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Abstract 

BAYESIAN SEMANTICS FOR THE SEMANTIC WEB 

Paulo Cesar G. da Costa, Ph.D. Student 

George Mason University, 2005 

Dissertation Director: Dr. Kathryn B. Laskey 

Uncertainty is ubiquitous. Any representation scheme intended to model real-

world actions and processes must be able to cope with the effects of uncertain 

phenomena. 

A major shortcoming of existing Semantic Web technologies is their inability to 

represent and reason about uncertainty in a sound and principled manner. This not only 

hinders the realization of the original vision for the Semantic Web (Berners-Lee & 

Fischetti, 2000), but also raises an unnecessary barrier to the development of new, 

powerful features for general knowledge applications. 

The overall goal of our research is to establish a Bayesian framework for 

probabilistic ontologies, providing a basis for plausible reasoning services in the 

Semantic Web. As an initial effort towards this broad objective, this dissertation 

introduces a probabilistic extension to the Web ontology language OWL, thereby creating 

a crucial enabling technology for the development of probabilistic ontologies. 



 

The extended language, PR-OWL (pronounced as “prowl”), adds new definitions 

to current OWL while retaining backward compatibility with its base language. Thus, 

OWL-built legacy ontologies will be able to interoperate with newly developed 

probabilistic ontologies. PR-OWL moves beyond deterministic classical logic (Frege, 

1879; Peirce, 1885), having its formal semantics based on MEBN probabilistic logic 

(Laskey, 2005).  

By providing a means of modeling uncertainty in ontologies, PR-OWL will serve 

as a supporting tool for many applications that can benefit from probabilistic inference 

within an ontology language, thus representing an important step toward the World Wide 

Web Consortium’s (W3C) vision for the Semantic Web. 

In addition, PR-OWL will be suitable for a broad range of applications, which 

includes improvements to current ontology solutions (i.e. by providing proper support for 

modeling uncertain phenomena) and much-improved versions of probabilistic expert 

systems currently in use in a variety of domains (e.g. medical, intelligence, military, etc). 
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Chapter 1  A Deterministic Model of a Probabilistic World 

We can trace attempts by humans to represent the world surrounding them to as 

early as 31,000 years ago, during the so called Upper Paleolithic period, where the 

earliest recorded cave drawings were made (Clottes et al., 1995). Moving from pictures 

representing objects of the real world (i.e. ideograms) to pictures representing the sounds 

we pronounce (i.e. phonograms), humans developed the first alphabets somewhere near 

the twentieth century B.C.2 The efficiency of written communication received a dramatic 

boost with the invention of the printing press by Johannes Guttenberg in 1450. 

Printing had been the dominant form for representing and communicating human 

knowledge until the second half of the last century, when the advent of digital computing 

became the driving force of what Alvin Toffler (1980) called “the Third Wave” of change 

in human history (the first being the agricultural revolution and the second being the 

industrial revolution). 

At this point, inquisitive readers might ask why Toffler’s terminology was chosen 

over the more technically oriented and widely used term “information technology 

revolution”.  

The answer lies in the fact that we want a broader concept for the current era of 

changes so we can clearly distinguish the phase “information revolution”, which we 

                                                
2  Dating established by John Darnell, in his 1990s studies of rock carvings at Wadi el-Holi made by 

Semitic workers within the Egyptian society. For more information on alphabets and its origins see 

http://www.xasa.com/wiki/en/wikipedia/a/al/alphabet.html (as accessed in Sept 02, 2004). 
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consider as an almost concluded phenomenon, from “knowledge revolution”, the 

subsequent phase of the “Third Wave” we are experiencing nowadays. 

Until the past few years, computers had been used primarily as media for storing, 

exchanging, and working with information. The Internet (the network infrastructure) and 

the World Wide Web (the information space) have played an important role as facilitators 

in this process. Yet, as the availability of information resources increases, we are starting 

to face a significant bottleneck in our ability to use it: our own capacity to process huge 

amounts of data. 

  Indeed, our cognitive process includes one extra step between receiving data and 

deciding and/or acting upon it, namely the need for updating our beliefs about the 

subject(s) of interest given the new information available to us or, in other words, to 

understand what the incoming data means for our decisions and actions. 

In short, data per se is useless to most of our daily tasks until we transform it into 

knowledge. When we reach our cognitive limit for performing this task, we are 

experiencing what is called “information overload”.  

During the “information revolution”, human beings have largely performed the 

transformation from data to decision-relevant knowledge, working in a data-centric 

scheme that we call the “information paradigm”. The “knowledge revolution” will be 

seen in the future as the phase in which this tedious task was successfully assigned to 

computers, allowing humans to shift their focus from data-centric activities to 

knowledge-centric activities, thus allowing them to work under the more efficient 

“knowledge paradigm”. 
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1.1 From Information to Knowledge 

The rapid expansion of corporate computer networks and the World Wide Web 

(WWW) is increasing the problem of information overload, and in this race between the 

availability of data and our capacity of transforming it into knowledge, humanity has 

developed many methods for using our ever-growing computational power to make our 

lives easier. Yet, in spite of the many efforts in this direction, we still have to rely heavily 

on the human brain for breaking the information to knowledge barrier. This led us to the 

question: What is missing for IT techniques to be able to help us to overcome the 

information paradigm and begin to work under the knowledge paradigm?  

We argue that the answer lies in devising ways for the computers not only to 

“crunch the bytes” but also to “understand” what those bytes mean. Obviously, 

computers don’t really understand the meaning conveyed by the bytes they “crunch”. 

This is just a widely used metaphor to express the idea that making semantic information 

explicit and computationally accessible (i.e. better organizing the structure of data) is a 

powerful, more elegant way of utilizing that data. In other words, if we want to extract 

knowledge from data we must develop technologies that allow computers to make use of 

semantic, contextual information attached to the data being processed. 

1.1.1 Is Semantic Information Really Important? 

Text Classification has been one of the hottest research topics in the academic 

community, particularly after the end of the last decade. The obvious explanation for this 

is the explosion of the WWW’s use since that period, where the rapid, continuously 

increasing availability of data is exerting a tremendous pressure to improve the capability 
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of knowledge retrieval technologies. The current state-of-art paradigm for text 

classification of a huge corpus of text data utilizes a Vector Space Representation of 

documents. In this scheme, text documents are transformed into a single file called “bag 

of words”. Then, dimensionality reduction techniques are applied to that file, which is 

finally subjected to knowledge retrieval techniques aimed at pointing out possible 

partitions of the feature space.  

One limitation of most techniques based on the Bag of Words paradigm is that 

they fail to consider the semantic meaning of the text. That is, if two documents share 

roughly the same words, they will be mapped to nearby locations in the resulting space, 

even if they are not related to the same subject, whereas two closely related documents 

that do not share the same words (e.g. documents with a high use of synonyms) would be 

mapped in different regions. The toy example in Figure 1 illustrates this problem. 

Tr – Computer Science
Before developing products
for Apple’s Cocoa
environment using the
Xcode suite, John Grape
was a well known member
of the Wine Project in the
Linux community, where he
cultivated many admirers
for his hard-working profile.

D1 – Computer Science
Yellow Dog is a distribution
that works in Macintosh
computers, and one of its
features is to allow OS X
software to run natively. This
is a clear contrast with
Windows applications, which
need to rely on emulation to
run on a different OS, even in
X86 computers.

D2 – Agriculture
Developing countries are
not known for their wine
production, as their
usually equatorial
environment is well suited
for producing cocoa,
whereas grapes or even
apples are much harder to
cultivate.

 

Figure 1. Simplified Text Understanding 

Suppose we use Tr as a corpus of training data related to the class “computer 

science”. Then applying the usual techniques for text classification to this corpus will 

result in a model that can be used for classifying other documents, which will also go 

through the same algorithms, such as Martin Porter’s algorithm for stemming (Porter, 
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1980), stop word removal (remove non-descriptive words like articles, prepositions, etc), 

pruning infrequent words, etc. Figure 2 illustrates the kind of output that might be 

produced by such a system, for both the training data Tr and the data to be classified 

(documents D1 and D2). 

Tr – Computer Science
Before developing products
for Apple’s Cocoa
environment using the
Xcode suite, John Grape
was a well known member
of the Wine Project in the
Linux community, where he
cultivated many admirers
for his hard-working profile.

D1 – Computer Science
Yellow Dog is a distribution
that works in Macintosh
computers, and one of its
features is to allow OS X
software to run natively. This
is a clear contrast with
Windows applications, which
need to rely on emulation to
run on a different OS, even in
X86 computers.

D2 – Agriculture
Developing countries are
not known for their wine
production, as their
usually equatorial
environment is well suited
for producing cocoa,
whereas grapes or even
apples are much harder to
cultivate.

 

Figure 2. Simplified Text Understanding after Data Preparation 

Just by inspection we can see that D1 shares only one out of its 23 words with the 

vocabulary within the training data Tr, which means a commonality of just 4.3%. 

Therefore, even though the two texts share the same subject, our word comparison 

algorithm would classify D1 as not being related to the class being represented by Tr, 

given the fact that they have few words in common. 

Yet, if we do the same comparison between the training data Tr and the 

agriculture-related document D2, we will see that 13 out of 16 D2’s words (81.3%) are 

also in the training data Tr, which will cause our algorithm to incorrectly classify T3 as 

closely related to the class being represented by Tr. 

Vector Space Representation algorithms are actually used with corpuses of 

training data typically containing hundreds or thousands of words, instead of our toy 

example’s 21 words. So misclassifications like the one in our three-text example are not 
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very likely. Indeed, as demonstrated by Sebastiani in his recent survey on automated text 

categorization (Sebastiani, 2002)3, syntax-based algorithms usually achieve true positive 

rates between 75% and 87% in text categorization problems. Still, unlikely does not mean 

impossible and even low error rates can be quite undesirable, especially in domains 

where just a few errors may be the difference between success and failure, such as 

terrorist screening or Intrusion Detection systems. 

In the Data Mining field, the need for considering semantic information has been 

recognized by many researchers. There is active research into techniques aimed to extract 

semantic information from the data corpus itself that are focused on external data sources 

such as ontologies (discussed in the next session). Examples of the first group include 

Latent Semantic Kernels (Cristianini et al., 2001), Probabilistic LSI (Hofmann, 1999), 

automatic cross-language retrieval (Littman et al., 1997), and some variations of Kernel 

Methods (Joachims, 1998). In the second group we will usually find studies advocating 

the use of the Wordnet (Miller et al., 1990; Fellbaum, 1998) as a semantic source, such 

Siolas e d’Alché-Buc (2000) and Hotho et al. (2002, 2003). 

In short, despite the successes of syntax-only algorithms, the potential increase in 

discrimination power that semantic information might bring must not be ignored. In 

highly sensitive domains such as counter-terrorism, this increase could be the key for 

finding the needle in the haystack without having unacceptable false alarm rates. 

The former is just one example of an application of techniques for which 

automated incorporation of semantics would be useful. There is a widespread 

                                                
3 See table at page 47 for a direct comparison among data mining algorithms. 
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understanding of the importance of semantics for many information-processing 

applications. The following sections review two research areas closely related to this 

dissertation: the Semantic Web and Ontology Engineering. 

1.1.2 The Semantic Web and ontologies 

The W3C defines the Semantic Web4 as a collaborative effort between the W3C 

itself and a large number of researchers and industrial partners that will extend the current 

web to provide a common framework that allows data to be shared and reused across 

application, enterprise, and community boundaries.  

The current WWW uses markup languages5 such as HTML and XML (both being 

“semantic-unaware” languages) as a means to convey syntax rules and conventions to 

extract, transform and interchange data. In this scheme, humans are the sole party 

responsible for dealing with the knowledge implied from that data. However, given our 

restrictions in dealing with huge amount of data, it is becoming not only desirable but 

also necessary to make use of the increasing computational power of our current 

machines to perform such a task. The realization of this concept is the W3C’s vision of 

the Semantic Web as stated by Tim Berners-Lee (Berners-Lee & Fischetti, 2000, page 

177): 

“…computers and networks have as their job to enable the information 

space … But doesn’t it make sense … to put their analytical power to 

work making sense of the vast content … on the web? …This creates what 

                                                
4 From the W3C Semantic Web page, http://www.w3c.org/2001/sw/, as extracted in June 16, 2005. 
5 A markup language adds computer-understandable codes (markups) to convey metadata information 

within a text file. Depending on the language used, this metadata can be mostly restricted to styling and 

layout (e.g. HTML) or also include semantic information and other advanced features (e.g. OWL). 
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I call a Semantic Web – a web of data that can be processed directly or 

indirectly by machines … The first step is putting data on the Web in a 

form that machines can naturally understand…”6. 

 We can infer from this definition how important representing the structure of data 

and metadata is going to be in this new approach for the distributed information use and 

sharing. Indeed, the W3C further states that the Semantic Web (SW) can only reach its 

full potential if it becomes a place where data can be shared and processed by automated 

tools as well as by people.  

As an example of automated tools, we can consider the case in which software 

agents would have the ability to perform inference on the data stored in Web sites. To do 

so, such agents have to “understand” the semantics of the data, in contrast to only relying 

on its syntax. For instance, a software agent responsible for booking a trip to Florida must 

be able to infer when the word “Florida” actually means the Southern State of USA, the 

Portuguese word meaning “decorated with flowers”, a type of large bean, or the 

homonymous Uruguayan province. 

According to the W3C (Heflin, 2004), ontologies are envisioned as the 

technology providing the cement for building the Semantic Web. Ontologies contain a 

common set of terms for describing and representing a domain in a way that allows 

automated tools to use the stored data in a more context-aware fashion, intelligent 

software agents to afford better knowledge management, and many other possibilities 

brought by a standardized, more intensive use of metadata. 

                                                
6 Emphasis added. 
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The term Ontology was borrowed from philosophy. Its roots can be traced back to 

Aristotle’s metaphysical studies of the nature of being and knowing7. Nonetheless, use of 

the term ontology in the information systems domain is relatively new, with the first 

appearance occurring in 1967 (Smith, 2004, page 22). 

One can find many different definitions for the concept of ontology applied to 

information systems, each emphasizing a specific aspect its author judged as being more 

important. For instance, Gruber (1993) defines an ontology as a formal specification of a 

conceptualization or, in other words, a declarative representation of knowledge relevant 

to a particular domain. Uschold and Gruninger (1996) define an ontology as a shared 

understanding of some domain of interest. Sowa (2000, page 492) defines an ontology as 

a product of a study of things that exist or may exist in some domain. 

With so many possibilities for defining what an ontology is, one way of avoiding 

ambiguity is to focus on the objectives being sought when using it. For the purposes of 

the present research effort, the most important aspect of ontologies is their role as a 

structured form of knowledge representation. Thus, our definition of ontologies is a 

pragmatic one that emphasizes the purposes for which ontologies are used in the 

Semantic Web.  

Definition 1: An ontology is an explicit, formal representation of knowledge 

about a domain of application. This includes: 

1.a) Types of entities that exist in the domain; 

1.b) Properties of those entities; 

                                                
7 The term metaphysics means beyond the study of physics 
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1.c) Relationships among entities; 

1.d) Processes and events that happen with those entities; 

where the term entity refers to any concept (real or fictitious, concrete or 

abstract) that can be described and reasoned about within the domain of 

application.!"

Ontologies are used for the purpose of comprehensively describing knowledge 

about a domain in a structured and sharable way, ideally in a format that can be read and 

processed by a computer. The above definition can be considered as a special type of 

ontology, which we could label Semantic Web Ontology, but for the purposes of this 

dissertation we will use the more general term ontology. 

1.2 Issues on Representing and Reasoning Using Ontologies 

In our definition, the explicit requirement of reasoning about a given concept 

makes schema-oriented technologies such as XML-Schema or RDFS fall short in terms 

of expressiveness. For instance, a very detailed XML-Schema may include the 

vocabulary and the hierarchical structure of concepts within a domain of application, but 

still misses OWL features such as information on disjointness and uniqueness of classes, 

cardinality of properties8, and others that are necessary to allow inferences to be drawn 

from those concepts.  

Similarly, as pointed out by Shelley Powers, using RDFS may allow the 

development of a very rich vocabulary, but it won’t be as precise or as comprehensive as 

                                                
8 Some degree of cardinality exists in XML Schema 
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one that incorporates ontological elements from ontology languages such as OWL 

(Powers, 2003, page 229). 

Apart from the extra expressivity that is necessary to perform reasoning with the 

concepts represented in an ontology, the many similarities with database schemas makes 

it difficult to draw a clear distinction between ontologies and database schemas. Spyns, 

Meersman, and Jarrar (2002) provide an interesting discussion of how the two concepts 

differ. They regard data models (i.e. databases, XML schemas, etc) as specifications of 

the structure and integrity constraints of data sets. Thus, a database schema is developed 

to address the specific needs and tasks for which the data set is being used, which in turn 

depends heavily on the enterprise being modeled.  

In contrast, ontologies are intended to be applied across a broad range of tasks 

within a domain, and usually contain a vocabulary (terms and labels), a definition of the 

concepts and their respective relationships within that domain. The main objective of an 

ontology is to provide a formal, agreed and shared resource, which forces it to be as 

generic and task-independent as possible. Although an ontology typically is developed to 

a focused task, it is desirable for an ontology to capture rich semantic content in a manner 

that could be reused across tasks. 

In developing a database schema, the goal is different. Schema developers focus 

on organizing information in ways that optimize support for the types of queries that are 

expected to arise in specific applications for which the database is being designed. 

Achieving such goal typically requires a special application to be written on top of the 

database mechanism that (for a relational database) implements the principles of 
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relational algebra. Furthermore, a database schema is typically developed under a closed 

world assumption, in which the only possible instances of a given relation are those 

implied by the objects existing in the database. (i.e. if something is not represented there 

then it doesn’t exist).  

Ontologies, on the other hand, do not necessarily carry the assumption that not 

being represented entails non-existence. Not having the closed world assumption means, 

for example, that queries about which there is insufficient information in an ontology to 

be proved cannot be assumed as being false. As a consequence, we should expect 

situations in which incomplete information within an ontology prevents a definitive 

answer to a query to be rather normal. This is a clear sign that uncertainty is an intrinsic 

component of ontology engineering, and therefore ontology languages must include 

sound and principled mechanisms for dealing with uncertainty. 

One commonality between ontologies and database schemas is the need to 

provide for interoperability among systems based on different schemas and/or ontologies. 

In an increasingly interconnected world, the ability to exchange data as seamlessly as 

possible is one of the most desired features of a knowledge representation. Integrating 

systems created and managed by separate organizations, evolving in different scenarios, 

and geared to different needs and perspectives is a task that poses many challenges, even 

when dealing with apparently very similar structures. 

To illustrate their vision of how the Semantic Web will operate, Tim Berners-Lee, 

James Hendler, and Ora Lassila (2001) describe a scenario in which two siblings (Pete 

and Lucy in the example) use SW agents to help them schedule medical appointments for 
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their mother. These agents perform tasks such as Web search, scheduling consolidation, 

constraint matching, and trust assessment. Presently, these kinds of tasks rely heavily on 

human intervention. According to the Semantic Web vision, automated Web agents will 

perform them. For this vision to be feasible, it is clear that all Web services involved 

must share the same meaning for the concepts involved in these activities. That is, each  

sibling’s SW agents should treat concepts such as “20-mile radius”, “ appointment time”, 

“ location”, “less important”, etc. the same way as they are treated by the diverse Web 

services they would have to interact with (e.g. the doctor’s Web agent, the credit card 

company web services, etc.). 

Unfortunately, even in tightly controlled settings (e.g. small, closed environments 

with controlled vocabularies), semantic inconsistencies (such as different concepts with 

the same name, or different names for the same concept) occur frequently. Current 

approaches to solve this semantic mapping problem, such as enforcing compliance with 

standards defined by regulatory authorities (e.g. DOD directives such as 8320.19) or 

employing generic matching schemes, have consistently fallen short of what is needed to 

realize the SW vision. 

Even though some ontology languages do offer constructs that help to import one 

ontology into another, they lack a principled means for grading the similarity between 

concepts or to make plausible inferences about the mapping between them. Providing 

such a means is an important step towards making the semantic mapping problem a less 

expensive, tedious, error-prone process. In short, the lack of a principled representation 

                                                
9 Available at http://www.defenselink.mil/nii/bpr/bprcd/0039.htm, as of July 6, 2005. 
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for uncertainty in the field of ontological engineering is a major weakness hindering the 

efforts towards better solutions for the semantic mapping problem. More generally, lack 

of support for uncertainty management is a serious impediment to make the Semantic 

Web a reality. 

1.3 Why Uncertainty Matters 

One of the main technical differences between the current World Wide Web and 

the Semantic Web is that while the former relies on syntactic-only protocols, the latter 

adds meta-data annotations as a means to convey shared, precisely defined terms or, in 

other words, semantic awareness to improve the interoperability among Web resources.  

From a syntactic standpoint, Grape as a fruit is equivalent to Grape as in John 

Grape. Semantically aware schemes must be able to represent and appropriately process 

differences such as this. This is not a trivial task. For semantic interoperability to work 

correctly we need shared sources of precisely defined concepts, which is exactly where 

ontologies play a key role. 

Yet, when comparing two ontologies containing the term “Grape”, deterministic 

reasoning algorithms will either consider it to be a fruit or an undefined object (which is 

not the same as a non-fruit), with no intermediate grading. This is fine when complete 

information is available, which is frequently the case under the closed world assumption 

but much less common in the open world environment, where incomplete information is 

the rule.  
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In the open world case, purely logical systems may represent phenomena such as 

exceptions and unknown states with generic labels such as “other”, but will lose the 

ability to draw strong conclusions. In probabilistic systems such phenomena would carry 

a probabilistic qualifier, which allows valid conclusions to be drawn and also adds more 

flexibility to the model. There are important issues regarding open-world probabilistic 

reasoning that have not yet been completely addressed (c.f. Laskey & Lehner, 1994), but 

probabilistic systems are a promising approach for reasoning in open world. 

Despite these shortcomings of logic-based systems, the current development of 

the future Semantic Web (which will support automated reasoning in most of its 

activities) is based on classical logic. For example, OWL, a W3C recommendation 

(Patel-Schneider et al., 2004), has no built-in support for probabilistic information and 

reasoning, a major shortcoming for a technology that is expected to operate in a complex, 

open world environment. 

As we will see in the next chapters, OWL has its roots in its own web language 

predecessors (i.e. XML, RDF), and in traditional knowledge representation formalisms 

that have historically not considered uncertainty. Examples of these formalisms include 

Frame systems (Minsky, 1975), and Description Logics, which evolved from the so-

called “Structured Inheritance Networks” (Brachman, 1977).  

This historical background somewhat explains the lack of support for uncertainty 

in OWL, a serious limitation for a language expected to support applications in an 

environment where one cannot simply ignore incomplete information. As an example of 

a similar situation in which a knowledge based system had to evolve in order to cope with 
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incomplete information we can refer to the Stanford University's MYCIN10 project 

(Shortliffe et al., 1975) in the medical domain. 

MYCIN evolved from DENTRAL11, which was deterministic, but according to 

Buchanan and Shortliffe (1984, page 209): “As we began developing the first few rules 

for MYCIN, it became clear that the rules we were obtaining from our collaborating 

experts ... the inferences described were often uncertain”. 

When faced with this problem of expressing this uncertainty, the initial approach 

adopted by most decision-making systems’ developers was the subjectivist approach of 

probability theory (Adams, 1976). Yet, probability theory was then considered intractable 

so other methods were used, such as Certainty Factors (Buchanan & Shortliffe, 1984) and 

Dempster-Shafer’s belief functions (Dempster, 1967; Shafer, 1976). These initial 

approaches were superseded by the development of graphical probability models. The 

key innovation of graphical models is the ability to express knowledge about uncertain 

propositions using modular components, each involving a small number of elements that 

can be composed into complex models for reasoning about many interrelated 

propositions. This ability to express knowledge as modular, local units provides major 

improvements in tractability, and also makes the knowledge engineering task feasible. 

The graphical model formalism has been extended to other calculi such as 

Dempster-Shafer’s belief functions, fuzzy logic, and qualitative probability. Shenoy & 

                                                
10 MYCIN was an expert system developed in the seventies to assist medical specialists in the diagnosis of 

infectious blood diseases, having achieved a performance comparable with that of human experts.  
11 DENTRAL was also an expert system in the area of mass spectrometry. Even though its events were 

inherently probabilistic, this was ignored by the inference engine in favor of a simpler, binary decisions 

about occurrence or non occurrence of those events 
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Demirer (2001) provide a unified graphical formalism that covers many different 

uncertainty calculi. Graphical probability models have made probability tractable, thus 

addressing the initial concerns of many researchers. Now, many medical systems use 

probability (Heckerman et al., 1995b; Helsper & van der Gaag, 2001; Lucas et al., 2001). 

The evolution from deterministic reasoning to probabilistic reasoning has enabled 

information systems to make use of uncertain, incomplete information. This seems to be 

a promising path for the Semantic Web, which will inevitably confront the same 

uncertainty-related concerns faced by the AI field. 

1.4 Research Contributions and Structure of this Dissertation 

Although our research is focused in the Semantic Web, we are tackling a problem 

that precedes even the current WWW: the quest for more efficient data exchange. 

Clearly, solving that problem requires more precise semantics and flexible ways to 

convey information. While the WWW provided a new presentation medium and 

technologies such as XML presented new data exchange formats, both failed to address 

the semantics of data being exchanged. The SW is meant to fill this gap, and the 

realization of its goals will require major improvements in technologies for data 

exchange. 

Unfortunately, for historical reasons and due to the lack of expressivity of 

probabilistic representations in the past, current ontology languages have no built-in 

support for representing or reasoning with uncertain, incomplete information. In the 

uncertainty-laden environment in which the SW will operate, this is a major shortcoming 
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preventing realization of the SW vision. Indeed, in almost any domain represented in the 

SW there will exist a vast body of knowledge that would be completely ignored (neither 

represented nor reasoned upon) due to the SW language’s inability to deal with it. 

As a means of addressing this problem, the long-term goal of our research is to 

establish a Bayesian framework for probabilistic ontologies, which will provide a basis 

for plausible reasoning services in the Semantic Web. Clearly, the level of acceptance 

and standardization required for achieving this objective requires a broader effort led by 

the W3C, probably resulting in a W3C Recommendation formally extending the OWL 

language. Thus, the present dissertation should be seen as an initial effort towards that 

broader objective.  

In the next Chapter, we provide a brief introduction to Web languages and 

probabilistic representations in general. Then, we change our focus to a brief coverage on 

the attempts to find a common ground between the SW and probabilistic representations, 

which also includes a view on the trend towards more expressive forms of the latter. 

Chapter Three provides the necessary background on Multi-Entity Bayesian 

Networks (MEBN), the probabilistic first-order logic that is the mathematical backbone 

of PR-OWL. As a means to provide a smooth introduction to the fairly complex concepts 

of MEBN logic, we needed to explore a domain of knowledge that would be both easily 

understood and politically neutral, while still rich enough to include scenarios that would 

demand a highly expressive language. Thus, we constructed a running case study based 
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on the Star Trek12 television series. Our explanations and examples assume no previous 

familiarity with the particulars of the Star Trek series. 

We start Chapter Four with our definition of a probabilistic ontology, a key 

concept in our research. Then, we cover solutions to two major issues preventing the 

construction of probabilistic ontologies. Because MEBN was built with flexibility in 

mind, it has little standardization or support for many of the advanced features of OWL. 

This was a major obstacle for developing a MEBN-based extension to OWL, and we 

addressed it by developing an extended version of MEBN logic. Our version, which we 

explain in the first section of the Chapter, incorporates typing, polymorphism and other 

features that are desirable for an ontology language. In the second and last section we 

addressed the lack of a probabilistic reasoner that implements all the advanced features 

found in MEBN logic. In that section, we explain how we used Quiddity*Suite, a 

powerful probabilistic toolkit developed at Information Extraction and Transport (IET), 

as a MEBN logic implementation and, consequently, showed its potential to be 

probabilistic reasoner for Semantic Web applications. More detailed aspects are 

conveyed in Appendix A. 

In Chapter Five, we built upon the results of Chapter Four and present our results 

in developing PR-OWL. There, our probabilistic extension to OWL was defined as an 

upper probabilistic ontology, which we documented in Appendix B. We also presented an 

operational concept on how we foresee the use of our framework and a proposed strategy 

for implementing probabilistic ontologies for the Semantic Web. 

                                                
12 Star Trek and related marks are registered trademarks of Paramount Pictures. 
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Finally, in Chapter Six we convey a summary of this dissertation’s results and 

present in Appendix C some possible uses of the technology proposed here for solving 

problems in areas outside the Semantic Web research, such as the semantic mapping and 

the multi-sensor data fusion problems. 

Taken together, the contributions brought by this research constitute an initial step 

for solving the current inability of SW languages to represent uncertainty and reason 

under it in a principled way. Furthermore, as we suggested in the beginning of this 

section, these contributions also have the potential to greatly improve the efficiency with 

which data is exchanged, thus implying their applicability to a broader set of problems 

beyond the Semantic Web.  
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Chapter 2  Background and Related Research 

2.1 Web Languages 

Information in the World Wide Web is encoded via markup languages, which use 

tags (markups) to embed metadata into a document. The concept of markup languages13 

was initially implemented by IBM in 1969 with the development of the Generalized 

Markup Language (Goldfarb, 1996), which gained in popularity throughout the seventies. 

Then, the growing demand for a more powerful standard led to the development of the 

Standard Generalized Markup Language (SGML), which was adopted as an ISO standard 

in 1986 (ISO:8879). SGML was a powerful language but also a very complex one, which 

hindered its use in popular applications.  

The breakthrough that sparked the popularization of markup languages was the 

creation of the Hypertext Markup Language (HTML) in 1989 by Tim Berners-Lee and 

Robert Caillau (Connoly et al., 1997). HTML is a very simple subset of SGML that is 

focused on the presentation of documents. It rapidly became the standard language for the 

World Wide Web. Yet, as the WWW became ubiquitous, the limitations of HTML 

became apparent, the major one being its inability to deal with data interchange due to its 

limited support for metadata. Even though the W3C launched new HTML versions, these 

were not aimed to provide support to data exchange, since HTML was not originally 

                                                
13 In spite of both being called languages, markup languages are very different from programming 

languages. They are static and do not process information, but only store it in a structured way.  
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designed for data interchange14. Even though the WWW original intent had a focus on 

documents, HTML’s inaptitude for data interchange became a major shortcoming at the 

same pace the WWW became an ideal medium for data interchange.  

The answer for the HTML limitations was the development of the Extensible 

Markup Language (XML), which is much simpler than SGML but still capable of 

expressing information about the contents of a document and of supporting user-defined 

markups. XML became a W3C recommendation in 1998. In addition to its use for data 

packaging (e.g. the .plist files in Mac OS X and many configuration files in Windows 

XP), it has become the acknowledged standard for data interchange. 

With the establishment of the Semantic Web road map by the W3C in 1998, it 

became clear that more expressive markup languages were needed. As a result, the first 

Model Syntax Specification for the Resource Description Framework (RDF) was released 

in 1999 as a W3C recommendation. Unlike the data-centric focus of XML, RDF is 

intended to represent information and to exchange knowledge. Accounts of the 

differences between RDF and XML are widely available on the WWW (e.g. Gil & 

Ratnakar, 2004). 

In addition to a knowledge representation language, the Semantic Web effort also 

needed an ontology language to support advanced Web search, software agents, and 

knowledge management. The latest step towards fulfilling that requirement was the 

release of OWL as a W3C recommendation in 2004. OWL superseded DAML+OIL 

                                                
14 HTML has a strong focus on displaying information. Even its limited, implied semantics are largely 

ignored. As an example, tags h1, h2, …, h5 are commonly employed as a formatting tool, rather than to 

identify header levels in a document structure. 
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(Horrocks, 2002), a language that merged the two ontology languages being developed in 

the US (DAML) and Europe (OIL) 15. 

According to Hendler (2004), earlier languages have been used to develop tools 

and ontologies for specific user communities, and therefore were not defined to be 

compatible with the architecture of the World Wide Web in general, and the Semantic 

Web in particular. In contrast, OWL uses the RDF framework to provide a more general, 

interoperable approach by making ontologies compatible with web standards, scalable to 

web needs, and with the ability to be distributed across many systems. The interested 

reader will find information on OWL at the W3C OWL website (Miller & Hendler, 

2004). Yet, as we stated before, OWL suffers from the limitations of deterministic 

languages and thus lacks the advantages of probabilistic reasoning. 

2.2 A Brief Introduction to Probabilistic Representations 

Schum described probability as a subject that has “a very long past but a very 

short history” (Schum, 1994, page 35). An abstract notion of probability may be traced 

back at least to Paleolithic times, in the sense that early cultures are known to have used 

artifacts for gambling or forecasting the future. In contrast, he adds, the first scientific 

works on what we now call probability theory have a more recent history, dating back to 

“only” 400 years ago in the pioneer writings of mathematicians Blaise Pascal (1623-

1662) and Pierre de Fermat (1608-1665). It was only in the 20th century that the major 

                                                
15 The interested reader will find further information on DAML at http://www.daml.org/ and on OIL at 

http://www.ontoknowledge.org/oil/ 
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formal axiom systems for probability were developed (e.g. Cox, 1946; Kolmogorov, 

1960/1933). 

Four hundred years of scientific research and the broad acceptance of a formal 

axiom system have not brought a common agreement on the philosophical foundations of 

probability theory. Instead, many different interpretations have arisen during this time, 

and none has succeeded in putting an end to the discussion about what probability really 

is. The interested reader will find an excellent account of the historical development of 

the competing theories in Hacking (1975), while valuable comparative studies can be 

found in the works of Fine (1973), Weatherford (1982), and Cohen (1989). 

The classical approach regards probability as the ratio of favorable cases to total, 

equipossible cases (Laplace, 1996/1826; Ball, 2003/1908). The logical approach regards 

probability as a logical relation between statements of evidence and hypothesis (Carnap, 

1950; Keynes, 2004/1921). The frequentist view regards probability as the limiting 

frequency of successful outcomes in a long sequence of trials (von Mises, 1981/1928). 

The propensity view (Popper, 1957, 1959; Hacking, 1965; Lewis, 1980) regards 

probability as a physical tendency for certain events to occur. Finally, the subjectivist 

school understands probability as the degree of belief of an ideal rational agent about 

hypotheses for which the truth-value is unknown (Ramsey, 1931; Savage, 1972/1954; de 

Finetti, 1974). Despite the differences in philosophical interpretation, the mathematics is 

common to all approaches. 

This work is related to the task of representing uncertain, incomplete knowledge 

that can come from diverse agents. For this reason, we adopt the subjectivist view of 



41 

 

probability. We have chosen subjective probability as our representation for uncertainty 

because of its status as a mathematically sound representation language and formal 

calculus for rational degrees of belief, and because it gives different agents the freedom 

to have different beliefs about a given hypothesis. 

Although the interpretation taken in this dissertation is subjectivist, the 

methodology presented here is consistent with other interpretations of probability. For 

example, some might prefer a frequency or a propensity interpretation for probabilities 

that arise from processes considered to be intrinsically random. Such individuals would 

naturally build probabilistic ontologies only for processes they regard as intrinsically 

random. Others might prefer a logical interpretation of a probabilistic domain theory. In 

the end, the above-mentioned discussion of what probability “really is” may be better 

framed as an argument over what kind of applications would render justifiable the use of 

a probabilistic axiom system and its underlying mathematics. 

Many different axiomatic formulations have been proposed that give rise to 

subjectivist probability as a representation for rational degrees of belief. Examples 

include the axiom systems of Ramsey (1931), Kolmogorov (1960/1933), Cox (1946), 

Savage (1972/1954), and De Finetti (de Finetti, 1990/1954). As an illustration, the 

following axiom system is due to Watson & Buede (1987): 

(1) For any two uncertain events, A is more likely than B, or B is more likely 

than A, or they are equally likely. 
(2) If A1 and A2 are any two mutually exclusive events, and B1 and B2 are 

any other mutually exclusive events; and if A1 is not more likely than B1, 

and A2 is not more likely than B2; then (A1 and A2) is not more likely 
than (B1 and B2). Further, if either A1 is less likely than B1 or A2 is less 

likely than B2, then (A1 and A2) is less likely than (B1 and B2). 

(3) A possible event cannot be less likely than an impossible event. 
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(4) Suppose A1, A2, … is an infinite decreasing sequence of events; that is , 

if Ai occurs, then Ai-1 occurs, for any i. Suppose further that Ai is not less 
likely than some other event B, again for any i. Then the occurrence of 

all the infinite set of events Ai, I = 1,2,…,   , is not less likely than B. 

(5) There is an experiment, with a numerical outcome, such that each 

possible value of that outcome, in a given range, is equally likely. 

All the properties of the probabilistic system used by Bayesian Networks, 

Influence Diagrams, and MEBN, can be derived from those axioms. Among those, two 

transformations are crucial for the notion of probabilistic inference: the Law of Total 

Probability and the Bayes Rule.  

The Law of Total Probability, also known as multiplicative law (Page, 1988, page 

17), gives the marginal probability distribution of a subset of random variables from joint 

distribution on a superset by summing over all possible values of the random variables 

not contained in the subset. Figure 3 illustrates the concept. 

Bayes rule provides a method of updating the probability of a random variable 

when information is acquired about a related random variable. The standard format of 

Bayes rule is: 

 

P(B) is called prior probability of B, as it reflects our belief in event B before 

obtaining information on event A. Likewise,  P(B|A) is the posterior probability of B, and 

represents our new belief on event B after applying Bayes rule with the information 

collected from event A.  
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Figure 3. Law of Total Probability 

Bayes rule provides the formal basis for the active and rapidly evolving field of 

Bayesian probability and statistics. In the Bayesian view, inference is a problem of belief 

dynamics. Bayes rule provides a principled methodology for belief change in the light of 

new information. 

Good introductory material on Bayesian Statistics can be found in works of Press 

(1989), Lee (2004), and Gelman (2003), while a more philosophically oriented reader 

will be also interested in the collection of essays on foundational studies in Bayesian 

decision theory and statistics by Kadane et al. (1999). The above concepts provide the 

formal mathematical basis for the most widely used Bayesian Inference technique today: 

Bayesian Networks 

2.3 Bayesian Networks 

Bayesian networks provide a means of parsimoniously expressing joint 

probability distributions over many interrelated hypotheses. A Bayesian network consists 

of a directed acyclic graph (DAG) and a set of local distributions. Each node in the graph 
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represents a random variable. A random variable denotes an attribute, feature, or 

hypothesis about which we may be uncertain. Each random variable has a set of mutually 

exclusive and collectively exhaustive possible values. That is, exactly one of the possible 

values is or will be the actual value, and we are uncertain about which one it is. The 

graph represents direct qualitative dependence relationships; the local distributions 

represent quantitative information about the strength of those dependencies. The graph 

and the local distributions together represent a joint distribution over the random 

variables denoted by the nodes of the graph. 

Bayesian networks have been successfully applied to create consistent 

probabilistic representations of uncertain knowledge in diverse fields such as medical 

diagnosis (Spiegelhalter et al., 1989), image recognition (Booker & Hota, 1986), 

language understanding (Charniak & Goldman, 1989a, 1989b), search algorithms 

(Hansson & Mayer, 1989), and many others. Heckerman et. al. (1995b) provides a 

detailed list of recent applications of Bayesian Networks. 

One of the most important features of Bayesian networks is the fact that they 

provide an elegant mathematical structure for modeling complicated relationships among 

random variables while keeping a relatively simple visualization of these relationships. 

Figure 4 gives three simple examples of qualitatively different probability relationships 

among three random variables.  
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Figure 4. Sample Relationships Among Three Random Variables 

As a means for realizing the communication power of this representation, one 

could compare two hypothetical scenarios in which a domain expert with little 

background in probability tries to interpret what is represented in Figure 4. Initially, 

suppose that she is allowed to look only to the written equations below the pictures. In 

this case, we believe that she will have to think at least twice before making any 

conclusion on the relationships among events A, B, and C. On the other hand, if she is 

allowed to look only to the pictures, it seems fair to say that she will immediately 

perceive that in the leftmost picture, for example, event B is independent of events A and 

C, and event C depends on event A. Also, simply comparing the pictures would allow her 

to see that, in the center picture, A is now dependent on B, and that in the rightmost 

picture B influences both A and C. Advantages of easily interpretable graphical 

representation become more apparent as the number of hypothesis and the complexity of 

the problem increases. 

One of the most powerful characteristics of Bayesian Networks is its ability to 

update the beliefs of each random variable via bi-directional propagation of new 

information through the whole structure. This was initially achieved by an algorithm 
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proposed by Pearl (1988) that fuses and propagates the impact of new evidence providing 

each node with a belief vector consistent with the axioms of probability theory. 

Pearl’s algorithm performs exact Bayesian updating, but only for singly 

connected networks. Subsequently, general Bayesian updating algorithms have been 

developed. One of the most commonly applied is the Junction Tree algorithm (Lauritzen 

& Spiegelhalter, 1988). Neapolitan (2003) provides a discussion on many Bayesian 

propagation algorithms. Although Cooper (1987) showed that exact belief propagation in 

Bayesian Networks can be NP-Hard, exact computation is practical for many problems of 

practical interest. 

Some complex applications are too challenging for exact inference, and require 

approximate solutions (Dagum & Luby, 1993). Many computationally efficient inference 

algorithms have been developed, such as probabilistic logic sampling (Henrion, 1988), 

likelihood weighting (Fung & Chang, 1989; Shachter & Peot, 1990), backward sampling 

(Fung & del Favero, 1994), Adaptive Importance Sampling  (Cheng & Druzdzel, 2000), 

and Approximate Posterior Importance Sampling (Druzdzel & Yuan, 2003). 

Those algorithms allow the impact of evidence about one node to propagate to 

other nodes in multiply-connected trees, making Bayesian Networks a reliable engine for 

probabilistic inference. The prospective reader will find comprehensive coverage of 

Bayesian Networks in a large and growing literature on this subject, such as Pearl (1988), 

Neapolitan (1990, 2003), Oliver & Smith (1990), Charniak (1991), Jensen (1996, 2001), 

or Korb & Nicholson (2003).  
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2.3.1 Probabilistic Reasoning with Bayesian Networks 

Bayesian Networks have received praise for being a powerful tool for performing 

probabilistic inference, but they do have some limitations that impede their application to 

complex problems.  

As Bayesian networks grew in popularity, their limitations became increasingly 

apparent. Although a powerful tool, BNs are not expressive enough for many real-world 

applications. More specifically, Bayesian Networks assume a simple attribute-value 

representation – that is, each problem instance involves reasoning about the same fixed 

number of attributes, with only the evidence values changing from problem instance to 

problem instance. 

This type of representation is inadequate for many problems of practical 

importance.  Many domains require reasoning about varying numbers of related entities 

of different types, where the numbers, types and relationships among entities usually 

cannot be specified in advance and may have uncertainty in their own definitions. As will 

be demonstrated below, Bayesian networks are insufficiently expressive for such 

problems. 

2.3.2 Case Study: The Star Trek Scenario 

Choosing a particular real-life domain would pose the risk of getting bogged 

down in domain-specific detail. For this reason, we opted to construct a case study based 

on the popular television series Star Trek. Nonetheless, the examples presented here have 

been constructed to be accessible to anyone having some familiarity with space-based 
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science fiction. We begin our exposition narrating a highly simplified problem of 

detecting enemy starships. 

In this simplified problem, the main task of a decision system is to model the 

problem of detecting Romulan starships (here considered as hostile by the United 

Federation of Planets) and assessing the level of danger they bring to our own starship, 

the Enterprise. All other starships are considered either friendly or neutral. Starship 

detection is performed by the Enterprise’s suite of sensors, which can correctly detect and 

discriminate starships with an accuracy of 95%. However, Romulan starships may be in 

“cloak mode,” which makes them invisible to the Enterprise’s sensors. Even for the most 

current sensor technology, the only hint of a nearby starship in cloak mode is a slight 

magnetic disturbance caused by the enormous amount of energy required for cloaking. 

The Enterprise has a magnetic disturbance sensor, but it is very hard to distinguish 

background magnetic disturbance from that generated by a nearby starship in cloak 

mode. 

This simplified situation is modeled by the BN in Figure 516, which also considers 

the characteristics of the zone of space where the action takes place. Each node in our BN 

has a finite number of mutually exclusive, collectively exhaustive states. The node Zone 

Nature (ZN) is a root node, and its prior probability distribution can be read directly from 

Figure 5 (e.g. 80% for deep space). The probability distribution for Magnetic Disturbance 

Report (MDR) depends on the values of its parents ZN and Cloak Mode (CM). The 

strength of this influence is quantified via the conditional probability table (CPT) for 

                                                
16 Bayesian network screen shots were constructed using Netica!, http://www.norsys.com. 
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node MDR, shown in Table 1. Similarly, Operator Species (OS) depends on ZN, and the 

two report nodes depend on CM and the hypothesis on which they are reporting. 

 

Figure 5. The Naïve Star Trek Bayesian Network 

Graphical models provide a powerful modeling framework and have been applied 

to many real world problems involving uncertainty. Yet, the model depicted above is of 

little use in a “real life” starship environment. After all, hostile starships cannot be 

expected to approach Enterprise one at a time so as to render its simple BN model usable. 

If four starships were closing in on the Enterprise, the BN of Figure 5 would have to be 

replaced by the one shown in Figure 6.  

Table 1. Conditional Probability Table for Node MDR 

Magnetic Disturb. Rep. Zone Nature Cloak Mode 

Low Medium High 
True 80.0 13.0 7.0 Deep Space 
False 85.0 10.0 5.0 
True 20.0 32.0 48.0 Planetary 

Systems False 25.0 30.0 45.0 
True 5.0 10.0 85.0 Black Hole 

Boundary False 6.9 10.6 82.5 

 
Unfortunately, building a BN for each possible number of nearby starships is not 

only a daunting task but also a pointless one, since there is no way of knowing in advance 
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how many starships the Enterprise is going to encounter and thus which BN to use at any 

given time. In short, BNs lack the expressive power to represent entity types (e.g., 

starships) that can be instantiated as many times as required for the situation at hand. 

 

Figure 6. The BN to the Four-Starship Case 

In spite of its naiveté, we will briefly hold on to the premise that only one starship 

can be approaching the Enterprise at a time, so that the model of Figure 5 is valid. 

Furthermore, we will assume that the Enterprise is traveling in deep space, and its sensor 

reports imply that there is no trace of any nearby starship (i.e. the state of node SR state is 

Nothing). Further, there’s a newly arrived report indicating a strong magnetic disturbance 

(i.e. the state of node MDR is High). Table 1 shows that the likelihood ratio for a high 

MDR is 7/5 = 1.4 in favor of a starship in cloak mode. Although this favors a cloaked 

starship in the vicinity, the evidence is not overwhelming. 

