ontology in the information systems domain is relatively new, with the first

appearance occurring in 1967 (Smith, 2004, page 22).

One can find many different definitions for the concept of ontology applied to

information systems, each emphasizing a specific aspect its author judged as being more

important. For instance, Gruber (1993) defines an ontology as a formal specification of a

conceptualization or, in other words, a declarative representation of knowledge relevant

to a particular domain. Uschold and Gruninger (1996) define an ontology as a shared

understanding of some domain of interest. Sowa (2000, page 492) defines an ontology as

a product of a study of things that exist or may exist in some domain.

With so many possibilities for defining what an ontology is, one way of avoiding

ambiguity is to focus on the objectives being sought when using it. For the purposes of

the present research effort, the most important aspect of ontologies is their role as a

structured form of knowledge representation. Thus, our definition of ontologies is a

pragmatic one that emphasizes the purposes for which ontologies are used in the

Semantic Web.

Definition 1: An ontology is an explicit, formal representation of knowledge

about a domain of application. This includes:

1.a) Types of entities that exist in the domain;

1.b) Properties of those entities;

7 The term metaphysics means beyond the study of physics

26

1.c) Relationships among entities;

1.d) Processes and events that happen with those entities;

where the term entity refers to any concept (real or fictitious, concrete or

abstract) that can be described and reasoned about within the domain of

application.!"

Ontologies are used for the purpose of comprehensively describing knowledge

about a domain in a structured and sharable way, ideally in a format that can be read and

processed by a computer. The above definition can be considered as a special type of

ontology, which we could label Semantic Web Ontology, but for the purposes of this

dissertation we will use the more general term ontology.

1.2 Issues on Representing and Reasoning Using Ontologies

In our definition, the explicit requirement of reasoning about a given concept

makes schema-oriented technologies such as XML-Schema or RDFS fall short in terms

of expressiveness. For instance, a very detailed XML-Schema may include the

vocabulary and the hierarchical structure of concepts within a domain of application, but

still misses OWL features such as information on disjointness and uniqueness of classes,

cardinality of properties8, and others that are necessary to allow inferences to be drawn

from those concepts.

Similarly, as pointed out by Shelley Powers, using RDFS may allow the

development of a very rich vocabulary, but it won’t be as precise or as comprehensive as

8 Some degree of cardinality exists in XML Schema

27

one that incorporates ontological elements from ontology languages such as OWL

(Powers, 2003, page 229).

Apart from the extra expressivity that is necessary to perform reasoning with the

concepts represented in an ontology, the many similarities with database schemas makes

it difficult to draw a clear distinction between ontologies and database schemas. Spyns,

Meersman, and Jarrar (2002) provide an interesting discussion of how the two concepts

differ. They regard data models (i.e. databases, XML schemas, etc) as specifications of

the structure and integrity constraints of data sets. Thus, a database schema is developed

to address the specific needs and tasks for which the data set is being used, which in turn

depends heavily on the enterprise being modeled.

In contrast, ontologies are intended to be applied across a broad range of tasks

within a domain, and usually contain a vocabulary (terms and labels), a definition of the

concepts and their respective relationships within that domain. The main objective of an

ontology is to provide a formal, agreed and shared resource, which forces it to be as

generic and task-independent as possible. Although an ontology typically is developed to

a focused task, it is desirable for an ontology to capture rich semantic content in a manner

that could be reused across tasks.

In developing a database schema, the goal is different. Schema developers focus

on organizing information in ways that optimize support for the types of queries that are

expected to arise in specific applications for which the database is being designed.

Achieving such goal typically requires a special application to be written on top of the

database mechanism that (for a relational database) implements the principles of

28

relational algebra. Furthermore, a database schema is typically developed under a closed

world assumption, in which the only possible instances of a given relation are those

implied by the objects existing in the database. (i.e. if something is not represented there

then it doesn’t exist).

Ontologies, on the other hand, do not necessarily carry the assumption that not

being represented entails non-existence. Not having the closed world assumption means,

for example, that queries about which there is insufficient information in an ontology to

be proved cannot be assumed as being false. As a consequence, we should expect

situations in which incomplete information within an ontology prevents a definitive

answer to a query to be rather normal. This is a clear sign that uncertainty is an intrinsic

component of ontology engineering, and therefore ontology languages must include

sound and principled mechanisms for dealing with uncertainty.

One commonality between ontologies and database schemas is the need to

provide for interoperability among systems based on different schemas and/or ontologies.

In an increasingly interconnected world, the ability to exchange data as seamlessly as

possible is one of the most desired features of a knowledge representation. Integrating

systems created and managed by separate organizations, evolving in different scenarios,

and geared to different needs and perspectives is a task that poses many challenges, even

when dealing with apparently very similar structures.

To illustrate their vision of how the Semantic Web will operate, Tim Berners-Lee,

James Hendler, and Ora Lassila (2001) describe a scenario in which two siblings (Pete

and Lucy in the example) use SW agents to help them schedule medical appointments for

29

their mother. These agents perform tasks such as Web search, scheduling consolidation,

constraint matching, and trust assessment. Presently, these kinds of tasks rely heavily on

human intervention. According to the Semantic Web vision, automated Web agents will

perform them. For this vision to be feasible, it is clear that all Web services involved

must share the same meaning for the concepts involved in these activities. That is, each

sibling’s SW agents should treat concepts such as “20-mile radius”, “ appointment time”,

“ location”, “less important”, etc. the same way as they are treated by the diverse Web

services they would have to interact with (e.g. the doctor’s Web agent, the credit card

company web services, etc.).

Unfortunately, even in tightly controlled settings (e.g. small, closed environments

with controlled vocabularies), semantic inconsistencies (such as different concepts with

the same name, or different names for the same concept) occur frequently. Current

approaches to solve this semantic mapping problem, such as enforcing compliance with

standards defined by regulatory authorities (e.g. DOD directives such as 8320.19) or

employing generic matching schemes, have consistently fallen short of what is needed to

realize the SW vision.

Even though some ontology languages do offer constructs that help to import one

ontology into another, they lack a principled means for grading the similarity between

concepts or to make plausible inferences about the mapping between them. Providing

such a means is an important step towards making the semantic mapping problem a less

expensive, tedious, error-prone process. In short, the lack of a principled representation

9 Available at http://www.defenselink.mil/nii/bpr/bprcd/0039.htm, as of July 6, 2005.

30

for uncertainty in the field of ontological engineering is a major weakness hindering the

efforts towards better solutions for the semantic mapping problem. More generally, lack

of support for uncertainty management is a serious impediment to make the Semantic

Web a reality.

1.3 Why Uncertainty Matters

One of the main technical differences between the current World Wide Web and

the Semantic Web is that while the former relies on syntactic-only protocols, the latter

adds meta-data annotations as a means to convey shared, precisely defined terms or, in

other words, semantic awareness to improve the interoperability among Web resources.

From a syntactic standpoint, Grape as a fruit is equivalent to Grape as in John

Grape. Semantically aware schemes must be able to represent and appropriately process

differences such as this. This is not a trivial task. For semantic interoperability to work

correctly we need shared sources of precisely defined concepts, which is exactly where

ontologies play a key role.

Yet, when comparing two ontologies containing the term “Grape”, deterministic

reasoning algorithms will either consider it to be a fruit or an undefined object (which is

not the same as a non-fruit), with no intermediate grading. This is fine when complete

information is available, which is frequently the case under the closed world assumption

but much less common in the open world environment, where incomplete information is

the rule.

31

In the open world case, purely logical systems may represent phenomena such as

exceptions and unknown states with generic labels such as “other”, but will lose the

ability to draw strong conclusions. In probabilistic systems such phenomena would carry

a probabilistic qualifier, which allows valid conclusions to be drawn and also adds more

flexibility to the model. There are important issues regarding open-world probabilistic

reasoning that have not yet been completely addressed (c.f. Laskey & Lehner, 1994), but

probabilistic systems are a promising approach for reasoning in open world.

Despite these shortcomings of logic-based systems, the current development of

the future Semantic Web (which will support automated reasoning in most of its

activities) is based on classical logic. For example, OWL, a W3C recommendation

(Patel-Schneider et al., 2004), has no built-in support for probabilistic information and

reasoning, a major shortcoming for a technology that is expected to operate in a complex,

open world environment.

As we will see in the next chapters, OWL has its roots in its own web language

predecessors (i.e. XML, RDF), and in traditional knowledge representation formalisms

that have historically not considered uncertainty. Examples of these formalisms include

Frame systems (Minsky, 1975), and Description Logics, which evolved from the so-

called “Structured Inheritance Networks” (Brachman, 1977).

This historical background somewhat explains the lack of support for uncertainty

in OWL, a serious limitation for a language expected to support applications in an

environment where one cannot simply ignore incomplete information. As an example of

a similar situation in which a knowledge based system had to evolve in order to cope with

32

incomplete information we can refer to the Stanford University's MYCIN10 project

(Shortliffe et al., 1975) in the medical domain.

MYCIN evolved from DENTRAL11, which was deterministic, but according to

Buchanan and Shortliffe (1984, page 209): “As we began developing the first few rules

for MYCIN, it became clear that the rules we were obtaining from our collaborating

experts ... the inferences described were often uncertain”.

When faced with this problem of expressing this uncertainty, the initial approach

adopted by most decision-making systems’ developers was the subjectivist approach of

probability theory (Adams, 1976). Yet, probability theory was then considered intractable

so other methods were used, such as Certainty Factors (Buchanan & Shortliffe, 1984) and

Dempster-Shafer’s belief functions (Dempster, 1967; Shafer, 1976). These initial

approaches were superseded by the development of graphical probability models. The

key innovation of graphical models is the ability to express knowledge about uncertain

propositions using modular components, each involving a small number of elements that

can be composed into complex models for reasoning about many interrelated

propositions. This ability to express knowledge as modular, local units provides major

improvements in tractability, and also makes the knowledge engineering task feasible.

The graphical model formalism has been extended to other calculi such as

Dempster-Shafer’s belief functions, fuzzy logic, and qualitative probability. Shenoy &

10 MYCIN was an expert system developed in the seventies to assist medical specialists in the diagnosis of

infectious blood diseases, having achieved a performance comparable with that of human experts.
11 DENTRAL was also an expert system in the area of mass spectrometry. Even though its events were

inherently probabilistic, this was ignored by the inference engine in favor of a simpler, binary decisions

about occurrence or non occurrence of those events

33

Demirer (2001) provide a unified graphical formalism that covers many different

uncertainty calculi. Graphical probability models have made probability tractable, thus

addressing the initial concerns of many researchers. Now, many medical systems use

probability (Heckerman et al., 1995b; Helsper & van der Gaag, 2001; Lucas et al., 2001).

The evolution from deterministic reasoning to probabilistic reasoning has enabled

information systems to make use of uncertain, incomplete information. This seems to be

a promising path for the Semantic Web, which will inevitably confront the same

uncertainty-related concerns faced by the AI field.

1.4 Research Contributions and Structure of this Dissertation

Although our research is focused in the Semantic Web, we are tackling a problem

that precedes even the current WWW: the quest for more efficient data exchange.

Clearly, solving that problem requires more precise semantics and flexible ways to

convey information. While the WWW provided a new presentation medium and

technologies such as XML presented new data exchange formats, both failed to address

the semantics of data being exchanged. The SW is meant to fill this gap, and the

realization of its goals will require major improvements in technologies for data

exchange.

Unfortunately, for historical reasons and due to the lack of expressivity of

probabilistic representations in the past, current ontology languages have no built-in

support for representing or reasoning with uncertain, incomplete information. In the

uncertainty-laden environment in which the SW will operate, this is a major shortcoming

34

preventing realization of the SW vision. Indeed, in almost any domain represented in the

SW there will exist a vast body of knowledge that would be completely ignored (neither

represented nor reasoned upon) due to the SW language’s inability to deal with it.

As a means of addressing this problem, the long-term goal of our research is to

establish a Bayesian framework for probabilistic ontologies, which will provide a basis

for plausible reasoning services in the Semantic Web. Clearly, the level of acceptance

and standardization required for achieving this objective requires a broader effort led by

the W3C, probably resulting in a W3C Recommendation formally extending the OWL

language. Thus, the present dissertation should be seen as an initial effort towards that

broader objective.

In the next Chapter, we provide a brief introduction to Web languages and

probabilistic representations in general. Then, we change our focus to a brief coverage on

the attempts to find a common ground between the SW and probabilistic representations,

which also includes a view on the trend towards more expressive forms of the latter.

Chapter Three provides the necessary background on Multi-Entity Bayesian

Networks (MEBN), the probabilistic first-order logic that is the mathematical backbone

of PR-OWL. As a means to provide a smooth introduction to the fairly complex concepts

of MEBN logic, we needed to explore a domain of knowledge that would be both easily

understood and politically neutral, while still rich enough to include scenarios that would

demand a highly expressive language. Thus, we constructed a running case study based

35

on the Star Trek12 television series. Our explanations and examples assume no previous

familiarity with the particulars of the Star Trek series.

We start Chapter Four with our definition of a probabilistic ontology, a key

concept in our research. Then, we cover solutions to two major issues preventing the

construction of probabilistic ontologies. Because MEBN was built with flexibility in

mind, it has little standardization or support for many of the advanced features of OWL.

This was a major obstacle for developing a MEBN-based extension to OWL, and we

addressed it by developing an extended version of MEBN logic. Our version, which we

explain in the first section of the Chapter, incorporates typing, polymorphism and other

features that are desirable for an ontology language. In the second and last section we

addressed the lack of a probabilistic reasoner that implements all the advanced features

found in MEBN logic. In that section, we explain how we used Quiddity*Suite, a

powerful probabilistic toolkit developed at Information Extraction and Transport (IET),

as a MEBN logic implementation and, consequently, showed its potential to be

probabilistic reasoner for Semantic Web applications. More detailed aspects are

conveyed in Appendix A.

In Chapter Five, we built upon the results of Chapter Four and present our results

in developing PR-OWL. There, our probabilistic extension to OWL was defined as an

upper probabilistic ontology, which we documented in Appendix B. We also presented an

operational concept on how we foresee the use of our framework and a proposed strategy

for implementing probabilistic ontologies for the Semantic Web.

12 Star Trek and related marks are registered trademarks of Paramount Pictures.

36

Finally, in Chapter Six we convey a summary of this dissertation’s results and

present in Appendix C some possible uses of the technology proposed here for solving

problems in areas outside the Semantic Web research, such as the semantic mapping and

the multi-sensor data fusion problems.

Taken together, the contributions brought by this research constitute an initial step

for solving the current inability of SW languages to represent uncertainty and reason

under it in a principled way. Furthermore, as we suggested in the beginning of this

section, these contributions also have the potential to greatly improve the efficiency with

which data is exchanged, thus implying their applicability to a broader set of problems

beyond the Semantic Web.

37

Chapter 2 Background and Related Research

2.1 Web Languages

Information in the World Wide Web is encoded via markup languages, which use

tags (markups) to embed metadata into a document. The concept of markup languages13

was initially implemented by IBM in 1969 with the development of the Generalized

Markup Language (Goldfarb, 1996), which gained in popularity throughout the seventies.

Then, the growing demand for a more powerful standard led to the development of the

Standard Generalized Markup Language (SGML), which was adopted as an ISO standard

in 1986 (ISO:8879). SGML was a powerful language but also a very complex one, which

hindered its use in popular applications.

The breakthrough that sparked the popularization of markup languages was the

creation of the Hypertext Markup Language (HTML) in 1989 by Tim Berners-Lee and

Robert Caillau (Connoly et al., 1997). HTML is a very simple subset of SGML that is

focused on the presentation of documents. It rapidly became the standard language for the

World Wide Web. Yet, as the WWW became ubiquitous, the limitations of HTML

became apparent, the major one being its inability to deal with data interchange due to its

limited support for metadata. Even though the W3C launched new HTML versions, these

were not aimed to provide support to data exchange, since HTML was not originally

13 In spite of both being called languages, markup languages are very different from programming

languages. They are static and do not process information, but only store it in a structured way.

38

designed for data interchange14. Even though the WWW original intent had a focus on

documents, HTML’s inaptitude for data interchange became a major shortcoming at the

same pace the WWW became an ideal medium for data interchange.

The answer for the HTML limitations was the development of the Extensible

Markup Language (XML), which is much simpler than SGML but still capable of

expressing information about the contents of a document and of supporting user-defined

markups. XML became a W3C recommendation in 1998. In addition to its use for data

packaging (e.g. the .plist files in Mac OS X and many configuration files in Windows

XP), it has become the acknowledged standard for data interchange.

With the establishment of the Semantic Web road map by the W3C in 1998, it

became clear that more expressive markup languages were needed. As a result, the first

Model Syntax Specification for the Resource Description Framework (RDF) was released

in 1999 as a W3C recommendation. Unlike the data-centric focus of XML, RDF is

intended to represent information and to exchange knowledge. Accounts of the

differences between RDF and XML are widely available on the WWW (e.g. Gil &

Ratnakar, 2004).

In addition to a knowledge representation language, the Semantic Web effort also

needed an ontology language to support advanced Web search, software agents, and

knowledge management. The latest step towards fulfilling that requirement was the

release of OWL as a W3C recommendation in 2004. OWL superseded DAML+OIL

14 HTML has a strong focus on displaying information. Even its limited, implied semantics are largely

ignored. As an example, tags h1, h2, …, h5 are commonly employed as a formatting tool, rather than to

identify header levels in a document structure.

39

(Horrocks, 2002), a language that merged the two ontology languages being developed in

the US (DAML) and Europe (OIL) 15.

According to Hendler (2004), earlier languages have been used to develop tools

and ontologies for specific user communities, and therefore were not defined to be

compatible with the architecture of the World Wide Web in general, and the Semantic

Web in particular. In contrast, OWL uses the RDF framework to provide a more general,

interoperable approach by making ontologies compatible with web standards, scalable to

web needs, and with the ability to be distributed across many systems. The interested

reader will find information on OWL at the W3C OWL website (Miller & Hendler,

2004). Yet, as we stated before, OWL suffers from the limitations of deterministic

languages and thus lacks the advantages of probabilistic reasoning.

2.2 A Brief Introduction to Probabilistic Representations

Schum described probability as a subject that has “a very long past but a very

short history” (Schum, 1994, page 35). An abstract notion of probability may be traced

back at least to Paleolithic times, in the sense that early cultures are known to have used

artifacts for gambling or forecasting the future. In contrast, he adds, the first scientific

works on what we now call probability theory have a more recent history, dating back to

“only” 400 years ago in the pioneer writings of mathematicians Blaise Pascal (1623-

1662) and Pierre de Fermat (1608-1665). It was only in the 20th century that the major

15 The interested reader will find further information on DAML at http://www.daml.org/ and on OIL at

http://www.ontoknowledge.org/oil/

40

formal axiom systems for probability were developed (e.g. Cox, 1946; Kolmogorov,

1960/1933).

Four hundred years of scientific research and the broad acceptance of a formal

axiom system have not brought a common agreement on the philosophical foundations of

probability theory. Instead, many different interpretations have arisen during this time,

and none has succeeded in putting an end to the discussion about what probability really

is. The interested reader will find an excellent account of the historical development of

the competing theories in Hacking (1975), while valuable comparative studies can be

found in the works of Fine (1973), Weatherford (1982), and Cohen (1989).

The classical approach regards probability as the ratio of favorable cases to total,

equipossible cases (Laplace, 1996/1826; Ball, 2003/1908). The logical approach regards

probability as a logical relation between statements of evidence and hypothesis (Carnap,

1950; Keynes, 2004/1921). The frequentist view regards probability as the limiting

frequency of successful outcomes in a long sequence of trials (von Mises, 1981/1928).

The propensity view (Popper, 1957, 1959; Hacking, 1965; Lewis, 1980) regards

probability as a physical tendency for certain events to occur. Finally, the subjectivist

school understands probability as the degree of belief of an ideal rational agent about

hypotheses for which the truth-value is unknown (Ramsey, 1931; Savage, 1972/1954; de

Finetti, 1974). Despite the differences in philosophical interpretation, the mathematics is

common to all approaches.

This work is related to the task of representing uncertain, incomplete knowledge

that can come from diverse agents. For this reason, we adopt the subjectivist view of

41

probability. We have chosen subjective probability as our representation for uncertainty

because of its status as a mathematically sound representation language and formal

calculus for rational degrees of belief, and because it gives different agents the freedom

to have different beliefs about a given hypothesis.

Although the interpretation taken in this dissertation is subjectivist, the

methodology presented here is consistent with other interpretations of probability. For

example, some might prefer a frequency or a propensity interpretation for probabilities

that arise from processes considered to be intrinsically random. Such individuals would

naturally build probabilistic ontologies only for processes they regard as intrinsically

random. Others might prefer a logical interpretation of a probabilistic domain theory. In

the end, the above-mentioned discussion of what probability “really is” may be better

framed as an argument over what kind of applications would render justifiable the use of

a probabilistic axiom system and its underlying mathematics.

Many different axiomatic formulations have been proposed that give rise to

subjectivist probability as a representation for rational degrees of belief. Examples

include the axiom systems of Ramsey (1931), Kolmogorov (1960/1933), Cox (1946),

Savage (1972/1954), and De Finetti (de Finetti, 1990/1954). As an illustration, the

following axiom system is due to Watson & Buede (1987):

(1) For any two uncertain events, A is more likely than B, or B is more likely

than A, or they are equally likely.
(2) If A1 and A2 are any two mutually exclusive events, and B1 and B2 are

any other mutually exclusive events; and if A1 is not more likely than B1,

and A2 is not more likely than B2; then (A1 and A2) is not more likely
than (B1 and B2). Further, if either A1 is less likely than B1 or A2 is less

likely than B2, then (A1 and A2) is less likely than (B1 and B2).

(3) A possible event cannot be less likely than an impossible event.

42

(4) Suppose A1, A2, … is an infinite decreasing sequence of events; that is ,

if Ai occurs, then Ai-1 occurs, for any i. Suppose further that Ai is not less
likely than some other event B, again for any i. Then the occurrence of

all the infinite set of events Ai, I = 1,2,…, , is not less likely than B.

(5) There is an experiment, with a numerical outcome, such that each

possible value of that outcome, in a given range, is equally likely.

All the properties of the probabilistic system used by Bayesian Networks,

Influence Diagrams, and MEBN, can be derived from those axioms. Among those, two

transformations are crucial for the notion of probabilistic inference: the Law of Total

Probability and the Bayes Rule.

The Law of Total Probability, also known as multiplicative law (Page, 1988, page

17), gives the marginal probability distribution of a subset of random variables from joint

distribution on a superset by summing over all possible values of the random variables

not contained in the subset. Figure 3 illustrates the concept.

Bayes rule provides a method of updating the probability of a random variable

when information is acquired about a related random variable. The standard format of

Bayes rule is:

P(B) is called prior probability of B, as it reflects our belief in event B before

obtaining information on event A. Likewise, P(B|A) is the posterior probability of B, and

represents our new belief on event B after applying Bayes rule with the information

collected from event A.

)(

)()|(
)|(

AP

BPBAP
ABP =

43

Figure 3. Law of Total Probability

Bayes rule provides the formal basis for the active and rapidly evolving field of

Bayesian probability and statistics. In the Bayesian view, inference is a problem of belief

dynamics. Bayes rule provides a principled methodology for belief change in the light of

new information.

Good introductory material on Bayesian Statistics can be found in works of Press

(1989), Lee (2004), and Gelman (2003), while a more philosophically oriented reader

will be also interested in the collection of essays on foundational studies in Bayesian

decision theory and statistics by Kadane et al. (1999). The above concepts provide the

formal mathematical basis for the most widely used Bayesian Inference technique today:

Bayesian Networks

2.3 Bayesian Networks

Bayesian networks provide a means of parsimoniously expressing joint

probability distributions over many interrelated hypotheses. A Bayesian network consists

of a directed acyclic graph (DAG) and a set of local distributions. Each node in the graph

44

represents a random variable. A random variable denotes an attribute, feature, or

hypothesis about which we may be uncertain. Each random variable has a set of mutually

exclusive and collectively exhaustive possible values. That is, exactly one of the possible

values is or will be the actual value, and we are uncertain about which one it is. The

graph represents direct qualitative dependence relationships; the local distributions

represent quantitative information about the strength of those dependencies. The graph

and the local distributions together represent a joint distribution over the random

variables denoted by the nodes of the graph.

Bayesian networks have been successfully applied to create consistent

probabilistic representations of uncertain knowledge in diverse fields such as medical

diagnosis (Spiegelhalter et al., 1989), image recognition (Booker & Hota, 1986),

language understanding (Charniak & Goldman, 1989a, 1989b), search algorithms

(Hansson & Mayer, 1989), and many others. Heckerman et. al. (1995b) provides a

detailed list of recent applications of Bayesian Networks.

One of the most important features of Bayesian networks is the fact that they

provide an elegant mathematical structure for modeling complicated relationships among

random variables while keeping a relatively simple visualization of these relationships.

Figure 4 gives three simple examples of qualitatively different probability relationships

among three random variables.

45

Figure 4. Sample Relationships Among Three Random Variables

As a means for realizing the communication power of this representation, one

could compare two hypothetical scenarios in which a domain expert with little

background in probability tries to interpret what is represented in Figure 4. Initially,

suppose that she is allowed to look only to the written equations below the pictures. In

this case, we believe that she will have to think at least twice before making any

conclusion on the relationships among events A, B, and C. On the other hand, if she is

allowed to look only to the pictures, it seems fair to say that she will immediately

perceive that in the leftmost picture, for example, event B is independent of events A and

C, and event C depends on event A. Also, simply comparing the pictures would allow her

to see that, in the center picture, A is now dependent on B, and that in the rightmost

picture B influences both A and C. Advantages of easily interpretable graphical

representation become more apparent as the number of hypothesis and the complexity of

the problem increases.

One of the most powerful characteristics of Bayesian Networks is its ability to

update the beliefs of each random variable via bi-directional propagation of new

information through the whole structure. This was initially achieved by an algorithm

A B

C

A B

C

A B

C

P(A,B,C) = P(C|A)P(A) P(A,B,C) = P(C|A,B)P(A)P(B) P(A,B,C) = P(C|A,B)P(A|B)P(B)

46

proposed by Pearl (1988) that fuses and propagates the impact of new evidence providing

each node with a belief vector consistent with the axioms of probability theory.

Pearl’s algorithm performs exact Bayesian updating, but only for singly

connected networks. Subsequently, general Bayesian updating algorithms have been

developed. One of the most commonly applied is the Junction Tree algorithm (Lauritzen

& Spiegelhalter, 1988). Neapolitan (2003) provides a discussion on many Bayesian

propagation algorithms. Although Cooper (1987) showed that exact belief propagation in

Bayesian Networks can be NP-Hard, exact computation is practical for many problems of

practical interest.

Some complex applications are too challenging for exact inference, and require

approximate solutions (Dagum & Luby, 1993). Many computationally efficient inference

algorithms have been developed, such as probabilistic logic sampling (Henrion, 1988),

likelihood weighting (Fung & Chang, 1989; Shachter & Peot, 1990), backward sampling

(Fung & del Favero, 1994), Adaptive Importance Sampling (Cheng & Druzdzel, 2000),

and Approximate Posterior Importance Sampling (Druzdzel & Yuan, 2003).

Those algorithms allow the impact of evidence about one node to propagate to

other nodes in multiply-connected trees, making Bayesian Networks a reliable engine for

probabilistic inference. The prospective reader will find comprehensive coverage of

Bayesian Networks in a large and growing literature on this subject, such as Pearl (1988),

Neapolitan (1990, 2003), Oliver & Smith (1990), Charniak (1991), Jensen (1996, 2001),

or Korb & Nicholson (2003).

47

2.3.1 Probabilistic Reasoning with Bayesian Networks

Bayesian Networks have received praise for being a powerful tool for performing

probabilistic inference, but they do have some limitations that impede their application to

complex problems.

As Bayesian networks grew in popularity, their limitations became increasingly

apparent. Although a powerful tool, BNs are not expressive enough for many real-world

applications. More specifically, Bayesian Networks assume a simple attribute-value

representation – that is, each problem instance involves reasoning about the same fixed

number of attributes, with only the evidence values changing from problem instance to

problem instance.

This type of representation is inadequate for many problems of practical

importance. Many domains require reasoning about varying numbers of related entities

of different types, where the numbers, types and relationships among entities usually

cannot be specified in advance and may have uncertainty in their own definitions. As will

be demonstrated below, Bayesian networks are insufficiently expressive for such

problems.

2.3.2 Case Study: The Star Trek Scenario

Choosing a particular real-life domain would pose the risk of getting bogged

down in domain-specific detail. For this reason, we opted to construct a case study based

on the popular television series Star Trek. Nonetheless, the examples presented here have

been constructed to be accessible to anyone having some familiarity with space-based

48

science fiction. We begin our exposition narrating a highly simplified problem of

detecting enemy starships.

In this simplified problem, the main task of a decision system is to model the

problem of detecting Romulan starships (here considered as hostile by the United

Federation of Planets) and assessing the level of danger they bring to our own starship,

the Enterprise. All other starships are considered either friendly or neutral. Starship

detection is performed by the Enterprise’s suite of sensors, which can correctly detect and

discriminate starships with an accuracy of 95%. However, Romulan starships may be in

“cloak mode,” which makes them invisible to the Enterprise’s sensors. Even for the most

current sensor technology, the only hint of a nearby starship in cloak mode is a slight

magnetic disturbance caused by the enormous amount of energy required for cloaking.

The Enterprise has a magnetic disturbance sensor, but it is very hard to distinguish

background magnetic disturbance from that generated by a nearby starship in cloak

mode.

This simplified situation is modeled by the BN in Figure 516, which also considers

the characteristics of the zone of space where the action takes place. Each node in our BN

has a finite number of mutually exclusive, collectively exhaustive states. The node Zone

Nature (ZN) is a root node, and its prior probability distribution can be read directly from

Figure 5 (e.g. 80% for deep space). The probability distribution for Magnetic Disturbance

Report (MDR) depends on the values of its parents ZN and Cloak Mode (CM). The

strength of this influence is quantified via the conditional probability table (CPT) for

16 Bayesian network screen shots were constructed using Netica!, http://www.norsys.com.

49

node MDR, shown in Table 1. Similarly, Operator Species (OS) depends on ZN, and the

two report nodes depend on CM and the hypothesis on which they are reporting.

Figure 5. The Naïve Star Trek Bayesian Network

Graphical models provide a powerful modeling framework and have been applied

to many real world problems involving uncertainty. Yet, the model depicted above is of

little use in a “real life” starship environment. After all, hostile starships cannot be

expected to approach Enterprise one at a time so as to render its simple BN model usable.

If four starships were closing in on the Enterprise, the BN of Figure 5 would have to be

replaced by the one shown in Figure 6.

Table 1. Conditional Probability Table for Node MDR

Magnetic Disturb. Rep. Zone Nature Cloak Mode

Low Medium High
True 80.0 13.0 7.0 Deep Space
False 85.0 10.0 5.0
True 20.0 32.0 48.0 Planetary

Systems False 25.0 30.0 45.0
True 5.0 10.0 85.0 Black Hole

Boundary False 6.9 10.6 82.5

Unfortunately, building a BN for each possible number of nearby starships is not

only a daunting task but also a pointless one, since there is no way of knowing in advance

50

how many starships the Enterprise is going to encounter and thus which BN to use at any

given time. In short, BNs lack the expressive power to represent entity types (e.g.,

starships) that can be instantiated as many times as required for the situation at hand.

Figure 6. The BN to the Four-Starship Case

In spite of its naiveté, we will briefly hold on to the premise that only one starship

can be approaching the Enterprise at a time, so that the model of Figure 5 is valid.

Furthermore, we will assume that the Enterprise is traveling in deep space, and its sensor

reports imply that there is no trace of any nearby starship (i.e. the state of node SR state is

Nothing). Further, there’s a newly arrived report indicating a strong magnetic disturbance

(i.e. the state of node MDR is High). Table 1 shows that the likelihood ratio for a high

MDR is 7/5 = 1.4 in favor of a starship in cloak mode. Although this favors a cloaked

starship in the vicinity, the evidence is not overwhelming.

Repetition is a powerful way to boost the discriminatory power of weak signals.

As an example from airport terminal radars, a single pulse reflected from an aircraft

usually arrives back to the radar receiver very weakened, making it hard to set apart from

51

background noise. However, a steady sequence of reflected radar pulses is easily

distinguishable from background noise.

Following the same logic, it is reasonable to assume that an abnormal background

disturbance will show random fluctuation, whereas a disturbance caused by a starship in

cloak mode would show a characteristic temporal pattern. Thus, when there is a cloaked

starship nearby, the MDR state at any time depends on its previous state. A BN similar to

the one in Figure 7 could capitalize on this for pattern recognition purposes.

Figure 7. The BN for One-Starship Case with Recursion

Dynamic Bayesian Networks (DBNs) allow nodes to be repeated over time

(Murphy, 1998). The model of Figure 7 has both static and dynamic nodes, and thus is a

partially dynamic Bayesian network (PDBN), also known as a temporal Bayesian

network (Takikawa et al., 2002). While DBNs and PDBNs are useful for temporal

recursion, a more general recursion capability is needed, as well as a parsimonious syntax

for expressing recursive relationships.

This section has provided just a glimpse of the issues that confront an engineer

attempting to apply Bayesian networks to realistically complex problems. We did not

52

provide a comprehensive analysis of the limitations of Bayesian networks for solving

complex problems, since this brief overview is enough for making the point that even

relatively simple situations might require more expressiveness than BNs can provide.

A much more powerful representational formalism is offered by first-order logic

(FOL), which has the ability to represent entities of different types interacting with each

other in varied ways. Sowa states that first-order logic “has enough expressive power to

define all of mathematics, every digital computer that has ever been built, and the

semantics of every version of logic, including itself” (Sowa, 2000, page 41). For this

reason, FOL has become the de facto standard for logical systems from both a theoretical

and practical standpoint.

However, systems based on classical first-order logic lack a theoretically

principled, widely accepted, logically coherent methodology for reasoning under

uncertainty. As a result, a number of languages have appeared that extend the

expressiveness of standard BNs in various ways. Two different streams of research on

combining logic with probability are covered in the following sections.

2.4 Probabilistic Extensions to Web Languages

2.4.1 Probabilistic extensions to Description Logic

Most of the probabilistic extensions aimed at the ontology engineering domain are

based on Description Logic (DL), which Baader and Nutt (2001, page 47) define as a

family of knowledge representation formalisms that represent the knowledge of an

application domain (the “world”) by first defining the relevant concepts of the domain

53

(its terminology), and then using these concepts to specify properties of objects and

individuals occurring in the domain (the world description).

Description Logic divides a knowledge base into two components: a

terminological box, or T-Box, and the assertional box, or A-Box. The first introduces the

terminology (i.e. the vocabulary) of an application domain, while the latter contains

assertions about instances of the concepts defined in the T-Box. Description Logic is a

subset of FOL that provides a very good combination of decidability and expressiveness,

and is the basis of OWL-DL.

One of its extensions is Probabilistic Description Logic (Heinsohn, 1994; Jaeger,

1994), which extends the description logic ALC, a member of the AL-languages

(Schmidt-Schauß & Smolka, 1991) that is obtained by including the full existential

quantification and the union constructors to the basic AL (attributive language).

Another description logic language with a probabilistic extension is SHOQ(D)

(Horrocks & Sattler, 2001). SHOQ(D) is the basis of DAML+OIL (Horrocks, 2002), the

language that came from merging two ontology languages being developed in the US

(DAML) and Europe (OIL) and has been superseded by OWL. Its probabilistic extension

is called P-SHOQ (Giugno & Lukasiewicz, 2002), and is able to represent probabilistic

information about concept and role instances (i.e. A-Box).

P-Classic (Koller et al., 1997), another example of a probabilistic extension to

DL, uses Bayesian inference mechanisms for extending the description logic CLASSIC.

54

In short, each probabilistic component is associated with a set P of p-classes, and each p-

class C in set P is represented using a Bayesian network.

A common characteristic of the above approaches is that they extend description

logic, which is a decidable subset of first-order logic (FOL). Description logics are highly

effective and efficient for the classification and assumption problems they were designed

to address. However, their ability to represent and reason about other commonly

occurring kinds of knowledge is limited. One restrictive aspect of DL languages is their

limited ability to represent constraints on the instances that can participate in a

relationship. As an example, suppose we want to express that for a starship to be a threat

to another starship in a specific type of situation it is mandatory that the two individuals

of class starship involved in the situation are not the same. Making sure the two starships

are different in a specific situation is only possible in DL if we actually create/specify the

tangible individuals involved in that situation. Indeed, stating that two “fillers” (i.e. the

actual individuals of class Starship that will “fill the spaces” of concept starship in our

statement) are not equal without specifying their respective values would require

constructs such as negation and equality role-value-maps, which cannot be expressed in

description logic. While equality role-value-maps provides additional useful means to

specify structural properties of concepts, their inclusion makes the logic undecidable

(Calvanese & De Giacomo, page 223).

2.4.2 Probabilistic Extensions to OWL

The ontology language OWL is a W3C recommendation and has been receiving a

great deal of attention, as the intended basis for the Semantic Web. Interestingly enough,

55

there are relatively few research efforts aimed at extending OWL to represent

uncertainty.

Among those is the research being done by Zhongli Ding and Yung Peng (2004)

at the University of Maryland. Their main objective is to translate a Bayesian Network

model to an OWL ontology. The approach involves augmenting OWL semantics to allow

probabilistic information to be represented via additional markups. The result would be a

probabilistic annotated ontology that could then be translated to a Bayesian network.

Such a translation would be based on a set of translation rules that would rely on the

probabilistic information attached to individual concepts and properties within the

annotated ontology. The authors note that after successfully achieving the translation, the

resulting Bayesian network will be associated with a joint probability distribution over

the application domain. The authors acknowledge that a full translation of an ontology to

a standard BN is impossible given the limitations of the latter in terms of expressivity.

This corroborates the comments made earlier in Section 2.3 on the limited expressiveness

of Bayesians networks being a major shortcoming for the technology to be used in more

complex problems.

Indeed, we have already seen that ontologies provide an explicit formal

specification for how to represent the objects, concepts and other entities that are

assumed to exist in some area of interest and the relationships among them, which

implies the need for a highly expressive language to capture all the relevant information

of a given domain. OWL, and other ontology languages as well, rely in variations of

56

FOL, so only a probabilistic FOL would be able to capture all the information included in

an OWL ontology.

Also focusing on Bayesian extensions geared towards the Semantic Web is the

work of Gu et al. (2004), which has a very similar approach to Ding’s. Another effort in

this direction is the set of RDF extensions being developed by Yoshio Fukushige (2004).

In both cases, the representational limitations of Bayesian Networks limit the ability to

express more complex probabilistic models, constraining their solutions to very specific

classes of problems.

It is primarily in those aspects that this work differs from the above approaches

Even though we share the idea of extending Web languages to accept probabilistic

information, the main objective of this research is to show a feasible solution to the more

general problem of the lack of probabilistic support for applications currently being

developed for the Semantic Web. At this point, it should be clear that such an objective

would only be possible with the use of a powerful probabilistic language that does not

have the representational limitations of Bayesian Networks.

One such approach is the work of Mike Pool at IET in developing an OWL-based

implementation of Quiddity*Suite (Pool & Aikin, 2004), which is primarily being used in

the IET’s KEEPER project (Pool, 2004). As much as our own work, Mike’s extensions

provide a very expressive method for representing uncertainty in OWL ontologies, while

our approaches diverge in two aspects. First, we are focused on the more general problem

of enabling probabilistic ontologies for the SW, whereas Mike’s work is mostly geared

towards the use of Quiddity*Suite to represent OWL ontologies in projects such as

57

KEEPER. The second major difference is that while we use MEBN logic as the

underlying semantics of our work, Mike relies on Quiddity*Suite’s syntax and semantics

to provide the logical framework for his extensions. Given our common use of

Quiddity*Suite as a reasoner and shared interests in developing coherent forms of

representing uncertainty in ontologies we have not only been mutually aware of our

progresses but also had a great level of collaboration during the research period of this

Dissertation.

2.5 Probabilistic Languages with near First-Order Expressive Power

In recent years, a number of languages have appeared that extend the

expressiveness of standard directed and undirected graphical models in various ways.

These languages include Hidden Markov models (Baum & Petrie, 1966; Rabiner, 1989;

Elliott et al., 1995) which have been largely used in pattern recognition applications.

HMMs can be viewed as a special case of dynamic Bayesian networks, or DBNs

(Murphy, 1998). A HMM is a DBN having hidden states with no internal structure that d-

separate observations at different time steps. Partially dynamic Bayesian networks, also

called temporal Bayesian networks (Takikawa et al., 2002) extend DBNs to include static

variables. These formalisms augment standard Bayesian networks with a capability for

temporal recursion.

BUGS (Buntine, 1994a; Gilks et al., 1994; Spiegelhalter et al., 1996) is a software

package that implements the Plates language. Plates represent repeated fragments of

directed or undirected graphical models. Visually, a plate is represented as a rectangle

58

enclosing a set of repeated nodes. Strengths of plates are the ability to handle continuous

distributions without resorting to discretization, and support for parameter learning in a

wide variety of parameterized statistical models. The main weakness is the lack of a

direct, explicit way to represent uncertainty about model structure.

Probabilistic efforts towards more expressive languages also involve undirected

graph models, which are usually applied to problems where there is not a natural

direction for probabilistic influences, such as image processing and terrain reasoning.

One example is pattern theory (Grenander, 1995), which focuses on creating

mathematical knowledge representations of complex systems, analyzing the

mathematical properties or the resulting regular structures, and applying them to

practically occurring patterns found in the real world. Patterns are expressed through their

typical behavior as well as through their variability around their typical form, and

algorithms are derived for the understanding, recognition, and restoration of the observed

patterns. The theory employs undirected graphs as a representational tool.

Object-Oriented Bayesian Networks (Koller & Pfeffer, 1997; Bangsø &

Wuillemin, 2000; Langseth & Nielsen, 2003) represent entities as instances of object

classes with class-specific attributes and probability distributions. Probabilistic Relational

Models (PRM) (Pfeffer et al., 1999; Getoor et al., 2000; Getoor et al., 2001; Pfeffer,

2001) integrate the relational data model (Codd, 1970) and Bayesian networks. PRMs

extend standard Bayesian Networks to handle multiple entity types and relationships

among them, providing a consistent representation for probabilities over a relational

database. PRMs cannot express arbitrary quantified first-order sentences and do not

59

support recursion. Although PRMs augmented with DBNs can support limited forms of

recursion, they still do not support general recursive definitions. Jaeger (1997) extends

relational probabilistic models to allow recursion, but it is limited to finitely many

random variables.

DAPER (Heckerman et al., 2004) combines the entity-relational model with DAG

models to express probabilistic knowledge about structured entities and their

relationships. Any model constructed in Plates or PRM can be represented by DAPER.

Thus, DAPER is a unifying language for expressing relational probabilistic knowledge.

DAPER expresses probabilistic models over finite databases, and cannot represent

arbitrary FOPC expressions involving quantifiers. Therefore, like other languages

discussed above, DAPER does not achieve full FOPC representational power.

Most of the abovementioned work is still under development, and has provided

undeniable improvements in the flexibility and expressiveness of probabilistic

representation. Multi-Entity Bayesian Networks, which we will cover in the next chapter,

is another formal system that combines FOL and probability theory. Among the major

reasons that led us to have adopted MEBN as the formal basis for PR-OWL are its ability

to express joint distributions over models of arbitrary finitely axiomatizable first order

theories and to add new axioms by Bayesian conditioning.

60

Chapter 3 Multi-Entity Bayesian Networks

Multi-Entity Bayesian Networks integrate first order logic with Bayesian

probability. MEBN logic expresses probabilistic knowledge as a collection of MEBN

fragments (MFrags) organized into MEBN Theories (MTheories). An MFrag represents a

conditional probability distribution of the instances of its resident random variables given

the values of instances of their parents in the Fragment graphs and given the context

constraints.

A collection of MFrags represents a joint probability distribution over an

unbounded, possibly infinite number of instances of its random variables. The joint

distribution is specified by means of the local distributions together with the conditional

independence relationships implied by the fragment graphs. Context terms are used to

specify constraints under which the local distributions apply.

A collection of MFrags that satisfies consistency constraints ensuring the

existence of a unique joint probability distribution over its random variables is called an

MTheory. MTheories can express probability distributions over truth values of arbitrary

First Order Logic sequences and can be used to express domain-specific ontologies that

capture statistical regularities in a particular domain of application.

61

In addition, MTheories can represent particular facts relevant to a given reasoning

problem. Conditioning a prior distribution represented by an MTheory on its findings is

the basis of probabilistic inference with MEBN logic.

Support for decision constructs in MEBN is provided via Multi-Entity Decision

Graphs (MEDG), which are related to MEBN the same way influence diagrams are

related to Bayesian Networks. An MEDG can be applied in any application that requires

optimizing a set of alternatives (i.e. an MEDG policy) over the given constraints of a

specific situation. MEBN logic also provides means of learning the structure of a MEBN

Theory on the basis of data (i.e. Bayesian learning), while parameter learning can be

expressed as inference in MEBN theories that contain parameter random variables.

In short, MEBN logic has the potential to serve as the mathematical backbone for

future Semantic Web applications that can deal with plausible reasoning. Yet, as we will

explain later in this work, some issues such as the lack of built-in support for typing and

polymorphism had to be addressed before making use of the logic’s strengths. In order to

understand those issues and to achieve a thorough understanding of MEBN primitives,

this Chapter uses the Star Trek model presented in Section 2.3 as the background to

explain the principles of the logic and its representational power as well.