Repetition is a powerful way to boost the discriminatory power of weak signals. 

As an example from airport terminal radars, a single pulse reflected from an aircraft 

usually arrives back to the radar receiver very weakened, making it hard to set apart from 
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background noise. However, a steady sequence of reflected radar pulses is easily 

distinguishable from background noise.  

Following the same logic, it is reasonable to assume that an abnormal background 

disturbance will show random fluctuation, whereas a disturbance caused by a starship in 

cloak mode would show a characteristic temporal pattern. Thus, when there is a cloaked 

starship nearby, the MDR state at any time depends on its previous state. A BN similar to 

the one in Figure 7 could capitalize on this for pattern recognition purposes. 

 

Figure 7. The BN for One-Starship Case with Recursion 

Dynamic Bayesian Networks (DBNs) allow nodes to be repeated over time 

(Murphy, 1998). The model of Figure 7 has both static and dynamic nodes, and thus is a 

partially dynamic Bayesian network (PDBN), also known as a temporal Bayesian 

network (Takikawa et al., 2002). While DBNs and PDBNs are useful for temporal 

recursion, a more general recursion capability is needed, as well as a parsimonious syntax 

for expressing recursive relationships. 

This section has provided just a glimpse of the issues that confront an engineer 

attempting to apply Bayesian networks to realistically complex problems. We did not 
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provide a comprehensive analysis of the limitations of Bayesian networks for solving 

complex problems, since this brief overview is enough for making the point that even 

relatively simple situations might require more expressiveness than BNs can provide. 

A much more powerful representational formalism is offered by first-order logic 

(FOL), which has the ability to represent entities of different types interacting with each 

other in varied ways. Sowa states that first-order logic “has enough expressive power to 

define all of mathematics, every digital computer that has ever been built, and the 

semantics of every version of logic, including itself” (Sowa, 2000, page 41). For this 

reason, FOL has become the de facto standard for logical systems from both a theoretical 

and practical standpoint.   

However, systems based on classical first-order logic lack a theoretically 

principled, widely accepted, logically coherent methodology for reasoning under 

uncertainty. As a result, a number of languages have appeared that extend the 

expressiveness of standard BNs in various ways. Two different streams of research on 

combining logic with probability are covered in the following sections. 

2.4 Probabilistic Extensions to Web Languages 

2.4.1 Probabilistic extensions to Description Logic 

Most of the probabilistic extensions aimed at the ontology engineering domain are 

based on Description Logic (DL), which Baader and Nutt (2001, page 47) define as a 

family of knowledge representation formalisms that represent the knowledge of an 

application domain (the “world”) by first defining the relevant concepts of the domain 
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(its terminology), and then using these concepts to specify properties of objects and 

individuals occurring in the domain (the world description). 

Description Logic divides a knowledge base into two components: a 

terminological box, or T-Box, and the assertional box, or A-Box. The first introduces the 

terminology (i.e. the vocabulary) of an application domain, while the latter contains 

assertions about instances of the concepts defined in the T-Box. Description Logic is a 

subset of FOL that provides a very good combination of decidability and expressiveness, 

and is the basis of OWL-DL.  

One of its extensions is Probabilistic Description Logic (Heinsohn, 1994; Jaeger, 

1994), which extends the description logic ALC, a member of the AL-languages 

(Schmidt-Schauß & Smolka, 1991) that is obtained by including the full existential 

quantification and the union constructors to the basic AL (attributive language).  

Another description logic language with a probabilistic extension is SHOQ(D) 

(Horrocks & Sattler, 2001). SHOQ(D) is the basis of DAML+OIL (Horrocks, 2002), the 

language that came from merging two ontology languages being developed in the US 

(DAML) and Europe (OIL) and has been superseded by OWL. Its probabilistic extension 

is called P-SHOQ (Giugno & Lukasiewicz, 2002), and is able to represent probabilistic 

information about concept and role instances (i.e. A-Box).  

P-Classic (Koller et al., 1997), another example of a probabilistic extension to 

DL, uses Bayesian inference mechanisms for extending the description logic CLASSIC. 
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In short, each probabilistic component is associated with a set P of p-classes, and each p-

class C in set P is represented using a Bayesian network. 

A common characteristic of the above approaches is that they extend description 

logic, which is a decidable subset of first-order logic (FOL). Description logics are highly 

effective and efficient for the classification and assumption problems they were designed 

to address. However, their ability to represent and reason about other commonly 

occurring kinds of knowledge is limited. One restrictive aspect of DL languages is their 

limited ability to represent constraints on the instances that can participate in a 

relationship. As an example, suppose we want to express that for a starship to be a threat 

to another starship in a specific type of situation it is mandatory that the two individuals 

of class starship involved in the situation are not the same. Making sure the two starships 

are different in a specific situation is only possible in DL if we actually create/specify the 

tangible individuals involved in that situation. Indeed, stating that two “fillers” (i.e. the 

actual individuals of class Starship that will “fill the spaces” of concept starship in our 

statement) are not equal without specifying their respective values would require 

constructs such as negation and equality role-value-maps, which cannot be expressed in 

description logic. While equality role-value-maps provides additional useful means to 

specify structural properties of concepts, their inclusion makes the logic undecidable 

(Calvanese & De Giacomo, page 223). 

2.4.2 Probabilistic Extensions to OWL 

The ontology language OWL is a W3C recommendation and has been receiving a 

great deal of attention, as the intended basis for the Semantic Web. Interestingly enough, 
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there are relatively few research efforts aimed at extending OWL to represent 

uncertainty.  

Among those is the research being done by Zhongli Ding and Yung Peng (2004) 

at the University of Maryland. Their main objective is to translate a Bayesian Network 

model to an OWL ontology. The approach involves augmenting OWL semantics to allow 

probabilistic information to be represented via additional markups. The result would be a 

probabilistic annotated ontology that could then be translated to a Bayesian network. 

Such a translation would be based on a set of translation rules that would rely on the 

probabilistic information attached to individual concepts and properties within the 

annotated ontology. The authors note that after successfully achieving the translation, the 

resulting Bayesian network will be associated with a joint probability distribution over 

the application domain. The authors acknowledge that a full translation of an ontology to 

a standard BN is impossible given the limitations of the latter in terms of expressivity. 

This corroborates the comments made earlier in Section 2.3 on the limited expressiveness 

of Bayesians networks being a major shortcoming for the technology to be used in more 

complex problems.  

Indeed, we have already seen that ontologies provide an explicit formal 

specification for how to represent the objects, concepts and other entities that are 

assumed to exist in some area of interest and the relationships among them, which 

implies the need for a highly expressive language to capture all the relevant information 

of a given domain. OWL, and other ontology languages as well, rely in variations of 
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FOL, so only a probabilistic FOL would be able to capture all the information included in 

an OWL ontology.  

Also focusing on Bayesian extensions geared towards the Semantic Web is the 

work of Gu et al. (2004), which has a very similar approach to Ding’s. Another effort in 

this direction is the set of RDF extensions being developed by Yoshio Fukushige (2004). 

In both cases, the representational limitations of Bayesian Networks limit the ability to 

express more complex probabilistic models, constraining their solutions to very specific 

classes of problems. 

It is primarily in those aspects that this work differs from the above approaches 

Even though we share the idea of extending Web languages to accept probabilistic 

information, the main objective of this research is to show a feasible solution to the more 

general problem of the lack of probabilistic support for applications currently being 

developed for the Semantic Web. At this point, it should be clear that such an objective 

would only be possible with the use of a powerful probabilistic language that does not 

have the representational limitations of Bayesian Networks. 

One such approach is the work of Mike Pool at IET in developing an OWL-based 

implementation of Quiddity*Suite (Pool & Aikin, 2004), which is primarily being used in 

the IET’s KEEPER project (Pool, 2004). As much as our own work, Mike’s extensions 

provide a very expressive method for representing uncertainty in OWL ontologies, while 

our approaches diverge in two aspects. First, we are focused on the more general problem 

of enabling probabilistic ontologies for the SW, whereas Mike’s work is mostly geared 

towards the use of Quiddity*Suite to represent OWL ontologies in projects such as 
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KEEPER. The second major difference is that while we use MEBN logic as the 

underlying semantics of our work, Mike relies on Quiddity*Suite’s syntax and semantics 

to provide the logical framework for his extensions.  Given our common use of 

Quiddity*Suite as a reasoner and shared interests in developing coherent forms of 

representing uncertainty in ontologies we have not only been mutually aware of our 

progresses but also had a great level of collaboration during the research period of this 

Dissertation. 

2.5 Probabilistic Languages with near First-Order Expressive Power 

In recent years, a number of languages have appeared that extend the 

expressiveness of standard directed and undirected graphical models in various ways. 

These languages include Hidden Markov models (Baum & Petrie, 1966; Rabiner, 1989; 

Elliott et al., 1995) which have been largely used in pattern recognition applications. 

HMMs can be viewed as a special case of dynamic Bayesian networks, or DBNs 

(Murphy, 1998). A HMM is a DBN having hidden states with no internal structure that d-

separate observations at different time steps. Partially dynamic Bayesian networks, also 

called temporal Bayesian networks (Takikawa et al., 2002) extend DBNs to include static 

variables. These formalisms augment standard Bayesian networks with a capability for 

temporal recursion. 

BUGS (Buntine, 1994a; Gilks et al., 1994; Spiegelhalter et al., 1996) is a software 

package that implements the Plates language. Plates represent repeated fragments of 

directed or undirected graphical models. Visually, a plate is represented as a rectangle 
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enclosing a set of repeated nodes. Strengths of plates are the ability to handle continuous 

distributions without resorting to discretization, and support for parameter learning in a 

wide variety of parameterized statistical models. The main weakness is the lack of a 

direct, explicit way to represent uncertainty about model structure.  

Probabilistic efforts towards more expressive languages also involve undirected 

graph models, which are usually applied to problems where there is not a natural 

direction for probabilistic influences, such as image processing and terrain reasoning. 

One example is pattern theory (Grenander, 1995), which focuses on creating 

mathematical knowledge representations of complex systems, analyzing the 

mathematical properties or the resulting regular structures, and applying them to 

practically occurring patterns found in the real world. Patterns are expressed through their 

typical behavior as well as through their variability around their typical form, and 

algorithms are derived for the understanding, recognition, and restoration of the observed 

patterns. The theory employs undirected graphs as a representational tool. 

Object-Oriented Bayesian Networks (Koller & Pfeffer, 1997; Bangsø & 

Wuillemin, 2000; Langseth & Nielsen, 2003) represent entities as instances of object 

classes with class-specific attributes and probability distributions. Probabilistic Relational 

Models (PRM) (Pfeffer et al., 1999; Getoor et al., 2000; Getoor et al., 2001; Pfeffer, 

2001) integrate the relational data model (Codd, 1970) and Bayesian networks. PRMs 

extend standard Bayesian Networks to handle multiple entity types and relationships 

among them, providing a consistent representation for probabilities over a relational 

database. PRMs cannot express arbitrary quantified first-order sentences and do not 



59 

 

support recursion. Although PRMs augmented with DBNs can support limited forms of 

recursion, they still do not support general recursive definitions. Jaeger (1997) extends 

relational probabilistic models to allow recursion, but it is limited to finitely many 

random variables. 

DAPER (Heckerman et al., 2004) combines the entity-relational model with DAG 

models to express probabilistic knowledge about structured entities and their 

relationships. Any model constructed in Plates or PRM can be represented by DAPER. 

Thus, DAPER is a unifying language for expressing relational probabilistic knowledge. 

DAPER expresses probabilistic models over finite databases, and cannot represent 

arbitrary FOPC expressions involving quantifiers. Therefore, like other languages 

discussed above, DAPER does not achieve full FOPC representational power. 

Most of the abovementioned work is still under development, and has provided 

undeniable improvements in the flexibility and expressiveness of probabilistic 

representation. Multi-Entity Bayesian Networks, which we will cover in the next chapter, 

is another formal system that combines FOL and probability theory. Among the major 

reasons that led us to have adopted MEBN as the formal basis for PR-OWL are its ability 

to express joint distributions over models of arbitrary finitely axiomatizable first order 

theories and to add new axioms by Bayesian conditioning.  
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Chapter 3  Multi-Entity Bayesian Networks 

Multi-Entity Bayesian Networks integrate first order logic with Bayesian 

probability. MEBN logic expresses probabilistic knowledge as a collection of MEBN 

fragments (MFrags) organized into MEBN Theories (MTheories). An MFrag represents a 

conditional probability distribution of the instances of its resident random variables given 

the values of instances of their parents in the Fragment graphs and given the context 

constraints. 

A collection of MFrags represents a joint probability distribution over an 

unbounded, possibly infinite number of instances of its random variables. The joint 

distribution is specified by means of the local distributions together with the conditional 

independence relationships implied by the fragment graphs. Context terms are used to 

specify constraints under which the local distributions apply. 

A collection of MFrags that satisfies consistency constraints ensuring the 

existence of a unique joint probability distribution over its random variables is called an 

MTheory. MTheories can express probability distributions over truth values of arbitrary 

First Order Logic sequences and can be used to express domain-specific ontologies that 

capture statistical regularities in a particular domain of application. 
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In addition, MTheories can represent particular facts relevant to a given reasoning 

problem. Conditioning a prior distribution represented by an MTheory on its findings is 

the basis of probabilistic inference with MEBN logic. 

Support for decision constructs in MEBN is provided via Multi-Entity Decision 

Graphs (MEDG), which are related to MEBN the same way influence diagrams are 

related to Bayesian Networks. An MEDG can be applied in any application that requires 

optimizing a set of alternatives (i.e. an MEDG policy) over the given constraints of a 

specific situation. MEBN logic also provides means of learning the structure of a MEBN 

Theory on the basis of data (i.e. Bayesian learning), while parameter learning can be 

expressed as inference in MEBN theories that contain parameter random variables. 

In short, MEBN logic has the potential to serve as the mathematical backbone for 

future Semantic Web applications that can deal with plausible reasoning. Yet, as we will 

explain later in this work, some issues such as the lack of built-in support for typing and 

polymorphism had to be addressed before making use of the logic’s strengths. In order to 

understand those issues and to achieve a thorough understanding of MEBN primitives, 

this Chapter uses the Star Trek model presented in Section 2.3 as the background to 

explain the principles of the logic and its representational power as well. 

3.1 A More “Realistic” Sci-fi Scenario 

The limited model of the previous section would be of little use in increasing the 

Captain’s awareness of the level of danger faced by the Enterprise. In addition to the 

model’s naïve assumptions, there were clear omissions such as the assessment of the 
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threat posed by a given starship, its ability and willingness to attack our own vessel, etc. 

These and other pertinent issues are addressed in the context of a richer scenario for 

which the power of MEBN is required. 

Like present-day Earth, 24th Century outer space is not a politically trivial 

environment. It is clear that the previous model failed to consider the many different alien 

species with diverse profiles that populate the Universe as portrayed in the television 

series. Although MEBN logic can represent the full range of species inhabiting the 

Universe in the 24th century, for purposes of this work only a few sample groups will 

suffice. Therefore, in the following pages the explicitly modeled species will be restricted 

to Friends17, Cardassians, Romulans, and Klingons, while addressing encounters with 

other possible races using the general label Unknown. 

Cardassians are constantly at war with the Federation, so any encounter with them 

is considered a hostile event. Fortunately, they do not possess cloaking technology, which 

makes it easier to detect and discriminate them. Romulans possess cloaking technology 

and are more ambiguous, behaving in a hostile manner in roughly half their encounters 

with Federation starships. Klingons, who also possess cloaking technology, have a peace 

agreement with the Federation of Planets, but their treacherous and aggressive behavior 

makes them less reliable than friends. Finally, when facing an unknown species, the 

historical log of such events shows that out of every ten new encounters, only one was 

hostile. 

                                                
17 The interest reader can find further information on the Star Trek series in a plethora of websites dedicated 

to preserve or to extend the history of series, such as www.startrek.com,  www.ex-astris-scientia.org, or 

techspecs.acalltoduty.com. 
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Apart from the species of its operators, a truly “realistic” model would consider 

each starship’s type, offensive power, the ability to inflict harm to the Enterprise given its 

range, and numerous other features pertinent to the model’s purpose.  

3.2 The Basics of MFrags 

MEBN logic represents the world as comprised of entities that have attributes and 

are related to other entities. Random variables (RV) represent features of entities and 

relationships among entities. Knowledge about attributes and relationships is expressed 

as a collection of MFrags organized into MTheories. An MFrag represents a conditional 

probability distribution for instances of its resident RVs given their parents in the 

fragment graph and the context nodes. An MTheory is a set of MFrags that collectively 

satisfies consistency constraints ensuring the existence of a unique joint probability 

distribution over instances of the RVs represented in each of the MFrags within the set. 

Like a BN, an MFrag contains nodes, which represent RVs, arranged in a directed 

graph whose edges represent direct dependence relationships. An isolated MFrag can be 

roughly compared with a standard BN with known values for its root nodes and known 

local distributions for its non-root nodes. For example, the MFrag of Figure 8 represents 

knowledge about the degree of danger to which our own starship is exposed. The 

fragment graph has seven nodes. The four nodes at the top of the figure are context 

nodes; the two shaded rectangular nodes below the context nodes are the input nodes; and 

the bottom node is a resident node. 
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Figure 8. The Danger To Self MFrag 

A node in an MFrag may have a parenthesized list of arguments.  These 

arguments are placeholders for entities in the domain.  For example, the argument st to 

HarmPotential(st, t) is a placeholder for an entity that has a potential to harm, while the 

argument t is a placeholder for the time step this instance represents.  To refer to an actual 

entity in the domain, the argument is replaced with a unique identifier. By convention, 

unique identifiers begin with an exclamation point, and no two distinct entities can have 

the same unique identifier. The result of substituting unique identifiers for a RV’s 

arguments is one or more instances of that RV. For example, HarmPotential(!ST1, !T1) 

and HarmPotential(!ST2, !T1) are two instances of HarmPotential(st, t) that both occur in 

the time step !T1. 

The resident nodes of an MFrag have local distributions that define how their 

probabilities depend on the values of their parents in the fragment graph. In a complete 

MTheory, each random variable has exactly one home MFrag, where its local distribution 
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is defined.18 Input and context nodes (e.g., OpSpec(st) or IsOwnStarship(s)) influence the 

distribution of the resident nodes, but their distributions are defined in their own home 

MFrags. 

Context nodes represent conditions that must be satisfied for the influences and 

local distributions of the fragment graph to apply. Context nodes may have value True, 

False, or Absurd.19 Context nodes having value True are said to be satisfied. As an 

example, if the unique identifier for the Enterprise (i.e., !ST0) is substituted for the 

variable s in IsOwnStarship(s), the resulting hypothesis will be true. If, instead, a 

different starship unique identifier (say, !ST1) is used, then this hypothesis will be false. 

Finally, if the unique identifier of a non-starship (say, !Z1) replaces s, then this statement 

is absurd (i.e., it is absurd to ask whether or not a zone in space is one’s own starship). 

To avoid cluttering the fragment graph, the states of context nodes are not shown, 

contrary to what happens with input and resident nodes. This is mainly because they are 

Boolean nodes whose values are relevant only for deciding whether to use a resident 

random variable’s local distribution or its default distribution. 

No probability values are shown for the states of the nodes of the fragment graph 

in Figure 8. This is because nodes in a fragment graph do not represent individual random 

variables with well-defined probability distributions. Instead, a node in an MFrag 

                                                
18 Please, note that standard MEBN logic does not support polymorphism. However, an extension to a 

typed polymorphic version is proposed in Chapter 4, and would permit a random variable to be resident 

in more than one MFrag.  
19 State names in this Dissertation are alphanumeric strings beginning with a letter, including True and 

False. However, Laskey (2005) uses the symbols T for True, F for False, and " for Absurd, and requires 

other state names to begin with an exclamation point (because they are unique identifiers) 
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represents a generic class of random variables. To draw inferences or declare evidence, 

we must create instances of the random variable classes. 

To find the probability distribution for an instance of DangerToSelf(s, t), the first 

step is to identify all instances of HarmPotential(st, t) and OpSpec(st) for which the 

context constraints are satisfied.  If there are none, then the default distribution that 

assigns value Absurd with probability 1 must be used.  Otherwise, to complete the 

definition of the MFrag of Figure 8, a local distribution must be specified for its lone 

resident node, DangerToSelf(s, t).  

The pseudo-code of Figure 8 defines a local distribution for the danger to a 

starship due to all starships that influence its danger level. Local distributions in standard 

BNs are typically represented by static tables, which limits each node to a fixed number 

of parents. On the other hand, an instance of a node in an MTheory might have any 

number of parents. Thus, MEBN implementations (i.e. languages based on MEBN logic) 

must provide an expressive language for defining local distributions. In this work, the use 

of pseudo-code is intended to convey the idea of using local expressions to specify 

probability distributions, while not committing to a particular syntax. 

Lines 3 to 5 cover the case in which there is at least one nearby starship operated 

by Cardassians and having the ability to harm the Enterprise. This is an uncomfortable 

situation for Capitan Picard, the Enterprise Commander, and his starship, where the 

probability of an unacceptable danger to self is 0.90 plus the minimum of 0.10 and the 

result of multiplying 0.025 by the total number of starships that are harmful and operated 

by Cardassians.  
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Also the remaining belief (i.e. the difference between 100% and the belief in state 

Unacceptable is divided between High (80% of the remainder) and Medium (20% of the 

remainder) whereas belief in Low is zero. The remaining lines use similar formulas to 

cover the other possible configurations in which there exist starships with potential to 

harm Enterprise (i.e. HarmPotential(st, t) = True). 

The last conditional statement of the local expression covers the case in which no 

nearby starships can inflict harm upon the Enterprise (i.e. all nodes HarmPotential(st, t) 

have value False). In this case, the value for DangerToSelf(s, t) is Low with probability 1. 

Figure 9 depicts an instantiation of the Danger To Self MFrag for which there are 

four starships nearby, three of them operated by Cardassians and one by the Romulans. 

Also, the Romulan and two of the Cardassian starships are within a range at which they 

can harm the Enterprise, whereas the other Cardassian starship is too far away to inflict 

any harm. 

 

Figure 9. An Instance of the Danger To Self MFrag 
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Following the procedure described in Figure 8, the belief for state Unacceptable 

is .975 (.90 + .025*3) and the beliefs for states High, Medium, and Low are .02 ((1-

.975)*.8),  .005 ((1-.975)*.2), and zero respectively. 

In short, the pseudo-code covers all possible input node configurations by linking 

the danger level to the number of nearby starships that have the potential to harm our own 

starship. The formulas state that if there are any Cardassians or Romulan starships within 

Enterprise’s range, then a glimpse of what would the distribution for danger level given 

the number of nearby starships looks like is depicted in Table 2. 

Table 2. Sample Parts of the Danger To Self MFrag Probability Distribution 

Relevant Starships Nearby Danger Level Dist. 

At least 1 Cardassian [0.925, 0.024, 0.006, 0] 

At least 2 Cardassians [0.99, 0.008, 0.002, 0] 

At least 3 Cardassians [0.975, 0.2, 0.05, 0] 

More than 4 Cardassians [1, 0, 0, 0] 

No Cardassians but at least 1 Romulan [.73, .162, .081, .027] 

No Cardassians but at least 1 Romulans [.76, .144, .072, .024] 

… … (see formula) 

No Cardassians but 10 or more Romulans [1, 0, 0, 0] 

No Cardassians or Romulans, one Unknown [.02, .48, .48, .02] 

… … (see formula) 

No Cardassians or Romulans, 10+ Unknown [.20, .30, .30, .20] 

… …(see formula) 

 

Following the same logic depicted in the formula, if there are only friendly 

starships nearby with the ability to harm the Enterprise, then the distribution becomes [0, 
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0, 0.01, .99]. The last line indicates that if that no starship can harm the Enterprise, then 

the danger level will be Low for sure. 

As noted previously, a powerful formalism is needed to represent complex 

scenarios at a reasonable level of fidelity. In the probability distribution shown in this 

example, additional detail could have been added and many nuances might have been 

explored.  For example, a large number of nearby Romulan ships might have been 

considered as a fair indication of a coordinated attack and therefore implied greater 

danger than an isolated Cardassian ship.  

Nonetheless, this example was purposely kept simple in order to clarify the basic 

capabilities of the logic. It is clear that more complex knowledge patterns could be 

accommodated as needed to suit the requirements of the application.  MEBN logic has 

built-in logical MFrags that provide the ability to express any sentence that can be 

expressed in first-order logic.  Laskey (2005) proves that MEBN logic can implicitly 

express a probability distribution over interpretations of any consistent, finitely axiom-

atizable first-order theory. This provides MEBN with sufficient expressive power to 

represent virtually any scientific hypothesis. 

3.3 Representing Recursion in MEBN Logic 

One of the main limitations of BNs is their lack of support for recursion. 

Extensions such as dynamic Bayesian networks provide the ability to define certain kinds 

of recursive relationships. MEBN provides theoretically grounded support for very 
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general recursive definitions of local distributions. Figure 10 depicts an example of how 

an MFrag can represent temporal recursion. 

 

Figure 10. The Zone MFrag 

In that MFrag, a careful reading of the context nodes will make it clear that in 

order for the local distribution to apply, z has to be a zone and st has to be a starship that 

has z as its current position. In addition, tprev and t must be TimeStep entities, and tprev 

is the step preceding t. 

Other varieties of recursion can also be represented in MEBN logic by means of 

MFrags that allow influences between instances of the same random variable.  Allowable 

recursive definitions must ensure that no random variable instance can influence its own 

probability distribution. General conditions that both recursive and non-recursive MFrags 

and MTheories must satisfy are given in Laskey (2005). 

As in non-recursive MFrags, the input nodes in a recursive MFrag include nodes 

whose local distributions are defined in another MFrag (i.e., CloakMode(st)).  In addition, 

the input nodes may include instances of recursively-defined nodes in the MFrag itself. 
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For example, the input node ZoneMD(z, tprev) represents the magnetic disturbance in 

zone z at the previous time step, which influences the current magnetic disturbance 

ZoneMD(z, t).  The recursion is grounded by specifying an initial distribution at time !T0 

that does not depend on a previous magnetic disturbance. 

Figure 12 illustrates how recursive definitions can be applied to construct a 

situation-specific Bayesian Network (SSBN) to answer a query. In this specific case, the 

query concerns the magnetic disturbance at time !T3 in zone !Z0, where !Z0 is known to 

contain the uncloaked starship !ST0 (Enterprise) and exactly one other starship !ST1, 

which is known to be cloaked.  

 

Figure 11. SSBN Constructed from Zone MFrag 

The process to build the graph shown in this picture begins by creating an 

instance of the home MFrag of the query node ZoneMD(!Z0,!T3).  That is, !Z0 is 

substituted for z and !T3 for t, and then all instances of the remaining random variables 
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that meet the context constraints are created.  The next step is to build any conditional 

probability tables (CPTs) that can already be built on the basis of the available data. CPTs 

for ZoneMD(!Z0,!T3), ZoneNature(!Z0), ZoneEShips(!Z0), and ZoneFShips(!Z0) can be 

constructed because they are resident in the retrieved MFrag. Single-valued CPTs for 

CloakMode(!ST0), CloakMode(!ST1), and !T3=!T0 can be specified because the values of 

these random variables are known. 

At end of the above process, only one node, ZoneMD(!Z0,!T2), remains for which 

there is no CPT.  To construct its CPT, its home MFrag must be retrieved, and any 

random variables that meet its context constraints and have not already been instantiated 

must be instantiated.  The new random variables created in this step are 

ZoneMD(!Z0,!T1) and !T2=!T0.  The value of the latter is already known, while the home 

MFrag of the former has to be retrieved.  This process continues until all the nodes of 

Figure 11 are added.  At this point, the CPTs for all random variables can be constructed, 

and thus the SSBN is complete.20 

The MFrag depicted in Figure 10 defines the local distribution that applies to all 

these instances, even though for brevity only the probability distributions (local and 

default) for node ZoneMD(z, t) were displayed. The remaining distributions can be found 

in Appendix A. Note that when there is no starship with cloak mode activated, the 

probability distribution for magnetic disturbance given the zone nature does not change 

with time. When there is at least one starship with cloak mode activated, then the 

                                                
20 For efficiency reasons, most knowledge-based model construction systems would not explicitly represent 

root evidence nodes such as CloakMode(!ST0) or !T1=!T0 or barren nodes such as ZoneFShips(!Z0) and 

ZoneFShips(!Z0).  For expository purposes, the approach taken here was the logically equivalent, 

although less computationally efficient, approach of including all these nodes explicitly. 
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magnetic disturbance tends to fluctuate regularly with time in the manner described by 

the local expression. For the sake of simplicity, the underlying assumption that the local 

distribution depends only on whether there is a cloaked starship nearby was adopted, 

although in a more “realistic” model the disturbance might increase with the number of 

cloaked starships and/or the power of the cloaking device. 

Another implicit assumption taken in this example regards the initial distribution 

for the magnetic disturbance when there are cloaked starships, which was assumed to be 

equal to the stationary distribution given the zone nature and the number of cloaked 

starships present initially.  Of course, it would be possible to write different local 

expressions expressing a dependence on the number of starships, their size, their distance 

from the Enterprise, etc. 

MFrags provide a flexible means to represent knowledge about specific subjects 

within the domain of discourse, but the true gain in expressive power is revealed when 

these “knowledge patterns” are aggregated in order to form a coherent model of the 

domain of discourse that can be instantiated to reason about specific situations and 

refined through learning.  

It is important to note that just collecting a set MFrags that represent specific parts 

of a domain is not enough to ensure a coherent representation of that domain. For 

example, it would be easy to specify a set of MFrags with cyclic influences, or one 

having multiple conflicting distributions for a random variable in different MFrags. The 

following section describes how to define complete and coherent domain models as 

collections of MFrags. 
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3.4 Building MEBN Models with MTheories 

In order to build a coherent model, it is mandatory that the set of MFrags 

collectively satisfies consistency constraints ensuring the existence of a unique joint 

probability distribution over instances of the random variables mentioned in the MFrags. 

Such a coherent collection of MFrags is called an MTheory.  

An MTheory represents a joint probability distribution for an unbounded, possibly 

infinite number of instances of its random variables. This joint distribution is specified by 

the local and default distributions within each MFrag together with the conditional 

independence relationships implied by the fragment graphs. 

The MFrags described above are part of a generative MTheory for the 

intergalactic conflict domain.  A generative MTheory summarizes statistical regularities 

that characterize a domain.  These regularities are captured and encoded in a knowledge 

base using some combination of expert judgment and learning from observation.   

To apply a generative MTheory to reason about particular scenarios, it is 

necessary to provide the system with specific information about the individual entity 

instances involved in the scenario. On receipt of this information, Bayesian inference can 

be used both to answer specific questions of interest (e.g., how high is the current level of 

danger to the Enterprise?) and to refine the MTheory (e.g., each encounter with a new 

species gives additional statistical data about the level of danger to the Enterprise from a 

starship operated by an unknown species).  Bayesian inference is used to perform both 

problem-specific inference and learning in a sound, logically coherent manner. 
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Findings are the basic mechanism for incorporating observations into MTheories. 

A finding is represented as a special 2-node MFrag containing a node from the generative 

MTheory and a node declaring one of its states to have a given value.  From a logical 

point of view, inserting a finding into an MTheory corresponds to asserting a new axiom 

in a first-order theory. In other words, MEBN logic is inherently open, having the ability 

to incorporate new axioms as evidence and update the probabilities of all random 

variables in a logically consistent way. 

In addition to the requirement that each random variable must have a unique 

home MFrag, a valid MTheory must ensure that all recursive definitions terminate in 

finitely many steps and contain no circular influences. Finally, as demonstrated above, 

random variable instances may have a large, and possibly unbounded number of parents. 

A valid MTheory must satisfy an additional condition to ensure that the local 

distributions have reasonable limiting behavior as more and more parents are added. 

Laskey (2005) proved that when an MTheory satisfies these conditions (as well as other 

technical conditions that are unimportant to our example), then there exists a joint 

probability distribution on the set of instances of its random variables that is consistent 

with the local distributions assigned within its MFrags.  

Furthermore, any consistent, finitely axiomatizable FOL theory can be translated 

to infinitely many MTheories, all having the same purely logical consequences, that 

assign different probabilities to statements whose truth-value is not determined by the 

axioms of the FOL theory.  
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MEBN logic contains a set of built-in logical MFrags (including quantifier, 

indirect reference, and Boolean connective MFrags) that provide the ability to represent 

any sentence in first-order logic. If the MTheory satisfies additional conditions, then a 

conditional distribution exists given any finite sequence of findings that does not 

logically contradict the logical constraints of the generative MTheory. MEBN logic thus 

provides a logical foundation for systems that reason in an open world and incorporate 

observed evidence in a mathematically sound, logically coherent manner. 

Figure 12 shows an example of a generative MTheory for the Star Trek domain. 

For the sake of conciseness, the local distribution formulas and the default distributions 

are not shown here. 

 

Figure 12. The Star Trek Generative MTheory 

The Entity Type MFrag, at the right side of Figure 12, is meant to formally 

declare the possible types of entity that can be found in the model. This is a generic 

MFrag that allows the creation of domain-oriented types (which are represented by 

TypeLabel entities). This MFrag forms the basis for a Type system.  
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The simple model depicted here did not address the creation or the explicit 

support for entity types. Standard MEBN logic as defined in Laskey (2005) is untyped, 

meaning that a knowledge engineer who wishes to represent types must explicitly define 

the necessary logical machinery. Typing is an important feature in ontology languages 

such as OWL, so as part of this research effort we have developed an extended version of 

the MEBN logic that includes built-in support for typing. This extension is explained in 

Chapter 4. 

The Entity Type MFrag of Figure 12 defines an extremely simple kind of type 

structure. MEBN can be extended with MFrags to accommodate any flavor of type 

system, including more complex capabilities such as sub-typing, polymorphism, 

multiple-inheritance, etc. 

It is important to understand the power and flexibility that MEBN logic gives to 

knowledge base designers by allowing multiple, equivalent ways of portraying the same 

knowledge. Indeed, the generative MTheory of Figure 12 is just one of the many possible 

(consistent) sets of MFrags that can be used to represent a given joint distribution. There, 

the random variables were clustered in a way that attempts to naturally reflect the 

structure of the objects in that scenario (i.e. an object oriented approach to modeling was 

taken), but this was only one design option among the many allowed by the logic.  

As an example of such flexibility, Figure 13 depicts the same knowledge 

contained in the Starship MFrag of Figure 12 (right side) using three different MFrags. In 

this case, the modeler might have opted for decomposing an MFrag in order to get the 

extra flexibility of smaller, more specific MFrags that can be combined in different ways. 
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Another knowledge engineer might prefer the more concise approach of having all 

knowledge in just one MFrag. Ultimately, the approach to be taken when building an 

MTheory will depend on many factors, including the model’s purpose, the background 

and preferences of the model’s stakeholders, the need to interface with external systems, 

etc. 

 

Figure 13. Equivalent MFrag Representations of Knowledge 

First Order Logic (or one of its subsets) provides the theoretical foundation for the 

type systems used in popular object-oriented and relational languages. MEBN logic 

provides the basis for extending the capability of these systems by introducing a sound 

mathematical basis for representing and reasoning under uncertainty, which is precisely 

the idea being explored in the extensions that will be proposed in the next Chapter. The 

advantages of a MEBN-based type system are also explored in that Chapter. 

Another powerful aspect of MEBN, the ability to support finite or countably 

infinite recursion, is illustrated in the Sensor Report and Zone MFrags, both of which 
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involve temporal recursion. The Time Step MFrag includes a formal specification of the 

local distribution for the initial step of the time recursion (i.e. when t=!T0) and of its 

recursive steps (i.e. when t does not refer to the initial step). Other kinds of recursion can 

be represented in a similar manner. 

MEBN logic also has the ability to represent and reason about hypothetical 

entities. Uncertainty about whether a hypothesized entity actually exists is called 

existence uncertainty. In the example model presented here, the random variable 

Exists(st) is used to reason about whether its argument is an actual starship.  For example, 

it might be uncertain whether a sensor report corresponds to one of the starships already 

known by the system, a starship of which the system was nit previously aware of, or a 

spurious sensor report. 

To allow for hypothetical starships, the local distribution for Exists(st) assigns 

non-zero probability to False. Suppose the unique identifier !ST4 refers to a hypothetical 

starship nominated to explain the report. In this case, IsA(Starship, !ST4) has value True, 

but the value of Exists(!ST4) is uncertain. A value of False would mean !ST4 is a 

spurious starship or false alarm. Queries involving the unique identifier of a hypothetical 

starship return results weighted by our belief that it is an actual or a spurious starship. 

Belief in Exists(!ST4) is updated by Bayesian conditioning as relevant evidence accrues. 

Representing existence uncertainty is particularly useful for counterfactual reasoning and 

reasoning about causality (Druzdzel & Simon, 1993; Pearl, 2000). 

Because the Star Trek model was designed to demonstrate the capabilities of 

MEBN logic, the approach taken was to avoid issues that could be handled by the logic 
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but would make the model too complex. As an example, one aspect that this model does 

not consider is association uncertainty, a very common problem in multi-sensor data 

fusion systems. Association uncertainty means we are not sure about the source of a 

given report. For example, we may receive a report, !SR4, indicating a starship near a 

given location. Suppose we cannot tell whether the report was generated by !ST1 or !ST3, 

two starships known to be near the reported location, or by  a previously unreported 

starship !ST4. In this case, we would enumerate these three unique identifiers as possible 

values for Subject(!SR4), and specify that Exists(!ST4) has value False if Subject(!SR4) 

has any value other than !ST4. Many weakly discriminatory reports coming from possibly 

many starships produces an exponential set of combinations that require special 

hypothesis management methods (Stone et al., 1999). 

Closely related to association uncertainty is identity uncertainty, or uncertainty 

about whether two expressions refer to the same entity.  Association uncertainty can be 

regarded as a special case of identity uncertainty – that is, uncertainty about the identity 

of Subject(!SR4). The ability to represent existence, association, and identity uncertainty 

provides a logical foundation for hypothesis management in multi-source fusion. 

The Star Trek model was built in a way to avoid these problems by assuming that 

the Enterprise’s sensor suite can achieve perfect discrimination. However, the underlying  

logic can represent and reason with association, existence, and type uncertainty, and thus 

provides a sound logical foundation for hypothesis management in multi-source fusion. 
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3.5 Making Decisions with Multi-Entity Decision Graphs. 

Captain Picard has more than an academic interest in the danger from nearby 

starships. He must make decisions with life and death consequences. Multi-Entity 

Decision Graphs (MEDGs, or “medges”) extend MEBN logic to support decision making 

under uncertainty. MEDGs are related to MEBNs in the same way influence diagrams are 

related to Bayesian Networks. A MEDG can be applied to any problem that involves 

optimal choice from a set of alternatives subject to given constraints. 

When a decision MFrag (i.e. one that has decision and utility nodes) is added to a 

generative MTheory such as the one portrayed in Figure 12, the result is a MEDG. As an 

example, Figure 14 depicts a decision MFrag representing Captain Picard’s choice of 

which defensive action to take. The decision node DefenseAction(s) represents the set of 

defensive actions available to the Captain (in this case, to fire the ship’s weapons, to 

retreat, or to do nothing). The value nodes capture Picard’s objectives, which in this case 

are to protect the Enterprise while also avoiding harm to innocent people as a 

consequence of his defensive actions.  Both objectives depend upon Picard’s decision, 

while ProtectSelf(s) is influenced by the perceived danger to Enterprise and 

ProtectOthers(s) is depends on the level of danger to other starships in the vicinity. 
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Figure 14. The Star Trek Decision MFrag 

The model described here is clearly an oversimplification of any “real” scenario a 

Captain would face.  Its purpose is to convey the core idea of extending MEBN logic to 

support decision-making. Indeed, a more common situation is to have multiple, mutually 

influencing, often conflicting factors that together form a very complex decision problem, 

and require trading off different attributes of value. For example, a decision to attack 

would mean that little power would be left for the defense shields; a retreat would require 

aborting a very important mission. 

MEDGs provide the necessary foundation to address all the above issues. Readers 

familiar with influence diagrams will appreciate that the main concepts required for a 

first-order extension of decision theory are all present in Figure 14. In other words, 

MEDGs have the same core functionality and characteristics of common MFrags. Thus, 

the utility table in Survivability(s) refers to the entity whose unique identifier substitutes 

for the variable s, which according to the context nodes should be our own starship 

(Enterprise in this case). Likewise, the states of input node DangerToSelf(s, t) and the 

decision options listed in DefenseAction(s) should also refer to the same entity. 

Of course, this confers to MEDGs the expressive power of MEBN models, which 

includes the ability to use this same decision MFrag to model the decision process of the 
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Captain of another starship. Notice that a MEDG Theory should also comply with the 

same consistency rules of standard MTheories, along with additional rules required for 

influence diagrams (e.g., value nodes are deterministic and must be leaf nodes or have 

only value nodes as children). 

In the present example, adding the Star Trek Decision MFrag of Figure 14 to the 

generative MTheory of Figure 12 will maintain the consistency of the latter, and therefore 

the result will be a valid generative MEDG Theory. That simple illustration can be 

extended to more elaborate decision constructions, providing the flexibility to model 

decision problems in many different applications spanning diverse domains.  

3.6 Inference in MEBN Logic. 

A generative MTheory provides prior knowledge that can be updated upon receipt 

of evidence represented as finding MFrags. We now describe the process used to obtain 

posterior knowledge from a generative MTheory and a set of findings. 

In a BN model such as the ones shown from Figure 5 through Figure 7, assessing 

the impact of new evidence involves conditioning on the values of evidence nodes and 

applying a belief propagation algorithm. When the algorithm terminates, beliefs of all 

nodes, including the node(s) of interest, reflect the impact of all evidence entered thus far.  

This process of entering evidence, propagating beliefs, and inspecting the posterior 

beliefs of one or more nodes of interest is called a query. 

MEBN inference works in a similar way (after all, MEBN is a Bayesian logic), 

but following a more complex yet more flexible process. Whereas BNs are static models 
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that must be changed whenever the situation changes (e.g. number of starships, time 

recursion, etc.), an MTheory implicitly represents an infinity of possible scenarios. In 

other words, the MTheory represented in Figure 12 (as well as the MEDG obtained by 

aggregating the MFrag in Figure 14) is a model that can be used for as many starships as 

wanted, and for as many time steps that are necessary to get the conclusions needed. 

That said, the obvious question is how to perform queries within such a model. A 

simple example of query processing was given above in Section 3.3. Here, the general 

algorithm for constructing a situation-specific Bayesian network (SSBN) is described in a 

general way. In order to execute such algorithm, it is necessary to have an initial 

generative MTheory (or MEDG Theory), a Finding set (which conveys particular 

information about the situation) and a Target set (which indicates the nodes of interest to 

the query being made).  

For comparison, let’s suppose there is a situation similar to the one in Figure 3, 

where four starships are within the Enterprise’s range. In that particular case, a BN was 

used to represent the situation at hand, which means the model is “hardwired” to a known 

number (four) of starships, and any other number would require a different model. A 

standard Bayesian inference algorithm applied to that model would involve entering the 

available information about these four starships (i.e., the four sensor reports), propagating 

the beliefs, and obtaining posterior probabilities for the hypotheses of interest (e.g., the 

four Starship Type nodes). 

Similarly, MEBN inference begins when a query is posed to assess the degree of 

belief in a target random variable given a set of evidence random variables.  We start 
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with a generative MTheory, add a set of finding MFrags representing problem-specific 

information, and specify the target nodes for our query.  The first step in MEBN 

inference is to construct the SSBN, which can be seen as an ordinary Bayesian network 

constructed by creating and combining instances of the MFrags in the generative 

MTheory.  

Next, a standard Bayesian network inference algorithm is applied.  Finally, the 

answer to the query is obtained by inspecting the posterior probabilities of the target 

nodes. A MEBN inference algorithm is provided in Laskey (2005). The algorithm 

presented there does not handle decision graphs. Thus, the illustration presented in the 

following lines extends the algorithm for purposes of demonstrating how the MEDG 

Theory portrayed in Figure 12 and Figure 14 can be used to support the Captain’s 

decision. 

In this example, the finding MFrags convey information that there are five 

starships (!ST0 through !ST4) and that the first is Enterprise itself. For the sake of 

illustration, let’s assume that the Finding set also includes data regarding the nature of the 

space zone Enterprise is currently located (!Z0), its magnetic disturbance for the first 

time step (!T0), and sensor reports for starships !SR1 to !SR4 for the first two time steps. 

Let’s also assume that the Target set for this illustrative query includes an 

assessment of the level of danger experienced by the Enterprise and the best decision to 

take given this level of danger. 
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Figure 15 shows the situation-specific Bayesian network for such query21. To 

construct that SSBN, the initial step is to create instances of the random variables in the 

Target set and the random variables for which there are findings. The target random 

variables are DangerLevel(!ST0) and DefenseAction(!ST0). The finding random variables 

are the eight SRDistance nodes (2 time steps for each of four starships) and the two 

ZoneMD reports (one for each time step). Although each finding MFrag contains two 

nodes, the random variable on which there is a finding and a node indicating the value to 

which it is set, only the first of these is included in our situation-specific Bayesian 

network, and declared as evidence that its value is equal to the observed value indicated 

in the finding MFrag. Evidence nodes are shown with bold borders. 

 

Figure 15. SSBN for the Star Trek MTheory with Four Starships within Range 

The next step is to retrieve and instantiate the home MFrags of the finding and 

target random variables. When each MFrag is instantiated, instances of its random 

                                                
21 The alert reader may notice that root evidence nodes and barren nodes that were included in the 

constructed network of Figure 8 are not included here. As noted above, explicitly representing these 

nodes is not necessary. 
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variables are created to represent known background information, observed evidence, and 

queries of interest to the decision maker. If there are any random variables with 

undefined distributions, then the algorithm proceeds by instantiating their respective 

home MFrags.   

The process of retrieving and instantiating MFrags continues until there are no 

remaining random variables having either undefined distributions or unknown values. 

The result, if this process terminates, is the SSBN or, in this example, a situation-specific 

decision graph (SSDG).  

In some cases the SSBN can be infinite, but under conditions given in Laskey 

(Laskey, 2005), the algorithm produces a sequence of approximate SSBNs for which the 

posterior distribution of the target nodes converges to their posterior distribution given 

the findings.  Mahoney and Laskey (1998) define a SSBN as a minimal Bayesian 

network sufficient to compute the response to a query. A SSBN may contain any number 

of instances of each MFrag, depending on the number of entities and their 

interrelationships. The SSDG in Figure 15 is the result of applying this process to the 

MEDG Theory obtained with the aggregation of Figure 12 and Figure 14 with the 

Finding and Target set defined above. 