3.1 A More “Realistic” Sci-fi Scenario

The limited model of the previous section would be of little use in increasing the

Captain’s awareness of the level of danger faced by the Enterprise. In addition to the

model’s naïve assumptions, there were clear omissions such as the assessment of the

62

threat posed by a given starship, its ability and willingness to attack our own vessel, etc.

These and other pertinent issues are addressed in the context of a richer scenario for

which the power of MEBN is required.

Like present-day Earth, 24th Century outer space is not a politically trivial

environment. It is clear that the previous model failed to consider the many different alien

species with diverse profiles that populate the Universe as portrayed in the television

series. Although MEBN logic can represent the full range of species inhabiting the

Universe in the 24th century, for purposes of this work only a few sample groups will

suffice. Therefore, in the following pages the explicitly modeled species will be restricted

to Friends17, Cardassians, Romulans, and Klingons, while addressing encounters with

other possible races using the general label Unknown.

Cardassians are constantly at war with the Federation, so any encounter with them

is considered a hostile event. Fortunately, they do not possess cloaking technology, which

makes it easier to detect and discriminate them. Romulans possess cloaking technology

and are more ambiguous, behaving in a hostile manner in roughly half their encounters

with Federation starships. Klingons, who also possess cloaking technology, have a peace

agreement with the Federation of Planets, but their treacherous and aggressive behavior

makes them less reliable than friends. Finally, when facing an unknown species, the

historical log of such events shows that out of every ten new encounters, only one was

hostile.

17 The interest reader can find further information on the Star Trek series in a plethora of websites dedicated

to preserve or to extend the history of series, such as www.startrek.com, www.ex-astris-scientia.org, or

techspecs.acalltoduty.com.

63

Apart from the species of its operators, a truly “realistic” model would consider

each starship’s type, offensive power, the ability to inflict harm to the Enterprise given its

range, and numerous other features pertinent to the model’s purpose.

3.2 The Basics of MFrags

MEBN logic represents the world as comprised of entities that have attributes and

are related to other entities. Random variables (RV) represent features of entities and

relationships among entities. Knowledge about attributes and relationships is expressed

as a collection of MFrags organized into MTheories. An MFrag represents a conditional

probability distribution for instances of its resident RVs given their parents in the

fragment graph and the context nodes. An MTheory is a set of MFrags that collectively

satisfies consistency constraints ensuring the existence of a unique joint probability

distribution over instances of the RVs represented in each of the MFrags within the set.

Like a BN, an MFrag contains nodes, which represent RVs, arranged in a directed

graph whose edges represent direct dependence relationships. An isolated MFrag can be

roughly compared with a standard BN with known values for its root nodes and known

local distributions for its non-root nodes. For example, the MFrag of Figure 8 represents

knowledge about the degree of danger to which our own starship is exposed. The

fragment graph has seven nodes. The four nodes at the top of the figure are context

nodes; the two shaded rectangular nodes below the context nodes are the input nodes; and

the bottom node is a resident node.

64

Figure 8. The Danger To Self MFrag

A node in an MFrag may have a parenthesized list of arguments. These

arguments are placeholders for entities in the domain. For example, the argument st to

HarmPotential(st, t) is a placeholder for an entity that has a potential to harm, while the

argument t is a placeholder for the time step this instance represents. To refer to an actual

entity in the domain, the argument is replaced with a unique identifier. By convention,

unique identifiers begin with an exclamation point, and no two distinct entities can have

the same unique identifier. The result of substituting unique identifiers for a RV’s

arguments is one or more instances of that RV. For example, HarmPotential(!ST1, !T1)

and HarmPotential(!ST2, !T1) are two instances of HarmPotential(st, t) that both occur in

the time step !T1.

The resident nodes of an MFrag have local distributions that define how their

probabilities depend on the values of their parents in the fragment graph. In a complete

MTheory, each random variable has exactly one home MFrag, where its local distribution

65

is defined.18 Input and context nodes (e.g., OpSpec(st) or IsOwnStarship(s)) influence the

distribution of the resident nodes, but their distributions are defined in their own home

MFrags.

Context nodes represent conditions that must be satisfied for the influences and

local distributions of the fragment graph to apply. Context nodes may have value True,

False, or Absurd.19 Context nodes having value True are said to be satisfied. As an

example, if the unique identifier for the Enterprise (i.e., !ST0) is substituted for the

variable s in IsOwnStarship(s), the resulting hypothesis will be true. If, instead, a

different starship unique identifier (say, !ST1) is used, then this hypothesis will be false.

Finally, if the unique identifier of a non-starship (say, !Z1) replaces s, then this statement

is absurd (i.e., it is absurd to ask whether or not a zone in space is one’s own starship).

To avoid cluttering the fragment graph, the states of context nodes are not shown,

contrary to what happens with input and resident nodes. This is mainly because they are

Boolean nodes whose values are relevant only for deciding whether to use a resident

random variable’s local distribution or its default distribution.

No probability values are shown for the states of the nodes of the fragment graph

in Figure 8. This is because nodes in a fragment graph do not represent individual random

variables with well-defined probability distributions. Instead, a node in an MFrag

18 Please, note that standard MEBN logic does not support polymorphism. However, an extension to a

typed polymorphic version is proposed in Chapter 4, and would permit a random variable to be resident

in more than one MFrag.
19 State names in this Dissertation are alphanumeric strings beginning with a letter, including True and

False. However, Laskey (2005) uses the symbols T for True, F for False, and " for Absurd, and requires

other state names to begin with an exclamation point (because they are unique identifiers)

66

represents a generic class of random variables. To draw inferences or declare evidence,

we must create instances of the random variable classes.

To find the probability distribution for an instance of DangerToSelf(s, t), the first

step is to identify all instances of HarmPotential(st, t) and OpSpec(st) for which the

context constraints are satisfied. If there are none, then the default distribution that

assigns value Absurd with probability 1 must be used. Otherwise, to complete the

definition of the MFrag of Figure 8, a local distribution must be specified for its lone

resident node, DangerToSelf(s, t).

The pseudo-code of Figure 8 defines a local distribution for the danger to a

starship due to all starships that influence its danger level. Local distributions in standard

BNs are typically represented by static tables, which limits each node to a fixed number

of parents. On the other hand, an instance of a node in an MTheory might have any

number of parents. Thus, MEBN implementations (i.e. languages based on MEBN logic)

must provide an expressive language for defining local distributions. In this work, the use

of pseudo-code is intended to convey the idea of using local expressions to specify

probability distributions, while not committing to a particular syntax.

Lines 3 to 5 cover the case in which there is at least one nearby starship operated

by Cardassians and having the ability to harm the Enterprise. This is an uncomfortable

situation for Capitan Picard, the Enterprise Commander, and his starship, where the

probability of an unacceptable danger to self is 0.90 plus the minimum of 0.10 and the

result of multiplying 0.025 by the total number of starships that are harmful and operated

by Cardassians.

67

Also the remaining belief (i.e. the difference between 100% and the belief in state

Unacceptable is divided between High (80% of the remainder) and Medium (20% of the

remainder) whereas belief in Low is zero. The remaining lines use similar formulas to

cover the other possible configurations in which there exist starships with potential to

harm Enterprise (i.e. HarmPotential(st, t) = True).

The last conditional statement of the local expression covers the case in which no

nearby starships can inflict harm upon the Enterprise (i.e. all nodes HarmPotential(st, t)

have value False). In this case, the value for DangerToSelf(s, t) is Low with probability 1.

Figure 9 depicts an instantiation of the Danger To Self MFrag for which there are

four starships nearby, three of them operated by Cardassians and one by the Romulans.

Also, the Romulan and two of the Cardassian starships are within a range at which they

can harm the Enterprise, whereas the other Cardassian starship is too far away to inflict

any harm.

Figure 9. An Instance of the Danger To Self MFrag

68

Following the procedure described in Figure 8, the belief for state Unacceptable

is .975 (.90 + .025*3) and the beliefs for states High, Medium, and Low are .02 ((1-

.975)*.8), .005 ((1-.975)*.2), and zero respectively.

In short, the pseudo-code covers all possible input node configurations by linking

the danger level to the number of nearby starships that have the potential to harm our own

starship. The formulas state that if there are any Cardassians or Romulan starships within

Enterprise’s range, then a glimpse of what would the distribution for danger level given

the number of nearby starships looks like is depicted in Table 2.

Table 2. Sample Parts of the Danger To Self MFrag Probability Distribution

Relevant Starships Nearby Danger Level Dist.

At least 1 Cardassian [0.925, 0.024, 0.006, 0]

At least 2 Cardassians [0.99, 0.008, 0.002, 0]

At least 3 Cardassians [0.975, 0.2, 0.05, 0]

More than 4 Cardassians [1, 0, 0, 0]

No Cardassians but at least 1 Romulan [.73, .162, .081, .027]

No Cardassians but at least 1 Romulans [.76, .144, .072, .024]

… … (see formula)

No Cardassians but 10 or more Romulans [1, 0, 0, 0]

No Cardassians or Romulans, one Unknown [.02, .48, .48, .02]

… … (see formula)

No Cardassians or Romulans, 10+ Unknown [.20, .30, .30, .20]

… …(see formula)

Following the same logic depicted in the formula, if there are only friendly

starships nearby with the ability to harm the Enterprise, then the distribution becomes [0,

69

0, 0.01, .99]. The last line indicates that if that no starship can harm the Enterprise, then

the danger level will be Low for sure.

As noted previously, a powerful formalism is needed to represent complex

scenarios at a reasonable level of fidelity. In the probability distribution shown in this

example, additional detail could have been added and many nuances might have been

explored. For example, a large number of nearby Romulan ships might have been

considered as a fair indication of a coordinated attack and therefore implied greater

danger than an isolated Cardassian ship.

Nonetheless, this example was purposely kept simple in order to clarify the basic

capabilities of the logic. It is clear that more complex knowledge patterns could be

accommodated as needed to suit the requirements of the application. MEBN logic has

built-in logical MFrags that provide the ability to express any sentence that can be

expressed in first-order logic. Laskey (2005) proves that MEBN logic can implicitly

express a probability distribution over interpretations of any consistent, finitely axiom-

atizable first-order theory. This provides MEBN with sufficient expressive power to

represent virtually any scientific hypothesis.

3.3 Representing Recursion in MEBN Logic

One of the main limitations of BNs is their lack of support for recursion.

Extensions such as dynamic Bayesian networks provide the ability to define certain kinds

of recursive relationships. MEBN provides theoretically grounded support for very

70

general recursive definitions of local distributions. Figure 10 depicts an example of how

an MFrag can represent temporal recursion.

Figure 10. The Zone MFrag

In that MFrag, a careful reading of the context nodes will make it clear that in

order for the local distribution to apply, z has to be a zone and st has to be a starship that

has z as its current position. In addition, tprev and t must be TimeStep entities, and tprev

is the step preceding t.

Other varieties of recursion can also be represented in MEBN logic by means of

MFrags that allow influences between instances of the same random variable. Allowable

recursive definitions must ensure that no random variable instance can influence its own

probability distribution. General conditions that both recursive and non-recursive MFrags

and MTheories must satisfy are given in Laskey (2005).

As in non-recursive MFrags, the input nodes in a recursive MFrag include nodes

whose local distributions are defined in another MFrag (i.e., CloakMode(st)). In addition,

the input nodes may include instances of recursively-defined nodes in the MFrag itself.

71

For example, the input node ZoneMD(z, tprev) represents the magnetic disturbance in

zone z at the previous time step, which influences the current magnetic disturbance

ZoneMD(z, t). The recursion is grounded by specifying an initial distribution at time !T0

that does not depend on a previous magnetic disturbance.

Figure 12 illustrates how recursive definitions can be applied to construct a

situation-specific Bayesian Network (SSBN) to answer a query. In this specific case, the

query concerns the magnetic disturbance at time !T3 in zone !Z0, where !Z0 is known to

contain the uncloaked starship !ST0 (Enterprise) and exactly one other starship !ST1,

which is known to be cloaked.

Figure 11. SSBN Constructed from Zone MFrag

The process to build the graph shown in this picture begins by creating an

instance of the home MFrag of the query node ZoneMD(!Z0,!T3). That is, !Z0 is

substituted for z and !T3 for t, and then all instances of the remaining random variables

72

that meet the context constraints are created. The next step is to build any conditional

probability tables (CPTs) that can already be built on the basis of the available data. CPTs

for ZoneMD(!Z0,!T3), ZoneNature(!Z0), ZoneEShips(!Z0), and ZoneFShips(!Z0) can be

constructed because they are resident in the retrieved MFrag. Single-valued CPTs for

CloakMode(!ST0), CloakMode(!ST1), and !T3=!T0 can be specified because the values of

these random variables are known.

At end of the above process, only one node, ZoneMD(!Z0,!T2), remains for which

there is no CPT. To construct its CPT, its home MFrag must be retrieved, and any

random variables that meet its context constraints and have not already been instantiated

must be instantiated. The new random variables created in this step are

ZoneMD(!Z0,!T1) and !T2=!T0. The value of the latter is already known, while the home

MFrag of the former has to be retrieved. This process continues until all the nodes of

Figure 11 are added. At this point, the CPTs for all random variables can be constructed,

and thus the SSBN is complete.20

The MFrag depicted in Figure 10 defines the local distribution that applies to all

these instances, even though for brevity only the probability distributions (local and

default) for node ZoneMD(z, t) were displayed. The remaining distributions can be found

in Appendix A. Note that when there is no starship with cloak mode activated, the

probability distribution for magnetic disturbance given the zone nature does not change

with time. When there is at least one starship with cloak mode activated, then the

20 For efficiency reasons, most knowledge-based model construction systems would not explicitly represent

root evidence nodes such as CloakMode(!ST0) or !T1=!T0 or barren nodes such as ZoneFShips(!Z0) and

ZoneFShips(!Z0). For expository purposes, the approach taken here was the logically equivalent,

although less computationally efficient, approach of including all these nodes explicitly.

73

magnetic disturbance tends to fluctuate regularly with time in the manner described by

the local expression. For the sake of simplicity, the underlying assumption that the local

distribution depends only on whether there is a cloaked starship nearby was adopted,

although in a more “realistic” model the disturbance might increase with the number of

cloaked starships and/or the power of the cloaking device.

Another implicit assumption taken in this example regards the initial distribution

for the magnetic disturbance when there are cloaked starships, which was assumed to be

equal to the stationary distribution given the zone nature and the number of cloaked

starships present initially. Of course, it would be possible to write different local

expressions expressing a dependence on the number of starships, their size, their distance

from the Enterprise, etc.

MFrags provide a flexible means to represent knowledge about specific subjects

within the domain of discourse, but the true gain in expressive power is revealed when

these “knowledge patterns” are aggregated in order to form a coherent model of the

domain of discourse that can be instantiated to reason about specific situations and

refined through learning.

It is important to note that just collecting a set MFrags that represent specific parts

of a domain is not enough to ensure a coherent representation of that domain. For

example, it would be easy to specify a set of MFrags with cyclic influences, or one

having multiple conflicting distributions for a random variable in different MFrags. The

following section describes how to define complete and coherent domain models as

collections of MFrags.

74

3.4 Building MEBN Models with MTheories

In order to build a coherent model, it is mandatory that the set of MFrags

collectively satisfies consistency constraints ensuring the existence of a unique joint

probability distribution over instances of the random variables mentioned in the MFrags.

Such a coherent collection of MFrags is called an MTheory.

An MTheory represents a joint probability distribution for an unbounded, possibly

infinite number of instances of its random variables. This joint distribution is specified by

the local and default distributions within each MFrag together with the conditional

independence relationships implied by the fragment graphs.

The MFrags described above are part of a generative MTheory for the

intergalactic conflict domain. A generative MTheory summarizes statistical regularities

that characterize a domain. These regularities are captured and encoded in a knowledge

base using some combination of expert judgment and learning from observation.

To apply a generative MTheory to reason about particular scenarios, it is

necessary to provide the system with specific information about the individual entity

instances involved in the scenario. On receipt of this information, Bayesian inference can

be used both to answer specific questions of interest (e.g., how high is the current level of

danger to the Enterprise?) and to refine the MTheory (e.g., each encounter with a new

species gives additional statistical data about the level of danger to the Enterprise from a

starship operated by an unknown species). Bayesian inference is used to perform both

problem-specific inference and learning in a sound, logically coherent manner.

75

Findings are the basic mechanism for incorporating observations into MTheories.

A finding is represented as a special 2-node MFrag containing a node from the generative

MTheory and a node declaring one of its states to have a given value. From a logical

point of view, inserting a finding into an MTheory corresponds to asserting a new axiom

in a first-order theory. In other words, MEBN logic is inherently open, having the ability

to incorporate new axioms as evidence and update the probabilities of all random

variables in a logically consistent way.

In addition to the requirement that each random variable must have a unique

home MFrag, a valid MTheory must ensure that all recursive definitions terminate in

finitely many steps and contain no circular influences. Finally, as demonstrated above,

random variable instances may have a large, and possibly unbounded number of parents.

A valid MTheory must satisfy an additional condition to ensure that the local

distributions have reasonable limiting behavior as more and more parents are added.

Laskey (2005) proved that when an MTheory satisfies these conditions (as well as other

technical conditions that are unimportant to our example), then there exists a joint

probability distribution on the set of instances of its random variables that is consistent

with the local distributions assigned within its MFrags.

Furthermore, any consistent, finitely axiomatizable FOL theory can be translated

to infinitely many MTheories, all having the same purely logical consequences, that

assign different probabilities to statements whose truth-value is not determined by the

axioms of the FOL theory.

76

MEBN logic contains a set of built-in logical MFrags (including quantifier,

indirect reference, and Boolean connective MFrags) that provide the ability to represent

any sentence in first-order logic. If the MTheory satisfies additional conditions, then a

conditional distribution exists given any finite sequence of findings that does not

logically contradict the logical constraints of the generative MTheory. MEBN logic thus

provides a logical foundation for systems that reason in an open world and incorporate

observed evidence in a mathematically sound, logically coherent manner.

Figure 12 shows an example of a generative MTheory for the Star Trek domain.

For the sake of conciseness, the local distribution formulas and the default distributions

are not shown here.

Figure 12. The Star Trek Generative MTheory

The Entity Type MFrag, at the right side of Figure 12, is meant to formally

declare the possible types of entity that can be found in the model. This is a generic

MFrag that allows the creation of domain-oriented types (which are represented by

TypeLabel entities). This MFrag forms the basis for a Type system.

77

The simple model depicted here did not address the creation or the explicit

support for entity types. Standard MEBN logic as defined in Laskey (2005) is untyped,

meaning that a knowledge engineer who wishes to represent types must explicitly define

the necessary logical machinery. Typing is an important feature in ontology languages

such as OWL, so as part of this research effort we have developed an extended version of

the MEBN logic that includes built-in support for typing. This extension is explained in

Chapter 4.

The Entity Type MFrag of Figure 12 defines an extremely simple kind of type

structure. MEBN can be extended with MFrags to accommodate any flavor of type

system, including more complex capabilities such as sub-typing, polymorphism,

multiple-inheritance, etc.

It is important to understand the power and flexibility that MEBN logic gives to

knowledge base designers by allowing multiple, equivalent ways of portraying the same

knowledge. Indeed, the generative MTheory of Figure 12 is just one of the many possible

(consistent) sets of MFrags that can be used to represent a given joint distribution. There,

the random variables were clustered in a way that attempts to naturally reflect the

structure of the objects in that scenario (i.e. an object oriented approach to modeling was

taken), but this was only one design option among the many allowed by the logic.

As an example of such flexibility, Figure 13 depicts the same knowledge

contained in the Starship MFrag of Figure 12 (right side) using three different MFrags. In

this case, the modeler might have opted for decomposing an MFrag in order to get the

extra flexibility of smaller, more specific MFrags that can be combined in different ways.

78

Another knowledge engineer might prefer the more concise approach of having all

knowledge in just one MFrag. Ultimately, the approach to be taken when building an

MTheory will depend on many factors, including the model’s purpose, the background

and preferences of the model’s stakeholders, the need to interface with external systems,

etc.

Figure 13. Equivalent MFrag Representations of Knowledge

First Order Logic (or one of its subsets) provides the theoretical foundation for the

type systems used in popular object-oriented and relational languages. MEBN logic

provides the basis for extending the capability of these systems by introducing a sound

mathematical basis for representing and reasoning under uncertainty, which is precisely

the idea being explored in the extensions that will be proposed in the next Chapter. The

advantages of a MEBN-based type system are also explored in that Chapter.

Another powerful aspect of MEBN, the ability to support finite or countably

infinite recursion, is illustrated in the Sensor Report and Zone MFrags, both of which

79

involve temporal recursion. The Time Step MFrag includes a formal specification of the

local distribution for the initial step of the time recursion (i.e. when t=!T0) and of its

recursive steps (i.e. when t does not refer to the initial step). Other kinds of recursion can

be represented in a similar manner.

MEBN logic also has the ability to represent and reason about hypothetical

entities. Uncertainty about whether a hypothesized entity actually exists is called

existence uncertainty. In the example model presented here, the random variable

Exists(st) is used to reason about whether its argument is an actual starship. For example,

it might be uncertain whether a sensor report corresponds to one of the starships already

known by the system, a starship of which the system was nit previously aware of, or a

spurious sensor report.

To allow for hypothetical starships, the local distribution for Exists(st) assigns

non-zero probability to False. Suppose the unique identifier !ST4 refers to a hypothetical

starship nominated to explain the report. In this case, IsA(Starship, !ST4) has value True,

but the value of Exists(!ST4) is uncertain. A value of False would mean !ST4 is a

spurious starship or false alarm. Queries involving the unique identifier of a hypothetical

starship return results weighted by our belief that it is an actual or a spurious starship.

Belief in Exists(!ST4) is updated by Bayesian conditioning as relevant evidence accrues.

Representing existence uncertainty is particularly useful for counterfactual reasoning and

reasoning about causality (Druzdzel & Simon, 1993; Pearl, 2000).

Because the Star Trek model was designed to demonstrate the capabilities of

MEBN logic, the approach taken was to avoid issues that could be handled by the logic

80

but would make the model too complex. As an example, one aspect that this model does

not consider is association uncertainty, a very common problem in multi-sensor data

fusion systems. Association uncertainty means we are not sure about the source of a

given report. For example, we may receive a report, !SR4, indicating a starship near a

given location. Suppose we cannot tell whether the report was generated by !ST1 or !ST3,

two starships known to be near the reported location, or by a previously unreported

starship !ST4. In this case, we would enumerate these three unique identifiers as possible

values for Subject(!SR4), and specify that Exists(!ST4) has value False if Subject(!SR4)

has any value other than !ST4. Many weakly discriminatory reports coming from possibly

many starships produces an exponential set of combinations that require special

hypothesis management methods (Stone et al., 1999).

Closely related to association uncertainty is identity uncertainty, or uncertainty

about whether two expressions refer to the same entity. Association uncertainty can be

regarded as a special case of identity uncertainty – that is, uncertainty about the identity

of Subject(!SR4). The ability to represent existence, association, and identity uncertainty

provides a logical foundation for hypothesis management in multi-source fusion.

The Star Trek model was built in a way to avoid these problems by assuming that

the Enterprise’s sensor suite can achieve perfect discrimination. However, the underlying

logic can represent and reason with association, existence, and type uncertainty, and thus

provides a sound logical foundation for hypothesis management in multi-source fusion.

81

3.5 Making Decisions with Multi-Entity Decision Graphs.

Captain Picard has more than an academic interest in the danger from nearby

starships. He must make decisions with life and death consequences. Multi-Entity

Decision Graphs (MEDGs, or “medges”) extend MEBN logic to support decision making

under uncertainty. MEDGs are related to MEBNs in the same way influence diagrams are

related to Bayesian Networks. A MEDG can be applied to any problem that involves

optimal choice from a set of alternatives subject to given constraints.

When a decision MFrag (i.e. one that has decision and utility nodes) is added to a

generative MTheory such as the one portrayed in Figure 12, the result is a MEDG. As an

example, Figure 14 depicts a decision MFrag representing Captain Picard’s choice of

which defensive action to take. The decision node DefenseAction(s) represents the set of

defensive actions available to the Captain (in this case, to fire the ship’s weapons, to

retreat, or to do nothing). The value nodes capture Picard’s objectives, which in this case

are to protect the Enterprise while also avoiding harm to innocent people as a

consequence of his defensive actions. Both objectives depend upon Picard’s decision,

while ProtectSelf(s) is influenced by the perceived danger to Enterprise and

ProtectOthers(s) is depends on the level of danger to other starships in the vicinity.

82

Figure 14. The Star Trek Decision MFrag

The model described here is clearly an oversimplification of any “real” scenario a

Captain would face. Its purpose is to convey the core idea of extending MEBN logic to

support decision-making. Indeed, a more common situation is to have multiple, mutually

influencing, often conflicting factors that together form a very complex decision problem,

and require trading off different attributes of value. For example, a decision to attack

would mean that little power would be left for the defense shields; a retreat would require

aborting a very important mission.

MEDGs provide the necessary foundation to address all the above issues. Readers

familiar with influence diagrams will appreciate that the main concepts required for a

first-order extension of decision theory are all present in Figure 14. In other words,

MEDGs have the same core functionality and characteristics of common MFrags. Thus,

the utility table in Survivability(s) refers to the entity whose unique identifier substitutes

for the variable s, which according to the context nodes should be our own starship

(Enterprise in this case). Likewise, the states of input node DangerToSelf(s, t) and the

decision options listed in DefenseAction(s) should also refer to the same entity.

Of course, this confers to MEDGs the expressive power of MEBN models, which

includes the ability to use this same decision MFrag to model the decision process of the

83

Captain of another starship. Notice that a MEDG Theory should also comply with the

same consistency rules of standard MTheories, along with additional rules required for

influence diagrams (e.g., value nodes are deterministic and must be leaf nodes or have

only value nodes as children).

In the present example, adding the Star Trek Decision MFrag of Figure 14 to the

generative MTheory of Figure 12 will maintain the consistency of the latter, and therefore

the result will be a valid generative MEDG Theory. That simple illustration can be

extended to more elaborate decision constructions, providing the flexibility to model

decision problems in many different applications spanning diverse domains.

3.6 Inference in MEBN Logic.

A generative MTheory provides prior knowledge that can be updated upon receipt

of evidence represented as finding MFrags. We now describe the process used to obtain

posterior knowledge from a generative MTheory and a set of findings.

In a BN model such as the ones shown from Figure 5 through Figure 7, assessing

the impact of new evidence involves conditioning on the values of evidence nodes and

applying a belief propagation algorithm. When the algorithm terminates, beliefs of all

nodes, including the node(s) of interest, reflect the impact of all evidence entered thus far.

This process of entering evidence, propagating beliefs, and inspecting the posterior

beliefs of one or more nodes of interest is called a query.

MEBN inference works in a similar way (after all, MEBN is a Bayesian logic),

but following a more complex yet more flexible process. Whereas BNs are static models

84

that must be changed whenever the situation changes (e.g. number of starships, time

recursion, etc.), an MTheory implicitly represents an infinity of possible scenarios. In

other words, the MTheory represented in Figure 12 (as well as the MEDG obtained by

aggregating the MFrag in Figure 14) is a model that can be used for as many starships as

wanted, and for as many time steps that are necessary to get the conclusions needed.

That said, the obvious question is how to perform queries within such a model. A

simple example of query processing was given above in Section 3.3. Here, the general

algorithm for constructing a situation-specific Bayesian network (SSBN) is described in a

general way. In order to execute such algorithm, it is necessary to have an initial

generative MTheory (or MEDG Theory), a Finding set (which conveys particular

information about the situation) and a Target set (which indicates the nodes of interest to

the query being made).

For comparison, let’s suppose there is a situation similar to the one in Figure 3,

where four starships are within the Enterprise’s range. In that particular case, a BN was

used to represent the situation at hand, which means the model is “hardwired” to a known

number (four) of starships, and any other number would require a different model. A

standard Bayesian inference algorithm applied to that model would involve entering the

available information about these four starships (i.e., the four sensor reports), propagating

the beliefs, and obtaining posterior probabilities for the hypotheses of interest (e.g., the

four Starship Type nodes).

Similarly, MEBN inference begins when a query is posed to assess the degree of

belief in a target random variable given a set of evidence random variables. We start

85

with a generative MTheory, add a set of finding MFrags representing problem-specific

information, and specify the target nodes for our query. The first step in MEBN

inference is to construct the SSBN, which can be seen as an ordinary Bayesian network

constructed by creating and combining instances of the MFrags in the generative

MTheory.

Next, a standard Bayesian network inference algorithm is applied. Finally, the

answer to the query is obtained by inspecting the posterior probabilities of the target

nodes. A MEBN inference algorithm is provided in Laskey (2005). The algorithm

presented there does not handle decision graphs. Thus, the illustration presented in the

following lines extends the algorithm for purposes of demonstrating how the MEDG

Theory portrayed in Figure 12 and Figure 14 can be used to support the Captain’s

decision.

In this example, the finding MFrags convey information that there are five

starships (!ST0 through !ST4) and that the first is Enterprise itself. For the sake of

illustration, let’s assume that the Finding set also includes data regarding the nature of the

space zone Enterprise is currently located (!Z0), its magnetic disturbance for the first

time step (!T0), and sensor reports for starships !SR1 to !SR4 for the first two time steps.

Let’s also assume that the Target set for this illustrative query includes an

assessment of the level of danger experienced by the Enterprise and the best decision to

take given this level of danger.

86

Figure 15 shows the situation-specific Bayesian network for such query21. To

construct that SSBN, the initial step is to create instances of the random variables in the

Target set and the random variables for which there are findings. The target random

variables are DangerLevel(!ST0) and DefenseAction(!ST0). The finding random variables

are the eight SRDistance nodes (2 time steps for each of four starships) and the two

ZoneMD reports (one for each time step). Although each finding MFrag contains two

nodes, the random variable on which there is a finding and a node indicating the value to

which it is set, only the first of these is included in our situation-specific Bayesian

network, and declared as evidence that its value is equal to the observed value indicated

in the finding MFrag. Evidence nodes are shown with bold borders.

Figure 15. SSBN for the Star Trek MTheory with Four Starships within Range

The next step is to retrieve and instantiate the home MFrags of the finding and

target random variables. When each MFrag is instantiated, instances of its random

21 The alert reader may notice that root evidence nodes and barren nodes that were included in the

constructed network of Figure 8 are not included here. As noted above, explicitly representing these

nodes is not necessary.

87

variables are created to represent known background information, observed evidence, and

queries of interest to the decision maker. If there are any random variables with

undefined distributions, then the algorithm proceeds by instantiating their respective

home MFrags.

The process of retrieving and instantiating MFrags continues until there are no

remaining random variables having either undefined distributions or unknown values.

The result, if this process terminates, is the SSBN or, in this example, a situation-specific

decision graph (SSDG).

In some cases the SSBN can be infinite, but under conditions given in Laskey

(Laskey, 2005), the algorithm produces a sequence of approximate SSBNs for which the

posterior distribution of the target nodes converges to their posterior distribution given

the findings. Mahoney and Laskey (1998) define a SSBN as a minimal Bayesian

network sufficient to compute the response to a query. A SSBN may contain any number

of instances of each MFrag, depending on the number of entities and their

interrelationships. The SSDG in Figure 15 is the result of applying this process to the

MEDG Theory obtained with the aggregation of Figure 12 and Figure 14 with the

Finding and Target set defined above.

Another important use for the SSBN algorithm is to help in the task of performing

Bayesian learning, which is treated in MEBN logic as a sequence of MTheories.

88

3.7 Learning from Data.

Learning graphical models from observations is usually divided into two different

categories inferring the parameters of the local distributions when the structure is known,

and inferring the structure itself. In MEBN, by structure we mean the possible values of

the random variables, their organization into MFrags, the fragment graphs, and the

functional forms of the local distributions.

Figure 16 shows an example of parameter learning in MEBN logic in which we

adopt the assumption that one can infer the length of a starship on the basis of the average

length of all starships. This generic domain knowledge is captured by the generative

MFrag, which specifies a prior distribution based on what we know about starship

lengths.

Figure 16. Parameter Learning in MEBN

One strong point about using Bayesian models in general and MEBN logic in

particular is the ability to refine prior knowledge as new information becomes available.

In our example, let’s suppose that the Enterprise system receives precise information on

89

the length of starships !ST2, !ST3, and !ST5; but has no information regarding the

incoming starship !ST8.

The first step of this simple parameter learning example is to enter the available

information to the model in the form of findings (see box StarshipLenghInd Findings).

Then, a query is posed on the length of !ST8. The SSBN algorithm will instantiate all the

random variables that are related to the query at hand until it finishes with the SSBN

depicted in Figure 16 (box SSBN with Findings).

In this example, the MFrags satisfy graph-theoretic conditions under which a re-

structuring operation called finding absorption (Buntine, 1994b) can be applied.

Therefore, the prior distribution of the random variable GlobalAvgLength can be replaced

in the SSBN by the posterior distribution obtained after adding evidence in the form of

findings22.

As a result of this learning process, the probability distribution for

GlobalAvgLength has been refined in light of the new information conveyed by the

findings. The resulting, more precise distribution can now be used not only to predict the

length of !ST8 but for future queries as well. In this specific example, the same query

would retrieve the SSBN in the lower right corner of Figure 16 (box SSBN with Findings

Absorbed).

One of the major advantages of the finding absorption operation is that it greatly

improves the tractability of both learning and SSBN inference. Finding absorption can

22 Absorption changes the structure of the already-observed length MFrags by removing their dependence

on the global average length and setting their observed values to probability 1. It also removes the finding

MFrags for these random variables.

90

also be applied to modify the generative MFrags themselves, thus creating a new

generative MTheory that has the same conditional distribution given its findings as the

original MTheory. In this new MTheory, the distribution of GlobalAvgLength has been

modified to incorporate the observations and the finding random variables are set with

probability 1 to their observed values. Restructuring MTheories via finding absorption

can increase the efficiency of SSBN construction and of inference.

Structure learning in MEBN works in a similar fashion. As an example, let’s

suppose that when analyzing the data that was acquired in the parameter learning process

above, a domain expert raises the hypothesis that the length of a given starship might

depend on its class. To put it into a “real-life” perspective, let’s consider two classes:

Explorers and Warbirds. The first usually are vessels crafted for long distance journeys

with a relatively small crew and payload. Warbirds, on the other hand, are heavily armed

vessels designed to be flagships of a combatant fleet, usually carrying lots of

ammunition, equipped with many advanced technology systems and a large crew.

Therefore, our expert thinks it likely that the average length of Warbirds may be greater

than the average length of Explorers.

In short, the general idea of this simple example is to mimic the more general

situation in which we have a potential link between two attributes (i.e. starship length and

class) but at best weak evidence to support the hypothesized correlation. This is a typical

situation in which Bayesian models can use incoming data to learn both structure and

parameters of a domain model. Generally speaking, the solution for this class of

91

situations is to build two different structures and apply Bayesian inference to evaluate

which structure is more consistent with the data as it becomes available.

The initial setup of the structure learning process for this specific problem is

depicted in Figure 17. Each of the two possible structures is represented by its own

generative MFrag. The first MFrag is the same as before: the length of a starship depends

only on a global average length that applies to starships of all classes. The upper left

MFrag of Figure 17, StarshipLengthInd MFrag conveys this hypothesis. The second

possible structure, represented by the ClassAvgLength and StarshipLengthDep MFrags,

covers the case in which a starship class influences its length.

The two structures are then connected by the Starship Length MFrag, which has

the format of a multiplexor MFrag. The distribution of a multiplexor node such as

StarshipLength(st) always has one parent selector node defining which of the other

parents is influencing the distribution in a given situation.

Figure 17. Structure Learning in MEBN

In this example, where there are only two possible structures, the selector parent

will be a two-state node. Here, the selector parent is the Boolean

92

LengthDependsOnClass(!Starship). When this node has value False then

StarshipLength(cl) will be equal to StarshipLengthInd(st), the distribution of which does

not depend on the starship’s class. Conversely, if the selector parent has value True then

StarshipLength(cl) will be equal to StarshipLengthDep(st), which is directly influenced

by ClassAvgLength(StarshipClass(st)).

Figure 18 shows the result of applying the SSBN algorithm to the generative

MFrags in Figure 17. The SSBN on the left does not have the findings included, but only

information about the existence of four starships. It can be noted that the prior chosen for

the selector parent (the Boolean node on the top of the SSBN) was the uniform

distribution, which means that both structures (i.e. class affecting length or not) have the

same prior probability.

The SSBN in the right side considers the known facts that !ST2 and !ST3 belong

to the class of starships !Explorer, and that !ST5 and !ST8 are Warbird vessels. Further,

the lengths of three ships for which there are reliable reports were also considered. The

result of the inference process was not only an estimate of the length of !ST8 but a clear

confirmation that the data available strongly supports the hypothesis that the class of a

starship influences its length.

It may seem cumbersome to define different random variables, StarshipLengthInd

and StarshipLengthDep, for each hypothesis about the influences on a starship’s length.

As the number of structural hypotheses becomes large, this can become quite unwieldy.

Fortunately, this difficulty can be circumvented by introducing a typed version of MEBN

and allowing the distributions of random variables to depend on the type of their

93

argument. A detailed presentation of typed MEBN, which also extends the standard

specification to allow polymorphism is the subject of the next Chapter.

Figure 18. SSBNs for the Parameter Learning Example

94

This basic construction is compatible with the standard approaches to Bayesian

structure learning in graphical models (e.g. Cooper & Herskovits, 1992; Heckerman et

al., 1995a; Jordan, 1999; Friedman & Koller, 2000)

For a detailed account of the SSBN construction algorithm and Bayesian learning

with MEBN logic, the interested reader should refer to Laskey (2005). There, it is

possible to find the mathematical explanation and respective logical proof for the many

intricate possibilities when instantiating MFrags, such as nodes with an infinite number

of states, situations where we face the prospect of large finite or countably infinite

recursions, what happens when the algorithm is started with an inconsistent MTheory,

etc. Also, the text provides a detailed account of how to represent any First Order Logic

sentence as an MFrag using Skolem variables and quantifiers. These issues go beyond the

scope of this work, since the information already covered up to this point is enough for

the purposes of understanding and using Multi-Bayesian Networks as the framework for

extending a web language to Bayesian first-order logic expressivity. Yet, before entering

the next Chapter, it is necessary to make a brief visit to the semantics of MEBN logic,

understand why it is a Bayesian first-order logic, and to address its relationship with

classical logic and other formalisms as well.

3.8 MEBN Semantics.

In classical logic, the most that can be said about a hypothesis that can be neither

proven nor disproven is that its truth-value is unknown. Practical reasoning demands

more. Captain Picard’s life depends on assessing the plausibility of many hypotheses he

95

can neither prove nor disprove. Yet, he also needs first-order logic’s ability to express

generalizations about properties of and relationships among entities. In short, he needs a

probabilistic logic with first-order expressive power.

Although there have been many attempts to integrate classical first-order logic

with probability (see discussion on Section 2.5), MEBN is the first fully first-order

Bayesian logic (Laskey, 2005). MEBN logic can assign probabilities in a logically

coherent manner to any set of sentences in first-order logic, and can assign a conditional

probability distribution given any consistent set of finitely many first-order sentences.

That is, anything that can be expressed in first-order logic can be assigned a probability

by MEBN logic. The probability distribution represented by an MTheory can be updated

via Bayesian conditioning to incorporate any finite sequence of findings that are

consistent with the MTheory and can be expressed as sentences in first-order logic. If

findings contradict the logical content of the MTheory, this can be discovered in finitely

many steps. Although exact inference may not be possible for some queries, if SSBN

construction will converge to the correct result if one exists.

Semantics in classical logic is typically defined in terms of possible worlds. Each

possible world assigns values to random variables23 in a manner consistent with the

theory’s axioms. For example, in the scenario illustrated in Figure 11, every possible

world must assign value True to CloakMode(!ST1) and !Z0 to StarshipZone(!ST0) (the

latter is not explicitly represented in the figure). The value of the random variable Zone-

23 In classical logic, the terms predicate and function are used in place of Boolean and non-Boolean random

variables, respectively. Predicates must have value True or False, and cannot have value Absurd.

96

Nature(!Z0) must be one of DeepSpace, PlanetarySystems, or BlackHoleBoundary, but

subject to that constraint, it may have different values in different possible worlds.

In classical logic, inferences are valid if the conclusion is true in all possible

worlds in which the premises are true. For example, classical logic allows us to infer that

Prev(Prev(!ST4)) has value !ST2 from the information that Prev(!ST4) has value !ST3

and Prev(!ST3) has value !ST2, because the first statement is true in all possible worlds in

which the latter two statements are true. But in the scenario above, classical logic permits

us to draw no conclusions about the value of ZoneNature(!Z0) except that it is one of the

three values DeepSpace, PlanetarySystems, or BlackHoleBoundary.

An MTheory assigns probabilities to sets of worlds. This is done in a way that

ensures that the set of worlds consistent with the logical content of the MTheory has

probability 100%. Each random variable instance maps a possible world to the value of

the random variable in that world. In statistics, random variables are defined as functions

mapping a sample space to an outcome set. For MEBN random variable instances, the

sample space is the set of possible worlds. For example, ZoneNature(!Z0) maps a

possible world to the nature of the zone labeled !Z0 in that world. The probability that

!Z0 is a deep space zone is the total probability of the set of possible worlds for which

ZoneNature(!Z0) has value DeepSpace.

In any given possible world, the generic random variable class ZoneNature(z)

maps its argument to the nature of the zone whose identifier was substituted for the

argument z. Thus, the sample space for the random variable class ZoneNature(z) is the set

of unique identifiers that can be substituted for the argument z. Information about

97

statistical regularities among zones is represented by the local distributions of the MFrags

whose arguments are zones. As stated in section 3.7, MFrags for parameter and structure

learning provide a means for using observed information about zones to make better

predictions about zones were not yet seen.

As more information is obtained about which possible world might be the actual

world, the probabilities of all related properties of the world must be adjusted in a

logically coherent manner. This is accomplished by adding findings to an MTheory to

represent the new information, and then using Bayesian conditioning to update the

probability distribution represented by the revised MTheory.

For example, suppose the system receives confirmed information that at least one

enemy ship is navigating in !Z0. This information means that worlds in which

ZoneEShips(!Z0) has value Zero are no longer possible. In classical logic, this new

information makes no difference to the inferences one can draw about ZoneNature(!Z0).

All three values were possible before that new information arrived (i.e. there’s at least

one enemy starship in !Z0 for sure), and all three values remain possible. The situation is

different in a probabilistic logic. To revise the current probabilities, it is necessary to first

assign probability zero to the set of worlds in which !Z0 contains no enemy ships. Then,

the probabilities of the remaining worlds should be divided by the prior probability that

ZoneEShips(!Z0) had a value other than Zero. This ensures that the set of worlds

consistent with the new knowledge has probability 100%. These operations can be

accomplished in a computationally efficient manner using SSBN construction.

98

Just as in classical logic, all three values of ZoneEShips(!Z0) remain possible.

However, their probabilities are different from their previous values. Because deep space

zones are more likely than other zones to contain no ships, more of the probability in the

discarded worlds was assigned to worlds in which !Z0 was a deep space zone than to

worlds in which !Z0 was not in deep space. Worlds that remain possible tended to put

more probability on planetary systems and black hole boundaries than on deep space.

The result is a substantial reduction in the probability that !Z0 is in deep space.

Achieving full first-order expressive power in a Bayesian logic is non-trivial. This

requires the ability to represent an unbounded or possibly infinite number of random

variables, some of which may have an unbounded or possibly infinite number of possible

values. We also need to be able to represent recursive definitions and random variables

that may have an unbounded or possibly infinite number of parents. Random variables

taking values in uncountable sets such as the real numbers present additional difficulties.

Details on how MEBN handles these subtle issues are provided by Laskey (2005).

To our knowledge, the formulation of MEBN logic provided in Laskey (2005) is

the first probabilistic logic to possess all of the following properties: (1) the ability to

express a globally consistent joint distribution over models of any consistent, finitely

axiomatizable FOL theory; (2) a proof theory capable of identifying inconsistent theories

in finitely many steps and converging to correct responses to probabilistic queries; and

(3) built in mechanisms for refining theories in the light of observations in a

mathematically sound, logically coherent manner.

99

As such, MEBN should be seen not as a competitor, but as a logical foundation

for the many emerging languages that extend the expressive power of standard Bayesian

networks and/or extend a subset of first-order logic to incorporate probability.

MEBN logic brings together two different areas of research: probabilistic

reasoning and classical logic. The ability to perform plausible reasoning with the

expressiveness of Fisrt-Order Logic opens the possibility to address problems of greater

complexity than heretofore possible in a wide variety of application domains.

XML-based languages such as RDF and OWL are currently being developed

using subsets of FOL. MEBN logic can provide a logical foundation for extensions that

support plausible reasoning. This work is geared towards that end, and the language

proposed here, PR-OWL, is a MEBN-based extension to the SW language OWL.

The main objective of such extension is to create a language capable of

representing and reasoning with probabilistic ontologies. This technology would facilitate

the development of “probability-friendly” applications for the Semantic Web. The ability

to handle uncertainty is clearly needed, because the SW is an open environment where

uncertainty is the rule.

Probabilistic ontologies are also a very promising technique for addressing the

semantic mapping problem, a difficult task whose applications range from automatic

Semantic Web agents, which must be able to deal with multiple, diverse ontologies, to

automated decision systems, which usually have to interact and reason with many legacy

systems, each having its own distinct rules, assumptions, and terminologies.

100

MEBN is still in its infancy as a logic, but has already shown the potential to

provide the necessary mathematical foundation for plausible reasoning in an open world

characterized by many interacting entities related to each other in diverse ways and

having many uncertain features and relationships. In order to realize that potential, the

first step is to extend the logic so it can handle complex features that are required in

expressive languages such as OWL. This is the core objective of the next Chapter.

101

Chapter 4 The Path to Probabilistic Ontologies

Representing and reasoning under uncertainty is a necessary step for realizing the

W3C’s vision for the Semantic Web. The title of this Dissertation leaves no questions

about our understanding that such step has to be taken via Bayesian probability theory,

which not only allows for a principled representation of uncertainty but also provides

both a proof theory for combining prior knowledge with observations, and a learning

theory for refining the ontology as evidence accrues.

A key concept for achieving that goal is the one of probabilistic ontologies, so we

begin by defining what we mean when using this term. Intuitively, an ontology that has

probabilities attached to some of its elements would qualify for this label, but such a

distinction would add little to the objective of providing a probabilistic framework for the

Semantic Web.

In other words, merely adding probabilities to concepts does not guarantee

interoperability with other ontologies that also carry probabilities. Clearly, more is

needed to justify a new category of ontologies, and such extra justification doesn’t come

from the syntax used for including probabilities.

Definition 3: A probabilistic ontology is an explicit, formal knowledge

representation that expresses knowledge about a domain of application.

This includes:

102

2.a) Types of entities that exist in the domain;

2.b) Properties of those entities;

2.c) Relationships among entities;

2.d) Processes and events that happen with those entities;

2.e) Statistical regularities that characterize the domain;

2.f) Inconclusive, ambiguous, incomplete, unreliable, and dissonant

knowledge related to entities of the domain;

2.g) Uncertainty about all the above forms of knowledge;

where the term entity refers to any concept (real or fictitious, concrete or

abstract) that can be described and reasoned about within the domain of

application.!"

Probabilistic Ontologies are used for the purpose of comprehensively describing

knowledge about a domain and the uncertainty embedded to that knowledge in a

principled, structured and sharable way, ideally in a format that can be read and

processed by a computer. They also expand the possibilities of standard ontologies by

introducing the requirement of a proper representation of the statistical regularities and

the uncertain evidence about entities in a domain of application. Yet, meeting the main

objective of this research effort requires going a step further and also allowing for

reasoning upon what now can be represented via probabilistic ontologies.

In the current SW’s scheme, OWL ontologies are used for representing domain

information in a way to enable Web services/agents to perform logical reasoning over

that information. More specifically, ontologies intended to facilitate logical reasoning by

103

Web services/agents are commonly written using OWL-DL, the decidable subset of

OWL language that is based on Description Logics. Writing ontologies in OWL-DL

permits the use of DL reasoners such as Racer (Haarslev & Möller, 2001) to perform

logical reasoning over its contents. Figure 19 depicts the typical flow of knowledge of a

Web agent that is based on logical reasoning.

Figure 19. Typical Web Agent’s Knowledge Flow – Ignoring Uncertainty

In the situation depicted by the figure, the Web agent (here assumed as using

Racer as its reasoning engine) receives new data and uses the domain information stored

in the knowledge base (an OWL ontology) to perform logical reasoning. Its output is the

enhanced knowledge that results from the logical reasoning process, and can be used as a

means to answer queries posed to the Web agent and/or to update the knowledge base. As

an example from our case study, suppose that a logical reasoner receives information that

a newly detected starship is a (say) Keldon-Class Warship operated by the Cardassian

species. Then, it verifies the axioms and restrictions conveyed in the Enterprise’s Star

104

Trek ontology that an individual of class Starship possessing these properties could only

be a foe. As a result, the reasoner classifies that individual as being a member of the

subclass Foe and returns the new knowledge to the system.

Among the possibilities of logical reasoning is the ability to infer whether a given

concept is a subclass of another (i.e. subumption), whether the definitions of a class will

make it impossible to have any instances (i.e. consistency), and others that make OWL-

DL ontologies very a powerful tool for the SW. Not surprisingly, most SW ontologies are

being developed using OWL-DL.

Still, as we have emphasized in the previous Chapters, the above-mentioned

features of logical reasoning are only possible when complete information in available to

the reasoner. In our example, factors such as distance, ambiguities on the received data,

overlapping characteristics among starship classes and other sources of uncertainty would

most likely prevent any definitive conclusion about the starship type or operator species

to be draw.

Sources of uncertainty are the rule in open environments such as the SW, which

reinforces the use of probabilistic ontologies for both representing uncertain knowledge

and reasoning with it. Figure 20 depicts the same Web agent’s knowledge flow, but this

time incorporating the concepts of a probabilistic ontology and a plausible reasoner.

As it is shown in the picture, the knowledge base now consists of a PR-OWL

ontology. This expanded depiction of the starship domain includes all the concepts of the

previously depicted OWL ontology plus the uncertain information that could not be

expressed in a principled way with a standard OWL ontology. Also, new evidence that

105

would be simply discarded by the logical system (e.g. the recently detected starship has

90% chances of being operated by Cardassians) can now be accepted and considered in

the reasoning process. Since the Web agent now uses a probabilistic reasoner

(Quiddity*Suite in this example), each and every piece of evidence would be used to

upgrade the system’s knowledge. In short, all the advantages of a Bayesian probabilistic

system that were covered in the previous chapters are now available.

Figure 20. Typical Web Agent’s Knowledge Flow – Computing Uncertainty

The result of the added capabilities, as implied in the enhanced knowledge box, is

the system’s ability to keep the best estimate possible for its queries given the previous

knowledge and all the available data at any given time. This new aspect opens the

opportunity for solving many SW problems that logical systems so far have been unable

to solve, such as schedule matching, optimal decision with incomplete data, etc.

In the scheme depicted in Figure 20, there are two aspects that cannot be

implemented today. First, there is no Semantic Web language capable of representing

106

probabilistic ontologies in a principled way and, second, after such a language is

developed there will be no probabilistic reasoner specifically designed to perform the

reasoning services using the newly developed language.

In this dissertation, we have tackled the first aspect with the development of PR-

OWL, while addressing the second problem by defining a set of rules for translating a

MENB model to a Quiddity*Suite model. This was not a trivial process, and the

following sections are intended to explain what we have done to “clear the path” for

probabilistic ontologies.

Our first major issue was the fact that standard MEBN does not have built-in

support for the complex elements of the OWL language, preventing any attempts of a

direct PR-OWL implementation. For instance, standard MEBN is untyped, which means

there is no built-in support for PR-OWL probability distributions to depend on types, or

for representing type uncertainty, both highly desirable features for a probabilistic

ontology. In section 4.1 we present our solution to this problem: the development of an

extended version of MEBN logic that incorporates all the desirable features missing in

the standard logic.

The second and last Section of this chapter is devoted to explain how we

addressed another major issue preventing us to develop PR-OWL: there is no “off-the-

shelf” probabilistic reasoner that implements all MEBN features. By the time of our

research, Quiddity*Suite was rapidly reaching a stage in which most if not all MEBN

features would be implemented, so we developed a set of rules that allowed us to use it as

a MEBN implementation and a valid PR-OWL reasoner.

107

4.1 A Polymorphic Extension to MEBN

The most obvious difference between a typed and an untyped logic is the addition

of a type label declaration. However, just adding a type label to MEBN logic will not

provide it with the advantages of type systems, such as efficient inference based on

inheritance, increased readability, conciseness, etc. Developing a typed version of a

probabilistic first-order logic involves creating a coherent set of standard definitions and

inference rules that collectively form a consistent type system.

A common way to declare types is to define a monadic predicate for each type;

the predicate is true of entities of the given type and false otherwise. According to Sowa

(2000, page 473), a type system adds no expressive power to a knowledge representation

language, in that every theorem and proof in a typed logic will have a counterpart in its

untyped version. Given the formal equivalence in expressiveness between typed and

untyped logics, one might wonder why typed logics are so much more popular. This

popularity can be explained by their advantages in terms of tractability and ease of use.

FOL provides the theoretical foundation for the type systems used in popular

object-oriented and relational languages. The popularity of typed logics reflects the

prevalence of types in informal reasoning. Classification of objects in terms of the

purposes for which they are used typically results in a more or less well-defined type

system (Cardelli & Wegner, 1985). The advantages of languages based on a typed logical

system are usually related to code optimization and to less error-prone syntax. A number

of authors have developed semantics for typed languages (Milner, 1978; Damas &

Milner, 1982; Mitchell, 1984).

108

Standard MEBN is untyped, but a typed extension can provide a sound

mathematical basis for representing and reasoning under uncertainty in typed domains,

including domains of unbounded or infinite cardinality. Among the advantages of a

MEBN-based type system is the ability to represent type uncertainty. As an example,

suppose there are two different types of space traveling entities, starships and comets, and

incomplete information is given about the type of a given entity. In this case, the result of

a query that depends on the entity type will be a weighted average of the result given that

the entity is a comet and the result given that it is a starship.

Further advantages of a MEBN-based type system include the ability to refine

type-specific probability distributions using Bayesian learning, assign probabilities to

possible values of unknown attributes, reason coherently at multiple levels of resolution,

and other features related to representing and reasoning with incomplete and/or uncertain

information.

Therefore, defining standard syntax and semantics for a MEBN-based type

system would combine the advantages of FOL-based type systems with the ability to

express and reason with uncertainty, including uncertainty about the type of an entity.

In order to provide a typed version of MEBN, two main changes are proposed

here: (1) modify the definition of an MTheory provided in Laskey (2005) to allow for a

random variable to have multiple home MFrags (i.e. polymorphism), and (2) include a set

of built-in MFrags that provide a standard procedure for defining domain-specific types

and subtypes.

109

As a basic assumption, types are arranged in a tree-structured hierarchy (thus

excluding multiple inheritance for the present). The types immediately below a given

type (e.g. Starship) are called its subtypes (e.g. MilitaryStarship and CivilianStarship are

subtypes of Machine). The next-higher type to a given type is called its parent type (e.g.

the parent type of MilitaryStarship is Starship). For our present proposed type system, a

given type can have only one parent type. It is relatively straightforward to extend the

system being presented here to a type system with multiple-inheritance.

Figure 21 shows the Star Trek MTheory from Figure 12 with the addition of the

Transporter Mfrag, illustrating the effects of a polymorphic, typed version. This new

generative MFrag conveys information on Enterprise’s ability to beam a person or an

object to a close planet.

Figure 21. Star Trek MTheory with the Transporter MFrag – Untyped Version

 A Transporter is the device that performs the beaming process (in “theory, a form

of molecular transport), which depends on the distance between Enterprise and the target

110

planet, and on whether the defense shields are activated. Usually, the shields will be up

when the potential harm of any starship on the vicinities of Enterprise reaches a certain

threshold (infered by the instances of node HarmPotential(st, t) for each nearby starship).

Both MTheories have an Entity MFrag used for declaring the possible types of

entity that can be found in the model, and an IsA MFrag for allocating a type label to a

given entity. This is an example of a situation in which the modeler wanted a type system

so she had to build her own scheme for defining entity types. Given the popularity of type

system, we might expect other modelers to specify their own Type and IsA MFrags,

possibly resulting in many different, incompatible implementations of MEBN-based type

system. A standard typed extension to MEBN frees each implementer from having to

define her/his own type systems and thus supports a greater level of interoperability.

Even with the modeler defining her/his own type system, situations in which a

node such as PlanetDistanceFromOwn(p, t) cannot be named DistanceFromOwn(p, t)

because there is another node with that name are very likely to happen. According to the

unique home MFrag restriction, one node cannot have two home MFrags so a different

name would have to be issued for any node that measures the distance from an object to

the Enterprise. In short, the MTheory in Figure 21 does not have subtyping,

polymorphism, or inheritance, features that are often useful for modeling complex, real-

life problems. As shown in the next section, the extended version proposed in this work

includes these features.

111

4.1.1 The Modified MTheory Definition

In order to provide a typed version of MEBN logic, the definition of a generative

MTheory is modified here to allow a random variable to have more than one home

MFrag. The unique home MFrag restriction is relaxed to allow multiple home MFrags for

a node, provided that if a node is resident in two MFrags then either: (1) the two contexts

in the different MFrags are entirely disjoint, or (2) one context is strictly contained in the

other. Distributions defined for a type are inherited for all its subtypes, except that

distributions defined in more general contexts are overridden by distributions defined in

more restricted context.

As a means of providing a standard support for typing, typed MEBN includes the

four MFrags depicted in Figure 22 among the built-in MFrags.

Figure 22. Built-in MFrags for Typed MEBN

The Type MFrag. The Type MFrag has three resident nodes and no input or

context nodes. It lays out the core structure for the type system and provides the basic

support for the domain-specific type definitions. The uppermost resident node, #(e) (the

identity random variable), is parent of the other two nodes and has all valid entities of a

112

given domain as its states. As with standard MEBN, the only values that may have non-

zero probability are e (for meaningful entities) and " (for identifiers that refer to

meaningless or nonexistent entities). Type(e) is domain-specific (i.e., defined by the

knowledge engineer) and its states include three special types that are standard to all

polymorphic MEBN models plus the domain-specific types defined by the knowledge

engineer.

 The special types are: (1) TypeLabel, which includes the labels of all domain-

specific types and subtypes; (2) Boolean, which includes the truth-values T, F, and "; (3)

CategoryLabel, which includes labels for RVs whose domain is a list of categorical

values; and (4) PositiveNumber, which is used for virtual counts (see below).

Finally, ParentType(e) defines the type of which e is a subtype. When e is

replaced by a unique identifier of a TypeLabel entity, then ParentType(e) must have a

unique TypeLabel entity as its value if the substituting entity type has a parent type. In

addition, if e is replaced by a unique identifier of a TypeLabel entity at the level of the

type hierarchy immediately below the root Entity, then ParentType(e) will have value

Entity; and furthermore, ParentType(Entity) = Entity.

The IsA MFrag. The IsA MFrag is the home MFrag for IsA(ptl, ei), where ei is

an instance of type ptl. As an example, suppose we replace ptl with the unique identifier

corresponding to the Starship type label. If we then replace ei with the unique identifier

of a starship entity (say !ST1), then IsA(ptl, ei) becomes Isa(Starhship, !ST1), which has

value T. Conversely, if the variable ei is replaced with a unique identifier of a planet

entity (say !P1) then IsA(ptl, ei) becomes Isa(Planet, !ST1), which has value F.

113

The IsA MFrag has only one context node, which is satisfied when the variable ptl

is replaced by a TypeLabel entity. The MFrag’s only resident node, IsA(ptl, ei), is true

when ei represents an instance of the type represented by ptl. This random variable has

two parents, the input nodes Type(ei) (the type of ei) and the Boolean RV term

Isa(tl,ei)$(ptl=ParentType(tl)) (ei represents an instance of tl and tl is a subtype of ptl).

Its value is T when either of its parents is true. That is, IsA(ptl, ei) is true when Type(ei)

is ptl or (recursively) when Isa(tl, ei) is true for a type tl that is a descendant of ptl in the

type hierarchy. The distribution for the Boolean RV term Isa(tl,ei)$(ptl = Parent-

Type(tl)) is defined via the built-in logical MFrags.

We noted above that type systems are typically defined by specifying a unary

predicate for each type. Our IsA predicate is binary. We have taken advantage of

polymorphism to define a single binary predicate Isa(tl,ei) rather than a unary predicate

for each type (e.g., IsaStarship(ei), IsaPlanet(ei), etc.)24

The SubType MFrag. The three upper, unconnected nodes in the SubType

MFrag of Figure 22 are context nodes specifying that the variables tl and stl are

placeholders for unique identifiers representing TypeLabel entities and that the first

TypeLabel (referred to by tl) is the parent type of the second (referred to by stl). The

rightmost input note, IsA(tl, ei), has its local distribution defined in the IsA MFrag above,

so its value will be T when the unique identifier replacing ei refers to an entity whose

type is either tl or one of its descendant types. The other input node, VCount(stl), has a

24 Even thought the MTheory in Figure 12 was built using the standard version of MEBN, for simplicity

and in order to be facilitate its translation to Quiddity*Suite we implicitly allowed polymorphism in the

specific case of the IsA MFrags (i.e. by making them binary predicates in that model).

114

positive number as its value, and represents the relative probability that an entity of type

ParentType(stl) is an instance of stl. That is, if our only information about an instance ei

is that its type is a subtype of tl, and if stl1 and stl2 are labels for subtypes of tl, the ratio

of the probability of Isa(stl1, ei) to the probability of Isa(stl2, ei) is given by

VCount(stl1)/VCount(stl2).

The name VCount stands for “virtual count,” a term used in the literature on

Bayesian learning to refer to parameters in a prior distribution that correspond roughly to

remembered prior observations. That is, we can think of VCount(tl) as the number of

instances of tl that have been encountered in previously experienced situations (although

there is no requirement that its value be an integer). Virtual counts are important for

representing type uncertainty.

Because virtual counts behave like remembered counts, the virtual count for a

type is constrained to be equal to the sum of the virtual counts for its subtypes. The

distribution for the resident node VCount(tl) enforces this constraint. This MFrag defines

virtual counts only for non-leaf nodes in the type hierarchy. Virtual counts for leaf nodes

are defined in the virtual count initialization MFrag described below. The context

constraint tl=ParentType(stl) ensures that tl is not a leaf node in the type hierarchy. The

distribution of VCount(tl) places probability 1 on a value equal to the sum of the virtual

counts for subtypes of tl. Although virtual counts are not required to be integers, as for all

MEBN random variables, the possible values must be a countable set.

The resident node SubType(tl, ei) has as its possible values all entities of type

TypeLabel other than the type label Entity, along with the value " (absurd). When the

115

parent node IsA(tl, ei) has value F, then SubType(tl, ei) has value " (i.e., whether an

entity is an instance of something that is not a type is an absurd question). If IsA(tl, ei)

has value F, then the distribution for SubType(tl, ei) puts non-zero probability only on

values for which there is a VCount(stl) parent (these are stl for which the context

constraint tl=ParentType(stl) is met, i.e., subtypes of tl). The probabilities of the

subtypes are proportional to their virtual counts.

The VCount Initialization MFrag. The context nodes for this MFrag ensure that

the variable tl is replaced by the unique identifier of an entity that (1) is of type

TypeLabel and (2) has no subtypes (i.e. it is a leaf node in the type hierarchy). The

context node ¬%($stl, tl=ParentType($stl)) represents the negation of an existentially

quantified first-order sentence. It is satisfied when there is no entity instance of which tl

is a parent type. The symbol $stl is a Skolem term, which represents a generic instance

that satisfies the sentence if it is satisfiable and otherwise has value " (Laskey, 2005). We

note that one of the conditions of the theorem of Laskey (2005) that a conditional

distribution exists on interpretations of any consistent, finitely axiomatizable first-order

theory is that no context RV may contain quantifier random variables. If there are only

finitely many types, quantified statements about type labels can be treated as shorthand

notation for finite conjunctions and disjunctions. Thus, the theorem still holds for typed

MEBN.

The distribution of the resident node VCount(tl) specifies a probability

distribution for the leaf node tl in the type hierarchy. The distribution of VCount(tl) for

leaf nodes tl in the type hierarchy is supplied by the domain expert.

116

Note that the random variable VCount(tl) has two resident MFrags, thus violating

the original conditions for a valid MTheory (Laskey 2005). However, it satisfies the

conditions for extended version defined above, because the contexts for the two home

MFrags are disjoint.

4.1.2 The Star Trek MTheory Revisited

The MTheory of Figure 23 has takes advantage of our extended version of

MEBN, but is equivalent, mutatis mutandis, to the MTheory of Figure 21. The most

obvious modification is the absence of the Type and the Isa MFrags. Also, the new

version allows several similar random variable labels to be combined into a single label,

such as in the case of nodes DistFromOwn() in the Transporter and the Starship MFrag.

Figure 23. Star Trek MTheory with the Transporter MFrag – Typed Version

It would be straightforward to add Starship subtypes (e.g., MilitaryStarship and

CivilianStarship) to this MTheory. Distributions defined for entities of type Starship

117

would be inherited by entities of type MilitaryStarship and CivilianStarship unless

overridden.

The ability to use the same name for similar concepts applied to different types of

entities is very useful for the knowledge base designer. It supports portability and

reusability, allows for more natural naming conventions, supports more compact

representations, and helps to prevent errors. Less obvious potential gains include savings

in memory allocation, the possibility of optimizing compilers and reasoners to exploit the

type structure, and other advantages of standard type systems. These advantages can now

be applied to a probabilistic first-order logic.

4.2 Using Quiddity*Suite for Building SSBNs

Information Extraction and Transport’s (IET) Quiddity*Suite™ is a probabilistic

frame-based modeling toolkit that implements many features of MEBN logic and

supports type uncertainty and multiple inheritance. Quiddity*Suite has been applied to a

wide range of problems ranging from visual target recognition to multi-sensor data fusion

to dynamic decision systems in the C3I arena (Fung et al., 2004).

A frame is a knowledge representation structure that expresses a concept or a

situation (Minsky, 1975), and it was a rather novel approach to knowledge representation

for a period in which rule-based or logic-based were the predominant formalisms. Frame-

based systems allow knowledge builders to easily describe the types of objects in a

domain. As such, they provide the conceptual basis for expressing knowledge in an

object-oriented way that inspired many subsequent formalisms (e.g., Bobrow &

118

Winograd, 1977; Brachman & Schmolze, 1985; Kifer et al., 1990; Greco et al., 1992).

According to Fikes & Kehler (1985), frames represent entities or classes of entities, and

can incorporate sets of attribute descriptions called slots. Also, slots can have a set of

properties, which are called facets of a slot.

In standard frame languages, there is no pre-defined way to express uncertainty

about values of an attribute. Unless a slot is left unassigned, either the value must be

known or a default value should be used. Quiddity*Suite expresses uncertainty about the

value of an attribute by associating a random variable with each slot for which the value

may be uncertain. When an instance of the frame is created, a random variable is created

for each uncertain slot. In order to carry the information needed to define probability

distributions for the random variables associated with uncertain slots, Quiddity*Suite

uses a set of pre-defined facets, which represent possible states, parents, and conditional

distribution given parents.

A detailed coverage on Quiddity*Suite’s approach for representing uncertainty in

frame-based systems is outside the scope of this work, but in our research experiments

we were able to use it as a means to perform SSBN construction from evidence applied to

a generative MTheory.

As a proof of concept on the feasibility of using Quiddity*Suite as a partial

implementation of MEBN, we have translated the Star Trek MTheory into

Quiddity*Suite format. The resulting model is capable of building any SSBN that can be

generated from the original Star Trek MTheory. The source code for the model is

presented in Appendix A. In this Section; we describe the translation process

119

emphasizing which features could be directly translated and which required some

additional effort. Also, we address some of the issues and details that should be taken into

account when translating MTheories to Quiddity Models.

Readers should have in mind that the next Subsections are not meant to be a

Quiddity*Suite tutorial or learning asset. Instead, the main purpose is to show how the

concepts in MEBN logic translate (or not) to Quiddity*Suite elements. Even though

knowledge on Quiddity*Suite is necessary for understanding/applying the general

translation rules presented below, readers that are familiar with frame systems notation

would find relatively easy to understand the general idea of the translation procedures.

4.2.1 Concepts with Direct Translation

In the typed version of MEBN logic developed for this research, every domain-

specific entity has a type, which is represented as one of the possible values of node

Type(e) in the built-in Type MFrag). By definition, all possible values of node Type(e)

have their type defined as TypeLabel, which is itself a built-in possible value or Type(e).

As an example, the Starship MTheory has four types of entities (starships, sensor reports,

zones, and time steps), so the possible states of its built-in node Type(e) are the special

built-in states plus the domain-specific states Starship, SensorReport, Zone, and

TimeStep. Also, the typed version of MEBN logic presented here also supports sub-

typing, so we could easily create a type hierarchy in which starships would have subtypes

(say) military and civilian.

Quiddity*Suite represents entity types as frames, and also supports frame sub-

typing. An entity type in MEBN logic corresponds to a frame in Quiddity*Suite. Thus, a

120

good way of enforcing compatibility between models based on MEBN logic and their

counterparts in Quiddity*Suite is to use an approach that makes such correspondence

more explicit.

As explained in Chapter 3, MEBN logic allows multiple, equivalent ways of

portraying the same knowledge (recall example in Figure 13). Therefore, MEBN

modelers willing to achieve full compatibility with Quiddity*Suite (and with frame

systems in general) are encouraged to use the object oriented approach we sought with

the Star Trek MTheory, which used the concept of an entity cluster.

Definition 3: An entity cluster is a group of MFrags within a generative

MTheory having the following characteristics:

3.a) In any MFrag contained in the entity cluster, there is an ordinary

variable, called the subject argument of the MFrag, such that any non-

constant random variable in the MFrag has the subject argument as one

of its arguments.

3.b) The context constraints of each MFrag in the entity cluster specify the

type of the subject argument. This type is called the subject type of the

MFrag.

3.c) The subject types of all MFrags in the entity cluster are the same.!

The above definition addresses only the top-level classes. That is, if entity

clustering is desired for subclasses then this definition will have to be extended to

accommodate subtyping. As an example, if we had different subtypes of starship, we

121

might have entity clusters that contained definitions for some nodes at the supertype

level, and other nodes at the subtype level. However, formalizing the translation rules for

subtyping is a subject for future work.

Figure 24 depicts the Star Trek MTheory divided by its entity clusters. Building

an MEBN model using the entity clusters approach facilitates the interoperability among

different modeling tools. In the specific case of the Star Trek MTheory, it allows a direct

mapping between frames and domain-specific entities (which have all of its attributes

within the same entity cluster). In addition, using this modeling approach makes it easier

to keep MEBN logic’s flexibility to display the same information in different MFrag

configurations. As an example, depending on the model objectives, the Starship MFrag in

Figure 24 could be easily replaced with the three equivalent MFrags in Figure 13.

Figure 24. Entity Clusters of Star Trek MTheory

Using the entity cluster modeling approach, most concepts in MEBN logic can be

easily translated to Quiddity*Suite syntax. Within a given entity cluster, all resident

nodes are directly mapped as slots of the frame that corresponds to that entity cluster.

122

Input nodes are mapped in accordance with the MFrag in which they are resident nodes.

If an input node is a “copy” of a resident node defined in an MFrag within the entity

cluster, then it is listed directly in the Parents facet of their children. Input nodes defined

outside the entity cluster are also listed in the Parents facet of their children, but have

their name preceded by a pointer slot. A pointer slot is a slot that has another frame as its

domain, and it is used for making references to that frame.

Figure 25 exemplifies the above explanation using the Sensor Report entity

cluster depicted in the MTheory in Figure 24. The cluster’s name is directly used in the

frame (bullet 1 in the figure), and each of the resident nodes of the cluster’s two MFrags

is transformed into a slot in that frame (bullets 2 to 4). It is important to note that node

Subject(sr) is an attribute of a sensor report that links each instance of a sensor report to

its respective subject. In our model, subjects of sensor reports are starships and thus the

possible states of Subject(st) are starship entities. Therefore, slot subject has frame

Starship as its domain and works as a pointer to that domain.

The use of a pointer is easily observable in this example, since all the input nodes

were defined outside the Sensor Report entity cluster. That is, there are no parent resident

nodes and also no input nodes defined within the cluster. In this case, each input node is

defined in the Parents facet of its respective children with the pointer node’s name

preceding it (see bullet 5 for the parents of SRClass).

123

Figure 25. Mapping the Sensor Report Entity Cluster to a Frame

Although not emphasized in Figure 25 for the sake of simplicity, the probability

distribution and the states of a resident node are directly translated to its respective slot’s

distribution and domain facets respectively. Quiddity*Suite’s syntax provide a rich list of

possibilities for portraying a probability distribution via the distribution facet, from built-

in standard distributions (e.g. UniformDiscreteDistribution for the discrete uniform

distribution) to highly complex combinations of functions. Also, there are different

possibilities for defining the domain of a slot via the domain facet, but covering all the

possibilities is outside the scope of this dissertation. Table 3 summarizes the concepts

discussed above, which can be directly translated from MEBN to Quiddity*Suite, and

presents some examples.

124

Table 3. MEBN Elements Directly Translated into Quiddity*Suite

MEBN Concept Quiddity*Suite

Representation

Quiddity*Suite Examples

(from the Star Trek MTheory)

Entity Type Frame frame Starship isa Frame

Type hierarchy Frame hierarchy. frame MilitaryStarship isa Starship

Resident nodes Slots slot z_ZoneEShips

Parent resident and
input nodes defined
within the entity
Cluster

Parents facet facet parents = [z_ZoneNature]

Parent input nodes
defined outside the
entity cluster

Parents facet +
pointer Slot

facet parents =
[PointerSlot.z_ZoneNature]

Probability
Distribution

Distribution facet facet distribution = <Quiddity table or
formula>

facet distribution = MaxDistribution

States Domain facet facet domain = booleandomain

facet domain = Starship

facet domain = [<list of states>]

4.2.2 Concepts with a More Complex Translation

In Subsection 4.2.1 we intentionally omitted some MEBN concepts that do appear

in the Star Trek MTheory, most notably the context nodes and the ordinary variables.

Also, we avoided specific cases of the concepts already cited, such as situations in which

an input note might generate multiple instances of itself. The reason of those omissions is

the intrinsic complexity of those cases, which demands a more elaborate discussion.

Context nodes are a powerful aspect of MEBN logic that allow specifying

carefully defined situations in which a given MFrag is valid. Some of the more common

125

context nodes are relatively easy to express in Quiddity*Suite, while others present some

issues requiring relatively complex workarounds. Those cases are addressed in this

Subsection.

The most common use of context nodes involves the specification of the types of

the entities in a given MFrag. In an entity cluster structure, all MFrags have the cluster’s

subject entity as their main attribute, so they will include an ordinary variable

representing that subject entity and a context node making that representation explicit. A

brief verification on the Star Trek MTheory in Figure 24 will show that all MFrags within

each cluster have a node such as IsA(SubjectEntity, ordvar). As an example, all MFrags

within the Starship cluster have an IsA(Starship, …) context node.

The other Isa(TypeLabel, ordvar) in each MFrag are used to define the type of the

instances that can substitute each ordinary variable. As a practical rule, for each of those

“extra” Isa(TypeLabel, ordvar) a pointer slot would have to be created in the frame. Of

course, only one pointer slot is needed so if there is one already then it is not necessary to

create another. As an example from the Sensor Report cluster, since there is already a slot

pointing to frame Starship (directly created because of the Subject(sr) resident node) then

when evaluating the context node IsA(Starship, st) in the Sensor Report MFrag there will

be no need to create another pointer slot.

One exception to the above general rule is the IsA(TimeStep, ordvar) context

nodes, which should not generate a pointer slot. The intended meaning of an entity of

type TimeStep is to indicate time recursion, which has a special treatment in

Quiddity*Suite. Figure 26 illustrates an example of an MFrag (Zone, the unique MFrag

126

in Zone Cluster) with temporal recursion and its respective frame counterpart. There are

three context nodes and two input nodes expressing that recursion in MEBN. The two

IsA(TimeStep, ordvar) context nodes are used to define the type of the ordinary variables

t and tprev, while the remaining context node uses the Prev(t) random variable to specify

that variable tprev is the predecessor of variable t in the ancestor chain of that time

recursion. The two input nodes are t = !T0 and ZoneMD(z, tprev). The first “anchors” the

recursion, while the latter makes it explicit that the distribution of ZoneMD(z, t) depends

on its immediate ancestor in the recursion ZoneMD(z, tprev). These five nodes are

expressed by two specific elements in the ZoneMD slot. The first is its Parents facet,

which contains zoneMD.PREV, where the suffix .PREV indicates that this slot’s

distribution depends upon its ancestor. The second is the initialState facet, which contains

the distribution for the first instance of the ancestor chain.

Figure 26. Zone Entity Cluster

127

As a general rule, MEBN recursions will follow this pattern of three context

nodes defining two ordinary variables and their precedence, and two input nodes for

“anchoring” the recursion and declaring the recursive resident node’s dependence over its

predecessor. Such pattern should then be translated to Quiddity*Suite using the .PREV

suffix and the initialState facet accordingly.

Apart from defining types of ordinary variables and establishing recursive

patterns, context nodes are used to specify how the process of SSBN construction will

occur. In other words, context nodes can be seen as logic rules that define the conditions

under which instances of the random variables of an MFrag will be created during the

process of SSBN construction. As an example from the Zone MFrag of Figure 26, the

context node z=StarshipZone(st) specifies a restriction on instances of Zone and Starship

entities that can be substituted for occurrences of the ordinary variables z and st,

respectively. Specifically, if the substitution is to be valid, the value of the attribute

StarshipZone for any Starship instance substituted for st must be equal to the Zone

instance substituted for z. The only way of enforcing this restriction in the current version

of Quiddity*Suite is by encoding it procedurally in the entity creation process. In other

words, it is not possible to express this kind of restriction in the frame definition alone, so

we have to enforce it via the entity creation process, or A-box construction procedure.

This limitation in expressing context nodes in Quiddity*Suite is akin to the DL

limitation discussed in the end of Subsection 2.4.1 concerning the representation of

constraints on the instances that can participate in a relationship. That is, just as we

128

cannot express certain constraints using only the T-Box in a DL representation, we

cannot represent those same constrains in the frame structure of a Quiddity*Suite model.

The next version of Quiddity*Suite will have the ability to use Prolog-like rules

for automatically controlling A-box construction to enforce the restrictions expressed in

the context nodes of an MFrag. Unfortunately, the new version will not be released in

time to be incorporated into this research. As a result, we enforced context restrictions

procedurally in our model’s function definitions and executable module, both available in

Appendix A.

As a general rule, context nodes restricting the conditions under which the

instances of an MFrag should be created can only be expressed in Quiddity*Suite in a

programmatically fashion during the creation of the instances. The inclusion of logical

rules will allow a modeler to define the rules prior to the A-box creation process, thus

introducing a great level of automation in a procedure that we had to perform by carefully

programming the A-box creation itself.

The last specific translation issue to be addressed when translating MTheories to

Quiddity*Suite is the case in which a node has many possible parents. One example of

such situation is illustrated in Figure 26, where the resident node ZoneMD(z, t) has the

input node CloakMode(st) as its parent and the restrictions expressed in the context nodes

allow this input to have many possible instances. In other words, given the valid context

for the Zone MFrag, all starships that happen to be in zone z will be parents of

ZoneMD(z, t). Thus, we have a variable number of parents that depends on how many

starships are in a given zone.

129

The problem is that Quiddity*Suite doesn’t have support for defining probability

distributions for an undefined number of parents, so specifying a distribution such as the

one we have shown in Figure 8 is not possible at this time. Therefore, in order to model

this kind of situation we had to resort to a modeling trick in which we created a “collector

node” in Zone MFrag and used Quiddity’s MaxDistribution to handle the undefined

number of parents.

In frame Zone, the slot pointing to frame Starship is the starship slot. Usually, an

external parent of slot zoneMD would be listed using the pointer.parent format, such as

starship.cloakMode in this case. However, we created an intermediate node called

anyStInCloakMode which has starship.cloakMode as a parent. This node has the

MaxDistribution as its probability distribution so it can handle multiple parents. Then, the

“collector” node anyStInCloakMode, and internal node to the Zone MFrag is listed as a

parent of zoneMD slot. The intermediate node was necessary because the

MaxDistribution accepts only one parent in its list, and ZoneMD has more than one

parent so it wouldn’t work with that distribution.

As a general rule, if the variable number of parents of a resident node is generated

from one input node only and this is its only parent, then it is possible to use the

MaxDistribution directly (i.e. use the same rules for input parents defined in Subsection

4.2.1). Else, the scheme of an intermediate, “collector” node is necessary. In any case,

only special distributions such as the MaxDistribution are allowed. In the Starship model,

the MaxDistribution was used in place of the one we defined in the pseudo-code of

Figure 8.

130

4.2.3 Use of Comments and Other Aspects of Quiddity*Suite

In order to facilitate the translation between MEBN representation and

Quiddity*Suite Models, we have developed a list of markups that should be included as

comments in Quiddity*Suite models. The information inside each markup would then be

inserted in specific concepts in a PR-OWL ontology. Table 4 brings a list of those

markups and their respective PR-OWL concepts.

Table 4. Metadata Annotation Fields

Markup Label PR-OWL Concept

MEBNUID UID (datatype property of entities).

NodeType Subclass of PR-OWL class Node that a given RV belongs to.

NodeMFrag Lists the individual of PR-OWL class MFrag that a given
node belongs to.

NodeHomeMFrag If a resident node, then this field will have the same value as
above. If an input node, then it will list the MFrag were its
distribution is defined.

NodeDistType Lists the format being used to define the distribution.

NodeDescription This field should be transposed to the annotation field of the
PR-OWL ontology.

NodeDist If a table, it reads: “see table”. Else, it’s the field that should
convey the probability distribution formulas. In PR-OWL is
the datatype property hasDist (of declarative distributions).

NodeDistComments This field should be transposed to the annotations of the
probability distribution individual. Basically, it explains the
intended meaning/rationale of a given probability
distribution.

QuiddityName This field handles the naming differences between the PR-
OWL ontology, Netica, and Quiddity models. In PR-OWL
ontologies, it should be listed in the annotations field.

QuiddityObj Another translation facilitator. It describes whether a MEBN
entity is a frame, slot, or facet in a Quiddity model.

131

Quiddity*Suite has been applied to many complex, real-world problems (e.g.,

Alghamdi et al., 2004; Fung et al., 2004; e.g., Alghamdi et al., 2005; Costa et al., 2005).

Its powerful representation and reasoning capabilities have provided solutions to

problems that could not be solved with previously existing technology. Development of

Quiddity*Suite is ongoing, and new capabilities are being added on a continuing basis.

As of the final phase of writing this dissertation, a new version is being released that

incorporates significant advances in the use of Prolog rules to establish constraints in the

slot instantiation process.

Those advances allow Quiddity models to replicate the context nodes of an

MFrag, adding a major capability that as far as our knowledge goes is not implemented in

any similar system. The time frame of this work prevent us to perform a more detailed

analysis to evaluate the impact of those advances, and to verify whether full compatibility

with MEBN logic has been achieved. Yet, the fact that we were able to built three

logically equivalent versions of the Star Trek model using Quiddity*Suite, MEBN logic,

and PR-OWL is a clear indication that in its current stage, Quiddity*Suite can be used as

a reasoner in MEBN-based probabilistic ontologies.

The set of rules we have just described, combined with the extended version of

MEBN logic we presented in the previous section, represent our solution for the two

major issues preventing the development of a probabilistic ontology language. In the next

chapter, we show how we have built upon what we implemented in “clearing the path”

for probabilistic ontologies to develop PR-OWL, a probabilistic extension to the OWL

Web ontology language.

132

Chapter 5 PR-OWL

As a means to realize the use of Bayesian theory for representing and reasoning

under uncertainty in the Semantic Web, this Chapter proposes a standard knowledge

representation formalism to express uncertain phenomena, performing plausible

reasoning, and learning from data in the context of the Semantic Web. This formalism

will provide a framework for executing those tasks in an interoperable way, so

probabilistic ontologies that were built for different purposes, using diverse tools, and by

knowledge engineers that were not mutually aware of each other’s work, would have a

common underlying architecture guaranteeing the exchange of information in a useful

and meaningful way.

A framework intended to provide means for building probabilistic ontologies for

the Semantic Web must be compatible with the technologies being used in that

environment. Thus, since OWL is the recognized ontology language of choice for the

Semantic Web, it is also our base language for building the framework for probabilistic

ontologies. That is, PR-OWL is an extension of OWL that enables the specification of

probabilistic ontologies.

The OWL Web ontology language is a W3C Recommendation, which means it is

the product of an exhaustive, consensus-based process in which many highly qualified

participants from different countries composed various working groups and generated the

133

technical reports which collectively comprise the final Recommendation (c.f. Jacobs,

2003). Extending a W3C Recommendation requires a similar process and implies a level

of commitment from the W3C that makes it clearly outside the scope of a PhD

Dissertation. Still, as explained in the previous chapters, the W3C’s vision for the

Semantic Web can only be achieved with a sound and principled treatment of

inconclusive, ambiguous, incomplete, unreliable, and dissonant data, all quite abundant in

the current World Wide Web environment.

We saw in Chapter 3 that Bayesian probability theory provides a means for

representing, reasoning and learning from all the above cited varieties of uncertain data,

and is thus a natural candidate for providing the much-needed probabilistic framework

for the Semantic Web. The development of a strategy for building that framework can be

embraced as a doctoral research effort, and that is precisely the intention of the present

work and the main focus of this chapter. Furthermore, the present work is envisioned as a

basis for incorporating uncertainty in a future version of OWL.

The Chapter is divided into two main sections. The initial section establishes an

implementation strategy for PR-OWL, which includes further considerations on

probabilistic ontologies, the reasons for choosing MEBN logic as the underlying

semantics of PR-OWL, and the intended scope of its definitions. The second part of the

Chapter presents PR-OWL itself, and covers the major characteristics of the language.

134

5.1 The Overall Implementation Strategy

Before devising a way of implementing a framework for building interoperable

probabilistic ontologies, it is important to emphasize that a probabilistic ontology is not a

probabilistic model (e.g. a model built using applications such as Netica, Hugin, or

Quiddity*Suite) the same way that an ontology is not a database application.

The differences in the in-depth underlying concepts and technologies supporting

ontologies and database schemas are not easily distinguishable, as the real differentiation

between the two resides in their respective intended purposes. Ontologies represent

domains in a way that should facilitate interoperability with other representations of that

domain (i.e. other ontologies build by different people with different views and interests)

or of domains that are not directly related but share some concepts. When a database

solution for a given domain is conceived, its primary focus is not in representing all

concepts of a domain in a way that makes it interoperable with current or future views of

that domain, but in defining the concepts of that domain which would allow to coherently

store the information the database stakeholders (and their customers) want to store and to

retrieve that information in a way that best fits their requirements.

In a similar view, when a probabilistic model is built to solve (say) a radar data

fusion problem, the main interest driving its creators is not in making sure that their

definitions about radar domain concepts are interoperable with other definitions that

might exist on those same concepts. In contrast, interoperability would definitely be a

primary focus when building a probabilistic ontology for the domain of radar data fusion.

Ontology engineers would attempt to express one view of that domain in a way that

135

others (with possibly different views) may use/understand and thus build applications

(databases, decision systems, etc) that are compatible with anything built under that view.

Furthermore, it is not necessary for an ontology to be an actually running

database, yet a database application can be built on top of an ontology. Likewise, a

probabilistic ontology does not necessarily need to be an actually running probabilistic

model, yet a running probabilistic model (i.e. an executable application built using a

probabilistic package) can be built on top of a probabilistic ontology if that fits the

objectives of the application at hand. A subtle difference here is that anything built on top

of an ontology can be built on top of a probabilistic ontology, but the converse is not

always true, since the latter is an extension of the former that adds the above mentioned

features of a probabilistic framework.

To comply with interoperability requirements and at the same time be useful

enough for allowing a probabilistic model to be built on top of its definitions, a

probabilistic ontology has to be based on a very flexible framework. Thus, the initial

issue to be addressed is the definition of an underlying model for PR-OWL, one that

allows representing uncertain data using OWL’s RDF based syntax. Clearly, it is

desirable that the semantics of such model should have at least the same representational

power of the semantics supporting OWL, so everything that can be represented in OWL

could also be expressed in PR-OWL.

5.1.1 Why MEBN as the semantic basis for PR-OWL?

In general, people faced with the complex challenge of representing uncertainty in

languages like OWL tend to start their attempts by writing probabilities (i.e. priors and

136

CPTs) as annotations (e.g. marked-up text describing some details related to a specific

object or property). This is a palliative solution that addresses only part of the

information that needs to be represented, since it fails to convey the structural intricacies

that are present in even the simplest probabilistic models, such as conditional dependence

(or independence) implied by connecting arcs (or lack of), double counting of influence

on multiply connected graphs, and others.

Indeed, many researchers have pointed out the importance of structural

information in probabilistic models (e.g. Shafer, 1986; Schum, 1994; Kadane & Schum,

1996). For instance, Schum (1994, page 271) shows that some questions about evidence

can be answered entirely in structural terms.

In short, annotating the numerical probabilities of a probabilistic model in an

ontology is just not enough, as too much information is lost to the lack of a good

representational scheme that captures the structural nuances of the model. As noted in

Chapter 2, one way of representing structural information of a probabilistic model is by

extending OWL to represent Bayesian networks (e.g. Ding & Peng, 2004). However,

even though such approach does capture some of the structural information of a

probabilistic model, the limited expressiveness of Bayesian networks make it difficult to

represent complex systems, as we could see from the Starship example in Chapter 3.

Probabilistic Relational Models provide a leap in representation power when

compared with BNs, but as we could see in Chapter 4, PRMs alone cannot represent all

that is needed for declarative representations that cover complex situations with tightly

defined contexts (i.e. situations in which probability distributions are defined within very

137

specific constrains). Therefore, to represent one of those specific situations in an ontology

using PRMs as the underlying logic, either the instances of that ontology would also have

to be declared (e.g. expressing that two starships are not the same individual by referring

to two actual instances of starships25) or some combined approach would have to be used

for constraining the context where the definitions apply (e.g. the use of Prolog rules in

Quiddity*Suite).