Another important use for the SSBN algorithm is to help in the task of performing 

Bayesian learning, which is treated in MEBN logic as a sequence of MTheories. 



88 

 

3.7 Learning from Data. 

Learning graphical models from observations is usually divided into two different 

categories inferring the parameters of the local distributions when the structure is known, 

and inferring the structure itself. In MEBN, by structure we mean the possible values of 

the random variables, their organization into MFrags, the fragment graphs, and the 

functional forms of the local distributions. 

Figure 16 shows an example of parameter learning in MEBN logic in which we 

adopt the assumption that one can infer the length of a starship on the basis of the average 

length of all starships. This generic domain knowledge is captured by the generative 

MFrag, which specifies a prior distribution based on what we know about starship 

lengths. 

 

Figure 16. Parameter Learning in MEBN 

One strong point about using Bayesian models in general and MEBN logic in 

particular is the ability to refine prior knowledge as new information becomes available. 

In our example, let’s suppose that the Enterprise system receives precise information on 
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the length of starships !ST2, !ST3, and !ST5; but has no information regarding the 

incoming starship !ST8. 

The first step of this simple parameter learning example is to enter the available 

information to the model in the form of findings (see box StarshipLenghInd Findings). 

Then, a query is posed on the length of !ST8. The SSBN algorithm will instantiate all the 

random variables that are related to the query at hand until it finishes with the SSBN 

depicted in Figure 16 (box SSBN with Findings).  

In this example, the MFrags satisfy graph-theoretic conditions under which a re-

structuring operation called finding absorption (Buntine, 1994b) can be applied. 

Therefore, the prior distribution of the random variable GlobalAvgLength can be replaced 

in the SSBN by the posterior distribution obtained after adding evidence in the form of 

findings22. 

As a result of this learning process, the probability distribution for 

GlobalAvgLength has been refined in light of the new information conveyed by the 

findings. The resulting, more precise distribution can now be used not only to predict the 

length of !ST8 but for future queries as well. In this specific example, the same query 

would retrieve the SSBN in the lower right corner of Figure 16 (box SSBN with Findings 

Absorbed).  

One of the major advantages of the finding absorption operation is that it greatly 

improves the tractability of both learning and SSBN inference. Finding absorption can 

                                                
22 Absorption changes the structure of the already-observed length MFrags by removing their dependence 

on the global average length and setting their observed values to probability 1. It also removes the finding 

MFrags for these random variables. 
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also be applied to modify the generative MFrags themselves, thus creating a new 

generative MTheory that has the same conditional distribution given its findings as the 

original MTheory. In this new MTheory, the distribution of GlobalAvgLength has been 

modified to incorporate the observations and the finding random variables are set with 

probability 1 to their observed values. Restructuring MTheories via finding absorption 

can increase the efficiency of SSBN construction and of inference. 

Structure learning in MEBN works in a similar fashion. As an example, let’s 

suppose that when analyzing the data that was acquired in the parameter learning process 

above, a domain expert raises the hypothesis that the length of a given starship might 

depend on its class. To put it into a “real-life” perspective, let’s consider two classes: 

Explorers and Warbirds. The first usually are vessels crafted for long distance journeys 

with a relatively small crew and payload. Warbirds, on the other hand, are heavily armed 

vessels designed to be flagships of a combatant fleet, usually carrying lots of 

ammunition, equipped with many advanced technology systems and a large crew. 

Therefore, our expert thinks it likely that the average length of Warbirds may be greater 

than the average length of Explorers. 

In short, the general idea of this simple example is to mimic the more general 

situation in which we have a potential link between two attributes (i.e. starship length and 

class) but at best weak evidence to support the hypothesized correlation. This is a typical 

situation in which Bayesian models can use incoming data to learn both structure and 

parameters of a domain model. Generally speaking, the solution for this class of 
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situations is to build two different structures and apply Bayesian inference to evaluate 

which structure is more consistent with the data as it becomes available. 

The initial setup of the structure learning process for this specific problem is 

depicted in Figure 17. Each of the two possible structures is represented by its own 

generative MFrag. The first MFrag is the same as before: the length of a starship depends 

only on a global average length that applies to starships of all classes. The upper left 

MFrag of Figure 17, StarshipLengthInd MFrag conveys this hypothesis. The second 

possible structure, represented by the ClassAvgLength and StarshipLengthDep MFrags, 

covers the case in which a starship class influences its length. 

The two structures are then connected by the Starship Length MFrag, which has 

the format of a multiplexor MFrag. The distribution of a multiplexor node such as 

StarshipLength(st) always has one parent selector node defining which of the other 

parents is influencing the distribution in a given situation. 

 

Figure 17. Structure Learning in MEBN 

In this example, where there are only two possible structures, the selector parent 

will be a two-state node. Here, the selector parent is the Boolean 
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LengthDependsOnClass(!Starship). When this node has value False then 

StarshipLength(cl) will be equal to StarshipLengthInd(st), the distribution of which does 

not depend on the starship’s class. Conversely, if the selector parent has value True then 

StarshipLength(cl) will be equal to StarshipLengthDep(st), which is directly influenced 

by ClassAvgLength(StarshipClass(st)). 

Figure 18 shows the result of applying the SSBN algorithm to the generative 

MFrags in Figure 17. The SSBN on the left does not have the findings included, but only 

information about the existence of four starships. It can be noted that the prior chosen for 

the selector parent (the Boolean node on the top of the SSBN) was the uniform 

distribution, which means that both structures (i.e. class affecting length or not) have the 

same prior probability. 

The SSBN in the right side considers the known facts that !ST2 and !ST3 belong 

to the class of starships !Explorer, and that !ST5 and !ST8 are Warbird vessels.  Further, 

the lengths of three ships for which there are reliable reports were also considered. The 

result of the inference process was not only an estimate of the length of !ST8 but a clear 

confirmation that the data available strongly supports the hypothesis that the class of a 

starship influences its length. 

It may seem cumbersome to define different random variables, StarshipLengthInd 

and StarshipLengthDep, for each hypothesis about the influences on a starship’s length.  

As the number of structural hypotheses becomes large, this can become quite unwieldy.  

Fortunately, this difficulty can be circumvented by introducing a typed version of MEBN 

and allowing the distributions of random variables to depend on the type of their 
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argument.  A detailed presentation of typed MEBN, which also extends the standard 

specification to allow polymorphism is the subject of the next Chapter. 

 

Figure 18. SSBNs for the Parameter Learning Example 
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This basic construction is compatible with the standard approaches to Bayesian 

structure learning in graphical models (e.g. Cooper & Herskovits, 1992; Heckerman et 

al., 1995a; Jordan, 1999; Friedman & Koller, 2000) 

For a detailed account of the SSBN construction algorithm and Bayesian learning 

with MEBN logic, the interested reader should refer to Laskey (2005). There, it is 

possible to find the mathematical explanation and respective logical proof for the many 

intricate possibilities when instantiating MFrags, such as nodes with an infinite number 

of states, situations where we face the prospect of large finite or countably infinite 

recursions, what happens when the algorithm is started with an inconsistent MTheory, 

etc. Also, the text provides a detailed account of how to represent any First Order Logic 

sentence as an MFrag using Skolem variables and quantifiers. These issues go beyond the 

scope of this work, since the information already covered up to this point is enough for 

the purposes of understanding and using Multi-Bayesian Networks as the framework for 

extending a web language to Bayesian first-order logic expressivity. Yet, before entering 

the next Chapter, it is necessary to make a brief visit to the semantics of MEBN logic, 

understand why it is a Bayesian first-order logic, and to address its relationship with 

classical logic and other formalisms as well. 

3.8 MEBN Semantics. 

In classical logic, the most that can be said about a hypothesis that can be neither 

proven nor disproven is that its truth-value is unknown. Practical reasoning demands 

more. Captain Picard’s life depends on assessing the plausibility of many hypotheses he 
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can neither prove nor disprove. Yet, he also needs first-order logic’s ability to express 

generalizations about properties of and relationships among entities. In short, he needs a 

probabilistic logic with first-order expressive power. 

Although there have been many attempts to integrate classical first-order logic 

with probability (see discussion on Section 2.5), MEBN is the first fully first-order 

Bayesian logic (Laskey, 2005).  MEBN logic can assign probabilities in a logically 

coherent manner to any set of sentences in first-order logic, and can assign a conditional 

probability distribution given any consistent set of finitely many first-order sentences.  

That is, anything that can be expressed in first-order logic can be assigned a probability 

by MEBN logic. The probability distribution represented by an MTheory can be updated 

via Bayesian conditioning to incorporate any finite sequence of findings that are 

consistent with the MTheory and can be expressed as sentences in first-order logic. If 

findings contradict the logical content of the MTheory, this can be discovered in finitely 

many steps.  Although exact inference may not be possible for some queries, if SSBN 

construction will converge to the correct result if one exists. 

Semantics in classical logic is typically defined in terms of possible worlds. Each 

possible world assigns values to random variables23 in a manner consistent with the 

theory’s axioms. For example, in the scenario illustrated in Figure 11, every possible 

world must assign value True to CloakMode(!ST1) and !Z0 to StarshipZone(!ST0) (the 

latter is not explicitly represented in the figure). The value of the random variable Zone-

                                                
23 In classical logic, the terms predicate and function are used in place of Boolean and non-Boolean random 

variables, respectively. Predicates must have value True or False, and cannot have value Absurd. 
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Nature(!Z0) must be one of DeepSpace, PlanetarySystems, or BlackHoleBoundary, but 

subject to that constraint, it may have different values in different possible worlds. 

In classical logic, inferences are valid if the conclusion is true in all possible 

worlds in which the premises are true. For example, classical logic allows us to infer that 

Prev(Prev(!ST4)) has value !ST2 from the information that Prev(!ST4) has value !ST3 

and Prev(!ST3) has value !ST2, because the first statement is true in all possible worlds in 

which the latter two statements are true. But in the scenario above, classical logic permits 

us to draw no conclusions about the value of ZoneNature(!Z0) except that it is one of the 

three values DeepSpace, PlanetarySystems, or BlackHoleBoundary. 

An MTheory assigns probabilities to sets of worlds. This is done in a way that 

ensures that the set of worlds consistent with the logical content of the MTheory has 

probability 100%. Each random variable instance maps a possible world to the value of 

the random variable in that world. In statistics, random variables are defined as functions 

mapping a sample space to an outcome set.  For MEBN random variable instances, the 

sample space is the set of possible worlds. For example, ZoneNature(!Z0) maps a 

possible world to the nature of the zone labeled !Z0 in that world. The probability that 

!Z0 is a deep space zone is the total probability of the set of possible worlds for which 

ZoneNature(!Z0) has value DeepSpace. 

In any given possible world, the generic random variable class ZoneNature(z) 

maps its argument to the nature of the zone whose identifier was substituted for the 

argument z. Thus, the sample space for the random variable class ZoneNature(z) is the set 

of unique identifiers that can be substituted for the argument z. Information about 
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statistical regularities among zones is represented by the local distributions of the MFrags 

whose arguments are zones.  As stated in section 3.7, MFrags for parameter and structure 

learning provide a means for using observed information about zones to make better 

predictions about zones were not yet seen. 

As more information is obtained about which possible world might be the actual 

world, the probabilities of all related properties of the world must be adjusted in a 

logically coherent manner. This is accomplished by adding findings to an MTheory to 

represent the new information, and then using Bayesian conditioning to update the 

probability distribution represented by the revised MTheory. 

For example, suppose the system receives confirmed information that at least one 

enemy ship is navigating in !Z0. This information means that worlds in which 

ZoneEShips(!Z0) has value Zero are no longer possible. In classical logic, this new 

information makes no difference to the inferences one can draw about ZoneNature(!Z0).  

All three values were possible before that new information arrived (i.e. there’s at least 

one enemy starship in !Z0 for sure), and all three values remain possible.  The situation is 

different in a probabilistic logic. To revise the current probabilities, it is necessary to first 

assign probability zero to the set of worlds in which !Z0 contains no enemy ships. Then, 

the probabilities of the remaining worlds should be divided by the prior probability that 

ZoneEShips(!Z0) had a value other than Zero.  This ensures that the set of worlds 

consistent with the new knowledge has probability 100%.  These operations can be 

accomplished in a computationally efficient manner using SSBN construction. 



98 

 

Just as in classical logic, all three values of ZoneEShips(!Z0) remain possible. 

However, their probabilities are different from their previous values.  Because deep space 

zones are more likely than other zones to contain no ships, more of the probability in the 

discarded worlds was assigned to worlds in which !Z0 was a deep space zone than to 

worlds in which !Z0 was not in deep space.  Worlds that remain possible tended to put 

more probability on planetary systems and black hole boundaries than on deep space.  

The result is a substantial reduction in the probability that !Z0 is in deep space. 

Achieving full first-order expressive power in a Bayesian logic is non-trivial. This 

requires the ability to represent an unbounded or possibly infinite number of random 

variables, some of which may have an unbounded or possibly infinite number of possible 

values.  We also need to be able to represent recursive definitions and random variables 

that may have an unbounded or possibly infinite number of parents.  Random variables 

taking values in uncountable sets such as the real numbers present additional difficulties.  

Details on how MEBN handles these subtle issues are provided by Laskey (2005). 

To our knowledge, the formulation of MEBN logic provided in Laskey (2005) is 

the first probabilistic logic to possess all of the following properties: (1) the ability to 

express a globally consistent joint distribution over models of any consistent, finitely 

axiomatizable FOL theory; (2) a proof theory capable of identifying inconsistent theories 

in finitely many steps and converging to correct responses to probabilistic queries; and 

(3) built in mechanisms for refining theories in the light of observations in a 

mathematically sound, logically coherent manner. 
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As such, MEBN should be seen not as a competitor, but as a logical foundation 

for the many emerging languages that extend the expressive power of standard Bayesian 

networks and/or extend a subset of first-order logic to incorporate probability. 

MEBN logic brings together two different areas of research: probabilistic 

reasoning and classical logic. The ability to perform plausible reasoning with the 

expressiveness of Fisrt-Order Logic opens the possibility to address problems of greater 

complexity than heretofore possible in a wide variety of application domains. 

XML-based languages such as RDF and OWL are currently being developed 

using subsets of FOL. MEBN logic can provide a logical foundation for extensions that 

support plausible reasoning. This work is geared towards that end, and the language 

proposed here, PR-OWL, is a MEBN-based extension to the SW language OWL.  

The main objective of such extension is to create a language capable of 

representing and reasoning with probabilistic ontologies. This technology would facilitate 

the development of “probability-friendly” applications for the Semantic Web. The ability 

to handle uncertainty is clearly needed, because the SW is an open environment where 

uncertainty is the rule. 

Probabilistic ontologies are also a very promising technique for addressing the 

semantic mapping problem, a difficult task whose applications range from automatic 

Semantic Web agents, which must be able to deal with multiple, diverse ontologies, to 

automated decision systems, which usually have to interact and reason with many legacy 

systems, each having its own distinct rules, assumptions, and terminologies. 
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MEBN is still in its infancy as a logic, but has already shown the potential to 

provide the necessary mathematical foundation for plausible reasoning in an open world 

characterized by many interacting entities related to each other in diverse ways and 

having many uncertain features and relationships. In order to realize that potential, the 

first step is to extend the logic so it can handle complex features that are required in 

expressive languages such as OWL. This is the core objective of the next Chapter. 
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Chapter 4  The Path to Probabilistic Ontologies 

Representing and reasoning under uncertainty is a necessary step for realizing the 

W3C’s vision for the Semantic Web. The title of this Dissertation leaves no questions 

about our understanding that such step has to be taken via Bayesian probability theory, 

which not only allows for a principled representation of uncertainty but also provides 

both a proof theory for combining prior knowledge with observations, and a learning 

theory for refining the ontology as evidence accrues. 

A key concept for achieving that goal is the one of probabilistic ontologies, so we 

begin by defining what we mean when using this term. Intuitively, an ontology that has 

probabilities attached to some of its elements would qualify for this label, but such a 

distinction would add little to the objective of providing a probabilistic framework for the 

Semantic Web.  

In other words, merely adding probabilities to concepts does not guarantee 

interoperability with other ontologies that also carry probabilities. Clearly, more is 

needed to justify a new category of ontologies, and such extra justification doesn’t come 

from the syntax used for including probabilities. 

Definition 3: A probabilistic ontology is an explicit, formal knowledge 

representation that expresses knowledge about a domain of application. 

This includes: 
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2.a) Types of entities that exist in the domain; 

2.b) Properties of those entities; 

2.c) Relationships among entities; 

2.d) Processes and events that happen with those entities; 

2.e) Statistical regularities that characterize the domain; 

2.f) Inconclusive, ambiguous, incomplete, unreliable, and dissonant 

knowledge related to entities of the domain; 

2.g) Uncertainty about all the above forms of knowledge; 

where the term entity refers to any concept (real or fictitious, concrete or 

abstract) that can be described and reasoned about within the domain of 

application.!"

Probabilistic Ontologies are used for the purpose of comprehensively describing 

knowledge about a domain and the uncertainty embedded to that knowledge in a 

principled, structured and sharable way, ideally in a format that can be read and 

processed by a computer. They also expand the possibilities of standard ontologies by 

introducing the requirement of a proper representation of the statistical regularities and 

the uncertain evidence about entities in a domain of application. Yet, meeting the main 

objective of this research effort requires going a step further and also allowing for 

reasoning upon what now can be represented via probabilistic ontologies.  

In the current SW’s scheme, OWL ontologies are used for representing domain 

information in a way to enable Web services/agents to perform logical reasoning over 

that information. More specifically, ontologies intended to facilitate logical reasoning by 
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Web services/agents are commonly written using OWL-DL, the decidable subset of 

OWL language that is based on Description Logics. Writing ontologies in OWL-DL 

permits the use of DL reasoners such as Racer (Haarslev & Möller, 2001) to perform 

logical reasoning over its contents. Figure 19 depicts the typical flow of knowledge of a 

Web agent that is based on logical reasoning. 

 

Figure 19. Typical Web Agent’s Knowledge Flow – Ignoring Uncertainty 

In the situation depicted by the figure, the Web agent (here assumed as using 

Racer as its reasoning engine) receives new data and uses the domain information stored 

in the knowledge base (an OWL ontology) to perform logical reasoning. Its output is the 

enhanced knowledge that results from the logical reasoning process, and can be used as a 

means to answer queries posed to the Web agent and/or to update the knowledge base. As 

an example from our case study, suppose that a logical reasoner receives information that 

a newly detected starship is a (say) Keldon-Class Warship operated by the Cardassian 

species. Then, it verifies the axioms and restrictions conveyed in the Enterprise’s Star 



104 

 

Trek ontology that an individual of class Starship possessing these properties could only 

be a foe. As a result, the reasoner classifies that individual as being a member of the 

subclass Foe and returns the new knowledge to the system.  

Among the possibilities of logical reasoning is the ability to infer whether a given 

concept is a subclass of another (i.e. subumption), whether the definitions of a class will 

make it impossible to have any instances (i.e. consistency), and others that make OWL-

DL ontologies very a powerful tool for the SW. Not surprisingly, most SW ontologies are 

being developed using OWL-DL. 

Still, as we have emphasized in the previous Chapters, the above-mentioned 

features of logical reasoning are only possible when complete information in available to 

the reasoner. In our example, factors such as distance, ambiguities on the received data, 

overlapping characteristics among starship classes and other sources of uncertainty would 

most likely prevent any definitive conclusion about the starship type or operator species 

to be draw. 

Sources of uncertainty are the rule in open environments such as the SW, which 

reinforces the use of probabilistic ontologies for both representing uncertain knowledge 

and reasoning with it. Figure 20 depicts the same Web agent’s knowledge flow, but this 

time incorporating the concepts of a probabilistic ontology and a plausible reasoner. 

As it is shown in the picture, the knowledge base now consists of a PR-OWL 

ontology. This expanded depiction of the starship domain includes all the concepts of the 

previously depicted OWL ontology plus the uncertain information that could not be 

expressed in a principled way with a standard OWL ontology. Also, new evidence that 
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would be simply discarded by the logical system (e.g. the recently detected starship has 

90% chances of being operated by Cardassians) can now be accepted and considered in 

the reasoning process. Since the Web agent now uses a probabilistic reasoner 

(Quiddity*Suite in this example), each and every piece of evidence would be used to 

upgrade the system’s knowledge. In short, all the advantages of a Bayesian probabilistic 

system that were covered in the previous chapters are now available.  

 

Figure 20. Typical Web Agent’s Knowledge Flow – Computing Uncertainty 

The result of the added capabilities, as implied in the enhanced knowledge box, is 

the system’s ability to keep the best estimate possible for its queries given the previous 

knowledge and all the available data at any given time. This new aspect opens the 

opportunity for solving many SW problems that logical systems so far have been unable 

to solve, such as schedule matching, optimal decision with incomplete data, etc. 

In the scheme depicted in Figure 20, there are two aspects that cannot be 

implemented today. First, there is no Semantic Web language capable of representing 
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probabilistic ontologies in a principled way and, second, after such a language is 

developed there will be no probabilistic reasoner specifically designed to perform the 

reasoning services using the newly developed language. 

In this dissertation, we have tackled the first aspect with the development of PR-

OWL, while addressing the second problem by defining a set of rules for translating a 

MENB model to a Quiddity*Suite model. This was not a trivial process, and the 

following sections are intended to explain what we have done to “clear the path” for 

probabilistic ontologies. 

Our first major issue was the fact that standard MEBN does not have built-in 

support for the complex elements of the OWL language, preventing any attempts of a 

direct PR-OWL implementation. For instance, standard MEBN is untyped, which means 

there is no built-in support for PR-OWL probability distributions to depend on types, or 

for representing type uncertainty, both highly desirable features for a probabilistic 

ontology. In section 4.1 we present our solution to this problem: the development of an 

extended version of MEBN logic that incorporates all the desirable features missing in 

the standard logic. 

The second and last Section of this chapter is devoted to explain how we 

addressed another major issue preventing us to develop PR-OWL: there is no “off-the-

shelf” probabilistic reasoner that implements all MEBN features. By the time of our 

research, Quiddity*Suite was rapidly reaching a stage in which most if not all MEBN 

features would be implemented, so we developed a set of rules that allowed us to use it as 

a MEBN implementation and a valid PR-OWL reasoner. 
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4.1 A Polymorphic Extension to MEBN 

The most obvious difference between a typed and an untyped logic is the addition 

of a type label declaration. However, just adding a type label to MEBN logic will not 

provide it with the advantages of type systems, such as efficient inference based on 

inheritance, increased readability, conciseness, etc. Developing a typed version of a 

probabilistic first-order logic involves creating a coherent set of standard definitions and 

inference rules that collectively form a consistent type system. 

A common way to declare types is to define a monadic predicate for each type; 

the predicate is true of entities of the given type and false otherwise. According to Sowa 

(2000, page 473), a type system adds no expressive power to a knowledge representation 

language, in that every theorem and proof in a typed logic will have a counterpart in its 

untyped version. Given the formal equivalence in expressiveness between typed and 

untyped logics, one might wonder why typed logics are so much more popular.  This 

popularity can be explained by their advantages in terms of tractability and ease of use. 

FOL provides the theoretical foundation for the type systems used in popular 

object-oriented and relational languages. The popularity of typed logics reflects the 

prevalence of types in informal reasoning. Classification of objects in terms of the 

purposes for which they are used typically results in a more or less well-defined type 

system (Cardelli & Wegner, 1985). The advantages of languages based on a typed logical 

system are usually related to code optimization and to less error-prone syntax. A number 

of authors have developed semantics for typed languages (Milner, 1978; Damas & 

Milner, 1982; Mitchell, 1984). 
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Standard MEBN is untyped, but a typed extension can provide a sound 

mathematical basis for representing and reasoning under uncertainty in typed domains, 

including domains of unbounded or infinite cardinality. Among the advantages of a 

MEBN-based type system is the ability to represent type uncertainty. As an example, 

suppose there are two different types of space traveling entities, starships and comets, and 

incomplete information is given about the type of a given entity. In this case, the result of 

a query that depends on the entity type will be a weighted average of the result given that 

the entity is a comet and the result given that it is a starship.  

Further advantages of a MEBN-based type system include the ability to refine 

type-specific probability distributions using Bayesian learning, assign probabilities to 

possible values of unknown attributes, reason coherently at multiple levels of resolution, 

and other features related to representing and reasoning with incomplete and/or uncertain 

information. 

Therefore, defining standard syntax and semantics for a MEBN-based type 

system would combine the advantages of FOL-based type systems with the ability to 

express and reason with uncertainty, including uncertainty about the type of an entity. 

In order to provide a typed version of MEBN, two main changes are proposed 

here: (1) modify the definition of an MTheory provided in Laskey (2005) to allow for a 

random variable to have multiple home MFrags (i.e. polymorphism), and (2) include a set 

of built-in MFrags that provide a standard procedure for defining domain-specific types 

and subtypes. 
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As a basic assumption, types are arranged in a tree-structured hierarchy (thus 

excluding multiple inheritance for the present).  The types immediately below a given 

type (e.g. Starship) are called its subtypes (e.g. MilitaryStarship and CivilianStarship are 

subtypes of Machine). The next-higher type to a given type is called its parent type (e.g. 

the parent type of MilitaryStarship is Starship). For our present proposed type system, a 

given type can have only one parent type. It is relatively straightforward to extend the 

system being presented here to a type system with multiple-inheritance. 

Figure 21 shows the Star Trek MTheory from Figure 12 with the addition of the 

Transporter Mfrag, illustrating the effects of a polymorphic, typed version. This new 

generative MFrag conveys information on Enterprise’s ability to beam a person or an 

object to a close planet. 

 

Figure 21. Star Trek MTheory with the Transporter MFrag – Untyped Version 

 A Transporter is the device that performs the beaming process (in “theory, a form 

of molecular transport), which depends on the distance between Enterprise and the target 
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planet, and on whether the defense shields are activated. Usually, the shields will be up 

when the potential harm of any starship on the vicinities of Enterprise reaches a certain 

threshold (infered by the instances of node HarmPotential(st, t) for each nearby starship). 

Both MTheories have an Entity MFrag used for declaring the possible types of 

entity that can be found in the model, and an IsA MFrag for allocating a type label to a 

given entity. This is an example of a situation in which the modeler wanted a type system 

so she had to build her own scheme for defining entity types. Given the popularity of type 

system, we might expect other modelers to specify their own Type and IsA MFrags, 

possibly resulting in many different, incompatible implementations of MEBN-based type 

system. A standard typed extension to MEBN frees each implementer from having to 

define her/his own type systems and thus supports a greater level of interoperability. 

Even with the modeler defining her/his own type system, situations in which a 

node such as PlanetDistanceFromOwn(p, t) cannot be named DistanceFromOwn(p, t) 

because there is another node with that name are very likely to happen. According to the 

unique home MFrag restriction, one node cannot have two home MFrags so a different 

name would have to be issued for any node that measures the distance from an object to 

the Enterprise. In short, the MTheory in Figure 21 does not have subtyping, 

polymorphism, or inheritance, features that are often useful for modeling complex, real-

life problems. As shown in the next section, the extended version proposed in this work 

includes these features. 
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4.1.1 The Modified MTheory Definition 

In order to provide a typed version of MEBN logic, the definition of a generative 

MTheory is modified here to allow a random variable to have more than one home 

MFrag. The unique home MFrag restriction is relaxed to allow multiple home MFrags for 

a node, provided that if a node is resident in two MFrags then either: (1) the two contexts 

in the different MFrags are entirely disjoint, or (2) one context is strictly contained in the 

other.  Distributions defined for a type are inherited for all its subtypes, except that 

distributions defined in more general contexts are overridden by distributions defined in 

more restricted context. 

As a means of providing a standard support for typing, typed MEBN includes the 

four MFrags depicted in Figure 22 among the built-in MFrags. 

 

Figure 22. Built-in MFrags for Typed MEBN 

The Type MFrag. The Type MFrag has three resident nodes and no input or 

context nodes. It lays out the core structure for the type system and provides the basic 

support for the domain-specific type definitions. The uppermost resident node, #(e) (the 

identity random variable), is parent of the other two nodes and has all valid entities of a 
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given domain as its states. As with standard MEBN, the only values that may have non-

zero probability are e  (for meaningful entities) and " (for identifiers that refer to 

meaningless or nonexistent entities). Type(e) is domain-specific (i.e., defined by the 

knowledge engineer) and its states include three special types that are standard to all 

polymorphic MEBN models plus the domain-specific types defined by the knowledge 

engineer. 

 The special types are: (1) TypeLabel, which includes the labels of all domain-

specific types and subtypes; (2) Boolean, which includes the truth-values T, F, and "; (3) 

CategoryLabel, which includes labels for RVs whose domain is a list of categorical 

values; and (4) PositiveNumber, which is used for virtual counts (see below).  

Finally, ParentType(e) defines the type of which e is a subtype. When e is 

replaced by a unique identifier of a TypeLabel entity, then ParentType(e) must have a 

unique TypeLabel entity as its value if the substituting entity type has a parent type. In 

addition, if e is replaced by a unique identifier of a TypeLabel entity at the level of the 

type hierarchy immediately below the root Entity, then ParentType(e) will have value 

Entity; and furthermore, ParentType(Entity) = Entity.  

The IsA MFrag. The IsA MFrag is the home MFrag for IsA(ptl, ei), where ei is 

an instance of type ptl. As an example, suppose we replace ptl with the unique identifier 

corresponding to the Starship type label. If we then replace ei with the unique identifier 

of a starship entity (say !ST1), then IsA(ptl, ei) becomes Isa(Starhship, !ST1), which has 

value T. Conversely, if the variable ei is replaced with a unique identifier of a planet 

entity (say !P1) then IsA(ptl, ei) becomes Isa(Planet, !ST1), which has value F. 
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The IsA MFrag has only one context node, which is satisfied when the variable ptl 

is replaced by a TypeLabel entity. The MFrag’s only resident node, IsA(ptl, ei), is true 

when ei represents an instance of the type represented by ptl.  This random variable has 

two parents, the input nodes Type(ei) (the type of ei) and the Boolean RV term 

Isa(tl,ei)$(ptl=ParentType(tl)) (ei represents an instance of tl and tl is a subtype of ptl). 

Its value is T when either of its parents is true.  That is, IsA(ptl, ei) is true when Type(ei) 

is ptl or (recursively) when Isa(tl, ei) is true for a type tl that is a descendant of ptl in the 

type hierarchy.  The distribution for the Boolean RV term Isa(tl,ei)$(ptl = Parent-

Type(tl)) is defined via the built-in logical MFrags. 

We noted above that type systems are typically defined by specifying a unary 

predicate for each type. Our IsA predicate is binary.  We have taken advantage of 

polymorphism to define a single binary predicate Isa(tl,ei) rather than a unary predicate 

for each type (e.g., IsaStarship(ei), IsaPlanet(ei), etc.)24 

The SubType MFrag. The three upper, unconnected nodes in the SubType 

MFrag of Figure 22 are context nodes specifying that the variables tl and stl are 

placeholders for unique identifiers representing TypeLabel entities and that the first 

TypeLabel (referred to by tl) is the parent type of the second (referred to by stl). The 

rightmost input note, IsA(tl, ei), has its local distribution defined in the IsA MFrag above, 

so its value will be T when the unique identifier replacing ei refers to an entity whose 

type is either tl or one of its descendant types. The other input node, VCount(stl), has a 

                                                
24 Even thought the MTheory in Figure 12 was built using the standard version of MEBN, for simplicity 

and in order to be facilitate its translation to Quiddity*Suite we implicitly allowed polymorphism in the 

specific case of the IsA MFrags (i.e. by making them binary predicates in that model). 
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positive number as its value, and represents the relative probability that an entity of type 

ParentType(stl) is an instance of stl.  That is, if our only information about an instance ei 

is that its type is a subtype of tl, and if stl1 and stl2 are labels for subtypes of tl, the ratio 

of the probability of Isa(stl1, ei) to the probability of Isa(stl2, ei) is given by 

VCount(stl1)/VCount(stl2). 

The name VCount stands for “virtual count,” a term used in the literature on 

Bayesian learning to refer to parameters in a prior distribution that correspond roughly to 

remembered prior observations.  That is, we can think of VCount(tl) as the number of 

instances of tl that have been encountered in previously experienced situations (although 

there is no requirement that its value be an integer).  Virtual counts are important for 

representing type uncertainty. 

Because virtual counts behave like remembered counts, the virtual count for a 

type is constrained to be equal to the sum of the virtual counts for its subtypes. The 

distribution for the resident node VCount(tl) enforces this constraint. This MFrag defines 

virtual counts only for non-leaf nodes in the type hierarchy.  Virtual counts for leaf nodes 

are defined in the virtual count initialization MFrag described below.  The context 

constraint tl=ParentType(stl) ensures that tl is not a leaf node in the type hierarchy.  The 

distribution of VCount(tl) places probability 1 on a value equal to the sum of the virtual 

counts for subtypes of tl. Although virtual counts are not required to be integers, as for all 

MEBN random variables, the possible values must be a countable set. 

The resident node SubType(tl, ei) has as its possible values all entities of type 

TypeLabel other than the type label Entity, along with the value " (absurd). When the 
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parent node IsA(tl, ei) has value F, then SubType(tl, ei) has value " (i.e., whether an 

entity is an instance of something that is not a type is an absurd question). If IsA(tl, ei) 

has value F, then the distribution for SubType(tl, ei) puts non-zero probability only on 

values for which there is a VCount(stl) parent (these are stl for which the context 

constraint tl=ParentType(stl) is met, i.e., subtypes of tl).  The probabilities of the 

subtypes are proportional to their virtual counts. 

The VCount Initialization MFrag. The context nodes for this MFrag ensure that 

the variable tl is replaced by the unique identifier of an entity that (1) is of type 

TypeLabel and (2)  has no subtypes (i.e. it is a leaf node in the type hierarchy). The 

context node ¬%($stl, tl=ParentType($stl)) represents the negation of an existentially 

quantified first-order sentence. It is satisfied when there is no entity instance of which tl 

is a parent type.  The symbol $stl is a Skolem term, which represents a generic instance 

that satisfies the sentence if it is satisfiable and otherwise has value " (Laskey, 2005). We 

note that one of the conditions of the theorem of Laskey (2005) that a conditional 

distribution exists on interpretations of any consistent, finitely axiomatizable first-order 

theory is that no context RV may contain quantifier random variables.  If there are only 

finitely many types, quantified statements about type labels can be treated as shorthand 

notation for finite conjunctions and disjunctions. Thus, the theorem still holds for typed 

MEBN. 

The distribution of the resident node VCount(tl) specifies a probability 

distribution for the leaf node tl in the type hierarchy.  The distribution of VCount(tl) for 

leaf nodes tl in the type hierarchy is supplied by the domain expert. 
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Note that the random variable VCount(tl) has two resident MFrags, thus violating 

the original conditions for a valid MTheory (Laskey 2005). However, it satisfies the 

conditions for extended version defined above, because the contexts for the two home 

MFrags are disjoint. 

4.1.2 The Star Trek MTheory Revisited 

The MTheory of Figure 23 has takes advantage of our extended version of 

MEBN, but is equivalent, mutatis mutandis, to the MTheory of Figure 21. The most 

obvious modification is the absence of the Type and the Isa MFrags. Also, the new 

version allows several similar random variable labels to be combined into a single label, 

such as in the case of nodes DistFromOwn() in the Transporter and the Starship MFrag. 

 

Figure 23. Star Trek MTheory with the Transporter MFrag – Typed Version 

It would be straightforward to add Starship subtypes (e.g., MilitaryStarship and 

CivilianStarship) to this MTheory. Distributions defined for entities of type Starship 
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would be inherited by entities of type MilitaryStarship and CivilianStarship unless 

overridden. 

The ability to use the same name for similar concepts applied to different types of 

entities is very useful for the knowledge base designer.  It supports portability and 

reusability, allows for more natural naming conventions, supports more compact 

representations, and helps to prevent errors. Less obvious potential gains include savings 

in memory allocation, the possibility of optimizing compilers and reasoners to exploit the 

type structure, and other advantages of standard type systems. These advantages can now 

be applied to a probabilistic first-order logic. 

4.2 Using Quiddity*Suite for Building SSBNs 

Information Extraction and Transport’s (IET) Quiddity*Suite™ is a probabilistic 

frame-based modeling toolkit that implements many features of MEBN logic and 

supports type uncertainty and multiple inheritance.  Quiddity*Suite has been applied to a 

wide range of problems ranging from visual target recognition to multi-sensor data fusion 

to dynamic decision systems in the C3I arena (Fung et al., 2004). 

A frame is a knowledge representation structure that expresses a concept or a 

situation (Minsky, 1975), and it was a rather novel approach to knowledge representation 

for a period in which rule-based or logic-based were the predominant formalisms. Frame-

based systems allow knowledge builders to easily describe the types of objects in a 

domain. As such, they provide the conceptual basis for expressing knowledge in an 

object-oriented way that inspired many subsequent formalisms (e.g., Bobrow & 
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Winograd, 1977; Brachman & Schmolze, 1985; Kifer et al., 1990; Greco et al., 1992). 

According to Fikes & Kehler (1985), frames represent entities or classes of entities, and 

can incorporate sets of attribute descriptions called slots. Also, slots can have a set of 

properties, which are called facets of a slot.   

In standard frame languages, there is no pre-defined way to express uncertainty 

about values of an attribute.  Unless a slot is left unassigned, either the value must be 

known or a default value should be used.  Quiddity*Suite expresses uncertainty about the 

value of an attribute by associating a random variable with each slot for which the value 

may be uncertain.  When an instance of the frame is created, a random variable is created 

for each uncertain slot. In order to carry the information needed to define probability 

distributions for the random variables associated with uncertain slots, Quiddity*Suite 

uses a set of pre-defined facets, which represent possible states, parents, and conditional 

distribution given parents. 

A detailed coverage on Quiddity*Suite’s approach for representing uncertainty in 

frame-based systems is outside the scope of this work, but in our research experiments 

we were able to use it as a means to perform SSBN construction from evidence applied to 

a generative MTheory.  

As a proof of concept on the feasibility of using Quiddity*Suite as a partial 

implementation of MEBN, we have translated the Star Trek MTheory into 

Quiddity*Suite format. The resulting model is capable of building any SSBN that can be 

generated from the original Star Trek MTheory. The source code for the model is 

presented in Appendix A. In this Section; we describe the translation process 
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emphasizing which features could be directly translated and which required some 

additional effort. Also, we address some of the issues and details that should be taken into 

account when translating MTheories to Quiddity Models. 

Readers should have in mind that the next Subsections are not meant to be a 

Quiddity*Suite tutorial or learning asset. Instead, the main purpose is to show how the 

concepts in MEBN logic translate (or not) to Quiddity*Suite elements. Even though 

knowledge on Quiddity*Suite is necessary for understanding/applying the general 

translation rules presented below, readers that are familiar with frame systems notation 

would find relatively easy to understand the general idea of the translation procedures. 

4.2.1 Concepts with Direct Translation 

In the typed version of MEBN logic developed for this research, every domain-

specific entity has a type, which is represented as one of the possible values of node 

Type(e) in the built-in Type MFrag). By definition, all possible values of node Type(e) 

have their type defined as TypeLabel, which is itself a built-in possible value or Type(e). 

As an example, the Starship MTheory has four types of entities (starships, sensor reports, 

zones, and time steps), so the possible states of its built-in node Type(e) are the special 

built-in states plus the domain-specific states Starship, SensorReport, Zone, and 

TimeStep. Also, the typed version of MEBN logic presented here also supports sub-

typing, so we could easily create a type hierarchy in which starships would have subtypes 

(say) military and civilian.  

Quiddity*Suite represents entity types as frames, and also supports frame sub-

typing. An entity type in MEBN logic corresponds to a frame in Quiddity*Suite. Thus, a 



120 

 

good way of enforcing compatibility between models based on MEBN logic and their 

counterparts in Quiddity*Suite is to use an approach that makes such correspondence 

more explicit. 

As explained in Chapter 3, MEBN logic allows multiple, equivalent ways of 

portraying the same knowledge (recall example in Figure 13). Therefore, MEBN 

modelers willing to achieve full compatibility with Quiddity*Suite (and with frame 

systems in general) are encouraged to use the object oriented approach we sought with 

the Star Trek MTheory, which used the concept of an entity cluster. 

Definition 3: An entity cluster is a group of MFrags within a generative 

MTheory having the following characteristics: 

3.a) In any MFrag contained in the entity cluster, there is an ordinary 

variable, called the subject argument of the MFrag, such that any non-

constant random variable in the MFrag has the subject argument as one 

of its arguments. 

3.b) The context constraints of each MFrag in the entity cluster specify the 

type of the subject argument. This type is called the subject type of the 

MFrag. 

3.c) The subject types of all MFrags in the entity cluster are the same.! 

The above definition addresses only the top-level classes. That is, if entity 

clustering is desired for subclasses then this definition will have to be extended to 

accommodate subtyping.  As an example, if we had different subtypes of starship, we 
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might have entity clusters that contained definitions for some nodes at the supertype 

level, and other nodes at the subtype level.  However, formalizing the translation rules for 

subtyping is a subject for future work. 

Figure 24 depicts the Star Trek MTheory divided by its entity clusters. Building 

an MEBN model using the entity clusters approach facilitates the interoperability among 

different modeling tools. In the specific case of the Star Trek MTheory, it allows a direct 

mapping between frames and domain-specific entities (which have all of its attributes 

within the same entity cluster). In addition, using this modeling approach makes it easier 

to keep MEBN logic’s flexibility to display the same information in different MFrag 

configurations. As an example, depending on the model objectives, the Starship MFrag in 

Figure 24 could be easily replaced with the three equivalent MFrags in Figure 13. 

 

Figure 24. Entity Clusters of Star Trek MTheory 

Using the entity cluster modeling approach, most concepts in MEBN logic can be 

easily translated to Quiddity*Suite syntax. Within a given entity cluster, all resident 

nodes are directly mapped as slots of the frame that corresponds to that entity cluster. 
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Input nodes are mapped in accordance with the MFrag in which they are resident nodes. 

If an input node is a “copy” of a resident node defined in an MFrag within the entity 

cluster, then it is listed directly in the Parents facet of their children. Input nodes defined 

outside the entity cluster are also listed in the Parents facet of their children, but have 

their name preceded by a pointer slot. A pointer slot is a slot that has another frame as its 

domain, and it is used for making references to that frame.  

Figure 25 exemplifies the above explanation using the Sensor Report entity 

cluster depicted in the MTheory in Figure 24. The cluster’s name is directly used in the 

frame (bullet 1 in the figure), and each of the resident nodes of the cluster’s two MFrags 

is transformed into a slot in that frame (bullets 2 to 4). It is important to note that node 

Subject(sr) is an attribute of a sensor report that links each instance of a sensor report to 

its respective subject. In our model, subjects of sensor reports are starships and thus the 

possible states of Subject(st) are starship entities. Therefore, slot subject has frame 

Starship as its domain and works as a pointer to that domain.  

The use of a pointer is easily observable in this example, since all the input nodes 

were defined outside the Sensor Report entity cluster. That is, there are no parent resident 

nodes and also no input nodes defined within the cluster. In this case, each input node is 

defined in the Parents facet of its respective children with the pointer node’s name 

preceding it (see bullet 5 for the parents of SRClass).  
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Figure 25. Mapping the Sensor Report Entity Cluster to a Frame 

Although not emphasized in Figure 25 for the sake of simplicity, the probability 

distribution and the states of a resident node are directly translated to its respective slot’s 

distribution and domain facets respectively. Quiddity*Suite’s syntax provide a rich list of 

possibilities for portraying a probability distribution via the distribution facet, from built-

in standard distributions (e.g. UniformDiscreteDistribution for the discrete uniform 

distribution) to highly complex combinations of functions. Also, there are different 

possibilities for defining the domain of a slot via the domain facet, but covering all the 

possibilities is outside the scope of this dissertation. Table 3 summarizes the concepts 

discussed above, which can be directly translated from MEBN to Quiddity*Suite, and 

presents some examples. 
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Table 3. MEBN Elements Directly Translated into Quiddity*Suite 

MEBN Concept Quiddity*Suite 

Representation 

Quiddity*Suite Examples  

(from the Star Trek MTheory) 

Entity Type Frame frame Starship isa Frame 

Type hierarchy Frame hierarchy. frame MilitaryStarship isa Starship 

Resident nodes Slots slot z_ZoneEShips 

Parent resident and 
input nodes defined 
within the entity 
Cluster 

Parents facet facet parents = [z_ZoneNature] 

Parent input nodes 
defined outside the 
entity cluster 

Parents facet + 
pointer Slot 

facet parents = 
[PointerSlot.z_ZoneNature] 

Probability 
Distribution 

Distribution facet facet distribution = <Quiddity table or 
formula> 

facet distribution = MaxDistribution 

States Domain facet facet domain = booleandomain 

facet domain = Starship 

facet domain = [ <list of states> ] 

 

4.2.2 Concepts with a More Complex Translation 

In Subsection 4.2.1 we intentionally omitted some MEBN concepts that do appear 

in the Star Trek MTheory, most notably the context nodes and the ordinary variables. 

Also, we avoided specific cases of the concepts already cited, such as situations in which 

an input note might generate multiple instances of itself. The reason of those omissions is 

the intrinsic complexity of those cases, which demands a more elaborate discussion. 

Context nodes are a powerful aspect of MEBN logic that allow specifying 

carefully defined situations in which a given MFrag is valid. Some of the more common 
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context nodes are relatively easy to express in Quiddity*Suite, while others present some 

issues requiring relatively complex workarounds. Those cases are addressed in this 

Subsection. 

The most common use of context nodes involves the specification of the types of 

the entities in a given MFrag.  In an entity cluster structure, all MFrags have the cluster’s 

subject entity as their main attribute, so they will include an ordinary variable 

representing that subject entity and a context node making that representation explicit. A 

brief verification on the Star Trek MTheory in Figure 24 will show that all MFrags within 

each cluster have a node such as IsA(SubjectEntity, ordvar). As an example, all MFrags 

within the Starship cluster have an IsA(Starship, …)  context node. 

The other Isa(TypeLabel, ordvar) in each MFrag are used to define the type of the 

instances that can substitute each ordinary variable. As a practical rule, for each of those 

“extra” Isa(TypeLabel, ordvar) a pointer slot would have to be created in the frame. Of 

course, only one pointer slot is needed so if there is one already then it is not necessary to 

create another. As an example from the Sensor Report cluster, since there is already a slot 

pointing to frame Starship (directly created because of the Subject(sr) resident node) then 

when evaluating the context node IsA(Starship, st) in the Sensor Report MFrag there will 

be no need to create another pointer slot. 