The need to declare all instances in advance makes the first solution unsuitable for

most use cases for the Semantic Web, where the ontologies generally have only T-Box

information (or occasionally a few built-in A-Box definitions) and the A-Box is left for

each specific situation/application based on that ontology. Thus, the second solution

seems to be a more appropriate way of employing PRMs to build probabilistic ontologies.

One successful example of that approach is the use of Prolog rules in Quiddity*Suite as a

means to enforce constraints under which instances of a random variable are created.

Establishing such constraints is a vital asset for building probabilistic ontologies,

since it allows one to express very detailed situations in which a given probability

distribution holds. MEBN logic has a built-in form of representing such constraints (i.e.

its context nodes), which makes it a flexible and simple technology that is also logically

coherent (i.e. it can express a fully coherent joint probability distribution over instances

that satisfy the constraints). These intrinsic features of MEBN logic makes it very

suitable for being the basis of a probabilistic framework for the Semantic Web.

25 Refer to the examples and discussions in the end of subsections 2.4.1 and 4.2.2

138

Approaches with limited expressiveness, such as BNs, are less suitable because

the Semantic Web demands a certain level of flexibility those approaches cannot deliver.

More expressive representational schemes such as PRMs, implementations of MEBN

logic, and probabilistic logic programs theoretically have the basic conditions for

supporting such a framework. In any case, there will always be a trade-off between

flexibility and expressiveness when using a probabilistic logic to support a language

meant for the Semantic Web. We found that MEBN logic provides a particularly

attractive trade-off that made our work easier when extending the OWL Semantic Web

language.

Laskey (2005, pages 22-27) shows that MEBN logic can express a joint

probability distribution over models of any consistent finitely axiomatizable theory in

classical first order logic. Thus, even the most specific situations can be represented in

MEBN, provided they can represented in FOL. Furthermore, since MEBN is a first order

Bayesian logic, using it as the underlying semantics of PR-OWL not only guarantees a

formal mathematical background for a probabilistic extension to the OWL language (PR-

OWL), but also ensures that the advantages of Bayesian Inference (e.g. natural “Occam’s

Razor”, support for learning from data, etc.) will be available for using with any PR-

OWL probabilistic ontology.

Therefore, we opted to use MEBN logic as the underlying semantics of OWL for

its optimal combination of expressiveness and flexibility. Our next step is to lay out an

overall plan for implementing it in a way that does not render current OWL ontologies

incompatible with the extended language.

139

5.1.2 Implementation Approach

OWL has intrinsic mechanisms to enable the development of extensions. The

most basic means of extending OWL is to specify a vocabulary using a syntax that

complies with its format. As an example, the Dublin Core metadata initiative is devoted

to developing specialized metadata vocabularies and to promote the widespread adoption

of interoperable metadata standards (Hillmann, 2001). Any OWL ontology can use the

Dublin Core vocabulary to define additional semantics about its contents just by adding

its namespace in the file header and encoding qualified Dublin Core Metadata in the RDF

/ XML format described in Kokkelink & Schwänzl (2001).

Yet, this basic level of extensibility is not enough to guarantee a coherent, widely

used standard for more complex activities that demand a greater level of commitment

from users of the standard. As an example, OWL-S (Martin et al., 2004) and the Web

Service Modeling Ontology – WSMO (Polleres et al., 2005) have been acknowledged as

Member Submissions, both proposing solutions for Web service ontologies. Their

respective sponsoring organizations submitted the draft specifications with the hop that

these can form the basis of a future standard and thus form a framework that would allow

a much higher degree of automation, functionality and interoperability among the various

types of services. Those specifications build upon and extend the foundation laid by

OWL and other web standards; PR-OWL as described below intends to make a similar

contribution.

Some extensions do change the semantics and abstract syntax of OWL. As an

example, the Semantic Web Rule Language (SWRL) is a W3C Member Submission that

140

proposes to extend OWL abstract syntax so it includes support for rules based on

RuleML (Boley & Tabet, 2004) and provides a model-theoretic semantics defining the

meaning of the rules written in the extended syntax (Horrocks et al., 2004). In addition,

there is another W3C Member Submission that proposes extending SWRL so it would

allow OWL ontologies containing the extended abstract syntax and semantics defined in

SWRL to handle unary/binary first-order logic (Patel-Schneider, 2005).

The extensions listed in the above paragraph do add new elements to the abstract

syntax and semantics of OWL, which means they augment the expressiveness of the

language by enabling it to express concepts that are not possible to convey with standard

OWL. On the other side, in order to make use of those extensions, it is necessary to

develop new tools supporting the extended syntax and implied semantics of each

extension.

PR-OWL is an extension that enables OWL ontologies to represent complex

Bayesian probabilistic models in a way that is flexible enough to be used by diverse

Bayesian probabilistic tools (e.g. Netica, Hugin, Quiddity*Suite, JavaBayes, etc.) based

on different probabilistic technologies (e.g. PRMs, BNs, etc.).

That level of flexibility can only be achieved using the underlying semantics of

first-order Bayesian logic, which is not a part of the standard OWL semantics and

abstract syntax. Therefore, it seems clear that PR-OWL can only be realized via

extending the semantics and abstract syntax of OWL the same way as the above

examples of SWRL, RuleML and SWRL-FOL.

141

Indeed, an ideal full implementation of a probabilistic ontology would follow the

steps defined by the W3C (Jacobs – ed., 2003) until it becomes an official standard. As

demonstrated in Chapter 3, all the information needed to process probabilistic queries in a

MEBN models is contained in the model’s generative MTheory and the findings related

to the query of interest. Also, we have shown that one of the advantages of MEBN logic

is the ability to express very specific situations via context nodes, which are declarative

statements with FOL expressiveness.

Therefore, and that constitutes one of the major contributions of the present work,

it is possible to define an upper ontology for probabilistic systems that can be used as a

framework for developing probabilistic ontologies (as defined in the beginning of this

Chapter) that are expressive enough to represent even the most complex probabilistic

models.

Defining such a framework is the initial step towards a full PR-OWL

specification, and a basic requirement for the development of probabilistic ontologies.

With that in mind, the implementation strategy that guided our actions in the present

research effort consisted of the following steps:

a. Define the formal foundation (based on Bayesian first-order logic) needed to

specify general probabilistic ontologies.

b. Present an operational concept to provide a general guidance on the

development of plug-ins and/or applications that make it easier for the average

user to write probabilistic ontologies.

142

c. As a step towards standardization by the W3C, establish a future vision for the

PR-OWL specification, and a plan for realizing that vision.

Steps “a” and “b” are covered in the remainder of this Chapter, while the last step

is addressed in Chapter 6.

5.2 An Upper Ontology for Probabilistic Systems

Our initial step towards a Bayesian framework for the Semantic Web is to create

an upper ontology to guide the development of probabilistic ontologies. DaConta et al.

define an upper ontology as a set of integrated ontologies that characterizes a set of basic

commonsense knowledge notions (2003, page 230). In this preliminary work on PR-

OWL as an upper ontology, these basic commonsense notions are related to representing

uncertainty in a principled way using OWL syntax. If PR-OWL were to become a W3C

Recommendation, this collection of notions would be formally incorporated into the

OWL language as a set of constructs that can be employed to build probabilistic

ontologies.

The PR-OWL upper ontology for probabilistic systems is presented in Appendix

B. It consists of a set of classes, subclasses and properties that collectively form a

framework for building probabilistic ontologies. The first step toward building a

probabilistic ontology in compliance with our Definition 3 (pages 101/102) is to import

into any OWL editor an OWL file containing the PR-OWL classes, subclasses, and

properties. In fact, this is exactly what we did when we built the Star Trek probabilistic

143

ontology. We used the Protégé import feature to download the PR-OWL upper ontology

from a website we had previously set up.

After importing the PR-OWL definitions, the next step in ontology design is to

construct domain-specific concepts, using the PR-OWL definitions to represent

uncertainty about their attributes and relationships. As an example, the concepts of the

Star Trek probabilistic ontology were either subclasses or instances of the imported PR-

OWL upper ontology. Using this procedure, an ontology engineer is not only able to

build a coherent generative MTheory and other probabilistic ontology elements, but also

make it compatible with other ontologies that use PR-OWL concepts.

Because we designed PR-OWL with the objective of eventually turning it into a

W3C submission, we wanted it to be as general purpose as possible. That is, we

attempted to avoid unnecessary restrictions that would initially make the job easier for

the designer of a specific application, but would limit its flexibility for a broader set of

applications. Imposing such limitations would render this preliminary work less suitable

as the starting point for a W3C Recommendation process. Thus, even though we did

establish a fixed set of classes, subclasses and instances for the upper ontology, which

was necessary to enforce consistency with MEBN logic standards, we intentionally

avoided unnecessary restrictions on how a modeler would develop her/his own

probabilistic ontology. It is clear to us that such approach is valid for the scope of this

work, but the natural tendency for the process towards a W3C Recommendation is to

impose extra restrictions that would achieve an optimal trade-off between flexibility and

enforcing the rules of the underlying logic. In other words, an upper ontology is enough

144

as a starting point to represent uncertainty in a principled way using PR-OWL, but it

cannot prevent unintentional misuse of its elements that would lead to inconsistencies in

the resulting probabilistic ontology.

In order to illustrate our conceptual approach, consider the question of whether to

represent an MFrag template such as the Zone MFrag from our Star Trek generative

MTheory (see Figure 10, page 70) as a class or an instance. If we choose the first option,

we would create it as a subclass of the imported PR-OWL class Domain MFrag (see

Appendix B, page 230). That newly created subclass will thus inherit all the properties

from the PR-OWL Domain MFrag class that enforce the structural and logical constraints

of a MEBN Fragment (e.g. it must have at least one resident node, it might have context

and input nodes, etc.). The instances of that subclass would then be copies of the Zone

MFrag template that have all of its inherited elements. This approach seems appropriate

when the ontology being built is supposed to represent the many copies of Zone MFrags

created by SSBN construction procedures started to answer a given query.

If, instead, we opt for the second approach and represent the Zone MFrag

template as a direct instance of the PR-OWL class Domain MFrag, then such instance

would still carry all the properties of a Domain MFrag (e.g. it must have at least one

resident node, etc.) that enforce the structural and logical constraints of MEBN logic. In

this case, unless we want to use a second order representation (i.e. use instances of

instances), the ontology itself could not contain instances of the Zone MFrag template.

We could add instances of the random variables that appear in the Zone MFrag (e.g.,

ZoneMD(!Z0)) to the ontology, but there would be no instance of the MFrag template

145

explicitly represented in the ontology. The PR-OWL instance we created to represent the

Zone MFrag template would contain all the information that an application external to the

ontology (i.e. a decision support system) needs to build copies of Zone MFrags when

building SSBNs to answer a query.

It is important to keep in mind that no matter what approach an ontology designer

uses in the light of his/her objectives, the structural and logical constraints of MEBN

logic will be inherited. Since the other elements of the “probabilistic part” of the ontology

will also be either instances or subclasses of the imported PR-OWL upper ontology, then

all will inherit the structural and logical constraints that collectively enforce the

compliance with MEBN rules, thus guaranteeing that such an ontology would be a

coherent, logically consistent MEBN Theory.

Although we did not establish any constraints on this specific issue, we

considered the pros and cons of modeling our concepts as subclasses or instances of PR-

OWL classes in the design of our Star Trek probabilistic ontology. Our experience leads

us to conclude that the objectives and characteristics of the probabilistic ontology being

built will dictate how to make this choice. In general, ontologies that are expected to

represent many instances of a given concept (e.g. copies of Zone MFrag in the illustration

above) should characterize that concept as a subclass of PR-OWL. Conversely, if a given

concept is not going to have its instances represented in the ontology (e.g. only the Zone

MFrag template is of interest) then the concept itself might be characterized as an

instance of a PR-OWL class. The advantage of doing so is to avoid unnecessary

duplications (e.g. many copies of a Zone MFrag template that would not be used by the

146

client applications of the Star Trek ontology). In the Star Trek probabilistic ontology,

most of the concepts directly related to the generative MTheory were modeled as

instances, whereas Object entities such as Starships and other concepts for which we

expect to have its instances populating the ontology were modeled as classes.

Our choice took into account that representing uncertainty within an ontology is

not the same thing as building a probabilistic system. In our Star Trek case study, the

generative MTheory is used in conjunction with information about domain entities (e.g.

instances of starships) to build SSBNs to answer queries about those entities. In this case,

the Enterprise’s decision support system would carry out the process of building

situation-specific models (i.e. instantiating and combining MFrags) to answer the relevant

queries, evaluate the perceived situation, and update the system’s knowledge accordingly.

The generative MTheory can be seen as the part of the system that holds the domain

knowledge used in this process. In other words, the process of building, working and

storing the instantiated MFrags in this case is not part of the Star Trek probabilistic

ontology.

 Even though we understand the above option might be desirable in some

applications, we preferred to adopt a different approach that avoids duplications by

restricting the user defined classes only to the elements we expect to be instantiated in the

ontology itself (as distinct from an application that uses the ontology). In short, we opted

to represent the generative MTheory concepts as instances of PR-OWL built-in classes,

while representing the object entities, random variables (i.e. resident nodes), and its

distribuitions as user defined classes. As an example, Starship would be a user-defined

147

class (subclass of PR-OWL ObjectEntity class) whose instances would be something

such as !ST0, !ST1, etc., whereas the Zone MFrag is modeled as an instance of PR-OWL

built-in Domain MFrag. This approach is consistent with the fact that a generative

MTheory contains all the domain-specific information that is needed in conjunction with

information on the object entities for the targeted application of our ontology to conduct

its reasoning processes (e.g. the Enterprise’s decision support system). In the end, we

believed our choice to be preferable in most cases in which an ontology is needed,

because it results in a more concise ontology that still can be used for applications as the

basis for conducting their respective reasoning process.

A generative MTheory can express domain-specific ontologies that capture

statistical regularities in a particular domain of application, and MTheories with findings

can augment statistical information with particular facts germane to a given reasoning

problem (Laskey, 2005). From our definition, it is possible to realize that nothing

prevents a probabilistic ontology from being “partially probabilistic”. That is, a

knowledge engineer can choose the concepts that he/she is interested to be in the

“probabilistic part” of the ontology, while writing the other concepts in standard OWL.

In this specific case, the “probabilistic part” refers to the concepts written using

PR-OWL definitions and that collectively form an MTheory. There is no need for all the

concepts in a probabilistic ontology to be probabilistic, but at least some have to form a

valid MTheory. Of course, only the concepts being part of the MTheory will be subject to

the advantages of the probabilistic ontology over a deterministic one.

148

The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic

ontologies only with respect to the concepts for which the modeler wants to have

uncertainty represented in a principled manner, make plausible inferences from that

uncertain evidence, or to learn its parameters from incoming data using Bayesian

learning.

The ability to perform probabilistic reasoning with incomplete or uncertain

information conveyed through an ontology is a major advantage of PR-OWL. However,

it should be noted that in some cases solving a probabilistic query might be intractable or

even undecidable. In fact, providing the means to ensure decidability was the reason why

the W3C defined three different version of the OWL language. While OWL Full is more

expressive, it enables an ontology to represent knowledge that can lead to undecidable

queries. OWL-DL imposes some restrictions to OWL in order to eliminate these cases.

Similarly, restrictions of PR-OWL could be developed that limit expressivity to avoid

undecidable queries or guarantee tractability. This initial step is focused on the most

expressive version of PR-OWL.

In this section, the “probabilistic part” of PR-OWL ontologies will be covered,

and the main objective is to show how to represent any generative MTheory (with no

regard to its level of complexity) and also Finding MFrags using PR-OWL concepts. An

overview of the general concepts involved in the definition of an MTheory in PR-OWL is

depicted in Figure 27. In this diagram, the ovals represent general classes, while the

major relationship between those classes are symbolized by arrows. A probabilistic

ontology has to have at least one individual of class MTheory, which is basically a label

149

linking a group of MFrags that collectively form a valid MTheory. In actual PR-OLW

syntax, that link is expressed via the object property hasMFrag (which is the inverse of

object property isMFragIn).

Figure 27. Overview of a PR-OWL MTheory Concepts

Individuals of class MFrag are comprised of nodes, which can be resident, input,

or context nodes (not shown in the picture). Each individual of class Node is a random

variable and thus has a mutually comprehensive, collectively exhaustive set of possible

states. In PR-OWL, the object property hasPossibleValues links each node with its

possible states, which are individuals of class Entity. Finally, random variables

(represented by the class Nodes in PR-OWL) have unconditional or conditional

probability distributions, which are represented by class Probability Distribution and

linked to its respective nodes via the object property hasProbDist.

The scheme in Figure 27 is intended to present just a general view and thus fails

to show many of the intricacies of an actual PR-OWL representation of an MTheory.

Figure 28 shows an expanded version conveying the main elements in Figure 27, its

subclasses, the secondary elements that are needed for representing an MTheory and the

reified relationships that were necessary for expressing the complex structure of a

Bayesian probabilistic model using OWL syntax.

150

Reification of relationships in PR-OWL is necessary because of the fact that

properties in OWL are binary relations (i.e. link two individuals or an individual and a

value), while many of the relations in a probabilistic model include more than one

individual (i.e. N-ary relations). The use of reification for representing N-ary relations on

the Semantic Web is covered by a working draft from the W3C’s Semantic Web Best

Practices Working Group (Noy & Rector, 2004).

Although the scheme in Figure 28 shows all the elements that are needed for

representing a complete MTheory, it is clear that any attempt at a complete description

would render the diagram cluttered and incomprehensible. Therefore, a complete account

of the classes, properties and the code of PR-OWL are given in Appendix B

Figure 28. Elements of a PR-OWL Probabilistic Ontology

The material provided in the appendix defines an upper ontology for probabilistic

systems, and it can be used to represent any system that can be represented using the

151

extended version of MEBN logic presented in Chapter 4. In order to show the

applicability of the presented framework, the next Subsections explain how it can be used

to build a probabilistic ontology.

In order to demonstrate the applicability of PR-OWL in diverse levels of

complexity, initially a generic explanation is given for each major aspect of the modeling

process, then an illustrative example based on the Starship case study is provided as a

means to facilitate the understanding over the most important steps. In both cases, the

examples were built using the open source software Protégé26, an ontology editor

developed by the by Stanford Medical Informatics at the Stanford University School of

Medicine (Noy et al., 2000; Noy et al., 2001), and its OWL plugin (Knublauch et al.,

2004).

At the present experimental stage, writing probabilistic ontologies in PR-OWL is

a process that requires importing the upper ontology provided in Section B.4 in the

appendices. Figure 29 shows the header of the Starship probabilistic ontology developed

as a case study for this research. There, it is possible to see the owl:imports feature being

used for downloading the PR-OWL upper ontology utilized as the base block for building

the Starship probabilistic ontology.

Even though the above example was written in Protégé, any ontology tool capable

of editing OWL ontologies, such as SWOOP27 (Kalyanpur et al., 2004) or webODE28

(Arpírez et al., 2001), can be used for editing a PR-OWL ontology.

26 Available for download at http://protege.stanford.edu/
27 Available for download at http://www.mindswap.org/2004/SWOOP/
28 See http://webode.dia.fi.upm.es/WebODEWeb/index.html

152

Figure 29. Header of the Starship Probabilistic Ontology

5.2.1 Creating an MFrag

Figure 30 shows the initial Protégé screen after importing the PR-OWL

ontologies and defining the classes of object entities that will be part of the ontology. In

Protégé, concepts of imported ontologies appear with a light colored dot icon and the

namespace abbreviation at the left side of the concept’s name, as it can be seen in the

Asserted Hierarchy window on the left side of the picture.

The darker icons (Starship, Zone, Sensor Report, and TimeStep) correspond to the

classes created as a first step to build the Starship probabilistic ontology. PR-OWL object

entities correspond to frames in frame systems and to objects in object-oriented systems.

The simple model used in this research contains only four object entities; so four classes

were created under the PR-OWL ObjectEntity Class (i.e. Starship, Zone, SensorReport,

and TimeStep). These are the user-defined classes that convey the equivalent of what a

standard ontology would represent about a domain, so its individuals are the concepts and

entities that would populate a non-probabilistic description of that domain. In our

Starship ontology, the domain instances will be individual zones, sensor reports,

153

starships, and time steps, all represented as individuals of the domain classes created by

the user.

Figure 30. Initial Starship Screen with Object Properties Defined

The other PR-OWL classes shown in the picture are directly fulfilled by

individuals representing the elements of a generative MTheory. The user does not create

new classes here, but individuals that convey the information necessary for creating

elements of an SSBN. In other words, these individuals express the probabilistic aspects

of the domain MTheory, and can be seen as templates that a probabilistic reasoner uses

for building an SSBN to answer a query. Examples of those aspects are the characteristics

of domain instances (e.g. the possible nature of a zone, class of a starship, etc), its

possible states, its probability distributions, etc.

154

When Quiddity*Suite (or another probabilistic reasoner chosen by the user)

receives a query on (say) the status of zones !Z0, !Z1 and !Z8 (all individuals of the user-

defined domain class Zone) it will build an SSBN based on the individuals of PR-OWL

classes representing the generative MTheory and the evidence available in form of

findings. In this case, the reasoner will certainly build three copies of RV ZoneNature(z)

based on the information contained in the individual Z_ZoneNature of the PR-OWL class

Domain_res.

Even though the names chosen for the four object entity classes match their

respective intended meaning, this is not a requirement. PR-OWL uses a UID as a means

to enforce its unique naming assumption, and the name of each concept has no meaning

for the logic under PR-OWL (MEBN logic). As an example, choosing a name such as

“Umbrella” as the reference to the class including all sensor reports in the model would

make no difference for the tasks performed by the reasoner, but would certainly confuse

any human reader trying to understand the model. Therefore, as a means to facilitate

human understanding and to improve interoperability with other systems (which probably

have humans as API builders), an optional naming convention is proposed in Section B.3

in the appendices and was used in the Starship probabilistic ontology built for this

research.

Figure 31 illustrates the PR-OWL representation of the Zone MFrag, which uses

the above-cited naming convention. An MFrag can be seen as a hub connecting a

collection of related random variables that together represent an atomic "piece of

knowledge" about a domain. The context nodes of the MFrag represent conditions under

155

which the relationship holds. A coherent set of those “pieces” form a joint probability

distribution over the included random variables, also known as an MTheory.

Figure 31. Zone MFrag Represented in PR-OWL

A common method for handling cognitive tasks is the “divide and conquer”

approach, which breaks a problem into smaller, simpler parts. Thus, building “pieces of

knowledge” about a domain in a way that allows “gluing” them together to handle more

complex issues within that domain is a natural technique for modeling probabilistic

systems. Not surprisingly, a very usual way of starting a probabilistic ontology is by

defining its generative MFrags or, in PR-OWL, the individuals of class Domain_MFrag.

PR-OWL includes all the necessary elements of MEBN logic that are necessary to

represent an MFrag. Figure 31 shows MEBN’s representation of the Zone MFrag in

comparison with its PR-OWL counterpart. Following the bullets within the figure, every

156

individual of class Domain_MFrag is related to one or more MTheory via the object

property isMFragOf [1]29.

The Zone MFrag is represented as an individual of class Domain_MFrag, having

name Zone_MFrag. The MFrag has four resident nodes, three input nodes and six context

nodes. Its PR-OWL represents those 13 nodes using 11 individuals of subclasses of

Node, which are linked to the Zone_MFrag via the object property hasNode [2]. The

mismatch between the number of MEBN nodes and their respective PR-OWL description

is caused by the fact there is not a straightforward one-to-one correspondence between

MEBN and PR-OWL constructs. Table 5 shows the details of how each node is portrayed

in both representations.

As shown in the table, the “IsA” context nodes are not explicit represented in PR-

OWL MFrags, since the notion of subtyping is already conveyed in the definition of the

arguments of each resident node. In MEBN, the “IsA” context nodes are meant to define

which type of entities can substitute the ordinary variables in an MFrag. In PR-OWL, this

constraint is expressed by the object property isSubsBy, linking individuals of class

OVariable to the individuals of class Entity that are allowed to substitute for them. As an

example, Zone MFrag has four ordinary variables (st, t, tprev, and z) that are represented

in PR-OWL as four individuals of class OVariable (Z_st, Z_t, Z_tprev, and Z_z). Thus,

while in MEBN logic the context node IsA(Starship, st) is meant to restrict the ordinary

variable st so that only entities of type Starship can substitute for it, in PR-OWL the

29 Numbers inside brackets refer to the equally numbered circle labels in the pictures

157

equivalent construction is isSubsBy(Z_st, Starship_Label), meaning that only individuals

that have property hasType equal to Starship_Label can substitute for Z_st.

Table 5. Zone_MFrag Nodes in MEBN and PR-OWL

MEBN MFrag PR-OWL Representation

IsA(TimeStep, tprev)

IsA(Zone, z)

IsA(Starship, st)

IsA(TimeStep, t)

Implicit in the type declaration

Z_TprevPrevT_context
tprev = Prev(t)

Z_TprevPrevT_inner_prevT

Z_ZSZoneST_context
z = StarshipZone(st)

Z_ZSZoneST_inner_SZoneST

CloakMode(st) Z_CloakMode_input

ZoneMD(z, tprev) Z_ZoneMD_input

t = !T0 Z_TequalT0_inpu

ZoneMD(z, t) Z_ZoneMD

ZoneNature(z) Z_ZoneNature

ZoneFShips(z) Z_ZoneFShips

ZoneEShips(z) Z_ZoneEShips

Therefore, even though there is no explicit reference to the “IsA” context nodes

from Zone MFrag in the individuals displayed in Figure 31, the object property

hasOVariable [3] linking the Zone_MFrag with its respective ordinary variables

implicitly conveys that subtyping restriction.

As an example of the mapping between MEBN and PR-OWL depicted in Table 5,

representing the context node “z=StarshipZone(st)” requires decomposing it into random

158

variable terms “equal(z, StarshipZone(st))” and “StarshipZone(st)”. In the PR-OWL

ontology these RV terms are respectively represented by Z_ZSZoneST_context and

Z_ZSZoneST_inner_SZoneST, both individuals of class Context.

The other properties depicted in Figure 31 are the object property hasSkolem [4],

which links a quantifier MFrag with its respective Skolem constants, and the properties

hasResidentNode [5], hasInputNode [6], and hasContextNode [7], all subproperties of

hasNode.

Figure 32 portrays the representation of node ZoneMD(z, t), from the Zone

MFrag. Object property isNodeFrom [1] provides the link between the node and its

MFrag. Further structural information is provided by the parent list formed with the

object property hasParent [2], the object property isResidentNodeIn [6] and the properties

that link ZoneMD(z, t) with its “copies” (instances in which the node is used as input

and/or context node in other MFrags), which are hasContextInstanceIn [7] and

hasInputInstanceIn (not visible in the picture).

ZoneMD(z, t) is a resident node, so it has a probability distribution conditioned on

its parents. The link between an individual of class Domain_res and the many possible

representations of its probability distribution is provided by the object property

hasProbDist [3]. Subsection 5.2.2 explains the different possibilities of representing

probability distributions in PR-OWL.

The list of possible states of ZoneMD(z, t) is made using the object property

hasPossibleValues [4], while its arguments (ordinary variables z and t) are linked using

the hasArgument object property [5]. Note that property hasArgument doesn’t actually

159

point to an individual of class OVariable, which is the class that has the ordinary

variables z and t represented (as Z_z and Z_t respectively). Instead, it points to

individuals of class SimpleArgRelationship, a subclass of ArgRelationship. These two

classes are reified relations specifying the many possibilities of arguments in a random

variable. In this specific case (i.e. the ZoneMD(z, t) node), the two arguments are

OVariables, so links to both are represented by individuals of the class

SimpleArgRelationship, which works as a pointer to individuals of Class OVariable only.

When a node has composite arguments, the parent class ArgRelationship should be used,

since it works as a pointer to individuals of classes OVariable, Node, Entity, and Skolem.

Figure 32. ZoneMD Resident Node

Object properties isArgTermIn [8] and hasInnerTerm [9] provide further support

to reified relations, by keeping track of the complex relationships in which each node is

160

participating. The use of reification is also important for representing probability

distributions in PR-OWL, which may be conveyed in different ways.

5.2.2 Representing a Probability Distribution

Representing probability distributions is a key issue in achieving a balance

between interoperability and conciseness. Proprietary formats usually convey all the

necessary information in a compact way, thus simply using that format in a xsd:string to

convey that information is an attractive option. However, this option ties the ontology to

a specific format that might not be universally known or might be inappropriate to a

range of applications. Also, annotating probability distributions might reduce the ability

to use that data in complex environments with many systems working with different

formats, rules or requirements.

PR-OWL is supposed to facilitate interoperability and thus should be as flexible

as possible in terms of how to represent probability distributions. Therefore, it allows

using multiple declarative distributions and/or a RDF table format to represent the

probability distribution of a given RV.

Each probability distribution can be expressed in different formats using PR-

OWL’s declarative distributions represented via the DeclarativeDist class, which is

depicted in Figure 33. Possible formats include Netica tables, Netica equations, Quiddity

formulas, MEBN syntax, and others. However, the declaration itself is stored as a string

so parsers should be compatible with the specific text format of each declaration.

Every individual of class DeclarativeDist has an object property isProbDistOf [1]

linking it with their respective resident node. A datatype property isRepresentedAs [2]

161

defines how a given declarative probability distribution is expressed. A datatype property

isDefault [3] flags it (or not) as a default distribution. finally, a datatype hasDeclaration

[4] includes the probability distribution itself in the format previously defined.

Figure 33. Declarative Distributions in PR-OWL

PR-OWL tables have a different representational scheme. Each individual of class

PR-OWLTable is actually a label that links the many components that collectively form a

probability distribution of a resident node. As an example, the individual

Z_ZoneFShips_table has three properties: isDefault, which states whether or not that

individual represents a default probability distribution, isProbDistOf, which links the

individual with the node it represents (Z_ZoneFShips in this case), and hasProbAssign,

which links the individual with all the individuals of class ProbAssign that collectively

form the probability distribution of node Z_ZoneFShips. One of those ProbAssign

individuals is Z_ZoneFShips_table_2.3, which is depicted in Figure 34.

162

Figure 34. A Probabilistic Assignment in a PR-OWL Table

Z_ZoneFShips_table_2.3 corresponds to the probability assigned to the second

state of node ZoneFShips (ZFS_1) given that its parent node has value

ZN_PlanetarySystem (the third state of that parent). The probability itself (.20) is

represented as a xsd:decimal that is linked to Z_ZoneFShips_table_2.3 via the datatype

property hasStateProb [1]. The link between the ProbAssign individual and the state of

ZoneFShips it refers to is made via the object property hasStateName [2], while property

isProbAssignIn [3] links the probability assignment to the table it belongs. Finally, each

probability assigned to a state of a variable is conditioned to a combination of states of

the parents of that variable. Object property hasConditionant [4] links a ProbAssign

individual to the individuals of class CondRelationship that collectively form such a

combination of parents. CondRelationship is a reified relation linking a parent with one

163

of its possible states, and a set of CondRelationship individuals represents the

combination of parents’ states to which a given probability assignment is conditioned.

ZoneFShips has only one parent, so there is only one conditionant listed

(Z_ZoneNature_cond_3.3), which is an individual of the reified class CondRelationship

that links node ZoneNature with its third state (ZN_PlanetarySystem). If ZoneFShips had

four parents, then four individuals of class CondRelationship (i.e. one for each parent)

would have to be listed in order to represent the combination of parents under which that

probability assignment is valid.

One issue regarding the probability assignment is the use of xsd:decimal to

convey a probability value, when the ideal situation would be to use a datatype that

specifically covers the numerical range of probabilities (i.e. 0 to 1, including both

extremities). However, at the time of this writing, OWL has no support for user-defined

datatypes, so the closest datatype allowed by OWL is xsd:decimal.

Although applications or plugins should be written to prevent invalid entries for

probabilities, relying on external plugins to enforce this requirement is not an acceptable

option. Therefore, a more robust solution must be sought. In the case of a future

consideration of PR-OWL as a basis for a W3C Recomendation for representing

uncertainty in the Semantic Web, a special datatype covering the numerical range of

probabilities must be included. A very suitable name for such datatype is “prob” (pr-

owl:prob), which has already been proposed by other researchers in this field (e.g., Ding

& Peng, 2004).

164

PR-OWL tables represent probabilities in a format that is highly interoperable,

since each cell contains links to all the elements that are necessary for specifying the

conditions in which the probability inside that cell applies. Also, those elements are

available in a non-proprietary, syntax-independent format, which makes it easier to be

retrieved by diverse applications without the need for a format conversion. Yet, building

PR-OWL tables the way it was done in this work is not a feasible option for a real life

application or plugin. Fortunately, all the above steps can be avoided by developing

automated tools. The next Section briefly covers such possibilities.

5.3 A Proposed Operational Concept for Implementing PR-OWL

In its current stage, PR-OWL contains only the basic representation elements that

provide a means of representing any MEBN-based model. Such a representation could be

used by a Bayesian tool (acting as a probabilistic ontology reasoner) to perform

inferences to answer queries and/or to learn from newly incoming evidence via Bayesian

learning.

However, building MFrags and all their elements in a probabilistic ontology is a

manual, error prone, and tedious process. Avoiding errors or inconsistencies requires very

deep knowledge of the logic and of the data structure of PR-OWL. Without considering

the future paths to be followed by research on PR-OWL (i.e. whether it will be kept as an

upper ontology or transformed into an actual extension to the OWL language), the

framework provided in this Dissertation makes it already possible to facilitate

probabilistic ontology usage and editing by developing plugins to current OWL editors.

165

Figure 35 illustrates an example of such a concept. In that figure, a possible

plugin for the OWL Protégé editor (which is itself an OWL plugin) shows a graphical

construction of an MFrag being performed in a very similar fashion as a BN is

constructed in a graphical package such as Netica™.

In this proposed scheme, in order to build an MFrag a user would only have to

select the icon of the node he/she wants to create (e.g. resident, input, context, etc.),

connect that node with its parents and children, and enter its basic characteristics (i.e.

name, probability distribution, etc.) either by double-clicking on it or via another GUI-

related facility.

Figure 35. Snapshot of a Graphical PR-OWL Plugin

166

The idea of such a plugin is to hide from users the complex constructs required to

convey the many details of a probabilistic ontology, such as the reified relationships,

composite RV term constructions (with or without quantifiers and Skolem constants), and

others. In the figure, the Zone MFrag was selected from the combo box in the top of the

viewing area, thus information about its nodes is displayed in a graphical format that

allows the user to build more nodes, edit or view the existing ones. and then chose node

ZoneEShips(z) so it appears highlighted (a red box around it) and all its data is shown in

the lower square.

Tedious tasks such as building a PR-OWL table with many cells could be carried

out much more quickly and with fewer errors, thus providing a boost in productivity. In

the probability table case, the user would only have to fill the probabilities in the correct

cells of a CPT’s graphical display and the plugin would build their respective PR_OWL

constructs.

Another point of usage improvement is the intrinsic syntax check provided by a

guided construction. As an example, when writing a composite RV term, the user would

not have to actually write the complex reified relations (ArgRelationships, Skolem

contants, OVariables, Inner terms, etc). Instead, a menu with the allowed connectives

would be available so his/her task would be reduced to enter the arguments of the

formula and embed the connectives the way he/she wants. The final result would be a

valid formula that would then be transformed in PR-OWL syntax by the plugin.

This brief idea of an operational concept barely scratches the surface of the many

possibilities for the technology presented here, and its purpose is to point out one such

167

possibility. As previously stated, the present dissertation is focused on defining a

coherent, comprehensive probabilistic framework for the Semantic Web, in a way that

any probabilistic system could be represented and made available to perform tasks such

as plausible inference and Bayesian learning. Therefore, implementing a plugin such as

the one envisioned here is a development task that is outside the scope or this dissertation

research. Nonetheless, it takes an important first step toward making probabilistic

ontologies a reality. By opening the door to wide use of PR-OWL probabilistic

ontologies, the present research makes a significant contribution to realizing the Semantic

Web vision.

168

Chapter 6 Conclusion and Future Work

6.1 Summary of Contributions

The main objective of this research effort was to establish a framework that

enables the use of Bayesian theory for representing and reasoning under uncertainty in

the context of the Semantic Web. The key step for achieving such objective was the

introduction of probabilistic ontologies, which were formally defined in Chapter 5.

In order to provide the initial conditions for the future spread of probabilistic

ontologies, we have developed a complete, modularized set of new definitions for the

OWL language, which collectively form a coherent framework for building ontologies

that are able to represent uncertainty from concepts of a given domain with full

probabilistic first-order logic expressiveness.

Probabilistic ontologies written under this framework achieve a principled

representation of uncertainty and allow for the use of different probabilistic reasoning

systems as a means to perform plausible reasoning and learning from data on the

MTheories represented in PR-OWL format.

The contributions of this research effort also included the development and

formalization of a typed version of MEBN logic. This extended version was needed as a

means to achieve full compatibility with current Semantic Web languages, including

OWL.

169

A full implementation of MEBN logic and its typed extension does not yet exist.

However, Quiddity*Suite is a powerful Bayesian probabilistic reasoning system that is

capable of being applied as a PR-OWL reasoner. Therefore, we have also developed a

set of rules for translating an MTheory written using the typed version of MEBN into a

probabilistic model in IET’s Quiddity*Suite format.

These rules were applied to the Starship MTheory specially developed for this

research, and resulted in a running Quiddity*Suite model. The Starship MTheory

includes some of the most complex aspects that can be expressed with MEBN logic, such

as recursions, nodes with many uncertain parents, context constraints expressed as first-

order logic sentences with and without quantifiers, etc. Therefore, having achieved a

Quiddity*Suite model capable of building any SSBN based on the original MTheory is a

valid proof of concept of the feasibility of using Quiddity*Suite as a PR-OWL reasoner.

The source code for the Quiddity Starship model is provided in the Appendix A of this

dissertation.

In order to demonstrate the feasibility of representing a complex MTheory using

the concepts laid out in Chapter 5, the very same case study was used as a basis for

writing a probabilistic ontology containing all the elements from the original model and

exploring different possibilities for representing a probability distribution. The resulting

PR-OWL ontology is logically equivalent to the original generative MTheory, and thus

can be utilized as the basis for generating SSBNs to answer queries posed to the model.

In addition, the representation of Finding MFrags was also covered, as a means to

170

demonstrate how PR-OWL ontologies can incorporate new information, either via user

insertion or by means of Bayesian learning from data.

Therefore, the upper ontology presented here is capable of representing any

MTheory, including both generative and MTheories with findings. In addition, it allows

users to define probabilistic ontologies using a RDF-based syntax that is compatible with

current OWL ontologies. Furthermore, translators could be written for third-party, of-the-

shelf probabilistic reasoners to make use of the ontology to perform Bayesian inference

and learning. These capabilities were demonstrated by creating the case study ontology,

translating its definitions into Quiddity*Suite and performing probabilistic inferences

over it, a process that is documented in the appendices.

6.2 A Long Road with Bright Signs Ahead

The proposed framework can be understood as an initial solution situated in a

middle ground between the extension approaches employed in OWL-S and SRWL. In

common with the first is the fact that no actual extension to OWL semantics and abstract

syntax is performed at this time, since it is also an OWL upper ontology. Similarly to the

latter, PR-OWL also has the need for specialized tools in order to realize its full potential,

while also including concepts (e.g. the prob datatype, FOL connectives, quantifiers, etc.)

that could greatly expand OWL expressiveness if adopted as a standard.

Even though it is possible to represent a complex probabilistic system using PR-

OWL definitions, performing plausible reasoning and learning from data requires an

external tool (e.g. Quiddity*Suite). It is true that some preliminary consistency check and

171

other OWL-DL features are possible using PR-OWL (which is OWL-DL compliant), and

that any complex system can still be written in PR-OWL and be interpreted using

different probabilistic reasoning systems, provided that PR-OWL plugins are written for

capturing the data inside probabilistic ontologies in each package’s native format.

Apart from the need for developing plugins for probabilistic packages so they can

be used as plausible reasoners, a specific PR-OWL plugin for current OWL ontology

editors remains a priority for future efforts. The process used here for writing

probabilistic ontologies can be greatly improved via automation of most of the steps in

the ontology building, mainly in the part of writing composite RV terms, but also for

consistency checking, reified relations and other tasks that demand unnecessary

awareness of the inner workings of the present solution. Once implemented, such plugin

has the potential to make probabilistic ontologies a natural, powerful tool for helping to

realize the Semantic Web vision.

Furthermore, the technology has the potential to be used in important applications

outside the Semantic Web, as we discuss in Appendix C In that discussion, our main

point is that the proper use of probability information can help to establish reliable, more

general semantic mapping schemas by means of probabilistic ontologies, which can then

be applied in applications spanning diverse domains, since it relies on a meta-ontology

(i.e. a ontology about ontologies), carrying no domain information, which has the

mappings between two or more ontologies as its instances.

That is, PR-OWL has the potential for application in other semantic mapping

solutions such as the DTB case study presented in Section C.1 of the appendices. It could

172

also be applied to facilitate interoperability between systems as discussed in the Wise

Pilot cases study, presented in Section C.2. The present work thus represents a step

toward a general-purpose solution for the semantic mapping problem.

Finally, the most important requirement for adoption of a language is the

standardization process. This process goes significantly beyond academic research and

thus falls outside the scope of the present work. Nonetheless, we are confident of its

feasibility, which we believe having demonstrated in this effort, and of its desirability,

given its potential to help solve many of the obstacles that stand in the way of realizing

the W3C’s vision for the Semantic Web.

173

Bibliography

174

Bibliography

Adams, J. B. (1976). A Probability Model for Medical Reasoning and the MYCIN
Model. Mathematical Biosciences, 32(1/2), 177-186.

Alberts, D. S., Garstka, J. J., & Stein, F. P. (1999). Network Centric Warfare: Developing

And Leveraging Information Superiority. Washingtong, D.C., USA: National
Defense University Press.

Alghamdi, G., Laskey, K. B., Wang, X., Barbara, D., Shackleford, T., Wright, E. J., et al.
(2004). Detecting Threatening Behavior Using Bayesian Networks, Conference
on Behavioral Representation in Modeling and Simulation - BRIMS. Arlington,
VA, USA.

Alghamdi, G., Laskey, K. B., Wright, E. J., Barbará, D., & Chang, K.-C. (2005).
Modeling insider user behavior using Multi-Entity Bayesian Networks. In
Proceedings of the Tenth International Command and Control Research
Technology Symposium (10th ICCRTS). McLean, VA, USA: CCRP/DOD
publications.

Arpírez, J. C., Corcho, O., Fernández-López, M., & Gómez-Pérez, A. (2001). WebODE:
A Scalable Workbench for Ontological Engineering, International Conference on
Knowledge Capture (pp. 6-13). Victoria, British Columbia, Canada: ACM Press.

Baader, F.; & Nutt, W. (2003). Basic Description Logics. Chapter in The Description

Logics Handbook: Theory, Implementation and Applications. Baader, F.;
Calvanese, D.; McGuiness, D.; Nardi, D.; Patel-Schneider, P.; editors. 1st edition,
chapter 2, pages 47-100. Cambridge, UK: Cambridge University Press.

Ball, W. W. R. (2003). A Short Account of the History of Mathematics. New York, NY,
USA: Main Street Books (originally published in 1908).

175

Bangsø, O., & Wuillemin, P.-H. (2000). Object Oriented Bayesian Networks: A
Framework for Topdown Specification of Large Bayesian Networks and
Repetitive Structures. Technical Report No. CIT-87.2-00-obphw1. Department of
Computer Science, Aalborg University, Aalborg, Denmark.

Baum, L. E., & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of
Finite State Markov Chains. Annals of Mathematical Statistics, 37, 1554-1563.

Berners-Lee, T., & Fischetti, M. (2000). Weaving the Web: The Original Design and

Ultimate Destiny of the World Wide Web by its Inventor . 1st edition. New York,
NY, USA: HarperCollins Publishers.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web, Scientific
American Digital (pp. 7): Scientific American, Inc.

Bobrow, D. G., & Winograd, T. (1977). An Overview of KRL, a Knowledge
Representation Language. Cognitive Science, 1(1), 3-46.

Boley, H., & Tabet, S. (2004). The Rule Markup Initiative. Retrieved May 29, 2005,
from http://www.ruleml.org/

Booker, L. B., & Hota, N. (1986, August 8-10). Probabilistic Reasoning about Ship
Images. Paper presented at the Second Annual Conference on Uncertainty in
Artificial Intelligence, University of Pennsylvania, Philadelphia, PA.

Bournez, C., & Hawke, S. (2004, November 23). Team Comment on the OWL-S
Submission. Retrieved June 29, 2005, from
http://www.w3.org/Submission/2004/07/Comment

Brachman, R. J. (1977). What's in a Concept: Structural Foundations for Semantic
Networks. International Journal of Man-Machine Studies, 9(2), 127-152.

Brachman, R. J., & Schmolze, J. G. (1985). An Overview of the KL-ONE Knowledge
Representation System. Cognitive Science, 9(2), 171-216.

176

Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project. Reading, MA, USA:
Addison-Wesley.

Buntine, W. L. (1994a). Learning with Graphical Models. Technical Report No. FIA-94-
03. NASA Ames Research Center, Artificial Intelligence Research Branch.

Buntine, W. L. (1994b). Operations for Learning with Graphical Models. Journal of
Artificial Intelligence Research, 2, 159-225.

Calvanese, D.; & De Giacomo, G. (2003). Expressive Description Logics. Chapter in The

Description Logics Handbook: Theory, Implementation and Applications. Baader,
F.; Calvanese, D.; McGuiness, D.; Nardi, D.; Patel-Schneider, P.; editors. 1st
edition, chapter 5, pages 184-225. Cambridge, UK: Cambridge University Press.

Cardelli, L., & Wegner, P. (1985). On Understanding Types, Data Abstraction and
Polymorphism. Computing Surveys, 17(4), 471-522.

Carnap, R. (1950). Logical Foundations of Probability. Chicago, IL, USA: University of
Chicago Press.

Charniak, E. (1991). Bayesian Networks without Tears. AI Magazine, 12, 50-63.

Charniak, E., & Goldman, R. P. (1989a). Plan Recognition in Stories and in Life. Paper
presented at the Fifth Workshop on Uncertainty in Artificial Intelligence,
Mountain View, California.

Charniak, E., & Goldman, R. P. (1989b). A Semantics for Probabilistic Quantifier-Free
First-Order Languages with Particular Application to Story Understanding. Paper
presented at the Eleventh International Joint Conference on Artificial Intelligence,
August 1989, Detroit, Michigan, USA.

Cheng, J., & Druzdzel, M. J. (2000). AIS-BN: An Adaptive Importance Sampling
Algorithm for Evidential Reasoning in Large Bayesian Networks. Journal of
Artificial Intelligence Research, 13, 155-188.

177

Clottes, J. E., Chauvet, J. M., Brunel-Deschamps, E., Hillaire, C., Saugas, J. P., Evin, J.,
et al. (Eds.). (1995). Les Peintures Paléolithiques de la Grotte Chauvet Pont-d'Arc

à Vallon Pont-d'Arc (Ardèche, France): Datations directes et indirectes par la

méthode du radiocarbone (Vol. 320). Paris, France: l'Académie de Sciences.

CNN.com. (1998). Rationalizing Treason: An Interview with Aldrich Ames. Cold War
Experience - Espionage Series Retrieved January 20, 2005, from
http://www.cnn.com/SPECIALS/cold.war/experience/spies/interviews/ames.

CNN.com. (2001). The Case Against Robert Hanssen: An FBI Insider and Admitted Spy.
In-Depth Special Series Retrieved January 20, 2005, from
http://www.cnn.com/SPECIALS/2001/hanssen/

Codd, E. F. (1970). A Relational Model for Large Shared Data Banks. Communications
of the ACM, 13(6), 377-387.

Cohen, L. J. (1989). An Introduction to the Philosophy of Induction and Probability.
Oxford, UK: Clarenton Press.

Connoly, D., Khare, R., & Rifkin, A. (1997). The Evolution of Web Documents: The
Ascent of XML. Word Wide Web Journal (special issue on XML), 2(4), 119-128.

Cooper, G. F. (1987). Probabilistic Inference using Belief Networks is Np-Hard. Paper
No. SMI-87-0195. Knowledge Systems Laboratory, Stanford University.
Stanford, CA, USA.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian Method for the Induction of
Probabilistic Networks from Data. Machine Learning, 9, 309-347.

Costa, P. C. G. (1999). The Fighter Aircraft's Autodefense Management Problem: A
Dynamic Decision Network Approach. Master of Science Thesis, School of
Information Technology and Engineering, George Mason University. Fairfax,
VA, USA.

Costa, P. C. G., Laskey, K. B., Takikawa, M., Pool, M., Fung, F., & Wright, E. J. (2005).
MEBN Logic: A Key Enabler for Network Centric Warfare. In Proceedings of the

178

Tenth International Command and Control Research and Technology Symposium
(10th ICCRTS). Mclean, VA, USA: CCRP/DOD publications.

Cox, R. T. (1946). Probability, Frequency and Reasonable Expectation. American Journal
of Physics, 14, 1-13.

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2001). Latent Semantic Kernels. Paper
presented at the 18th International Conference on Machine Learning, San
Francisco, CA, USA.

DaConta, M. C., Obrst, L. J., & Smith, K. T. (2003). The Sematic Web: A Guide to the

Future of Xml, Web Services, and Knowledge Management. Indianapolis, IN,
USA: Wiley Publishing, Inc.

Dagum, P., & Luby, M. (1993). Approximating Probabilistic Inference in Bayesian
Belief Networks is Np-Hard. Artificial Intelligence, 60, 141-153.

Damas, L., & Milner, R. (1982). Principal Type Schemes for Functional Programs. Paper
presented at the 9th ACM Symposium on Principles of Programming Languages.
Albuquerque, NM, USA.

de Finetti, B. (1990). Theory of Probability: A Critical Introductory Treatment. New
York, NY, USA: John Wiley & Sons. Originally published in 1974.

Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued
Mapping. Annals of Mathematical Statistics, 38, 325-339.

Ding, Z., & Peng, Y. (2004). A Probabilistic Extension to Ontology Language OWL.
Paper presented at the 37th Annual Hawaii International Conference on System
Sciences (HICSS'04). Jan, 5-8, 2004. Big Island, Hawaii, USA.

Druzdzel, M. J., & Simon, H., A. (1993). Causality in Bayesian Belief Networks. Paper
presented at the Ninth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-93). San Francisco, CA, USA.

179

Druzdzel, M. J., & Yuan, C. (2003). An Importance Sampling Algorithm Based on
Evidence Pre-Propagation. Paper presented at the Nineteenth Annual Conference
on Uncertainty in Artificial Intelligence. Acapulco, Mexico.

Elliott, R. J., Aggoun, L., & Moore, J. B. (1995). Hidden Markov Models: Estimation and

Control. New York, NY, USA: Springer-Verlag.

Fellbaum, C. (Ed.). (1998). Wordnet, An Electronic Lexical Database. Cambridge, MA,
USA: The MIT Press.

Fikes, R. E., & Kehler, T. P. (1985). The Role Of Frame-Based Representation in
Knowledge Representation and Reasoning. Communications of the ACM, 28(9),
904-920.

Fine, T. L. (1973). Theories of Probability: An Examination of Foundations. New York,
NY, USA: Academic Press.

Frege, G. (1879) Begriffsschrift, Eine Der Arithmetischen Nachgebildete Formelsprache

Des Reinen Denkens, Halle a. S.: Louis Nebert. Translated as Concept Script, A

Formal Language of Pure Thought Modeled Upon that of Arithmetic, by S.
Bauer-Mengelberg in J. vanHeijenoort (ed.), From Frege to Gödel: A Source

Book in Mathematical Logic, 1879-1931. Cambridge, MA, USA: Harvard
University Press, 1967.

Friedman, N., & Koller, D. (2000). Being Bayesian about Network Structure. Paper
presented at the Sixteenth Conference on Uncertainty in Artificial Intelligence.
San Mateo, California, USA.

Fukushige, Y. (2004). Representing Probabilistic Knowledge in the Semantic Web, W3C
Workshop on Semantic Web for Life Sciences. Cambridge, MA, USA.

Fung, F., Laskey, K. B., Pool, M., Takikawa, M., & Wright, E. J. (2004). PLASMA:
Combining Predicate Logic and Probability for Information Fusion and Decision
Support. Paper presented at the AAAI Spring Symposium. Stanford, CA, USA.

Fung, R., & Chang, K. C. (1989). Weighing and Integrating Evidence for Stochastic
Simulation in Bayesian Networks. In M. Henrion, R. D. Shachter, L. N. Kanal &

180

J. F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 5 (pp. 209-219). New
York, NY, USA: Elsevier Science Publishing Company, Inc.

Fung, R., & del Favero, B. (1994). Backward Simulation in Bayesian Networks. Paper
presented at the Tenth Annual Conference on Uncertainty in Artificial
Intelligence. San Francisco, CA, USA.

Gelman, A. (2003). Bayesian Data Analysis. 2nd edition. London, UK: Chapman and
Hall.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning Probabilistic

Relational Models. New York, NY, USA: Springer-Verlag.

Getoor, L., Koller, D., Taskar, B., & Friedman, N. (2000). Learning Probabilistic
Relational Models with Structural Uncertainty. Paper presented at the ICML-2000
Workshop on Attribute-Value and Relational Learning:Crossing the Boundaries.
Stanford, CA, USA.

Gil, Y., & Ratnakar, V. (2004). Markup Languages: Comparison and Examples.
Retrieved January 16, 2005, from
http://trellis.semanticweb.org/expect/web/semanticweb/comparison.html

Gilks, W., Thomas, A., & Spiegelhalter, D. J. (1994). A Language and Program for
Complex Bayesian Modeling. The Statistician, 43, 169-178.

Giugno, R., & Lukasiewicz, T. (2002). P-SHOQ(D): A Probabilistic Extension of
SHOQ(D) for Probabilistic Ontologies in the Semantic Web. Paper presented at
the European Conference on Logics in Artificial Intelligence (JELIA 2002), Sep
23-26. Cosenza, Italy.

Goldfarb, C. F. (1996). The Roots of SGML - A Personal Recollection. Retrieved
September 30, 2004, from http://www.sgmlsource.com/history/roots.htm

Greco, S., Leone, N., & Rullo, P. (1992). COMPLEX: An Object-Oriented Logic

Programming System. IEEE Transactions on Knowledge and Data Engineering,
4(4), 344-359.

181

Grenander, U. (1995). Elements of Pattern Theory. Baltimore, MD, USA: Johns Hopkins
University Press.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2), 199-220.

Gu, T., Keng, P. H., & Qing, Z. D. (2004). A Bayesian Approach for Dealing With
Uncertainty Contexts. Paper presented at the Second International Conference on
Pervarsive Computing, Apr 18-23. Vienna, Austria.

Haarslev, V., & Möller, R. (2001). RACER System Description. Paper presented at the
International Joint Conference on Automated Reasoning (IJCAR'2001). Siena,
Italy.

Hacking, I. (1965). The Logic of Statistical Inference. Cambridge, MA, USA: Cambridge
University Press.

Hacking, I. (1975). The Emergence of Probability: A Philosophical Study of Early Ideas

about Probability, Induction, and Statistical Inference. Cambridge, MA, USA:
Cambridge University Press.

Hansson, O., & Mayer, A. (1989). Heuristic Search as Evidential Reasoning. Paper
presented at the Fifth Workshop on Uncertainty in Artificial Intelligence.
Windsor, Ontario, Canada.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995a). Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning (20),
197-243.

Heckerman, D., Mamdani, A., & Wellman, M. P. (1995b). Real-World Applications of
Bayesian Networks. Communications of the ACM, 38(3), 24-68.

Heckerman, D., Meek, C., & Koller, D. (2004). Probabilistic Models for Relational Data.
Technical Report MSR-TR-2004-30, Microsoft Corporation, March 2004.
Redmond, WA, USA.

182

Heflin, J. (2004, February 10). OWL Web Ontology Language - Use Cases And
Requirements. Retrieved December 04, 2005, from
http://www.w3.org/TR/2004/REC-webont-req-20040210/

Heinsohn, J. (1994). Probabilistic Description Logics. Paper presented at the Tenth
Conference on Uncertainty in Artificial Intelligence (UAI-94), Jul 29-31.Seattle,
WA, USA.

Helsper, E. M., & van der Gaag, L. C. (2001). Ontologies for Probabilistic Networks: A
Case Study in Oesophageal Cancer. Paper presented at the Thirteenth Dutch-
Belgian Artificial Intelligence Conference. Amsterdam, The Netherlands.

Hendler, J. (2004). Frequently Asked Questions on W3C's Web Ontology Language
(OWL). Retrieved January 14, 2005, from
http://www.w3.org/2003/08/owlfaq.html.

Henrion, M. (1988). Propagation of Uncertainty by Probabilistic Logic Sampling in
Bayes Networks. In J. F. Lemmer & L. N. Kanal (Eds.), Uncertainty in Artificial
Intelligence 2 (pp. 149-163). New York, NY, USA: Elsevier Science Publishing
Company, Inc.

Hillmann, D. (2001). Using Dublin Core. Retrieved June 28, 2005, from
http://dublincore.org/documents/usageguide/.

Hofmann, T. (1999). Probabilistic Latent Semantic Indexing. Paper presented at the 22nd
Annual ACM Conference on Research and Development in Information
Retrieval, August 15-19. Berkeley, CA, USA.

Horrocks, I. (2002). DAML+OIL: A Reasonable Web Ontology Language. Keynote talk
at the WES/CAiSE Conference. Toronto, Canada.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission. Retrieved May 29, 2005, from
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

183

Horrocks, I., & Sattler, U. (2001). Ontology Reasoning in the SHOQ(D) Description
Logic. Paper presented at the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI 2001), Aug 4-10. Seattle, WA, USA.

Hotho, A., Staab, S., & Stumme, G. (2002). Text Clustering Based on Background

Knowledge. Technical Report No. 425. Institute of Applied Informatics and

Formal Description Methods AIFB, University of Karlsruhe. Karlsruhe, Germany.

Hotho, A., Staab, S., & Stumme, G. (2003). Wordnet Improves Text Document

Clustering, Semantic Web Workshop at SIGIR-2003, 26th Annual International

ACM SIGIR Conference. Toronto, Canada.

Jacobs, I., editor (2003, June 18). World Wide Web Consortium Process Document.
Retrieved March 03, 2005, from http://www.w3.org/2003/06/Process-
20030618/cover.html

Jaeger, M. (1994). Probabilistic Reasoning in Terminological Logics. Paper presented at
the Fourth International Conference on Principles of Knowledge Representation
and Reasoning (KR94), May 24-27. Bonn, Germany.

Jaeger, M. (1997). Relational Bayesian Networks. Paper presented at the 13th Annual
Conference on Uncertainty in Artificial Intelligence (UAI97), August 1-3,
Providence, RI, USA.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. New York, NY, USA:
Springer-Verlag.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York, NY, USA:
Springer-Verlag.

Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning With
Many Relevant Features. Paper presented at the Tenth European Conference on
Machine Learning, April 21 – 24. Chemnitz, Germany.

Jordan, M. I., (Ed.). (1999). Learning in Graphical Models. Cambridge, MA, USA: MIT
Press.

184

Kadane, J. B., Schervish, M. J., & Seidenfeld, T. (1999). Rethinking the Foundations of

Statistics. New York, NY, USA: Cambridge University Press.

Kadane, J. B., & Schum, D. A. (1996). A Probabilistic Analysis of the Sacco and Vanzetti

Evidence. New York, NY, USA: John Wiley & Sons.

Kalyanpur, A., Sirin, E., Parsia, B., & Hendler, J. (2004). Hypermedia Inspired Ontology
Engineering Environment: SWOOP. International Semantic Web Conference
(ISWC2004). Hiroshima, Japan.

Keynes, J. M. (2004). A Treatise on Probability. New York, NY, USA: Dover
Publications. Originally published in 1921.

Kifer, M., Lausen, G., & Wu, J. (1990). Logical Foundations of Object-Oriented and
Frame-Based Languages. Technical Report TR-90-003. University of Mannheim.
Mannheim, Baden-Württemberg, Germany.

Knublauch, H., Fergerson, R. W., Noy, N. F., & Musen, M. A. (2004). The Protégé OWL
plugin: An Open Development Environment for Semantic Web Applications.
Third International Semantic Web Conference (ISWC2004). Hiroshima, Japan.

Kokkelink, S., & Schwänzl, R. (2001). Expressing Qualified Dublin Core in RDF / XML.
Retrieved June 28, 2005, from http://dublincore.org/documents/dcq-rdf-xml/ .

Koller, D., Levy, A. Y., & Pfeffer, A. (1997). P-CLASSIC: A Tractable Probabilistic
Description Logic. Paper presented at the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), July 27-31. Providence, RI, USA.

Koller, D., & Pfeffer, A. (1997). Object-Oriented Bayesian Networks. Paper presented at
the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97). San
Francisco, CA, USA.

Kolmogorov, A. N. (1960). Foundations of the Theory of Probability. 2nd edition. New
York, NY, USA: Chelsea Publishing Co. Originally published in 1933.

185

Korb, K. B., & Nicholson, A. E. (2003). Bayesian Artificial Intelligence. Boca Raton, FL,
USA: Chapman & Hall/CRC Press.

Langseth, H., & Nielsen, T. (2003). Fusion of Domain Knowledge with Data for
Structured Learning in Object-Oriented Domains. Journal of Machine Learning

Research, Special Issue on the Fusion of Domain Knowledge with Data for

Decision Support, vol. 4, pp. 339-368, July 2003.

Laplace, P. S. (1996). A Philosophical Essay and Probabilities. New York, NY, USA:
Dover Publications. Originally published in 1826.

Laskey, K. B. (2005, March 15). First-Order Bayesian Logic. Draft paper, Department of
Systems Engineering and Operation Research, School of Information Technology
and Engineering, George Mason University. Retrieved July 3, 2005, from
http://ite.gmu.edu/~klaskey/publications.html

Laskey, K. B., & Lehner, P. E. (1994). Metareasoning and the Problem of Small Words.
IEEE Transactions on Systems, Man and Cybernetics, 24(11), 1643-1652.

Lauritzen, S., & Spiegelhalter, D. J. (1988). Local Computation and Probabilities on
Graphical Structures and their Applications to Expert Systems. Journal of Royal
Statistical Society, 50(2), 157-224.

Lee, P. M. (2004). Bayesian Statistics: An Introduction. 3rd edition. London, UK: Edward
Arnold Publishers.

Lewis, D. (1980). A Subjectivist's Guide to Objective Chance. In Studies in Inductive

Logic and Probability, Vol II. Berkeley, CA, USA: University of California Press.

Littman, M. L., Letsche, T. A., Dumais, S. T., & Landauer, T. K. (1997, March 24-26).
Automatic Cross-Linguistic Information Retrieval using Latent Semantic
Indexing. Paper presented at the AAAI Spring Symposium on Cross-Language
Text and Speech Retrieval, Stanford University. Stanford, CA, USA.

Lucas, P. J. F., van der Gaag, L. C., & Abu-Hanna, A. (2001, July 1st). Workshop on
Bayesian Models in Medicine. Paper presented at the European Conference on
Artificial Intelligence in Medicine. Cascais, Portugal.

186

Mahoney, S. M., & Laskey, K. B. (1998). Constructing Situation Specific Networks. In
UAI’98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 370-378. July 24-26, University of Wisconsin Business
School. Madison, WI, USA.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., et al.
(2004). OWL-S: Semantic Markup for Web Services. Retrieved June 29, 2005,
from http://www.daml.org/services/owl-s/1.1/overview/.

Miller, E., & Hendler, J. (2004). Web Ontology Language (OWL). Retrieved January
14, 2004, from http://www.w3.org/2004/OWL/.

Miller, E., & Hendler, J. (2005, February 04). Web Ontology Language (OWL).
Retrieved June 28, 2005, from http://www.w3.org/2004/OWL/.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1990). Five Papers on
WordNet. Technical Report No. 43, Cognitive Science Laboratory, Princenton
University. Princenton, NJ, USA.

Milner, R. (1978). A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17, 348-375.

Minsky, M. L. (1975). Framework for Representing Knowledge. In The Psychology of

Computer Vision. P. H. Winston (Eds.), pages 211-277. New York, NY:
McGraw-Hill.

Mitchell, J. C. (1984). Type Inference and Type Containment. Paper presented at the
International Symposium on Semantics of Data Types, June 27-29. Sophia-
Antipolis, France.

Murphy, K. (1998). Dynamic Bayesian Networks: Representation, Inference and
Learning. Doctoral Dissertation, University of California. Berkeley, CA, USA.

Neapolitan, R. E. (1990). Probabilistic Reasoning in Expert Systems: Theory and

Algorithms. New York, NY, USA: John Wiley and Sons, Inc.

187

Neapolitan, R. E. (2003). Learning Bayesian Networks. New York, NY, USA: Prentice
Hall.

Noy, N. F., Fergerson, R. W., & Musen, M. A. (2000). The Knowledge Model of
Protégé-2000: Combining Interoperability and Flexibility. Paper presented at the
Twelfth International Conference on Knowledge Engineering and Knowledge
Management (EKAW'2000). Juan-les-Pins, France.

Noy, N. F., & Rector, A. (2004). Defining N-ary Relations on the Semantic Web: Use
with Individuals. W3C Working Draft Retrieved May 06, 2005, from
http://www.w3.org/TR/2004/WD-swbp-n-aryRelations-20040721/.

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., & Musen, M. A.
(2001). Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent
Systems, 16(2), 60-71.

Oliver, R. M., & Smith, J. Q. (1990). Influence Diagrams, Belief Nets and Decision

Analisys. 1st edition. New York, NY, USA: John Willey & Sons Inc.

Page, L. B. (1988). Probability for Engineering with Applications to Reliability. New
York, NY, USA: Computer Science Press, Inc.

Patel-Schneider, P. F. (2005, April 11). A Proposal for a SWRL Extension Towards First-
Order Logic. W3C Member Submission. Retrieved May 29, 2005, from
http://www.w3.org/Submission/2005/SUBM-SWRL-FOL-20050411/.

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004, February 10). OWL Web
Ontology Language - Semantics and Abstract Syntax. W3C Recommendation.
Retrieved December 05, 2004, from http://www.w3.org/TR/owl-semantics/.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, CA, USA: Morgan Kaufmann Publishers.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge, U.K.:
Cambridge University Press.

188

Peirce, C. S. (1885). On the Algebra of Logic. American Journal of Mathematics, 7, 180-
202.

Pfeffer, A. (2001). IBAL: A Probabilistic Rational Programming Language International.
In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-2001), August 4-10, vol. 1, pp. 733-740. Seattle, WA, USA.

Pfeffer, A., Koller, D., Milch, B., & Takusagawa, K. T. (1999). SPOOK: A System for
Probabilistic Object-Oriented Knowledge Representation. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 541-550, July
30 – August 1. Stockholm, Sweden.

Polleres, A.; Bussler, C.; Travers, G.; Domingue, J. B.; & Burdett, D. (2005, April 4).
Web Service Modeling Ontology (WSMO) Submission. W3C Member
Submission. Retrieved June 29, 2005, from
http://www.w3.org/Submission/2005/06/.

Pool, M., & Aikin, J. (2004). KEEPER and Protégé: An Elicitation Environment for
Bayesian Inference Tools. Paper presented at the Workshop on Protégé and
Reasoning held at the Seventh International Protégé Conference, July 6 – 9.
Bethesda, MD, USA.

Pool, M. (2004). An OWL Based Implementation of Quiddity*Modeler. Technical
Report. Information Extraction and Transport, Inc., July 2004. Rosslyn, VA,
USA.

Popper, K. R. (1957). The Propensity Interpretation of the Calculus of Probability and the
Quantum Theory. In Stefan Körner, ed. Observation and Interpretation: A

Symposium of Philosophers and Physicists. Proceedings of the Ninth Symposium
of the Colston Research Society held in the University of Bristol, April 1st–April
4th, 1957. London: Butterworth Scientific Publications, 1957, 65–70.

Popper, K. R. (1959). The Propensity Interpretation of Probability. British Journal for the

Philosophy of Science 10 (1959), 25–42.

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program - Electronic Library
and Information Systems, 14(3), p.130-137.

189

Powers, S. (2003). Practical RDF. 1st edition. Sebastopol, CA, USA: O'Reilly &
Associates, Inc.

Press, S. J. (1989). Bayesian Statistics: Principles, Models, and Applications. New York,
NY, USA: John Wiley & Sons.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications
In Speech Recognition. Proceedings of the IEEE, 77(2), p. 257-285.

Ramsey, F. P. (1931). The Foundations of Mathematics and other Logical Essays.
London, UK: Kegan Paul, Trench, Trubner & Co.

Savage, L. J. (1972). The Foundations of Statistics. New York, NY, USA: Dover
Publications (originally published in 1954).

Schmidt-Schauß, M., & Smolka, G. (1991). Attributive Concept Descriptions with
Complements. Artificial Intelligence, 48(1), 1-26.

Schum, D. A. (1994). Evidential Foundations of Probabilistic Reasoning. New York,
NY, USA: Wiley.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM
Computing Surveys, 34(1), 1-47.

Shachter, R. D., & Peot, M. A. (1990). Simulation Approaches to General Probabilistic
Inference on Bayesian Networks. In M. Henrion, R. D. Shachter, L. N. Kanal & J.
F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 5. New York, NY:
Elsevier Science Publishing Company, Inc.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ, USA: Princeton
University Press.

Shafer, G. (1986). The Construction of Probability Arguments. Boston University Law
Review, 66(3-4), 799-816.

190

Shenoy, P. P., & Demirer, R. (2001). Sequential Valuation Networks for Asymmetric
Decision Problems. European Journal of Operations Research: School of
Business, University of Kansas. Lawrence, KS, USA.

Shortliffe, E. H., Rhame, F. S., Axline, S. G., Cohen, S. N., Buchanan, B. G., Davis, R.,
et al. (1975, August). MYCIN: A Computer Program Providing Antimicrobial
Therapy Recommendations. Clinical Medicine, 34.

Siolas, G., & d'Alché-Buc, F. (2000, July 24-27). Support Vector Machines Based on a
Semantic Kernel for Text Categorization. Paper presented at the International
Joint Conference on Neural Networks. Como, Italy.

Smith, B. (2004). Ontology: Philosophical and Computational. Retrieved January 15,
2005, from http://ontology.buffalo.edu/smith//articles/ontologies.htm.

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and

Computational Foundations. Pacific Grove, CA, USA: Brooks/Cole.

Spiegelhalter, D. J., Franklin, R., & Bull, K. (1989). Assessment, Criticism, and
Improvement of Imprecise Probabilities for a Medical Expert System. In
Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence,
pages 285-294. Mountain View, CA.

Spiegelhalter, D. J., Thomas, A., & Best, N. (1996). Computation on Graphical Models.
Bayesian Statistics, 5, 407-425.

Spyns, P., Meersman, R., & Jarrar, M. (2002). Data Modeling versus Ontology
Engineering. SIGMOD Record, 31(4), 12-17.

Stone, L. D., Barlow, C. A., & Corwin, T. L. (1999). Bayesian Multiple Target Tracking.
Boston, MA, USA: Artech House.

Takikawa, M., d’Ambrosio, B., & Wright, E. (2002). Real-Time Inference with Large-
Scale Temporal Bayes Nets. In Proceedings of the Eighteenth Conference on
Uncertainty in Artificial Intelligence (UAI-2002), pages 477-484, August 1-4.
University of Alberta. Edmonton, Alberta, Canada.

191

Toffler, A. (1980). The Third Wave, 1st edition. New York, NY, USA: Morrow.

Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, Methods, and
Applications. Knowledge Engineering Review, 11(2), 93-155.

von Mises, R. (1981). Probability, Statistics and Truth. 2nd edition. New York, NY, USA:
Dover Publications. Originally published in 1928.

Watson, S. R., & Buede, D. M. (1987). Decision Synthesis: The Principles and Practice

of Decision Analysis. Cambridge, UK: Cambridge University Press.

Weatherford, R. (1982). Philosophical Foundations of Probability Theory. London, UK:
Routledge & K. Paul.

192

Appendix A Source Code for The Starship Model

The source code listed below refers to the probabilistic model that was developed
for this research effort. It corresponds to four separate files, namely:

! Starship_main.spi – It’s the execution manager for the Starship model

! Starship_framedefs.spi – Defines the model’s frame structure

! Starship _functions.spi – Defines the functions used in the model

! Starship_exec.spi – Create instances and built an SSBN

The output of the models is a Netica file that will be saved in each model's
respective folder and will be named as Starship_v00_SSBN_00t_00f_00e_00c.dne,
where:

o v00 - the model version

o 00t - number of time steps

o 00f - number of friend starships

o 00e - number of enemy starships

o 00c - number of enemy starships with cloak mode

This source code was generated using the following configuration:

Hardware:

• Apple PowerMac Dual G5 – 2.0 GHz – 1.5 GB RAM

Software:

• Apple Mac OS X Panther (version 10.3.9)

• Java virtual machine (version 1.4.2_05)

• IET Quiddity*Suite (version 4.1.5– build Unix-041217T1653)

• JEdit (version 4.2)

• Norsys Netica (version 2.17) running on top of MS Virtual PC (version
7.0)

Starship_main.spi

STARSHIP MODEL

193

This file is part of the MEBN model inspired in the
television series Star Trek. The model was used in
the PhD research of Paulo Costa and in the paper
"MEBN without Multi-tears"

Authors:
Paulo Cesar G da Costa
Kathryn B Laskey

The model is composed of the following parts:
Starship_main.spi - It's the execution manager for the Starship model
Starship_framedefs.spi - Defines the model's frame structure
Starship_functions.spi - Defines the functions used in the model
Starship_ssbn.spi - Create instances and built an SSBN

<<<<<----- STARSHIP_MAIN.SPI ------>>>>>

version_main=v02; #defines which version of the model this file belongs to.
The actual definition is below.

This file controls the overall execution of the model

The following lines set the path for the model extensions and the
file Starship_Main.spi

frameSystem();

 #
 # In order to set the path, copy these two lines in Quiddity prompt and press enter:
 #
 version_main=v02;
 StarshipPath="/Users/pc/PC_PhD_Stuff/MEBNwoTears/Starship_"+version_main+"/";

To run this file you have to type the following at Quiddity's prompt:
load(StarshipPath+"Starship_main.spi");

Alternatively, you can execute this file inside
Quiddity*Debugger). To do so, delete the comment
tag on the path definition line above

<<<<----------- INITIAL SETUP ------------------->>>>

 $qv = javaClass("com.quiddity.visualizer.QuiddityVisualizer")(currentFrameSystem(),false);
 $qv->setGoHomeAfterChange(true);
 $qv->show();

load(StarshipPath+"Starship_frameDefs.spi");
load(StarshipPath+"Starship_functions.spi");

verify version consistency between the files

194

if version_main==version_frames then puts("\nStarship_frameDefs.spi file is version "+version_frames+",
consistency check passed!\n");
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE
Starship_frameDefs.spi!!!! \n\n\n\n");
end;
if version_main==version_functions then puts("Starship_functions.spi file is version "+version_functions+",
consistency check passed!\n\n");
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE
Starship_functions.spi!!!! \n\n\n\n");
end;
computesInLog=true; # Computes with logs to avoid underflow error

puts("Support files loaded successfully.\n\n");
puts("Establishing the model parameters...\n");

<<<<----------- /INITIAL SETUP ------------------->>>>

<<<<----------- VARIABLE SETUP -------------------->>>>

These are the variable that will define the main parameters
for executing the model. All variables defined in this file
begin with the preamble "main"

mainTimeSteps = 1; # number of time steps, which
is also the number of Magnetic Disturbance reports
mainZone = zN_DeepSpace; # define the nature of the zone
mainFShips=1; #number of friendly Starships
mainEShips=3; #number of enemy Starships
mainCloakMode=1; #number of starships in cloak mode.
In this model, starships in cloak mode are assumed to be
enemy starships, which includes starships operated by
neutral/friendly species with intention to harm OwnShip.
Therefore, the number of starships in cloak mode must
be smaller than mainEShips

the procedure below is just a check that we made the
correct definitions
if (mainEShips < mainCloakMode) then
puts("Error in the variable set: the number of\n");
puts("enemies in cloak mode was set to be bigger\n");
puts("than the number of enemies itself.\n");
puts("\nEdit the file Starship_main.spi and\n");
puts("\nchange either of the variables.\n");
exit();
else puts("variables successfully set.\nWe have defined ");
puts(mainTimeSteps, " time steps in a ", mainZone," area.\n");
puts("With ", mainEShips," enemies and ", mainFShips, " friend or neutral starships nearby.\n");
puts("From the enemy starships, ", mainCloakMode, " (is/are) in cloak mode.\n");
puts("...\n\n");
end;

<<<<----------- /VARIABLE SETUP ------------------->>>>

<<<<---------- MODEL EXECUTION ------------------->>>>

load(StarshipPath+"Starship_exec.spi");

195

if version_main==version_exec then puts("\nStarship_exec.spi file is version "+version_exec+", consistency
check passed!\n");
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE
Starship_exec.spi!!!! \n\n\n\n");
end;

$qv->updateDisplay();
 # Save as Netica model

saveNetica(StarshipPath+"Starship_"+version_main+"_SSBN_"+ mainTimeSteps+ "t_" +mainFShips + "f_"+
mainEShips + "e_"+ mainCloakMode+ "c.dne");

#<<<<----------- /MODEL EXECUTION -------------->>>>

<<<<<----- /STARSHIP_MAIN.SPI ------>>>>>

Starship_framedefs.spi

STARSHIP MODEL

This file is part of the MEBN model inspired in the
Paramount series Star Trek. The model was used in
the PhD research of Paulo Costa and in the paper
"MEBN without Multi-tears"

Authors:
Paulo Cesar G da Costa
Kathryn B Laskey

The model is composed of the following parts:
Starship_main.spi - It's the execution manager for the Starship model
Starship_framedefs.spi - Defines the model's frame structure
Starship_functions.spi - Defines the functions used in the model
Starship_ssbn.spi - Create instances and built an SSBN

<<<<<<----- STARSHIP_FRAMEDEFS.SPI ------>>>>>

version_frames = v02; #defines which version of the model this file belongs to.

This file defines the frame structure that is used to build the SSBN

<<<<--------- FRAME DEFINITIONS ------------->>>>

puts("\nBuilding the Frame System......\n");

<<<------------- Frame Zone ------------------->>>

<MEBNUID> </MEBNUID>
<NodeType> TITLE </NodeType>
<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> Zone </NodeHomeMFrag>
<NodeDistType> </NodeDistType>
<NodeDescription>
The instances of the Zone MFrag (i.e. the copies of it that
were made during the SSBN construction) are the possible

196

space zones in which Enterprise (i.e. OwnStarship) can be
navigating at a given time.
</NodeDescription>
<NodeDist> </NodeDist>
<QuiddityName> Zone </QuiddityName>
<QuiddityObj>frame</QuiddityObj>

frame Zone isa Frame

<------------------ Slot starship --------------------->

This is a version 2 Tweak to allow multiple cloakMode
parents for zoneMD.

slot starship
 facet domain = Starship
 facet distribution = UniformDiscreteDistribution

slot anyStInCloakMode
 facet domain = [false, true]
 facet parents = [starship.cloakMode]
 facet distribution = MaxDistribution

<------------------ /Slot starship --------------------->

<---------------- Slot zoneNature ------------------->

<MEBNUID> !ZN </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> Zone </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
A zone can be either a deep space, a planetary
system, or the boundary of a Black Hole.
We assumed that a OwnStarship, when in operation (i.e.
using its decision system), has 80% chance of being
traveling in a Deep Space Zone, 15% in a Planetary
System and 5% in the Boundaries of a Black Hole.
In our model, Black Hole Boundaries are prefered places
for ambushes from attacking starships with cloaking
devices, since the high magnetic turbulance generated
in those zones makes it very hard to even the most
advanced sensors to distinguish it from the magnetic
disturbance created by a cloaking device.
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComments> </NodeDistComments>
<QuiddityName>zoneNature </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

slot zoneNature
 facet domain = [zN_BlackHoleBoundary, zN_DeepSpace, zN_PlanetarySystem]
 facet distribution = [.05, .80, .15]

<---------------- /Slot zoneNature ------------------->

197

<---------------- Slot zoneEShips ------------------->

<MEBNUID> !ZES </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> Zone </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This RV establishes the relationship between a given
zone and the likelihood of having enemy starships
within OwnStarship's sensor range.
In other words, it is the probable number of enemy
ships into sensor range we assume to find in a given
zone. This means we consider that exists a prior
probability of finding an enemy starship given
the nature of the zone in which OwnStarship is
Navigating through.
In this model, we restrained the infinitely possible
number of starships to only five states. That is, we
assume that it is unlikely to find four or more
hostile ships in that area, so most of the probability
distribution mass for this RV will be restricted to the
states None, One, Two, and Three, while the
remaining probability will be restricted to the
aggregating state MoreThan3.
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComments>
We assume that enemies are likely to be found in
places that would facilitate an ambush. As an
example, in a Black Hole Boundary, in which the
Magnetic Sensor becomes less than helpfull to detect
Cloak Mode related magnetic disturbances, the
chances of finding at least one enemy will be 10%,
which is five times the chance of finding friendly
staships in the same area.
</NodeDistComments>
<QuiddityName>zoneEShips </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

slot zoneEShips
 facet domain = [zES_0, zES_1, zES_2, zES_3, zES_MoreThan3]
 facet parents = [zoneNature]
 facet distribution = function zn {
 zN_BlackHoleBoundary: [.95, .03, .01, .007, .003];
 zN_DeepSpace: [.98, .01, .007, .002, .001];
 zN_PlanetarySystem: [.60, .15, .12, .08, .05];
 }

<---------------- /Slot zoneEShips ------------------->

<---------------- Slot zoneFShips ------------------->

<MEBNUID> !ZFS </MEBNUID>
<NodeType> Resident </NodeType>

198

<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> Zone </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This RV establishes the relationship between a given
zone and the likelihood of having friendly starships within
OwnStarship's sensor range.
Following the very same rationale of slot zoneEShips
(node ZoneEShips), we assume that there is a prior
probability in the number of friendly or neutral
starships to appea into OwnStarship's sensor range
given the nature of the zone it is navigating into.
</NodeDescription>
<NodeDist> see table </NodeDis>
<NodeDistComments>
We assume that unlike enemies, friendly starships
do not care about being in places suitable for an
ambush. Therefore, its probability distribution will
reflect this fact. As an example, in a Black Hole
Boundary, the chances of finding at least one
friendly starship are five times smaller than to find
an ambushing enemy vessel.
</NodeDistComments>
<QuiddityName>zoneFShips </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

slot zoneFShips
 facet domain = [zFS_0, zFS_1, zFS_2, zFS_3, zFS_MoreThan3]
 facet parents = [zoneNature]
 facet distribution = function zn {
 zN_BlackHoleBoundary: [.99, .005, .0035, .001, .0005];
 zN_DeepSpace: [.98, .01, .007, .002, .001];
 zN_PlanetarySystem: [.50, .20, .15, .10, .05];
 }

<---------------- /Slot zoneFShips ------------------->

<------------------ Slot zoneMD -------------------->

<MEBNUID> !ZMD </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> Zone </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
ZoneMD(z, t) assesses the value of the magnetic
disturbance in Zone "z" at the current TimeStep "t".
This value is influenced by the MD in the previous
TimeStep (tprev), the fact of whether there is or
there is not a starship in cloak mode nearby, and the

nature of the space zone in which the starship is
located.
The input node t=!T0 is used to "anchor" the time
recursion.
</NodeDescription>

199

<NodeDist> see table </NodeDist>
<NodeDistComment>
In a recursive MFrag it is necessary to have a way to
ground out the recursion. This is similar to a recursive
algorithm such as computing x!. The definition of x! is:
0! = 1
x! = x(x-1)! for x > 0
Similarly, in a recursive node it is necessary to define
the initial distribution for the dynamic BN node and then
define the next distribution as a function of the previous
distribution. Here is one way to do it:
1. Prev(0) = 0 and Prev(t) = t-1 for t>0
2. This creates a problem in this MFrag because now
DistFromOwn(st,0) has itself as a parent! But really
this isn't a problem because t=0 is also a parent
and we define the distribution so that it depends
 # on the previous value only when t>0.
In this case, we assigned to T0 the very same distribution
we used in the other TimeSteps.
Regarding the distribution itself, our intention was to make
background disturbance a somewhat steady phenomena,
thus the probabilities do not change with time. However,
if cloack mode is true for any starship nearby Enterprise
then the next step will be more likely to change the
intensity of the disturbance, mimicking an unstable
phenomena.
</NodeDistComment>
<QuiddityName>zoneMD </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

slot zoneMD
 facet domain = [zMD_Low, zMD_Medium, zMD_High]
 facet parents = [zoneNature, anyStInCloakMode, zoneMD.PREV]
 facet initialState = [.70, .20, .10]
 facet distribution = function zn, ascm, znp {
 switch zn {
 zN_BlackHoleBoundary:
 switch ascm{
 true:
 switch znp{
 zMD_Low: [.02, .05, .93];
 zMD_Medium: [.08, .04, .88];
 zMD_High: [.12, .18, .70];
 };
 false: [.07, .11, .82];
 };
 zN_DeepSpace:
 switch ascm{
 true:
 switch znp{
 zMD_Low: [.70, .18, .12];
 zMD_Medium: [.80, .05, .15];
 zMD_High: [.83, .15, .02];
 };
 false: [.85, .10, .05];
 };

200

 zN_PlanetarySystem:
 switch ascm{
 true:
 switch znp{
 zMD_Low: [.15, .37, .48];
 zMD_Medium: [.30, .20, .50];
 zMD_High: [.26, .39, .35];
 };
 false: [.25, .30, .45];
 };

 }
 }

<------------------ /Slot zoneMD -------------------->

end;
puts("Frame Zone defined...\n");

<<<---------------- /Frame Zone ----------------->>>

<<<------------- Frame Starship ----------------->>>

frame Starship: according to the Treknology Encyclopedia L-Z
(http://www.ex-astris-scientia.org/treknology2.htm#s)
Starship is the designation for a large type of space vessel
with warp drive. A starship typically consists of more than one
deck and has separate departments such as the bridge, engineering
or sickbay.
In our model, we use this word to designate any space vessel

frame Starship isa Frame

<------------------- Slot starshipZone ----------------------->

<MEBNUID> !Scontext_IsAZone_st </MEBNUID>
<NodeType> Context </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> IsA </NodeHomeMFrag>
<NodeDistType> NIL </NodeDistType>
<NodeDescription>
In MEBN models, this context node its satisfied when
the variable "z" is replaced with a unique identifier
of an entity that has Type equal to "Zone".
In a Quiddity model, this node is translated to a
slot named "starshipZone" which has the Frame "Zone"
as its domain and works as a "pointer" to slots from
Frame "Zone" that are parents from slots in the
current frame ("Starship").
</NodeDescription>
<NodeDist> NIL </NodeDist>
<QuiddityName> starshipZone </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

 slot starshipZone

201

 facet domain = Zone

<------------------- /Slot zone ----------------------->

<------------------- Slot exists ----------------------->

<MEBNUID> !E </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship Existence </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
It is the probatility of existence for Starships
it is a useful way of conveying hypothetical instances
of a Starship
Since there is a prior probability of finding enemy or
friendly starships depending on where OwnShip is
navigating, these parameters will also influence
the prior probability of existence. Thus zone.eShips
and zone.fShips are parents to slot exists
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>
</NodeDistComment>
<QuiddityName> exists </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

 slot exists
 facet domain = ExistsDomain
 facet parents = [starshipZone.zoneFShips, starshipZone.zoneEShips]
 facet distribution = function fs, es {
 switch fs {
 zFS_0: switch es{
 zES_0: [1, 0];
 zES_1: [.5, .5];
 zES_2: [.33, .67];
 zES_3: [.25, .75];
 zES_MoreThan3: [.20, .80];
 };
 zFS_1: switch es{
 zES_0: [.5, .5];
 zES_1: [.33, .67];
 zES_2: [.25, .75];
 zES_3: [.20, .80];
 zES_MoreThan3: [.17, .83];
 };
 zFS_2: switch es{
 zES_0: [.33, .67];
 zES_1: [.25, .75];
 zES_2: [.20, .80];
 zES_3: [.17, .83];
 zES_MoreThan3: [.20, .80];
 };
 zFS_3: switch es{
 zES_0: [.25, .75];

202

 zES_1: [.20, .80];
 zES_2: [.17, .83];
 zES_3: [.14, .86];
 zES_MoreThan3: [.13, .87];
 };
 zFS_MoreThan3: switch es{
 zES_0: [.20, .80];
 zES_1: [.17, .83];
 zES_2: [.14, .86];
 zES_3: [.13, .87];
 zES_MoreThan3: [.11, .89];
 };
 }
 }

<------------------- Slot exists ----------------------->

<----------------- Slot OpSpec ----------------------->

<MEBNUID> !E </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This node conveys the information on what species is
operating a given starship. Its distribution is derived
from the number of Friendly and Enemy Starships
in the vicinity.
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>

</NodeDistComment>
<QuiddityName> exists </QuiddityName>
<QuiddityObj>slot</QuiddityObj>
slot shipType: conveys the nature of a starship. In other
words, whether we are dealing with an enemy or a friendly
starship (which also includes neutral starships)

 slot opSpec
 facet domain = [oS_Cardassian, oS_Friend, oS_Klingon, oS_Romulan, oS_Unknown, absurd]
 facet parents = [exists, starshipZone.zoneFShips, starshipZone.zoneEShips]
 facet distribution = function ex, fs, es {
 if (ex==Context.OUT) then [0, 0, 0, 0, 0, 1]
 else switch fs {
 zFS_0: switch es{
 zES_0: [0, 0, 0, 0, 0, 1];
 zES_1: [.50, 0, .15, .30, .05, 0];
 zES_2: [.45, 0, .15, .30, .10, 0];
 zES_3: [.40, 0, .20, .28, .12, 0];
 zES_MoreThan3: [.35, 0, .23, .27, .15, 0];
 };
 zFS_1: switch es{
 zES_0: [0, .50, .30, .15, .05, 0];
 zES_1: [.30, .30, .20, .10, .10, 0];