One exception to the above general rule is the IsA(TimeStep, ordvar) context 

nodes, which should not generate a pointer slot. The intended meaning of an entity of 

type TimeStep is to indicate time recursion, which has a special treatment in 

Quiddity*Suite. Figure 26 illustrates an example of an MFrag (Zone, the unique MFrag 
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in Zone Cluster) with temporal recursion and its respective frame counterpart. There are 

three context nodes and two input nodes expressing that recursion in MEBN. The two 

IsA(TimeStep, ordvar) context nodes are used to define the type of the ordinary variables 

t and tprev, while the remaining context node uses the Prev(t) random variable to specify 

that variable tprev is the predecessor of variable t in the ancestor chain of that time 

recursion. The two input nodes are t = !T0 and ZoneMD(z, tprev). The first “anchors” the 

recursion, while the latter makes it explicit that the distribution of ZoneMD(z, t) depends 

on its immediate ancestor in the recursion ZoneMD(z, tprev). These five nodes are 

expressed by two specific elements in the ZoneMD slot. The first is its Parents facet, 

which contains zoneMD.PREV, where the suffix .PREV indicates that this slot’s 

distribution depends upon its ancestor. The second is the initialState facet, which contains 

the distribution for the first instance of the ancestor chain.  

 

Figure 26. Zone Entity Cluster 
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As a general rule, MEBN recursions will follow this pattern of three context 

nodes defining two ordinary variables and their precedence, and two input nodes for 

“anchoring” the recursion and declaring the recursive resident node’s dependence over its 

predecessor. Such pattern should then be translated to Quiddity*Suite using the .PREV 

suffix and the initialState facet accordingly. 

Apart from defining types of ordinary variables and establishing recursive 

patterns, context nodes are used to specify how the process of SSBN construction will 

occur. In other words, context nodes can be seen as logic rules that define the conditions 

under which instances of the random variables of an MFrag will be created during the 

process of SSBN construction. As an example from the Zone MFrag of Figure 26, the 

context node z=StarshipZone(st) specifies a restriction on instances of Zone and Starship 

entities that can be substituted for occurrences of the ordinary variables z and st, 

respectively. Specifically, if the substitution is to be valid, the value of the attribute 

StarshipZone for any Starship instance substituted for st must be equal to the Zone 

instance substituted for z. The only way of enforcing this restriction in the current version 

of Quiddity*Suite is by encoding it procedurally in the entity creation process. In other 

words, it is not possible to express this kind of restriction in the frame definition alone, so 

we have to enforce it via the entity creation process, or A-box construction procedure. 

This limitation in expressing context nodes in Quiddity*Suite is akin to the DL 

limitation discussed in the end of Subsection 2.4.1 concerning the representation of 

constraints on the instances that can participate in a relationship. That is, just as we 
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cannot express certain constraints using only the T-Box in a DL representation, we 

cannot represent those same constrains in the frame structure of a Quiddity*Suite model.  

The next version of Quiddity*Suite will have the ability to use Prolog-like rules 

for automatically controlling A-box construction to enforce the restrictions expressed in 

the context nodes of an MFrag. Unfortunately, the new version will not be released in 

time to be incorporated into this research. As a result, we enforced context restrictions 

procedurally in our model’s function definitions and executable module, both available in 

Appendix A. 

As a general rule, context nodes restricting the conditions under which the 

instances of an MFrag should be created can only be expressed in Quiddity*Suite in a 

programmatically fashion during the creation of the instances. The inclusion of logical 

rules will allow a modeler to define the rules prior to the A-box creation process, thus 

introducing a great level of automation in a procedure that we had to perform by carefully 

programming the A-box creation itself.  

The last specific translation issue to be addressed when translating MTheories to 

Quiddity*Suite is the case in which a node has many possible parents. One example of 

such situation is illustrated in Figure 26, where the resident node ZoneMD(z, t) has the 

input node CloakMode(st) as its parent and the restrictions expressed in the context nodes 

allow this input to have many possible instances. In other words, given the valid context 

for the Zone MFrag, all starships that happen to be in zone z will be parents of 

ZoneMD(z, t). Thus, we have a variable number of parents that depends on how many 

starships are in a given zone. 
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The problem is that Quiddity*Suite doesn’t have support for defining probability 

distributions for an undefined number of parents, so specifying a distribution such as the 

one we have shown in Figure 8 is not possible at this time. Therefore, in order to model 

this kind of situation we had to resort to a modeling trick in which we created a “collector 

node” in Zone MFrag and used Quiddity’s MaxDistribution to handle the undefined 

number of parents. 

In frame Zone, the slot pointing to frame Starship is the starship slot. Usually, an 

external parent of slot zoneMD would be listed using the pointer.parent format, such as 

starship.cloakMode in this case. However, we created an intermediate node called 

anyStInCloakMode which has starship.cloakMode as a parent. This node has the 

MaxDistribution as its probability distribution so it can handle multiple parents. Then, the 

“collector” node anyStInCloakMode, and internal node to the Zone MFrag is listed as a 

parent of zoneMD slot. The intermediate node was necessary because the 

MaxDistribution accepts only one parent in its list, and ZoneMD has more than one 

parent so it wouldn’t work with that distribution. 

As a general rule, if the variable number of parents of a resident node is generated 

from one input node only and this is its only parent, then it is possible to use the 

MaxDistribution directly (i.e. use the same rules for input parents defined in Subsection 

4.2.1). Else, the scheme of an intermediate, “collector” node is necessary. In any case, 

only special distributions such as the MaxDistribution are allowed. In the Starship model, 

the MaxDistribution was used in place of the one we defined in the pseudo-code of 

Figure 8.  
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4.2.3 Use of Comments and Other Aspects of  Quiddity*Suite 

In order to facilitate the translation between MEBN representation and 

Quiddity*Suite Models, we have developed a list of markups that should be included as 

comments in Quiddity*Suite models. The information inside each markup would then be 

inserted in specific concepts in a PR-OWL ontology. Table 4 brings a list of those 

markups and their respective PR-OWL concepts. 

Table 4. Metadata Annotation Fields 

Markup Label PR-OWL Concept 

MEBNUID UID (datatype property of entities). 

NodeType Subclass of PR-OWL class Node that a given RV belongs to. 

NodeMFrag Lists the individual of PR-OWL class MFrag that a given 
node belongs to. 

NodeHomeMFrag If a resident node, then this field will have the same value as 
above. If an input node, then it will list the MFrag were its 
distribution is defined. 

NodeDistType Lists the format being used to define the distribution.  

NodeDescription This field should be transposed to the annotation field of the 
PR-OWL ontology. 

NodeDist If a table, it reads: “see table”. Else, it’s the field that should 
convey the probability distribution formulas. In PR-OWL is 
the datatype property hasDist (of declarative distributions). 

NodeDistComments This field should be transposed to the annotations of the 
probability distribution individual. Basically, it explains the 
intended meaning/rationale of a given probability 
distribution. 

QuiddityName This field handles the naming differences between the PR-
OWL ontology, Netica, and Quiddity models. In PR-OWL 
ontologies, it should be listed in the annotations field. 

QuiddityObj Another translation facilitator. It describes whether a MEBN 
entity is a frame, slot, or facet in a Quiddity model. 
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Quiddity*Suite has been applied to many complex, real-world problems (e.g., 

Alghamdi et al., 2004; Fung et al., 2004; e.g., Alghamdi et al., 2005; Costa et al., 2005).  

Its powerful representation and reasoning capabilities have provided solutions to 

problems that could not be solved with previously existing technology.  Development of 

Quiddity*Suite is ongoing, and new capabilities are being added on a continuing basis. 

As of the final phase of writing this dissertation, a new version is being released that 

incorporates significant advances in the use of Prolog rules to establish constraints in the 

slot instantiation process.  

Those advances allow Quiddity models to replicate the context nodes of an 

MFrag, adding a major capability that as far as our knowledge goes is not implemented in 

any similar system. The time frame of this work prevent us to perform a more detailed 

analysis to evaluate the impact of those advances, and to verify whether full compatibility 

with MEBN logic has been achieved. Yet, the fact that we were able to built three 

logically equivalent versions of the Star Trek model using Quiddity*Suite, MEBN logic, 

and PR-OWL is a clear indication that in its current stage, Quiddity*Suite can be used as 

a reasoner in MEBN-based probabilistic ontologies. 

The set of rules we have just described, combined with the extended version of 

MEBN logic we presented in the previous section, represent our solution for the two 

major issues preventing the development of a probabilistic ontology language. In the next 

chapter, we show how we have built upon what we implemented in “clearing the path” 

for probabilistic ontologies to develop PR-OWL, a probabilistic extension to the OWL 

Web ontology language. 
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Chapter 5  PR-OWL 

As a means to realize the use of Bayesian theory for representing and reasoning 

under uncertainty in the Semantic Web, this Chapter proposes a standard knowledge 

representation formalism to express uncertain phenomena, performing plausible 

reasoning, and learning from data in the context of the Semantic Web. This formalism 

will provide a framework for executing those tasks in an interoperable way, so 

probabilistic ontologies that were built for different purposes, using diverse tools, and by 

knowledge engineers that were not mutually aware of each other’s work, would have a 

common underlying architecture guaranteeing the exchange of information in a useful 

and meaningful way. 

A framework intended to provide means for building probabilistic ontologies for 

the Semantic Web must be compatible with the technologies being used in that 

environment. Thus, since OWL is the recognized ontology language of choice for the 

Semantic Web, it is also our base language for building the framework for probabilistic 

ontologies. That is, PR-OWL is an extension of OWL that enables the specification of 

probabilistic ontologies. 

The OWL Web ontology language is a W3C Recommendation, which means it is 

the product of an exhaustive, consensus-based process in which many highly qualified 

participants from different countries composed various working groups and generated the 
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technical reports which collectively comprise the final Recommendation (c.f. Jacobs, 

2003). Extending a W3C Recommendation requires a similar process and implies a level 

of commitment from the W3C that makes it clearly outside the scope of a PhD 

Dissertation. Still, as explained in the previous chapters, the W3C’s vision for the 

Semantic Web can only be achieved with a sound and principled treatment of 

inconclusive, ambiguous, incomplete, unreliable, and dissonant data, all quite abundant in 

the current World Wide Web environment.  

We saw in Chapter 3 that Bayesian probability theory provides a means for 

representing, reasoning and learning from all the above cited varieties of uncertain data, 

and is thus a natural candidate for providing the much-needed probabilistic framework 

for the Semantic Web. The development of a strategy for building that framework can be 

embraced as a doctoral research effort, and that is precisely the intention of the present 

work and the main focus of this chapter. Furthermore, the present work is envisioned as a 

basis for incorporating uncertainty in a future version of OWL. 

The Chapter is divided into two main sections. The initial section establishes an 

implementation strategy for PR-OWL, which includes further considerations on 

probabilistic ontologies, the reasons for choosing MEBN logic as the underlying 

semantics of PR-OWL, and the intended scope of its definitions. The second part of the 

Chapter presents PR-OWL itself, and covers the major characteristics of the language.  
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5.1 The Overall Implementation Strategy 

Before devising a way of implementing a framework for building interoperable 

probabilistic ontologies, it is important to emphasize that a probabilistic ontology is not a 

probabilistic model (e.g. a model built using applications such as Netica, Hugin, or 

Quiddity*Suite) the same way that an ontology is not a database application.  

The differences in the in-depth underlying concepts and technologies supporting 

ontologies and database schemas are not easily distinguishable, as the real differentiation 

between the two resides in their respective intended purposes. Ontologies represent 

domains in a way that should facilitate interoperability with other representations of that 

domain (i.e. other ontologies build by different people with different views and interests) 

or of domains that are not directly related but share some concepts. When a database 

solution for a given domain is conceived, its primary focus is not in representing all 

concepts of a domain in a way that makes it interoperable with current or future views of 

that domain, but in defining the concepts of that domain which would allow to coherently 

store the information the database stakeholders (and their customers) want to store and to 

retrieve that information in a way that best fits their requirements.  

In a similar view, when a probabilistic model is built to solve (say) a radar data 

fusion problem, the main interest driving its creators is not in making sure that their 

definitions about radar domain concepts are interoperable with other definitions that 

might exist on those same concepts. In contrast, interoperability would definitely be a 

primary focus when building a probabilistic ontology for the domain of radar data fusion. 

Ontology engineers would attempt to express one view of that domain in a way that 
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others (with possibly different views) may use/understand and thus build applications 

(databases, decision systems, etc) that are compatible with anything built under that view.  

Furthermore, it is not necessary for an ontology to be an actually running 

database, yet a database application can be built on top of an ontology. Likewise, a 

probabilistic ontology does not necessarily need to be an actually running probabilistic 

model, yet a running probabilistic model (i.e. an executable application built using a 

probabilistic package) can be built on top of a probabilistic ontology if that fits the 

objectives of the application at hand. A subtle difference here is that anything built on top 

of an ontology can be built on top of a probabilistic ontology, but the converse is not 

always true, since the latter is an extension of the former that adds the above mentioned 

features of a probabilistic framework. 

To comply with interoperability requirements and at the same time be useful 

enough for allowing a probabilistic model to be built on top of its definitions, a 

probabilistic ontology has to be based on a very flexible framework. Thus, the initial 

issue to be addressed is the definition of an underlying model for PR-OWL, one that 

allows representing uncertain data using OWL’s RDF based syntax. Clearly, it is 

desirable that the semantics of such model should have at least the same representational 

power of the semantics supporting OWL, so everything that can be represented in OWL 

could also be expressed in PR-OWL. 

5.1.1 Why MEBN as the semantic basis for PR-OWL? 

In general, people faced with the complex challenge of representing uncertainty in 

languages like OWL tend to start their attempts by writing probabilities (i.e. priors and 
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CPTs) as annotations (e.g. marked-up text describing some details related to a specific 

object or property). This is a palliative solution that addresses only part of the 

information that needs to be represented, since it fails to convey the structural intricacies 

that are present in even the simplest probabilistic models, such as conditional dependence 

(or independence) implied by connecting arcs (or lack of), double counting of influence 

on multiply connected graphs, and others.  

Indeed, many researchers have pointed out the importance of structural 

information in probabilistic models (e.g. Shafer, 1986; Schum, 1994; Kadane & Schum, 

1996). For instance, Schum (1994, page 271) shows that some questions about evidence 

can be answered entirely in structural terms. 

In short, annotating the numerical probabilities of a probabilistic model in an 

ontology is just not enough, as too much information is lost to the lack of a good 

representational scheme that captures the structural nuances of the model. As noted in 

Chapter 2, one way of representing structural information of a probabilistic model is by 

extending OWL to represent Bayesian networks (e.g. Ding & Peng, 2004). However, 

even though such approach does capture some of the structural information of a 

probabilistic model, the limited expressiveness of Bayesian networks make it difficult to 

represent complex systems, as we could see from the Starship example in Chapter 3. 

Probabilistic Relational Models provide a leap in representation power when 

compared with BNs, but as we could see in Chapter 4, PRMs alone cannot represent all 

that is needed for declarative representations that cover complex situations with tightly 

defined contexts (i.e. situations in which probability distributions are defined within very 
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specific constrains). Therefore, to represent one of those specific situations in an ontology 

using PRMs as the underlying logic, either the instances of that ontology would also have 

to be declared (e.g. expressing that two starships are not the same individual by referring 

to two actual instances of starships25) or some combined approach would have to be used 

for constraining the context where the definitions apply (e.g. the use of Prolog rules in 

Quiddity*Suite). 

The need to declare all instances in advance makes the first solution unsuitable for 

most use cases for the Semantic Web, where the ontologies generally have only T-Box 

information (or occasionally a few built-in A-Box definitions) and the A-Box is left for 

each specific situation/application based on that ontology. Thus, the second solution 

seems to be a more appropriate way of employing PRMs to build probabilistic ontologies. 

One successful example of that approach is the use of Prolog rules in Quiddity*Suite as a 

means to enforce constraints under which instances of a random variable are created.  

Establishing such constraints is a vital asset for building probabilistic ontologies, 

since it allows one to express very detailed situations in which a given probability 

distribution holds. MEBN logic has a built-in form of representing such constraints (i.e. 

its context nodes), which makes it a flexible and simple technology that is also logically 

coherent (i.e. it can express a  fully coherent joint probability distribution over instances 

that satisfy the constraints). These intrinsic features of MEBN logic makes it very 

suitable for being the basis of a probabilistic framework for the Semantic Web. 

                                                
25 Refer to the examples and discussions in the end of subsections 2.4.1 and 4.2.2 
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Approaches with limited expressiveness, such as BNs, are less suitable because 

the Semantic Web demands a certain level of flexibility those approaches cannot deliver. 

More expressive representational schemes such as PRMs, implementations of MEBN 

logic, and probabilistic logic programs theoretically have the basic conditions for 

supporting such a framework. In any case, there will always be a trade-off between 

flexibility and expressiveness when using a probabilistic logic to support a language 

meant for the Semantic Web. We found that MEBN logic provides a particularly 

attractive trade-off that made our work easier when extending the OWL Semantic Web 

language. 

Laskey  (2005, pages 22-27) shows that MEBN logic can express a joint 

probability distribution over models of any consistent finitely axiomatizable theory in 

classical first order logic. Thus, even the most specific situations can be represented in 

MEBN, provided they can represented in FOL. Furthermore, since MEBN is a first order 

Bayesian logic, using it as the underlying semantics of PR-OWL not only guarantees a 

formal mathematical background for a probabilistic extension to the OWL language (PR-

OWL), but also ensures that the advantages of Bayesian Inference (e.g. natural “Occam’s 

Razor”, support for learning from data, etc.) will be available for using with any PR-

OWL probabilistic ontology. 

Therefore, we opted to use MEBN logic as the underlying semantics of OWL for 

its optimal combination of expressiveness and flexibility. Our next step is to lay out an 

overall plan for implementing it in a way that does not render current OWL ontologies 

incompatible with the extended language. 
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5.1.2 Implementation Approach 

OWL has intrinsic mechanisms to enable the development of extensions. The 

most basic means of extending OWL is to specify a vocabulary using a syntax that 

complies with its format. As an example, the Dublin Core metadata initiative is devoted 

to developing specialized metadata vocabularies and to promote the widespread adoption 

of interoperable metadata standards (Hillmann, 2001). Any OWL ontology can use the 

Dublin Core vocabulary to define additional semantics about its contents just by adding 

its namespace in the file header and encoding qualified Dublin Core Metadata in the RDF 

/ XML format described in Kokkelink & Schwänzl (2001). 

Yet, this basic level of extensibility is not enough to guarantee a coherent, widely 

used standard for more complex activities that demand a greater level of commitment 

from users of the standard. As an example, OWL-S (Martin et al., 2004) and the Web 

Service Modeling Ontology – WSMO (Polleres et al., 2005) have been acknowledged as 

Member Submissions, both proposing solutions for Web service ontologies. Their 

respective sponsoring organizations submitted the draft specifications with the hop that 

these can form the basis of a future standard and thus form a framework that would allow 

a much higher degree of automation, functionality and interoperability among the various 

types of services. Those specifications build upon and extend the foundation laid by 

OWL and other web standards; PR-OWL as described below intends to make a similar 

contribution. 

Some extensions do change the semantics and abstract syntax of OWL. As an 

example, the Semantic Web Rule Language (SWRL) is a W3C Member Submission that 
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proposes to extend OWL abstract syntax so it includes support for rules based on 

RuleML (Boley & Tabet, 2004) and provides a model-theoretic semantics defining the 

meaning of the rules written in the extended syntax (Horrocks et al., 2004). In addition, 

there is another W3C Member Submission that proposes extending SWRL so it would 

allow OWL ontologies containing the extended abstract syntax and semantics defined in 

SWRL to handle unary/binary first-order logic (Patel-Schneider, 2005). 

The extensions listed in the above paragraph do add new elements to the abstract 

syntax and semantics of OWL, which means they augment the expressiveness of the 

language by enabling it to express concepts that are not possible to convey with standard 

OWL. On the other side, in order to make use of those extensions, it is necessary to 

develop new tools supporting the extended syntax and implied semantics of each 

extension. 

PR-OWL is an extension that enables OWL ontologies to represent complex 

Bayesian probabilistic models in a way that is flexible enough to be used by diverse 

Bayesian probabilistic tools (e.g. Netica, Hugin, Quiddity*Suite, JavaBayes, etc.) based 

on different probabilistic technologies (e.g. PRMs, BNs, etc.).  

That level of flexibility can only be achieved using the underlying semantics of 

first-order Bayesian logic, which is not a part of the standard OWL semantics and 

abstract syntax. Therefore, it seems clear that PR-OWL can only be realized via 

extending the semantics and abstract syntax of OWL the same way as the above 

examples of SWRL, RuleML and SWRL-FOL. 
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Indeed, an ideal full implementation of a probabilistic ontology would follow the 

steps defined by the W3C (Jacobs – ed., 2003) until it becomes an official standard. As 

demonstrated in Chapter 3, all the information needed to process probabilistic queries in a 

MEBN models is contained in the model’s generative MTheory and the findings related 

to the query of interest. Also, we have shown that one of the advantages of MEBN logic 

is the ability to express very specific situations via context nodes, which are declarative 

statements with FOL expressiveness.  

Therefore, and that constitutes one of the major contributions of the present work, 

it is possible to define an upper ontology for probabilistic systems that can be used as a 

framework for developing probabilistic ontologies (as defined in the beginning of this 

Chapter) that are expressive enough to represent even the most complex probabilistic 

models.  

Defining such a framework is the initial step towards a full PR-OWL 

specification, and a basic requirement for the development of probabilistic ontologies. 

With that in mind, the implementation strategy that guided our actions in the present 

research effort consisted of the following steps: 

a. Define the formal foundation (based on Bayesian first-order logic) needed to 

specify general probabilistic ontologies. 

b.  Present an operational concept to provide a general guidance on the 

development of plug-ins and/or applications that make it easier for the average 

user to write probabilistic ontologies. 
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c. As a step towards standardization by the W3C, establish a future vision for the 

PR-OWL specification, and a plan for realizing that vision. 

Steps “a” and “b” are covered in the remainder of this Chapter, while the last step 

is addressed in Chapter 6. 

5.2 An Upper Ontology for Probabilistic Systems 

Our initial step towards a Bayesian framework for the Semantic Web is to create 

an upper ontology to guide the development of probabilistic ontologies. DaConta et al.  

define an upper ontology as a set of integrated ontologies that characterizes a set of basic 

commonsense knowledge notions (2003, page 230). In this preliminary work on PR-

OWL as an upper ontology, these basic commonsense notions are related to representing 

uncertainty in a principled way using OWL syntax. If PR-OWL were to become a W3C 

Recommendation, this collection of notions would be formally incorporated into the 

OWL language as a set of constructs that can be employed to build probabilistic 

ontologies. 

The PR-OWL upper ontology for probabilistic systems is presented in Appendix 

B. It consists of a set of classes, subclasses and properties that collectively form a 

framework for building probabilistic ontologies. The first step toward building a 

probabilistic ontology in compliance with our Definition 3 (pages 101/102) is to import 

into any OWL editor an OWL file containing the PR-OWL classes, subclasses, and 

properties. In fact, this is exactly what we did when we built the Star Trek probabilistic 
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ontology. We used the Protégé import feature to download the PR-OWL upper ontology 

from a website we had previously set up.  

After importing the PR-OWL definitions, the next step in ontology design is to 

construct domain-specific concepts, using the PR-OWL definitions to represent 

uncertainty about their attributes and relationships. As an example, the concepts of the 

Star Trek probabilistic ontology were either subclasses or instances of the imported PR-

OWL upper ontology. Using this procedure, an ontology engineer is not only able to 

build a coherent generative MTheory and other probabilistic ontology elements, but also 

make it compatible with other ontologies that use PR-OWL concepts. 

Because we designed PR-OWL with the objective of eventually turning it into a 

W3C submission, we wanted it to be as general purpose as possible. That is, we 

attempted to avoid unnecessary restrictions that would initially make the job easier for 

the designer of a specific application, but would limit its flexibility for a broader set of 

applications. Imposing such limitations would render this preliminary work less suitable 

as the starting point for a W3C Recommendation process. Thus, even though we did 

establish a fixed set of classes, subclasses and instances for the upper ontology, which 

was necessary to enforce consistency with MEBN logic standards, we intentionally 

avoided unnecessary restrictions on how a modeler would develop her/his own 

probabilistic ontology. It is clear to us that such approach is valid for the scope of this 

work, but the natural tendency for the process towards a W3C Recommendation is to 

impose extra restrictions that would achieve an optimal trade-off between flexibility and 

enforcing the rules of the underlying logic. In other words, an upper ontology is enough 
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as a starting point to represent uncertainty in a principled way using PR-OWL, but it 

cannot prevent unintentional misuse of its elements that would lead to inconsistencies in 

the resulting probabilistic ontology. 

In order to illustrate our conceptual approach, consider the question of whether to 

represent an MFrag template such as the Zone MFrag from our Star Trek generative 

MTheory (see Figure 10, page 70) as a class or an instance. If we choose the first option, 

we would create it as a subclass of the imported PR-OWL class Domain MFrag (see 

Appendix B, page 230). That newly created subclass will thus inherit all the properties 

from the PR-OWL Domain MFrag class that enforce the structural and logical constraints 

of a MEBN Fragment (e.g. it must have at least one resident node, it might have context 

and input nodes, etc.). The instances of that subclass would then be copies of the Zone 

MFrag template that have all of its inherited elements. This approach seems appropriate 

when the ontology being built is supposed to represent the many copies of Zone MFrags 

created by SSBN construction procedures started to answer a given query.  

If, instead, we opt for the second approach and represent the Zone MFrag 

template as a direct instance of the PR-OWL class Domain MFrag, then such instance 

would still carry all the properties of a Domain MFrag (e.g. it must have at least one 

resident node, etc.) that enforce the structural and logical constraints of MEBN logic. In 

this case, unless we want to use a second order representation (i.e. use instances of 

instances), the ontology itself could not contain instances of the Zone MFrag template. 

We could add instances of the random variables that appear in the Zone MFrag (e.g., 

ZoneMD(!Z0)) to the ontology, but there would be no instance of the MFrag template 
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explicitly represented in the ontology. The PR-OWL instance we created to represent the 

Zone MFrag template would contain all the information that an application external to the 

ontology (i.e. a decision support system) needs to build copies of Zone MFrags when 

building SSBNs to answer a query. 

It is important to keep in mind that no matter what approach an ontology designer 

uses in the light of his/her objectives, the structural and logical constraints of MEBN 

logic will be inherited. Since the other elements of the “probabilistic part” of the ontology 

will also be either instances or subclasses of the imported PR-OWL upper ontology, then 

all will inherit the structural and logical constraints that collectively enforce the 

compliance with MEBN rules, thus guaranteeing that such an ontology would be a 

coherent, logically consistent MEBN Theory. 

Although we did not establish any constraints on this specific issue, we 

considered the pros and cons of modeling our concepts as subclasses or instances of PR-

OWL classes in the design of our Star Trek probabilistic ontology. Our experience leads 

us to conclude that the objectives and characteristics of the probabilistic ontology being 

built will dictate how to make this choice. In general, ontologies that are expected to 

represent many instances of a given concept (e.g. copies of Zone MFrag in the illustration 

above) should characterize that concept as a subclass of PR-OWL. Conversely, if a given 

concept is not going to have its instances represented in the ontology (e.g. only the Zone 

MFrag template is of interest) then the concept itself might be characterized as an 

instance of a PR-OWL class. The advantage of doing so is to avoid unnecessary 

duplications (e.g. many copies of a Zone MFrag template that would not be used by the 
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client applications of the Star Trek ontology). In the Star Trek probabilistic ontology, 

most of the concepts directly related to the generative MTheory were modeled as 

instances, whereas Object entities such as Starships and other concepts for which we 

expect to have its instances populating the ontology were modeled as classes.  

Our choice took into account that representing uncertainty within an ontology is 

not the same thing as building a probabilistic system. In our Star Trek case study, the 

generative MTheory is used in conjunction with information about domain entities (e.g. 

instances of starships) to build SSBNs to answer queries about those entities. In this case, 

the Enterprise’s decision support system would carry out the process of building 

situation-specific models (i.e. instantiating and combining MFrags) to answer the relevant 

queries, evaluate the perceived situation, and update the system’s knowledge accordingly. 

The generative MTheory can be seen as the part of the system that holds the domain 

knowledge used in this process. In other words, the process of building, working and 

storing the instantiated MFrags in this case is not part of the Star Trek probabilistic 

ontology.  

 Even though we understand the above option might be desirable in some 

applications, we preferred to adopt a different approach that avoids duplications by 

restricting the user defined classes only to the elements we expect to be instantiated in the 

ontology itself (as distinct from an application that uses the ontology). In short, we opted 

to represent the generative MTheory concepts as instances of PR-OWL built-in classes, 

while representing the object entities, random variables (i.e. resident nodes), and its 

distribuitions as user defined classes. As an example, Starship would be a user-defined 
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class (subclass of PR-OWL ObjectEntity class) whose instances would be something 

such as !ST0, !ST1, etc., whereas the Zone MFrag is modeled as an instance of PR-OWL 

built-in Domain MFrag. This approach is consistent with the fact that a generative 

MTheory contains all the domain-specific information that is needed in conjunction with 

information on the object entities for the targeted application of our ontology to conduct 

its reasoning processes (e.g. the Enterprise’s decision support system). In the end, we 

believed our choice to be preferable in most cases in which an ontology is needed, 

because it results in a more concise ontology that still can be used for applications as the 

basis for conducting their respective reasoning process. 

A generative MTheory can express domain-specific ontologies that capture 

statistical regularities in a particular domain of application, and MTheories with findings 

can augment statistical information with particular facts germane to a given reasoning 

problem (Laskey, 2005). From our definition, it is possible to realize that nothing 

prevents a probabilistic ontology from being “partially probabilistic”. That is, a 

knowledge engineer can choose the concepts that he/she is interested to be in the 

“probabilistic part” of the ontology, while writing the other concepts in standard OWL. 

In this specific case, the “probabilistic part” refers to the concepts written using 

PR-OWL definitions and that collectively form an MTheory. There is no need for all the 

concepts in a probabilistic ontology to be probabilistic, but at least some have to form a 

valid MTheory. Of course, only the concepts being part of the MTheory will be subject to 

the advantages of the probabilistic ontology over a deterministic one. 
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The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic 

ontologies only with respect to the concepts for which the modeler wants to have 

uncertainty represented in a principled manner, make plausible inferences from that 

uncertain evidence, or to learn its parameters from incoming data using Bayesian 

learning.  

The ability to perform probabilistic reasoning with incomplete or uncertain 

information conveyed through an ontology is a major advantage of PR-OWL. However, 

it should be noted that in some cases solving a probabilistic query might be intractable or 

even undecidable. In fact, providing the means to ensure decidability was the reason why 

the W3C defined three different version of the OWL language. While OWL Full is more 

expressive, it enables an ontology to represent knowledge that can lead to undecidable 

queries. OWL-DL imposes some restrictions to OWL in order to eliminate these cases. 

Similarly, restrictions of PR-OWL could be developed that limit expressivity to avoid 

undecidable queries or guarantee tractability.  This initial step is focused on the most 

expressive version of PR-OWL. 

In this section, the “probabilistic part” of  PR-OWL ontologies will be covered, 

and the main objective is to show how to represent any generative MTheory (with no 

regard to its level of complexity) and also Finding MFrags using PR-OWL concepts. An 

overview of the general concepts involved in the definition of an MTheory in PR-OWL is 

depicted in Figure 27. In this diagram, the ovals represent general classes, while the 

major relationship between those classes are symbolized by arrows. A probabilistic 

ontology has to have at least one individual of class MTheory, which is basically a label 
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linking a group of MFrags that collectively form a valid MTheory. In actual PR-OLW 

syntax, that link is expressed via the object property hasMFrag (which is the inverse of 

object property isMFragIn).  

 

Figure 27. Overview of a PR-OWL MTheory Concepts 

Individuals of class MFrag are comprised of nodes, which can be resident, input, 

or context nodes (not shown in the picture). Each individual of class Node is a random 

variable and thus has a mutually comprehensive, collectively exhaustive set of possible 

states. In PR-OWL, the object property hasPossibleValues links each node with its 

possible states, which are individuals of class Entity. Finally, random variables 

(represented by the class Nodes in PR-OWL) have unconditional or conditional 

probability distributions, which are represented by class Probability Distribution and 

linked to its respective nodes via the object property hasProbDist. 

The scheme in Figure 27 is intended to present just a general view and thus fails 

to show many of the intricacies of an actual PR-OWL representation of an MTheory. 

Figure 28 shows an expanded version conveying the main elements in Figure 27, its 

subclasses, the secondary elements that are needed for representing an MTheory and the 

reified relationships that were necessary for expressing the complex structure of a 

Bayesian probabilistic model using OWL syntax. 
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Reification of relationships in PR-OWL is necessary because of the fact that 

properties in OWL are binary relations (i.e. link two individuals or an individual and a 

value), while many of the relations in a probabilistic model include more than one 

individual (i.e. N-ary relations). The use of reification for representing N-ary relations on 

the Semantic Web is covered by a working draft from the W3C’s Semantic Web Best 

Practices Working Group (Noy & Rector, 2004). 

Although the scheme in Figure 28 shows all the elements that are needed for 

representing a complete MTheory, it is clear that any attempt at a complete description 

would render the diagram cluttered and incomprehensible. Therefore, a complete account 

of the classes, properties and the code of PR-OWL are given in Appendix B   

 

 

Figure 28. Elements of a PR-OWL Probabilistic Ontology 

The material provided in the appendix defines an upper ontology for probabilistic 

systems, and it can be used to represent any system that can be represented using the 
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extended version of MEBN logic presented in Chapter 4. In order to show the 

applicability of the presented framework, the next Subsections explain how it can be used 

to build a probabilistic ontology.  

In order to demonstrate the applicability of PR-OWL in diverse levels of 

complexity, initially a generic explanation is given for each major aspect of the modeling 

process, then an illustrative example based on the Starship case study is provided as a 

means to facilitate the understanding over the most important steps. In both cases, the 

examples were built using the open source software Protégé26, an ontology editor 

developed by the by Stanford Medical Informatics at the Stanford University School of 

Medicine (Noy et al., 2000; Noy et al., 2001), and its OWL plugin (Knublauch et al., 

2004). 

At the present experimental stage, writing probabilistic ontologies in PR-OWL is 

a process that requires importing the upper ontology provided in Section B.4 in the 

appendices. Figure 29 shows the header of the Starship probabilistic ontology developed 

as a case study for this research. There, it is possible to see the owl:imports feature being 

used for downloading the PR-OWL upper ontology utilized as the base block for building 

the Starship probabilistic ontology. 

Even though the above example was written in Protégé, any ontology tool capable 

of editing OWL ontologies, such as SWOOP27 (Kalyanpur et al., 2004) or webODE28 

(Arpírez et al., 2001), can be used for editing a PR-OWL ontology.  

                                                
26 Available for download at http://protege.stanford.edu/ 
27 Available for download at http://www.mindswap.org/2004/SWOOP/ 
28 See http://webode.dia.fi.upm.es/WebODEWeb/index.html 
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Figure 29. Header of the Starship Probabilistic Ontology 

5.2.1 Creating an MFrag 

Figure 30 shows the initial Protégé screen after importing the PR-OWL 

ontologies and defining the classes of object entities that will be part of the ontology. In 

Protégé, concepts of imported ontologies appear with a light colored dot icon and the 

namespace abbreviation at the left side of the concept’s name, as it can be seen in the 

Asserted Hierarchy window on the left side of the picture.   

The darker icons (Starship, Zone, Sensor Report, and TimeStep) correspond to the 

classes created as a first step to build the Starship probabilistic ontology. PR-OWL object 

entities correspond to frames in frame systems and to objects in object-oriented systems. 

The simple model used in this research contains only four object entities; so four classes 

were created under the PR-OWL ObjectEntity Class (i.e. Starship, Zone, SensorReport, 

and TimeStep). These are the user-defined classes that convey the equivalent of what a 

standard ontology would represent about a domain, so its individuals are the concepts and 

entities that would populate a non-probabilistic description of that domain. In our 

Starship ontology, the domain instances will be individual zones, sensor reports, 
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starships, and time steps, all represented as individuals of the domain classes created by 

the user. 

 

Figure 30. Initial Starship Screen with Object Properties Defined 

The other PR-OWL classes shown in the picture are directly fulfilled by 

individuals representing the elements of a generative MTheory. The user does not create 

new classes here, but individuals that convey the information necessary for creating 

elements of an SSBN. In other words, these individuals express the probabilistic aspects 

of the domain MTheory, and can be seen as templates that a probabilistic reasoner uses 

for building an SSBN to answer a query. Examples of those aspects are the characteristics 

of domain instances (e.g. the possible nature of a zone, class of a starship, etc), its 

possible states, its probability distributions, etc.  
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When Quiddity*Suite (or another probabilistic reasoner chosen by the user) 

receives a query on (say) the status of zones !Z0, !Z1 and !Z8 (all individuals of the user-

defined domain class Zone) it will build an SSBN based on the individuals of PR-OWL 

classes representing the generative MTheory and the evidence available in form of 

findings. In this case, the reasoner will certainly build three copies of RV ZoneNature(z) 

based on the information contained in the individual Z_ZoneNature of the PR-OWL class 

Domain_res. 

Even though the names chosen for the four object entity classes match their 

respective intended meaning, this is not a requirement. PR-OWL uses a UID as a means 

to enforce its unique naming assumption, and the name of each concept has no meaning 

for the logic under PR-OWL (MEBN logic). As an example, choosing a name such as 

“Umbrella” as the reference to the class including all sensor reports in the model would 

make no difference for the tasks performed by the reasoner, but would certainly confuse 

any human reader trying to understand the model. Therefore, as a means to facilitate 

human understanding and to improve interoperability with other systems (which probably 

have humans as API builders), an optional naming convention is proposed in Section B.3 

in the appendices and was used in the Starship probabilistic ontology built for this 

research. 

Figure 31 illustrates the PR-OWL representation of the Zone MFrag, which uses 

the above-cited naming convention. An MFrag can be seen as a hub connecting a 

collection of related random variables that together represent an atomic "piece of 

knowledge" about a domain.  The context nodes of the MFrag represent conditions under 
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which the relationship holds. A coherent set of those “pieces” form a joint probability 

distribution over the included random variables, also known as an MTheory.  

 

Figure 31. Zone MFrag Represented in PR-OWL 

A common method for handling cognitive tasks is the “divide and conquer” 

approach, which breaks a problem into smaller, simpler parts.  Thus, building “pieces of 

knowledge” about a domain in a way that allows “gluing” them together to handle more 

complex issues within that domain is a natural technique for modeling probabilistic 

systems. Not surprisingly, a very usual way of starting a probabilistic ontology is by 

defining its generative MFrags or, in PR-OWL, the individuals of class Domain_MFrag. 

PR-OWL includes all the necessary elements of MEBN logic that are necessary to 

represent an MFrag. Figure 31 shows MEBN’s representation of the Zone MFrag in 

comparison with its PR-OWL counterpart. Following the bullets within the figure, every 
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individual of class Domain_MFrag is related to one or more MTheory via the object 

property isMFragOf [1]29.  

The Zone MFrag is represented as an individual of class Domain_MFrag, having 

name Zone_MFrag. The MFrag has four resident nodes, three input nodes and six context 

nodes. Its PR-OWL represents those 13 nodes using 11 individuals of subclasses of 

Node, which are linked to the Zone_MFrag via the object property hasNode [2]. The 

mismatch between the number of MEBN nodes and their respective PR-OWL description 

is caused by the fact there is not a straightforward one-to-one correspondence between 

MEBN and PR-OWL constructs. Table 5 shows the details of how each node is portrayed 

in both representations. 

As shown in the table, the “IsA” context nodes are not explicit represented in PR-

OWL MFrags, since the notion of subtyping is already conveyed in the definition of the 

arguments of each resident node. In MEBN, the “IsA” context nodes are meant to define 

which type of entities can substitute the ordinary variables in an MFrag. In PR-OWL, this 

constraint is expressed by the object property isSubsBy, linking individuals of class 

OVariable to the individuals of class Entity that are allowed to substitute for them. As an 

example, Zone MFrag has four ordinary variables (st, t, tprev, and z) that are represented 

in PR-OWL as four individuals of class OVariable (Z_st, Z_t, Z_tprev, and Z_z). Thus, 

while in MEBN logic the context node IsA(Starship, st) is meant to restrict the ordinary 

variable st so that only entities of type Starship can substitute for it, in PR-OWL the 

                                                
29 Numbers inside brackets refer to the equally numbered circle labels in the pictures 
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equivalent construction is isSubsBy(Z_st, Starship_Label), meaning that only individuals 

that have property hasType equal to Starship_Label can substitute for Z_st. 

Table 5. Zone_MFrag Nodes in MEBN and PR-OWL 

MEBN MFrag PR-OWL Representation 

IsA(TimeStep, tprev) 

IsA(Zone, z) 

IsA(Starship, st) 

IsA(TimeStep, t) 

Implicit in the type declaration 

Z_TprevPrevT_context 
tprev = Prev(t) 

Z_TprevPrevT_inner_prevT 

Z_ZSZoneST_context 
z = StarshipZone(st) 

Z_ZSZoneST_inner_SZoneST 

CloakMode(st) Z_CloakMode_input 

ZoneMD(z, tprev) Z_ZoneMD_input 

t = !T0 Z_TequalT0_inpu 

ZoneMD(z, t) Z_ZoneMD 

ZoneNature(z) Z_ZoneNature 

ZoneFShips(z) Z_ZoneFShips 

ZoneEShips(z) Z_ZoneEShips 

 

Therefore, even though there is no explicit reference to the “IsA” context nodes 

from Zone MFrag in the individuals displayed in Figure 31, the object property 

hasOVariable [3] linking the Zone_MFrag with its respective ordinary variables 

implicitly conveys that subtyping restriction.  

As an example of the mapping between MEBN and PR-OWL depicted in Table 5, 

representing the context node “z=StarshipZone(st)” requires decomposing it into random  
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variable terms “equal(z, StarshipZone(st))” and “StarshipZone(st)”. In the PR-OWL 

ontology these RV terms are respectively represented by Z_ZSZoneST_context and 

Z_ZSZoneST_inner_SZoneST, both individuals of class Context. 

The other properties depicted in Figure 31 are the object property hasSkolem [4], 

which links a quantifier MFrag with its respective Skolem constants, and the properties 

hasResidentNode [5], hasInputNode [6], and hasContextNode [7], all subproperties of 

hasNode. 

Figure 32 portrays the representation of node ZoneMD(z, t), from the Zone 

MFrag. Object property isNodeFrom [1] provides the link between the node and its 

MFrag. Further structural information is provided by the parent list formed with the 

object property hasParent [2], the object property isResidentNodeIn [6] and the properties 

that link ZoneMD(z, t) with its “copies” (instances in which the node is used as input 

and/or context node in other MFrags), which are hasContextInstanceIn [7] and 

hasInputInstanceIn (not visible in the picture).  

ZoneMD(z, t) is a resident node, so it has a probability distribution conditioned on 

its parents. The link between an individual of class Domain_res and the many possible 

representations of its probability distribution is provided by the object property 

hasProbDist [3]. Subsection 5.2.2 explains the different possibilities of representing 

probability distributions in PR-OWL.  

The list of possible states of ZoneMD(z, t) is made using the object property 

hasPossibleValues [4], while its arguments (ordinary variables z and t) are linked using 

the hasArgument object property [5]. Note that property hasArgument doesn’t actually 
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point to an individual of class OVariable, which is the class that has the ordinary 

variables z and t represented (as Z_z and Z_t respectively). Instead, it points to 

individuals of class SimpleArgRelationship, a subclass of ArgRelationship. These two 

classes are reified relations specifying the many possibilities of arguments in a random 

variable. In this specific case (i.e. the ZoneMD(z, t) node), the two arguments are 

OVariables, so links to both are represented by individuals of the class 

SimpleArgRelationship, which works as a pointer to individuals of Class OVariable only. 

When a node has composite arguments, the parent class ArgRelationship should be used, 

since it works as a pointer to individuals of classes OVariable, Node, Entity, and Skolem.  

 

Figure 32. ZoneMD Resident Node 

Object properties isArgTermIn [8] and hasInnerTerm [9] provide further support 

to reified relations, by keeping track of the complex relationships in which each node is 
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participating. The use of reification is also important for representing probability 

distributions in PR-OWL, which may be conveyed in different ways. 

5.2.2 Representing a Probability Distribution 

Representing probability distributions is a key issue in achieving a balance 

between interoperability and conciseness. Proprietary formats usually convey all the 

necessary information in a compact way, thus simply using that format in a xsd:string to 

convey that information is an attractive option. However, this option ties the ontology to 

a specific format that might not be universally known or might be inappropriate to a 

range of applications. Also, annotating probability distributions might reduce the ability 

to use that data in complex environments with many systems working with different 

formats, rules or requirements. 

PR-OWL is supposed to facilitate interoperability and thus should be as flexible 

as possible in terms of how to represent probability distributions. Therefore, it allows 

using multiple declarative distributions and/or a RDF table format to represent the 

probability distribution of a given RV. 

Each probability distribution can be expressed in different formats using PR-

OWL’s declarative distributions represented via the DeclarativeDist class, which is 

depicted in Figure 33. Possible formats include Netica tables, Netica equations, Quiddity 

formulas, MEBN syntax, and others. However, the declaration itself is stored as a string 

so parsers should be compatible with the specific text format of each declaration.  

Every individual of class DeclarativeDist has an object property isProbDistOf [1] 

linking it with their respective resident node. A datatype property isRepresentedAs [2] 
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defines how a given declarative probability distribution is expressed. A datatype property 

isDefault [3] flags it (or not) as a default distribution. finally, a datatype hasDeclaration 

[4] includes the probability distribution itself in the format previously defined. 

 

Figure 33. Declarative Distributions in PR-OWL 

PR-OWL tables have a different representational scheme. Each individual of class 

PR-OWLTable is actually a label that links the many components that collectively form a 

probability distribution of a resident node. As an example, the individual 

Z_ZoneFShips_table has three properties: isDefault, which states whether or not that 

individual represents a default probability distribution, isProbDistOf, which links the 

individual with the node it represents (Z_ZoneFShips in this case), and hasProbAssign, 

which links the individual with all the individuals of class ProbAssign that collectively 

form the probability distribution of node Z_ZoneFShips. One of those ProbAssign 

individuals is Z_ZoneFShips_table_2.3, which is depicted in Figure 34. 
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Figure 34. A Probabilistic Assignment in a PR-OWL Table 

Z_ZoneFShips_table_2.3 corresponds to the probability assigned to the second 

state of node ZoneFShips (ZFS_1) given that its parent node has value 

ZN_PlanetarySystem (the third state of that parent). The probability itself (.20) is 

represented as a xsd:decimal that is linked to Z_ZoneFShips_table_2.3 via the datatype 

property hasStateProb [1]. The link between the ProbAssign individual and the state of 

ZoneFShips it refers to is made via the object property hasStateName [2], while property 

isProbAssignIn [3] links the probability assignment to the table it belongs. Finally, each 

probability assigned to a state of a variable is conditioned to a combination of states of 

the parents of that variable. Object property hasConditionant [4] links a ProbAssign 

individual to the individuals of class CondRelationship that collectively form such a 

combination of parents. CondRelationship is a reified relation linking a parent with one 
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of its possible states, and a set of CondRelationship individuals represents the 

combination of parents’ states to which a given probability assignment is conditioned. 