203

 zES_2: [.25, .20, .28, .15, .12, 0];
 zES_3: [.25, .18 , .16, .26, .15, 0];
 zES_MoreThan3: [.23, .18 , .18, .26, .15, 0];
 };
 zFS_2: switch es{
 zES_0: [0, .50, .30, .10, .10, 0];
 zES_1: [.20, .25, .15, .28, .12, 0];
 zES_2: [.27, .27, .18, .13, .15, 0];
 zES_3: [.27, .25, .19, .14, .15, 0];
 zES_MoreThan3: [.26, .24, .20 , .15, .15, 0];
 };
 zFS_3: switch es{
 zES_0: [0, .55, .20, .10, .15, 0];
 zES_1: [.18, .25, .16, .26, .15, 0];
 zES_2: [.25, .27, .14, .19, .15, 0];
 zES_3: [.25, .25, .20, .15, .15, 0];
 zES_MoreThan3: [.25, .23, .20, .17, .15, 0];
 };
 zFS_MoreThan3: switch es{
 zES_0: [0, .55, .20, .10, .15, 0];
 zES_1: [.18, .23, .26, .18, .15, 0];
 zES_2: [.24, .26, .15, .20, .15, 0];
 zES_3: [.23, .25, .17, .20, .15, 0];
 zES_MoreThan3: [.23, .25, .22, .15, .15, 0];
 };
 }
 end;
 }

<----------------- Slot /OpSpec ----------------------->

<---------------- Slot starshipClass ------------------>

<MEBNUID> !SC </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This RV assesses what is the class of the
starship represented by "st". It is influenced by the
kind of species that is operating the starship and the
very own existence of the starship itself (as defined
in the context node "exists").
There is a vast literature of classes and subclasses of
starships for each species (e.g. see
http://techspecs.acalltoduty.com).
However, for this simple model we used a general
taxonomy that aggregates the starships in five different
classes (WarBird, Cruiser, Explorer, Frigate and
Freighter).
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>
</NodeDistComment>
<QuiddityName> starshipClass </QuiddityName>

204

<QuiddityObj>slot</QuiddityObj>

 slot starshipClass
 facet domain = [sC_WarBird, sC_Cruiser, sC_Explorer, sC_Frigate, sC_Freighter, absurd]
 facet parents = [exists, opSpec]
 facet distribution = function e, os {
 if (e==Context.OUT) then [0, 0, 0, 0, 0, 1]
 else switch os {
 oS_Cardassian: [.40, .10, 0, .40, .10, 0];
 oS_Friend: [.10, .30, .25, .20, .15, 0];
 oS_Klingon: [.25, .50, .15, 0, .10, 0];
 oS_Romulan: [.60, 0, .30, 0, .10, 0];
 oS_Unknown: [.10, .10, .35, .10, .35, 0];
 absurd: [0, 0, 0, 0, 0, 1];
 }
 end;
 }

<---------------- Slot /starshipClass ------------------>

<---------------- Slot cloakMode ------------------>

<MEBNUID> !CM </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This is a boolean variable that defines whether
the starship in question is in cloak mode.
In our model, we assume that only Romulan and
Klingon starships can be in cloak mode, since the
Federation still does not have such technology
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>
Only Romulans and Klingons have the technology.
However, Klingons would use it only when having
aggressive intentions against OwnShip (i.e. breaking
the peace treaty), so we expect them to use it less
than the Romulans.
Unknown species might have acquired the technology,
but that is not very likely.
</NodeDistComment>
<QuiddityName> cloakMode </QuiddityName>
<QuiddityObj>slot</QuiddityObj>#

slot cloakMode
 facet domain = [false, true]
 facet parents = [opSpec, starshipClass]
 facet distribution = function os, sc {
 if os==absurd then [1, 0]
 else {
 switch os {
 oS_Cardassian: switch sc {
 sC_WarBird: [1, 0];

205

 sC_Cruiser: [1, 0];
 sC_Explorer: [1, 0];
 sC_Frigate: [1, 0];;
 sC_Freighter:[1, 0];
 absurd: [1, 0];
 };
 oS_Friend: switch sc {
 sC_WarBird: [1, 0];
 sC_Cruiser: [1, 0];
 sC_Explorer: [1, 0];
 sC_Frigate: [1, 0];
 sC_Freighter:[1, 0];
 absurd: [1, 0];
 };
 oS_Klingon: switch sc {
 sC_WarBird: [.65, .35];
 sC_Cruiser: [.65, .35];
 sC_Explorer: [.95, .05];
 sC_Frigate: [.85, .15];
 sC_Freighter: [.99, .01];
 absurd: [1, 0];
 };
 oS_Romulan: switch sc {
 sC_WarBird: [.10, .90];
 sC_Cruiser: [.20, .80];
 sC_Explorer: [.40, .60];
 sC_Frigate: [.30, .70];
 sC_Freighter:[.80, .20];
 absurd: [1, 0];
 };
 oS_Unknown: switch sc {
 sC_WarBird: [.99, .01];
 sC_Cruiser: [.99, .01];
 sC_Explorer: [.995, .005];
 sC_Frigate: [.995, .005];
 sC_Freighter: [.9995, .0005];
 absurd: [1, 0];
 };
 };
 }
 end;
 }

<---------------- /Slot cloakMode ------------------>

<--------------- Slot distFromOwn ------------------>

<MEBNUID> !DFO </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This RV assesses the distance from a starship "st" to
OwnStarship at TimeStep "t". This distance is measured
according to weapon's ranges, since its main purpose is

206

to assess the ability to any given starship to harm OwnShip.
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>
</NodeDistComment>
<QuiddityName> distFromOwn </QuiddityName>
<QuiddityObj>slot</QuiddityObj>#

 slot distFromOwn
 facet domain = [dFO_OutOfRange, dFO_TorpedoRange, dFO_Phaser2Range,
dFO_Phaser1Range, dFO_PulseCanonRange, absurd]
 facet parents = [exists, distFromOwn.PREV]
 facet distribution = function e, dfo {
 if e==Context.OUT then [0, 0, 0, 0, 0, 1]
 else switch dfo{
 dFO_OutOfRange: [.60, .30, .05, .04, .01, 0];
 dFO_TorpedoRange: [.25, .40, .25, .07, .03, 0];
 dFO_Phaser2Range: [.06, .25, .40, .25, .04, 0];
 dFO_Phaser1Range: [.03, .07, .25, .40, .25, 0];
 dFO_PulseCanonRange: [.01, .04, .10, .35, .50, 0];
 absurd: [0, 0, 0, 0, 0, 1];
 }
 end;
 }
 facet initialState = [.1936, .2245, .2233, .2156, .1430, 0]

<---------------- /Slot distFromOwn ------------------>

<---------------- Slot harmPotential ------------------>

<MEBNUID> !HP </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> Starship </NodeHomeMFrag>
<NodeDistType> Netica Table </NodeDistType>
<NodeDescription>
This RV assessesthe potential of starship "st" to harm
OwnShip at current TimeStep "t". It is based on the
starship weapons' range (based on its class) and its
distance from OwnShip.
It is important to note that here we are not assessing
intention to harm, but only *ability* to do so. Therefore,
even friendly starships can have HarmPotential with
value true (e.g. provide that they are within their
respective weapons range).
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment>
</NodeDistComment>
<QuiddityName> harmPotential </QuiddityName>
<QuiddityObj>slot</QuiddityObj>#

 slot harmPotential
 facet domain = [false, true]

207

 facet parents = [distFromOwn, starshipClass]
 facet distribution = function dfo, sc {
 switch dfo{
 dFO_OutOfRange: switch sc {
 sC_WarBird: [1, 0];
 sC_Cruiser: [1, 0];
 sC_Explorer: [1, 0];
 sC_Frigate: [1, 0];
 sC_Freighter: [1, 0];
 absurd: [1, 0];
 };
 dFO_TorpedoRange: switch sc {
 sC_WarBird: [0, 1];
 sC_Cruiser: [.20, .80];
 sC_Explorer: [.70, .30];
 sC_Frigate: [.90, .10];
 sC_Freighter: [.99, .01];
 absurd: [1, 0];
 };
 dFO_Phaser2Range: switch sc {
 sC_WarBird: [0, 1];
 sC_Cruiser: [0, 1];
 sC_Explorer: [.40, .60];
 sC_Frigate: [.60, .40];
 sC_Freighter: [.95, .05];
 absurd: [1, 0];
 };
 dFO_Phaser1Range: switch sc {
 sC_WarBird: [0, 1];
 sC_Cruiser: [0, 1];
 sC_Explorer: [.05, .95];
 sC_Frigate: [0, 1];
 sC_Freighter: [.90, .10];
 absurd: [1, 0];
 };
 dFO_PulseCanonRange: switch sc {
 sC_WarBird: [0, 1];
 sC_Cruiser: [0, 1];
 sC_Explorer: [0, 1];
 sC_Frigate: [0, 1];
 sC_Freighter: [.80, .20];
 absurd: [1, 0];
 };
 absurd: [1, 0];
 };
 }

<---------------- /Slot harmPotential ------------------>

<---------------- Slot dangerToOwnStarship ------------------>

Paliative solution to handle the problem of many instances of one parent
to a unique slot.
In this case, each instance of slots harmPotential and opSpec

208

are parents of dangerToSelf. Thus, we created a unique slot for
each starship calles dangerToOwnShip, which assesses the potential
danger brought by that specific starship. Then, all the dangerToOwnStarship
slots are aggregated to the dangerToSelf slot in the OwnStarship Frame
using Quiddity's MaxDistribution.

 slot dangerToOwnStarship
 facet domain= [dTS_Low , dTS_Medium, dTS_High, dTS_Unacceptable]
 facet parents= [harmPotential, opSpec]
 facet distribution = function hp, os {
 if hp==false then [1, 0, 0, 0]
 else switch os {
 oS_Cardassian: [0, .02, .08, .90];
 oS_Friend: [.99, .01, 0, 0];
 oS_Klingon: [.65, .20, .10, .05];
 oS_Romulan: [.03, .09, .18, .70];
 oS_Unknown: [.20, .30, .30, .20];
 absurd: [1, 0, 0, 0];
 }
 end;
 }

<---------------- /Slot dangerToOwnStarship ------------------>

end;

puts("Frame Starship defined...\n");

<<<------------- /Frame Starship ----------------->>>

<<<------------- Frame OwnStarhip ----------------->>>

frame OwnStarship:
This Frame has the sole objective to model the features
we just one to have in the Enterprise (OwnShip)
In MEBN, such modeling would be accomplished by the
use of a node OwnStarship, which could be employed to
define context of MFrags in which we want to explicitly
constraint OwnStarship, but Quiddity doesn't have a
flexible way of imposing these constraints so the best
approach is to model OwnStarship as a separate frame.

frame OwnStarship isa Frame

<------------------ Slot starship --------------------->

<MEBNUID> !OSTcontext_IsAStarship_st </MEBNUID>
<NodeType> Context </NodeType>
<NodeMFrag> Zone </NodeMFrag>
<NodeHomeMFrag> IsA </NodeHomeMFrag>
<NodeDistType> NIL </NodeDistType>
<NodeDescription>
In MEBN models, this context node its satisfied when
the variable "st" is replaced with a unique identifier
of an entity that has Type equal to "Starship".
In a Quiddity model, this node is translated to a

209

slot named "starship" which has the Frame "Starship"
as its domain and works as a "pointer" to slots from
Frame "Starship" which are parents from slots in the
current frame ("OwnStarship").
</NodeDescription>
<NodeDist> NIL </NodeDist>
<QuiddityName>starship </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

slot starship
 facet domain = Starship
 facet distribution = UniformDiscreteDistribution

<------------------ /Slot starship --------------------->

<------------------- Slot zone ----------------------->

<MEBNUID> !Scontext_IsAZone_st </MEBNUID>
<NodeType> Context </NodeType>
<NodeMFrag> Starship </NodeMFrag>
<NodeHomeMFrag> IsA </NodeHomeMFrag>
<NodeDistType> NIL </NodeDistType>
<NodeDescription>
In MEBN models, this context node its satisfied when
the variable "z" is replaced with a unique identifier
of an entity that has Type equal to "Zone".
In a Quiddity model, this node is translated to a
slot named "ownStarshipZone" which has the Frame "Zone"
as its domain and works as a "pointer" to slots from
Frame "Zone" that are parents from slots in the
current frame ("OwnStarship").
</NodeDescription>
<NodeDist> NIL </NodeDist>
<QuiddityName> ownStarshipZone </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

 slot ownStarshipZone
 facet domain = Zone

<------------------- /Slot zone ----------------------->

<---------------- Slot dangerToSelf ------------------>

<MEBNUID> !DTS </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> DangerToSelf </NodeMFrag>
<NodeHomeMFrag> DangerToSelf </NodeHomeMFrag>
<NodeDistType> Pseudo-Code </NodeDistType>
<NodeDescription>
This node assesses the level of danger to which
OwnStarship "s" is exposed at a given time "t".
Basically, this danger level will be a funcion of the ability of
a starship "st" to harm OwnStarship and of the intention
of whoever is operating starship "st" to harm OwnStarship,
the latter being implied from the knowledge of what species
is operating starship "st".

210

</NodeDescription>
<NodeDist>
This distribution cannot be represented by a single table,
so we convey it via this pseudo-code:
1. distribution [Un, Hi , Me, Lo] = function {
2. for all st in parents(DangerToSelf(s, t)) {
3. if any STi have (OpSpec == Cardassian and HarmPot == true) then
4. [Un = .90 + min(.10; .025*number(STi)), Hi = (1 - Un) * .8,
5. Me = (1 - Un) * .2, Lo = 0];
6. else if any STj have (OpSpec == Romulan and HarmPot == true) then
7. [Un = .70 + min(.30; .03*number(STj)), Hi = (1 - Un) * .6,
8. Me = (1 - Hi) * .3, Lo = (1 - Hi) * .1];
9. else if any STj have (OpSpec == Unknown and HarmPot == true) then
10. [Un = (1 - Hi), Hi = .50 - min(.20; .02*number(STk)),
11. Me = .50 - min(.20; .02*number(STk)), Lo = (1 - Me)];
12. else if any STk have (OpSpec == Klingon and HarmPot == true) then
13. [Un = 0.10, Hi = 0.15, Me = .15, Lo = .65];
14. else if any STl have (OpSpec == Friend and HarmPot == true) then
15. [Un = 0, Hi = 0, Me = .01, Lo = .99];
16. else [Un = 0, Hi = 0, Me = 0, Lo = 1];
17. }
18. }
#</NodeDist>
<NodeDistComment>
Note that there can be many starships "st" at a given
time t. Thus, the probability distribution has to take into
consideration the hypothesis of having many starships
with the potential to harm OwnStarship.
</NodeDistComment>
<QuiddityName> dangerToSelf </QuiddityName>
<QuiddityObj>slot</QuiddityObj>#

NOTE: for this spefic version of the MTheory in the MTears paper
we added an intermediary dangerToOwnStarship in each starship instance
which we now aggregate to this node by the use of MaxDistribution
In other words, the distribution stated above is not actually represented
here.

 slot dangerToSelf
 facet domain= [dTS_Low , dTS_Medium, dTS_High, dTS_Unacceptable]
 facet parents= [starship.dangerToOwnStarship]
 facet distribution = MaxDistribution

<---------------- /Slot dangertoSelf ------------------>

<---------------- Slot dangerToOthers ------------------>

<MEBNUID> !DTO </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> DangerToOthers </NodeMFrag>
<NodeHomeMFrag> DangerToOthers </NodeHomeMFrag>
<NodeDistType> Netica table </NodeDistType>
<NodeDescription>
This node conveys the ability of OwnShip "s" to inflict
danger to another starship "st" at TimeStep "t". It is
based on OwnShip's Weapons (implicitly considered

211

in the probability distribution) and its distance from
starship "st".
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComment> </NodeDistComment>
<QuiddityName> dangerToOthers</QuiddityName>
<QuiddityObj>slot</QuiddityObj>#

 slot dangerToOthers
 facet domain = [false, true]
 facet parents = [starship.distFromOwn]
 facet distribution = function dfo {
 dFO_OutOfRange: [1, 0];
 dFO_TorpedoRange: [0, 1];
 dFO_Phaser2Range: [.02, .98];
 dFO_Phaser1Range: [.10, .90];
 dFO_PulseCanonRange: [.20, .80];
 absurd: [1, 0];
 }

<---------------- /Slot dangerToOthers ------------------>

end;

puts("Frame OwnStarship defined...\n");

<<<---------- /Frame OwnStarship ------------->>>

<<<---------- Frame SensorReport ------------->>>

For this simple model, instead of
creating a frame report with subtypes sensor and
magnetic disturbance, we opted for the simplest
approach of creating two separate classes.

frame SensorReport isa Frame

<-------------------- Slot subject ---------------------->

<MEBNUID> !S </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> SR Data </NodeMFrag>
<NodeHomeMFrag> SR Data </NodeHomeMFrag>
<NodeDistType> Netica table </NodeDistType>
<NodeDescription>
This RV has as its possible values all the unique
identifiers of the entities that can be the subject of
the sensor report being represented by the variable "sr".
In this model, Sensor reports can refer to Starships
(real or hypothetical), in which case the RV will assume
the unique identier of that starship as its value, or it can
refer to nothing (i.e. a spurious report), in which case it
will assume the unique identifier of a spurious report as
its value (e.g. O_Spurious)
</NodeDescription>

212

<NodeDist> see table </NodeDist>
<NodeDistComments>
We assigned 4% chances of a spurious report, but this is a
number that would reflect the receiver characteristics.
We assumed that a report caused by OwnStarship (here
assumed as !ST0) falls into the spurious category so we
assigned 0% probability of !ST0 being the subject of a
report.
Finally, we assigned the remaining probabilty (96%) as
equally distributed among the Starships.
</NodeDistComments>
<QuiddityName>subject </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

OBS: the Quiddity translation does not include the
probabilistic assigment to node subject. Instead, it
is used as a "pointer" to Frame Starship to the slots
of Frame SensorReport

 slot subject
 facet domain = Starship

<------------------ /Slot subject ----------------------->

<------------------ Slot sRClass --------------------->

<MEBNUID> !SRC </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> SensorReport </NodeMFrag>
<NodeHomeMFrag> SensorReport </NodeHomeMFrag>
<NodeDistType> Netica table </NodeDistType>
<NodeDescription>
This RV conveys the result of a sensor report "sr"
regarding to the class of a given starship at current
TimeStep "t".
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComments>
Some remarks regarding the input values:
Exists(st) - If the starship represented by "st" doesn't
exists, then the report will be spurious and will have
equally likely chances of returning any information on class.
StarshipClass(st) - The ability of a sensor report to match
the actual class of a starship is a direct consequence of
the sensor accuracy. For this simple model, we are
assuming a uniformelly distributed accuracy of 95%,
with the probability of error unevenly dispersed according
to the similarity of the Starship Classes (e.g. it is easier to
confuse a Warbird with a Cruiser than with a Freighter).
CloakMode(st) - If a Starship in Cloak mode generates
a report for some reason, then its result will be a spurious
report with equally likely results.
</NodeDistComments>
<QuiddityName>sRClass </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

213

 slot sRClass
 facet domain = [sRC_WarBird, sRC_Cruiser, sRC_Explorer, sRC_Frigate, sRC_Freighter,
sRC_Nothing]
 facet parents = [subject.exists, subject.cloakMode, subject.starshipClass]
 facet distribution = function se, scm, ssc {
 if se==Context.OUT then [0, 0, 0, 0, 0, 1]
 elif scm==true then [0.0001, .0001, .0001, .0001, .0001, .9995]
 else switch ssc {
 sC_WarBird: [.95, .025, .015, .007, .003, 0];
 sC_Cruiser: [.02, .95, .015, .01, .005, 0];
 sC_Explorer: [.01, .015, .95, .015, .01, 0];
 sC_Frigate: [.008, .012, .02, .95, .01, 0];
 sC_Freighter: [.01, .01, .02, .01, .95, 0];
 absurd: [0, 0, 0, 0, 0, 1];
 }
 end;
 }

<------------------ /Slot sRClass --------------------->

<------------------ /Slot sRDistance --------------------->

<MEBNUID> !SRD </MEBNUID>
<NodeType> Resident </NodeType>
<NodeMFrag> SensorReport </NodeMFrag>
<NodeHomeMFrag> SensorReport </NodeHomeMFrag>
<NodeDistType> Netica table </NodeDistType>
<NodeDescription>
This RV conveys the result of a sensor report "sr"
regarding to the distance of a given starship to
OwnStarship at current TimeStep "t".
</NodeDescription>
<NodeDist> see table </NodeDist>
<NodeDistComments>
Some remarks regarding the input values:
Exists(st) - If the starship represented by "st" doesn't
exists, then the report will be spurious and will have
equally likely chances of returning any information on class.
DistFromOwn(st, t) - The ability of a sensor report to match
the actual distance of a starship at any timestep "t"is a
direct consequence of the sensor's accuracy. For this
simple model, we are assuming an accuracy of 99%, with
the probability of error distributed proportionally to the
adjacent values.
CloakMode(st) - If a Starship in Cloak mode generates
a report for some reason, then its result will be a spurious
report with equally likely results.
</NodeDistComments>
<QuiddityName>sRDistance </QuiddityName>
<QuiddityObj>slot</QuiddityObj>

 slot sRDistance
 facet domain = [sRD_OutOfRange, sRD_TorpedoRange, sRD_Phaser2Range,
sRD_Phaser1Range, sRD_PulseCanonRange, sRD_Nothing]
 facet parents = [subject.exists, subject.cloakMode, subject.distFromOwn]

214

 facet distribution = function se, scm, sdfo {
 if se==Context.OUT then [0, 0, 0, 0, 0, 1]
 elif scm==true then [0.0001, .0001, .0001, .0001, .0001, .9995];
 else switch sdfo {
 dFO_OutOfRange: [.99, .004, .003, .002, .001, 0];
 dFO_TorpedoRange: [.0035, .99, .0035, .002, .001, 0];
 dFO_Phaser2Range: [.0015, .0035, .99, .0035, .0015, 0];
 dFO_Phaser1Range: [.001, .002, .0035, .99, .0035, 0];
 dFO_PulseCanonRange: [.001, .002, .003, .004, .99, 0];
 absurd: [0, 0, 0, 0, 0, 1];
 }
 end;
 }

<------------------ /Slot sRDistance --------------------->

end;

puts("Frame SensorReport defined...\n");

<<<---------- /Frame SensorReport ------------->>>

puts("Frame System for Starship Basic Model is ready!!!\n\n");

<<<<---------- /FRAME DEFINITIONS ------------->>>>

<<<<<<----- /STARSHIP_FRAMEDEFS.SPI ------>>>>>

Starship_functions.spi

STARSHIP MODEL

This file is part of the MEBN model inspired in the
Paramount series Star Trek. The model was used in
the PhD research of Paulo Costa and in the paper
"MEBN without Multi-tears"

Authors:
Paulo Cesar G da Costa
Kathryn B Laskey

The model is composed of the following parts:
Starship_main.spi - It's the execution manager for the Starship model
Starship_framedefs.spi - Defines the model's frame structure
Starship_functions.spi - Defines the functions used in the model
Starship_ssbn.spi - Create instances and built an SSBN

<<<<<----- STARSHIP_FUNCTIONS.SPI ------>>>>>

version_functions=v02; #defines which version of the model this file belongs to.

This file defines the functions that will be used to build the SSBN

215

puts("\nStarting to define the functions\n");
puts("...\n");

The two functions below were developed by Dr. Kathryn
Laskey for the Plasma project. They enable the model's
visualization by means of Quiddity Visualizer.

def displayStatus(stpnum) {
 enqueueScript("displayStatusSub(" + stpnum + ")");
};

def displayStatusSub(stpnum) {
 for c in NamedEntity->retrieveInstances(false) {
 c->printDetail(); # display all the instances
 };
 $qv->updateDisplay();
 puts("Paused at " + stpnum + ". Hit <Enter> to continue...");
 while stdin->read() != 10 {}
};

numberToFShips(fships)
fships -> the number of FShips in a zone
The function converts the number to the string format
that is used in slot zoneFShips

def numberToFShips(fships){
 if (fships == 0) then state = zFS_0
 elif (fships == 1) then state = zFS_1
 elif (fships == 2) then state = zFS_2
 elif (fships == 3) then state = zFS_3
 elif (fships > 3) then state = zFS_MoreThan3
 else ("\n\nError in function numberToFShips\n\n")
 end;
 state;
};

numberToEShips(eships)
eships -> the number of EShips in a zone
The function converts the number to the string format
that is used in slot zoneEShips

def numberToEShips(eships){
 if (eships == 0) then state = zES_0
 elif (eships == 1) then state = zES_1
 elif (eships == 2) then state = zES_2
 elif (eships == 3) then state = zES_3
 elif (eships > 3) then state = zES_MoreThan3
 else ("\n\nError in function numberToEShips\n\n")
 end;
 state;
};

randomDistance()
Simple random generator that returns a distance that
can be used in the distFromOwn RV

216

Output states:
dFO_OutOfRange
dFO_TorpedoRange
dFO_Phaser2Range
dFO_Phaser1Range
dFO_PulseCanonRange
It does not return absurd as a value.
It *does not* gives a equal likelihood for distances,
but concentrates more probability to the farther
distances. The idea is that since this would be used
for an initial setup, most of the starships would be
relatively distant of OwnShip. As the situation develops
then we can have starships closing in

def randomDistance(){
 rd = random->nextDouble(); # create a random number
 if (0 <= rd && rd < .05) then rdist= dFO_PulseCanonRange
 elif (0.05 <= rd && rd < .15) then (rdist= dFO_Phaser1Range)
 elif (0.15 <= rd && rd < .25) then (rdist = dFO_Phaser2Range)
 elif (0.25 <= rd && rd < .6) then (rdist = dFO_TorpedoRange)
 elif (0.6 <= rd && rd < 1) then (rdist = dFO_OutOfRange)
 else (puts("error in the Distance random generator"))
 end;
 rdist;
};

randomSpecies(specBehavior)
Simple random generator that returns an Operator
Species that can be used in the opSpec RV
Input:
specBehavior - variable that has states friend or enemy.
Each corresponding to a given species current behavior
with respect to OwnShip
cloak - defines whether or not the species to be created
has a cloaking device capability.
Output states:
oS_Cardassians
oS_Friend
oS_Klingon
oS_Romulan
oS_Unknown
It does not return absurd as a value.
It *does not* gives a equal likelihood for distances,
but concentrates more probability to the farther
distances. The idea is that since this would be used
for an initial setup, most of the starships would be
relatively distant of OwnShip. As the situation develops
then we can have starships closing in

def randomSpecies(specBehavior, cloak){
 rd = random->nextDouble(); # create a random number
 if (cloak==true) then {
 if (specBehavior == friend) then {
 puts("Error: Species with friend behavior do not\n");
 puts("activate cloaking devices\n");
 puts("function randomSpecies has improper input\n");

217

 }
 elif (specBehavior == enemy) then {
 if (0 <= rd && rd < .9) then (rspec= oS_Romulan)
 elif (0.9 <= rd && rd < .99) then (rspec= oS_Klingon)
 elif (0.99 <= rd && rd < 1) then (rspec = oS_Unknown)
 elif (0.9 <= rd && rd < 1) then (rspec = oS_Unknown)
 else (puts("error in the Species random generator"))
 end;
 }
 else (puts("error in the Species random generator"))
 end;
 }
 elif (specBehavior == enemy) then {
 if (0 <= rd && rd < .5) then (rspec= oS_Cardassian)
 elif (0.5 <= rd && rd < .65) then (rspec= oS_Klingon)
 elif (0.65 <= rd && rd < .9) then (rspec = oS_Romulan)
 elif (0.9 <= rd && rd < 1) then (rspec = oS_Unknown)
 else (puts("error in the Species random generator"))
 end;
 }
 elif (specBehavior == friend) then {
 if (0 <= rd && rd < .5) then (rspec= oS_Friend)
 elif (0.5 <= rd && rd < .75) then (rspec= oS_Klingon)
 elif (0.75 <= rd && rd < .85) then (rspec = oS_Romulan)
 elif (0.85 <= rd && rd < 1) then (rspec = oS_Unknown)
 else (puts("error in the Species random generator"))
 end;
 }
 else (puts("Improperly defined specBehavior in randomSpecies"))
 end;
 rspec;
};

makeEnemies(nk, ncloak)
nk -> Total number of enemy starships to be created
ncloak -> Number of enemy starships that are within
enterprise's sensor range but in cloak mode.
The function creates the nk instances of enemy starships and
returns an array with the form array(enemy),
where each element is an instance of frame Starship

The intended use for makeEnemies() is to create a set
of Enemy Starships that, among other possibilities, can
be used in conjunction with makeFriends() to build a
Ground Truth set for model experiments

def makeEnemies(z, nk, ncloak) {
 charset=array(0);
 duck = nk-ncloak; # These enemies are not in cloak mode
 for i in duck {
 enduck = Starship->makeInstance();
 enduck->opSpec = randomSpecies(enemy, false);
 enduck->cloakMode=false;
 enduck->starshipZone=z;
 enduck->distFromOwn=randomDistance();
 charset->addElement(enduck);

218

 };
 for j in ncloak { # These enemies are in cloak mode
 encloak = Starship->makeInstance();
 encloak->opSpec = randomSpecies(enemy, true);
 encloak->cloakMode=true;
 encloak->starshipZone=z;
 encloak->distFromOwn=randomDistance();
 charset->addElement(encloak);
 };
 charset;
};

makeFriends(nf)
nf -> Total number of friend or neutral starships to be
created.
This function creates nf instances of friend/neutral
starships and returns an array with the form array(friends)
where each element is an instance of frame Starship

def makeFriends(zf, nf) {
 charset=array(0);
 for i in nf {
 frd = Starship->makeInstance();
 frd->opSpec = randomSpecies(enemy, false);
 frd->cloakMode=false;
 frd->starshipZone=zf;
 frd->distFromOwn=randomDistance();
 charset->addElement(frd);
 };
 charset;
 };

makeGTSet(nen, nkc, nfr)
nen -> number of enemies
nec -> number of enemies in cloak mode
nfr -> number of friends
uses makeEnemies() and makeFriends() to create
a set spaceships.

def makeGTSet(zn, nen, nec, nfr) {
 gt=makeEnemies(zn, nen, nec);
 nicepeople=makeFriends(zn, nfr);
 for i in nfr {
 gt->addElement(nicepeople(i));
 };
 gt;
 };

printCharSet(cs)
cs -> an array with the format of the output of
function makeGTSet(nen, nec, nfr)
Prints the set of Starships to be used as Ground Truth
that should be contained in the argument cs.

def printCharSet(cs){
 puts("Characteristics of the Starships:\n");

219

 for chr in cs {
 st=chr->opSpec->getValue();
 cm=chr->cloakMode->getValue();
 zn=chr->starshipZone->zoneNature->getValue();
 qd=chr->distFromOwn->getValue();
 puts(chr,"\tOperator Species -> ",st, "\tCloak Mode-> ",cm);
 puts("\tZone->",zn, "\tRange -> ",qd,"\n");
 };
 puts("\nEnd of the Starship List!!\n");
};

buildGTkb(ezn, nts, gts)
ezn -> area in which Enterprise is in
nts -> number of time steps
gts -> array with the ground truth
During each time step, this function creates one instance
of frame SensorReport for each starship in the Ground
Truth set (gts) and reads the zoneMD value, which
is influenced by the nature of the area and the existence of
starships in cloak mode.
Then, it samples and set the values for the slots
SensorReport.sRClass, SensorReport.sRDistance.
It also sets the values of those slots with the sampled
results, which is an optional feature that can be canceled.
The output is an array in the format:
(list(zoneMD, stresults)),

Recall that starships in cloak mode doesn't generate
sensor reports. Yet, we have to consider them too (the
enemies in cloak mode), since the false alarm rate is a
bit higher when someone is around with an active cloak
device. Finally, even if nobody is there, we have to
consider the false alarm rate as well.

def buildGTkb(ezn, nts, gts) {
 listres=array(0); # saves the results of all time steps
 for i in nts { # for each time step
 stresults=array(0); # saves each starship's results of one time step
 for j in gts{ # for each starship
 snres=SensorReport->makeInstance(); # create an instance of sensor report
 snres->subject=j ; # relate that instance to
one starship
 getsnslot=snres->sRClass; # get this instance's sRClass slot
 spsnslot=sampleNode(getsnslot); # and sample it
 snres->sRClass=spsnslot;
This line is optional. It sets the value of slot sRClass to be the
one sampled in spsnslot (see above). If setting the results is not what we
want to do (i.e. if we prefer to leave it empty) then just ignore the line
by adding a comment mark in front of it.
 getdtslot=snres->sRDistance; # get this instance's sRDistance slot
 spdtslot=sampleNode(getdtslot); # and sample it
 snres->sRDistance=spdtslot;
This line is optional. It sets the value of slot sRDistance
to be the one sampled in spdtslot (see above). If setting the results is not
what we want to do (i.e. if we prefer to leave it empty) then just ignore the

220

line by adding a comment mark in front of it.
 stresults->addElement(list(spsnslot, spdtslot)); # saves the sampled values
 };
 getzoneMDread=ezn->zoneMD;
 zoneMDread=sampleNode(getzoneMDread);
 listres->addElement(list(zoneMDread, stresults)); # add the results of all starships for
each time step
 };
 puts("We had ",size(listres)," time steps. For each time step");
 puts(" 1 MD Reading and ", size(listres(0)(1))," Sensor Reports were created, thus we created\n");
 puts("a total of ",size(listres)," MD readings and ");
 puts(size(listres)*size(listres(0)(1))," Sensor Report results.\n");
 listres;
 };
sampleNode(nd)
nd -> node to be sampled
samples the beliefs for a given node on the basis
of its prior probabilities

 def sampleNode(nd) {
 s = posteriorSamples(nd);
 smpl = s->nextSample();
 smpl(0)(1);
};

printGTkb(gtkb);
gtkb -> knowledge base made in makeGTkb();
Prints the Ground Truth knowledge base, element by element

def printGTkb(gtkb) {
 icount=0; # counter for i
 for i in gtkb {
 puts("Results of time step ", icount, ":\n");
 puts("\tMD Reading result: ",i(0),".\n");
 puts("\tSensor Report results: \t");
 for j in i(1) {
 puts(j,"\t");
 };
 puts("\n");
 icount++;
 };
 };

cleanGTkb(gtkb)
gtkb -> knowledge base made in makeGTkb();
This function "cleans" the Ground Truth knowledge base by
extracting the extra Sensor Reports. That is, the Sensor
Reports that came out empty. This is the rationale:
If at a given time step in the GTkb there is at least one
positive result (i.e. either friend or enemy) then all "nothing"s
are eliminated. Else, just one "nothing" result is kept.
The idea is to represent what a real world sensor result would be.
Since we do not know in advance how many starships are, we will
only have a "nothing" as a result when the Sensors captured nothing
in their range. If they captured only one, then this one is the only
thing we know (i.e. there is no "nothing" result indicating that there is

221

another starship but our sensor didn't catch it).

def cleanGTkb(gtkb){
 cleanedAll=array(0); #new, cleaned kb repository
 for i in gtkb{ #for each time step in the GTkb
 cleanedSR=array(0); #array for the cleaned Sensor Reports
 for j in i(1) { # for the list of Sensor Reports of that time step
 if !(j(0) == "nothing")
 then cleanedSR->addElement(j)
 end;
 };
 cleanedAll->addElement(list(i(0), cleanedSR));
 };
 cleanedAll;
 };

inferGT(clgtkb)
cleanedgtkb -> knowledge base cleaned by cleanGTkb();
Takes the results obtained from the starships in the
Ground Truth knowledge base and tries to figure out
how many starships are there and their respective type

The functions below were built by Dr. Kathryn B. Laskey
for the Display module of the Starship model.

puts("\nDefining the display functions\n");

def displayStatus(stpnum) {
 enqueueScript("displayStatusSub(" + stpnum + ")");
};

def displayStatusSub(stpnum) {
 for c in NamedEntity->retrieveInstances(false) {
 c->printDetail(); # display all the instances
 };
 $qv->updateDisplay();
 puts("Paused at " + stpnum + ". Hit <Enter> to continue...");
 while stdin->read() != 10 {}
};

puts("\nAll functions loaded!!\n");

<<<<<----- /STARSHIP_FUNCTIONS.SPI ------>>>>>

Starship_exec.spi

STARSHIP MODEL

This file is part of the MEBN model inspired in the
Paramount series Star Trek. The model was used in
the PhD research of Paulo Costa and in the paper
"MEBN without Multi-tears"

Authors:

222

Paulo Cesar G da Costa
Kathryn B Laskey

The model is composed of the following parts:
Starship_main.spi - It's the execution manager for the Starship model
Starship_framedefs.spi - Defines the model's frame structure
Starship_functions.spi - Defines the functions used in the model
Starship_ssbn.spi - Create instances and built an SSBN

<<<<<----- STARSHIP_EXEC.SPI ------>>>>>

version_exec=v02; #defines which version of the model this file belongs to.

This file defines the execution procedures that are used to build the SSBN

<<<<---CREATING ENTERPRISE AND ITS SPACE ZONE--->>>>

We have to define in what type of space Enterprise
will be flying. This is something we are supposed to
know in advance (i.e., if our sensors are working, we
know were we are).

puts("Creating Enterprise and its space zone...\n");
puts("...........\n");

area=Zone->makeInstance();
area->zoneNature= mainZone;
area->zoneEShips=numberToEShips(mainEShips);
area->zoneFShips=numberToFShips(mainFShips);

puts("Space area successfully defined...\n\n");
puts("We're now going to Create Enterprise...\n\n");

Now, we create the Enterprise.

Enterprise=OwnStarship->makeInstance();
Enterprise->ownStarshipZone=area; # linking Enterprise with its zone

puts("Enterprise is ready for action...\n");
puts("As expected, we are navigating in a ",area->zoneNature->getValue()," zone.\n");
puts("Now our mission is to build the GTSet.\n");

<<<<---/CREATING ENTERPRISE AND ITS SPACE ZONE--->>>>

<<<<--- BUILDING THE GROUND TRUTH KNOWLEDGE BASE --->>>>

puts("\nBuilding the Ground Truth Knowledge Base...\n\n");

Now we make a set of spaceships. This set can be
used as Ground Truth for future experiments

GTSet=makeGTSet(area, mainEShips, mainCloakMode, mainFShips);
Enterprise->starship=GTSet; # assigns the set of starship instances to the Enterprise
area->starship=GTSet; # assigns the set of starship instances to the zone area

Just to make sure everything is ok, let's print

223

the initial characteristics of the starships

puts("\nAt this point we have created an initial set\n");
puts("of starships. \n");
puts("Let's see who they are and their characteristics:\n\n");
printCharSet(GTSet);

For each of those starships, we will have a sensor report from
the Enterprise sensor suite. Also, there will be one Magnetic
Disturbance Report for each time step.
We should build a Ground Truth database containing all the
reports created during a given number of time steps on the
basis of the starships inside the GTSet

puts("..\n");
puts("Now, let's make the a database of reports that would\n");
puts("have been generatated by the Enterprise's sensors when\n");
puts("capturing data from those starships\n");
puts("Building the knowledge base.......\n");
puts("...\n");

GTkb=buildGTkb(area, mainTimeSteps, GTSet);

puts("Knowledge base was built.......\n");
puts("Let's see the results:\n\n");
puts("Recall that we had the following starships in our ground truth:\n");
printCharSet(GTSet);
puts("Therefore, those where the starships that generated the \n");
puts("following reports:\n\n");
printGTkb(GTkb);
puts("\n\n..\n");

<<<<--- /BUILDING THE GROUND TRUTH KNOWLEDGE BASE --->>>>

<<<<--- CLEANING THE GROUND TRUTH KNOWLEDGE BASE --->>>>

puts("\nCleaning the Ground Truth Knowledge Base...\n\n");

puts("Now, we are going to clean the knowledge base by extracting the\n");
puts("Sensor Reports that resulted in nothing, so there will be no clues on\n");
puts("whether we had staships with cloak devices around.\n");
puts("Here is the resulting cleaned GT knowledge base:\n\n");

cleanGT=cleanGTkb(GTkb);
printGTkb(cleanGT);

puts("\n\nTherefore, we know these results came from a Ground Truth set of ", size(GTSet), " starships \n");
puts("(", mainFShips, " friend(s) and ", mainEShips, " enemy(ies), where ", mainCloakMode);
puts(" enemy starship(s) had its Cloak Mode activated)\n");
puts("Now, we have to start from those reports");
puts(" and try to get as close as \npossible to the Ground Truth.\n\n");

<<<<--- CLEANING THE GROUND TRUTH KNOWLEDGE BASE --->>>>

<<<<<----- STARSHIP_EXEC.SPI ------>>>>>

224

Appendix B Preliminary Syntax and Semantics for PR-OWL

B.1 PR-OWL Classes

B.1.1 Alphabetical List of All PR-OWL Classes

The table below contains all classes used in the PR-OWL upper-ontology.

Table 6. Classes Used in PR-OWL

Class Name Abbreviation Sub-Classes (1
st
 level)

Argument Relationship ArgRelationship SimpleArgRelationship

Boolean Random Variable States BooleanRVStates

Built-In Random Variable BuiltInRV

Categorical Random Variable
States

CategoricalRVStates

Conditional Relationship CondRelationship

Context Context

Declarative Distribution DeclarativeDist

Domain MFrag Domain_MFrag

Domain Resident Domain_res

Entity Entity BooleanRVStates

CategoricalRVStates

MetaEntity

ObjectEntity

Finding MFrag Finding_MFrag

Finding Resident Finding_res

Input Input Finding_input

Generative_input

Meta-Entity MetaEntity

MFrag MFrag Domain_MFrag

Finding_MFrag

MTheory MTheory

225

Node Node Context

Input

Resident

Object Entity ObjectEntity

Ordinary Variable OVariable

Probabilistic Assignment ProbAssign

Probabilistic Distribution ProbDist DeclarativeDist

PR-OWLTable

PR-OWL Table PR-OWLTable

Resident Resident Finding_res

Domain_res

Simple Argument Relationship SimpleArgRelationship

Skolem Skolem

B.1.2 Detailed Explanation of PR-OWL Classes

Argument Relationship (ArgRelationship)

Description:

A generic random variable can have many arguments. Arguments are
usually restricted in their type and meaning via the context nodes of an MFrag. In
order to model these complex N-ary relations, PR-OWL makes use of the
ArgRelationship class, which is a reified relation that conveys the number and
order of arguments that each RV expects, its type (defined via a link to the
OVariable class), and the link to the RV itself.

MEBN logic has the concept of a simple and a composite random variable
term. Simple RV terms accepts variables and constant symbols as arguments.
Composite RV terms also accepts other RV terms as arguments. In PR-OWL, the
class ArgRelashionship models composite RV terms, while its
SimpleArgRelashionship subclass models simple RV terms.

Subclasses:

SimpleArgRelationship

Properties with ArgRelationship as its domain (range inside parenthesis):

hasArgNumber (single xsd:nonNegativeInteger)

hasArgTerm (single Entity !!OVariable!!!Resident"!

226

isArgumentOf (single node)

Boolean Random Variable States (BooleanRVStates)

Description

The BooleanRVStates class is formed by the Boolean truth-value states
and the absurd symbol (!). Individuals of this class are applied as possible values
for Boolean random variables.

Subclasses:

None

Properties with BooleanRVStates as its domain (range inside parenthesis):

hasType (single MetaEntity)

hasUID (single xsd:string)

isPossibleValueOf (multiple Node ! BuiltIRV)

Built-In Random Variable (BuiltInRV)

Description:

Individuals of this class represent the random variables from MEBN
logic's built-in MFrags: logical connectives, quantifiers, the equality random
variable. Likewise their function in MEBN logic, these individuals allow PR-
OWL ontologies to represent a rich family of probability distributions over
interpretations of first-order logic.

Note that MEBN's built-in Indirect Reference MFrag is already
represented in PR-OWL via its recursive scheme of building complex formulas
shown in Chapter 5.

Subclasses:

None

Properties with BuiltInRV as its domain (range inside parenthesis):

hasContextInstance (multiple Context)

hasInputInstance (multiple Input)

hasPossibleValues (multiple Entity)

227

Categorical Random Variable States (CategoricalRVStates)

Description:

Nodes represent random variables, which by definition have a list of
mutually exclusive, collectively exhaustive states. In PR-OWL, those states are
represented by individuals from class Entity. Some random variables have a list of
categorical values as its possible states, and these are represented by elements
from subclass CategoricalRVStates.

Subclasses:

None

Properties with CategoricalRVStates as its domain (range inside parenthesis):

hasType (single MetaEntity)

hasUID (single xsd:string)

isPossibleValueOf (multiple Node ! BuiltInRV)

isArgTermIn (multiple ArgRelationship)

Conditional Relationship (CondRelationship)

Description

The conditional relationship class is a reified property representing a
(parent) node and one of its possible states. Individuals of this class are used to
built PR-OWL probabilistic distribution tables. Each cell of such a table
corresponds to a probability assignment of a possible value of a node given one
combination of the states of its parents. Each individual of class CondRelationship
represents one parent/state pair, so a probability assigment is conditioned by a set
of CondRelationship pairs (one for each parent node).

Subclasses:

None

Properties with CondRelationship as its domain (range inside parenthesis):

hasParentName (single Node)

hasParentState (single Entity)

isConditionantOf (multiple ProbAssign)

228

Context (Context)

Description

In general, MFrags impose constraints to the type of arguments each of its
resident RVs should accept. The individuals of the Context class represent these
types of constraints.

In PR-OWL, the class Context is the only subclass of the Node class that
accepts composite RV terms as arguments (that is, uses the complete
ArgRelationship instead of the more restricted SimpleArgRelashionship).

A context node is either satisfiable or not, which means its possible states
are instances of the BooleanRVStates class.

Subclasses:

None

Properties with Context as its domain (range inside parenthesis):

isContextInstanceOf (single Domain_res ! BuiltInRV)

isContextNodeIn (multiple Domain_MFrag)

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasPossibleValues (multiple Entity)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

Declarative Distribution (DeclarativeDist)

Description

A declarative distribution is a distribution that is conveyed via a xsd:string
datatype, using a specific format defined in the hasDeclaration datatype property.
In order to allow a MEBN algorithm to work, a parser should be able to retrieve
the probability distribution information in the format it is stored and then pass that
information to the MEBN algorithm in its own proprietaty format.

Describing a probability distribution is a much more compact and flexible
way of conveying it. However, it assumes that an OWL-P parser would
understand the format in which the information is stored. PR-OWL tables, on the
other hand, convey probability distributions in a more interoperable way, but are

229

not flexible enough to represent complex distributions such as the cases in which
a node has multiple possible parents.

For added compatibility, one probability distribution can be stored in
multiple formats (i.e. multiple DeclarativeDist individuals for the same RV).

Subclasses:

None

Properties with DeclarativeDist as its domain (range inside parenthesis):

hasDeclaration (single xsd:string)

isRepresentedAs (single owl:oneOf{…list of possible formats…})

isProbDistOf (multiple resident)

isDefault (single xsd:Boolean)

Domain MFrag (Domain_MFrag)

Description

Domain MFrags is the subclass of class MFrag that includes all the
domain-specific MFrags. It is disjoint with class Finding_MFrag. All generative
MFrags created by the ontology engineer (i.e. the domain expert) are members of
this class.

Subclasses:

None

Properties with Domain_MFrag as its domain (range inside parenthesis):

hasContextNode (multiple Context)

hasInputNode (multiple Input)

hasNode (multiple Node)

hasOVariable (multiple OVariable)

hasResidentNode (multiple Resident)

hasSkolem (multiple Skolem)

isMFragOf (multiple MTheory)

230

Domain Resident (Domain_res)

Description

This is the subclass of class Resident (node) that includes all domain-
specific resident nodes. It is disjoint with classes Finding_res and BuiltInRV.

Subclasses:

None

Properties with Domain_res as its domain (range inside parenthesis):

hasContextInstance (multiple Context)

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasParent (multiple resident ! input)

hasPossibleValues (multiple Entity)

hasProbDist (multiple ProbDist)

isArgTermIn (multiple ArgRelationship)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

isParentOf (multiple resident)

isResidentNodeIn (multiple MFrag)

hasInputInstance (multiple Input)

Entity (Entity)

Description

MEBN logic treats the world as being comprised of entities that have
attributes and are related to other entities. The logic assumes uniqueness or each
concept (i.e. unique name assumption), so each entity in a MEBN model has a
unique identifier and no unique identifier can be assigned to more than one entity.

PR-OWL follows MEBN syntax and semantics for defining entities so
each member of the class Entity has a unique identifier assigned by the datatype
property hasUID. OWL doesn't have the unique name assumption so the UID can
be seen a tool for providing maximum compatibility with legacy OWL ontologies,
since parsers may refer to it as a means to enforce uniqueness among declared
entities.

231

It is important to note that not all concepts in an ontology have a UID, but
only those which will be considered as part of the probabilistic model that is
implicit in any probabilistic ontology. This structure allows mixing legacy
deterministic ontologies with probabilististic ones. That allows knowledge
engineers to assign PR-OWL definitions only to the parts of the domain for which
plausible reasoning is desired.

Subclasses (1st level):

BooleanRVStates

CategoricalRVStates

MetaEntity

ObjectEntity

Properties with Entity as its domain (range inside parenthesis):

hasType (single MetaEntity)

hasUID (single xsd:string)

isArgTermIn (multiple ArgRelationship)

isPossibleValueOf (multiple Node ! BuiltInRV)

Finding MFrag (Finding_MFrag)

Description

Finding MFrags are used to convey information about findings, which is
the default way of entering evidence in a MEBN MTheory so a probabilistic
algorithm can be applied to perform inferences regarding the new evidence. They
have no context nodes, only one input and one resident node.

Subclasses:

None

Properties with Finding_MFrag as its domain (range inside parenthesis):

hasInputNode (single Input)

hasNode (multiple node)

hasOVariable (multiple OVariable)

hasResidentNode (multiple Resident)

hasSkolem (multiple Skolem)

232

isMFragOf (multiple MTheory)

Finding Resident (Finding_res)

Description

This is the subclass of class Resident (node) that includes all finding
nodes. Finding nodes convey new evidence into a probabilistic system via a
Finding_MFrag. The class is disjoint with classes Domain_res and BuiltInRV.

Subclasses:

None

Properties with Finding_res as its domain (range inside parenthesis):

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasParent (single Finding_input)

hasPossibleValues (multiple Entity)

hasProbDist (multiple ProbDist)

isArgTermIn (multiple ArgRelationship)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

isParentOf (multiple resident – cardinality = 0)

isResidentNodeIn (multiple MFrag)

hasInputInstance (multiple Input)

Input (Input)

Description

In PR-OWL, an input node is basically a "copy" of a resident node that is
used as an input in a given MFrag. Thus, each individual of class Input is linked
with an individual of class Resident via the property isInputInstanceOf.

Subclasses:

Finding_input

Generative_input

233

Properties with Input as its domain (range inside parenthesis):

isInputInstanceOf (single Resident ! BuiltInRV)

isInputNodeIn (multiple MFrag)

isParentOf (multiple Resident)

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasPossibleValues (multiple Entity)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

Meta-Entity (MetaEntity)

Description

The MetaEntity class includes all the entities that convey specific
definitions about entities (e.g. typelabels that name the possible types of entities).

Subclasses:

None

Properties with MetaEntity as its domain (range inside parenthesis):

isTypeOf (multiple Entity)

subsOVar (multiple OVariable)

hasType (single MetaEntity)

hasUID (single xsd:string)

isPossibleValueOf (multiple Node !!BuiltInRV)

isArgTermIn (multiple ArgRelationship)

MFrag (MFrag)

Description

MEBN Fragments (MFrags) are the basic structure of any MEBN logic
model. MFrags represent influences among clusters of related RVs and can
portray repeated patters using ordinary variables as placeholders in to which
entity identifiers can be substituted. In PR-OWL, each individual the MFrag class
represents a MEBN Fragment (MFrag).

234

Subclasses:

Domain_MFrag

Finding_MFrag

Properties with MFrag as its domain (range inside parenthesis):

hasInputNode (multiple Input)

hasNode (multiple Node)

hasOVariable (multiple OVariable)

hasResidentNode (multiple Resident)

hasSkolem (multiple Skolem)

isMFragOf (multiple MTheory)

MTheory (MTheory)

Description

An MTheory is a collection of MFrags that statisfies consistency
constraints ensuring the existence of a unique joint distribution over the random
variables mentioned in the MTheory.

In PR-OWL, the class MTheory allows a probabilistic ontology to have
more than one valid MTheory to represent its RVs, and each individual of that
class is basically a list of the MFrags that collectively form that MTheory. In
addition, one MFrag can be part of more than one MTheory.

Subclasses:

None

Properties with MTheory as its domain (range inside parenthesis):

hasMFrag

Node (Node)

Description

A node is part of an MFrag and it can be a random variable that is defined
within that MFrag (a resident node), a RV that input values to nodes within that
MFrag (an input node), or a RV that expresses the context in which the
probability distributions within that MFrag are valid (a context node).

235

Subclasses (1st level):

Context

Input

Resident

Properties with Node as its domain (range inside parenthesis):

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasPossibleValues (multiple Entity)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

Object Entity (ObjectEntity)

Description

The class ObjectEntity aggregates the MEBN entities that are real world
concepts of interest in a domain. They are akin to objects in OO models and to
frames in frame-based knowledge systems.

Subclasses:

None

Properties with ObjectEntity as its domain (range inside parenthesis):

hasType (single MetaEntity)

hasUID (single xsd:string)

isPossibleValueOf (multiple Node ! BuiltInRV)

isArgTermIn (multiple ArgRelationship)

Ordinary Variable (OVariable)

Description

Ordinary variables are placeholders used in MFrags to refer to non-
specific entities as arguments in a given MFrag's RVs.

Subclasses:

236

None

Properties with OVariable as its domain (range inside parenthesis):

isArgTermIn (multiple ArgRelationship)

isOVariableIn (single MFrag)

isRepBySkolem (multiple Skolem)

isSubsBy (single MetaEntity)

Probabilistic Assignment (ProbAssign)

Description

Each cell in an PR-OWL table has a probability assignment for the state of
a RV given the states of its parent nodes. Thus, the resulting relationship is N-ary
and we opted for representing it via a reified relation (ProbAssign) that includes
the name of the state to which the probability is being assigned, the probability
value itself, and the list of states of parent nodes (i.e. conditionants) that
collectively define the context in which that probability assignment is valid. Also,
individuals of the ProbAssign class have an object property that links them with
its respective PR-OWL table.

Subclasses:

None

Properties with ProbAssign as its domain (range inside parenthesis):

hasConditionant (multiple CondRelationship)

hasStateName (single Entity)

hasStateProb (single xsd:decimal)

isProbAssignIn (single PR-OWLTable)

Probabilistic Distribution (ProbDist)

Description

This class is meant to represent the probability distributions that are
defined in an MFrag to each of its resident nodes (random variables). A
probability distribution can be described using a proprietary declarative format,
such as a Netica table or a Quiddity function, or via a PR-OWL table (which has
probability assignments as its cells).

Subclasses:

237

DeclarativeDist

PR-OWLTable

Properties with ProbDist as its domain (range inside parenthesis):

isDefault (single xsd:Boolean)

isProbDistOf (multiple Resident)

PR-OWL Table (PR-OWLTable)

Description

An PR-OWL table has all the probability assignments for each state of a
RV stored in a xsd:decimal format (future implementations might use the pr-
owl:prob format, but currently that means incompatibilities with OWL, which has
no support for PR-OWL custom datatypes).

This format for storing probability distributions cannot represent complex
cases for which only formulas can represent a probability distribution (e.g. a node
that have a variable number of parents) and usually incurs in huge ontologies,
since each table can have many cells and each cell is an individual of the
ProbAssign class. Therefore, PR-OWL tables are only recommended for the
simplest models in which the maximum level of compatibility is desired.

Subclasses:

None

Properties with PR-OWLTable as its domain (range inside parenthesis):

hasProbAssign (multiple ProbAssign)

isProbDistOf (multiple Resident)

isDefault (single xsd:Boolean)

Resident (Resident)

Description

Resident nodes are the random variables that have their respective
probability distribution defined in the MFrag.

Subclasses:

Domain_res

Finding_res

238

Properties with Resident as its domain (range inside parenthesis):

hasInputInstance (multiple Input)

hasParent (multiple Resident ! Input)

hasProbDist (multiple ProbDist)

isArgTermIn (multiple ArgRelationship)

isParentOf (multiple Resident)

isResidentNodeIn (multiple MFrag)

hasArgument (multiple ArgRelationship)

hasInnerTerm (multiple Node)

hasPossibleValues (multiple Entity)

isInnerTermOf (multiple Node)

isNodeFrom (multiple MFrag)

Simple Argument Relationship (SimpleArgRelationship)

Description

Each generic random variable can have many arguments. Arguments are
usually restricted in their type and meaning via the context nodes of an MFrag. In
order to model these complex N-ary relations, PR-OWL makes use of the
SimpleArgRelationship class, which is a reified relation that conveys the number
and order of arguments that each RV expects, it's type (defined via a link to the
TypeContext class), and the link to the RV itself.

Subclasses:

None

Properties with SimpleArgRelationship as its domain (range inside parenthesis):

hasArgNumber (single xsd:nonNegativeInteger)

hasArgTerm (single Entity !!OVariable !!Resident ! Skolem)

isArgumentOf (single Node)

Skolem (Skolem)

Description

239

Each individual of class Skolem represents a Skolem constant in a MEBN
quantifier random variable. Each MEBN quantifier random variable corresponds
to a first-order formula beginning with a universal or existential quantifier. The
Skolem constant in the MEBN random variable represents a generic individual
within the scope of the universal or existential quantifier of the corresponding
first-order formula.

MEBN logic contains a set of built-in MFrags for quantifier random
variables. In PR-OWL modelers can use individuals of class Skolem to define
distributions for Skolem constants used in quantifier random variables.

Subclasses:

None

Properties with Skolem as its domain (range inside parenthesis):

isArgTermIn (multiple ArgRelationship)

isSkolemIn (multiple MFrag)

representsOVar (single OVariable)

B.2 PR-OWL Properties

B.2.1 Alphabetical List of All PR-OWL Properties

The table below contains all properties used in the PR-OWL upper-ontology.

Table 7. Properties Used in PR-OWL

Property Name Domain Range Inverse Property

hasArgNumber ArgRelationship xsd:nonNegativeInteger -x-

hasArgTerm ArgRelationship Entity

OVariable

Resident

Skolem

isArgTermIn

hasArgument Node ArgRelationship isArgumentOf

hasConditionant ProbAssign CondRelationship isConditionantOf

hasContext Domain_MFrag Context isContextIn

hasContextInstance Domain

BuiltInRV

Context isContextInstanceOf

hasDeclaration DeclarativeDist xsd:string -x-

240

hasInnerTerm Node Node isInnerTermOf

hasInputInstance Resident

BuiltInRV

Input isInputInstanceOf

hasInputNode MFrag Input isInputNodeIn

hasMFrag MTheory MFrag isMFragOf

hasOVariable MFrag OVariable isOVariablein

hasParent Resident Resident

Input

isParentOf

hasParentName CondRelationship Node

hasParentState CondRelationship Entity

hasPossibleValues BuiltInRV

Node

Entity isPossibleValueOf

hasProbAssign PR-OWLTable ProbAssign isProbAssignIn

hasProbDist Resident ProbDist isProbDistOf

hasResidentNode MFrag Resident isResidentNodeIn

hasSkolem MFrag Skolem isSkolemIn

hasStateName ProbAssign Entity

hasStateProb ProbAssign xsd:decimal

hasType Entity MetaEntity isTypeOf

hasUID Entity xsd:string

isArgTermIn OVariable

Resident

Entity

Skolem

ArgRelationship hasArgTerm

isArgumentOf ArgRelationship Node hasArgument

isConditionantOf CondRelationship ProbAssign hasConditionant

isContextIn Context Domain_MFrag hasContext

isContextInstanceOf Context Domain

BuiltInRV

hasContextInstance

isDefault ProbDist xsd:boolean

isInnerTermOf Node Node hasInnerTerm

isInputInstanceOf Input Resident

BuiltInRV

hasInputInstance

isInputNodeIn Input MFrag hasInputNode

isMFragOf MFrag MTheory hasMFrag

isOVariableIn OVariable MFrag hasOVariable

isParentOf Resident

Input

Resident hasParent

241

isPossibleValueOf Entity Node

BuiltInRV

hasPossibleValues

isProbAssignIn ProbAssign PR-OWLTable hasProbAssign

isProbDistOf ProbDist Resident hasProbDist

isRepBySkolem OVariable Skolem representsOVar

isRepresentedAs DeclarativeDist Owl:one of{…}

isResidentNodeIn Resident MFrag hasResidentNode

isSkolemIn Skolem MFrag hasSkolem

isSubsBy OVariable MetaEntity

isTypeOf MetaEntity Entity hasType

representsOVar Skolem OVariable isRepBySkolem

subsOVar MetaEntity OVariable isSubsBy

B.2.2 Detailed Explanation of PR-OWL Properties

hasArgNumber

Type: Datatype property

Description:

This datatype property assigns the argument number of an argument
relationship. As an example, if we have a random variable with 3 arguments, it will
have three ArgRelatioship reified relations. The first argument of the RV will have
the number 1 assigned to its respective hasArgNumber property, the second will
have the number 2 assigned and the third will have the number 3 assigned. In short
this property keeps track of the ordering between the arguments of an RV.

The datatype range is a nonNegativeInteger. We used this instead of a
positiveInteger because we wanted zero as a possible value, since we assume that a
RV with no arguments means a global RV.

hasArgTerm

Type: Object property

Description:

242

This object property links one instance of class ArgRelationship (which is
linked to a RV) to an internal variable within the home MFrag where its RV is
resident, to a node that is being used as argument in that RV, or to a MEBN entity.

One individual of the class ArgRelationship can have only one RV (since it
refers to a specific argument of an RV), and thus can be related to only one
OVariable (Simple RV Terms) or one Node (Composite RV Terms), which makes
that property a functional one.

The inverse property is isArgTermIn.

hasArgument

Type: Object property

Description:

This object property is the link between a node in an MFrag and the reified
relation that conveys its respective arguments. Note that each instance of a node will
have only one argument relashionship, which is defined within that node's MFrag.

The inverse of this property is isArgumentOf.

hasConditionant

Type: Object property

Description:

Each instance of the class ProbAssign corresponds to the probability
assigment for a given state of a RV. This probability assignment is conditioned by
the parent RVs of that RV. This object property conveys the list of the states of the
parent RV which have influenced that specific probability assignment. Since any
MEBN entity can be a state in a RV, this property has MEBNEntity class as its
range.

The inverse property is isConditionantOf.

hasContextInstance

Type: Object property

Description:

This object property links a resident node or a built-in RV to its many
possible "context node instances", or the instances of context nodes that take their
values from that resident node or built-in RV.

243

The inverse property is isContextInstanceOf.

hasContextNode

Type: Object property

Description:

This object property links an MFrag to the context nodes being applied to it.

The inverse property is isContextIn.

hasDeclaration

Type: Datatype property

Description:

This datatype property conveys the declarative probability distributions. Each
probability distribution can be expressed in different formats and each format is
defined by the datatype property isRepresentedAs. Possible formats include Netica
tables, Netica equations, Quiddity formulas, MEBN syntax, and others. However, the
declaration itself is stored as a string so parsers are expected to understand how to
deal with the specific text format of each declaration.

hasInnerTerm

Type: Object property

Description:

This object property makes the connection between the many possible inner
terms inside a MENB equation. It is used to decompose random variable terms
usually employed in context and input nodes.

The inverse property is isInnerTermOf

hasInputInstance

Type: Object property

Description:

This object property links a resident node or a built-in RV to its many
possible "input node instances", or the instances of input nodes that take their values
from that resident node or built-in RV.

244

The inverse property is isInputInstanceOf.

hasInputNode

Type: Object property

Description:

This object property links each MFrag with its respective input nodes.

The inverse property is isInputNodeIn.

hasMFrag

Type: Object property

Description:

This object property links one MTheory with its respective MFrags. Usually,
a probabilistic ontology will have only one MTheory as a means to convey the global
joint probability distribution of its random variables. However, MEBN logic allows
many possible MTheories to represent a given domain, so it is reasonable to infer
that in some circunstances it might be preferable to have one probability ontology
being represented by more than one MTheory.

The inverse property is isMFragOf.

hasNode

Type: Object property

Description:

This object property links one MFrag with its respective nodes.

The inverse property is isNodeFrom.

hasOVariable

Type: Object property

Description:

This inverse functional object property relates one MFrag to its ordinary
variables (i.e. individuals from class OVariable that are related to the MFrag).

The inverse of this property is isOVariableIn.

245

hasParent

Type: Object property

Description:

This object property links a resident node of an MFrag with its respective
parent(s), which has(have) to be an individual of either the class Resident or the class
Input.

The inverse property is isParentOf.

hasParentName

Type: Object property

Description:

This object property links a CondRelationship to a Node. The reified
conditional relationship is used to build PR-OWL Tables. One table usually has
many probability assignments (which correspond to cells in a table), and each
probability assignment has a set of conditionants. Conditionants are the states of the
parents of a node that form a combination where a given probability assignment
holds. Each CondRelationship defines a pair parent/state-of-parent, and the
hasParentName property defines the parent name of that pair.

hasParentState

Type: Object property

Description:

This object property links a CondRelationship to an Entity. The reified
conditional relationship is used to build PR-OWL Tables. One table usually has
many probability assignments (which correspond to cells in a table), and each
probability assignment has a set of conditionants. Conditionants are the states of the
parents of a node that form a combination where a given probability assignment
holds. Each CondRelationship defines a pair parent/state-of-parent, and the
hasParentState property defines the parent state of that pair.

hasPossibleValues

Type: Object property

Description:

246

This object property defines what are the possible values of a node in an
MFrag (which is by definition a random variable). Possible states include all kinds of
entities.

The inverse property is isPossibleValueOf.

hasProbAssign

Type: Object property

Description:

A PR-OWL table is formed by many individual members of the class
ProbAssign, which are cells in that table. This object property relates one PR-OWL
table to its respective cells (ProbAssign elements).

The inverse property is isProbAssignIn.

hasProbDist

Type: Object property

Description:

This object property links a RV to its respective probability distributions, as
defined in that RV's home MFrags. Note that this property is not being defined as
functional, implying a polymorphic version of MEBN (where each RV can have
different distributions in different MFrags).

The inverse of this property is isProbDistOf.

hasResidentNode

Type: Object property

Description:

This object property links an MFrag with its respective resident node(s).

The inverse property is isResidentNodeIn

hasSkolem

Type: Object property

Description:

247

This object property relates one MFrag with the Skolem constants (i.e. an
individual from class Skolem) that are defined in that MFrag.

The inverse of this property is isSkolemIn.

hasStateName

Type: Object property

Description:

When a probability distribution is conveyed as an PR-OWL table, each
individual cell is represented as an individual of the ProbAssign class. This object
property refers to which state of a random variable (i.e. MFrag node) a given
probability assignment refers.

The property itself is functional, since one state can have only one probability
assignment for the configuration listed in each individual of the ProbAssign class.

hasStateProb

Type: Datatype property

Description:

This datatype property is used to store the actual probability of an individual
ProbAssign. Currently, OWL has no support for user defined datatypes, so instead of
using owl-p:prob datatype (which includes all decimals between 0 and 1 inclusive)
we are using xsd:decimal for compatibility purposes.

hasType

Type: Object property

Description:

In the extended MEBN logic that is the backbone of PR-OWL, each and
every entity has a type. The list of types consists of the individuals from class
MetaEntity. This functional object property defines the type of each entity by linking
it to an individual of the MetaEntity class.

Every entity has a MetaEntity (TypeLabel, CategoryLabel, Boolean, or a
domain-specific label) as a Type. As an example, an hypothetical indivudual of an
ObjectEntity class named Starship would have type Starship, which is a domain-
specific label for an ObjectEntity individual that happens to be a starship. That
domain-specific label is itself an individual of the MetaEntity class.

248

The inverse property is isTypeOf.

hasUID

Type: Datatype property

Description:

MEBN logic has the unique naming assumption, which is not assumed in
OWL (even though tools such as Protégé make that assumption for improved
reasoning purposes). In order to make sure that a tool that does not assume unique
identifies would not prevent MEBN reasoners to work, each MEBN entity has a
unique identifier assigned by this datatype property.

The UID itself is conveyed as a xsd:string, and the hasUID datatype property
is declared as functional in order to enforce uniqueness.

isArgTermIn

Type: Object property

Description:

This object property links an individual of class OVariable, Resident, Entity,
or Skolem to one ArgRelationship(s) that has individual as its argument. Each
ArgRelationship can have only one argument, but each individual of those classes
can refer to many ArgRelationships.

The inverse of this property is hasArgTerm.

isArgumentOf

Type: Object property

Description:

This object property links an Argument Relationship to its respective Node
(i.e. to the individual of class Node that has this ArgRelationship into its argument
list).

The inverse of this property is hasArgument.

isConditionantOf

Type: Object property

249

Description:

This object property links one possible state of a parent node to the
configuration that is conditioning its children state's probability distribution.

The inverse property is hasConditionant.

isContextInstanceOf

Type: Object property

Description:

This object property links a context node to its respective "generative resident
node" or built-in RV (i.e. the resident node or built-in RV from which the context
node is a pointer).

The inverse property is hasContextInstance.

isContextNodeIn

Type: Object property

Description:

This object property links one context node to the respective MFrag in which
that context node applies.

The inverse property is hasContext.

isDefault

Type: Datatype property

Description:

This datatype property indicates whether a probability distribution is the
default probability distribution of a node or not. Default probability distributions for
nodes are used when the context nodes of the MFrag containing those nodes are not
met.

isInputInstanceOf

Type: Object property

Description:

250

This object property links an input node to its "generative resident node", or
the resident node to which that input node is a copy.

The inverse property is hasInputInstance.

isInputNodeIn

Type: Object property

Description:

This object property links a node to the MFrags that have it as an input.

The inverse property is hasInputNode

isMFragOf

Type: Object property

Description:

This object property links one MFrag to one or more MTheories (i.e.
individuals of class MTheory) that have that MFrag as its component.

The inverse property is hasMFrag.

isNodeFrom

Type: Object property

Description:

This general object property links one node to the MFrag it belongs to.

The inverse property is hasNode.

isOVariableIn

Type: Object property

Description:

This functional object property relates one ordinary variable (i.e. an
individual from class OVariable) to its respective MFrag.

The inverse of this property is hasOVariable.

251

isParentOf

Type: Object property

Description:

This object property links a resident or input node of an MFrag with its
respective children, which are resident nodes in that same MFrag.

The inverse property is hasParent.

isPossibleValueOf

Type: Object property

Description:

This object property correlates one entity with the node(s) of one or more
MFrags that have such entity as a possible state.

Note that the individuals listed as being possible values of a node must form
a mutually exclusive, collectively exhaustive set. PR-OWL has the same tools for
enforcing exclusiveness (i.e. MEBN entity unique name assumption and the
existential and universal qualifiers acting together as a closure axiom), but the
domain expert must ensure completeness.

The inverse property is hasPossibleValues.

isProbAssingIn

Type: Object property

Description:

This is the inverse of the hasProbAssign object property and links one
individual probability assignment to its respective probability distribution table.

isProbDistOf

Type: Object property

Description:

This object property links a probability distribution to its respective RV
(resident node). Note that this property is functional, since each probability
distribution in a MFrag defines a unique RV.

252

The inverse of this property is hasProbDist.

isRepBySkolem

Type: Object property

Description:

This object property links one ordinary variable to the Skolem constant that
represents that ordinary variable in quantified expressions. The property is inverse
functional, since one Skolem constant can represent only the group of entities that
can be replaced with that ordinary variable in the model.

The inverse property is representsOVar.

isRepresentedAs

Type: Datatype property

Description:

This datatype property defines how a given declarative probability
distribution is expressed. Each probability distribution can be expressed in different
formats, and each format is defined by this datatype property. Possible formats
include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and
others. However, the declaration itself is stored in the hasDeclaration datatype
property as a string so parsers will have to know how to deal with the specific text
format of each declaration.

isResidentNodeIn

Type: Object property

Description:

This object property links an individual of class Node to the MFrag(s) that
have this node as a resident node.

The inverse property is hasResidentNode.

isSkolemIn

Type: Object property

Description:

253

This object property relates one Skolem constant (i.e. an individual from
class Skolem) to the MFrag in which it is defined.

The inverse of this property is hasSkolem.

isSubsBy

Type: Object property

Description:

This object property links one instance of class OVariable to type of the
entity that can substitute it. Each argument of a RV has its expected type defined
within the home MFrag of that RV. In PR-OWL, the type restrictions are defined
directly through the OVariable using the isSubsBy property. One MFrag can have
many OVariables (which can be themselves linked to many
SimpleArgRelationships) but each OVariable has a unique type, which is explicitly
defined by the type of the entity that can substibute that OVariable.

This object property is the inverse of subsOVar.

isTypeOf

Type: Object property

Description:

This is the inverse of hasType object property, and basically lists all the
MEBN entities that have its respective type defined by that specific individual of
either the MetaEntity class or the ObjectEntity class.

representsOVar

Type: Object property

Description:

This object property links a Skolem constant (i.e. an individual of class
Skolem) to the ordinary variable it represents in a quantifier expression. The property
is functional since each Skolem constant represents only one ordinary variable in the
model.

The inverse property is isRepBySkolem.

subsOVar

254

Type: Object property

Description:

This object property assigns MetaEntity individuals in order to define the
type of the substituters for each MFrag ordinary variable.

Its inverse property is the functional isSubsBy.

B.3 Naming Convention (optional)

For naming purposes, PR-OWL elements can be partitioned in two major groups:
Entities and all the other elements. This distinction comes from the fact that the second
group is basically a set of classes that provide the support for the probabilistic part of an
ontology. That is, the second group is the backbone of the MEBN-based probabilistic
representation that collectively form the PR-OWL semantics. As a result, all of that
supporting set elements are linked to an MFrag, which is the basic structure of a MEBN
model, and a great level of consistency and straightforwardness can be achieved by
adopting a naming convention that acknowledges this fact.

Therefore, a very simple, optional naming convention was used in this research
and has proved to be an important asset for keeping consistency and making maintenance
of the model easier. In addition, future implementations geared to facilitate the creation /
edition of probabilistic ontologies would certainly keep the majority of those supporting
elements hidden from the normal user so it seems reasonable that such a system performs
an automatic naming for those hidden elements.

Non-Entity elements

The convention adopted was based on blocks divided by underscore characters,
while multiple words within a block should be separated using the “camelback” notation
(e.g. KeepingTheFirstLetterCapitalized). Also, an ordering among the blocks should be
followed to enable any reader aware of the notation to infer the meaning of each element
on the basis of its name only. The general format is:

First block - MFrag: First letter(s) of the MFrag to which the element is linked. If
there are two MFrags with the same first letter then subsequent letters of the name should
be used (non-capitalized) until the ambiguity is resolved.

Second block – Name/relationship: name of the element or of its related node.
Usually, names of OVariables and Nodes are not abbreviated, while the longer names of
context or input RV terms should have most of its elements abbreviated.

Third block – Type (optional): type of an element or of its related node. This is an
optional block that has only one, non-abbreviated and non-capitalized word. Standard
types: context, input, ddecl (default declarative distribution), decl (non-default declarative

255

distribution), dtable (PR-OWL Table default distribution), table (PR-OWL Table non-
default distribution), cond (conditionant).

Fourth block – Discriminator (optional): This block should be used to
discriminate similar elements. When more than one number is used, separation is made
using a dot (e.g. 2.4 meaning the second of four elements in an argument relationship or
the second).

Here are some examples and their respective intended meaning:

SRD_sr: Ordinary variable “sr” from the Sensor Report Data MFrag.

S_CloakMode: Resident node “Cloak Mode” from the Starship MFrag (if an
input or context node then a type block would be necessary).

Z_CloakMode_input: Input node “Cloak Mode” from the Zone MFrag.

Z_ZoneEShips_ddecl_Netica: Default declarative distribution of node
ZoneEShips from Zone MFrag, written in Netica format.

Z_TprevPrevT_context: Context node “(tprev = Prev(t))” from the Zone MFrag.

Z_TprevPrevT_inner_prevT: Inner term “Prev(t)” of context node “(tprev =
Prev(t))” from the Zone MFrag.

Z_TprevPrevT_inner_prevT_2.2: Second argument (out of 2) from the
argument relationship (ArgRelationship) of the inner term “Prev(t)” of context node
“(tprev = Prev(t))” from the Zone MFrag.

Z_ZoneEShips_table_4.3.5: Probabilistic assignment for the fourth state of the
variable ZoneEShips from the Zone MFrag, given the third state of one of its parents and
the fifth state of its other parent (both states are represented as CondRelationships, which
include the name of the parent and its respective state).

DTS_OpSpec_inputCond_2.3: Conditionant relationship representing the
second state out of three states of input node OpSpec from the DangerToSelf MFrag.
Note that the type block has two values (input and cond) so the “camelback” notation is
used to separate those values inside the same block

Exceptions:

MFrags – Names of MFrags will be stated in the first block (not
abbreviated) followed by the suffix “_MFrag”. Example:
Starship_MFrag, DangerToSelf_MFrag.

MTheories – Names of MTheories will be stated in the first block (not
abbreviated) followed by the suffix “_MTheory”. Example:
StarTrek_MTheory, Confederation_MTheory.

Built-In RVs – PR-OWL built-in RVs cannot be changed by the
probabilistic ontology editor and should be used as is.

256

Entity elements

Each of the four types of entity element has its own peculiarity:

Boolean RV States: These are built-in to PR-OWL, so cannot be changed.

Categorical RV States: Names of categorical states should be preceded by a block
containing the first letters (capitalized) of the RV (node) they are state from. If there are
two RVs with the same first letter then subsequent letters of the name should be used
(non-capitalized) until the ambiguity is resolved. The name of the state itself is up to the
ontology engineer; provide that the unique naming assumption is respected.

Meta Entities: Built-In Meta Entities cannot be changed. Domain-specific Meta
Entities should have the same name of their respective object class followed by the suffix
“_Label”. Example: the Meta Entity that designate the type of individuals of class
Starship should be named Starship_Label.

Object Entities: The ontology engineer is free to choose any naming for the
classes of object entities and for its respective individuals, provide that the unique naming
assumption is respected.

B.4 PR-OWL Upper-Ontology Code

The following OWL code includes all the elements of the PR-OWL extension
formatted as an upper ontology.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://mason.gmu.edu/~pcosta/pr-owl/pr-owl.owl#"
 xml:base="http://mason.gmu.edu/~pcosta/pr-owl/pr-owl.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="OVariable">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Ordinary variables are placeholders used in MFrags to refer to non-specific entities as arguments in a
given MFrag's RVs.</rdfs:comment>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="ArgRelationship"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isArgTermIn"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>

257

 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isArgTermIn"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#ArgRelationship"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isOVariableIn"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="MFrag"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isOVariableIn"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isOVariableIn"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="isSubsBy"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="MetaEntity"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#MetaEntity"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isSubsBy"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isSubsBy"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="representsOVar"/>

258

 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="Skolem"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="BuiltInRV">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Individuals of this class represent the random variables from MEBN logic's built-in MFrags: logical
connectives, quantifiers, the equality random variable. Likewise their function in MEBN logic, these
individuals allow PR-OWL ontologies to represent a rich family of probability distributions over interpretations
of first-order logic.
Note that MEBN's built-in Indirect Reference MFrag is already represented in PR-OWL via its recursive
scheme of building complex formulas.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasPossibleValues"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:ID="BooleanRVStates"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="Input"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasInputInstance"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Domain_Res"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#BooleanRVStates"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Finding_res"/>
 </owl:disjointWith>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>
 <owl:Class rdf:ID="Context">

259

 <rdfs:subClassOf>
 <owl:Class rdf:ID="Node"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasInnerTerm"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Context"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isContextInstanceOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:ID="Entity"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="Resident"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >In general, MFrags impose constraints to the type of arguments each of its resident RVs should accept.
The individuals of the Context class represent these types of constraints.
In PR-OWL, the class Context is the only subclass of the Node class that accepts composite RV terms as
arguments (that is, uses the complete ArgRelationship instead of the more restricted
SimpleArgRelashionship).
A context node is either satisfiable or not, which means its possible states are instances of the
BooleanRVStates class.
</rdfs:comment>
 <owl:disjointWith>
 <owl:Class rdf:about="#Input"/>
 </owl:disjointWith>
 <rdfs:subClassOf>

260

 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:ID="Domain_MFrag"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isContextNodeIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Domain_MFrag">
 <owl:disjointWith>
 <owl:Class rdf:ID="Finding_MFrag"/>
 </owl:disjointWith>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Domain MFrags is the subclass of class MFrag that includes all the domain-specific MFrags. It is disjoint
with class Finding_MFrag. All generative MFrags created by the ontology engineer (i.e. the domain expert)
are members of this class.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#MFrag"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Context"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasContextNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="CondRelationship">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasParentState"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasParentName"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasParentState"/>
 </owl:onProperty>

261

 <owl:allValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParentName"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Node"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The conditional relationship class is a reified property representing a (parent) node and one of its
possible states. Individuals of this class are used to built PR-OWL probabilistic distribution tables. Each cell
of such a table corresponds to a probability assignment of a possible value of a node given one combination
of the states of its parents. Each individual of class CondRelationship represents one parent/state pair, so a
probability assigment is conditioned by a set of CondRelationship pairs (one for each parent
node).</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Node"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParentName"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasParentState"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:ID="ProbAssign"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isConditionantOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="ProbDist">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

262

 <owl:ObjectProperty rdf:ID="isProbDistOf"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This class is meant to represent the probability distributions that are defined in an MFrag to each of its
resident nodes (random variables). A probability distribution can be described using a proprietary declarative
format, such as a Netica table or a Quiddity function, or via an PR-OWL table (which has probability
assigments as its cells).</rdfs:comment>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="PR-OWLTable">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#ProbDist"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#ProbAssign"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasProbAssign"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >An PR-OWL table has all the probability assignments for each state of a RV stored in a xsd:decimal
format (future implementations might use the pr-owl:prob format, but currently that means incompatibilities
with OWL, which has no support for PR-OWL custom datatypes).
This format for storing probability distributions cannot represent complex cases for which only formulas can
represent a probability distribution (e.g. a node that have a variable number of parents) and usually incurs in
huge ontologies, since each table can have many cells and each cell is an individual of the ProbAssign
class. Therefore, PR-OWL tables are only recommended for the simplest models in which the maximum
level of compatibility is desired.</rdfs:comment>
 <owl:disjointWith>

263

 <owl:Class rdf:ID="DeclarativeDist"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasProbAssign"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#ProbAssign"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Finding_MFrag">
 <owl:disjointWith rdf:resource="#Domain_MFrag"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:ID="Finding_input"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasInputNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Finding MFrags are used to convey information about findings, which is the default way of entering
evidence in a MEBN MTheory so a probabilistic algorithm can be applied to perform inferences regarding
the new evidence. They have no context nodes, only one input and one resident node. </rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasResidentNode"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Finding_res"/>
 </owl:allValuesFrom>

264

 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInputNode"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Finding_input"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Finding_res"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInputNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#MFrag"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="ObjectEntity">
 <owl:disjointWith>
 <owl:Class rdf:about="#BooleanRVStates"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Entity"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#OVariable"/>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="subsOVar"/>

265

 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:ID="CategoricalRVStates"/>
 </owl:disjointWith>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The class ObjectEntity aggregates the MEBN entities that are real world concepts of interest in a
domain. They are akin to objects in OO models and to frames in frame-based knowledge
systems.</rdfs:comment>
 <owl:disjointWith>
 <owl:Class rdf:about="#MetaEntity"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Input">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#ArgRelationship"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasArgument"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isInputNodeIn"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputNodeIn"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>

266

 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isInputInstanceOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInnerTerm"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Input"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >In PR-OWL, an input node is basically a "copy" of a resident node that is used as an input in a given
MFrag. Thus, each individual of class Input is linked with an individual of class Resident via the property
isInputInstanceOf.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Node"/>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Context"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

267

 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Resident"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Finding_res">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasParent"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Finding_input"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <BooleanRVStates rdf:ID="absurd">
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="equalto">
 <hasPossibleValues>
 <BooleanRVStates rdf:ID="true">
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="or">
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues>
 <BooleanRVStates rdf:ID="false">
 <hasType>
 <MetaEntity rdf:ID="Boolean">
 <hasType>
 <MetaEntity rdf:ID="TypeLabel">
 <hasUID rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"

268

 >!TypeLabel</hasUID>
 <isTypeOf rdf:resource="#TypeLabel"/>
 <isTypeOf rdf:resource="#Boolean"/>
 <rdfs:comment rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"
 >This MetaEntity shold be assigned for the labels of all domain specific types and
subtypes.</rdfs:comment>
 <isTypeOf>
 <MetaEntity rdf:ID="CategoryLabel">
 <hasUID rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"
 >!CategoryLabel</hasUID>
 <hasType rdf:resource="#TypeLabel"/>
 <rdfs:comment rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"
 >This MetaEntity should be assigned to the labels for the states of random
variables whose domain is a list of categorical values</rdfs:comment>
 </MetaEntity>
 </isTypeOf>
 <hasType rdf:resource="#TypeLabel"/>
 </MetaEntity>
 </hasType>
 <rdfs:comment rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#string"
 >This MetaEntity should be applied to the truth-values T, F and !
(absurd).</rdfs:comment>
 <isTypeOf rdf:resource="#absurd"/>
 <isTypeOf rdf:resource="#true"/>
 <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >!Boolean</hasUID>
 <isTypeOf rdf:resource="#false"/>
 </MetaEntity>
 </hasType>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="forall">
 <hasPossibleValues rdf:resource="#false"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 <hasPossibleValues rdf:resource="#true"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This state corresponds to the meaningfull hypotheses that have a false truth-value.
</rdfs:comment>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="not">
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 <hasPossibleValues rdf:resource="#false"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="implies">
 <hasPossibleValues rdf:resource="#false"/>
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 </BuiltInRV>

269

 </isPossibleValueOf>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="iff">
 <hasPossibleValues rdf:resource="#absurd"/>
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues rdf:resource="#false"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <isPossibleValueOf rdf:resource="#or"/>
 <isPossibleValueOf rdf:resource="#equalto"/>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="and">
 <hasPossibleValues rdf:resource="#false"/>
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <isPossibleValueOf>
 <BuiltInRV rdf:ID="exists">
 <hasPossibleValues rdf:resource="#false"/>
 <hasPossibleValues rdf:resource="#true"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >F</hasUID>
 </BooleanRVStates>
 </hasPossibleValues>
 <hasPossibleValues rdf:resource="#absurd"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <isPossibleValueOf rdf:resource="#iff"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This state corresponds to the meaningfull hypotheses that have a false truth-value.
</rdfs:comment>
 <isPossibleValueOf rdf:resource="#and"/>
 <hasType rdf:resource="#Boolean"/>
 <isPossibleValueOf rdf:resource="#exists"/>
 <isPossibleValueOf rdf:resource="#equalto"/>
 <isPossibleValueOf rdf:resource="#not"/>
 <isPossibleValueOf rdf:resource="#forall"/>
 <isPossibleValueOf rdf:resource="#implies"/>
 <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >T</hasUID>
 </BooleanRVStates>
 </hasPossibleValues>
 <hasPossibleValues rdf:resource="#false"/>
 <hasPossibleValues rdf:resource="#absurd"/>
 </BuiltInRV>
 </isPossibleValueOf>
 <isPossibleValueOf rdf:resource="#forall"/>
 <hasType rdf:resource="#Boolean"/>
 <isPossibleValueOf rdf:resource="#and"/>
 <isPossibleValueOf rdf:resource="#implies"/>
 <isPossibleValueOf rdf:resource="#iff"/>
 <isPossibleValueOf rdf:resource="#or"/>

270

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This state is used for the cases in which a truth-value cannot be applied to a random variable
(i.e. meaningless, undefined, or contradictory hypotheses).</rdfs:comment>
 <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >!</hasUID>
 <isPossibleValueOf rdf:resource="#exists"/>
 <isPossibleValueOf rdf:resource="#not"/>
 </BooleanRVStates>
 <BooleanRVStates rdf:about="#true"/>
 </owl:oneOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Resident"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Domain_Res"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Finding_input"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#BuiltInRV"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Finding_MFrag"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isResidentNodeIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >0</owl:cardinality>
 </owl:Restriction>

271

 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Finding_MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <BooleanRVStates rdf:about="#absurd"/>
 <BooleanRVStates rdf:about="#true"/>
 </owl:oneOf>
 </owl:Class>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This is the subclass of class Resident (node) that includes all finding nodes. Finding nodes convey new
evidence into a probabilistic system via a Finding_MFrag. The class is disjoint with classes Domain_res and
BuiltInRV.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:about="#Node">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isNodeFrom"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >A node is part of an MFrag and it can be a random variable that is defined within that MFrag (a resident
node), a RV that input values to nodes within that MFrag (an input node), or a RV that expresses the context
in which the probability distributions within that MFrag are valid (a context node).</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>

272

 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isInnerTermOf"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Node"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Node"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInnerTerm"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isNodeFrom"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#ArgRelationship"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasArgument"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#MetaEntity">
 <owl:disjointWith>
 <owl:Class rdf:about="#BooleanRVStates"/>
 </owl:disjointWith>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The MetaEntity class includes all the entities that convey specific definitions about entities (e.g.
typelabels that name the possible types of entities).</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Entity"/>
 </rdfs:subClassOf>

273

 <owl:disjointWith rdf:resource="#ObjectEntity"/>
 <owl:disjointWith>
 <owl:Class rdf:about="#CategoricalRVStates"/>
 </owl:disjointWith>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isTypeOf"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isTypeOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="MTheory">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasMFrag"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >An MTheory is a collection of MFrags that statisfies consistency constraints ensuring the existence of a
unique joint distribution over the random variables mentioned in the MTheory. In PR-OWL, the class
MTheory allows a probabilistic ontology to have more than one valid MTheory to represent its RVs, and each
individual of that class is basically a list of the MFrags that collectively form that MTheory. In addition, one
MFrag can be part of more than one MTheory.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#MFrag"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasMFrag"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

274

 <owl:Class rdf:about="#ProbAssign">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasStateName"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Each cell in an PR-OWL table has a probability assignment for the state of a RV given the states of its
parent nodes. Thus, the resulting relationship is N-ary and we opted for representing it via a reified relation
(ProbAssign) that includes the name of the state to which the probability is being assigned, the probability
value itself, and the list of states of parent nodes (i.e. conditionants) that collectively define the context in
which that probability assignment is valid. Also, individuals of the ProbAssign class have an object property
that links them with its respective PR-OWL table. </rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasStateName"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#CondRelationship"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasConditionant"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasStateProb"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#CondRelationship"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasConditionant"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

275

 <owl:ObjectProperty rdf:about="#hasStateName"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Entity"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#MFrag">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasNode"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Node"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Skolem"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasSkolem"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#OVariable"/>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:ID="hasOVariable"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>