ZoneFShips has only one parent, so there is only one conditionant listed 

(Z_ZoneNature_cond_3.3), which is an individual of the reified class CondRelationship 

that links node ZoneNature with its third state (ZN_PlanetarySystem). If ZoneFShips had 

four parents, then four individuals of class CondRelationship (i.e. one for each parent) 

would have to be listed in order to represent the combination of parents under which that 

probability assignment is valid. 

One issue regarding the probability assignment is the use of xsd:decimal to 

convey a probability value, when the ideal situation would be to use a datatype that 

specifically covers the numerical range of probabilities (i.e. 0 to 1, including both 

extremities). However, at the time of this writing, OWL has no support for user-defined 

datatypes, so the closest datatype allowed by OWL is xsd:decimal. 

Although applications or plugins should be written to prevent invalid entries for 

probabilities, relying on external plugins to enforce this requirement is not an acceptable 

option. Therefore, a more robust solution must be sought. In the case of a future 

consideration of PR-OWL as a basis for a W3C Recomendation for representing 

uncertainty in the Semantic Web, a special datatype covering the numerical range of 

probabilities must be included. A very suitable name for such datatype is “prob” (pr-

owl:prob), which has already been proposed by other researchers in this field (e.g., Ding 

& Peng, 2004). 
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PR-OWL tables represent probabilities in a format that is highly interoperable, 

since each cell contains links to all the elements that are necessary for specifying the 

conditions in which the probability inside that cell applies. Also, those elements are 

available in a non-proprietary, syntax-independent format, which makes it easier to be 

retrieved by diverse applications without the need for a format conversion. Yet, building 

PR-OWL tables the way it was done in this work is not a feasible option for a real life 

application or plugin. Fortunately, all the above steps can be avoided by developing 

automated tools. The next Section briefly covers such possibilities. 

5.3 A Proposed Operational Concept for Implementing PR-OWL 

In its current stage, PR-OWL contains only the basic representation elements that 

provide a means of representing any MEBN-based model. Such a representation could be  

used by a Bayesian tool (acting as a probabilistic ontology reasoner) to perform 

inferences to answer queries and/or to learn from newly incoming evidence via Bayesian 

learning. 

However, building MFrags and all their elements in a probabilistic ontology is a 

manual, error prone, and tedious process. Avoiding errors or inconsistencies requires very 

deep knowledge of the logic and of the data structure of PR-OWL. Without considering 

the future paths to be followed by research on PR-OWL (i.e. whether it will be kept as an 

upper ontology or transformed into an actual extension to the OWL language), the 

framework provided in this Dissertation makes it already possible to facilitate 

probabilistic ontology usage and editing by developing plugins to current OWL editors. 
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Figure 35 illustrates an example of such a concept. In that figure, a possible 

plugin for the OWL Protégé editor (which is itself an OWL plugin) shows a graphical 

construction of an MFrag being performed in a very similar fashion as a BN is 

constructed in a graphical package such as Netica™. 

In this proposed scheme, in order to build an MFrag a user would only have to 

select the icon of the node he/she wants to create (e.g. resident, input, context, etc.), 

connect that node with its parents and children, and enter its basic characteristics (i.e. 

name, probability distribution, etc.) either by double-clicking on it or via another GUI-

related facility.  

 

Figure 35. Snapshot of a Graphical PR-OWL Plugin 
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The idea of such a plugin is to hide from users the complex constructs required to 

convey the many details of a probabilistic ontology, such as the reified relationships, 

composite RV term constructions (with or without quantifiers and Skolem constants), and 

others. In the figure, the Zone MFrag was selected from the combo box in the top of the 

viewing area, thus information about its nodes is displayed in a graphical format that 

allows the user to build more nodes, edit or view the existing ones. and then chose node 

ZoneEShips(z) so it appears highlighted (a red box around it) and all its data is shown in 

the lower square. 

Tedious tasks such as building a PR-OWL table with many cells could be carried 

out much more quickly and with fewer errors, thus providing a boost in productivity. In 

the probability table case, the user would only have to fill the probabilities in the correct 

cells of a CPT’s graphical display and the plugin would build their respective PR_OWL 

constructs. 

Another point of usage improvement is the intrinsic syntax check provided by a 

guided construction. As an example, when writing a composite RV term, the user would 

not have to actually write the complex reified relations (ArgRelationships, Skolem 

contants, OVariables, Inner terms, etc). Instead, a menu with the allowed connectives 

would be available so his/her task would be reduced to enter the arguments of the 

formula and embed the connectives the way he/she wants. The final result would be a 

valid formula that would then be transformed in PR-OWL syntax by the plugin. 

This brief idea of an operational concept barely scratches the surface of the many 

possibilities for the technology presented here, and its purpose is to point out one such 



167 

 

possibility. As previously stated, the present dissertation is focused on defining a 

coherent, comprehensive probabilistic framework for the Semantic Web, in a way that 

any probabilistic system could be represented and made available to perform tasks such 

as plausible inference and Bayesian learning. Therefore, implementing a plugin such as 

the one envisioned here is a development task that is outside the scope or this dissertation 

research. Nonetheless, it takes an important first step toward making probabilistic 

ontologies a reality.  By opening the door to wide use of PR-OWL probabilistic 

ontologies, the present research makes a significant contribution to realizing the Semantic 

Web vision. 
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Chapter 6  Conclusion and Future Work 

6.1 Summary of Contributions 

The main objective of this research effort was to establish a framework that 

enables the use of Bayesian theory for representing and reasoning under uncertainty in 

the context of the Semantic Web. The key step for achieving such objective was the 

introduction of probabilistic ontologies, which were formally defined in Chapter 5. 

In order to provide the initial conditions for the future spread of probabilistic 

ontologies, we have developed a complete, modularized set of new definitions for the 

OWL language, which collectively form a coherent framework for building ontologies 

that are able to represent uncertainty from concepts of a given domain with full 

probabilistic first-order logic expressiveness.  

Probabilistic ontologies written under this framework achieve a principled 

representation of uncertainty and allow for the use of different probabilistic reasoning 

systems as a means to perform plausible reasoning and learning from data on the 

MTheories represented in PR-OWL format. 

The contributions of this research effort also included the development and 

formalization of a typed version of MEBN logic. This extended version was needed as a 

means to achieve full compatibility with current Semantic Web languages, including 

OWL.  
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A full implementation of MEBN logic and its typed extension does not yet exist. 

However, Quiddity*Suite is a powerful Bayesian probabilistic reasoning system that is 

capable of being applied as a PR-OWL reasoner. Therefore, we have also developed  a 

set of rules for translating an MTheory written using the typed version of MEBN into a 

probabilistic model in IET’s Quiddity*Suite format.  

These rules were applied to the Starship MTheory specially developed for this 

research, and resulted in a running Quiddity*Suite model. The Starship MTheory 

includes some of the most complex aspects that can be expressed with MEBN logic, such 

as recursions, nodes with many uncertain parents, context constraints expressed as first-

order logic sentences with and without quantifiers, etc. Therefore, having achieved a 

Quiddity*Suite model capable of building any SSBN based on the original MTheory is a 

valid proof of concept of the feasibility of using Quiddity*Suite as a PR-OWL reasoner. 

The source code for the Quiddity Starship model is provided in the Appendix A  of this 

dissertation. 

In order to demonstrate the feasibility of representing a complex MTheory using 

the concepts laid out in Chapter 5, the very same case study was used as a basis for 

writing a probabilistic ontology containing all the elements from the original model and 

exploring different possibilities for representing a probability distribution. The resulting 

PR-OWL ontology is logically equivalent to the original generative MTheory, and thus 

can be utilized as the basis for generating SSBNs to answer queries posed to the model. 

In addition, the representation of Finding MFrags was also covered, as a means to 
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demonstrate how PR-OWL ontologies can incorporate new information, either via user 

insertion or by means of Bayesian learning from data. 

Therefore, the upper ontology presented here is capable of representing any 

MTheory, including both generative and MTheories with findings. In addition, it allows 

users to define probabilistic ontologies using a RDF-based syntax that is compatible with 

current OWL ontologies. Furthermore, translators could be written for third-party, of-the-

shelf probabilistic reasoners to make use of the ontology to perform Bayesian inference 

and learning. These capabilities were demonstrated by creating the case study ontology, 

translating its definitions into Quiddity*Suite and performing probabilistic inferences 

over it, a process that is documented in the appendices.  

6.2 A Long Road with Bright Signs Ahead 

The proposed framework can be understood as an initial solution situated in a 

middle ground between the extension approaches employed in OWL-S and SRWL. In 

common with the first is the fact that no actual extension to OWL semantics and abstract 

syntax is performed at this time, since it is also an OWL upper ontology. Similarly to the 

latter, PR-OWL also has the need for specialized tools in order to realize its full potential, 

while also including concepts (e.g. the prob datatype, FOL connectives, quantifiers, etc.) 

that could greatly expand OWL expressiveness if adopted as a standard. 

Even though it is possible to represent a complex probabilistic system using PR-

OWL definitions, performing plausible reasoning and learning from data requires an 

external tool (e.g. Quiddity*Suite). It is true that some preliminary consistency check and 
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other OWL-DL features are possible using PR-OWL (which is OWL-DL compliant), and 

that any complex system can still be written in PR-OWL and be interpreted using 

different probabilistic reasoning systems, provided that PR-OWL plugins are written for 

capturing the data inside probabilistic ontologies in each package’s native format. 

Apart from the need for developing plugins for probabilistic packages so they can 

be used as plausible reasoners, a specific PR-OWL plugin for current OWL ontology 

editors remains a priority for future efforts. The process used here for writing 

probabilistic ontologies can be greatly improved via automation of most of the steps in 

the ontology building, mainly in the part of writing composite RV terms, but also for 

consistency checking, reified relations and other tasks that demand unnecessary 

awareness of the inner workings of the present solution. Once implemented, such plugin 

has the potential to make probabilistic ontologies a natural, powerful tool for helping to 

realize the Semantic Web vision. 

Furthermore, the technology has the potential to be used in important applications 

outside the Semantic Web, as we discuss in Appendix C  In that discussion, our main 

point is that the proper use of probability information can help to establish reliable, more 

general semantic mapping schemas by means of probabilistic ontologies, which can then 

be applied in applications spanning diverse domains, since it relies on a meta-ontology 

(i.e. a ontology about ontologies), carrying no domain information, which has the 

mappings between two or more ontologies as its instances. 

That is, PR-OWL has the potential for application in other semantic mapping 

solutions such as the DTB case study presented in Section C.1 of the appendices. It could 
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also be applied to facilitate interoperability between systems as discussed in the Wise 

Pilot cases study, presented in Section C.2. The present work thus represents a step 

toward a general-purpose solution for the semantic mapping problem.  

Finally, the most important requirement for adoption of a language is the 

standardization process. This process goes significantly beyond academic research and 

thus falls outside the scope of the present work. Nonetheless, we are confident of its 

feasibility, which we believe having demonstrated in this effort, and of its desirability, 

given its potential to help solve many of the obstacles that stand in the way of realizing 

the W3C’s vision for the Semantic Web. 
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Appendix A   Source Code for The Starship Model 

The source code listed below refers to the probabilistic model that was developed 
for this research effort. It corresponds to four separate files, namely: 

! Starship_main.spi – It’s the execution manager for the Starship model 

! Starship_framedefs.spi – Defines the model’s frame structure 

! Starship _functions.spi – Defines the functions used in the model 

! Starship_exec.spi – Create instances and built an SSBN 

The output of the models is a Netica file that will be saved in each model's 
respective folder and will be named as Starship_v00_SSBN_00t_00f_00e_00c.dne, 
where: 

o v00 - the model version 

o 00t - number of time steps 

o 00f - number of friend starships 

o 00e - number of enemy starships 

o 00c - number of enemy starships with cloak mode 

This source code was generated using the following configuration: 

Hardware: 

• Apple PowerMac Dual G5  – 2.0 GHz – 1.5 GB RAM 

Software: 

• Apple Mac OS X Panther (version 10.3.9) 

• Java virtual machine (version 1.4.2_05) 

• IET Quiddity*Suite (version 4.1.5– build Unix-041217T1653) 

• JEdit (version 4.2) 

• Norsys Netica (version 2.17) running on top of MS Virtual PC (version 
7.0) 

Starship_main.spi 

#             STARSHIP MODEL 
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# 
# This file is part of the MEBN model inspired in the  
# television series Star Trek. The model was used in 
# the PhD research of Paulo Costa and in the paper 
# "MEBN without Multi-tears" 
# 
# Authors: 
#              Paulo Cesar G da Costa 
#              Kathryn B Laskey 
# 
# The model is composed of the following parts: 
#   Starship_main.spi - It's the execution manager for the Starship model 
#   Starship_framedefs.spi - Defines the model's frame structure 
#   Starship_functions.spi - Defines the functions used in the model 
#   Starship_ssbn.spi - Create instances and built an SSBN 
# 
#  <<<<<-----  STARSHIP_MAIN.SPI   ------>>>>> 
# 
# version_main=v02;  #defines which version of the model this file belongs to. 
# The actual definition is below. 
# 
# This file controls the overall execution of the model 
# 
# The following lines set the path for the model extensions and the 
# file Starship_Main.spi 
# 
 
frameSystem(); 
  
 # 
 # In order to set the path, copy these two lines in Quiddity prompt and press enter: 
 # 
 version_main=v02; 
 StarshipPath="/Users/pc/PC_PhD_Stuff/MEBNwoTears/Starship_"+version_main+"/"; 
  
# 
# To run this file you have to type the following at Quiddity's prompt: 
# load(StarshipPath+"Starship_main.spi"); 
# 
# Alternatively, you can execute this file inside  
# Quiddity*Debugger). To do so, delete the comment 
# tag on the path definition line above 
# 
#  <<<<----------- INITIAL SETUP ------------------->>>> 
# 
 
 $qv = javaClass("com.quiddity.visualizer.QuiddityVisualizer")(currentFrameSystem(),false); 
 $qv->setGoHomeAfterChange(true); 
 $qv->show(); 
 
load(StarshipPath+"Starship_frameDefs.spi"); 
load(StarshipPath+"Starship_functions.spi"); 
# 
# verify version consistency between the files 
# 
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if version_main==version_frames then puts("\nStarship_frameDefs.spi file is version "+version_frames+", 
consistency check passed!\n"); 
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE 
Starship_frameDefs.spi!!!!  \n\n\n\n"); 
end; 
if version_main==version_functions then puts("Starship_functions.spi file is version "+version_functions+", 
consistency check passed!\n\n"); 
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE 
Starship_functions.spi!!!!  \n\n\n\n"); 
end; 
computesInLog=true; # Computes with logs to avoid underflow error 
 
puts("Support files loaded successfully.\n\n"); 
puts("Establishing the model parameters...\n"); 
 
#  <<<<----------- /INITIAL SETUP ------------------->>>> 
# 
# <<<<----------- VARIABLE SETUP -------------------->>>> 
# 
# These are the variable that will define the main parameters 
# for executing the model. All variables defined in this file 
# begin with the preamble "main" 
 
mainTimeSteps = 1;     # number of time steps, which 
# is also the number of Magnetic Disturbance reports 
mainZone = zN_DeepSpace; # define the nature of the zone 
mainFShips=1;      #number of friendly Starships 
mainEShips=3;     #number of enemy Starships 
mainCloakMode=1;  #number of starships in cloak mode. 
# In this model, starships in cloak mode are assumed to be 
# enemy starships, which includes starships operated by  
# neutral/friendly species with intention to harm OwnShip. 
# Therefore, the number of starships in cloak mode must 
# be smaller than mainEShips 
 
# the procedure below is just a check that we made the 
# correct definitions 
if (mainEShips < mainCloakMode) then 
puts("Error in the variable set: the number of\n"); 
puts("enemies in cloak mode was set to be bigger\n"); 
puts("than the number of enemies itself.\n"); 
puts("\nEdit the file Starship_main.spi and\n"); 
puts("\nchange either of the variables.\n"); 
exit(); 
else puts("variables successfully set.\nWe have defined "); 
puts(mainTimeSteps, " time steps in a ", mainZone," area.\n"); 
puts("With ", mainEShips," enemies and ", mainFShips, " friend or neutral starships nearby.\n"); 
puts("From the enemy starships, ", mainCloakMode, " (is/are) in cloak mode.\n"); 
puts("...............................................................................\n\n"); 
end; 
# 
#  <<<<----------- /VARIABLE SETUP ------------------->>>> 
# 
# <<<<---------- MODEL EXECUTION ------------------->>>> 
 
load(StarshipPath+"Starship_exec.spi"); 
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if version_main==version_exec then puts("\nStarship_exec.spi file is version "+version_exec+", consistency 
check passed!\n"); 
else puts("\n****** ATENTION ****** ------>>> CONSISTENCY CHECK FAILED FOR FILE 
Starship_exec.spi!!!!  \n\n\n\n"); 
end; 
 
$qv->updateDisplay(); 
 # Save as Netica model 
 
saveNetica(StarshipPath+"Starship_"+version_main+"_SSBN_"+ mainTimeSteps+ "t_" +mainFShips + "f_"+ 
mainEShips + "e_"+ mainCloakMode+ "c.dne"); 
 
#<<<<----------- /MODEL EXECUTION -------------->>>> 
# 
#  <<<<<-----  /STARSHIP_MAIN.SPI   ------>>>>> 
 

Starship_framedefs.spi 

#             STARSHIP MODEL 
# 
# This file is part of the MEBN model inspired in the  
# Paramount series Star Trek. The model was used in 
# the PhD research of Paulo Costa and in the paper 
# "MEBN without Multi-tears" 
# 
# Authors: 
#              Paulo Cesar G da Costa 
#              Kathryn B Laskey 
# 
# The model is composed of the following parts: 
#   Starship_main.spi - It's the execution manager for the Starship model 
#   Starship_framedefs.spi - Defines the model's frame structure 
#   Starship_functions.spi - Defines the functions used in the model 
#   Starship_ssbn.spi - Create instances and built an SSBN 
# 
#  <<<<<<-----  STARSHIP_FRAMEDEFS.SPI   ------>>>>> 
# 
version_frames = v02;    #defines which version of the model this file belongs to. 
# 
# This file defines the frame structure that is used to build the SSBN 
# 
#   <<<<--------- FRAME DEFINITIONS ------------->>>> 
# 
puts("\nBuilding the Frame System......\n"); 
 
#  <<<------------- Frame Zone  ------------------->>> 
#  
# <MEBNUID> </MEBNUID> 
# <NodeType> TITLE </NodeType> 
# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> Zone  </NodeHomeMFrag> 
# <NodeDistType> </NodeDistType> 
# <NodeDescription>  
# The instances of the Zone MFrag (i.e. the copies of it that 
# were made during the SSBN construction) are the possible 
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# space zones in which Enterprise (i.e. OwnStarship) can be 
# navigating at a given time. 
# </NodeDescription> 
# <NodeDist>  </NodeDist> 
# <QuiddityName> Zone </QuiddityName> 
# <QuiddityObj>frame</QuiddityObj> 
# 
frame Zone isa Frame 
 
#  <------------------ Slot starship  ---------------------> 
# 
# This is a version 2 Tweak to allow multiple cloakMode 
# parents for zoneMD. 
 
slot starship 
 facet domain = Starship 
 facet distribution = UniformDiscreteDistribution 
  
slot anyStInCloakMode 
 facet domain = [false, true] 
 facet parents = [starship.cloakMode] 
 facet distribution = MaxDistribution 
 
#  <------------------ /Slot starship  ---------------------> 
# 
#  <---------------- Slot zoneNature  -------------------> 
# 
# <MEBNUID> !ZN </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> Zone  </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# A zone can be either a deep space, a planetary 
# system, or the boundary of a Black Hole. 
# We assumed that a OwnStarship, when in operation (i.e. 
# using its decision system), has 80% chance of being 
# traveling in a Deep Space Zone, 15%  in a Planetary 
# System and 5% in the Boundaries of a Black Hole. 
# In our model, Black Hole Boundaries are prefered places 
# for ambushes from attacking starships with cloaking 
# devices, since the high magnetic turbulance generated 
# in those zones makes it very hard to even the most 
# advanced sensors to distinguish it from the magnetic 
# disturbance created by a cloaking device. 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComments> </NodeDistComments> 
# <QuiddityName>zoneNature </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
slot zoneNature 
      facet domain = [zN_BlackHoleBoundary, zN_DeepSpace, zN_PlanetarySystem] 
      facet distribution = [.05, .80, .15] 
    
#  <---------------- /Slot zoneNature  -------------------> 
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# 
#  <---------------- Slot zoneEShips  -------------------> 
# 
# <MEBNUID> !ZES </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> Zone </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This RV establishes the relationship between a given 
# zone and the likelihood of having enemy starships 
# within OwnStarship's sensor range. 
# In other words, it is the probable number of enemy 
# ships into sensor range we assume to find in a given 
# zone. This means we consider that exists a prior 
# probability of finding an enemy starship given 
# the nature of the zone in which OwnStarship is  
# Navigating through. 
# In this model, we restrained the infinitely possible 
# number of starships to only five states. That is, we 
# assume that it is unlikely to find four or more  
# hostile ships in that area, so most of the probability 
# distribution mass for this RV will be restricted to the 
# states None, One, Two, and Three, while the 
# remaining probability will be restricted to the 
# aggregating state MoreThan3.  
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComments> 
# We assume that enemies are likely to be found in 
# places that would facilitate an ambush. As an 
# example, in a Black Hole Boundary, in which the 
# Magnetic Sensor becomes less than helpfull to detect 
# Cloak Mode related magnetic disturbances, the 
# chances of finding at least one enemy will be 10%, 
# which is five times the chance of finding friendly 
# staships in the same area. 
# </NodeDistComments> 
# <QuiddityName>zoneEShips </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
slot zoneEShips 
 facet domain = [zES_0, zES_1, zES_2, zES_3, zES_MoreThan3] 
 facet parents = [zoneNature] 
 facet distribution = function zn { 
  zN_BlackHoleBoundary: [.95, .03, .01, .007, .003]; 
  zN_DeepSpace: [.98, .01, .007, .002, .001]; 
  zN_PlanetarySystem: [.60, .15, .12, .08, .05]; 
  } 
 
#  <---------------- /Slot zoneEShips  -------------------> 
# 
#  <---------------- Slot zoneFShips  -------------------> 
# 
# <MEBNUID> !ZFS </MEBNUID> 
# <NodeType> Resident </NodeType> 
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# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> Zone </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This RV establishes the relationship between a given 
# zone and the likelihood of having friendly starships within 
# OwnStarship's sensor range. 
# Following the very same rationale of slot zoneEShips 
# (node ZoneEShips), we assume that there is a prior 
# probability in the number of friendly or neutral 
# starships to appea into OwnStarship's sensor range 
# given the nature of the zone it is navigating into. 
# </NodeDescription> 
# <NodeDist> see table </NodeDis> 
# <NodeDistComments> 
# We assume that unlike enemies, friendly starships 
# do not care about being in places suitable for an  
# ambush. Therefore, its probability distribution will 
# reflect this fact. As an example, in a Black Hole 
# Boundary, the chances of finding at least one 
# friendly starship are five times smaller than to find 
# an ambushing enemy vessel. 
# </NodeDistComments> 
# <QuiddityName>zoneFShips </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
 
slot zoneFShips 
  facet domain = [zFS_0, zFS_1, zFS_2, zFS_3, zFS_MoreThan3] 
  facet parents = [zoneNature] 
  facet distribution = function zn { 
    zN_BlackHoleBoundary: [.99, .005, .0035, .001, .0005]; 
    zN_DeepSpace: [.98, .01, .007, .002, .001]; 
    zN_PlanetarySystem: [.50, .20, .15, .10, .05]; 
  } 
 
#  <---------------- /Slot zoneFShips  -------------------> 
# 
#  <------------------ Slot zoneMD  --------------------> 
# 
# <MEBNUID> !ZMD </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> Zone </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# ZoneMD(z, t) assesses the value of the magnetic 
# disturbance in Zone "z" at the current TimeStep "t". 
# This value is influenced by the MD in the previous 
# TimeStep (tprev), the fact of whether there is or 
# there is not a starship in cloak mode nearby, and the 

# nature of the space zone in which the starship is  
# located. 
# The input node t=!T0 is used to "anchor" the time 
# recursion. 
# </NodeDescription> 
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# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# In a recursive MFrag it is necessary to have a way to  
# ground out the recursion. This is similar to a recursive  
# algorithm such as computing x!.  The definition of x! is: 
#  0! = 1 
#  x! = x(x-1)!  for x > 0 
# Similarly, in a recursive node it is necessary  to define 
# the initial distribution for the dynamic BN node and then 
# define the next distribution as a function of the previous 
# distribution.  Here is one way to do it: 
# 1. Prev(0) = 0 and Prev(t) = t-1 for t>0 
# 2. This creates a problem in this MFrag because now 
#    DistFromOwn(st,0) has itself as a parent!  But really 
#    this isn't a problem because t=0 is also a parent 
#    and we define the distribution so that it depends 
 #   on the previous value only when t>0. 
# In this case, we assigned to T0 the very same distribution 
# we used in the other TimeSteps. 
# Regarding the distribution itself, our intention was to make 
# background disturbance a somewhat steady phenomena,  
# thus the probabilities do not change with time. However, 
# if cloack mode is true for any starship nearby Enterprise 
# then the next step will be more likely to change the 
# intensity of the disturbance,  mimicking an unstable 
# phenomena. 
# </NodeDistComment> 
# <QuiddityName>zoneMD </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
 
slot zoneMD 
 facet domain = [zMD_Low, zMD_Medium, zMD_High] 
 facet parents = [zoneNature, anyStInCloakMode, zoneMD.PREV] 
 facet initialState = [.70, .20, .10] 
    facet distribution = function zn, ascm, znp { 
   switch zn { 
    zN_BlackHoleBoundary: 
     switch ascm{ 
      true: 
      switch znp{ 
       zMD_Low:   [.02, .05, .93]; 
       zMD_Medium:  [.08, .04, .88]; 
       zMD_High:   [.12, .18, .70]; 
       }; 
      false: [.07, .11, .82]; 
      }; 
       zN_DeepSpace:  
     switch ascm{ 
      true: 
      switch znp{ 
       zMD_Low:   [.70, .18, .12]; 
       zMD_Medium:  [.80, .05, .15]; 
       zMD_High:   [.83, .15, .02]; 
       }; 
      false:  [.85, .10, .05]; 
      }; 
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    zN_PlanetarySystem: 
     switch ascm{ 
      true: 
      switch znp{ 
       zMD_Low:   [.15, .37, .48]; 
       zMD_Medium:  [.30, .20, .50]; 
       zMD_High:   [.26, .39, .35]; 
       }; 
      false: [.25, .30, .45]; 
      }; 
 
     } 
    } 
  
# 
#  <------------------ /Slot zoneMD  --------------------> 
# 
end; 
puts("Frame Zone defined...\n"); 
 
#  <<<---------------- /Frame Zone  ----------------->>> 
# 
#  <<<------------- Frame Starship ----------------->>> 
 
# frame Starship: according to the Treknology Encyclopedia L-Z 
# (http://www.ex-astris-scientia.org/treknology2.htm#s) 
# Starship is the designation for a large type of space vessel 
# with warp drive. A starship typically consists of more than one 
# deck and has separate departments such as the bridge, engineering 
# or sickbay. 
# In our model, we use this word to designate any space vessel 
# 
frame Starship isa Frame 
# 
#  <------------------- Slot starshipZone  -----------------------> 
 
# <MEBNUID> !Scontext_IsAZone_st </MEBNUID> 
# <NodeType> Context </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> IsA </NodeHomeMFrag> 
# <NodeDistType> NIL </NodeDistType> 
# <NodeDescription>  
# In MEBN models, this context node  its satisfied when 
# the variable "z" is replaced with a unique identifier 
# of an entity that has Type equal to "Zone". 
# In a Quiddity model, this node is translated to a 
# slot named "starshipZone" which has the Frame "Zone" 
# as its domain and works as a "pointer" to slots from 
# Frame "Zone" that are parents from slots in the 
# current frame ("Starship"). 
# </NodeDescription> 
# <NodeDist> NIL </NodeDist> 
# <QuiddityName> starshipZone </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
 
   slot starshipZone 



201 

 

      facet domain = Zone 
 
#  <------------------- /Slot zone  -----------------------> 
# 
 
#  <------------------- Slot exists  -----------------------> 
# 
# <MEBNUID> !E </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship Existence </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# It is the probatility of existence for Starships 
# it is a useful way of conveying hypothetical instances 
# of a Starship 
# Since there is a prior probability of finding enemy or 
# friendly starships depending on where OwnShip is 
# navigating, these parameters will also influence 
# the prior probability of existence. Thus zone.eShips 
# and zone.fShips are parents to slot exists 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# </NodeDistComment> 
# <QuiddityName> exists </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
 slot exists 
  facet domain = ExistsDomain 
  facet parents = [starshipZone.zoneFShips, starshipZone.zoneEShips] 
  facet distribution = function fs, es { 
  switch fs { 
    zFS_0: switch es{ 
      zES_0: [1, 0]; 
      zES_1: [.5, .5]; 
      zES_2: [.33, .67]; 
      zES_3: [.25, .75]; 
      zES_MoreThan3: [.20, .80]; 
      }; 
    zFS_1: switch es{ 
      zES_0: [.5, .5]; 
      zES_1: [.33, .67]; 
      zES_2: [.25, .75]; 
      zES_3: [.20, .80]; 
      zES_MoreThan3: [.17, .83]; 
      }; 
    zFS_2: switch es{ 
      zES_0: [.33, .67]; 
      zES_1: [.25, .75]; 
      zES_2: [.20, .80]; 
      zES_3: [.17, .83]; 
      zES_MoreThan3: [.20, .80]; 
      }; 
    zFS_3: switch es{ 
      zES_0: [.25, .75]; 
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      zES_1: [.20, .80]; 
      zES_2: [.17, .83]; 
      zES_3: [.14, .86]; 
      zES_MoreThan3: [.13, .87]; 
      }; 
    zFS_MoreThan3: switch es{ 
      zES_0: [.20, .80]; 
      zES_1: [.17, .83]; 
      zES_2: [.14, .86]; 
      zES_3: [.13, .87]; 
      zES_MoreThan3: [.11, .89]; 
      }; 
    } 
   } 
# 
#  <------------------- Slot exists  -----------------------> 
# 
#  <----------------- Slot OpSpec  -----------------------> 
# 
# <MEBNUID> !E </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This node conveys the information on what species is 
# operating a given starship. Its distribution is derived 
# from the number of Friendly and Enemy Starships 
# in the vicinity. 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
 
# </NodeDistComment> 
# <QuiddityName> exists </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
## slot shipType: conveys the nature of a starship. In other 
# words, whether we are dealing with an enemy or a friendly 
# starship (which also includes neutral starships) 
# 
  slot opSpec  
      facet domain = [oS_Cardassian, oS_Friend, oS_Klingon, oS_Romulan, oS_Unknown, absurd] 
      facet parents = [exists, starshipZone.zoneFShips, starshipZone.zoneEShips] 
      facet distribution = function ex, fs, es { 
    if (ex==Context.OUT) then [0, 0, 0, 0, 0, 1] 
   else switch fs { 
    zFS_0: switch es{ 
      zES_0:   [0, 0, 0, 0, 0, 1]; 
      zES_1:   [.50, 0, .15, .30, .05, 0]; 
      zES_2:   [.45, 0, .15, .30, .10, 0]; 
      zES_3:   [.40, 0, .20, .28, .12, 0]; 
      zES_MoreThan3:  [.35, 0, .23, .27, .15, 0]; 
      }; 
    zFS_1: switch es{ 
      zES_0:   [0, .50, .30, .15, .05, 0]; 
      zES_1:   [.30, .30, .20, .10, .10, 0]; 
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      zES_2:   [.25, .20, .28, .15, .12, 0]; 
      zES_3:   [.25, .18 , .16, .26, .15, 0]; 
      zES_MoreThan3:  [.23, .18 , .18, .26, .15, 0]; 
      }; 
    zFS_2: switch es{ 
      zES_0:   [0, .50, .30, .10, .10, 0]; 
      zES_1:   [.20, .25, .15, .28, .12, 0]; 
      zES_2:   [.27, .27, .18, .13, .15, 0]; 
      zES_3:   [.27, .25, .19, .14, .15, 0]; 
      zES_MoreThan3:  [.26, .24, .20 , .15, .15, 0]; 
     }; 
    zFS_3: switch es{ 
      zES_0:   [0, .55, .20, .10, .15, 0]; 
      zES_1:   [.18, .25, .16, .26, .15, 0]; 
      zES_2:   [.25, .27, .14, .19, .15, 0]; 
      zES_3:   [.25, .25, .20, .15, .15, 0]; 
      zES_MoreThan3:  [.25, .23, .20, .17, .15, 0]; 
     }; 
    zFS_MoreThan3: switch es{ 
      zES_0:   [0, .55, .20, .10, .15, 0]; 
      zES_1:   [.18, .23, .26, .18, .15, 0]; 
      zES_2:   [.24, .26, .15, .20, .15, 0]; 
      zES_3:   [.23, .25, .17, .20, .15, 0]; 
      zES_MoreThan3:  [.23, .25, .22, .15, .15, 0]; 
     }; 
    } 
    end; 
    } 
# 
#  <----------------- Slot /OpSpec  -----------------------> 
# 
#  <---------------- Slot starshipClass  ------------------> 
# 
## <MEBNUID> !SC </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This RV assesses what is the class of the 
# starship represented by "st". It is influenced by the  
# kind of species that is operating the starship and the 
# very own existence of the starship itself (as defined 
# in the context node "exists"). 
# There is a vast literature of classes and subclasses of 
# starships for each species (e.g. see 
# http://techspecs.acalltoduty.com). 
# However, for this simple model we used a general 
# taxonomy that aggregates the starships in five different 
# classes (WarBird, Cruiser, Explorer, Frigate and 
# Freighter). 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# </NodeDistComment> 
# <QuiddityName> starshipClass </QuiddityName> 
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# <QuiddityObj>slot</QuiddityObj> 
 
  slot starshipClass 
   facet domain = [sC_WarBird, sC_Cruiser, sC_Explorer, sC_Frigate, sC_Freighter, absurd] 
 facet parents = [exists, opSpec] 
 facet distribution = function e, os { 
  if (e==Context.OUT) then [0, 0, 0, 0, 0, 1] 
  else switch os { 
   oS_Cardassian: [.40, .10, 0, .40, .10, 0]; 
   oS_Friend:  [.10, .30, .25, .20, .15, 0]; 
   oS_Klingon:  [.25, .50, .15, 0, .10, 0]; 
   oS_Romulan:  [.60, 0, .30, 0, .10, 0]; 
   oS_Unknown:  [.10, .10, .35, .10, .35, 0]; 
   absurd:   [0, 0, 0, 0, 0, 1]; 
   } 
  end; 
  } 
  
#  <---------------- Slot /starshipClass  ------------------> 
# 
#  <---------------- Slot cloakMode  ------------------> 
# 
# <MEBNUID> !CM </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This is a boolean variable that defines whether 
# the starship in question is in cloak mode. 
# In our model, we assume that only Romulan and 
# Klingon starships can be in cloak mode, since the 
# Federation still does not have such technology 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# Only Romulans and Klingons have the technology. 
# However, Klingons would use it only when having 
# aggressive intentions against OwnShip (i.e. breaking 
# the peace treaty), so we expect them to use it less 
# than the Romulans. 
# Unknown species might have acquired the technology, 
# but that is not very likely. 
# </NodeDistComment> 
# <QuiddityName> cloakMode </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj>#   
#   
slot cloakMode 
   facet domain = [false, true] 
 facet parents = [opSpec, starshipClass] 
 facet distribution = function  os, sc { 
  if os==absurd then [1, 0] 
  else { 
   switch os { 
    oS_Cardassian: switch sc { 
     sC_WarBird: [1, 0]; 
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     sC_Cruiser: [1, 0]; 
     sC_Explorer: [1, 0]; 
     sC_Frigate: [1, 0];; 
     sC_Freighter:[1, 0]; 
     absurd:   [1, 0]; 
     }; 
    oS_Friend: switch sc { 
     sC_WarBird: [1, 0]; 
     sC_Cruiser: [1, 0]; 
     sC_Explorer: [1, 0]; 
     sC_Frigate: [1, 0]; 
     sC_Freighter:[1, 0]; 
     absurd:   [1, 0]; 
     }; 
    oS_Klingon: switch sc { 
     sC_WarBird: [.65, .35]; 
     sC_Cruiser: [.65, .35]; 
     sC_Explorer: [.95, .05]; 
     sC_Frigate: [.85, .15]; 
     sC_Freighter: [.99, .01]; 
     absurd:  [1, 0]; 
     }; 
    oS_Romulan: switch sc { 
     sC_WarBird: [.10, .90]; 
     sC_Cruiser: [.20, .80]; 
     sC_Explorer: [.40, .60]; 
     sC_Frigate: [.30, .70]; 
     sC_Freighter:[.80, .20]; 
     absurd: [1, 0]; 
     }; 
    oS_Unknown: switch sc { 
     sC_WarBird: [.99, .01]; 
     sC_Cruiser: [.99, .01]; 
     sC_Explorer: [.995, .005]; 
     sC_Frigate: [.995, .005]; 
     sC_Freighter: [.9995, .0005]; 
     absurd: [1, 0]; 
     }; 
    }; 
   } 
  end; 
  } 
 
#  <---------------- /Slot cloakMode  ------------------> 
# 
#  <--------------- Slot distFromOwn  ------------------> 
# 
# <MEBNUID> !DFO </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This RV assesses the distance from a starship "st" to 
# OwnStarship at TimeStep "t". This distance is measured 
# according to weapon's ranges, since its main purpose is 
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# to assess the ability to any given starship to harm OwnShip. 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# </NodeDistComment> 
# <QuiddityName> distFromOwn </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj>#   
# 
 
 slot distFromOwn 
  facet domain = [dFO_OutOfRange, dFO_TorpedoRange, dFO_Phaser2Range, 
dFO_Phaser1Range, dFO_PulseCanonRange, absurd] 
  facet parents = [exists, distFromOwn.PREV] 
  facet distribution = function e, dfo { 
   if e==Context.OUT then [0, 0, 0, 0, 0, 1] 
   else switch dfo{ 
    dFO_OutOfRange:  [.60, .30, .05, .04, .01, 0]; 
    dFO_TorpedoRange: [ .25, .40, .25, .07, .03, 0]; 
    dFO_Phaser2Range: [ .06, .25, .40, .25, .04, 0]; 
    dFO_Phaser1Range: [ .03, .07, .25, .40, .25, 0]; 
    dFO_PulseCanonRange: [ .01, .04, .10, .35, .50, 0]; 
    absurd:  [0, 0, 0, 0, 0, 1]; 
    } 
   end; 
   } 
  facet initialState = [.1936, .2245, .2233, .2156, .1430, 0] 
 
#  <---------------- /Slot distFromOwn  ------------------> 
# 
# 
#  <---------------- Slot harmPotential  ------------------> 
# 
# <MEBNUID> !HP </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> Starship </NodeHomeMFrag> 
# <NodeDistType> Netica Table </NodeDistType> 
# <NodeDescription>  
# This RV assessesthe potential of starship "st" to harm 
# OwnShip at current TimeStep "t". It is based on the 
# starship weapons' range (based on its class) and its 
# distance from OwnShip. 
# It is important to note that here we are not assessing 
# *intention* to harm, but only *ability* to do so. Therefore, 
# even friendly starships can have HarmPotential with 
# value true (e.g. provide that they are within their 
# respective weapons range). 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> 
# </NodeDistComment> 
# <QuiddityName> harmPotential </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj>#   
# 
 slot harmPotential 
  facet domain = [false, true] 
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  facet parents = [distFromOwn, starshipClass] 
  facet distribution = function dfo, sc { 
   switch dfo{ 
    dFO_OutOfRange: switch sc { 
     sC_WarBird: [1, 0]; 
     sC_Cruiser: [1, 0]; 
     sC_Explorer: [1, 0]; 
     sC_Frigate: [1, 0]; 
     sC_Freighter: [1, 0]; 
     absurd:  [1, 0]; 
     }; 
    dFO_TorpedoRange: switch sc { 
     sC_WarBird: [0, 1]; 
     sC_Cruiser: [.20, .80]; 
     sC_Explorer: [.70, .30]; 
     sC_Frigate: [.90, .10]; 
     sC_Freighter: [.99, .01]; 
     absurd:  [1, 0]; 
     }; 
     dFO_Phaser2Range: switch sc { 
     sC_WarBird: [0, 1]; 
     sC_Cruiser: [0, 1]; 
     sC_Explorer: [.40, .60]; 
     sC_Frigate: [.60, .40]; 
     sC_Freighter: [.95, .05]; 
     absurd:  [1, 0]; 
     }; 
     dFO_Phaser1Range: switch sc { 
     sC_WarBird: [0, 1]; 
     sC_Cruiser: [0, 1]; 
     sC_Explorer: [.05, .95]; 
     sC_Frigate: [0, 1]; 
     sC_Freighter: [.90, .10]; 
     absurd:  [1, 0]; 
     }; 
     dFO_PulseCanonRange: switch sc { 
     sC_WarBird: [0, 1]; 
     sC_Cruiser: [0, 1]; 
     sC_Explorer: [0, 1]; 
     sC_Frigate: [0, 1]; 
     sC_Freighter: [.80, .20]; 
     absurd:  [1, 0]; 
     }; 
    absurd:  [1, 0]; 
    }; 
   } 
   
# 
#  <---------------- /Slot harmPotential  ------------------> 
# 
# 
#  <---------------- Slot dangerToOwnStarship  ------------------> 
# 
# Paliative solution to handle the problem of many instances of one parent 
# to a unique slot. 
# In this case, each instance of slots harmPotential and opSpec  
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# are parents of dangerToSelf. Thus, we created a unique slot for 
# each starship calles dangerToOwnShip, which assesses the potential 
# danger brought by that specific starship. Then, all the dangerToOwnStarship 
# slots are aggregated to the dangerToSelf slot in the OwnStarship Frame 
# using Quiddity's MaxDistribution. 
 
 slot dangerToOwnStarship 
  facet domain= [ dTS_Low , dTS_Medium, dTS_High, dTS_Unacceptable] 
  facet parents= [harmPotential, opSpec] 
  facet distribution = function hp, os { 
   if hp==false then [1, 0, 0, 0] 
   else switch os { 
    oS_Cardassian:  [0, .02, .08, .90]; 
    oS_Friend:  [.99, .01, 0, 0]; 
    oS_Klingon:  [ .65, .20, .10, .05]; 
    oS_Romulan:  [.03, .09, .18, .70]; 
    oS_Unknown:  [.20, .30, .30, .20]; 
    absurd:   [1, 0, 0, 0]; 
    } 
   end; 
   } 
 
#  <---------------- /Slot dangerToOwnStarship  ------------------> 
 
end; 
    
puts("Frame Starship defined...\n"); 
 
#  <<<------------- /Frame Starship ----------------->>> 
# 
#  <<<------------- Frame OwnStarhip ----------------->>> 
# 
# frame OwnStarship:  
# This Frame has the sole objective to model the features 
# we just one to have in the Enterprise (OwnShip) 
# In MEBN, such modeling would be accomplished by the 
# use of a node OwnStarship, which could be employed to 
# define context of MFrags in which we want to explicitly 
# constraint OwnStarship, but Quiddity doesn't have a  
# flexible way of imposing these constraints so the best 
# approach is to model OwnStarship as a separate frame. 
# 
frame OwnStarship isa Frame 
# 
#  <------------------ Slot starship  ---------------------> 
# 
# <MEBNUID> !OSTcontext_IsAStarship_st </MEBNUID> 
# <NodeType> Context </NodeType> 
# <NodeMFrag> Zone </NodeMFrag> 
# <NodeHomeMFrag> IsA </NodeHomeMFrag> 
# <NodeDistType> NIL </NodeDistType> 
# <NodeDescription>  
# In MEBN models, this context node  its satisfied when 
# the variable "st" is replaced with a unique identifier 
# of an entity that has Type equal to "Starship". 
# In a Quiddity model, this node is translated to a 
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# slot named "starship" which has the Frame "Starship" 
# as its domain and works as a "pointer" to slots from 
# Frame "Starship" which are parents from slots in the 
# current frame ("OwnStarship"). 
# </NodeDescription> 
# <NodeDist> NIL </NodeDist> 
# <QuiddityName>starship </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
 
slot starship 
 facet domain = Starship 
 facet distribution = UniformDiscreteDistribution 
  