276

 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isMFragOf"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#MTheory"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:someValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MEBN Fragments (MFrags) are the basic structure of any MEBN logic model. MFrags represent
influences among clusters of related RVs and can portray repeated patters using ordinary variables as
placeholders in to which entity identifiers can be substituted. In PR-OWL, each individual the MFrag class
represents a MEBN Fragment (MFrag).</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Input"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInputNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Node"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasNode"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#CategoricalRVStates">
 <owl:disjointWith rdf:resource="#MetaEntity"/>
 <owl:disjointWith rdf:resource="#ObjectEntity"/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Entity"/>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Nodes represent random variables, which by definition have a list of mutually exclusive, collectively
exhaustive states. In PR-OWL, those states are represented by individuals from class Entity. Some random
variables have a list of categorical values as its possible states, and these are represented by elements from
subclass CategoricalRVStates.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValue rdf:resource="#CategoryLabel"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasType"/>
 </owl:onProperty>

277

 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#BooleanRVStates"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:ID="SimpleArgRelationship">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Each generic random variable can have many arguments. Arguments are usually restricted in their type
and meaning via the context nodes of an MFrag. In order to model these complex N-ary relations, PR-OWL
makes use of the SimpleArgRelationship class, which is a reified relation that conveys the number and order
of arguments that each RV expects, it's type (defined via a link to the TypeContext class), and the link to the
RV itself.</rdfs:comment>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasArgTerm"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#OVariable"/>
 </owl:Restriction>
 <owl:Class rdf:about="#ArgRelationship"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasArgTerm"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#OVariable"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Node"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="isArgumentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isArgumentOf"/>
 </owl:onProperty>
 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:maxCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>
 <owl:Class rdf:ID="Generative_input">
 <rdfs:subClassOf rdf:resource="#Input"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

278

 <owl:Class rdf:about="#Domain_Res"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#Finding_input"/>
 </owl:disjointWith>
 </owl:Class>
 <owl:Class rdf:about="#Entity">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#MetaEntity"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasType"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="hasUID"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isConditionantOf"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#ProbAssign"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#MetaEntity"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasType"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MEBN logic treats the world as being comprised of entities that have attributes and are related to other
entities. The logic assumes uniqueness or each concept (i.e. unique name assumption), so each entity in a
MEBN model has a unique identifier and no unique identifier can be assigned to more than one entity.
PR-OWL follows MEBN syntax and semantics for defining entities so each member of the class Entity has a
unique identifier assigned by the datatype property hasUID. OWL doesn't have the unique name assumption
so the UID can be seen a tool for providing maximum compatibility with legacy OWL ontologies, since
parsers may refer to it as a means to enforce uniqueness among declared entities.
It is important to note that not all concepts in an ontology have a UID, but only those which will be
considered as part of the probabilistic model that is implicit in any probabilistic ontology. This structure
allows mixing legacy deterministic ontologies with probabilististic ones. That allows knowledge engineers to

279

assign PR-OWL definitions only to the parts of the domain for which plausible reasoning is
desired.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Node"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isPossibleValueOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasType"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </owl:Class>
 <owl:Class rdf:about="#Finding_input">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Finding_MFrag"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputNodeIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Finding_res"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Finding_res"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>

280

 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Generative_input"/>
 <rdfs:subClassOf rdf:resource="#Input"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Finding_res"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isInputNodeIn"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Finding_MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Finding_res"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#DeclarativeDist">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasDeclaration"/>
 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:ID="isRepresentedAs"/>

281

 </owl:onProperty>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 <owl:Class rdf:about="#ProbDist"/>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 <owl:disjointWith rdf:resource="#PR-OWLTable"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >A declarative distribution is a distribution that is conveyed via a xsd:string datatype, using a specific
format defined in the hasDeclaration datatype property. In order to allow a MEBN algorithm to work, a parser
should be able to retrieve the probability distribution information in the format it is stored and then pass that
information to the MEBN algorithm in its own proprietaty format.
Describing a probability distribution is a much more compact and flexible way of conveying it. However, it
assumes that an OWL-P parser would understand the format in which the information is stored. PR-OWL
tables, on the other hand, convey probability distributions in a more interoperable way, but are not flexible
enough to represent complex distributions such as the cases in which a node has multiple possible parents.
For added compatibility, one probability distribution can be stored in multiple formats (i.e. multiple
DeclarativeDist individuals for the same RV).</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:about="#Resident">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#Input"/>
 </owl:unionOf>

282

 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Input"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasProbDist"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#ProbDist"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#MFrag"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#ProbDist"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasProbDist"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

283

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#ArgRelationship"/>
 </owl:allValuesFrom>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isArgTermIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Entity"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasInnerTerm"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Resident"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#Node"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasArgument"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#SimpleArgRelationship"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#Context"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Resident nodes are the random variables that have their respective probability distribution defined in the
MFrag.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Entity"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#BooleanRVStates">
 <owl:disjointWith rdf:resource="#CategoricalRVStates"/>
 <owl:disjointWith rdf:resource="#MetaEntity"/>
 <rdfs:subClassOf rdf:resource="#Entity"/>
 <rdfs:subClassOf>
 <owl:Restriction>

284

 <owl:hasValue rdf:resource="#Boolean"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasType"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#ObjectEntity"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >The BooleanRVStates class is formed by the Boolean truth-value states and are applied to Boolean
random variables.</rdfs:comment>
 </owl:Class>
 <owl:Class rdf:about="#Domain_Res">
 <owl:disjointWith rdf:resource="#Finding_res"/>
 <rdfs:subClassOf rdf:resource="#Resident"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This is the subclass of class Resident (node) that includes all domain-specific resident nodes. It is
disjoint with classes Finding_res and BuiltInRV.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#Domain_MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Domain_Res"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isParentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#Domain_MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Generative_input"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#Domain_Res"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:subClassOf>
 <owl:disjointWith rdf:resource="#BuiltInRV"/>
 </owl:Class>

285

 <owl:Class rdf:about="#ArgRelationship">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasArgTerm"/>
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#OVariable"/>
 <owl:Class rdf:about="#Node"/>
 <owl:Class rdf:about="#Entity"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Each generic random variable can have many arguments. Arguments are usually restricted in their type
and meaning via the context nodes of an MFrag. In order to model these complex N-ary relations, PR-OWL
makes use of the ArgRelationship class, which is a reified relation that conveys the number and order of
arguments that each RV expects, it's type (defined via a link to the OVariable class), and the link to the RV
itself.
MEBN logic has the concept of a simple and a composite random variable term. Simple RV terms accepts
variables and constant symbols as arguments. Composite RV terms also accepts other RV terms as
arguments. In PR-OWL, the class ArgRelashionship models composite RV terms, while its
SimpleArgRelashionship subclass models simple RV terms.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:ID="hasArgNumber"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#Node"/>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#isArgumentOf"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:about="#Skolem">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#ArgRelationship"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isArgTermIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

286

 >Each individual of class Skolem represents a Skolem constant in a MEBN quantifier random variable.
Each MEBN quantifier random variable corresponds to a first-order formula beginning with a universal or
existential quantifier. The Skolem constant in the MEBN random variable represents a generic individual
within the scope of the universal or existential quantifier of the corresponding first-order formula.
MEBN logic contains a set of built-in MFrags for quantifier random variables. In PR-OWL modelers can use
individuals of class Skolem to define distributions for Skolem constants used in quantifier random
variables.</rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#ArgRelationship"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isArgTermIn"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="isSkolemIn"/>
 </owl:onProperty>
 <owl:allValuesFrom rdf:resource="#MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#OVariable"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#representsOVar"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#representsOVar"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#OVariable"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#isSkolemIn"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#MFrag"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#hasContextNode">
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasNode"/>
 </rdfs:subPropertyOf>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isContextNodeIn"/>
 </owl:inverseOf>

287

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an MFrag to the context nodes being applied to it.
The inverse property is isContextIn</rdfs:comment>
 <rdfs:range rdf:resource="#Context"/>
 <rdfs:domain rdf:resource="#Domain_MFrag"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasInnerTerm">
 <rdfs:range rdf:resource="#Node"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isInnerTermOf"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Node"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property makes the connection between the many possible inner terms inside a MENB
equation. It is used to decompose random variable terms usually employed in context and input nodes.
The inverse property is isInnerTermOf.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isInputNodeIn">
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#isNodeFrom"/>
 </rdfs:subPropertyOf>
 <rdfs:domain rdf:resource="#Input"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a node to the MFrags that have it as an input.
The inverse property is hasInputNode.</rdfs:comment>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasInputNode"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#MFrag"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isParentOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasParent"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#Resident"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#Input"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a resident or input node of an MFrag with its respective children, which are
resident nodes in that same MFrag.
The inverse property is hasParent.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isMFragOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasMFrag"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#MFrag"/>
 <rdfs:range rdf:resource="#MTheory"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

288

 >This object property links one MFrag to one or more MTheories (i.e. individuals of class MTheory) that
have that MFrag as its component.
The inverse property is hasMFrag.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasInputNode">
 <rdfs:range rdf:resource="#Input"/>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasNode"/>
 </rdfs:subPropertyOf>
 <owl:inverseOf rdf:resource="#isInputNodeIn"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links each MFrag with its respective input nodes.
The inverse property is isInputNodeIn</rdfs:comment>
 <rdfs:domain rdf:resource="#MFrag"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasArgTerm">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one instance of class ArgRelationship (which is linked to a RV) to an internal
variable within the home MFrag where its RV is resident, to a node that is being used as argument in that
RV, or to a MEBN entity.
This object property is the inverse of isArgTermIn.
One individual of the class ArgRelationship can have only one RV (since it refers to a specific argument of
an RV), and thus can be related to only one OVariable (Simple RV Terms) or one Node (Composite RV
Terms), which makes that property a functional one.
The inverse property is isArgTermIn.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isArgTermIn"/>
 </owl:inverseOf>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Entity"/>
 <owl:Class rdf:about="#OVariable"/>
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#Skolem"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:domain rdf:resource="#ArgRelationship"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:ID="isProbAssignIn">
 <rdfs:domain rdf:resource="#ProbAssign"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This is the inverse of the hasProbAssign object property and links one individual probability assignment
to its respective probability distribution table.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#PR-OWLTable"/>
 <owl:inverseOf>
 <owl:InverseFunctionalProperty rdf:about="#hasProbAssign"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasInputInstance">
 <rdfs:range rdf:resource="#Input"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf"/>

289

 </owl:inverseOf>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a resident node or a built-in RV to its many possible "input node instances", or
the instances of input nodes that take their values from that resident node or built-in RV.
The inverse property is isInputInstanceOf. </rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isContextNodeIn">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one context node to the respective MFrag in which that context node applies.
The inverse property is hasContext.</rdfs:comment>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#isNodeFrom"/>
 </rdfs:subPropertyOf>
 <rdfs:domain rdf:resource="#Context"/>
 <rdfs:range rdf:resource="#Domain_MFrag"/>
 <owl:inverseOf rdf:resource="#hasContextNode"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasProbDist">
 <rdfs:range rdf:resource="#ProbDist"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isProbDistOf"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Resident"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a RV to its respective probability distributions, as defined in that RV's home
MFrags. Note that this property is not being defined as functional, implying a polymorphic version of MEBN
(where each RV can have different distributions in different MFrags).
The inverse of this property is isProbDistOf.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isSkolemIn">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property relates one Skolem constant (i.e. an individual from class Skolem) to the MFrag in
which it is defined.
The inverse of this property is hasSkolem.</rdfs:comment>
 <rdfs:range rdf:resource="#MFrag"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasSkolem"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Skolem"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isConditionantOf">
 <rdfs:domain rdf:resource="#CondRelationship"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one possible state of a parent node to the configuration that is conditioning its
children state's probability distribution.
The inverse property is hasConditionant.</rdfs:comment>
 <owl:inverseOf>

290

 <owl:ObjectProperty rdf:about="#hasConditionant"/>
 </owl:inverseOf>
 <rdfs:range rdf:resource="#ProbAssign"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isPossibleValueOf">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasPossibleValues"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Entity"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Node"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property correlates one entity with the node(s) of one or more MFrags that have such entity
as a possible state.
Note that the individuals listed as being possible values of a node must form a mutually exclusive,
collectively exhaustive set. PR-OWL has the same tools for enforcing exclusiveness (i.e. MEBN entity
unique name assumption and the existential and universal qualifiers acting together as a closure axiom), but
the domain expert must ensure completeness.
The inverse property is hasPossibleValues.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isResidentNodeIn">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#hasResidentNode"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Resident"/>
 <rdfs:range rdf:resource="#MFrag"/>
 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#isNodeFrom"/>
 </rdfs:subPropertyOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an individual of class Node to the MFrag(s) that have this node as a resident
node.
The inverse property is hasResidentNode</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasParent">
 <rdfs:domain rdf:resource="#Resident"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#Input"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a resident node of an MFrag with its respective parent(s), which has(have) to
be an individual of either the class Resident or the class Input.
The inverse property is isParentOf.
</rdfs:comment>
 <owl:inverseOf rdf:resource="#isParentOf"/>

291

 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#representsOVar">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a Skolem constant (i.e. an individual of class Skolem) to the ordinary variable it
represents in a quantifier expression. The property is functional since each Skolem constant represents only
one ordinary variable in the model.
The inverse property is isRepBySkolem.</rdfs:comment>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="isRepBySkolem"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#Skolem"/>
 <rdfs:range rdf:resource="#OVariable"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasSkolem">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property relates one MFrag with the Skolem constants (i.e. an individual from class Skolem)
that are defined in that MFrag.
The inverse of this property is isSkolemIn.</rdfs:comment>
 <rdfs:domain rdf:resource="#MFrag"/>
 <owl:inverseOf rdf:resource="#isSkolemIn"/>
 <rdfs:range rdf:resource="#Skolem"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasNode">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one MFrag with its nodes.
The inverse property is isNodeFrom</rdfs:comment>
 <rdfs:domain rdf:resource="#MFrag"/>
 <rdfs:range rdf:resource="#Node"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="#isNodeFrom"/>
 </owl:inverseOf>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isRepBySkolem">
 <rdfs:range rdf:resource="#Skolem"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one ordinary variable to the Skolem constant that represents that ordinary
variable in quantified expressions. The property is inverse functional, since one Skolem constant can
represent only the group of entities that can be replaced with that ordinary variable in the model.
The inverse property is representsOVar.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
 <owl:inverseOf rdf:resource="#representsOVar"/>
 <rdfs:domain rdf:resource="#OVariable"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasPossibleValues">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property defines what are the possible values of a node in an MFrag (which is by definition a
random variable). Possible states include all kinds of entities.
The inverse property is isPossibleValueOf</rdfs:comment>
 <owl:inverseOf rdf:resource="#isPossibleValueOf"/>
 <rdfs:range rdf:resource="#Entity"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#BuiltInRV"/>
 <owl:Class rdf:about="#Node"/>

292

 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isNodeFrom">
 <rdfs:range rdf:resource="#MFrag"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This general object property links one node to the MFrag it belongs to.
The inverse property is hasNode</rdfs:comment>
 <rdfs:domain rdf:resource="#Node"/>
 <owl:inverseOf rdf:resource="#hasNode"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isInputInstanceOf">
 <rdfs:domain rdf:resource="#Input"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an input node to its "generative resident node", or the resident node to which
that input node is a copy.
The inverse property is hasInputInstance.</rdfs:comment>
 <owl:inverseOf rdf:resource="#hasInputInstance"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasResidentNode">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an MFrag with its respective resident node(s).
The inverse property is isResidentNodeIn</rdfs:comment>
 <rdfs:subPropertyOf rdf:resource="#hasNode"/>
 <rdfs:range rdf:resource="#Resident"/>
 <owl:inverseOf rdf:resource="#isResidentNodeIn"/>
 <rdfs:domain rdf:resource="#MFrag"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isContextInstanceOf">
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Domain_Res"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links context node to its "generative resident node" or built-in RV (i.e. the resident
node or built-in RV from which the context node is a pointer).
The inverse property is hasContextInstance</rdfs:comment>
 <rdfs:domain rdf:resource="#Context"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="hasContextInstance"/>
 </owl:inverseOf>

293

 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasMFrag">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one MTheory with its respective MFrags. Usually, a probabilistic ontology will
have only one MTheory as a means to convey the global joint probability distribution of its random variables.
However, MEBN logic allows many possible MTheories to represent a given domain, so it is reasonable to
infer that in some circunstances it might be preferable to have one probability ontology being represented by
more than one MTheory.
The inverse property is isMFragOf</rdfs:comment>
 <rdfs:domain rdf:resource="#MTheory"/>
 <owl:inverseOf rdf:resource="#isMFragOf"/>
 <rdfs:range rdf:resource="#MFrag"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasContextInstance">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Domain_Res"/>
 <owl:Class rdf:about="#BuiltInRV"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a resident node or a built-in RV to its many possible "context node instances",
or the instances of context nodes that take their values from that resident node or built-in RV.
The inverse property is isContextInstanceOf. </rdfs:comment>
 <rdfs:range rdf:resource="#Context"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
 <owl:inverseOf rdf:resource="#isContextInstanceOf"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isOVariableIn">
 <owl:inverseOf>
 <owl:InverseFunctionalProperty rdf:about="#hasOVariable"/>
 </owl:inverseOf>
 <rdfs:domain rdf:resource="#OVariable"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#MFrag"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This functional object property relates one ordinary variable (i.e. an individual from class OVariable) to its
respective MFrag.
The inverse of this property is hasOVariable.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isProbDistOf">
 <rdfs:domain rdf:resource="#ProbDist"/>
 <rdfs:range rdf:resource="#Resident"/>
 <owl:inverseOf rdf:resource="#hasProbDist"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a probability distribution to its respective RV (resident node). Note that this
property is functional, since each probability distribution in a MFrag defines a unique RV.
The inverse of this property is hasProbDist.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasConditionant">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Each instance of the class ProbAssign corresponds to the probability assigment for a given state of a
RV. This probability assignment is conditioned by the parent RVs of that RV. This object property conveys

294

the list of the states of the parent RV which have influenced that specific probability assignment. Since any
MEBN entity can be a state in a RV, this property has MEBNEntity class as its range.
The inverse property is isConditionantOf</rdfs:comment>
 <owl:inverseOf rdf:resource="#isConditionantOf"/>
 <rdfs:range rdf:resource="#CondRelationship"/>
 <rdfs:domain rdf:resource="#ProbAssign"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isTypeOf">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This is the inverse of hasType object property, and basically lists all the MEBN entities that have its
respective type defined by that specific individual of either the MetaEntity class or the ObjectEntity
class.</rdfs:comment>
 <rdfs:domain rdf:resource="#MetaEntity"/>
 <rdfs:range rdf:resource="#Entity"/>
 <owl:inverseOf>
 <owl:FunctionalProperty rdf:about="#hasType"/>
 </owl:inverseOf>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasParentName">
 <rdfs:range rdf:resource="#Node"/>
 <rdfs:domain rdf:resource="#CondRelationship"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a CondRelationship to a Node. The reified conditional relationship is used to
build PR-OWL Tables. One table usually has many probability assignments (which correspond to cells in a
table), and each probability assignment has a set of conditionants. Conditionants are the states of the
parents of a node that form a combination where a given probability assignment holds. Each
CondRelationship defines a pair parent/state-of-parent, and the hasParentName property defines the parent
name of that pair. </rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isArgTermIn">
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>
 <owl:inverseOf rdf:resource="#hasArgTerm"/>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#OVariable"/>
 <owl:Class rdf:about="#Resident"/>
 <owl:Class rdf:about="#Entity"/>
 <owl:Class rdf:about="#Skolem"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#ArgRelationship"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an individual of class OVariable, Resident, Entity, or Skolem to one
ArgRelationship(s) that has individual as its argument. Each ArgRelationship can have only one argument,
but each individual of those classes can refer to many ArgRelationships.
The inverse of this property is hasArgTerm.</rdfs:comment>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#isInnerTermOf">
 <owl:inverseOf rdf:resource="#hasInnerTerm"/>
 <rdfs:range rdf:resource="#Node"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property is used to model expressions.

295

The inverse property is hasInnerTerm</rdfs:comment>
 <rdfs:domain rdf:resource="#Node"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hasStateName">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >When a probability distribution is conveyed as an PR-OWL table, each individual cell is represented as
an individual of the ProbAssign class. This object property refers to which state of a random variable (i.e.
MFrag node) a given probability assignment refers to.
The property itself is functional, since one state can have only one probability assignment for the
configuration listed in each individual of the ProbAssign class.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 <rdfs:range rdf:resource="#Entity"/>
 <rdfs:domain rdf:resource="#ProbAssign"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:about="#hasUID">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MEBN logic has the unique naming assumption, which is not assumed in OWL (even though tools such
as Protege make that assumption for improved reasoning purposes). In order to make sure that a tool that
does not assume unique identifies would not prevent MEBN reasoners to work, each MEBN entity has a
unique identifier assigned by this datatype property.
The UID itself is conveyed as a xsd:string, and the hasUID datatype property is declared as functional in
order to enforce uniqueness.</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Entity"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:about="#isRepresentedAs">
 <rdfs:domain rdf:resource="#DeclarativeDist"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This datatype property defines how a given declarative probability distribution is expressed. Each
probability distribution can be expressed in different formats, and each format is defined by this datatype
property. Possible formats include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and
others. However, the declaration itself is stored in the hasDeclaration datatype property as a string so
parsers will have to know how to deal with the specific text format of each declaration.</rdfs:comment>
 <rdfs:range>
 <owl:DataRange>
 <owl:oneOf rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MS_DSC</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Quiddity_SPI</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Netica_DNE</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >BIF</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Hugin_NET</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">

296

 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Other</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >PR-OWL_MEBN</rdf:first>
 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
 </rdf:rest>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Ergo_ENT</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >IDEAL_IDE</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Genie_DSL</rdf:first>
 </rdf:rest>
 </rdf:rest>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >MS_XBN</rdf:first>
 </rdf:rest>
 </rdf:rest>
 </rdf:rest>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >BNIF</rdf:first>
 </owl:oneOf>
 </owl:DataRange>
 </rdfs:range>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
 </owl:DatatypeProperty>
 <owl:FunctionalProperty rdf:about="#isSubsBy">
 <rdfs:range rdf:resource="#MetaEntity"/>
 <rdfs:domain rdf:resource="#OVariable"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links one instance of class OVariable to type of the entity that can substitute it. Each
argument of a RV has its expected type defined within the home MFrag of that RV. In PR-OWL, the type
restrictions are defined directly through the OVariable using the isSubsBy property. One MFrag can have
many OVariables (which can be themselves linked to many SimpleArgRelationships) but each OVariable
has a unique type, which is explicitly defined by the type of the entity that can substibute that OVariable.
This object property is the inverse of subsOVar.</rdfs:comment>
 <owl:inverseOf>
 <owl:InverseFunctionalProperty rdf:about="#subsOVar"/>
 </owl:inverseOf>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#hasParentState">
 <rdfs:domain rdf:resource="#CondRelationship"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 <rdfs:range rdf:resource="#Entity"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links a CondRelationship to an Entity. The reified conditional relationship is used to
build PR-OWL Tables. One table usually has many probability assignments (which correspond to cells in a
table), and each probability assignment has a set of conditionants. Conditionants are the states of the

297

parents of a node that form a combination where a given probability assignment holds. Each
CondRelationship defines a pair parent/state-of-parent, and the hasParentState property defines the parent
state of that pair.</rdfs:comment>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#isArgumentOf">
 <rdfs:range rdf:resource="#Node"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 <owl:inverseOf>
 <owl:InverseFunctionalProperty rdf:about="#hasArgument"/>
 </owl:inverseOf>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property links an Argument Relationship to its respective Node (i.e. to the individual of class
Node that has this ArgRelationship into its argument list).
The inverse of this property is hasArgument.
</rdfs:comment>
 <rdfs:domain rdf:resource="#ArgRelationship"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#hasType">
 <owl:inverseOf rdf:resource="#isTypeOf"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >In the extended MEBN logic that is the backbone of PR-OWL, each and every entity has a type. The list
of types consists of the individuals from class MetaEntity.
This functional object property defines the type of each entity by linking it to an individual of the MetaEntity
class.
Every entity has a MetaEntity (TypeLabel, CategoryLabel, Boolean, or a domain-specific label) as a Type.
As an example, an hypothetical indivudual of an ObjectEntity class named Starship would have type
Starship, which is a domain-specific label for an ObjectEntity individual that happens to be a starship. That
domain-specific label is itself an individual of the MetaEntity class.
The inverse property is isTypeOf.</rdfs:comment>
 <rdfs:domain rdf:resource="#Entity"/>
 <rdfs:range rdf:resource="#MetaEntity"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#hasDeclaration">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This datatype property conveys the declarative probability distributions. Each probability distribution can
be expressed in different formats and each format is defined by the datatype property isRepresentedAs.
Possible formats include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and others.
However, the declaration itself is stored as a string so parsers are expected to understand how to deal with
the specific text format of each declaration.</rdfs:comment>
 <rdfs:domain rdf:resource="#DeclarativeDist"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#hasStateProb">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This datatype property is used to store the actual probability of an individual ProbAssign. Currently, OWL
has no support for user defined datatypes, so instead of using owl-p:prob datatype (which includes all
decimals between 0 and 1 inclusive) we are using xsd:decimal for compatibility purposes.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
 <rdfs:domain rdf:resource="#ProbAssign"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:ID="isDefault">
 <rdfs:domain rdf:resource="#ProbDist"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

298

 >This datatype property indicates whether a probability distribution is the default probability distribution of
a node or not. Default probability distributions for nodes are used when the context nodes of the MFrag
containing those nodes are not met.</rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
 </owl:FunctionalProperty>
 <owl:FunctionalProperty rdf:about="#hasArgNumber">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"/>
 <rdfs:domain rdf:resource="#ArgRelationship"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This datatype property assigns the argument number of an argument relationship. As an example, if we
have a random variable with 3 arguments, it will have three ArgRelatioship reified relations. The first
argument of the RV will have the number 1 assigned to its respective hasArgNumber property, the second
will have the number 2 assigned and the third will have the number 3 assigned. In short this property keeps
track of the ordering between the arguments of an RV.
The datatype itself is a nonNegativeInteger. We used this instead of a positiveInteger because we wanted
zero as a possible value, since we assume that a RV with no arguments means a global
RV.</rdfs:comment>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>
 </owl:FunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasArgument">
 <rdfs:range rdf:resource="#ArgRelationship"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property is the link between a node in an MFrag and the reified relation that conveys its
respective arguments. Note that each instance of a node will have only one argument relashionship, which is
defined within that node's MFrag.
The inverse of this property is isArgumentOf</rdfs:comment>
 <owl:inverseOf rdf:resource="#isArgumentOf"/>
 <rdfs:domain rdf:resource="#Node"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasProbAssign">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >An PR-OWL table is formed by many individual members of the class ProbAssign, which are cells in that
table. This object property relates one PR-OWL table to its respective cells (ProbAssign elements).
The inverse property is isProbAssignIn.</rdfs:comment>
 <rdfs:range rdf:resource="#ProbAssign"/>
 <owl:inverseOf rdf:resource="#isProbAssignIn"/>
 <rdfs:domain rdf:resource="#PR-OWLTable"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#subsOVar">
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This object property assigns MetaEntity individuals in order to define the type of the substituters for each
MFrag ordinary variable.
Its inverse property is the functional isSubsBy.</rdfs:comment>
 <owl:inverseOf rdf:resource="#isSubsBy"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 <rdfs:domain rdf:resource="#MetaEntity"/>
 <rdfs:range rdf:resource="#OVariable"/>
 </owl:InverseFunctionalProperty>
 <owl:InverseFunctionalProperty rdf:about="#hasOVariable">
 <rdfs:domain rdf:resource="#MFrag"/>
 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >This inverse functional object property relates one MFrag to its ordinary variables (i.e. individuals from
class OVariable hat are related to this MFrag).

299

The inverse of this property is isOVariableIn.</rdfs:comment>
 <owl:inverseOf rdf:resource="#isOVariableIn"/>
 <rdfs:range rdf:resource="#OVariable"/>
 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
 </owl:InverseFunctionalProperty>
 <owl:DataRange>
 <owl:oneOf rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >indref</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >implies</rdf:first>
 <rdf:rest rdf:parseType="Resource">
 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >equalto</rdf:first>
 </rdf:rest>
 </rdf:rest>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >exists</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >iff</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >forall</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >not</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >or</rdf:first>
 </rdf:rest>
 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >and</rdf:first>
 </owl:oneOf>
 </owl:DataRange>
 <rdf:Description>
 <owl:allValuesFrom rdf:resource="#Domain_MFrag"/>
 <owl:onProperty rdf:resource="#isInputNodeIn"/>
 </rdf:Description>
</rdf:RDF>

300

Appendix C Potential Applications for PR-OWL Outside the Semantic Web

This appendix explores two important application scenarios for probabilistic
ontologies among the ones in which PR-OWL has a great potential to be employed
outside the scope of the Semantic Web.

The first one, the DTB project, covers the ontology mapping problem, where the
ontologies work as information brokers between each distinct software application being
used in the system and a domain-free, probabilistic meta-ontology, dubbed IO
(Integration Ontology). IO carries only information about the semantic mapping between
the concepts of each ontology. The information represented by IO consists of
probabilistic statements about the relationship between terms in the domain ontologies.

The second example, the Wise Pilot system, explores the difficulties of
performing multi-sensor data fusion with common BNs, the feasibility of using MEBN
logic in that problem, and proposes the use of PR-OWL as a means to achieve sensor
interoperability and information sharing between combatant platforms in a tactical
environment.

C.1 PR-OWL for Integration Ontologies: The DTB Project

DTB stands for Detection of Threat Behavior, an ongoing project initially funded
by ARDA30 and conducted by IET31 and GMU. The project focused on a particularly
insidious threat: that posed by individuals who misuse their privileges to gain access to
sensitive information in order to make it available to unauthorized parties (e.g.: other
states, terrorists), or to manipulate it with the purpose of producing misguiding analysis
(Alghamdi et al., 2004).

The overall idea of the DTB project is to model user queries and detect situations
in which users in sensitive positions may be accessing documents outside their assigned
areas of responsibility. This novel approach to insider threats assumes a controlled
environment in which rules for accessing information are clearly defined and, ideally,
tightly enforced.

Although such environments provide little encouragement to insider threats,
unusual access patterns are not easily detected given current technology. In fact,

30 ARDA – Advanced Research and Development Activity (www.ic-arda.org)
31 IET – Information Extraction and Transport, Inc. (www.iet.com)

301

documented cases in which insiders using unsophisticated tactics to outsmart standard
security systems (e.g., CNN.com, 1998, 2001) leave a very uncomfortable open question:
how about the sophisticated ones?

Catching more elaborate patterns that might be characteristic of users attempting
illegal activities such as disclosure of classified information is a daunting task that must
be tackled with a powerful inference method capable of dealing with the uncertainty
involved in the process.

The flexible modeling framework provided by multi-entity Bayesian networks
make it an obvious candidate to model the intricacies of security-controlled
environments. Its natural ability to capture a domain with the richness of details required
for feeding its inference engine is a major strength, but poses a well know challenge to
modelers: how to make the model interoperable among different agencies.

This requirement implies conflicting objectives. Initially, there’s a quest for being
precise enough to capture the subtlest hints of wrong behavior under a given agency’s
rules. Yet, there is also the need for constructing a model that is general enough to be
suitable to other agencies. This is a trade-off nightmare to most modeling techniques, and
an issue that was also perceived in the DTB project.

The project’s final product is supposed to deal with a community with many
possible users, both inside the Intel community and outside it. This leads to diverse
(although similar) vocabularies, policies, organization culture, etc, with a great potential
of rendering the model assumptions imprecise at best. Like almost all complex domains
the Intelligence community does not have a commonly accepted conceptualization of its
rules, policies, or vocabulary; deeming sophisticated, detail-rich systems unlikely to
achieve interoperability without extra effort devoted specifically to this end.

In the DTB project, extra effort was devoted to the heavy use of ontologies.
Because different views of a domain have to be represented by different ontologies, any
interoperable system built upon ontologies must have a means of dealing with the
ontology mapping problem.

The project is in its initial part, where the focus is on building the behavioral
model and on devising data mining algorithms capable of extracting the document
relevance data that will feed that model. At the same time, two ontologies were made as a
way of capturing the subtleties of both the MEBN model and the data mining algorithms.

Both ontologies were developed with the open source software Protégé. The first,
the Insider behavior ontology (IB), describes the MEBN model of insider threat behavior.
Figure 36 depicts the IB ontology. The second ontology, the Organization and Task

Ontology (OT), is shown in Figure 37 and portrays the various aspects of an internal
organization. Among those we can cite its internal rules, details such as “need to know”,
individual clearance, and compartment type (and these terms’ respective meanings with
regard to data access), the data mining algorithms we use to capture document relevance,
and other particularities of the Intelligence domain.

302

Figure 36. The Insider Behavior Ontology (IB)

Figure 37. The Organization and Task Ontology (OT)

It is important to emphasize the role of ontologies as a tool for enforcing the
semantic consistency of the models. Since both ontologies were made “in sync” with the
development phase of their subjects, the modelers were forced not only to think about the

303

specific model details but also about ensuring that each variable and its semantic meaning
is consistent with the models and with the domain’s concepts.

Once the behavioral model and the data mining algorithms were ready, the next
step was to extract the actual data do be used for assessing the relevance of each user’s
search with respect to his/her assigned task. For this task, the project adopted the software
Glass Box, a Java-based user monitoring application available to researchers on ARDA’s
Novel Intelligence from Massive Data project (NIMD) at http://glassbox.labworks.org.
Glass Box was used to capture the actions of users and then extract the information
needed for the data mining algorithms. The overall process is depicted in Figure 38.

Figure 38. The Insider Threat Detection Process – Initial Setup

The flow starts with a set of users (top left), from whom their queries and general
system usage is analyzed. User queries are stored for being processed by the data mining
algorithms that will extract selected parameters regarding search relevance, which will
feed the behavioral MEBN model. System usage refers to general parameters that can be
used by the MEBN model to make inferences about unusual patterns (e.g. user login
time, copy and paste, etc).

Figure 39 shows the same setup viewed from the perspective of the software
modules being used and respective integration requirements. Here we see that Glass Box
is used for capturing all data, where some will be discharged, some will feed the MEBN
model directly, and some will go through the data mining process, which will capture the
relevance of a given user’s searches with respect to his/her assigned task. The results of
the data mining process will also feed the behavioral model, as further information for
assessing each user’s likelihood of being an insider threat or not.

As highlighted above, the communication between each software package has to
be “hardwired” via their respective APIs, in a tedious, manual, expensive, error-prone
process that has to be repeated for every change in any parameter of any software
package, for any additional feature in the system, and for every change of policy inside
the agency in which the system is installed.

This inflexible scheme also hinders interoperability; since for each and every
agency where the system is to be installed we would have to go through the whole
process again and little if any of the previous setup efforts can be used in a new one.

304

Figure 39. The Insider Threat Detection Process – Data Interchange

The approach used for solving the DTB project’s interoperability problem was to
use ontologies as information brokers between each distinct software application in the
system. By doing so, the parameters are “hardwired” between each application and its
respective ontology, instead of between applications as in the original scheme depicted in
Figure 39.

Therefore, if (say) there were a change in working hours of a given agency, there
would be no need to search all APIs for variables using this information. Instead, only a
unique ontology has to be changed and the others will be updated via the Integration
Ontology (IO). This process is shown in Figure 40.

Figure 40. The Insider Threat Detection Process – Desired Process

It is important to note the nature of the IO. Contrary to most approaches in
semantic mapping, the work in the DTB project is not towards a “merged”, “coarser”,
bigger ontology containing domain information represented in GB, IB, or OT ontologies.
Instead, IO is a domain-free, meta-ontology carrying only information about the semantic

305

mapping between each of the domain ontologies in the system. The structure, classes, and
slots of the IO will not represent the domain in which the system being applied. Domain
information will appear only in the instances of IO, which convey the actual relationships
among the domain ontologies’ concepts.

This approach for integration provides an elegant way of conveying semantic
mapping information. Avoiding domain-related knowledge in the IO structure makes it
much easier to maintain and to expand, as modifications in the ontologies being mapped
will affect only the mappings (i.e. the instances of IO) and not the IO itself.

Some common problems arise from such a scheme, for example: how can we
measure the commonality between any two concepts in different ontologies? Issues like
that represent major constraints for any semantic mapping approach using deterministic
frameworks, and it is where our research efforts will most likely provide breakthroughs in
this area.

PR-OWL provides the necessary elements to overcome such limitations and is a
suitable technology for building both the IB ontology (and any other ontology that has to
represent probabilistic information) and the IO meta-ontology.

Therefore, PR-OWL has the potential to provide the DTB project with a modular,
easily maintainable, expandable solution that will reduce the labor-intensive ontology
mapping process for the initial setup only. After that, the probabilistic reasoning
performed via the Integration Ontology will tremendously facilitate modifications or
additions to the system.

C.2 PR-OWL for Multi-Sensor Data Fusion: The Wise Pilot System

Bayesian Networks are much praised as a powerful tool for performing
probabilistic inference, but they do have some limitations that impede their application to
complex problems. To illustrate such issues, we present the Wise Pilot system (Costa,
1999), which analyzes a fighter aircraft sensors' information and assesses each eventual
perceived track's relevant probability.

In a typical mission, here called a sortie, a fighter aircraft has to take off from a
friendly aerodrome, perform a high-altitude flight over friendly territory, descend to a
lower altitude preferably before being detected by the enemy’s radar coverage, attack the
mission's target(s) and egress home safely. Enemy’s role is to detect the incoming fighter
and deny its attack, using weapons like interceptors, AAA32, or missiles.

Behind the scenes lies a high-tech contest between the intruder fighter and
enemy’s forces, usually called electronic warfare. This contest can be compared to a
hide-and-seek game, where the intruder fighter tries to stay out of enemies' electronic

32 AAA is the acronym for Anti-Aircraft Artillery, which includes all gun-based weapons employed against

airborne targets (aircraft, helicopters, cruise missiles, etc).

306

eyes (i.e. early warning radars, interceptor sensors, AAA radars, etc.) as long as he can.
The ability of the intruder to hide from these hostile sensors will depend on tactics like
low-level flight and reduction (or elimination) of communication and radar emissions.
The first is intended to use the terrain as a mask against enemy’s radar, while the latter
avoids being discovered by the enemy's passive detectors.

However, flying into enemy territory means to be vulnerable to a wide array of
threats, and for most of them awareness is the first requisite to improve the chances of
surviving. To be aware, the pilot counts on the information provided by its own sensors,
which can usually be grouped in two distinct types: passive and active. Sensors in the
first group detect all transmissions and classify their respective sources; thus they do not
need to make any transmissions by themselves. Sensors in the second group are those that
transmit for a period of time and wait for a reply in order to obtain information.

Although passive sensors are a stealthy way of gathering information about the
enemy, an obvious drawback is in the fact that their efficacy depends on whether the
enemy is emitting or not. In addition, passive sensors like the RHAW do not provide a
reliable measure of distance.

Active sensors, on the other hand, usually provide more accurate measurement.
As a consequence, the decision to decrease uncertainty or detectability is a hard conflict
to be solved, mainly during a high attention-demanding situation as a flight sortie.
However, there are other issues regarding the use of active sensors. Among these is the
management of the sensor's power, that is how to direct it (allocate it) for the many
surrounding enemy’s targets/aggressors.

The pilot should perform this allocation wisely, in order to achieve an optimal use
of the aircraft's weapon systems (offensively and/or defensively). Here, the level of
uncertainty will also influence the pilot’s decisions.

Those decisions are not constrained to electronic warfare considerations. The pilot
also has to deal with navigation issues, complex aircraft systems' monitoring, damage
control, fuel consumption, and ultimately he still has to pilot his aircraft in a 540 knots
near-the-ground flight.

In addition, modern aircraft and sophisticated defense systems have dramatically
increased pilot’s workload, particularly in the most critical phase of the mission, the
attack.

The Wise Pilot system initially assesses the threat level of each track perceived by
its sensors and then uses Bayesian Inference to provide the pilot with the best option
available given the most up-to-date information on those tracks. Figure 41 summarizes
the danger assessment process.

307

Bayesian

Network

RHAW

Data

IFF

Data

Radar

Data

MAW

Data

Data from sensors

Altitude

Fly Over

Airspace

Nature

Aircraft data

Track Danger

 Assessment

Figure 41. General Track Danger Assessment Scheme

A Bayesian Network, which is shown in more detail in Figure 42, receives data
from the aircraft sensors related to one specific track (coming from the left in the picture)
and from the aircraft’s systems related to its own position, altitude, and other navigational
details (coming from the right).

This information is then propagated inside the BN and will result in an assessment
of the nature of that specific track and the potential danger it might represent.

308

Figure 42. Individual Track's BN Information Exchange Scheme

Therefore, since each BN is responsible for the probabilistic assessment of each
track, if we have n tracks we will have to have n Bayesian Networks for assessing its
respective nature and potential danger. Figure 43 shows the general schema of the
decision process to be performed after all data on tracks is received.

309

Figure 43. Wise Pilot system – general scheme

In the bottom of the picture we have the n Bayesian Networks related to the n
tracks. The system works in discrete time, which means that at time t it will collect all
information from the n tracks, use n BNs for assessing its nature and potential danger,
and then evaluate what is the best combination of the four decisions it has to take (i.e.
what is the best decision policy) for that specific situation given the objectives (i.e. attack
target, avoid fratricide, and maximize survivability) and the most updated information
available at time t.

The advantages of a Bayesian Inference system over deterministic rule-based
systems for dynamic decision situations such as the fighter pilot problem have been
discussed extensively in the literature (e.g. Costa, 1999). However, a major obstacle for
implementation of this and similar systems is the lack of representational power of
Bayesian Networks for dealing with the variable number of tracks for each time t.

310

As an example, Figure 44 shows how the system would look like in a given time t
in which we have four tracks being perceived by the system.

Figure 44. Wise Pilot with 4 Tracks

Now suppose that in time t+1 (i.e. on the next system iteration) two new tracks
are perceived by the system and one of the tracks from time t went away. In this new
situation, the system depicted in Figure 44 is no longer valid, while the new configuration
should look like the one illustrated in Figure 45.

In other words, in a highly dynamic environment like the one covered in this
example, a Bayesian Inference system would have to be reconfigured almost for every
iteration, greatly increasing the complexity of its implementation. Furthermore, there may
be uncertainty about the correct configuration at any given iteration. Even more
problematic is the situation in which we are unsure whether a sensor report indicates a
real or spurious object, or whether two reports refer to the same or different subjects. In
these cases, the number of instances of the track sub-network is uncertain.

Behind this limitation is the fact that Bayesian Networks have limited expressive
power, while in situations like the one portrayed (and in many interesting situations of the
real world as well) a more powerful representational formalism is desired.

More specifically, Bayesian Networks allow probability statements (i.e.
propositions) over specific instances of a model, but do not support making general
assertions over non-specific instances (e.g. statements about variables instead of unique
instances). Thus, when facing problems like the fighter pilot’s we need a language that
combines the inferential power of Bayesian Networks with the representational power of
first-order logic.

311

Figure 45. Wise Pilot with 5 Tracks

We have seen in Chapter 3 that MEBN logic provides such combination of
Bayesian plausible reasoning and first-order logic expressiveness, and thus is a perfect
match for the requirements. This is no surprise, since the suitability of MEBN logic for
C3I decision systems was already pointed out in some recent research work (Costa et al.,
2005). However, for the very same reasons of the DTB project cited earlier in this
appendix, MEBN alone would not guarantee that such system would be interoperable,
easily maintainable and upgradeable.

Indeed, in order to realize the concept of Network Centric Warfare being sought
by most modern armed forces (cf. Alberts et al., 1999), massive investments must be
made to achieve sensor interoperability and information sharing between combatant
platforms in a tactical environment.

In the Wise Pilot case, building the system’s multiple ontologies (e.g. ontologies
on ground-based radar systems, airborne radars and respective platforms, interceptor
aircraft and respective weapon systems, etc.) using PR-OWL would bring the intrinsic
advantages of probabilistic ontologies, such as built-in ability to learn from previous
engagements, and the possibility of improving maintainability, interoperability (among
the system’s ontologies and exterior ones as well), and expandability.

Of course, the above-cited advantages can be easily transposed to similar data
fusion systems in the military domain and in civilian applications as well, clearly
exposing the promising aspect of the technology outside the Semantic Web framework.

312

Curriculum Vitae

Paulo Cesar G. da Costa was born in Rio de Janeiro on March 3, 1965, and is a
Brazilian citizen. He graduated with honors in the Brazilian Air Force Academy in 1986
and started his career as a fighter pilot, having flown nearly 1.800 hours in fighter aircraft
such as the Brazilian-Italian made AM-X. During this period, he pursued specialization in
the Electronic Warfare field, attending courses in both Brazil and England, acting as
Electronic Warfare Officer in the Brazilian Air Force’s first AM-X Squadron, and then as
an invited lecturer in most of the courses from the BAF’s Electronic Warfare Center
(CGEGAR). In 1995, he graduated first place out of 115 students, all in the rank of
Captain, in the BAF’s EAOAr, a major career course. In 1997, he moved to the USA and
started his Master of Science degree in Systems Engineering at George Mason
University, where he graduated in 1999 with GPA 4.0 and received the GMU’s
Academic Excellence Award. He also received the C3I Certificate from GMU in 1999.
Back to Brazil in 2000, he served in the Air Force Chiefs of Staff, where he participated
in many projects in the IT field. In 2003, he graduated with honors from the BAF’s
ECEMAR, another major career course, and returned to the USA to pursue his PhD
degree in Information Technology at George Mason University.