#  <------------------ /Slot starship  ---------------------> 
 
#  <------------------- Slot zone  -----------------------> 
 
# <MEBNUID> !Scontext_IsAZone_st </MEBNUID> 
# <NodeType> Context </NodeType> 
# <NodeMFrag> Starship </NodeMFrag> 
# <NodeHomeMFrag> IsA </NodeHomeMFrag> 
# <NodeDistType> NIL </NodeDistType> 
# <NodeDescription>  
# In MEBN models, this context node  its satisfied when 
# the variable "z" is replaced with a unique identifier 
# of an entity that has Type equal to "Zone". 
# In a Quiddity model, this node is translated to a 
# slot named "ownStarshipZone" which has the Frame "Zone" 
# as its domain and works as a "pointer" to slots from 
# Frame "Zone" that are parents from slots in the 
# current frame ("OwnStarship"). 
# </NodeDescription> 
# <NodeDist> NIL </NodeDist> 
# <QuiddityName> ownStarshipZone </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
 
   slot ownStarshipZone 
      facet domain = Zone 
 
#  <------------------- /Slot zone  -----------------------> 
# 
#  <---------------- Slot dangerToSelf  ------------------> 
# 
# <MEBNUID> !DTS </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> DangerToSelf </NodeMFrag> 
# <NodeHomeMFrag> DangerToSelf </NodeHomeMFrag> 
# <NodeDistType> Pseudo-Code </NodeDistType> 
# <NodeDescription>  
# This node assesses the level of danger to which  
# OwnStarship "s" is exposed at a given time "t". 
# Basically, this danger level will be a funcion of the ability of 
# a starship "st" to harm OwnStarship and of the intention 
# of whoever is operating starship "st" to harm OwnStarship, 
# the latter being implied from the knowledge of what species 
# is operating starship "st". 
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# </NodeDescription> 
# <NodeDist>  
# This distribution cannot be represented by a single table, 
# so we convey it via this pseudo-code: 
# 1. distribution [Un, Hi , Me, Lo] = function { 
# 2.  for all st in parents(DangerToSelf(s, t)) { 
# 3.  if any STi have (OpSpec == Cardassian and HarmPot == true) then 
# 4.   [Un = .90 + min( .10; .025*number(STi) ), Hi = (1 - Un) * .8, 
# 5.     Me = (1 - Un) * .2, Lo = 0]; 
# 6.  else if any STj have (OpSpec == Romulan and HarmPot == true) then 
# 7.   [Un = .70 + min( .30; .03*number(STj) ), Hi = (1 - Un) * .6, 
# 8.     Me = (1 - Hi) * .3, Lo = (1 - Hi) * .1]; 
# 9.  else if any STj have (OpSpec == Unknown and HarmPot == true) then 
# 10.   [Un = (1 - Hi), Hi = .50 - min( .20; .02*number(STk) ), 
# 11.     Me = .50 - min( .20; .02*number(STk) ), Lo = (1 - Me)]; 
# 12.  else if any STk have (OpSpec == Klingon and HarmPot == true) then 
# 13.   [Un = 0.10, Hi = 0.15, Me = .15, Lo = .65]; 
# 14.  else if any STl have (OpSpec == Friend and HarmPot == true) then 
# 15.   [Un = 0, Hi = 0, Me = .01, Lo = .99]; 
# 16.  else [Un = 0, Hi = 0, Me = 0, Lo = 1]; 
# 17.  }  
# 18. } 
#</NodeDist> 
# <NodeDistComment> 
# Note that there can be many starships "st" at a given 
# time t. Thus, the probability distribution has to take into 
# consideration the hypothesis of having many starships 
# with the potential to harm OwnStarship. 
# </NodeDistComment> 
# <QuiddityName> dangerToSelf </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj># 
# 
# NOTE: for this spefic version of the MTheory in the MTears paper 
# we added an intermediary dangerToOwnStarship in each starship instance 
# which we now aggregate to this node by the use of MaxDistribution 
# In other words, the distribution stated above is not actually represented 
# here. 
# 
 slot dangerToSelf 
  facet domain= [ dTS_Low , dTS_Medium, dTS_High, dTS_Unacceptable] 
  facet parents= [starship.dangerToOwnStarship] 
  facet distribution = MaxDistribution 
 
#  <---------------- /Slot dangertoSelf  ------------------> 
# 
#  <---------------- Slot dangerToOthers  ------------------> 
# 
# <MEBNUID> !DTO </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> DangerToOthers </NodeMFrag> 
# <NodeHomeMFrag> DangerToOthers </NodeHomeMFrag> 
# <NodeDistType> Netica table </NodeDistType> 
# <NodeDescription>  
# This node conveys the ability of OwnShip "s" to inflict 
# danger to another starship "st" at TimeStep "t". It is  
# based on OwnShip's Weapons (implicitly considered 
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# in the probability distribution) and its distance from  
# starship "st". 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComment> </NodeDistComment> 
# <QuiddityName> dangerToOthers</QuiddityName> 
# <QuiddityObj>slot</QuiddityObj># 
# 
 slot dangerToOthers 
  facet domain = [false, true] 
  facet parents = [starship.distFromOwn] 
  facet distribution = function dfo { 
    dFO_OutOfRange:  [1, 0]; 
    dFO_TorpedoRange: [0, 1]; 
    dFO_Phaser2Range: [.02, .98]; 
    dFO_Phaser1Range: [.10, .90]; 
    dFO_PulseCanonRange: [.20, .80]; 
    absurd:  [1, 0]; 
    }    
# 
#  <---------------- /Slot dangerToOthers ------------------> 
# 
end; 
 
puts("Frame OwnStarship defined...\n"); 
# 
#  <<<---------- /Frame OwnStarship  ------------->>> 
## 
#  <<<---------- Frame SensorReport  ------------->>> 
# 
# For this simple model, instead of 
# creating a frame report with subtypes sensor and  
# magnetic disturbance, we opted for the simplest 
# approach of creating two separate classes. 
# 
 
frame SensorReport isa Frame 
 
# <-------------------- Slot subject ----------------------> 
# 
# <MEBNUID> !S </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> SR Data </NodeMFrag> 
# <NodeHomeMFrag> SR Data </NodeHomeMFrag> 
# <NodeDistType> Netica table </NodeDistType> 
# <NodeDescription>  
# This RV has as its possible values all the unique 
# identifiers of the entities that can be the subject of 
# the sensor report being represented by the variable "sr". 
# In this model, Sensor reports can refer to Starships 
# (real or hypothetical), in which case the RV will assume 
# the unique identier of that starship as its value, or it can 
# refer to nothing (i.e. a spurious report), in which case it 
# will assume the unique identifier of a spurious report as  
# its value (e.g. O_Spurious) 
# </NodeDescription> 
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# <NodeDist> see table </NodeDist> 
# <NodeDistComments> 
# We assigned 4% chances of a spurious report, but this is a 
# number that would reflect the receiver characteristics. 
# We assumed that a report caused by OwnStarship (here 
# assumed as !ST0) falls into the spurious category so we 
# assigned 0% probability of !ST0 being the subject of a 
# report. 
# Finally, we assigned the remaining probabilty (96%) as 
# equally distributed among the Starships. 
# </NodeDistComments> 
# <QuiddityName>subject </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
# OBS: the Quiddity translation does not include the 
# probabilistic assigment to node subject. Instead, it 
# is used as a "pointer" to Frame Starship to the slots 
# of Frame SensorReport 
# 
 slot subject 
  facet domain = Starship 
 
# <------------------ /Slot subject -----------------------> 
# 
#  <------------------ Slot sRClass  ---------------------> 
# 
# <MEBNUID> !SRC </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> SensorReport </NodeMFrag> 
# <NodeHomeMFrag> SensorReport </NodeHomeMFrag> 
# <NodeDistType> Netica table </NodeDistType> 
# <NodeDescription>  
# This RV conveys the result of a sensor report "sr" 
# regarding to the class of a given starship at current 
# TimeStep "t". 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComments> 
# Some remarks regarding the input values: 
# Exists(st) - If the starship represented by "st" doesn't 
# exists, then the report will be spurious and will have 
# equally likely chances of returning any information on class. 
# StarshipClass(st) - The ability of a sensor report to match 
# the actual class of a starship is a direct consequence of 
# the sensor accuracy. For this simple model, we are 
# assuming a uniformelly distributed accuracy of 95%, 
# with the probability of error unevenly dispersed according 
# to the similarity of the Starship Classes (e.g. it is easier to 
# confuse a Warbird with a Cruiser than with a Freighter). 
# CloakMode(st) - If a Starship in Cloak mode generates 
# a report for some reason, then its result will be a spurious 
# report with equally likely results. 
# </NodeDistComments> 
# <QuiddityName>sRClass </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
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 slot sRClass 
  facet domain = [sRC_WarBird, sRC_Cruiser, sRC_Explorer, sRC_Frigate, sRC_Freighter, 
sRC_Nothing] 
  facet parents = [subject.exists, subject.cloakMode, subject.starshipClass] 
  facet distribution = function se, scm, ssc { 
   if se==Context.OUT then [0, 0, 0, 0, 0, 1] 
   elif scm==true then [0.0001, .0001, .0001, .0001, .0001, .9995] 
   else switch ssc { 
     sC_WarBird: [.95, .025, .015, .007, .003, 0 ]; 
     sC_Cruiser: [.02, .95, .015, .01, .005, 0]; 
     sC_Explorer: [.01, .015, .95, .015, .01, 0]; 
     sC_Frigate: [.008, .012, .02, .95, .01, 0]; 
     sC_Freighter: [.01, .01, .02, .01, .95, 0]; 
     absurd:  [0, 0, 0, 0, 0, 1]; 
     } 
   end; 
   } 
# 
# 
#  <------------------ /Slot sRClass  ---------------------> 
# 
#  <------------------ /Slot sRDistance  ---------------------> 
# 
# <MEBNUID> !SRD </MEBNUID> 
# <NodeType> Resident </NodeType> 
# <NodeMFrag> SensorReport </NodeMFrag> 
# <NodeHomeMFrag> SensorReport </NodeHomeMFrag> 
# <NodeDistType> Netica table </NodeDistType> 
# <NodeDescription>  
# This RV conveys the result of a sensor report "sr" 
# regarding to the distance of a given starship to 
# OwnStarship at current TimeStep "t". 
# </NodeDescription> 
# <NodeDist> see table </NodeDist> 
# <NodeDistComments> 
# Some remarks regarding the input values: 
# Exists(st) - If the starship represented by "st" doesn't 
# exists, then the report will be spurious and will have 
# equally likely chances of returning any information on class. 
# DistFromOwn(st, t) - The ability of a sensor report to match 
# the actual distance of a starship at any timestep "t"is a 
# direct consequence of the sensor's accuracy. For this  
# simple model, we are assuming an accuracy of 99%, with 
# the probability of error distributed proportionally to the 
# adjacent values. 
# CloakMode(st) - If a Starship in Cloak mode generates 
# a report for some reason, then its result will be a spurious 
# report with equally likely results. 
# </NodeDistComments> 
# <QuiddityName>sRDistance </QuiddityName> 
# <QuiddityObj>slot</QuiddityObj> 
# 
 slot sRDistance 
  facet domain = [sRD_OutOfRange, sRD_TorpedoRange, sRD_Phaser2Range, 
sRD_Phaser1Range, sRD_PulseCanonRange, sRD_Nothing] 
  facet parents = [subject.exists, subject.cloakMode, subject.distFromOwn] 
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  facet distribution = function se, scm, sdfo { 
   if se==Context.OUT then [0, 0, 0, 0, 0, 1] 
   elif scm==true then [0.0001, .0001, .0001, .0001, .0001, .9995]; 
   else switch sdfo { 
    dFO_OutOfRange:  [.99, .004, .003, .002, .001, 0]; 
    dFO_TorpedoRange: [.0035, .99, .0035, .002, .001, 0]; 
    dFO_Phaser2Range: [.0015, .0035, .99, .0035, .0015, 0]; 
    dFO_Phaser1Range: [.001, .002, .0035, .99, .0035, 0]; 
    dFO_PulseCanonRange: [.001, .002, .003, .004, .99, 0]; 
    absurd:  [0, 0, 0, 0, 0, 1]; 
    } 
   end; 
   }    
 
#  <------------------ /Slot sRDistance  ---------------------> 
# 
   
end; 
   
puts("Frame SensorReport defined...\n"); 
 
#  <<<---------- /Frame SensorReport  ------------->>> 
 
 
puts("Frame System for Starship Basic Model is ready!!!\n\n"); 
# 
#   <<<<---------- /FRAME DEFINITIONS ------------->>>> 
# 
#  <<<<<<-----  /STARSHIP_FRAMEDEFS.SPI   ------>>>>> 

 
Starship_functions.spi 

#                STARSHIP MODEL 
# 
# This file is part of the MEBN model inspired in the  
# Paramount series Star Trek. The model was used in 
# the PhD research of Paulo Costa and in the paper 
# "MEBN without Multi-tears" 
# 
# Authors: 
#               Paulo Cesar G da Costa 
#          Kathryn B Laskey 
# 
# The model is composed of the following parts: 
#   Starship_main.spi - It's the execution manager for the Starship model 
#   Starship_framedefs.spi - Defines the model's frame structure 
#   Starship_functions.spi - Defines the functions used in the model 
#   Starship_ssbn.spi - Create instances and built an SSBN 
# 
#  <<<<<-----  STARSHIP_FUNCTIONS.SPI   ------>>>>> 
# 
version_functions=v02;   #defines which version of the model this file belongs to. 
# 
# This file defines the functions that will be used to build the SSBN 
# 
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puts("\nStarting to define the functions\n"); 
puts("...................................................\n"); 
 
# The two functions below were developed by Dr. Kathryn 
# Laskey for the Plasma project. They enable the model's 
# visualization by means of Quiddity Visualizer. 
# 
def displayStatus(stpnum) { 
  enqueueScript("displayStatusSub(" + stpnum + ")"); 
}; 
 
def displayStatusSub(stpnum) { 
  for c in NamedEntity->retrieveInstances(false) { 
    c->printDetail();         # display all the instances 
  }; 
  $qv->updateDisplay(); 
  puts("Paused at " + stpnum + ".  Hit <Enter> to continue..."); 
  while stdin->read() != 10 {} 
}; 
 
# numberToFShips(fships) 
# fships -> the number of FShips in a zone 
# The function converts the number to the string format 
# that is used in slot zoneFShips 
 
def numberToFShips(fships){ 
 if (fships == 0) then state = zFS_0 
 elif (fships == 1) then state = zFS_1 
 elif (fships == 2) then state =  zFS_2 
 elif (fships == 3) then state = zFS_3 
 elif (fships > 3) then state = zFS_MoreThan3 
 else ("\n\nError in function numberToFShips\n\n") 
 end; 
 state; 
}; 
 
# numberToEShips(eships) 
# eships -> the number of EShips in a zone 
# The function converts the number to the string format 
# that is used in slot zoneEShips 
 
def numberToEShips(eships){ 
 if (eships == 0) then state = zES_0 
 elif (eships == 1) then state = zES_1 
 elif (eships == 2) then state =  zES_2 
 elif (eships == 3) then state = zES_3 
 elif (eships > 3) then state = zES_MoreThan3 
 else ("\n\nError in function numberToEShips\n\n") 
 end; 
 state; 
}; 
# 
# randomDistance() 
# Simple random generator that returns a distance that 
# can be used in the distFromOwn RV 



216 

 

# Output states: 
#    dFO_OutOfRange 
#    dFO_TorpedoRange 
#    dFO_Phaser2Range 
#    dFO_Phaser1Range 
#    dFO_PulseCanonRange 
# It does not return absurd as a value. 
# It *does not* gives a equal likelihood for distances, 
# but concentrates more probability to the farther 
# distances. The idea is that since this would be used 
# for an initial setup, most of the starships would be 
# relatively distant of OwnShip. As the situation develops 
# then we can have starships closing in 
# 
def randomDistance(){ 
 rd = random->nextDouble();  # create a random number 
 if (0 <= rd && rd < .05) then rdist= dFO_PulseCanonRange 
  elif ( 0.05 <= rd && rd < .15) then (rdist= dFO_Phaser1Range) 
  elif ( 0.15 <= rd && rd < .25) then (rdist = dFO_Phaser2Range) 
  elif ( 0.25 <= rd && rd < .6) then (rdist = dFO_TorpedoRange) 
  elif ( 0.6 <= rd && rd < 1) then (rdist = dFO_OutOfRange) 
  else (puts("error in the Distance random generator")) 
 end; 
 rdist; 
}; 
  
# randomSpecies(specBehavior) 
# Simple random generator that returns an Operator 
# Species that can be used in the opSpec RV 
# Input: 
# specBehavior - variable that has states friend or enemy. 
# Each corresponding to a given species current behavior 
# with respect to OwnShip 
# cloak - defines whether or not the species to be created 
# has a cloaking device capability. 
# Output states: 
#    oS_Cardassians 
#    oS_Friend 
#    oS_Klingon 
#    oS_Romulan 
#    oS_Unknown 
# It does not return absurd as a value. 
# It *does not* gives a equal likelihood for distances, 
# but concentrates more probability to the farther 
# distances. The idea is that since this would be used 
# for an initial setup, most of the starships would be 
# relatively distant of OwnShip. As the situation develops 
# then we can have starships closing in 
# 
def randomSpecies(specBehavior, cloak){ 
 rd = random->nextDouble();  # create a random number 
 if (cloak==true) then { 
  if (specBehavior == friend) then { 
   puts("Error: Species with friend behavior do not\n"); 
   puts("activate cloaking devices\n"); 
   puts("function randomSpecies has improper input\n"); 
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   } 
  elif (specBehavior == enemy) then { 
   if (0 <= rd && rd < .9) then (rspec= oS_Romulan) 
   elif ( 0.9 <= rd && rd < .99) then (rspec= oS_Klingon) 
   elif ( 0.99 <= rd && rd < 1) then (rspec = oS_Unknown) 
   elif ( 0.9 <= rd && rd < 1) then (rspec = oS_Unknown) 
   else (puts("error in the Species random generator")) 
   end; 
   } 
  else (puts("error in the Species random generator")) 
  end; 
  } 
 elif (specBehavior == enemy) then { 
  if (0 <= rd && rd < .5) then (rspec= oS_Cardassian) 
  elif ( 0.5 <= rd && rd < .65) then (rspec= oS_Klingon) 
  elif ( 0.65 <= rd && rd < .9) then (rspec = oS_Romulan) 
  elif ( 0.9 <= rd && rd < 1) then (rspec = oS_Unknown) 
  else (puts("error in the Species random generator")) 
  end; 
  }  
 elif (specBehavior == friend) then { 
  if (0 <= rd && rd < .5) then (rspec= oS_Friend) 
  elif ( 0.5 <= rd && rd < .75) then (rspec= oS_Klingon) 
  elif ( 0.75 <= rd && rd < .85) then (rspec = oS_Romulan) 
  elif ( 0.85 <= rd && rd < 1) then (rspec = oS_Unknown) 
  else (puts("error in the Species random generator")) 
  end; 
  } 
 else (puts("Improperly defined specBehavior in randomSpecies")) 
 end; 
 rspec; 
}; 
# 
# makeEnemies(nk, ncloak) 
# nk -> Total number of enemy starships to be created 
# ncloak -> Number of enemy starships that are within 
# enterprise's sensor range but in cloak mode. 
# The function creates the nk instances of enemy starships and 
# returns an array with the form array(enemy),  
# where each element is an instance of frame Starship 
# 
# The intended use for makeEnemies() is to create a set 
# of Enemy Starships that, among other possibilities, can 
# be used in conjunction with makeFriends() to build a 
# Ground Truth set for model experiments 
 
def makeEnemies(z, nk, ncloak) { 
 charset=array(0); 
 duck = nk-ncloak; # These enemies are not in cloak mode 
 for i in duck { 
  enduck = Starship->makeInstance(); 
  enduck->opSpec = randomSpecies(enemy, false); 
  enduck->cloakMode=false; 
  enduck->starshipZone=z; 
  enduck->distFromOwn=randomDistance(); 
  charset->addElement(enduck); 
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 }; 
 for j in ncloak {    # These enemies are in cloak mode 
  encloak = Starship->makeInstance(); 
  encloak->opSpec = randomSpecies(enemy, true); 
  encloak->cloakMode=true; 
  encloak->starshipZone=z; 
  encloak->distFromOwn=randomDistance(); 
  charset->addElement(encloak); 
 }; 
 charset; 
}; 
 
# makeFriends(nf) 
# nf -> Total number of friend or neutral starships to be 
# created. 
# This function creates nf instances of friend/neutral 
# starships and returns an array with the form array(friends) 
# where each element is an instance of frame Starship 
 
def makeFriends(zf, nf) { 
 charset=array(0); 
 for i in nf { 
  frd = Starship->makeInstance(); 
  frd->opSpec = randomSpecies(enemy, false); 
  frd->cloakMode=false; 
  frd->starshipZone=zf; 
  frd->distFromOwn=randomDistance(); 
  charset->addElement(frd); 
  }; 
 charset; 
 }; 
 
# makeGTSet(nen, nkc, nfr) 
# nen -> number of enemies 
# nec -> number of enemies in cloak mode 
# nfr -> number of friends 
# uses makeEnemies() and makeFriends() to create 
# a set spaceships. 
 
def makeGTSet(zn, nen, nec, nfr) { 
 gt=makeEnemies(zn, nen, nec); 
 nicepeople=makeFriends(zn, nfr); 
 for i in nfr { 
  gt->addElement(nicepeople(i)); 
  }; 
 gt; 
 }; 
 
# printCharSet(cs) 
# cs -> an array with the format of the output of 
# function makeGTSet(nen, nec, nfr)  
# Prints the set of Starships to be used as Ground Truth 
# that should be contained in the argument cs. 
 
def printCharSet(cs){ 
 puts("Characteristics of the Starships:\n"); 
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 for chr in cs { 
  st=chr->opSpec->getValue(); 
  cm=chr->cloakMode->getValue(); 
  zn=chr->starshipZone->zoneNature->getValue(); 
  qd=chr->distFromOwn->getValue(); 
  puts(chr,"\tOperator Species -> ",st, "\tCloak Mode-> ",cm); 
  puts("\tZone->",zn, "\tRange -> ",qd,"\n"); 
  }; 
 puts("\nEnd of the Starship List!!\n"); 
}; 
 
 
# buildGTkb(ezn, nts, gts) 
# ezn -> area in which Enterprise is in 
# nts -> number of time steps 
# gts -> array with the ground truth 
# During each time step, this function creates one instance 
# of frame SensorReport for each starship in the Ground 
# Truth set (gts) and reads the zoneMD value, which  
# is influenced by the nature of the area and the existence of 
# starships in cloak mode. 
# Then, it samples and set the values for the slots 
# SensorReport.sRClass, SensorReport.sRDistance. 
# It also sets the values of those slots with the sampled 
# results, which is an optional feature that can be canceled. 
# The output is an array in the format: 
# (list(zoneMD, stresults)),  
#  
# Recall that starships in cloak mode doesn't generate 
# sensor reports. Yet, we have to consider them too (the 
# enemies in cloak mode), since the false alarm rate is a 
# bit higher when someone is around with an active cloak 
# device. Finally, even if nobody is there, we have to  
# consider the false alarm rate as well. 
 
def buildGTkb(ezn, nts, gts) { 
 listres=array(0); # saves the results of all time steps 
 for i in nts {   # for each time step 
  stresults=array(0);    # saves each starship's results of one time step   
  for j in gts{   # for each starship 
   snres=SensorReport->makeInstance(); # create an instance of sensor report 
   snres->subject=j ;      # relate that instance to 
one starship 
   getsnslot=snres->sRClass;     # get this instance's sRClass slot 
   spsnslot=sampleNode(getsnslot);   # and sample it 
   snres->sRClass=spsnslot;   
# This line is optional. It sets the value of slot sRClass to be the 
# one sampled in spsnslot (see above). If setting the results is not what we 
# want to do (i.e. if we prefer to leave it empty) then just ignore the line 
# by adding a comment mark in front of it. 
   getdtslot=snres->sRDistance; # get this instance's sRDistance slot 
   spdtslot=sampleNode(getdtslot);   # and sample it 
   snres->sRDistance=spdtslot;    
# This line is optional. It sets the value of slot sRDistance 
# to be the one sampled in spdtslot (see above). If setting the results is not  
# what we want to do (i.e. if we prefer to leave it empty) then just ignore the  
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# line by adding a comment mark in front of it. 
   stresults->addElement(list(spsnslot, spdtslot)); # saves the sampled values 
   }; 
  getzoneMDread=ezn->zoneMD; 
  zoneMDread=sampleNode(getzoneMDread); 
  listres->addElement(list(zoneMDread, stresults));  # add the results of all starships for 
each time step 
  }; 
 puts("We had ",size(listres)," time steps. For each time step"); 
 puts(" 1 MD Reading and ", size(listres(0)(1))," Sensor Reports were created, thus we created\n"); 
 puts("a total of ",size(listres)," MD readings and "); 
 puts(size(listres)*size(listres(0)(1))," Sensor Report results.\n"); 
 listres; 
 }; 
# sampleNode(nd) 
# nd -> node to be sampled 
# samples the beliefs for a given node on the basis 
# of its prior probabilities 
                                                        
 def sampleNode(nd) { 
 s = posteriorSamples(nd);                                                   
 smpl = s->nextSample(); 
 smpl(0)(1);                      
};                                                                      
 
# printGTkb(gtkb); 
# gtkb -> knowledge base made in makeGTkb(); 
# Prints the Ground Truth knowledge base, element by element 
 
def printGTkb(gtkb) { 
 icount=0;   # counter for i 
 for i in gtkb { 
  puts("Results of time step ", icount, ":\n"); 
  puts("\tMD Reading result: ",i(0),".\n"); 
  puts("\tSensor Report results: \t"); 
  for j in i(1) { 
   puts(j,"\t"); 
   }; 
  puts("\n"); 
  icount++; 
  }; 
 }; 
 
# cleanGTkb(gtkb) 
# gtkb -> knowledge base made in makeGTkb(); 
# This function "cleans" the Ground Truth knowledge base by 
# extracting the extra Sensor Reports. That is, the Sensor 
# Reports that came out empty. This is the rationale: 
# If at a given time step in the GTkb there is at least one 
# positive result (i.e. either friend or enemy) then all "nothing"s 
# are eliminated. Else, just one "nothing" result is kept. 
# The idea is to represent what a real world sensor result would be. 
# Since we do not know in advance how many starships are, we will 
# only have a "nothing" as a result when the Sensors captured nothing 
# in their range. If they captured only one, then this one is the only 
# thing we know (i.e. there is no "nothing" result indicating that there is 
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# another starship but our sensor didn't catch it). 
 
def cleanGTkb(gtkb){ 
 cleanedAll=array(0);   #new, cleaned kb repository 
 for i in gtkb{     #for each time step in the GTkb 
  cleanedSR=array(0);   #array for the cleaned Sensor Reports 
  for j in i(1) {    # for the list of Sensor Reports of that time step 
   if !(j(0) == "nothing") 
   then cleanedSR->addElement(j) 
   end; 
   }; 
  cleanedAll->addElement(list(i(0), cleanedSR)); 
  }; 
 cleanedAll; 
 }; 
 
# inferGT(clgtkb) 
# cleanedgtkb -> knowledge base cleaned by cleanGTkb(); 
# Takes the results obtained from the starships in the  
# Ground Truth knowledge base and tries to figure out 
# how many starships are there and their respective type 
 
## The functions below were built by Dr. Kathryn B. Laskey 
# for the Display module of the Starship model. 
# 
 
puts("\nDefining the display functions\n"); 
 
def displayStatus(stpnum) { 
  enqueueScript("displayStatusSub(" + stpnum + ")"); 
}; 
 
def displayStatusSub(stpnum) { 
  for c in NamedEntity->retrieveInstances(false) { 
    c->printDetail();         # display all the instances 
  }; 
  $qv->updateDisplay(); 
  puts("Paused at " + stpnum + ".  Hit <Enter> to continue..."); 
  while stdin->read() != 10 {} 
}; 
 
puts("\nAll functions loaded!!\n"); 
# 
#  <<<<<-----  /STARSHIP_FUNCTIONS.SPI   ------>>>>> 

 

Starship_exec.spi 

#                STARSHIP MODEL 
# 
# This file is part of the MEBN model inspired in the  
# Paramount series Star Trek. The model was used in 
# the PhD research of Paulo Costa and in the paper 
# "MEBN without Multi-tears" 
# 
# Authors: 
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#               Paulo Cesar G da Costa 
#               Kathryn B Laskey 
# 
# The model is composed of the following parts: 
#   Starship_main.spi - It's the execution manager for the Starship model 
#   Starship_framedefs.spi - Defines the model's frame structure 
#   Starship_functions.spi - Defines the functions used in the model 
#   Starship_ssbn.spi - Create instances and built an SSBN 
# 
#  <<<<<-----  STARSHIP_EXEC.SPI   ------>>>>> 
# 
version_exec=v02;   #defines which version of the model this file belongs to. 
# 
# This file defines the execution procedures that are used to build the SSBN 
# 
# <<<<---CREATING ENTERPRISE AND ITS SPACE ZONE--->>>> 
# 
# We have to define in what type of space Enterprise 
# will be flying. This is something we are supposed to 
# know in advance (i.e., if our sensors are working, we 
# know were we are). 
# 
puts("Creating Enterprise and its space zone...\n"); 
puts("...........\n"); 
# 
area=Zone->makeInstance(); 
area->zoneNature= mainZone;    
area->zoneEShips=numberToEShips(mainEShips); 
area->zoneFShips=numberToFShips(mainFShips); 
 
puts("Space area successfully defined...\n\n"); 
puts("We're now going to Create Enterprise...\n\n"); 
 
# Now, we create the Enterprise. 
# 
Enterprise=OwnStarship->makeInstance(); 
Enterprise->ownStarshipZone=area;   # linking Enterprise with its zone 
 
puts("Enterprise is ready for action...\n"); 
puts("As expected, we are navigating in a ",area->zoneNature->getValue()," zone.\n"); 
puts("Now our mission is to build the GTSet.\n"); 
# 
# <<<<---/CREATING ENTERPRISE AND ITS SPACE ZONE--->>>> 
# 
# <<<<--- BUILDING THE GROUND TRUTH KNOWLEDGE BASE --->>>> 
# 
puts("\nBuilding the Ground Truth Knowledge Base...\n\n" ); 
 
# Now we make a set of spaceships. This set can be  
# used as Ground Truth for future experiments 
 
GTSet=makeGTSet(area, mainEShips, mainCloakMode, mainFShips); 
Enterprise->starship=GTSet;  # assigns the set of starship instances to the Enterprise 
area->starship=GTSet; # assigns the set of starship instances to the zone area 
 
# Just to make sure everything is ok, let's print 
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# the initial characteristics of the starships 
 
puts("\nAt this point we have created an initial set\n"); 
puts("of starships. \n"); 
puts("Let's see who they are and their characteristics:\n\n"); 
printCharSet(GTSet); 
 
# For each of those starships, we will have a sensor report from  
# the Enterprise sensor suite. Also, there will be one Magnetic 
# Disturbance Report for each time step. 
# We should build a Ground Truth database containing all the 
# reports created during a given number of time steps on the 
# basis of the starships inside the GTSet 
 
puts("..............................................................................\n"); 
puts("Now, let's make the a database of reports that would\n"); 
puts("have been generatated by the Enterprise's sensors when\n"); 
puts("capturing data from those starships\n"); 
puts("Building the knowledge base.......\n"); 
puts(".................................................\n"); 
 
GTkb=buildGTkb(area, mainTimeSteps, GTSet); 
 
puts("Knowledge base was built.......\n"); 
puts("Let's see the results:\n\n"); 
puts("Recall that we had the following starships in our ground truth:\n"); 
printCharSet(GTSet); 
puts("Therefore, those where the starships that generated the \n"); 
puts("following reports:\n\n"); 
printGTkb(GTkb); 
puts("\n\n..............................................................................................\n"); 
# 
# <<<<--- /BUILDING THE GROUND TRUTH KNOWLEDGE BASE --->>>> 
# 
# <<<<--- CLEANING THE GROUND TRUTH KNOWLEDGE BASE --->>>> 
# 
puts("\nCleaning the Ground Truth Knowledge Base...\n\n"); 
 
puts("Now, we are going to clean the knowledge base by extracting the\n"); 
puts("Sensor Reports that resulted in nothing, so there will be no clues on\n"); 
puts("whether we had staships with cloak devices around.\n"); 
puts("Here is the resulting cleaned GT knowledge base:\n\n"); 
 
cleanGT=cleanGTkb(GTkb); 
printGTkb(cleanGT); 
 
puts("\n\nTherefore, we know these results came from a Ground Truth set of ", size(GTSet), " starships \n"); 
puts("(", mainFShips, " friend(s) and ", mainEShips, " enemy(ies), where ", mainCloakMode); 
puts(" enemy starship(s) had its Cloak Mode activated)\n"); 
puts("Now, we have to start from those reports"); 
puts(" and try to get as close as \npossible to the Ground Truth.\n\n"); 
# 
# <<<<--- CLEANING THE GROUND TRUTH KNOWLEDGE BASE --->>>> 
# 
#  <<<<<-----  STARSHIP_EXEC.SPI   ------>>>>> 
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Appendix B   Preliminary Syntax and Semantics for PR-OWL 

B.1 PR-OWL Classes 

B.1.1 Alphabetical List of All PR-OWL Classes 

The table below contains all classes used in the PR-OWL upper-ontology. 

Table 6. Classes Used in PR-OWL 

Class Name Abbreviation Sub-Classes (1
st
 level) 

Argument Relationship ArgRelationship SimpleArgRelationship 

Boolean Random Variable States BooleanRVStates  

Built-In Random Variable BuiltInRV  

Categorical Random Variable 
States 

CategoricalRVStates  

Conditional Relationship CondRelationship  

Context Context  

Declarative Distribution DeclarativeDist  

Domain MFrag Domain_MFrag  

Domain Resident Domain_res  

Entity Entity BooleanRVStates 

CategoricalRVStates 

MetaEntity 

ObjectEntity 

Finding MFrag Finding_MFrag  

Finding Resident Finding_res  

Input Input Finding_input 

Generative_input 

Meta-Entity MetaEntity  

MFrag MFrag Domain_MFrag 

Finding_MFrag 

MTheory MTheory  
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Node Node Context 

Input 

Resident 

Object Entity ObjectEntity  

Ordinary Variable OVariable  

Probabilistic Assignment ProbAssign  

Probabilistic Distribution ProbDist DeclarativeDist 

PR-OWLTable 

PR-OWL Table PR-OWLTable  

Resident Resident Finding_res 

Domain_res 

Simple Argument Relationship SimpleArgRelationship  

Skolem Skolem  

 

B.1.2 Detailed Explanation of PR-OWL Classes 

Argument Relationship (ArgRelationship) 

Description: 

A generic random variable can have many arguments. Arguments are 
usually restricted in their type and meaning via the context nodes of an MFrag. In 
order to model these complex N-ary relations, PR-OWL makes use of the 
ArgRelationship class, which is a reified relation that conveys the number and 
order of arguments that each RV expects, its type (defined via a link to the 
OVariable class), and the link to the RV itself. 

MEBN logic has the concept of a simple and a composite random variable 
term. Simple RV terms accepts variables and constant symbols as arguments. 
Composite RV terms also accepts other RV terms as arguments. In PR-OWL, the 
class ArgRelashionship models composite RV terms, while its 
SimpleArgRelashionship subclass models simple RV terms. 

Subclasses:  

SimpleArgRelationship 

Properties with ArgRelationship as its domain (range inside parenthesis): 

hasArgNumber (single xsd:nonNegativeInteger) 

hasArgTerm (single Entity !!OVariable!!!Resident"!
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isArgumentOf (single node) 

Boolean Random Variable States (BooleanRVStates) 

Description 

The BooleanRVStates class is formed by the Boolean truth-value states 
and the absurd symbol (!). Individuals of this class are applied as possible values 
for Boolean random variables. 

Subclasses:  

None 

Properties with BooleanRVStates as its domain (range inside parenthesis): 

hasType (single MetaEntity) 

hasUID (single xsd:string) 

isPossibleValueOf (multiple Node ! BuiltIRV) 

Built-In Random Variable (BuiltInRV) 

Description: 

Individuals of this class represent the random variables from MEBN 
logic's built-in MFrags: logical connectives, quantifiers, the equality random 
variable. Likewise their function in MEBN logic, these individuals allow PR-
OWL ontologies to represent a rich family of probability distributions over 
interpretations of first-order logic. 

Note that MEBN's built-in Indirect Reference MFrag is already 
represented in PR-OWL via its recursive scheme of building complex formulas 
shown in Chapter 5. 

Subclasses:  

None 

Properties with BuiltInRV as its domain (range inside parenthesis): 

hasContextInstance (multiple Context) 

hasInputInstance (multiple Input) 

hasPossibleValues (multiple Entity) 
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Categorical Random Variable States (CategoricalRVStates) 

Description: 

Nodes represent random variables, which by definition have a list of 
mutually exclusive, collectively exhaustive states. In PR-OWL, those states are 
represented by individuals from class Entity. Some random variables have a list of 
categorical values as its possible states, and these are represented by elements 
from subclass CategoricalRVStates. 

Subclasses:  

None 

Properties with CategoricalRVStates as its domain (range inside parenthesis): 

hasType (single MetaEntity) 

hasUID (single xsd:string) 

isPossibleValueOf (multiple Node ! BuiltInRV) 

isArgTermIn (multiple ArgRelationship) 

Conditional Relationship (CondRelationship) 

Description 

The conditional relationship class is a reified property representing a 
(parent) node and one of its possible states. Individuals of this class are used to 
built PR-OWL probabilistic distribution tables. Each cell of such a table 
corresponds to a probability assignment of a possible value of a node given one 
combination of the states of its parents. Each individual of class CondRelationship 
represents one parent/state pair, so a probability assigment is conditioned by a set 
of CondRelationship pairs (one for each parent node). 

Subclasses:  

None 

Properties with CondRelationship as its domain (range inside parenthesis): 

hasParentName (single Node) 

hasParentState (single Entity) 

isConditionantOf (multiple ProbAssign) 
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Context (Context) 

Description 

In general, MFrags impose constraints to the type of arguments each of its 
resident RVs should accept. The individuals of the Context class represent these 
types of constraints. 

In PR-OWL, the class Context is the only subclass of the Node class that 
accepts composite RV terms as arguments (that is, uses the complete 
ArgRelationship instead of the more restricted SimpleArgRelashionship). 

A context node is either satisfiable or not, which means its possible states 
are instances of  the BooleanRVStates class. 

Subclasses:  

None 

Properties with Context as its domain (range inside parenthesis): 

isContextInstanceOf (single Domain_res ! BuiltInRV) 

isContextNodeIn (multiple Domain_MFrag) 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasPossibleValues (multiple Entity) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

Declarative Distribution (DeclarativeDist) 

Description 

A declarative distribution is a distribution that is conveyed via a xsd:string 
datatype, using a specific format defined in the hasDeclaration datatype property. 
In order to allow a MEBN algorithm to work, a parser should be able to retrieve 
the probability distribution information in the format it is stored and then pass that 
information to the MEBN algorithm in its own proprietaty format. 

Describing a probability distribution is a much more compact and flexible 
way of conveying it. However, it assumes that an OWL-P parser would 
understand the format in which the information is stored. PR-OWL tables, on the 
other hand, convey probability distributions in a more interoperable way, but are 
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not flexible enough to represent complex distributions such as the cases in which 
a node has multiple possible parents. 

For added compatibility, one probability distribution can be stored in 
multiple formats (i.e. multiple DeclarativeDist individuals for the same RV). 

Subclasses:  

None 

Properties with DeclarativeDist as its domain (range inside parenthesis): 

hasDeclaration (single xsd:string) 

isRepresentedAs (single owl:oneOf{…list of possible formats…}) 

isProbDistOf (multiple resident) 

isDefault (single xsd:Boolean) 

Domain MFrag (Domain_MFrag) 

Description 

Domain MFrags is the subclass of class MFrag that includes all the 
domain-specific MFrags. It is disjoint with class Finding_MFrag. All generative 
MFrags created by the ontology engineer (i.e. the domain expert) are members of 
this class. 

Subclasses:  

None 

Properties with Domain_MFrag as its domain (range inside parenthesis): 

hasContextNode (multiple Context) 

hasInputNode (multiple Input) 

hasNode (multiple Node) 

hasOVariable (multiple OVariable) 

hasResidentNode (multiple Resident) 

hasSkolem (multiple Skolem) 

isMFragOf (multiple MTheory) 
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Domain Resident (Domain_res) 

Description 

This is the subclass of class Resident (node) that includes all domain-
specific resident nodes. It is disjoint with classes Finding_res and BuiltInRV. 

Subclasses:  

None 

Properties with Domain_res as its domain (range inside parenthesis): 

hasContextInstance (multiple Context) 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasParent (multiple resident ! input) 

hasPossibleValues (multiple Entity) 

hasProbDist (multiple ProbDist) 

isArgTermIn (multiple ArgRelationship) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

isParentOf (multiple resident) 

isResidentNodeIn (multiple MFrag) 

hasInputInstance (multiple Input) 

Entity (Entity) 

Description 

MEBN logic treats the world as being comprised of entities that have 
attributes and are related to other entities. The logic assumes uniqueness or each 
concept (i.e. unique name assumption), so each entity in a MEBN model has a 
unique identifier and no unique identifier can be assigned to more than one entity. 

PR-OWL follows MEBN syntax and semantics for defining entities so 
each member of the class Entity has a unique identifier assigned by the datatype 
property hasUID. OWL doesn't have the unique name assumption so the UID can 
be seen a tool for providing maximum compatibility with legacy OWL ontologies, 
since parsers may refer to it as a means to enforce uniqueness among declared 
entities. 



231 

 

It is important to note that not all concepts in an ontology have a UID, but 
only those which will be considered as part of the probabilistic model that is 
implicit in any probabilistic ontology. This structure allows mixing legacy 
deterministic ontologies with probabilististic ones. That allows knowledge 
engineers to assign PR-OWL definitions only to the parts of the domain for which 
plausible reasoning is desired. 

Subclasses (1st level):  

BooleanRVStates 

CategoricalRVStates 

MetaEntity 

ObjectEntity 

Properties with Entity as its domain (range inside parenthesis): 

hasType (single MetaEntity) 

hasUID (single xsd:string) 

isArgTermIn (multiple ArgRelationship) 

isPossibleValueOf  (multiple Node ! BuiltInRV) 

Finding MFrag (Finding_MFrag) 

Description 

Finding MFrags are used to convey information about findings, which is 
the default way of entering evidence in a MEBN MTheory so a probabilistic 
algorithm can be applied to perform inferences regarding the new evidence. They 
have no context nodes, only one input and one resident node. 

Subclasses:  

None 

Properties with Finding_MFrag as its domain (range inside parenthesis): 

hasInputNode (single Input) 

hasNode (multiple node) 

hasOVariable (multiple OVariable) 

hasResidentNode (multiple Resident) 

hasSkolem (multiple Skolem) 
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isMFragOf (multiple MTheory) 

Finding Resident (Finding_res) 

Description 

This is the subclass of class Resident (node) that includes all finding 
nodes. Finding nodes convey new evidence into a probabilistic system via a 
Finding_MFrag. The class is disjoint with classes Domain_res and BuiltInRV. 

Subclasses:  

None 

Properties with Finding_res as its domain (range inside parenthesis): 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasParent (single Finding_input) 

hasPossibleValues (multiple Entity) 

hasProbDist (multiple ProbDist) 

isArgTermIn (multiple ArgRelationship) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

isParentOf (multiple resident – cardinality = 0) 

isResidentNodeIn (multiple MFrag) 

hasInputInstance (multiple Input) 

Input (Input) 

Description 

In PR-OWL, an input node is basically a "copy" of a resident node that is 
used as an input in a given MFrag. Thus, each individual of class Input is linked 
with an individual of class Resident via the property isInputInstanceOf. 

Subclasses:  

Finding_input 

Generative_input 
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Properties with Input as its domain (range inside parenthesis): 

isInputInstanceOf (single Resident ! BuiltInRV) 

isInputNodeIn (multiple MFrag) 

isParentOf (multiple Resident) 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasPossibleValues (multiple Entity) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

Meta-Entity (MetaEntity) 

Description 

The MetaEntity class includes all the entities that convey specific 
definitions about entities (e.g. typelabels that name the possible types of entities). 

Subclasses:  

None 

Properties with MetaEntity as its domain (range inside parenthesis): 

isTypeOf (multiple Entity) 

subsOVar (multiple OVariable) 

hasType (single MetaEntity) 

hasUID (single xsd:string) 

isPossibleValueOf (multiple Node !!BuiltInRV) 

isArgTermIn (multiple ArgRelationship) 

MFrag (MFrag) 

Description 

MEBN Fragments (MFrags) are the basic structure of any MEBN logic 
model. MFrags represent influences among clusters of related RVs and can 
portray repeated patters using ordinary variables as placeholders in to which 
entity identifiers can be substituted. In PR-OWL, each individual the MFrag class 
represents a MEBN Fragment (MFrag). 
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Subclasses:  

Domain_MFrag 

Finding_MFrag 

Properties with MFrag as its domain (range inside parenthesis): 

hasInputNode (multiple Input) 

hasNode (multiple Node) 

hasOVariable (multiple OVariable) 

hasResidentNode (multiple Resident) 

hasSkolem (multiple Skolem) 

isMFragOf (multiple MTheory) 

MTheory (MTheory) 

Description 

An MTheory is a collection of MFrags that statisfies consistency 
constraints ensuring the existence of a unique joint distribution over the random 
variables mentioned in the MTheory.  

In PR-OWL, the class MTheory allows a probabilistic ontology to have 
more than one valid MTheory to represent its RVs, and each individual of that 
class is basically a list of the MFrags that collectively form that MTheory. In 
addition, one MFrag can be part of more than one MTheory. 

Subclasses:  

None 

Properties with MTheory as its domain (range inside parenthesis): 

hasMFrag 

Node (Node) 

Description 

A node is part of an MFrag and it can be a random variable that is defined 
within that MFrag (a resident node), a RV that input values to nodes within that 
MFrag (an input node), or a RV that expresses the context in which the 
probability distributions within that MFrag are valid (a context node). 
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Subclasses (1st level):  

Context 

Input 

Resident 

Properties with Node as its domain (range inside parenthesis): 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasPossibleValues (multiple Entity) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

Object Entity (ObjectEntity) 

Description 

The class ObjectEntity aggregates the MEBN entities that are real world 
concepts of interest in a domain. They are akin to objects in OO models and to 
frames in frame-based knowledge systems. 

Subclasses:  

None 

Properties with ObjectEntity as its domain (range inside parenthesis): 

hasType (single MetaEntity) 

hasUID (single xsd:string) 

isPossibleValueOf (multiple Node ! BuiltInRV) 

isArgTermIn (multiple ArgRelationship) 

Ordinary Variable (OVariable) 

Description 

Ordinary variables are placeholders used in MFrags to refer to non-
specific entities as arguments in a given MFrag's RVs.  

Subclasses:  
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None 

Properties with OVariable as its domain (range inside parenthesis): 

isArgTermIn (multiple ArgRelationship) 

isOVariableIn (single MFrag) 

isRepBySkolem (multiple Skolem) 

isSubsBy (single MetaEntity) 

Probabilistic Assignment (ProbAssign) 

Description 

Each cell in an PR-OWL table has a probability assignment for the state of 
a RV given the states of its parent nodes. Thus, the resulting relationship is N-ary 
and we opted for representing it via a reified relation (ProbAssign) that includes 
the name of the state to which the probability is being assigned, the probability 
value itself, and the list of states of parent nodes (i.e. conditionants) that 
collectively define the context in which that probability assignment is valid. Also, 
individuals of the ProbAssign class have an object property that links them with 
its respective PR-OWL table. 

Subclasses:  

None 

Properties with ProbAssign as its domain (range inside parenthesis): 

hasConditionant (multiple CondRelationship) 

hasStateName (single Entity) 

hasStateProb (single xsd:decimal) 

isProbAssignIn (single PR-OWLTable) 

Probabilistic Distribution (ProbDist) 

Description 

This class is meant to represent the probability distributions that are 
defined in an MFrag to each of its resident nodes (random variables). A 
probability distribution can be described using a proprietary declarative format, 
such as a Netica table or a Quiddity function, or via a PR-OWL table (which has 
probability assignments as its cells). 

Subclasses:  
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DeclarativeDist 

PR-OWLTable 

Properties with ProbDist as its domain (range inside parenthesis): 

isDefault (single xsd:Boolean) 

isProbDistOf (multiple Resident) 

PR-OWL Table (PR-OWLTable) 

Description 

An PR-OWL table has all the probability assignments for each state of a 
RV stored in a xsd:decimal format (future implementations might use the pr-
owl:prob format, but currently that means incompatibilities with OWL, which has 
no support for PR-OWL custom datatypes).  

This format for storing probability distributions cannot represent complex 
cases for which only formulas can represent a probability distribution (e.g. a node 
that have a variable number of parents) and usually incurs in huge ontologies, 
since each table can have many cells and each cell is an individual of the 
ProbAssign class. Therefore, PR-OWL tables are only recommended for the 
simplest models in which the maximum level of compatibility is desired. 

Subclasses:  

None 

Properties with PR-OWLTable as its domain (range inside parenthesis): 

hasProbAssign (multiple ProbAssign) 

isProbDistOf (multiple Resident) 

isDefault (single xsd:Boolean) 

Resident (Resident) 

Description 

Resident nodes are the random variables that have their respective 
probability distribution defined in the MFrag. 

Subclasses:  

Domain_res 

Finding_res 
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Properties with Resident as its domain (range inside parenthesis): 

hasInputInstance (multiple Input) 

hasParent (multiple Resident ! Input) 

hasProbDist (multiple ProbDist) 

isArgTermIn (multiple ArgRelationship) 

isParentOf (multiple Resident) 

isResidentNodeIn (multiple MFrag) 

hasArgument (multiple ArgRelationship) 

hasInnerTerm (multiple Node) 

hasPossibleValues (multiple Entity) 

isInnerTermOf (multiple Node) 

isNodeFrom (multiple MFrag) 

Simple Argument Relationship (SimpleArgRelationship) 

Description 

Each generic random variable can have many arguments. Arguments are 
usually restricted in their type and meaning via the context nodes of an MFrag. In 
order to model these complex N-ary relations, PR-OWL makes use of the 
SimpleArgRelationship class, which is a reified relation that conveys the number 
and order of arguments that each RV expects, it's type (defined via a link to the 
TypeContext class), and the link to the RV itself. 

Subclasses:  

None 

Properties with SimpleArgRelationship as its domain (range inside parenthesis): 

hasArgNumber (single xsd:nonNegativeInteger) 

hasArgTerm (single Entity !!OVariable !!Resident ! Skolem) 

isArgumentOf (single Node) 

Skolem (Skolem) 

Description 
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Each individual of class Skolem represents a Skolem constant in a MEBN 
quantifier random variable.  Each MEBN quantifier random variable corresponds 
to a first-order formula beginning with a universal or existential quantifier. The 
Skolem constant in the MEBN random variable represents a generic individual 
within the scope of the universal or existential quantifier of the corresponding 
first-order formula.   

MEBN logic contains a set of built-in MFrags for quantifier random 
variables.  In PR-OWL modelers can use individuals of class Skolem to define 
distributions for Skolem constants used in quantifier random variables. 

Subclasses:  

None 

Properties with Skolem as its domain (range inside parenthesis): 

isArgTermIn (multiple ArgRelationship) 

isSkolemIn (multiple MFrag) 

representsOVar (single OVariable) 

B.2 PR-OWL Properties 

B.2.1 Alphabetical List of All PR-OWL Properties 

The table below contains all properties used in the PR-OWL upper-ontology. 

Table 7. Properties Used in PR-OWL 

Property Name Domain Range Inverse Property 

hasArgNumber ArgRelationship xsd:nonNegativeInteger -x- 

hasArgTerm ArgRelationship Entity 

OVariable 

Resident 

Skolem 

isArgTermIn 

hasArgument Node ArgRelationship isArgumentOf 

hasConditionant ProbAssign CondRelationship isConditionantOf 

hasContext Domain_MFrag Context isContextIn 

hasContextInstance Domain 

BuiltInRV 

Context isContextInstanceOf 

hasDeclaration DeclarativeDist xsd:string -x- 
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hasInnerTerm Node Node isInnerTermOf 

hasInputInstance Resident 

BuiltInRV 

Input isInputInstanceOf 

hasInputNode MFrag Input isInputNodeIn 

hasMFrag MTheory MFrag isMFragOf 

hasOVariable MFrag OVariable isOVariablein 

hasParent Resident Resident 

Input 

isParentOf 

hasParentName CondRelationship Node  

hasParentState CondRelationship Entity  

hasPossibleValues BuiltInRV 

Node 

Entity isPossibleValueOf 

hasProbAssign PR-OWLTable ProbAssign isProbAssignIn 

hasProbDist Resident ProbDist isProbDistOf 

hasResidentNode MFrag Resident isResidentNodeIn 

hasSkolem MFrag Skolem isSkolemIn 

hasStateName ProbAssign Entity  

hasStateProb ProbAssign xsd:decimal  

hasType Entity MetaEntity isTypeOf 

hasUID Entity xsd:string  

isArgTermIn OVariable 

Resident 

Entity 

Skolem 

ArgRelationship hasArgTerm 

isArgumentOf ArgRelationship Node hasArgument 

isConditionantOf CondRelationship ProbAssign hasConditionant 

isContextIn Context Domain_MFrag hasContext 

isContextInstanceOf Context Domain 

BuiltInRV 

hasContextInstance 

isDefault ProbDist xsd:boolean  

isInnerTermOf Node Node hasInnerTerm 

isInputInstanceOf Input Resident 

BuiltInRV 

hasInputInstance 

isInputNodeIn Input MFrag hasInputNode 

isMFragOf MFrag MTheory hasMFrag 

isOVariableIn OVariable MFrag hasOVariable 

isParentOf Resident 

Input 

Resident hasParent 
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isPossibleValueOf Entity Node 

BuiltInRV 

hasPossibleValues 

isProbAssignIn ProbAssign PR-OWLTable hasProbAssign 

isProbDistOf ProbDist Resident hasProbDist 

isRepBySkolem OVariable Skolem representsOVar 

isRepresentedAs DeclarativeDist Owl:one of{…}   

isResidentNodeIn Resident MFrag hasResidentNode 

isSkolemIn Skolem MFrag hasSkolem 

isSubsBy OVariable MetaEntity  

isTypeOf MetaEntity Entity hasType 

representsOVar Skolem OVariable isRepBySkolem 

subsOVar MetaEntity OVariable isSubsBy 

 
 

B.2.2 Detailed Explanation of PR-OWL Properties 

hasArgNumber 

Type: Datatype property 

Description: 

This datatype property assigns the argument number of an argument 
relationship. As an example, if we have a random variable with 3 arguments, it will 
have three ArgRelatioship reified relations. The first argument of the RV will have 
the number 1 assigned to its respective hasArgNumber property, the second will 
have the number 2 assigned and the third will have the number 3 assigned. In short 
this property keeps track of the ordering between the arguments of an RV. 

The datatype range is a nonNegativeInteger. We used this instead of a 
positiveInteger because we wanted zero as a possible value, since we assume that a 
RV with no arguments means a global RV. 

hasArgTerm 

Type: Object property 

Description: 
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This object property links one instance of class ArgRelationship (which is 
linked to a RV) to an internal variable within the home MFrag where its RV is 
resident, to a node that is being used as argument in that RV, or to a MEBN entity.  

One individual of the class ArgRelationship can have only one RV (since it 
refers to a specific argument of an RV), and thus can be related to only one 
OVariable (Simple RV Terms) or one Node (Composite RV Terms), which makes 
that property a functional one. 

The inverse property is isArgTermIn. 

hasArgument 

Type: Object property 

Description: 

This object property is the link between a node in an MFrag and the reified 
relation that conveys its respective arguments. Note that each instance of a node will 
have only one argument relashionship, which is defined within that node's MFrag. 

The inverse of this property is isArgumentOf. 

hasConditionant 

Type: Object property 

Description: 

Each instance of the class ProbAssign corresponds to the probability 
assigment for a given state of a RV. This probability assignment is conditioned by 
the parent RVs of that RV. This object property conveys the list of the states of the 
parent RV which have influenced that specific probability assignment. Since any 
MEBN entity can be a state in a RV, this property has MEBNEntity class as its 
range. 

The inverse property is isConditionantOf. 

hasContextInstance 

Type: Object property 

Description: 

This object property links a resident node or a built-in RV to its many 
possible "context node instances", or the instances of context nodes that take their 
values from that resident node or built-in RV. 
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The inverse property is isContextInstanceOf. 

hasContextNode 

Type: Object property 

Description: 

This object property links an MFrag to the context nodes being applied to it. 

The inverse property is isContextIn. 

hasDeclaration 

Type: Datatype property 

Description: 

This datatype property conveys the declarative probability distributions. Each 
probability distribution can be expressed in different formats and each format is 
defined by the datatype property isRepresentedAs. Possible formats include Netica 
tables, Netica equations, Quiddity formulas, MEBN syntax, and others. However, the 
declaration itself is stored as a string so parsers are expected to understand how to 
deal with the specific text format of each declaration. 

hasInnerTerm 

Type: Object property 

Description: 

This object property makes the connection between the many possible inner 
terms inside a MENB equation. It is used to decompose random variable terms 
usually employed in context and input nodes. 

The inverse property is isInnerTermOf 

hasInputInstance 

Type: Object property 

Description: 

This object property links a resident node or a built-in RV to its many 
possible "input node instances", or the instances of input nodes that take their values 
from that resident node or built-in RV. 
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The inverse property is isInputInstanceOf. 

hasInputNode 

Type: Object property 

Description: 

This object property links each MFrag with its respective input nodes. 

The inverse property is isInputNodeIn. 

hasMFrag 

Type: Object property 

Description: 

This object property links one MTheory with its respective MFrags. Usually, 
a probabilistic ontology will have only one MTheory as a means to convey the global 
joint probability distribution of its random variables. However, MEBN logic allows 
many possible MTheories to represent a given domain, so it is reasonable to infer 
that in some circunstances it might be preferable to have one probability ontology 
being represented by more than one MTheory. 

The inverse property is isMFragOf. 

hasNode 

Type: Object property 

Description: 

This object property links one MFrag with its respective nodes. 

The inverse property is isNodeFrom. 

hasOVariable 

Type: Object property 

Description: 

This inverse functional object property relates one MFrag to its ordinary 
variables (i.e. individuals from class OVariable that are related to the MFrag). 

The inverse of this property is isOVariableIn. 
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hasParent 

Type: Object property 

Description: 

This object property links a resident node of an MFrag with its respective 
parent(s), which has(have) to be an individual of either the class Resident or the class 
Input. 

The inverse property is isParentOf. 

hasParentName 

Type: Object property 

Description: 

This object property links a CondRelationship to a Node. The reified 
conditional relationship is used to build PR-OWL Tables. One table usually has 
many probability assignments (which correspond to cells in a table), and each 
probability assignment has a set of conditionants. Conditionants are the states of the 
parents of a node that form a combination where a given probability assignment 
holds. Each CondRelationship defines a pair parent/state-of-parent, and the 
hasParentName property defines the parent name of that pair.  

hasParentState 

Type: Object property 

Description: 

This object property links a CondRelationship to an Entity. The reified 
conditional relationship is used to build PR-OWL Tables. One table usually has 
many probability assignments (which correspond to cells in a table), and each 
probability assignment has a set of conditionants. Conditionants are the states of the 
parents of a node that form a combination where a given probability assignment 
holds. Each CondRelationship defines a pair parent/state-of-parent, and the 
hasParentState property defines the parent state of that pair. 

hasPossibleValues 

Type: Object property 

Description: 
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This object property defines what are the possible values of a node in an 
MFrag (which is by definition a random variable). Possible states include all kinds of 
entities. 

The inverse property is isPossibleValueOf. 

hasProbAssign 

Type: Object property 

Description: 

A PR-OWL table is formed by many individual members of the class 
ProbAssign, which are cells in that table. This object property relates one PR-OWL 
table to its respective cells (ProbAssign elements). 

The inverse property is isProbAssignIn. 

hasProbDist 

Type: Object property 

Description: 

This object property links a RV to its respective probability distributions, as 
defined in that RV's home MFrags. Note that this property is not being defined as 
functional, implying a polymorphic version of MEBN (where each RV can have 
different distributions in different MFrags). 

The inverse of this property is isProbDistOf. 

hasResidentNode 

Type: Object property 

Description: 

This object property links an MFrag with its respective resident node(s). 

The inverse property is isResidentNodeIn 

hasSkolem 

Type: Object property 

Description: 
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This object property relates one MFrag with the Skolem constants (i.e. an 
individual from class Skolem) that are defined in that MFrag. 

The inverse of this property is isSkolemIn. 

hasStateName 

Type: Object property 

Description: 

When a probability distribution is conveyed as an PR-OWL table, each 
individual cell is represented as an individual of the ProbAssign class. This object 
property refers to which state of a random variable (i.e. MFrag node) a given 
probability assignment refers. 

The property itself is functional, since one state can have only one probability 
assignment for the configuration listed in each individual of the ProbAssign class. 

hasStateProb 

Type: Datatype property 

Description: 

This datatype property is used to store the actual probability of an individual 
ProbAssign. Currently, OWL has no support for user defined datatypes, so instead of 
using owl-p:prob datatype (which includes all decimals between 0 and 1 inclusive) 
we are using xsd:decimal for compatibility purposes. 

hasType 

Type: Object property 

Description: 

In the extended MEBN logic that is the backbone of PR-OWL, each and 
every entity has a type. The list of types consists of the individuals from class 
MetaEntity. This functional object property defines the type of each entity by linking 
it to an individual of the MetaEntity class.  

Every entity has a MetaEntity (TypeLabel, CategoryLabel, Boolean, or a 
domain-specific label) as a Type. As an example, an hypothetical indivudual of an 
ObjectEntity class named Starship would have type Starship, which is a domain-
specific label for an ObjectEntity individual that happens to be a starship. That 
domain-specific label is itself an individual of the MetaEntity class. 
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The inverse property is isTypeOf. 

hasUID 

Type: Datatype property 

Description: 

MEBN logic has the unique naming assumption, which is not assumed in 
OWL (even though tools such as Protégé make that assumption for improved 
reasoning purposes). In order to make sure that a tool that does not assume unique 
identifies would not prevent MEBN reasoners to work, each MEBN entity has a 
unique identifier assigned by this datatype property. 

The UID itself is conveyed as a xsd:string, and the hasUID datatype property 
is declared as functional in order to enforce uniqueness. 

isArgTermIn 

Type: Object property 

Description: 

This object property links an individual of class OVariable, Resident, Entity, 
or Skolem to one ArgRelationship(s) that has individual as its argument. Each 
ArgRelationship can have only one argument, but each individual of those classes 
can refer to many ArgRelationships. 

The inverse of this property is hasArgTerm. 

isArgumentOf 

Type: Object property 

Description: 

This object property links an Argument Relationship to its respective Node 
(i.e. to the individual of class Node that has this ArgRelationship into its argument 
list). 

The inverse of this property is hasArgument. 

isConditionantOf 

Type: Object property 
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Description: 

This object property links one possible state of a parent node to the 
configuration that is conditioning its children state's probability distribution. 

The inverse property is hasConditionant. 

isContextInstanceOf 

Type: Object property 

Description: 

This object property links a context node to its respective "generative resident 
node" or built-in RV (i.e. the resident node or built-in RV from which the context 
node is a pointer). 

The inverse property is hasContextInstance. 

isContextNodeIn 

Type: Object property 

Description: 

This object property links one context node to the respective MFrag in which 
that context node applies. 

The inverse property is hasContext. 

isDefault 

Type: Datatype property 

Description: 

This datatype property indicates whether a probability distribution is the 
default probability distribution of a node or not. Default probability distributions for 
nodes are used when the context nodes of the MFrag containing those nodes are not 
met. 

isInputInstanceOf 

Type: Object property 

Description: 
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This object property links an input node to its "generative resident node", or 
the resident node to which that input node is a copy. 

The inverse property is hasInputInstance. 

isInputNodeIn 

Type: Object property 

Description: 

This object property links a node to the MFrags that have it as an input. 

The inverse property is hasInputNode 

isMFragOf 

Type: Object property 

Description: 

This object property links one MFrag to one or more MTheories (i.e. 
individuals of class MTheory) that have that MFrag as its component. 

The inverse property is hasMFrag. 

isNodeFrom 

Type: Object property 

Description: 

This general object property links one node to the MFrag it belongs to. 

The inverse property is hasNode. 

isOVariableIn 

Type: Object property 

Description: 

This functional object property relates one ordinary variable (i.e. an 
individual from class OVariable) to its respective MFrag. 

The inverse of this property is hasOVariable. 



251 

 

isParentOf 

Type: Object property 

Description: 

This object property links a resident or input node of an MFrag with its 
respective children, which are resident nodes in that same MFrag. 

The inverse property is hasParent. 

isPossibleValueOf 

Type: Object property 

Description: 

This object property correlates one entity with the node(s) of one or more 
MFrags that have such entity as a possible state. 

Note that the individuals listed as being possible values of a node must form 
a mutually exclusive, collectively exhaustive set. PR-OWL has the same tools for 
enforcing exclusiveness (i.e. MEBN entity unique name assumption and the 
existential and universal qualifiers acting together as a closure axiom), but the 
domain expert must ensure completeness. 

The inverse property is hasPossibleValues. 

isProbAssingIn 

Type: Object property 

Description: 

This is the inverse of the hasProbAssign object property and links one 
individual probability assignment to its respective probability distribution table. 

isProbDistOf 

Type: Object property 

Description: 

This object property links a probability distribution to its respective RV 
(resident node). Note that this property is functional, since each probability 
distribution in a MFrag defines a unique RV. 
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The inverse of this property is hasProbDist. 

isRepBySkolem 

Type: Object property 

Description: 

This object property links one ordinary variable to the Skolem constant that 
represents that ordinary variable in quantified expressions. The property is inverse 
functional, since one Skolem constant can represent only the group of entities that 
can be replaced with that ordinary variable in the model. 

The inverse property is representsOVar. 

isRepresentedAs 

Type: Datatype property 

Description: 

This datatype property defines how a given declarative probability 
distribution is expressed. Each probability distribution can be expressed in different 
formats, and each format is defined by this datatype property. Possible formats 
include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and 
others. However, the declaration itself is stored in the hasDeclaration datatype 
property as a string so parsers will have to know how to deal with the specific text 
format of each declaration. 

isResidentNodeIn 

Type: Object property 

Description: 

This object property links an individual of class Node to the MFrag(s) that 
have this node as a resident node. 

The inverse property is hasResidentNode. 

isSkolemIn 

Type: Object property 

Description: 
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This object property relates one Skolem constant (i.e. an individual from 
class Skolem) to the MFrag in which it is defined. 

The inverse of this property is hasSkolem. 

isSubsBy 

Type: Object property 

Description: 

This object property links one instance of class OVariable to type of the 
entity that can substitute it. Each argument of a RV has its expected type defined 
within the home MFrag of that RV. In PR-OWL, the type restrictions are defined 
directly through the OVariable using the isSubsBy property. One MFrag can have 
many OVariables (which can be themselves linked to many 
SimpleArgRelationships) but each OVariable has a unique type, which is explicitly 
defined by the type of the entity that can substibute that OVariable. 

This object property is the inverse of subsOVar. 

isTypeOf 

Type: Object property 

Description: 

This is the inverse of hasType object property, and basically lists all the 
MEBN entities that have its respective type defined by that specific individual of 
either the MetaEntity class or the ObjectEntity class. 

representsOVar 

Type: Object property 

Description: 

This object property links a Skolem constant (i.e. an individual of class 
Skolem) to the ordinary variable it represents in a quantifier expression. The property 
is functional since each Skolem constant represents only one ordinary variable in the 
model. 

The inverse property is isRepBySkolem. 

subsOVar 
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Type: Object property 

Description: 

This object property assigns MetaEntity individuals in order to define the 
type of the substituters for each MFrag ordinary variable. 

Its inverse property is the functional isSubsBy. 

B.3 Naming Convention (optional) 

For naming purposes, PR-OWL elements can be partitioned in two major groups: 
Entities and all the other elements. This distinction comes from the fact that the second 
group is basically a set of classes that provide the support for the probabilistic part of an 
ontology. That is, the second group is the backbone of the MEBN-based probabilistic 
representation that collectively form the PR-OWL semantics. As a result, all of that 
supporting set elements are linked to an MFrag, which is the basic structure of a MEBN 
model, and a great level of consistency and straightforwardness can be achieved by 
adopting a naming convention that acknowledges this fact. 

Therefore, a very simple, optional naming convention was used in this research 
and has proved to be an important asset for keeping consistency and making maintenance 
of the model easier. In addition, future implementations geared to facilitate the creation / 
edition of probabilistic ontologies would certainly keep the majority of those supporting 
elements hidden from the normal user so it seems reasonable that such a system performs 
an automatic naming for those hidden elements. 

Non-Entity elements 

The convention adopted was based on blocks divided by underscore characters, 
while multiple words within a block should be separated using the “camelback” notation 
(e.g. KeepingTheFirstLetterCapitalized). Also, an ordering among the blocks should be 
followed to enable any reader aware of the notation to infer the meaning of each element 
on the basis of its name only. The general format is: 

First block - MFrag: First letter(s) of the MFrag to which the element is linked. If 
there are two MFrags with the same first letter then subsequent letters of the name should 
be used (non-capitalized) until the ambiguity is resolved. 

Second block – Name/relationship: name of the element or of its related node. 
Usually, names of OVariables and Nodes are not abbreviated, while the longer names of 
context or input RV terms should have most of its elements abbreviated. 

Third block – Type (optional): type of an element or of its related node. This is an 
optional block that has only one, non-abbreviated and non-capitalized word. Standard 
types: context, input, ddecl (default declarative distribution), decl (non-default declarative 



255 

 

distribution), dtable (PR-OWL Table default distribution), table (PR-OWL Table non-
default distribution), cond (conditionant).  

Fourth block – Discriminator (optional): This block should be used to 
discriminate similar elements. When more than one number is used, separation is made 
using a dot (e.g. 2.4 meaning the second of four elements in an argument relationship or 
the second ). 

Here are some examples and their respective intended meaning: 

SRD_sr: Ordinary variable “sr” from the Sensor Report Data MFrag. 

S_CloakMode: Resident node  “Cloak Mode” from the Starship MFrag (if an 
input or context node then a type block would be necessary). 

Z_CloakMode_input: Input node “Cloak Mode” from the Zone MFrag. 

Z_ZoneEShips_ddecl_Netica: Default declarative distribution of node 
ZoneEShips from Zone MFrag, written in Netica format. 

Z_TprevPrevT_context: Context node “(tprev = Prev(t))” from the Zone MFrag. 

Z_TprevPrevT_inner_prevT: Inner term “Prev(t)” of context node “(tprev = 
Prev(t))” from the Zone MFrag. 

Z_TprevPrevT_inner_prevT_2.2: Second argument (out of 2) from the 
argument relationship (ArgRelationship) of the inner term “Prev(t)” of context node 
“(tprev = Prev(t))” from the Zone MFrag. 

Z_ZoneEShips_table_4.3.5: Probabilistic assignment for the fourth state of the 
variable ZoneEShips from the Zone MFrag, given the third state of one of its parents and 
the fifth state of its other parent (both states are represented as CondRelationships, which 
include the name of the parent and its respective state). 

DTS_OpSpec_inputCond_2.3: Conditionant relationship representing the 
second state out of three states of input node OpSpec from the DangerToSelf MFrag. 
Note that the type block has two values (input and cond) so the “camelback” notation is 
used to separate those values inside the same block 

 

Exceptions: 

MFrags – Names of MFrags will be stated in the first block (not 
abbreviated) followed by the suffix “_MFrag”. Example: 
Starship_MFrag, DangerToSelf_MFrag.  

MTheories – Names of MTheories will be stated in the first block (not 
abbreviated) followed by the suffix “_MTheory”. Example: 
StarTrek_MTheory, Confederation_MTheory. 

Built-In RVs – PR-OWL built-in RVs cannot be changed by the 
probabilistic ontology editor and should be used as is. 
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Entity elements 

Each of the four types of entity element has its own peculiarity: 

Boolean RV States: These are built-in to PR-OWL, so cannot be changed. 

Categorical RV States: Names of categorical states should be preceded by a block 
containing the first letters (capitalized) of the RV (node) they are state from. If there are 
two RVs with the same first letter then subsequent letters of the name should be used 
(non-capitalized) until the ambiguity is resolved. The name of the state itself is up to the 
ontology engineer; provide that the unique naming assumption is respected. 

Meta Entities: Built-In Meta Entities cannot be changed. Domain-specific Meta 
Entities should have the same name of their respective object class followed by the suffix 
“_Label”. Example: the Meta Entity that designate the type of individuals of class 
Starship should be named Starship_Label. 

Object Entities: The ontology engineer is free to choose any naming for the 
classes of object entities and for its respective individuals, provide that the unique naming 
assumption is respected. 

B.4 PR-OWL Upper-Ontology Code 

The following OWL code includes all the elements of the PR-OWL extension 
formatted as an upper ontology. 

 
<?xml version="1.0"?> 
<rdf:RDF 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns="http://mason.gmu.edu/~pcosta/pr-owl/pr-owl.owl#" 
  xml:base="http://mason.gmu.edu/~pcosta/pr-owl/pr-owl.owl"> 
  <owl:Ontology rdf:about=""/> 
  <owl:Class rdf:ID="OVariable"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Ordinary variables are placeholders used in MFrags to refer to non-specific entities as arguments in a 
given MFrag's RVs.</rdfs:comment> 
    <owl:equivalentClass> 
      <owl:Class> 
        <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:allValuesFrom> 
              <owl:Class rdf:ID="ArgRelationship"/> 
            </owl:allValuesFrom> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:ID="isArgTermIn"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Restriction> 
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            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isArgTermIn"/> 
            </owl:onProperty> 
            <owl:someValuesFrom> 
              <owl:Class rdf:about="#ArgRelationship"/> 
            </owl:someValuesFrom> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:ID="isOVariableIn"/> 
            </owl:onProperty> 
            <owl:allValuesFrom> 
              <owl:Class rdf:ID="MFrag"/> 
            </owl:allValuesFrom> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:someValuesFrom> 
              <owl:Class rdf:about="#MFrag"/> 
            </owl:someValuesFrom> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isOVariableIn"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isOVariableIn"/> 
            </owl:onProperty> 
            <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:cardinality> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:ID="isSubsBy"/> 
            </owl:onProperty> 
            <owl:allValuesFrom> 
              <owl:Class rdf:ID="MetaEntity"/> 
            </owl:allValuesFrom> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:someValuesFrom> 
              <owl:Class rdf:about="#MetaEntity"/> 
            </owl:someValuesFrom> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:about="#isSubsBy"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:about="#isSubsBy"/> 
            </owl:onProperty> 
            <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:cardinality> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:ID="representsOVar"/> 
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            </owl:onProperty> 
            <owl:allValuesFrom> 
              <owl:Class rdf:ID="Skolem"/> 
            </owl:allValuesFrom> 
          </owl:Restriction> 
        </owl:intersectionOf> 
      </owl:Class> 
    </owl:equivalentClass> 
  </owl:Class> 
  <owl:Class rdf:ID="BuiltInRV"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Individuals of this class represent the random variables from MEBN logic's built-in MFrags: logical 
connectives, quantifiers, the equality random variable. Likewise their function in MEBN logic, these 
individuals allow PR-OWL ontologies to represent a rich family of probability distributions over interpretations 
of first-order logic. 
Note that MEBN's built-in Indirect Reference MFrag is already represented in PR-OWL via its recursive 
scheme of building complex formulas.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:ID="BooleanRVStates"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:ID="Input"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasInputInstance"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Domain_Res"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#BooleanRVStates"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Finding_res"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Context"> 
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    <rdfs:subClassOf> 
      <owl:Class rdf:ID="Node"/> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasInnerTerm"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Context"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isContextInstanceOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:ID="Entity"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Resident"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >In general, MFrags impose constraints to the type of arguments each of its resident RVs should accept. 
The individuals of the Context class represent these types of constraints. 
In PR-OWL, the class Context is the only subclass of the Node class that accepts composite RV terms as 
arguments (that is, uses the complete ArgRelationship instead of the more restricted 
SimpleArgRelashionship). 
A context node is either satisfiable or not, which means its possible states are instances of  the 
BooleanRVStates class. 
</rdfs:comment> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Input"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
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      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:ID="Domain_MFrag"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isContextNodeIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Domain_MFrag"> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="Finding_MFrag"/> 
    </owl:disjointWith> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Domain MFrags is the subclass of class MFrag that includes all the domain-specific MFrags. It is disjoint 
with class Finding_MFrag. All generative MFrags created by the ontology engineer (i.e. the domain expert) 
are members of this class.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#MFrag"/> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Context"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasContextNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="CondRelationship"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:ID="hasParentState"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasParentName"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasParentState"/> 
        </owl:onProperty> 
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        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasParentName"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Node"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >The conditional relationship class is a reified property representing a (parent) node and one of its 
possible states. Individuals of this class are used to built PR-OWL probabilistic distribution tables. Each cell 
of such a table corresponds to a probability assignment of a possible value of a node given one combination 
of the states of its parents. Each individual of class CondRelationship represents one parent/state pair, so a 
probability assigment is conditioned by a set of CondRelationship pairs (one for each parent 
node).</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Node"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasParentName"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasParentState"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:ID="ProbAssign"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isConditionantOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="ProbDist"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
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          <owl:ObjectProperty rdf:ID="isProbDistOf"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This class is meant to represent the probability distributions that are defined in an MFrag to each of its 
resident nodes (random variables). A probability distribution can be described using a proprietary declarative 
format, such as a Netica table or a Quiddity function, or via an PR-OWL table (which has probability 
assigments as its cells).</rdfs:comment> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="PR-OWLTable"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="#ProbDist"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#ProbAssign"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:ID="hasProbAssign"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >An PR-OWL table has all the probability assignments for each state of a RV stored in a xsd:decimal 
format (future implementations might use the pr-owl:prob format, but currently that means incompatibilities 
with OWL, which has no support for PR-OWL custom datatypes).  
This format for storing probability distributions cannot represent complex cases for which only formulas can 
represent a probability distribution (e.g. a node that have a variable number of parents) and usually incurs in 
huge ontologies, since each table can have many cells and each cell is an individual of the ProbAssign 
class. Therefore, PR-OWL tables are only recommended for the simplest models in which the maximum 
level of compatibility is desired.</rdfs:comment> 
    <owl:disjointWith> 
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      <owl:Class rdf:ID="DeclarativeDist"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:about="#hasProbAssign"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#ProbAssign"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Finding_MFrag"> 
    <owl:disjointWith rdf:resource="#Domain_MFrag"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:ID="Finding_input"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasInputNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Finding MFrags are used to convey information about findings, which is the default way of entering 
evidence in a MEBN MTheory so a probabilistic algorithm can be applied to perform inferences regarding 
the new evidence. They have no context nodes, only one input and one resident node. </rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasResidentNode"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Finding_res"/> 
        </owl:allValuesFrom> 
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      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInputNode"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Finding_input"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Finding_res"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInputNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#MFrag"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="ObjectEntity"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#BooleanRVStates"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Entity"/> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#OVariable"/> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:ID="subsOVar"/> 
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        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:ID="CategoricalRVStates"/> 
    </owl:disjointWith> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >The class ObjectEntity aggregates the MEBN entities that are real world concepts of interest in a 
domain. They are akin to objects in OO models and to frames in frame-based knowledge 
systems.</rdfs:comment> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#MetaEntity"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Input"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#ArgRelationship"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:ID="hasArgument"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isInputNodeIn"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputNodeIn"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
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      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isInputInstanceOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInnerTerm"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Input"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:minCardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >In PR-OWL, an input node is basically a "copy" of a resident node that is used as an input in a given 
MFrag. Thus, each individual of class Input is linked with an individual of class Resident via the property 
isInputInstanceOf.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#Resident"/> 
              <owl:Class rdf:about="#BuiltInRV"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Node"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Context"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
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              <owl:Class rdf:about="#Resident"/> 
              <owl:Class rdf:about="#BuiltInRV"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Resident"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Finding_res"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasParent"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Finding_input"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class> 
            <owl:oneOf rdf:parseType="Collection"> 
              <BooleanRVStates rdf:ID="absurd"> 
                <isPossibleValueOf> 
                  <BuiltInRV rdf:ID="equalto"> 
                    <hasPossibleValues> 
                      <BooleanRVStates rdf:ID="true"> 
                        <isPossibleValueOf> 
                          <BuiltInRV rdf:ID="or"> 
                            <hasPossibleValues rdf:resource="#true"/> 
                            <hasPossibleValues> 
                              <BooleanRVStates rdf:ID="false"> 
                                <hasType> 
                                  <MetaEntity rdf:ID="Boolean"> 
                                    <hasType> 
                                      <MetaEntity rdf:ID="TypeLabel"> 
                                        <hasUID rdf:datatype= 
                                        "http://www.w3.org/2001/XMLSchema#string" 
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                                        >!TypeLabel</hasUID> 
                                        <isTypeOf rdf:resource="#TypeLabel"/> 
                                        <isTypeOf rdf:resource="#Boolean"/> 
                                        <rdfs:comment rdf:datatype= 
                                        "http://www.w3.org/2001/XMLSchema#string" 
                                        >This MetaEntity shold be assigned for the labels of all domain specific types and 
subtypes.</rdfs:comment> 
                                        <isTypeOf> 
                                          <MetaEntity rdf:ID="CategoryLabel"> 
                                            <hasUID rdf:datatype= 
                                            "http://www.w3.org/2001/XMLSchema#string" 
                                            >!CategoryLabel</hasUID> 
                                            <hasType rdf:resource="#TypeLabel"/> 
                                            <rdfs:comment rdf:datatype= 
                                            "http://www.w3.org/2001/XMLSchema#string" 
                                            >This MetaEntity should be assigned to the labels for the states of random 
variables whose domain is a list of categorical values</rdfs:comment> 
                                          </MetaEntity> 
                                        </isTypeOf> 
                                        <hasType rdf:resource="#TypeLabel"/> 
                                      </MetaEntity> 
                                    </hasType> 
                                    <rdfs:comment rdf:datatype= 
                                    "http://www.w3.org/2001/XMLSchema#string" 
                                    >This MetaEntity should be applied to the truth-values T, F and ! 
(absurd).</rdfs:comment> 
                                    <isTypeOf rdf:resource="#absurd"/> 
                                    <isTypeOf rdf:resource="#true"/> 
                                    <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                                    >!Boolean</hasUID> 
                                    <isTypeOf rdf:resource="#false"/> 
                                  </MetaEntity> 
                                </hasType> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="forall"> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                  </BuiltInRV> 
                                </isPossibleValueOf> 
                                <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                                >This state corresponds to the meaningfull hypotheses that have a false truth-value. 
</rdfs:comment> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="not"> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                  </BuiltInRV> 
                                </isPossibleValueOf> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="implies"> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                  </BuiltInRV> 
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                                </isPossibleValueOf> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="iff"> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                  </BuiltInRV> 
                                </isPossibleValueOf> 
                                <isPossibleValueOf rdf:resource="#or"/> 
                                <isPossibleValueOf rdf:resource="#equalto"/> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="and"> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                  </BuiltInRV> 
                                </isPossibleValueOf> 
                                <isPossibleValueOf> 
                                  <BuiltInRV rdf:ID="exists"> 
                                    <hasPossibleValues rdf:resource="#false"/> 
                                    <hasPossibleValues rdf:resource="#true"/> 
                                    <hasPossibleValues rdf:resource="#absurd"/> 
                                  </BuiltInRV> 
                                </isPossibleValueOf> 
                                <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                                >F</hasUID> 
                              </BooleanRVStates> 
                            </hasPossibleValues> 
                            <hasPossibleValues rdf:resource="#absurd"/> 
                          </BuiltInRV> 
                        </isPossibleValueOf> 
                        <isPossibleValueOf rdf:resource="#iff"/> 
                        <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                        >This state corresponds to the meaningfull hypotheses that have a false truth-value. 
</rdfs:comment> 
                        <isPossibleValueOf rdf:resource="#and"/> 
                        <hasType rdf:resource="#Boolean"/> 
                        <isPossibleValueOf rdf:resource="#exists"/> 
                        <isPossibleValueOf rdf:resource="#equalto"/> 
                        <isPossibleValueOf rdf:resource="#not"/> 
                        <isPossibleValueOf rdf:resource="#forall"/> 
                        <isPossibleValueOf rdf:resource="#implies"/> 
                        <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                        >T</hasUID> 
                      </BooleanRVStates> 
                    </hasPossibleValues> 
                    <hasPossibleValues rdf:resource="#false"/> 
                    <hasPossibleValues rdf:resource="#absurd"/> 
                  </BuiltInRV> 
                </isPossibleValueOf> 
                <isPossibleValueOf rdf:resource="#forall"/> 
                <hasType rdf:resource="#Boolean"/> 
                <isPossibleValueOf rdf:resource="#and"/> 
                <isPossibleValueOf rdf:resource="#implies"/> 
                <isPossibleValueOf rdf:resource="#iff"/> 
                <isPossibleValueOf rdf:resource="#or"/> 
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                <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                >This state is used for the cases in which a truth-value cannot be applied to a random variable 
(i.e. meaningless, undefined, or contradictory hypotheses).</rdfs:comment> 
                <hasUID rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                >!</hasUID> 
                <isPossibleValueOf rdf:resource="#exists"/> 
                <isPossibleValueOf rdf:resource="#not"/> 
              </BooleanRVStates> 
              <BooleanRVStates rdf:about="#true"/> 
            </owl:oneOf> 
          </owl:Class> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Resident"/> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Domain_Res"/> 
    </owl:disjointWith> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasParent"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Finding_input"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasParent"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#BuiltInRV"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#Finding_MFrag"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isResidentNodeIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >0</owl:cardinality> 
      </owl:Restriction> 
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    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Finding_MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:oneOf rdf:parseType="Collection"> 
              <BooleanRVStates rdf:about="#absurd"/> 
              <BooleanRVStates rdf:about="#true"/> 
            </owl:oneOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This is the subclass of class Resident (node) that includes all finding nodes. Finding nodes convey new 
evidence into a probabilistic system via a Finding_MFrag. The class is disjoint with classes Domain_res and 
BuiltInRV.</rdfs:comment> 
  </owl:Class> 
  <owl:Class rdf:about="#Node"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isNodeFrom"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >A node is part of an MFrag and it can be a random variable that is defined within that MFrag (a resident 
node), a RV that input values to nodes within that MFrag (an input node), or a RV that expresses the context 
in which the probability distributions within that MFrag are valid (a context node).</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
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        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isInnerTermOf"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Node"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Node"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInnerTerm"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isNodeFrom"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#ArgRelationship"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:about="#hasArgument"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#MetaEntity"> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#BooleanRVStates"/> 
    </owl:disjointWith> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >The MetaEntity class includes all the entities that convey specific definitions about entities (e.g. 
typelabels that name the possible types of entities).</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Entity"/> 
    </rdfs:subClassOf> 
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    <owl:disjointWith rdf:resource="#ObjectEntity"/> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#CategoricalRVStates"/> 
    </owl:disjointWith> 
    <owl:equivalentClass> 
      <owl:Class> 
        <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:ID="isTypeOf"/> 
            </owl:onProperty> 
            <owl:allValuesFrom> 
              <owl:Class rdf:about="#Entity"/> 
            </owl:allValuesFrom> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:someValuesFrom> 
              <owl:Class rdf:about="#Entity"/> 
            </owl:someValuesFrom> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isTypeOf"/> 
            </owl:onProperty> 
          </owl:Restriction> 
        </owl:intersectionOf> 
      </owl:Class> 
    </owl:equivalentClass> 
  </owl:Class> 
  <owl:Class rdf:ID="MTheory"> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasMFrag"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >An MTheory is a collection of MFrags that statisfies consistency constraints ensuring the existence of a 
unique joint distribution over the random variables mentioned in the MTheory. In PR-OWL, the class 
MTheory allows a probabilistic ontology to have more than one valid MTheory to represent its RVs, and each 
individual of that class is basically a list of the MFrags that collectively form that MTheory. In addition, one 
MFrag can be part of more than one MTheory.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#MFrag"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasMFrag"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
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  <owl:Class rdf:about="#ProbAssign"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasStateName"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Each cell in an PR-OWL table has a probability assignment for the state of a RV given the states of its 
parent nodes. Thus, the resulting relationship is N-ary and we opted for representing it via a reified relation 
(ProbAssign) that includes the name of the state to which the probability is being assigned, the probability 
value itself, and the list of states of parent nodes (i.e. conditionants) that collectively define the context in 
which that probability assignment is valid. Also, individuals of the ProbAssign class have an object property 
that links them with its respective PR-OWL table. </rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasStateName"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#CondRelationship"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasConditionant"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:ID="hasStateProb"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#CondRelationship"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasConditionant"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
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          <owl:ObjectProperty rdf:about="#hasStateName"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Entity"/> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#MFrag"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasNode"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Node"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Skolem"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasSkolem"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
        </owl:onProperty> 
        <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:minCardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#OVariable"/> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:ID="hasOVariable"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
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      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isMFragOf"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#MTheory"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:someValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >MEBN Fragments (MFrags) are the basic structure of any MEBN logic model. MFrags represent 
influences among clusters of related RVs and can portray repeated patters using ordinary variables as 
placeholders in to which entity identifiers can be substituted. In PR-OWL, each individual the MFrag class 
represents a MEBN Fragment (MFrag).</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Input"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInputNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#Node"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasNode"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#CategoricalRVStates"> 
    <owl:disjointWith rdf:resource="#MetaEntity"/> 
    <owl:disjointWith rdf:resource="#ObjectEntity"/> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Entity"/> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Nodes represent random variables, which by definition have a list of mutually exclusive, collectively 
exhaustive states. In PR-OWL, those states are represented by individuals from class Entity. Some random 
variables have a list of categorical values as its possible states, and these are represented by elements from 
subclass CategoricalRVStates.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:hasValue rdf:resource="#CategoryLabel"/> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:ID="hasType"/> 
        </owl:onProperty> 
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      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#BooleanRVStates"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:ID="SimpleArgRelationship"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Each generic random variable can have many arguments. Arguments are usually restricted in their type 
and meaning via the context nodes of an MFrag. In order to model these complex N-ary relations, PR-OWL 
makes use of the SimpleArgRelationship class, which is a reified relation that conveys the number and order 
of arguments that each RV expects, it's type (defined via a link to the TypeContext class), and the link to the 
RV itself.</rdfs:comment> 
    <owl:equivalentClass> 
      <owl:Class> 
        <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:ID="hasArgTerm"/> 
            </owl:onProperty> 
            <owl:allValuesFrom rdf:resource="#OVariable"/> 
          </owl:Restriction> 
          <owl:Class rdf:about="#ArgRelationship"/> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#hasArgTerm"/> 
            </owl:onProperty> 
            <owl:someValuesFrom rdf:resource="#OVariable"/> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:allValuesFrom rdf:resource="#Node"/> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:ID="isArgumentOf"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:about="#isArgumentOf"/> 
            </owl:onProperty> 
            <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:maxCardinality> 
          </owl:Restriction> 
        </owl:intersectionOf> 
      </owl:Class> 
    </owl:equivalentClass> 
  </owl:Class> 
  <owl:Class rdf:ID="Generative_input"> 
    <rdfs:subClassOf rdf:resource="#Input"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
        <owl:someValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
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              <owl:Class rdf:about="#Domain_Res"/> 
              <owl:Class rdf:about="#BuiltInRV"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:someValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith> 
      <owl:Class rdf:about="#Finding_input"/> 
    </owl:disjointWith> 
  </owl:Class> 
  <owl:Class rdf:about="#Entity"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#MetaEntity"/> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasType"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
        <owl:onProperty> 
          <owl:DatatypeProperty rdf:ID="hasUID"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isConditionantOf"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#ProbAssign"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#MetaEntity"/> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasType"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >MEBN logic treats the world as being comprised of entities that have attributes and are related to other 
entities. The logic assumes uniqueness or each concept (i.e. unique name assumption), so each entity in a 
MEBN model has a unique identifier and no unique identifier can be assigned to more than one entity. 
PR-OWL follows MEBN syntax and semantics for defining entities so each member of the class Entity has a 
unique identifier assigned by the datatype property hasUID. OWL doesn't have the unique name assumption 
so the UID can be seen a tool for providing maximum compatibility with legacy OWL ontologies, since 
parsers may refer to it as a means to enforce uniqueness among declared entities. 
It is important to note that not all concepts in an ontology have a UID, but only those which will be 
considered as part of the probabilistic model that is implicit in any probabilistic ontology. This structure 
allows mixing legacy deterministic ontologies with probabilististic ones. That allows knowledge engineers to 
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assign PR-OWL definitions only to the parts of the domain for which plausible reasoning is 
desired.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#Node"/> 
              <owl:Class rdf:about="#BuiltInRV"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isPossibleValueOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasType"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Finding_input"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#Finding_MFrag"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputNodeIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#Finding_res"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#Finding_res"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
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          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Generative_input"/> 
    <rdfs:subClassOf rdf:resource="#Input"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Finding_res"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isInputNodeIn"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Finding_MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Finding_res"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#DeclarativeDist"> 
    <owl:equivalentClass> 
      <owl:Class> 
        <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:FunctionalProperty rdf:ID="hasDeclaration"/> 
            </owl:onProperty> 
            <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:minCardinality> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:DatatypeProperty rdf:ID="isRepresentedAs"/> 
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            </owl:onProperty> 
            <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:minCardinality> 
          </owl:Restriction> 
          <owl:Class rdf:about="#ProbDist"/> 
          <owl:Restriction> 
            <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
            >1</owl:cardinality> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
            </owl:onProperty> 
            <owl:allValuesFrom> 
              <owl:Class rdf:about="#Resident"/> 
            </owl:allValuesFrom> 
          </owl:Restriction> 
          <owl:Restriction> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
            </owl:onProperty> 
            <owl:someValuesFrom> 
              <owl:Class rdf:about="#Resident"/> 
            </owl:someValuesFrom> 
          </owl:Restriction> 
        </owl:intersectionOf> 
      </owl:Class> 
    </owl:equivalentClass> 
    <owl:disjointWith rdf:resource="#PR-OWLTable"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >A declarative distribution is a distribution that is conveyed via a xsd:string datatype, using a specific 
format defined in the hasDeclaration datatype property. In order to allow a MEBN algorithm to work, a parser 
should be able to retrieve the probability distribution information in the format it is stored and then pass that 
information to the MEBN algorithm in its own proprietaty format. 
Describing a probability distribution is a much more compact and flexible way of conveying it. However, it 
assumes that an OWL-P parser would understand the format in which the information is stored. PR-OWL 
tables, on the other hand, convey probability distributions in a more interoperable way, but are not flexible 
enough to represent complex distributions such as the cases in which a node has multiple possible parents. 
For added compatibility, one probability distribution can be stored in multiple formats (i.e. multiple 
DeclarativeDist individuals for the same RV).</rdfs:comment> 
  </owl:Class> 
  <owl:Class rdf:about="#Resident"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasParent"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#Resident"/> 
              <owl:Class rdf:about="#Input"/> 
            </owl:unionOf> 
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          </owl:Class> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Input"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:minCardinality> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="hasProbDist"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#ProbDist"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#MFrag"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#ProbDist"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasProbDist"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
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    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#ArgRelationship"/> 
        </owl:allValuesFrom> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isArgTermIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#Entity"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasInnerTerm"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class rdf:about="#Resident"/> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="#Node"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:InverseFunctionalProperty rdf:about="#hasArgument"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#SimpleArgRelationship"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#Context"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Resident nodes are the random variables that have their respective probability distribution defined in the 
MFrag.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Entity"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#BooleanRVStates"> 
    <owl:disjointWith rdf:resource="#CategoricalRVStates"/> 
    <owl:disjointWith rdf:resource="#MetaEntity"/> 
    <rdfs:subClassOf rdf:resource="#Entity"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 



284 

 

        <owl:hasValue rdf:resource="#Boolean"/> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#hasType"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#ObjectEntity"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >The BooleanRVStates class is formed by the Boolean truth-value states and are applied to Boolean 
random variables.</rdfs:comment> 
  </owl:Class> 
  <owl:Class rdf:about="#Domain_Res"> 
    <owl:disjointWith rdf:resource="#Finding_res"/> 
    <rdfs:subClassOf rdf:resource="#Resident"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This is the subclass of class Resident (node) that includes all domain-specific resident nodes. It is 
disjoint with classes Finding_res and BuiltInRV.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#Domain_MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Domain_Res"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isParentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isResidentNodeIn"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#Domain_MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Restriction> 
            <owl:allValuesFrom rdf:resource="#Generative_input"/> 
            <owl:onProperty> 
              <owl:ObjectProperty rdf:about="#hasParent"/> 
            </owl:onProperty> 
          </owl:Restriction> 
          <owl:Class rdf:about="#Domain_Res"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:subClassOf> 
    <owl:disjointWith rdf:resource="#BuiltInRV"/> 
  </owl:Class> 
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  <owl:Class rdf:about="#ArgRelationship"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#hasArgTerm"/> 
        </owl:onProperty> 
        <owl:allValuesFrom> 
          <owl:Class> 
            <owl:unionOf rdf:parseType="Collection"> 
              <owl:Class rdf:about="#OVariable"/> 
              <owl:Class rdf:about="#Node"/> 
              <owl:Class rdf:about="#Entity"/> 
            </owl:unionOf> 
          </owl:Class> 
        </owl:allValuesFrom> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Each generic random variable can have many arguments. Arguments are usually restricted in their type 
and meaning via the context nodes of an MFrag. In order to model these complex N-ary relations, PR-OWL 
makes use of the ArgRelationship class, which is a reified relation that conveys the number and order of 
arguments that each RV expects, it's type (defined via a link to the OVariable class), and the link to the RV 
itself. 
MEBN logic has the concept of a simple and a composite random variable term. Simple RV terms accepts 
variables and constant symbols as arguments. Composite RV terms also accepts other RV terms as 
arguments. In PR-OWL, the class ArgRelashionship models composite RV terms, while its 
SimpleArgRelashionship subclass models simple RV terms.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:ID="hasArgNumber"/> 
        </owl:onProperty> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 
        >1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#Node"/> 
        <owl:onProperty> 
          <owl:FunctionalProperty rdf:about="#isArgumentOf"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:about="#Skolem"> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:someValuesFrom rdf:resource="#ArgRelationship"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isArgTermIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
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    >Each individual of class Skolem represents a Skolem constant in a MEBN quantifier random variable.  
Each MEBN quantifier random variable corresponds to a first-order formula beginning with a universal or 
existential quantifier. The Skolem constant in the MEBN random variable represents a generic individual 
within the scope of the universal or existential quantifier of the corresponding first-order formula.   
MEBN logic contains a set of built-in MFrags for quantifier random variables.  In PR-OWL modelers can use 
individuals of class Skolem to define distributions for Skolem constants used in quantifier random 
variables.</rdfs:comment> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#ArgRelationship"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isArgTermIn"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:ID="isSkolemIn"/> 
        </owl:onProperty> 
        <owl:allValuesFrom rdf:resource="#MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:allValuesFrom rdf:resource="#OVariable"/> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#representsOVar"/> 
        </owl:onProperty> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#representsOVar"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#OVariable"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty> 
          <owl:ObjectProperty rdf:about="#isSkolemIn"/> 
        </owl:onProperty> 
        <owl:someValuesFrom rdf:resource="#MFrag"/> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:ObjectProperty rdf:about="#hasContextNode"> 
    <rdfs:subPropertyOf> 
      <owl:ObjectProperty rdf:about="#hasNode"/> 
    </rdfs:subPropertyOf> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isContextNodeIn"/> 
    </owl:inverseOf> 
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    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an MFrag to the context nodes being applied to it. 
The inverse property is isContextIn</rdfs:comment> 
    <rdfs:range rdf:resource="#Context"/> 
    <rdfs:domain rdf:resource="#Domain_MFrag"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasInnerTerm"> 
    <rdfs:range rdf:resource="#Node"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isInnerTermOf"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Node"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property makes the connection between the many possible inner terms inside a MENB 
equation. It is used to decompose random variable terms usually employed in context and input nodes. 
The inverse property is isInnerTermOf.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isInputNodeIn"> 
    <rdfs:subPropertyOf> 
      <owl:ObjectProperty rdf:about="#isNodeFrom"/> 
    </rdfs:subPropertyOf> 
    <rdfs:domain rdf:resource="#Input"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a node to the MFrags that have it as an input. 
The inverse property is hasInputNode.</rdfs:comment> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasInputNode"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#MFrag"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isParentOf"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasParent"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#Resident"/> 
    <rdfs:domain> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#Input"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:domain> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a resident or input node of an MFrag with its respective children, which are 
resident nodes in that same MFrag. 
The inverse property is hasParent.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isMFragOf"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasMFrag"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#MFrag"/> 
    <rdfs:range rdf:resource="#MTheory"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
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    >This object property links one MFrag to one or more MTheories (i.e. individuals of class MTheory) that 
have that MFrag as its component. 
The inverse property is hasMFrag.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasInputNode"> 
    <rdfs:range rdf:resource="#Input"/> 
    <rdfs:subPropertyOf> 
      <owl:ObjectProperty rdf:about="#hasNode"/> 
    </rdfs:subPropertyOf> 
    <owl:inverseOf rdf:resource="#isInputNodeIn"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links each MFrag with its respective input nodes. 
The inverse property is isInputNodeIn</rdfs:comment> 
    <rdfs:domain rdf:resource="#MFrag"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasArgTerm"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one instance of class ArgRelationship (which is linked to a RV) to an internal 
variable within the home MFrag where its RV is resident, to a node that is being used as argument in that 
RV, or to a MEBN entity.  
This object property is the inverse of isArgTermIn. 
One individual of the class ArgRelationship can have only one RV (since it refers to a specific argument of 
an RV), and thus can be related to only one OVariable (Simple RV Terms) or one Node (Composite RV 
Terms), which makes that property a functional one. 
The inverse property is isArgTermIn.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isArgTermIn"/> 
    </owl:inverseOf> 
    <rdfs:range> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Entity"/> 
          <owl:Class rdf:about="#OVariable"/> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#Skolem"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:range> 
    <rdfs:domain rdf:resource="#ArgRelationship"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:ID="isProbAssignIn"> 
    <rdfs:domain rdf:resource="#ProbAssign"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This is the inverse of the hasProbAssign object property and links one individual probability assignment 
to its respective probability distribution table.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
    <rdfs:range rdf:resource="#PR-OWLTable"/> 
    <owl:inverseOf> 
      <owl:InverseFunctionalProperty rdf:about="#hasProbAssign"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasInputInstance"> 
    <rdfs:range rdf:resource="#Input"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isInputInstanceOf"/> 
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    </owl:inverseOf> 
    <rdfs:domain> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#BuiltInRV"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:domain> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a resident node or a built-in RV to its many possible "input node instances", or 
the instances of input nodes that take their values from that resident node or built-in RV. 
The inverse property is isInputInstanceOf. </rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isContextNodeIn"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one context node to the respective MFrag in which that context node applies. 
The inverse property is hasContext.</rdfs:comment> 
    <rdfs:subPropertyOf> 
      <owl:ObjectProperty rdf:about="#isNodeFrom"/> 
    </rdfs:subPropertyOf> 
    <rdfs:domain rdf:resource="#Context"/> 
    <rdfs:range rdf:resource="#Domain_MFrag"/> 
    <owl:inverseOf rdf:resource="#hasContextNode"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasProbDist"> 
    <rdfs:range rdf:resource="#ProbDist"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isProbDistOf"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Resident"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a RV to its respective probability distributions, as defined in that RV's home 
MFrags. Note that this property is not being defined as functional, implying a polymorphic version of MEBN 
(where each RV can have different distributions in different MFrags). 
The inverse of this property is isProbDistOf.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isSkolemIn"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property relates one Skolem constant (i.e. an individual from class Skolem) to the MFrag in 
which it is defined. 
The inverse of this property is hasSkolem.</rdfs:comment> 
    <rdfs:range rdf:resource="#MFrag"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasSkolem"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Skolem"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isConditionantOf"> 
    <rdfs:domain rdf:resource="#CondRelationship"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one possible state of a parent node to the configuration that is conditioning its 
children state's probability distribution. 
The inverse property is hasConditionant.</rdfs:comment> 
    <owl:inverseOf> 
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      <owl:ObjectProperty rdf:about="#hasConditionant"/> 
    </owl:inverseOf> 
    <rdfs:range rdf:resource="#ProbAssign"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isPossibleValueOf"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasPossibleValues"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Entity"/> 
    <rdfs:range> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Node"/> 
          <owl:Class rdf:about="#BuiltInRV"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:range> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property correlates one entity with the node(s) of one or more MFrags that have such entity 
as a possible state. 
Note that the individuals listed as being possible values of a node must form a mutually exclusive, 
collectively exhaustive set. PR-OWL has the same tools for enforcing exclusiveness (i.e. MEBN entity 
unique name assumption and the existential and universal qualifiers acting together as a closure axiom), but 
the domain expert must ensure completeness. 
The inverse property is hasPossibleValues.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isResidentNodeIn"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#hasResidentNode"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Resident"/> 
    <rdfs:range rdf:resource="#MFrag"/> 
    <rdfs:subPropertyOf> 
      <owl:ObjectProperty rdf:about="#isNodeFrom"/> 
    </rdfs:subPropertyOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an individual of class Node to the MFrag(s) that have this node as a resident 
node. 
The inverse property is hasResidentNode</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasParent"> 
    <rdfs:domain rdf:resource="#Resident"/> 
    <rdfs:range> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#Input"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:range> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a resident node of an MFrag with its respective parent(s), which has(have) to 
be an individual of either the class Resident or the class Input. 
The inverse property is isParentOf. 
</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isParentOf"/> 
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  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#representsOVar"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a Skolem constant (i.e. an individual of class Skolem) to the ordinary variable it 
represents in a quantifier expression. The property is functional since each Skolem constant represents only 
one ordinary variable in the model. 
The inverse property is isRepBySkolem.</rdfs:comment> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="isRepBySkolem"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#Skolem"/> 
    <rdfs:range rdf:resource="#OVariable"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasSkolem"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property relates one MFrag with the Skolem constants (i.e. an individual from class Skolem) 
that are defined in that MFrag. 
The inverse of this property is isSkolemIn.</rdfs:comment> 
    <rdfs:domain rdf:resource="#MFrag"/> 
    <owl:inverseOf rdf:resource="#isSkolemIn"/> 
    <rdfs:range rdf:resource="#Skolem"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasNode"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one MFrag with its nodes. 
The inverse property is isNodeFrom</rdfs:comment> 
    <rdfs:domain rdf:resource="#MFrag"/> 
    <rdfs:range rdf:resource="#Node"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="#isNodeFrom"/> 
    </owl:inverseOf> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isRepBySkolem"> 
    <rdfs:range rdf:resource="#Skolem"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one ordinary variable to the Skolem constant that represents that ordinary 
variable in quantified expressions. The property is inverse functional, since one Skolem constant can 
represent only the group of entities that can be replaced with that ordinary variable in the model. 
The inverse property is representsOVar.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/> 
    <owl:inverseOf rdf:resource="#representsOVar"/> 
    <rdfs:domain rdf:resource="#OVariable"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasPossibleValues"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property defines what are the possible values of a node in an MFrag (which is by definition a 
random variable). Possible states include all kinds of entities. 
The inverse property is isPossibleValueOf</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isPossibleValueOf"/> 
    <rdfs:range rdf:resource="#Entity"/> 
    <rdfs:domain> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#BuiltInRV"/> 
          <owl:Class rdf:about="#Node"/> 
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        </owl:unionOf> 
      </owl:Class> 
    </rdfs:domain> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isNodeFrom"> 
    <rdfs:range rdf:resource="#MFrag"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This general object property links one node to the MFrag it belongs to. 
The inverse property is hasNode</rdfs:comment> 
    <rdfs:domain rdf:resource="#Node"/> 
    <owl:inverseOf rdf:resource="#hasNode"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isInputInstanceOf"> 
    <rdfs:domain rdf:resource="#Input"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an input node to its "generative resident node", or the resident node to which 
that input node is a copy. 
The inverse property is hasInputInstance.</rdfs:comment> 
    <owl:inverseOf rdf:resource="#hasInputInstance"/> 
    <rdfs:range> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#BuiltInRV"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:range> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasResidentNode"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an MFrag with its respective resident node(s). 
The inverse property is isResidentNodeIn</rdfs:comment> 
    <rdfs:subPropertyOf rdf:resource="#hasNode"/> 
    <rdfs:range rdf:resource="#Resident"/> 
    <owl:inverseOf rdf:resource="#isResidentNodeIn"/> 
    <rdfs:domain rdf:resource="#MFrag"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isContextInstanceOf"> 
    <rdfs:range> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Domain_Res"/> 
          <owl:Class rdf:about="#BuiltInRV"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:range> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links context node to its "generative resident node" or built-in RV (i.e. the resident 
node or built-in RV from which the context node is a pointer). 
The inverse property is hasContextInstance</rdfs:comment> 
    <rdfs:domain rdf:resource="#Context"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:ID="hasContextInstance"/> 
    </owl:inverseOf> 
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  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasMFrag"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one MTheory with its respective MFrags. Usually, a probabilistic ontology will 
have only one MTheory as a means to convey the global joint probability distribution of its random variables. 
However, MEBN logic allows many possible MTheories to represent a given domain, so it is reasonable to 
infer that in some circunstances it might be preferable to have one probability ontology being represented by 
more than one MTheory. 
The inverse property is isMFragOf</rdfs:comment> 
    <rdfs:domain rdf:resource="#MTheory"/> 
    <owl:inverseOf rdf:resource="#isMFragOf"/> 
    <rdfs:range rdf:resource="#MFrag"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasContextInstance"> 
    <rdfs:domain> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Domain_Res"/> 
          <owl:Class rdf:about="#BuiltInRV"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:domain> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a resident node or a built-in RV to its many possible "context node instances", 
or the instances of context nodes that take their values from that resident node or built-in RV. 
The inverse property is isContextInstanceOf. </rdfs:comment> 
    <rdfs:range rdf:resource="#Context"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/> 
    <owl:inverseOf rdf:resource="#isContextInstanceOf"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isOVariableIn"> 
    <owl:inverseOf> 
      <owl:InverseFunctionalProperty rdf:about="#hasOVariable"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="#OVariable"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
    <rdfs:range rdf:resource="#MFrag"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This functional object property relates one ordinary variable (i.e. an individual from class OVariable) to its 
respective MFrag. 
The inverse of this property is hasOVariable.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isProbDistOf"> 
    <rdfs:domain rdf:resource="#ProbDist"/> 
    <rdfs:range rdf:resource="#Resident"/> 
    <owl:inverseOf rdf:resource="#hasProbDist"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a probability distribution to its respective RV (resident node). Note that this 
property is functional, since each probability distribution in a MFrag defines a unique RV. 
The inverse of this property is hasProbDist.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasConditionant"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >Each instance of the class ProbAssign corresponds to the probability assigment for a given state of a 
RV. This probability assignment is conditioned by the parent RVs of that RV. This object property conveys 
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the list of the states of the parent RV which have influenced that specific probability assignment. Since any 
MEBN entity can be a state in a RV, this property has MEBNEntity class as its range. 
The inverse property is isConditionantOf</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isConditionantOf"/> 
    <rdfs:range rdf:resource="#CondRelationship"/> 
    <rdfs:domain rdf:resource="#ProbAssign"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isTypeOf"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This is the inverse of hasType object property, and basically lists all the MEBN entities that have its 
respective type defined by that specific individual of either the MetaEntity class or the ObjectEntity 
class.</rdfs:comment> 
    <rdfs:domain rdf:resource="#MetaEntity"/> 
    <rdfs:range rdf:resource="#Entity"/> 
    <owl:inverseOf> 
      <owl:FunctionalProperty rdf:about="#hasType"/> 
    </owl:inverseOf> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasParentName"> 
    <rdfs:range rdf:resource="#Node"/> 
    <rdfs:domain rdf:resource="#CondRelationship"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a CondRelationship to a Node. The reified conditional relationship is used to 
build PR-OWL Tables. One table usually has many probability assignments (which correspond to cells in a 
table), and each probability assignment has a set of conditionants. Conditionants are the states of the 
parents of a node that form a combination where a given probability assignment holds. Each 
CondRelationship defines a pair parent/state-of-parent, and the hasParentName property defines the parent 
name of that pair. </rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isArgTermIn"> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/> 
    <owl:inverseOf rdf:resource="#hasArgTerm"/> 
    <rdfs:domain> 
      <owl:Class> 
        <owl:unionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#OVariable"/> 
          <owl:Class rdf:about="#Resident"/> 
          <owl:Class rdf:about="#Entity"/> 
          <owl:Class rdf:about="#Skolem"/> 
        </owl:unionOf> 
      </owl:Class> 
    </rdfs:domain> 
    <rdfs:range rdf:resource="#ArgRelationship"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an individual of class OVariable, Resident, Entity, or Skolem to one 
ArgRelationship(s) that has individual as its argument. Each ArgRelationship can have only one argument, 
but each individual of those classes can refer to many ArgRelationships. 
The inverse of this property is hasArgTerm.</rdfs:comment> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#isInnerTermOf"> 
    <owl:inverseOf rdf:resource="#hasInnerTerm"/> 
    <rdfs:range rdf:resource="#Node"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property is used to model expressions. 
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The inverse property is hasInnerTerm</rdfs:comment> 
    <rdfs:domain rdf:resource="#Node"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#hasStateName"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >When a probability distribution is conveyed as an PR-OWL table, each individual cell is represented as 
an individual of the ProbAssign class. This object property refers to which state of a random variable (i.e. 
MFrag node) a given probability assignment refers to. 
The property itself is functional, since one state can have only one probability assignment for the 
configuration listed in each individual of the ProbAssign class.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
    <rdfs:range rdf:resource="#Entity"/> 
    <rdfs:domain rdf:resource="#ProbAssign"/> 
  </owl:ObjectProperty> 
  <owl:DatatypeProperty rdf:about="#hasUID"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >MEBN logic has the unique naming assumption, which is not assumed in OWL (even though tools such 
as Protege make that assumption for improved reasoning purposes). In order to make sure that a tool that 
does not assume unique identifies would not prevent MEBN reasoners to work, each MEBN entity has a 
unique identifier assigned by this datatype property. 
The UID itself is conveyed as a xsd:string, and the hasUID datatype property is declared as functional in 
order to enforce uniqueness.</rdfs:comment> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 
    <rdfs:domain rdf:resource="#Entity"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
  </owl:DatatypeProperty> 
  <owl:DatatypeProperty rdf:about="#isRepresentedAs"> 
    <rdfs:domain rdf:resource="#DeclarativeDist"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This datatype property defines how a given declarative probability distribution is expressed. Each 
probability distribution can be expressed in different formats, and each format is defined by this datatype 
property. Possible formats include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and 
others. However, the declaration itself is stored in the hasDeclaration datatype property as a string so 
parsers will have to know how to deal with the specific text format of each declaration.</rdfs:comment> 
    <rdfs:range> 
      <owl:DataRange> 
        <owl:oneOf rdf:parseType="Resource"> 
          <rdf:rest rdf:parseType="Resource"> 
            <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
            >MS_DSC</rdf:first> 
            <rdf:rest rdf:parseType="Resource"> 
              <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
              >Quiddity_SPI</rdf:first> 
              <rdf:rest rdf:parseType="Resource"> 
                <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                >Netica_DNE</rdf:first> 
                <rdf:rest rdf:parseType="Resource"> 
                  <rdf:rest rdf:parseType="Resource"> 
                    <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                    >BIF</rdf:first> 
                    <rdf:rest rdf:parseType="Resource"> 
                      <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                      >Hugin_NET</rdf:first> 
                      <rdf:rest rdf:parseType="Resource"> 
                        <rdf:rest rdf:parseType="Resource"> 
                          <rdf:rest rdf:parseType="Resource"> 
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                            <rdf:rest rdf:parseType="Resource"> 
                              <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                              >Other</rdf:first> 
                              <rdf:rest rdf:parseType="Resource"> 
                                <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                                >PR-OWL_MEBN</rdf:first> 
                                <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 
                              </rdf:rest> 
                            </rdf:rest> 
                            <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                            >Ergo_ENT</rdf:first> 
                          </rdf:rest> 
                          <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                          >IDEAL_IDE</rdf:first> 
                        </rdf:rest> 
                        <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                        >Genie_DSL</rdf:first> 
                      </rdf:rest> 
                    </rdf:rest> 
                  </rdf:rest> 
                  <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                  >MS_XBN</rdf:first> 
                </rdf:rest> 
              </rdf:rest> 
            </rdf:rest> 
          </rdf:rest> 
          <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
          >BNIF</rdf:first> 
        </owl:oneOf> 
      </owl:DataRange> 
    </rdfs:range> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
  </owl:DatatypeProperty> 
  <owl:FunctionalProperty rdf:about="#isSubsBy"> 
    <rdfs:range rdf:resource="#MetaEntity"/> 
    <rdfs:domain rdf:resource="#OVariable"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links one instance of class OVariable to type of the entity that can substitute it. Each 
argument of a RV has its expected type defined within the home MFrag of that RV. In PR-OWL, the type 
restrictions are defined directly through the OVariable using the isSubsBy property. One MFrag can have 
many OVariables (which can be themselves linked to many SimpleArgRelationships) but each OVariable 
has a unique type, which is explicitly defined by the type of the entity that can substibute that OVariable. 
This object property is the inverse of subsOVar.</rdfs:comment> 
    <owl:inverseOf> 
      <owl:InverseFunctionalProperty rdf:about="#subsOVar"/> 
    </owl:inverseOf> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#hasParentState"> 
    <rdfs:domain rdf:resource="#CondRelationship"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
    <rdfs:range rdf:resource="#Entity"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links a CondRelationship to an Entity. The reified conditional relationship is used to 
build PR-OWL Tables. One table usually has many probability assignments (which correspond to cells in a 
table), and each probability assignment has a set of conditionants. Conditionants are the states of the 
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parents of a node that form a combination where a given probability assignment holds. Each 
CondRelationship defines a pair parent/state-of-parent, and the hasParentState property defines the parent 
state of that pair.</rdfs:comment> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#isArgumentOf"> 
    <rdfs:range rdf:resource="#Node"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
    <owl:inverseOf> 
      <owl:InverseFunctionalProperty rdf:about="#hasArgument"/> 
    </owl:inverseOf> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property links an Argument Relationship to its respective Node (i.e. to the individual of class 
Node that has this ArgRelationship into its argument list). 
The inverse of this property is hasArgument. 
</rdfs:comment> 
    <rdfs:domain rdf:resource="#ArgRelationship"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#hasType"> 
    <owl:inverseOf rdf:resource="#isTypeOf"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >In the extended MEBN logic that is the backbone of PR-OWL, each and every entity has a type. The list 
of types consists of the individuals from class MetaEntity. 
This functional object property defines the type of each entity by linking it to an individual of the MetaEntity 
class.  
Every entity has a MetaEntity (TypeLabel, CategoryLabel, Boolean, or a domain-specific label) as a Type. 
As an example, an hypothetical indivudual of an ObjectEntity class named Starship would have type 
Starship, which is a domain-specific label for an ObjectEntity individual that happens to be a starship. That 
domain-specific label is itself an individual of the MetaEntity class. 
The inverse property is isTypeOf.</rdfs:comment> 
    <rdfs:domain rdf:resource="#Entity"/> 
    <rdfs:range rdf:resource="#MetaEntity"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#hasDeclaration"> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This datatype property conveys the declarative probability distributions. Each probability distribution can 
be expressed in different formats and each format is defined by the datatype property isRepresentedAs. 
Possible formats include Netica tables, Netica equations, Quiddity formulas, MEBN syntax, and others. 
However, the declaration itself is stored as a string so parsers are expected to understand how to deal with 
the specific text format of each declaration.</rdfs:comment> 
    <rdfs:domain rdf:resource="#DeclarativeDist"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#hasStateProb"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This datatype property is used to store the actual probability of an individual ProbAssign. Currently, OWL 
has no support for user defined datatypes, so instead of using owl-p:prob datatype (which includes all 
decimals between 0 and 1 inclusive) we are using xsd:decimal for compatibility purposes.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 
    <rdfs:domain rdf:resource="#ProbAssign"/> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#decimal"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:ID="isDefault"> 
    <rdfs:domain rdf:resource="#ProbDist"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
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    >This datatype property indicates whether a probability distribution is the default probability distribution of 
a node or not. Default probability distributions for nodes are used when the context nodes of the MFrag 
containing those nodes are not met.</rdfs:comment> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 
  </owl:FunctionalProperty> 
  <owl:FunctionalProperty rdf:about="#hasArgNumber"> 
    <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#nonNegativeInteger"/> 
    <rdfs:domain rdf:resource="#ArgRelationship"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This datatype property assigns the argument number of an argument relationship. As an example, if we 
have a random variable with 3 arguments, it will have three ArgRelatioship reified relations. The first 
argument of the RV will have the number 1 assigned to its respective hasArgNumber property, the second 
will have the number 2 assigned and the third will have the number 3 assigned. In short this property keeps 
track of the ordering between the arguments of an RV. 
The datatype itself is a nonNegativeInteger. We used this instead of a positiveInteger because we wanted 
zero as a possible value, since we assume that a RV with no arguments means a global 
RV.</rdfs:comment> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 
  </owl:FunctionalProperty> 
  <owl:InverseFunctionalProperty rdf:about="#hasArgument"> 
    <rdfs:range rdf:resource="#ArgRelationship"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property is the link between a node in an MFrag and the reified relation that conveys its 
respective arguments. Note that each instance of a node will have only one argument relashionship, which is 
defined within that node's MFrag. 
The inverse of this property is isArgumentOf</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isArgumentOf"/> 
    <rdfs:domain rdf:resource="#Node"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
  </owl:InverseFunctionalProperty> 
  <owl:InverseFunctionalProperty rdf:about="#hasProbAssign"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >An PR-OWL table is formed by many individual members of the class ProbAssign, which are cells in that 
table. This object property relates one PR-OWL table to its respective cells (ProbAssign elements). 
The inverse property is isProbAssignIn.</rdfs:comment> 
    <rdfs:range rdf:resource="#ProbAssign"/> 
    <owl:inverseOf rdf:resource="#isProbAssignIn"/> 
    <rdfs:domain rdf:resource="#PR-OWLTable"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
  </owl:InverseFunctionalProperty> 
  <owl:InverseFunctionalProperty rdf:about="#subsOVar"> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This object property assigns MetaEntity individuals in order to define the type of the substituters for each 
MFrag ordinary variable. 
Its inverse property is the functional isSubsBy.</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isSubsBy"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
    <rdfs:domain rdf:resource="#MetaEntity"/> 
    <rdfs:range rdf:resource="#OVariable"/> 
  </owl:InverseFunctionalProperty> 
  <owl:InverseFunctionalProperty rdf:about="#hasOVariable"> 
    <rdfs:domain rdf:resource="#MFrag"/> 
    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
    >This inverse functional object property relates one MFrag to its ordinary variables (i.e. individuals from 
class OVariable hat are related to this MFrag). 
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The inverse of this property is isOVariableIn.</rdfs:comment> 
    <owl:inverseOf rdf:resource="#isOVariableIn"/> 
    <rdfs:range rdf:resource="#OVariable"/> 
    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 
  </owl:InverseFunctionalProperty> 
  <owl:DataRange> 
    <owl:oneOf rdf:parseType="Resource"> 
      <rdf:rest rdf:parseType="Resource"> 
        <rdf:rest rdf:parseType="Resource"> 
          <rdf:rest rdf:parseType="Resource"> 
            <rdf:rest rdf:parseType="Resource"> 
              <rdf:rest rdf:parseType="Resource"> 
                <rdf:rest rdf:parseType="Resource"> 
                  <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                  >indref</rdf:first> 
                  <rdf:rest rdf:parseType="Resource"> 
                    <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                    >implies</rdf:first> 
                    <rdf:rest rdf:parseType="Resource"> 
                      <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/> 
                      <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                      >equalto</rdf:first> 
                    </rdf:rest> 
                  </rdf:rest> 
                </rdf:rest> 
                <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
                >exists</rdf:first> 
              </rdf:rest> 
              <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
              >iff</rdf:first> 
            </rdf:rest> 
            <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
            >forall</rdf:first> 
          </rdf:rest> 
          <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
          >not</rdf:first> 
        </rdf:rest> 
        <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
        >or</rdf:first> 
      </rdf:rest> 
      <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 
      >and</rdf:first> 
    </owl:oneOf> 
  </owl:DataRange> 
  <rdf:Description> 
    <owl:allValuesFrom rdf:resource="#Domain_MFrag"/> 
    <owl:onProperty rdf:resource="#isInputNodeIn"/> 
  </rdf:Description> 
</rdf:RDF> 
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Appendix C   Potential Applications for PR-OWL Outside the Semantic Web 

This appendix explores two important application scenarios for probabilistic 
ontologies among the ones in which PR-OWL has a great potential to be employed 
outside the scope of the Semantic Web.  

The first one, the DTB project, covers the ontology mapping problem, where the 
ontologies work as information brokers between each distinct software application being 
used in the system and a domain-free, probabilistic meta-ontology, dubbed IO 
(Integration Ontology). IO carries only information about the semantic mapping between 
the concepts of each ontology. The information represented by IO consists of 
probabilistic statements about the relationship between terms in the domain ontologies.  

The second example, the Wise Pilot system, explores the difficulties of 
performing multi-sensor data fusion with common BNs, the feasibility of using MEBN 
logic in that problem, and proposes the use of PR-OWL as a means to achieve sensor 
interoperability and information sharing between combatant platforms in a tactical 
environment. 

C.1 PR-OWL for Integration Ontologies: The DTB Project 

DTB stands for Detection of Threat Behavior, an ongoing project initially funded 
by ARDA30 and conducted by IET31 and GMU. The project focused on a particularly 
insidious threat: that posed by individuals who misuse their privileges to gain access to 
sensitive information in order to make it available to unauthorized parties (e.g.:  other 
states, terrorists), or to manipulate it with the purpose of producing misguiding analysis 
(Alghamdi et al., 2004).   

The overall idea of the DTB project is to model user queries and detect situations 
in which users in sensitive positions may be accessing documents outside their assigned 
areas of responsibility. This novel approach to insider threats assumes a controlled 
environment in which rules for accessing information are clearly defined and, ideally, 
tightly enforced. 

Although such environments provide little encouragement to insider threats, 
unusual access patterns are not easily detected given current technology. In fact, 

                                                
30 ARDA – Advanced Research and Development Activity (www.ic-arda.org) 
31 IET – Information Extraction and Transport, Inc. (www.iet.com) 
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documented cases in which insiders using unsophisticated tactics to outsmart standard 
security systems (e.g., CNN.com, 1998, 2001) leave a very uncomfortable open question: 
how about the sophisticated ones? 

Catching more elaborate patterns that might be characteristic of users attempting 
illegal activities such as disclosure of classified information is a daunting task that must 
be tackled with a powerful inference method capable of dealing with the uncertainty 
involved in the process. 

The flexible modeling framework provided by multi-entity Bayesian networks 
make it an obvious candidate to model the intricacies of security-controlled 
environments. Its natural ability to capture a domain with the richness of details required 
for feeding its inference engine is a major strength, but poses a well know challenge to 
modelers: how to make the model interoperable among different agencies.  

This requirement implies conflicting objectives. Initially, there’s a quest for being 
precise enough to capture the subtlest hints of wrong behavior under a given agency’s 
rules. Yet, there is also the need for constructing a model that is general enough to be 
suitable to other agencies. This is a trade-off nightmare to most modeling techniques, and 
an issue that was also perceived in the DTB project. 

The project’s final product is supposed to deal with a community with many 
possible users, both inside the Intel community and outside it. This leads to diverse 
(although similar) vocabularies, policies, organization culture, etc, with a great potential 
of rendering the model assumptions imprecise at best. Like almost all complex domains 
the Intelligence community does not have a commonly accepted conceptualization of its 
rules, policies, or vocabulary; deeming sophisticated, detail-rich systems unlikely to 
achieve interoperability without extra effort devoted specifically to this end.  

In the DTB project, extra effort was devoted to the heavy use of ontologies. 
Because different views of a domain have to be represented by different ontologies, any 
interoperable system built upon ontologies must have a means of dealing with the 
ontology mapping problem.  

The project is in its initial part, where the focus is on building the behavioral 
model and on devising data mining algorithms capable of extracting the document 
relevance data that will feed that model. At the same time, two ontologies were made as a 
way of capturing the subtleties of both the MEBN model and the data mining algorithms. 

Both ontologies were developed with the open source software Protégé. The first, 
the Insider behavior ontology (IB), describes the MEBN model of insider threat behavior. 
Figure 36 depicts the IB ontology.  The second ontology, the Organization and Task 

Ontology (OT), is shown in Figure 37 and portrays the various aspects of an internal 
organization. Among those we can cite its internal rules, details such as “need to know”, 
individual clearance, and compartment type (and these terms’ respective meanings with 
regard to data access), the data mining algorithms we use to capture document relevance, 
and other particularities of the Intelligence domain. 
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Figure 36. The Insider Behavior Ontology (IB) 

 

Figure 37. The Organization and Task Ontology (OT) 

It is important to emphasize the role of ontologies as a tool for enforcing the 
semantic consistency of the models. Since both ontologies were made “in sync” with the 
development phase of their subjects, the modelers were forced not only to think about the 
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specific model details but also about ensuring that each variable and its semantic meaning 
is consistent with the models and with the domain’s concepts. 

Once the behavioral model and the data mining algorithms were ready, the next 
step was to extract the actual data do be used for assessing the relevance of each user’s 
search with respect to his/her assigned task. For this task, the project adopted the software 
Glass Box, a Java-based user monitoring application available to researchers on ARDA’s 
Novel Intelligence from Massive Data project (NIMD) at http://glassbox.labworks.org. 
Glass Box was used to capture the actions of users and then extract the information 
needed for the data mining algorithms. The overall process is depicted in Figure 38. 

 
 

Figure 38. The Insider Threat Detection Process – Initial Setup 

The flow starts with a set of users (top left), from whom their queries and general 
system usage is analyzed. User queries are stored for being processed by the data mining 
algorithms that will extract selected parameters regarding search relevance, which will 
feed the behavioral MEBN model. System usage refers to general parameters that can be 
used by the MEBN model to make inferences about unusual patterns (e.g. user login 
time, copy and paste, etc). 

Figure 39 shows the same setup viewed from the perspective of the software 
modules being used and respective integration requirements. Here we see that Glass Box 
is used for capturing all data, where some will be discharged, some will feed the MEBN 
model directly, and some will go through the data mining process, which will capture the 
relevance of a given user’s searches with respect to his/her assigned task. The results of 
the data mining process will also feed the behavioral model, as further information for 
assessing each user’s likelihood of being an insider threat or not. 

As highlighted above, the communication between each software package has to 
be “hardwired” via their respective APIs, in a tedious, manual, expensive, error-prone 
process that has to be repeated for every change in any parameter of any software 
package, for any additional feature in the system, and for every change of policy inside 
the agency in which the system is installed. 

This inflexible scheme also hinders interoperability; since for each and every 
agency where the system is to be installed we would have to go through the whole 
process again and little if any of the previous setup efforts can be used in a new one. 
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Figure 39. The Insider Threat Detection Process – Data Interchange 

The approach used for solving the DTB project’s interoperability problem was to 
use ontologies as information brokers between each distinct software application in the 
system. By doing so, the parameters are “hardwired” between each application and its 
respective ontology, instead of between applications as in the original scheme depicted in 
Figure 39. 

Therefore, if (say) there were a change in working hours of a given agency, there 
would be no need to search all APIs for variables using this information. Instead, only a 
unique ontology has to be changed and the others will be updated via the Integration 
Ontology (IO). This process is shown in Figure 40. 

 
 

Figure 40. The Insider Threat Detection Process – Desired Process 

It is important to note the nature of the IO. Contrary to most approaches in 
semantic mapping, the work in the DTB project is not towards a “merged”, “coarser”, 
bigger ontology containing domain information represented in GB, IB, or OT ontologies. 
Instead, IO is a domain-free, meta-ontology carrying only information about the semantic 
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mapping between each of the domain ontologies in the system. The structure, classes, and 
slots of the IO will not represent the domain in which the system being applied. Domain 
information will appear only in the instances of IO, which convey the actual relationships 
among the domain ontologies’ concepts. 

This approach for integration provides an elegant way of conveying semantic 
mapping information. Avoiding domain-related knowledge in the IO structure makes it 
much easier to maintain and to expand, as modifications in the ontologies being mapped 
will affect only the mappings (i.e. the instances of IO) and not the IO itself. 

Some common problems arise from such a scheme, for example: how can we 
measure the commonality between any two concepts in different ontologies? Issues like 
that represent major constraints for any semantic mapping approach using deterministic 
frameworks, and it is where our research efforts will most likely provide breakthroughs in 
this area. 

PR-OWL provides the necessary elements to overcome such limitations and is a 
suitable technology for building both the IB ontology (and any other ontology that has to 
represent probabilistic information) and the IO meta-ontology. 

Therefore, PR-OWL has the potential to provide the DTB project with a modular, 
easily maintainable, expandable solution that will reduce the labor-intensive ontology 
mapping process for the initial setup only. After that, the probabilistic reasoning 
performed via the Integration Ontology will tremendously facilitate modifications or 
additions to the system.  

C.2 PR-OWL for Multi-Sensor Data Fusion: The Wise Pilot System 

Bayesian Networks are much praised as a powerful tool for performing 
probabilistic inference, but they do have some limitations that impede their application to 
complex problems. To illustrate such issues, we present the Wise Pilot system (Costa, 
1999), which analyzes a fighter aircraft sensors' information and assesses each eventual 
perceived track's relevant probability.  

In a typical mission, here called a sortie, a fighter aircraft has to take off from a 
friendly aerodrome, perform a high-altitude flight over friendly territory, descend to a 
lower altitude preferably before being detected by the enemy’s radar coverage, attack the 
mission's target(s) and egress home safely. Enemy’s role is to detect the incoming fighter 
and deny its attack, using weapons like interceptors, AAA32, or missiles. 

Behind the scenes lies a high-tech contest between the intruder fighter and 
enemy’s forces, usually called electronic warfare. This contest can be compared to a 
hide-and-seek game, where the intruder fighter tries to stay out of enemies' electronic 

                                                
32 AAA is the acronym for Anti-Aircraft Artillery, which includes all gun-based weapons employed against 

airborne targets (aircraft, helicopters, cruise missiles, etc). 
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eyes (i.e. early warning radars, interceptor sensors, AAA radars, etc.) as long as he can. 
The ability of the intruder to hide from these hostile sensors will depend on tactics like 
low-level flight and reduction (or elimination) of communication and radar emissions. 
The first is intended to use the terrain as a mask against enemy’s radar, while the latter 
avoids being discovered by the enemy's passive detectors. 

However, flying into enemy territory means to be vulnerable to a wide array of 
threats, and for most of them awareness is the first requisite to improve the chances of 
surviving. To be aware, the pilot counts on the information provided by its own sensors, 
which can usually be grouped in two distinct types: passive and active. Sensors in the 
first group detect all transmissions and classify their respective sources; thus they do not 
need to make any transmissions by themselves. Sensors in the second group are those that 
transmit for a period of time and wait for a reply in order to obtain information. 

Although passive sensors are a stealthy way of gathering information about the 
enemy, an obvious drawback is in the fact that their efficacy depends on whether the 
enemy is emitting or not. In addition, passive sensors like the RHAW do not provide a 
reliable measure of distance.  

Active sensors, on the other hand, usually provide more accurate measurement. 
As a consequence, the decision to decrease uncertainty or detectability is a hard conflict 
to be solved, mainly during a high attention-demanding situation as a flight sortie. 
However, there are other issues regarding the use of active sensors. Among these is the 
management of the sensor's power, that is how to direct it (allocate it) for the many 
surrounding enemy’s targets/aggressors.  

The pilot should perform this allocation wisely, in order to achieve an optimal use 
of the aircraft's weapon systems (offensively and/or defensively). Here, the level of 
uncertainty will also influence the pilot’s decisions. 

Those decisions are not constrained to electronic warfare considerations. The pilot 
also has to deal with navigation issues, complex aircraft systems' monitoring, damage 
control, fuel consumption, and ultimately he still has to pilot his aircraft in a 540 knots 
near-the-ground flight.  

In addition, modern aircraft and sophisticated defense systems have dramatically 
increased pilot’s workload, particularly in the most critical phase of the mission, the 
attack. 

The Wise Pilot system initially assesses the threat level of each track perceived by 
its sensors and then uses Bayesian Inference to provide the pilot with the best option 
available given the most up-to-date information on those tracks. Figure 41 summarizes 
the danger assessment process. 
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Figure 41. General Track Danger Assessment Scheme 

A Bayesian Network, which is shown in more detail in Figure 42, receives data 
from the aircraft sensors related to one specific track (coming from the left in the picture) 
and from the aircraft’s systems related to its own position, altitude, and other navigational 
details (coming from the right).  

This information is then propagated inside the BN and will result in an assessment 
of the nature of that specific track and the potential danger it might represent. 
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Figure 42. Individual Track's BN Information Exchange Scheme 

Therefore, since each BN is responsible for the probabilistic assessment of each 
track, if we have n tracks we will have to have n Bayesian Networks for assessing its 
respective nature and potential danger. Figure 43 shows the general schema of the 
decision process to be performed after all data on tracks is received. 
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Figure 43. Wise Pilot system – general scheme 

In the bottom of the picture we have the n Bayesian Networks related to the n 
tracks. The system works in discrete time, which means that at time t it will collect all 
information from the n tracks, use n BNs for assessing its nature and potential danger, 
and then evaluate what is the best combination of the four decisions it has to take (i.e. 
what is the best decision policy) for that specific situation given the objectives (i.e. attack 
target, avoid fratricide, and maximize survivability) and the most updated information 
available at time t. 

The advantages of a Bayesian Inference system over deterministic rule-based 
systems for dynamic decision situations such as the fighter pilot problem have been 
discussed extensively in the literature (e.g. Costa, 1999). However, a major obstacle for 
implementation of this and similar systems is the lack of representational power of 
Bayesian Networks for dealing with the variable number of tracks for each time t. 
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As an example, Figure 44 shows how the system would look like in a given time t 
in which we have four tracks being perceived by the system. 

 

Figure 44. Wise Pilot with 4 Tracks 

Now suppose that in time t+1 (i.e. on the next system iteration) two new tracks 
are perceived by the system and one of the tracks from time t went away. In this new 
situation, the system depicted in Figure 44 is no longer valid, while the new configuration 
should look like the one illustrated in Figure 45.  

In other words, in a highly dynamic environment like the one covered in this 
example, a Bayesian Inference system would have to be reconfigured almost for every 
iteration, greatly increasing the complexity of its implementation. Furthermore, there may 
be uncertainty about the correct configuration at any given iteration. Even more 
problematic is the situation in which we are unsure whether a sensor report indicates a 
real or spurious object, or whether two reports refer to the same or different subjects. In 
these cases, the number of instances of the track sub-network is uncertain. 

Behind this limitation is the fact that Bayesian Networks have limited expressive 
power, while in situations like the one portrayed (and in many interesting situations of the 
real world as well) a more powerful representational formalism is desired.  

More specifically, Bayesian Networks allow probability statements (i.e. 
propositions) over specific instances of a model, but do not support making general 
assertions over non-specific instances (e.g. statements about variables instead of unique 
instances). Thus, when facing problems like the fighter pilot’s we need a language that 
combines the inferential power of Bayesian Networks with the representational power of 
first-order logic. 
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Figure 45. Wise Pilot with 5 Tracks 

We have seen in Chapter 3 that MEBN logic provides such combination of 
Bayesian plausible reasoning and first-order logic expressiveness, and thus is a perfect 
match for the requirements.  This is no surprise, since the suitability of MEBN logic for 
C3I decision systems was already pointed out in some recent research work (Costa et al., 
2005). However, for the very same reasons of the DTB project cited earlier in this 
appendix, MEBN alone would not guarantee that such system would be interoperable, 
easily maintainable and upgradeable.  

Indeed, in order to realize the concept of Network Centric Warfare being sought 
by most modern armed forces (cf. Alberts et al., 1999), massive investments must be 
made to achieve sensor interoperability and information sharing between combatant 
platforms in a tactical environment.  

In the Wise Pilot case, building the system’s multiple ontologies (e.g. ontologies 
on ground-based radar systems, airborne radars and respective platforms, interceptor 
aircraft and respective weapon systems, etc.) using PR-OWL would bring the intrinsic 
advantages of probabilistic ontologies, such as built-in ability to learn from previous 
engagements, and the possibility of improving maintainability, interoperability (among 
the system’s ontologies and exterior ones as well), and expandability. 

Of course, the above-cited advantages can be easily transposed to similar data 
fusion systems in the military domain and in civilian applications as well, clearly 
exposing the promising aspect of the technology outside the Semantic Web framework. 
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